
Approximation, Randomization,
and Combinatorial Optimization.
Algorithms and Techniques

20th International Workshop, APPROX 2017, and
21st International Workshop, RANDOM 2017
August 16–18, 2017, Berkeley, CA, USA

Edited by

Klaus Jansen
José D. P. Rolim
David P. Williamson
Santosh S. Vempala

LIPIcs – Vo l . 81 – APPROX/RANDOM 2017 www.dagstuh l .de/ l ip i c s

Editors
Klaus Jansen Jośe D. P. Rolim
University of Kiel University of Geneva
Kiel, Germany Geneva, Switzerland
kj@informatik.uni-kiel.de Jose.Rolim@unige.chr

Santosh S. Vempala David P. Williamson
Georgia Institute of Technology Cornell University
Georgia, USA Cornell, USA
vempala@gatech.edu davidpwilliamson@cornell.edu

ACM Classification 1998
C.2.1 Network Architecture and Design, E.4 Coding and Information Theory, Error Control Codes, F.1.2
Modes of Computation: Online computation, F.1.3 Complexity Measures and Classes, F.2.0 Analysis of
Algorithms and Problem Complexity, F.2.1 Numerical Algorithms and Problems, F.2.2 Nonnumerical
Algorithms and Problems, Computations on discrete structures, G.1.2 Approximation, G.2.2 Graph Theory,
G.1.3 Numerical Linear Algebra, G.1.6 Optimization, Integer programming, Linear programming, G.2.
Discrete Mathematics, G.2.1 Combinatorial algorithms, Counting problems, G.2.2 Graph Theory: Graph
algorithms, Network problems, G.3 Probability and Statistics, Probabilistic algorithms (including Monte
Carlo), Markov Processes, Statistical computing

ISBN 978-3-95977-044-6

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-95977-044-6.

Publication date
August, 2017

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.APPROX-RANDOM.2017.0

ISBN 978-3-95977-044-6 ISSN 1868-8969 http://www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-95977-044-6
http://www.dagstuhl.de/dagpub/978-3-95977-044-6
http://dnb.d-nb.de
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.0
http://www.dagstuhl.de/dagpub/978-3-95977-044-6
http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Reykjavik University)
Susanne Albers (TU München)
Chris Hankin (Imperial College London)
Deepak Kapur (University of New Mexico)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Anca Muscholl (University Bordeaux)
Catuscia Palamidessi (INRIA)
Raimund Seidel (Saarland University and Schloss Dagstuhl – Leibniz-Zentrum für Informatik)
Thomas Schwentick (TU Dortmund)
Reinhard Wilhelm (Saarland University)

ISSN 1868-8969

http://www.dagstuhl.de/lipics

APPROX/RANDOM’17

http://www.dagstuhl.de/dagpub/1868-8969
http://www.dagstuhl.de/lipics

Contents

Preface
Klaus Jansen, José D. P. Rolim, Santosh S. Vempala, and David P. Williamson . ix

Program Committees
. xi

External Reviewers
. xiii

List of Authors
. xv

Regular Papers
Contributed Talks of APPROX

Min-Cost Bipartite Perfect Matching with Delays
Itai Ashlagi, Yossi Azar, Moses Charikar, Ashish Chiplunkar, Ofir Geri,
Haim Kaplan, Rahul Makhijani, Yuyi Wang, and Roger Wattenhofer 1:1–1:20

Global and Fixed-Terminal Cuts in Digraphs
Kristóf Bérczi, Karthekeyan Chandrasekaran, Tamás Király, Euiwoong Lee,
and Chao Xu . 2:1–2:20

A PTAS for Three-Edge-Connected Survivable Network Design in Planar Graphs
Glencora Borradaile and Baigong Zheng . 3:1–3:13

The Quest for Strong Inapproximability Results with Perfect Completeness
Joshua Brakensiek and Venkatesan Guruswami . 4:1–4:20

Scheduling Problems over Network of Machines
Zachary Friggstad, Arnoosh Golestanian, Kamyar Khodamoradi,
Christopher Martin, Mirmahdi Rahgoshay, Mohsen Rezapour,
Mohammad R. Salavatipour, and Yifeng Zhang . 5:1–5:18

Approximating Incremental Combinatorial Optimization Problems
Michel X. Goemans and Francisco Unda . 6:1–6:14

Stochastic Unsplittable Flows
Anupam Gupta and Archit Karandikar . 7:1–7:19

Streaming Complexity of Approximating Max 2CSP and Max Acyclic Subgraph
Venkatesan Guruswami, Ameya Velingker, and Santhoshini Velusamy 8:1–8:19

Symmetric Interdiction for Matching Problems
Samuel Haney, Bruce Maggs, Biswaroop Maiti, Debmalya Panigrahi, Rajmohan
Rajaraman, and Ravi Sundaram . 9:1–9:19

A Lottery Model for Center-Type Problems with Outliers
David G. Harris, Thomas Pensyl, Aravind Srinivasan, and Khoa Trinh 10:1–10:19

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:vi Contents

Streaming Algorithms for Maximizing Monotone Submodular Functions under a
Knapsack Constraint

Chien-Chung Huang, Naonori Kakimura, and Yuichi Yoshida . 11:1–11:14

Fractional Set Cover in the Streaming Model
Piotr Indyk, Sepideh Mahabadi, Ronitt Rubinfeld, Jonathan Ullman, Ali Vakilian,
and Anak Yodpinyanee . 12:1–12:20

Online Strip Packing with Polynomial Migration
Klaus Jansen, Kim-Manuel Klein, Maria Kosche, and Leon Ladewig 13:1–13:18

Density Independent Algorithms for Sparsifying k-Step Random Walks
Gorav Jindal, Pavel Kolev, Richard Peng, and Saurabh Sawlani 14:1–14:17

Maximum Matching in Two, Three, and a Few More Passes over Graph Stream
Sagar Kale and Sumedh Tirodkar . 15:1–15:21

Submodular Secretary Problems: Cardinality, Matching, and Linear Constraints
Thomas Kesselheim and Andreas Tönnis . 16:1–16:22

On the Integrality Gap of the Prize-Collecting Steiner Forest LP
Jochen Könemann, Neil Olver, Kanstantsin Pashkovich, R. Ravi,
Chaitanya Swamy, and Jens Vygen . 17:1–17:13

Approximating Unique Games Using Low Diameter Graph Decomposition
Vedat Levi Alev and Lap Chi Lau . 18:1–18:15

Greedy Minimization of Weakly Supermodular Set Functions
Edo Liberty and Maxim Sviridenko . 19:1–19:11

Renyi Entropy Estimation Revisited
Maciej Obremski and Maciej Skorski . 20:1–20:15

Approximating Sparsest Cut in Low Rank Graphs via Embeddings from
Approximately Low Dimensional Spaces

Yuval Rabani and Rakesh Venkat . 21:1–21:14

When Are Welfare Guarantees Robust?
Tim Roughgarden, Inbal Talgam-Cohen, and Jan Vondrák . 22:1–22:23

Contributed Talks of RANDOM

Glauber Dynamics for Ising Model on Convergent Dense Graph Sequences
Rupam Acharyya and Daniel Štefankovič . 23:1–23:22

On the Expansion of Group-Based Lifts
Naman Agarwal, Karthekeyan Chandrasekaran, Alexandra Kolla,
and Vivek Madan . 24:1–24:13

Efficient Removal Lemmas for Matrices
Noga Alon and Omri Ben-Eliezer . 25:1–25:18

The String of Diamonds Is Tight for Rumor Spreading
Omer Angel, Abbas Mehrabian, and Yuval Peres . 26:1–26:9

Contents 0:vii

Sharper Bounds for Regularized Data Fitting
Haim Avron, Kenneth L. Clarkson, and David P. Woodruff . 27:1–27:22

The Lovász Theta Function for Random Regular Graphs and Community
Detection in the Hard Regime

Jess Banks, Robert Kleinberg, and Cristopher Moore . 28:1–28:22

Cutoff for a Stratified Random Walk on the Hypercube
Anna Ben-Hamou and Yuval Peres . 29:1–29:10

Lower Bounds for 2-Query LCCs over Large Alphabet
Arnab Bhattacharyya, Sivakanth Gopi, and Avishay Tal . 30:1–30:20

Sum-of-Squares Certificates for Maxima of Random Tensors on the Sphere
Vijay Bhattiprolu, Venkatesan Guruswami, and Euiwoong Lee . 31:1–31:20

Continuous Monitoring of `p Norms in Data Streams
Jarosław Błasiok, Jian Ding, and Jelani Nelson . 32:1–32:13

Vertex Isoperimetry and Independent Set Stability for Tensor Powers of Cliques
Joshua Brakensiek . 33:1–33:15

Polynomial Mixing of the Edge-Flip Markov Chain for Unbiased Dyadic Tilings
Sarah Cannon, David A. Levin, and Alexandre Stauffer . 34:1–34:21

Agnostic Learning from Tolerant Natural Proofs
Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets,
and Antonina Kolokolova . 35:1–35:19

On the Complexity of Constrained Determinantal Point Processes
L. Elisa Celis, Amit Deshpande, Tarun Kathuria, Damian Straszak,
and Nisheeth K. Vishnoi . 36:1–36:22

Sample-Based High-Dimensional Convexity Testing
Xi Chen, Adam Freilich, Rocco A. Servedio, and Timothy Sun 37:1–37:20

Adaptivity Is Exponentially Powerful for Testing Monotonicity of Halfspaces
Xi Chen, Rocco A. Servedio, Li-Yang Tan, and Erik Waingarten 38:1–38:21

On Axis-Parallel Tests for Tensor Product Codes
Alessandro Chiesa, Peter Manohar, and Igor Shinkar . 39:1–39:22

Charting the Replica Symmetric Phase
Amin Coja-Oghlan, Charilaos Efthymiou, Nor Jaafari, Mihyun Kang,
and Tobias Kapetanopoulos . 40:1–40:17

Probabilistic Logarithmic-Space Algorithms for Laplacian Solvers
Dean Doron, François Le Gall, and Amnon Ta-Shma . 41:1–41:20

Streaming Periodicity with Mismatches
Funda Ergün, Elena Grigorescu, Erfan Sadeqi Azer, and Samson Zhou 42:1–42:21

Locality via Partially Lifted Codes
S. Luna Frank-Fischer, Venkatesan Guruswami, and Mary Wootters 43:1–43:17

Testing Hereditary Properties of Sequences
Cody R. Freitag, Eric Price, and William J. Swartworth . 44:1–44:10

APPROX/RANDOM’17

0:viii Contents

Traveling in Randomly Embedded Random Graphs
Alan Frieze and Wesley Pegden . 45:1–45:17

The Minrank of Random Graphs
Alexander Golovnev, Oded Regev, and Omri Weinstein . 46:1–46:13

Efficiently Decodable Codes for the Binary Deletion Channel
Venkatesan Guruswami and Ray Li . 47:1–47:13

On Some Computations on Sparse Polynomials
Ilya Volkovich . 48:1–48:21

Communication Complexity of Statistical Distance
Thomas Watson . 49:1–49:10

Preface

This volume contains the papers presented at the 20th International Workshop on Approx-
imation Algorithms for Combinatorial Optimization Problems (APPROX 2017) and the 21st
International Workshop on Randomization and Computation (RANDOM 2017), which took
place concurrently at the at University of California in Berkeley, USA during August 16–18,
2017.

APPROX focuses on algorithmic and complexity issues surrounding the development of
efficient approximate solutions to computationally difficult problems, and was the 20th in
the series after Aalborg (1998), Berkeley (1999), Saarbrücken (2000), Berkeley (2001), Rome
(2002), Princeton (2003), Cambridge (2004), Berkeley (2005), Barcelona (2006), Princeton
(2007), Boston (2008), Berkeley (2009), Barcelona (2010), Princeton (2011), Boston (2012),
Berkeley (2013), Barcelona (2014), Princeton (2015), and Paris (2016). RANDOM is
concerned with applications of randomness to computational and combinatorial problems,
and was the 21st workshop in the series following Bologna (1997), Barcelona (1998), Berkeley
(1999), Geneva (2000), Berkeley (2001), Harvard (2002), Princeton (2003), Cambridge
(2004), Berkeley (2005), Barcelona (2006), Princeton (2007), Boston (2008), Berkeley (2009),
Barcelona (2010), Princeton (2011), Boston (2012), Berkeley (2013), Barcelona (2014),
Princeton (2015), and Paris (2016).

Topics of interest for APPROX and RANDOM are: design and analysis of approximation
algorithms, hardness of approximation, small space algorithms, sub-linear time algorithms,
streaming algorithms, embeddings and metric space methods, spectral methods, mathematical
programming methods, combinatorial optimization in graphs and networks, algorithmic game
theory, mechanism design and economics, computational geometric problems, distributed and
parallel approximation, approximate learning, online algorithms, approaches that go beyond
worst case analysis, design and analysis of randomized algorithms, randomized complexity
theory, pseudorandomness and derandomization, random combinatorial structures, random
walks/Markov chains, expander graphs and randomness extractors, probabilistic proof
systems, random projections and embeddings, error-correcting codes, average-case analysis,
property testing, computational learning theory, and other applications of approximation
and randomness.

The volume contains 22 contributed papers, selected by the APPROX Program Committee
out of 60 submissions, and 27 contributed papers, selected by the RANDOM Program
Committee out of 72 submissions.

We would like to thank all the authors who submitted papers, the invited speakers,
Uriel Feige and Moses Charikar, the members of the Program Committees, and the external
reviewers. We gratefully acknowledge the Department of Computer Science of the Christian-
Albrechts-Universität zu Kiel, the Department of Computer Science of the University of
Geneva, the College of Computing of the Georgia Institute of Technology, and the School of
Operations Research and Information Engineering of the Cornell University.

August 2017 Klaus Jansen, José D.P. Rolim
Santosh S. Vempala, and David P. Williamson

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

Organization

Program Committees

APPROX 2017
Nikhil Bansal Technische Universiteit Eindhoven, The Netherlands
Siu On Chan The Chinese University of Hong Kong, Hong Kong
Moses Charikar Stanford University, USA
Michel Goemans Massachusetts Institute of Technology, USA
Venkatesan Guruswami Carnegie Mellon University, USA
Sungjin Im University of California at Merced, USA
Sanjeev Khanna University of Pennsylvania, USA
Jochen Koenemann University of Waterloo, Canada
Shi Li University at Buffalo, USA
Nicole Megow Universität Bremen, Germany
Viswanath Nagarajan University of Michigan, USA
Laura Sanità University of Waterloo, Canada
Ola Svensson École Polytechnique Fédérale de Lausanne, Switzerland
Seeun William Umboh Eindhoven University of Technology, The Netherlands
David Williamson (chair) Cornell University, USA
Anke van Zuylen College of William & Mary, USA

RANDOM 2017
Shipra Agrawal Columbia University, USA
Arnab Bhattacharya Indian Institute of Science, India
Sebastien Bubeck Microsoft Research, USA
Alan Frieze Carnegie Mellon University, USA
Anna C. Gilbert University of Michigan, USA
Thomas Hansen Aarhus University, Denmark
Anna R. Karlin University of Washington, USA
Yin Tat Lee University of Washington, USA
Adam Marcus Princeton University, USA
Ankur Moitra Massachusetts Institute of Technology, USA
Richard Peng Georgia Institute of Technology, USA
Will Perkins University of Birmingham, United Kingdom
Barna Saha University of Massachusetts Amherst, USA
Alistair Sinclair University of California, USA
Santosh Vempala (chair) Georgia Institute of Technology, USA
David Woodruff IBM Almaden, USA

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

External Reviewers

Emmanuel Abbe
Ahmad Abdi
Jayadev Acharya
Eric Allender
Sepehr Assadi
Siddharth Barman
Sasha Barvinok
Anna Ben-Hamou
Andre Berger
Antonio Blanca
Olivier Bodini
Trevor Brown
Victor-Emmanuel Brunel
Boris Bukh
Mark Bun
Parinya Chalermsook
Siu Man Chan
Karthekeyan Chandrasekaran
Arkadev Chattopadhyay
Eden Chlamtac
Raphael Clifford
Gil Cohen
Michael B. Cohen
Artur Czumaj
Stephen Desalvo
Ronald de Wolf
Jelena Diakonikolas
Devdatt Dubhashi
Martin Dyer
Ahmed El Alaoui
Marek Elias
Funda Ergun
Moran Feldman
Hendrik Fichtenberger
Nikolaos Fountoulakis
Naveen Garg
Shashwat Garg
Pawel Gawrychowski
Rong Ge
George Giakkoupis
Sivakanth Gopi
Inge Li Gørtz
Catherine Greenhill
Elena Grigorescu
Martin Groß

Heng Guo
Anupam Gupta
Tom Gur
Kristoffer Arnsfelt Hansen
Elad Haramaty
Matan Harel
Nathan Harms
Hamed Hatami
Tyler Helmuth
Kaave Hosseini
Chien-Chung Huang
Sangxia Huang
Lalit Jain
Mark Jerrum
Pritish Kamath
Nathan Keller
Thomas Kesselheim
Yusuke Kobayashi
Swastik Kopparty
Ravishankar Krishnaswamy
Sven Krumke
Janardhan Kulkarni
O-Joung Kwon
Rasmus Kyng
James Lee
Troy Lee
David Levin
Jerry Li
Anita Liebenau
Shachar Lovett
Konstantin Makarychev
Jieming Mao
Jannik Matuschke
Arya Mazumdar
Colin McDiarmid
Or Meir
Benjamin Mirabelli
Ankur Moitra
Tobias Mömke
Meiram Murzabulatov
Cameron Musco
Christopher Musco
Vasileios Nakos
Vishnu Narayan
Amir Nayyeri

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:xiv Reviewers

Jelani Nelson
Ashkan Norouzi Fard
Kanstantsin Pashkovich
Amelia Perry
Yury Polyanskiy
Ely Porat
Aaron Potechin
Pawel Pralat
Eric Price
Yuri Rabinovich
Miklos Z. Racz
Anup Rao
Ran Raz
Dana Ron
Noga Ron-Zewi
Aaron Roth
Aviad Rubinstein
Atri Rudra
Sushant Sachdeva
Rishi Saket
Rahul Santhanam
Shubhangi Saraf
Ludwig Schmidt
Tselil Schramm
Roy Schwartz
Rocco Servedio
Yanina Shkel
Allan Sly
Aaron Smith
Zhao Song
Daniel Spielman
Aravind Srinivasan
Nikhil Srivastava
He Sun
Ananda Theertha Suresh
Kunal Talwar
Li-Yang Tan
Jakub Tarnawski
Charlotte Truchet
Madhur Tulsiani
Michael Viderman
Thomas Vidick
Marc Vinyals
Junxing Wang
Justin Ward
Osamu Watanabe
Alexander Wein
Omri Weinstein

Andreas Wiese
Ryan Williams
Mary Wootters
Yihong Wu
Lin Yang
Grigory Yaroslavtsev
Anak Yodpinyanee
Joe Yukich
Rico Zenklusen
Peng Zhang
Yuchen Zhang
Baigong Zheng

List of Authors

Rupam Acharyya
Naman Agarwal
Noga Alon
Omer Angel
Itai Ashlagi
Haim Avron
Yossi Azar

Jess Banks
Omri Ben-Eliezer
Anna Ben-Hamou
Kristóf Bérczi
Arnab Bhattacharyya
Vijay Bhattiprolu
Jarosław Błasiok
Glencora Borradaile
Joshua Brakensiek

Sarah Cannon
Marco L. Carmosino
L. Elisa Celis
Karthekeyan Chandrasekaran
Moses Charikar
Xi Chen
Alessandro Chiesa
Ashish Chiplunkar
Kenneth L. Clarkson
Amin Coja-Oghlan

Amit Deshpande
Jian Ding
Dean Doron

Charilaos Efthymiou
Funda Ergün

S. Luna Frank-Fischer
Adam Freilich
Cody R. Freitag
Alan Frieze
Zachary Friggstad

Ofir Geri
Michel X. Goemans
Arnoosh Golestanian
Alexander Golovnev
Sivakanth Gopi
Elena Grigorescu
Anupam Gupta
Venkatesan Guruswami

Samuel Haney
David G. Harris
Chien-Chung Huang

Russell Impagliazzo
Piotr Indyk

Nor Jaafari
Klaus Jansen
Gorav Jindal

Valentine Kabanets
Naonori Kakimura
Sagar Kale
Mihyun Kang
Tobias Kapetanopoulos
Haim Kaplan
Archit Karandikar
Tarun Kathuria
Thomas Kesselheim
Kamyar Khodamoradi
Tamás Király
Kim-Manuel Klein
Robert Kleinberg
Jochen Könemann
Pavel Kolev
Alexandra Kolla
Antonina Kolokolova
Maria Kosche

Leon Ladewig
Lap Chi Lau
Euiwoong Lee
François Le Gall
Vedat Levi Alev
David A. Levin
Ray Li
Edo Liberty

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:xvi Authors

Vivek Madan
Bruce Maggs
Sepideh Mahabadi
Biswaroop Maiti
Rahul Makhijani
Peter Manohar
Christopher Martin
Abbas Mehrabian
Cristopher Moore

Jelani Nelson

Maciej Obremski
Neil Olver

Debmalya Panigrahi
Kanstantsin Pashkovich
Wesley Pegden
Richard Peng
Thomas Pensyl
Yuval Peres
Eric Price

Yuval Rabani
Mirmahdi Rahgoshay
Rajmohan Rajaraman
R. Ravi
Oded Regev
Mohsen Rezapour
Tim Roughgarden
Ronitt Rubinfeld

Erfan Sadeqi Azer
Mohammad R. Salavatipour
Saurabh Sawlani
Rocco A. Servedio
Igor Shinkar
Maciej Skorski
Aravind Srinivasan
Alexandre Stauffer
Daniel Štefankovič
Damian Straszak
Timothy Sun
Ravi Sundaram
Maxim Sviridenko
Chaitanya Swamy
William J. Swartworth

Li-Yang Tan
Avishay Tal
Inbal Talgam-Cohen
Amnon Ta-Shma
Sumedh Tirodkar
Andreas Tönnis
Khoa Trinh

Jonathan Ullman
Francisco Unda

Ali Vakilian
Ameya Velingker
Santhoshini Velusamy
Rakesh Venkat
Nisheeth K. Vishnoi
Ilya Volkovich
Jan Vondrák
Jens Vygen

Erik Waingarten
Yuyi Wang
Thomas Watson
Roger Wattenhofer
Omri Weinstein
David P. Woodruff
Mary Wootters

Chao Xu

Anak Yodpinyanee
Yuichi Yoshida

Yifeng Zhang
Baigong Zheng
Samson Zhou

Min-Cost Bipartite Perfect Matching with Delays∗

Itai Ashlagi1, Yossi Azar2, Moses Charikar3, Ashish Chiplunkar4,
Ofir Geri5, Haim Kaplan6, Rahul Makhijani7, Yuyi Wang8, and
Roger Wattenhofer9

1 Department of Management Science and Engineering, Stanford University,
Stanford, CA, USA
iashlagi@stanford.edu

2 School of Computer Science, Tel Aviv University, Tel Aviv, Israel
azar@tau.ac.il

3 Department of Computer Science, Stanford University, Stanford, CA, USA
moses@cs.stanford.edu

4 School of Computer Science, Tel Aviv University, Tel Aviv, Israel
ashish.chiplunkar@gmail.com

5 Department of Computer Science, Stanford University, Stanford, CA, USA
ofirgeri@cs.stanford.edu

6 School of Computer Science, Tel Aviv University, Tel Aviv, Israel
haimk@post.tau.ac.il

7 Departmentof Management Science and Engineering, Stanford University,
Stanford, CA, USA
rahulmj@stanford.edu

8 Department of Information Technology and Electrical Engineering, ETH
Zürich, Zürich, Switzerland
yuwang@ethz.ch

9 Department of Information Technology and Electrical Engineering, ETH
Zürich, Zürich, Switzerland
wattenhofer@ethz.ch

Abstract
In the min-cost bipartite perfect matching with delays (MBPMD) problem, requests arrive online
at points of a finite metric space. Each request is either positive or negative and has to be
matched to a request of opposite polarity. As opposed to traditional online matching problems,
the algorithm does not have to serve requests as they arrive, and may choose to match them later
at a cost. Our objective is to minimize the sum of the distances between matched pairs of requests
(the connection cost) and the sum of the waiting times of the requests (the delay cost). This
objective exhibits a natural tradeoff between minimizing the distances and the cost of waiting for
better matches. This tradeoff appears in many real-life scenarios, notably, ride-sharing platforms.
MBPMD is related to its non-bipartite variant, min-cost perfect matching with delays (MPMD),
in which each request can be matched to any other request. MPMD was introduced by Emek et
al. (STOC’16), who showed an O(log2 n + log ∆)-competitive randomized algorithm on n-point
metric spaces with aspect ratio ∆.

Our contribution is threefold. First, we present a new lower bound construction for MPMD
and MBPMD. We get a lower bound of Ω

(√
log n

log log n

)
on the competitive ratio of any randomized

algorithm for MBPMD. For MPMD, we improve the lower bound from Ω(
√

logn) (shown by Azar
et al., SODA’17) to Ω

(
log n

log log n

)
, thus, almost matching their upper bound of O(logn). Second,

we adapt the algorithm of Emek et al. to the bipartite case, and provide a simplified analysis

∗ Yossi Azar and Ashish Chiplunkar were supported in part by the Israel Science Foundation (grant no.
1506/16), by the I-CORE program (center no. 4/11), and by the Blavatnik Fund.

© Itai Ashlagi, Yossi Azar, Moses Charikar, Ashish Chiplunkar, Ofir Geri, Haim Kaplan,
Rahul Makhijani, Yuyi Wang, and Roger Wattenhofer;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 1; pp. 1:1–1:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

1:2 Min-Cost Bipartite Perfect Matching with Delays

that improves the competitive ratio to O(logn). The key ingredient of the algorithm is an O(h)-
competitive randomized algorithm for MBPMD on weighted trees of height h. Third, we provide
an O(h)-competitive deterministic algorithm for MBPMD on weighted trees of height h. This
algorithm is obtained by adapting the algorithm for MPMD by Azar et al. to the apparently
more complicated bipartite setting.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity, F.1.2
[Modes of Computation] Online Computation

Keywords and phrases online algorithms with delayed service, bipartite matching, competitive
analysis

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.1

1 Introduction

In many marketplaces agents arrive and are matched over time. Examples include matching
drivers with passengers in ride-sharing platforms, matching players in online games, forming
exchanges between patient-donor incompatible pairs in kidney exchange, and even labor
markets. While agents in such marketplaces are interested in high quality matches, waiting
is costly. This paper studies the problem of matching in a centralized marketplace, in which
agents’ preferences are induced by the “distance” to their potential matches.

Consider, for example, a ride-sharing platform that is faced with the problem of matching
passengers with drivers who arrive to different locations at different times, and assume that
a passenger can match with any available driver. A greedy approach would match each
arriving passenger upon arrival (if possible) to the closest available driver. This approach
can be, however, very inefficient; for instance, imagine a passenger at location x is matched
with a driver at location y and only seconds later a driver becomes available at location x.
In particular, there is a natural tradeoff between making the market thicker in order to form
better matches and the costs it imposes on waiting agents.

We explore this tradeoff in an online setting with no information about the arriving
agents (worst-case input). Allowing agents to wait is a key property that differentiates this
paper from traditional online matching, where agents are to be matched upon arrival. This
idea of delayed service in the context of matching has been introduced recently by Emek et
al. [12]. There is also a growing body of work on dynamic matching problems with delays
under stochastic assumptions [2, 3, 4, 6]. The concept of delayed service is also relevant for
other online problems with and without stochastic assumptions.

In the problem we study, requests arrive in an online manner at the n points of a finite
metric space. Each request is identified by its time of arrival, its location, and its polarity,
which can be either positive or negative (multiple requests may arrive at the same location).
Each request can only be matched with a request of the opposite polarity. In the motivating
example, requests correspond to the drivers and passengers, who arrive at different times
and different locations, and the polarities of requests imply that passengers can only match
with drivers and vice versa. The objective of the social planner is to minimize the sum of the
delay cost, which is the time since the arrival of each request until it is matched, and the
connection cost, which is the sum of distances between each two requests that are matched
to each other.

We call this problem min-cost bipartite perfect matching with delays (MBPMD), as the
requests can be represented by a bipartite graph with edge weights that correspond to the

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.1

I. Ashlagi et al. 1:3

distances in the metric space. We measure the performance of a matching algorithm using
the notion of competitive ratio: an algorithm is α-competitive if for every input, the cost
incurred by the algorithm is at most α times the cost of the optimal solution.

MBPMD is an extension of the problem studied by Emek et al. [12], min-cost perfect
matching with delays (MPMD), in which all requests are of the same type and each can
be matched with any other request. Emek et al. provided a randomized algorithm with
competitive ratio O(log2 n+ log ∆) using probabilistic embedding into tree metrics, where ∆
is the ratio of the maximum distance to the minimum distance in the metric space. MPMD
was studied further by Azar et al. [5], who recently found an algorithm that improved the
competitive ratio to O(logn), and established a lower bound of Ω

(√
logn

)
.

The bipartite version of MPMD is more natural in many applications: matching in
ride-sharing platforms, job markets, and any situation where there are two types of entities
that need to be matched to each other. While MPMD and MBPMD seem quite similar,
there is no clear reduction from MBPMD to MPMD, and the study of MBPMD results in a
more technically involved analysis. For example, an issue that arises only in MBPMD is that
there can be many requests with the same polarity waiting at the same location without
being able to match. In contrast, any reasonable algorithm for MPMD will have at most one
request waiting at each location, as it would immediately match requests that are waiting at
the same location.

Our Contribution

Our contribution has three parts. First, we present a new lower bound construction for
MPMD and MBPMD. We show that in a metric space containing n equally spaced points
in the unit interval, the competitive ratio of any randomized algorithm for MBPMD is at
least Ω

(√
log n

log log n

)
. Our construction also provides a lower bound of Ω

(
log n

log log n

)
on the

competitive ratio of any randomized algorithm for MPMD, which improves the current lower
bound of Ω(

√
logn) shown by Azar et al. [5], and matches their upper bound up to the

log logn factor.
Second, we adapt the randomized algorithm of Emek et al. [12] to MBPMD and provide a

considerably simplified analysis that results in a competitive ratio of O(logn). Our analysis
can be applied to the non-bipartite case as well. At a high-level, at any time the algorithm
computes a tentative matching that pairs requests in a greedy manner. Two paired requests
are matched after waiting a time drawn from an exponential random variable with mean
that equals the distance between them.

The randomized algorithm consists of a preprocessing phase, in which the finite metric
space is embedded into a tree metric, and of a randomized greedy algorithm that solves
MBPMD on tree metrics. Informally, we say that an algorithm A is (β, γ)-competitive if
for every benchmark algorithm A∗, the (expected) cost incurred by A is at most β times
the connection cost of A∗ plus γ times the delay cost of A∗. Our analysis shows that the
randomized greedy algorithm is (3, 6h+ 1)-competitive, where h is the height of the tree.

Using probabilistic embedding into HSTs [8, 9, 14] and the height reduction step of Bansal
et al. [7], any finite metric space can be embedded into a tree metric with height O(logn)
and expected distortion O(logn). Using this embedding, we can turn any (O(1), O(h))-
competitive algorithm for tree metrics into a O(logn)-competitive algorithm for any finite
metric space.

The third part of our contribution is a deterministic (10, 10h)-competitive algorithm for
MBPMD on tree metrics. This algorithm is an adaptation of the MPMD algorithm by Azar
et al. [5] in the sense that both algorithms buy the edges required to connect the requests

APPROX/RANDOM’17

1:4 Min-Cost Bipartite Perfect Matching with Delays

by paying in installments, and connect two requests as soon as all the edges on the path
between them have been bought. The algorithm for MPMD pays, at a uniform rate, for
an edge if the number of requests waiting at the leaves under it is odd. In our case, we
pay for an edge if the numbers of positive and negative requests under it are unequal, and
the rates at which we pay for edges are non-uniform. The rate of payment for an edge is
proportional to the magnitude of imbalance between positive and negative requests under the
edge. This introduces a substantial amount of complication in the analysis, and to mitigate
it, it becomes inevitable to use the technique of potential functions. We remark that this
deterministic algorithm gives rise to a barely random algorithm for MBPMD on general
metrics, that is, the number of random bits it uses is independent of the size of the online
input.

Related Work

Most related to this work are the papers by Emek et al. [12] and Azar et al. [5], who
studied min-cost matching with delays (MPMD) (i.e., the non-bipartite case). As mentioned
above, Emek et al. [12] introduced the notion of online problems with delayed service and
provided an O

(
log2 n+ log ∆

)
-competitive algorithm for MPMD. Azar et al. [5] provided

an O(h)-competitive deterministic algorithm for MPMD on tree metrics, and used it to show
an O(logn)-competitive algorithm for general metrics. Additionally, they provided a lower
bound of Ω

(√
logn

)
on the competitive ratio of randomized algorithms for MPMD.

Another strand of research in the economics and operations literatures studied matching
with delays in stochastic and more structural environments. Anderson et al. [3] and Ashlagi et
al. [4] study a model with an underlying stochastic graph and assume agents arrive according
to some process. They seek to minimize agents’ average waiting time and find that greedy
matching is asymptotically optimal. Akbarpour et al. [2] allow for agents departures and
find that when departure times are known, greedy matching leads to a suboptimal match
rate. These papers do not have the notion of distance; agents only care about when they
match and not whom they match to, which is key to the fact that greedy matching performs
well. Baccara et al. [6] look at a two-sided market where on each side agents can be of one of
two types and one type is of higher “quality” than the other. They assume a single agent on
each side arrives every time period and find that the optimal matching policy accumulates
agents up to a certain threshold.

Online bipartite matching, in general, is an extremely popular model. In the original
problem studied by Karp et al. [15], vertices on one side of a bipartite graph are known in
advance and vertices on the other side arrive online. Each vertex on the online side can
match to only some of the offline vertices, and can only match upon arrival. The goal is to
maximize the number of matched vertices. There are many extensions and variants of this
problem: maximum vertex-weighted matching [1, 11], the AdWords problem [17], and others.
The literature on online matching is extensive; see [16] for a survey.

2 Preliminaries

A metric space M is a set S equipped with a distance function d : S × S −→ R≥0 such that
d(x, y) = 0 if and only if x = y, d(x, y) = d(y, x) for all x, y ∈ S, and d(x, y)+d(y, z) ≥ d(x, z)
for all x, y, z ∈ S. The problem of min-cost bipartite perfect matching with delays (MBPMD)
is an online problem defined on an underlying finite metric spaceM = (S, d) as follows. An
online input instance I over S is a sequence of requests 〈(pi, bi, ti)〉mi=1, where pi is a point
in the metric space, bi ∈ {+1,−1}, and ti is the time at which the request arrives. We

I. Ashlagi et al. 1:5

assume that the number of positive requests (bi = +1) equals the number of negative requests
(bi = −1). The algorithm is required to output a perfect matching between the positive
requests and the negative requests. In min-cost perfect matching with delays (MPMD),
requests do not have polarity: each request can match to any other request and the algorithm
is required to output a perfect matching (we assume that the total number of requests is even).
For each pair (i, j) of requests output by the algorithm at time t (where t ≥ max(ti, tj)), the
algorithm pays a connection cost of d(pi, pj) and a delay cost of (t− ti) + (t− tj). The offline
connection cost of creating the pair (i, j) is d(pi, pj), and the offline delay cost is |ti − tj |.

3 The Lower Bounds

The focus of this section is to prove the following lower bound results.

I Theorem 1. There is an n-point metric space on which any randomized algorithm for
MPMD has competitive ratio Ω(logn/ log logn) against an oblivious adversary.

I Theorem 2. There is an n-point metric space on which any randomized algorithm for
MBPMD has competitive ratio Ω(

√
logn/ log logn) against an oblivious adversary.

To prove a lower bound of α on the competitive ratio of randomized online algorithms, we
use Yao’s min-max principle [10, 18, 19], and give a distribution over input instances which
defeats every deterministic algorithm by the factor α. The required distributions for proving
the above two lower bounds are very similar; a random MBPMD instance is generated by
generating a random MPMD instance and giving polarities to the requests in a randomized
fashion. Due to the inherent similarity, we merge the descriptions of the two distributions.

The metric space is given by a parameter L, which is an even integer. Let n = 2L
⌊

L
log2 L

⌋
≤

2L+1, so that L = Θ(logn). The required metric space consists of n equally spaced points
on the real interval [0, 1]. All asymptotic notation in this section is with respect to n→∞,
or equivalently L→∞.

Every instance in the support of the distribution consists of requests given in r =
bL/ log2 Lc phases. In each phase, the requests are given at once at the beginning, and they
are equally spaced in [0, 1]. Furthermore, the set of points at which these requests are given
is a suitably chosen random subset of the set of points at which requests were given in the
previous phase. The number of requests in phase i is ni = 2Lr−i, and the duration of phase i
is ti = 1/Lr−i time units. The distribution D on M(B)PMD instances is generated as follows.

Let r := bL/ log2 Lc, n := 2Lr, S0 := {1/n, 2/n, . . . , 1}.
For i = 0, . . . , r,
1. Only for MBPMD: Choose bi uniformly at random from {+1,−1}.
2. Give requests at points in Si. Only for MBPMD: Starting with the polarity bi for

the leftmost request in Si, assign alternating polarities to the requests.
3. Index the points in Si from left to right, with index 1 for the leftmost point. Construct

sets Y i+1
0 , Y i+1

1 ⊆ Si as follows.
a. Y i+1

0 is the set of points whose index is an integer multiple of L.
b. Y i+1

1 is the set of points whose index is an integer multiple of L plus L/2, that is,
L/2, 3L/2, and so on. (Recall that L is even.)

4. Choose zi+1 uniformly at random from {0, 1}. Let Si+1 := Y i+1
zi+1

. (Thus, |Si+1| =
|Y i+1

0 | = |Y i+1
1 | = |Si|/L.)

5. Wait for time ti = 1/Lr−i (and then move on to the next phase, if i < r).

APPROX/RANDOM’17

1:6 Min-Cost Bipartite Perfect Matching with Delays

In order to bound the expected cost of an arbitrary deterministic M(B)PMD algorithm,
we need to set up some notation and prove a key lemma. For a set S of requests on an
underlying metric space, and a real number c, let MIN(S, c) denote the cost of the min-cost
(possibly partial) matching on S (ignoring signs, even in MBPMD), where the cost of a
matching is the sum of distances between the matched pairs of requests, plus a penalty of c
per unmatched request. The following lemma can be thought of as a triangle inequality on
sets of requests.

I Lemma 3. Let X, Y0, and Y1 be arbitrary sets of requests on an underlying metric space.
Then MIN(X ∪ Y0, c) + MIN(X ∪ Y1, c) ≥ MIN(Y0 ∪ Y1, c).

Proof. For j ∈ {0, 1}, let Mj be the matching on the set X ∪ Yj which achieves the cost
MIN(X ∪ Yj , c). Consider the set of edges M0 ∪M1. This is a union of vertex-disjoint paths
in which every vertex in Y0 ∪ Y1 has degree at most one. Thus, each path has all its vertices,
except possibly the endpoints, in X.

Construct a matching M on Y0 ∪ Y1 as follows. For each maximal path p in M0 ∪M1, do
the following. If both endpoints of p are in X (which means that the whole path p is in X),
ignore p. Else if p has length 0, that is, p is a single vertex from Y0 ∪ Y1, leave it unmatched
in M . Else, denote the endpoints of p by u and v. If both u and v are in Y0 ∪ Y1, match
u and v in M , and charge this cost to the weight of p. If u ∈ X and v ∈ Y0 ∪ Y1, leave v
unmatched in M , and charge this cost to the cost of leaving u unmatched in one of the Mjs.
Thus, the contribution of every path to the cost MIN(X ∪ Y0, c) + MIN(X ∪ Y1, c) is at least
as much as its contribution to the cost of M . J

We use the above lemma to prove the following lower bound on the cost of an arbitrary
deterministic online M(B)PMD algorithm in every phase.

I Lemma 4. Every deterministic online M(B)PMD algorithm incurs a cost of at least 1/4
in expectation in every phase i, conditioned on z1, . . . , zi−1 (and b0, . . . , bi−1, additionally,
for MBPMD).

Proof. Let X be the set of pending requests from earlier stages at the beginning of an
arbitrary phase i. If we condition on the random events from the previous phases, X is fixed.
Recall that ti, the duration of the phase, is 1/Lr−i. Since no new requests arrive while the
phase is in progress, we may assume that each request which is matched during the phase
is matched at the beginning of the phase. Thus, each unmatched request waits from the
beginning till the end of the phase, resulting in a delay cost of ti. Hence, the expected cost
of the algorithm is at least Ezi [MIN(X ∪ Si, ti)] = (MIN(X ∪ Y i

0 , ti) + MIN(X ∪ Y i
1 , ti))/2.

(This holds even in the case of MBPMD, because MIN(X ∪ Y i
j , ti) is the cost of the best

possible matching ignoring polarities, whereas the algorithm produces a matching which
respects polarities and can only have a larger cost.) Thus, by Lemma 3, the algorithm’s
expected cost is bounded from below by MIN(Y i

0 ∪ Y i
1 , ti)/2.

Observe that Y i
0 ∪ Y i

1 is a set of 4Lr−i equispaced requests with spacing 1/4Lr−i. Thus,
MIN(Y i

0 ∪ Y i
1 , ti) = MIN(Y i

0 ∪ Y i
1 , 1/Lr−i) = 1/2, since it is cheaper to match all requests in

Y i
0 ∪ Y i

1 and pay 1/8Lr−i per request, rather than paying 1/Lr−i per unmatched request.
Therefore, the cost of the algorithm is at least MIN(Y i

0 ∪Y i
1 , ti)/2 ≥ 1/4 in every phase i. J

I Corollary 5. Every deterministic online M(B)PMD algorithm incurs a cost of at least
r/4 = Ω(L/ logL) in expectation on a random input drawn from D.

Proof. Follows by unconditioning the bound from Lemma 4. J

I. Ashlagi et al. 1:7

Next, we construct offline solutions to the instances of M(B)PMD drawn from D, thereby
giving upper bounds on the cost of the optimum solution.

I Lemma 6. Every MPMD instance generated from D has a solution of cost at most
1 + 2/ log2 L = O(1).

Proof. Construct a solution as follows. For i decreasing from r to 1, connect each unmatched
request from phase i to the request from phase i−1 located at the same point. This is possible
because Si ⊆ Si−1, and results in zero connection cost. The delay cost is at most the number
of requests in phase i times the duration of phase i − 1, which is 2Lr−i · 1/Lr−i+1 = 2/L.
Finally pair up the unmatched requests from phase 0 optimally, with connection cost at most
1. The overall connection cost is 1, and the overall delay cost is 2/L for each phase except
phase 0. Thus, the total cost of the solution is 1 + 2r/L ≤ 1 + 2/ log2 L. J

I Lemma 7. The expected cost of the optimal solution of an MBPMD instance generated
from the distribution D is O(

√
L/ logL).

For proving Lemma 7, we need some notation. Fix an instance of MBPMD in the support
of D. For x ∈ [0, 1], define the phase-i cumulative surplus at x to be the signed total of the
requests from phase i that are located in [0, x], and denote it by csuri(x). Then csuri(x) ∈
{0, 1} if bi = +1, and csuri(x) ∈ {−1, 0} if bi = −1. Define csur(x) =

∑r
i=0 csuri(x), the

cumulative surplus at x, which is the signed total of all requests from all phases that are
located in [0, x]. Observe that for any x, any feasible solution to the instance must connect at
least | csur(x)| requests located to the left of x to the same number of requests located to the
right of x. Hence, the connection cost of any feasible solution must be at least

∫ 1
0 | csur(x)|dx.

Moreover, there exists a solution, say SOL, whose connection cost is precisely
∫ 1

0 | csur(x)|dx
(connect the tth positive request and the tth negative request from the left, for all t). This will
be our adversarial solution to the instance. In order to bound the connection cost of SOL
from above, we need prove that Eb0,...,br,z1,...,zr

[
∫ 1

0 | csur(x)|dx] is small. We prove something
stronger: we prove that the expectation is small enough even if we condition over the values
of z1, . . . , zr, and only average over b0, . . . , br.

I Lemma 8. For every fixed (z1, . . . , zr) ∈ {0, 1}r, Eb0,...,br

[∫ 1
0 | csur(x)|dx

]
= O(

√
r).

Proof. Since Eb0,...,br

[∫ 1
0 | csur(x)|dx

]
=
∫ 1

0 Eb0,...,br
[| csur(x)|] dx, it is sufficient to prove

that Eb0,...,br
[|csur(x)|] = O (

√
r) for every x ∈ [0, 1].

Given z1, . . . , zr, the locations of the requests are fixed. Observe that csuri(x) is zero if
the number of requests of phase i in [0, x] is even. If that number is odd, then csuri(x) = bi

is +1 and −1 with probability 1/2 each. Thus, csur(x) =
∑r

i=0 csuri(x) is the sum of at
most r + 1 independent random variables, each of which takes values +1 and −1 with
equal probability, where the number of random variables is determined by x and z1, . . . , zr.
Therefore | csur(x)| is the deviation of a random walk of at most r + 1 steps on the integers
starting from 0, and moving in either direction with equal probability. Using a standard
result,1 we have E [| csur(x)|] = O(

√
r), as required. J

Taking the solution SOL which minimizes the connection cost as the adversarial solution,
we now prove an upper bound on the expected cost of the optimum solution of a random
MBPMD instance drawn from D.

1 For instance: http://mathworld.wolfram.com/RandomWalk1-Dimensional.html.

APPROX/RANDOM’17

1:8 Min-Cost Bipartite Perfect Matching with Delays

Proof of Lemma 7. Consider the solution SOL. By Lemma 8, its expected connection cost
is O(

√
r) = O(

√
L/ logL), and we are left to bound its expected delay cost. Note that

the sum of the arrival times of all requests in an instance is an upper bound on the delay
cost of every solution to the instance (which keeps a request waiting only until its partner
arrives). In particular, this applies to SOL. For instances in the support of D, the sum of the
arrival times is the same, and is equal to

∑r
i=0 ni

∑i−1
j=0 tj , where ni = 2Lr−i is the number

of requests in phase i, and tj = 1/Lr−j is the duration of phase j. Thus, the delay cost is
bounded from above by

r∑
i=0

ni

i−1∑
j=0

tj =
r∑

i=0
2Lr−i

i−1∑
j=0

1
Lr−j

= 2
r∑

i=0

1
Li

i−1∑
j=0

Lj = 2
r∑

i=0

1
Li
· L

i − 1
L− 1 ≤

2r
L− 1

which is O(1/ logL), since r = bL/ logLc. Thus, the expected cost of a random MBPMD
instance drawn from D is O(

√
L/ logL) +O(1/ logL) = O(

√
L/ logL). J

Finally, we use the lower bound on the algorithm’s cost and the upper bounds on the
optimum cost to prove lower bounds on the competitive ratio of MPMD and MBPMD.

Proof of Theorem 1. Follows from Corollary 5 and Lemma 6. J

Proof of Theorem 2. Follows from Corollary 5 and Lemma 7. J

4 The O(log n) Upper Bound for MBPMD: Overview

Our focus in this section is to give an algorithm for MBPMD on arbitrary metrics, and thus,
to prove the following result.

I Theorem 9. There exists a randomized online algorithm with a competitive ratio of O(logn)
for MBPMD on n-point metric spaces.

As stated previously, we establish the above theorem by reducing MBPMD on arbitrary
metrics to MBPMD on tree metrics. A tree metric is given by a tree with positive edge
weights such that the points of the metric are the vertices of the tree and the distance between
two points is the length of the simple path connecting them. To achieve the reduction, we
use the following result (Lemma 3.1 of [5]), which is an easy consequence of probabilistic
embedding into tree metrics [14] and Lemma 5.1 of [7].

I Lemma 10. Any n-point metric spaceM can be embedded, with distortion O(logn), into
a distribution D supported on metrics induced by trees of height O(logn).

Informally, the distortion of an embedding is an upper bound on the expected blowup in
the distances between pairs of points.

Analogous to Azar et al. [5], we use the more general notion of (β, γ)-competitiveness in
addition to the usual notion of competitive ratio. Reusing their notation, given an instance I
of MBPMD and an arbitrary solution SOL of I, we let SOLd denote its connection cost with
respect to the metric d, SOLt denote its delay cost, and (with a slight abuse of notation)
SOL denote its total cost. We restate the definition of (β, γ)-competitiveness for the sake of
completeness.

I Definition 11. Given a randomized online algorithm A for MBPMD on a metric space
M = (S, d) and an instance I on S, A(I) denotes the expected cost of A on I. A is said to
be α-competitive if for every I and every solution SOL of I, A(I) ≤ α · SOL. A is said to be
(β, γ)-competitive if for every I and every solution SOL of I, A(I) ≤ β · SOLd +γ · SOLt.

I. Ashlagi et al. 1:9

Given an embedding of a metric space into another with distortion µ, and a (β, γ)-
competitive algorithm for the embedding metric, it is easy to see that it can be turned
into a (µβ, µγ)-competitive algorithm for the original metric. However, Emek et al. [12]
observed that this can strengthened slightly to the following lemma, whose proof is deferred
to Appendix A.

I Lemma 12. Suppose that a metric spaceM = (S, d) can be embedded into a distribution
D supported on metric spaces over a set S′ ⊇ S with distortion µ. Additionally, suppose
that for every metric spaceM′ in the support of D, there is a (possibly randomized) online
(β, γ)-competitive algorithm AM′ for MBPMD onM′. Then there is a (µβ, γ)-competitive
(and thus, (max(µβ, γ))-competitive) algorithm A for MBPMD onM.

In the next two sections, we give two online algorithms for MBPMD, both of which are
(O(1), O(h))-competitive on edge-weighted trees of height h. Theorem 9 then follows easily.

Proof of Theorem 9. Given an n-point metric spaceM, using Lemma 10, embed it into a
distribution D over metrics given by edge-weighted trees of height O(logn) with distortion
O(logn). The algorithms for tree metrics from the next two sections are (O(1), O(logn))-
competitive for every tree metric in the support of D (Theorems 13 and 17). Therefore, by
Lemma 12, there is an O(logn)-competitive algorithm for MBPMD on every metricM. J

Notation

We state here notation that will be used in the description and analysis of the algorithms.
Suppose the tree metric is given by an edge-weighted tree T rooted at an arbitrary vertex
r. For a vertex u, let Tu denote the maximal subtree of T rooted at u, eu denote the edge
between u and its parent, and du denote the weight of eu (dr is defined to be infinity).
Similarly, for e = eu we also use Te to denote Tu (the subtree rooted at the lower endpoint
of e). Let h be the height of the tree, that is, the maximum of the number of vertices in the
path between r and any leaf. We assume, without loss of generality, that the requests are
given only at the leaves of T . (If not, we pretend as if each non-leaf vertex u has a child u′
at distance zero, which is a leaf, and the requests are given at u′ instead of u.) Let lca(u, v)
denote the lowest common ancestor of vertices u and v in the tree. Given an edge-weighted
tree T , rooted at vertex r, and a set of requests on the leaves of T , we define the surplus
of a vertex v to be the number of positive requests minus the number of negative requests
in Tv, and denote it by sur(v). (Note that sur(v) can be negative.) While comparing the
performance of the algorithm with a candidate solution SOL, we use sur∗(v) to denote the
surplus of v when running SOL. We also use sur(e) and sur∗(e) to denote the surplus of an
edge e. If e = eu, then sur(e) = sur(u) and sur∗(e) = sur∗(u).

5 A Randomized Algorithm for MBPMD on Trees

In this section, we adapt the randomized algorithm for MPMD on trees presented by Emek et
al. [12] to the bipartite case. We present a simplified analysis which shows that the algorithm
is (3, 6h + 1)-competitive. The original analysis was restricted to binary hierarchically
well-separated trees, and together with the embedding step resulted in a competitive ratio of
O
(
log2 n+ log ∆

)
for general metrics. By lifting the binary HST restriction and using the

embedding method of Lemma 10, our analysis improves the competitive ratio to O(logn).
The algorithm appears here as Algorithm 1.

APPROX/RANDOM’17

1:10 Min-Cost Bipartite Perfect Matching with Delays

Algorithm 1 A Randomized Algorithm for MBPMD on Tree Metrics
Greedy matching (computed upon each arrival): While there are two unmatched
requests of opposite polarities at the same point, match those requests immediately. For all
other requests, compute a tentative greedy matching as follows:

Consider the vertices from the leaves to the root. (Formally, choose any order such that
each vertex is considered only after all of its children have already been considered.)
When considering a vertex v, let P be the set of positive requests in Tv that are not
tentatively matched yet, and N be the set of negative requests in Tv that are not
tentatively matched yet.
While P and N are both non-empty, tentatively match a request from P to a request
from N and remove the requests from P and N . Break ties arbitrarily.

At each infinitesimally small time step [t, t + dt): For each two requests p1, p2 that
are tentatively matched, match these two requests with probability dt

d(p1,p2) where d(p1, p2)
is the length of the simple path between p1 and p2 in the tree. In that case, we say that the
match is realized.

I Remark. Algorithm 1 is described in terms of infinitesimally small discrete time steps.
However, it can be also described continuously as follows. For each two requests p1, p2 that
are tentatively matched, that match will be realized after waiting a time period of Z where
Z ∼ Exp

(
1

d(p1,p2)

)
.

I Theorem 13. Algorithm 1 for MBPMD on tree metrics is (3, 6h + 1)-competitive, and
hence, (6h+ 1)-competitive.

The proof of Theorem 13 has two parts. First, we bound the connection cost of Algorithm 1
in terms of the connection and delay costs of any benchmark algorithm SOL (Lemma 14).
Second, we show how to bound the delay cost of the algorithm using the connection cost of
the algorithm and the delay cost SOLt (Lemma 16).

We introduce some notation used in the proof. Let T = (V,E) be a tree with weight
function w : E → R>0 (defining a tree metric (V, d)). Denote the connection cost of
Algorithm 1 on (V, d) by ALGd, the delay cost by ALGt, the total cost by ALG, and let SOL
be any benchmark solution for MBPMD on the same tree metric. Let ALGd(t1, t2) denote
the connection cost of the algorithm only due to matches that occur in the time interval
[t1, t2), and ALGt(t1, t2) denote the delay cost incurred by ALG during that time interval.
SOLd(t1, t2) and SOLt(t1, t2) are defined similarly.

For each edge e ∈ E, let Pe(t), Ne(t) denote the number of unmatched positive and
negative requests (respectively) inside Te in ALG at time t, and define P ∗e (t), N∗e (t) similarly
for SOL. Using these definitions, at time t, sur(e) = Pe(t)−Ne(t) and sur∗(e) = P ∗e (t)−N∗e (t).

We remark on a few properties of the algorithm. First, each edge e can be used as part
of at most |sur(e)| matches at time t. It may be used for less than |sur(e)| matches, e.g., if
there are not enough requests that can be matched to those waiting in Te. Second, all the
requests from Te that are matched through e are of the same polarity (otherwise, they would
have been matched at a lower level). With these observations, we are ready to prove the key
lemma of the section.

I Lemma 14. E[ALGd] ≤ SOLd +2h · SOLt

Proof. For each edge e ∈ E, define the following potential at time t:

Φe(t) = w(e) |sur(e)− sur∗(e)| = w(e) |Pe(t)−Ne(t)− (P ∗e (t)−N∗e (t))|

I. Ashlagi et al. 1:11

The total potential at time t is defined as Φ(t) =
∑

e∈E Φe(t).
We divide the time into intervals. The first interval starts at time 0. An interval ends

and the next interval begins when a new request arrives or when SOL matches two requests.
Let [t1, t2) be an interval and denote ∆Φ = Φ(t2)− Φ(t1). We wish to prove that

E[ALGd(t1, t2) + ∆Φ] ≤ SOLd(t1, t2) + 2h · SOLt(t1, t2).

There are three events that can happen: the arrival of a request, a match by SOL, or a
match by ALG. Arrivals and matches by SOL can only happen at time t1 during the interval.
Matches by ALG can happen at any time in (t1, t2) (the probability that a match occurs at
time t1 is 0).

Arrival. We claim that the arrival of a request does not change the potential. For each edge
e in the path from the request to the root, either Pe and P ∗e or Ne and N∗e increase by 1,
and Φe remains the same. If ALG or SOL matches the new request to another request at
the same location, the surplus (and also the potential) does not change.

Match by SOL. The connection cost ALGd(t1, t2) is not affected by the actions of SOL.
Note that the connection cost incurred by SOL due to a single match is the sum of weights
of edges that are used as part of the match, and that the match only changes the potential
of these edges. For each edge e that is used as part of a match, ∆Φe ≤ w(e). By summing
over all these edges, we get ∆Φ ≤ SOLd.

Match by ALG. At any time t ∈ (t1, t2), there are no arrivals or matches in SOL. Hence,
the tentative matching maintained by the algorithm does not change, and the potential can
only change due to a match by ALG. If a match of a pair of requests is realized by ALG,
the potential of each edge e in the path connecting these two requests either increases or
decreases by w(e).

Let e be an edge that is used in the tentative matching, and denote by ALGe(t, t′) the
connection cost that ALG incurred during (t, t′) due to edge e. The following claim relates
the expected connection cost and change in potential at edge e to the surplus in SOL and to
the length of the interval [t1, t2), which we will relate to the delay cost of SOL. Note that
|sur∗(e)| does not change during (t1, t2) (as there are no arrivals or matches in SOL). The
proof is deferred to Appendix B.

I Claim 15. For every edge e that is used in the tentative matching, E[ALGe(t1, t2)+∆Φe] ≤
2 |sur∗(e)| (t2 − t1).

The claim asserts that the expected connection cost due to the use of e and the change in
Φe is at most 2 |sur∗(e)| ·(t2−t1). Now we claim that there are least |sur∗(e)| requests waiting
in SOL in the subtree of e. This follows from the fact that max{P ∗e (t), N∗e (t)} ≥ |sur∗(e)|.
The delay cost SOLt(t1, t2) due to these requests is |sur∗(e)| (t2 − t1).

We have shown that for every edge e, we can “charge” the sum of the expected connection
cost incurred by ALG and the change in potential to the requests waiting in SOL in Te: this
sum is at most 2 |sur∗(e)| (t2 − t1), while there are at least |sur∗(e)| requests waiting in SOL
each leading to a delay cost of t2 − t1. A request waiting in SOL is charged at most once for
each edge on the path that connects the request to the root of the tree, that is, each request
is charged at most h times.

Summing over all the edges, we get that during the interval [t1, t2),

E[ALGd(t1, t2) + ∆Φ] ≤ SOLd(t1, t2) + 2h · SOLt(t1, t2).

APPROX/RANDOM’17

1:12 Min-Cost Bipartite Perfect Matching with Delays

Algorithm 2 A Deterministic Algorithm for MBPMD on Tree Metrics
Initialize: F+ := ∅, F− := ∅. For each vertex u, z+

u := 0 and z−u := 0.
At every moment:

While there are two unmatched requests of opposite polarities at the same point, match
those requests immediately.
For each vertex u, if u is positively unsaturated and sur(u) > 0 (resp. u is negatively
unsaturated and sur(u) < 0), then increase counter z+

u (resp. z−u) at the rate sur(u) (resp.
− sur(u)). Else, keep the counter frozen.
For each vertex u 6= r, as soon as the value of z+

u (resp. z−u) becomes equal to 2du, add the
edge eu to F+ (resp. F−). This makes u positively saturated (resp. negatively saturated),
and z+

u (resp. z−u) is frozen.
For each positive request, located at u, and each negative request, located at v, as soon as
the entire path between u and lca(u, v) is contained in F+, and the entire path between
v and lca(u, v) is contained in F−,

Connect the request at u to the request at v.
Remove the edges on the path from u to v from both F+ as well as F−.
For every vertex w 6= lca(u, v) on the path from u to v, reset z+

w := 0 and z−w := 0.
(All these vertices are unsaturated due to the previous step.)

The lemma follows by summing these inequalities for all intervals and by noticing that the
potential is 0 at time 0 and after both algorithms have matched all the requests. J

The following lemma is similar to Lemma 7 in [12] (Lemma 4.8 in the full version [13]).
The proof is deferred to Appendix B.

I Lemma 16. E[ALGt] ≤ 2E[ALGd] + SOLt

Proof of Theorem 13. From Lemma 16, we get

E[ALG] = E[ALGt] + E[ALGd] ≤ 3E[ALGd] + SOLt .

By Lemma 14, E[ALGd] ≤ SOLd +2h · SOLt. We conclude that E[ALG] ≤ 3 SOLd +(6h+
1) SOLt. J

6 A Deterministic Algorithm for MBPMD on Trees

The algorithm, which appears here as Algorithm 2, maintains two forests, F+ and F−, both
initialized to be empty. For every vertex u, the algorithm also maintains two counters, z+

u

and z−u , initially set to zero. Intuitively, if eu ∈ F+ (resp. eu ∈ F−), then eu is available for
connecting a positive (resp. negative) request inside Tu to a negative (resp. positive) request
outside. We say that a vertex u is positively saturated (resp. negatively saturated) if the edge
eu is in F+ (resp. F−), else, we say it is positively unsaturated (resp. negatively unsaturated).
The root r is always positively as well as negatively unsaturated, by definition. Note F+

and F− are not necessarily disjoint, and therefore, a vertex can be both positively as well as
negatively saturated at the same time. The rest of the section is dedicated to proving the
following theorem.

I Theorem 17. Algorithm 2 for MBPMD on tree metrics is (10, 10h)-competitive, and hence,
10h-competitive.

I. Ashlagi et al. 1:13

For any vertex u, we divide time into phases as follows. The first phase at u starts when
the algorithm starts. Whenever the edge eu is used to connect requests, the phase at u ends
and a new phase begins at u. Note that the last phase at any u is necessarily incomplete,
and that the phases at different vertices need not be aligned. Observe that at the beginning
of any phase at u, both z+

u and z−u are zero, whereas at the end, one of them is equal to 2du

and the other is at most 2du.
For the analysis, imagine a variable y+

u (resp. y−u) for every u, which increases at the
same rate as z+

u (resp. z−u) during the run of the algorithm, but which is never reset to zero.
We will separately relate the connection cost as well as the delay cost of the algorithm to∑

u(y+
u + y−u), and then relate

∑
u(y+

u + y−u) to the cost of an arbitrary solution SOL, and
thus, prove (O(1), O(h))-competitiveness.

I Lemma 18. The connection cost of the algorithm is at most 1
2
∑

u(y+
u + y−u).

Proof. For an arbitrary vertex u, recall that every usage of edge eu, which results in a
connection cost of du, marks the end of a phase at u. In every phase at u, one of z+

u and z−u
increases from 0 to 2du. Thus, in every phase at u, y+

u + y−u increases by at least 2du. This
implies the claim. J

I Lemma 19. The delay cost of the algorithm is at most 2
∑

u(y+
u + y−u).

We defer the proof of the above lemma to Appendix C. Now we need to relate the value∑
u(y+

u + y−u) at the end of the algorithm’s run to the cost of an arbitrary solution SOL to
the instance. For this, let xu be the total delay cost incurred by SOL due to requests inside
Tu, and x′u be the total connection cost incurred by SOL for using the edge eu.

I Lemma 20. At the end of the algorithm’s run, for all vertices u, y+
u + y−u ≤ 4(xu + x′u).

We defer the proof to Appendix C. Next, we relate
∑

u(xu +x′u) to the cost of the solution
SOL. Denoting the distance function of the tree metric by d, recall that SOLd and SOLt

denote the connection cost and the delay cost of SOL, respectively. Our final ingredient is
Lemma 3.6 from [5], stated as follows.

I Lemma 21.
∑

u(xu + x′u) ≤ SOLd +h · SOLt.

The competitiveness of the algorithm now follows easily.

Proof of Theorem 17. From Lemmas 18 and 19, the algorithm’s total cost is at most
5
2
∑

u(y+
u + y−u). By Lemma 20, this is at most 10

∑
u(xu + x′u), which by Lemma 21, is at

most 10 SOLd +10h · SOLt. Therefore, the algorithm is (10, 10h)-competitive. J

7 Concluding Remarks and Open Problems

In this paper, we showed a randomized O(logn)-competitive algorithm and a lower bound
of Ω

(√
log n

log log n

)
on the competitive ratio of any randomized algorithm for MBPMD. One

natural open problem is closing the gap between these bounds. Another open question
is whether randomization is needed in solving MBPMD. While for trees we provided a
deterministic O(h)-competitive algorithm, the question of finding deterministic algorithms
or lower bounds for general metrics remains open.

We took here the centralized planner’s view that can dictate who can match to whom.
An interesting open question is what is the efficiency loss if the market is decentralized
and agents selfishly decide whether to match with a partner or to wait for a closer partner.

APPROX/RANDOM’17

1:14 Min-Cost Bipartite Perfect Matching with Delays

There are some modeling decisions to make here, but in general the competitive ratio should
increase, since agents will impose negative externalities on others (such analysis is done under
stochastic assumptions in [6]).

Our model only scratches the surface of the numerous variants of MBPMD that can be
practical for many applications. Keeping the ride-sharing motivating example in mind, one
can model carpooling as a many-to-one matching problem while taking into account the
different destinations of the passengers. One can also allow requests to move to other points
while waiting, simulating drivers that head toward busy areas while waiting for a match.

Further study of MBPMD can involve different assumptions on the input. While we
analyzed the competitive ratio for worst-case input, a more refined analysis can be made in
the case where the input is drawn from some known distribution. Another possible analysis
beyond the worst case is to consider a more restricted family of metric spaces with a structure
that may result in better bounds even for worst-case input.

Finally, the delay of services and allocations shows up in many applications, which can
be studied using the notion of online problems with delayed service.

Acknowledgments. We thank Amos Fiat for his insightful involvement in the discussions.

References
1 Gagan Aggarwal, Gagan Goel, Chinmay Karande, and Aranyak Mehta. Online vertex-

weighted bipartite matching and single-bid budgeted allocations. In Proceedings of the
Twenty-second Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1253–1264,
2011. doi:10.1137/1.9781611973082.95.

2 Mohammad Akbarpour, Shengwu Li, and Shayan Oveis Gharan. Thickness and information
in dynamic matching markets. Available at SSRN 2394319, 2017.

3 Ross Anderson, Itai Ashlagi, David Gamarnik, and Yash Kanoria. A dynamic model of
barter exchange. In Proceedings of the Twenty-sixth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1925–1933, 2015. doi:10.1137/1.9781611973730.129.

4 Itai Ashlagi, Maximilien Burq, Patrick Jaillet, and Vahideh H. Manshadi. On matching and
thickness in heterogeneous dynamic markets. In Proceedings of the 2016 ACM Conference
on Economics and Computation, page 765, 2016. doi:10.1145/2940716.2940758.

5 Yossi Azar, Ashish Chiplunkar, and Haim Kaplan. Polylogarithmic bounds on the com-
petitiveness of min-cost perfect matching with delays. In Proceedings of the Twenty-
eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1051–1061, 2017.
doi:10.1137/1.9781611974782.67.

6 Mariagiovanna Baccara, SangMok Lee, and Leeat Yariv. Optimal dynamic matching. Avail-
able at SSRN 2641670, 2015.

7 Nikhil Bansal, Niv Buchbinder, Aleksander Madry, and Joseph Naor. A polylogarithmic-
competitive algorithm for the k-server problem. J. ACM, 62(5):40, 2015. doi:10.1145/
2783434.

8 Yair Bartal. Probabilistic approximations of metric spaces and its algorithmic applications.
In Proceedings of the 37th Annual Symposium on Foundations of Computer Science, pages
184–193, 1996. doi:10.1109/SFCS.1996.548477.

9 Yair Bartal. Graph decomposition lemmas and their role in metric embedding methods. In
Proceedings of the Twelfth Annual European Symposium on Algorithms, pages 89–97, 2004.
doi:10.1007/978-3-540-30140-0_10.

10 Allan Borodin and Ran El-Yaniv. On randomization in on-line computation. Inf. Comput.,
150(2):244–267, 1999. doi:10.1006/inco.1998.2775.

http://dx.doi.org/10.1137/1.9781611973082.95
http://dx.doi.org/10.1137/1.9781611973730.129
http://dx.doi.org/10.1145/2940716.2940758
http://dx.doi.org/10.1137/1.9781611974782.67
http://dx.doi.org/10.1145/2783434
http://dx.doi.org/10.1145/2783434
http://dx.doi.org/10.1109/SFCS.1996.548477
http://dx.doi.org/10.1007/978-3-540-30140-0_10
http://dx.doi.org/10.1006/inco.1998.2775

I. Ashlagi et al. 1:15

11 Nikhil R. Devanur, Kamal Jain, and Robert D. Kleinberg. Randomized primal-dual analysis
of RANKING for online bipartite matching. In Proceedings of the Twenty-fourth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 101–107, 2013. doi:10.1137/1.
9781611973105.7.

12 Yuval Emek, Shay Kutten, and Roger Wattenhofer. Online matching: haste makes waste!
In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing,
pages 333–344, 2016. doi:10.1145/2897518.2897557.

13 Yuval Emek, Shay Kutten, and Roger Wattenhofer. Online matching: Haste makes waste!,
2016. arXiv:1603.03024 [cs.DS]. URL: http://arxiv.org/abs/1603.03024.

14 Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating
arbitrary metrics by tree metrics. J. Comput. Syst. Sci., 69(3):485–497, 2004. doi:10.
1016/j.jcss.2004.04.011.

15 Richard M. Karp, Umesh V. Vazirani, and Vijay V. Vazirani. An optimal algorithm for
on-line bipartite matching. In Proceedings of the 22nd Annual ACM Symposium on Theory
of Computing, pages 352–358, 1990. doi:10.1145/100216.100262.

16 Aranyak Mehta. Online matching and ad allocation. Found. Trends Theor. Comput. Sci.,
8(4):265–368, October 2013. doi:10.1561/0400000057.

17 Aranyak Mehta, Amin Saberi, Umesh V. Vazirani, and Vijay V. Vazirani. Adwords and
generalized online matching. J. ACM, 54(5), 2007. doi:10.1145/1284320.1284321.

18 Leen Stougie and Arjen P.A. Vestjens. Randomized algorithms for on-line scheduling
problems: how low can’t you go? Oper. Res. Lett., 30(2):89–96, 2002. doi:10.1016/
S0167-6377(01)00115-8.

19 Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of complexity
(extended abstract). In 18th Annual Symposium on Foundations of Computer Science,
pages 222–227, 1977. doi:10.1109/SFCS.1977.24.

A Proof Omitted from Section 4

Recall the following definition of a metric embedding and its distortion.

I Definition 22. Let M = (S, d) be a finite metric space, and let D be a probability
distribution over metrics on a finite set S′ ⊇ S. We say thatM embeds into D with distortion
µ if

For every x, y ∈ S and every metric space M′ = (S′, d′) in the support of D, we have
d(x, y) ≤ d′(x, y).
For every x, y ∈ S, we have EM′=(S′,d′)∼D[d′(x, y)] ≤ µ · d(x, y).

Proof of Lemma 12. Algorithm A simply samples a metric spaceM′ = (S′, d′) from the
distribution D, and simulates the behavior of AM′ . Clearly, the delay cost paid by A is the
same as the delay cost paid by AM′ . Furthermore, since d(p, q) ≤ d′(p, q) for all p, q ∈ S,
the connection cost paid by A is no more than the connection cost paid by AM′ . Fix an
input instance I of MBPMD onM, and an arbitrary solution SOL of I. Then the expected
cost A(I) of the algorithm A on I is bounded as follows.

A(I) ≤ EM′=(S′,d′)∼D[AM
′
(I)]

where AM′(I) is the expected cost of AM′ on I, the expectation being taken over the
randomness internal to AM′ . Since AM′ is (β, γ)-competitive, we have by definition,

AM
′
(I) ≤ β SOLd′ +γ SOLt

APPROX/RANDOM’17

http://dx.doi.org/10.1137/1.9781611973105.7
http://dx.doi.org/10.1137/1.9781611973105.7
http://dx.doi.org/10.1145/2897518.2897557
http://arxiv.org/abs/1603.03024
http://dx.doi.org/10.1016/j.jcss.2004.04.011
http://dx.doi.org/10.1016/j.jcss.2004.04.011
http://dx.doi.org/10.1145/100216.100262
http://dx.doi.org/10.1561/0400000057
http://dx.doi.org/10.1145/1284320.1284321
http://dx.doi.org/10.1016/S0167-6377(01)00115-8
http://dx.doi.org/10.1016/S0167-6377(01)00115-8
http://dx.doi.org/10.1109/SFCS.1977.24

1:16 Min-Cost Bipartite Perfect Matching with Delays

This implies

A(I) ≤ EM′=(S′,d′)∼D[β SOLd′ +γ SOLt]
= β · EM′=(S′,d′)∼D[SOLd′] + γ SOLt

≤ βµ · SOLd +γ · SOLt

where the equality follows from linearity of expectation and the fact that SOLt is independent
ofM′, while the second inequality follows from the definition of distortion. By the definition
of (β, γ)-competitiveness, the claim follows. J

B Proofs Omitted from Section 5

Proof of Claim 15. Consider an edge e that is used for (tentatively) matching k positive
requests p1, . . . , pk to k negative requests n1, . . . , nk. Remember that all the requests in Te

that are matched through e are of the same type. Assume that the requests in Te are the
positive requests p1, . . . , pk, that is, for every match that is realized, Pe decreases by 1 (the
case where the requests under Te are negative is analogous). There are two cases.

Case 1: sur∗(e) ≤ 0. In that case, since sur(e) decreases by 1 for each match that is realized,
the potential Φe decreases by w(e) for each match that ALG makes. Thus, for each match
the connection cost incurred by ALG for using edge e and the change in the potential sum
to 0. Namely, E[ALGe(t1, t2) + ∆Φe] = 0 ≤ 2 |sur∗(e)| (t2 − t1).

Case 2: sur∗(e) > 0. In that case, as long as sur(e) > sur∗(e), each match will decrease Φe

by w(e), and when sur(e) ≤ sur∗(e), each match will increase Φe by w(e). Note that at time
t1, sur(e) ≥ k > 0. Let t′ ∈ [t1, t2) be the minimal time such that sur(e) ≤ sur∗(e). If there
is no such t′, we set t′ = t2.

For 1 ≤ i ≤ k, let Xi be an indicator random variable for the event that the request pi is
matched during the interval (t′, t2) (conditioned on pi not being matched before t′), and Zi

be an exponential random variable with parameter 1
d(pi,ni) . Then,

E[Xi] = Pr[Zi < t2|Zi > t] = Pr[Zi < t2 − t′] = 1− e−
t2−t′

d(pi,ni) ≤ 1− e−
t2−t1
w(e) ≤ t2 − t1

w(e) .

Now, note that

E[ALGe(t1, t2) + ∆Φe] = E[ALGe(t1, t′) + Φe(t′)− Φe(t1)]
+ E[ALGe(t′, t2) + Φe(t2)− Φe(t′)]

= E[ALGe(t1, t′) + Φe(t′)− Φe(t1)]
+ E[ALGe(t′, t2) + Φe(t2)− Φe(t′)|t′ < t2] Pr[t′ < t2]
≤ E[ALGe(t1, t′) + Φe(t′)− Φe(t1)]

+ E[ALGe(t′, t2) + Φe(t2)− Φe(t′)|t′ < t2]

where we use the facts that E[ALGe(t′, t2)+Φe(t2)−Φe(t′)|t′ = t2] = 0 and that ALGe(t′, t2)+
Φe(t2)− Φe(t′) is non-negative (the potential can only increase due to matches in (t′, t2)).

If ALG makes N1 matches during (t1, t′), then ALGe(t1, t′) = N1 · w(e), while Φe(t′)−
Φe(t1) = −N1 · w(e) (before t′, the potential only decreases due to the matches). Thus,
E[ALGe(t1, t′) + Φe(t′)− Φe(t1)] = 0.

I. Ashlagi et al. 1:17

Consider E[ALGe(t′, t2) + Φe(t2) − Φe(t′)|t′ < t2]. Note that at if t′ < t2, then N1 =
max{0, sur(e) − sur∗(e)}.2 Then, during the interval (t′, t2), there are k − N1 ≤ |sur∗(e)|
requests that may be matched using edge e. Denote the number of requests that are matched
using e during (t′, t2) by N2. Intuitively, E[N2] is at most (k − N1) · t2−t1

w(e) , since for each
such request i, E[Xi] ≤ t2−t1

w(e) .
Formally, if for S ⊆ {1, . . . , k} of size N1, AS denotes the event that the requests

{pi|i ∈ S} are matched before t′,

E[N2|t′ < t2] =
∑

S⊆{1,...,k}:
|S|=N1

E[N2|t′ < t2, AS] Pr[AS |t′ < t2]

=
∑

S⊆{1,...,k}:
|S|=N1

(∑
i/∈S

E[Xi|t′ < t2, AS]
)

Pr[AS |t′ < t2]

≤
∑

S⊆{1,...,k}:
|S|=N1

(∑
i/∈S

t2 − t1
w(e)

)
Pr[AS |t′ < t2]

= (k −N1) · t2 − t1
w(e)

∑
S⊆{1,...,k}:
|S|=N1

Pr[AS |t′ < t2]

= (k −N1) · t2 − t1
w(e)

≤ |sur∗(e)| · t2 − t1
w(e)

Finally, since for each request matched after t′, the potential increases by w(e), we get
that

E[ALGe(t′, t2) + Φe(t2)− Φe(t′)|t′ < t2] = 2w(e) · E[N2|t′ < t2]

≤ |sur∗(e)| · 2w(e) · t2 − t1
w(e)

= 2 |sur∗(e)| (t2 − t1)

and E[ALGe(t1, t2) + ∆Φe] ≤ 2 |sur∗(e)| (t2 − t1). J

Proof of Lemma 16. We divide the time into intervals as in the proof of Lemma 14. The
first interval starts at time 0. An interval ends and the next interval begins when a new
request arrives or when SOL matches two requests. Let [t1, t2) be an interval. We show that
E[ALGt(t1, t2)] ≤ 2E[ALGd(t1, t2)] + SOLt(t1, t2).

Note that the number of requests that are not tentatively matched at time t is |sur(r)|,
and that at any time t, sur(r) = sur∗(r) (both ALG and SOL run on the same input and
clear requests in pairs of different types). Intuitively, since SOL also had a surplus of the
same number of requests, the delay cost incurred by SOL is at least the delay cost incurred
due to the requests that are not tentatively matched by ALG. Formally, note that sur(r) has
the same value at all times t ∈ (t1, t2). Let K = |sur(r)| for some t ∈ (t1, t2). Then, the delay

2 This refers to sur(e) at time t1. Note that at most one match is realized at time t′ (the probability that
two matches will be realized at the same time is 0). Therefore, N1 must be max{0, sur(e)− sur∗(e)}
and not greater than that.

APPROX/RANDOM’17

1:18 Min-Cost Bipartite Perfect Matching with Delays

cost of the requests that are not tentatively matched during [t1, t2) is K · (t2 − t1) (note that
the tentative matching cannot not be recomputed in the middle of an interval). In addition,
during (t1, t2), SOL has at least K requests waiting, hence SOLt(t1, t2) ≥ K · (t2 − t1).

So far we have shown that during [t1, t2), the delay cost of the requests that are not
tentatively matched is at most SOLt(t1, t2). We now consider all the requests that are
part of the tentative matching computed by ALG. For each pair of requests, we compare
the expected connection cost and expected delay cost. Let p1, p2 be two requests that are
tentatively matched by ALG. We denote the connection cost due to p1, p2 during [t1, t2) by
∆ ALGd(p1, p2) and the delay cost due to p1, p2 during [t1, t2) by ∆ ALGt(p1, p2).

The time until p1, p2 are matched is an exponential random variable Z with parameter
1

d(p1,p2) . The requests are matched during the interval if Z < t2 − t1. Then, the expected

connection cost is E[∆ ALGd(p1, p2)] = d(p1, p2) · Pr[Z < t2 − t1] = d(p1, p2)(1− e−
t2−t1

d(p1,p2)).
The expected delay cost for each one of p1, p2 during [t1, t2) is

E[min{Z, t2 − t1}] = E[Z − (Z − (t2 − t1))+] = d(p1, p2)(1− e−
t2−t1

d(p1,p2)).

Since both p1 and p2 wait, we get that

E[∆ ALGt(p1, p2)] = 2d(p1, p2)(1− e−
t2−t1

d(p1,p2)) = 2E[∆ ALGd(p1, p2)].

Summing over all the pairs of tentatively matched requests and adding the delay cost of the
unmatched requests, we get that

E[ALGt(t1, t2)] ≤ 2E[ALGd(t1, t2)] + SOLt(t1, t2).

We conclude the proof of the lemma by summing over all the intervals, and by linearity
of expectation, we get

E[ALGt] ≤ 2E[ALGd] + SOLt . J

C Proofs Omitted from Section 6

In order to prove Lemma 19, we need the following observation.

I Observation 23. Given a set of requests on the vertices of T which contains an equal
number of positive and negative requests, let M be a minimum cost perfect matching between
the positive and the negative requests (where, as usual, the cost of matching two requests is
the distance between their locations under the tree metric). Then for any vertex v of the tree,
the number of requests inside Tv that are matched in M to requests outside Tv is precisely
| sur(v)|. Furthermore, all these requests have the same sign as sur(v).

Proof of Lemma 19. Let U+ (resp. U−) denote the set of positively (resp. negatively)
unsaturated vertices v with sur(v) > 0 (resp. sur(v) < 0). Note that U+ and U− are
disjoint. From the description of the algorithm, the rate of increase of

∑
u(y+

u + y−u) is∑
v∈U+∪U− | sur(v)|. The rate of increase of the delay cost is equal to the number of pending

requests. Thus, it is sufficient to prove that the number of pending requests is at most
2
∑

v∈U+∪U− | sur(v)| at any time (except at instants when requests are connected).
Consider an arbitrary time instant. Recall that sur(r) is equal to the number of positive

pending requests minus the number of negative pending requests. If sur(r) 6= 0, augment
the set of pending requests with | sur(r)| artificial requests located at r, with sign opposite
to the sign of sur(r), resulting in a balanced set of requests. Let M be a minimum cost

I. Ashlagi et al. 1:19

perfect matching between the positive and the negative requests in this set. First, consider
the | sur(r)| pending requests that get matched to the | sur(r)| augmented requests at r.
Charge these pending requests to r, and note that r ∈ U+ ∪ U− (unless sur(r) = 0). Next,
let (R+, R−) be a match in M , where R+ (resp. R−) is a positive (resp. negative) pending
request located at u+ (resp. u−), and let v = lca(u+, u−). Since the algorithm has not
connected R+ and R−, at least one of the following must be true.
1. There is a vertex v′ 6= v on the path from u+ to v such that ev′ /∈ F+, i.e. v′ is positively

unsaturated.
2. There is a vertex v′ 6= v on the path from u− to v such that ev′ /∈ F−, i.e. v′ is negatively

unsaturated.
Consider the first case. By Observation 23, since M matches the positive request R+ ∈ Tv′

to R− /∈ Tv′ , we have sur(v′) > 0. Additionally, since v′ is positively unsaturated, v′ ∈ U+.
By similar argument, in the second case, v′ ∈ U−. In either case, charge the pair of requests
(R+, R−) to the vertex v′ ∈ U+ ∪ U−.3 Observe that if this charging scheme charges a pair
of pending requests to a vertex v, then one of the requests is in Tv, the other is outside
Tv, and the pair is included in M . Again, by Observation 23, the number of pairs charged
to any vertex v is at most | sur(v)|. Thus, the number of pending requests is at most
2
∑

v∈U+∪U− | sur(v)|, as required. J

Proof of Lemma 20. We use the potential function technique. We design a potential function
φ such that in each phase, the changes ∆(y+

u + y−u), ∆φ, and ∆(xu + x′u) satisfy

∆(y+
u + y−u) + ∆φ ≤ 4∆(xu + x′u) (1)

and φ = 0 at the beginning as well as at the end of the algorithm’s run. Summing (1) over
all phases, we get the result.

Recall that sur∗(u) denotes the surplus of vertex u resulting from SOL. Define φ =
4du · | sur∗(u)− sur(u)|. Clearly, at the beginning as well as at the end, we have sur(u) =
sur∗(u) = 0, and thus, φ = 0. Observe that sur∗(u)−sur(u) (and hence, φ) remains unchanged
when new requests are given. The only events resulting in a change in sur∗(u)− sur(u) are
either SOL or the algorithm connecting a request inside Tu to one outside Tu. Also, xu

increases at a rate of at least | sur∗(u)|.
In each phase of a vertex u, each of y+

u and y−u increases by at most 2du, and therefore,
∆(y+

u + y−u) ≤ 4du. Except the last phase, in every phase, at least one of y+
u and y−u increases

by exactly 2du, and the phase ends with the algorithm connecting a request inside Tu to one
outside Tu. We call such a phase complete, and we call the last phase incomplete. We prove
that (1) holds first for complete phases, and then for the incomplete phase.

Let k ≥ 0 denote the (absolute) number of requests in Tu which SOL connected to
requests outside Tu during an arbitrary phase. Thus, ∆x′u ≥ kdu.

Consider any complete phase of vertex u and, without loss of generality, assume that the
phase ends due to a positive request inside Tu getting connected to a negative request outside
Tu. This means that z+

u increases from 0 to 2du in the phase. Since the only events resulting
in a change in sur∗(u)− sur(u) are either SOL or the algorithm connecting a request inside
Tu to one outside, we have

∆| sur∗(u)− sur(u)| ≤ |∆(sur∗(u)− sur(u))| ≤ k + 1 (2)

3 If both cases hold, or if one of the cases holds for more than one v′, then pick an arbitrary one.

APPROX/RANDOM’17

1:20 Min-Cost Bipartite Perfect Matching with Delays

First, consider the case where ∆| sur∗(u)−sur(u)| = k+1, and therefore, ∆φ = 4(k+1)·du.
Now both inequalities in (2) are tight. Because the second inequality is tight, all the k requests
inside Tu which SOL connected outside must be negative, and ∆(sur∗(u)−sur(u)) = k+1 > 0.
Furthermore, sur∗(u)− sur(u) never decreases during the phase. Because the first inequality
in (2) is tight, the sign of sur∗(u)− sur(u) at the beginning of the phase must be the same as
that of ∆(sur∗(u)− sur(u)), implying sur∗(u)− sur(u) ≥ 0 initially. Since sur∗(u)− sur(u)
never decreases, we have sur∗(u) − sur(u) ≥ 0 throughout the phase. Therefore, at any
moment when z+

u was increasing, we have sur∗(u) ≥ sur(u) > 0. Thus, the rate of increase
of xu is always at least as much as the rate of increase of z+

u . Since z+
u increases by 2du, we

have ∆xu ≥ 2du. Therefore,

∆(y+
u + y−u) + ∆φ ≤ 4du + 4(k + 1) · du = 4(2du + kdu) ≤ 4∆(xu + x′u)

Next, suppose that ∆| sur∗(u)−sur(u)| < k+1. Observe that the parity of sur∗(u)−sur(u)
changes k + 1 times during the phase: each time when the algorithm or SOL connects a
request in Tu to one outside. Thus, if ∆| sur∗(u)− sur(u)| is not k + 1, it must be at most
k − 1, which means ∆φ ≤ 4(k − 1) · du. Therefore,

∆(y+
u + y−u) + ∆φ ≤ 4du + 4(k − 1) · du = 4kdu = 4∆x′u ≤ 4∆(xu + x′u)

Thus, in any case, (1) holds for any complete phase.
Finally, consider the last incomplete phase, which does not have a usage of eu by the

algorithm at the end. Note that at the end of the algorithm’s run, sur(u) = sur∗(u) = 0,
and hence, φ = 0. Since φ is non-negative by definition, we have ∆φ ≤ 0. If k > 0, then
∆(xu + x′u) ≥ ∆x′u = kdu ≥ du. Since ∆(y+

u + y−u) ≤ 4du, (1) holds. On the other hand,
if k = 0, then sur∗(u) − sur(u) stays constant in the phase. Since it is zero finally, it is
zero throughout the phase. Thus, sur∗(u) = sur(u) in the entire phase. Since y+

u + y−u
increases at a rate at most | sur(u)| and xu increases at a rate at least | sur∗(u)|, we have
∆(y+

u + y−u) ≤ ∆xu, again implying (1). J

Global and Fixed-Terminal Cuts in Digraphs∗†

Kristóf Bérczi1, Karthekeyan Chandrasekaran2, Tamás Király3,
Euiwoong Lee4, and Chao Xu5

1 MTA-ELTE Egerváry Research Group, Budapest, Hungary
berkri@cs.elte.hu

2 University of Illinois, Urbana-Champaign, IL, USA
karthe@illinois.edu

3 MTA-ELTE Egerváry Research Group, Budapest, Hungary
tkiraly@cs.elte.hu

4 Carnegie Mellon University, Pittsburgh, PA, USA
euiwoonl@cs.cmu.edu

5 University of Illinois, Urbana-Champaign, IL, USA
chaoxu3@illinois.edu

Abstract
The computational complexity of multicut-like problems may vary significantly depending on
whether the terminals are fixed or not. In this work we present a comprehensive study of this
phenomenon in two types of cut problems in directed graphs: double cut and bicut.
1. Fixed-terminal edge-weighted double cut is known to be solvable efficiently. We show that

fixed-terminal node-weighted double cut cannot be approximated to a factor smaller than 2
under the Unique Games Conjecture (UGC), and we also give a 2-approximation algorithm.
For the global version of the problem, we prove an inapproximability bound of 3/2 under
UGC.

2. Fixed-terminal edge-weighted bicut is known to have an approximability factor of 2 that is
tight under UGC. We show that the global edge-weighted bicut is approximable to a factor
strictly better than 2, and that the global node-weighted bicut cannot be approximated to a
factor smaller than 3/2 under UGC.

3. In relation to these investigations, we also prove two results on undirected graphs which are of
independent interest. First, we show NP-completeness and a tight inapproximability bound
of 4/3 for the node-weighted 3-cut problem under UGC. Second, we show that for constant
k, there exists an efficient algorithm to solve the minimum {s, t}-separating k-cut problem.

Our techniques for the algorithms are combinatorial, based on LPs and based on the enumera-
tion of approximate min-cuts. Our hardness results are based on combinatorial reductions and
integrality gap instances.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases Directed Graphs, Arborescence, Graph Cuts, Hardness of Approximation

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.2

1 Introduction

The minimum two-terminal cut problem (min s − t cut) and its global variant (min cut)
are classic interdiction problems with fast algorithms. Generalizations of the fixed-terminal

∗ A full version of the paper is available at https://arxiv.org/abs/1612.00156.
† Kristóf and Tamás are supported by the Hungarian National Research, Development and Innovation

Office – NKFIH grants K109240 and K120254. Chao is supported in part by NSF grant CCF-1526799.

© Kristóf Bérczi, Karthekeyan Chandrasekaran, Tamás Király, Euiwoong Lee, and Chao Xu;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 2; pp. 2:1–2:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.2
https://arxiv.org/abs/1612. 00156
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2:2 Global and Fixed-Terminal Cuts in Digraphs

variant, including the multi-cut and the multi-way cut, as well as generalizations of the global
variant, including the k-cut, have been well-studied in the algorithmic literature [10, 14]. In
this work, we study two generalizations of global cut problems to directed graphs, namely
double cut and bicut (that we describe below). We study the power and limitations of fixed
terminal variants of these cut problems in order to solve the global variants. In the process,
we examine “intermediate” multicut problems where only a subset of the terminals are
fixed, and obtain results of independent interest. In particular, we show that the undirected
{s, t}-separating k-cut problem, where two of the k terminals are fixed, is polynomial-time
solvable for constant k. In what follows, we describe the problems along with the results.
We refer the reader to Tables 1, 2, and 3 at the end of Section 1.1 for a summary of the
results. We mention that all our algorithmic/approximation results hold for the min-cost
variant while the inapproximability results hold for the min-cardinality variant by standard
modification of our reductions and algorithms. For ease of presentation, we do not make this
distinction.

The starting point of this work is node-weighted double cut, that we describe below. We
recall that an arborescence in a directed graph D = (V,E) is a minimal subset F ⊆ E of
arcs such that there exists a node r ∈ V with every node u ∈ V having a unique path from r

to u in the subgraph (V, F) (e.g., see [26]).

Double Cut. The input to the NodeDoubleCut problem is a directed graph and the goal
is to find the smallest number of nodes whose deletion ensures that the remaining graph
has no arborescence. NodeDoubleCut is a generalization of node weighted global min
cut in undirected graphs to directed graphs. It is non-monotonic under node deletion. This
problem is key to understanding fault tolerant consensus in networks. We briefly describe
this connection.

Significance of double cut. In a recent work, Tseng and Vaidya [28] showed that consensus
in a directed graph can be achieved in the synchronous model subject to the failure of f nodes
if and only if the removal of any f nodes still leaves an arborescence in the remaining graph.
Thus, the number of nodes whose failure can be tolerated for the purposes of achieving
consensus in a network is exactly one less than the smallest number of nodes whose removal
ensures that there is no arborescence in the network. So, it is imperative for the network
authority to be able to compute this number.

A directed graph D = (V,E) has no arborescence if and only if 1 there exist two distinct
nodes s, t ∈ V such that every node u ∈ V can reach at most one node in {s, t}. By this
characterization, every directed graph that does not contain a tournament has a feasible
solution to NodeDoubleCut. This characterization motivates the following fixed-terminal
variant, denoted {s, t}-NodeDoubleCut: Given a directed graph with two specified nodes
s and t, find the smallest number of nodes whose deletion ensures that every remaining node
u can reach at most one node in {s, t} in the resulting graph. An instance of {s, t}-Node-
DoubleCut has a feasible solution provided that the instance has no edge between s and t.
An efficient algorithm to solve/approximate {s, t}-NodeDoubleCut immediately gives an
efficient algorithm to solve/approximate NodeDoubleCut.

1 We believe that this characterization led earlier authors [3] to coin the term double cut to refer to the
edge deletion variant of the problem. We are following this naming convention.

K. Bérczi, K. Chandrasekaran, T. Király, E. Lee, and C. Xu 2:3

Edge-weighted case. In the edge-weighted version of the problem, {s, t}-EdgeDoubleCut,
the goal is to delete the smallest number of edges to ensure that every node in the graph can
reach at most one node in {s, t}. Similarly, in the global variant, denoted EdgeDoubleCut,
the goal is to delete the smallest number of edges to ensure that there exist nodes s, t such
that every node u can reach at most one node in {s, t}, i.e. the graph has no arborescence.
The fixed-terminal variant {s, t}-EdgeDoubleCut is solvable in polynomial time using
maximum flow and, consequently, EdgeDoubleCut is also solvable in polynomial time (see
e.g. [3]).

Results for double cut. Our main result on the fixed-terminal variant, namely {s, t}-Node-
DoubleCut, is the following hardness of approximation.

I Theorem 1. {s, t}-NodeDoubleCut is NP-hard, and has no efficient (2−ε)-approximation
for any ε > 0 assuming the Unique Games Conjecture.

We also give a 2-approximation algorithm for {s, t}-NodeDoubleCut, which leads to a
2-approximation for the global variant.

I Theorem 2. There exists an efficient 2-approximation algorithm for {s, t}-NodeDouble-
Cut and NodeDoubleCut.

While we are aware of simple combinatorial algorithms to achieve the 2-approximation for
{s, t}-NodeDoubleCut, we present an LP-based algorithm since it also helps to illustrate
an integrality gap instance which is the main tool underlying the hardness of approximation
(Theorem 1) for the problem. Next we focus on the complexity of NodeDoubleCut. We
note that the NP-hardness of the fixed-terminal variant does not necessarily mean that the
global variant is also NP-hard.

I Theorem 3. NodeDoubleCut is NP-hard, and has no efficient (3/2− ε)-approximation
for any ε > 0 assuming the Unique Games Conjecture.

Bicuts offer an alternative generalization of min cut to directed graphs. The approximability
of the fixed-terminal variant of bicut is well-understood while the complexity of the global
variant is unknown. In the following we describe these bicut problems and exhibit a dichotomic
behaviour between the fixed-terminal and the global variant.

Bicut. The edge-weighted two-terminal bicut, denoted {s, t}-EdgeBiCut, is the following:
Given a directed graph with two specified nodes s and t, find the smallest number of edges
whose deletion ensures that s cannot reach t and t cannot reach s in the resulting graph.
Clearly, {s, t}-EdgeBiCut is equivalent to 2-terminal multiway-cut (the goal in k-terminal
multiway cut is to delete the smallest number of edges to ensure that the given k terminals
cannot reach each other). This problem has a rich history and has seen renewed interest
in the last few months culminating in inapproximability results matching the best-known
approximability factor: {s, t}-EdgeBiCut admits a 2-factor approximation (by simple
combinatorial techniques) and has no efficient (2− ε)-approximation assuming the Unique
Games Conjecture [19, 5]. In the global variant, denoted EdgeBiCut, the goal is to find
the smallest number of edges whose deletion ensures that there exist two distinct nodes s
and t such that s cannot reach t and t cannot reach s in the resulting digraph.

The dichotomy between global cut problems and fixed-terminal cut problems in undirected
graphs is well-known. For concreteness, we recall Edge-3-Cut and Edge-3-way-Cut. In
Edge-3-Cut, the goal is to find the smallest number of edges to delete so that the resulting

APPROX/RANDOM’17

2:4 Global and Fixed-Terminal Cuts in Digraphs

graph has at least 3 connected components. In Edge-3-way-Cut, the input is an undirected
graph with 3 specified nodes and the goal is to find the smallest number of edges to delete
so that the resulting graph has at least 3 connected components with at most one of the 3
specified nodes in each. While Edge-3-way-Cut is NP-hard [10], Edge-3-Cut is solvable
efficiently [14]. However, such a dichotomy is unknown for directed graphs. In particular, it
is unknown whether EdgeBiCut is solvable efficiently. Our next result shows evidence of
such a dichotomic behaviour.

Results for bicut. While {s, t}-EdgeBiCut is inapproximable to a factor better than 2
assuming UGC, we show that EdgeBiCut is approximable to a factor strictly better than 2.

I Theorem 4. There exists an efficient (2− 1/448)-approximation algorithm for EdgeBi-
Cut.

We also consider the node-weighted variant of bicut, denoted NodeBiCut: Given a directed
graph, find the smallest number of nodes whose deletion ensures that there exist nodes s and
t such that s cannot reach t and t cannot reach s in the resulting graph. Every directed graph
that does not contain a tournament has a feasible solution to NodeBiCut. NodeBiCut is
non-monotonic under node deletion, and it admits a 2-approximation by a simple reduction
to {s, t}-EdgeBiCut. We show the following inapproximability result.

I Theorem 5. NodeBiCut is NP-hard, and has no efficient (3/2− ε)-approximation for
any ε > 0 assuming the Unique Games Conjecture.

We observe that our approximability and inapproximability factors for NodeDoubleCut
and NodeBiCut coincide – 2 and (3/2− ε) respectively (Theorems 2, 3 and 5).

1.1 Additional Results on Sub-problems and Variants

In what follows, we describe additional results that concern sub-problems in our algorithms/hard-
ness results, and also variants of these sub-problems which are of independent interest.

Node weighted 3-Cut. We show the NP-hardness of NodeDoubleCut in Theorem 3 by a
reduction from the node-weighted 3-cut problem in undirected graphs. In the node weighted
3-cut problem, denoted Node-3-Cut, the input is an undirected graph and the goal is to
find the smallest subset of nodes whose deletion leads to at least 3 connected components in
the remaining graph. A classic result of Goldschmidt and Hochbaum [14] showed that the
edge-weighted variant, denoted Edge-3-Cut (see above for definition) – more commonly
known as 3-cut – is solvable in polynomial time. Intriguingly, the complexity of Node-3-Cut
remained open until now. We present the first results on the complexity of Node-3-Cut.

I Theorem 6. Node-3-Cut is NP-hard, and has no efficient (4/3− ε)-approximation for
any ε > 0 assuming the Unique Games Conjecture.

The inapproximability factor of 4/3 mentioned in the above theorem is tight: the 4/3-
approximation factor can be achieved by guessing 3 terminals that are separated and then
using well-known approximation algorithms to solve the resulting node-weighted 3-terminal
cut instance [13].

K. Bérczi, K. Chandrasekaran, T. Király, E. Lee, and C. Xu 2:5

(s, ∗, t)-EdgeLin3Cut. As a sub-problem in the algorithm for Theorem 4, we consider the
following, denoted (s, ∗, t)-EdgeLin3Cut (abbreviating edge-weighted linear 3-cut): Given
a directed graph D = (V,E) and two specified nodes s, t ∈ V , find the smallest number
of edges to delete so that there exists a node r with the property that s cannot reach r

and t, and r cannot reach t in the resulting graph. This problem is a global variant of
(s, r, t)-EdgeLin3Cut, introduced in [11], where the input specifies three terminals s, r, t
and the goal is to find the smallest number of edges whose removal achieves the property
above. A simple reduction from Edge-3-way-Cut shows that (s, r, t)-EdgeLin3Cut is
NP-hard. The approximability of (s, r, t)-EdgeLin3Cut was studied by Chekuri and Madan
[5]. They showed that the inapproximability factor coincides with the flow-cut gap of an
associated path-blocking linear program assuming the Unique Games Conjecture.

There exists a simple combinatorial 2-approximation algorithm for (s, r, t)-EdgeLin3Cut.
A 2-approximation for (s, ∗, t)-EdgeLin3Cut can be obtained by guessing the terminal r and
using the above-mentioned approximation. For our purposes, we need a strictly better than
2-approximation for (s, ∗, t)-EdgeLin3Cut; we obtain the following improved approximation
factor.

I Theorem 7. There exists an efficient 3/2-approximation algorithm for (s, ∗, t)-EdgeLin-
3Cut.

{s, t}-SepEdgekCut. In contrast to (s, r, t)-EdgeLin3Cut, we do not have a hardness
result for (s, ∗, t)-EdgeLin3Cut. Upon encountering cut problems in directed graphs, it is
often insightful to consider the complexity of the analogous problem in undirected graphs.
Our next result shows that the following analogous problem in undirected graphs is in fact
solvable in polynomial time: given an undirected graph with two specified nodes s, t, remove
the smallest subset of edges so that the resulting graph has at least 3 connected components
with s and t being in different components. More generally, we consider {s, t}-SepEdgekCut,
where the goal is to delete the smallest subset of edges from a given undirected graph so
that the resulting graph has at least k connected components with s and t being in different
components. The complexity of {s, t}-SepEdgekCut was posed as an open problem by
Queyranne [25]. We show that {s, t}-SepEdgekCut is solvable in polynomial-time for every
constant k.

I Theorem 8. For every constant k, there is an efficient algorithm to solve {s, t}-SepEdge-
kCut.

{s, ∗}-EdgeBiCut. While Theorem 4 shows that EdgeBiCut is approximable to a factor
strictly smaller than 2, we do not have a hardness result. We could prove hardness for the
following intermediate problem, denoted {s, ∗}-EdgeBiCut: Given a directed graph with a
specified node s, find the smallest number of edges to delete so that there exists a node t
such that s cannot reach t and t cannot reach s in the resulting graph. {s, ∗}-EdgeBiCut
admits a 2-approximation by guessing the terminal t and then using the 2-approximation for
{s, t}-EdgeBiCut. We show the following inapproximability result:

I Theorem 9. {s, ∗}-EdgeBiCut is NP-hard, and has no efficient (4/3− ε)-approximation
for any ε > 0 assuming the Unique Games Conjecture.

Due to space constraints, we outline our techniques for the proof of Theorem 4 and for the
hardness of approximation results in Sections 2 and 3, and refer the reader to the complete
version of this work [2] for all complete proofs. The proofs of Theorems 7 and 8 are presented
in Section 4.

APPROX/RANDOM’17

2:6 Global and Fixed-Terminal Cuts in Digraphs

Table 1 Global Variants in Directed Graphs. Text in gray refer to known results while text in
black refer to the results from this work. All hardness of approximation results are under UGC.
Hardness results for Node weighted (s, ∗, t)-Lin3Cut are based on the fact that it is as hard to
approximate as Node weighted {s, t}-Sep3Cut by bidirecting the edges (Table 3).

Problem Edge-deletion Node-deletion
DoubleCut Poly-time [3] 2-approx (Thm 2)

(3/2− ε)-inapprox (Thm 3)
BiCut (2− 1/448)-approx (Thm 4) 2-approx

(3/2− ε)-inapprox (Thm 5)
(s, ∗)-BiCut 2-approx 2-approx

(4/3− ε)-inapprox (Thm 9) (3/2− ε)-inapprox
(s, ∗, t)-Lin3Cut 3/2-approx (Thm 7) 2-approx

(4/3− ε)-inapprox

Table 2 Fixed-Terminal Variants in Directed Graphs. Text in gray refer to known results while
text in black refer to the results from this work. All hardness of approximation results are under
UGC. We include {s, t}-BiCut and (s, r, t)-Lin3Cut for comparison with the global variants in
Table 1.

Problem Edge-deletion Node-deletion
(s, t)-DoubleCut Poly-time [3] 2-approx (Thm 2)

(2− ε)-inapprox (Thm 1)
(s, t)-BiCut 2-approx [Equivalent to edge-deletion]

(2− ε)-inapprox [4, 19]
(s, r, t)-Lin3Cut 2-approx [Equivalent to edge-deletion]

(α− ε)-inapprox [5]
(where α is the flow-cut gap)

Table 3 Global Variants in Undirected Graphs. Text in gray refer to known results while text in
black refer to the results from this work. All hardness of approximation results are under UGC.

Problem Edge-deletion Node-deletion
k-cut Poly-time [14, 18] (2− 2/k)-approx [13]

(where k is constant) (2− 2/k − ε)-inapprox (Thm 6)
{s, t}-SepkCut Poly-time (Thm 8) (2− 2/k)-approx [13]

(where k is constant) (2− 2/k − ε)-inapprox (Thm 6)

1.2 Related Work
In recent work, Bernáth and Pap [3] studied the problem of deleting the smallest number
of arcs to block all minimum cost arborescences of a given directed graph. They gave an
efficient algorithm to solve this problem through combinatorial techniques. However, their
techniques fail to extend to the node weighted double cut problem.

The node-weighted 3-cut problem – Node-3-Cut – is a generalization of the classic
Edge-3-Cut. Various other generalizations of Edge-3-Cut have been studied in the
literature showing the existence of efficient algorithms. These include the edge-weighted
3-cut in hypergraphs [30, 12] and the more general submodular 3-way partitioning [31, 24].
However, none of these known generalizations address Node-3-Cut as a special case. Feasible
solutions to Node-3-Cut are also known as shredders in the node-connectivity literature.

K. Bérczi, K. Chandrasekaran, T. Király, E. Lee, and C. Xu 2:7

In the unit-weight case, shredders whose cardinality is equal to the node connectivity of the
graph play a crucial role in the problem of min edge addition to augment node connectivity
by one [6, 15, 20, 29]. There are at most linear number of such shredders and all of them
can be found efficiently [6, 15]. The complexity of finding a min cardinality shredder was
open until our results (Theorem 6).

In the edge-weighted multiway cut in undirected graphs, the input is an undirected graph
with k terminal nodes and the goal is to find the smallest cardinality subset of edges whose
deletion ensures that there is no path between any pair of terminal nodes. For k = 3, a
12/11-approximation is known [7, 16], while for constant k, the current-best approximation
factor is 1.2975 due to Sharma and Vondrák [27]. These results are based on an LP-relaxation
proposed by Călinescu, Karloff and Rabani [9], known as the CKR relaxation. Manokaran,
Naor, Raghavendra and Shwartz [21] showed that the inapproximability factor coincides
with the integrality gap of the CKR relaxation. Recently, Angelidakis, Makarychev and
Manurangsi [1] exhibited instances with integrality gap at least 6/(5 + (1/k − 1)) − ε for
every k ≥ 3 and every ε > 0 for the CKR relaxation.

The node-weighted multiway cut in undirected graphs exhibits very different structure
in comparison to the edge-weighted multiway cut. It reduces to edge-weighted multiway
cut in hypergraphs. Garg, Vazirani and Yannakakis [13] gave a (2 − 2/k)-approximation
for node-weighted multiway cut by exploiting the extreme point structure of a natural
LP-relaxation.

The edge-weighted multiway cut in directed graphs has a 2-approximation, due to Naor
and Zosin [23], as well as Chekuri and Madan [4]. Matching inapproximability results were
shown recently for k = 2 [19, 5]. The node-weighted multiway cut in directed graphs reduces
to the edge-weighted multiway cut by exploiting the fact that the terminals are fixed. Such
a reduction is unknown for the global version.

1.3 Preliminaries
Let D = (V,E) be a directed graph. For two disjoint sets X,Y ⊂ V , we denote δ(X,Y)
to be the set of edges (u, v) with u ∈ X and v ∈ Y and d(X,Y) to be the cut value
|δ(X,Y)|. We use δin(X) := δ(V \X,X), δout(X) := δ(X,V \X), din(X) := |δin(X)| and
dout(X) := |δout(X)|. We use a similar notation for undirected graphs by dropping the
superscripts. For two nodes s, t ∈ V , a subset X ⊂ V is called an st-set if t ∈ X ⊆ V − s.
The cut value of an st-set X is din(X).

We frequently use the following characterization of directed graphs with no arborescence
for the purposes of double cut.

I Theorem 10 (e.g., see [3]). Let D = (V,E) be a directed graph. The following are
equivalent:
1. D has no arborescence.
2. There exist two distinct nodes s, t ∈ V such that every node u can reach at most one node

in {s, t} in D.
3. There exist two disjoint non-empty sets S, T ⊂ V with δin(S) ∪ δin(T) = ∅.

2 Overview of approximation for EdgeBiCut

In this section, we present the high-level ideas of the (2− 1/448)-approximation algorithm
for EdgeBiCut (Theorem 4). We sketch the argument for a (2− ε)-approximation for some
small enough ε; the full algorithm and the proof of its approximation ratio are presented in
the complete version of this work [2].

APPROX/RANDOM’17

2:8 Global and Fixed-Terminal Cuts in Digraphs

Let D be a digraph. For two disjoint sets X,Y ⊂ V , we define δD(X,Y) to be the set
of edges (u, v) with u ∈ X and v ∈ Y and d(X,Y) to be the cut value |δD(X,Y)|. We use
δinD (X) := δD(V \X,X), δoutD (X) := δD(X,V \X). We drop the subscripts when the graph
D is clear from context.

Two sets A and B are called uncomparable if A \B 6= ∅ and B \A 6= ∅. Given a directed
graph D = (V,E), EdgeBiCut is equivalent to finding an uncomparable pair A,B ⊆ V

with minimum |δin(A) ∪ δin(B)|. Indeed, if A and B are uncomparable and we remove
δin(A) ∪ δin(B) from the directed graph, then nodes in A \B cannot reach nodes in B \A
and vice versa. On the other hand, if s cannot reach t and t cannot reach s, then the set of
nodes that can reach s and the set of nodes that can reach t are uncomparable, and have
in-degree 0.

I Definition 11. For A,B ⊆ V , let β(A,B) := |δin(A) ∪ δin(B)| and let σ(A,B) :=
|δin(A)|+ |δin(B)|. Furthermore, let

β := min{β(A,B) | A and B are uncomparable},
σ := min{σ(A,B) | A and B are uncomparable}.

As σ can be computed efficiently, we immediately have a (2−ε)-approximation if σ ≤ (2−ε)β.
Also, for fixed Z ⊆ V , we can efficiently find an uncomparable pair (A,B) satisfying A∩B = Z

that minimizes β(A,B) among pairs with this property, because this is an EdgeDoubleCut
problem. The same holds when V \ (A ∪B) is fixed. In particular, if there is a pair (A,B)
that minimizes β(A,B) and |A∩B| ≤ 2 or |V \ (A∪B)| ≤ 2, then we can find the minimizer
efficiently. Therefore we assume that every minimizer (A,B) for β(A,B) satisfies |A∩B| ≥ 3
and |V \ (A ∪B)| ≥ 3. Let us fix one such minimizer (A,B).

In the algorithm, we guess nodes x ∈ A \ B, y ∈ B \ A, w1, w2 ∈ V \ (A ∪ B), and
z1, z2 ∈ A ∩B (the reason for guessing two nodes in the intersection and in the complement
of the union is highly technical, and not relevant to this overview). We use the notation
X = A \B, Y = B \A, W = V \ (A ∪B), and Z = A ∩B.

The algorithm proceeds by making several attempts at finding pairs (A′, B′) that give
a (2 − ε)-approximation. Each unsuccessful attempt implies some structural property of
the minimum bicut. For example, the first candidate is (X ′, Y ′), where X ′ is the sink-
side of the minimum {w1, w2, y} → {x, z1, z2}-cut, and Y ′ is the sink-side of the minimum
{w1, w2, x} → {y, z1, z2}-cut. Notice that σ(X ′, Y ′) ≤ σ(A,B). If the attempt is unsuccessful,
i.e. β(X ′, Y ′) > (2− ε)β(A,B), then d(W,Z) > (1− ε)β(A,B) = (1− ε)β.

Our subsequent attempts are more complex. In our next attempt, we try to expand X ′
and Y ′ by the same node set Z ′ to find (A′ = X ′ ∪ Z ′, B′ = Y ′ ∪ Z ′). Also, we prefer not to
have many edges of E[X ′] ∪ E[Y ′] in the new bicut (A′, B′), because they enter only one
among the two sets A′ and B′, so we make these edges more expensive by duplicating them.
Let D1 be the digraph obtained by duplicating the edges in E[X ′]∪E[Y ′], and let Z ′ be the
sink-side of the minimum {w1, w2, x, y} → {z1, z2}-cut in D1. It can be shown that the pair
(X ′ ∪ Z ′, Y ′ ∪ Z ′) is a (2− ε)-approximation unless |δinD1

(Z)| > (2− 3ε)β.
An analogous attempt can be made by shrinking instead of expanding. Let D2 be the

digraph obtained by duplicating the edges in E[V \ X ′] ∪ E[V \ Y ′], and let W ′ be the
source-side of the minimum {w1, w2} → {x, y, z1, z2}-cut in D2. We obtain that the pair
(X ′ \W ′, Y ′ \W ′) is a (2− ε)-approximation unless |δoutD2

(W)| > (2− 3ε)β.
If the attempts so far are unsuccessful, then |δinD1

(Z)| > (2−3ε)β and |δoutD2
(W)| > (2−3ε)β.

From these, it can be shown that all but O(εβ) edges in δin(X ′)∪ δin(Y ′)∪ δout(W)∪ δin(Z)
are as positioned in Figure 1.

K. Bérczi, K. Chandrasekaran, T. Király, E. Lee, and C. Xu 2:9

ZZ

X 0X 0 Y 0Y 0

WW

↵1↵1

↵3↵3

↵2↵2

↵5↵5 ↵6↵6

↵4↵4

Figure 1 The quantities α1, . . . , α6.

Let α1, . . . , α6 be the number of edges in each position indicated in Figure 1. We can
further show that the quantities α1, α3, α5 are within O(εβ) of each other, and so are
α2, α4, α6. Furthermore, (1 − O(ε))β ≤ α3 + α4 ≤ (1 + O(ε))β. W.l.o.g. we may assume
α3 ≥ α4.

Our final attempt at obtaining a good bicut is by adding some nodes in X ′ \ Y ′ to Y ′
and removing some other nodes of X ′ \ Y ′ from X ′. In other words, our candidate is a pair
(B′, Y ′ ∪A′) for some X ′ ∩ Y ′ ⊆ A′ (B′ ⊆ X ′ (we need the condition A′ (B′ because B′
and Y ′ ∪A′ should be uncomparable). When choosing A′ and B′, we ignore the edges whose
contribution does not depend on A′ and B′. Let H be the digraph obtained by removing the
edges in E[Y ′ ∪ (V \X ′)]. Our aim is to minimize |δinH (B′) ∪ δinH (Y ′ ∪ A′)|. However, this
quantity differs by O(εβ) from |δinH (A′) ∪ δinH (B′)|, so we may instead aim to minimize the
latter.

The crucial observation is that this minimization problem is an instance of (s, ∗, t)-Edge-
Lin3Cut. While we do not know how to solve (s, ∗, t)-EdgeLin3Cut optimally, we can
efficiently obtain a 3/2-approximation by Theorem 7. By the reformulation of (s, ∗, t)-Edge-
Lin3Cut in Lemma 13, we get a pair of subsets (A′, B′) for which X ′ ∩ Y ′ ⊆ A′ (B′ ⊆ X ′
and which is a 3/2-approximation. In particular, |δinH (A′) ∪ δinH (B′)| ≤ (3/2)|δinH ((X ′ ∩ (Z ∪
Y ′)) ∪ δinH (X ′ \ (W \ Y ′))| ≤ 3(α3 +O(ε)β)/2. Using this and the relationship between the
αi values, we can derive β(B′, Y ′ ∪A′) ≤ (7/4 +O(ε))β, concluding the proof.

3 Overview of the results on hardness of approximation

Our hardness results include Theorem 1 for {s, t}-NodeDoubleCut, Theorem 3 for Node-
DoubleCut, Theorem 5 for NodeBiCut, Theorem 6 for Node-3-Cut, and Theorem 9 for
{s, ∗}-EdgeBiCut. We obtain all of our NP-hardness results by reducing from VertexCo-
ver on k-regular Graphs, where the input is an undirected k-regular graph, and the
goal is to find the smallest subset S of nodes such that every edge in the graph has at least
one end-vertex in S. It is APX-hard even for k = 3 [8].

We use VertexCover on k-partite Graphs as an intermediate problem, where
the input is an undirected k-partite graph G = (V1 ∪ · · · ∪ Vk, E) (we emphasize that the
partitioning V1, . . . , Vk is specified explicitly in the input) and the goal is to find the smallest
subset S ⊂ V1 ∪ · · · ∪ Vk such that every edge in E has at least one end-vertex in S. Our
hardness results are structured as follows.

APPROX/RANDOM’17

2:10 Global and Fixed-Terminal Cuts in Digraphs

1. We first show approximation-preserving (combinatorial) reductions from VertexCover
on k-regular Graphs (for k = 3 or 4) to the above-mentioned problems. These
reductions prove all the NP-hardness results. Note that we also get an inapproximability
factor of 100/99 and 53/52 respectively under the assumption that P 6= NP .

2. For improved hardness of approximation results, we show that VertexCover on k-
partite Graphs is hard to approximate within a factor of 2 − 2/k − ε for any ε > 0
assuming the Unique Games Conjecture. Considering k = 3 and k = 4, this result in
conjunction with the combinatorial reductions show (4/3−ε)-inapproximability for Node-
DoubleCut and {s, ∗}-EdgeBiCut, and (3/2− ε)-inapproximability for NodeBiCut
assuming the Unique Games Conjecture.

3. We further improve the hardness of approximation for NodeDoubleCut and {s, t}-
NodeDoubleCut by directly reducing from UniqueGames via the length-control
dictatorship tests introduced in [19]. We obtain (3/2− ε)-inapproximability for Node-
DoubleCut and (2− ε)-inapproximability for {s, t}-NodeDoubleCut.

In the following section, we sketch the ideas behind the hardness result for {s, t}-Node-
DoubleCut assuming the Unique Games Conjecture.

3.1 (2− ε)-Inapproximability for {s, t}-NodeDoubleCut
Our results for {s, t}-NodeDoubleCut and NodeDoubleCut are based on length-control
dictatorship tests introduced by Lee [19]. Length-control dictatorship tests provide a sys-
tematic way to convert integrality gap instances for a natural LP relaxation to dictatorship
tests that can be used to prove matching hardness of approximation under the Unique
Games Conjecture. In this section we illustrate the high-level ideas behind this conversion
for {s, t}-NodeDoubleCut.

Consider the integrality gap instanceDa,b = (VD, AD) introduced in Section A (Lemma 20)
which shows that the integrality gap of a natural Path-Blocking-LP for {s, t}-NodeDouble-
Cut is 2− o(1). We note that VD = {s, t}∪ ([a]× [b]). Let r = b−2a+ 1, and ID = ([a]× [b])
be the set of internal vertices. Furthermore, a good fractional feasible solution as obtained in
the proof of Lemma 20 sets dv := 1/r for every internal vertex v while every integral feasible
solution has at least 2a− 1 vertices in it.

Based on Da,b, we define the dictatorship test graph Dst
a,b,R,ε = (V,A) as follows, for a

positive integer R and ε > 0. Consider the probability space (Ω, µ) where Ω := {0, . . . , r−1, ∗},
and µ : Ω→ [0, 1] with µ(∗) = ε and µ(x) = (1− ε)/r for x 6= ∗.

1. We define V := {s, t} ∪ {vαx }α∈ID,x∈ΩR . Let vα denote the set of vertices {vαx }x∈ΩR . We
also call each vα as a hypercube.

2. For α ∈ ID and x ∈ ΩR, define the weight as c(vαx) =
∏R
i=1 µ(xi). We note that the

weight of each hypercube is 1, and the sum of weight of all vertices except s and t is ab.
Define the weight of the terminals s and t to be infinite.

3. For each arc between s and α ∈ ID in AD, for each x ∈ ΩR, add an arc with the same
direction between s and vαx . Do the same for each arc between t and α ∈ ID in AD.

4. For each arc (α, β) ∈ AD with α = (α1, α2), β = (β1, β2) ∈ ID and x, y ∈ ΩR, we have an
arc from vαx to vβy according to the following rule (note that α2 6= β2).
a. α2 < β2: add an arc if for any 1 ≤ j ≤ R: [yj = (xj +1) mod r] or [yj = ∗] or [xj = ∗].

Call them forward arcs.
b. α2 > β2: add an arc if for any 1 ≤ j ≤ R: [yj = (xj−1) mod r] or [yj = ∗] or [xj = ∗].

Call them backward arcs.
c. If (α, β) ∈ AD is a jumping arc (as defined in Lemma 20), call (vαx , vβy) also a jumping

arc.

K. Bérczi, K. Chandrasekaran, T. Király, E. Lee, and C. Xu 2:11

We provide some intuitions behind this conversion. First, we replace each internal vertex
v ∈ ID by a R-dimensional hypercube vα = {vαx }x∈ΩR . Intuitively, our dictatorship test
Dst
a,b,R,ε = (V,A), as an instance of {s, t}-NodeDoubleCut, needs to satisfy the following

properties:
1. Completeness: there exists an integral solution C∗ ⊆ V of low weight that reveals an

influential coordinate for each hypercube.
2. Soundness: a subset C ⊆ V is an integral solution of low weight only if it reveals an

influential coordinate for some hypercube.

To formalize the notion of influence, given C ⊆ V and a hypercube vα for some α ∈ ID,
let f = fC,α : ΩR → {0, 1} be such that f(x) = 1 if and only if vαx ∈ C. Then for each
i ∈ [R], the influence of the ith coordinate is defined by

Infi[f] := Ex1,...,xi−1,xi+1,...,xR
[Varxi

[f(x1, . . . , xR)]],

where x1, . . . , xR are independently sampled from (Ω, µ). For example, suppose C and α are
such that f(x) = 1 if and only if xi = 0 for some i ∈ [R] (i.e., f only depends on the ith
coordinate), then Infi[f] = µ(0) − µ(0)2 = Ω(1/r) and Infj [f] = 0 for all j 6= i, so i is the
only influential coordinate. In contrast, suppose C and α are such that f(x) = 1 if and only
if x1 + · · ·+xR ≤ K for some K (ignoring xi with xi = ∗), then f depends on all coordinates
equally and Infi[f]→ 0 for all i as R→∞. We say that C reveals an influential coordinate
for the hypercube vα if Infi[fC,α] is large for some i ∈ [R]. Since we will eventually take R
to be a sufficiently large constant, a large influence means that the influence is some positive
constant that does not depend on R.

Given these intuitions, the completeness and soundness properties can be formalized and
proved as follows.

Completeness. For the completeness requirement, we need to argue that there exists an
integral solution C∗ ⊆ V of low weight that reveals an influential coordinate for each
hypercube. In particular, we show that a set of vertices that correspond to dictators behaves
the same as the fractional solution that gives 1/r to every vertex and moreover has low
weight. For any q ∈ [R], let Vq := {vαx : α ∈ ID, xq = ∗ or 0}. We note that the total weight
of Vq is

ab

(
ε+ 1− ε

r

)
≤ abε+ ab

b− 2a.

I Lemma 12. After removing vertices in Vq, no vertex in V can reach both s and t.

The proof appears in the full version [2]. The basic intuition is that for any arc from vαx to
vβy for some α = (α1, α2), β = (β1, β2), x ∈ ΩR, y ∈ ΩR, we have xq = yq + 1 if this arc is
going forward (α2 < β2), and xq = yq − 1 if this arc is going backward (α2 > β2). This relies
on our construction and the fact that we removed all vαx with xq = ∗ or xq = 0 since they
are in Vq. Since xq ∈ {1, . . . , r − 1}, it means that for any path p,

|(number of forward arcs in p)− (number of backward arcs in p)| < r.

As a consequence, this integral solution Vq behaves similar to the fractional solution in D
where each internal vertex gets 1/r, and we can conclude that no vertex can reach both s
and t.

APPROX/RANDOM’17

2:12 Global and Fixed-Terminal Cuts in Digraphs

Soundness. Suppose that we removed some vertices C such that no vertex w ∈ V \ C can
reach both s and t. Our soundness property requires that C either reveals an influential
coordinate for some hypercube vα or c(C) ≥ (2a − 1)(1 − ε). Formally, let τ, d be some
constants that depend only on ε and r (not R). We prove that if C is a feasible integral
solution of {s, t}-NodeDoubleCut, then either c(C) ≥ (2a− 1)(1− ε), or Inf≤di [fC,α] ≥ τ
for some α ∈ ID and i ∈ [R]. For technical reasons, we use low-degree influence Inf≤di instead
of Infi.

The main component of the proof is that if there is an arc from α to β in the integrality
gap instance Da,b, and both fC,α, fC,β do not reveal an influential coordinate, then we can
always find an arc from vα \C to vβ \C in Dst unless C almost completely contains both vα
and vβ (i.e., c(C ∩ vα) > 1− ε and c(C ∩ vβ) > 1− ε). The proof involves interpreting the
set of arcs between two hypercubes as a suitably designed correlated probability space, and
using the invariance principle by Mossel [22].

Suppose that C does not reveal an influential coordinate for any hypercube vα. Then the
above fact ensures that for a hypercube vα, unless it is almost completely contained in C
(i.e., c(C ∩ vα) > 1− ε), it behaves as if no vertices were contained in C. This observation
shows that c(C) must be as large as that of an integral solution in the gap instance Da,b.
Using the fact that any integral solution of Da,b contains at least 2a− 1 vertices, we conclude
that c(C) ≥ (2a− 1)(1− ε).

In summary, in the completeness case, there exists a subset of vertices of total weight at
most abε+ ab/(b− 2a), so that after removing the subset, no vertex can reach both s and t.
In the soundness case, unless we reveal an influential coordinate or we remove vertices of
total weight at least (2a− 1)(1− ε), there exists a vertex that can reach both s and t. The
gap between the two cases is at least

(2a− 1)(1− ε)
abε+ ab/(b− 2a) ,

which approaches to 2 as a increases, by setting b = a2 and ε = 1/a4.

4 EdgeLin3Cut problems

Given a directed graph D = (V,E), a feasible solution to (s, r, t)-EdgeLin3Cut in D is a
subset F of arcs whose deletion from the graph eliminates all directed s → r, r → t and
s→ t paths. One of our main tools used in the approximation algorithm for EdgeBiCut is
a 3/2-approximation algorithm for (s, ∗, t)-EdgeLin3Cut. We present this algorithm now.
For two sets A,B ⊆ V , let β(A,B) := |δin(A) ∪ δin(B)|.

Proof of Theorem 7. We first rephrase the problem in a more convenient way.

I Lemma 13. (s, ∗, t)-EdgeLin3Cut in a directed graph D = (V,E) is equivalent to

min {β(A,B) : t ∈ A ⊂ B ⊆ V − {s}} .

Proof. Let F ⊆ E be an optimal solution for (s, ∗, t)-EdgeLin3Cut in D and let (A,B) :=
argmin{β(A,B) : t ∈ A ⊂ B ⊆ V − s}. Fix an arbitrary node r ∈ B −A. Since the deletion
of δin(A)∪ δin(B) results in a graph with no directed path from s to r, from r to t and from
s to t, the edge set δin(A)∪ δin(B) is a feasible solution to (s, r, t)-EdgeLin3Cut in D, thus
implying that |F | ≤ β(A,B).

K. Bérczi, K. Chandrasekaran, T. Király, E. Lee, and C. Xu 2:13

On the other hand, F is a feasible solution for (s, r, t)-EdgeLin3Cut in D for some
r ∈ V − {s, t}. Let A be the set of nodes that can reach t in D − F , and R be the set of
nodes that can reach r in D− F . Then, F ⊇ δin(A). Moreover, F ⊇ δin(R ∪A) since R ∪A
has in-degree 0 in D − F , and s is not in R ∪A because it cannot reach r and t in D − F .
Therefore, taking B = R ∪A we get F ⊇ δin(A) ∪ δin(B). J

Our algorithm for determining an optimal pair (A,B) := argmin{β(A,B) : t ∈ A ⊂ B ⊆
V − s} proceeds as follows: We build a chain C of st-sets with the property that, for some
value k ∈ Z+,
(i) C contains only cuts of value at most k, and
(ii) every st-set of cut value strictly less than k is in C.

We start with k being the minimum st-cut value and C consisting of a single minimum
st-cut. In a general step, we find two st-sets: a minimum st-cut Y compatible with the
current chain C, i.e. C ∪ {Y } forming a chain, and a minimum st-cut Z not compatible with
the current chain C, i.e. crossing at least one member of C. These two sets can be found in
polynomial time. Indeed, let t ∈ C1 ⊂ . . . ,⊂ Cq ⊆ V − s denote the members of C. Find a
minimum cut Yi with Ci ⊆ Yi ⊆ V \ Ci+1 for i = 1, . . . , q, and choose Y to be a minimum
one among these cuts. Concerning Z, for each pair x, y of nodes with y ∈ Ci ⊆ V − x for
some i ∈ {1, . . . , q}, find a minimum cut Zxy with {t, x} ⊆ Zxy ⊆ V − {s, y}, and choose Z
to be a minimum one among these cuts. If din(Y) ≤ din(Z), then we add Y to C, and set k
to din(Y); otherwise we set k to din(Z), and stop.

Let C denote the chain constructed by the algorithm, and let Y be an arbitrary set
crossing some of its members.

I Claim 14. din(Y) ≥ din(C) for all C ∈ C.

Proof. Suppose indirectly that din(Y) < din(C) for some C ∈ C. Let C′ denote the chain
consisting of those members of C that were added before C. As C is a set of minimum cut
value compatible with C′, Y crosses at least one member of C′. Hence, by din(Y) < din(C),
the algorithm stops before adding C, a contradiction. J

The claim implies that C satisfies (1) and (2) with the k obtained at the end of the
algorithm. Indeed, (1) is obvious from the construction, while (2) follows from the claim and
the fact that C contains all cuts of value strictly less than k that are compatible with C.

By the above, the procedure stops with a chain C containing all st-sets of cut value less
than k, and an st-set Z of cut value exactly k which crosses some member X of C. If the
optimum value of our problem is less than k, then both members of the optimal pair (A,B)
belong to the chain C, and we can find them by taking the minimum of β(A′, B′) where
A′ ⊂ B′ with A′, B′ ∈ C.

We can thus assume that the optimum is at least k. As din(Z) = k and din(X) ≤ k, the
submodularity of the in-degree function implies din(X∩Z)+din(X∪Z) ≤ din(Z)+din(X) ≤
2k. Hence at least one of din(X ∩ Z) ≤ k and din(X ∪ Z) ≤ k holds. As d(X \ Z,X ∩ Z) +
d(Z \X,X∩Z) ≤ din(X∩Z) and d(V \ (X∪Z), X \Z)+d(V \ (X∪Z), Z \X) ≤ din(X∪Z),
at least one of the following four possibilities is true:
1. din(X ∩ Z) ≤ k and d(X \ Z,X ∩ Z) ≤ 1

2k. Choose A = X ∩ Z, B = X. Then
β(A,B) = d(X \ Z,X ∩ Z) + din(X) ≤ 1

2k + k = 3
2k.

2. din(X ∩ Z) ≤ k and d(Z \ X,X ∩ Z) ≤ 1
2k. Choose A = X ∩ Z, B = Z. Then

β(A,B) = d(Z \X,X ∩ Z) + din(Z) ≤ 1
2k + k = 3

2k.
3. din(X ∪ Z) ≤ k and d(V \ (X ∪ Z), X \ Z) ≤ 1

2k. Choose A = Z, B = X ∪ Z. Then
β(A,B) = din(Z) + d(V \ (X ∪ Z), X \ Z) ≤ k + 1

2k = 3
2k.

4. din(X ∪ Z) ≤ k and d(V \ (X ∪ Z), Z \X) ≤ 1
2k. Choose A = X, B = X ∪ Z. Then

β(A,B) = din(X) + d(V \ (X ∪ Z), Z \X) ≤ k + 1
2k = 3

2k.

APPROX/RANDOM’17

2:14 Global and Fixed-Terminal Cuts in Digraphs

Thus a pair (A,B) can be obtained by taking the minimum among the four possibilities
above and β(A′, B′) where A′ ⊂ B′ with A′, B′ ∈ C, concluding the proof of the theorem. J

Next, we show that {s, t}-SepEdgekCut is solvable in polynomial time if k is a fixed
constant.

Let G = (V,E) be an undirected graph. Let the minimum size of an {s, t}-cut in G be
denoted by λG(s, t). For two subsets of nodes X,Y , let d(X,Y) denote the number of edges
between X and Y and let d(X) := d(X,V \X). The cut value of a partition {V1, . . . , Vq}
of V is defined to be the total number of crossing edges, that is, (1/2)

∑q
i=1 d(Vi), and is

denoted by γ(V1, . . . , Vq). Let γq(G) denote the value of an optimum Edge-q-Cut in G, i.e.,

min {γ(V1, . . . , Vq) : Vi 6= ∅ ∀ i ∈ [q], Vi ∩ Vj = ∅ ∀ i, j ∈ [q],∪qi=1Vi = V } .

Proof of Theorem 8. Let γ∗ denote the optimum value of {s, t}-SepEdgekCut in G =
(V,E) and let H denote the graph obtained from G by adding an edge of infinite capacity
between s and t. The algorithm is based on the following observation (we recommend the
reader to consider k = 3 for ease of understanding):

I Proposition 15. Let {V1, . . . , Vk} be a partition of V corresponding to an optimal solution
of {s, t}-SepEdgekCut, where s is in Vk−1 and t is in Vk. Then γ(V1, . . . , Vk−2, Vk−1∪Vk) ≤
2γk−1(H).

Proof. Let W1, . . . ,Wk−1 be a minimum (k − 1)-cut in H. Clearly, s and t are in the same
part, so we may assume that they are in Wk−1. Let U1, U2 be a minimum {s, t}-cut in
G[Wk−1]. Then {W1, . . . ,Wk−2, U1, U2} gives an {s, t}-separating k-cut, showing that

γ∗ ≤ γ(W1, . . . ,Wk−2, U1, U2) = γk−1(H) + λG[Wk−1](s, t). (1)

By Menger’s theorem, we have λG(s, t) pairwise edge-disjoint paths P1, . . . , PλG(s,t)
between s and t in G. Consider one of these paths, say Pi. If all nodes of Pi are from
Vk−1 ∪ Vk, then Pi has to use at least one edge from δ(Vk−1, Vk). Otherwise, Pi uses at least
two edges from δ(V1 ∪ · · · ∪Vk−2)∪

⋃
i,j≤k−2
i 6=j

δ(Vi, Vj). Hence the maximum number of pairwise

edge-disjoint paths between s and t is

λG(s, t) ≤ d(Vk−1, Vk) + 1
2

d(V1 ∪ · · · ∪ Vk−2) +
∑

i,j≤k−2
i 6=j

d(Vi, Vj)

 .

Thus, we have

γ∗ = d(Vk−1, Vk) + d(V1 ∪ · · · ∪ Vk−2) +
∑

i,j≤k−2
i 6=j

d(Vi, Vj)

≥ λG(s, t) + 1
2

d(V1 ∪ · · · ∪ Vk−2) +
∑

i,j≤k−2
i 6=j

d(Vi, Vj)

= λG(s, t) + 1

2γ(V1, . . . , Vk−2, Vk−1 ∪ Vk)

≥ λG[Wk−1](s, t) + 1
2γ(V1, . . . , Vk−2, Vk−1 ∪ Vk)

K. Bérczi, K. Chandrasekaran, T. Király, E. Lee, and C. Xu 2:15

that is,

γ∗ ≥ λG[Wk−1](s, t) + 1
2γ(V1, . . . , Vk−2, Vk−1 ∪ Vk). (2)

By combining (1) and (2), we get γ(V1, . . . , Vk−2, Vk−1 ∪ Vk) ≤ 2γk−1(H), proving the
proposition. J

Karger and Stein [18] showed that the number of feasible solutions to Edge-k-cut in G with
value at most 2γk(G) is O(n4k). All these solutions can be enumerated in polynomial-time for
fixed k [18, 17]. This observation together with Proposition 15 gives the following algorithm
for finding an optimal solution to {s, t}-SepEdgekCut:

Step 1. Let H be the graph obtained from G by adding an edge of infinite capacity between
s and t. In H, enumerate all feasible solutions to Edge-(k− 1)-Cut – namely the vertex
partitions {W1, . . . ,Wk−1} – whose cut value γH(W1, . . . ,Wk−1) is at most 2γk−1(H).
Without loss of generality, assume s, t ∈Wk−1.

Step 2. For each feasible solution to Edge-(k−1)-Cut in H listed in Step 1, find a minimum
{s, t}-cut in G[Wk−1], say U1, U2.

Step 3. Among all feasible solutions {W1, . . . ,Wk−1} to Edge-(k − 1)-Cut listed in Step 1
and the corresponding U1, U2 found in Step 2, return the k-cut {W1, . . . ,Wk−2, U1, U2}
with minimum γ(W1, . . . ,Wk−2, U1, U2).

The correctness of the algorithm follows from Proposition 15: one of the choices enumer-
ated in Step 1 will correspond to the partition (V1, . . . , Vk−2, Vk−1 ∪ Vk), where (V1, . . . , Vk)
is the partition corresponding to the optimal solution. J

Acknowledgements. Karthik would like to thank Chandra Chekuri, Neil Olver and Chait-
anya Swamy for helpful discussions at various stages of this work.

References
1 H. Angelidakis, Y. Makarychev, and P. Manurangsi. An Improved Integrality Gap for the

Călinescu-Karloff-Rabani Relaxation for Multiway Cut. Preprint arXiv:1611.05530, 2016.
URL: https://arxiv.org/abs/1611.05530.

2 K. Bérczi, K. Chandrasekaran, T. Király, E. Lee, and C. Xu. Global and fixed-terminal
cuts in digraphs. Preprint arXiv:1612.00156, 2017. URL: https://arxiv.org/abs/1612.
00156.

3 A. Bernáth and G. Pap. Blocking optimal arborescences. In Proceedings of the 16th In-
ternational Conference on Integer Programming and Combinatorial Optimization (IPCO),
pages 74–85, 2013.

4 C. Chekuri and V. Madan. Simple and fast rounding algorithms for directed and node-
weighted multiway cut. In Proceedings of the 27th Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA’16, pages 797–807, 2016.

5 C. Chekuri and V. Madan. Approximating multicut and the demand graph. In Proceedings
of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’17, 2017.

6 J. Cheriyan and R. Thurimella. Fast algorithms for k-shredders and k-node connectivity
augmentation. Journal of Algorithms, 33(1):15–50, 1999.

7 K. Cheung, W. Cunningham, and L. Tang. Optimal 3-terminal cuts and linear program-
ming. Mathematical Programming, 106(1):1–23, 2006.

8 M. Chlebík and J. Chlebíková. Complexity of approximating bounded variants of optimiz-
ation problems. Theoretical Computer Science, 354(3):320–338, 2006.

APPROX/RANDOM’17

https://arxiv.org/abs/1611.05530
https://arxiv.org/abs/1612.00156
https://arxiv.org/abs/1612.00156

2:16 Global and Fixed-Terminal Cuts in Digraphs

9 G. Călinescu, H. Karloff, and Y. Rabani. An improved approximation algorithm for multi-
way cut. Journal of Computer and System Sciences, 60(3):564–574, 2000.

10 E. Dahlhaus, D. Johnson, C. Papadimitriou, P. Seymour, and M. Yannakakis. The com-
plexity of multiterminal cuts. SIAM Journal on Computing, 23(4):864–894, 1994.

11 R. Erbacher, T. Jaeger, N. Talele, and J. Teutsch. Directed multicut with linearly ordered
terminals. Preprint arXiv:1407.7498, 2014. URL: https://arxiv.org/abs/1407.7498.

12 T. Fukunaga. Computing minimum multiway cuts in hypergraphs. Discrete Optimization,
10(4):371–382, 2013.

13 N. Garg, V. Vazirani, and M. Yannakakis. Multiway cuts in node weighted graphs. Journal
of Algorithms, 50(1):49–61, 2004.

14 O. Goldschmidt and D. Hochbaum. A polynomial algorithm for the k-cut problem for fixed
k. Math. Oper. Res., 19(1):24–37, Feb 1994.

15 T. Jordán. On the number of shredders. Journal of Graph Theory, 31(3):195–200, 1999.
16 D. Karger, P. Klein, C. Stein, M. Thorup, and N. Young. Rounding algorithms for a

geometric embedding of minimum multiway cut. Mathematics of Operations Research,
29(3):436–461, 2004.

17 D. Karger and R. Motwani. Derandomization through approximation. In Proceedings of
the 26th annual ACM symposium on Theory of computing, STOC’94, pages 497–506, 1994.

18 D. Karger and C. Stein. A new approach to the minimum cut problem. Journal of ACM,
43(4):601–640, July 1996.

19 E. Lee. Improved Hardness for Cut, Interdiction, and Firefighter Problems. Preprint
arXiv:1607.05133, 2016. URL: https://arxiv.org/abs/1607.05133.

20 G. Liberman and Z. Nutov. On shredders and vertex connectivity augmentation. Journal
of Discrete Algorithms, 5(1):91–101, 2007.

21 R. Manokaran, J. Naor, P. Raghavendra, and R. Schwartz. SDP Gaps and UGC Hardness
for Multiway Cut, 0-extension, and Metric Labeling. In Proceedings of the 40th Annual
ACM Symposium on Theory of Computing, STOC’08, pages 11–20, 2008.

22 E. Mossel. Gaussian bounds for noise correlation of functions. Geometric and Functional
Analysis, 19(6):1713–1756, 2010.

23 J. Naor and L. Zosin. A 2-approximation algorithm for the directed multiway cut problem.
SIAM Journal on Computing, 31(2):477–482, 2001.

24 K. Okumoto, T. Fukunaga, and H. Nagamochi. Divide-and-conquer algorithms for parti-
tioning hypergraphs and submodular systems. Algorithmica, 62(3):787–806, 2012.

25 M. Queyranne. On Optimum k-way Partitions with Submodular Costs and Minimum Part-
Size Constraints. Talk Slides, 2012. URL: https://smartech.gatech.edu/bitstream/
handle/1853/43309/Queyranne.pdf.

26 A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Algorithms and
Combinatorics. Springer, 2003.

27 A. Sharma and J. Vondrák. Multiway cut, pairwise realizable distributions, and descending
thresholds. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing,
STOC’14, pages 724–733, 2014.

28 L. Tseng and N. Vaidya. Fault-Tolerant Consensus in Directed Graphs. In Proceedings of
the 2015 ACM Symposium on Principles of Distributed Computing (PODC 2015), pages
451–460, 2015.

29 L. Végh. Augmenting undirected node-connectivity by one. SIAM J. Discrete Math.,
25(2):695–718, 2011.

30 M. Xiao. Finding minimum 3-way cuts in hypergraphs. Information Processing Letters,
110(14):554–558, 2010.

31 L. Zhao, H. Nagamochi, and T. Ibaraki. Greedy splitting algorithms for approximating
multiway partition problems. Mathematical Programming, 102(1):167–183, 2005.

https://arxiv.org/abs/1407.7498
https://arxiv.org/abs/1607.05133
https://smartech.gatech.edu/bitstream/handle/1853/43309/Queyranne.pdf
https://smartech.gatech.edu/bitstream/handle/1853/43309/Queyranne.pdf

K. Bérczi, K. Chandrasekaran, T. Király, E. Lee, and C. Xu 2:17

A Approximation for NodeDoubleCut

In this section, we present an efficient 2-approximation algorithm for {s, t}-NodeDoubleCut
which also leads to a 2-approximation for NodeDoubleCut by guessing the pair of nodes
s, t.

Remark. Our algorithm is LP-based. Although, alternative combinatorial algorithms can be
designed for this problem, we provide an LP-based algorithm since it also helps to illustrate
an integrality gap instance which is the main tool underlying the hardness of approximation
for the problem. Furthermore, it is also easy to round an optimum solution to our LP to
obtain a solution whose cost is at most twice the optimum LP-cost (using complementary
slackness conditions). Here, we present a rounding algorithm which starts from any feasible
solution to the LP (not necessarily optimal) and gives a solution whose cost is at most twice
the LP-cost of that feasible solution.

At the end of this section, we give an example showing that the integrality gap of the LP
nearly matches the approximation factor achieved by our rounding algorithm.

Proof of Theorem 2. We recall the problem: Given a directed graph D = (V,E) with two
specified nodes s, t ∈ V and node costs c : V \ {s, t} → R+, the goal is to find a least cost
subset U ⊆ V \ {s, t} of nodes such that every node u ∈ V \U can reach at most one node in
{s, t} in the subgraph D − U . We will denote a path P by the set of nodes in the path and
the collection of paths from node u to node v by Pu→v. For a fixed function d : V → R+,
the d-distance of a path P is defined to be

∑
u∈P du and the shortest d-distance from node

u to node v is the minimum d-distance among all paths from node u to node v. We use the
following LP-relaxation, where we have a variable du for every node u ∈ V :

min
∑

v∈V \{s,t}

cvdv (Path-Blocking-LP)

∑
v∈P

dv +
∑
v∈Q

dv − du ≥ 1 ∀ P ∈ Pu→s, Q ∈ Pu→t, ∀ u ∈ V

ds, dt = 0
dv ≥ 0 ∀ v ∈ V

We first observe that Path-Blocking-LP can be solved efficiently. The separation problem
is the following: given d : V → R+, verify if there exists a node u ∈ V such that the sum of
the shortest d-distance path from u to s and the shortest d-distance path from u to t is at
most 1 + du. Thus, the separation problem can be solved efficiently by solving the shortest
path problem in directed graphs.

Let d : V → R+ be a feasible solution to Path-Blocking-LP. We now present a rounding
algorithm that achieves a 2-factor approximation. We note that our algorithm rounds an
arbitrary feasible solution d to obtain an integral solution whose cost is at most twice the
LP-cost of the solution d. For a subset U of nodes, let ∆in(U) be the set of nodes v ∈ V \ U
that have an edge to a node u ∈ U .

The rounding algorithm in Figure 2 can be implemented to run in polynomial-time. We
first show the feasibility of the solution returned by the rounding algorithm. We use the
following claim.

I Claim 16. For every θ ∈ (0, 1/2), we have Bin(s, θ) ∩ Bin(t, θ) = ∅.

APPROX/RANDOM’17

2:18 Global and Fixed-Terminal Cuts in Digraphs

Rounding Algorithm for {s, t}-NodeDoubleCut

1. Pick θ uniformly from the interval (0, 1/2).
2. Let Bin(s, θ) and Bin(t, θ) be the set of nodes whose shortest d-distance to s and t

respectively, is at most θ.
3. Return U := ∆in(Bin(s, θ)) ∪∆in(Bin(t, θ)).

Figure 2 The rounding algorithm for {s, t}-NodeDoubleCut.

Proof. Say u ∈ Bin(s, θ) ∩ Bin(t, θ). Then there exists a path P ∈ Pu→s and a path
Q ∈ Pu→t such that

∑
v∈P dv +

∑
v∈Q dv ≤ 2θ < 1, a contradiction to the fact that d is

feasible for Path-Blocking-LP. J

I Claim 17. The solution U returned by the algorithm is such that every node u ∈ V \ U
can reach at most one node in {s, t} in the subgraph D − U .

Proof. Suppose not. Then there exists u ∈ V \ U that can reach both s and t in D − U . If
u 6∈ Bin(s, θ), then u cannot reach s in D−U since Bin(s, θ) has no entering edges in D−U .
Thus, u ∈ Bin(s, θ). Similarly, u ∈ Bin(t, θ). However, this contradicts the above claim that
Bin(s, θ) ∩ Bin(t, θ) = ∅. J

We next bound the expected cost of the solution returned by the rounding algorithm.
Let d̄(v, a) denote the shortest d-distance from node v to node a in D. We use the following
claim.

I Claim 18. Let θ ∈ (0, 1/2). If v ∈ ∆in(Bin(s, θ)) then θ < d̄(v, s) ≤ θ + dv and dv 6= 0.

Proof. If d̄(v, s) ≤ θ, then v ∈ Bin(s, θ), a contradiction to v ∈ ∆in(Bin(s, θ)). If d̄(v, s) >
θ + dv, then v 6∈ ∆in(Bin(s, θ)), a contradiction. If dv = 0, then θ < d̄(v, s) ≤ θ + dv = θ, a
contradiction. J

I Claim 19. For every v ∈ V , the probability that v is chosen in U is at most 2dv.

Proof. The claim holds if v ∈ {s, t}. Let us fix v ∈ V \ {s, t}. By the claim above, if
v ∈ ∆in(Bin(s, θ)) then θ < d̄(v, s) ≤ θ+dv and dv 6= 0. Similarly, if v ∈ ∆in(Bin(t, θ)), then
θ < d̄(v, t) ≤ θ + dv and dv 6= 0. Now, the probability that v is in U is at most

Pr
(
θ ∈

(
d̄(v, s)− dv,min{d̄(v, s), 1/2}

)
∪
(
d̄(v, t)− dv,min{d̄(v, t), 1/2}

))
.

Without loss of generality, let d̄(v, s) ≤ d̄(v, t). We may assume that dv > 0 and d̄(v, s)−dv <
1/2, since otherwise, the probability that v is in U is 0 and the claim is proved. Now, by the
feasibility of the solution d to Path-Blocking-LP, we have that d̄(v, s) + d̄(v, t)− dv ≥ 1 and
hence d̄(v, t) ≥ 1/2. Therefore,

Pr(v ∈ U) ≤ Pr
(
θ ∈

(
d̄(v, s)− dv,min(d̄(v, s), 1/2)

))
+ Pr

(
θ ∈

(
d̄(v, t)− dv, 1/2

))
= 1

(1/2)
(
1/2− d̄(v, s) + dv + 1/2− d̄(v, t) + dv

)
= 2

(
1− (d̄(v, s) + d̄(v, t)− dv) + dv

)
≤ 2dv.

The first equality in the above is because θ is chosen uniformly from the interval (0, 1/2) while
the last inequality is because of the feasibility of the solution d to Path-Blocking-LP. J

K. Bérczi, K. Chandrasekaran, T. Király, E. Lee, and C. Xu 2:19

bb

aa
(i, j)(i, j)

ss tt

Figure 3 Da,b in the proof of Lemma 20 and (2−ε)-inapproximability of {s, t}-NodeDoubleCut.

By the above claim, the expected cost of the returned solution is

E

(∑
v∈U

cv

)
=
∑
v∈V

Pr(v ∈ U)cv ≤ 2
∑
v∈V

cvdv.

Although our rounding algorithm is a randomized algorithm, it can be derandomized using
standard techniques. J

Our next lemma shows a lower bound on the integrality gap that nearly matches the
approximation factor achieved by our rounding algorithm.

I Lemma 20. The integrality gap of the Path-Blocking-LP for directed graphs containing n
nodes is at least 2− 7/n1/3.

Our integrality gap instance is also helpful in understanding the hardness of approx-
imation of {s, t}-NodeDoubleCut. So, we define the instance below and summarize its
properties which will be used in the proof of Lemma 20 as well as in the proof of hardness of
approximation.

For two integers a, b ∈ N, consider the directed graph Da,b = (VD, AD) obtained as follows
(see Figure 3): Let VD := {s, t} ∪ ([a]× [b]). There are ab+ 2 nodes. Let ID := [a]× [b] and
call them as the internal nodes. The set of arcs AD are as follows:
1. For each 1 ≤ i ≤ a, there is a bidirected arc between s and (i, 1), and a bidirected arc

between (i, b) and t.
2. For each 1 ≤ i ≤ a and 1 ≤ j < b, there is a bidirected arc between (i, j) and (i, j + 1).
3. For each 1 ≤ i < a and 2 ≤ j ≤ b− 1, there is an arc from (i, j) to (i+ 1, j − 2), and an

arc from (i, j) to (i+ 1, j + 2) (let (i, 0) := s and (i, b+ 1) := t for every i). Call them
jumping arcs.

I Lemma 21. Da,b has the following properties:
1. For each internal node α = (α1, α2) ∈ ID, each α→ s path has at least α2 − a internal

nodes other than α. Similarly, each α→ t path has at least b− α2 − a+ 1 internal nodes
other than α.

2. If S ⊆ ID is such that the subgraph induced by VD \ S has no node v that has paths to
both s and t, then |S| ≥ 2a− 1.

APPROX/RANDOM’17

2:20 Global and Fixed-Terminal Cuts in Digraphs

Proof.
1. Jumping arcs are the only arcs that change α2 by 2 while all other arcs change α2 by 1.

However, a path to s can use at most a− 1 jumping arcs because they strictly increase
α1. The first property follows from these observations.

2. Suppose that S ⊆ ID is such that the subgraph induced by VD \S has no node v that has
paths to both s and t. For i = 1, . . . , a, let si := |S ∩ {{i} × [b]}|. We note that si ≥ 1
for each i, otherwise s can reach t and t can reach s.
Suppose si = 1 for some 1 < i ≤ a and let j be such that S ∩ {{i}× [b]} = (i, j). If j = 1,
then (i, 2) ∈ VD \ S and (i, 2) can reach both s and t. If j = b, then (i, b− 1) ∈ VD \ S
and (i, b − 1) can reach both s and t. Therefore, we have 1 < j < b. Then si−1 ≥ 3
because (i− 1, j − 1), (i− 1, j), (i− 1, j + 1) can reach both s and t using one jumping
arc followed by regular arcs in the ith row.
Therefore, |S| =

∑a
i=1 si ≥ 1 + 2(a− 1) = 2a− 1. J

Proof of Lemma 20. The integer optimum of Path-Blocking-LP on Da,b is at least 2a− 1
by the second property of Lemma 21. Let r := b− 2a+ 1. We set dv := 1/r for every internal
node v. The resulting solution is feasible to Path-Blocking-LP: Indeed, consider α = (α1, α2).
By the first property of Lemma 21, any α→ s path and α→ t path have to together traverse
at least α2 − a+ (b− α2 − a+ 1) = r internal nodes.

Setting b = a2, the integrality gap is at least (2a− 1)/(a3/r) = 2− 1/a3 + 4/a2 − 5/a ≥
2− 6/a for a ≥ 2. Using the fact that a = (|V (Da,b)| − 2)1/3, we get the desired bound on
the integrality gap. J

A PTAS for Three-Edge-Connected Survivable
Network Design in Planar Graphs∗†

Glencora Borradaile1 and Baigong Zheng2

1 Oregon State University, Corvallis, OR, USA
glencora@eecs.oregonstate.edu

2 Oregon State University, Corvallis, OR, USA
zhengb@oregonstate.edu

Abstract
We consider the problem of finding the minimum-weight subgraph that satisfies given con-
nectivity requirements. Specifically, given a requirement r ∈ {0, 1, 2, 3} for every vertex, we
seek the minimum-weight subgraph that contains, for every pair of vertices u and v, at least
min{r(v), r(u)} edge-disjoint u-to-v paths. We give a polynomial-time approximation scheme
(PTAS) for this problem when the input graph is planar and the subgraph may use multiple
copies of any given edge (paying for each edge separately). This generalizes an earlier result for
r ∈ {0, 1, 2}. In order to achieve this PTAS, we prove some properties of triconnected planar
graphs that may be of independent interest.

1998 ACM Subject Classification G.2.2 [Graph Theory] Graph Algorithms

Keywords and phrases Three-Edge Connectivity, Polynomial-Time Approximation Schemes,
Planar Graphs

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.3

1 Introduction

The survivable network design problem aims to find a low-weight subgraph that connects a
subset of vertices and will remain connected despite edge failures, an important requirement
in the field of telecommunications network design. This problem can be formalized as the
I-edge connectivity problem for an integer set I as follows: for an edge-weighted graph G
with a requirement function on its vertices r : V (G)→ I, we say a subgraph H is a feasible
solution if for any pair of vertices u, v ∈ V (G), H contains min{r(u), r(v)} edge-disjoint
u-to-v paths; the goal is to find the cheapest such subgraph. In the relaxed version of the
problem, H may contain multiple (up to max I) copies of G’s edges (H is a multi-subgraph) in
order to achieve the desired connectivity, paying for the copies according to their multiplicity;
otherwise we refer to the problem as the strict version. Thus I = {1} corresponds to the
minimum spanning tree problem and I = {0, 1} corresponds to the minimum Steiner tree
problem. Here our focus is when max I ≥ 2.

This problem and variants have a long history. The I-edge connectivity problem, except
when I = {1} and I = {0}, is MAX-SNP-hard [13]. There are constant-factor approxi-
mation algorithms for the strict {k}-edge-connectivity problem: for k = 2, Frederickson
and Jájá [16] gave a 3-approximation for this problem, and Sebő and Vygen [24] gave a

∗ The full version of this work can be found in [11], http://arxiv.org/abs/1611.03889.
† This material is based upon work supported by the National Science Foundation under Grant No.

CCF-1252833.

© Glencora Borradaile and Baigong Zheng;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 3; pp. 3:1–3:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.3
http://arxiv.org/abs/1611.03889
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

3:2 A PTAS for Three-Edge-Connected Survivable Network Design in Planar Graphs

4/3-approximation for this problem in unweighted graphs; for any k, Khuller and Vishkin [19]
gave a 2-approximation for this problem. Klein and Ravi [23] gave a 2-approximation for
the strict {0, 1, 2}-edge-connectivity problem. For general requirements, Jain [18] gave a
2-approximation for both the strict and relaxed versions of the problem.

We study this problem in planar graphs. In planar graphs, the I-edge connectivity
problem, except when I = {1} and I = {0}, is NP-hard (by reduction from Hamiltonian
cycle). Berger, Czumaj, Grigni, and Zhao [4] gave a polynomial-time approximation scheme1
(PTAS) for the relaxed {1, 2}-edge-connectivity problem, and Berger and Grigni [5] gave a
PTAS for the strict {2}-edge-connectivity problem. Zheng [26] gave a linear PTAS for the
strict {3}-edge-connectivity problem in unweighted planar graphs. Borradaile and Klein [8]
gave an efficient2 PTAS (EPTAS) for the relaxed {0, 1, 2}-edge-connectivity problem3. The
only planar-specific algorithm for non-spanning, strict edge-connectivity is a PTAS for the
following problem: given a subset R of edges, find a minimum weight subset S of edges, such
that for every edge in R, its endpoints are two-edge-connected in R ∪ S [22]; otherwise, the
best known results for the strict versions of the edge-connectivity problem when I contains 0
and 2 are the constant-factor approximations known for general graphs.

In this paper, we give an EPTAS for the relaxed {0, 1, 2, 3}-edge-connectivity problem
in planar graphs. This is the first PTAS for connectivity beyond 2-connectivity in planar
graphs:

I Theorem 1. For any ε > 0 and any planar graph instance of the relaxed {0, 1, 2, 3}-edge
connectivity problem, there is an O(n logn)-time algorithm that finds a solution whose weight
is at most 1 + ε times the weight of an optimal solution.

In order to give this EPTAS, we must prove some properties of triconnected (three-vertex
connected) planar graphs that may be of independent interest. One simple-to-state corollary
of the sequel is:

I Theorem 2. In a planar graph that minimally pairwise triconnects a set of terminal
vertices, every cycle contains at least two terminals.

In the remainder of this introduction we overview the PTAS framework for network
design problems in planar graphs [9] that we use for the relaxed {0, 1, 2, 3}-edge connectivity
problem. In this overview we highlight the technical challenges that arise from handling
3-edge connectivity. We then overview why we use properties of vertex connectivity to address
an edge connectivity problem and state our specific observations about triconnected planar
graphs that we require for the PTAS framework to apply. In the remainder, 2-EC refers to
“relaxed {0, 1, 2}-edge-connectivity” and 3-EC refers to “relaxed {0, 1, 2, 3}-edge-connectivity”.

1.1 Overview of the planar PTAS framework
The planar PTAS framework grew out of a PTAS for travelling salesperson problem [21]
and has been used to give PTASes for Steiner tree [7, 10], Steiner forest [3] and 2-EC [9]
problems. For simplicity of presentation, we follow the PTAS whose running time is doubly

1 A polynomial-time approximation scheme for an minimization problem is an algorithm that, given a
fixed constant ε > 0, runs in polynomial time and returns a solution within 1 + ε of optimal. The
algorithm’s running time need not be polynomial in ε.

2 A PTAS is efficient if the running time is bounded by a polynomial whose degree is independent of ε.
3 Note that Borradaile and Klein [8] claimed their PTAS would generalize to relaxed {0, 1, . . . , k}-edge-

connectivity, but this did not come to fruition.

G. Borradaile and B. Zheng 3:3

exponential in 1/ε [7]; this can be improved to singly exponential as for Steiner tree [10].
Note that for all these problems (except Steiner forest, which requires a preprocessing step
to the framework), the optimal value OPT of the solution is within a constant factor of the
optimal value of a Steiner tree on the same terminal set where we refer to vertices with
non-zero requirement as terminals. In the following, Oε-notation hides factors depending
on ε.

The PTAS framework

The PTAS framework for a planar connectivity problem in graph G consists of the following
steps. We describe the steps in terms of the relaxed I-edge connectivity problem, which,
at this high level, are easy to generalize from the application of this framework to Steiner
tree [7] and 2-EC [9]:

Step 1: Find the spanner subgraph H (described below) having the properties:
(S1) w(H) = Oε(OPT), and
(S2) H contains a feasible solution to the connectivity problem of value at most (1 +
ε)OPT.

To find a (1+O(ε))-approximate solution in G, it is sufficient to find a (1+ε)-approximate
nearly-optimal solution in H by (S2).

Step 2: Decompose the spanner into a set of subgraphs, called slices, such that:
(A1) each slice has branchwidth Oε(1),
(A2) the boundary of a slice is a set of cycles and every cycle bounds exactly two slices,
(A3) the weight of all boundary edges is at most εOPT.
The slice boundaries correspond to every kth breadth-first level in the dual graph; this
gives property (A2). By choosing k = Oε(1), we get property (A1). Property (A3) follows
from (S1) for k sufficiently large.

Step 3: Add artificial terminals to slice boundaries and assign connectivity requirements so
that:
(B1) for each slice, there is a feasible solution over the original and artificial terminals

whose weight is bounded by the weight of the slice boundary plus the weight of the
optimal solution in the slice.

(B2) the union of these slice solutions is a feasible solution for the original original.
This can be done by adding a terminal to a boundary cycle if the cycle separates any
two original terminals and assigning this terminal a connectivity requirement equal to
the maximum connectivity requirement the cycle separates (e.g. 2 if the cycle separates
two terminals each having a connectivity requirement of 2); this process and the fact that
edge connectivity is transitive guarantees property (B2). Property (B1) is guaranteed by
property (A3) as seen by adding 2 max I copies of the slices to a solution in H.

Step 4: Solve the problem with respect to original and artificial terminals in each slice.
By property (A1), we can do this by dynamic programming over the branch decomposition.

Step 5: Return the union of the slice solutions.

We apply this PTAS framework to the 3-EC problem. Algorithmically, the modifications
needed for 3-EC (as compared to 2-EC or Steiner tree) are limited to Step 4; we can obtain an
Oε(n)-time dynamic program for the I-edge connectivity problem on graphs with branchwidth
Oε(1), which is similar to that for the k-vertex-connectivity spanning subgraph problem in
Euclidean space given by Czumaj and Lingas in [12, 13]. We will argue that the spanner
construction (with larger constants) is the same as used for Steiner tree and 2-EC; this

APPROX/RANDOM’17

3:4 A PTAS for Three-Edge-Connected Survivable Network Design in Planar Graphs

argument is the bulk of the technical challenge of this work. Borradaile, Klein and Mathieu
show that Step 1 can be done in Oε(n logn) time [10, 9] and Steps 2 and 3 can be done in
O(n) time. Therefore, we will achieve an Oε(n logn) running time for 3-EC.

Spanners for connectivity problems

The spanner construction for Steiner tree and 2-EC [10] (and, as we will argue, for 3-EC)
starts with finding the mortar graph MG of the input graph G. The mortar graph is a
grid-like subgraph of G that spans all the terminals and has total weight bounded by Oε(1)
times the minimum weight of a Steiner tree spanning all the terminals (i.e. weight Oε(OPT)).
To construct the mortar graph, we first find an approximate Steiner tree connnecting all
terminals and recursively add some short paths. Each face of MG is bounded by four (1 + ε)
approximations to short paths; the subgraph of G that is enclosed by a face of MG is called
a brick.

A structure theorem shows that there is a nearly optimal solution for Steiner tree and
2-EC whose intersection with each brick is a set of non-crossing trees with Oε(1) leaves that
are portals (a subset of Oε(1) designated vertices of the boundary of the brick) [9]. Each such
tree can be computed efficiently since each is a Steiner tree with vertices on the boundary of
a planar graph (a brick) [14].

We compute the spanner subgraph H by starting with the mortar graph, assigning Oε(1)
vertices of each brick boundary to be portals and adding to the spanner all Steiner trees for
each subset of portals in each brick. Since there are Oε(1) Steiner trees per brick and each
has weight at most the boundary of the brick, the spanner has weight Oε(OPT). By the
structure theorem, it is sufficient to solve the given problem in the spanner.

Extension to the 3-EC problem

To prove that the PTAS framework extends to 3-edge connectivity, we need to show this
construction results in a spanner for 3-EC, that is, that H contains a (1 + ε)-approximate
solution to 3-EC. This is the main technical challenge of this work. We will prove:

I Theorem 3 (Structure Theorem for 3-EC). For any ε > 0 and any planar graph instance
(G,w, r) of the 3-EC problem, there exists a feasible solution S in the spanner H such that

the weight of S is at most (1 + cε)OPT where c is an absolute constant, and
the intersection of S with the interior of any brick is a set of Oε(1) trees whose leaves
are on the boundary of the brick and each tree has Oε(1) leaves.

The interior of a brick is the set of brick edges that are not on the boundary of the brick
(that is, not in MG). We denote the interior of a brick B by int(B). Consider a brick B of
G whose boundary is a face of MG and consider the intersection of OPT with the interior of
this brick, OPT ∩ int(B). To prove the Structure Theorem, we will show that:
(P1) OPT∩ int(B) can be partitioned into a set of trees T whose leaves are on the boundary

of B.
(P2) If we replace any tree in T with another tree spanning the same leaves, the result is a

feasible solution.
(P3) There is another set of O(1) trees T ′ and a set of brick boundary edges B′ that costs

at most a 1 + ε factor more than T , such that each tree of T ′ has O(1) leaves and
(OPT \ T) ∪ T ′ ∪B′ is a feasible solution.

Property P1 implies that we can decompose an optimal solution into a set of trees inside of
bricks plus some edges ofMG. Property P2 shows that we can treat those trees independently

G. Borradaile and B. Zheng 3:5

Figure 1 If the bold red tree (left) is OPT ∩ int(B) (where B is denoted by the rectangle),
replacing the tree with another tree spanning the same leaves (right) could destroy 3-connectivity
between t1 and t2. We will show that such a tree cannot exist in a minimally connected graph.

with regard to connectivity, and this gives us hope that we can replace OPT ∩ int(B) with
some Steiner trees with terminals on the boundary which we can efficiently compute in planar
graphs [14]. Property P3 shows that we can compute an approximation to OPT ∩ int(B) by
guessing O(1) leaves.

For the Steiner tree problem, P1 and P2 are nearly trivial to argue; the bulk of the work
is in showing P3 [7].

For the 2-EC problem, P1 depends on first converting G and OPT into G′ and OPT′ such
that OPT′ biconnects (two-vertex connects) the terminals requiring two-edge connectivity
and using the relatively easy-to-argue fact that every cycle of OPT′ contains at least one
terminal. By this fact, a cycle in OPT′ must contain a vertex of the brick’s boundary (since
MG spans the terminals), allowing the partition of OPT′ ∩ int(B) into trees. P2 and P3
then require that two-connectivity across the brick is maintained.

For the 3-EC problem, P1 is quite involved to show, but further to that, showing Property
P2 is also involved; the issues4 are illustrated in Figure 1 and are the focus of Sections 2 and 3.
As with 2-EC, we convert OPT into a vertex connected graph to simplify the arguments.
Given Properties P1 and P2, we illustrate Property P3 by following a similar argument as
for 2-EC; since this requires reviewing more details of the PTAS framework, we cover this in
Section 4.

Non-planar graphs

We point out that, while previously-studied problems that admit PTASes in planar graphs
(e.g. independent set and vertex cover [2], TSP [21, 20, 1], Steiner tree [10] and forest [3],
2-EC [9]) generalize to surfaces of bounded genus [6], the method presented in this paper for
3-EC is hard to be generalized to higher genus surfaces. In the generalization to bounded
genus surfaces, the graph is preprocessed (by removing some provably unnecessary edges)
so that one can compute a mortar graph whose faces bound disks. This guarantees that
even though the input graph is not planar, the bricks are; this is sufficient for proving

4 The issues also appear in 2-ECP, but we explain why it is easy to handle in 2-ECP in the next subsection.

APPROX/RANDOM’17

3:6 A PTAS for Three-Edge-Connected Survivable Network Design in Planar Graphs

Figure 2 Vertex v is cleaved into vertices v1 and v2. The edges incident to v are partitioned into
two sets A and B to become incident to distinct copies.

above-numbered properties in the case of TSP, Steiner tree and forest and 2-EC. However,
for 3-ECP, in order to prove P2, we require global planarity, not just planarity of the brick.
To the authors’ knowledge, this is the only problem that we know to admit a PTAS in planar
graphs that does not naturally generalize to toroidal graphs.

1.2 Reduction to vertex connectivity
Now we overview how we use vertex connectivity to argue about the structural properties of
edge-connectivity required for the spanner properties.

We require a few definitions. Vertices x and y are k-vertex-connected in a graph G if
G contains k pairwise vertex disjoint x-to-y paths. If k = 3 (k = 2), then x and y are also
called triconnected (biconnected). For a subset Q of vertices in G and a requirement function
r : Q→ {2, 3}, subgraph H is said to be (Q, r)-vertex-connected if every pair of vertices x, y
in Q is k-vertex-connected where k = min{r(x), r(y)}. We call the vertices of Q terminals.
If r(x) = 3 (r(x) = 2) for all x ∈ Q, we say H is Q-triconnected (Q-biconnected). We say
a (Q, r)-vertex-connected graph is minimal, if no edge or vertex can be deleted without
violating the connectivity requirements.

We cleave vertices to transform edge-connectivity into vertex-connectivity. Informally,
cleaving a vertex is splitting the vertex into two copies and adding a zero-weight edge between
the copies; incident edges choose between the copies in a planarity-preserving way (Figure 2).
We can cleave the vertices of OPT, creating OPT′, so that if two terminals are k-edge-
connected in OPT, there are corresponding terminals in OPT′ that are k-vertex-connected.
We will prove that OPT′ satisfies Properties P1 and P2 and since OPT′ is obtained from
OPT by cleavings, these two properties also hold for OPT.

To prove that OPT′ satisfies Property P1, we show that every cycle in OPT′ contains at
least one terminal (Section 2). To prove that OPT′ satisfies Property P2, we define the notion
of a terminal-bounded component: a connected subgraph is a terminal-bounded component if
it is an edge between two terminals or obtained from a maximal terminal-free subgraph S
(a subgraph containing no terminals), by adding edges from S to its neighbors (which are
all terminals by maximality of S). In Section 3, we show that in a minimal Q-triconnected
graph any terminal-bounded component is a tree whose leaves are terminals as well as:

I Theorem 4 (Connectivity Separation Theorem). Given a minimal (Q, r)-vertex-connected
planar graph, for any pair of terminals x and y that require triconnectivity (biconnectivity),
there are three (two) vertex disjoint paths from x to y in G such that any two of them do not
contain edges of the same terminal-bounded tree.

I Corollary 5. Given a minimal (Q, r)-vertex-connected planar graph, for any pair of
terminals x and y that require triconnectivity (biconnectivity), there exist three (two) vertex

G. Borradaile and B. Zheng 3:7

X

y

Figure 3 A minimal Q-triconnected graph. The bold vertices are terminals. The dashed path
connects two x-to-y paths but it does not contain any terminal.

disjoint x-to-y paths such that any path that connects any two of those x-to-y paths contains
a terminal.

This corollary can be viewed as a generalization of the following by Borradaile and Klein for
2-ECP [9]:

I Theorem 6. (Theorem 2.8 [9]). Given a graph that minimally biconnects a set of terminals,
for any pair of terminals x and y and for any two vertex disjoint x-to-y paths, any path that
connects these paths must contain a terminal.

Note that Theorem 6 holds for general graphs while we only know Corollary 5 to hold
for planar graphs, underscoring why our PTAS does not generalize to higher-genus graphs.
Further “for any” is sufficient for biconnectivity (Theorem 6) whereas “there exists” is
necessary for triconnectivity (Corollary 5) as illustrated by the example in Figure 3. Higher
connectivity comes at a price.

For OPT′, Corollary 5 implies Property P2. Consider the set of disjoint paths guaranteed
by Corollary 5. If any tree replacement in a brick merges any two disjoint paths, say P1 and
P2, in the set (the replacement in Figure 1 merges three paths), then the replaced tree must
contain at least one vertex of P1 and one vertex of P2. This implies the replaced tree contains
a P1-to-P2 path P such that each vertex in P has degree at least two in the replaced tree.
Further, P contains a terminal by Corollary 5. However, all the terminals are in the mortar
graph, which forms the boundaries of the bricks. So P must have a common vertex with the
boundary of the brick. By Property P1, the replaced tree, which is in the intersection of
OPT′ with the interior of the brick, can only contain leaves on the boundary of the brick.
Therefore, the replaced tree can not contain such a P1-to-P2 path, otherwise there is a vertex
in P that has degree one in the tree.

2 Vertex-connectivity basics

In this section, we consider minimal (Q, r)-vertex-connected graphs for a subset Q of vertices
and a requirement function r : Q→ {2, 3}.

Borradaile and Klein prove that in a minimal Q-biconnected graph, every cycle contains a
terminal (Theorem 2.5 [9]). We show a similar property for a minimal (Q, r)-vertex connected
graph here. This property implies property P1, that is the intersection of an optimal solution
with the interior of any brick can be partitioned into a set of trees whose leaves are on the
boundary of the brick. Note that our proof for this property does not depend on planarity.

For a Q-triconnected graph H, we can obtain another graph H ′ by contracting all the
edges incident to the vertices of degree two in H. We say H ′ is contracted version of H and,

APPROX/RANDOM’17

3:8 A PTAS for Three-Edge-Connected Survivable Network Design in Planar Graphs

alternatively, is contracted Q-triconnected. We can prove that H ′ is triconnected. Further, if
H is a minimal Q-triconnected graph, then the contracted version of H is also a minimal
Q-triconnected graph. And if |Q| > 3, then we can prove H ′ is simple by the result of
Eswaran and Tarjan [15].

Holton, Jackson, Saito and Wormald study the removability of edges in triconnected
graphs [17]. For an edge e = uv of a simple, triconnected graph G, removing e consists of
(i) deleting uv from G, (ii) if u or v now have degree 2, contracting incident edges, and (iii)
deleting parallel edges. If the resulting graph after removing e is triconnected, then e is said
to be removable.

By applying several results of Holton et al. [17] about removable edges, we can prove
that every cycle in a minimum contracted Q-triconnected graph contains a terminal. For a
graph G that is (Q, r)-vertex connected, let G′ be a minimum Q-triconnected graph that is
a supergraph of G. Let G′′ is the contracted version of G′. Then every cycle in G′′ contains
a terminal. Since G′ is a subdivision of G′′, we know every cycle in G′ contains a terminal.
Since G is a subgraph of G′, we have the following theorem.

I Theorem 7. For a requirement function r : Q→ {2, 3}, let G be a minimal (Q, r)-vertex-
connected graph. Then every cycle in G contains a vertex of Q.

3 Connectivity Separation

In this section we continue to focus on vertex connectivity and prove the Connectivity
Separation Theorem. The Connectivity Separation Theorem for biconnectivity follows easily
from Theorem 6. To see why, consider two paths P1 and P2 that witness the biconnectivity
of two terminals x and y. For an edge of P1 to be in the same terminal-bounded component
as an edge of P2, there would need to be a P1-to-P2 path that is terminal-free. However, such
a path must contain a terminal by Theorem 6. Herein we mainly focus on triconnectivity.

For a requirement function r : Q→ {2, 3}, let G be a minimal (Q, r)-vertex-connected
planar graph. We say a subgraph is terminal-free if it is connected and does not contain any
terminals. It follows from Theorem 7 that any terminal-free subgraph of G is a tree. We
partition the edges of G into terminal-bounded components as follows: a terminal-bounded
component is either an edge connecting two terminals or is obtained from a maximal terminal-
free tree T by adding the edges from T to its neighbors, all of which are terminals. Theorem 8
will show that any terminal-bounded subgraph is also a tree.

For a connected subgraph χ of G and an embedding of G with outer face containing no
edge of χ, let C(χ) be the simple cycle that strictly encloses the fewest faces and all edges
of χ, if such a cycle exists. (Note that C(χ) does not exist if there is no aforementioned
choice for an outer face.) In order to prove the Connectivity Separation Theorem for bi- and
triconnectivity, we start with the following theorem:

I Theorem 8 (Tree Cycle Theorem). Let T be a terminal-bounded component in a minimal
Q-triconnected planar graph H. Then T is a tree and C(T) exists with the following
properties
(a) The internal vertices of T are strictly inside of C(T).
(b) All vertices strictly inside of C(T) are on T .
(c) All leaves of T are in C(T).
(d) Any pair of distinct maximal terminal-free subpaths of C(T) does not contain vertices of

the same terminal-bounded tree.

Theorem 2 follows from this Tree Cycle Theorem.

G. Borradaile and B. Zheng 3:9

Proof of Theorem 2. For a contradiction, assume there is a cycle in H that only containing
one terminal, then there is a terminal-bounded component containing that cycle, which can
not be a tree, contradicting the Tree Cycle Theorem. J

We give an overview of the proof the Tree Cycle Theorem in Subsection 3.2. First, let us see
how the Tree Cycle Theorem implies the Connectivity Separation Theorem.

3.1 The Tree Cycle Theorem implies the Connectivity Separation
Theorem

For a requirement function r : Q→ {2, 3}, let G be a minimal (Q, r)-vertex-connected planar
graph. Let Q3 be the set of terminals requiring triconnectivity, and let H be a minimal
Q3-triconnected subgraph of G. Let Q2 = Q \ Q3. Consider two terminals x and y. We
sketch the proof here.

Suppose x and y only require biconnectivity. For this case, we know the graph is bicon-
nected and by applying a result of Whitney [25] for the ear decomposition of a biconnected
graph, we can find a simple cycle C containing x and y such that every C-to-C path con-
tains a terminal as an internal vertex. As argued at the start of Section 3, this proves the
Connectivity Separation Theorem for x and y.

Suppose x and y require triconnectivity, that is x, y ∈ Q3. Since graph H is Q3-
triconnected, there are three internally vertex-disjoint paths from x to y in H. We modify
these three paths such that they do not contain edges of the same terminal-bounded tree.
Suppose all three paths contain some edges of a common terminal-bounded tree T . By
the Tree Cycle Theorem, there is a cycle C(T) that contains all leaves of T and all other
vertices of T are enclosed by C(T). So all the tree paths must intersect cycle C(T). Note
that since both of x and y are terminals, the edges incident to x and y are not in the same
terminal-bounded tree. So, for each x-to-y path, we can identify non-trivial subpaths: one
to-C(T) prefix and one from-C(T) suffix. We can find two subpaths of C(T) and one path in
T such that they are vertex-disjoint and the union of these three subpaths together with the
to-C(T) prefices and the from-C(T) suffices defines another three internally vertex-disjoint
x-to-y paths in H. Only one of the three new paths will contain edges of T . By property
(d) of the Tree Cycle Theorem, the two subpaths of C(T) will not introduce any shared
terminal-bounded tree. We can apply a similar modification when there are only two x-to-y
paths containing edges of the same terminal-bounded tree. The argument for extending the
property from H to G requires minimal extra work.

3.2 Proof of Tree Cycle Theorem
Let G be a minimal Q3-triconnected planar graph. We prove the Tree Cycle Theorem for
the contracted Q3-triconnected graph H obtained from G. If the theorem is true for H, then
it is true for G since subdivision will maintain the properties of the theorem. We give a
high-level overview of the proof.

We focus on a maximal terminal-free tree T ∗, rooted arbitrarily, of H and the correspond-
ing terminal-bounded component T (that is, T ∗ ⊂ T). We show that there is a face of H that
does not touch any internal vertex of T ∗, which guarantees that there is a drawing of H such
that T ∗ is enclosed by some cycle. We take this face of H as the infinite face. We view T ∗

as a set P of root-to-leaf paths. For each path in P , we can find a cycle that strictly encloses
only vertices on the paths. The outer cycle of the cycles for all the paths in P defines C(T).
See Figure 4. Property (a) directly follows from the construction. Property (b) is proved

APPROX/RANDOM’17

3:10 A PTAS for Three-Edge-Connected Survivable Network Design in Planar Graphs

Figure 4 Illustration of C(T). The dashed cycle is CP for P from l0 to l1 and the dotted cycle is
CP ′ for P ′ from l0 to l2. The outer boundary forms C(T).

by induction on the number of root-to-leaf paths of T : when we add a new cycle for a path
from P , the new outer cycle will only strictly enclose vertices of the root-to-leaf paths so far
considered. After that, we show any two terminals are triconnected when T is a tree: by
modifying the three paths between terminals in a similar way to the proof for Connectivity
Separation, only one path will require edges in T . Since T is connected, this proves T is a tree
by minimality of H. Combining the above properties and triconnectivity of H, we can obtain
property (c). Property (d) is proved by contradiction: if there is another terminal-bounded
tree T ′ that shares two terminal-free paths of C(T), then there is a terminal-free path in T ′.
We can show there is a removable edge in this path of T ′, contradicting the minimality of H.

4 Proof of the Structure Theorem

In this section, we give a brief overview of the proof of the Structure Theorem (Theorem 3);
full details are in the full version of the paper. First we introduce some properties of the
mortar graph and bricks. For a brick B, let ∂B be its boundary and int(B) = E(B) \E(∂B)
be its interior. A path is ε-short if the distance between every pair of vertices on that path is
at most (1 + ε) times the distance between them in G. Bricks have the following properties.

I Lemma 9 (Lemma 6.10 [10] rewritten). The boundary of a brick B, in counterclockwise
order, is the concatenation of four paths WB, SB, EB and NB (west, south, east and north)
such that:

Every vertex of Q ∩B is in NB ∪ SB.
NB is 0-short and every proper subpath of SB is ε-short.

The paths that form eastern and western boundaries of bricks are called supercolumns, and
the weight of all edges in supercolumns is at most εOPT (Lemma 6.6 [10]). We designate a
set of vertices, called portals, evenly spaced on the boundary of each brick. Each brick has
only constant number (depending on ε) of portals on its boundary.

To prove the Structure Theorem, we transform OPT for the instance (G,Q, r) so that it
satisfies the following properties (repeated from the introduction):
(P1) OPT∩ int(B) can be partitioned into a set of trees T whose leaves are on the boundary

of B.
(P2) If we replace any tree in T with another tree spanning the same leaves, the result is a

feasible solution.
(P3) There is another set of O(1) trees T ′ and a set of brick boundary edges B′ that costs

at most a 1 + ε factor more than T , such that each tree of T ′ has O(1) leaves and
(OPT \ T) ∪ T ′ ∪B′ is a feasible solution.

G. Borradaile and B. Zheng 3:11

The transformation consists of the following steps:
Augment. We add four copies of each supercolumn; we take two copies each to be interior

to the two adjacent bricks. After this, connectivity between the east and west boundaries
of a brick will be transformed to that between the north and south boundaries. Since the
weight of all supercolumns is at most εOPT, this only increases the weight by an small
fraction of OPT.

Cleave. By cleaving a vertex, we split it into multiple copies while keeping the connectivity
as required by adding artificial edges of weight zero between two copies and maintaining
a planar embedding. We call the resulting solution OPTC . In this step, we turn k-edge-
connectivity into k-vertex-connectivity for k = 1, 2, 3. By Theorem 7, we can obtain
Property P1: OPTC ∩ int(B) can be partitioned into a set T of trees whose leaves are in
∂B. By Corollary 5, we can obtain Property P2: we can obtain another feasible solution
by replacing any tree in T with another tree spanning the same leaves.

Flatten. For each brick B, we consider the connected components of OPTC ∩ int(B). If
the component only spans vertices in the north or south boundary, we replace it with
the minimum subpath of the boundary that spans the same vertices. This will not
increase the weight much by the ε-shortness of the north and south boundaries. Note
that vertex-connectivity may break as a result, but edge-connectivity is maintained. In
the remainder, we only maintain edge-connectivity. We call the resulting solution OPTF .

Restructure. For each brick B, we consider the connected components of OPTF ∩ int(B).
We replace each component with a subgraph through a mapping φ. The new subgraph
may be a tree or a subgraph Ĉ that is the union of a cycle and two subpaths of ∂B. The
mapping φ has the following properties:

For any component χ of OPTF ∩ int(B), φ(χ) is connected and spans χ ∩ ∂B.
For two components χ1 and χ2 of OPTF ∩ int(B), if φ(χi) 6= Ĉ for at least one of
i = 1, 2, then φ(χ1) and φ(χ2) are edge-disjoint, taking into account edge multiplicities.
The new subgraph φ(OPTF ∩ int(B)) has only constant number (depending on ε) of
vertices in the boundary ∂B.

We can prove that the total weight is increased by at most εOPTF , giving Property P3.
We call the resulting solution OPTR.

Redirect. We connect each vertex j of OPTR ∩ int(B) in the boundary ∂B to the nearest
portal p on ∂B by adding multiple copies of the short j-to-p subpath of ∂B. Similar
to 2-ECP, we can prove this only increases the weight by an ε fraction of OPT and the
resulting solution satisfies the Structure Theorem.

Acknowledgements. We thank Hung Le, Amir Nayyeri and David Pritchard for helpful
discussions.

References
1 S. Arora, M. Grigni, D. Karger, P. Klein, and A. Woloszyn. A polynomial-time approxima-

tion scheme for weighted planar graph TSP. In Proceedings of the 9th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 33–41, 1998.

2 B. Baker. Approximation algorithms for NP-complete problems on planar graphs. Journal
of the ACM, 41(1):153–180, 1994. doi:10.1145/174644.174650.

3 M. Bateni, M. Hajiaghayi, and D. Marx. Approximation schemes for Steiner forest on
planar graphs and graphs of bounded treewidth. J. ACM, 58(5):21, 2011. doi:10.1145/
2027216.2027219.

APPROX/RANDOM’17

http://dx.doi.org/10.1145/174644.174650
http://dx.doi.org/10.1145/2027216.2027219
http://dx.doi.org/10.1145/2027216.2027219

3:12 A PTAS for Three-Edge-Connected Survivable Network Design in Planar Graphs

4 A. Berger, A. Czumaj, M. Grigni, and H. Zhao. Approximation schemes for minimum
2-connected spanning subgraphs in weighted planar graphs. In Proceedings of the 13th
European Symposium on Algorithms, volume 3669 of Lecture Notes in Computer Science,
pages 472–483, 2005.

5 A. Berger and M. Grigni. Minimum weight 2-edge-connected spanning subgraphs in planar
graphs. In Proceedings of the 34th International Colloquium on Automata, Languages and
Programming, volume 4596 of Lecture Notes in Computer Science, pages 90–101, 2007.
doi:10.1007/978-3-540-73420-8_10.

6 G. Borradaile, E. Demaine, and S. Tazari. Polynomial-time approximation schemes for
subset-connectivity problems in bounded-genus graphs. Algorithmica, 2012. Online. doi:
10.1016/j.jda.2012.04.011.

7 G. Borradaile, C. Kenyon-Mathieu, and P. Klein. A polynomial-time approximation scheme
for Steiner tree in planar graphs. In Proceedings of the 18th Annual ACM-SIAM Symposium
on Discrete Algorithms, volume 7, pages 1285–1294, 2007.

8 G. Borradaile and P. Klein. The two-edge connectivity survivable network problem in planar
graphs. In Proceedings of the 35th International Colloquium on Automata, Languages and
Programming, pages 485–501, 2008.

9 G. Borradaile and P. Klein. The two-edge connectivity survivable-network design problem
in planar graphs. ACM Transactions on Algorithms, 12(3):30:1–30:29, 2016.

10 G. Borradaile, P. Klein, and C. Mathieu. An O(n logn) approximation scheme for Steiner
tree in planar graphs. ACM Transactions on Algorithms, 5(3):1–31, 2009.

11 G. Borradaile and B. Zheng. A PTAS for three-edge-connected survivable network design in
planar graphs. CoRR, abs/1611.03889, 2016. URL: http://arxiv.org/abs/1611.03889.

12 A. Czumaj and A. Lingas. A polynomial time approximation scheme for euclidean minimum
cost k-connectivity. In Automata, Languages and Programming, pages 682–694. Springer,
1998.

13 A. Czumaj and A. Lingas. On approximability of the minimum cost k-connected spanning
subgraph problem. In Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 281–290, 1999.

14 R. Erickson, C. Monma, and A. Veinott. Send-and-split method for minimum-concave-cost
network flows. Mathematics of Operations Research, 12:634–664, 1987.

15 K. Eswaran and R. Tarjan. Augmentation problems. SIAM Journal on Computing,
5(4):653–665, 1976.

16 G. Frederickson and J. Jájá. Approximation algorithms for several graph augmentation
problems. SIAM Journal on Computing, 10(2):270–283, 1981.

17 D.A. Holton, B. Jackson, A. Saito, and N.C. Wormald. Removable edges in 3-connected
graphs. J. Graph Theory, 14:465–475, 1990.

18 K. Jain. A factor 2 approximation algorithm for the generalized Steiner network problem.
Combinatorica, 2001(1):39–60, 21.

19 S. Khuller and U. Vishkin. Biconnectivity approximations and graph carvings. Journal of
the ACM, 41(2):214–235, 1994.

20 P. Klein. A subset spanner for planar graphs, with application to subset TSP. In Proceedings
of the 38th Annual ACM Symposium on Theory of Computing, pages 749–756, 2006. doi:
10.1145/1132516.1132620.

21 P. Klein. A linear-time approximation scheme for TSP in undirected planar graphs with
edge-weights. SIAM Journal on Computing, 37(6):1926–1952, 2008.

22 P. Klein, C. Mathieu, and H. Zhou. Correlation clustering and two-edge-connected augmen-
tation for planar graphs. In Ernst W. Mayr and Nicolas Ollinger, editors, 32nd International

http://dx.doi.org/10.1007/978-3-540-73420-8_10
http://dx.doi.org/10.1016/j.jda.2012.04.011
http://dx.doi.org/10.1016/j.jda.2012.04.011
http://arxiv.org/abs/1611.03889
http://dx.doi.org/10.1145/1132516.1132620
http://dx.doi.org/10.1145/1132516.1132620

G. Borradaile and B. Zheng 3:13

Symposium on Theoretical Aspects of Computer Science (STACS 2015), volume 30 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 554–567. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2015.

23 P. Klein and R. Ravi. When cycles collapse: A general approximation technique for con-
straind two-connectivity problems. In Proceedings of the 3rd International Conference on
Integer Programming and Combinatorial Optimization, pages 39–55, 1993.

24 A. Sebő and J. Vygen. Shorter tours by nicer ears: 7/5-approximation for the graph-tsp,
3/2 for the path version, and 4/3 for two-edge-connected subgraphs. Combinatorica, pages
1–34, 2014.

25 H. Whitney. Non-separable and planar graphs. Trans. Amer. Math. Soc., 34:339–362, 1932.
26 B. Zheng. Linear-time approximation schemes for planar minimum three-edge connected

and three-vertex connected spanning subgraphs. CoRR, abs/1701.08315, 2017. URL: http:
//arxiv.org/abs/1701.08315.

APPROX/RANDOM’17

http://arxiv.org/abs/1701.08315
http://arxiv.org/abs/1701.08315

The Quest for Strong Inapproximability Results
with Perfect Completeness∗†

Joshua Brakensiek1 and Venkatesan Guruswami2

1 Department of Mathematical Sciences, Carnegie Mellon University,
Pittsburgh, PA, USA
jbrakens@andrew.cmu.edu

2 Computer Science Department, Carnegie Mellon University, Pittsburgh, PA,
USA
guruswami@cmu.edu

Abstract
The Unique Games Conjecture (UGC) has pinned down the approximability of all constraint
satisfaction problems (CSPs), showing that a natural semidefinite programming relaxation offers
the optimal worst-case approximation ratio for any CSP. This elegant picture, however, does not
apply for CSP instances that are perfectly satisfiable, due to the imperfect completeness inherent
in the UGC. For the important case when the input CSP instance admits a satisfying assignment,
it therefore remains wide open to understand how well it can be approximated.

This work is motivated by the pursuit of a better understanding of the inapproximability of
perfectly satisfiable instances of CSPs. Our main conceptual contribution is the formulation of
a (hypergraph) version of Label Cover which we call “V label cover.” Assuming a conjecture
concerning the inapproximability of V label cover on perfectly satisfiable instances, we prove the
following implications:

There is an absolute constant c0 such that for k ≥ 3, given a satisfiable instance of Boolean k-
CSP, it is hard to find an assignment satisfying more than c0k2/2k fraction of the constraints.
Given a k-uniform hypergraph, k ≥ 2, for all ε > 0, it is hard to tell if it is q-strongly colorable
or has no independent set with an ε fraction of vertices, where q = dk +

√
k − 1

2e.
Given a k-uniform hypergraph, k ≥ 3, for all ε > 0, it is hard to tell if it is (k − 1)-rainbow
colorable or has no independent set with an ε fraction of vertices.

We further supplement the above results with a proof that an “almost Unique” version of Label
Cover can be approximated within a constant factor on satisfiable instances.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases inapproximability, hardness of approximation, dictatorship testing, con-
straint satisfaction, hypergraph coloring

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.4

1 Introduction

The sustained progress on approximation algorithms and inapproximability results for
optimization problems since the early 1990s has been nothing short of extraordinary. This
has led to a sharp understanding of the approximability threshold of many fundamental
problems, alongside the development of a rich body of techniques on the algorithmic, hardness,

∗ Research supported in part by NSF grants CCF-1422045 and CCF-1526092.
† Full version is available at [7], https://eccc.weizmann.ac.il/report/2017/080/.

© Joshua Brakensiek and Venkatesan Guruswami;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 4; pp. 4:1–4:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.4
https://eccc.weizmann.ac.il/report/2017/080/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4:2 The Quest for Strong Inapproximability Results with Perfect Completeness

and mathematical programming aspects of approximate optimization. Yet there also remain
many problems which have resisted resolution and for some there are in fact large gaps
between the known algorithmic and hardness results. Examples include vertex cover, graph
coloring, max-cut, feedback vertex set, undirected multicut, densest subgraph, and so on.

The Unique Games Conjecture of Khot [38] postulates a strong inapproximability result
for a particular class of arity two constraint satisfaction problems. This single assumption has
a remarkable array of consequences, and implies tight inapproximability results for numerous
problems including Vertex Cover [41], max-cut and indeed all constraint satisfaction problems
(CSPs) [39, 49, 52], maximum acyclic subgraph and all ordering CSPs [20], scheduling
problems [4, 3], graph pricing [44], and cut problems like directed multicut [45], to name a
few. Furthermore, for CSPs, the UGC implies that a standard semidefinite programming
relaxation gives the best approximation ratio [52, 53, 8].

While the UGC has identified a common barrier against progress on a host of approxi-
mation problems, there are still several situations it does not apply to. Crucially, imperfect
completeness, where Yes instances are only almost satisfiable, is inherent in the UGC, and
this feature is inherited by the problems it reduces to. In particular, the UGC does not
say anything about problems with perfect completeness, where Yes instances have a perfect
solution obeying all the constraints. Important classes of such problems include satisfiable
instances of CSPs (which have a perfect satisfying assignment and the goal is maximize
the number of satisfied constraints) and coloring graphs/hypergraphs with approximately
optimal number of colors.

Our understanding of approximating satisfiable instances of CSPs still has many gaps.
Håstad’s tight hardness result for approximating Max 3-SAT on satisfiable instances was
much harder to prove than the analogous result for near-satisfiable instances, and was an early
sign of the subtleties of ensuring perfect completeness. The approximability of satisfiable
CSPs corresponds via a direct translation to the power of probabilistically checkable proof
(PCP) systems with perfect completeness – the best soundness error one can achieve with
a k query (non-adaptive) PCP is equal to the best inapproximability factor one can prove
for a satisfiable arity k CSP. For k = 3, the best soundness is 5/8 + ε for any ε > 0, and
this was established only recently via an intricate proof of the approximation resistance of
satisfiable NTW (the arity 3 No-Two predicate which stipulates the number of true literals
must be either 0, 1 or 3) [35]. As a basic open question that still remains wide open, we do
not know the approximability of satisfiable Max NAE-3-SAT (not-all-equal 3-SAT) under
any plausible (or even not so plausible!) conjecture.

The above-mentioned Unique Games hardness results consist of two components: (i) a
dictatorship test that gives a way to test if a function is a dictator or is far from a dictator
(e.g., has no influential coordinates), using constraints corresponding to the problem at
hand (for NAE-3-SAT this would be checking if certain triples of function values are not all
equal), and (ii) a reduction from Unique Games via the dictatorship test that establishes
inapproximability under the UGC. The second step is standard, and it gives a “free pass”
from the world of combinatorics/analysis of Boolean functions to the complexity world.
When we require perfect completeness, no such conjectured off-the-shelf compiler from
dictatorship tests to hardness is known (and such a passage even appears unlikely). For
instance, dictatorship tests with perfect completeness and optimal soundness are known or
Max k-CSP [59] and Max NAE-3-SAT 1. However, in both cases we do not have matching
inapproximability results under any plausible conjecture.

1 Folklore, and this has connections to robust forms of Arrow’s theorem [36] and [50, Sec. 4].

J. Brakensiek and V. Guruswami 4:3

The closest to a UGC surrogate in the literature is the d-to-1 conjecture also made in [38].
The Unique Games problem is an arity 2 CSP whose constraints are bijections; the d-to-1
Label Cover is an arity 2 CSP whose constraints are d-to-1 functions. When d ≥ 2, deciding
satisfiability of a d-to-1 Label Cover instance is NP-complete, unlike Unique Games whose
satisfiability is trivial to ascertain. Khot’s d-to-1 conjecture states that d-to-1 Label Cover is
also hard to approximate within any constant factor, even on satisfiable instances. Note that
the UGC and d-to-1 conjecture are incomparable in strength; the UGC has simpler bijective
constraints but the d-to-1 conjecture asserts perfect completeness which the UGC cannot.

The d-to-1 conjecture has been used to show some strong inapproximability results with
perfect completeness. Such applications are, however, sporadic and also typically do not
yield tight results. Some of these results are conditioned specifically on the 2-to-1 conjecture,
such as a

√
2− ε inapproximability for vertex cover (mentioned in [38] and explicit in [40]),

Max k-coloring with perfect completeness [27], and coloring 4-colorable graphs [13]. The
d-to-1 conjecture, for any fixed d, has been used to show the approximation resistance
of NTW [51] and a similar result for larger arity [32],2 and finding independent sets in
2-colorable 3-uniform hypergraphs [43]. Yet, the implications of the d-to-1 conjecture are
limited, and it has become apparent that it is not a versatile starting point for hardness
results with perfect completeness.

1.1 Our contributions
Given the above context, our work is motivated by the quest for a better starting point than
2-to-1 Label Cover for inapproximability results with perfect completeness, and which might
be able to give striking consequences similar to the UGC.

Aggressive Unique Games variant. One version of Label Cover that is most similar to
Unique Games, which we call (L, s)-nearly unique Label Cover, has constraint relations in3
[L] × [L] consisting of a matching and s additional edges, for a small s that is a constant
independent of L. For this version, it is NP-hard to decide satisfiability, and in fact one can
give strong reductions matching the performance of dictatorship tests from it. However, this
nearly unique form of Label Cover has a constant factor approximation algorithm with ratio
depending only on s. We prove this result in the full version of the paper.

V label cover. Our main conceptual contribution is the formulation of a (hypergraph)
version of Label Cover which we call “V label cover.” This is an extension of 2-to-1 Label
Cover, where the constraint predicates are 2-to-1 maps from [2L] to [L], whose relation
graph can be visualized as L disjoint “V’s.” In V label cover of arity k, we have “longer V’s”
where the two branches involve k variables which coincide in single variable.4 This is best
illustrated by Figure 1 in Section 3.

We put forth the V label cover conjecture, which asserts a strong inapproximability result
for this problem. For completeness, we want an assignment where for every constraint, the
k variables involved get values in a single “V-branch.” For soundness, we insist that no
assignment even weakly satisfies more than a tiny fraction of constraints, where a constraint

2 These were later improved to NP-hardness in [35] and [63].
3 We denote [L] = {1, . . . , L}.
4 We should mention that our path to the formulation of V label cover was more circuitous, and has its

origins in attempts to define hypergraph versions of the “α Label Cover” problem of [13].

APPROX/RANDOM’17

4:4 The Quest for Strong Inapproximability Results with Perfect Completeness

is weakly satisfied if two of its k variables get values in some V-branch. 5 For this to make
sense, the “junction” of the V’s cannot all be on the same variable (as in 2-to-1 Label Cover),
as in that case we will have a Unique Label Cover constraint between the other (k − 1)
variables, which we can perfectly satisfy. Therefore, in our V label cover constraints, we have
V’s with junctions at all the k variables involved in the constraint. At a high level, this is
similar to the correlation-breaking constraints of Chan [10].

Near-optimal inapproximability for Max k-CSP with perfect completeness. Assuming
the V label cover conjecture, we prove a near-tight inapproximability result for approximating
satisfiable Max k-CSP over any fixed domain.

I Theorem 1.1. Assume the V label cover conjecture. There is an absolute constant c0 such
that for k ≥ 3, given a satisfiable instance of Boolean k-CSP, it is hard to find an assignment
satisfying more than c0k2/2k fraction of the constraints. For CSP over domain size q ≥ 3,
where q is a prime power, it is hard to satisfy more than c0k3q3/qk of the constraints.

The approximability of Max k-CSP has been the subject of many papers in the past two
decades since the advent of Håstad’s optimal inapproximability results [29]; a partial list
includes [58, 57, 16, 30, 17, 56, 25, 2, 10, 33] on the hardness side, and [60, 61, 28, 11, 25, 46]
on the algorithmic side.

The best known approximation guarantee for Max k-CSP over domain size q is Ω(kq/qk)
(for k ≥ Ω(log q), and 0.62k/2k for the Boolean case [46]. This tight up to constant factors,
due to Chan’s inapproximability factor of O(kq/qk) [10]. However, this hardness does not
apply for satisfiable instances. For satisfiable instances, the best hardness factor is 2O(k1/3)/2k
for Boolean Max k-CSP [33], and qO(

√
k)/qk for Max k-CSP over domain size a prime q [30].

Note that our improved hardness factors (conditioned on the V label cover conjecture) from
Theorem 1.1 are the first to get poly(k, q)/qk type hardness for satisfiable instances (albeit
only for prime powers) and are close to optimal. We note that satisfiable instances can
be easier to approximate – Trevisan gave an elegant linear-algebra based factor (k + 1)/2k
approximation algorithm for satisfiable Boolean Max k-CSP [61] long before Hast’s Ω(k/2k)
algorithm for the general case [28].

Inapproximability for strong and rainbow colorable hypergraphs. Our other application
of the V label cover conjecture is to hypergraph coloring, another fundamental problem where
perfect completeness is crucial. We say a hypergraph is c-colorable if there is a coloring of its
vertices with c colors so that no hyperedge is monochromatic. Given a 2-colorable k-uniform
hypergraph for k ≥ 3, strong inapproximability results that show the NP-hardness of coloring
with any fixed ` number of colors are known [21, 14], and recent developments show hardness
(for k ≥ 8) even for ` = exp((logn)Ω(1)) where n is the number of vertices [42, 62, 34].
However, these results do not apply when the hypergraph has some form of balanced coloring
that is stronger than just being 2-colorable. Specifically, we consider the notions of strong
and rainbow colorability in this work. A hypergraph is q-strongly colorable, q ≥ k (resp.
q-rainbow colorable, q ≤ k) if it can be colored with q colors so that in every hyperedge,
all vertices get distinct colors (resp. all q colors are represented). We refer the reader to
the recent work [23, 6, 5] for further context on these notions. When k = q, so that there

5 This stronger requirement in soundness is common in hypergraph versions of Label Cover. For general
Label Cover the stronger soundness guarantee can be ensured with a minor loss in parameters, but for
V label cover we do not know such a reduction.

J. Brakensiek and V. Guruswami 4:5

is a perfectly balanced k-coloring where each hyperedge has exactly one vertex of each
of the k colors, one can in polynomial time find a 2-coloring without any monochromatic
hyperedge [47]. Here we prove a strong hardness result for coloring hypergraphs (in fact for
finding sizable independent sets), when this perfect balance condition is relaxed even slightly
(specifically, q = k − 1 for rainbow coloring, and q = k + o(k) for strong coloring).

A q-strong coloring of a hypergraph is also a legal q-coloring of the graph obtained by
converting each of its hyperedges into a clique. For this reason, our hardness result for
strongly colorable hypergraphs also implies hardness results in the more elementary setting
of approximate graph coloring. There are several “pure” NP-hardness results known for graph
coloring (e.g., the best known results in different regimes are [37, 22, 34, 6]), but there is a
gigantic gap between these results and the known algorithms. [13] establishes much improved
results, assuming variants of both the 2–to–1 conjecture as well as a new variant known as
alpha label cover. Their main result is that for all ε > 0, given a 3–colorable graph G, under
these assumptions, it is NP–hard to locate an independent set with |G|ε vertices. In this
work, assuming the V label cover–conjecture, we give a substantial generalization of this
hardness.

I Theorem 1.2. Assume the V label cover conjecture.6
Given a k-uniform hypergraph, k ≥ 2, for all ε > 0, it is hard to tell if it is q-strongly
colorable or has no independent set with an ε fraction of vertices, where q = dk+

√
k− 1

2e.
Given a k-uniform hypergraph, k ≥ 3, for all ε > 0, it is hard to tell if it is (k−1)-rainbow
colorable or has no independent set with an ε fraction of vertices.

The authors of [23] showed that for any ε > 0, it is NP-hard to distinguish if a k-uniform
hypergraph (k even) is a k/2-rainbow colorable or does not have a independent set with
ε fraction of the vertices. The results of [6] give results for strong coloring, but they only
apply when k = 2 or when the weak coloring has only two colors. Thus, modulo the V label
cover–conjecture, our results improve on those in the literature.

These proofs are included in the full version of the paper.

A path to NP-hardness results? In several cases, the UGC conditioned hardness results
were later replaced by NP-hardness results. Examples include some geometric inapproxima-
bility results [26], hardness of Unique Coverage [24], inapproximability results for agnostic
learning [18], tight hardness results for scheduling [55], Chan’s breakthrough showing an
asymptotically tight inapproximability result for (near-satisfiable) Max k-CSP [10], etc. We
hope that establishing a similar body of conditional results for perfect completeness, based
on the V label cover conjecture or related variants, will point to strong inapproximability
results and spur unconditional results in this domain.

1.2 Proof overview
We now briefly describe the steps needed to prove Theorem 1.1 and Theorem 1.2.

In each case, we reduce from a V label cover instance to a constraint satisfaction problem
(with weighted constraints). In Section 3.3, we detail this reduction. The structure of the
reduction has the same standard form as many other inapproximability results. Each vertex
of the V label cover instance is replaced by a constellation of variables, known as a long code.
Each hyperedge of the V label cover instance is replaced by a probability distribution of

6 Technically, we need an “induced” version of the V label cover conjecture for this result.

APPROX/RANDOM’17

4:6 The Quest for Strong Inapproximability Results with Perfect Completeness

constraints between the variables in the correspond long codes. This is done carefully as to
ensure that perfectly strongly satisfiable V label cover instances map to perfectly satisfiable
CSPs.

For each problem type (Max-k-CSP, strong coloring, rainbow coloring), we craft a
probability distribution which exploits its underlying structure. The probability distributions
need to have a special correlation structure in order to be compatible with the V label cover
constraints. We abstract a general notion termed V label cover–compatibility (Definition 3.2)
which captures the properties common to these distributions. For example, we dictate that
each vertex of each long code is sampled uniformly at random. Then, for each application, we
outline the additional properties of our probability distributions in order for the reductions
to have the proper soundness (Definition 4.1).

For the soundness analysis, given a good approximation to the resulting CSP, we seek to
find an approximate weak labeling of the original V label cover instance. To do that, we
attempt to decode each long code by finding one (or many) low-degree influential coordinates;
these coordinates can be viewed as candidate labels for the associated vertex. We then argue
that for a sizable fraction of constraints, two of the decoded labels will belong to the a single
V-branch in the constraint. We can then label our V label cover instance by assigning each
vertex a label selected at random from among its decoded labels, which in expectation finds
a good approximate weak labeling.

In order to guarantee these influential coordinates, we invoke a couple of invariance
principles. For Max-k-CSP, we directly invoke a result due to Mossel (Theorem 2.9) on
pairwise independent probability distributions. This version guarantees a common influential
coordinate between three functions that belongs to a common “V.” A pigeonhole principle
then implies that two of these labels must be in the same branch. For the hypergraph coloring
problems, where we do not have pairwise independence of the distributions, we generalize
the invariance principles of Mossel [48, 13] to yield a common influential coordinate for two
functions that further lie on the same V-branch. This result, is available in the full version
of the paper.

1.3 Organization
In Section 2, we outline the necessary background on CSPs and probability spaces. In
Section 3, we motivate and detail the V label cover–conjecture. In Section 4, we apply V
label cover to the Max-k-CSP problem. In Appendix A, we prove Lemma 4.4.

2 Preliminaries

2.1 Probability distributions
As is now commonplace in hardness of approximation reductions (e.g., [10, 13, 2, 48]), we
utilize the following results on correlated probability spaces.

I Definition 2.1 ([31, 19, 54]7). Let X × Y be a finite joint probability space with a
probability measure µ. The correlation between X and Y , denoted ρ(X,Y) is defined to be

ρ(X,Y) = sup
f :X→R,g:Y→R

E[f]=E[g]=0, Var[f]=Var[g]=1

[
E

(x,y)∼µ
[f(x)g(y)]

]
.

7 See [1] for a history of this definition.

J. Brakensiek and V. Guruswami 4:7

This is then easily extended to the correlation of n ≥ 3 spaces.

I Definition 2.2 (Definition 1.9 of [48]). Let X1×X2× · · · ×Xn be a finite joint probability
space. Let Zi = X1 ×X2 × · · · ×Xi−1 ×Xi+1 × · · · ×Xn. Then we define the correlation of
X1, . . . , Xn to be

ρ(X1, X2, . . . , Xn) = max
1≤i≤n

ρ(Xi, Zi).

When a probability space can be decomposed into the product of independent subspaces,
then the correlation behaves elegantly.

I Lemma 2.3 (Theorem 1 of [64]). For all i ∈ [n], let Xi × Yi be a probability space with
measure µi. Assume that µ1, . . . , µn are independent. Then,

ρ(X1 ×X2 × · · · ×Xn, Y1 × Y2 × · · · × Yn) = max
1≤i≤n

ρ(Xi, Yi).

Often it can be difficult to bound the correlation of a distribution away from 1. The
following result is key in reducing these complex correlation problems into rather elementary
graph connectivity problems.

I Lemma 2.4 (Lemma 2.9 of [48]). Let X×Y be a finite joint probability space with measure
µ. Let G be the bipartite graph on X ∪ Y such that (x, y) ∈ X × Y is an edge iff Pr[x, y] > 0
with respect to µ. Assume that G is connected, and let δ be the minimum nonzero probability
in the joint distribution. Then, we have that

ρ(X,Y) ≤ 1− δ2/2.

2.2 Influences
Recall the influence of a function over a probability space.

I Definition 2.5. Let X1, . . . , Xn be finite independent probability spaces, and let f :
X1×· · ·×Xn → R be a function. Let Yi = X1×· · ·×Xi−1×Xi+1×· · ·×Xn. The influence
is

Infi(f) = E
x∈Yi

[Varz∈Xi f(x1, . . . , xi−1, z, xi+1, . . . , xn)].

Likewise, we need the notion of low-degree influences. We use the multilinear-polynomial
definition used many times previously (e.g., [49, 13, 48]).

I Definition 2.6 (e.g., Definition 3.4, 3.7 of [49]). Let X1, . . . , Xn be finite independent
probability spaces, and let f : X1 × · · · ×Xn → R be a function. For each i ∈ [n], let qi be
the cardinality of the support of Xi. Let α(i)

1 , . . . , α
(i)
qi : Xi → R be an orthonormal basis of

functions such that α(i)
1 ≡ 1. Let Σ = [q1]× · · · [qn]. Now, f can be uniquely expressed as

f =
∑
σ∈Σ

cσ

n∏
i=1

α(i)
σi
.

for cσ ∈ R, which we call the Fourier coefficients. For σ ∈ Q, let |σ| = |{i ∈ [n] | σi 6= 1}|.
The low-degree influence for d ∈ [n] is

Inf≤di f =
∑

σ∈Σ,|σ|≤d,σi 6=1

c2σ.

APPROX/RANDOM’17

4:8 The Quest for Strong Inapproximability Results with Perfect Completeness

The following is a key elementary fact concerning influences.

I Lemma 2.7 (e.g., Proposition 3.8 [49]). Consider f : X1 × · · · ×Xn → R. For all integers
d ≥ 1,

n∑
i=1

Inf≤di f ≤ dVar f.

In particular, for all τ > 0, |{i ∈ [n] | Inf≤di f ≥ τ}| ≤ dVar f
τ .

Sometimes, we look at f from the perspective of different marginal distributions. Consider
f : X1× · · ·Xn → R where the Xi’s are independent. Furthermore, assume that each Xi can
be written as Xi = Yi,1 × · · ·Yi,`i

, where these Yi,j ’s are independent. Then, we let Inf≤dXi
f

denote the low-degree influence of f in the ith coordinate with respect to the Xi’s. Likewise,
we let Inf≤dYi,j

f be the influence of the (i, j)th coordinate when viewed from the perspective
of f : Y1,1 × · · · × Yn,`n

→ R.
For each (i, j), let β(i,j)

1 , . . . , β
(i,j)
qi,j : Yi,j → R be an orthonormal basis of functions such

that β(i,j)
1 ≡ 1. Note that qi =

∏`i

j=1 qi,j . Let Σ′ = [q1,1] × · · · [qn,`n
]. Then, we have that

there exist cσ’s such that f =
∑
σ∈Σ′ c

′
σ

∏n
i=1 α

(i)
σi . If `i ≤ D for all i, then we have the

following result

I Lemma 2.8 (e.g., Claim 2.7 [13]). If `i ≤ D for all i ∈ [n], then we have for all i, d ∈ [n]
that

Inf≤dXi
f ≤

`i∑
k=1

Inf≤DdYi,k
f.

Thus, there exists k ∈ [`i] such that
1
D

Inf≤dXi
f ≤ Inf≤DdYi,k

f.

Proof. The proof is a straightforward adaptation of the proof of Claim 2.7 in [13]. J

For our applications, we only need the case D = 2.

2.3 Invariance principles
Like [2], we use the following result on pairwise independent probability spaces.

I Theorem 2.9 (Lemmas 6.6, 6.9 [48]). Fix k ≥ 3. For 1 ≤ i ≤ n, let Ωi = X
(1)
i × · · · ×X

(k)
i

be finite pairwise independent probability spaces with probability measure µi such that the
probability measures corresponding to µ1, . . . , µn are independent. Let δ be the minimum
positive probability among all the µi. Let

ρ = max
1≤i≤n

ρ(X(1)
i , . . . , X

(k)
i)

and assume that ρ < 1. For every ε > 0, there exists τ(δ, ε, ρ), d(δ, ε, ρ) > 0 such that for any
functions f1, . . . , fk where fi : X(i)

1 × · · · ×X
(i)
n → [0, 1] if

∀` ∈ [n], |{i | Inf≤d
X

(i)
`

fi > τ}| ≤ 2

then∣∣∣∣∣
k∏
i=1

E[fi]− E

[
k∏
i=1

fi

]∣∣∣∣∣ ≤ ε.

J. Brakensiek and V. Guruswami 4:9

u1

u2

u3

u4

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 1 A schematic diagram of the branches for an edge e = (u1, u2, u3, u4) of V label
cover instance Ψ with parameters k = 4 and L = 2. The ith row represents π(e)

i and the jth
column represents the input j. The dashed and dotted lines are to indicated the two different
branches with the same values with respect to π(e). For example, we may deduce from this
diagram that (10, 10, 10, 10) and (9, 10, 11, 11) are two branches of e. In particular, we have that
π

(e)
1 (9) = π

(e)
2 (10) = π

(e)
3 (11) = π

(e)
4 (11). Note that ψ(e)

i (j) =⊥ exactly when the node of the ith
row and jth column is at the intersection of two branches. Compare with Figure 1 of [13].

In other words, if the product of the expected values and the expected value of the product
significantly differ, then there must exist three functions with a common high low-degree
influence coordinate. Note that the number “three” is crucially used in our reduction in
Section 4.

3 V label cover

In this section, we propose a variant of hypergraph label cover which seems to plausibly have
perfect completeness while also allowing for new hardness reductions. It can be thought of
as a generalization of 2-to-1 label cover.

3.1 Definition
Let k ≥ 2 and L ≥ 1 be positive integers. An instance of k-uniform V -label cover is a
k-uniform hypergraph on vertex set U . The constraints are on k-tuples E ⊆ Uk. Each
edge e = (u1, . . . , uk) also has projection maps π(e)

1 , . . . , π
(e)
k : [(2k − 1)L] → [kL] with the

following special property.

The maps are surjective, in particular for all i ∈ [k] and j ∈ [kL],

|(π(e)
i)−1(j)| =

{
1 i ≡ j mod k

2 otherwise

In addition we would like to be able to distinguish between the two labels which map to a
common value. To do this, we supplement the projection maps with distinguishing functions
ψ1, . . . , ψk : [(2k − 1)L]→ {0, 1,⊥} such that for all i ∈ [k], the map x 7→ (π(e)

i (x), ψi(x)) is
injective. Furthermore, if |(π(e)

i)−1(π(e)
i (x))| = 1, then we define ψi(x) =⊥, and otherwise

ψi(x) ∈ {0, 1}. We say that (t1, . . . , tk) ∈ [(2k − 1)L]k is a branch of e if there is ` ∈ [kL]
and b ∈ {0, 1} such that for all i, (π(e)

i (ti), ψ(e)
i (ti)) equals (`, b) or (`,⊥). Note that for each

branch, there is exactly one j ∈ [k] such that ψ(e)
j (tj) =⊥. In fact such such an index satisfies

j ≡ π(e)
i (ti) mod k for all j. We say that i is the junction of the branch.

To better understand the setup, see Figure 1.

APPROX/RANDOM’17

4:10 The Quest for Strong Inapproximability Results with Perfect Completeness

The goal of V -label cover is to produce a labeling of the vertices σ : U → [(2k − 1)L].
We say that a hyperedge e = (u1, . . . , uk) is strongly satisfied if (σ(u1), . . . , σ(uk)) is a
branch. In other words, for all i, j ∈ [k], π(e)

i (σ(ui)) = π
(e)
j (σ(uj)) and either ψ(e)

i (σ(ui)) =
ψ

(e)
j (σ(uj)) 6= ⊥ or exactly one of ψ(e)

i (σ(ui)), ψ(e)
j (σ(uj)) is ⊥. Another way to express this

is that (π(e)
i (σ(ui)), ψ(e)

i (σ(ui))) is uniform except for one i for which ψ(e)
i (σ(ui)) =⊥ (the

meeting point in the ‘V’ of the two branches).
We say the hyperedge is weakly satisfied if for some distinct i, j ∈ [k], π(e)

i (σ(ui)) =
π

(e)
j (σ(uj)) and σ(ui) and σ(uj) are in the same branch.
We now formally state our conjectured intractability of approximating V label cover.

Below we state an “induced” version where in the soundness guarantee, for every labeling,
most of the hyperedges within any subset of vertices of density ε fail to be weakly satisfied.
The induced version is needed for our reduction to hypergraph coloring (this is similar to the
α conjecture of [13] which was also defined in an induced form). For our Max k-CSP result,
it suffices to assume the soundness condition that at most ε fraction of edges are weakly
satisfiable. For simplicity, we only state the stronger induced version below.

I Conjecture 3.1 (V label cover–conjecture, induced version). For all k ≥ 2 and ε > 0, there
exists an L ≥ 1 such that for any k-uniform V label cover instance Ψ on label set L and
vertex set U and hyperedge set E, it is NP-hard to distinguish between

YES: There exists a labeling for which every hyperedge is strongly satisfied.
NO: For every labeling and every subset U ′ ⊂ U with |U ′| ≥ |U |ε, less than ε fraction of
the edges in (U ′)k ∩ E are weakly satisfied by the labeling.

3.2 Compatibility
Consider a domain size q ≥ 2, an arity k ≥ 2, and a predicate P ⊆ [q]k. In order to
understand the “V label cover–hardness” of this predicate P , for each edge e = (u1, . . . , uk)
of our V label cover instance we seek to construct probability distributions on [q]k×(2k−1)L

such that the marginal distribution of each branch of e is supported by P . We define the
notion of V label cover–compatibility in order to capture exactly what we need.

I Definition 3.2. For a predicate P ⊆ [q]k, consider µ1, . . . , µk supported on P 2. For
i, j ∈ [k], let Xi,j ∼ [q]2 be the marginal distribution of µi on the jth coordinates. That is,
for all (a, b) ∈ [q]2,

Pr
(x′,y′)∼Xi,j

[(x′, y′) = (a, b)] = Pr
(x,y)∼µi

[(xj , yj) = (a, b)].

We call the distributions µ1, . . . , µk a V label cover–compatible family if they satisfy the
following properties.
1. For all i ∈ [k], Xi,i is uniform on {(a, a) | a ∈ [q]}.
2. For all i, j ∈ [k] with i 6= j and Xi,j is uniform on [q]2.
3. For all i ∈ [k], ρ(µi) < 1, which we define to be

ρ(µi) := ρ(Xi,1, . . . , Xi,k).

We say that P is V label cover–compatible if a V label cover–compatible family µ1, . . . , µk
exists.

The reason we have k different distributions is because the two connected branches can
intersect in k different rows (see Figure 1).

J. Brakensiek and V. Guruswami 4:11

Property (3) of Definition 3.2 precludes any algebraic structure in our predicate that
would permit a polynomial-time algorithm. For example, the uniform distribution on the
predicate {x ∈ Zn2 | x1 + · · ·+ xn = 0} has correlation 1 and allows for Gaussian-elimination
to solve exactly.

3.3 Reduction from V label cover to P -CSP
Let P ⊆ [q]k be a predicate for q, k ≥ 2 which is V label cover–compatible with distributions
µ1, . . . , µk. In this section, we show how to reduce an arbitrary instance of V label cover into
an instance of P -CSP, the constraint satisfaction problem where all clauses are of the form
(x1, . . . , xn) ∈ P . Furthermore, we assign weights to the clauses of this CSP, in which the
weights are determined by these distributions µi. This reduction is the starting point for
showing the conditional NP-hardness results in Section 4.

Let Ψ = (U,E,L, {π(e)
i }e∈E,i∈[k], {ψ

(e)
i }e∈E,i∈[k]) be our instance of k-uniform V label

cover. For each u ∈ U , we construct q(2k−1)L variables x(u)
s , where s ∈ [q](2k−1)L. Now,

for every edge e = (u1, . . . , uk) ∈ E and every s(1), . . . , s(k) ∈ [q](2k−1)L with the following
property:

For any t1, . . . , tk ∈ [(2k − 1)L] such that (t1, . . . , tk) is a branch of e, we have
(s(1)
t1 , . . . , s

(k)
tk

) ∈ P ,

we add the constraint (x(u1)
s(1) , . . . , x

(uk)
s(k)) ∈ P. Looking back at Figure 1, we have that any

assignment of values from [q] to the nodes of the schematic such that each branch is an
element of P corresponds to some choice (s(1), . . . , s(k)).

Let Φ be the resulting instance. Although we have described the clauses, we have not yet
determined the relative weights of the clauses.

I Claim 3.3. If Ψ has a labeling σ : U → [(2k− 1)L] which strongly satisfies every hyperedge,
then we have that Φ has a perfect satisfying assignment. In other words, this reduction has
perfect completeness.

Proof. For each u ∈ U , and s ∈ [q](2k−1)L, we let x(u)
s = sσ(u). One can verify this assignment

satisfies Φ. J

Now, fix e = (u1, . . . , uk) ∈ E. For each ` ∈ [kL], let (a1, . . . , ak), (b1, . . . , bk) be the two
branches of e such that π(e)

i (ai) = π
(e)
i (bi) = ` for all i. Let j ∈ [k] be the unique index for

which aj = bj , (i.e., j is the junction). Let I be the index set I := {(i, ai) | i ∈ [k]} ∪ {(i, bi) |
i ∈ [k]}; note that |I| = 2k − 1. Let Ω(e)

` ∼ [q]I be the probability distribution isomorphic to
µj such that the marginals x1, . . . , xk, y1, . . . , yk of µj correspond to the marginals indexed
by (1, a1), . . . , (k, ak), (1, b1), . . . , (k, bk) of Ω(e)

` .
Let

ν(e) :=
∏
`∈[kL]

Ω(e)
` ,

where the product is over independent distributions. Note that the support of ν(e) can be
identified with [q][k]×[(2k−1)L] since each (i, ai) ∈ [k]× [(2k − 1)L] is accounted for in some
branch. We let Y (e,i)

j be the marginal distribution of coordinate (i, j) ∈ [k]× [(2k − 1)L] of
ν(e). For any i ∈ [k] and ` ∈ [kL], we let X(e)

i,` be the marginal distribution on the indices

APPROX/RANDOM’17

4:12 The Quest for Strong Inapproximability Results with Perfect Completeness

{(i, t) | π(e)
i (t) = `}. In particular, if i is a junction, the meeting point of the branches, then

Y
(e,i)
t = X

(e)
i,` . Otherwise, X(e)

i,` is the product of two Y ’s:

X
(e)
i,` =

∏
t∈(π(e)

i
)−1(`)

Y
(e,i)
t .

This distribution ν(e) specifies the probability distribution of the clauses corresponding to a
particular edge of the label cover instance. These probabilities are the relative weights of the
clauses in the instance.

4 Perfect-completeness approximation resistance and Max-k-CSPq

A natural question to ask concerning V label cover is if it reduces to natural families of
predicates which are hard to approximate, even when guaranteed perfect completeness. In
the case of imperfect completeness, Austrin and Mossel [2] showed assuming the Unique
Games Conjecture that if a predicate P ⊆ [q]k, for some finite domain size q, supports a
balanced pairwise independent distribution, then P is approximation resistant. That is,
for all ε > 0, it is NP-hard to distinguish between 1 − ε-satisfiable and |P |

qk + ε-satisfiable
P -CSPs. Only a few years later, in a breakthrough by Chan [9], unconditional approximation
resistance was shown for any P which supports a balanced pairwise independent subgroup.
We hope that establishing a similar conditional results for perfect completeness will spur
unconditional results in this domain.

In order to reduce from V label cover, we need a more stringent criteria than merely
supporting a balanced pairwise independent distribution. We call these more structured
distributions pairwise-independent V label cover-compatible.

I Definition 4.1. Let q ≥ 2, k ≥ 3 be parameters. Let P ⊆ [q]k be a predicate. We say that
P is pairwise–independent V label cover–compatible if there exists a V label cover–compatible
family µ1, . . . , µk supported on P 2 (with marginals Xi,j , i, j ∈ [k]) with the additional
property that:
4. For all i ∈ [k] and j 6= j′ ∈ [k], we have that Xi,j and Xi,j′ are pairwise independent.

To motivate the definition, one way to view property (4), when combined with properties
(1) and (2) of Definition 3.2, is that P does not just support a pairwise independent distribu-
tion, but that the distribution can preserve pairwise independence even when conditioning
on the value of a coordinate.8 Assuming the V label cover-conjecture, this property suffices
to establish perfect-completeness approximation resistance if we allow what are known as
folded predicates.9 Assume that [q] has a + operator (e.g., addition modulo q). We specify
that we may use folded versions of our predicate P to be the predicates

a ∈ [q]k, P (a) := {(x1 + a1, . . . , xk + ak) | (x1, . . . , xk) ∈ P}.

Each P (a) has the same cardinality, so incorporating these extra predicates can only increase
the severity of the hardness of approximation. Thus, more precisely we say that the family
of predicates {P (a) | a ∈ [q]k} is perfect-completeness approximation resistant. That is, for

8 The definition permits a slightly broader class of P (i.e., the distribution can change depending on
which coordinate is conditioned on), but our applications will construct P of the type specified in the
motivation.

9 This is a standard assumption in the CSP literature, e.g., [2].

J. Brakensiek and V. Guruswami 4:13

every ε > 0, it is NP-hard to distinguish whether a CSP with predicates from {P (a) | a ∈ [q]k}
is perfectly satisfiable or is |P |

qk + ε satisfiable.

I Theorem 4.2. Let P ⊆ [q]k be a predicate which supports a pairwise-independent V label
cover–compatible distribution. Then, assuming the V label cover–conjecture, we have that the
collection of predicates {P (a) | a ∈ [q]k} is perfect-completeness approximation resistant.

Proof. The high-level structure of our proof is analogous to that of Austrin and Mossel [2].
The proof proceeds in a couple of stages. First, we describe the reduction from a V label
cover instance to an instance of P -CSP, and note that such a reduction preserves perfect
completeness. Second, we analyze the soundness of our reduction using Theorem 2.9 to show
that if our P -CSP can be well-approximated, then our original V label cover instance also
admits an approximation.

Reduction. Let Ψ = (U,E,L, {π(e)
i }e∈E,i∈[k], {ψ

(e)
i }e∈E,i∈[k]) be our instance of k-uniform

V label cover. Let Φ be the instance of P -CSP guaranteed by the construction in Section 3.3.
Let ν(e) ∈ [q][k]×[(2k−1)L] be the weighting distributions on the clauses corresponding to the
hyperedges. Let Ω(e)

` , X
(e)
i,j , Y

(e,i)
j be the marginal distributions described in Section 3.3. By

Claim 3.3, our reduction has perfect completeness.
We now modify the CSP Φ into a new CSP Φ′ which incorporates folding. For each

constraint (x(u1)
s(1) , . . . , x

(uk)
s(k)) ∈ P and for each i ∈ [k], let (s(i))′ = s(i) − s(i)

1 (i.e., subtract
s

(i)
1 from every coordinate). Then, we specify that

(x(u1)
(s(1))′ , . . . , x

(uk)
(s(k))′) ∈ P

(s(1)
1 ,...,s

(k)
1).

One may check that this modification preserves perfect completeness.

Soundness. We view an assignment to Φ′ as a collection of functions F = {fu : [q](2k−1)L →
[q] | u ∈ U}, where fu(s) is the assigned value for xus . Because of our modification to the
CSP, we only specify constraints for fu(s) when s1 = q. Thus, we may assume that each fu
is folded. That is, fu(s) + a ≡ fu(s+ (a, . . . , a)) mod q for all a ∈ [q]. One may check that
the fu’s satisfy a clause in Φ′ if and only if they satisfy the corresponding clause in Φ. Thus,
it is equivalent to focus on the fu’s satisfaction of Φ.

For a ∈ [q], we let

f (a)
u (x) =

{
1 fu(x) = a

0 otherwise

We define the influences and low-degree influences (Definitions 2.5 and 2.6) of the f (a)
u ’s to

be with respect to the uniform distribution.
Let Φ(F) be the fraction of constraints of Φ satisfied by F , using the weights specified

by the ν(e) distributions. We seek to show for any ε > 0 if there exists a F such that
Φ(F) > |P |

qk + ε, then there exists δ > 0 and σ : U → [(2k − 1)L] such that σ weakly satisfies
δ fraction of the constraints of Ψ.

It is evident from the construction, that a group of constraints are associated with each
e ∈ E. Let e(F) be the fraction of constraints corresponding to φ satisfied by F (that is the
measure with respect to ν(e) of the clauses satisfied by F). We have that

Φ(F) = 1
|E|

∑
e∈E

e(F).

APPROX/RANDOM’17

4:14 The Quest for Strong Inapproximability Results with Perfect Completeness

Thus, if Φ(F) > |P |
qk + ε, there exists a subset E′ ⊆ E such that |E′| > (ε/2)|E| and

e(F) ≥ |P |
qk + ε/2 for all e ∈ E′; as otherwise, Φ(F) ≤ ε/2 ·1+(1− ε/2) ·

(
|P |
qk + ε/2

)
< |P |

qk + ε.
Fix, e = (u1, . . . , uk) ∈ E′. Note that

e(F) = E
(s1,...,sk)∼ν(e)

[(f(u1)(s1), . . . , f(uk)(sk)) ∈ P]

=
∑
r∈P

E
(s1,...,sk)∼ν(e)

[f (r1)
u1

(s1) · · · frk
uk

(sk)].

Thus, for some r ∈ P , we have that

E
(s1,...,sk)∼ν(e)

[f (r1)
u1

(s1) · · · frk
uk

(sk)] > 1
qk

+ ε

2|P | .

Let ε′ = ε/(2|P |) > 0. Also, for all i ∈ [k], let Π(e)
i =

∏kL
`=1X

(e)
i,` . Since each Π(e)

i is uniform
and fui is folded, we have that

E
si∼Π(e)

i

[f (ri)
ui

(si)] = 1
q
.

In particular, this implies that∣∣∣∣∣∏̀
i=1

E[f (ri)
ui

(si)]− E

[∏̀
i=1

f (ri)
ui

(si)
]∣∣∣∣∣ > ε′.

Note that ν(e) = Ω(e)
1 × · · · ×Ω(e)

kL meets the requirements of Theorem 2.9. Thus, there exists
τ, d > 0, which are functions of only ε′ and parameters of |P |, such that

∃` ∈ [kL], |{i : Inf≤d
X

(e)
i,`

f (ri)
ui

> τ}| ≥ 3.

Let i1, i2, i3 ∈ [k] be three of these coordinates and let ` ∈ [kL] be the guaranteed value of `.
Observe that we can also write Π(e)

ia
as

Π(e)
ia

=
∏

t∈[(2k−1)L]

Y
(e,ia)
t .

Note that each X(e)
ia,`

can be written as the product distribution of at most 2 Y (e,ia)
t ’s, where

π
(e)
ia

(t) = `. By invoking Lemma 2.8 with D = 2, we have that there exists t1, t2, t3 such that
π

(e)
ia

(ta) = ` for all a ∈ {1, 2, 3} and

Inf≤2d
Y

(e,ia)
ta

f (ri)
uia

= Inf≤2d
ta >

τ

2 ,

where the equality is due to the fact that the Y (e,ia)
ta distributions are uniform distributions

on [q].
Note that since each ‘component’ of (e) has two branches, by the Pigeonhole principle,

some two of {t1, t2, t3} are in the same branch. Thus, any assignment σ for which σ(uia) = ta
for all a ∈ {1, 2, 3} weakly satisfies e.

For each u ∈ U . Let Su ⊆ [(2k − 1)L] be the set of labels j for which Inf≤2d
j f

(a)
u > τ/2

for some a ∈ [q]. Since Var f (a)
u ≤ max(f (a)

u)2 = 1, we have by Lemma 2.7 that |Su| ≤ 4dq/τ ,
which is independent of L. Construct a random labeling σ : U → [(2k − 1)L] by sampling

J. Brakensiek and V. Guruswami 4:15

each σ(u) from Su independently and uniformly at random (if Su is empty, let σ(u) = 1).
For each e ∈ E′, we established that there exists i, i′ ∈ [k] and ` ∈ Sui

and `′ ∈ Sui′ such
that setting σ(ui) = ` and σ(ui′) = `′ weakly satisfies e. Thus, in expectation at least

|E′|
|E|
· 1

(max |Su|)2 = τ2ε

16d2q2 > 0

of the edges are weakly satisfied. Note that this expression is independent of L and the size
of Ψ, as desired. J

We use this theorem to obtain hardness of approximation results for Max-k-CSPq when
q ≥ 2 is a prime power. We first need the following lemma which follows from standard
constructions in BCH codes.

I Lemma 4.3. Let q ≥ 2 be a prime power, and let ` ≥ 1 be odd. There exists S ⊂ F`q with
|S| = q(`−1)/2 such that S is 3-wise linearly independent over Fq. That is, each three-element
subset of S is linearly independent.

I Remark. Because of the recent breakthrough that subsets of Znq which do not have an
arithmetic progress of length three have size at most qcn for some c < 1, [12, 15], it is
impossible to improve that factor of 1/2 in the exponent to 1 when q ≥ 3. In particular,
Lemma 4.4 can at best be improved to Oq(k2+γ) for some γ > 0 (where the Oq notation
hides the dependence of q).

I Lemma 4.4. For all q ≥ 2 a prime power and k ≥ 2, there exists P ⊆ [q]k which is
pairwise–independent V label cover-compatible with |P | = 2k3q3.

The proof is given in Appendix A.
Using the same proof techniques, we have the following corollary.

I Corollary 4.5. For q = 2 and all k ≥ 2, there exists P ⊆ [2]k which is pairwise–independent
V label cover–compatible and |P | = O(k2).

Proof. Repeat the proof of Lemma 4.4, but note that S = {x ∈ F`2 :
∑`
i=1 xi = 1} is a

3-wise-independent subset of size 2`−1. J

Now we may obtain Theorem 1.1.

Proof of Theorem 1.1. The case q = 2 follows immediately from Corollary 4.5 and Theo-
rem 4.2. Similarly, if q ≥ 3 is a prime power, then the result follows from Lemma 4.4 and
Theorem 4.2. J

This is the first conditional NP-hardness reduction which obtains a soundness of poly(q,k)
qk

for even one fixed q. Previously, a long code test due to Tamaki and Yoshida [59] obtained
O(k)
2k for when q = 2. The currently best known unconditional result for Max-k-CSP2 is

2O(k1/3)

2k due to Huang [33]. For q ≥ 3, the best known result is [30] [46].

Acknowledgments. We would like to thank Elchanan Mossel for useful discussion on a
generalization of an invariance principle. We would also like to thank anonymous reviewers
for helpful comments.

APPROX/RANDOM’17

4:16 The Quest for Strong Inapproximability Results with Perfect Completeness

References
1 Venkat Anantharam, Amin Gohari, Sudeep Kamath, and Chandra Nair. On Maximal

Correlation, Hypercontractivity, and the Data Processing Inequality studied by Erkip and
Cover. arXiv:1304.6133 [cs, math], April 2013. arXiv: 1304.6133. URL: http://arxiv.
org/abs/1304.6133.

2 Per Austrin and Elchanan Mossel. Approximation resistant predicates from pair-
wise independence. computational complexity, 18(2):249–271, 2009. doi:10.1007/
s00037-009-0272-6.

3 N. Bansal and S. Khot. Optimal Long Code Test with One Free Bit. In 2009 50th Annual
IEEE Symposium on Foundations of Computer Science, pages 453–462, October 2009. doi:
10.1109/FOCS.2009.23.

4 Nikhil Bansal and Subhash Khot. Inapproximability of hypergraph vertex cover and appli-
cations to scheduling problems. In 37th International Colloquium on Automata, Languages
and Programming, pages 250–261, 2010. doi:10.1007/978-3-642-14165-2_22.

5 Vijay V. S. P. Bhattiprolu, Venkatesan Guruswami, and Euiwoong Lee. Approximate hy-
pergraph coloring under low-discrepancy and related promises. In Approximation, Ran-
domization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2015), volume 40 of Leibniz International Proceedings in Informatics (LIPIcs), pages
152–174. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPIcs.
APPROX-RANDOM.2015.152.

6 Joshua Brakensiek and Venkatesan Guruswami. New Hardness Results for Graph and
Hypergraph Colorings. In Ran Raz, editor, 31st Conference on Computational Complex-
ity (CCC 2016), volume 50 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 14:1–14:27. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:10.4230/
LIPIcs.CCC.2016.14.

7 Joshua Brakensiek and Venkatesan Guruswami. The quest for strong inapproximability
results with perfect completenes. Electronic Colloquium on Computational Complexity
(ECCC), 24(80), 2017. URL: https://eccc.weizmann.ac.il/report/2017/080/.

8 Jonah Brown-Cohen and Prasad Raghavendra. Combinatorial optimization algorithms via
polymorphisms. CoRR, abs/1501.01598, 2015. URL: http://arxiv.org/abs/1501.01598.

9 Siu On Chan. Approximation resistance from pairwise independent subgroups. In Proceed-
ings of the Forty-fifth Annual ACM Symposium on Theory of Computing, STOC’13, pages
447–456, New York, NY, USA, 2013. ACM. doi:10.1145/2488608.2488665.

10 Siu On Chan. Approximation resistance from pairwise-independent subgroups. J. ACM,
63(3):27, 2016. doi:10.1145/2873054.

11 Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Near-optimal algorithms
for maximum constraint satisfaction problems. ACM Trans. Algorithms, 5(3), 2009. doi:
10.1145/1541885.1541893.

12 Ernie Croot, Vsevolod Lev, and Peter Pach. Progression-free sets in Z4n are exponentially
small. arXiv:1605.01506 [math], May 2016. arXiv: 1605.01506. URL: http://arxiv.org/
abs/1605.01506.

13 Irit Dinur, Elchanan Mossel, and Oded Regev. Conditional hardness for approximate
coloring. SIAM Journal on Computing, 39(3):843–873, 2009. doi:10.1137/07068062X.

14 Irit Dinur, Oded Regev, and Clifford D. Smyth. The hardness of 3-uniform hypergraph
coloring. Combinatorica, 25(5):519–535, 2005.

15 Jordan S. Ellenberg and Dion Gijswijt. On large subsets of Fqn with no three-term
arithmetic progression. arXiv:1605.09223 [math], May 2016. arXiv: 1605.09223. URL:
http://arxiv.org/abs/1605.09223.

16 Lars Engebretsen. The nonapproximability of non-boolean predicates. SIAM J. Discrete
Math., 18(1):114–129, 2004. doi:10.1137/S0895480100380458.

http://arxiv.org/abs/1304.6133
http://arxiv.org/abs/1304.6133
http://dx.doi.org/10.1007/s00037-009-0272-6
http://dx.doi.org/10.1007/s00037-009-0272-6
http://dx.doi.org/10.1109/FOCS.2009.23
http://dx.doi.org/10.1109/FOCS.2009.23
http://dx.doi.org/10.1007/978-3-642-14165-2_22
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.152
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.152
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.14
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.14
https://eccc.weizmann.ac.il/report/2017/080/
http://arxiv.org/abs/1501.01598
http://dx.doi.org/10.1145/2488608.2488665
http://dx.doi.org/10.1145/2873054
http://dx.doi.org/10.1145/1541885.1541893
http://dx.doi.org/10.1145/1541885.1541893
http://arxiv.org/abs/1605.01506
http://arxiv.org/abs/1605.01506
http://dx.doi.org/10.1137/07068062X
http://arxiv.org/abs/1605.09223
http://dx.doi.org/10.1137/S0895480100380458

J. Brakensiek and V. Guruswami 4:17

17 Lars Engebretsen and Jonas Holmerin. More efficient queries in pcps for NP and improved
approximation hardness of maximum CSP. Random Struct. Algorithms, 33(4):497–514,
2008. doi:10.1002/rsa.20226.

18 Vitaly Feldman, Venkatesan Guruswami, Prasad Raghavendra, and Yi Wu. Agnostic
learning of monomials by halfspaces is hard. SIAM J. Comput., 41(6):1558–1590, 2012.
doi:10.1137/120865094.

19 Hans Gebelein. Das statistische Problem der Korrelation als Variations- und Eigenwert-
problem und sein Zusammenhang mit der Ausgleichsrechnung. ZAMM – Journal of Ap-
plied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik,
21(6):364–379, January 1941. doi:10.1002/zamm.19410210604.

20 Venkatesan Guruswami, Johan Håstad, Rajsekar Manokaran, Prasad Raghavendra, and
Moses Charikar. Beating the random ordering is hard: Every ordering CSP is approxima-
tion resistant. SIAM J. Comput., 40(3):878–914, 2011.

21 Venkatesan Guruswami, Johan Håstad, and Madhu Sudan. Hardness of approximate hy-
pergraph coloring. SIAM Journal on Computing, 31(6):1663–1686, 2002.

22 Venkatesan Guruswami and Sanjeev Khanna. On the hardness of 4-coloring a 3-colorable
graph. SIAM J. Discrete Math., 18(1):30–40, 2004.

23 Venkatesan Guruswami and Euiwoong Lee. Strong inapproximability results on balanced
rainbow-colorable hypergraphs. Combinatorica, 2015. Accepted.

24 Venkatesan Guruswami and Euiwoong Lee. Nearly optimal NP-hardness of unique coverage.
In Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1724–1730, 2016.

25 Venkatesan Guruswami and Prasad Raghavendra. Constraint satisfaction over a non-
boolean domain: Approximation algorithms and Unique-Games hardness. In Proceedings
of the 11th International Workshop on Approximation, Randomization and Combinatorial
Optimization (APPROX), pages 77–90, 2008. doi:10.1007/978-3-540-85363-3_7.

26 Venkatesan Guruswami, Prasad Raghavendra, Rishi Saket, and Yi Wu. Bypassing UGC
from some optimal geometric inapproximability results. ACM Trans. Algorithms, 12(1):6,
2016.

27 Venkatesan Guruswami and Ali Kemal Sinop. Improved inapproximability results for max-
imum k-colorable subgraph. Theory of Computing, 9:413–435, 2013. doi:10.4086/toc.
2013.v009a011.

28 Gustav Hast. Approximating max k-CSP – outperforming a random assignment with
almost a linear factor. In 32nd International Colloquium on Automata, Languages and
Programming, pages 956–968, 2005.

29 Johan Håstad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001.
doi:10.1145/502090.502098.

30 Johan Håstad and Subhash Khot. Query Efficient PCPs with Perfect Completeness. Theory
of Computing, 1:119–148, September 2005. doi:10.4086/toc.2005.v001a007.

31 H.O. Hirschfeld. A Connection between Correlation and Contingency. Mathematical
Proceedings of the Cambridge Philosophical Society, 31(4):520–524, October 1935. doi:
10.1017/S0305004100013517.

32 Sangxia Huang. Approximation resistance on satisfiable instances for predicates strictly
dominating parity. Electronic Colloquium on Computational Complexity (ECCC), 19:40,
2012. URL: https://eccc.weizmann.ac.il/report/2012/040/.

33 Sangxia Huang. Approximation resistance on satisfiable instances for sparse predicates.
Theory of Computing, 10:359–388, 2014. doi:10.4086/toc.2014.v010a014.

34 Sangxia Huang. 2(logN)1/10−o(1) hardness for hypergraph coloring. Technical report, Elec-
tronic Colloquium on Computational Complexity (ECCC), 2015. URL: https://eccc.
weizmann.ac.il/report/2015/062/.

APPROX/RANDOM’17

http://dx.doi.org/10.1002/rsa.20226
http://dx.doi.org/10.1137/120865094
http://dx.doi.org/10.1002/zamm.19410210604
http://dx.doi.org/10.1007/978-3-540-85363-3_7
http://dx.doi.org/10.4086/toc.2013.v009a011
http://dx.doi.org/10.4086/toc.2013.v009a011
http://dx.doi.org/10.1145/502090.502098
http://dx.doi.org/10.4086/toc.2005.v001a007
http://dx.doi.org/10.1017/S0305004100013517
http://dx.doi.org/10.1017/S0305004100013517
https://eccc.weizmann.ac.il/report/2012/040/
http://dx.doi.org/10.4086/toc.2014.v010a014
https://eccc.weizmann.ac.il/report/2015/062/
https://eccc.weizmann.ac.il/report/2015/062/

4:18 The Quest for Strong Inapproximability Results with Perfect Completeness

35 Johan Håstad. On the np-hardness of max-not-2. SIAM Journal on Computing, 43(1):179–
193, 2014. doi:10.1137/120882718.

36 Gil Kalai. A Fourier-theoretic perspective on the Condorcet paradox and arrow’s theorem.
Advances in Applied Mathematics, 29(3):412–426, 2002. doi:10.1016/S0196-8858(02)
00023-4.

37 Sanjeev Khanna, Nathan Linial, and Shmuel Safra. On the hardness of approximating the
chromatic number. Combinatorica, 20(3):393–415, 2000.

38 Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings on 34th
Annual ACM Symposium on Theory of Computing, pages 767–775, 2002.

39 Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inapprox-
imability results for max-cut and other 2-variable csps? SIAM Journal on Computing,
37(1):319–357, 2007. doi:10.1137/S0097539705447372.

40 Subhash Khot, Dor Minzer, and Muli Safra. On Independent Sets, 2-to-2 Games and Grass-
mann Graphs. Technical Report 124, Electrontic Colloquium on Computational Complexity
(ECCC), August 2016. URL: https://eccc.weizmann.ac.il/report/2016/124/.

41 Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2-
epsilon. J. Comput. Syst. Sci., 74(3):335–349, 2008. doi:10.1016/j.jcss.2007.06.019.

42 Subhash Khot and Rishi Saket. Hardness of coloring 2-colorable 12-uniform hypergraphs
with ith 2(logn)Ω(1) colors. In 55th IEEE Annual Symposium on Foundations of Computer
Science, pages 206–215, 2014.

43 Subhash Khot and Rishi Saket. Hardness of finding independent sets in 2-colorable and
almost 2-colorable hypergraphs. In Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1607–1625, 2014.

44 Euiwoong Lee. Hardness of graph pricing through generalized max-dicut. In Proceedings
of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, pages 391–399,
2015. doi:10.1145/2746539.2746549.

45 Euiwoong Lee. Improved hardness for cut, interdiction, and firefighter problems. CoRR,
abs/1607.05133, 2016. URL: http://arxiv.org/abs/1607.05133.

46 Konstantin Makarychev and Yury Makarychev. Approximation Algorithm for Non-Boolean
Max-k-CSP. Theory of Computing, 10:341–358, October 2014. doi:10.4086/toc.2014.
v010a013.

47 Colin McDiarmid. A random recolouring method for graphs and hypergraphs. Combina-
torics, Probability and Computing, 2:363–365, 9 1993. doi:10.1017/S0963548300000730.

48 Elchanan Mossel. Gaussian bounds for noise correlation of functions. Geometric and
Functional Analysis, 19(6):1713–1756, 2010. doi:10.1007/s00039-010-0047-x.

49 Elchanan Mossel, Ryan O’Donnell, and Krzysztof Oleszkiewicz. Noise stability of functions
with low influences: invariance and optimality. Ann. of Math. (2), 171(1):295–341, 2010.
doi:10.4007/annals.2010.171.295.

50 Ryan O’Donnell. Some topics in analysis of boolean functions. In Proceedings of the 40th
Annual ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada,
May 17-20, 2008, pages 569–578, 2008. doi:10.1145/1374376.1374458.

51 Ryan O’Donnell and Yi Wu. Conditional hardness for satisfiable 3-CSPs. In Proceedings of
the Forty-first Annual ACM Symposium on Theory of Computing, STOC’09, pages 493–502,
New York, NY, USA, 2009. ACM. doi:10.1145/1536414.1536482.

52 Prasad Raghavendra. Optimal algorithms and inapproximability results for every CSP? In
Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pages 245–254,
2008.

53 Prasad Raghavendra. Approximating NP-hard problems: Efficient algorithms and their
limits. PhD thesis, University of Washington, 2009.

http://dx.doi.org/10.1137/120882718
http://dx.doi.org/10.1016/S0196-8858(02)00023-4
http://dx.doi.org/10.1016/S0196-8858(02)00023-4
http://dx.doi.org/10.1137/S0097539705447372
https://eccc.weizmann.ac.il/report/2016/124/
http://dx.doi.org/10.1016/j.jcss.2007.06.019
http://dx.doi.org/10.1145/2746539.2746549
http://arxiv.org/abs/1607.05133
http://dx.doi.org/10.4086/toc.2014.v010a013
http://dx.doi.org/10.4086/toc.2014.v010a013
http://dx.doi.org/10.1017/S0963548300000730
http://dx.doi.org/10.1007/s00039-010-0047-x
http://dx.doi.org/10.4007/annals.2010.171.295
http://dx.doi.org/10.1145/1374376.1374458
http://dx.doi.org/10.1145/1536414.1536482

J. Brakensiek and V. Guruswami 4:19

54 A. Rényi. On measures of dependence. Acta Mathematica Academiae Scientiarum Hun-
garica, 10(3-4):441–451, September 1959. doi:10.1007/BF02024507.

55 S. Sachdeva and R. Saket. Optimal Inapproximability for Scheduling Problems via Struc-
tural Hardness for Hypergraph Vertex Cover. In 2013 IEEE Conference on Computational
Complexity, pages 219–229, June 2013. doi:10.1109/CCC.2013.30.

56 A. Samorodnitsky and L. Trevisan. Gowers Uniformity, Influence of Variables, and PCPs.
SIAM Journal on Computing, 39(1):323–360, January 2009. doi:10.1137/070681612.

57 Alex Samorodnitsky and Luca Trevisan. A PCP characterization of NP with optimal
amortized query complexity. In Proceedings of the Thirty-Second Annual ACM Symposium
on Theory of Computing, pages 191–199, 2000. doi:10.1145/335305.335329.

58 Madhu Sudan and Luca Trevisan. Probabilistically checkable proofs with low amortized
query complexity. In 39th Annual Symposium on Foundations of Computer Science, pages
18–27, 1998. doi:10.1109/SFCS.1998.743425.

59 Suguru Tamaki and Yuichi Yoshida. A query efficient non-adaptive long code test with
perfect completeness. In Maria Serna, Ronen Shaltiel, Klaus Jansen, and José Rolim, ed-
itors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques: 13th International Workshop, APPROX 2010, and 14th International Work-
shop, RANDOM 2010, Barcelona, Spain, September 1-3, 2010. Proceedings, pages 738–751,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. doi:10.1007/978-3-642-15369-3_
55.

60 Luca Trevisan. Parallel approximation algorithms by positive linear programming. Algo-
rithmica, 21(1):72–88, 1998. doi:10.1007/PL00009209.

61 Luca Trevisan. Approximating satisfiable satisfiability problems. Algorithmica, 28(1):145–
172, 2000. doi:10.1007/s004530010035.

62 Girish Varma. Reducing uniformity in Khot-Saket hypergraph coloring hardness reductions.
arXiv:1408.0262 [cs], August 2014. arXiv: 1408.0262. URL: http://arxiv.org/abs/1408.
0262.

63 Cenny Wenner. Circumventing d-to-1 for approximation resistance of satisfiable predicates
strictly containing parity of width at least four. Theory of Computing, 9(23):703–757, 2013.
doi:10.4086/toc.2013.v009a023.

64 H. Witsenhausen. On Sequences of Pairs of Dependent Random Variables. SIAM Journal
on Applied Mathematics, 28(1):100–113, January 1975. doi:10.1137/0128010.

A Proof of Lemma 4.4

Proof. We use a modification of the constructions of [2] and [59]. Let ` ≥ 3 be the least
odd integer such that q(`−1)/2 ≥ k. Thus, q` ≤ k2q3. View F`q as a vector space over Fq.
By Lemma 4.3 there exists S ⊂ F`q with |S| ≥ q(`−1)/2 ≥ k such that S is 3-wise linearly
independent (i.e., every 3-element subset is linearly independent). Let v(1), . . . , v(k) ∈ S be k
distinct elements from this set. Define 〈·, ·〉 to be the canonical bilinear form on F`q. That is,
〈x, y〉 =

∑`
i=1 xiyi.

We give an initial attempt to construct our predicate. Let10

P0 = {(〈v(1), X〉, . . . , 〈v(k), X〉) : X ∈ F`q}.

We have that |P0| ≤ q` ≤ k2q3. We show that P0 satisfies properties (1), (2), and (4). Note
that the definition of P0 defined a natural probability distribution µ. It is clear that µ has

10Note that we identify [q] with Fq in some canonical way.

APPROX/RANDOM’17

http://dx.doi.org/10.1007/BF02024507
http://dx.doi.org/10.1109/CCC.2013.30
http://dx.doi.org/10.1137/070681612
http://dx.doi.org/10.1145/335305.335329
http://dx.doi.org/10.1109/SFCS.1998.743425
http://dx.doi.org/10.1007/978-3-642-15369-3_55
http://dx.doi.org/10.1007/978-3-642-15369-3_55
http://dx.doi.org/10.1007/PL00009209
http://dx.doi.org/10.1007/s004530010035
http://arxiv.org/abs/1408.0262
http://arxiv.org/abs/1408.0262
http://dx.doi.org/10.4086/toc.2013.v009a023
http://dx.doi.org/10.1137/0128010

4:20 The Quest for Strong Inapproximability Results with Perfect Completeness

uniform marginal distributions (since each v(i) is nonzero and X is uniform). Furthermore,
the marginal distributions are 3-wise independent (and thus 3-wise uniform) since the v(i)’s
are 3-wise linearly independent. (We omit the proof, a similar result for pairwise independence
is Lemma 4.2 of [2].)

Now, fix i ∈ [k], define µi to be

µi := {x, y ∼ µ independent : xi = yi}.

Let Xi,j with j ∈ [k] be the marginals of µi. We seek to show µi satisfies properties (1), (2),
and (4). Property (1) follows immediately from the uniform marginals of µ. Now, fix j 6= i,
since (xi, xj) and (xi = yi, yj) are uniform distributions and xj and yj are conditionally
independent given xi, we have that

Pr[xi ∧ xj ∧ yj] = Pr[xj ∧ yj |xi] Pr[xi] = Pr[xj |xi] Pr[yj |xi] Pr[xi] = Pr[xj] Pr[yj] Pr[xi].

Therefore, (xi, xj , yj) is uniform on F`q. Thus, property (2) and the case j′ = i of property
(4) follow.

To finish establishing property (4), consider j 6= j′ ∈ [k] \ {i}. We seek to show that
(xj , xj′ , yj , yj′) is uniform for which it suffices to show that (xi, xj , xj′ , yj , yj′) is uniform.
Like before,

Pr[xi ∧ xj ∧ xj′ ∧ yj ∧ yj′]
= Pr[xj ∧ xj′ |xi] Pr[yj ∧ yj′ |xi] Pr[xi]
= Pr[xj] Pr[xj′] Pr[yj] Pr[yj′] Pr[xi] (3-wise independence of µ).

Thus, the µi’s satisfy properties (1), (2), and (4). Sadly, due to the nice algebraic structure
of P0, we have that ρ(µi) = 1 for all i. To rectify this, we create a ‘noisy’ version of P0. For
x ∈ Fkq , let |x| be the number of nonzero coordinates of x. Then, we define P to be

P := {x ∈ Fkq | ∃y ∈ P0, |x− y| ≤ 1}.

Note that |P | ≤ (k + 1)|P0| ≤ 2k3q3. Now, modify the µi’s to get µ′i’s by the following
procedure.
1. Sample (x, y) ∈ µi.
2. Sample j ∈ [k] and a, b ∈ Fq uniformly.
3. If i = j, set xi = yj = a. Otherwise, set xi = a and yj = b.
Clearly the support of µ′i is P 2. Also µ′i preserves properties (1), (2), and (4) of being V label
cover-compatible since re-randomizing coordinates can only assist in maintaining pairwise
independent distributions.

It remains to show that µ′i satisfies property (3). The proof of this is similar to that of
Lemma 4.6 of [59]. Let

Zi,j :=
k∏

j=1,j 6=i
Xi,j .

It suffices to show that ρ(Xi,j , Zi,j) < 1. To do that, it suffices to show by Lemma 2.4
that the bipartite graph whose edges are the support of Xi,j × Zi,j is connected. For any
(α, β) ∈ Xi,j × Zi,j , since with nonzero probability the jth coordinate is rerandomized, we
have that (α′, β) ∈ Xi,j × Zi,j for all α′ in the support of Xi,j . From this connectivity
immediately follows.

Therefore, P has the desired properties. J

Scheduling Problems over Network of Machines
Zachary Friggstad∗1, Arnoosh Golestanian2,
Kamyar Khodamoradi3, Christopher Martin4,
Mirmahdi Rahgoshay5, Mohsen Rezapour6,
Mohammad R. Salavatipour†7, and Yifeng Zhang8

1 Department of Computing Science, University of Alberta, Edmonton, AB,
Canada

2 Department of Computing Science, University of Alberta, Edmonton, AB,
Canada

3 Department of Computing Science, University of Alberta, Edmonton, AB,
Canada

4 Department of Computing Science, University of Alberta, Edmonton, AB,
Canada

5 Department of Computing Science, University of Alberta, Edmonton, AB,
Canada

6 Department of Computing Science, University of Alberta, Edmonton, AB,
Canada

7 Department of Computing Science, University of Alberta, Edmonton, AB,
Canada

8 Department of Computing Science, University of Alberta, Edmonton, AB,
Canada
Abstract

We consider scheduling problems in which jobs need to be processed through a (shared) network
of machines. The network is given in the form of a graph the edges of which represent the
machines. We are also given a set of jobs, each specified by its processing time and a path in the
graph. Every job needs to be processed in the order of edges specified by its path. We assume
that jobs can wait between machines and preemption is not allowed; that is, once a job is started
being processed on a machine, it must be completed without interruption. Every machine can
only process one job at a time.

The makespan of a schedule is the earliest time by which all the jobs have finished processing.
The flow time (a.k.a. the completion time) of a job in a schedule is the difference in time
between when it finishes processing on its last machine and when the it begins processing on its
first machine. The total flow time (or the sum of completion times) is the sum of flow times
(or completion times) of all jobs. Our focus is on finding schedules with the minimum sum of
completion times or minimum makespan.

In this paper, we develop several algorithms (both approximate and exact) for the problem
both on general graphs and when the underlying graph of machines is a tree. Even in the very
special case when the underlying network is a simple star, the problem is very interesting as it
models a biprocessor scheduling with applications to data migration.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases approximation algorithms, job-shop scheduling, min-sum edge coloring,
minimum latency

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.5

∗ This research was undertaken, in part, thanks to funding from the Canada Research Chairs program
and an NSERC Discovery Grant.

† Supported by NSERC.
© Zachary Friggstad, Arnoosh Golestanian, Kamyar Khodamoradi, Christopher Martin,
Mirmahdi Rahgoshay, Mohsen Rezapour, Mohammad R, Salavatipour, Yifeng Zhang;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 5; pp. 5:1–5:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

5:2 Scheduling Problems over Network of Machines

1 Introduction

Scheduling problems have been studied extensively over the past several decades. In this
paper, we consider a class of scheduling problems in which there is an underlying network
of machines. Before stating our problem, let us start with the classical job shop scheduling
problem. In job shop, we are given a collection J of n jobs and a set M of m machines.
Each job j consists of a sequence of µj operations O1j , O2j , . . . , Oµjj . Operation Oij takes
pij ∈ Z≥0 time units on machine mij ∈M . A feasible schedule specifies for each job the times
its operations must be performed such that each machine processes at most one operation at
any time and for each job, and an operation is performed only if all preceding operations are
already performed. We assume all jobs are available at time zero. Let Cj be the completion
time of job j in a schedule. Then the makespan of the schedule is Cmax = maxj Cj and the
weighted sum of completion time is

∑
j wjCj where wj ≥ 0, j ∈ J are given weights for the

jobs. Two common performance measures are to find schedules with minimum makespan or
minimum (weighted) sum of completion times. We refer to the latter as min-sum or weighted
min-sum objective. When pij ’s are all equal to pj (i.e. independent of the machine) then we
have the identical machine setting. Otherwise, we have the unrelated machine setting.

There are many special cases of job shop scheduling studied in the literature. One
specialization that still generalizes several other problems and has drawn attention more
recently is when there is an underlying network of machines. In this setting, we assume we
are given a graph G = (V,E) where each edge e corresponds to a machine. Each job j ∈ J
has a specific path Qj starting at sj ∈ V and ending at tj ∈ V . The path specifies the set of
machines the job has to go through in a specific order (i.e. the sequence of its operations). If
the graph G is a simple path P = v1, v2, . . . , vm+1 (where vivi+1 corresponds to machine mi),
each sj = v1 and tj = vm+1 for all jobs j ∈ J then we get the classical flow shop problem.
Another interesting special case is when we have a general graph G, but all pij ’s are 1; this
problem becomes the classical packet routing problem in a network (see [14, 15]). There are
also works when the underlying graph G is a tree or other special graphs (see [1, 13, 19, 20]).

1.1 Previous work
The amount of previous work on these problems is simply too large to be reviewed compre-
hensively here. We mention only some of the work and refer the reader to the references
in them. Trivial lower bounds used in many of the previous work for makespan are the
congestion and dilation lower bounds. If C is the largest congestion of any machine (the
maximum over all machines i of the total running time of jobs that have an operation on
i) and D is the largest dilation (longest time it would take a job to perform regardless of
the presence of other jobs) then lb = max{C,D} is clearly a lower bound on the makespan.
For general job shop Shmoys et al. [25] presented an algorithm with performance ratio
O((log lb)2/ log log lb). When jobs can be preempted (i.e. their processing can be paused in
the middle of any operations to be resumed later) one can get better results (see [2]).

Acyclic job shop is a special case of job shop where no job has two operations on the
same machine. For this setting, Scheideler and Feige [6] present an algorithm to schedule
with makespan O(lb log lb log log lb). To complement this, for acyclic job shop with identical
machines they provide a family of instances with optimum makespan Ω(lb log lb/ log log lb).

The approximation in [6] is also the best known result for the case of flow shop (which is
a special case of acyclic job shop). For the slightly more general setting of flow shop where
each job still has to go through the machines in the order they appear but may not need to
be run on all of them (i.e. only needs to be run on a subsequence of machines), Mastrolilli

Z. Friggstad et al. 5:3

and Svensson [18] prove a hardness of approximation of ratio Ω(log1−ε lb). For the flow shop
problem with identical machines (also referred to as proportionate flow shop), Shakhlevich et
al. [23] present a polynomial time algorithm for the weighted min-sum objective.

As mentioned earlier, for the special case of pij = 1 for all i, j, the problem reduces
to the packet routing problem, where each job is simply a packet that takes one unit of
time to travel each edge (being a machine or a router). For this, the celebrated result of
Leighton et al. [14, 15] and subsequent works show that there is a schedule of length O(lb).
The most recent result by Harris and Srinivasan [10] show that there exists a schedule of
length 7.26 · (C +D) (non-constructive) and an algorithm that finds a schedule of length
8.84 · (C +D). More recently, Peis et al. [19] have shown that for the case of packet routing
on a tree, one can get a schedule of length at most C + D − 1; so this implies a simple
2-approximation. For the special case of packet routing when G is simply a path and all
packets go from left-to-right, [1, 12] show that the schedule in which at each time step each
machine (edge) processes the job that has the shortest distance to go finds the optimum
solution for the min-sum objective. Similar algorithms (namely furthest-to-go first) find the
optimum solution for makespan objective [12].

For packet routing for in-trees or out-trees (directed trees in which the in-degree of each
node is at most one, or out-degree is at most one, respectively) results of [16] show that the
furthest-to-go strategy gives optimum solution for makespan. Based on this, [19] observe
that it is easy to get a 2-approximation for makespan on undirected trees (by converting the
tree into a rooted tree and splitting each schedule into two stages where in the first stage all
the packets must first go up and then all the packets must go down to their destination in
the 2nd stage). Similar results are claimed by Kowalski et al. [13] for makespan and min-sum
objective on trees.1

In [17, 22], the authors give a general framework for a broad class of scheduling problems
(using LP rounding) that shows that any approximation algorithm with ratio ρ w.r.t. the
trivial lower bound lb for makespan can be used to obtain a 2eρ approximation for the
min-sum objective. As a special case, this applies to the scheduling problems on networks of
identical machines. We will use this result in some of our results. It is worth pointing out
that some of the ideas in [17, 22] which are also used in subsequent works have similarities to
the ideas of approximation of minimum latency in vehicle routing problems (like the classical
minimum latency) which use an approximation for minimum k-stroll or minimum k-spanning
tree (k-MST) as a subroutine (see [4] and earlier works).

More recent works have looked at some other variants of scheduling on a network. Im and
Moseley [11] look at the online scheduling problem where the network is a tree. In their model,
the edges are considered routers and each leaf node corresponds to a machine. Each job must
start from the root and then pass through the routers to arrive at a machine to be scheduled
on. Each router and machine can process one job at a time. Machines may be unrelated,
but routers are identical. They present constant factor competitive approximations using
constant speed-up for makespan. Bhattacharya et al. [3] look at coordination mechanism for
routing problems on a tree.

1.2 Our results
All of our results are for the identical machines setting (so each job j ∈ J has a processing
time pj , independent of the machine).

1 They claim a 3-approximation for makespan, and a 7-approximation for the min-sum objective, but the
sketch of the proof they provide for the latter seems incorrect and there is no full proof for it.

APPROX/RANDOM’17

5:4 Scheduling Problems over Network of Machines

Our first result is really just some smaller observations on our part, our more interesting
results are mentioned later. However, it points out an improvement for the acyclic job shop
problem with identical machines, so we think it bears mentioning.

I Theorem 1. For trees, for both makespan and min-sum objective, there are polynomial
time O(min{logn, logm, log pmax})-approximation algorithms, where pmax is the maximum
processing time among all jobs. If all jobs have unit processing time, then there is a polynomial
time 4e-approximation for the min-sum objective.

For acyclic job shop with identical machines, under both the makespan and the min-sum
objective there is an O(min{logn`, log pmax})-approximation where ` is the maximum number
of machines in a job’s sequence.

Note pmax ≤ lb so this improves over the approximation for acyclic job shop in [6] by an
O(log log lb)-factor, but only for the identical machines case. Recall that [6] show existence
of family of instances of acyclic job shop with identical machines having optimum makespan
Ω(lb log lb/ log log lb), so the upper bound is tight within an O(log log lb) factor.

We should point out that earlier works [1, 12] imply a 2-approximation for minimizing
the makespan for identical jobs on trees. We also consider a special case of trees, called
junction-trees: in this setting, the network is a rooted tree T and for each job j ∈ J , the Qj
path for j contains the root. A special junction-tree is when T is simply a star with all the
jobs starting and ending at the leaves of T .

I Theorem 2. For scheduling on junction-trees, there is a 4-approximation for makespan
and a 8e-approximation for the min-sum objective. Furthermore, if all processing times are
1, there is a different 3-approximation algorithm for the min-sum objective.

Perhaps the strongest and most technical result of our paper is for the simplest setting of
star networks. We prove the following.

I Theorem 3. For the min-sum objective on stars where all the jobs start and end on leaves
there is a 7.279-approximation algorithm. For the special case of unit processing time, there
is a 1.796-approximation algorithm.

This setting is more interesting than one might initially think; it is closely related to
biprocessor scheduling problems studied in, say, [9]. This connection is examined more closely
at the start of Section 2.

Another special case of junction trees is when each job starts at the root and may take
(any) root-to-leaf node in order to be completed. So there is not a specified path of machines
that job j must run on. Instead, we have to decide the path as well as how to schedule the
jobs. This is the same setting as in [11] for which the authors present online algorithms. It
turns out for this special case computing a schedule with the min-sum objective can, in fact,
be solved in polynomial time. We call this problem rooted-tree routing scheduling.

I Theorem 4. For the rooted-tree routing scheduling, there is a polynomial time algorithm
to compute a schedule with the min-sum objective.

Outline of the paper: We start by studying the simplest setting (star networks) and prove
Theorem 3 in Section 2. The approximation algorithms for trees and junction trees as well
as the observation for acyclic job shop with identical machines (Theorems 1, 2, and 4) are
presented in Section 3.

Z. Friggstad et al. 5:5

2 Approximation Algorithms for Stars

In this section, we look at the min-sum objective for scheduling on a star where jobs
start/end at leaves. One problem related to the scheduling problem defined on a star network
is biprocessor scheduling or data migration which can be modelled as edge sum-coloring or
edge sum multi-coloring [7, 8, 9]. In the data migration problem, one has to move data stored
among devices in a network from one configuration to another. The network is modeled as a
graph G = (V,E) where each vertex v ∈ V represents a data storage and an edge e = vivj
represents the need to transfer data between vi and vj . This transfer may take pe time units
and will keep both vi and vj busy for that many steps. A transfer cannot be preemptive
(hence, once started must run until completed) and no node vi can be transferring data
to/from more than one other data storage at the same time. So, only data transfer over
edges that form a matching can happen concurrently. The goal is to find a schedule for these
transfers and minimize the makespan (the time the last transfer completes) or the min-sum
objective (the average time the transfers are completed).

This is essentially biprocessor scheduling where the nodes are the processors, the tasks
are represented by edges, and each task requires two specific resources (its two end-points) in
order to run. When all pe’s are one, minimizing the min-sum objective is equivalent to the
min-sum edge coloring of G [9], and it has been studied extensively. In the min-sum edge
coloring, one has to find a proper edge coloring φ : E → Z+ that minimizes

∑
e φ(e). One

can think of φ(e) as the time step in which edge e is scheduled to run on the two processors
of its end-points. In the min-sum edge multi-coloring, each edge e has a requirement pe
and one has to assign pe distinct integers (as colors) to e such that for any two adjacent
edges the set of colors assigned to them are disjoint. If one further requires each set of
colors to form a consecutive sequence of integers, then those pe integers can be considered
to be the time steps in which task e = vivj is supposed to run on the two processors vi, vj .
The best approximation algorithm for the min-sum edge coloring is due to Halldorsson
et al. [9] who present a configuration LP rounding with ratio 1.8298 and a combinatorial
1.8886-approximation. For biprocessor scheduling with arbitrary processing times pe, Gandhi
et al. [7] give a 7.682-approximation.

The problem we are considering, when restricted to networks of stars is another form of
biprocessor scheduling in which each task requires being performed on two specific processors
and in a specific order. More formally, suppose that the star T = (V,E) with root/center
node r is the network and each job j ∈ J starts and ends at leaf nodes sj , tj , respectively. We
first create a directed demand graph H = (VH , EH) whose vertices correspond to machines
(i.e. edges of T) and whose arcs correspond to jobs in J , where each arc (sj , tj) ∈ EH
reflects the fact that job j needs to be processed on machines {sj , r} and then on {r, tj}. So,
|VH | = m and |EH | = n. We will use ej ∈ EH to refer to a job j ∈ J .

In this Section, we prove Theorem 3. We start first by presenting the algorithm for the
general case which achieves an approximation ratio of 7.279. We then present a modified
algorithm that has ratio 1.796 for when all pj ’s are 1.

2.1 Approximating stars with general processing times
Our algorithm for both the general and unit processing times has the following general
framework which is somewhat similar to the general framework of minimizing latency (see [4]
and earlier works) to convert a makespan objective to a min-sum objective. Our algorithm
works in stages where in each stage we try to find the maximum number of jobs that can be
scheduled subject to a makespan bound B, which is increasing geometrically in each iteration.

APPROX/RANDOM’17

5:6 Scheduling Problems over Network of Machines

Data: Auxiliary graph H, a constant c ∈ R>0 to be fixed later
Result: A scheduling of the jobs

1 α ∼ U [0, 1)
2 i← 1
3 R1 ← EH ;
4 while Ri 6= ∅ do
5 ti ← ci+α

6 Find a (1.5, ti)-proper subset Ji ⊆ Ri (cf. Lemma 6).
7 Schedule Ji using Proposition 7, starting at the previous iteration’s completion

time.
8 Ri+1 ← Ri \ Ji
9 i← i+ 1

10 end
Algorithm 1: Approximation for the min-sum scheduling on stars with identical
machines.

We show how even a bicriteria approximation for this makespan version of the problem can
give a good approximation for the min-sum objective. Most of the work is in finding a good
schedule subject to the makespan bound.

Given a schedule, for a subset of jobs Ĵ ⊆ J , we define the makespan of Ĵ as the difference
in time between when the last job of Ĵ finishes processing on its last machine and when the
first job of Ĵ begins processing on its first machine. We also define the load of a machine
i to be the total processing time of jobs in Ĵ incident to i in H. Note that the notions of
makespan (in our original graph T) and load (in our demand graph H) are closely related.
We define (ρ, t)-proper sets of jobs, which will be used in our algorithm.

I Definition 5 ((ρ, t)-proper set). For ρ ≥ 1 and t > 0, we call a subset of jobs Ĵ ⊆ J a
(ρ, t)-proper set if the two following conditions hold:
|Ĵ | is at least the size of the maximum subset of J that can be scheduled with a makespan
of at most t.
For each machine i, the total load (congestion) of jobs in Ĵ that have i as their first
machine (called the in-load of i) is at most ρ · t and also the load of jobs that have i as
their second machine (called the out-load of i) is at most ρ · t.

We, later on, show how we can build a schedule of jobs in a (ρ, t)-proper subset |Ĵ | with
small makespan and small average completion time of those jobs in Proposition 7. Assuming
we have an algorithm that can find (ρ, t)-proper sets of jobs for any given t, combined with
Proposition 7 we show how we can build an algorithm for the star scheduling problem with
the min-sum objective. At each iteration i, we fix a value ti and do the following: we first
find a proper set of remaining jobs with respect to ti and then, we find a “good” scheduling
of these jobs. Algorithm 1 describes the procedure formally. 2

Before we proceed with the analysis of Algorithm 1, we show how to perform Step 6,
i.e. find a proper set of jobs among remaining jobs, and also some details about Step 7.

I Lemma 6. There is a polynomial time algorithm that finds a (1.5, t)-proper set for any t.

2 We ideally wish to find the largest set of jobs that can be scheduled at any given time ti. However, to
ensure the tractability of our algorithm, we settle for a proper set as defined instead.

Z. Friggstad et al. 5:7

Proof. Let OPTt be the maximum number of jobs from J that can be scheduled with
makespan at most t. First, observe that jobs/edges e in H with pe >

t

2 do not appear in
any feasible scheduling with a makespan of t as each such job needs to run sequentially on
two machines. Remove such jobs from consideration. Let pmax = maxj pj ; thus pmax ≤ t/2.
We will find a set of jobs Ĵ such that the in-load of each machine and the out-load of each
machine is at most t+ pmax ≤ 1.5 · t and |Ĵ | ≥ OPTt.

To find this set, we first consider the problem of picking the maximum number of jobs
such that for each machine i the in-load and out-load are at most t. Note the size of this set
is at least OPTt. To find such a set, we round an LP relaxation.

Construct an undirected bipartite graph H̃ = (Ṽ1 ∪ Ṽ2, Ẽ) from H: corresponding to
every vertex v ∈ VH (i.e. for each machine), we create two copies ṽ1 and ṽ2 in Ṽ1 and Ṽ2,
respectively; for every (directed) edge e = (u, v) ∈ Ri (which corresponds to a job) with
pe ≤ t/2, we put an undirected edge ẽ = (ũ1, ṽ2) into Ẽ and let pẽ denote the corresponding
value pe. We work with the following LP relaxation:

max

∑
e∈Ẽ

xe :
∑

e∈δẼ(v)

pexe ≤ t ∀v ∈ Ṽ1 ∪ Ṽ2, x ∈ [0, 1]Ẽ

This LP is exactly the LP relaxation for the so-called demand matching problem whose
study was initiated in [24]. From [24] (which uses an iterated relaxation technique) and
the fact that the graph H̃ is bipartite, we can find an integer vector x ∈ {0, 1}Ẽ with∑
e∈Ẽ xe ≥ OPTLP ≥ OPTt such that

∑
e∈δẼ(v) pe · xe ≤ t + pmax. The edges in E

corresponding to e ∈ Ẽ with xe = 1 forms a (1.5, t)-proper set. J

We should point out that the (1.5, t)-proper set obtained in the proof of Lemma 6 has the
property that the in-load and out-load of each node is at most t+ pmax. Now we describe a
method that, given such a (ρ, t)-proper set Ĵ (for any ρ ≥ 1), returns a schedule of them
with a makespan of at most ρ · t and furthermore, the average completion time of each job is
small.

I Proposition 7. Suppose that Ĵ is a (1.5, t)-proper set as obtained by Lemma 6. There is a
scheduling of the jobs in Ĵ with a makespan of at most 2t+ 2pmax ≤ 3t. Furthermore, the
average completion time of a job in that schedule is at most γ = 2t+ pmax ≤ 2.5t.

The algorithm for this proposition is a simple 2-stage one: in the first stage, each machine
i processes (in some arbitrary order) those jobs in Ĵ that have i as their first leg, i.e. are
going towards the center of the star where this machine is their first leg. Once all the jobs in
Ĵ have arrived at the center of the star (i.e. have completed their first leg), each machine
i starts processing the jobs that have i as their second machine, from smallest to largest
processing time. It is straightforward to observe that each stage takes at most t+pmax ≤ 1.5t
units of time to complete; so the total makespan of all jobs is at most 2t+ 2pmax ≤ 3t.

The proof that the average completion time of each job is at most 2t + pmax is a bit
more involved, and we defer the detailed proof to the full version of the paper. Using this
proposition in Step 7, we can turn the (1.5, ti)-proper set found in Step 6 into a schedule for
that set with makespan at most 3ci+α and average completion time of each job in that set
will be 2.5ci+α.

I Theorem 8. Algorithm 1 is a 7.279-approximation algorithm for the min-sum objective on
stars when jobs have general processing times.

APPROX/RANDOM’17

5:8 Scheduling Problems over Network of Machines

Proof. Following the notation of [4], let uj be completion time of j’th job in our schedule
and let coptj be the completion time of j’th job in a schedule with the optimum min-sum
objective (note that these jobs might not be the same). We would like to bound uj w.r.t.
coptj . Assume that coptj = dck for some d < c and some k ≥ 1. Based on the value of d with
respect to the random variable α in Algorithm 1, two cases arise: i) d < cα or, ii) d ≥ cα. For
the first case, note that since in the optimum there is a schedule of j jobs with makespan at
most coptj = dck < ck+α, the iteration in which the j’th job is scheduled in our algorithm is
at most k. Also, note that the completion time of any job in each iteration i of the previous
k − 1 iterations is at most ρci+α where ρ = 3 and the average completion time of each job in
iteration k (using Proposition 7) is at most γck+α where γ = 2.5. Thus:

uj ≤ ρ
k−1∑
`=1

c`+α + γck+α ≤ c1+α

c− 1(γck − ρ+ (ρ− γ)ck−1).

Similarly, for when d ≥ cα, coptj = dck < ck+1+α. Thus, the j’th job is scheduled no later
than iteration k + 1. Therefore:

uj ≤ ρ
k∑
`=1

c`+α + γck+1+α ≤ c1+α

c− 1(γck+1 − ρ+ (ρ− γ)ck).

In the first case, α ∈ [logc d, 1) and in the second case, α ∈ [0, logc d). By taking the
expectation over α over the two cases, one gets

E [uj] ≤
∫ 1

logc d

c1+α

c− 1(γck − ρ+ (ρ− γ)ck−1)dα+
∫ logc d

0

c1+α

c− 1(γck+1 − ρ+ (ρ− γ)ck)dα

= c

c− 1

(
(γck − ρ+ (ρ− γ)ck−1)

∫ 1

logc d
cαdα (1)

+ (γck+1 − ρ+ (ρ− γ)ck)
∫ logc d

0
cαdα

)
= c

ln c
(
γdck − ρ+ (ρ− γ)dck−1) ≤ c

ln c (γ + ρ− γ
c

)coptj .

Setting ρ = 3 and γ = 2.5, and c = 2.912 leads to the approximation ratio of 7.279. J

2.2 Refinements for the case of unit processing times
In this section, we modify our general framework to obtain better approximation factors for
the case of unit processing times. The main new ingredient of the proof is to use a different
algorithm to find (ρ, t)-proper sets instead of Lemma 6. Recall that our general framework
works in two steps: first, partition the jobs into disjoint blocks, and second, schedule each
block separately. For unit processing time, we follow the same general framework but we use
a standard b-matching algorithm for partitioning, and a more careful scheduling algorithm
to deal with the jobs of each block. Algorithm 2 describes each stage more formally.

In our algorithm, the procedure b-Matching(b) finds a maximum size b-matching (a
subgraph with maximum degree b) in the undirected subgraph obtained from the set of edges
in Ri in polynomial time (e.g. [5]).

I Lemma 9. For even b ≥ 0, any b-matching can be partitioned into b

2 2-matchings.

Z. Friggstad et al. 5:9

Data: Auxiliary graph H, a constant c ∈ R>0 to be fixed later
Result: A scheduling of the jobs

1 α ∼ U [0, 1)
2 i← 1
3 R1 ← EH
4 while Ri 6= ∅ do

5 ti ← 2
⌊
ci+α

2

⌋
6 Ji ← b-Matching(ti)

7 Decompose Ji into
ti
2 disjoint 2-matchings J1

i , J
2
i , . . . , J

ti
2
i (see Lemma 9)

8 Schedule jobs in Ji according to Lemma 10
9 Ri+1 ← Ri \ Ji

10 i← i+ 1
11 end

Algorithm 2: Approximation for the min-sum objective on stars with identical jobs.

This is known for b-regular graphs [21]. It is straightforward to prove the same for graphs
with maximum degree b as well. The details appear in full version.

Next, we schedule the jobs in each block. We note that using Vizing’s algorithm for
edge coloring, we can schedule the jobs in Ji using ti + 1 new time steps (details omitted
here), however, in order to obtain a better approximation ratio we do the following. Let
J = {J1, J2, . . . , J`} be the partitioning constructed by the algorithm, where Ji is a
maximum ti-matching. Recall that each Ji is further partitioned into slots J1

i , J
2
i , . . . , J

ti
2
i .

Our goal is to find a scheduling of jobs in Ji (for each i ≥ 1) with small makespan for them
and at the same time small average completion time. We show how to find a schedule with
makespan ti for each Ji, i ≥ 2 (relative to the end of the last group Ji−1), and with makespan
t1 + 1 for J1; furthermore, for each Ji the average completion time of the jobs in Ji will be
ti+1

2 . In the following lemma, we slightly abuse the definition of the makespan within each
slot to refer to the number of new time units (in comparison to the previous slot) that is
used to schedule its edges.

I Lemma 10. Given the partitioning J , there exists a scheduling in which every slot J ti has
makespan of 2, except for the very first slot J1

1 which has a makespan of 3. The makespan of
each job in Jk will be at most 1 +

∑k
`=1 tk. Furthermore, the average completion time of jobs

in Jk will be at most 1 +
∑k−1
`=1 t` + tk+1

2 .

We only sketch the proof here and defer the details to a full version of the paper.

Proof Sketch. Given that each slot J tk accommodates a 2-matching, we first develop a
schedule for the first slot of J1 with a makespan of 3. In doing so, we observe that any
2-matching accommodated in a slot can be modified to a cycle (path) whose vertices alternate
between having an in-degree of 2 and an out-degree of 2. By scheduling the jobs of J1

1 with
a makespan of 3, we create one slack time unit since every machine processes at most 2 jobs.
We then carry this slack time unit to the subsequent slots and schedule the jobs in each J tk
(except J1

1) with a makespan of 2. J

The proof of the following theorem is analogous to that of Theorem 8, and we defer it to
the appendix.

APPROX/RANDOM’17

5:10 Scheduling Problems over Network of Machines

I Theorem 11. Algorithm 2 is a 1.796-approximation algorithm for the star scheduling
problem when jobs have unit processing times.

3 Scheduling on Trees and General Networks

In this section, we first focus on situations where the topology of the machines is a tree and
then on the general acyclic job shop setting. We prove Theorems 1, 2, and 4.

We first recall a result from [17, 22] that shows how to convert an approximation for the
makespan objective that is relative to the lower bound max{C,D} into an approximation
for the weighted min-sum objective losing only an additional constant factor. Here, C is the
congestion and D is the dilation of the input. The statement below paraphrases their result.

I Theorem 12 ([17, 22]). Consider an instance of job shop scheduling with jobs J having
weights wj ≥ 0, j ∈ J . Suppose for any J ′ ⊆ J we can find a schedule of J ′ in polynomial
time having makespan γ ·max{C(J ′), D(J ′)} where C(J ′) is the maximum congestion of an
edge under jobs J ′ and D(J ′) is the dilation of J ′. Then in polynomial time, we can find a
schedule for all of J where the weighted completion time is at most 2eγ times the minimum
possible weighted completion time.

When we invoke this, we will simply have proved that for the given instance we can
schedule all jobs with makespan bounded by a factor of max{C,D}. But it should be obvious
that we would get the analogous bound if we restricted to any subset of jobs because that
restricted instance falls in the same family of instances we are considering (e.g. on a tree or
acyclic job shop with identical machines).

3.1 Proof of Theorem 1
First, note that if all pj ’s are 1, then we simply have the packet routing problem in a tree.
Peis et al. [19] presented a simple algorithm in this setting that has makespan at most
C +D − 1 (where C and D are congestion and dilation). This, together with the result of
[17, 22], yields a 4e-approximation for the min-sum objective in unit processing time.

Now, suppose that we have general processing times. We first present an algorithm with the
ratio O(min{logm, logn}) with respect to the two lower bounds of C,D for the makespan.
Combined with Theorem 12, this yields the same approximation ratio for the min-sum
objective. Finally, we focus on the acyclic job shop and present an O(min{logn`, log pmax})-
approximation. This will also provide the O(log pmax) part of the guarantee stated in
Theorem 1 for trees.

So, we now focus on trees. Let T be the underlying network. Our plan is to present
an O(logm)-approximation, and also an O(logn)-approximation for makespan. We simply
return the better of the two. For each, we decompose the problem into a logarithmic number
of independent instances, each of which is the union of vertex-disjoint junction-tree instances.

To do this, pick an arbitrary node v1 ∈ T as the root (we specify which vertex to pick
below) and then partition the jobs into two groups: G1: those jobs j for which their path Qj
contains node v; and the rest are placed in J −G1. Note that no job in J −G1 ever needs
processing on any edge incident with v1, therefore, each such job is over a subtree of T − v1.
We claim that we can always pick v1 such that the number of jobs in each of the subtrees in
T − v1 is at most n/2.

I Claim 13. Given a tree T with some subpaths Q1, . . . , Qn where each Qi is a si, ti-path
for some si, ti ∈ V (T) one can always pick a vertex v ∈ T such that the number of paths that
are entirely within any subtree of T − v is at most n/2.

Z. Friggstad et al. 5:11

Proof. For every edge e = uv, if more than n/2 of the paths Qi are contained entirely in one
subtree of T − e, direct e toward this subtree. Otherwise, direct e arbitrarily. After directing
all edges, there is a node v that has no out-going edge. It should be easy to see v has the
required properties. J

Trees

Note that we can find a schedule for each of the subtrees of T−v1 independently and run them
in parallel. Therefore, we can now solve the problem on each of those subtrees independently.
For each such subtree, we pick a node as the root again; all the jobs that contain one of these
roots form group G2 and the rest of jobs belong to J −G1 −G2, and we do this recursively
for each subtree. Since each time, the number of jobs left in a subtree halves, we will have at
most logn iterations and hence we obtain σ ≤ logn groups G1, G2, . . . , Gσ and each group
is the union of independent (i.e. vertex-disjoint) junction-tree instances. Using Theorem 2
we can obtain a 4-approximation for makespan of each group. Running these logn schedules
in any arbitrary order gives an O(logn)-approximation for makespan.

The algorithm for finding an O(logm)-approximation is similar. We only need to pick
the root v1 (and subsequent roots) in such a way that the number of edges (i.e. machines)
in each subtree left is at most half the number of edges in the original one. Such a node is
commonly called a centroid of the tree. Therefore, we obtain logm groups this way, each
of which is a collection of independent junction tree instances. Combining these we get an
O(min{logn, logm})-approximation for the makespan on trees and subsequently the same
approximation ratio for min-sum objective function.

Acyclic Job Shop

The approximation we devise for acyclic job shop is really just a sequence of simple observa-
tions. Recall we are assuming the processing times are integers, so pj ≥ 1 for all jobs j. As
in [6], by losing a factor of 2 in pmax, C, and D, we assume pj = 2k for some k ∈ Z≥0. This
is achieved by scaling up all pj to a power of 2. Observe the optimum solution value at most
doubles; we could just double the start times of all operations in an optimum solution. Also,
any schedule under these scaled processing times yields a schedule under the original times
by using the same start times for each operation.

For each integer 0 ≤ k ≤ log2 pmax, form the group Bk = {j : pj = 2k}. We can view
each group Bk as an instance of acyclic job shop with identical jobs, so by [15] there is a
solution with makespan O(C +D). More specifically, we can scale the running times of each
job in Bk to be 1, which also scales the congestion and dilation by 2−k. In polynomial time,
we can find a schedule for these unit-length jobs with makespan O(2−k · (C +D)) [15], so
under the original running times 2k we get a solution with makespan O(C +D).

Finally, we simply concatenate the resulting solutions for these 1 + pmax groups to get
a solution for all jobs with makespan O(log pmax · (C + D)). As this is an approximation
relative to the lower bound max{C,D}, we also get an O(log pmax)-approximation for the
min-sum objective using Theorem 12.

For the O(logn`)-approximation, we perform the same bucketing but also form a “small
job” group Bsmall = B0 ∪ B1 ∪ . . . ∪ Ba where a = (log2 pmax) − dlog2 n`e. We round up
all jobs in Bsmall to have processing time 2a. We can solve Bsmall trivially by a greedy
algorithm that simply ensures no machine is idle if it has an available job to process.

The makespan of this schedule will be at most 2a · ` · n because there are ` · n operations
in total to be performed between all jobs and at any point of time before all jobs are

APPROX/RANDOM’17

5:12 Scheduling Problems over Network of Machines

completed at least one machine will be busy. Note 2a · ` · n ≤ pmax ≤ C + D. We then
solve the remaining O(logn`) buckets Ba+1, . . . , Blog2 pmax as before and concatenate their
schedules for a total makespan of O(logn`) · (C +D)). Again, using Theorem 12 this yields
an O(logn`)-approximation for the min-sum objective.

3.2 Proof of Theorem 2
Recall that in this setting the network of our machines forms a tree T rooted at r and the
path Qj for each job j contains r on its path.

3.2.1 General processing times
In this section, we present a 4-approximation for the makespan on junction trees which is
based on the trivial lower bounds of C,D. Again, combined with the result of [17, 22], this
implies an 8e-approximation for the min-sum objective function.

Let L be the value of makespan in an optimum solution. Our algorithm for makespan
has two stages: in the first stage each job j moves from sj to r; in the second stage each job
j moves from r to tj . Clearly, each stage can be completed with makespan at most L. We
show how each step can be completed with makespan at most 2L, and this yields a solution
with makespan at most 4L.

It is easier to describe the algorithm for the 2nd stage first: in this setting, all the jobs
are already at the root, and the goal is to send them to their destinations (tj ’s). If u1, . . . , uσ
are children of r, it is enough to focus on the jobs that travel down one arbitrary edge rui
and describe the algorithm for the subtree rooted at ui. Suppose we sort the jobs based on
their processing times from smallest to largest and start sending them (from the smallest) as
soon as rui is free. Since each job j starts on its first edge rui after jobs that have smaller
processing time than j, job j does not encounter delay/waiting other than at the root. Let
p1 ≤ p2 ≤ . . . ≤ pn be the jobs going down rui. Then the maximum delay any job encounters
(which happens for the last job) is

∑n−1
i=1 pi which is at most congestion C. Also, note that

once j starts on the first edge, the total time it takes to complete j is exactly |rtj | ·pj . Noting
that the largest |rtj | · pj is dilation D, all jobs are done after at most D steps, once they have
started processing. Therefore, the whole makespan is at most C +D which is at most 2L.

The algorithm for sending the jobs to the root is almost the same. The best way to
describe it is to consider running the same algorithm as if the jobs were supposed to start
at the root and each job j is to be sent to its start point sj . Using the same algorithm as
above, all jobs can reach their designated vertex sj in time at most 2L. Run this schedule
backwards to move all jobs j from sj to r in time at most 2L.

3.2.2 Special case of unit processing times
Here, we consider the case of junction trees with unit processing time and present a 3-
approximation algorithm for the min-sum objective. Since we have jobs of unit processing
time, we can think of the schedule in synchronized setting were in each time step each
machine starts processing one job that is available for that machine. We assume each e = uv

has two buffers (queues) be(u) and be(v) at the two ends u, v; be(u) will buffer the jobs that
arrive at u and want to cross e and be(v) will buffer the jobs that arrive at v and want to
cross u.

Our algorithm, called Algorithm 3, is very simple; it tries to keep the machines busy.
More specifically, at each time step, each machine e = uv (where v is parent of u) performs

Z. Friggstad et al. 5:13

1 while there is a job unfinished do
2 foreach machine e = uv (with v being parent of u) do
3 if be(u) 6= ∅ then
4 process the first job in be(u) and pass it to the next buffer;
5 else if be(v) 6= ∅ then
6 process the first job in be(v) and pass it to the next buffer;
7 end
8 end
Algorithm 3: Approximation for the min-sum objective on junction trees with unit
processing times.

the following: if there is any job in be(u) process the next job from be(u) and send it along
its path, else if there is any job in be(v) then process the next job from be(v) and send it
along its path, else do nothing. Whenever a job arrives at a machine e = uv from whichever
end-point, it enters the corresponding buffer. Essentially, the algorithm keeps the machines
busy by processing the jobs that have arrived at them (from either end-point), giving priority
to the jobs that are moving towards the root (so they are still in their first leg of their path).

We show that this is a 3-approximation for the min-sum objective, which implies the 2nd
part of Theorem 2.

I Theorem 14. Algorithm 3 is a 3-approximation for min-sum objective.

We use δ(r) to denote the set of machines incident to r. For each edge e let L(e) be the
set of jobs whose path contains e and l(e) = |L(e)|. Recall that for each job j, Qj is the
unique sj , tj path and |Qj | be the number of machines j needs to be processed on. Let OPT
denote an optimum schedule and Copt the total flow time of OPT. We use C to denote
the cost of our solution. In the following two lemmas, we get lower bounds for the optimum.
The proof of the first lemma is immediate and the proof of the second is deferred to a full
version of this paper.

I Lemma 15. Copt ≥
∑
j |Qj |.

I Lemma 16. Copt ≥
∑
e∈δ(r)

`(e)(`(e)+1)
4 + n

2

Combining the above two, we obtain the following lower bound for optimum.

I Corollary 17. Copt ≥ 1
3

(∑
e∈δ(r)

`(e)(`(e)+1)
2 + n+

∑
j |Qj |

)
This corollary along with the following lemma implies Theorem 14.

I Lemma 18. C ≤
∑
e∈δ(r)

`(e)(`(e)−1)
2 +

∑
j |Qj |.

We defer the details to a full version of the paper and conclude this section by noting
that Algorithm 3 is a 2-approximation for the special case when the machines form a star.
This is because by

∑
e∈δ(r) `(e) = 2n and |Qj | = 2 the bounds proved in Lemmas 16 and 18

simplify to:

COPT ≥
∑
e

`(e)2

4 + n and C ≤
∑

e

`(e)2

2 . (2)

Recall that for this setting our (more complicated) algorithm of Theorem 3 yields a
1.796-approximation.

APPROX/RANDOM’17

5:14 Scheduling Problems over Network of Machines

3.3 Proof of Theorem 4
In this setting, each job j starts at the root and, unlike the previous settings in which a job
must be processed on all machines along a given (sj , tj) path, it can take any path to reach
any leaf node of the tree, while it has a processing time of pj on every machine. For this
case, we show that a simple greedy algorithm finds a schedule with the min-sum objective in
polynomial time, hence proving Theorem 4.

Suppose c1, . . . , cd are the children of r. Consider an optimum solution OPT and let
Jk be the set of jobs that go down a path starting at edge (machine) rck. The following
observation is immediate:

I Observation 19. In any optimum solution, the following two hold:
1. The optimum solution processes the jobs in Jk in the order of their processing time from

small to large.
2. All the jobs in Jk follow the shortest root-to-leaf path.

Processing jobs from the smallest to the largest is known as SPT (Shortest Processing
Time) rule, and it is known that on a single machine, SPT minimizes total flow time (which
means it minimizes the total delay/waiting on one machine). Since using SPT there is no
delay on subsequent machines for any job, it immediately implies that the optimum sends
jobs down each path using SPT rule.

Let nk = |Jk| andmk be the length of the path (number of machines from root-to-leaf) jobs
in Jk travel. Suppose that the jobs in Jk from small to large are: j1

k, j
2
k, . . . , j

nk
k . Since each

job jak ∈ Jk will incur a delay only at the root and the delay is pj1
k

+pj2
k

+ . . .+pja−1
k

, and has a
path of lengthmk of machines to go through, the total flow time of jak ismkpja

k
+
∑

1≤i≤a−1 pjik .
Thus, the total flow time of all the jobs in Jk is:

∑
1≤i≤nk(mk + nk − i)pji

k
, and the total

flow time of all the jobs in OPT is
∑

1≤k≤d
∑

1≤i≤nk(mk +nk− i)pji
k
. We use hk = mk +nk

and call it the “load” of the branch rck. The following lemma follows easily.

I Lemma 20. In any optimum solution, for any two children ck, ck′ of r with nk, n′k > 0 we
must have: |mk + nk −mk′ − nk′ | ≤ 1. In other words, the difference of loads of any two
branches is at most 1.

Proof. By way of contradiction suppose that OPT is an optimum solution and for two
children of r we have nk, n′k > 0 and hk ≥ hk′ + 2. Suppose that Jk = j1

k, j
2
k, . . . , j

nk
k and

Jk′ = j1
k′ , j

2
k′ , . . . , j

nk′
k′ are the sequences of the jobs scheduled on branches rck and rck′ ,

respectively. Suppose we remove job j1
k from branch rck and add it in front of the queue Jk′ .

The total flow time of the jobs on branch rck goes down by hkpj1
k
and the total flow time

of the jobs on branch rck′ goes up by (hk′ + 1)pj1
k
. So the total net change in flow time is

(−hk + hk′ + 1)pj1
k
< 0, which contradicts optimality of OPT. J

We call a schedule in which the load of any two branches differs by at most 1 an almost
balanced schedule. So the above lemma shows every optimum solution is almost balanced.
We can also assume w.l.o.g. that in any optimum solution for jobs n, . . . , 1, if job 1 (the
smallest job) is removed from the schedule, the remaining schedule is still an almost balanced
one. In other words, if Jk is the set of jobs including job 1 and are scheduled on branch
rck then the load hk is as big as any other branch load. To see this, suppose that job 1 is
scheduled on branch rck with hk < hk′ for some other branch rck′ with nk′ > 0. Let i be
the smallest job in Jk′ and swap 1 and i in the schedule. The net change in the total flow
time will be pi(hk − hk′) + p1(hk′ − hk) < 0 since p1 ≤ pi, which is a contradiction.

These properties suggest the following simple greedy algorithm which we show below
finds the optimum solution.

Z. Friggstad et al. 5:15

1 Sort the jobs in non-increasing order of their processing time, say pn, pn−1, . . . , p1;
2 Let c1, . . . , cd be the children of r; and Ji ← ∅ be the queue of jobs going down

branch rci;
3 Let mi be the length of shortest root to leaf path from rci and ni ← |Ji|;
4 j ← n;
5 while j ≥ 1 do
6 k ← argmin1≤i≤d{mi + ni};
7 Schedule job j in front of the queue Jk;
8 nk ← nk + 1;
9 j ← j − 1;

10 end
Algorithm 4: Solving the rooted-tree problem.

I Theorem 21. The greedy algorithm (Algorithm 4) finds an optimum solution.

Proof. We prove by backward induction on i that the greedy finds the optimum solution
for the set of jobs n, . . . , i for all n ≥ i ≥ 1. The case of i = n is trivial. Let k ≤ n be
an arbitrary integer and suppose that the greedy partial schedule for jobs n, . . . , k + 1 is
optimum for this set of jobs; call this schedule Sk+1 and let Sk be the greedy schedule after
adding job k and Ok be an optimum schedule for jobs n, . . . , k. Let O′ be the schedule for
n, . . . , k + 1 obtained from Ok by removing job k. Since Sk+1 is optimum (by hypothesis),
cost(Sk+1) ≤ cost(O′). Also, note that both Sk+1 and O′ are almost balance and have the
same number of jobs. Therefore, if hmin(O′) and hmin(Sk+1) are the minimum loads in O′
and Sk+1, respectively, then hmin(O′) = hmin(Sk+1). This implies

cost(Sk) = cost(Sk+1) + pk(hmin(Sk+1) + 1) ≤ cost(O′) + pk(hmin(O′) + 1) = cost(Ok).J

4 Conclusion

We have presented a number of approximations for special cases of acyclic job shop with
identical machines. There are still many interesting questions one could ask.

For example, we tightened the bound between lb and the minimum makespan for acyclic
job shop with identical machines by an O(log log lb) factor, and now the gap is off by only an
O(log log lb) factor. Can this be further tightened? Perhaps more interestingly, is the acyclic
job shop problem with identical machines hard to approximate within any constant? It may
be hard to approximate within Ω(log1−ε lb), just like flow shop with unrelated machines [18].

Are we resigned to losing logarithmic factors in trees or can we do better? Note that
getting an O(1)-approximation for instances of acyclic flow shop with identical machines
where the underlying network is a path and each job must follow a subpath is still open.

Finally, the fact that the makespan objective for acyclic job shop is super-constant
hard does not necessarily mean its min-sum counterpart is also hard. By way of analogy,
min-sum set cover admits a constant-factor approximation while its classic variant minimum
set cover (which can be viewed as a makespan version) has a logarithmic hardness of
approximation. The problem of getting either further improvements under the min-sum
objective or establishing a super-constant hardness are both open.

Acknowledgement. We thank Rohit Sivakumar for preliminary discussions on this topic.

APPROX/RANDOM’17

5:16 Scheduling Problems over Network of Machines

References
1 Antonios Antoniadis, Neal Barcelo, Daniel Cole, Kyle Fox, Benjamin Moseley, Michael

Nugent, and Kirk Pruhs. Packet forwarding algorithms in a line network. In LATIN 2014:
Theoretical Informatics – 11th Latin American Symposium, Montevideo, Uruguay, March 31
– April 4, 2014. Proceedings, pages 610–621, 2014. doi:10.1007/978-3-642-54423-1_53.

2 Nikhil Bansal, Tracy Kimbrel, and Maxim Sviridenko. Job shop scheduling with unit
processing times. Math. Oper. Res., 31(2):381–389, 2006. doi:10.1287/moor.1060.0189.

3 Sayan Bhattacharya, Janardhan Kulkarni, and Vahab S. Mirrokni. Coordination mechan-
isms for selfish routing over time on a tree. In Automata, Languages, and Programming
– 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014,
Proceedings, Part I, pages 186–197, 2014. doi:10.1007/978-3-662-43948-7_16.

4 Kamalika Chaudhuri, Brighten Godfrey, Satish Rao, and Kunal Talwar. Paths, trees,
and minimum latency tours. In 44th Symposium on Foundations of Computer Science
(FOCS 2003), 11-14 October 2003, Cambridge, MA, USA, Proceedings, pages 36–45, 2003.
doi:10.1109/SFCS.2003.1238179.

5 William J. Cook, William H. Cunningham, William R. Pulleyblank, and Alexander
Schrijver. Combinatorial Optimization. John Wiley & Sons, Inc., New York, NY, USA,
1998.

6 Uriel Feige and Christian Scheideler. Improved bounds for acyclic job shop scheduling.
Combinatorica, 22(3):361–399, 2002. doi:10.1007/s004930200018.

7 Rajiv Gandhi, Magnús M. Halldórsson, Guy Kortsarz, and Hadas Shachnai. Improved
bounds for scheduling conflicting jobs with minsum criteria. ACM Trans. Algorithms,
4(1):11:1–11:20, 2008. doi:10.1145/1328911.1328922.

8 Rajiv Gandhi and Julián Mestre. Combinatorial algorithms for data migration to
minimize average completion time. Algorithmica, 54(1):54–71, 2009. doi:10.1007/
s00453-007-9118-2.

9 Magnús M. Halldórsson, Guy Kortsarz, and Maxim Sviridenko. Sum edge coloring of
multigraphs via configuration LP. ACM Trans. Algorithms, 7(2):22:1–22:21, 2011. doi:
10.1145/1921659.1921668.

10 David G. Harris and Aravind Srinivasan. Constraint satisfaction, packet routing, and the
lovasz local lemma. In Symposium on Theory of Computing Conference, STOC’13, Palo
Alto, CA, USA, June 1-4, 2013, pages 685–694, 2013. doi:10.1145/2488608.2488696.

11 Sungjin Im and Benjamin Moseley. Scheduling in bandwidth constrained tree networks. In
Proceedings of the 27th ACM on Symposium on Parallelism in Algorithms and Architectures,
SPAA 2015, Portland, OR, USA, June 13-15, 2015, pages 171–180, 2015. doi:10.1145/
2755573.2755576.

12 Dariusz R. Kowalski, Eyal Nussbaum, Michael Segal, and Vitaly Milyeykovski. Scheduling
problems in transportation networks of line topology. Optimization Letters, 8(2):777–799,
2014. doi:10.1007/s11590-013-0613-x.

13 Dariusz R. Kowalski, Zeev Nutov, and Michael Segal. Scheduling of vehicles in transporta-
tion networks. In Communication Technologies for Vehicles – 4th International Workshop,
Nets4Cars/Nets4Trains 2012, Vilnius, Lithuania, April 25-27, 2012. Proceedings, pages
124–136, 2012. doi:10.1007/978-3-642-29667-3_11.

14 Frank Thomson Leighton, Bruce M. Maggs, and Satish Rao. Packet routing and job-
shop scheduling in O(congestion + dilation) steps. Combinatorica, 14(2):167–186, 1994.
doi:10.1007/BF01215349.

15 Frank Thomson Leighton, Bruce M. Maggs, and Andréa W. Richa. Fast Algorithms for
Finding O(Congestion + Dilation) Packet Routing Schedules. Combinatorica, 19(3):375–
401, 1999. doi:10.1007/s004930050061.

http://dx.doi.org/10.1007/978-3-642-54423-1_53
http://dx.doi.org/10.1287/moor.1060.0189
http://dx.doi.org/10.1007/978-3-662-43948-7_16
http://dx.doi.org/10.1109/SFCS.2003.1238179
http://dx.doi.org/10.1007/s004930200018
http://dx.doi.org/10.1145/1328911.1328922
http://dx.doi.org/10.1007/s00453-007-9118-2
http://dx.doi.org/10.1007/s00453-007-9118-2
http://dx.doi.org/10.1145/1921659.1921668
http://dx.doi.org/10.1145/1921659.1921668
http://dx.doi.org/10.1145/2488608.2488696
http://dx.doi.org/10.1145/2755573.2755576
http://dx.doi.org/10.1145/2755573.2755576
http://dx.doi.org/10.1007/s11590-013-0613-x
http://dx.doi.org/10.1007/978-3-642-29667-3_11
http://dx.doi.org/10.1007/BF01215349
http://dx.doi.org/10.1007/s004930050061

Z. Friggstad et al. 5:17

16 Joseph Y.-T. Leung, Tommy W. Tam, and Gilbert H. Young. On-line routing of real-time
messages. J. Parallel Distrib. Comput., 34(2):211–217, 1996. doi:10.1006/jpdc.1996.
0057.

17 Wenhua Li, Maurice Queyranne, Maxim Sviridenko, and Jinjiang Yuan. Approximation al-
gorithms for shop scheduling problems with minsum objective: A correction. J. Scheduling,
9(6):569–570, 2006. doi:10.1007/s10951-006-8790-4.

18 Monaldo Mastrolilli and Ola Svensson. Hardness of approximating flow and job shop
scheduling problems. J. ACM, 58(5):20:1–20:32, 2011. doi:10.1145/2027216.2027218.

19 Britta Peis, Martin Skutella, and Andreas Wiese. Packet routing: Complexity and al-
gorithms. In Approximation and Online Algorithms, 7th International Workshop, WAOA
2009, Copenhagen, Denmark, September 10-11, 2009. Revised Papers, pages 217–228, 2009.
doi:10.1007/978-3-642-12450-1_20.

20 Britta Peis, Martin Skutella, and Andreas Wiese. Packet routing on the grid. In LATIN
2010: Theoretical Informatics, 9th Latin American Symposium, Oaxaca, Mexico, April 19-
23, 2010. Proceedings, pages 120–130, 2010. doi:10.1007/978-3-642-12200-2_12.

21 Julius Petersen. Die theorie der regul aren graphs. Acta Math., 15:193–220, 1891. doi:
10.1007/BF02392606.

22 Maurice Queyranne and Maxim Sviridenko. Approximation algorithms for shop scheduling
problems with minsum objective. Journal of Scheduling, 5(4):287–305, 2002. doi:10.1002/
jos.96.

23 Natalia Shakhlevich, Han Hoogeveen, and Michael Pinedo. Minimizing total weighted
completion time in a proportionate flow shop. Journal of Scheduling, 1(3):157–168, 1998.
doi:10.1002/(SICI)1099-1425(1998100)1:3<157::AID-JOS12>3.0.CO;2-Y.

24 F. Bruce Shepherd and Adrian Vetta. The demand matching problem. In Integer Pro-
gramming and Combinatorial Optimization, 9th International IPCO Conference, Cam-
bridge, MA, USA, May 27-29, 2002, Proceedings, pages 457–474, 2002. doi:10.1007/
3-540-47867-1_32.

25 David B. Shmoys, Clifford Stein, and Joel Wein. Improved approximation algorithms
for shop scheduling problems. SIAM J. Comput., 23(3):617–632, 1994. doi:10.1137/
S009753979222676X.

A Proof of Theorem 11

Proof. Similar to our analysis for the case of general processing times, let uj be completion
time of j’th job in our schedule and let coptj be the completion time of j’th job in a schedule
with the optimum min-sum objective. Assume coptj = dck for d < c. We consider the
two cases where d < cα and d ≥ cα. In the first case, uj is bounded from above by the
amortized bound 1 +

∑k−1
`=1 t` + tk + 1

2 , and in the second case, by the amortized bound

1 +
∑k
`=1 t` + tk+1 + 1

2 , where t` = 2
⌊
c`+α

2

⌋
. Note that the first two terms in both of these

bounds correspond to the sum of completion times of all the jobs in previous blocks (∆k),
and the second term corresponds to the amortized completion time of job j in the last block.
Simplifying the bound in the first case, we get

uj ≤ cα + c1+α +
k−1∑
`=2

c`+α + ck+α + 1
2 + 1− cα − c1+α + 2

⌊
c1+α

2

⌋

=
k−1∑
`=0

c`+α + ck+α

2 + 3
2 + βj = ck+α

(
1

c− 1 + 1
2

)
− cα

c− 1 + 3
2 + βj ,

APPROX/RANDOM’17

http://dx.doi.org/10.1006/jpdc.1996.0057
http://dx.doi.org/10.1006/jpdc.1996.0057
http://dx.doi.org/10.1007/s10951-006-8790-4
http://dx.doi.org/10.1145/2027216.2027218
http://dx.doi.org/10.1007/978-3-642-12450-1_20
http://dx.doi.org/10.1007/978-3-642-12200-2_12
http://dx.doi.org/10.1007/BF02392606
http://dx.doi.org/10.1007/BF02392606
http://dx.doi.org/10.1002/jos.96
http://dx.doi.org/10.1002/jos.96
http://dx.doi.org/10.1002/(SICI)1099-1425(1998100)1:3<157::AID-JOS12>3.0.CO;2-Y
http://dx.doi.org/10.1007/3-540-47867-1_32
http://dx.doi.org/10.1007/3-540-47867-1_32
http://dx.doi.org/10.1137/S009753979222676X
http://dx.doi.org/10.1137/S009753979222676X

5:18 Scheduling Problems over Network of Machines

where βj = 2
⌊
c1+α

2

⌋
− cα − c1+α. For the second case, we obtain the following:

uj ≤ ck+1+α
(

1
c− 1 + 1

2

)
− cα

c− 1 + 3
2 + βj .

Taking the expectation of uj over α, we get

E [uj] ≤
∫ 1

logc d

(
ck+α c+ 1

2(c− 1) −
cα

c− 1 + 3
2 + βj

)
dα+ (3)∫ logc d

0

(
ck+1+α c+ 1

2(c− 1) −
cα

c− 1 + 3
2 + βj

)
dα

= c+ 1
2(c− 1)c

k

∫ 1

logc d
cαdα+ c+ 1

2(c− 1)c
k+1

∫ logc d

0
cαdα+ (4)∫ 1

0

(
− cα

c− 1 + 3
2 + βj

)
dα

= c− 1
ln c ·

c+ 1
2(c− 1)dc

k − 1
ln c + 3

2 +
∫ 1

0
βjdα. (5)

It remains to bound
∫ 1

0 βjdα =
∫ 1

0

(
2
⌊
c1+α

2

⌋
− cα − c1+α

)
dα. Observe that

⌊
c1+α/2

⌋
= κ

where κ ∈ {1, . . . , 6} is such that 1 + α ∈ [logc 2κ, logc 2(κ+ 1)) for 3 ≤ c <
√

14. The range
for parameter c is chosen with some foresight. Therefore,∫ 1

0
2
⌊
c1+α

2

⌋
dα = 2

(∫ logc 4−1

0
1dα +

∫ logc 6−1

logc 4−1
2dα + . . .+

∫ 1

logc 12−1
6dα

)
= 22− 2 logc 23040.

Finally,∫ 1

0
βjdα =

∫ 1

0

(
2
⌊
c1+α

2

⌋
− cα − c1+α

)
dα = 22− 2 logc 23040− c− 1

ln c −
c(c− 1)

ln c .

Substituting this value in Equation (5) and simplifying, we get

uj ≤
coptj (c+ 1)

2 ln c + 47
2 − 2 logc 23040− c2

ln c ≤
coptj (c+ 1)

2 ln c ,

where the second inequality holds because 47
2 − 2 logc 23040− c2

ln c is a negative term for c > 0.
For c = 3.59, we obtain the claimed approximation ratio of 1.796. J

Approximating Incremental Combinatorial
Optimization Problems
Michel X. Goemans1 and Francisco Unda2

1 MIT, Cambridge, MA, USA
goemans@math.mit.edu

2 MIT, Cambridge, MA, USA
funda@mit.edu

Abstract
We consider incremental combinatorial optimization problems, in which a solution is constructed
incrementally over time, and the goal is to optimize not the value of the final solution but the
average value over all timesteps. We consider a natural algorithm of moving towards a global
optimum solution as quickly as possible. We show that this algorithm provides an approximation
guarantee of (9 +

√
21)/15 > 0.9 for a large class of incremental combinatorial optimization

problems defined axiomatically, which includes (bipartite and non-bipartite) matchings, matroid
intersections, and stable sets in claw-free graphs. Furthermore, our analysis is tight.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.1.6 Optim-
ization, G.2. Discrete Mathematics

Keywords and phrases Approximation algorithm, matching, incremental problems, matroid in-
tersection, integral polytopes, stable sets

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.6

1 Introduction

Usually, in the context of combinatorial optimization, a single solution is sought which
optimizes a given objective function. This for example could be designing (or upgrading) a
network satisfying certain properties. But the solution might be large, and implementing it
may mean proceeding in steps. As the adage says “Rome wasn’t built in a day”. Therefore it
becomes important to consider not just the value of the (final) solution, but also the values
at intermediate steps. Such incremental models have gained popularity in the last years
[7, 1, 9], because of their practical applications to network design problems, disaster recovery,
and planning.

As a first approximation to this extra level of complexity, we consider the setting in which
we want to evaluate our solution at each time step, and would like to maximize the sum of
the values of the intermediate solutions. To formalize this, consider a finite ground set E of
q elements, together with a valuation v : 2E → Z+. The valuation function measures some
quantity of interest over a subset of E, for example, the size of a maximum matching, the
maximum value of an independent set in a matroid, or a maximum flow. Our goal is to find
a permutation σ : E → {1, . . . , |E|} that maximizes

f(σ) =
q∑
i=0

v ({e ∈ E : σ(e) ≤ i}) . (1)

This is a very general class of problems, which also includes for example scheduling problems,
production planning problems and routing problems; such problems typically involve finding
a permutation of tasks to perform.

© Michel X. Goemans and Francisco Unda;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 6; pp. 6:1–6:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

6:2 Approximating Incremental Combinatorial Optimization Problems

Even for simple, polynomially computable valuations v, the problem of finding the best
σ might be NP-hard. This applies for example to the situation in which E corresponds to
some of the edges of a directed or undirected graph G = (V,E0 ∪E) with capacities on its
edges, and v(F) represents the maximum flow value from s to t (where s, t ∈ V) in the graph
(V,E0 ∪ F). The NP-hardness of this incremental problem was shown by Nurre and Sharkey
[9], see also Kalinowski et al. [7].

On the tractable side, the incremental problem (1) can be solved efficiently if v(F)
represents the weight of a maximum-weight independent subset of F in a matroid M with
ground set E. Indeed, an optimum permutation can be obtained from a maximum-weight
independent set B for the entire ground set E in the following way. First, order B in order
of non-increasing weight followed by all elements of E \B in an arbitrary order. In the case
of the incremental spanning tree problem, this was also derived in [6].

In this paper, we consider a class of valuations v which arise naturally from unweighted
combinatorial optimization problems, and for which we are able to provide a worst-case
analysis of a greedy-like algorithm. This class of valuations is defined axiomatically. First,
we require that v takes nonnegative integer values,
(A1): ∀F ⊆ E : v(F) ∈ N
and is monotonically non-decreasing and can only increase by at most 1 when an element is
added:
(A2): ∀A ⊂ E,∀e ∈ E \A : v(A) ≤ v(A ∪ {e}) ≤ v(A) + 1.
Additionally, we assume that for any k with v(∅) = minF v(F) ≤ k ≤ maxF v(F) = v(E),
there exists a set of cardinality at most k achieving the value k:
(A3): For all k : v(∅) ≤ k ≤ v(E), ∃A ⊆ E : |A| ≤ k and v(A) = k.
Consider, for example, an independence system I on E0 ∪ E, i.e. I ⊆ 2E0∪E and I is closed
under taking subsets. Then if we define v(F) for F ⊆ E as the cardinality of the largest
independent subset of E0 ∪ F , we can easily see that v(·) satisfies (A1), (A2) and (A3). This
generalizes the matroid setting mentioned previously.

We further assume one additional key property, that v satisfies the following discrete
convexity property:
(A4) Discrete Convexity: ∀A,C ⊆ E with v(C) − v(A) > 1,∃B : v(B) = v(A) + 1 and
|B| − |A| ≤ |C|−|A|

v(C)−v(A) . Furthermore if A ⊂ C then A ⊂ B ⊂ C.
This discrete convexity is not satisfied by all independence systems. However, we show in
Section 2 that if a certain family of polyhedra is integral then the discrete convexity property
is satisfied.

I Theorem 1. Let I ⊆ 2E0∪E be any independence system. Let P (I) ⊆ RE0∪E be the convex
hull of incidence vectors of all independent sets in I. If for every integer k,

P (I) ∩
{
x |

∑
e∈E0∪E

xe = k

}

is integral then (A4) holds for v : 2E → Z+ defined as v(F) = max{|I| | I ∈ I, I ⊂ E0 ∪ F}.

In Section 2, we show that this holds for example when I corresponds to the matchings in a
(not necessarily bipartite) graph, or to the independent sets common to two matroids, or
to the (independent or) stable sets in a claw-free graph. This last example, although more
esoteric, is interesting as a complete description of P (I) by linear inequalities is unknown
but we can nevertheless rely on the above theorem. The incremental valuation problem in
the case of bipartite matchings was already considered in [7], where the authors propose

M.X. Goemans and F. Unda 6:3

Algorithm 1: Quickest-To-Ultimate for Incremental Valuation
Input :A valuation function v as above.
Output :A permutation σ of E

1 Compute O ⊆ E of minimum cardinality such that v(O) = v(E);
2 Set F = ∅;
3 for i = 1 to v(E)− v(∅) do
4 Compute S ⊂ O \ F such that v(F ∪ S) ≥ v(∅) + i and |S| is minimum;
5 Set F = F ∪ S;
6 end
7 Output σ consistent with how elements were added to S;

several approximation algorithms, the best achieving an approximation ratio of 3/4. Other
problems falling under the framework discussed here were not considered before.

For any valuation satisfying (A1) − (A4), we provide an approximation algorithm for
the incremental valuation problem. For an efficient implementation, we assume that we
can compute efficiently (or have oracle access to) the valuation v(·) and we can also find
efficiently a minimum cardinality set O with v(O) = v(E). Our algorithm first computes a
smallest set O ⊆ E achieving v(O) = v(E), and then starting from S = ∅ with value v(∅),
repeatedly and greedily adds a smallest subset of O to increase v(S) by 1 until all elements of
O have been added and then finishes the ordering with the elements of E \O. This algorithm
is formally described in Section 3 and in Algorithm 1. In Section 3, we present a worst-case
analysis of this algorithm:

I Theorem 2. For any valuation satisfying (A1)− (A4), Algorithm 1 (Quickest-to-Ultimate)
is a γ-approximation for the incremental valuation problem, where

γ = 9 +
√

21
15 > 0.9055.

The proof of this result is given in Section 4. We also show that the bound of γ is tight in
the sense that there are instances of the valuation problem in which the algorithm cannot do
better.

2 Problems in this Framework

2.1 Maximum matchings
One of the basic problems that falls in this framework is the Incremental Matching Problem.
Given a graph G = (V,E0 ∪ E), where E0 denotes the edges already present at the start,
we would like to find an ordering of the edges of E so as to maximize the average size of
the maximum matching in E0 union the edges already selected. This corresponds to the
valuation with v(F) = µ(E0 ∪ F) where µ(A) equals the size of the maximum matching in
the graph (V,A). The bipartite version of this problem is considered in [7], and two different
greedy approximation algorithms are presented. The first one, Quickest-Increment, is
a locally greedy algorithm that seeks to minimize the number of edges needed to increase
the size of the matching by one, until we reach a maximum matching of the entire graph.
Kalinovski et al. [7] prove an approximation guarantee of 2

3 for this algorithm. Their second
algorithm, Quickest-to-Ultimate, is globally greedy, in the sense that it first computes
a maximum matching of the entire G, and then only adds edges from this matching, in a
locally greedy fashion. For this algorithm, [7] prove an approximation bound of 3

4 . In this

APPROX/RANDOM’17

6:4 Approximating Incremental Combinatorial Optimization Problems

paper, we generalize this algorithm to a larger class of incremental problems and improve
the guarantee to 0.9055 · · · .

This matching problem, even in the non-bipartite case, fits in the framework discussed here.
One can show that this valuation v(F) = µ(E0 ∪ F) satisfies the discrete convexity property
(A4), by considering maximum matchings in A and C, and their symmetric difference and
carefully arguing about it. Although this is possible, this does not generalize easily to other
problems.

Discrete convexity, however, is easier to argue polyhedrally as we show next.

2.2 Polyhedral characterization for discrete convexity
Let I ⊆ 2E0∪E be any independence system, and let v(F) = max{|I| : I ∈ I and I ⊆ E0∪F}.
Let P = conv{χ(I) : I ∈ I} be the convex hull of all independent sets, and as we will see, we
do not necessarily need to know a complete description of P in terms of linear inequalities.
We will show Theorem 1 that discrete convexity (A4) holds if, for any integer k,

P ∩ {x : x(E ∪ E0) = k}

is integral.

Proof of Theorem 1. For A (resp. C), let IA (resp. IC) be a maximum independent subset
of E0 ∪ A (resp. E0 ∪ C). So, v(A) = |IA| and v(C) = |IC |. Let ` = |IC | − |IA|. Now
consider y = 1

`χ(IC) + (1 − 1
`)χ(IA). By convexity y ∈ P and by construction, we have

y(E ∪ E0) = |IA|+ 1. Thus, y ∈ P ∩ {x : x(E ∪ E0) = |IA|+ 1}, and by integrality of this
polytope, we have that there exists x = χ(S) ∈ P ∩ {x : x(E ∪ E0) = |IA|+ 1} with

|S ∩ E| = min{x(E) : x ∈ P ∩ x(E ∪ E0) = |IA|+ 1}

≤ y(E) = 1
`
|IC ∩ E|+ (1− 1

`
)|IA ∩ E|

≤ 1
`
|C|+ (1− 1

`
)|A| = |A|+ |C| − |A|

v(C)− v(A) .

Thus B = S ∩ E satisfies the first part of the claim in Theorem 1.
Now consider the case in which A ⊆ C. Proceeding as before, we get

y ∈ P ∩ {x : x(E ∪ E0) = |IA|+ 1} ∩ {x : xe = 0 ∀e ∈ E \ C},

and this is again an integral polytope since it is the face of an integral polytope. Now
minimizing x(E \A) over

P ∩ {x : x(E ∪ E0) = |IA|+ 1} ∩ {x : xe = 0 ∀e ∈ E \ C},

we get x = χ(T) ∈ P ∩ {x : x(E ∪ E0) = |IA|+ 1} with T ⊆ E0 ∪ C and

|T ∩ (E \A)| ≤ y(E \A) = 1
`
|IC ∩ (E \A)| ≤ |C| − |A|

v(C)− v(A) .

This means that B = A ∪ (T ∩ E) is such that A ⊆ B ⊆ C,

|B| ≤ |A|+ |C| − |A|
v(C)− v(A)

and v(B) ≥ v(T) = |IA|+ 1. Thus either v(B) = |IA|+ 1, or we can eliminate one by one
elements of B \A as long as v(·) is not equal to v(A) + 1. Eventually, we find a set with the
right requirements. J

M.X. Goemans and F. Unda 6:5

2.3 Maximum stable set in claw-free graphs
A graph G = (V,E) is claw-free if it does not include K1,3 (the star on 4 vertices) as an
induced subgraph. The line graph of any graph is claw-free, but the converse is not true
as there exist claw-free graphs which are not line graphs. Minty [8] and Sbihi [10] have
shown that the maximum stable (or independent) set in a claw-free graph is polynomially
solvable. When the claw-free graph is a line graph, this extends Edmonds’ algorithm [4, 3]
for maximum matching, as the maximum matching problem in a graph is equivalent to the
maximum stable set problem in its line graph.

By taking the line graph, we can extend the incremental matching problem to an
incremental stable set problem in a claw-free graph G = (V,E) in which we are given an
initial vertex set V0 and our task is to choose an ordering of the remaining vertices in
V \ V0 so to maximize the average size of a maximum stable set in the corresponding prefix.
Thus, here v(F) denotes the size of the largest stable set in G[V0 ∪ F]. As said before, if
the claw-free graph is not a line graph, this is a strictly more general problem than the
incremental matching problem.

A complete description of the stable set polytope P for claw-free graphs is still unknown
(see, eg, section 69.4a in Schrijver [11]), but we can nevertheless use Theorem 1 to show that
(A4) holds (the other conditions (A1), (A2) and (A3) obviously hold).

I Theorem 3. Let P be the stable set polytope of a claw-free graph G = (V,E). Then for
any integer k, we have that

P ∩

{
x ∈ RV |

∑
v∈V

xv = k

}

is integral.

Proof. We exploit the known adjacency properties of the stable set polytope (of any graph).
Chvátal [2] has shown that two stable sets S1 and S2 in G are adjacent vertices in the stable
set polytope if and only if their symmetric difference S14S2 induces a connected subgraph
of G. When the graph is claw-free, this connected subgraph G[S14S2] must be a path, and
therefore this means that −1 ≤ |S1| − |S2| ≤ 1.

Consider any vertex x∗ of P∩
{
x ∈ RV |

∑
v∈V xv = k

}
. x∗ must lie on a face of dimension

at most 1 of P , and therefore must be in the line segment between two adjacent vertices of
P . But since the sizes of these stable sets can differ by at most 1, we derive that x∗ must be
a vertex of P , and integrality follows. J

Thus our approximation algorithm result applies to the incremental maximum stable set
problem in claw-free graphs.

The adjacency argument in the proof of Theorem 3 generalizes in the sense that Theorem 1
is equivalent to imposing that any pair of adjacent vertices of P (I) differ in cardinality by at
most one unit.

2.4 Matroid intersection
Another generalization of the incremental version of the bipartite matching problem is to
consider the incremental version of matroid intersection. Let M1 and M2 be matroids defined
on the same ground set, say E0 ∪E, and for F ⊆ E, let v(F) be the cardinality of the largest
common independent set to the two matroids within E0 ∪ F .

APPROX/RANDOM’17

6:6 Approximating Incremental Combinatorial Optimization Problems

For matroid intersection, we can directly use Theorem 1 to show that the discrete convexity
holds. The matroid intersection polytope P has been characterized by Edmonds [5], and the
integrality of P ∩ {x|

∑
i xi = k} follows simply by truncating both matroids to size k. Thus

Theorem 1 can be used to prove (A4) and Theorem 2 can be used to derive a better than
0.9-approximation algorithm for the incremental maximum matroid intersection problem.

3 Quickest-To-Ultimate for Incremental Problems

Algorithm Quickest-To-Ultimate (Q2U in short, see Algorithm 1) was introduced by Kalin-
owski et al. [7] for the problem of incremental flows (defined in the introduction). The
general idea behind this algorithm is to reach the maximum valuation possible in the shortest
number of steps. In the setting of incremental flows, finding the smallest set O of edges whose
addition gives a maximum flow is a hard problem, and they resort to a mixed integer program
for finding O. In this direction it is known that the incremental flow problem is NP-hard
even if the capacities are restricted to be one or three [9]. In the case of unit capacities, Q2U
becomes a polynomial approximation algorithm, and in [7] it is shown that it finds a solution
with at least half the value of the optimum for the incremental flow problem with unit
capacities, and they also show a matching family of examples in which this approximation
ratio is attained as the size of the graph grows. In the case of bipartite matchings, a further
restriction of the problem, Q2U is shown to find a solution to the incremental matching
problem of value at least 3/4 of the optimum, and they show an instance in which the value
obtained by Q2U is 68

69 of the value attained by the optimal solution. Theorem 2 and the
example given in Section 3.1 below close this gap for a more general class of valuations,
which includes the incremental matching problem.

We show Theorem 2, that for any valuation satisfying (A1)-(A4) the performance guarantee
of the algorithm is at least 9+

√
21

15 > 0.9055. The proof appears later in this section, and our
analysis is tight as we show next.

3.1 Bad instance for Quickest-to-Ultimate

In the special case of matchings, and even bipartite matchings (or any setting which includes
bipartite matchings), the analysis is tight. Consider, indeed, a graph formed by a disjoint
copies of P3, a path with 3 edges, and one copy of P4b+3, a path with 4b + 3 edges, see
Figure 1. The edges of E0 correspond to each middle edge in the copies of P3, and every
fourth edge of P4b+3, starting with the second one. The remaining edges are edges of E. The
valuation is v : E → N, where v(S) is the size of a maximum matching using edges from
E0 ∪ S.

In this graph, we have q := |E| = 2a+ 3b+ 2 edges to be added, the original matching
has size m := a+ b+ 1, and it can grow by r := a+ b+ 1. The minimum number of edges
we need to add to reach this maximum matching is cr := 2a+ 2b+ 2. Quickest-to-Ultimate
adds these edges in pairs that increase the matching, so it adds two edges for each increment
in the maximum matching. The value it attains is then falg = (q+ 1)(m+ r)−

∑a+b+1
i=1 2i =

3a2 + 5b2 + 8ab+ 7a+ 9b+ 3. On the other hand, here is a better solution. The solution
first adds the b edges of P4b+3 that increase the maximum matching from m to m+ b, then
it adds a pairs of edges to increase the matching by a and then it adds 2b + 2 edges to
increase the matching by one. This gives a value f with fopt ≤ f = (q+ 1)(m+ r)−

∑b
i=1 i−∑a+b

i=b+1(2(i− b) + b)− (2a+ b+ 2b+ 2) = 3a2 + 11
2 b

2 + 9ab+ 7a+ 17
2 b+ 4. A straightforward

optimization over a and b, yields that the minimum value of falg

fopt
is attained when a and b

M.X. Goemans and F. Unda 6:7

Figure 1 Solid black edges are edges of E0 and dashed edges are the edges of E.

go to infinity, with a = δb, with δ =
√

21
6 −

1
2 , with value of 9+

√
21

15 . This is the worst case for
Q2U and matches the bound we prove in Theorem 2.

4 Analysis

Before diving into the analysis of Q2U, we introduce some notation and exhibit some convexity
properties of various sequences associated with these incremental problems.

We denote v(∅) by m, v(E) by m+ r, and |E| by q. For any permutation σ of E, define

di(σ) := |{j ∈ {0, . . . , q} : v ({e ∈ E : σ(e) ≤ j}) ≤ m+ i− 1}|,

which is the number of elements needed for the solution σ to get to a valuation m+ i. We
will denote by d∗i the values of di(σ∗) for an optimal solution σ∗ to (1), and by di the values
of di(σ) for the permutation σ output by Q2U.

Define for each i ∈ {0, . . . , r}

ci := min{|S| : v(S) ≥ m+ i}.

By definition, we have ci ≤ di and similarly ci ≤ d∗i . Also by (A2) we must have ci ≥ i, and
by (A3),

ci ≤ m+ i, (2)

for i ∈ {0, . . . , r}.
We show that our assumptions imply that both the sequence {ci}ri=1, and the sequence

{di}ri=1 satisfy a convexity property.

I Lemma 4. The sequence {ci}ri=1 satisfies

ci+1 − ci ≥ ci − ci−1, 1 ≤ i ≤ r − 1.

Proof. To see this, apply (A4) to the respective solutions Si−1, Si, Si+1 where

Sj = arg min
S
{|S| : v(S) ≥ m+ j}.

Note first that by (A2) we have that v(Sj) = m + j for j = i − 1, i, i + 1. This implies
v(Si+1)−v(Si−1) = 2 > 1, and so by (A4), there exists B such that v(B) = v(Si−1)+1 = m+i
and 2(|Si| − |Si−1|) ≤ 2(|B| − |Si−1|) ≤ (|Si+1| − |Si−1|). This implies Lemma 4. J

The solution given by Q2U also satisfies this same convexity property.

APPROX/RANDOM’17

6:8 Approximating Incremental Combinatorial Optimization Problems

I Lemma 5. The sequence {di}ri=1 corresponding to Q2U satisfies

di+1 − di ≥ di − di−1, 1 ≤ i ≤ r − 1.

Proof. To see this, denote by Si the set computed in the inner loop of the algorithm at step
i. That is Si ⊂ Fr \ (S1 ∪ . . .∪ Si−1) such that |Si| is minimum and v(S1 ∪ . . .∪ Si) ≥ m+ i.
Minimality of |Si|, and property (A2) imply that v(S1 ∪ . . . ∪ Si) = m + i, and then di =
|S1∪ . . .∪Si|. Now take i ∈ {1, . . . , r−1}. Then v(S1∪ . . .∪Si+1)−v(S1∪ . . .∪Si−1) = 2 > 1,
and then by property (A4) there is a B such that v(B) = m+i and 2(|B|−di−1) ≤ di+1−di−1.
Finally by minimality of |Si| we must have di ≤ |B|, which implies the claim. J

We could also show that any optimum ordering σ∗ satisfies the same convexity property:
d∗i+1 − d∗i ≥ d∗i − d∗i−1 for all i, although we will not need this. This requires the second part
of (A4) which says that if A ⊆ C then B can be chosen to be sandwiched by A and C.

4.1 Local minima
We also show that the convexity property (A4) implies a relationship between local and global
optima, that will be used to derive the optimal upper bound for the Quickest-To-Ultimate
Algorithm 1.

I Lemma 6. Let S and T be two subsets of E, such that v(S) = m+ |S| and v(T) = m+ |T |,
and let S be maximal with this property, that is for any S′ ⊃ S we have v(S′) < m+ |S′|.
Then, 2|S| ≥ |T |.

This is a generalization of the well-known result that any maximal matching is at least half
the size of a maximum matching.

Proof. If |S| ≤ |T |, there is nothing to prove, so we assume that |T | > |S|. Now use (A4) with
A = S and C = S ∪T . Then there is a set B with S ⊂ B ⊂ S ∪T such that v(B) = v(S) + 1
and

|B| − |S| ≤ |S ∪ T | − |S|
v(S ∪ T)− v(S) ≤

|T |
|T | − |S|

.

On the other hand, by the maximality of S, we must have |B| − |S| ≥ 2. Putting these two
together yields

2 ≤ |T |
|T | − |S|

,

or equivalently

2|S| ≥ |T |. J

4.2 Quickest-To-Ultimate
To analyze Quickest-To-Ultimate, we need to introduce some additional parameters related
to the instance being considered. Define

p = max{|P | : P ⊂ E, v(P) = m+ |P |},

the maximum size of a set that, if added sequentially, increases the valuation at each step.
In other words, p = max{i : ci = i}. Clearly p ≤ r. Also, by maximality of p, we have that{

ci = i i ≤ p
ci ≥ p+ 2(i− p) i > p.

(3)

M.X. Goemans and F. Unda 6:9

For Q2U, we are interested in the quantity s, the number of times the set S in the inner
loop is a singleton. Note that by Lemma 5, these s iterations occur at the beginning, so an
equivalent way to define s is

s = max{i ∈ {1, . . . , r} : di = i}.

Our objective is to relate the quantities s and p, which will give us some control over the
approximation ratio falg/fopt. We must have s ≤ p, since otherwise it would contradict the
maximality of p. To get a lower bound on s, define S to be the set of the first s elements
added by the algorithm, and T = P ∩ O, where O is the set of elements chosen by Q2U
to first reach v(E) and P is a set of p elements with v(P) = m + p. Note that we have
v(S) = m+ |S| and v(T) = m+ |T |, and S must be maximal, by definition of s. Then by
using Lemma 6, we conclude that 2|S| ≥ |T | = |P ∩O|. This implies that

q = |E| ≥ |O ∪ P | = |O|+ |P | − |O ∩ P | ≥ cr + p− 2s. (4)

And we also know that

q ≥ cr. (5)

Finally, we need the following inequality. Observe that all the elements that are used by the
algorithm come from O, and conversely, all the elements of O must be used by the algorithm to
reach valuation v(E), by minimality of cr. This means that |O| = cr = dr =

∑r
i=1(di−di−1),

and using the definition of s, then cr = s+
∑r
i=s+1(di − di−1), from which it follows that

cr ≥ 2r − s. (6)

We are now ready to prove Theorem 2.

Proof of Theorem 2. For any permutation σ, we can rewrite f(σ) as

f(σ) = (q + 1)(m+ r)−
r∑
i=1

di(σ). (7)

In particular, for the optimum permutation σ∗ and its optimum value fopt = f(σ∗), we have:

fopt = (q + 1)(m+ r)−
r∑
i=1

d∗i ≤ (q + 1)(m+ r)−
r∑
i=1

ci. (8)

Using (3) and distinguishing between i ≤ p, p < i < r and i = r, we can write:

fopt ≤ (q + 1)(m+ r)− p2/2− p/2 + pr − r2 + r − cr. (9)

Now, denoting the value obtained by Q2U as falg, and using the definition of s, we have

falg = (q + 1)(m+ r)−
r∑
i=1

di = (q + 1)(m+ r)−
s−1∑
i=1

i−
r∑
i=s

di. (10)

To upper bound the last term of (10), we use the following lemma, whose proof is given
in the appendix.

APPROX/RANDOM’17

6:10 Approximating Incremental Combinatorial Optimization Problems

I Lemma 7. Let f : {0, . . . , a} → N be a discrete convex function, i.e. f(i + 1) − f(i) ≥
f(i) − f(i − 1), such that f(0) = 0 and f(a) = b. Furthermore let b = ka + t, where
t ∈ {0, . . . , a− 1}. Then,

a∑
i=0

f(i) ≤ (b+ ka2 + t2)/2 = (a+ 1)b
2 − t(a− t)

2 .

Applying this to f(i) = ds+i − s, we obtain

falg ≥ (q + 1)(m+ r)− s(s− 1)/2− (r− s+ 1)s− (r− s+ 1)(cr − s)/2 + t(r− s− t)/2,

where t = cr − s mod r − s. Or after simplification:

falg ≥ (q + 1)(m+ r)− rs/2− (r − s− 1)cr/2 + t(r − s− t)/2. (11)

We need to find the minimum value attainable by falg/fopt ≤ 1, which is a lower bound
on the approximation ratio. We will show that this lower bound coincides with the upper
bound given by the example in Section 3.1. Denote by Popt (resp. Palg) the right-hand-side
of inequality (9) (resp. (11)). To find this lower bound, we maximize Popt/Palg over all
integral q,m, cr, r, p, s and t satisfying the conditions:
1. r ≥ p ≥ s ≥ 0
2. (5): q ≥ cr
3. (4): q ≥ cr + p− 2s
4. (6): cr ≥ 2r − s
5. m+ r ≥ cr
6. t = cr − s mod r − s.
We first show that the we can ignore all but the quadratic terms in the variables q,m, r, p, s, t.
If we double each of q,m, cr, r, p, s, then t also doubles by 6, and all inequalities 1-5 are still
satisfied. Furthermore, if we denote P ′opt and P ′alg the respective values of the bounds after
doubling, we have

P ′opt
P ′alg

= 4Popt − 2(m+ r) + p− 2r + 2cr
4Palg − 2(m+ r) + cr

≥ 4Popt − 2(m+ r) + cr
4Palg − 2(m+ r) + cr

≥ Popt
Palg

,

where in the first inequality we have used that cr − 2r + p ≥ cr − 2r + s ≥ 0, by 4, and the
second inequality follows from 5.. So, for the extremum, we can assume there are no linear
terms:

Popt
Palg

≤ q(m+ r)− p2/2 + pr − r2

q(m+ r)− rs/2− (r − s)cr/2 + t(r − s− t)/2 .

Now, using the inequality 5, we can eliminate m, and obtain

Popt
Palg

≤ qcr − p2/2 + pr − r2

qcr − rs/2− (r − s)cr/2 + t(r − s− t)/2 .

The remaining constraints are now 1–4 and 6. If s > 0, and q > cr + p− 2s we can decrease
all variables by one unit, and preserve the above inequalities. In so doing, the value of t does
not change, and both the numerator and denominator decrease by the same amount

cr + q − r − 1/2 ≥ 0.

This implies we can decrease all variables by the same amount until one of two things happen.
Either s = 0, or q = cr + p− 2s. In the latter case, since we also have that q ≥ cr by 2, this

M.X. Goemans and F. Unda 6:11

implies that 2s ≤ p. At this point, after eliminating q (and replacing it by cr + p− 2s), the
ratio becomes:

Popt
Palg

≤ (cr + p− 2s)cr − p2/2 + pr − r2

(cr + p− 2s)cr − rs/2− (r − s)cr/2 + t(r − s− t)/2 .

If we decrease all remaining variables by one unit, both the denominator and numerator of
the above fraction decrease by

cr + p− r − 2s+ 1/2 ≥ 0,

since p ≥ 2s and cr ≥ r. And we can continue this process until s = 0. In both cases we
obtain

Popt
Palg

≤ (cr + p)cr − p2/2 + pr − r2

(cr + p)cr − rcr/2 + t(r − t)/2 . (12)

And we need to maximize this over integral solutions to r ≥ p ≥ 0, cr ≥ 2r and t = cr mod r.
We consider two cases, depending on the value of cr.
1. If cr = 3r + k, for k ≥ 0, and we discard the (nonnegative) term involving t in (12), we

obtain:

Popt
Palg

≤ 8r2 + 4rp− p2/2 + k(6r + p+ k)
15r2/2 + 3rp+ k(11r/2 + p+ k) .

As an upper bound, we can take the maximum of this value for k = 0 and the ratio of
the terms involving k, and therefore obtain that:

Popt
Palg

≤ max
(

8r2 + 4rp− p2/2
15r2/2 + 3rp ,

6r + p+ k

11r/2 + p+ k

)
.

The second term on this maximum is at most 12
11 <

1
γ where γ is our desired bound. The

first one, by setting α = r/p ≥ 0, is equal to

8α2 + 4α− 1/2
15α2/2 + 3α .

This ratio is maximized for α = 5
8 +

√
41
8 , and it achieves a value of

112
√

41 + 656
99
√

41 + 615
<

1
γ
.

2. If 2r ≤ cr < 3r, then cr = 2r + t, and (12) becomes:

Popt
Palg

≤ 3r2 + t2 − p2/2 + 3pr + pt+ 4rt
3r2 + t2/2 + 2pr + pt+ 4rt .

It is easy to see that for any constant C, and fixed values of r and p, the set

I = {t ∈ [0, r] : 3r2 + t2 − p2/2 + 3pr + pt+ 4rt
3r2 + t2/2 + 2pr + pt+ 4rt ≤ C},

is a convex set, and so the maximum value of this ratio is achieved at either t = 0 or
t = r. If we set t = r, we obtain

8r2 + 4pr − p2/2
15r2/2 + 3pr <

1
γ
,

APPROX/RANDOM’17

6:12 Approximating Incremental Combinatorial Optimization Problems

Algorithm 2: Quickest-Increment for Incremental Valuation
Input :A valuation function v as above.
Output :A permutation σ of E

1 Set F = ∅;
2 for i = 1 to r do
3 Compute S ⊂ E \ F such that v(F ∪ S) ≥ v(∅) + i and |S| is minimum;
4 Set F = F ∪ S;
5 end
6 Output σ consistent with how elements were added to S.;

as we have already verified. If t = 0, we obtain

3r2 + 3pr − p2/2
3r2 + 2pr ,

which is maximized at α = r/p = 1
2 +

√
21
6 , with value 1

γ = 9
4 −

√
21
4 , or γ = 9+

√
21

15 . J

This settles the question of how well Quickest-to-Ultimate approximates the maximum
incremental matching problem.

5 Upper bound for Quickest-Increment

Quickest-Increment (QI) is another algorithm suggested in [7]. The idea is to increase the
size of the current solution by adding as few elements as possible. In that paper, among other
results, it was shown that QI has a performance guarantee of 2/3 in the case of bipartite
matchings, and also they claim a bound of 3/4 if r ≥ 70. It is also conjectured there that,
as r →∞, the approximation guarantee for Quickest-Increment approaches 1. We show a
family of instances that show that this is false.

Consider the instance H formed by P7, the path with seven edges, in which the only
edges of E0 are the second and the second to last. Observe that both Q2U and QI have the
same performance on this small graph, and it is even optimal. In this small graph we have
q = 5, r = 2 and m = 2. There are two incomparable choices for di. The first one, given by
Q2U, is d1 = 2 = d2. The second one is given by QI and it is d1 = 1, d2 = 4. They both
have value 18, which is optimum.

Now consider the instance G, which is a copies of H. Both algorithms fail to realize the
optimum. When considering a copies, we obtain q = 5a, r = 2a and m = 2a. Algorithm Q2U
returns di = 2i for i = 1, . . . , 2a, with a value of f = (5a + 1)(4a) −

∑2a
i=1 2i = 16a2 + 2a.

Algorithm QI return di = i for i = 1, . . . , a and di = 4(i− a) + a for i = a+ 1, . . . , 2a, with a
value of f = (5a+ 1)(4a)−

∑a
i=1 i−

∑2a
i=a+1(4i− 3a) = 33a2/2 + 3a/2.

Now suppose we use the QI strategy on k of the a copies and the Q2U strategy on the
rest. Then we get di = i for i = 1, . . . , k, di = k + 2(i − k) for i = k + 1, . . . , 2a − k and
di = 4(i− 2a+ k) + 4(a− k) + k for i = 2a− k + 1, . . . , 2a, and a value of

f = (5a+ 1)(4a)−
k∑
i=1

i−
2a−k∑
i=k+1

(2(i− k) + k)−
2a∑

i=2a−k+1
(5(i− 2a+ k) + 4(a− k) + k)

f = 16a2 + 2a− (3k2/2 + k/2− 2ak).

M.X. Goemans and F. Unda 6:13

Optimizing over k we obtain that for k = 2a/3, this solution has a value of f = 50a2/3+5a/3.
So asymptotically as we take a→∞ the approximation factor for Q2U approaches 24

25 and for
QI is approaches 99

100 . Note that this family of examples has r = 2a→∞, and so contradicts
the conjecture about QI in [7]. Note this also shows that the approximation guarantee of
Q2U is bounded, even when r →∞. It is possible to show a family of examples that show
that when r →∞, the approximation guarantee for QI approaches 7

8 .

References
1 M. Baxter, T. Elgindy, A.T. Ernst, T. Kalinowski, and M.W.P. Savelsbergh. Incremental

network design with shortest paths. European Journal of Operational Research, 242:51–62,
2015. doi:10.1016/j.ejor.2014.04.018.

2 V. Chvátal. On certain polytopes associated with graphs. Journal of Combinatorial Theory,
Series B, 18:138–154, 1975. doi:10.1016/0095-8956(75)90041-6.

3 J. Edmonds. Maximum matching and a polyhedron with 0,1 vertices. Journal of Research
National Bureau of Standards, Section B69, pages 125–130, 1965. doi:10.6028/jres.069B.
013.

4 J. Edmonds. Paths, trees and flowers. Canadian Journal of Mathematics, 17:449–467, 1965.
doi:10.4153/CJM-1965-045-4.

5 J. Edmonds. Submodular functions, matroids, and certain polyhedra. Combinatorial Struc-
tures and Their Applications, pages 69–87, 1970. doi:10.1007/3-540-36478-1_2.

6 K. Engel, T. Kalinowski, and M.W.P. Savelsbergh. Incremental network design problem
with spanning trees. Journal of Graph Algorithms and Applications, 2013. arXiv:0902.
0885, doi:10.7155/jgaa.00423.

7 T. Kalinowski, D. Matsypura, and M.W.P. Savelsbergh. Incremental network design with
maximum flows. European Journal of Combinatorial Research, 3:675–684, 2014. doi:
10.1016/j.ejor.2014.10.003.

8 G. J. Minty. On maximal independent sets of vertices in claw-free graphs. Journal of
Combinatorial Theory, Series B, 28:284–304, 1980. doi:10.1016/0095-8956(80)90074-X.

9 S.G. Nurre and T.C. Sharkey. Integrated network design and scheduling problems with
parallel identical machines: Complexity results and dispatching rules. Networks, 63:306–
326, 2014. doi:10.1002/net.21547.

10 N. Sbihi. Algorithme de recherche d’un stable de cardinalité maximum dans un graphe
sans étoile. Discrete Mathematics, 29:53–76, 1980. doi:10.1016/0012-365X(90)90287-R.

11 A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer, 2003.

A Lower bound for integrals of integer convex functions

We prove Lemma 7. Suppose we have a discrete convex function f : {0, . . . , a} → N, that is,
for each i = 1, . . . , a− 1, we have

f(i+ 1)− f(i) ≥ f(i)− f(i− 1).

Suppose furthermore that f(0) = 0 and define b = f(a). We compute a tight upper bound
on the value of

∑a
i=0 f(i) that depends only on a and b. To this end, define

nk = |{j ∈ {1, . . . , a} : f(j)− f(j − 1) = k}|.

We must have n1 + n2 + . . . = a, and n1 + 2n2 + . . . = b, and since f is convex as a sequence,
the value of

∑a
i=0 f(i) in terms of nk is given by

n1∑
i=1

i+
n2∑
i=1

(n1 + 2i) +
n3∑
i=1

(n1 + 2n2 + 3i) + . . . = 1
2
(
nT v + nTAn

)
,

APPROX/RANDOM’17

http://dx.doi.org/10.1016/j.ejor.2014.04.018
http://dx.doi.org/10.1016/0095-8956(75)90041-6
http://dx.doi.org/10.6028/jres.069B.013
http://dx.doi.org/10.6028/jres.069B.013
http://dx.doi.org/10.4153/CJM-1965-045-4
http://dx.doi.org/10.1007/3-540-36478-1_2
http://arxiv.org/abs/0902.0885
http://arxiv.org/abs/0902.0885
http://dx.doi.org/10.7155/jgaa.00423
http://dx.doi.org/10.1016/j.ejor.2014.10.003
http://dx.doi.org/10.1016/j.ejor.2014.10.003
http://dx.doi.org/10.1016/0095-8956(80)90074-X
http://dx.doi.org/10.1002/net.21547
http://dx.doi.org/10.1016/0012-365X(90)90287-R

6:14 Approximating Incremental Combinatorial Optimization Problems

where n is the vector of the nk, vk = k, and

A =

1 1 1 . . .

1 2 2 . . .

1 2 3 . . .
...

...
...

...

 ,
or Ak` = min(k, `). This is a symmetric, positive definite matrix, since its Schur complement
with respect to entry (1, 1) is just a smaller version of the same matrix, and all its coefficients
are positive integers. Note that nT v = b and so it is a constant independent of the vector of
n. The solution given by the following optimization problem gives the required upper bound

maximize nTAn

subject to n1 + n2 + . . . = a

n1 + 2n2 + . . . = b

nk ∈ N k = 1, . . . , b.

We will show with the following lemma that a solution n to this problem has at most
two consecutive non zeros.

I Lemma 8. If there are two positive integers i and j such that j− i ≥ 2, and ni > 0, nj > 0,
then defining

m = n+ (ei+1 − ei)− (ej − ej−1)

we have that m is feasible and mTAm > nTAn.

Proof. Note that m is feasible. On the other hand, since A is symmetric

mTAm− nTAn = (m+ n)TA(m− n).

Now, m− n = (ei+1 − ei)− (ej − ej−1), and then A(m− n) =
∑j−1
k=i+1 ek. The coefficients

of m and n are nonnegative integers, and furthermore (m + n)i+1 > 0, which implies the
result. J

This implies a closed form solution to the problem above.

I Theorem 9. Suppose b = ka + t, for some integer k, and t ∈ {0, . . . , a − 1}. Then the
solution to

maximize nTAn

subject to n1 + n2 + . . . = a

n1 + 2n2 + . . . = b

nk ∈ N k = 1, . . . , b

is given by nk = (k + 1)a− b = a− t, nk+1 = b− ka = t, and its value is ka2 + t2.

Proof. By the lemma above, the solution has at most two non zeros, and they are adjacent.
Let these be ` and ` + 1. The solution is given by the solution to n` + n`+1 = a and
`n` + (`+ 1)n`+1 = b. Given that n has two nonzeros, we can compute

nTAn = k(a− t)2 + 2k(a− t)t+ (k + 1)t2 = k(a− t+ t)2 + t2 = ka2 + t2. J

Lemma 7 is a simple corollary to the above.

Stochastic Unsplittable Flows∗

Anupam Gupta1 and Archit Karandikar2

1 Computer Science Department, Carnegie Mellon University, Pittsburgh, PA,
USA

2 Facebook, Inc., Menlo Park, CA, USA

Abstract
We consider the stochastic unsplittable flow problem: given a graph with edge-capacities, k
source-sink pairs with each pair {sj , tj} having a size Sj and value vj , the goal is to route the
pairs unsplittably while respecting edge capacities to maximize the total value of the routed
pairs. However, the size Sj is a random variable and is revealed only after we decide to route
pair j. Which pairs should we route, along which paths, and in what order so as to maximize
the expected value?

We present results for several cases of the problem under the no-bottleneck assumption. We
show a logarithmic approximation algorithm for the single-sink problem on general graphs, con-
siderably improving on the prior results of Chawla and Roughgarden which worked for planar
graphs. We present an approximation to the stochastic unsplittable flow problem on directed
acyclic graphs, within less than a logarithmic factor of the best known approximation in the non-
stochastic setting. We present a non-adaptive strategy on trees that is within a constant factor
of the best adaptive strategy, asymptotically matching the best results for the non-stochastic
unsplittable flow problem on trees. Finally, we give results for the stochastic unsplittable flow
problem on general graphs.

Our techniques include using edge-confluent flows for the single-sink problem in order to
control the interaction between flow-paths, and a reduction from general scheduling policies to
“safe” ones (i.e., those guaranteeing no capacity violations), which may be of broader interest.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Approximation Algorithms, Stochastic optimization, confluent flows, un-
splittable flows

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.7

1 Introduction

We consider the following stochastic problem of routing uncertain demands in a network.
We are given a graph G = (V,E) with edge capacities ce and a set J of k source-sink pairs
{sj , tj} (called jobs). We want to route some flow from each source to its corresponding sink,
but the amount of flow to be sent for job j (called its size) is not known a priori. We only
know that its size is a random variable Sj , with a known distribution. (We assume that the
sizes of jobs are independent of each other.) Each job has a value vj . We will operate under
the prevalent no-bottleneck assumption (NBA). In our setting, this means that the maximum
size in the support of any job’s distribution is at most the minimum capacity of any edge in
the graph.

∗ Research partly supported by NSF awards CCF-1319811, CCF-1540541 and CCF-1617790. Work done
when A. Karandikar was at the Computer Science Department, Carnegie Mellon University.

© Anupam Gupta and Archit Karandikar;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 7; pp. 7:1–7:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

7:2 Stochastic Unsplittable Flows

We want a routing strategy that decides on jobs to route in the network. This involves us
repeatedly choosing an uninstantiated job j and a path Pj for it, and routing this job along
the path. Once we do this, the size Sj is instantiated, drawn according to the given probability
distribution. If Sj is at most the residual capacity (which initially equals capacity) on each
edge of path Pj , the routing is considered successful, we get its value vj and the residual
capacity of all edges in Pj reduces by Sj . Else if there is some edge e ∈ Pj with residual
capacity less than Sj , the routing is unsuccessful and we do not get its value. Moreover, each
such “violated” edge is henceforth considered “forbidden” and cannot be used on subsequent
paths. When a job j is routed unsuccessfully on a path, it still uses up capacity Sj on all
edges along that path that do not become forbidden. The goal is to find a strategy that
maximizes the expected cumulative value of jobs it routes successfully. This problem is the
stochastic version of the well-known unsplittable flow problem (UFP), and as such, we call it
the stochastic unsplittable flow problem (sUFP).

A strategy for routing jobs is allowed to be adaptive, i.e., it can use results of its previous
decisions to make its current decision. In contrast non-adaptive policies provide a sequence
of jobs to route upfront. Storing as well as finding adaptive policies can potentially be
exponential in the size of the input and so finding non-adaptive policies of expected value
close to the optimal expected value of an adaptive strategy is desirable. The adaptivity gap is
the ratio of the value of the optimal adaptive strategy to the optimal non-adaptive strategy.

The stochastic knapsack problem was first studied by Dean, Goemans and Vondrak [15]
who showed that it has a constant adaptivity gap. The stochastic knapsack is the special
case of the sUFP on a graph with a single edge. Subsequent work of Dean et al. [14] also
considered several versions of the stochastic packing problem, which is a generalization of
the sUFP. Over a universe of size d, they showed an O(

√
d) adaptivity gap for stochastic

set-packing, and O(d) for general packing problems. Bansal et al. [2] gave an O(k)-adaptivity
gap for stochastic set-packing with sets of size at most k.

The sUFP was first studied by Chawla and Roughgarden [8]. They studied the single-sink
stochastic routing problem (SSSR), where all the targets ti are the same vertex t, and assumed
the stronger α-NBA, i.e., the size of each job is supported on [0, αcmin] for some α < 1. For
planar graphs, they presented a logarithmic approximation algorithm which guaranteed no
capacity violations. This work left open several interesting directions: can we work under
the NBA instead of the stronger α-NBA? Can we go beyond planar graphs to handle general
graphs? How about going beyond single-sink instances, and giving results for more general
unsplittable flow instances?

In this paper, we initiate a broader study of the sUFP, and answer these questions in the
positive. As is common in the existing research on their deterministic versions, we assume
that the underlying graph G is undirected for purposes of the sUFP on trees and general
graphs, and that G is a digraph in our treatment of the SSSR and the sUFP on DAGs.

1.1 Our Results
Single-Sink Stochastic Routing Problem (SSSR). Our main result is for the SSSR; as
defined above, here all the sinks are co-located. For this result, define the weight of job j as
wj := vj/µj , where vj is the value and µj = E[Sj] is the expected size of the job.

I Theorem 1.1 (SSSR). The single-sink stochastic routing problem (under the no-bottleneck
assumption) has a poly-time O(min(log k, logW))-approximation algorithm. Here k is the
number of jobs in the instance, and W := maxj wj

minj wj
is the maximum ratio between the weights

of the jobs.

A. Gupta and A. Karandikar 7:3

Chawla and Roughgarden [8] showed a safe O(logW
1−α)-approximation for planar SSSR

instances under the α-NBA; here, safe means the policy is guaranteed to have no edge-capacity
violations. No results prior to ours were known for the SSSR on general graphs. In fact, we
can also extend Theorem 1.1 to show that under the α-NBA, we get a safe O(min(log k,logW)

1−α)
approximation for the SSSR on general graphs. Recall that for the non-stochastic version of
this problem, Dinitz et al. [16] gave a constant-factor approximation algorithm. To obtain
the aforementioned logarithmic approximation, we will show a simple general reduction
from edge-confluence to node-confluence that was proposed as an open direction by Chen et
al. [13].

Stochastic Unsplittable Flow Problem (sUFP) on Directed Acyclic Graphs. Chekuri et
al. [10] gave an O(

√
n) approximation for the UFP. We obtain an analogous result in the

stochastic setting, giving away further a factor of O(
√

log k). Recall that k is the number of
jobs.

I Theorem 1.2 (sUFP on DAGs). The stochastic unsplittable flow problem (under the no-
bottleneck assumption) has a poly-time O(

√
n log k)-approximation algorithm on directed

acyclic graphs.

Stochastic Unsplittable Flow Problem (sUFP) on Trees. Our next result is for the sUFP
on trees. Here, the sj-tj paths are unique, which means the routing strategy merely has to
decide the sequence of jobs to route.

I Theorem 1.3 (sUFP on Trees). The stochastic unsplittable flow problem on trees (under
the no-bottleneck assumption) has a non-adaptive poly-time O(1)-approximation algorithm.

To the best of our knowledge, this is the first result for the sUFP on trees. Our result
follows as a corollary to a more general result, where each job corresponds to a “spider”;
we present this result in the full version of this paper. The non-stochastic unsplittable flow
problem on trees admits a constant factor approximation under the NBA, by a result of
Chekuri et al. [11], and hence our result extends this to the stochastic realm.

Stochastic Unsplittable Flow Problem (sUFP) on General Graphs. For UFP on general
graphs, Chakrabarti et al. [7] gave an O(FG logn) = O(∆α−1 log2 n) approximation for
the UFP. Here FG denotes the flow number, α denotes the expansion and ∆ denotes the
maximum degree of the graph. (These quantities will be formally defined in Section 4.) Our
next result shows how to match these approximation guarantees in the stochastic setting.
The proof is contained in the full version of the paper.

I Theorem 1.4 (sUFP). The stochastic unsplittable flow problem (under the no-bottleneck
assumption) has a non-adaptive poly-time O(d)-approximation algorithm if the LP relaxation
sends flows along paths of length at most d. This can be extended to an O(FG logn) =
O(∆α−1 log2 n)-approximation algorithm on general graphs.

Safe Routing Strategies. Finally, we give an approach to convert a general strategy (under
the NBA) to a safe one (assuming the α-NBA). For the sUFP on general graphs, directed
acyclic graphs and trees, we can convert policies under the NBA to safe policies under the
α-NBA by sacrificing a factor of O(1

1−α) for α ∈ (0, 1
2]. For stochastic knapsack and the

SSSR such a transformation can be performed for all α ∈ (0, 1).

APPROX/RANDOM’17

7:4 Stochastic Unsplittable Flows

1.1.1 Our Techniques
A primary question when dealing with stochastic problems is this: how can we argue about
the optimal strategy, which is given by an (exponential-sized) decision-tree? One appealing
approach – which we employ here – is to write an “average” LP relaxation which tries to
send the average amount of flow for each job. A feasible solution to this linear program is to
set the variables for job j based on the probability that the optimal strategy routes j, and
hence the LP value gives us an upper bound on the optimal value. However, for stochastic
problems, it is not enough to round the solution to integers: indeed, an integer solution to
this LP does not directly give us a good strategy (the constraints suffice only when each job
behaves like its expectation). Hence we need to “interpret” this solution to get a feasible
strategy.

For example, in the SSSR, suppose we are given unsplittable flows that send µj = E[Sj]
amount of flow from sj to the sink t, for every job j. We may hope to say that each job can
be routed with constant probability. However, the flow-paths can interfere in complicated
ways, and it is difficult to lower bound the probability that there is “enough room” for some
job deep in the process. Our new idea is to alter the flow paths to make them confluent –
i.e., when two flows use a common edge, they flow together from that point on to the sink.
The logarithmic losses come from this step. The confluent flows now behave in a tree-like
fashion, and the bottleneck edges are now those incident to the root. We can then argue
that these edges are not over-congested with reasonable probability.

For the sUFP in directed acyclic graphs we crucially use our confluence techniques along
with idea of v-separation inspired by Chekuri et al for rounding “small” jobs on long flow
paths. The other cases are handled using the rounding techniques mentioned above.

To translate arbitrary policies on general graphs to safe policies on unit-capacity graphs,
we show how to transform the given set of jobs into new jobs with the same expected size
but truncated job sizes, on which we can run the general non-safe strategy. The saved space
can then be used to ensure that our real jobs never run out of space.

The sUFP on paths and trees is a natural extension of the well-studied stochastic knapsack
problem, and can be viewed as a set of spatially-correlated knapsack problems. Here, we
show that for jobs with “large” expected size, we can get good value (comparable to the
LP value) by routing an essentially “disjoint” set of jobs. Jobs with small expected size are
routed using a scaled-down version of their LP variables. We can then go over the jobs in a
certain order, and show that each job, if routed, has a constant probability of having enough
capacity to be able to successfully route. A similar plan works for Theorem 1.4 for the sUFP
on general graphs: the union bound is over the d edges, and we lose an O(d) term. The
translation to the flow number and expansion is standard. The proofs for our results for the
sUFP on paths and trees and on general graphs can be found in the full version of this paper.

1.2 Related Work
After the pioneering work of [15], improved algorithms for the stochastic knapsack problem
were given by Bhalgat et al. [4, 3], by combining bi-criteria adaptive strategies (another
bi-criteria algorithm was given by Li and Yuan [21]), and an LP-rounding approach; we
do not know how to implement such adaptive strategies in our case. Work on stochastic
knapsack was extended to multi-armed bandits (see, e.g., [17, 18]), and correlated rewards and
sizes [19, 21, 22]; all these write more sophisticated LPs to capture correlations. Extending
our routing/packing problems to these correlated settings seems non-trivial, and remains
an exciting direction for future work. The only prior work on stochastic routing is that of
Chawla and Roughgarden [8] discussed above.

A. Gupta and A. Karandikar 7:5

Our work on sUFP on trees is directly inspired by work by Chakrabarti et al. [6, 7] and
Chekuri et al. [11] on resource-allocation problems and unsplittable flow on paths and trees.
These papers get better approximations by combining LP rounding approaches with dynamic
programming (DP) for large item sizes, but extending the DP approach to the stochastic
case seems difficult. Some variants of the sUFP on Trees (e.g., equal edge-capacities, packing
subtrees) are given in the Master’s thesis of the second-named author [20]. Algorithms
removing the NBA also rely heavily on dynamic programming (see [5, 1] and references),
though the LP-based approaches of Chekuri et al. [9] offer hope as well. The unsplittable
flow problem, both on general graphs and on trees/paths has been widely studied; see, e.g.,
the references in [9]. Our results for the sUFP on directed acyclic graphs are based on the
work by Chekuri et al [10].

For the single-sink routing problem, we are unable to directly extend the constant-factor
approximation of Dinitz et al. [16] to the stochastic case. Instead we use ideas based on
confluent flows, which were first developed by Chen et al. [13, 12]. In very recent work,
Shepherd, Vetta, and Wilfong [24] showed that for general capacitated networks, under the
NBA, there is a O(log6 n)-approximation algorithm for the demand maximization problem.
Shepherd and Vetta [23] give hardness results for such problems.

2 Additional Notation

Here we recall some essential notation introduced in §1 and introduce some new notation.
An instance of sUFP consists of a set J containing k jobs, each having a source-sink pair
{sj , tj}, a value vj , and random size Sj . We assume that the distribution of the r.v. Sj is
known to us; most of our algorithms only require knowing the mean µj . Each edge e of the
given graph G = (V,E) has a capacity ce. Let cmin := mine ce be the minimum capacity
of any edge, and Dmax := min{d | Pr[Sj > d] = 0 ∀j ∈ J}. The no-bottleneck assumption
(NBA) requires that Dmax ≤ cmin. By scaling we will always imagine that cmin = 1, hence
under the NBA, we can assume that maxe ce ≤ k, where k is the total number of jobs. If the
sizes are deterministic, we call the problem the unsplittable flow problem (UFP); the goal
is to route the maximum value set of jobs while respecting edge-capacities. If all sizes are
deterministic and equal, we get the capacitated EDP (edge-disjoint paths) problem. (In this
case we assume that all the jobs are unit-sized, and all the capacities are integers.)

2.1 An LP Relaxation
Given edge capacities ce ∈ R≥0, and a set J of jobs with demands µj , we upper-bound the
expected value of the optimal adaptive strategy using the following multicommodity-flow
linear program LPUFP (J, c):

φ(J, c) := max
∑
j(vj/µj)xj (LPUFP)

xj ≤ µj ∀j ∈ J
xj =

∑
P∈P(sj ,tj) fP ∀j ∈ J∑

P :e∈P fP ≤ ce ∀e ∈ E
fP ≥ 0 ∀P

Here P(u, v) is the set of all paths from vertex u to v. The same linear program is valid for
both directed and undirected instances, with the definition of P varying between the two.
The following theorem is analogous to a result of [15] for stochastic knapsack, and has been
used previously [8, 7, 14].

APPROX/RANDOM’17

7:6 Stochastic Unsplittable Flows

I Theorem 2.1. The value of the optimal adaptive strategy for a stochastic routing problem
with edge capacity vector c (under the NBA, where Dmax ≤ cmin = 1) and a set J of jobs
with expected sizes µµµ is at most φ(J, c + 1). Using NBA and scaling, we get φ(J, c + 1) ≤
φ(J, 2c) ≤ 2φ(J, c).

3 Single-Sink Stochastic Routing

We now give a logarithmic approximation for the single-sink stochastic routing (SSSR)
problem (under the NBA) on general directed graphs. This improves on the logarithmic
guarantee given by Chawla and Roughgarden for planar instances. To understand why this
problem is not just the single-sink UFP problem, suppose we are given a routing sending the
µj flow from each source unsplittably to the sink. To solve the stochastic problem, we have
to account for the randomness in the sizes – if we route P1 and it takes on size greater than
its expectation µj , what should we do next?

Our main insight is the use of edge-confluent flows, which may be somewhat unexpected
but is natural in hindsight. A flow in a single-sink network is confluent if any two flows which
“meet” are merged from there onwards. (One can have edge-confluent or node-confluent flows;
the formal definitions appear below.) To get a high-level idea, observe that if we solve the
relaxation (LPUFP), and the flow happens to be edge-confluent, the interference between
flow-paths can be controlled by controlling the interference on the edges incoming into the
sink t.

Our approach is the following: we convert the non-confluent solution to (LPUFP) to an
edge-confluent flow. This is not immediate: existing results deal with node-confluence and
are applicable only for unit-capacity networks, whereas our SSSR instances have general
capacities. Next, we reduce this edge-confluent flow to several instances of the stochastic
knapsack problem, one corresponding to every edge incoming to the sink in the unit-capacity
network. Our algorithm is adaptive, but only “mildly” so: the adaptivity arises only from the
preemption of jobs in each stochastic knapsack instance in order to keep the used-capacity
within control. We use the NBA during the conversion to edge-confluent flows. Under the
stronger α-NBA, the algorithm is safe.

3.1 Confluent Flows
Given a directed graph G = (V,E) with a special sink vertex t, and a set of sources
S = {s1, s2, . . . , sk} ⊆ V , a node-confluent flow is a flow from the sources to the sink such
that for each non-sink vertex v ∈ V , all the flow exiting v uses a single arc leaving v. An
edge-confluent flow is one where for each arc e ∈ E, all flow using this edge must subsequently
share the same arcs in their journey to the sink. Equivalently, for an edge-confluent flow
f , there exists a mapping φv : E → E that maps for each vertex v the in-arcs Iv of v to its
out-arcs Ov, such that for each out-arc e = (v, w) ∈ Ov, fe =

∑
e′∈Iv :φv(e′)=e fe′ .

For our edge-confluence results, we will operate in a setting where all edges have unit capa-
city. In this context, we define the the congestion of a flow f as cong(f) = max{1,maxe∈E fe}.
We denote the total amount of flow reaching sink t by |f |. The results of Chen et al. [12] for
node-confluence can be transferred to edge-confluence to get the following result.

I Theorem 3.1. Consider a directed single-sink flow network with unit edge-capacities under
the NBA, and a flow f sending di units of flow from source si to the sink, respecting edge-
capacities. (I.e., cong(f) ≤ 1.) Then the following exist and can be found in polynomial
time.

A. Gupta and A. Karandikar 7:7

1. An edge-confluent flow f ′ that for each i ∈ [k] sends di flow from si to t (i.e., |f ′| = |f |)
so that

cong(f ′) ≤ 1 + ln k and |f ′| = |f | .

2. A subset R ⊆ S and an edge-confluent flow f ′′ which for each i ∈ R sends di flow from si
to t such that

∑
i∈R di ≥

1
3
∑
i∈[k] di, and so that

cong(f ′′) = 1 and |f ′′| ≥ |f |3 .

Hence, the first result presents a way to route all the jobs while incurring logarithmic
congestion, and the second result presents a way to route a large subset of the jobs and incur
unit congestion.

Proof Sketch. The idea is to construct the line graph H of the given digraph G (plus one
extra node) so that node-confluent flows in the given network correspond to edge-confluent
flows in the constructed network. (See Figure 1.) Now given a fractional flow in G, we can
map this flow to H, use a result of Chen et al. on transforming general flows to node-confluent
flows in H, and transform the resulting node-confluent flow back to an edge-confluent flow in
G. The formal proof appears in Appendix A.2. J

I Corollary 3.2. Consider a directed single-sink flow network with unit edge-capacities under
the NBA, and a flow f sending di units of flow from source si to the sink, respecting edge-
capacities. (I.e., cong(f) ≤ 1.) Moreover, each source si has weight wi, and let w denote the
vector of weights.

Then we can find, in polynomial time, an edge-confluent flow f̂ sending d̂i units of flow
from si to the sink respecting edge-capacities (i.e., cong(f̂) = 1), such that each d̂i ∈ [0, di],

〈w, d̂〉 ≥ 〈w,d〉 · 1
min{1 + ln k, 6(1 + log2 W)} ,

where W := maxj wj

minj wj
.

Proof. We want to find a flow f̂ for which 〈w, d̂〉 is within a logarithmic factor of 〈w,d〉 =∑k
i=1 widi. Apply Theorem 3.1(1) to the flow f to obtain edge-confluent flow f ′. Scaling the

flow f ′ down by a factor of 1 + ln k gives us a flow f̂ with 〈w, d̂〉 =
∑
i∈[k] wi · d̂i ≥

〈w,d〉
1+ln k .

Next, bucket the weights wi into dyadic intervals. By averaging, there exists some interval
I = (2j , 2j+1] such that jobs with weights in this interval have

∑
i:wi∈I wi · di ≥

〈w,d〉
1+log2 W

.
Use Theorem 3.1(2) to get R ⊆ {i : wi ∈ I} and flow f ′′ that sends flow |f ′′| =

∑
i∈R di ≥

1
3
∑
i:wi∈I di. Since the weights of jobs in I are within a factor of 2 of each other, we get that∑

i∈R wi · di ≥
1
6
∑
i:wi∈I wi · di ≥

〈w,d〉
6(1+log2 W) . The better of these two edge-confluent flows

gives us the claim. J

3.2 Approximate Single-Sink Stochastic Routing using Confluent Flows
Consider an instance of the SSSR on the directed graph G = (V,E) under the no-bottleneck
assumption (NBA) scaled so that cmin = 1. Assume that each source si is a unique vertex in
G with a single out-edge of capacity 1. This assumption is without loss of generality, since
we can always create a new vertex for each source and attach it using a unit-capacity edge
to the old location. This does not change feasibility because of the NBA.

APPROX/RANDOM’17

7:8 Stochastic Unsplittable Flows

For each edge e, define Ke = dbcec/2e. Note that Ke > ce/3 for all e. Given such a
digraph G = (V,E), define a (multi)graph G′ = (V,E′) where for each edge e = (u, v) ∈ E(G),
we have Ke parallel unit-capacity edges (u, v) in E′.

The following corollary states a way to obtain a confluent solution to LPUFP for G′
within a logarithmic factor of the optimal solution to LPUFP for G. Define the weight wj
for source Sj as vj/µj . Before we state it, recall the definition of LPUFP for G from §2.1
and note that an optimal solution (x, f) to it is a flow f in the graph G such that the total
weight of this flow 〈w,x〉 =

∑
j∈J wjxj = φ(J, c).

I Corollary 3.3. Given a solution (x, f) to LPUFP for the SSSR instance on the graph G,
there exists an edge-confluent solution (x′, f ′) to LPUFP on the unit-capacity graph G′, such
that

〈w,x′〉 ≥ 〈w,x〉 · Ω
(

1
min{log k, logW}

)
,

where the weight of job sj is wj = vj/µj , and W := maxj wj

minj wj
. Moreover, all the x′j ≤ µj units

of flow from sj to the sink is unsplittably routed. Finally, this flow can be found in time
poly(n, k).

Proof. The solution (x, f) on G can be ported to a solution (x̃, f̃) on G′ via scaling down
by at most a factor of 3, since the parallel edges replacing each edge e have total capacity
Ke > ce/3. Now apply Corollary 3.2 with dj = x̃j , and wj = (vj/µj) to get an edge-confluent
flow (x′, f ′) with the claimed value.

Moreover, since each source has a single out-edge, all flow from sj to the sink in G′ must
use this edge. Now edge-confluence ensures that this flow must be routed unsplittably to the
sink.

To bound the run-time, observe that the NBA implies that each edge in G need have
capacity at most k. Hence G′ has at most n2k edges. Finally, constructing the graph G′ and
converting the flow to an unsplittable one can be implemented in polynomial time. J

As noted previously, Corollary 3.3 above can be used to obtain an edge-confluent solution
(x′, f ′) which is within a logarithmic factor of φ(J, c) where f is a flow in the graph G′. Let
∂−(t) denote the set of edges going into the sink in the graph G′. For each such unit-capacity
edge e = {v, t} ∈ ∂−(t), look at the flow over this edge according to (x′, f ′). Define Ee as
the edges this flow uses on its way from the sources to the sink. By the edge-confluence, if
e 6= e′ are two edges into the sink, then Ee ∩ Ee′ = ∅. Moreover, since the flow from each
source is routed unsplittably, each job j with x′j 6= 0 has all its flow along edges belonging to
a unique Ee. Let Je be the jobs which are routed along e ∈ ∂−(t).

We will now present a strategy for the original SSSR instance on graph G which has
expected value at least a constant fraction of 〈w,x′〉. This, along with Theorem 2.1 and
Corollary 3.3 will imply that its expected value is within a logarithmic factor of the optimal
adaptive strategy for the SSSR instance and prove Theorem 1.1. Note that since the sets
(Je)e∈∂−(t) form a partition of {j ∈ J | x′j > 0} we have that

〈w,x′〉 =
∑

j∈J:x′
j
>0

wjx
′
j =

∑
e∈∂−(t)

∑
j∈Je

wjx
′
j

Consider some edge e in ∂−(t). All flow from sources in Je flows through e, and hence it
is the most congested edge among the ones used by sources in Je. Indeed, (x′, f ′) restricted

A. Gupta and A. Karandikar 7:9

to these sources gives us a solution to (LPUFP) for a single edge – i.e., for the stochastic
knapsack instance IK with a unit-capacity knapsack, and a set of jobs Je.

φK(Je, 1) = max
{∑
j∈Je

wjxj |
∑
j∈Je

xj ≤ 1, xj ≤ µj ∀j ∈ Je
}
.

Having identified these stochastic knapsack instances, let us state the O(1) approximation
for the stochastic knapsack provided by Dean, Goemans and Vondrak [15] which we will use
to complete the proof.

I Theorem 3.4 (Stochastic Knapsack [15]). Given an instance of stochastic knapsack with
a set of jobs J ′ there is a non-adaptive strategy ADGV which gets expected value at least

7
16 φ(J ′, 1) ≥ 7

32 OPT .

We now run the non-adaptive algorithm in Theorem 3.4 which attains a value Ω(1) ·
φK(Je, 1). For each source si ∈ Je routed by this algorithm, we route it along the path from
si to t taken by the confluent flow f ′. Once the cumulative size of the routed jobs exceeds 1,
we stop routing jobs from Je. The NBA implies that the jobs in Je use up a capacity of at
most 2.

Note that interference can occur only between instances corresponding to multiple edges
e′ ∈ G′ which correspond to the same edge e in the original graph G. However, there are
only Ke = dbcec/2e such instances and each instance consumes at most 2 units of capacity,
the total capacity used is at most 2Ke ≤ bcec+ 1, and the set of jobs routable in G′ are also
routable in G. To see this, note that there is 2 units of space for all but the last of the Ke

instances, and for the last instance we still have 1 unit of space which is enough to get full
value from each job routed successfully by the stochastic knapsack algorithm in Theorem 3.4.
Note that the per-instance preemption of jobs is the reason why our strategy is adaptive,
and the availability of less than 2 units of space on the last of the Ke instances is the reason
that it is unsafe. This completes the proof of Theorem 1.1.

To obtain safe policies for the SSSR under the stronger assumption of the α-NBA, we first
use the approach of Theorem 5.2 to get a safe O(1

1−α)-approximation for stochastic knapsack
under the α-NBA. Now using this for each of the stochastic knapsack instances above gives
us a safe approximation for SSSR under the α-NBA. Note that under the stronger α-NBA
we can afford to choose Ke = bcec since we use the safe version of the underlying stochastic
knapsack algorithm.

To conclude the section on the SSSR, we note that if we could improve the logarithmic
factor in Corollary 3.2 to a constant, then we could use our techniques to get a O(1)-
approximation for the SSSR problem. This would be implied by a stronger conjecture from
Chen et al. [12] that says that given any flow in a network with node congestion 1, one
can color the sources using a constant number of colors, such that each chromatic class is
node-confluently routable with congestion 1.

4 sUFP on Directed Acyclic Graphs

In this section we give an approximation algorithm for the sUFP on DAGs that extends the
work of Chekuri et al. [10, Corollary 1.2] which showed an O(

√
n) approximation for the

UFP.
The first idea, as with many UFP results, is to divide the jobs into small jobs and large

jobs. Let us define δ = 1/8. Jobs which have an expected size larger than δ are considered
large jobs and the rest are small. Let Js be the set of small jobs and J` be the set of

APPROX/RANDOM’17

7:10 Stochastic Unsplittable Flows

large jobs. Observe that φ(Js, c) + φ(J`, c) ≥ φ(J, c). Now if we could give, for instances
consisting exclusively of small and large jobs, non-adaptive algorithms that obtain at least
an 1/γs-fraction and 1/γ`-fraction of the respective LP values, then choosing the one with
higher guaranteed expected value would give us a non-adaptive strategy obtaining expected
value at least an 1/(γs + γ`)-fraction of the optimal adaptive strategy. (See Fact 1.1.)

For large jobs, we will use the existing result by Chekuri et al. [10, Theorem 1.1]. For
small jobs, we use the idea of v-separation from this work [10, Section 3.2] together with our
confluence-based techniques to obtain a O(

√
n log k) approximation for the sUFP on DAGs

(Theorem 1.2). Recall that n is the number of vertices and k is the number of jobs.

4.1 Routing Large Jobs

Let I = (G, c, J) be an instance having optimal payoff OPT where all jobs j satisfy µj ≥ δ.
For these, define the following instance of the UFP on DAGs: let the edge-capacities become
ĉe := bcec, and we want to find for each job j a unit-sized sj-tj path Pj subject to these
capacities to maximize the value of the routed paths. The natural LP relaxation for this
problem is:

φ̂(J, c) := max
{∑

j

vjxj |
∑
j:e∈Pj

xj ≤ ĉe ∀e ∈ E, x ∈ [0, 1]k
}
. (LPEDP)

The theorem in the work by Chekuri et al. [10, Theorem 1.1] implies that we can find,
in polynomial-time, a subset S ⊆ J which is feasible for (LPEDP), such that

∑
j∈S vj ≥

1
O(
√
n) · φ̂(J, ĉ). For the large jobs, assume that all jobs are unit-sized, find the set S, and try

to route each of the jobs in S. The NBA implies that the sizes of the jobs are at most 1, and
even unit-sized jobs would not violate the edge-capacities. Hence with probability 1 we get
a feasible solution to the stochastic UFP on DAGs with value 1

O(
√
n) φ̂(J, ĉ) ≥ δ

O(
√
n) OPT .

Having shown the approximation result for large jobs, observe that the arguments used above
are quite general, and let us record the following theorem for future use.

I Theorem 4.1 (Large Jobs Theorem). Consider an instance I = (G, c, J`) of the sUFP
(under the NBA). Suppose all jobs are δ-large – i.e., they have expected sizes at least
δ = δcmin. If the integrality gap of the capacitated EDP on the graph G is at most γ, then
there is a safe1 non-adaptive strategy A` for sUFP that, with probability 1, guarantees that
value(A`) ≥ 1

γ · φ̂(J`, ĉ) ≥ δ
4γ ·OPT`.

4.2 Routing Small Jobs

Let us now examine the case where all jobs are small. The quantity φ(J, c) represents the
weighted flow from the set of sources to the set of sinks. Recall that this quantity is at least
half of OPT by Theorem 2.1. We consider all flow paths and partition them into short paths
and long paths. For our purposes, paths of length at most

√
n(1 + ln k) will be called short

paths and the rest will be called long paths. Either the amount of weighted flow along short
paths is at least φ(J, c)/2 or that along long paths is at least φ(J, c)/2. We will handle both
these cases separately. We will use randomized rounding in both cases.

1 Note that the strategy described above guarantees that no edge-capacity is violated and is hence safe.

A. Gupta and A. Karandikar 7:11

4.2.1 Randomized Rounding for Short Flow Paths
Let x be the part of the solution to LPUFP which corresponds to the flow along the short
paths. If wi denotes vi/µi then we know that

∑
j∈J wjxj is at least φ(J, c)/2. We decide to

route job j with probability αxj/µj and job j, if so chosen, is routed on path P ∈ P(sj , tj)
with probability fP /xj . With the remaining probability 1− αxj/µj we choose not to route
job j. Let YPj be the indicator r.v. for whether path P was picked for job j.

We define a random indicator variable ZPj which indicates if the algorithm A decides to
route job j along path P and there is at least 1/2 residual capacity on each edge of P at the
time of routing it.

ZPj =

1 if YPj = 1 and

∑
i<j

∑
P ′3e

P ′∈P(si,ti)

SiYP ′i ≤ ce − 1/2 for all e ∈ P

0 otherwise
.

If we choose α = 1
4
√
n(1+ln k)

, we get:

Pr[ZPj = 0 | YPj = 1] ≤
∑
e∈P

Pr
[∑
i<j

∑
P ′3e

P ′∈P(si,ti)

SiYP ′i > ce/2
]
.

Note that LPUFP implies

E
[∑
i<j

∑
P ′3e

P ′∈P(si,ti)

SiYP ′i

]
=
∑
i<j

∑
P ′3e

P ′∈P(si,ti)

µi · (αfP ′ /µi) ≤ αce = ce

4
√
n(1 + ln k)

.

It follows from Markov’s inequality that

Pr[ZPj = 0 | YPj = 1] ≤
∑
e∈P

1
2
√
n(1 + ln k)

≤ 1/2.

We can now complete the proof of the claim, using Markov’s inequality once again:

Pr[value obtained from job j]
= vj · Pr[Job j is successfully routed]

= vj ·
∑
P

(
Pr[YPj = 1] · Pr[ZPj = 1 | YPj = 1]

· Pr[Job j is successfully routed along P | ZPj = 1, YPj = 1]
)

≥ vj ·
∑
P

(
α · fP

µj
· 1

2 ·
3
4

)
= 3vj

8 ·
xj
µj
· 1

4
√
n(1 + ln k)

= 3wjxj
32
√
n(1 + ln k)

.

4.2.2 Randomized Rounding for Long Flow Paths
Recall that long paths are path of length more than

√
n(1 + ln k). We examine the case

where flow of weight at least φ(J, c)/2 is routed along long paths. As in the proof of SSSR in
Section 3, we will convert the flow on the given graph to a flow on a corresponding multigraph
with edges of unit capacity. As before, we assume without loss of generality (because of the
NBA) that the sources sj are unique vertices, each with a single out-edge of capacity 1 and
similarly, that the targets tj are unique vertices, each with single in-edge of capacity 1.

APPROX/RANDOM’17

7:12 Stochastic Unsplittable Flows

As before, we define corresponding to each edge e, an integer Ke = dbcec/2e. For the given
directed acyclic graph G = (V,E), define a (multi)graph G′ = (V,E′) where for each edge
e = (u, v) ∈ E, we have Ke parallel unit-capacity edges (u, v) in E′. Note that Ke > ce/3
for all e and hence the flow along long paths in G, after being scaled down by a factor of
3 can be converted to a flow in G′ preserving flow path lengths. Let this flow, which is of
weight at least φ(J, c)/6 correspond to the solution F = (x, f) to LPUFP for G′.

All flow paths are long and hence the sum over vertices of the weighted flow routed through
each vertex is at least weight(F) ·

√
n(1 + ln k). Since the total number of vertices is n, there

must exist at least one vertex v through which flow of weight at least φ(J, c)/6 ·
√

(1 + ln k)/n
is routed. Let Fv = (xv, fv) be the solution to LPUFP corresponding to the part of F routed
through v. G′ is a directed acyclic multigraph and hence the vertex v splits the flow F
into a single-sink instance G′in and a single-source instance G′out. Let us denote the two
corresponding flows by Fv,in and Fv,out. We infer2 from Theorem 3.1 that there exists in
G′in an edge-confluent flow F ′v,in of weight weight(Fv,in)/(1 + ln k) and in G′out an edge-
confluent flow F ′v,out of weight weight(Fv,out)/(1 + ln k). The flow-per-job and hence the
weights of Fv,in and Fv,out are same as the corresponding quantities of Fv. Furthermore
these quantities are uniformly scaled down by a factor of (1 + ln k) in the flows F ′v,in and
F ′v,out. Hence these two flows can be combined to obtain a flow F ′v = (x′v, f ′v) of weight
weight(Fv)/(1 + ln k) ≥ φ(J, c)/(6

√
n(1 + ln k)) which is confluent in both the partitions

G′in and G′out.
We will now devise a routing strategy which has expected value within a constant factor

of weight(F ′v) by randomly rounding this flow. Note that despite the confluence properties
of the flow F ′v, we cannot directly reduce this v-separable instance to two instances of the
Stochastic Knapsack problem as we did in SSSR, because the routings for both parts must
synchronize.

We make an initial decision to route job j with probability αx′vj/µj and job j, if so
chosen, is routed on path P ∈ P ′(sj , tj) with probability f ′vP /xj . Here P ′(sj , tj) denotes the
possible set of paths for job j in graph G′. With the remaining probability 1− αx′vj/µj we
choose not to route job j. Let YPj be the indicator r.v. for whether path P was picked for
job j. Again, we define a random indicator variable ZPj which indicates if the algorithm
A makes an initial decision to route job j along path P and there is at least 1/2 residual
capacity on each edge of P just before making a decision for job j. If ZPj = 0 even though
YPj = 1 the initial decision is overruled and job is not routed. Otherwise the initial decision
holds.

ZPj =

1 if YPj = 1 and

∑
i<j

∑
P ′3e

P ′∈P(si,ti)

SiZP ′i ≤ 1/2 for all e ∈ P

0 otherwise
.

We choose α = 1/8. The event {ZPj = 0 | YPj = 1} occurs if there is at least one edge
along P which is congested, i.e., it has residual capacity less than 1/2 at the time of making
a decision for job j. Let ein and eout denote the edges on P which are incoming to and
outgoing from v. Since F ′v is confluent in both G′in and G′out, we infer that if at least one

2 We scale down by a factor of (1 + ln k) to ensure unit congestion

A. Gupta and A. Karandikar 7:13

edge along P is congested, then either ein or eout must be congested. Hence

Pr[ZPj = 0 | YPj = 1] ≤
∑

e∈{ein,eout}

Pr[
∑
i<j

∑
P ′3e

P ′∈P(si,ti)

SiYP ′i > 1/2].

Note that LPUFP implies

E[
∑
i<j

∑
P ′3e

P ′∈P(si,ti)

SiYP ′i] =
∑
i<j

∑
P ′3e

P ′∈P′(si,ti)

µi · (αf ′vP ′ /µi) ≤ 1/8.

Markov’s inequality implies that Pr[ZPj = 0 | YPj = 1] ≤ 1/2. We use Markov’s inequality
again to infer:

Pr[value obtained from job j]
= vj · Pr[Job j is successfully routed]

= vj ·
∑
P

(
Pr[YPj = 1] · Pr[ZPj = 1 | YPj = 1]

· Pr[Job j is successfully routed along P | ZPj = 1, YPj = 1]
)

≥ vj ·
∑
P

(
α · fP

µj
· 1

2 ·
3
4

)
= 3wjxj

64 .

Hence the expected value of this rounding strategy is within a constant factor of
weight(F ′v). Finally note that this routing strategy ensures that each edge in G′ reaches
capacity at most once and hence the capacity consumed on it is at most 2. The definition of
G′ is such that all but one of the Ke edges in G′ will not obstruct each other’s jobs from
being routed in G if none of the edges ever reaches more than 2 units of congestion and for
the last edge the remaining capacity is at least 1, enough to get value from the successfully
routed jobs. This completes the proof of Theorem 1.2.

5 Safe Strategies

In this section we address the issue of routing jobs in a way such that we are guaranteed
to never overshoot the capacity of any edge. This concept was first studied by Chawla
and Roughgarden [8], who called such strategies “safe” strategies. To get non-trivial safe
strategies, one has to make an assumption slightly stronger than the NBA. Indeed, we assume
that Dmax, the supremum of the values that any job can take on with non-zero probability,
is α where α ∈ (0, 1) – i.e., the support of each random variable Sj is now [0, α]. We refer
to this assumption as the α-NBA. As before we have assumed by scaling that cmin = 1.
Note that we can now get a better upper bound on OPT than what Theorem 2.1 provides :
OPT ≤ φ(J, c + α1) ≤ (1 + α)φ(J, c).

5.1 The Case α ≤ 1/2

In case α ∈ (0, 1/2], any strategy for sUFP that is good with respect to the LP relaxation
(LPUFP) can be easily converted to a safe strategy with a loss of a factor of (1− α).

I Theorem 5.1. For α ∈ (0, 1/2], let instance I = (G, c, J) of the sUFP satisfy the α-NBA.
Hence, the instance I ′ = (G, c(1− α), J) satisfies the NBA. Given a strategy A that is an
γ-approximation for the instance I ′ w.r.t. the LP relaxation (LPUFP), we can obtain a
strategy that is an γ(1+α)

1−α -approximation for I.

APPROX/RANDOM’17

7:14 Stochastic Unsplittable Flows

Proof. Observe that φ(J, c(1− α)) ≥ 1−α
1+α · φ(J, c(1 + α)). We know that the strategy A for

I ′ achieves expected value at least 1
γ · φ(J, c(1− α)) ≥ 1−α

γ(1+α) ·OPT (I). We claim that this
run will not violate the actual capacities c of the edges. Indeed, we can assume, w.l.o.g., that
A does not route any jobs that use any edges that are already forbidden. Hence, just before
an edge capacity is violated in the run of A on I ′, it was used to at most (1− α)ce, and the
α-NBA ensures that the job can take on size at most α ≤ α ce. So the total used-up capacity
on each edge e is at most ce(1− α) + α ≤ ce, completing the proof. Note that if α > 1/2 the
instance I ′ does not satisfy the NBA. J

5.2 The Case α ≥ 1/2

In this case we give a reduction that takes an arbitrary strategy for sUFP on unit-capacity
networks which is good with respect to the LP solution, and transforms it into a safe strategy.
We use this e.g., on our result for single-sink UFP.

I Theorem 5.2. Let α ∈ (0, 1) and γ ≥ 1. Consider a flow network G with unit-capacity
edges; i.e., c = 1. (We allow parallel arcs.) Suppose we have strategy Ã that for any
instance Ĩ = (G,1, J̃) of the sUFP on G satisfying the NBA, achieves expected value at least
1/γ ·φ(J̃ ,1). Then there exists a safe algorithm A which for all instances I = (G,1, J) of the
sUFP satisfying the α-NBA achieves expected value at least (1−α)

6γ · φ(J̃ ,1) ≥ (1−α)
6γ(1+α) ·OPT .

Proof. First, we can assume that for all jobs j ∈ J , we have Pr[Sj = 0] = 0, by losing a
factor of 2 in the approximation. To prove this, first imagine there are no jobs having mean
size zero, since these can be routed without using any capacity. Let µmin := minj∈J µj be
the least mean job size. We transform the jobs in J to be supported on [µmin, α] by defining
their new size to be S′j := max{µmin, Sj}. This increases the mean µj of each job j to
µj′ ≤ µj + µmin ≤ 2µj , but still satisfies the α-NBA. Consequently, the value of the LP has
decreased by at most 2 and our strict positivity assumption is justified. Any strategy safe for
the modified instance is also safe for the original instance. An advantage of having strictly
positive job sizes is that we can argue that if the given strategy Ã routes a job on some path
P , all edges on the path have strictly positive residual capacity (and are not forbidden, of
course). If not, if there were some edge of capacity zero, or a forbidden edge, the routing
would necessarily be unsuccessful, and we could drop it without any loss in value.

Now define α′ := 1− α and δ := α′/2. Separate the jobs into δ-large (those with µj ≥ δ)
and δ-small (the remaining). For the δ-large jobs, apply Theorem 4.1 to obtain a safe
(1 + α)γ/δ-approximation. Observe that to apply Theorem 4.1, we need an algorithm for the
capacitated UFP problem – however, our assumed algorithm Ã for sUFP is at least as powerful,
and hence suffices. (The approximation factor is better than claimed in Theorem 4.1, since
(i) we start with unit edge-capacities, and hence we do not need to round down the capacities
(ii) We use the better (1 + α)φ(J, c) upper bound on the OPT)

For the δ-small jobs Js, let us denote the original small instance by I = (G,1, Js), and
define a modified instance I ′ = (G,α′1, J ′s). For each job j ∈ Js, find a threshold `j ≤ µj
such that

E[max(`j ,min(Sj , α′))] = µj .

In words, we “clip” the job size Sj at α′ on the upper side, and at `j on the lower side, and
want the mean to remain unchanged. This is possible since µj ≤ δ < α′, so the upper clipping
brings the mean down, which the lower clipping can remedy. Now define the size of the new
job j′ to be Sj′ := max(`j ,min(Sj , α′)), this clipped random variable, and let µj′ := E[Sj′].

A. Gupta and A. Karandikar 7:15

Observe that Sj , Sj′ are coupled by definition, such that conditioned on Sj′ < α′, we know
that Sj′ ≥ Sj .

Observe that the value of the LP relaxation φ(J ′s, α′1) ≥ α′ · φ(Js,1). Moreover, the
instance I ′ = (G,α′1, J ′s) satisfies the NBA, and hence running Ã on J ′s achieves an expected
value of at least 1/γ · φ(J ′s, α′1). So we can imagine executing the algorithm Ã on I ′, whilst
actually routing the jobs in I. I.e., when Ã asks to route job j′, we actually run job j, it
takes on size Sj , and we report back the size Sj′ to the algorithm Ã. As argued above, we
assume that Ã does not route any job on forbidden edges, or edges of zero capacity.

The crucial observation is that conditioned on an edge e’s capacity having been used up
to less than α′, the actual usage (according to the real job sizes Sj) is no more than the
usage according to the job sizes Sj′ reported to Ã. This is because, conditioned on Sj′ < α′,
we know that Sj′ ≥ Sj .

Now to see that this strategy is safe for I, consider an edge on some path P on which Ã
routes some job j. Previously e’s capacity was used up to less than α′ (since it had non-zero
residual capacity by our assumption on Ã), and even if the current job uses it to its maximum
size α = 1− α′, we will not violate the actual capacity. Hence, any job that is routed in Ã’s
run on I ′ will also be successful routed in the run on I.

This gives us an (1+α)γ/α′-approximation algorithm for small jobs. Using Fact 1.1 the
better of the two gives us a 3γ(1+α)

(1−α) -approximation. Moreover, losing another factor of 2 for
the transformation to strictly positive job sizes gives us the result. J

Theorem 5.2 is the only result in our paper where we require knowing more information
about the distribution of Sj beyond just the expectation µj . Now we can use Theorems 5.1
and 5.2 to give a safe strategy for variants of the sUFP. In particular, applying this to the
stochastic knapsack result from Theorem 3.4 gives us a safe algorithm for that problem, and
hence for the SSSR.

6 Conclusions and Discussion

In this paper we gave approximation algorithms for stochastic routing problems under the
no-bottleneck assumption. These problems generalize the classical unsplittable flow problem.
Our results include improved results for the single-sink case, constant-factor approximations
for stochastic routing on trees and paths, and results for general graphs as well. We also
gave techniques to convert unsafe strategies into safe ones, for unit capacity networks. Many
interesting open questions remain: E.g., can we get a constant-factor for the single-sink
setting? Can we give results without the no-bottleneck assumption?

References
1 Aris Anagnostopoulos, Fabrizio Grandoni, Stefano Leonardi, and Andreas Wiese. A mazing

2+ε approximation for unsplittable flow on a path. In Proceedings of the Twenty-Fifth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon,
USA, January 5-7, 2014, pages 26–41, 2014. doi:10.1137/1.9781611973402.3.

2 Nikhil Bansal, Anupam Gupta, Jian Li, Julián Mestre, Viswanath Nagarajan, and Atri
Rudra. When LP is the cure for your matching woes: Improved bounds for stochastic
matchings. Algorithmica, 63(4):733–762, 2012.

3 Anand Bhalgat. A (2 + ε)-approximation algorithm for the stochastic knapsack prob-
lem. At http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.7341&
rep=rep1&type=pdf, 2011.

APPROX/RANDOM’17

http://dx.doi.org/10.1137/1.9781611973402.3
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.7341&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.7341&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.7341&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.7341&rep=rep1&type=pdf

7:16 Stochastic Unsplittable Flows

4 Anand Bhalgat, Ashish Goel, and Sanjeev Khanna. Improved approximation results for
stochastic knapsack problems. In ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1647–1665, 2011.

5 Paul S. Bonsma, Jens Schulz, and Andreas Wiese. A constant factor approximation al-
gorithm for unsplittable flow on paths. In IEEE 52nd Annual Symposium on Foundations
of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages
47–56, 2011. doi:10.1109/FOCS.2011.10.

6 Gruia Calinescu, Amit Chakrabarti, Howard Karloff, and Yuval Rabani. An improved
approximation algorithm for resource allocation. ACM Trans. Algorithms, 7(4):Art. 48, 7,
2011. doi:10.1145/2000807.2000816.

7 Amit Chakrabarti, Chandra Chekuri, Anupam Gupta, and Amit Kumar. Approximation
algorithms for the unsplittable flow problem. Algorithmica, 47(1):53–78, 2007. doi:10.
1007/s00453-006-1210-5.

8 Shuchi Chawla and Tim Roughgarden. Single-source stochastic routing. In Proceedings of
APPROX, pages 82–94. Springer, 2006.

9 Chandra Chekuri, Alina Ene, and Nitish Korula. Unsplittable flow in paths and trees
and column-restricted packing integer programs. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, 12th International Workshop, AP-
PROX 2009, and 13th International Workshop, RANDOM 2009, Berkeley, CA, USA, Au-
gust 21-23, 2009. Proceedings, pages 42–55, 2009. doi:10.1007/978-3-642-03685-9_4.

10 Chandra Chekuri, Sanjeev Khanna, and F. Bruce Shepherd. An o(sqrt(n)) approximation
and integrality gap for disjoint paths and unsplittable flow. Theory of Computing, 2(7):137–
146, 2006. doi:10.4086/toc.2006.v002a007.

11 Chandra Chekuri, Marcelo Mydlarz, and F. Bruce Shepherd. Multicommodity demand
flow in a tree and packing integer programs. ACM Trans. Algorithms, 3(3):Art. 27, 23,
2007. doi:10.1145/1273340.1273343.

12 Jiangzhuo Chen, Robert D. Kleinberg, László Lovász, Rajmohan Rajaraman, Ravi
Sundaram, and Adrian Vetta. (Almost) tight bounds and existence theorems for single-
commodity confluent flows. J. ACM, 54(4):Art. 16, 32 pp. (electronic), 2007. doi:
10.1145/1255443.1255444.

13 Jiangzhuo Chen, Rajmohan Rajaraman, and Ravi Sundaram. Meet and merge: approx-
imation algorithms for confluent flows. J. Comput. System Sci., 72(3):468–489, 2006.
doi:10.1016/j.jcss.2005.09.009.

14 Brian C. Dean, Michel X. Goemans, and Jan Vondrák. Adaptivity and approximation for
stochastic packing problems. In SODA, pages 395–404, 2005.

15 Brian C. Dean, Michel X. Goemans, and Jan Vondrák. Approximating the stochastic
knapsack problem: The benefit of adaptivity. Math. Oper. Res., 33(4):945–964, 2008. doi:
10.1287/moor.1080.0330.

16 Yefim Dinitz, Naveen Garg, and Michel X. Goemans. On the single-source unsplittable
flow problem. Combinatorica, 19(1):17–41, 1999. doi:10.1007/s004930050043.

17 Sudipto Guha and Kamesh Munagala. Approximation algorithms for budgeted learning
problems. In ACM Symposium on Theory of Computing (STOC), pages 104–113. ACM,
2007. Full version as Sequential Design of Experiments via Linear Programming, http:
//arxiv.org/abs/0805.2630v1.

18 Sudipto Guha and Kamesh Munagala. Approximation algorithms for bayesian multi-armed
bandit problems. CoRR, abs/1306.3525, 2013. URL: http://arxiv.org/abs/1306.3525.

19 Anupam Gupta, Ravishankar Krishnaswamy, Marco Molinaro, and R. Ravi. Approximation
algorithms for correlated knapsacks and non-martingale bandits. In IEEE Symposium on
Foundations of Computer Science (FOCS), pages 827–836, 2011.

http://dx.doi.org/10.1109/FOCS.2011.10
http://dx.doi.org/10.1145/2000807.2000816
http://dx.doi.org/10.1007/s00453-006-1210-5
http://dx.doi.org/10.1007/s00453-006-1210-5
http://dx.doi.org/10.1007/978-3-642-03685-9_4
http://dx.doi.org/10.4086/toc.2006.v002a007
http://dx.doi.org/10.1145/1273340.1273343
http://dx.doi.org/10.1145/1255443.1255444
http://dx.doi.org/10.1145/1255443.1255444
http://dx.doi.org/10.1016/j.jcss.2005.09.009
http://dx.doi.org/10.1287/moor.1080.0330
http://dx.doi.org/10.1287/moor.1080.0330
http://dx.doi.org/10.1007/s004930050043
http://arxiv.org/abs/0805.2630v1
http://arxiv.org/abs/0805.2630v1
http://arxiv.org/abs/1306.3525

A. Gupta and A. Karandikar 7:17

20 Archit Karandikar. Approximation algorithms for stochastic unsplittable flow prob-
lems. Master’s thesis, Carnegie Mellon University, 2015. URL: https://github.com/
architkarandikar/MastersThesis.

21 Jian Li and Wen Yuan. Stochastic combinatorial optimization via poisson approximation.
In Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June
1-4, 2013, pages 971–980, 2013. doi:10.1145/2488608.2488731.

22 Will Ma. Improvements and generalizations of stochastic knapsack and multi-armed ban-
dit approximation algorithms: Extended abstract. In Proceedings of the Twenty-Fifth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon,
USA, January 5-7, 2014, pages 1154–1163, 2014. doi:10.1137/1.9781611973402.85.

23 F. Bruce Shepherd and Adrian Vetta. The inapproximability of maximum single-sink
unsplittable, priority and confluent flow problems. CoRR, abs/1504.00627, 2015. URL:
http://arxiv.org/abs/1504.00627.

24 F. Bruce Shepherd, Adrian Vetta, and Gordon T. Wilfong. Polylogarithmic approximations
for the capacitated single-sink confluent flow problem. In IEEE 56th Annual Symposium on
Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015,
pages 748–758, 2015. doi:10.1109/FOCS.2015.51.

A Missing Proofs

A.1 Combining Results for Small and Large Jobs
I Fact 1.1 (Combination). Consider an instance I = (G, c, J) of the sUFP with optimal
payoff OPT specified by the graph G, edge-capacity vector c and the set of jobs J . Let J1
and J2 form a partition of J and consider instances I1 = (G, c, J1) and I2 = (G, c, J2)
with optimal payoffs OPT1 and OPT2. Suppose for each instance Ii, there exists a polytime
non-adaptive algorithm Ai, a polytime computable quantity ξi and a quantity γi ≥ 1 such
that E[payoff(Ai)] ≥ ξi ≥ 1

γi
OPTi. Then the algorithm A that returns the solution for the

instance Ii with the higher ξi has

E[payoff(A)] ≥ 1
γ1 + γ2

OPT .

Proof. Since J1 and J2 form a partition of J , OPT ≤ OPT1 +OPT2 ≤ γ1ξ1 + γ2ξ2. Hence
max(ξ1, ξ2) ≥ OPT

γ1+γ2
.

As an example application, suppose we have two different LP rounding algorithms that
on instances Ji produce solutions with values ξi = 1

γi
OPTi. Then taking the larger one is an

(γ1 + γ2)-approximation. J

A.2 Reducing Edge-Confluence to Node-Confluence
The results of Chen et al. [12], along with most other literature address node-confluence. We
show how to get Theorem 3.1 on edge-confluence from these resuts. The existing result of
Chen et al. that we use is the analog of Theorem 3.1 for node-confluent flows under node-
congestion. The node-congestion of a flow is defined as n-cong(f) = max{1,maxv∈V \{t} fv}
where fv denotes the flow passing though vertex v.

Proof. Theorem 3.1 Consider any digraph G = (V,E) with sources SG ⊆ V , sink node t, and
unit edge-capacities, in which we have a general flow f respecting edge capacities(i.e. cong(f) =
1) that we wish to convert to an edge-confluent flow. We assume w.l.o.g. that this flow is
acyclic and that each source has exactly one outgoing edge from it and no edges incoming

APPROX/RANDOM’17

https://github.com/architkarandikar/MastersThesis
https://github.com/architkarandikar/MastersThesis
http://dx.doi.org/10.1145/2488608.2488731
http://dx.doi.org/10.1137/1.9781611973402.85
http://arxiv.org/abs/1504.00627
http://dx.doi.org/10.1109/FOCS.2015.51

7:18 Stochastic Unsplittable Flows

Figure 1 Reducing edge-confluence to node-confluence. Edge-confluent flows in the network
above correspond to node-confluent flows in the one below. The sink is shaded grey. The sources
are shaded with a gradient.

into it. To justify the latter, note we can augment the graph by adding a new source for each
orginal source, connected to it by a unit-capacity edge. Under the NBA, this transformation
does not change congestion and flows which are edge-confluent in the augmented graph are
also edge-confluent in the original graph.

We construct another graph H with unit node-capacities, which is essentially the directed
line graph of G (plus one extra node). This construction is demonstrated in Figure 1. The
graph H has a node vpq for every arc (p, q) in G. There is an arc from vpq to vrs exactly
when q = r. Moreover, it has node vt, with arcs from all nodes vpt to vt. Finally, for every
source s there is exactly one graph (s, xs) leaving s as per our assumption. The set of sources
in the new graph H is defined by SH = {vsxs | s ∈ S}.

Now given the flow f in G from sources S to sink t, take any path decomposition of
the flow f . Each flow path P can be mapped in a natural way to a flow-path in H: if
P = 〈s, a, b, . . . , z, t〉, then it is mapped to path 〈vsa, vab, . . . , vzt, vt〉 in H. Doing this for
all flow-paths gives a flow h in H. The node-capacities in H are satisfied by h because
the edge-capacities in G were satisfied by f . This is a injection from unit edge-congestion
flows in G into unit node-congestion flows in H. Note that the procedure can be reversed to
obtain a surjection from unit node-congestion flows in H onto unit edge-congestion flows in
G. These mappings are not inverses since several flows in H may correspond to a single flow
in G3. Under these mappings, any edge-confluent flow f from SG to t in G is mapped to a
node-confluent flow h from SH to vt in H, and vice versa. Since the flow though an edge in
G equals flow through the corresponding vertex in H we note that cong(f) = n-cong(h).

Hence, to prove Theorem 3.1, we do the following: we take the unit-congestion flow f in
G and convert it into a unit-node-congestion flow h in H. Now we can use results of Chen et
al. [12] on node-confluent flows in unit-capacity graphs. They show how to convert h into:

A node-confluent flow h′ with n-cong(h′) = 1 + ln k.
A node-confluent flow h′′ respecting node-capacities (i.e. n-cong(h′′) = 1) that routes
flow from a subset of the sources in SH having total flow at least a third of the total
original flow in h.

Mapping these flows back to G gives us the flows claimed in Theorem 3.1. J

3 Consider node c in Figure 1 and note that (a → c → e, b → c → f) and (a → c → f, b → c → e) can be
two different alternatives for path decomposition.

A. Gupta and A. Karandikar 7:19

A reduction from node-confluence to edge-confluence is easy as Chen et al. [13] had
previously observed. This result thus identifies an interconvertability between node-confluence
and edge-confluence. Note that we have used this construction for unit capacity networks only
since it suffices our purpose of addressing the SSSR. However this argument also extends in
a straightforward way to capacitated graphs. Hence it can also be used to obtain a O(log6 n)
approximate edge-confluent flow of congestion 2 corresponding to the recent node-confluence
results of Shepherd, Vetta, and Wilfong [24, Theorem I.7].

APPROX/RANDOM’17

Streaming Complexity of Approximating Max
2CSP and Max Acyclic Subgraph
Venkatesan Guruswami∗1, Ameya Velingker†2, and
Santhoshini Velusamy‡3

1 Computer Science Department, Carnegie Mellon University, Pittsburgh, PA,
USA
venkatg@cs.cmu.edu

2 School of Computer and Communication Sciences, EPFL, Lausanne,
Switzerland
ameya.velingker@epfl.ch

3 Department of Computer Science and Engineering, Indian Institute of
Technology Madras, Chennai, India
cs13b059@smail.iitm.ac.in

Abstract
We study the complexity of estimating the optimum value of a Boolean 2CSP (arity two constraint
satisfaction problem) in the single-pass streaming setting, where the algorithm is presented the
constraints in an arbitrary order. We give a streaming algorithm to estimate the optimum within
a factor approaching 2/5 using logarithmic space, with high probability. This beats the trivial
factor 1/4 estimate obtained by simply outputting 1/4th of the total number of constraints.

The inspiration for our work is a lower bound of Kapralov, Khanna, and Sudan (SODA ’15)
who showed that a similar trivial estimate (of factor 1/2) is the best one can do for Max CUT.
This lower bound implies that beating a factor 1/2 for Max DICUT (a special case of Max 2CSP),
in particular, to distinguish between the case when the optimum is m/2 versus when it is at most
(1/4 + ε)m, where m is the total number of edges, requires polynomial space. We complement
this hardness result by showing that for DICUT, one can distinguish between the case in which
the optimum exceeds (1/2 + ε)m and the case in which it is close to m/4.

We also prove that estimating the size of the maximum acyclic subgraph of a directed graph,
when its edges are presented in a single-pass stream, within a factor better than 7/8 requires
polynomial space.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.1.6 Optim-
ization, G.2.1 Combinatorics, G.2.2 Graph Theory

Keywords and phrases approximation algorithms, constraint satisfaction problems, optimiza-
tion, hardness of approximation, maximum acyclic subgraph

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.8

1 Introduction

We are concerned with the ability of single-pass streaming algorithms to estimate the
optimum value of constraint satisfaction problems (CSPs), focusing in particular on very

∗ Research supported in part by NSF grant CCF-1526092.
† Work done mostly while at CMU.
‡ Work done mostly while at CMU, Pittsburgh during S.N. Bose Scholars Program 2016 conducted by

the Science and Engineering Board (SERB), Department of Science and Technology (DST), Govt. of
India, the Indo-U.S. Science and Technology Forum (IUSSTF) and WINStep Forward.

© Venkatesan Guruswami, Ameya Velingker, and Santhoshini Velusamy;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 8; pp. 8:1–8:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2 Streaming Complexity of Approximating Max 2CSP and Max Acyclic Subgraph

simple (Boolean, arity two) constraints. The impetus for our investigation is a striking lower
bound result by Khanna, Kapralov, Sudan [16] for the problem of estimating the Max Cut
in a graph, when the edges arrive one-by-one in a streaming fashion. There is a trivial factor
1/2-approximation for the problem using only O(logn) space, namely, count the number
of edges and output half this value as the estimate for Max Cut value.1 The authors of
[16] showed that even with Ω̃(

√
n) space, a single-pass streaming algorithm cannot achieve

a factor (1/2 + ε)-approximation, for any constant ε > 0.2 The lower bound in fact holds
even if the edges arrive in a random (as opposed to worst-case) order. A later work shows
that obtaining a β-approximation, for some β bounded away 1 requires Ω(n) space [17]. In
contrast, there are streaming algorithms producing a (1− ε)-approximation in Õε(n) space,
by use of “cut sparsifiers” [2, 19].

1.1 Context: Approximation resistance of CSPs
The Max Cut problem is a particular, most basic form of CSP, with underlying constraints
being of the form x 6= y. More generally, a CSP over domain D is specified by a template
Λ = {P1, . . . , Ps} of predicates Pi : Dai → {0, 1} (ai is the arity of Pi), and an instance
of MaxCSP(Λ) is specified by a variable set V and a collection of “constraint tuples" (i, τ)
with i ∈ {1, 2, . . . , s} denoting the type of constraint and τ ∈ V ai denoting the tuple of
variables to which the constraint is applied. The goal is to find an assignment σ : V → D

so that a maximum number of constraints are satisfied, where a constraint (i, τ) is satisfied
by σ if Pi(σ(τ1), . . . , σ(τai)) = 1 (in other words, setting the variables in the scope of this
constraint according to assignment σ satisfies the predicate Pi). The maximum possible
number of satisfied constraints is called the optimum value of the CSP instance. For most
templates Λ, the Max CSP problem is NP-hard to solve optimally (see [20] for a dichotomy
theorem for Max CSP classifying the rare easy cases). So there has been a lot of work
on designing approximation algorithms. An absolutely trivial algorithm is the random
assignment algorithm that ignores the instance structure, and simply assigns a random value
to each variable. This achieves a αΛ approximation for MaxCSP(Λ) where αΛ = mini{E[Pi]},
with the expectation taken over a random input to Pi – we call αΛ the random assignment
threshold. Since the seminal work of Håstad [13] it has been established that for several
interesting CSPs, it is NP-hard to beat the performance ratio of this trivial algorithm! Such
CSPs are called approximation resistant in the literature (see, for instance, [8] and references
therein). Already for arity 3, several important CSPs such as Max E3SAT and Max E3LIN
(linear equations mod 2) are approximation resistant.

Thanks to semidefinite programming, for arity 2 CSPs, one can do better than the αΛ
factor [7, 14]. In particular, for (Boolean) Max 2CSP, where the domain is D = {0, 1} and
Λ includes all predicates of arity 2, the seminal work of Goemans and Williamson [7], gave
a factor 0.79607 algorithm (this ratio was further improved to 0.8593 in [4]).3 The GW
algorithm was a substantial improvement over the random assignment threshold of 1/4 which
was also the best known algorithm for Max 2CSP at that time. For the specific case of
Max Cut, Goemans and Williamson get the famous 0.87856 approximation factor, a vast

1 We use numbers < 1 to designate the approximation ratio for the maximization problems we study: a
factor γ approximation means the output estimate is at least γ times the optimum, and always at most
the optimum.

2 Throughout, we allow streaming algorithms to be randomized, and their estimate should satisfy the
approximation guarantee with probability say 9/10.

3 This guarantee is stated for the Max DICUT problem, which is a CSP with a single predicate P (x, y) =
x ∧ y, but in fact it holds for Max 2CSP in general.

V. Guruswami, A. Velingker, and S. Velusamy 8:3

improvement over the random assignment threshold of 1/2 (which was again the best known
algorithm at that point).

The aforementioned Khanna, Kapralov, Sudan result [16], however, shows that in the
streaming model, Max Cut is approximation resistant! Thus, streaming algorithms cannot
non-trivially estimate the optimum of even the simplest CSP. This raises the question whether
streaming algorithms operating in small space can non-trivially approximate (i.e., beat the
random assignment threshold) for some CSP, or whether every CSP is approximation resistant
in the streaming model.

1.2 Our results for Max 2CSP and Max DICUT
In this work, we give a factor 2/5 streaming algorithm for Max 2CSP that uses O(logn)
space. In particular, this beats the random assignment threshold of 1/4.

I Theorem 1. Fix any γ > 0. There is an efficient single-pass streaming algorithm that,
given as input a Max 2CSP instance on n variables, with constraints arriving one-by-one in
an arbitrary order, uses Oγ(logn) space and with probability at least 9/10 outputs an estimate
in the range [(2/5− γ)OPT,OPT], where OPT is the optimum value of the CSP instance.

Any arity 2 Boolean predicate can be expressed as the disjunction of (at most 4) AND
constraints, at most one of which can be satisfied by any assignment. By AND constraints,
we mean one of the predicates (x∧ y), (x∧ y), (x∧ y), and (x∧ y) (that is, we take an AND
of two literals). Any Max 2CSP instance can thus be mapped into a Max 2AND instance
with the same optimum value. The above theorem therefore follows from our result about
Max 2AND stated below (without loss of generality, in the rest of the paper, we only focus
on Max 2AND and not Max 2CSP):

I Theorem 2. Fix any γ > 0. There is an Oγ(logn) space single-pass streaming algorithm
that can estimate the optimum value of a Max 2AND instance, whose AND constraints arrive
in an arbitrary order, within a factor of 2/5−γ with probability at least 9/10. More specifically,
on an instance with m constraints and optimum value OPT, the algorithm outputs a lower
estimate on OPT which, with probability at least 9/10, lies in the range [(2/5−γ)OPT,OPT].

Our algorithm and analysis are simple and elementary, and are based on the combination
of two observations. The first is that the bias of instance, which is sum over all variables
of |posv − negv| where posv (resp. negv) is the number of AND constraints in which v

participates as a positive literal (resp. negated literal), is a good proxy for the optimum
value when the optimum is large. The second is that the bias can be estimated efficiently in
a streaming fashion via L1 norm estimation of a vector under bounded dynamic updates of
its coordinates.

Note that prior to 1994 there was no efficient algorithm known to approximate Max
2AND (or even the restricted Max DICUT problem) within a factor better than the random
assignment threshold of 1/4. So, its simplicity notwithstanding, it is perhaps surprising that
one can in fact have a low-space and time-efficient streaming algorithm that achieves a factor
much better then 1/4.

Since the semidefinite programming based approximation for Max DICUT, many works
have also given simpler algorithms that beat the factor 1/4. We mention some of them
here. Trevisan used randomized rounding of a natural linear program to give a factor 1/2
algorithm [21]. Alimonti obtained a factor 1/3 approximation using local search [1]. Halperin
and Zwick presented simple factor 2/5 and 9/20 algorithms based on some path removal
ideas, and also a factor 1/2 algorithm (via a combinatorial method to find a half-integral LP

APPROX/RANDOM’17

8:4 Streaming Complexity of Approximating Max 2CSP and Max Acyclic Subgraph

solution) [11]. (In Appendix A, we give a different proof of the half-integrality of the LP,
and the associated (non-streaming) factor 1/2 algorithm.) Feige and Jozeph [5] give a very
simple factor 2/5 algorithm for Max DICUT: take the greedy cut which sets variables whose
out-degree is at least their in-degree to 0, and remaining to 1, and return the better of this
cut and a uniformly random cut.

None of these algorithms seem to have an efficient streaming implementation. The closest
to our algorithm is the greedy algorithm in [5], and we are able to get a streaming friendly
estimate of the DICUT value by avoiding computation of the greedy cut, but instead the
total bias of all vertices. Further our approach extends naturally to Max 2AND.

Hardness of factor 1/2 + ε approximation. We do not know if the 2/5 approximation
factor for Max 2AND is the best possible in the streaming model. However, one cannot
achieve an approximation factor larger than 1/2. This is because, by a trivial reduction from
the streaming lower bound for Max Cut in [16], we can deduce the following hardness even
for the special case of Max DICUT.

I Theorem 3. For any constant ε > 0, a factor (1/2+ε) randomized streaming approximation
algorithm for Max DICUT must use space Ω̃(

√
n). Specifically, a randomized streaming

algorithm that can decide, with success probability 9/10, whether an m edge directed graph
has a dicut of value at least m/2 or has no dicut of value (1/4 + ε)m, requires Ω̃(

√
n) space.

Complementary algorithmic result. We show the tightness of the above hardness result via
the following algorithmic result for Max DICUT. The approach is again based on estimation
of the bias of the graph: we prove that graphs whose dicut value is close to m/4 must have
small bias, and graphs with dicut value noticeably larger than m/2 must have noticeable
bias.

I Theorem 4. There is a randomized streaming algorithm using O(logn) space that can,
with probability 9/10, distinguish between directed graphs with maximum dicut value more
than (1/2 + 8ε)m from graphs with maximum dicut value at most (1/4 + ε)m (where m is the
number of edges), for any ε ∈ (0, 1/16).

1.3 Streaming complexity of Maximum Acylic Subgraph
In the final part of the paper, we turn to another fundamental problem, Maximum Acyclic
Subgraph (MAS): Given a directed graph G = (V,E), find an acyclic subgraph with maximum
possible number of edges. Equivalently, we want an ordering of the vertices in V so that a
maximum number of arcs in E go forward. Note that this makes MAS also a kind of 2CSP,
albeit over a large domain D = {1, 2, . . . , |V |} with constraints of the form x < y.

The trivial algorithm which orders elements randomly, or the deterministic algorithm
that takes the better solution among an arbitrary ordering and its reversal, achieves a factor
1/2 approximation. Unlike 2CSPs over fixed domains, where there are algorithms that
beat the random assignment threshold [3, 14], for MAS there is no known polynomial time
factor (1/2 + ε) approximation algorithm. However, such an algorithm is ruled out under
Khot’s Unique Games Conjecture [9]. The best known NP-hardness for MAS seems to be for
approximation factors exceeding 65/66 [18].

Motivated by this state of affairs, we investigate whether one can show better hardness
results against the restricted model of single-pass streaming algorithms. Our ultimate goal
here would be to show that getting a (1/2 + ε)-approximation requires polynomial space
(we conjecture this to be the case). In this work, we prove the following weaker result. The

V. Guruswami, A. Velingker, and S. Velusamy 8:5

proof proceeds via a reduction from the Boolean Hidden Matching problem, inspired by an
analogous reduction for Max Cut from [16].

I Theorem 5. Any randomized algorithm that, given a single pass over a stream of edges of
an n-vertex directed graph G in arbitrary order, outputs a (7/8 + ε)−approximation to the
MAS value of G with probability at least 3/4, must use Ωε(

√
n) space.

We note that the above hardness factor is much better than the currently best known
NP-hardness. This raises a general theme of showing space lower bounds for approximation
in the streaming model for problems that currently lack intractability results in the form of
NP-hardness (or perhaps even Unique Games-hardness). In this broader context, one should
of course take hardness results in the streaming model with a grain of salt – the streaming
lower bound for Max Cut shows that streaming algorithms might be much weaker than
polynomial time algorithms. Still, we view this direction as an interesting blend between
approximation algorithms in general and constraint satisfaction in particular and streaming
complexity, one that could nevertheless shed some new light on the core difficulty of problems
such as MAS.

1.4 Open problems
We close this front matter by highlighting two natural open problems raised by our work.

1. What is the best approximation ratio achievable by a single-pass streaming algorithm
with logarithmic space for Max 2CSP (or even the restricted Max DICUT)? The answer
lies in the range [2/5, 1/2]. We suspect either 2/5 or 1/2 might be the right answer.

2. What is the best approximation ratio achievable by a single-pass streaming algorithm
with logarithmic space for Maximum Acyclic Subgraph? The answer lies in the range
[1/2, 7/8]. Here we conjecture that 1/2 is the right answer.

2 Preliminaries

Max 2AND. We formally define the Max 2AND problem. An instance of the problem
consists of a set of boolean variables x1, x2, . . . , xn, along with a set of clauses on these
variables. Each clause consists of a conjunction of two literals, i.e., each clause is of one of
the following forms, for some i 6= j: xi ∧ xj , xi ∧ xj , or xi ∧ xj . The value of the instance is
the maximum possible number of clauses that are satisfied for some setting of x1, x2, . . . , xn.

For each variable, it will be convenient to consider the number of constraints in which
that variable appears as a literal in either positive or negative form. Thus, for any i, we
define posi to be the number of constraints in which xi appears non-negated, while we define
negi to be the number of constraints in which xi appears negated, i.e., as xi.

Special Case: Maximum Dicuts. One special case of the Max 2AND problem is the Max
DICUT problem. We describe the Max DICUT in the terminology of graph theory below.

G = (V,E) denotes a directed graph with vertex set V and edge set E, where |V | = n

and |E| = m. For any vertex v ∈ V , dv, inv, and outv denote the overall degree, in-degree
and out-degree of vertex v, respectively.

I Definition 6. A dicut is an ordered partition (A,B) of the vertex set of a directed graph
into two disjoint subsets. The dicut value or size of the dicut is defined as the number of
directed edges going from a vertex in A to a vertex in B.

APPROX/RANDOM’17

8:6 Streaming Complexity of Approximating Max 2CSP and Max Acyclic Subgraph

I Definition 7. A maximal dicut (Max DICUT) of a directed graph G = (V,E) is a dicut
with the maximum dicut value.

Let (S, T) be an ordered partition of V and u be a vertex in V . Then, E(S → T) denotes
the set of edges going from set S to set T , E(u → T) denotes the set of edges going from
vertex u to vertices in set T , E(S → u) denotes the set of edges going from vertices in set S
to vertex u, and E(S → S) denotes the edges with both endpoints inside the set S.
I Remark. Note that the Max DICUT problem can be viewed as a special case of the MAX
2AND problem in which each clause has exactly one positive literal and one negative literal.
Vertices of the underlying graph correspond to boolean variables, and each directed edge
from vertex i to vertex j corresponds to a clause of the form xi ∧ xj . It is easy to see that a
maximal dicut (A,B) in the graph terminology corresponds to the assignment of variables
defined by xi = 1 if vertex i is in set A, while xi = 0 if vertex i is in set B.
I Remark. The value of any Max 2AND instance with m clauses is at least m

4 , since a
uniformly random assignment of boolean variables satisfies m

4 clauses on expectation.

I Definition 8. A randomized algorithm is said to give a α−approximation to Max 2AND
with failure probability δ (or success probability 1 − δ) if for any instance Ψ, it outputs a
value in the interval [αd, d] with probability at least 1− δ, where δ ∈

[
0, 1

2
)
, α ∈ (0, 1), and

d is the Max 2AND value of Ψ.

3 Single-Pass Streaming Complexity

Given a single pass over a stream of m constraints (in arbitrary order) of a Max 2AND
instance Ψ over n variables, the problem is to estimate the Max 2AND value of Ψ using
O(logn) space.

3.1 (2/5 − γ)-Approximation of Max 2AND
In analysing the Max 2AND value of an instance, it will be useful to consider a notion we
call bias. Intuitively, for each vertex, we wish to compare the number of constraints in which
xi appears in positive form versus the number of constraints in which xi appears in negated
form. The following definition of bias captures this intuition.

I Definition 9. The bias of a Max 2AND instance Ψ on n variables, denoted biasΨ, is
defined as

biasΨ =
n∑
i=1
|posi − negi|.

I Remark. 0 ≤ biasΨ ≤ 2m.
Next, we prove a couple of theorems showing the relation between the bias of an instance

and the Max 2AND value.
Intuitively, observe that if the bias of an instance is close to 2m, then most variables

xi satisfy the property that most constraints involving xi have the same literal on xi (i.e.,
xi appears in positive or negated form). Thus, it is reasonable to expect that in order to
maximize the number of satisfied constraints, xi should be set to the value that guarantees
the truth of most of these literals. The following theorem essentially states that this is the
case, and a bias close to 2m implies a Max 2AND value that is close to optimal, i.e., close to
m.

V. Guruswami, A. Velingker, and S. Velusamy 8:7

I Theorem 10. If the bias of an instance Ψ with n variables and m constraints is at least
(1− ε)2m, where ε ∈ [0, 1], then the Max 2AND value of Ψ is at least (1− ε)m.

Proof. Assume that biasΨ ≥ (1 − ε)2m. Now, consider the following greedy assignment
x1 = x′1, x2 = x′2, . . . , xn = x′n: For each i, we let x′i = 1 if posi ≥ negi, and x′i = 0 otherwise.
We claim that the number of constraints satisfied by this assignment is at least (1 − ε)m,
which would imply that the Max 2AND value of Ψ is also at least (1− ε)m.

Note that the number of unsatisfied constraints is at most
n∑
i=1

min{posi, negi}.

Thus, using the fact that

biasΨ =
n∑
i=1
|posi − negi|

=
n∑
i=1

(posi + negi)− 2
n∑
i=1

min{posi, negi}

= 2m− 2
n∑
i=1

min{posi, negi}, (1)

we have that the number of satisfied constraints of the assignment is at least

m−
n∑
i=1

min{posi, negi} ≥ m−
2m− biasΨ

2 = biasΨ

2 ≥ (1− ε)m ,

as desired. J

The following theorem essentially shows a converse statement, namely, that in order to
have a near-optimal Max 2AND value, i.e., close to m, the bias needs to be close to 2m.

I Theorem 11. If the bias of a Max 2AND instance Ψ with n variables and m constraints
is at most (1− ε)2m, where ε ∈ [0, 1], then its Max 2AND value is at most

(
1− ε

2
)
m.

Proof. Consider an assignment x1 = x′1, x2 = x′2, . . . , xn = x′n that satisfies the maximum
number of constraints of Ψ. Note that for any i, at least min{posi, negi} constraints involving
xi are not satisfied. Therefore, the total number of constraints of Ψ that are not satisfied is
at least∑n

i=1 min{posi, negi}
2 .

By (1), it follows that the Max 2AND value of Ψ is at most

m−
∑n
i=1 min{posi, negi}

2 = m− 2m− biasΨ

4 = m

2 + biasΨ

4

≤ m

2 + (1− ε)2m
4 =

(
1− ε

2

)
m,

as desired. J

The above theorems show us that the bias of an instance and its Max 2AND value are
closely related. Thus, if we can compute the bias of an instance efficiently in the single-pass
streaming setting, then we obtain a method to estimate its Max 2AND value.

APPROX/RANDOM’17

8:8 Streaming Complexity of Approximating Max 2CSP and Max Acyclic Subgraph

Algorithm 1 A (2/5−γ)-approximation algorithm of Max 2AND in the single-pass streaming
setting.

1: Input: A single pass over them constraints of an instance Ψ over n variables x1, x2, . . . , xn,
along with a parameter γ < 2/5 for desired closeness of approximation ratio.

2: Choose δ = 5γ/(4− 5γ).
3: Compute the L1 norm of the bias vector using the technique given in [15] (for an

approximation within 1± δ) to obtain b̃iasΨ.
4: if b̃iasΨ ≥ m/2 then
5: return b̃iasΨ/2(1 + δ)
6: else
7: return m/4
8: end if

Let us define the bias vector of a Max 2AND instance Ψ with n variables andm constraints
to be a vector with n components such that the ith component is equal to posi − negi for
all v ∈ V (G). Then, biasΨ is the L1 norm of the bias vector. Each constraint l1 ∧ l2 that
arrives in the stream changes the ith and jth components of the bias vector, where literal l1
involves variable xi and l2 involves variable xj . In particular, the arrival of the constraint
increases the ith component by 1 if l1 is xi while it decreases the component by 1 if l1 is xi.
Similarly, the jth component increases by 1 if l2 is xj , while it decreases by 1 if l2 is xj .

The following theorem given by Indyk in [15] shows that it is possible to compute the
L1 norm of a vector efficiently under bounded dynamic updates of its coordinates in the
single-pass streaming setting.

I Theorem 12 (from [15]). Let S be a stream of data, where each chunk of data is of the form
(i, a), i ∈ [n] and a ∈ {−M . . .M}, where M is a constant. The L1 norm of the data defined
by L1(S) = ‖V (S)‖1, where V (S)i =

∑
(i,a)∈S a can be estimated by an algorithm that, given

an arbitrary input stream S, outputs a quantity in the interval [(1− ε)L1(S), (1 + ε)L1(S)]
with probability at least 9/10, such that the algorithm uses only O(logn/ε2) words of storage.

Theorem 12 can be adapted to our setting by converting each constraint of the form
xi ∧ xj to a data chunk {(i, 1), (j, 1)}, each constraint of the form xi ∧ xj to a data chunk
{(i, 1), (j,−1)}, and each constraint of the form xi ∧ xj to a data chunk {(i,−1), (j,−1)}.
This shows that we can compute the bias of a directed graph up to any constant precision
with high probability.

We are now ready to show our main algorithmic result, namely, that one can obtain a
2/5-approximation to Max 2AND in the streaming model.

I Theorem 13. Algorithm 1 is a (2/5 − γ)-approximation algorithm of Max 2AND with
success probability 9/10 in the single-pass streaming setting.

Proof. Note that if biasΨ = (1/4 + ε)2m, ε ∈ [δ/2, 3/4], then by Theorem 10, the Max
2AND value Val of Ψ is at least (1/4 + ε)m and by Theorem 11, Val is at most (5/8 + ε/2)m.
Moreover, by Theorem 12, with probability at least 9/10, the L1 norm estimation subroutine
of Algorithm 1 outputs an estimate b̃iasΨ ∈ ((1− δ)biasΨ, (1 + δ)biasΨ). Since

(1− δ)biasΨ ≥ (1− δ)
(

1
4 + ε

)
2m ≥ (1− δ)

(
1
4 + δ

2

)
2m ≥ m

2 ,

V. Guruswami, A. Velingker, and S. Velusamy 8:9

Algorithm 1 returns b̃iasΨ/2(1 + δ) in this case. Furthermore,

b̃iasΨ/2
Val ≥ (1− δ)biasΨ/2

(5/8 + ε/2)m = (1− δ)(1/4 + ε)m
(5/8 + ε/2)m ≥ 2

5(1− δ)

and

b̃iasΨ/2
Val ≤ (1 + δ)biasΨ/2

(1/4 + ε)m ≤ (1 + δ)(1/4 + ε)m
(1/4 + ε)m ≤ 1 + δ .

Thus, we obtain an approximation ratio of

2
5 ·

1− δ
1 + δ

≥ 2
5 − γ.

by the choice of δ in the algorithm
Next, consider the case in which biasΨ < (1/4 + δ/2)2m. Then, note that the algorithm

always outputs a value that is at least m/4(1 + δ). Moreover, by Theorem 11, we have that
Val ≤ (5/8 + δ/4)m. Therefore, the approximation ratio in this case is

m/4(1 + δ)
(5/8 + δ/4)m = 2

5 ·
1 + δ

1 + 2δ
5
≥ 2

5 − γ . J

3.2 Hardness of (1/2 + ε)-approximation and a complementary
streaming algorithm for Max DICUT

Next, we consider the Max DICUT problem. We start by examining the regime in which the
Max DICUT value of an instance is close to the lower bound of m/4, i.e., as suboptimal as
possible. For the Max DICUT problem, we define the following notion of bias for a directed
graph G.

I Definition 14. We define the bias of a directed graph G = (V,E), denoted biasG, as
biasG =

∑
v∈V |outv − inv|.

I Remark. Note that biasG, as defined in Definition 14, gives the identical value as biasΨ for
the corresponding MAX 2AND instance Ψ (see Remark 2 for the correspondence). We use
the notion biasG along with the graph formulation of Max DICUT for convenience in this
section.

The following theorem shows that if the DICUT value of a Max DICUT instance is close
to m/4, then the bias of the corresponding graph must be small.

I Theorem 15. If the Max DICUT value of a directed graph G = (V,E) is at most
(1

4 + ε
)
m,

where ε ∈
[
0, 1

16
]
, then its bias is at most 32εm.

Proof. Let G = (V,E) be a directed graph with Max DICUT value at most
(1

4 + ε
)
m, where

ε ∈
[
0, 3

4
]
. Let (A,B) be a maximal dicut of G.

|E(A→ B)| ≤
(

1
4 + ε

)
m. (2)

|E(B → A)| ≤
(

1
4 + ε

)
m. (3)

For every vertex u ∈ A, we have

|E(u→ B)| ≥ |E(A→ u)|. (4)

APPROX/RANDOM’17

8:10 Streaming Complexity of Approximating Max 2CSP and Max Acyclic Subgraph

If there is a u ∈ A that does not satisfy (4), then it can be moved to set B to give a dicut of
larger size, which contradicts the fact that (A,B) is a maximal dicut of G. Similarly, for
every vertex v ∈ B, we have

|E(A→ v)| ≥ |E(v → B)|. (5)

The total number of edges in the graph is

|E(A→ A)|+ |E(B → B)|+ |E(A→ B)|+ |E(B → A)| = m. (6)

From (4) and (5), we have

max(|E(A→ A)|, |E(B → B)|) ≤ |E(A→ B)| ≤
(

1
4 + ε

)
m. (7)

From (2), (3), (6) and (7), we get

min(|E(A→ A)|, |E(B → A)|, |E(B → B)|) ≥
(

1
4 − 3ε

)
m. (8)

We will now obtain an upper bound on
∑
v∈B |outv − inv|.∑

v∈B
|outv − inv| =

∑
v∈B

∣∣|E(v → B)|+ |E(v → A)| − |E(B → v)| − |E(A→ v)|
∣∣

≤
∑
v∈B

(
∣∣|E(v → B)| − |E(A→ v)|

∣∣+
∣∣|E(v → A)| − |E(B → v)|

∣∣). (9)

Using (2),(5) and (8), we get∑
v∈B

∣∣|E(v → B)| − |E(A→ v)|
∣∣ =

∑
v∈B
|E(A→ v)| −

∑
v∈B
|E(v → B)|

≤
(

1
4 + ε

)
m−

(
1
4 − 3ε

)
m

= 4εm. (10)

We call a vertex v ∈ B “good" if

|E(B → v)| > |E(v → A)|.

and “bad" if it is not “good". Now, consider the ordered partition (B,A). If we move a
“good" vertex from B to A, the dicut value of the resulting partition is larger than the dicut
value of (B,A). We know that the size of any dicut in G is at most

(1
4 + ε

)
m. From (8), we

can infer that the increase in the dicut value by moving a “good" vertex cannot exceed 4εm.
Let Bg denote the set of all “good" vertices in B. We have∑

v∈Bg

(|E(B → v)| − |E(v → A)|) ≤ 4εm. (11)

Let Bb denote the set of all “bad" vertices in B. From (8) and (11), we get∑
v∈Bb

|E(B → v)| ≥
(

1
4 − 3ε

)
m−

∑
v∈Bg

|E(B → v)|

≥
(

1
4 − 3ε

)
m− 4εm−

∑
v∈Bg

|E(v → A)|

=
(

1
4 − 7ε

)
m−

∑
v∈Bg

|E(v → A)|. (12)

V. Guruswami, A. Velingker, and S. Velusamy 8:11

Using (12), we get

∑
v∈Bb

(|E(v → A)| − |E(B → v)|) ≤
∑
v∈B
|E(v → A)| −

(
1
4 − 7ε

)
m

= |E(B → A)| −
(

1
4 − 7ε

)
m

≤ 8εm. (13)

From (9), (10), (11) and (13), we have∑
v∈B
|outv − inv| ≤ 16εm.

Using similar arguments, we can conclude that∑
v∈A
|outv − inv| ≤ 16εm.

Hence, the bias of G is at most 32εm. J

I Corollary 16. If the Max DICUT value of a directed graph G = (V,E) is m
4 , then its bias

is 0, i.e., inv = outv ∀v ∈ V .

I Remark. It is reasonable to expect a converse statement of Theorem 15 to hold, i.e., that a
bias close to zero implies a Max DICUT value that is close to m/4. However, it turns out that
such a statement is not true. For example, consider the following instance of Max DICUT:
Let G(V,E) be an undirected perfect matching on 2n vertices. Using G, construct a directed
graph G′(V,E′) by adding directed edges u → v, v → u to E′ for each undirected edge
(u, v) in E. The Max DICUT value of G′ is n, which is much larger than m/4 = 2n/4 = n/2.
However, the bias of G′ is 0.

We now state the non-existence of a better-than-1/2−approximation algorithm for Max
DICUT when the constraints of an instance arrive one-by-one in random order in the
single-pass streaming setting.

Kapralov et al. gave a lower bound for approximating MAXCUT in the single-pass
streaming setting in [16]. By showing a simple reduction from MAXCUT to Max DICUT,
we observe that the same lower bound applies to Max DICUT. The following theorem is
taken from [16].

I Theorem 17 (from [16]). Let ε > 0 be a constant. Let G = (V,E), |V | = n, |E| = m be
an undirected graph. Any randomized algorithm that, given a single pass over a stream of
edges of G presented in random order, outputs a (1/2 + ε)−approximation to the value of
the maximum cut in G with probability at least 9/10 over its internal randomness must use
Ω̃(
√
n) space.

The reduction from MAXCUT to Max DICUT is as follows. Given any undirected graph
G, convert it into a directed graph G′ by adding two directed edges u→ v and v → u for
every edge (u, v) ∈ E(G). Observe that G has a cut of size k if and only if G′ has a dicut of
size k. Therefore, the MAXCUT value of G is equal to the Max DICUT value of G′. Note
that this reduction can be done on the fly and does not require any additional storage. Thus,
we have the following theorem.

APPROX/RANDOM’17

8:12 Streaming Complexity of Approximating Max 2CSP and Max Acyclic Subgraph

I Theorem 18. Let ε > 0 be a constant. Let G = (V,E), |V | = n, |E| = m be a directed
graph. Any randomized algorithm that, given a single pass over a stream of edges of G
presented in random order, outputs a (1/2 + ε)−approximation to the Max DICUT value of
G with probability at least 9/10 over its internal randomness must use Ω̃(

√
n) space.

I Remark. Since an instance of Max DICUT can be viewed as a special instance of Max 2AND
in which all clauses have one positive literal and one negative literal, the aforementioned
theorem also precludes the existence of a randomized streaming algorithm that approximates
the Max 2AND value of an instance to a factor of 1/2 + ε without using Ω̃(

√
n) space.

To prove Theorem 17, [16] showed that no o(
√
n) algorithm can distinguish between

distributions DY and DN , where graphs drawn from DY have MAXCUT value m, while
graphs drawn from DN have MAXCUT value at most (1/2 + ε)m for any ε ∈ [0, 1/2]. By
applying the reduction from MAXCUT to Max DICUT (the number of edges is doubled
in the reduced graph), we can conclude than no o(

√
n) algorithm can distinguish between

directed graphs with Max DICUT value m/2 and graphs with Max DICUT value at most
(1/4 + ε)m for any ε ∈ [0, 1/4].

I Theorem 19. Given a single pass over the edges of a directed graph G in any order, by
computing the bias of G we can distinguish between directed graphs with Max DICUT value
more than (1/2 + 8ε)m and graphs with Max DICUT value at most (1/4 + ε)m for any
ε ∈ (0, 1/16), with success probability 9/10.

Proof. If the Max DICUT value of a graph is at most (1
4 + ε)m, then using Theorem 15 we

can conclude that its bias is at most 32εm. If the Max DICUT value of a graph is more than
(1− δ)m, then using the contrapositive result of Theorem 11, we can conclude that its bias
is more than (1− 2δ)2m. By substituting δ = 1/2− 8ε, we get that the bias of the graph is
more than 32εm. Thus, we can distinguish the two graphs by computing their bias values
using the L1 sampling method. J

Note that while [16] implied that no o(
√
n) algorithm can distinguish between directed

graphs with Max DICUT value m/2 and graphs with Max DICUT value at most (1/4 + ε)m
for any ε ∈ [0, 1/4], Theorem 19 shows that it is possible to distinguish between directed
graphs with Max DICUT value (1/2 + 0.0001)m and graphs with Max DICUT value at
most (1/4 + 0.00001)m in the single-pass streaming setting using a O(logn) algorithm that
computes the bias of a graph.

4 Maximum Acyclic Subgraph

I Definition 20. The Maximum Acyclic Subgraph (MAS) value of a directed graph G =
(V,E) is the size of the largest acyclic subgraph of G, where we define the size of a graph to
be the number of edges in it.

Given a single pass over a stream of edges of a directed graph G = (V,E), we are interested
in computing an approximate estimate of the MAS value of G using logarithmic space.

I Definition 21. A randomized algorithm is said to give a α−approximation to MAS for
some α ∈ (0, 1) if for any input G = (V,E), it outputs a value in the interval [αd, d] with
probability at least 9/10, where d is the MAS value of G.

In this section, we show the non-existence of a better-than-7/8−approximation algorithm
to MAS in the low-space single-pass streaming setting. We show this via a reduction from

V. Guruswami, A. Velingker, and S. Velusamy 8:13

ai bi ai bi

ci di ci di

xi = 0 xi = 1

Figure 1 Edge set E1.

Boolean Hidden Matching (BHM), a two party one-way communication problem. A strong
communication lower bound for BHM was given by Gavinsky et al. in [6]. In [16], Kapralov
et al. showed the hardness of approximating MAXCUT using the BHM problem and its
extension given by Verbin and Yu in [22]. Inspired by this, here we adapt this approach to
show hardness of approximating MAS.

I Definition 22. The Boolean Hidden Matching (BHM) problem is a communication
complexity problem in which Alice gets a Boolean vector x ∈ {0, 1}n and Bob gets an
undirected perfect matching M on n vertices and a Boolean vector w of length n/2, where we
identify the perfect matching M with its Boolean edge incidence matrix of dimension n

2 × n.
It is a promise problem in which Bob outputs YES when Mx⊕ w = 0n/2 and outputs NO
when Mx⊕ w = 1n/2.

The following theorem was proved by Gavinsky et al. in [6].

I Theorem 23. Any randomized one-way communication protocol for solving BHM, where
Alice sends messages to Bob, that succeeds with probability at least 9/10 has complexity
Ω(
√
n).

We now use the above theorem to prove our streaming lower bound for approximating MAS.

I Theorem 24. Let ε > 0 be a constant. Let G = (V,E), |V | = n, |E| = m be a directed
graph. Any randomized algorithm that, given a single pass over a stream of edges of G,
outputs a (7/8 + ε)−approximation to the MAS value of G with probability at least 9/10 over
its internal randomness must use Ω(

√
n) space.

Proof. Let ALG be a randomized algorithm that uses space c and gives a better-than-
7/8−approximation to MAS in the single-pass streaming setting. We will show that ALG can
be used to obtain a randomized one-way communication protocol for BHM with complexity c.

Let x ∈ {0, 1}n be the vector that Alice receives. Alice creates edge set E1, her part of
the graph that will be given as input to ALG, as shown in Fig. 1. For each i ∈ [n], she
creates four vertices ai, bi, ci and di. If xi = 0, she adds edges ai → bi and di → ci to E1.
Else, she adds edges bi → ai and ci → di to E1. She then treats E1 as the first half of the
stream of edges, runs ALG on E1 and sends the state of ALG to Bob.

Bob constructs edge set E2, his part of the graph, as shown in Fig. 2 and Fig. 3. Let
M be the perfect matching on n vertices and w be the boolean vector of length n/2 that
Bob receives. Let Mi = (i1, i2) denote the i−th edge in the matching M (fix any ordering)
and wi denote the i−th coordinate of w, where i ∈ [n/2]. If wi = 0, he adds edges bi1 → ai2 ,
bi2 → ai1 , di1 → ci2 and di2 → ci1 to E2. Else, he adds edges bi1 → bi2 , ai2 → ai1 , di1 → di2
and ci2 → ci1 to E2.

He treats E2 as the second half of the stream and completes the execution of ALG on
the stream starting from the state that Alice sent. The total number of edges in the graph is

APPROX/RANDOM’17

8:14 Streaming Complexity of Approximating Max 2CSP and Max Acyclic Subgraph

ai1 bi1
ai1 bi1

ci1 di1
ci1 di1

ai2 bi2
ai2 bi2

ci2 di2
ci2 di2

xi1 = 1, xi2 = 0 xi1 = 1, xi2 = 1

ai1 bi1
ai1 bi1

ci1 di1
ci1 di1

ai2 bi2
ai2 bi2

ci2 di2
ci2 di2

xi1 = 0, xi2 = 0 xi1 = 0, xi2 = 1

Figure 2 Edge set E2 when wi = 0 (Cycles are marked in brown).

ai1 bi1
ai1 bi1

ci1 di1
ci1 di1

ai2 bi2
ai2 bi2

ci2 di2
ci2 di2

xi1 = 1, xi2 = 0 xi1 = 1, xi2 = 1

ai1 bi1
ai1 bi1

ci1 di1
ci1 di1

ai2 bi2
ai2 bi2

ci2 di2
ci2 di2

xi1 = 0, xi2 = 0 xi1 = 0, xi2 = 1

Figure 3 Edge set E2 when wi = 1 (Cycles are marked in brown).

V. Guruswami, A. Velingker, and S. Velusamy 8:15

2n+ 4(n/2) = 4n (Alice adds two edges for each coordinate of x and Bob adds four edges for
each edge in M). If the MAS value output by ALG is greater than 7n/2, then Bob outputs
NO, else he outputs YES.

The correctness of the reduction can be shown in the following way.

Mx⊕ w =

x11 ⊕ x12 ⊕ w1
...

xi1 ⊕ xi2 ⊕ wi
...

x(n/2)1 ⊕ x(n/2)2 ⊕ w(n/2)

 .

As depicted in Fig. 2 and Fig. 3, we can observe that when xi1 ⊕xi2 ⊕wi = 0, there is exactly
one cycle and when xi1 ⊕xi2 ⊕wi = 1, there are no cycles. Therefore, if Mx⊕w = 1n/2, then
the graph is acyclic and the MAS value is 4n. If Mx⊕ w = 0n/2, then the graph contains
exactly n/2 disjoint cycles (corresponding to each i ∈ [n/2]) and hence the MAS value is
7n/2 (subtract one edge from each cycle to get the maximum acyclic subgraph). Since ALG
gives a better-than-7/8−approximation to MAS, it outputs a MAS value greater than 7n/2
if and only if Mx ⊕ w = 1n/2. Since the state sent by Alice to Bob (after executing the
first half of the stream) contains at most c bits, the above protocol has randomized one-way
communication complexity c with success probability at least 9/10. By using Theorem 23,
we infer that c = Ω(

√
n). J

References
1 Paola Alimonti. Non-oblivious local search for MAX 2-CSP with application to MAX DI-

CUT. In 23rd International Workshop on Graph-Theoretic Concepts in Computer Science,
pages 2–14, 1997.

2 András A. Benczúr and David R. Karger. Approximating s-t minimum cuts in Õ(n2) time.
Proceedings of the 28th annual ACM symposium on Theory of computing, pages 47–55,
1996.

3 Lars Engebretsen and Venkatesan Guruswami. Is constraint satisfaction over two variables
always easy? Random Structures and Algorithms, 25(2):150–178, 2004.

4 Uriel Feige and Michel X. Goemans. Aproximating the value of two prover proof systems,
with applications to MAX 2SAT and MAX DICUT. In Third Israel Symposium on The-
ory of Computing and Systems (ISTCS), pages 182–189, 1995. doi:10.1109/ISTCS.1995.
377033.

5 Uriel Feige and Shlomo Jozeph. Oblivious algorithms for the Maximum Directed Cut
problem. Algorithmica, 71(2):409–428, 2015. doi:10.1007/s00453-013-9806-z.

6 Dmitry Gavinsky, Julia Kempe, Iordanis Kerenidis, Ran Raz, and Ronald de Wolf. Ex-
ponential separations for one-way quantum communication complexity, with applications
to cryptography. In Proceedings of the Thirty-ninth Annual ACM Symposium on The-
ory of Computing, STOC’07, pages 516–525, New York, NY, USA, 2007. ACM. doi:
10.1145/1250790.1250866.

7 Michel X. Goemans and David P. Williamson. Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. J. ACM, 42(6):1115–
1145, 1995. doi:10.1145/227683.227684.

8 Venkatesan Guruswami and Euiwoong Lee. Towards a characterization of approximation
resistance for symmetric CSPs. In Proceedings of Approximation, Randomization, and
Combinatorial Optimization: Algorithms and Techniques (APPROX/RANDOM), pages
305–322, 2015. doi:10.4230/LIPIcs.APPROX-RANDOM.2015.305.

APPROX/RANDOM’17

http://dx.doi.org/10.1109/ISTCS.1995.377033
http://dx.doi.org/10.1109/ISTCS.1995.377033
http://dx.doi.org/10.1007/s00453-013-9806-z
http://dx.doi.org/10.1145/1250790.1250866
http://dx.doi.org/10.1145/1250790.1250866
http://dx.doi.org/10.1145/227683.227684
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.305

8:16 Streaming Complexity of Approximating Max 2CSP and Max Acyclic Subgraph

9 Venkatesan Guruswami, Rajsekar Manokaran, and Prasad Raghavendra. Beating the ran-
dom ordering is hard: Inapproximability of maximum acyclic subgraph. In Proceedings of
the 49th IEEE Symposium on Foundations of Computer Science, pages 573–582, 2008.

10 Venkatesan Guruswami and Yuan Zhou. Tight bounds on the approximability of almost-
satisfiable horn SAT and exact hitting set. Theory of Computing, 8(11):239–267, 2012.
doi:10.4086/toc.2012.v008a011.

11 Eran Halperin and Uri Zwick. Combinatorial approximation algorithms for the maximum
directed cut problem. In Proceedings of the 12th Annual Symposium on Discrete Algorithms,
pages 1–7, 2001. URL: http://dl.acm.org/citation.cfm?id=365411.365412.

12 Eran Halperin and Uri Zwick. Combinatorial approximation algorithms for the maximum
directed cut problem. In Proceedings of the Twelfth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA’01, pages 1–7, Philadelphia, PA, USA, 2001. Society for Industrial
and Applied Mathematics. URL: http://dl.acm.org/citation.cfm?id=365411.365412.

13 Johan Håstad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001.
doi:10.1145/502090.502098.

14 Johan Håstad. Every 2-CSP allows nontrivial approximation. Computational Complexity,
17(4):549–566, 2008. doi:10.1007/s00037-008-0256-y.

15 Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream
computation. J. ACM, 53(3):307–323, May 2006. doi:10.1145/1147954.1147955.

16 Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Streaming Lower Bounds for
Approximating MAX-CUT. In Proceedings of the Twenty-sixth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA’15, pages 1263–1282, Philadelphia, PA, USA, 2015.
Society for Industrial and Applied Mathematics. URL: http://dl.acm.org/citation.
cfm?id=2722129.2722213.

17 Michael Kapralov, Sanjeev Khanna, Madhu Sudan, and Ameya Velingker. (1 + Ω(1))-
approximation to MAX-CUT Requires Linear Space. In Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’17, pages 1703–
1722, Philadelphia, PA, USA, 2017. Society for Industrial and Applied Mathematics. URL:
http://dl.acm.org/citation.cfm?id=3039686.3039798.

18 Alantha Newman. Approximating the maximum acyclic subgraph. Master’s thesis, MIT,
June 2000.

19 D.A. Spielman and N. Srivastava. Graph sparsification by effective resistances. STOC,
pages 563–568, 2008.

20 Johan Thapper and Stanislav Zivny. The complexity of finite-valued CSPs. J. ACM,
63(4):37:1–37:33, 2016. doi:10.1145/2974019.

21 Luca Trevisan. Parallel approximation algorithms by positive linear programming. Al-
gorithmica, 21(1):72–88, 1998. doi:10.1007/PL00009209.

22 Elad Verbin and Wei Yu. The streaming complexity of cycle counting, sorting by re-
versals, and other problems. In Proceedings of the Twenty-second Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA’11, pages 11–25, Philadelphia, PA, USA, 2011.
Society for Industrial and Applied Mathematics. URL: http://dl.acm.org/citation.
cfm?id=2133036.2133038.

A Approximating Max DICUT Using LP Rounding

In this section, we give a deterministic 1/2−approximation algorithm to solve the Max
DICUT problem in polynomial time in the usual setting (not streaming).

We first look at the binary integer programming (BIP) formulation of the Max DICUT
problem. Given a directed graph G = (V,E), the objective is to obtain an ordered partition

http://dx.doi.org/10.4086/toc.2012.v008a011
http://dl.acm.org/citation.cfm?id=365411.365412
http://dl.acm.org/citation.cfm?id=365411.365412
http://dx.doi.org/10.1145/502090.502098
http://dx.doi.org/10.1007/s00037-008-0256-y
http://dx.doi.org/10.1145/1147954.1147955
http://dl.acm.org/citation.cfm?id=2722129.2722213
http://dl.acm.org/citation.cfm?id=2722129.2722213
http://dl.acm.org/citation.cfm?id=3039686.3039798
http://dx.doi.org/10.1145/2974019
http://dx.doi.org/10.1007/PL00009209
http://dl.acm.org/citation.cfm?id=2133036.2133038
http://dl.acm.org/citation.cfm?id=2133036.2133038

V. Guruswami, A. Velingker, and S. Velusamy 8:17

(A,B) of V such that the number of edges not in E(A→ B) is minimum.

minimize
∑

e(i,j)∈E

ze.

subject to ze ≥ xi, ∀e(i, j) ∈ E.
ze ≥ 1− xj , ∀e(i, j) ∈ E.

ze, xi ∈ {0, 1}, ∀i ∈ V, ∀e ∈ E.

In the above BIP, e(i, j) denotes a directed edge e from vertex i to vertex j. xi, ∀i ∈ V
are indicator variables. If xi = 0, then i ∈ A, else i ∈ B. ze is constrained to be at least as
large as max(xi, 1− xj). Since the objective is to minimize

∑
e(i,j)∈E ze, in any BIP solution,

ze = max(xi, 1− xj). Thus, ze = 0 if e ∈ E(A→ B) and 1 otherwise. Hence, the optimal
value of

∑
e(i,j)∈E ze gives the number of edges not in the Max DICUT of G.

It is hard to get an exact solution for the above BIP in the worst case. Therefore, we
consider below its LP relaxation to approximately estimate the number of edges not in the
Max DICUT.

minimize
∑

e(i,j)∈E

ze.

subject to ze ≥ xi, ∀e(i, j) ∈ E.
ze ≥ 1− xj , ∀e(i, j) ∈ E.

ze, xi ∈ [0, 1] , ∀i ∈ V, ∀e ∈ E.

Any optimum solution to the above LP assigns ze = max(xi, 1− xj). Thus {xi} are the
independent variables and we denote any solution f to the above LP by f = {xi}. The
existence of a half-integral optimal solution to the LP and a combinatorial algorithm to
obtain it was given by Halperin and Zwick in [12]. In this paper, we present an alternate
algorithm to obtain a half-integral optimal solution to the LP, adapted from [10].

I Theorem 25 (Half Integrality). There is a polynomial-time algorithm that given a optimal
solution f = {xi} to the above LP, converts f into another optimal solution f∗ = {x∗i } such
that each x∗i is half-integral, i.e., x∗i ∈ {0, 1, 1/2}, and Val(f∗) ≤ Val(f).

Proof. Algorithm 2 takes as input the above LP formulation and one of the solutions
f = {xi}, and outputs the desired f∗. At a high level, the algorithm iteratively moves the
LP variables that are not half integral to half integral values. We need to prove that the
algorithm terminates in polynomial number of iterations and in each iteration, it creates a
valid LP solution whose objective value is at most the previous objective value.

Algorithm 2 always maintains a valid solution f to the LP (i.e., all x′is are in the range
[0, 1]). We first prove that it terminates within a polynomial number of iterations. Consider
the set Wf = {0 < x < 1/2 : ∃i ∈ V | x = xi or x = 1 − xi}. In each loop, the algorithm
picks a p from Wf . At the end of the loop, p is removed from Wf and no new element is
added. Thus, after a linear number of steps Wf = ∅ and the loop terminates.

We now prove that the objective value of the LP does not increase after each iteration.
Define f (t) = {x(t)

i = t}i∈S ∪ {x(t)
i = 1− t}i∈S′ ∪ {x(t)

i = xi}i∈V \(S∪S′) for t ∈ [a, b]. Observe
that p ∈ [a, b]. If we can show that Val(f (t)) is a linear function for t ∈ [a, b], it proves that
min(Val(f (a)),Val(f (b))) ≤ Val(f (p)) = Val(f). To prove linearity of Val(f (t)), we only need
to show that gij(t) = max(x(t)

i , 1− x(t)
j) is linear for t ∈ [a, b], ∀e(i, j) ∈ E. We prove each

case separately for t ∈ [a, b].

APPROX/RANDOM’17

8:18 Streaming Complexity of Approximating Max 2CSP and Max Acyclic Subgraph

Algorithm 2 Round any LP solution f = {xi} to a half-integral solution f∗, with Val(f∗) ≤
Val(f).

1: while ∃i ∈ V : xi /∈ {0, 1, 1/2} do
2: choose k ∈ v, such that xk /∈ {0, 1, 1/2} (arbitrarily)
3: if xk < 1/2 then
4: p← xk
5: else
6: p← 1− xk
7: end if
8: S ← {i : xi = p}, S′ ← {i : xi = 1− p}
9: a← max{xi : xi < p, 1− xi : xi > 1− p, 0}

10: b← min{xi : xi > p, 1− xi : xi < 1− p, 1/2}
11: f (a) ← {x(a)

i = a}i∈S ∪ {x
(a)
i = 1− a}i∈S′ ∪ {x(a)

i = xi}i∈V \(S∪S′)

12: f (b) ← {x(b)
i = b}i∈S ∪ {x

(b)
i = 1− b}i∈S′ ∪ {x(b)

i = xi}i∈V \(S∪S′)
13: if Val(f (a)) ≤Val(f (b)) then
14: f ← f (a)

15: else
16: f ← f (b)

17: end if
18: end while
19: return f (as f∗)

If i, j ∈ V \(S ∪ S′), gij(t) is a constant function.
If i ∈ S, j ∈ S′, gij(t) = t.
If i ∈ S′, j ∈ S, gij(t) = 1− t.
If i, j ∈ S (or i, j ∈ S′), g(t) = max(t, 1− t). Since a, b ≤ 1

2 and t ∈ [a, b], gij(t) = 1− t.
If i ∈ S, j ∈ V \(S ∪ S′), g(t) = max(t, 1− xj). If we plot all the x′is and 1− x′is on the
[0, 1] line, a is the maximum value less than p and b is the minimum value greater than p.
∀i ∈ V \(S ∪ S′), xi /∈ (a, b) and 1− xi /∈ (a, b).Thus, depending on xj , gij(t) is either a
constant or a linear function.
If i ∈ S′, j ∈ V \(S ∪ S′) (or i ∈ V \(S ∪ S′), j ∈ S ∪ S′), we can show that gij(t) is linear
by using the same argument as above. J

I Lemma 26. If the optimum value of the LP is at most εm, then the Max DICUT value
of the corresponding graph is at least

(
1− 3

2ε
)
m.

Proof. Using Algorithm 2, we obtain a half-integral solution to the LP relaxation in poly-
nomial time. This solution partitions the vertex set into three subsets. Let A = {i : xi =
0}, B = {i : xi = 1} and U = {i : xi = 1/2}. The solution assigns ze = 0 for e ∈ E(A→ B),
ze = 1/2 for e ∈ E(U → B) ∪E(A→ U) ∪E(U → U) and ze = 1 otherwise. If we round off
each variable in U to either 0 or 1 with probability 1/2, on expectation, at least half of {ze}
that are assigned value 1/2 currently become 0. This implies that there exists a rounding r
which makes at most half of {ze} with value 1/2 become 1 after that.

Since the LP optimum is at most εm, the number of {ze} that take value 1/2 are at most
2εm. After rounding r, the LP solution looks similar to the BIP solution. The increase in
the objective value is at most 1

2 × 2εm× 1
2 = ε

2m. Thus, the Max DICUT value of the graph
is at least

(
1− 3

2ε
)
m. J

V. Guruswami, A. Velingker, and S. Velusamy 8:19

Algorithm 3 A deterministic 1/2−approximation algorithm of Max DICUT.
1: Input: A directed graph G = (V,E).
2: Solve the LP relaxation of the Max DICUT problem for G. Let t be the corresponding

optimum value.
3: if t ≤ m/2 then
4: return (m− 3t/2)
5: else
6: return m/4
7: end if

I Theorem 27. Algorithm 3 is a deterministic polynomial time 1/2−approximation algorithm
of Max DICUT.

Proof. The running time of Algorithm 3 follows from the fact that any LP can be solved
in deterministic polynomial time. If t is the optimum value returned by the LP relaxation,
then the BIP optimum value is at least t. This implies that the Max DICUT value of the
corresponding graph is at most m − t. Lemma 26 implies that the Max DICUT value is
at least (m− 3t/2). When t ≤ m/2, the algorithm returns (m− 3t/2) as the Max DICUT
value. In this case, the approximation ratio is (m− 3t/2)/(m− t) ≥ 1/2. When t > m/2,
the Max DICUT value is at most m/2. Since the algorithm outputs m/4 in this case, the
approximation ratio is 1/2. J

APPROX/RANDOM’17

Symmetric Interdiction for Matching Problems
Samuel Haney1, Bruce Maggs2, Biswaroop Maiti3,
Debmalya Panigrahi4, Rajmohan Rajaraman5, and Ravi Sundaram6

1 Duke University, Durham, NC, USA
shaney@cs.duke.edu

2 Duke University, Durham, NC, USA; and
Akamai Technologies, Cambridge, MA, USA
bmm@cs.duke.edu

3 Northeastern University, Boston, MA, USA
biswaroop@ccs.neu.edu

4 Duke University, Durham, NC, USA
debmalya@cs.duke.edu

5 Northeastern University, Boston, MA, USA
rraj@ccs.neu.edu

6 Northeastern University, Boston, MA, USA
koods@ccs.neu.edu

Abstract
Motivated by denial-of-service network attacks, we introduce the symmetric interdiction model,
where both the interdictor and the optimizer are subject to the same constraints of the underlying
optimization problem. We give a general framework that relates optimization to symmetric
interdiction for a broad class of optimization problems. We then study the symmetric matching
interdiction problem – with applications in traffic engineering – in more detail. This problem can
be simply stated as follows: find a matching whose removal minimizes the size of the maximum
matching in the remaining graph. We show that this problem is APX-hard, and obtain a 3/2-
approximation algorithm that improves on the approximation guarantee provided by the general
framework.

1998 ACM Subject Classification G.2.2 [Graph Theory] Graph Algorithms, Network Problems

Keywords and phrases Approximation algorithms, matching, interdiction

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.9

1 Introduction

A recent study of malicious network traffic observed at Microsoft data centers [17] made the
surprising observation that a large volume of attack traffic originated from virtual machines
hosted within the data centers themselves. The machines generating these attacks may have
been compromised, or they may have been rented with stolen credit cards or on a free-trial
basis. While the authors of the study used heuristics to identify traffic that was obviously
malicious, in general it is very difficult to distinguish legitimate traffic from malicious traffic.
In particular, an attacker in possession of a “botnet” of compromised machines can launch
a denial-of-service attack against a service simply by using these machines to send a large
number of legitimate-looking requests to the servers that implement the service.

The following question then arises: how does a network operator decide which connection
requests to admit if she cannot distinguish between legitimate and malicious requests? One
natural strategy is to minimize regret: the number of legitimate requests that are not served

© Samuel Haney, Bruce Maggs, Biswaroop Maiti, Debmalya Panigrahi, Rajmohan Rajaraman,
and Ravi Sundaram;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 9; pp. 9:1–9:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

9:2 Symmetric Interdiction for Matching Problems

but might have been otherwise. This motivates us to define the symmetric interdiction model
in this paper, where the goal is to select a feasible set of edges whose removal minimizes the
maximum feasible set in the remaining graph. We give a general framework for converting
algorithms for a broad class of optimization problems to algorithms for the corresponding
symmetric interdiction problems.

We instantiate our general model in the symmetric matching interdiction problem (ab-
breviated smi in the rest of the paper), where the goal is to select a matching whose removal
minimizes the maximum matching in the remaining graph. The smi problem models our
motivating scenario. Suppose clients located in a data center issue requests to servers in
the same data center, where each client and each server has the capacity to participate in a
single client-server interaction. Each client provides the operator of the data center with a
list of servers it would like to contact, and the operator selects a matching of clients and
servers. The operator would prefer to prioritize legitimate requests, but cannot distinguish
between legitimate and malicious clients. By minimizing the size of the remaining maximum
matching, an optimal solution to the smi problem bounds the number of legitimate requests
that are not satisfied but might otherwise have been. For the smi problem, we show hardness
results, and give a carefully designed algorithm that improves upon the result obtained from
the general framework.

Main Results. Consider a generic optimization problem Π that is specified by an input
graph G = (V,E), by a set F of subgraphs of G which constitute feasible solutions to the
problem, and a maximization (resp., minimization) objective function f on graphs. An
example of Π is the maximum matching problem: F is the set of all matchings and the
function f returns the number of edges in the matching. For the optimization problem
Π, we define the symmetric interdiction problem I(Π) as follows: the goal is to produce
a subgraph H = (V, F) of G such that H is in F and minimizes (resp., maximizes) the
optimum value of f achievable on the remaining graph (V,E \ F). Thus, the symmetric
matching interdiction (smi) problem is given a graph G and seeks a matching M of G so as
to minimize the maximum matching in G \M .

Our first result is a general framework for converting optimization algorithms to symmetric
interdiction algorithms for a broad class of problems. This result, described informally below,
is stated formally in Theorem 3 and proved in Section 2.

I Theorem 1 (Informal). An α-approximation to a packing problem Π implies a (1 + α)-
approximation to the corresponding symmetric interdiction problem I(Π), modulo some
technical conditions.

Next, we focus on the smi problem. Theorem 3 implies that any maximum matching
algorithm is a 2-approximation algorithm for this problem. In fact, we show that any
maximal matching also achieves an approximation factor of 2. However, this is the limit of
the general framework in the sense that there are graphs where a maximum matching has an
approximation factor of exactly 2 for the smi problem. Our main algorithmic contribution is
to obtain a more careful algorithm for the smi problem that obtains an approximation factor
of 1.5. We complement this result with a proof of APX-hardness of the problem by giving
an approximation lower bound of (1 + ε) for small but fixed positive ε.

I Theorem 2. There is a polynomial-time deterministic algorithm for the symmetric matching
interdiction problem with an approximation factor of 1.5. Moreover, the symmetric matching
interdiction problem is APX-hard.

S. Haney, B. Maggs, B. Maiti, D. Panigrahi, R. Rajaraman, and R. Sundaram 9:3

Extensions. We consider a randomized variant of the smi problem in Section 5. Specifically,
we show that if the interdictor is allowed to use randomness that is invisible to the optimizer,
then the smi problem becomes polynomial time solvable. Another natural extension of the
smi problem that captures practical parameters arising in networking is the capacitated case,
where every edge has a capacity and the input and output ports have maximum capacities
on the total amount of network flow that can be routed through them. On the other hand, if
the edge capacities are unsplittable and both the interdictor’s and optimizer’s solutions are
edge subsets, then the corresponding optimization problem is a special case of the previously
studied demand matching problem [22]. Existing results for the optimization problem,
applied to our interdiction framework, gives an approximation algorithm for the interdiction
problem using Theorem 1. Improving this result using a more specific algorithm, such as the
one that we give for the smi problem, is left as an open problem in this work.

Finally, our symmetric interdiction framework can be applied to other diverse combi-
natorial optimization problems. See Section 6 for a brief discussions on other symmetric
interdiction problems.

Related Work. Interdiction variants of classical graph optimization problems have attracted
considerable research interest in recent years. Typically, these problems are modeled as a
two-step game between an interdictor and an optimizer. In the first step, the interdictor
removes a limited number of edges from the graph, with the goal of worsening the objective
of the optimizer who solves the graph optimization problem on the remaining graph in the
second step. For instance, in the matching interdiction problem, the goal is to remove at
most k edges (for a given k) such that the size of the maximum matching in the remaining
graph is minimized [26]. One can similarly define interdiction variants for maximum flow
[7, 9, 10, 25, 27, 6, 1, 5, 16], minimum spanning tree [28, 8], and many other classic graph
optimization problems [4, 23, 12, 15]. The main distinction between this model and the
symmetric interdiction model is that both the interdictor and the optimizer in our problem
are constrained by the same feasibility conditions, whereas the interdictor was constrained
by a budget on the number of edges in previous work.

The smi problem is similar to the matching interdiction problem studied by Kamalian et
al. [14, 13], the key difference being that the interdictor’s matching is also required to be
a maximum matching in their case. We show that this restriction can produce suboptimal
smi solutions; indeed, the results of [14, 13] have no implication for smi. More broadly,
interdiction problems have a long history, having been studied for military applications in
the Cold War [20]. Closer to our work, they have been used to model competitive markets in
economic theory. In particular, in the Stackelberg model [24], two firms compete sequentially
on the quantity of output they produce of a homogeneous good. Furthermore, both players
play by the same rules and therefore must operate under the same constraints. This is
conceptually identical to our symmetric interdiction model and we hope that this model will
be applied to other domains in the future.

2 Symmetric Interdiction: A General Framework

In this section, we give a general theorem that relates symmetric interdiction problems
to their corresponding optimization problems for a broad class of optimization problems
called packing problems. This includes many classical problems such as maximum matching,
knapsack, maximum flow, etc. Formally, packing problems are those that can be encoded by
the linear program (LP) given below, where all entries of the coefficient matrix A, and that

APPROX/RANDOM’17

9:4 Symmetric Interdiction for Matching Problems

of vectors b and c are non-negative:

maximize cᵀx, subject to Ax ≤ b and 0 ≤ x ≤ 1. (1)

Suppose x is a feasible solution to LP (1). Then, we define the residual LP of x as:

maximize cᵀy, subject to Ay ≤ b and 0 ≤ y ≤ 1− x. (2)

The symmetric interdiction problem is to find a feasible solution x that minimizes the optimal
solution to the residual LP of x. While we only focus on packing problems in this paper, we
note that one can analogously define symmetric interdiction for covering problems1 as well.
Additionally, we note that all results in this section hold when x and y are constrained to be
integral.

We call LP (1) the optimization problem. In this section, we develop a framework to
obtain approximate solutions to the interdiction problem using exact/approximate solutions
to the optimization problem. Before stating the result formally (Theorem 3), we set up some
basic notation. Let

x \ x′ =

max(0, x1 − x′1)
...

max(0, xn − x′n)

 . (3)

Note that x \ x′ is feasible if x and x′ are feasible.
Let x∗ be an optimal solution to the interdiction problem, and let y∗ be an optimal solution

to the residual LP w.r.t. x∗. Now, consider a solution x that is feasible for LP (1). Ideally,
we would like to claim that if x is an approximately optimal solution for the optimization
problem, then it is also an approximately optimal for the interdiction problem. Unfortunately,
this may not be true in general. However, we can show this connection between optimization
and interdiction if x satisfies the following stronger condition:

cᵀ(x∗ \ x) ≤ α · cᵀ(x \ x∗) for some approximation factor α ≥ 1. (4)

This condition says that after removing any overlap between the interdiction and optimization
solutions, the approximation ratio must be α. For example, consider an optimal interdiction
solution M∗ to the maximum matching problem, and another matching M . After removing
edges that appear in both M and M∗, the number of remaining edges in M must be within
a factor α of the number of remaining edges in M∗. In particular, when x is an optimal
solution to the optimization problem, condition (4) holds with α = 1 for any maximization
problem. Now, we formally state and prove the theorem that establishes the relationship
between optimization and interdiction.

I Theorem 3. Let x∗ be an optimal solution to the interdiction problem, and let y∗ be an
optimal solution to the residual LP w.r.t. x∗. Suppose x is a feasible solution satisfying
condition (4), i.e., cᵀ(x∗ \ x) ≤ α · cᵀ(x \ x∗). Then, x is a (1 + α)-approximation to the
corresponding interdiction problem. That is, if y is an optimal solution to the residual LP of
x, then cᵀy ≤ (1 + α) · cᵀy∗.

1 Covering problems are minimization problems where the constraints are Ax ≥ b, with the same
non-negativity restrictions.

S. Haney, B. Maggs, B. Maiti, D. Panigrahi, R. Rajaraman, and R. Sundaram 9:5

Proof. We define the intersection x ∩ x′ to be

x ∩ x′ =

min(x1, x
′
1)

...
min(xn, x′n)

 .

Observe that cᵀ ·y = cᵀ · (y \ (1−x∗)) + cT · (y∩ (1−x∗)). We upper bound each summand
of this equation. We will need to use the fact that x \ x∗ is a feasible solution to the residual
LP of x∗. This follows from two observations: (1) x satisfies the constraint Ax ≤ b which
implies x \ x∗ does too, and (2) x ≤ 1 implies x \ x∗ ≤ 1− x∗. We first upper bound the
left summand:

cᵀ(y \ (1− x∗)) ≤ cᵀ((1− x) \ (1− x∗)) (since y is feasible for the residual LP of x)
≤ cᵀ(x∗ \ x)
≤ α · cᵀ(x \ x∗) (by assumption that x satisfies (4))
≤ α · cᵀ · y∗

(since x \ x∗ is feasible for the residual LP of x∗, shown above)

Next we bound the right summand. Note that y ∩ (1− x∗) is feasible for the residual LP
of x∗ since y ∩ (1 − x∗) ≤ (1 − x∗). Therefore, since y∗ is optimal for the residual LP of
x∗, we have cᵀ · (y ∩ (1− x∗)) ≤ cᵀ · y∗. Putting together the bounds on the left and right
summands, we get

cᵀ · y = cᵀ · (y \ (1− x∗)) + cᵀ · (y ∩ (1− x∗)) ≤ α · cᵀ · y∗ + cᵀ · y∗ = (1 + α) · cᵀ · y∗.J

I Corollary 4. Any optimal solution x̂ to the optimization problem, is a 2-approximation to
the corresponding symmetric interdiction problem.

Proof. Note that x̂ = (x̂ \ x∗) + (x̂ ∩ x∗). Similarly, x∗ = (x∗ \ x̂) + (x̂ ∩ x∗). Since x̂
is an optimal solution to the optimization problem, cᵀx∗ ≤ cᵀx̂. Therefore, cᵀ(x∗ \ x̂) ≤
cᵀ(x̂ \ x∗). J

3 Symmetric Matching Interdiction: A 3/2 Approximation

Let G = (V,E) be a graph. Then the symmetric matching interdiction (smi) problem is
to find some matching M∗ such that the maximum matching in the graph (V,E \M∗) is
minimized.

From Corollary 4, we get that any maximum matching is a 2-approximation for the smi
problem. In fact, any maximal matching is also a 2-approximation.

I Lemma 5. Any maximal matching is a 2-approximation for the symmetric matching
interdiction problem.

Proof. For a graph G, let M be a maximal matching and L be the maximum matching on
G \M . Each component of M ∪L is a path or a cycle of alternating edges of M and L. Any
edge that appears by itself in a component of M ∪L must be in M , by the maximality of M .

Let C be a component of M ∪ L that contains at least one edge of L. We show that for
any matching M∗ on C, the maximum matching on C \M∗ has at least |L ∩ C|/2 edges,
which will complete the proof. Let j be the number of edges of C. Then, |L| = j

2 if j is even,
and |L| ≤ j+1

2 if j is odd. That is, |L| ≤ d j2e.
We will show later by a case analysis in Lemma 8 that the maximum matching on C \M∗

has at least d j−1
3 e edges for any M∗. Since d j2e/d

j−1
3 e ≤ 2 for integers j ≥ 2, the lemma

follows. J

APPROX/RANDOM’17

9:6 Symmetric Interdiction for Matching Problems

This is better than the 3-approximation guarantee for maximal matchings that we get
from Theorem 3. In fact, the approximation factor of 2 is the best achievable, if we were to
choose an arbitrary maximum or maximal matching. Consider a length-4 path. The optimal
interdiction solution contains the edges at the two ends, leaving a matching of size 1. On
the other hand, the first and third edges form a maximum matching, but leaves behind a
matching of size 2.

But, what if we choose the best maximum matching instead of an arbitrary one? In
the previous example, the optimal interdiction solution also turned out to be a maximum
matching. Our first result in this section is to show that there always exists a maximum
matching that is a 3/2-approximation to the optimal interdiction matching. In the second
part of this section, we make this result constructive, i.e., give a polynomial-time algorithm
for finding such a maximum matching. Before describing our result, we note that the
approximation factor of 3/2 is the best we can hope for from a maximum matching, even the
best one. Consider a cycle of length 6. The optimal interdiction solution contains any pair
of opposite edges, leaving behind two disjoint length-2 paths containing a matching of size 2.
On the other hand, any maximum matching contains 3 edges, which leaves behind 3 disjoint
components forming a matching of size 3.

3.1 Approximating the SMI problem with maximum matchings
We show that the maximum matching with the largest intersection with any fixed optimal
solution to the smi problem is a 3/2 approximation to the smi problem. In this section, M∗
denotes an optimal solution to smi, i.e., a matching that minimizes the size of the maximum
matching L∗ in the remaining graph (V,E \M∗). M denotes a maximum matching on G,
and L denotes a maximum matching in the remaining graph (V,E \M). All matchings and
connected components that we refer to in this section are defined as sets of edges; hence, set
operations are only on the edges and do not affect vertices.

For any M and L, the size of a matching on (M ∪ L) \M∗ serves as a lower bound on
the size of L∗, since (M ∪ L) ⊆ E. So, our goal will be to show that the size of L is at most
3/2 times the size of a matching that we construct in (M ∪ L) \M∗. We will show this
individually for every component of M ∪ L. Let C be a component of M ∪ L. We say M is
locally 3/2-competitive on C with respect to M∗ if C \M∗ contains a matching of at least
2/3 times the size of C ∩ L. If M is locally 3/2-competitive for each component, then that
implies an approximation factor of 3/2 overall.

For some fixed M∗, there are only certain types of components of M ∪ L that may not
be locally competitive. We call these components critical, and define their structure below.
Note that M ∪L is a set of vertex disjoint paths and even-length cycles, since it is composed
of two matchings.

I Definition 6. We call component C critical w.r.t. matching M∗ if all the following hold:
1. C is an even-length path,
2. the edges at the two ends of C are in M∗, and
3. C \M∗ is a set of length-2 paths.

We will show in Lemma 8 that critical components, as defined in Definition 6, are the
only ones that may not be locally competitive. From Definition 6, for a component to be
critical, it must be a path with ` edges, where ` ≡ 4 mod 6 edges. We call these components
bad:

I Definition 7. Let C be a component of M ∪ L. Call C bad if C is a path and |C| ≡ 4
mod 6, where |C| denotes the number of edges in C.

S. Haney, B. Maggs, B. Maiti, D. Panigrahi, R. Rajaraman, and R. Sundaram 9:7

Note that all critical components are bad, but not vice-versa, since criticality also depends
on the structure of M∗.

We next show that M is locally 3/2-competitive on all components that are not critical.
In fact, the lemma gives tighter bounds, which will be helpful in developing an algorithm later.
Note that, till now, the only assumption we have made about M is that it is a maximum
matching, i.e., the next lemma holds for all maximum matchings.

I Lemma 8. Fix M , L, M∗, and L∗. Let C be a component of M ∪ L. Let `∗ denote the
size of a maximum matching on C \M∗, and c denote the number of edges in C. (Note that
`∗, summed over all components C, lower bounds the size of L∗.) Then,
1. If C is not bad and c is odd, `∗ ≥ c−1

3 .
2. If C is not bad and c is even, `∗ ≥ c

3 .
3. If C is bad but not critical, `∗ ≥ c+2

3 .
4. If C is bad and critical, `∗ ≥ c−1

3 .

Proof. We find these lower bounds on `∗ by constructing a matching L̂ on C \M∗. Note
that C \M∗ is either an even cycle or a set of vertex-disjoint paths. In the former case, we
pick every alternate edge on the cycle in L̂. In the latter case, for each path, we pick every
alternate edge in L̂, including the two edges at the ends for odd length paths. Let m∗ denote
|M∗ ∩ C|. L̂ has the following properties:
1. L̂ contains at least d c−m

∗

2 e edges.
2. For each component of C \M∗, L̂ contains at least one edge.
Next, we show that these two properties are sufficient to prove that for each of the 4 cases in
the statement of the lemma, the corresponding inequality holds.

Case (1). Note that C must be a path, since all cycles have even length in the union of
two matchings. Therefore, property 2 ensures that L̂ has at least m∗ − 1 edges. Along with
property 1, this implies `∗ ≥ |L̂| ≥ min(m∗ − 1, c−m

∗

2). Optimizing over the possible values
of m∗ then gives us `∗ ≥ c−1

3 .

Case (2). C is either a path or a cycle. We treat these cases differently.
1. When C is a cycle, property 2 implies that L̂ has at least m∗ edges. Along with property

1, this implies `∗ ≥ |L̂| ≥ min(m∗, c−m
∗

2). Optimizing over the possible values of m∗
gives `∗ ≥ c

3 .
2. When C is a path, property 2 implies that L̂ has at least m∗ − 1 edges. Identical to

case (1) above, we can now infer that `∗ ≥ c−1
3 . Since `∗ is integral, we can claim that

`∗ ≥ d c−1
3 e. We also know that c is even and c 6≡ 4 mod 6. Together, this shows that

d c−1
3 e ≥

c
3 , which implies that `∗ ≥ c

3 .

Case (3). We subdivide into two cases based on the size of M∗. Note that c ≡ 4 mod 6;
hence, c+2

3 is an integer.
1. Suppose m∗ 6= c+2

3 . If m∗ ≥ c+2
3 + 1, then property (2) implies L̂ ≥ c+2

3 . On the other
hand, if m∗ ≤ c+2

3 − 1, then property (1) ensures that |L̂| ≥ d c+1/2
3 e = c+2

3 . In either
case, `∗ ≥ |L̂| ≥ c+2

3 .
2. Suppose m∗ = c+2

3 . If M∗ does not contain at least one end edge of path C, then C \M∗

has m∗ components, and therefore, property (2) ensures that L̂ has at least m∗ edges.
Now, consider the case where M∗ contains both end edges of path C. In this case, the
number of components in C \M∗ is m∗ − 1 = c−1

3 . But, the total number of edges in

APPROX/RANDOM’17

9:8 Symmetric Interdiction for Matching Problems

C \M∗ is c−m∗ = 2c−2
3 . Therefore, the average number of edges in each component of

C \M∗ is 2. Since C is not critical w.r.t. M∗, every component in C \M∗ cannot have
exactly 2 edges. As a consequence, there must be at least one component α in C \M∗
that contains at least 3 edges. By property (2), L̂ contains at least m∗ − 1 edges, but
this matching can be augmented by picking a second edge from component α to produce
a matching of size m∗ in C \M∗. Therefore, `∗ ≥ m∗ = c+2

3 .

Case (4). The proof is identical to the proof of case (1). J

We claim that the above lemma implies that M is locally 3/2-locally competitive on all
non-critical components. Let ` denote the number of edges of L in C. In case (1), ` = c−1

2 ,
and in cases (2) and (3), ` = c

2 . Only case (4) is not locally 3/2-competitive, since ` = c
2 .

We now show that there is a maximum matching that has no critical components with
respect to a fixed optimal M∗; this proves the existence of a 3/2-approximate maximum
matching.

I Lemma 9. A maximum matching with the largest intersection with some optimal solution
M∗ is a 3/2-approximation to the optimal interdiction solution, i.e., |L| ≤ 3

2 |L
∗|.

Proof. Let M be a maximum matching with the largest intersection with M∗ and let L
and L∗ be arbitrary maximum matchings in the respective remaining graphs. Let C be a
critical component in M ∪ L. Since |C| is even, one of its end edges must be in L. Call this
edge e, and let f denote its adjacent edge in C (note that f is in M). Since C is critical,
we have e ∈ M∗. Then (M \ {f}) ∪ {e} is also a maximum matching. Since e ∈ M∗ and
f 6∈M∗, this contradicts the fact that we chose M as the maximum matching that maximizes
|M ∩M∗|. J

3.2 A 3/2-Approximation algorithm
In this section, we make the results of the previous section constructive. If we knew M∗,
we could give an algorithm that performed swaps of the kind used in the proof of Lemma 9.
These swaps would each increase the size of M ∩M∗, and we would eventually obtain a
solution with no critical components. Unfortunately, we don’t know M∗. We show, however,
that sometimes we can perform sets of swaps such that the overlap of M with every optimal
solution M∗ is increased. If such a set of swaps does not exist, we argue that our solution is
already a 3/2-approximation.

The formal algorithm is given in Algorithm 1. We outline the steps here. We start
with an arbitrary maximum matching M , and a maximum matching in G \M . We then
repeatedly perform swaps of the form given above on the set of all bad components for a total
of |E|+ 1 iterations. Finally, we output the best matching found over all these iterations. We
argue that while a 3/2-approximate solution has not been obtained, each iteration of swaps
increases the overlap of M with every optimal solution. Such an increase cannot happen
more than |E| times, and therefore a 3/2-approximate solution is found in some iteration of
the algorithm.

I Lemma 10. Let M be a maximum matching and L be a maximum matching in G \M .
Suppose there exists an optimal interdiction solution M∗ such that M∗ is critical on at most
half the bad paths in M ∪ L. Then, |L| ≤ 3

2 |L
∗|.

Before proving Lemma 10, we show that this implies correctness of the algorithm. Suppose
that for some iteration of the algorithm, the condition from Lemma 10 does not hold, i.e.,

S. Haney, B. Maggs, B. Maiti, D. Panigrahi, R. Rajaraman, and R. Sundaram 9:9

Algorithm 1 A 3/2-approximation algorithm for the smi problem.
1: M ← arbitrary maximum matching in G
2: L← arbitrary maximum matching in G \M
3: lmin ← |L|
4: Mmin ←M

5: for j = 1→ |E|+ 1 do
6: if |L| < lmin then
7: lmin ← |L|
8: Mmin ←M

9: for bad path C in M ∪ L do
10: M ←M \ {e} ∪ {f} . Let e be the edge at the end of C that is in L, f ∈M is

the adjacent edge in C.
11: L← arbitrary maximum matching in G \M .
12: return Mmin

every optimal solution M∗ is critical on strictly more than half the bad paths in M ∪ L.
After the for loop beginning on line 9, the size of the intersection between M and every
optimal solution will have increased. This is because for every M∗, every e→ f swap on a
critical path increases the size of the overlap between M∗ and M by 1, while every e→ f

swap on a non-critical bad path decreases the overlap by at most 1. This increase in overlap
can happen at most |E| times, so after |E|+ 1 iterations, we must have produced a solution
M with |L| ≤ 3

2 |L
∗| as desired. We now prove Lemma 10 using Lemma 8. Although critical

components have a local approximation ratio slightly worse than 3/2, non-critical bad paths
offset this with a ratio better than 3/2.

Proof of Lemma 10. Let C1, C2, C3, C4 denote the sets of components of type (1), (2), (3),
and (4) respectively from Lemma 8. Let `∗C denote a maximum matching on component
C \M∗. Also, let E(C) denote the edges of component C and E(Ci) =

⋃
C∈Ci

E(C). Then,

|L∗| ≥
∑

C∈C1∪C2∪C3∪C4

`∗C

≥
∑

C∈C1

|E(C)| − 1
3 +

∑
C∈C2

|E(C)|
3 +

∑
C∈C3

|E(C)|+ 2
3 +

∑
C∈C4

|E(C)| − 1
3 (from Lemma 8)

= |E(C1)| − |C1|
3 + |E(C2)|

3 + |E(C3)|+ 2|C3|
3 + |E(C4)| − |C4|

3

≥ |E(C1)| − |C1|
3 + |E(C2)|

3 + |E(C3)|+ |C3|
3 + |E(C4)|

3
(since |C3| ≥ |C4|, i.e., at most half of all bad paths are critical)

= 2
3 |L ∩ C1|+

2
3 |L ∩ C2|+

2|L ∩ C3|+ |C3|
3 + 2

3 |L ∩ C4| ≥
2
3 |L|.

(since |L ∩ C| = |C|/2 for C ∈ C2 ∪ C3 ∪ C4 and |L ∩ C| = (|C| − 1)/2 for C ∈ C1) J

4 Symmetric Matching Interdiction: Hardness of Approximation

In this section, we show that the symmetric matching interdiction problem is APX-hard which
rules out the possibility of a PTAS for the problem. We give an approximation-preserving
reduction from a variant of MAX-SAT called 3-OCC-MAX-2-SAT that we define below.

APPROX/RANDOM’17

9:10 Symmetric Interdiction for Matching Problems

I Definition 11. Let φ be a set of clauses, where each clause is a conjunction of at most 2
literals. Additionally, each variable appears in at most 3 literals in φ. Let k be an integer.
(φ, k) is said to be in 3-OCC-MAX-2-SAT if there is a setting of the variables such that at
least k clauses are satisfied.

3-OCC-MAX-2-SAT is known to be APX-hard [3]. To show the hardness of the smi
problem, we give an approximation preserving reduction from 3-OCC-MAX-2-SAT to the
smi problem. For the purposes of the reduction, we construct an instance graph G of the
smi problem from an instance of the 3-OCC-MAX-2-SAT problem (φ, k) as follows. For each
variable xi, we have a cycle in G containing 6zi edges, where zi ≤ 3 is the number of times
xi appears as a literal in φ. We partition each cycle into zi paths of length 6 each, which
we call literal paths, such that each path is associated with one of the literals containing xi.
We order the edges of each path, denoting the first edge with ‘*’ so that we can refer to the
first, second, etc. edge on a literal path without ambiguity. The construction up until now is
illustrated below:

xi

xi

x̄i

*

*

*

We call all edges in such cycles cycle edges. Next, we add one edge to G for each clause
in φ (we call these clause edges). Each clause contains either one or two literals. For a
clause containing two literals, the clause edge connects the two literal paths corresponding
to those literals. For a clause containing one literal, the clause edge connects that literal’s
path to a new vertex. Clause edges are adjacent to the second vertex on the literal path
corresponding to a positive literal, and the third vertex on the literal path corresponding to
a negative literal. Below, we illustrate the clauses (xi ∨ xj), (xi ∨ xj), (xi ∨ xj), (xi), and
(xi), respectively.

xjxi

**

x̄jxi

**

x̄i x̄j

**

xi

*

x̄i

*

This completes the construction of G. The following is our main technical lemma of the
reduction.

I Lemma 12. There is a setting of the variables that satisfies at least k clauses in φ if and
only if there is a matching M such that in G \M , the size of the maximum matching is at
most 2`+m− k, where m is the number of clauses in φ and ` is the number of literals.

Before proving this lemma, we show that it is sufficient to prove APX-hardness of the
smi problem.

I Theorem 13. Symmetric matching interdiction is APX-hard.

Proof. Suppose we have an (1 + ε)-approximation to the smi problem, i.e., a matching M in
G such the maximum matching in G \M has size at most

(1 + ε) · (2`+m− k) = 2`+m−
[
1− ε

(
2`+m

k
− 1
)]

k.

S. Haney, B. Maggs, B. Maiti, D. Panigrahi, R. Rajaraman, and R. Sundaram 9:11

By Lemma 12, we can find a formula φ and an assignment x in the 3-OCC-MAX-2-SAT
instance such that x satisfies at least

[
1− ε

(2`+m
k − 1

)]
k clauses of φ. Note that ` ≤ 2m

since each clause contains at most two literals; therefore, 2`+m ≤ 5m. If each variable is
set i.i.d. to T/F with equal probability, then each clause is satisfied with probability 1/2 if
it contains a single literal, and with probability 3/4 if it contains 2 literals. Therefore, the
expected number of clauses satisfied by a 2-SAT formula under this random assignment is at
least m/2. By the probabilistic method, it follows that the maximum number of satisfiable
clauses k ≥ m/2. Therefore, m/k ≤ 2, which implies

1− ε((2`+m)/k − 1) ≥ 1− ε(5m/k − 1) ≥ 1− 9ε.

Therefore, this gives a (1− 9ε)-approximate solution to 3-OCC-MAX-2-SAT. J

We spend the rest of the section proving Lemma 12. We first give a high level overview of
the proof, and then give the technical details. We give a mapping from a setting of variables,
x in φ, to a matching Mx in G. We argue that x satisfies k clauses of φ if and only if the
maximum matching in G \Mx contains 2`+m− k edges (Lemma 14). Then, we argue that
for graph G produced by the reduction from a formula φ, there is a setting of variables x
in φ such that Mx is the optimal solution to the smi problem in G (Lemmas 15, 16, 17).
Together, these lemmas prove Lemma 12.

For an assignment x to the variables of φ, we construct matching Mx as follows: Mx
does not contain any clause edge. Mx contains every third edge on each variable cycle. For
the cycle corresponding to variable xi, these edges are chosen in the following way: If xi set
to true, Mx contains the third and sixth edges of each literal path. We call Mx true on such
a path. If xi is set to false, Mx contains the first and fourth edges of each literal path. We
call Mx false on such a path. For the cycle in G corresponding to variable xi, we show the
two possibilities for the edges in G \Mx below; Mx is true on the first cycle, and false on
the second.

xi

xi

x̄i

*

*

*

xi

xi

x̄i

*

*

*

I Lemma 14. An assignment x satisfies k clauses if and only if the maximum matching in
G \Mx has size 2`+m− k.

Proof. For each clause, we show that a maximum matching on the cycle and clause edges
corresponding to that clause after removing Mx contains two edges for each literal in the
clause, along with an additional edge if the clause is not satisfied by x. This shows that the
maximum matching on G \Mx has size at most 2`+m− k. Moreover, in each case there is a
maximum matching that does not use the last edge on each literal path. Therefore, they can
be combined into a single matching with 2`+m− k edges. To prove this, we enumerate over
all types of clauses. Edges in Mx are drawn as dotted lines. The following are all possible
satisfied clauses.

* * * * * * * *

APPROX/RANDOM’17

9:12 Symmetric Interdiction for Matching Problems

* * * * * *

The following are the unsatisfied clauses:

* * * * * * * *

This completes the proof. J

Lemma 14 implies the forward direction of Lemma 12. To show that the reduction holds
in the other direction, we show that given any optimal solution M to the smi problem, we
can transform it to a matching Mx that is also optimal and corresponds to an assignment x
of φ. We call such matchings that correspond to assignments in φ consistent matchings. The
following are necessary and sufficient conditions for a matching to be consistent:
(a) On each variable cycle, the matching is either true or false (i.e. it contains either the

third and sixth edges of each literal path, or the first and fourth edges), and
(b) the matching does not contain any clause edge.

We show that M can be transformed into a consistent matching as follows.
If property (a) is violated, iteratively identify a cycle C on which M violates (a) and
locally replace M with Mx, which is defined below.
Once only property (b) is violated, remove all remaining clause edges.

We show that neither of these steps increases the size of the maximum matching in G \M ;
therefore, the eventual consistent matching is also optimal for the smi problem.

First, we consider violations of property (a). Let assignment x be defined as follows:
for each variable xi ∈ x, xi = true if xi appears as at most one negative literal in φ and
xi = false if xi appears as at most one positive literal in φ. If M is not consistent, we will
show that we can iteratively replace variable cycles of matching M with the corresponding
variable cycles of Mx.

M must violate property (a) on cycle C in one of the following two ways:
1. M does not contain every third edge of C.
2. M contains every third edge of C, but is neither true nor false on C (i.e. it contains the

second and fifth edges of each literal path).
Let Cclause denote the set of clause edges adjacent to C. We will replace M ∩ (C ∪ Cclause)
with Mx ∩ C for violation (1), and M ∩ C with Mx ∩ C for violation (2). We show in
Lemmas 15 and 16 respectively that both these replacements result in valid matchings, and
neither increases the size of the maximum matching in G \M . Let ξG(M) denote the size of
the maximum matching in G \M , and C denote G \ (C ∪ Cclause).

I Lemma 15. Consider a variable cycle C such that M does not contain every third edge of
C. Then replacing M with M ′ = (M ∩ C) ∪ (Mx ∩ C) produces a matching, and does not
increase the size of the maximum matching in G \M .

S. Haney, B. Maggs, B. Maiti, D. Panigrahi, R. Rajaraman, and R. Sundaram 9:13

Proof. First, note that M ′ is a valid matching, since edges in M ∩ C share no vertices with
edges in Mx ∩ C. To complete the proof, we will show that ξG(M ′) ≤ ξG(M).

First, we claim that ξC(M ′) ≤ 3j + 1 ≤ ξC(M). The proof that ξC(M) ≥ 3j + 1 is
very similar to the proof of case (3) of Lemma 8 and is not repeated here. The proof that
ξC∪Cclause

(Mx) ≤ 3j + 1 is by enumeration over all possible structures of (C ∪Cclause)∩Mx.
We show two cases below. On the left, the variable xC corresponding to the clause C appears
as three true literals. On the right, it appears as two true literals and a false literal.

*

*

*

*

*

*

The maximum matching in the first graph has size j/3 = 6, and matching in the second has
size j/3 + 1 = 7. It is straightforward to verify the other cases.

The rest of the proofs follows:

ξG(M) ≥ ξC(M) + ξC(M) (vertex sets of C and C are disjoint)
≥ ξC(M) + ξC∪Cclause

(Mx)
≥ ξG(M ′). J

I Lemma 16. Consider a variable cycle C such that M contains every third edge of C, but
is neither true nor false on C (i.e. M contains the second and fifth edge of each literal path).
Then, replacing M with M ′ = (M ∩ (C ∪Cclause))∪ (Mx ∩C) produces a matching, and does
not increase the size of the maximum matching in G \M .

Proof. It is not immediately clear that M ′ is a valid matching. To show that it is, it is
sufficient to show that M does not contain any edges of Cclause. This follows from the
fact that every edge of Cclause is adjacent to an edge of M ∩ C since M contains the
second and fifth edges of each literal path of C. To complete the proof, we will show that
ξG(M ′) ≤ ξG(M).

First, we claim ξG(M) ≥ ξC∪Cclause
(M) + ξC(M). For this, it is enough to show that

there is a matching on C \M of size ξC(M) that leaves every vertex adjacent to a clause
edge unmatched. The proof is by enumeration. We show one case below, it is straightforward
to show the others. Edges of the matching on C \M are highlighted, and edges of M are
shown as dotted lines.

*

*

*

We can now complete the proof:

ξG(M) ≥ ξC∪Cclause
(M) + ξC(M)

= ξC∪Cclause
(M) + ξC(Mx)

(M \ C and Mx \ C are the same up to a rotation of cycle C)
≥ ξG(M ′). J

APPROX/RANDOM’17

9:14 Symmetric Interdiction for Matching Problems

So, we can always replace M locally with Mx in a way that does not increase the size of
the maximum matching in G \M . By iteratively performing these replacements, we obtain a
matching M which violates only property (b) of the consistency conditions. We now show
that if matching M only violates property (b), any clause edge of M can be removed without
changing the size of the maximum matching in G \M .

I Lemma 17. Suppose M is either true or false on all cycle edges, but M contains one or
more clause edges. Then, removing the clause edges from M does not increase the size of the
maximum matching in G \M .

Proof. G \M consists of a set of connected components, each of which is either a pair of
cycle edges, or two pairs of cycle edges connected by a clause edge (either a path, a barbell,
or a T as shown below):

Removing a clause edge from M transforms a pair of two-edge paths into a barbell in G \M ,
which does not increase the size of the maximum matching. J

5 Randomized Symmetric Matching Interdiction

We now consider a randomized version of the symmetric matching interdiction problem.
Rather than selecting matchings deterministically, the interdictor and the optimizer select
random matchings M and L in G; the goal for the optimizer is to select M so as to minimize
the maximum expected size of L \M , the maximum taken over all choices of the random
matching L. Note that unlike in the standard (deterministic) smi model, the randomly chosen
matchings M and L need not be disjoint. It is easy to see that L can be a (deterministically
chosen) best response matching since the support of a randomized best response must consist
only of best response matchings. Thus, formally, the randomized smi problem is to find a
probability distributionM over matchings that minimizes

max
matching L

E[|L \M |], (5)

where M is a random matching drawn fromM. Any distribution (convex combination) over
integral matchings,M , can be viewed as a fractional matching, i.e., as a point in the matching
polytope [21]. Let x̄ = 〈xe〉 denote a point in the matching polytope with xe the probability
(equivalently the fractional weight) of choosing edge e. The expected size of matching L in
G \M is

∑
e∈L(1− xe). Minimizing Eqn. 5 is therefore equivalent to minimizing over the

matching polytope, the maximum over all matchings L,
∑
e∈L(1 − xe). This gives rise to

the following LP, where, E(S) denotes the set of edges with both endpoints in S, and δ(v)
denotes the set of edges adjacent to v.

S. Haney, B. Maggs, B. Maiti, D. Panigrahi, R. Rajaraman, and R. Sundaram 9:15

min y

s.t. y ≥
∑
e∈L

(1− xe) ∀ matchings L ∈ G

∑
e∈E(S)

xe ≤
|S| − 1

2 ∀S ⊂ V, S odd

∑
e∈δ(v)

xe ≤ 1 ∀v ∈ G

0 ≤ xe ≤ 1 ∀e ∈ G

(6)

The constraints on the xe variables ensure that x̄ = 〈xe〉 lies in the matching polytope
[21]. This LP has exponentially many constraints (the first two sets of constraints – matching
constraints and odd set constraints), so we give a separation oracle, enabling it to be solved
using the ellipsoid algorithm [11]. For the matching constraints let z be the value of the
maximum matching in graph G with edge weights of (1− xe). If y ≥ z, then the solution is
feasible. Otherwise, the constraint corresponding to the matching with value z is violated.
And for the odd set constraints we use the Gomory-Hu based separation oracle given by
Padberg and Rao [18].

Thus, by solving the above LP, we can obtain the point, x̄, in the matching polytope.
However, we need a representation of this point as a convex combination of (or, distribution
over) integral matchings in order to determine the (polynomial-time) strategy of the interdic-
tor. Such a representation is guaranteed by the following known lemma (e.g. see [11]). For
completeness, we give a proof in Appendix A.

I Lemma 18. Let x be a fractional matching. x can be written as the convex combination
of polynomially many integral matchings, and these matchings and their weights can be found
in polynomial time.

Finally, we note that there can be a gap of 2 between the optimal randomized and
deterministic matchings. Consider a length 2 path. The optimal deterministic matching is
either edge, and this matching has value 1 (since it leaves a matching of size one). On the
other hand, the randomized matching that assigns probability 1/2 to each edge has value
1/2: Regardless of which edge is chosen to be the second matching, the expected size is 1/2.

6 Other Problems: Acyclic Subgraph Interdiction

As discussed in Section 2, our symmetric interdiction framework can be applied to a diverse
set of combinatorial optimization problems. For example, consider any downward closed set
system such as acyclic forests, independent vectors in a vector space, and more generally
matroids; we can ask how much the interdictor can reduce some measure of the residual set
system (e.g., rank) by removing a subset and its elements from the family (we can pose similar
questions for families of upward closed sets). We illustrate this idea with the symmetric
acyclic subgraph interdiction problem. The goal is to determine an acyclic subgraph T of a
given graph G so as to minimize the maximum-size acyclic subgraph of G \ T . Our general
framework implies a 2-approximation for this interdiction problem.

I Lemma 19. An arbitrary spanning tree on G is a 2-approximation to symmetric acyclic
subgraph interdiction, and this bound is tight.

APPROX/RANDOM’17

9:16 Symmetric Interdiction for Matching Problems

The above lemma follows directly from Corollary 4. We provide a different, more direct proof
of this lemma below. This proof enables us to derive an example for which the bound is
tight; i.e., there exists a graph G and a spanning tree of G that is at least a 2-approximate
solution for G.

Proof of Lemma 19. We start with an alternate proof that an arbitrary spanning tree is
at most a 2-approximation. Let T ∗ be a minimal optimal solution, and T be an arbitrary
spanning tree. (If G is not connected, we argue on each component separately.) Note that
for S ⊆ G, the size of the largest set of acyclic edges in G \ S is n− c, where c is the number
of components in G \ S.

Let c∗ be the number of components in G \ T ∗ and c be the number of components in
G \ T . We consider two cases.

Case 1: c∗ ≤ n/2. Then since c ≥ 1, (n− c)/(n− c∗) ≤ 2.

Case 2: c∗ = n/2 + k. The c∗ components of G \ T ∗ form a partition of G, where all of
the edges of T ∗ cross the partition (by minimality of T ∗). T must span the components of
G \ T ∗, and therefore

|T ∗ ∩ T | ≥ c∗ − 1 = n/2 + k − 1.

Additionally, |T ∗| ≤ n− 1, so we have

|T ∗ \ T | ≤ n− 1− n/2− k + 1 = n/2− k.

Starting from G\T ∗, adding back each edge of T ∗ \T can decrease the number of components
by at most one. Therefore, the number of components of (G \ T ∗) ∪ (T ∗ \ T) = G \ (T ∩ T ∗)
is at least (n/2 + k)− (n/2− k) = 2k. Therefore, the edges of T partition G into at least 2k
components, i.e. c ≥ 2k. Then we have

n− c
n− c∗

= n− c
n/2− k ≤

n− 2k
n/2− k = 2. J

Next, we show that the bound is tight. Consider a graph with n vertices, such that n/2
vertices form a complete graph and n/2 vertices form a line. Additionally, there is an edge
between the ith vertex on the line, and the ith vertex in the complete graph (vertices in
the complete graph have arbitrary order). The optimal spanning tree is the line and all
connecting edges, which leaves behind n

2 + 1 components. A spanning tree that does not
contain any edges of the line leaves just 2 components. The construction for n = 10 is shown
below, with OPT on the right, and a bad solution on the left.

S. Haney, B. Maggs, B. Maiti, D. Panigrahi, R. Rajaraman, and R. Sundaram 9:17

7 Concluding Remarks

In this paper, we have introduced a new symmetric interdiction model, and have focused on
symmetric matching interdiction, for which we establish APX-hardness and a polynomial-time
achievable 1.5-approximation. The symmetric interdiction model naturally extends to other
matroid problems, as illustrated by the acyclic subgraph interdiction problem. Studying
symmetric interdiction versions of other combinatorial optimization problems defined on
matroids in an interesting direction of future research.

References

1 Douglas S. Altner, Özlem Ergun, and Nelson A. Uhan. The maximum flow network in-
terdiction problem: valid inequalities, integrality gaps, and approximability. Operations
Research Letters, 38(1):33–38, 2010.

2 Imre Bárány and Roman Karasev. Notes about the carathéodory number. Discrete &
Computational Geometry, 48(3):783–792, 2012.

3 Piotr Berman and Marek Karpinski. On some tighter inapproximability results. In Inter-
national Colloquium on Automata, Languages, and Programming, pages 200–209. Springer,
1999.

4 Stephen R. Chestnut and Rico Zenklusen. Interdicting structured combinatorial optimiza-
tion problems with {0, 1}-objectives. Mathematics of Operations Research, 2016.

5 Stephen R. Chestnut and Rico Zenklusen. Hardness and approximation for network flow
interdiction. Networks, 2017.

6 Richard L. Church, Maria P. Scaparra, and Richard S. Middleton. Identifying critical infras-
tructure: the median and covering facility interdiction problems. Annals of the Association
of American Geographers, 94(3):491–502, 2004.

7 Eugene Peter Durbin. An interdiction model of highway transportation. Rand Memoran-
dum, 1966.

8 Greg N. Frederickson and Roberto Solis-Oba. Increasing the weight of minimum spanning
trees. Journal of Algorithms, 33(2):244–266, 1999.

9 P.M. Ghare, Douglas C. Montgomery, and W.C. Turner. Optimal interdiction policy for
a flow network. Naval Research Logistics Quarterly, 18(1):37–45, 1971.

10 Bruce Golden. A problem in network interdiction. Naval Research Logistics Quarterly,
25(4):711–713, 1978.

11 Martin Grötschel, Lászlo Lovász, and Alexander Schrijver. Geometric Algorithms and
Combinatorial Optimization, volume 2 of Algorithms and Combinatorics. Springer, second
corrected edition edition, 1993.

12 Alpár Jüttner. On budgeted optimization problems. SIAM Journal on Discrete Mathemat-
ics, 20(4):880–892, 2006.

13 Rafael R. Kamalian and Vahan V. Mkrtchyan. Two polynomial algorithms for special
maximum matching constructing in trees. arXiv preprint arXiv:0707.2295, 2007.

14 Rafael R. Kamalian and Vahan V. Mkrtchyan. On complexity of special maximum match-
ings constructing. Discrete Mathematics, 308(10):1792–1800, 2008.

15 Leonid Khachiyan, Endre Boros, Konrad Borys, Khaled Elbassioni, Vladimir Gurvich, Ga-
bor Rudolf, and Jihui Zhao. On short paths interdiction problems: Total and node-wise
limited interdiction. Theory of Computing Systems, 43(2):204–233, 2008.

16 Churlzu Lim and J. Cole Smith. Algorithms for discrete and continuous multicommodity
flow network interdiction problems. IIE Transactions, 39(1):15–26, 2007.

APPROX/RANDOM’17

9:18 Symmetric Interdiction for Matching Problems

17 Rui Miao, Rahul Potharaju, Minlan Yu, and Navendu Jain. The Dark menace: Char-
acterizing network-based attacks in the cloud. In Proceedings of the 2015 ACM Internet
Measurement Conference, 2015.

18 Manfred W. Padberg and M.R. Rao. Odd minimum cut-sets and b-matchings. Mathematics
of Operations Research, 7(1):67–80, 1982. doi:10.1287/moor.7.1.67.

19 Jörg Rambau. On a generalization of schönhardt’s polyhedron. Combinatorial and compu-
tational geometry, 52:510–516, 2003.

20 Alexander Schrijver. On the history of the transportation and maximum flow problems.
Mathematical Programming, 91(3):437–445, 2002.

21 Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency. Vol. A. Paths,
flows, matchings. Chapters 1–38. Algorithms and combinatorics. Springer-Verlag, 2003.
URL: http://opac.inria.fr/record=b1100334.

22 F Bruce Shepherd and Adrian Vetta. The demand-matching problem. Mathematics of
Operations Research, 32(3):563–578, 2007.

23 Adrian Vetta and Gwenaël Joret. Reducing the rank of a matroid. Discrete Mathematics
& Theoretical Computer Science, 17, 2015.

24 Heinrich Von Stackelberg. Market structure and equilibrium. Springer Science & Business
Media, 2010.

25 R. Kevin Wood. Deterministic network interdiction. Mathematical and Computer Mod-
elling, 17(2):1–18, 1993.

26 Rico Zenklusen. Matching interdiction. Discrete Applied Mathematics, 158(15):1676–1690,
2010.

27 Rico Zenklusen. Network flow interdiction on planar graphs. Discrete Applied Mathematics,
158(13):1441–1455, 2010.

28 Rico Zenklusen. An o(1)-approximation for minimum spanning tree interdiction. In Founda-
tions of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on, pages 709–728.
IEEE, 2015.

A Representation as a convex combination

We need to show that the representation of fractional matching as a convex combination of
integral matchings can be obtained in polynomial-time. We show something more general
– namely, that given a feasible point in the polytope defined by a set of linear constraints
(even an exponential number in implicit form as a separation oracle [11]) we can find a
representation of the point as a convex combination of the vertices of the polytope, in
polynomial-time. Our constructive algorithm is folklore, but for completeness, we describe it
in its entirety.

Let PT represent the d-dimensional polytope (convex bounded polyhedron) of solutions
to LP = {C}, a set of linear constraints with FC denoting the face, of dimension at most
d − 1, generated by constraint C. Let p̂ ∈ PT be the given point. The set of constraints
may be given in explicit form or implicitly with a bounding ball and a separation oracle [11].
The main idea is to take the ray starting at any vertex v of PT through p̂ to its intersection
pi with the face opposite, FC , then recursively represent pi as the convex combination of
vertices VC of FC ; now it is an easy matter to see that p̂ can be represented as a convex
combination of v ∪ VC . In fact, it is easy to see, by strengthening the inductive hypothesis,
that p̂ is the convex combination of at most d + 1 vertices of PT . All that is left to do
is to see that a vertex of a polytope, the point of intersection of a ray with a face of the
polytope and the representation of the face as a set of constraints (along with bounding ball
and separation oracle, in the general case) can all be computed in polynomial-time. These

http://dx.doi.org/10.1287/moor.7.1.67
http://opac.inria.fr/record=b1100334

S. Haney, B. Maggs, B. Maiti, D. Panigrahi, R. Rajaraman, and R. Sundaram 9:19

operations are easy to compute when the constraints are given in explicit form and we leave
it to the reader as an exercise. In the general setting of the separation oracle, a vertex can
be computed using the ellipsoid algorithm [11]; the point of intersection of a ray with a face
can be computed using binary search; and the polytope restricted to the face FC can be
represented by the same separation oracle augmented with the constraint that C be satisfied
with equality, i.e the restricted polytope lies on the hyperplane (the bounding ball stays the
same).

Note that the above proof shows that any point in a d-dimensional polytope lies in a
simplex formed by at most d+ 1 vertices of the polytope. This gives an alternate proof of
Caratheodory’s theorem [2]. It also shows that the simplex can be chosen to contain any
particular vertex of the polytope. As a small digressional note, it is worth pointing out
that the above technique does not extend to showing that every polyhedron (not polytope,
polyhedrons may be non-convex) can be triangulated (simpliciated); in fact, though every
polyhedron in 2 dimensions (i.e. polygon) can be triangulated this is not true in 3 (or higher)
dimensions [19].

APPROX/RANDOM’17

A Lottery Model for Center-Type Problems with
Outliers∗

David G. Harris1, Thomas Pensyl2, Aravind Srinivasan3, and
Khoa Trinh4

1 Department of Computer Science, University of Maryland, College Park, USA
davidgharris29@gmail.com

2 Department of Computer Science, University of Maryland, College Park, USA
tpensyl@cs.umd.edu

3 Department of Computer Science and Institute for Advanced Computer
Studies, University of Maryland, College Park, USA
srin@cs.umd.edu

4 Department of Computer Science, University of Maryland, College Park, USA
khoa@cs.umd.edu

Abstract
In this paper, we give tight approximation algorithms for the k-center and matroid center prob-
lems with outliers. Unfairness arises naturally in this setting: certain clients could always be
considered as outliers. To address this issue, we introduce a lottery model in which each client j
is allowed to submit a parameter pj ∈ [0, 1] and we look for a random solution that covers every
client j with probability at least pj . Out techniques include a randomized rounding procedure
to round a point inside a matroid intersection polytope to a basis plus at most one extra item
such that all marginal probabilities are preserved and such that a certain linear function of the
variables does not decrease in the process with probability one.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.1 Combi-
natorics

Keywords and phrases approximation algorithms, randomized rounding, clustering problems

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.10

1 Introduction

The classic k-center and Knapsack Center problems are known to be approximable to within
factors of 2 and 3 respectively [5]. These results are best possible unless P=NP [6, 5]. In
these problems, we are given a metric graph G and want to find a subset S of vertices of G
subject to either a cardinality constraint or a knapsack constraint such that the maximum
distance from any vertex to the nearest vertex in S is as small as possible. We shall refer to
vertices in G as clients. Vertices in S are also called centers.

It is not difficult to see that a few outliers (i.e., very distant clients) may result in a very
large optimal radius in the center-type problems. This issue was raised by Charikar et. al.
[2], who proposed a robust model in which we are given a parameter t and only need to serve
t out of given n clients (i.e. n− t outliers may be ignored in the solution). Here we consider
three robust center-type problems: the Robust k-Center (RkCenter) problem, the Robust

∗ Research supported in part by NSF Awards CNS-1010789 and CCF-1422569, and by a research award
from Adobe, Inc.

© David G. Harris, Thomas Pensyl, Aravind Srinivasan, and Khoa Trinh;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 10; pp. 10:1–10:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

10:2 A Lottery Model for Center-Type Problems with Outliers

Knapsack Center (RKnapCenter) problem, and the Robust Matroid Center (RMatCenter)
problem.

Formally, an instance I of the RkCenter problem consists of a set V of vertices, a metric
distance d on V , an integer k, and an integer t. Let n = |V | denote the number of vertices
(clients). The goal is to choose a set S ⊆ V of centers (facilities) such that (i) |S| ≤ k,
(ii) there is a set of covered vertices (clients) C ⊆ V of size at least t, and (iii) the objective
function

R := max
j∈C

min
i∈S

d(i, j)

is minimized.
In the RKnapCenter problem, we are given a budget B > 0 instead of k. In addition,

each vertex i ∈ V has a weight wi ∈ R+. The cardinality constraint (i) is replaced by the
knapsack constraint:

∑
i∈S wi ≤ B. Similarly, in the RMatCenter problem, the constraint (i)

is replaced by a matroid constraint: S must be an independent set of a given matroidM.
Here we assume that we have access to the rank oracle ofM.

In [2], the authors introduced a greedy algorithm for the RkCenter problem that achieves
an approximation ratio of 3. Recently, Chakrabarty et. al. [1] give a 2-approximation
algorithm for this problem. Since the k-center problem is a special case of the RkCenter
problem, this ratio is best possible unless P=NP.

The RKnapCenter problem was first studied by Chen et. al. [3]. In [3], the authors
show that one can achieve an approximation ratio of 3 if allowed to slightly violate the
knapsack constraint by a factor of (1 + ε). It is still unknown whether there exists a true
approximation algorithm for this problem. The current inapproximability bound is still 3
due to the hardness of the Knapsack Center problem.

The current best approximation guarantee for the RMatCenter problem is 7 by Chen et.
al. [3]. This problem has a hardness result of (3 − ε) via a reduction from the k-supplier
problem.

From a practical viewpoint, unfairness arises inevitably in the robust model: some clients
will always be considered as outliers and hence not covered within the guaranteed radius. To
address this issue, we introduce a lottery model for these problems. The idea is to randomly
pick a solution from a public list such that each client j ∈ V is guaranteed to be covered
with probability at least pj , where pj ∈ [0, 1] is the success rate requested by j. In practice,
one possible way to determine these pj ’s is based on the cost that the clients are willing to
pay for their probability of being served. Also, observe that the special case when pj = 1 for
all j ∈ V is equivalent to the standard model.

In this paper, we introduce new approximation algorithms for these problems under this
model. (Note that this model has been used recently for the k-center and Knapsack Center
problems (without outliers) in [4], which will appear soon on arXiv. All the techniques and
problems in [4] are different.) We also propose improved approximation algorithms for the
RkCenter problem and the RMatCenter problem.

1.1 The Lottery Model
In this subsection, we formally define our lottery model for the above-mentioned problems.
First, the Fair Robust k-Center (FRkCenter) problem is formulated as follows. Besides the
parameters V, d, k and t, each vertex j ∈ V has a “target” probability pj ∈ [0, 1]. We are
interested in the minimum radius R for which there exists a distribution D on subsets of V
such that a set S drawn from D satisfies the following constraints:

D.G. Harris, T. Pensyl, A. Srinivasan, and K. Trinh 10:3

Coverage constraint: |C| ≥ t with probability one, where C is the set of all clients in V that
are within radius R from some center S,

Fairness constraint: Pr[j ∈ C] ≥ pj for all j ∈ V , where C is as in the coverage constraint,
Cardinality constraint: |S| ≤ k with probability one.

Here we aim for a polynomial-time, randomized algorithm that can sample from D. Note
that the RkCenter is a special of this variant in which all pj ’s are set to be zero.

The Fair Robust Knapsack Center (FRKnapCenter) problem and Fair Robust Matroid
Center (FRMatCenter) problem are defined similarly except that we replace the cardinality
constraint by a knapsack constraint and a matroid constraint, respectively. More formally,
in the FRKnapCenter problem, we are given a budget B ∈ R+ and each vertex i has a weight
wi ∈ R+. We require the total weight of centers in S to be at most B with probability
one. Similarly, in the FRMatCenter problem, we are given a matroidM and we require the
solution S to be an independent set ofM with probability one.

1.2 Our contributions and techniques
First of all, we give tight approximation algorithms for the RkCenter and RMatCenter
problems.

I Theorem 1. There exist a 2-approximation algorithm for the RkCenter problem1 and a
3-approximation algorithm for the RMatCenter problem.

Our main results for the lottery model are summarized in the following theorems.

I Theorem 2. For any given constant ε > 0 and any instance I = (V, d, k, t, ~p) of the
FRkCenter problem, there is a randomized polynomial-time algorithm A which can compute a
random solution S such that
|S| ≤ k with probability one,
|C| ≥ (1− ε)t, where C is the set of all clients within radius 2R from some center in S
and R is the optimal radius,
Pr[j ∈ C] ≥ (1− ε)pj for all j ∈ V .

I Theorem 3. For any ε > 0 and any instance I = (V, d, w,B, t, ~p) of the FRKnapCenter
problem, there is a randomized polynomial-time algorithm A which can return random solution
S such that∑

i∈S wi ≤ (1 + ε)B with probability one,
|C| ≥ t, where C is the set of vertices within distance 3R from some vertex in S,
Pr[j ∈ C] ≥ pj for all j ∈ V .

Finally, the FRMatCenter can be reduced to (randomly) rounding a point in a matroid
intersection polytope. We design a randomized rounding algorithm which can output a
pseudo solution, which consists of a basis plus one extra center. By using a preprocessing
step and a configuration LP, we can satisfy the matroid constraint exactly (respectively,
knapsack constraint) while slightly violating the coverage and fairness constraints in the
FRMatCenter (respectively, FRKnapCenter) problem. We believe these techniques could be
useful in other facility-location problems (e.g., the matroid median problem [7, 10]) as well.

1 A 2-approximation algorithm has also been found independently by Chakrabarty et. al. [1], and in a
private discussion between Marek Cygan and Samir Khuller. Our algorithm here is different from the
algorithm in [1].

APPROX/RANDOM’17

10:4 A Lottery Model for Center-Type Problems with Outliers

I Theorem 4. For any given constant γ > 0 and any instance I = (V, d,M, t, ~p) of the
FRMatCenter (respectively, FRKnapCenter) problem, there is a randomized polynomial-time
algorithm A which can return a random solution S such that
S is a basis ofM with probability one, (respectively, w(S) ≤ B with probability one)
|C| ≥ t− γ2n, where C is the set of vertices within distance 3R from some vertex in S,
there exists a set T ⊆ V of size at least (1 − γ)n, which is deterministic, such that
Pr[j ∈ C] ≥ pj − γ for all j ∈ T .

1.3 Organization

The rest of this paper is organized as follows. In Section 2, we review some basic properties of
matroids and discuss a filtering algorithm which is used in later algorithms. Then we develop
approximation algorithms for the FRkCenter, FRKnapCenter, and FRMatCenter problems in
the next three sections.

2 Preliminaries

2.1 Matroid polytopes

We first review a few basic facts about matroid polytopes. For any vector z and set S, we let
z(S) denote the sum

∑
i∈S zi. LetM be any matroid on the ground set Ω and rM be its

rank function. The matroid base polytope ofM is defined by

PM :=
{
x ∈ RΩ : x(S) ≤ rM(S) ∀S ⊆ Ω; x(Ω) = rM(Ω); xi ≥ 0 ∀i ∈ Ω

}
.

I Definition 5. Suppose Ax ≤ b is a valid inequality of PM. A face D of PM (corresponding
to this valid inequality) is the set D := {x ∈ PM : Ax = b} .

The following theorem gives a characterization for any face of PM (See, e.g., [9, 8]).

I Theorem 6. Let D be any face of PM. Then it can be characterized by

D =
{
x ∈ RΩ : x(S) = rM(S) ∀S ∈ L; xi = 0 ∀i ∈ J ; x ∈ PM

}
,

where J ⊆ Ω and L is a chain family of sets: L1 ⊂ L2 ⊂ . . . ⊂ Lm. Moreover, it is sufficient
to choose L as any maximal chain L1 ⊂ L2 ⊂ . . . ⊂ Lm such that x(Li) = rM(Li) for all
i = 1, 2, . . . ,m.

I Proposition 7. Let x ∈ PM be any point and I be the set of all tight constraints of PM
on x. Suppose D is the face with respect to I. Then one can compute a chain family L for
D as in Theorem 6 in polynomial time.

I Corollary 8. Let D be any face of PM. Then it can be characterized by

D =
{
x ∈ RΩ : x(S) = bS ∀S ∈ O; xi = 0 ∀i ∈ J ; x ∈ PM

}
,

where J ⊆ Ω and O is a family of pairwise disjoint sets: O1, O2, . . . , Om, and bO1 , . . . , bOm

are some integer constants.

D.G. Harris, T. Pensyl, A. Srinivasan, and K. Trinh 10:5

Algorithm 1 RFiltering (x, y)
1: V ′ ← ∅
2: for each cluster Fj in decreasing order of sj =

∑
i∈V :d(i,j)≤R xij do

3: if Fj is unmarked then
4: V ′ ← V ′ ∪ {j}
5: Set all unmarked clusters Fk (including Fj itself) s.t. Fk ∩ Fj 6= ∅ as marked.
6: Let cj be the number of marked clusters in this step.
7: ~c← (cj : j ∈ V ′)
8: return (V ′,~c)

2.2 Filtering algorithm
All algorithms in this paper are based on rounding an LP solution. In general, for each vertex
i ∈ V , we have a variable yi ∈ [0, 1] which represents the probability that we want to pick i
in our solution. (In the standard model, yi is the “extent” that i is opened.) In addition, for
each pair of i, j ∈ V , we have a variable xij ∈ [0, 1] which represents the probability that j is
connected to i.

Note that in all center-type problems, the optimal radius R is always the distance
between two vertices. Therefore, we can always “guess” the value of R in O(n2) time.
WLOG, we may assume that we know the correct value of R. For any j ∈ V , we let
Fj := {i ∈ V : d(i, j) ≤ R ∧ xij > 0} and sj :=

∑
i∈V :d(i,j)≤R xij . We shall refer to Fj as

a cluster with cluster center j. Depending on a specific problem, we may have different
constraints on xij ’s and yi’s. In general, the following constraints are valid in most of the
problems here:∑

j∈V

∑
i∈V :d(i,j)≤R

xij ≥ t, (1)

∑
i∈V :d(i,j)≤R

xij ≤ 1, ∀j ∈ V, (2)

xij ≤ yi, ∀i, j ∈ V, (3)
yi, xij ≥ 0, ∀i, j ∈ V. (4)

For the fair variants, we may also require that∑
i∈V :d(i,j)≤R

xij ≥ pj , ∀j ∈ V. (5)

Constraint (1) says that at least t vertices should be covered. Constraint (2) ensures that
each vertex is only connected to at most one center. Constraint (3) means vertex j can only
connect to center i if it is open. Constraint (5) says that the total probability of j being
connected should be at least pj . By constraints (2) and (3), we have y(Fj) ≤ 1.

The first step of all algorithms in this paper is to use the following filtering algorithm
to obtain a maximal collection of disjoint clusters. The algorithm will return the set V ′ of
cluster centers of the chosen clusters. In the process, we also keep track of the number cj of
other clusters removed by Fj for each j ∈ V ′.

3 The k-center problems with outliers

In this section, we first give a simple 2-approximation algorithm for the RkCenter problem.
Then, we give an approximation algorithm for the FRkCenter problem, proving Theorem 2.

APPROX/RANDOM’17

10:6 A Lottery Model for Center-Type Problems with Outliers

Algorithm 2 RkCenterRound (x, y)
1: (V ′,~c)← RFiltering (x, y) .
2: S ← the top k vertices i ∈ V ′ with highest value of ci.
3: return S

3.1 The robust k-center problem
Suppose I = (V, d, k, t) is an instance the RkCenter problem with the optimal radius R.
Consider the polytope PRkCenter containing points (x, y) satisfying constraints (1)–(4), and
the cardinality constraint:∑

i∈V
yi ≤ k. (6)

Since R is the optimal radius, it is not difficult to check that PRkCenter 6= ∅. Let us pick any
fractional solution (x, y) ∈ PRkCenter. The next step is to round (x, y) into an integral solution
using the simple Algorithm 2.

Analysis. By construction, the algorithm returns a set S of k open centers. Note that, for
each i ∈ S, ci is the number of distinct clients within radius 2R from i. Thus, it suffices to
show that

∑
i∈S ci ≥ t. By inequality (2), we have that sj ≤ 1 for all j ∈ V ′. Thus,∑

i∈V ′
cisi ≥

∑
i∈V

si ≥ t,

where the first inequality is due to the greedy choice of vertices in V ′ and the second inequality
follows by (1). Now recall that the clusters whose centers in V ′ are pairwise disjoint. By
constraint (6), we have∑

i∈V ′
si ≤

∑
i∈V ′

y(Fi) ≤
∑
i∈V

yi ≤ k.

It follows by the choice of S that
∑
i∈S ci ≥ t. This concludes the first part of Theorem 1.

3.2 The fair robust k-center problem
Assume I = (V, d, k, t, ~p) be an instance of the FRkCenter problem with the optimal radius
R. Fix any ε > 0. If k ≤ 2/ε, then we can generate all possible O

(
n1/ε) solutions and then

solve an LP to obtain the corresponding marginal probabilities. So the problem can be
solved easily in this case. We will assume that k ≥ 2/ε for the rest of this section. Consider
the polytope PFRkCenter containing points (x, y) satisfying constraints (1)–(4), the fairness
constraint (5), and the cardinality constraint (6). We now show that PFRkCenter is actually a
valid relaxation polytope.

I Proposition 9. We have that PFRkCenter 6= ∅.

Fix any small parameter ε > 0. The description of our algorithm is shown in Algorithm 3.

Analysis. First, note that one can find such a vector δ in line 5 as the system of δ(V ′) = 0
and ~c·δ = 0 consists of two constraints and at least 3 variables (and hence is underdetermined.)
By construction, at least one more fractional variable becomes rounded after each iteration.

D.G. Harris, T. Pensyl, A. Srinivasan, and K. Trinh 10:7

Algorithm 3 FRkCenterRound (ε, x, y)
1: (V ′,~c)← RFiltering (x, y) .
2: for each j ∈ V ′ do
3: y′j ← (1− ε)

∑
i∈Fj

xij
4: while y′ still contains ≥ 3 fractional values in (0, 1) do
5: Let δ ∈ RV ′ , δ 6= 0 be such that δi = 0 ∀i ∈ V ′ : y′i ∈ {0, 1}, δ(V ′) = 0, and ~c · δ = 0.
6: Choose scaling factors a, b > 0 such that

y′ + aδ ∈ [0, 1]V ′ and y′ − bδ ∈ [0, 1]V ′

there is at least one new entry of y′ + aδ which is equal to zero or one
there is at least one new entry of y′ − bδ which is equal to zero or one

7: With probability b
a+b , update y

′ ← y′ + aδ; else, update y′ ← y′ − bδ.
8: return S = {i ∈ V : y′i > 0}.

Thus, the algorithm terminates after O(n) rounds. Let S denote the (random) solution
returned by FRkCenterRound and C be the set of all clients within radius 3R from some
center in S. Theorem 2 can be verified by the following propositions.

I Proposition 10. |S| ≤ k with probability one.

I Proposition 11. |C| ≥ (1− ε)t with probability one.

I Proposition 12. Pr[j ∈ C] ≥ (1− ε)pj for all j ∈ V .

4 The Knapsack Center problems with outliers

We study the RKnapCenter and FRKnapCenter problems in this section. Recall that in these
problems, each vertex has a weight and we want to make sure that the total weight of the
chosen centers does not exceed a given budget B. We first give a 3-approximation algorithm
for the RKnapCenter problem that slightly violates the knapsack constraint. Although this
is not better than the known result by [3], both our algorithm and analysis here are more
natural and simpler. It serves as a starting point for the next results. For the FRKnapCenter,
we show that it is possible to satisfy the knapsack constraint exactly with small violations in
the coverage and fairness constraints.

4.1 The robust knapsack center problem
Suppose I = (V, d, w,B, t) is an instance the RKnapCenter problem with the optimal radius
R. Consider the polytope PRKnapCenter containing points (x, y) satisfying constraints (1)–(4),
and the knapsack constraint:∑

i∈V
wiyi ≤ B. (7)

Again, it is not difficult to check that PRKnapCenter 6= ∅. Let us pick any fractional solution
(x, y) ∈ PRKnapCenter. See Algorithm 4 for the pseudo-approximation algorithm to round
(x, y).

Analysis. We first claim that P ′ 6= ∅ which implies that the extreme point Y of P ′ (in
line 4) does exist. To see this, let zi := si for all i ∈ V ′. Then we have∑

i∈V ′
cizi =

∑
i∈V ′

cisi ≥
∑
i∈V

si ≥ t.

APPROX/RANDOM’17

10:8 A Lottery Model for Center-Type Problems with Outliers

Algorithm 4 RKnapCenterRound (x, y)
1: (V ′,~c)← RFiltering (x, y) .
2: For each i ∈ V ′, let vi ← arg minj∈Fi

{wj} be the vertex with smallest weight in Fi
3: Let P ′ :=

{
z ∈ [0, 1]V ′ :

∑
i∈V ′ cizi ≥ t ∧

∑
i∈V ′ wvi

zi ≤ B
}

4: Compute an extreme point Y of P ′
5: return S = {vi : i ∈ V, Yi > 0}

Also,∑
i∈V ′

wvi
zi =

∑
i∈V ′

wvi
si

=
∑
i∈V ′

wvi

∑
j∈Fi

xji

≤
∑
i∈V ′

wvi

∑
j∈Fi

yj

≤
∑
i∈V ′

∑
j∈Fi

wjyj ≤
∑
i∈V

wiyi ≤ B.

All the inequalities follow from LP constraints and definitions of si, ci, and vi. Thus, z ∈ P ′,
implying that P ′ 6= ∅.

I Proposition 13. RKnapCenterRound returns a solution S such that w(S) ≤ B+2wmax
and |C| ≥ t, where C is the set of vertices within distance 3R from some vertex in S and
wmax is the maximum weight of any vertex in V .

4.2 The fair robust knapsack center problem
In this section, we will first consider a simple algorithm that only violates the knapsack
constraint by two times the maximum weight of any vertex. Then using a configuration
polytope to “condition” on the set of “big” vertices, we show that it is possible to either
violate the budget by (1 + ε) or to preserve the knapsack constraint while slightly violating
the coverage and fairness constraints.

4.2.1 Basic algorithm
Suppose I = (V, d, w,B, t, ~p) is an instance the FRKnapCenter problem with the optimal radius
R. Consider the polytope PFRKnapCenter containing points (x, y) satisfying constraints (1)–(4),
the fairness constraint (5), and the knapsack constraint (7). The proof that PFRKnapCenter 6= ∅
is very similar to that of Proposition 9 and is omitted here.

The following algorithm is a randomized version of RKnapCenterRound.

Analysis. It is not hard to verify that P ′ 6= ∅ (see the analysis in Section 4.1). This means
that the decomposition at line 4 can be done.

I Proposition 14. The algorithm BasicFRKnapCenterRound returns a random solution
S such that w(S) ≤ B + 2wmax, |C| ≥ t, and Pr[j ∈ C] ≥ pj for all j ∈ V , where C is the set
of vertices within distance 3R from some vertex in S and wmax is the maximum weight of
any vertex in V .

D.G. Harris, T. Pensyl, A. Srinivasan, and K. Trinh 10:9

Algorithm 5 BasicFRKnapCenterRound (x, y)
1: (V ′,~c)← RFiltering (x, y) .
2: For each i ∈ V ′ let vi := arg minj∈Fi

{wj} be the vertex with smallest weight in Fi
3: Let P ′ :=

{
z ∈ [0, 1]V ′ :

∑
i∈V ′ cizi ≥ t ∧

∑
i∈V ′ wvi

zi ≤ B
}

4: Let zi ← si for all i ∈ V ′. Write z as a convex combination of extreme points
z(1), . . . , z(n+1) of P ′:

z = p1z
(1) + . . .+ pn+1z

(n+1),

where
∑
` p` = 1 and p` ≥ 0 for all ` ∈ [n+ 1].

5: Randomly choose Y ← z` with probability p`.
6: return S = {vi : i ∈ V, Yi > 0}

Algorithm 6 FRKnapCenterRound1 (x, y, q)
1: Randomly pick a set U ∈ U with probability qU
2: Let x′ij ← xUij/qU and y′i ← min{yUi /qU , 1}
3: return S = BasicRFKnapCenterRound (x′, y′)

4.2.2 An algorithm slightly violating the budget constraint

Fix a small parameter ε > 0. A vertex i is said to be big iff wi > εB. Then there can be
at most 1/ε big vertices in a solution. Let U denote the collection of all possible sets of big
vertices. We have that |U| ≤ nO(1/ε). Consider the configuration polytope Pconfig1 containing
points (x, y, q) with the following constraints:

∑
U∈U qU = 1∑
i∈V :d(i,j)≤R x

U
ij ≤ qU ∀j ∈ V,U ∈ U∑

U∈U
∑
i∈V :d(i,j)≤R x

U
ij ≥ pj ∀j ∈ V

xUij ≤ yUi ∀i, j ∈ V,U ∈ U∑
i∈V wiy

U
i ≤ qUB ∀U ∈ U∑

j∈V
∑
i∈V :d(i,j)≤R x

U
ij ≥ qU t

yUi = 1 ∀U ∈ U , i ∈ U
yUi = 0 ∀U ∈ U , i ∈ V \ U,wi > 1/ε
xUij , y

U
i , qU ≥ 0 ∀i, j ∈ V,U ∈ U

We first claim that Pconfig1 is a valid relaxation polytope for the problem.

I Proposition 15. We have that Pconfig1 6= ∅.

Next, let us pick any (x, y, q) ∈ Pconfig1 and use the following algorithm to round it.
We are now ready to prove Theorem 3.

Proof of Theorem 3. We will show that FRKnapCenterRound1 will return a solution
S with properties in Theorem 3. Let E(U) denote the event that U ∈ U is picked in the

APPROX/RANDOM’17

10:10 A Lottery Model for Center-Type Problems with Outliers

algorithm. Note that (x′, y′) satisfies the following constraints:∑
j∈V

∑
i∈V :d(i,j)≤R

x′ij ≥ t,∑
i∈V :d(i,j)≤R

x′ij ≤ 1, ∀j ∈ V,

∑
i∈V :d(i,j)≤R

x′ij =
∑

i∈V :d(i,j)≤R

xij/qU , ∀j ∈ V,

x′ij ≤ y′i, ∀i, j ∈ V,∑
i∈V

wiy
′
i ≤ B.

Moreover, y′i = 1 for all i ∈ U and y′i = 0 for all i ∈ V \U and wi > εB. Thus, the two extra
fractional vertices opened by BasicFRKnapCenterRound will have weight at most εB.
By Proposition 14, we have w(S) ≤ B + 2εB = (1 + 2ε)B. Moreover, conditioned on U , we
have

Pr[j ∈ C|E(U)] ≥
∑

i∈V :d(i,j)≤R

x′ij =
∑

i∈V :d(i,j)≤R

xij/qU .

Thus, by definition of Pconfig1 and our construction of S, we get

Pr[j ∈ C] =
∑
U∈U

Pr[j ∈ C|E(U)] Pr[E(U)]

≥
∑
U∈U

∑
i∈V :d(i,j)≤R

xij

≥ pj . J

4.2.3 An algorithm that satisfies the knapsack constraint exactly
Let ε > 0 a small parameter to be determined. Let U denote the collection of all possible
sets of verticies with size at most d1/εe. We have that |U| ≤ nO(1/ε). Suppose R is the
optimal radius to our instance. Given a set U ∈ U , we say that vertex j ∈ V is blue if there
exists i ∈ U such that d(i, j) ≤ 3R. Otherwise, vertex i is said to be red. For any i ∈ V , let
RBall(i, U,R) denote the set of red vertices within radius 3R from i:

RBall(i, U,R) := {j ∈ V : (d(i, j) ≤ 3R ∧ @k ∈ U : d(k, j) ≤ 3R)}.

Consider the configuration polytope Pconfig2 containing points (x, y, q) with the following
constraints:

∑
U∈U qU = 1∑
i∈V :d(i,j)≤R x

U
ij ≤ qU ∀j ∈ V,U ∈ U∑

U∈U
∑
i∈V :d(i,j)≤R x

U
ij ≥ pj ∀j ∈ V

xUij ≤ yUi ∀i, j ∈ V,U ∈ U∑
i∈V wiy

U
i ≤ qUB ∀U ∈ U∑

j∈V
∑
i∈V :d(i,j)≤R x

U
ij ≥ qU t

yUi = 1 ∀U ∈ U , i ∈ U
yUi = 0 ∀U ∈ U , i ∈ V \ U, |RBall(i, U,R)| ≥ εn
xUij , y

U
i , qU ≥ 0 ∀i, j ∈ V,U ∈ U

D.G. Harris, T. Pensyl, A. Srinivasan, and K. Trinh 10:11

Algorithm 7 FRKnapCenterRound2 (x, y, q)
1: Randomly pick a set U ∈ U with probability qU
2: Let x′ij ← xUij/qU and y′i ← min{yUi /qU , 1}
3: S ′ ← BasicRFKnapCenterRound (x′, y′)
4: Let i1, i2 be vertices in S ′ \ U having largest weights.
5: return S = S ′ \ {i1, i2}

We first claim that Pconfig2 is a valid relaxation polytope for the problem.

I Proposition 16. We have that Pconfig2 6= ∅.

Next, let us pick any (x, y, q) ∈ Pconfig2 and use the Algorithm 7 to round it.

Analysis. Let us fix any γ > 0 and set ε := γ2

2 . Also, let E(U) denote the event that U ∈ U
is picked in the algorithm. Again, observe that (x′, y′) satisfies the following inequalities:∑

j∈V

∑
i∈V :d(i,j)≤R

x′ij ≥ t,∑
i∈V :d(i,j)≤R

x′ij ≤ 1, ∀j ∈ V,

∑
i∈V :d(i,j)≤R

x′ij =
∑

i∈V :d(i,j)≤R

xij/qU , ∀j ∈ V,

x′ij ≤ y′i, ∀i, j ∈ V,∑
i∈V

wiy
′
i ≤ B.

Recall that the algorithm BasicFRKnapCenterRound will return a solution S ′ con-
sisting of a set S ′′ with w(S ′′) ≤ B plus (at most) two extra “fractional” centers i∗ and i∗∗.
Moreover, we have 0 < y′i∗ , y

′
i∗∗ < 0, which implies that i∗, i∗∗ /∈ U . Thus, by removing the

two centers having highest weights in S ′ \ U , we ensure that the total weight of S is within
the given budget B with probability one.

Now we shall prove the coverage guarantee. By Proposition 14, S ′ covers at least t
vertices within radius 3R. If a vertex is blue, it can always be connected to some center in
U ; and hence, it is not affected by the removal of i1, i2. Because each of i1 and i2 can cover
at most εn other red vertices, we have

|C| ≥ t− 2εn = 1− γ2n.

For any j ∈ V , let Xj be the random indicator for the event that j is covered by S ′ (i.e.,
there is some i ∈ S ′ such that d(i, j) ≤ 3R) but becomes unconnected due to the removal
of i1 or i2. We say that j is a bad vertex iff E[Xj] ≥ γ. Otherwise, vertex j is said to be
good. Note that

∑
j∈V Xj ≤ 2εn with probability one. Thus, there can be at most 2εn/γ

bad vertices. Let T be the set of all good vertices. Then

|T | ≥ n− 2εn/γ = (1− γ)n.

APPROX/RANDOM’17

10:12 A Lottery Model for Center-Type Problems with Outliers

Algorithm 8 RMatCenterRound (x, y)
1: (V ′,~c)← RFiltering (x, y) .
2: Let P ′ :=

{
z ∈ [0, 1]V : z(U) ≤ rM(U) ∀U ⊆ V ∧ z(Fi) ≤ 1 ∀i ∈ V ′

}
3: Find a basic solution Y ∈ P ′ which maximizes the linear function f : [0, 1]V → R defined

as

f(z) :=
∑
j∈V ′

cj
∑
i∈Fj

zi for z ∈ [0, 1]V .

4: return S = {i ∈ V : Yi = 1}.

By Proposition 14, Pr[j is covered by S ′] ≥ pj . For any j ∈ T , we have

Pr[j ∈ C] = Pr[j is covered by S ′ ∧Xj = 0]
= Pr[j is covered by S ′]− Pr[j is covered by S ′ ∧Xj = 1]
≥ Pr[j is covered by S ′]− Pr[Xj = 1]
≥ pj − γ.

This concludes the first part of Theorem 4 for the FRKnapCenter problem.

5 The Matroid Center problems with outliers

In this section, we will first give a tight 3-approximation algorithm for the RMatCenter
problem, improving upon the 7-approximation algorithm by Chen et. al. [3]. Then we study
the FRMatCenter problem and give a proof for the second part of Theorem 4.

5.1 The robust matroid center problem
Suppose I = (V, d,M, t) is an instance the RMatCenter problem with the optimal radius R.
Let rM denote the rank function ofM. Consider the polytope PRMatCenter containing points
(x, y) satisfying constraints (1)–(4), and the matroid rank constraints:

y(U) ≤ rM(U), ∀U ⊆ V. (8)

Since R is the optimal radius, it is not difficult to check that PRMatCenter 6= ∅. Let us pick
any fractional solution (x, y) ∈ PRMatCenter. The next step is to round (x, y) into an integral
solution. Our 3-approximation algorithm is summarized in Algorithm 8.

Analysis. Again, by construction, the clusters Fi are pairwise disjoint for i ∈ V ′. Note
that P ′ is the matroid intersection polytope between M and another partition matroid
polytope saying that at most one item per set Fi for i ∈ V ′ can be chosen. Moreover, y ∈ P ′
implies that P ′ 6= ∅. Thus, P ′ has integral extreme points and optimizing over P ′ can be
done in polynomial time. Note that the solution S is feasible as it satisfies the matroid
constraint. The correctness of RMatCenterRound follows immediately by the following
two propositions.

I Proposition 17. There are at least f(Y) vertices in V that are at distance at most 3R
from some open center in S.

I Proposition 18. We have that f(Y) ≥ t.

This analysis proves the second part of Theorem 1.

D.G. Harris, T. Pensyl, A. Srinivasan, and K. Trinh 10:13

Algorithm 9 RoundSinglePoint (y, ~r)
1: δ∗ ← max{δ : z ∈ PM; zv = yv + δrv ∀v ∈ V }
2: y′ ← y + δ∗~r

3: return (y′, δ∗)

5.2 The fair robust matroid center problem
In this section, we consider the FRMatCenter problem. It is not difficult to modify and
randomize algorithm RMCenterRound so that it would return a random solution satisfying
both the fairness guarantee and matroid constraint, and preserving the coverage constraint
in expectation. This can be done by randomly picking Y inside P ′. However, if we want to
obtain some concrete guarantee on the coverage constraint, we may have to (slightly) violate
either the matroid constraint or the fairness guarantee. We leave it as an open question
whether there exists a true approximation algorithm for this problem.

We will start with a pseudo-approximation algorithm which always returns a basis ofM
plus at most one extra center. Our algorithm is quite involved. We first carefully round
a fractional solution inside a matroid intersection polytope into a (random) point with a
special property: the unrounded variables form a single path connecting some clusters and
tight matroid rank constraints. Next, rounding this point will ensure that all but one cluster
have an open center. Then opening one extra center is sufficient to cover at least t clients.

Finally, using a similar preprocessing step similar to the one in Section 4.2.3, we can
correct the solution by removing the extra center without affecting the fairness and coverage
guarantees by too much. This algorithm concludes Theorem 4.

5.2.1 A pseudo-approximation algorithm
Suppose I = (V, d,M, t, ~p) is an instance the robust matroid center problem with the optimal
radius R. Let rM denote the rank function ofM and PM be the matroid base polytope of
M. Consider the polytope PFRMatCenter containing points (x, y) satisfying constraints (1)–(4),
the fairness constraint (5), and the matroid constraints (8). Using similar arguments as in
the proof of Proposition 9, we can show that PFRMatCenter is a valid relaxation.

I Proposition 19. We have that PFRMatCenter 6= ∅.

Our algorithm will use the following rounding operation iteratively.
Given a point y ∈ PM and a vector ~r, the procedure RoundSinglePoint will move y

along direction ~r to a new point y + δ∗~r for some maximal δ∗ > 0 such that this point still
lies in PM. Note that one can find such a maximal δ∗ in polynomial time. We will choose
the initial point (x, y) as a vertex of PFRMatCenter. By Cramer’s rule, the entries of y will be
rational with both numerators and denominators bounded by O(2n). The direction vector ~r
also has this property by construction. Thus, it is not hard to verify that the maximal value
of δ∗ for which y + δ∗~r ∈ PM is also rational and has both numerator and denominator at
most O(2n) in every iteration. So we can compute δ∗ exactly by a simple binary search.

See the appendix for more details.

5.2.2 Analysis of PseudoFRMCenterRound
I Proposition 20. In all but the last iteration, the while-loop (lines 4 to 8) of PseudoFRM-
CenterRound preserves the following invariant: if y′ lies in the face D of PM (w.r.t. all
tight matroid rank constraints) at the beginning of the iteration, then y′ ∈ D at the end of
this iteration.

APPROX/RANDOM’17

10:14 A Lottery Model for Center-Type Problems with Outliers

I Proposition 21. PseudoFRMCenterRound terminates in polynomial time.

I Proposition 22. In all iterations, the while-loop (lines 4 to 8) of PseudoFRMCenter-
Round satisfies the invariant that y′(Fj) ≤ 1 for all Fj ∈ F .

I Proposition 23. PseudoFRMCenterRound returns a solution S which is some inde-
pendent set ofM plus (at most) one extra vertex in V .

Recall that C is the (random) set of all clients within radius 3R from some center in S,
where R is the optimal radius. The following two propositions will conclude our analysis.

I Proposition 24. |C| ≥ t with probability one.

I Proposition 25. Pr[j ∈ C] ≥ pj for all j ∈ V .

So far we have proved the following theorem.

I Theorem 26. PseudoFRMCenterRound will return a random solution S such that
S is the union of some basis ofM with (at most) one extra vertex,
|C| ≥ t with probability one,
Pr[j ∈ C] ≥ pj for all j ∈ V .

5.2.3 An algorithm satisfying the matroid constraint exactly

Using a similar technique as in Section 4.2.3, we will develop an approximation algorithm
for the FRMatCenter problem which always returns a feasible solution. Let ε > 0 a small
parameter to be determined. Let U denote the collection of all possible sets of verticies with
size at most d1/εe such that U is an independent set ofM. Again, we have that |U| ≤ nO(1/ε).
Suppose R is the optimal radius to our instance. For any i ∈ V , recall that RBall(i, U,R) is
the set of red vertices within radius 3R from i.

Consider the configuration polytope Pconfig3 containing points (x, y, q) with the following
constraints:

∑
U∈U qU = 1∑
i∈V :d(i,j)≤R x

U
ij ≤ qU ∀j ∈ V,U ∈ U∑

U∈U
∑
i∈V :d(i,j)≤R x

U
ij ≥ pj ∀j ∈ V

xUij ≤ yUi ∀i, j ∈ V,U ∈ U∑
i∈W yUi ≤ qUrM(W) ∀U ∈ U ,W ⊆ V∑
j∈V

∑
i∈V :d(i,j)≤R x

U
ij ≥ qU t

yUi = 1 ∀U ∈ U , i ∈ U
yUi = 0 ∀U ∈ U , i ∈ V \ U, |RBall(i, U,R)| ≥ εn
xUij , y

U
i , qU ≥ 0 ∀i, j ∈ V,U ∈ U

We first claim that Pconfig3 is a valid relaxation polytope for the problem.

I Proposition 27. We have that Pconfig3 6= ∅.

Next, let us pick any (x, y, q) ∈ Pconfig3 and use Algorithm 10 to round it.

D.G. Harris, T. Pensyl, A. Srinivasan, and K. Trinh 10:15

Algorithm 10 FRMCenterRound (x, y, q)
1: Randomly pick a set U ∈ U with probability qU
2: Let x′ij ← xUij/qU and y′i ← min{yUi /qU , 1}
3: S ′ ← PseudoFRMCenterRound (x′, y′)
4: Let i∗ be the “extra” vertex in S ′.
5: return S = S ′ \ {i}

Analysis. We are now ready to prove the second part of Theorem 4. Let us fix any γ > 0
and set ε := γ2. Also, let E(U) denote the event that U ∈ U is picked in the algorithm. Note
that (x′, y′) satisfies the following inequalities:∑

j∈V

∑
i∈V :d(i,j)≤R

x′ij ≥ t,∑
i∈V :d(i,j)≤R

x′ij ≤ 1, ∀j ∈ V,

∑
i∈V :d(i,j)≤R

x′ij =
∑

i∈V :d(i,j)≤R

xij/qU , ∀j ∈ V,

x′ij ≤ y′i, ∀i, j ∈ V,∑
i∈W

y′i ≤ rM(W), ∀W ⊆ V.

Moreover, y′i = 1 for all i ∈ U and y′i = 0 for all i ∈ V \ U and RBall(i, U,R) ≥ εn.
Recall that the algorithm PseudoFRMCenterRound will return a solution S ′ is the

union of a basis ofM with an extra center i∗. Moreover, we have 0 < y′i∗ < 0, which implies
that i∗ /∈ U . Thus, by removing i∗ from S ′, we ensure that the resulting set is a basis ofM
with probability one.

Now we shall prove the coverage guarantee. By Theorem 26, S ′ covers at least t vertices
within radius 3R. If a vertex is blue, it can always be connected to some center in U ; and
hence, it is not affected by the removal of i1, i2. Because each of i∗ can cover at most εn
other red vertices, we have

|C| ≥ t− εn = 1− γ2n.

For any j ∈ V , let Xj be the random indicator for the event that j is covered by S ′ (i.e.,
there is some i ∈ S ′ such that d(i, j) ≤ 3R) but becomes unconnected due to the removal
of i∗. We say that j is a bad vertex iff E[Xj] ≥ γ. Otherwise, vertex j is said to be good.
Again,

∑
j∈V Xj ≤ εn with probability one. Thus, there can be at most εn/γ bad vertices.

Let T be the set of all good vertices. Then

|T | ≥ n− εn/γ = (1− γ)n.

By Theorem 26, Pr[j is covered by S ′] ≥ pj . So, for any j ∈ T , we have

Pr[j ∈ C] ≥ Pr[j is covered by S ′]− Pr[Xj = 1] ≥ pj − γ.

Acknowledgements. We thank the APPROX 2017 referees for their helpful suggestions.

APPROX/RANDOM’17

10:16 A Lottery Model for Center-Type Problems with Outliers

References
1 Deeparnab Chakrabarty, Prachi Goyal, and Ravishankar Krishnaswamy. The non-uniform

k-center problem. In 43rd International Colloquium on Automata, Languages, and Pro-
gramming (ICALP 2016), volume 55, pages 67:1–67:15, 2016.

2 Moses Charikar, Samir Khuller, David M. Mount, and Giri Narasimhan. Algorithms for
facility location problems with outliers. In Proceedings of the Twelfth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA’01, pages 642–651, Philadelphia, PA, USA, 2001.
Society for Industrial and Applied Mathematics. URL: http://dl.acm.org/citation.
cfm?id=365411.365555.

3 Danny Z. Chen, Jian Li, Hongyu Liang, and Haitao Wang. Matroid and knapsack center
problems. Integer Programming and Combinatorial Optimization: 16th International Con-
ference, IPCO 2013, Valparaíso, Chile, March 18-20, 2013. Proceedings, pages 110–122,
2013. doi:10.1007/978-3-642-36694-9_10.

4 David Harris, Thomas Pensyl, Aravind Srinivasan, and Khoa Trinh. Fairness in resource
allocation and slowed-down dependent rounding. Manuscript, 2017.

5 Dorit S. Hochbaum and David B. Shmoys. A unified approach to approximation algorithms
for bottleneck problems. J. ACM, 33(3):533–550, May 1986. doi:10.1145/5925.5933.

6 Wen-Lian Hsu and George L. Nemhauser. Easy and hard bottleneck location problems.
Discrete Applied Mathematics, 1(3):209–215, 1979. doi:10.1016/0166-218X(79)90044-1.

7 Ravishankar Krishnaswamy, Amit Kumar, Viswanath Nagarajan, Yogish Sabharwal, and
Barna Saha. The matroid median problem. In Proceedings of the annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1117–1130. SIAM, 2011.

8 Lap-Chi Lau, R. Ravi, and Mohit Singh. Iterative Methods in Combinatorial Optimization.
Cambridge University Press, New York, NY, USA, 1st edition, 2011.

9 Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24.
Springer Science & Business Media, 2003.

10 Chaitanya Swamy. Improved approximation algorithms for matroid and knapsack median
problems and applications. In APPROX/RANDOM 2014, volume 28, pages 403–418, 2014.

A Details of the pseudo-approximation for FRMatCenter

The main algorithm is summarized in Algorithm 11, which can round any vertex point
(x, y) ∈ PFRMatCenter. Basically, we will round y iteratively. In each round, we construct
a (multi)-bipartite graph where vertices on the left side are the disjoint sets O1, O2, . . .

in Corollary 8. Vertices on the right side are corresponding to the disjoint sets F1, F2, . . .

returned by RFiltering. Now each edge of the bipartite graph, connecting Oi and Fj ,
represents some unrounded variable yv ∈ (0, 1) where v ∈ Oi and v ∈ Fj . See Figure 1.

Then we carefully pick a cycle (path) on this graph and round variables on the edges
of this cycle (path). This is done by subroutines RoundCycle, RoundSinglePath, and
RoundTwoPaths. See Figures 2, 3, and 4. Basically, these procedures will first choose
a direction ~r which alternatively increases and decreases the variables on the cycle (path)
so that (i) all tight matroid constraints are preserved and (ii) the number of (fractionally)
covered clients is also preserved. Now we randomly move y along ~r or −~r using procedure
RoundSinglePoint to ensure that all the marginal probabilities are preserved.

Finally, all the remaining, fractional variables will form one path on the bipartite graph.
We round these variables by the procedure RoundFinalPath which exploits the integrality
of any face of a matroid intersection polytope. Then, to cover at least t clients, we may need
to open one extra facility.

http://dl.acm.org/citation.cfm?id=365411.365555
http://dl.acm.org/citation.cfm?id=365411.365555
http://dx.doi.org/10.1007/978-3-642-36694-9_10
http://dx.doi.org/10.1145/5925.5933
http://dx.doi.org/10.1016/0166-218X(79)90044-1

D.G. Harris, T. Pensyl, A. Srinivasan, and K. Trinh 10:17

FjFjOiOi

yv 2 (0, 1)yv 2 (0, 1)
vv

vv

LL RR

Figure 1 Construction of the multi-bipartite graph H = (L,R, EH) in the main algorithm.

Algorithm 11 PseudoFRMCenterRound (x, y)
1: (V ′,~c)← RFiltering (x, y) and let F ← {Fj : j ∈ V ′}
2: Set y′i ← xij for all j ∈ V ′, i ∈ Fj
3: Set y′i ← 0 for all i ∈ V \

⋃
j∈V ′ Fj

4: while y′ still contains some fractional values do
5: Note that y′ ∈ PM. Compute the disjoint sets O1, . . . , Ot and constants bO1 , . . . , bOt

as in Corollary 8.
6: Let O0 ← V \

⋃t
i=1Oi and F0 ← V \

⋃
j∈V ′ Fj

7: Construct a multi-bipartite graph H = (L,R, EH) where
each vertex i ∈ L, where L = {0, . . . , t}, is corresponding to the set Oi
each vertex j ∈ R, where R = {0} ∪ {k : Fk ∈ F}, is corresponding to the set Fj
for each vertex v ∈ V such that yv ∈ (0, 1): if v belongs to some set Oi and Fj ,
add an edge e with label v connecting i ∈ L and j ∈ R.

8: Check the following cases (in order):
Case 1: H contains a cycle. Let ~v = (v1, v2, . . . , v2`) be the sequence of edge labels
on this cycle. Update y′ ← RoundCycle(y′, ~v) and go to line 4.
Case 2: H contains a maximal path with one endpoint in L and the other in R.
Let ~v = (v1, v2, . . . , v2`+1) be the sequence of edge labels on this path. Update
y′ ← RoundSinglePath(y′, ~v) and go to line 4.
Case 3: There are at least 2 distinct maximal paths (not necessarily disjoint) having
both endpoints in R. Let ~v1, ~v2 be the sequences of edge labels on these two paths.
Update y′ ← RoundTwoPaths(y′, ~v1, ~v2,~c) and go to line 4.
The remaining case: all edges in H form a single path with both endpoints
in R. Let (v1, v2, . . . , v2`) be the sequence of edge labels on this path. Let
Y ← RoundFinalPath(y′, ~v) and exit the loop.

9: return S = {i ∈ V : Yi = 1}.

Algorithm 12 RoundCycle (y′, ~v)

1: Initialize ~r = ~0, then set rvj
= (−1)j for j = 1, 2, . . . , |~v|

2: (y1, δ1)←RoundSinglePoint(y′, ~r)
3: return y1

APPROX/RANDOM’17

10:18 A Lottery Model for Center-Type Problems with Outliers

yv1yv1

yv2yv2

yv3yv3

yv4yv4

yv5yv5

yv6yv6

+�1+�1

��1��1

��1��1

��1��1

+�1+�1

+�1+�1

Figure 2 The left part shows a cycle. The right part shows how the variables on the cycle are
being changed by RoundCycle.

Algorithm 13 RoundSinglePath (y′, ~v)

1: Initialize ~r = ~0, then set rvj = (−1)j+1 for j = 1, 2, . . . , |~v|
2: (y1, δ1)←RoundSinglePoint(y′, ~r)
3: return y1

Algorithm 14 RoundTwoPaths (y′, ~v,~v′,~c)
1: WLOG, suppose j1, j2 ∈ R are endpoints of v1, v2` of the path ~v respectively and cj1 ≥ cj2

2: WLOG, suppose j′1, j′2 ∈ R are endpoints of v′1, v′2`′ of the path ~v′ respectively and
cj′1 ≥ cj′2

3: ∆1 ← cj1 − cj2 ; ∆2 ← cj′1 − cj′2 ; ~r ← ~0
4: V +

1 ← {v1, v3, . . . , v2`−1};V −1 ← {v2, v4, . . . , v2`}
5: V +

2 ← {v′2, v′4, . . . , v′2`′};V
−
2 ← {v′1, v′3, . . . , v′2`′−1}

6: for each v ∈ V +
1 : rv ← rv + 1; for each v ∈ V −1 : rv ← rv − 1

7: for each v ∈ V +
2 : rv ← rv + ∆1/∆2; for each v ∈ V −2 : rv ← rv −∆1/∆2

8: (y1, δ1)←RoundSinglePoint(y′, ~r)
9: (y2, δ2)←RoundSinglePoint(y′,−~r)
10: With probability δ1/(δ1 + δ2): return y2
11: With remaining probability δ2/(δ1 + δ2): return y1

Algorithm 15 RoundFinalPath (y,~v)

1: P1 ←
{
z ∈ [0, 1]V : z(U) ≤ rM(U) ∀U ⊆ V ∧ z(Oi) = bOi

∀i ∈ L \ {0} ∧ zi = 0 ∀i : yi = 0
}

2: P2 ← {z ∈ [0, 1]V : z(Fj) = y(Fj) ∀j ∈ V ′ \ J ∧ z(Fj) ≤ 1 ∀j ∈ J}, where J ⊆ R is the
set of vertices in R on the path ~v.

3: Pick an arbitrary extreme point ŷ of P ′ = P1 ∩ P2
4: for each j ∈ R and j is on the path ~v: if ŷ(Fj) = 0, pick an arbitrary u ∈ Fj and set
ŷu ← 1.

5: return ŷ

D.G. Harris, T. Pensyl, A. Srinivasan, and K. Trinh 10:19

yv2yv2

yv1yv1

yv3yv3

yv4yv4

yv5yv5
+�1+�1

O0O0

��1��1

+�1+�1

+�1+�1

��1��1

O0O0

Figure 3 The left part shows a single path. The right part shows how the variables on the path
are being changed by RoundSinglePath.

yv1yv1

yv2yv2

yv4yv4

yv0
1

yv0
1

yv0
3

yv0
3

yv0
4

yv0
4

j1j1 j1j1
j1j1

j01j
0
1 j01j

0
1

j01j
0
1

j2j2 j2j2 j2j2

j02j
0
2

j02j
0
2j02j

0
2

+�1+�1

��1��1

+�1
�1

�2
+�1

�1

�2

+�2+�2

��2��2

+�2
�1

�2
+�2

�1

�2

��2 � �2
�1

�2
��2 � �2

�1

�2

yv3 , yv0
2

yv3 , yv0
2

��1��1

��1
�1

�2
��1

�1

�2

+�1 + �1
�1

�2
+�1 + �1

�1

�2

��1
�1

�2
��1

�1

�2

+�2+�2

+�2
�1

�2
+�2

�1

�2

��2
�1

�2
��2

�1

�2

Figure 4 The left part shows an example of two distinct maximal paths chosen in Case 3. The
black edge is common in both paths. The middle and right parts are two possibilities of rounding y.
With probability δ1/(δ1 + δ2), the strategy in the right part is adopted. Otherwise, the strategy in
the middle part is chosen.

APPROX/RANDOM’17

Streaming Algorithms for Maximizing Monotone
Submodular Functions under a Knapsack
Constraint∗

Chien-Chung Huang1, Naonori Kakimura†2, and Yuichi Yoshida‡3

1 CNRS, École Normale Supérieure, Paris, France
villars@gmail.com

2 Department of Mathematics, Keio University, Yokohama, Japan
kakimura@math.keio.ac.jp

2 National Institute of Informatics, Tokyo, Japan
yyoshida@nii.ac.jp

Abstract
In this paper, we consider the problem of maximizing a monotone submodular function subject
to a knapsack constraint in the streaming setting. In particular, the elements arrive sequentially
and at any point of time, the algorithm has access only to a small fraction of the data stored in
primary memory. For this problem, we propose a (0.363− ε)-approximation algorithm, requiring
only a single pass through the data; moreover, we propose a (0.4 − ε)-approximation algorithm
requiring a constant number of passes through the data. The required memory space of both
algorithms depends only on the size of the knapsack capacity and ε.

1998 ACM Subject Classification G.2.1 Combinatorics

Keywords and phrases submodular functions, single-pass streaming, multiple-pass streaming,
constant approximation

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.11

1 Introduction

A set function f : 2E → R+ on a ground set E is called submodular if it satisfies the
diminishing marginal return property, i.e., for any subsets S ⊆ T (E and e ∈ E \T , we have

f(S ∪ {e})− f(S) ≥ f(T ∪ {e})− f(T).

A function is monotone if f(S) ≤ f(T) for any S ⊆ T . Submodular functions play a
fundamental role in combinatorial optimization, as they capture rank functions of matroids,
edge cuts of graphs, and set coverage, just to name a few examples. Besides their theoretical
interests, submodular functions have attracted much attention from the machine learning
community because they can model various practical problems such as online advertising [1,
11, 18], sensor location [12], text summarization [16, 17], and maximum entropy sampling [14].

∗ A full version of the paper is available at http://www.di.ens.fr/~cchuang/work/streaming_knapsack.
pdf.

† Partly supported by JST ERATO Grant Number JPMJER1305, and JSPS KAKENHI Grant Number
JP17K00028.

‡ Partly supported by JST ERATO Grant Number JPMJER1305 and JSPS KAKENHI Grant Number
JP17H04676

© Chien-Chung Huang, Naonori Kakimura, and Yuichi Yoshida;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 11; pp. 11:1–11:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.11
http://www.di.ens.fr/~cchuang/work/streaming_knapsack.pdf
http://www.di.ens.fr/~cchuang/work/streaming_knapsack.pdf
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2 Streaming Monotone Submodular Maximization under a Knapsack Constraint

Many of the aforementioned applications can be formulated as the maximization of a
monotone submodular function under a knapsack constraint. In this problem, we are given
a monotone submodular function f : 2E → R+, a size function c : E → N, and an integer
K ∈ N, where N denotes the set of positive integers. The problem is defined as

maximize f(S) subject to c(S) ≤ K, (1)

where we denote c(S) =
∑
e∈S c(e) for a subset S ⊆ E. Throughout this paper, we assume

that every item e ∈ E satisfies c(e) ≤ K as otherwise we can simply discard it. Note that,
when c(e) = 1 for every item e ∈ E, the constraint coincides with a cardinality constraint.

The problem of maximizing a monotone submodular function under a knapsack constraint
is classical and well-studied. First introduced by Wolsey [20], the problem is known to be NP-
hard but can be approximated within the factor of (close to) 1−1/e; see e.g., [3, 10, 13, 8, 19].

In some applications, the amount of input data is much larger than the main memory
capacity of individual computers. In such a case, we need to process data in a streaming
fashion. That is, we consider the situation where each item in the ground set E arrives
sequentially, and we are allowed to keep only a small number of the items in memory at
any point. This setting effectively rules out most of the techniques in the literature, as
they typically require random access to the data. In this work, we also assume that the
function oracle of f is available at any point of the process. Such an assumption is standard
in the submodular function literature and in the context of streaming setting [2, 7, 21].
Badanidiyuru et al. [2] discuss several interesting and useful functions where the oracle can
be implemented using a small subset of the entire ground set E.

We note that the problem, under the streaming model, has so far not received its deserved
attention in the community. Prior to the present work, we are aware of only two: for the
special case of cardinality constraint, Badanidiyuru et al. [2] gave a single-pass (1/2 − ε)-
approximation algorithm; for the general case of a knapsack constraint, Yu et al. [21] gave a
single-pass (1/3− ε)-approximation algorithm, both using O(K log(K)/ε) space.

We now state our contribution.

I Theorem 1. For the problem (1),
1. there is a single-pass streaming algorithm with approximation ratio 4/11− ε ≈ 0.363− ε,
2. there is a multiple-pass streaming algorithm with approximation ratio 2/5− ε = 0.4− ε.
Both algorithms use O(K · poly(ε−1)polylog(K)) space.

Our Technique

We begin by a straightforward generalization of the algorithm of [2] for the special case
of cardinality constraint (Section 2). This algorithm proceeds by adding a new item into
the current set only if its marginal-ratio (its marginal return with respect to the current
set divided by its size) exceeds a certain threshold. This algorithm performs well when all
items in OPT are relatively small in size, where OPT is an optimal solution. However, in
general, it only gives (1/3− ε)-approximation. Note that this technique can be regarded as a
variation of the one in [21]. To obtain better approximation ratio, we need new ideas.

The difficulty in improving this algorithm lies in the following case: A new arriving item
that is relatively large in size, passes the marginal-ratio threshold, and is part of OPT, but
its addition would cause the current set to exceed the capacity K. In this case, we are forced
to throw it away, but in doing so, we are unable to bound the ratio of the function value of
the current set against that of OPT properly.

C.-C. Huang, N. Kakimura, and Y. Yoshida 11:3

We propose a branching procedure to overcome this issue. Roughly speaking, when the
function value of the current set is large enough (depending on the parameters), we create
a secondary set. We add an item to the secondary set only if it passes the marginal-ratio
threshold (with respect to the original set) but its addition to the original set would violate
the size constraint. In the end, whichever set achieves the higher value is returned. In a
way, the secondary set serves as a “back-up” with enough space in case the original set does
not have it, and this allows us to bound the ratio properly. Sections 3 and 4 are devoted to
explaining this branching algorithm, which gives (4/11− ε)-approximation with a single pass.

We note that the main bottleneck of the above singe-pass algorithm lies in the situation
where there is a large item in OPT whose size exceeds K/2. In Section 5, we show that
we can first focus on only the large items (more specifically, those items whose size differ
from the largest item in OPT by (1 + ε) factor) and choose O(1) of them so that at least
one of them, along with the rest of OPT (excluding the largest item in it), gives a good
approximation to f(OPT). Then in the next pass, we can apply a modified version of the
original single-pass algorithm to collect small items. This multiple-pass algorithm gives a
(2/5− ε)-approximation.

We remark that the proofs of some lemmas and theorems are omitted due to the page
limitation, which can be found in the full version of this paper.

Related Work

Maximizing a monotone submodular function subject to various constraints is a subject that
has been extensively studied in the literature. We are unable to give a complete survey
here and only highlight the most representative and relevant results. Besides a knapsack
constraint or a cardinality constraint mentioned above, the problem has also been studied
under (multiple) matroid constraint(s), p-system constraint, multiple knapsack constraints.
See [4, 9, 13, 8, 15] and the references therein. In the streaming setting, other than the
knapsack constraint that we have discussed before, there are also works considering a matroid
constraint. Chakrabarti and Kale [5] gave 1/4-approximation; Chekuri et al. [7] gave the
same ratio. Very recently, for the special case of partition matroid, Chan et al. [6] improved
the ratio to 0.3178.

Notation

For a subset S ⊆ E and an element e ∈ E, we use the shorthand S + e and S − e to stand
for S ∪ {e} and S \ {e}, respectively. For a function f : 2E → R, we also use the shorthand
f(e) to stand for f({e}). The marginal return of adding e ∈ E with respect to S ⊆ E is
defined as f(e | S) = f(S + e)− f(S). We frequently use the following, which is immediate
from the diminishing marginal return property:

I Proposition 2. Let f : 2E → R+ be a monotone submodular function. For two subsets
S ⊆ T ⊆ E, it holds that f(T) ≤ f(S) +

∑
e∈T\S f(e | S).

2 Single-Pass (1/3 − ε)-Approximation Algorithm

In this section, we present a simple (1/3− ε)-approximation algorithm that generalizes the
algorithm for a cardinality constraint in [2]. This algorithm will be incorporated into several
other algorithms introduced later.

APPROX/RANDOM’17

11:4 Streaming Monotone Submodular Maximization under a Knapsack Constraint

Algorithm 1
1: procedure MarginalRatioThresholding(α, v) . α ∈ (0, 1], v ∈ R+
2: S := ∅.
3: while item e is arriving do
4: if f(e|S)

c(e) ≥
αv−f(S)
K−c(S) and c(S + e) ≤ K then S := S + e.

5: return S.

2.1 Thresholding Algorithm with Approximate Optimal Value
In this subsection, we present an algorithm MarginalRatioThresholding, which achieves (almost)
1/3-approximation given a (good) approximation v to f(OPT) for an optimal solution OPT.
This assumption is removed in Section 2.2.
Given a parameter α ∈ (0, 1] and v ∈ R+, MarginalRatioThresholding attempts to add a new
item e ∈ E to the current set S ⊆ E if its addition does not violate the knapsack constraint
and e passes the marginal-ratio threshold condition, i.e.,

f(e | S)
c(e) ≥ αv − f(S)

K − c(S) . (2)

The detailed description of MarginalRatioThresholding is given in Algorithm 1.
Throughout this subsection, we fix S̃ = MarginalRatioThresholding(α, v) as the output of

the algorithm. Then, we have the following lemma.

I Lemma 3. The following hold:
(1) During the execution of the algorithm, the current set S ⊆ E always satisfies f(S) ≥

αvc(S)/K. Moreover, if an item e ∈ E passes the condition (2) with the current set S,
then f(S + e) ≥ αvc(S + e)/K.

(2) If an item e ∈ E fails the condition (2), i.e., f(e|S)
c(e) < αv−f(S)

K−c(S) , then we have f(e | S̃) <
αvc(e)/K.

An item e ∈ OPT is not added to S̃ if either e does not pass the condition (2), or its
addition would cause the size of S to exceed the capacity K. We name the latter condition
as follows:

I Definition 4. An item e ∈ OPT is called bad if e passes the condition (2) but the total
size exceeds K when added, i.e., f(e | S) ≥ αv−f(S)

K−c(S) , c(S + e) > K and c(S) ≤ K, where S
is the set we have just before e arrives.

The following lemma says that, if there is no bad item, then we obtain a good approximation.

I Lemma 5. If v ≤ f(OPT) and there have been no bad item, then f(S̃) ≥ (1− α)v holds.

Proof. By the submodularity and the monotonicity, we have v ≤ f(OPT) ≤ f(OPT ∪ S̃) ≤
f(S̃) +

∑
e∈OPT\S̃ f(e | S̃). Since we have no bad item, f(e | S̃) ≤ αvc(e)/K for any

e ∈ OPT \ S̃ by Lemma 3 (2). Hence, we have v ≤ f(S̃) +αv, implying f(S̃) ≥ (1−α)v. J

Consider an algorithm Singleton, which takes the best singleton as shown in Algorithm 2.
If some item e ∈ OPT is bad, then, together with S̃′ = Singleton(), we can achieve (almost)
1/3-approximation.

I Theorem 6. We have max{f(S̃), f(S̃′)} ≥ min{α/2, 1 − α}v. The right-hand side is
maximized to v/3 when α = 2/3.

C.-C. Huang, N. Kakimura, and Y. Yoshida 11:5

Algorithm 2
1: procedure Singleton()
2: S := ∅.
3: while item e is arriving do
4: if f(e) > f(S) then S := {e}.
5: return S.

Algorithm 3
1: procedure DynamicMRT(ε, α) . ε, α ∈ (0, 1]
2: V := {(1 + ε)i | i ∈ Z+}.
3: For each v ∈ V, set Sv := ∅.
4: while item e is arriving do
5: m := max{m, f(e)}.
6: I := {v ∈ V | m ≤ v ≤ Km/α}.
7: Delete Sv for each v 6∈ I.
8: for each v ∈ I do
9: if f(e|Sv)

c(e) ≥ αv−f(Sv)
K−c(Sv) and c(Sv + e) ≤ K then Sv := Sv + e.

10: return Sv for v ∈ I that maximizes f(Sv).

Proof. If there exists no bad item, we have f(S̃) ≥ (1−α)v by Lemma 5. Suppose that we have
a bad item e ∈ E. Let Se ⊆ E be the set just before e arrives in MarginalRatioThresholding.
Then, we have f(Se + e) ≥ αvc(Se + e)/K by Lemma 3 (1). Since c(Se + e) > K, this means
f(Se + e) ≥ αv. Since f(Se + e) ≤ f(Se) + f(e) by submodularity, one of f(Se) and f(e) is
at least αv/2. Thus f(S̃) ≥ f(Se) ≥ αv/2 or f(e) ≥ αv/2. J

Therefore, if we have v ∈ R+ with v ≤ f(OPT) ≤ (1 + ε)v, the algorithm that runs
MarginalRatioThresholding(2/3, v) and Singleton() in parallel and chooses the better output
has the approximation ratio of 1

3(1+ε) ≥ 1/3− ε. The space complexity of the algorithm is
clearly O(K).

2.2 Dynamic Updates
MarginalRatioThresholding requires a good approximation to f(OPT). This requirement
can be removed with dynamic updates in a similar way to [2]. We first observe that
maxe∈S f(e) ≤ f(OPT) ≤ K maxe∈S f(e). So if we are given m = maxe∈S f(e) in advance, a
value v ∈ R+ with v ≤ f(OPT) ≤ (1 + ε)v for ε ∈ (0, 1] exists in the guess set I = {(1 + ε)i |
m ≤ (1 + ε)i ≤ Km, i ∈ Z+}. Then, we can run MarginalRatioThresholding for each v ∈ I
in parallel and choose the best output. As the size of I is O(log(K)/ε), the total space
complexity is O(K log(K)/ε).

To get rid of the assumption that we are given m in advance, we consider an algorithm,
called DynamicMRT, which dynamically updates m to determine the range of guessed optimal
values. More specifically, it keeps the (tentative) maximum value max f(e), where the
maximum is taken over the items e arrived so far, and keeps the approximations v in the
interval between m and Km/α. The details are provided in Algorithm 3. We have the
following guarantee.

I Theorem 7. For ε ∈ (0, 1], the algorithm that runs DynamicMRT(ε, 2/3) and Singleton()
in parallel and outputs the better output is a (1/3−ε)-approximation streaming algorithm with
a single pass for the problem (1). The space complexity of the algorithm is O(K log(K)/ε).

APPROX/RANDOM’17

11:6 Streaming Monotone Submodular Maximization under a Knapsack Constraint

Algorithm 4
1: procedure BranchingMRT(ε, α, v, c1, b) . ε, α ∈ (0, 1], v ∈ R+, and c1, b ∈ [0, 1/2]
2: S := ∅.
3: λ := 1

2α(1− b)v.
4: while item e is arriving do
5: Delete e with c(e) > min{(1 + ε)c1, 1/2}K.
6: if f(e|S)

c(e) ≥
αv−f(S)
K−c(S) and c(S + e) ≤ K then S := S + e.

7: if f(S) ≥ λ then break // leave the While loop.
8: Let ê be the latest added item in S.
9: if c(S) ≥ (1− b)K then S′0 := {ê} else S′0 := S.

10: S′ := S′0.
11: while item e is arriving do
12: Delete e with c(e) > min{(1 + ε)c1, 1/2}K.
13: if f(e|S)

c(e) ≥
αv−f(S)
K−c(S) and c(S + e) ≤ K then S := S + e.

14: if f(e|S)
c(e) ≥

αv−f(S)
K−c(S) and c(S + e) > K then

15: if f(S′) < f(S′0 + e) then S′ := S′0 + e.
16: return S or S′ whichever has the larger function value.

3 Improved Single-Pass Algorithm for Small-Size Items

Let OPT = {o1, o2, . . . , o`} be an optimal solution with c(o1) ≥ c(o2) ≥ · · · ≥ c(o`). The
main goal of this section is achieving (2/5− ε)-approximation, assuming that c(o1) ≤ K/2.
The case with c(o1) > K/2 will be discussed in Section 4.

3.1 Branching Framework with Approximate Optimal Value
We here provide a framework of a branching algorithm BranchingMRT as Algorithm 4. This
will be used with different parameters in Section 3.2.

Let v and c1 be (good) approximations to f(OPT) and c(o1)/K, respectively, and let b ≤
1/2 be a parameter. The value c1 is supposed to satisfy c1 ≤ c(o1)/K ≤ (1 + ε)c1, and hence
we ignore items e ∈ E with c(e) > min{(1 + ε)c1, 1/2}K. The basic idea of BranchingMRT
is to take only items with large marginal ratios, similarly to MarginalRatioThresholding. The
difference is that, once f(S) exceeds a threshold λ, where λ = 1

2α (1− b) v, we store either
the current set S or the latest added item as S′. This guarantees that f(S′) ≥ λ and
c(S′) ≤ (1− b)K, which means that S′ has a large function value and sufficient room to add
more elements. We call the process of constructing S′ branching. We continue to add items
with large marginal ratios to the current set S, and if we cannot add an item to S because it
exceeds the capacity, we try to add the item to S′. Note that the set S′, after branching,
can have at most one extra item; but this extra item can be replaced if a better candidate
comes along (See line 14–15).

Remark that the sequence of sets S in BranchingMRT is identical to that in MarginalRa-
tioThresholding. Hence, we do not need to run MarginalRatioThresholding in parallel to this
algorithm. We say that an item e ∈ OPT is bad if it is bad in the sense of MarginalRa-
tioThresholding, i.e., it satisfies the condition in Definition 4. We have the following two
lemmas.

I Lemma 8. For a bad item e with c(e) ≤ bK, let Se be the set just before e arrives in
Algorithm 4. Then f(Se) ≥ λ holds. Thus branching has happened before e arrives.

C.-C. Huang, N. Kakimura, and Y. Yoshida 11:7

Proof. Sine e is a bad item, we have c(Se) > K−c(e) ≥ (1−b)K. Hence f(Se) ≥ α(1−b)v ≥ λ
by Lemma 3 (1). Since the value of f is non-decreasing during the process, it means that
branching has happened before e arrives. J

I Lemma 9. It holds that f(S′0) ≥ λ and c(S′0) ≤ (1− b)K.

Proof. We denote by S the set obtained right after leaving the while loop from Line 4.
If c(S) < (1 − b)K, then f(S′0) = f(S) ≥ λ. Otherwise, since c(S) ≥ (1 − b)K, we have
f(S) ≥ α(1 − b)v ≥ 2λ by Lemma 3 (1). Hence f(S′0) = f(ê) ≥ λ since f(S − ê) < λ and
the submodularity. The second part holds since c(ê) ≤ K/2 ≤ (1− b)K by b ≤ 1/2. J

Let S̃ and S̃′ be the final two sets computed by BranchingMRT. Note that we can regard
S̃ as the output of MarginalRatioThresholding and S̃′ as the final set obtained by adding at
most one item to S′0.

Observe that the number of bad items depends on the parameter α. As we will show in
Section 3.2, by choosing a suitable α, if we have more than two bad items, then the size of S̃
is large enough, implying that f(S̃) is already good for approximation (due to Lemma 3 (1)).
Therefore, in the following, we just concentrate on the case when we have at most two bad
items.

I Lemma 10. Let α be a number in (0, 1], and suppose that we have only one bad item ob.
If v ≤ f(OPT) and b ∈ [c(ob)/K, (1 + ε)c(ob)/K], then it holds that

max{f(S̃), f(S̃′)} ≥ 1
2

(
1− αK − c(ob)

2K

)
v−εαc(ob)

4K v =
(

1
2

(
1− αK − c(ob)

2K

)
−O(ε)

)
v.

Proof. Suppose not, that is, suppose that both of f(S̃) and f(S̃′) are smaller than βv, where
β = 1

2 (1− αK−c(ob)
2K)− αc(ob)

4K ε. We denote Os = OPT \ {ob}.
Since the bad item ob satisfies c(ob) ≤ bK, it arrives after branching by Lemma 8. By

Lemma 9, we have c(S′0 + ob) ≤ K. Since f(S̃′) is less than βv, we see that f(S′0 + ob) < βv.
Since f(S′0) ≥ λ,

f(OPT) ≤ f(ob | S′0) + f(S′0 ∪Os) < (βv − λ) + f(S′0 ∪Os). (3)

Since S′0 ⊆ S̃, submodularity implies that

f(S′0 ∪Os) ≤ f(S̃ ∪Os) ≤ f(S̃) +
∑

e∈Os\S̃

f(e | S̃). (4)

Since f(S̃) < βv and no item in Os is bad, (3) and (4) imply by Lemma 3 (2) that

v ≤ f(OPT) < (βv − λ) + f(S′0 ∪Os) < (βv − λ) + βv + αc(Os)
K

v

≤ 2βv − 1
2α(1− b)v + α

(
1− c(ob)

K

)
v.

Therefore, we have

β >
1
2

(
1 + α

2c(ob)/K − b− 1
2

)
.

Since b ≤ (1 + ε)c(ob)/K, we obtain

β >
1
2

(
1− (K − c(ob))α

2K

)
− αc(ob)

4K ε,

which is a contradiction. This completes the proof. J

APPROX/RANDOM’17

11:8 Streaming Monotone Submodular Maximization under a Knapsack Constraint

For the case when we have exactly two bad items, we obtain the following guarantee.

I Lemma 11. Let α be a number in (0, 1], and suppose that we have exactly two bad items
ob and om with c(ob) ≥ c(om). If v ≤ f(OPT) and b ∈ [c(ob)/K, (1 + ε)c(ob)/K], then it
holds that

max{f(S̃), f(S̃′)} ≥ 1
3

(
1 + α

c(om)
K

)
v − αc(ob)

3K εv =
(

1
3

(
1 + α

c(om)
K

)
−O(ε)

)
v.

3.2 Algorithms with Guessing Large Items
We now use BranchingMRT to obtain a better approximation ratio. In the new algorithm,
we guess the sizes of a few large items in an optimal solution OPT, and then use them to
determine the parameter α.

We first remark that, when |OPT| ≤ 2, we can easily obtain a 1/2-approximate solution
with a single pass. In fact, since f(OPT) ≤

∑`
i=1 f(oi) where ` = |OPT|, at least one of oi’s

satisfies f(oi) ≥ f(OPT)/`, and hence Singleton returns a 1/2-approximate solution when
` ≤ 2. Thus, in what follows, we may assume that |OPT| ≥ 3.

We start with the case that we have guessed the largest two sizes c(o1) and c(o2) in OPT.

I Lemma 12. Let ε ∈ (0, 1], and suppose that v ≤ f(OPT) and ci ≤ c(oi)/K ≤ (1 + ε)ci for
i ∈ {1, 2}. Then, S̃′ = BranchingMRT(ε, α, v, c1, b) with α = 1/(2− c2) or 2/(5− 4c2 − c1)
and b = min{(1 + ε)c1, 1/2} satisfies

f(S̃′) ≥
(

min
{

1− c2

2− c2
,

2(1− c2)
5− 4c2 − c1

}
−O(ε)

)
v. (5)

Proof. Let S̃ = MarginalRatioThresholding(α, v). Note that f(S̃′) ≥ f(S̃). If S̃ has size at
least (1− (1 + ε)c2)K, then Lemma 3 (1) implies that

f(S̃) ≥ α(1− (1 + ε)c2)v = α(1− c2)v −O(ε)v.

Otherwise, c(S̃) < (1− (1 + ε)c2)K. In this case, we see that only the item o1 can have size
more than (1 + ε)c2K, and hence only o1 can be a bad item. If o1 is not a bad item, then we
have no bad item, and hence Lemma 5 implies that

f(S̃) ≥ (1− α)v.

If o1 is bad, then Lemma 10 implies that

f(S̃′) ≥ 1
2

(
1− α1− c1

2

)
v −O(ε)v.

Thus the approximation ratio is the minimum of the RHSes of the above three inequalities.
This is maximized when α = 1/(2− c2) or α = 2/(5− 4c2 − c1), and the maximum value is
equal to the RHS of (5). J

Note that the approximation ratio achieved in Lemma 12 becomes 1/3−O(ε) when, for
example, c1 = c2 = 1/2. Hence, the above lemma does not show any improvement over
Theorem 6 in the worst case. Thus, we next consider the case that we have guessed the largest
three sizes c(o1), c(o2), and c(o3) in OPT. Using Lemma 11 in addition to Lemmas 3 (1), 5
and 10, we have the following guarantee.

C.-C. Huang, N. Kakimura, and Y. Yoshida 11:9

I Lemma 13. Let ε ∈ (0, 1], and suppose that v ≤ f(OPT) and ci ≤ c(oi)/K ≤ (1 + ε)ci
for i ∈ {1, 2, 3}. Then the better output S̃′ of BranchingMRT(ε, α, v, c1, b1) and Branch-
ingMRT(ε, α, v, c1, b2) with α = 1/(2 − c3) or 2/(c2 + 3), b1 = min{(1 + ε)c1, 1/2}, and
b2 = min{(1 + ε)c2, 1/2} satisfies

f(S̃′) ≥
(

min
{

1− c3

2− c3
,
c2 + 1
c2 + 3

}
−O(ε)

)
v.

Proof. Let S̃ = MarginalRatioThresholding(α, v). If S̃ has size at least (1− (1 + ε)c3)K, then
we have by Lemma 3 (1)

f(S̃) ≥ α(1− (1 + ε)c3)v = α(1− c3)v −O(ε)v.

Otherwise, c(S̃) < (1− (1 + ε)c3)K. In this case, we see that only o1 and o2 can have size
more than (1 + ε)c3, and hence only they can be bad items. If we have no bad item, it holds
by Lemma 5 that

f(S̃) ≥ (1− α)v.

Suppose we have one bad item. If it is o1 then Lemma 10 with b1 implies

f(S̃′) ≥
(

1
2

(
1− α1− c1

2

)
−O(ε)

)
v,

and, if it is o2, we obtain by Lemma 10 with b2

f(S̃′) ≥
(

1
2

(
1− α1− c2

2

)
−O(ε)

)
v.

Moreover, if we have two bad items o1 and o2, then Lemma 11 implies

f(S̃′) ≥
(

1
3 (1 + αc2)−O(ε)

)
v.

Therefore, the approximation ratio is the minimum of the RHSes in the above five inequalities,
which is maximized to

min
{

1− c3

2− c3
,
c2 + 1
c2 + 3

}
−O(ε),

when α = 1/(2− c3) or α = 2/(c2 + 3). J

We now see that we get an approximation ratio of 2/5−O(ε) by combining the above
two lemmas.

I Theorem 14. Let ε ∈ (0, 1] and suppose that v ≤ f(OPT) ≤ (1 + ε)v and ci ≤ c(oi)/K ≤
(1 + ε)ci for i ∈ {1, 2, 3}. If c(o1) ≤ K/2, then we can obtain a (2/5 − O(ε))-approximate
solution with a single pass.

Proof. We run the two algorithms with the optimal α shown in Lemmas 12 and 13 in parallel.
Let S̃ be the output with the better function value. Then, we have f(S̃) ≥ βv, where

β = max
{

min
{

1− c2

2− c2
,

2(1− c2)
5− 4c2 − c1

}
,min

{
1− c3

2− c3
,
c2 + 1
c2 + 3

}}
−O(ε).

We can confirm that the first term is at least 2/5, and thus S̃ is a (2/5−O(ε))-approximate
solution. J

APPROX/RANDOM’17

11:10 Streaming Monotone Submodular Maximization under a Knapsack Constraint

Algorithm 5
1: procedure DynamicBranchingMRT(ε)
2: V := {(1 + ε)i | i ∈ Z+}.
3: For each c1, c2, c3 ∈ V with c3 ≤ c2 ≤ c1 ≤ 1/2 and each b ∈ {(1+ε)c1, (1+ε)c2, 1/2},

do the following with α defined based on Lemmas 12 and 13.
4: For each v ∈ V, set Sv := ∅.
5: while item e is arriving do
6: Delete e with c(e) > (1 + ε)c1K.
7: m := max{m, f(e)}.
8: I := {v ∈ V | m ≤ v ≤ Km/α}.
9: Delete Sv (along with Ŝv and S′v if exists) such that v 6∈ I.

10: for v ∈ V do
11: if f(Sv) < λ then
12: if f(e|Sv)

c(e) ≥ αv−f(Sv)
K−c(Sv) and c(Sv + e) ≤ K then Sv := Sv + e.

13: if f(Sv) ≥ λ then
14: if c(S) ≥ (1− b)K then S′ := {e} else S′ := S.
15: Ŝv := S′.
16: else
17: if f(e|Sv)

c(e) ≥ αv−f(Sv)
K−c(Sv) and c(Sv + e) ≤ K then Sv := Sv + e.

18: if f(e|Sv)
c(e) ≥ αv−f(Sv)

K−c(Sv) and c(Sv + e) > K then
19: if f(S′v) < f(Ŝv + e) then S′v := Ŝv + e.
20: S := Sv for v ∈ I that maximizes f(Sv).
21: S′ := S′v for v ∈ I that maximizes f(S′v).
22: return S or S′ whichever has the larger function value.

To eliminate the assumption that we are given v, we can design a dynamic-update
version of BranchingMRT by keeping the interval that contains the optimal value, similarly
to Theorem 7. DynamicBranchingMRT, given in Algorithm 5, is a dynamic-update version
of BranchingMRT. The proof for updating the interval I dynamically is the same as the
proof of Theorem 7. The number of streams for guessing v is O(log(K)/ε). We also guess ci
for i ∈ {1, 2, 3} from {(1 + ε)j | j ∈ Z+}. As 1 ≤ c(oi) ≤ K/2 for i ∈ {1, 2, 3}, the number
of guessing for ci is O(log(K)/ε). Hence, including v, there are O((log(K)/ε)4) streams in
parallel. To summarize, we obtain the following:

I Theorem 15. Suppose that c(o1) ≤ K/2. The algorithm that runs DynamicBranchingMRT
and Singleton in parallel and takes the better output is a (2/5− ε)-approximation streaming
algorithm with a single pass for the problem (1). The space complexity of the algorithm is
O(K(log(K)/ε)4).

4 Single-Pass (4/11 − ε)-Approximation Algorithm

In this section, we consider the case that c(o1) is larger than K/2. For the purpose, we
consider the problem of finding a set S of items that maximizes f(S) subject to the constraint
that the total size is at most pK, for a given number p ≥ 2. We say that a set S of items is
a (p, α)-approximate solution if c(S) ≤ pK and f(S) ≥ αf(OPT), where OPT is an optimal
solution of the original instance.

C.-C. Huang, N. Kakimura, and Y. Yoshida 11:11

I Theorem 16. For a number p ≥ 2, there is a
(
p, 2p

2p+3 − ε
)
-approximation streaming

algorithm with a single pass for the problem (1). In particular, when p = 2, it admits
(2, 4/7− ε)-approximation. The space complexity of the algorithm is O(K(log(K)/ε)3).

The basic framework of the algorithm is the same as in Section 3; we design a thresholding
algorithm and a branching algorithm, where the parameters are different and the analysis is
simpler.

Using Theorem 16, we can design a (4/11− ε)-approximation streaming algorithm for an
instance having a large item.

I Theorem 17. For the problem (1), there exists a (4/11 − ε)-approximation streaming
algorithm with a single pass. The space complexity of the algorithm is O(K(log(K)/ε)4).

Proof. Let o1 be an item in OPT with the maximum size. If c(o1) ≤ K/2, then Theorem 15
gives a (2/5−O(ε))-approximate solution, and thus we may assume that c(o1) > K/2. Note
that there exists only one item whose size is more thanK/2. Let β be the target approximation
ratio which will be determined later. We may assume that f(o1) < βf(OPT), as otherwise
Singleton (Algorithm 2) gives β-approximation. Then, we see f(OPT− o1) > (1− β)f(OPT)
and c(OPT − o1) < K/2. Consider maximizing f(S) subject to c(S) ≤ K/2 in the set
{e ∈ E | c(e) ≤ K/2}. The optimal value is at least f(OPT − o1) > (1 − β)f(OPT).
We now apply Theorem 16 with p = 2 to this problem. Then, the output S̃ has size
at most K, and moreover, we have f(S̃) ≥

(4
7 −O(ε)

)
(1 − β)f(OPT). Thus, we obtain

min{β, (4
7 −O(ε))(1− β)}-approximation. This approximation ratio is maximized to 4/11

when β = 4/11. J

5 Multiple-Pass Streaming Algorithm

In this section, we provide a multiple-pass streaming algorithm with approximation ratio
2/5− ε.

We first consider a generalization of the original problem. Let ER ⊆ E be a subset of the
ground set E. For ease of presentation, we will call ER the red items. Consider the problem
defined below:

maximize f(S) subject to c(S) ≤ K, |S ∩ ER| ≤ 1. (6)

In the following, we show that, given ε ∈ (0, 1], an approximation v to f(OPT) with
v ≤ f(OPT) ≤ (1 + ε)v, and an approximation θ to f(or) for the unique item or in
OPT ∩ ER, we can choose O(1) of the red items so that one of them e ∈ ER satisfies that
f(OPT− or + e) ≥ (Γ(θ)−O(ε))v, where Γ(·) is a piecewise linear function lower-bounded
by 2/3. For technical reasons, we will choose θ to be one of the geometric series (1 + ε)i/2
for i ∈ Z.

I Theorem 18. Suppose that we are given ε ∈ (0, 1], v ∈ R+ with v ≤ f(OPT) ≤ (1 + ε)v,
and θ ∈ R+ with the following property:
1. if θ ≤ 1/2, θv/(1 + ε) ≤ f(or) ≤ θv,
2. if θ ≥ 1/2, θv ≤ f(or) ≤ (1 + ε)θv ≤ v.
Then, there is a single-pass streaming algorithm that chooses a set S of red items in ER
with constant size such that (i) for any item e ∈ S, θv/(1 + ε) ≤ f(or) ≤ θv when θ ≤ 1/2
and θv ≤ f(or) ≤ (1 + ε)θv ≤ v when θ ≥ 1/2, and (ii) some item e ∈ S satisfies that
f(OPT− or + e) ≥ (Γ(θ)−O(ε))v, where Γ(θ) is defined as follows: when θ ∈ (0, 1/2),

Γ(θ) = max
{ t(t+ 3)

(t+ 1)(t+ 2) −
t− 1
t+ 1θ | t ∈ Z+, t >

1
θ
− 2
}
, (7)

when θ ∈ [1/2, 2/3), Γ(θ) = 2/3, and when θ ∈ [2/3, 1], Γ(θ) = θ.

APPROX/RANDOM’17

11:12 Streaming Monotone Submodular Maximization under a Knapsack Constraint

Algorithm 6
1: procedure MultiPassKnapsack(ε, v, θ, c1) . ε ∈ (0, 1], v ∈ R+, and θ, c1 ∈ [0, 1].
2: Use the algorithm in Theorem 18 to choose a set S of items e with c1/(1 + ε) ≤
c(e)/K ≤ c1 so that one of them e ∈ S satisfies f(OPT− o1 + e) ≥ v(Γ(θ)−O(ε)).

3: for each item e ∈ S do
4: Define a submodular function ge(·) = f(· | e).
5: Apply the marginal-ratio thresholding algorithm (Lemma 21) with regard to

function ge, where h = 1−c1
1−(c1/(1+ε)) and K ′ = (1− (c1/(1 + ε))K.

6: Let the resultant set be Se.
7: return the solution Se ∪ {e} with maxe∈S f(Se + e).

We next show that when c(o1) ≥ K/2, we can use multiple passes to get a (2/5 − ε)-
approximation for the problem (1). Let OPT = {o1, o2, . . . , o`} be an optimal solution with
c(o1) ≥ c(o2) ≥ · · · ≥ c(o`). Suppose that c1 ∈ R+ satisfies 1/2 ≤ c1/(1 + ε) ≤ c(o1)/K ≤ c1.

We observe the following claims.

I Claim 19. When c(o1) ≥ K/2, we may assume that 3
10f(OPT) < f(o1) < 2

5f(OPT).

I Claim 20. We may assume that c(o1) ≤ (1 + ε) 2
3K.

We use the first pass to estimate f(OPT) as follows. For an error parameter ε ∈ (0, 1],
perform the single-pass algorithm in Theorem 7 to get a (1/3−ε)-approximate solution S ⊆ E,
which can be used to upper bound the value of f(OPT), that is, f(S) ≤ f(OPT) ≤ (3+ε)f(S).
We then find the geometric series to guess its exact value. Thus, we may assume that we are
given the value v with v ≤ f(OPT) ≤ (1 + ε)v.

Below we show how to obtain a solution of value at least (2/5−O(ε))v, using two more
passes. Before we start, we introduce a slightly modified versions of the algorithms presented
in Section 2; it will be used as a subroutine.

I Lemma 21. Consider the problem (1) with the knapsack capacity K ′. Let h ∈ R+, and
suppose that Algorithms 1 and 2 are modified as follows:

(At Line 4 in Algorithm 1) A new item e is added into the current set S only if f(e|S)
c(e) ≥

αv−f(S)
hK′−c(S) and c(S + e) ≤ hK ′.
(At Line 4 in Algorithm 2) A new item e is taken into account only if c(e) ≤ hK ′.

Then, the best returned set S̃ of the two algorithms with α = 2h
h+2 satisfies that c(S̃) ≤ hK ′

and f(S̃) ≥ h
h+2v. Moreover, we can obtain a

(
h
h+2 −O(ε)

)
-approximate solution with the

dynamic update technique.

Let all items e ∈ E whose sizes c(e) satisfy c1/(1 + ε) ≤ c(e)/K ≤ c1 be the red items.
By Theorem 18, we can select a set S of the red items so that one of them guarantees
f(OPT− o1 + e) ≥ (Γ(θ)−O(ε))v, where θ satisfies the condition in Theorem 18. Note that
any e ∈ S satisfies f(e) ≥ θv/(1 + ε). Also, by Claim 19, we see 3

10v < θ < 2
5 (1 + ε)v.

In the next pass, for each e ∈ S, define a new monotone submodular function ge(·) =
f(· | e) and apply the modified thresholding algorithm (Lemma 21) with h = 1−c1

1−(c1/(1+ε))
and K ′ = (1− (c1/(1 + ε))K. Let Se be the output of the modified thresholding algorithm.
Then our algorithm returns the solution Se ∪ {e} with maxe∈S f(Se + e). The detail is given
in Algorithm 6.

The returned solution has size at mostK, since c(Se) ≤ (1−c1)K by Lemma 21. Moreover,
it follows that the returned solution S̃ satisfies that f(S̃) ≥ (2/5−O(ε))v. The next theorem
summarizes our results in this section.

C.-C. Huang, N. Kakimura, and Y. Yoshida 11:13

I Theorem 22. For ε ∈ (0, 1], suppose that v ≤ f(OPT) ≤ (1 + ε)v, 1/2 ≤ c1/(1 + ε) ≤
c(o1)/K ≤ c1, and θ satisfies the condition in Theorem 18. After running MultiPassKnap-
sack(ε, v, θ, c1), there exists an item e ∈ S chosen in Line 2, which, along with Se collected
in Line 6, gives f(Se + e) ≥ (2/5−O(ε))v.

I Theorem 23. Suppose that c(o1) > K/2. There exists an algorithm that uses Multi-
PassKnapsack as a subroutine so that it returns (2/5− ε)-approximation with 3 passes for
the problem (1). The space complexity of the algorithm is O(K(log(K)/ε)2).

References
1 Noga Alon, Iftah Gamzu, and Moshe Tennenholtz. Optimizing budget allocation among

channels and influencers. In Proceedings of the 21st International Conference on World
Wide Web (WWW), pages 381–388, 2012.

2 Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman, Amin Karbasi, and Andreas Krause.
Streaming submodular maximization: massive data summarization on the fly. In Proceed-
ings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), pages 671–680, 2014.

3 Ashwinkumar Badanidiyuru and Jan Vondrák. Fast algorithms for maximizing submod-
ular functions. In Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1497–1514, 2013.

4 Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a mono-
tone submodular function subject to a matroid constraint. SIAM Journal on Computing,
40(6):1740–1766, 2011.

5 Amit Chakrabarti and Sagar Kale. Submodular maximization meets streaming: matchings,
matroids, and more. Mathematical Programming, 154(1-2):225–247, 2015. doi:10.1007/
s10107-015-0900-7.

6 T.-H. Hubert Chan, Zhiyi Huang, Shaofeng H.-C. Jiang, Ning Kang, and Zhihao Gavin
Tang. Online submodular maximization with free disposal: Randomization beats for parti-
tion matroids online. In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1204–1223, 2017.

7 Chandra Chekuri, Shalmoli Gupta, and Kent Quanrud. Streaming algorithms for sub-
modular function maximization. In Proceedings of the 42nd International Colloquium on
Automata, Languages, and Programming (ICALP), volume 9134, pages 318–330, 2015.

8 Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Submodular function maximization
via the multilinear relaxation and contention resolution schemes. SIAM Journal on Com-
puting, 43(6):1831–1879, 2014. doi:10.1137/110839655.

9 Yuval Filmus and Justin Ward. A tight combinatorial algorithm for submodular max-
imization subject to a matroid constraint. SIAM Journal on Computing, 43(2):514–542,
2014.

10 M.L. Fisher, G. L. Nemhauser, and L.A. Wolsey. An analysis of approximations for max-
imizing submodular set functions ii. Mathematical Programming Study, 8:73–87, 1978.

11 David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through
a social network. In Proceedings of the 9th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD), pages 137–146, 2003.

12 Andreas Krause, Ajit Paul Singh, and Carlos Guestrin. Near-optimal sensor placements in
gaussian processes: Theory, efficient algorithms and empirical studies. Journal of Machine
Learning Research, 9:235–284, 2008.

13 Ariel Kulik, Hadas Shachnai, and Tami Tamir. Maximizing submodular set functions
subject to multiple linear constraints. In Proceedings of the 20th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 545–554, 2013.

APPROX/RANDOM’17

http://dx.doi.org/10.1007/s10107-015-0900-7
http://dx.doi.org/10.1007/s10107-015-0900-7
http://dx.doi.org/10.1137/110839655

11:14 Streaming Monotone Submodular Maximization under a Knapsack Constraint

14 Jon Lee. Maximum Entropy Sampling, volume 3 of Encyclopedia of Environmetrics, pages
1229–1234. John Wiley & Sons, Ltd., 2006.

15 Jon Lee, Maxim Sviridenko, and Jan Vondrák. Submodular maximization over mul-
tiple matroids via generalized exchange properties. Mathematics of Operations Research,
35(4):795–806, 2010.

16 Hui Lin and Jeff Bilmes. Multi-document summarization via budgeted maximization of
submodular functions. In Proceedings of the 2010 Annual Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies
(NAACL-HLT), pages 912–920, 2010.

17 Hui Lin and Jeff Bilmes. A class of submodular functions for document summarization. In
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies (ACL-HLT), pages 510–520, 2011.

18 Tasuku Soma, Naonori Kakimura, Kazuhiro Inaba, and Ken-ichi Kawarabayashi. Optimal
budget allocation: Theoretical guarantee and efficient algorithm. In Proceedings of the 31st
International Conference on Machine Learning (ICML), pages 351–359, 2014.

19 Maxim Sviridenko. A note on maximizing a submodular set function subject to a knapsack
constraint. Operations Research Letters, 32(1):41–43, 2004.

20 Laurence Wolsey. Maximising real-valued submodular functions: primal and dual heuristics
for location problems. Mathematics of Operations Research, 1982.

21 Qilian Yu, Easton Li Xu, and Shuguang Cui. Streaming algorithms for news and scientific
literature recommendation: Submodular maximization with a d-knapsack constraint. IEEE
Global Conference on Signal and Information Processing, 2016.

Fractional Set Cover in the Streaming Model∗

Piotr Indyk1, Sepideh Mahabadi2, Ronitt Rubinfeld3,
Jonathan Ullman4, Ali Vakilian5, and Anak Yodpinyanee6

1 CSAIL, MIT, Cambridge, MA, USA
indyk@mit.edu

2 CSAIL, MIT, Cambridge, MA, USA
mahabadi@mit.edu

3 CSAIL, MIT and TAU, Cambridge, MA, USA
ronitt@csail.mit.edu

4 CCIS, Northeastern University, Boston, MA, USA
jullman@ccs.neu.edu

5 CSAIL, MIT, Cambridge, MA, USA
vakilian@mit.edu

6 CSAIL, MIT, Cambridge, MA, USA
anak@mit.edu

Abstract
We study the Fractional Set Cover problem in the streaming model. That is, we consider the
relaxation of the set cover problem over a universe of n elements and a collection of m sets,
where each set can be picked fractionally, with a value in [0, 1]. We present a randomized (1 + ε)-
approximation algorithm that makes p passes over the data, and uses Õ(mnO(1/pε) +n) memory
space. The algorithm works in both the set arrival and the edge arrival models. To the best of
our knowledge, this is the first streaming result for the fractional set cover problem. We obtain
our results by employing the multiplicative weights update framework in the streaming settings.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Streaming Algorithms, Fractional Set Cover, LP relaxation, Multiplica-
tive Weight Update

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.12

1 Introduction

Set Cover is one of the classical NP-hard problems in combinatorial optimization. In this
problem the input consists of a set (universe) of n elements U = {e1, · · · , en} and a collection
of m sets F = {S1, · · · , Sm}. The goal is to find the minimum size set cover of U , i.e., a
collection of sets in F whose union is U . The LP relaxation of Set Cover (called SetCover-LP)
is also well-studied. It is a continuous relaxation of the problem where each set S ∈ F can
be selected “fractionally”, i.e., assigned a number xS from [0, 1], such that for each element e
its “fractional coverage”

∑
S:e∈S xS is at least 1, and the sum

∑
S xS is minimized. Both

variants are well-studied and have many applications in operations research [23, 25, 11],
information retrieval and data mining [34], learning theory [26], web host analysis [15], etc.

∗ PI, SM and AV are supported by grants from the NSF and the Simons Investigator award. RR is
supported by the Israel Science Foundation (ISF) grant 1536/14, the NSF grants CCF-1420692 and
CCF-1650733. AY is supprted by the NSF grants CCF-1420692, CCF-1650733, CCF-1065125, and the
DPST scholarship, Royal Thai Government.

© Piotr Indyk, Sepideh Mahabadi, Ronitt Rubinfeld, Jonathan Ullman, Ali Vakilian, and
Anak Yodpinyanee;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 12; pp. 12:1–12:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2 Fractional Set Cover in the Streaming Model

A natural lnn-approximation greedy algorithm of Set Cover, which in each iteration
picks the best remaining set, is widely used and known to be the best possible under
P 6= NP [29, 21, 33, 5, 31, 18]. However, the greedy algorithm is sequential in nature and
does not perform efficiently in the standard models developed for massive data analysis; in
particular, in the streaming model. In streaming Set Cover [34], the ground set U is stored
in the memory, the sets S1, · · · , Sm are stored consecutively in a read-only repository and
the algorithm can only access the sets by performing sequential scans (or passes) over the
repository. Moreover, the amount of (read-write) memory available to the algorithm is much
smaller than the input size (which can be as large as mn). The objective is to design a
space-efficient algorithm that returns a (nearly)-optimal feasible cover of U after performing
only a few passes over the data. Streaming Set Cover has witnessed a lot of developments in
recent years, and tight upper and lower bounds are known, in both low space [20, 13] and
low approximation [17, 24, 8, 12, 7] regimes.

Despite the above developments, the results for the fractional variant of the problem are
still unsatisfactory. To the best of our knowledge, it is not known whether there exists an
efficient and accurate algorithm for this problem that uses only a logarithmic (or even a poly
logarithmic) number of passes. This state of affairs is perhaps surprising, given the many
recent developments on fast LP solvers [27, 37, 28, 4, 3, 35]. To the best of our knowledge,
the only prior results on streaming Packing/Covering LPs were presented in paper [1], which
studied the LP relaxation of Maximum Matching.

1.1 Our Results
In this paper, we present the first (1+ε)-approximation algorithm for the fractional Set Cover
in the streaming model with constant number of passes. Our algorithm performs p passes
over the data stream and uses Õ(mnO(1

pε) +n) memory space to return a (1 +ε) approximate
solution of the LP relaxation of Set Cover for positive parameter ε ≤ 1/2.

We emphasize that similarly to the previous work on variants of Set Cover in streaming
setting, our result also holds for the edge arrival stream in which the pair of (Si, ej) (edges)
are stored in the read-only repository and all elements of a set are not necessarily stored
consecutively.

1.2 Related work
Set Cover Problem. The Set Cover problem was first studied in the streaming model
in [34], which presented an O(logn)-approximation algorithm in O(logn) passes and using
Õ(n) space. This approximation factor and the number of passes can be improved to O(logn)
by adapting the greedy algorithm thresholding idea presented in [16] . In the low space
regime (Õ(n) space), Emek and Rosen [20] designed a deterministic single pass algorithm that
achieves an O(

√
n)-approximation. This is provably the best guarantee that one can hope for

in a single pass even considering randomized algorithms. Later Chakrabarti and Wirth [13]
generalized this result and provided a tight trade-off bounds for Set Cover in multiple passes.
More precisely, they gave an O(pn1/(p+1))-approximate algorithm in p-passes using Õ(n)
space and proved that this is the best possible approximation ratio up to a factor of poly(p)
in p passes and Õ(n) space.

A different line of work started by Demaine et al. [17] focused on designing a “low”
approximation algorithm (between Θ(1) and Θ(logn)) in the smallest possible amount of
space. In contrast to the results in the Õ(n) space regime, [17] showed that randomness is
necessary: any constant pass deterministic algorithm requires Ω(mn) space to achieve constant

P. Indyk et al. 12:3

approximation guarantee. Further, they provided a O(4p logn)-approximation algorithm
that makes O(4p) passes and uses Õ(mn1/p + n). Later Har-Peled et al. [24] improved the
algorithm to a 2p-pass O(p logn)-approximation with memory space Õ(mn1/p + n)1. The
result was further improved by Bateni et al. where they designed a p-pass algorithm that
returns a (1 + ε) logn-approximate solution using mnΘ(1/p) memory [12].

As for the lower bounds, Assadi et al. [8] presented a lower bound of Ω(mn/α) memory
for any single pass streaming algorithm that computes a α-approxime solution. For the
problem of estimating the size of an optimal solution they prove Ω(mn/α2) memory lower
bound. For both settings, they complement the results with matching tight upper bounds.
Very recently, Assadi [7] proved a lower bound for streaming algorithms with multiple passes
which is tight up to polylog factors: any α-approximation algorithm for Set Cover requires
Ω(mn1/α) space, even if it is allowed polylog(n) passes over the stream, and even if the sets
are arriving in a random order in the stream. Further, [7] provided the matching upper bound:
a (2α+ 1)-pass algorithm that computes a (α+ ε)-approximate solution in Õ(mn

1/α

ε2 + n
ε)

memory (assuming exponential computational resource).

Max Cover Problem. The first result on streaming Max k-Cover showed how to compute
a (1/4)-approximate solution in one pass using Õ(kn) space [34]. It was improved by
Badanidiyuru et al. [9] to a (1/2− ε)-approximation algorithm that requires Õ(n/ε) space.
Moreover, their algorithm works for a more general problem of Submodular Maximization
with cardinality constraints. This result was later generalized for the problem of non-monotone
submodular maximization under constraints beyond cardinality [14]. Recently, McGregor and
Vu [30] and Bateni et al. [12] independently obtained single pass (1− 1/e− ε)-approximation
with Õ(m/ε2) space. On the lower bound side, [30] showed a lower bound of Ω̃(m) for
constant pass algorithm whose approximation is better than (1− 1/e). Moreover, [7] proved
that any streaming (1− ε)-approximation algorithm of Max k-Cover in polylog(n) passes
requires Ω̃(m/ε2) space even on random order streams and the case k = O(1). This bound is
also complemented by the Õ(mk/ε2) and Õ(m/ε3) algorithms of [12, 30]. For more detailed
survey of the results on streaming Max k-Cover refer to [12, 30, 7].

Covering/Packing LPs. The study of LPs in streaming model was first discussed in the
work of Ahn and Guha [1] where they used multiplicative weights update (MWU) based
techniques to solve the LP relaxation of Maximum (Weighted) Matching problem. They used
the fact that MWU returns a near optimal fractional solution with small size support: first
they solve the fractional matching problem, then solve the actual matching only considering
the edges in the support of the returned fractional solution.

Our algorithm is also based on the MWU method, which is one of the main key techniques
in designing fast approximation algorithms for Covering and Packing LPs [32, 36, 22, 6]. We
note that the MWU method has been previously studied in the context of streaming and
distributed algorithms, leading to efficient algorithms for a wide range of graph optimization
problems [1, 10, 2].

For a related problem, covering integer LP (covering ILP), Assadi et al. [8] designed a
one pass streaming algorithm that estimates the optimal solution of {min c>x | A>x ≥
b,x ∈ {0, 1}n} within a factor of α using Õ(mnα2 · bmax +m+ n · bmax) where bmax denotes

1 In streaming model, space complexity is of interest and one can assume exponentital computation power.
In this case the algorithms of [17, 24] save a factor of logn in the approximation ratio.

APPROX/RANDOM’17

12:4 Fractional Set Cover in the Streaming Model

the largest entry of b. In this problem, they assume that columns of A, constriants, are
given one by one in the stream.

In a different regime, [19] studied approximating the feasibility LP in streaming model
with additive approximation. Their algorithm performs two passes and is most efficient when
the input is dense.

1.3 Our Techniques
Preprocessing. Let k denote the value of the optimal solution. The algorithm starts by
picking a uniform fractional vector (each entry of value O(km)) which covers all frequently
occurring elements (those appearing in Ω(mk) sets), and updates the uncovered elements in
one pass. This step considerably reduces the memory usage as the uncovered elements have
now lower occurrence (roughly m

k). Note that we do not need to assume the knowledge of
the correct value k: in parallel we try all powers of (1 + ε), denoting our guess by `.

Multiplicative Weight Update. To cover the remaining elements, we employ the MWU
framework and show how to implement it in the streaming setting. In each iteration of
MWU, we have a probability distribution p corresponding to the constraints (elements) and
we need to satisfy the average covering constraint. More precisely, we need an oracle that
assigns values to xS for each set S so that

∑
S pSxS ≥ 1 subject to ‖x‖1 ≤ `, where pS is

the sum of probabilities of the elements in the set S. Then, the algorithm needs to update p
according to the amount each element has been covered by the oracle’s solution. The simple
greedy realization of the oracle can be implemented in the streaming setting efficiently by
computing all pS while reading the stream in one pass, then choosing the heaviest set (i.e.,
the set with largest pS) and setting its xS to `. This approach works, except that the number
of rounds T required by the MWU framework is large. In fact, T = Ω(φ logn

ε2), where φ is
the width parameter (the maximum amount an oracle solution may over-cover an element),
which is Θ(`) in this naïve realization. Next, we show how to decrease T in two steps.

Step 1. A first hope would be that there is a more efficient implementation of the oracle
which gives a better width parameter. Nonetheless, no matter how the oracle is implemented,
if all sets in F contain a fixed element e, then the width is inevitably Ω(`). This observation
implies that we need to work with a different set system that has small width, but at the
same time, it has the same objective value as of the optimal solution. Consequently, we
consider the extended set system where we replace F with all subsets of the sets in F . This
extended system preserves the optimality, and under this system we may avoid over-covering
elements and obtain T = O(logn) (for constant ε).

In order to turn a solution in our set system into a solution in the extended set system
with small width, we need to remove the repeated elements from the sets in the solution
so that every covered element appears exactly once, and thereby getting constant width.
However, as a side effect, this reduces the total weight of the solution (

∑
S∈sol pSxS), and

thus the average covering constraint might not be satisfied anymore. In fact, we need to
come up with a guarantee that, on one hand, is preserved under the pruning step, and on
the other hand, implies that the solution has large enough total weight

Therefore, to fulfill the average constraint under the pruning step, the oracle must
instead solve the maximum coverage problem: given a budget, choose sets to cover the
largest (fractional) amount of elements. We first show that this problem can be solved
approximately via the MWU framework using the simple oracle that picks the heaviest set,
but this MWU algorithm still requires T passes over the data. To improve the number of

P. Indyk et al. 12:5

SetCover-LP 〈〈Input: U ,F〉〉

minimize
∑
S∈F

xS

subject to
∑
S:e∈S

xS ≥ 1 ∀e ∈ U

xS ≥ 0 ∀S ∈ F

Figure 1 LP relaxation of Set Cover.

passes, we perform element sampling and apply the MWU algorithm to find an approximate
maximum coverage of a small number of sampled elements, whose subproblem can be stored
in memory. Fortunately, while the number of fractional solutions to maximum coverage is
unbounded, by exploiting the structure of the solutions returned by the MWU method, we
can limit the number of plausible solutions of this oracle and approximately solve the average
constraint, thereby reducing the space usage to Õ(m) for a O(logn

ε2)-pass algorithm.

Step 2. To further reduce the number of required passes, we observe that the weights of
the constraints change slowly. Thus, in a single pass, we can sample the elements for multiple
rounds in advance, and then perform rejection (sub-)sampling to obtain an unbiased set of
samples for each subsequent round. This will lead to a streaming algorithm with p passes
and mnO(1/p) space.

Extension. We also extend our result to handle general covering LPs. More specifically, in
the LP relaxation of Set Cover, maximize c>x subject to Ax ≥ b and x ≥ 0, A has entries
from {0, 1} whereas entries of b and c are all ones. If the non-zero entries instead belong to a
range [1,M], we increase the number of sampled elements by poly(M) to handle discrepancies
between coefficients, leading to a poly(M)-multiplicative overhead in the space usage.

2 MWU Framework of the Streaming Algorithm for Fractional Set
Cover

In this section, we present a basic streaming algorithm that computes a (1 + ε)-approximate
solution of the LP-relaxation of Set Cover for any ε > 0 via the MWU framework. We will,
in the next section, improve it into an efficient algorithm that achieves the claimed O(p)
passes and Õ(mn1/p) space complexity.

Let U and F be the ground set of elements and the collection of sets, respectively, and
recall that |U| = n and |F| = m. Let x ∈ Rm be a vector indexed by the sets in F , where xS
denotes the value assigned to the set S. Our goal is to compute an approximate solution to
the LP in Figure 1. Throughout the analysis we assume ε ≤ 1/2, and ignore the case where
some element never appears in any set, as it is easy to detect in a single pass that no cover
is valid. For ease of reading, we write Õ and Θ̃ to hide polylog(m,n, 1

ε) factors.

Outline of the algorithm. Let k denote the optimal objective value, and 0 < ε ≤ 1/2 be
a parameter. The outline of the algorithm is shown in fracSetCover (Figure 2). This
algorithm makes calls to the subroutine feasibilityTest, that given a parameter `, with high
probability, either returns a solution of objective value at most (1 + ε/3)`, or detects that the
optimal objective value exceeds `. Consequently, we may search for the right value of ` by

APPROX/RANDOM’17

12:6 Fractional Set Cover in the Streaming Model

fracSetCover(ε):
B Finds a feasible (1 + ε)-approximate solution in O(logn

ε
) iterations

for ` ∈ {(1 + ε/3)i | 0 ≤ i ≤ log1+ε/3 n} do in parallel: x` ← feasibilityTest(`, ε/3)
return x`∗ where `∗ ← min{` : x` is not INFEASIBLE}

Figure 2 fracSetCover returns a (1 + ε)-approximate solution of SetCover − LP , where fea-
sibilityTest is an algorithm that returns a solution of objective value at most (1 + ε/3)` when
` ≥ k.

considering all values in {(1 + ε/3)i | 0 ≤ i ≤ log1+ε/3 n}. As for some value of ` it holds that
k ≤ ` ≤ k(1 + ε/3), we obtain a solution of size (1 + ε/3)` ≤ (1 + ε/3)(1 + ε/3)k ≤ (1 + ε)k
which gives an approximation factor (1 + ε). This whole process of searching for k increases
the space complexity of the algorithm by at most a multiplicative factor of log1+ε/3 n ≈

3 logn
ε .

The feasibilityTest subroutine employs the multiplicative weights update method
(MWU) which is described next.

2.1 Preliminaries of the MWU method for solving covering LPs
In the following, we describe the MWU framework. The claims presented here are standard
results of the MWU method. For more details, see e.g. Section 3 of [6]. Note that we
introduce the general LP notation as it simplifies the presentation later on.

Let Ax ≥ b be a set of linear constraints, and let P , {x ∈ Rm : x ≥ 0} be the polytope
of the non-negative orthant. For a given error parameter 0 < β < 1, we would like to solve
an approximate version of the feasibility problem by doing one of the following:

Compute x̂ ∈ P such that Aix̂− bi ≥ −β for every constraint i.
Correctly report that the system Ax ≥ b has no solution in P.

The MWU method solves this problem assuming the existence of the following oracle that
takes a distribution p over the constraints and finds a solution x̂ that satisfies the constraints
on average over p.

I Definition 2.1. Let φ ≥ 1 be a width parameter and 0 < β < 1 be an error parameter. A
(1, φ)-bounded (β/3)-approximate oracle is an algorithm that takes as input a distribution p
and does one of the following:

Returns a solution x̂ ∈ P satisfying
p>Ax̂ ≥ p>b− β/3, and
Aix̂− bi ∈ [−1, φ] for every constraint i.

Correctly reports that the inequality p>Ax ≥ p>b has no solution in P.

The MWU algorithm for solving covering LPs involves T rounds. It maintains the (non-
negative) weight of each constraint in Ax ≥ b, which measures how much it has been
satisfied by the solutions chosen so far. Let wt denote the weight vector at the beginning
of round t, and initialize the weights to w1 , 1. Then, for rounds t = 1, . . . , T , define
the probability vector pt proportional to those weights wt, and use the oracle above to
find a solution xt. If the oracle reports that the system p>Ax ≥ p>b is infeasible, the
MWU algorithm also reports that the original system Ax ≥ b is infeasible, and terminates.
Otherwise, define the cost vector incurred by xt as mt , 1

φ (Ax−b), then update the weights
so that wt+1

i , wti(1− βmt
i/6) and proceed to the next round. Finally, the algorithm returns

the average solution x̄ = 1
T

∑T
t=1 xt.

P. Indyk et al. 12:7

Feasibility-SC-LP 〈〈Input: U ,F , `〉〉∑
S∈F

xS ≤ `∑
S:e∈S

xS ≥ 1 ∀e ∈ U

xS ≥ 0 ∀S ∈ F

(a) LP relaxation of Feasibility Set Cover.

Feasibility-Covering-LP 〈〈Input: A,b, c, `〉〉

c>x ≤ ` (objective value)
Ax ≥ b (covering)

x ≥ 0 (non-negativity)

(b) LP relaxation of the Feasibility Covering problem.

Figure 3 LP relaxations of the feasibility variant of set cover and general covering problems.

The MWU theorem (e.g., Theorem 3.5 of [6]) shows that T = O(φ logn
β2) is sufficient to

correctly solve the problem, yielding Aix̂ − bi ≥ −β for every constraint, where n is the
number of constraints. In particular, the algorithm requires T calls to the oracle.

I Theorem 2.2 (MWU Theorem [6]). For every 0 < β < 1, φ ≥ 1 the MWU algorithm
either solves the Feasibility − Covering − LP problem up to an additive error of β (i.e.,
solves Aix− bi ≥ −β for every i) or correctly reports that the LP is infeasible, making only
O(φ logn

β2) calls to a (1, φ)-bounded β/3-approximate oracle of the LP.

2.2 Semi Streaming MWU-based algorithm for factional Set Cover
Setting up our MWU algorithm. As described in the overview, we wish to solve, as a
subroutine, the decision variant of SetCover − LP known as Feasibility − SC − LP given
in Figure 3a, where the parameter ` serves as the guess for the optimal objective value.

To follow the conventional notation for solving LPs in the MWU framework, consider the
more standard form of covering LPs denoted as Feasibility-Covering-LP given in Figure 3b.
For our purpose, An×m is the element-set incidence matrix indexed by U × F ; that is,
Ae,S = 1 if e ∈ S, and Ae,S = 0 otherwise. The vectors b and c are both all-ones vectors
indexed by U and F , respectively. We emphasize that, unconventionally for our system
Ax ≥ b, there are n constraints (i.e. elements) and m variables (i.e. sets).

Employing the MWU approach for solving covering LPs, we define the polytope

P` , {x ∈ Rm : c>x ≤ ` and x ≥ 0}.

Observe that by applying the MWU algorithm to this polytope P and constraints Ax ≥ b,
we obtain a solution x̄ ∈ P` such that Ae

(
x̄

1−β

)
≥ be−β

1−β = 1 = be, where Ae denotes the
row of A corresponding to e. This yields a (1 +O(ε))-approximate solution for β = O(ε).

Unfortunately, we cannot implement the MWU algorithm on the full input under our
streaming context. Therefore, the main challenge is to implement the following two subtasks
of the MWU algorithm in the streaming settings. First, we need to design an oracle that
solves the average constraint in the streaming setting. Moreover, we need to be able to
efficiently update the weights for the subsequent rounds.

Covering the common elements. Before we proceed to applying the MWU framework, we
add a simple first step to our implementation of feasibilityTest (Figure 4) that will greatly
reduce the amount of sapce required in implementing the MWU algorithm. This can be
interpreted as the fractional version of Set Sampling described in [17]. In our subroutine, we
partition the elements into the common elements that occur more frequently, which will be

APPROX/RANDOM’17

12:8 Fractional Set Cover in the Streaming Model

feasibilityTest(`, ε):

α, β ← ε
3 , pcurr ← 1m×1 B The initial prob. vector for the MWU algorithm on U

B Compute a cover of common elements in one pass
xcmn ← α`

m
· 1m×1, freq← 0n×1

for each set S in the stream do
for each element e ∈ S do

freqe ← freqe + 1
if e appears in more than m

α`
sets (i.e. freqe > m

α`
) then B Common element

pcurr
e ← 0

pcurr ← pcurr

‖pcurr‖ B pcurr represents the current prob. vector

xtotal ← 0m×1

B MWU algorithm for covering rare elements
repeat T times

B Solve the corresp. oracle of MWU and decide if the solution is feasible
try x← oracle(pcurr, `,F)

xtotal ← xtotal + x

B In one pass, update p according to x
z← 0n×1

for each set S in the stream do
for each element e ∈ S do
ze ← ze + xS

if (pcurr)>z < 1− β/3 then B Detect infeasible solutions returned by oracle
report INFEASIBLE

pcurr ← updateProb(pcurr, z)

xrare ← xtotal

(1−β)T B Scaled up the solution to cover rare elements

return xcmn + xrare

Figure 4 A generic implementation of feasibilityTest. Its performance depend on the imple-
mentations of oracle, updateProb. We will investigate different implementations of oracle in the
gray box.

covered if we simply choose a uniform vector solution, and the rare elements that occur less
frequently, for which we perform the MWU algorithm to compute a good solution. In one
pass we can find all frequently occurring elements by counting the number of sets containing
each element. The amount of required space to perform this task is O(n logm).

We call an element that appears in at least m
α` sets common, and we call it rare otherwise,

where α = Θ(ε). Since we are aiming for a (1 + ε)-approximation, we can define xcmn as a
vector whose all entries are α`

m . The total cost of xcmn is α` and all common elements are
covered by xcmn. Thus, throughout the algorithm we may restrict our attention to the rare
elements.

Our goal now is to construct an efficient MWU-based algorithm, which finds a solution
xrare covering the rare elements, with objective value at most `

1−β ≤ (1 + ε− α)`. We note
that our implementation does not explicitly maintain the weight vector wt described in
Section 2.1, but instead updates (and normalizes) its probability vector pt in every round.

P. Indyk et al. 12:9

heavySetOracle(p, `,F):
Compute pS for every S ∈ F while reading the set system B either from stream or memory
S∗ ← argmaxS∈FpS
if pS < (1− β/3)/` then report INFEASIBLE
x← 0n×1, xS ← `

return x

Figure 5 heavySetOracle computes pS of every set given the set system in a stream or stored
memory, then returns the solution x that optimally places value ` on the corresponding entry. It
reports INFEASIBLE if there is no sufficiently good solution, concluding that the set system is
infeasible.

2.3 First Attempt: Simple Oracle and Large Width
A greedy solution for the oracle. We implement the oracle for MWU algorithm such that
φ = `, and thus requiring Θ(` logn/β2) iterations (Theorem 2.2). In each iteration, we need
an oracle that finds some solution x ∈ P` satisfying p>Ax ≥ p>b− β/3, or decides that no
solution in P` satisfies p>Ax ≥ p>b.

Observe that p>Ax is maximized when we place value ` on xS∗ where S∗ achieves
the maximum value pS ,

∑
e∈S pe. Further, for our application, b = 1 so p>b = 1. Our

implementation heavySetOracle of oracle given in Figure 5 below is a deterministic
greedy algorithm that finds a solution based on this observation. As Aex ≤ ‖x‖1 ≤ `,
heavySetOracle implements a (1, `)-bounded (β/3)-approximate oracle. Therefore, the
implementation of feasibilityTest with heavySetOracle computes a solution of objective
value at most (α+ 1

1−β)` < (1 + ε
3)` when ` ≥ k as promised.

Finally, we track the space usage which concludes the complexities of the current version
of our algorithm: it only stores vectors of length m or n, whose entries each requires a
logarithmic number of bits, yielding the following theorem.

I Theorem 2.3. There exists a streaming algorithm that w.h.p. returns a (1+ε)-approximate
fractional solution of SetCover − LP (U ,F) in O(k logn

ε2) passes and using Õ(m+n) memory
for any positive ε ≤ 1/2. The algorithm works in both set arrival and edge arrival streams.

The presented algorithm suffers from large number of passes over the input. In particular,
we are interested in solving the fractional Set Cover in constant number of passes using
sublinear space. To this end, we first reduce the required number of rounds in MWU by a
more complicated implementation of oracle.

3 Max Cover Problem and its Application to Width Reduction

In this section, we improve the described algorithm in the previous section and prove the
following result.

I Theorem 3.1. There exists a streaming algorithm that w.h.p. returns a (1+ε)-approximate
fractional solution of SetCover − LP (U ,F) in p passes and uses Õ(mnO(1/pε) + n) memory
for any 2 ≤ p ≤ polylog(n) and 0 < ε ≤ 1/2. The algorithm works in both set arrival and
edge arrival streams.

Recall that in implementing oracle, we must find a solution x of total size ‖x‖1 ≤ ` with
a sufficiently large weight p>Ax. Our previous implementation chooses only one good entry
xS and places its entire budget ` on this entry. As the width of the solution is roughly the

APPROX/RANDOM’17

12:10 Fractional Set Cover in the Streaming Model

maximum amount an element is over-covered by x, this implementation induces a width
of `. In this section, we design an oracle that returns a solution in which the budget is
distributed more evenly among the entries of x to reduce the width. To this end, we design
an implementation of oracle of the MWU approach based on the Max `-Cover problem
(whose precise definition will be given shortly). The solution to our Max `-Cover aids in
reducing the width of our oracle solution to a constant, so the required number of rounds
of the MWU algorithm decreases to O(logn

ε2), independent of `. Note that, if the objective
value of an optimal solution of Set Cover(U ,F) is `, then a solution of width o(`) may not
exist, as shown in Lemma 3.2 (whose proof is given in Section A.1). This observation implies
that we need to work with a different set system. Besides having small width, an optimal
solution of the Set Cover instance on the new set system should have the same objective
value of the optimal solution of Set Cover(U ,F).

I Lemma 3.2. There exists a set system in which, under the direct application of the MWU
framework in computing a (1 + ε)-approximate solution, induces width φ = Ω(k), where k is
the optimal objective value. Moreover, the exists a set system in which the approach from
the previous section (which handles the frequent and rare elements differently) has width
φ = Θ(n) = Θ(

√
m/ε).

Extended Set System. First, we consider the extended set system (U , F̆), where F̆ is the
collection containing all subsets of sets in F ; that is,

F̆ , {R : R ⊆ S for some S ∈ F}.

It is straightforward to see that the optimal objective value of Set Cover over (U , F̆) is equal
to that of (U ,F): we only add subsets of the original sets to create F̆ , and we may replace
any subset from F̆ in our solution with its original set in F . Moreover, we may prune any
collection of sets from F into a collection from F̆ of the same cardinality so that, this pruned
collection not only covers the same elements, but also each of these elements is covered
exactly once. This extended set system is defined for the sake of analysis only: we will never
explicitly handle an exponential number of sets throughout our algorithm.

We define `-cover as a collection of sets of total weight `. Although the pruning of an
`-cover reduces the width, the total weight p>Ax of the solution will decrease. Thus, we
consider the weighted constraint of the form

∑
e∈U

(
pe ·min{1,

∑
S:e∈S

xS}

)
≥ 1;

that is, we can only gain the value pe without any multiplicity larger than 1. The problem of
maximizing the left hand side is known as the weighted max coverage problem: for a parameter
`, find an `-cover such that the total value pe’s of the covered elements is maximized.

3.1 The Maximum Coverage Problem
In the design of our algorithm, we consider the weighted Max k-Cover problem, which is
closely related to Set Cover. Extending upon the brief description given earlier, we fully
specify the LP relaxation of this problem. In the weighted Max k-Cover(U ,F , `,p), given a
ground set of elements U , a collection of sets F over the ground set, a budget parameter
`, and a weight vector p, the goal is to return ` sets in F whose weighted coverage, the
total weight of all covered elements, is maximized. Moreover, since we are aiming for a

P. Indyk et al. 12:11

MaxCover-LP 〈〈Input: U ,F , `,p〉〉

maximize
∑
e∈U

peze

subject to
∑
S:e∈S

xS ≥ ze ∀e ∈ U∑
S∈F

xS = `

0 ≤ ze ≤ 1 ∀e ∈ U
xS ≥ 0 ∀S ∈ F

Figure 6 LP relaxation of weighted Max k-Cover.

fractional solution of Set Cover, we consider the LP relaxation of weighted Max k-Cover,
MaxCover − LP (see Figure 6); in this LP relaxation, ze denotes the fractional amount that
an element is covered, and hence is capped at 1.

As an intermediate goal, we aim to compute an approximate solution ofMaxCover − LP ,
given that the optimal solution covers all elements in the ground set, or to correctly detect
that no solution has weighted coverage of more than (1− ε). In our application, the vector
p is always a probability vector: p ≥ 0 and

∑
e∈U pe = 1. We make the following useful

observation.

I Observation 3.3. Let k be the value of an optimal solution of SetCover − LP (U ,F) and
let p be an arbitrary probability vector over the ground set. Then there exists a fractional
solution of MaxCover − LP (U ,F , `,p) whose weighted coverage is one if ` ≥ k.

δ-integral near optimal solution of MaxCover-LP. Our plan is to solve MaxCover-LP over
a randomly projected set system, and argue that with high probability this will result in a
valid oracle. Such an argument requires an application of the union bound over the set of
solutions, which is generally of unbounded size. To this end, we consider a more restrictive
domain of δ-integral solutions: this domain has bounded size, but is still guaranteed to
contain a sufficiently good solution.

I Definition 3.4 (δ-integral solution). A fractional solution xn×1 of an LP is δ-integral if
1
δ · x is an integral vector. That is, for each i ∈ [n], xi = viδ where each vi is an integer.

Next we claim that maxCoverOracle given in Figure 7 below, which is the MWU
algorithm with heavySetOracle for solvingMaxCover − LP , results in a δ-integral solution.
The proof of the following lemma is given in Section A.2.

I Lemma 3.5. Consider a MaxCover − LP with the optimal objective value OPT (where
the weights of elements form a probability vector). There exists a Θ(ε

2
MC

logn)-integral solution
of MaxCover − LP whose objective value is at least (1 − εMC)OPT. In particular, if an
optimal solution covers all elements U (` ≥ k), maxCoverOracle returns a solution whose
weighted coverage is at least 1− εMC in polynomial time.

Pruning a fractional `-cover. In our analysis, we aim to solve the Set Cover problem under
the extended set system. We claim that any solution x with coverage z in the actual set
system may be turned into a pruned solution x̆ in the extended set system that provides

APPROX/RANDOM’17

12:12 Fractional Set Cover in the Streaming Model

maxCoverOracle(U ,F , `):
x← MWU solution of Set Cover LP relaxation implemented with heavySetOracle
return x

Figure 7 maxCoverOracle returns a fractional `-cover with weighted coverage at least 1− β/3
w.h.p. if ` ≥ k. It provides no guarantee on its behavior if ` < k.

the same coverage z, but satisfies the strict equality
∑
S̆∈F̆ :e∈S̆ x̆S̆ = ze. Since ze ≤ 1, the

pruned solution satisfies the condition for an oracle with width one. We give an algorithm
prune for pruning x into x̆ in Section A.3 and only state the property of this algorithm here.

I Lemma 3.6. A fractional `-cover x of (U ,F) can be converted, in polynomial time, to a
fractional `-cover x̆ of (U , F̆) such that for each element e, its coverage ze =

∑
S̆∈F̆ :e∈S̆ x̆S̆ =

min(
∑
S:e∈S xS , 1).

We remark that in order to update the weights in the MWU framework, it is sufficient
to know the vector z, which has a simple formula given in the lemma above. The actual
solution x̆ is not necessary.

3.2 Sampling-Based Oracle for Fractional Max Coverage
In the previous section, we simply needed to compute the values pS ’s in order to construct a
solution for the oracle. Here as we aim to bound the width of oracle, our new task is to
find a fractional `-cover x whose weighted coverage is at least 1−β/3. The element sampling
technique, which is also known from prior work in streaming Set Cover and Max k-Cover,
is to sample a few elements and solve the problem over the sampled elements only. Then,
by applying the union bound over all possible candidate solutions, it is shown that w.h.p.
a nearly optimal cover of the sampled elements also covers a large fraction of the whole
ground set. This argument applies to the aforementioned problems precisely because there
are standard ways of bounding the number of all integral candidate solutions (e.g. `-covers).

However, in the fractional setting, there are infinitely many solutions. Consequently, we
employ the notion of δ-integral solutions where the number of such solutions is bounded. In
Lemma 3.6, we showed that there always exists a δ-integral solution to MaxCover − LP
whose coverage is at least a (1− εMC)-fraction of an optimal solution. Moreover, the number
of all possible solutions is bounded by the number of ways to divide the budget ` into `/δ
equal parts of value δ and distribute them (possibly with repetition) among m entries:

IObservation 3.7. The number of feasible δ-integral solutions toMaxCover − LP (U ,F , `,p)
is O(m`/δ) for any multiple ` of δ.

Next, we design our algorithm using the element sampling technique: we show that a
(1− β/3)-approximate solution of MaxCover − LP can be computed using the projection of
all sets in F over a set of elements of size Θ(` logn logmn

β4) picked according to p. For every
fractional solution (x, z) and subset of elements V ⊆ U , let CV(x) ,

∑
e∈V peze denote the

coverage of elements in V where ze = min(1,
∑
S:e∈S xS). We may omit the subscript V in

CV if V = U .
The following lemma, which is essentially an extension of the Element Sampling lemma

of [17] for our application, MaxCover-LP, shows that a (1− εMC)-approximate `-cover over
a set of sampled elements of size Θ(` logn logmn/γ4) w.h.p. has a weighted coverage of
at least (1 − 2γ)(1 − εMC) if there exists a fractional `-cover whose coverage is 1. Thus,

P. Indyk et al. 12:13

choosing εMC = γ = β/9 yields the desired guarantee for maxCoverOracle, leading to the
performance given in Theorem 3.9. The omitted proofs are given in Section A.4-A.5.

I Lemma 3.8. Let εMC and γ be parameters. Consider the MaxCover − LP (U ,F , `,p)
with optimal solution of value OPT, and let L be a multi-set of s = Θ(` logn log(mn)/γ4)
elements sampled independently at random according to the probability vector p. Let xsol be
a (1− εMC)-approximate Θ(γ2

logn)-integral `-cover over the sampled elements. Then with high
probability, C(xsol) ≥ (1− 2γ)(1− εMC)OPT.

I Theorem 3.9. There exists a streaming algorithm that w.h.p. returns a (1+ε)-approximate
fractional solution of SetCover − LP (U ,F) in O(logn/ε2) passes and uses Õ(m/ε6 + n)
memory for any positive ε ≤ 1/2. The algorithm works in both set arrival and edge arrival
streams.

3.3 Final Step: Running Several MWU Rounds Together
We complete our result by further reducing the number of passes at the expense of increasing
the required amount of memory, yielding our full algorithm fastFeasibilityTest in Figure 8.
More precisely, aiming for a p-pass algorithm, we show how to execute R , T

Θ(p) = Θ(logn
pβ2)

rounds of the MWU algorithm in a single pass. We show that this task may be accomplished
with a multiplicative factor of f ·Θ(logmn) increase in memory usage, where f , nΘ(1/(pβ)).

Advance sampling. Consider a sequence of R consecutive rounds i = 1, . . . , R. In order to
implement the MWU algorithm for these rounds, we need (multi-)sets of sampled elements
L1, . . . ,LR according to probabilities p1, . . . ,pR, respectively (where pi is the probability
corresponding to round i). Since the probabilities of subsequent rounds are not known in
advance, we circumvent this problem by choosing these sets Li’s with probabilities according
to p1, but the number of samples in each set will be |Li| = s · f · Θ(logmn) instead of s.
Then, once pi is revealed, we sub-sample the elements from Li to obtain L′i as follow: for a
(copy of) sampled element ê ∈ Li, add ê to L′i with probability piê

p1
ê
f
; otherwise, simply discard

it. Note that it is still left to be shown that the probability above is indeed at most 1.
Since each e was originally sampled with probability p1

e, then in L′i, the probability that a
sampled element ê = e is exactly pie/f . By having f ·Θ(logmn) times the originally required
number of samples s in the first place, in expectation we still have E[|L′i|] = |Li|

∑
e∈U

pie
f =

(s · f ·Θ(logmn)) 1
f = s ·Θ(logmn). Due to the Θ(logmn) factor, by the Chernoff bound, we

conclude that with w.h.p. |L′i| ≥ s. Thus, we have a sufficient number of elements sampled
with probability according to pi to apply Lemma 3.8, as needed.

Change in probabilities. As noted above, we must show that the probability that we sub-
sample each element is at most 1; that is, pie/p1

e ≤ f = nΘ(1/(pβ)) for every element e and
every round i = 1, . . . , R. We bound the multiplicative difference between the probabilities
of two consecutive rounds as follows (see Section A.6 for proof).

I Lemma 3.10. Let p and p′ be the probability of elements before and after an update. Then
for every element e, p′e ≤ (1 +O(β))pe.

Therefore, after R = Θ(logn
pβ2) rounds, the probability of any element may increase by at

most a factor of (1 +O(β))Θ(logn
pβ2) ≤ eΘ(logn

pβ) = nΘ(1/(pβ)) = f , as desired. This concludes
the proof of Theorem 3.1.

APPROX/RANDOM’17

12:14 Fractional Set Cover in the Streaming Model

Implementation details. We make a few remarks about the implementation given in Fig-
ure 8. First, even though we perform all sampling in advance, the decisions of maxCoverOr-
acle do not depend on any Li of later rounds, and updateProb is entirely deterministic:
there is no dependency issue between rounds. Next, we only need to perform updateProb
on the sampled elements L = L1∪· · ·∪LR during the current R rounds. We therefore denote
the probabilities with a different vector qi over the sampled elements L only. Probabilities
of elements outside L are not required by maxCoverOracle during these rounds, but we
simply need to spend one more pass after executing R rounds of MWU to aggregate the new
probability vector p over all (rare) elements. Similarly, since maxCoverOracle does not
have the ability to verify, during the MWU algorithm, that each solution xi returned by
the oracle indeed provides a sufficient coverage, we check all of them during this additional
pass. Lastly, we again remark that this algorithm operates on the extended set system: the
solution x returned by maxCoverOracle has at least the same coverage as x̆. While x̆ is
not explicitly computed, its coverage vector z can be computed exactly.

3.4 Extension to general covering LPs
We remark that our MWU-based algorithm can be extended to solve a more general class
of covering LPs. Consider the problem of finding a vector x that minimizes c>x subject to
constraints Ax ≥ b and x ≥ 0. In terms of the Set Cover problem, Ae,S ≥ 0 indicates the
multiplicity of an element e in the set S, be > 0 denotes the number of times we wish e to be
covered, and cS > 0 denotes the cost per unit for the set S. Now define

L , min
(e,S):Ae,S 6=0

Ae,S
becS

and U , max
(e,S)

Ae,S
becS

.

Then, we may modify our algorithm to obtain the following result.

I Theorem 3.11. There exists a streaming algorithm that w.h.p. returns a (1+ε)-approximate
fractional solution to general covering LPs in p passes and using Õ(mUε6L ·n

O(1
pε) +n) memory

for any 3 ≤ p ≤ polylog(n), where parameters L and U are defined above. The algorithm
works in both set arrival and edge arrival streams.

Proof. We modify our algorithm and provide an argument of its correctness as follows. First,
observe that we can convert the input LP into an equivalent LP with all entries be = cS = 1
by simply replacing each Ae,S with Ae,S

becS
. Namely, let the new parameters be A′,b′ and

c′, and we consider the variable x′ where x′S = cSxS . It is straightforward to verify that
c′>x′ = c>x and A′ex′ = Aex

be
, reducing the LP into the desired case. Thus, we may afford

to record b and c, so that each value Ae,S
becS

may be computed on-the-fly. Henceforth we
assume that all entries be = cS = 1 and Ae,S ∈ {0}∪ [L,U]. Observe as well that the optimal
objective value k may be in the expanded range [1/U, n/L], so the number of guesses must
be increased from logn

ε to log(nU/L)
ε .

Next consider the process for covering the rare elements. We instead use a uniform
solution xcmn = α`L

m · 1. Observe that if an element occurs in at least m
α`L sets, then

Aexcmn =
∑
S:e∈S Ae,S ·

α`
m ≥

m
α`L ·L ·

α`
m = 1. That is, we must adjust our definition so that

an element is considered common if it appears in at least m
α`L sets. Consequently, whenever

we perform element sampling, the required amount of memory to store information of each
element increases by a factor of 1/L.

Next consider Lemma 3.5, where we show an existence of integral solutions via the MWU
algorithm with a greedy oracle. As the greedy implementation chooses a set S and places
the entire budget ` on xS , the amount of coverage Ae,SxS may be as large as `U as Ae,S is

P. Indyk et al. 12:15

fastFeasibilityTest(`, ε):

α, β ← ε
3 , pcurr ← 1m×1 B The initial prob. vector for the MWU algorithm on U

Compute a cover of common elements in one pass B See Fig. 4’s feasibilityTest block

xtotal ← 0m×1

B MWU algorithm for covering rare elements
repeat p times

R← Θ(logn
pβ2) B Number of MWU iterations performed together

B In one pass, projects all sets in F over the collections of samples L1, · · · LR
sample L1, . . . ,LR according to pcurr each of size `nΘ(1/(pβ)) poly(logmn)
L ← L1 ∪ · · · ∪ LR, FL ← ∅ B L is a set whereas L1, . . . ,LR are multi-sets
for each set S in the stream do FL ← FL ∪ {S ∩ L}

B Each pass simulates R rounds of MWU
for each e ∈ L do q1

e ← pcurr
e B Project pcurr

n×1 to q1
|L|×1 over sampled elements

q1 ← q1

‖q1‖
for each round i = 1, . . . , R do
L′i ← sample each elt e ∈ Li with probab. qie

q1en
Θ(1/(pβ)) B Rejection Sampling

xi ←maxCoverOracle(L′i,FL, `) B w.h.p. C(xi) ≥ 1− β/3 when ` ≥ k
B In no additional pass, updates probab. q over sampled elts according to xi
z← 0|L|×1 B Compute coverage over sampled elements
for each element-set pair e ∈ S where S ∈ FL do ze ← min(ze + xiS , 1)
qi+1 ← updateProb(qi, z) B Only update weights of elements in L

B In one pass, updates probab. pcurr over all (rare) elts according to x1, . . . ,xR
z1, . . . , zR ← 0n×1 B Compute coverage over all (rare) elements
for each element-set pair e ∈ S in the stream do

for each round i = 1, . . . , R do zie ← min(zie + xiS , 1)
for each round i = 1, . . . , R do

if (pcurr)>zi < 1− β/3 then B Detect infeasible solutions
report INFEASIBLE

xtotal ← xtotal + xi, pcurr ← updateProb(pcurr, zi) B Perform actual updates

xrare ← xtotal

(1−β)T B Scaled up the solution to cover rare elements

return xcmn + xrare

Figure 8 An efficient implementation of feasibilityTest which performs in p passes and consumes
Õ(mnO(1

pε
) + n) space.

no longer bounded by 1. Thus this application of the MWU algorithm has width φ = Θ(`U)
and requires T = Θ(`U logn

ε2MC
) rounds. Consequently, its solution becomes Θ(`T) = Θ(ε2MC

U logn)-
integral. As noted in Observation 3.7, the number of potential solutions from the greedy
oracle increases by a power of U . Then, in Lemma 3.8, we must reduce the error probability
of each solution by the same power. We increase the number of samples s by a factor of U
to account for this change, increasing the required amount of memory by the same factor.

As in the previous case, any solution x may always be pruned so that the width is
reduced to 1: our algorithm prune still works as long as the entries of A are non-negative
(Section A.3). Therefore, the fact that entries of A may take on values other than 0 or 1
does not affect the number of rounds (or passes) of our overall application of the MWU
framework. Thus, we may handle general covering LPs using a factor of Õ(U/L) larger

APPROX/RANDOM’17

12:16 Fractional Set Cover in the Streaming Model

memory within the same number of passes. In particular, if the non-zero entries of the input
are bounded in the range [1,M], this introduces a factor of Õ(U/L) ≤ Õ(M3) overhead in
memory usage. J

References

1 K. J. Ahn and S. Guha. Linear programming in the semi-streaming model with application
to the maximum matching problem. In Proc. 38th Int’l Colloq. Automata Lang. Prog.
(ICALP), pages 526–538. Springer, 2011.

2 K. J. Ahn and S. Guha. Access to data and number of iterations: Dual primal algorithms
for maximum matching under resource constraints. In Proc. 27th ACM Symp. Parallel Alg.
Arch. (SPAA), pages 202–211, 2015.

3 Z. Allen-Zhu and L. Orecchia. Nearly-linear time positive LP solver with faster convergence
rate. In Proc. 47th Annual ACM Symp. Theory Comput. (STOC), pages 229–236, 2015.

4 Z. Allen-Zhu and L. Orecchia. Using optimization to break the epsilon barrier: A faster
and simpler width-independent algorithm for solving positive linear programs in parallel.
In Proc. 26th ACM-SIAM Symp. Discrete Algs. (SODA), pages 1439–1456, 2015.

5 N. Alon, D. Moshkovitz, and S. Safra. Algorithmic construction of sets for k-restrictions.
ACM Trans. Algo., 2(2):153–177, 2006.

6 S. Arora, E. Hazan, and S. Kale. The multiplicative weights update method: a meta-
algorithm and applications. Theory of Computing, 8(1):121–164, 2012.

7 S. Assadi. Tight space-approximation tradeoff for the multi-pass streaming set cover prob-
lem. In Proc. 36th ACM Symp. on Principles of Database Systems (PODS), pages 321–335,
2017.

8 S. Assadi, S. Khanna, and Y. Li. Tight bounds for single-pass streaming complexity of
the set cover problem. In Proc. 48th Annual ACM Symp. Theory Comput. (STOC), pages
698–711, 2016.

9 A. Badanidiyuru, B. Mirzasoleiman, A. Karbasi, and A. Krause. Streaming submodular
maximization: Massive data summarization on the fly. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 671–680,
2014.

10 B. Bahmani, A. Goel, and K. Munagala. Efficient primal-dual graph algorithms for mapre-
duce. In International Workshop on Algorithms and Models for the Web-Graph, pages
59–78. Springer, 2014.

11 N. Bansal, A. Caprara, and M. Sviridenko. A new approximation method for set covering
problems, with applications to multidimensional bin packing. SIAM Journal on Computing,
39(4):1256–1278, 2009.

12 M. Bateni, H. Esfandiari, and V. S. Mirrokni. Almost optimal streaming algorithms for
coverage problems. Proc. 29th ACM Symp. Parallel Alg. Arch. (SPAA), 2017.

13 A. Chakrabarti and A. Wirth. Incidence geometries and the pass complexity of semi-
streaming set cover. In Proc. 27th ACM-SIAM Symp. Discrete Algs. (SODA), pages 1365–
1373, 2016.

14 C. Chekuri, S. Gupta, and K. Quanrud. Streaming algorithms for submodular function
maximization. In Proc. 42st Int’l Colloq. Automata Lang. Prog. (ICALP), pages 318–330.
Springer, 2015.

15 F. Chierichetti, R. Kumar, and A. Tomkins. Max-cover in map-reduce. In Proc. 19th Int.
Conf. World Wide Web (WWW), pages 231–240, 2010.

16 G. Cormode, H. J. Karloff, and A. Wirth. Set cover algorithms for very large datasets. In
Proc. 19th ACM Conf. Info. Know. Manag. (CIKM), pages 479–488, 2010.

P. Indyk et al. 12:17

17 E.D. Demaine, P. Indyk, S. Mahabadi, and A. Vakilian. On streaming and communication
complexity of the set cover problem. In Proc. 28th Int’l Symp. Dist. Comp. (DISC), volume
8784 of Lect. Notes in Comp. Sci., pages 484–498, 2014.

18 I. Dinur and D. Steurer. Analytical approach to parallel repetition. In Proc. 46th Annual
ACM Symp. Theory Comput. (STOC), pages 624–633. ACM, 2014.

19 P. Drineas, R. Kannan, and M.W. Mahoney. Sampling sub-problems of heterogeneous max-
cut problems and approximation algorithms. In Proc. 37th Annual ACM Symp. Theory
Comput. (STOC), pages 57–68. Springer, 2005.

20 Y. Emek and A. Rosén. Semi-streaming set cover. In Proc. 41st Int’l Colloq. Automata
Lang. Prog. (ICALP), volume 8572 of Lect. Notes in Comp. Sci., pages 453–464, 2014.

21 U. Feige. A threshold of ln n for approximating set cover. Journal of the ACM (JACM),
45(4):634–652, 1998.

22 N. Garg and J. Koenemann. Faster and simpler algorithms for multicommodity flow and
other fractional packing problems. SIAM Journal on Computing (SIAM), 37(2):630–652,
2007.

23 T. Grossman and A. Wool. Computational experience with approximation algorithms for
the set covering problem. Euro. J. Oper. Res., 101(1):81–92, 1997.

24 S. Har-Peled, P. Indyk, S. Mahabadi, and A. Vakilian. Towards tight bounds for the
streaming set cover problem. In Proc. 35th ACM Symp. on Principles of Database Systems
(PODS), pages 371–383, 2016.

25 N. Karmarkar and R.M. Karp. An efficient approximation scheme for the one-dimensional
bin-packing problem. In Foundations of Computer Science, 1982. SFCS’08. 23rd Annual
Symposium on, pages 312–320. IEEE, 1982.

26 M. J. Kearns and U.V. Vazirani. An introduction to computational learning theory. MIT
press, 1994.

27 C. Koufogiannakis and N.E. Young. A nearly linear-time PTAS for explicit fractional
packing and covering linear programs. Algorithmica, 70(4):648–674, 2014.

28 Y.T. Lee and A. Sidford. Path finding methods for linear programming: Solving linear
programs in O(vrank) iterations and faster algorithms for maximum flow. In Proc. 55th
Annual IEEE Symp. Found. Comput. Sci. (FOCS), pages 424–433, 2014.

29 C. Lund and M. Yannakakis. On the hardness of approximating minimization problems.
Journal of the ACM (JACM), 41(5):960–981, 1994.

30 A. McGregor and H.T. Vu. Better streaming algorithms for the maximum coverage problem.
In 20th International Conference on Database Theory, ICDT, pages 22:1–22:18, 2017.

31 D. Moshkovitz. The projection games conjecture and the NP-hardness of lnn-
approximating set-cover. In Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques, pages 276–287. Springer, 2012.

32 S.A. Plotkin, D.B. Shmoys, and É. Tardos. Fast approximation algorithms for fractional
packing and covering problems. Mathematics of Operations Research, 20(2):257–301, 1995.

33 R. Raz and S. Safra. A sub-constant error-probability low-degree test, and a sub-constant
error-probability PCP characterization of NP. In Proc. 29th Annual ACM Symp. Theory
Comput. (STOC), 1997.

34 B. Saha and L. Getoor. On maximum coverage in the streaming model & application to
multi-topic blog-watch. In Proc. SIAM Int. Conf. Data Mining (SDM), pages 697–708,
2009.

35 D. Wang, S. Rao, and M.W. Mahoney. Unified acceleration method for packing and
covering problems via diameter reduction. In Proc. 43st Int’l Colloq. Automata Lang. Prog.
(ICALP), pages 50:1–50:13, 2016.

APPROX/RANDOM’17

12:18 Fractional Set Cover in the Streaming Model

36 N.E. Young. Randomized rounding without solving the linear program. In Proceedings of
the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 170–178,
1995.

37 N.E. Young. Nearly linear-work algorithms for mixed packing/covering and facility-location
linear programs. arXiv preprint arXiv:1407.3015, 2014.

A Omitted Proofs

A.1 Proof of Lemma 3.2
Proof. For the first claim, we consider an arbitrary set system, then modify it by adding a
common element e to all sets. Recall that the MWU framework returns an average of the
solutions from all rounds. Thus there must exist a round where the oracle returns a solution
x of size ‖x‖1 = Θ(k). For the added element e, this solution has

∑
S:e∈S xS =

∑
S∈F xS =

Θ(k), inducing width φ = Ω(k).
For the second claim, consider the following set system with k =

√
m/ε and n = 2k + 1.

For i = 1, . . . , k, let Si = {ei, ek+i, e2k+1}, whereas the remaining m− k sets are arbitrary
subsets of {e1, . . . , ek}. Observe that ek+i is contained only in Si, so xSi = 1 in any valid set
cover. Consequently the solution x where xS1 = · · · = xSk = 1 and xSk+1 = · · · = xS2k+1 = 0
forms the unique (fractional) minimum set cover of size k =

√
m/ε. Next, recall that an

element is considered rarely occurring if it appears in at most m
α` >

m
εk sets. As ek+1, . . . , e2k

each only occurs once, and e2k+1 only appears in k =
√
m/ε = m

εk sets, these k + 1 elements
are deemed rare and thus handled by the MWU framework.

The solution computed by the MWU framework satisfies
∑
S:e∈S xS ≥ 1− β for every e,

and in particular, for each e ∈ {ek+1, . . . , e2k}. Therefore, the average solution places a total
weight of at least (1− β) ·Θ(k) on xS1 , . . . , xSk , so there must exist a round that places at
least the same total weight on these sets. However, these k sets all contain e2k+1, yielding∑
S:e2k+1∈S xS ≥ (1− β) ·Θ(k) = Ω(k), implying a width of Ω(k) = Ω(

√
m/ε). J

A.2 Proof of Lemma 3.5
Proof. Let (x∗, z∗) denote the optimal solution of value OPT to MaxCover − LP , which
implies that ‖x∗‖1 ≤ ` and Ax∗ ≥ z∗. Consider the following covering LP: minimize ‖x‖1
subject to Ax ≥ z∗ and x ≥ 0. Clearly there exists an optimal solution of objective value
`, namely x∗. This covering LP may be solved via the MWU framework. In particular,
we may use the oracle that picks one set S with maximum weight (as maintained in the
MWU framework) and places its entire budget on xS . For an accurate guess `′ = Θ(`) of
the optimal value, this algorithm returns an average of T = Θ(`

′ logn
ε2MC

) = Θ(` logn
ε2MC

) oracle
solutions. Observe that the outputted solution x is of the form xS = vS`

′

T = vSδ where vS is
the number of rounds in which S is chosen by the oracle, and δ = `′

T = `′ε2MC
` logn = Θ(ε

2
MC

logn). In
other words, x is (ε

2
MC

logn)-integral. By Theorem 2.2, x satisfies Ax ≥ (1− εMC)z∗. Then in
MaxCover − LP , the solution (x, (1− εMC)z∗) yields coverage at least p>((1− εMC)z∗) =
(1− εMC)p>z∗ = (1− εMC)OPT. J

A.3 Proof of Lemma 3.6
Proof. Consider the algorithm prune in Figure 9. As we pick a valid amount r ≤ xS to
move from xS to x̆S̆ at each step, x̆ must be an `-cover (in the extended set system) when
prune finishes. Observe that if

∑
S:e∈S xS < 1 then e will never be removed from any S̆,

P. Indyk et al. 12:19

prune(x):
x̆← 0|F̆|×1, z← 0n×1 B Maintain the pruned solution and its coverage amount
for each S ∈ F do

S̆ ← S

while xS > 0 do
r ← min(xS ,mine∈S̆(1− ze)) B Weight to be moved from xS to x̆S̆
xS ← xS − r, xS̆ ← xS̆ + r B Move weight to the pruned solution
for each e ∈ S̆ do ze ← ze + r B Update coverage accordingly
S̆ ← S̆ \ {e ∈ S̆ : ze = 1} B Remove e with ze = 1 from S̆

return z

Figure 9 The prune subroutine lifts a solution in F to a solution in F̆ with the same MaxCover-
LP objective value and width 1. The subroutine returns z, the amount by which members of F̆
cover each element. The actual pruned solution x̆ may be computed but has no further use in our
algorithm and thus not returned.

so ze is increased by xS for every S, and thus ze =
∑
S:e∈S xS . Otherwise, the condition

r ≤ 1− ze ensures that ze stops increasing precisely when it reaches 1. Each S takes up to
n+ 1 rounds in the while loop as one element e ∈ S is removed at the end of each round.
There are at most m sets, so the algorithm must terminate (in polynomial time).

We note that in Section 3.4, we need to adjust prune to instead achieves the condition
ze = min(Aex, 1) where entries of A are arbitrary non-negative values. We simply make the
following modifications: choose r ← min(xS ,mine∈S̆

1−ze
Ae,S

) and update ze ← ze + r · Ae,S ,
and the same proof follows. J

Remark that to update the weights in the MWU framework, it is sufficient to have
the coverage

∑
S̆∈F̆ :e∈S̆ x̆S̆ , which are the ze’s returned by prune; the actual solution x̆ is

not necessary. Observe further that our MWU algorithm can still use x instead of x̆ as
its solution because x has no worse coverage than x̆ in every iteration, and so does the
final, average solution. Lastly, notice that the coverage z returned by prune has the simple
formula ze = min(

∑
S:e∈S xS , 1). That is, we introduce prune to show an existence of x̆,

but will never run prune in our algorithm.

A.4 Proof of Lemma 3.8
Proof. Consider the MaxCover − LP (U ,F , `,p) with optimal solution (xOPT, zOPT) of
value OPT, and let xsol be a (1 − εMC)-approximate Θ(γ2

logn)-integral `-cover over the
sampled elements and zsol be its corresponding coverage vector. Denote the sampled
elements with L = {ê1, · · · , ês}. Observe that by defining each Xi as a random variable that
takes the value zOPT

êi
with probability pêi and 0 otherwise, the expected value of X =

∑s
i=1 Xi

is

E[X] =
s∑
i=1

E[Xi] = s
∑
e∈U

pe · zOPT
e = s · C(xOPT) = s ·OPT.

Let τ = s(1− γ)OPT. Since Xi ∈ [0, 1], by applying Chernoff bound on X, we obtain

Pr
[
CL(xOPT) ≤ τ

]
= Pr[X ≤ (1− γ)E[X]]

≤ e−
γ2E[X]

3 ≤ e−
Ω(` log(mn) logn/γ2)

3 = (mn)−Ω(` logn/γ2).

APPROX/RANDOM’17

12:20 Fractional Set Cover in the Streaming Model

Therefore, since xsol is a (1 − εMC)-approximate solution of MaxCover − LP (L,F , `,p),
with probability 1− (mn)−Ω(` logn/γ2), we have CL(xsol) ≥ (1− εMC)τ .

Next, by a similar approach, we show that for any fractional solution x, if CL(x) ≥
CL(xOPT), then with probability 1−(mn)−Ω(` logn/γ2), C(x) ≥

(1−γ
1+γ

)
(1−εMC)OPT. Consider

a fractional `-cover (x, z) whose coverage is less than
(1−γ

1+γ
)
(1− εMC)OPT. Let Yi denote

a random variable that takes value zêi with probability pêi , and define Y =
∑s
i=1 Yi.

Then, E[Yi] = C(x) <
(1−γ

1+γ
)
(1 − εMC)OPT. For ease of analysis, let each Ȳi ∈ [0, 1] be

an auxiliary random variable that stochastically dominates Yi with expectation E[Ȳi] =(1−γ
1+γ

)
(1− εMC)OPT, and Ȳ =

∑s
i=1 Ȳi which stochastically dominates Ȳ with expectation

E[Ȳ] = s ·
(1−γ

1+γ
)
(1− εMC)OPT = (1−εMC)τ

1+γ . We then have

Pr[CL(x) > (1− εMC)τ] = Pr[Y > (1− εMC)τ] = Pr
[
Y > (1 + γ)E[Ȳ]

]
≤ Pr

[
Ȳ > (1 + γ)E[Ȳ]

]
≤ e−

γ2E[Ȳ]
3 ≤ (mn)−Ω(` logn/γ2),

using the fact that
(1−γ

1+γ
)
(1− εMC) = Θ(1) for our interested range of parameters. Thus,

Pr
[
C(x) ≤

(1− γ
1 + γ

)
(1− εMC)OPT and CL(x) > (1− εMC)τ

]
≤ (mn)−Ω(` logn/γ2).

In other words, except with probability (mn)−Ω(` logn/γ2), a chosen solution x that offers at
least as good empirical coverage over L as xOPT (namely xsol) does have actual coverage of
at least

(1−γ
1+γ

)
(1− εMC)OPT.

Since the total number of Θ(γ2

logn)-integral `-covers is O(m` logn/γ2) (Observation 3.7),
applying union bound, with probability at least 1 − O(m` logn/γ2) · (mn)−Ω(` logn/γ2) =
1− 1

poly(mn) , a (1− εMC)-approximate Θ(γ2

logn)-integral solution of Max k-Cover(L,F , `,p)
has weighted coverage of at least

(1−γ
1+γ

)
(1− εMC)OPT > (1− 2γ)(1− εMC)OPT over U . J

A.5 Proof of Theorem 3.9
Proof. The algorithm clearly requires Θ(T) passes to simulate the MWU algorithm. The
required amount of memory, besides Õ(n) for counting elements, is dominated by the
projected set system. In each pass over the stream, we sample Θ(` logmn logn/ε4) elements,
and since they are rarely occurring, each is contained in at most Θ(mε`) sets. Finally, we
run log1+Θ(ε) n = O(logn/ε) instances of the MWU algorithm in parallel to compute a
(1 + ε)-approximate solution. In total, our space complexity is Θ(` logmn logn/ε4) ·Θ(mε`) ·
O(logn/ε) = Õ(m/ε6). J

A.6 Proof of Lemma 3.10
Proof. Recall the weight update formula wt+1

e = wte(1−
β(Ăex̆−be)

6φ) for the MWU framework,
where Ăn×|F̆| represents the membership matrix corresponding to the extended set system
(U , F̆). In our case, the desired coverage amount is be = 1. By construction, we have
Ăex̆ = ze ≤ 1; therefore, our width is φ = 1, and −1 ≤ Ăex̆− be ≤ 0. That is, the weight of
each element cannot decrease, but may increase by at most a multiplicative factor of 1 + β/6,
before normalization. Thus even after normalization no weight may increase by more than a
factor of 1 + β/6 = 1 +O(β). J

Online Strip Packing with Polynomial Migration∗†

Klaus Jansen1, Kim-Manuel Klein2, Maria Kosche3, and
Leon Ladewig4

1 Department of Computer Science, Kiel University, Kiel, Germany
kj@informatik.uni-kiel.de

2 Department of Computer Science, Kiel University, Kiel, Germany
kmk@informatik.uni-kiel.de

3 Department of Computer Science, Kiel University, Kiel, Germany
mkos@informatik.uni-kiel.de

4 Department of Computer Science, Technical University of Munich, Munich,
Germany
ladewig@in.tum.de

Abstract
We consider the relaxed online strip packing problem, where rectangular items arrive online and
have to be packed into a strip of fixed width such that the packing height is minimized. Thereby,
repacking of previously packed items is allowed. The amount of repacking is measured by the
migration factor, defined as the total size of repacked items divided by the size of the arriving
item. First, we show that no algorithm with constant migration factor can produce solutions
with asymptotic ratio better than 4/3. Against this background, we allow amortized migration,
i. e. to save migration for a later time step. As a main result, we present an AFPTAS with
asymptotic ratio 1 + O (ε) for any ε > 0 and amortized migration factor polynomial in 1/ε. To
our best knowledge, this is the first algorithm for online strip packing considered in a repacking
model.

1998 ACM Subject Classification G.2.1 Combinatorial algorithms

Keywords and phrases strip packing, bin packing, online algorithms, migration factor

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.13

1 Introduction

In the classical strip packing problem we are given a set of two-dimensional items with heights
and widths bounded by 1 and a strip of infinite height and width 1. The goal is to find
a packing of all items into the strip without rotations such that no items overlap and the
height of the packing is minimal. In many practical scenarios, the entire input is not known
in advance. Therefore, an interesting field of study is the online variant of the problem. Here,
items arrive over time and have to be packed immediately without knowing future items.
Following the terminology of [11] for the online bin packing problem, in the relaxed online
strip packing problem previous items may be repacked when a new item arrives.

There are different ways to measure the amount of repacking in a relaxed online setting.
We follow the migration model introduced by Sanders, Sivadasan, and Skutella in [24]. For
online job scheduling on identical parallel machines they defined the migration factor µ as

∗ A full version of the paper is available at http://arxiv.org/abs/1706.04939.
† This work was partially supported by DFG Project, “Robuste Online-Algorithmen für Scheduling- und

Packungsprobleme”, JA 612 /19-1, and by GIF-Project “Polynomial Migration for Online Scheduling”.

© Klaus Jansen, Kim-Manuel Klein, Maria Kosche, and Leon Ladewig;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 13; pp. 13:1–13:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.13
http://arxiv.org/abs/ 1706.04939
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

13:2 Online Strip Packing with Polynomial Migration

follows: When a new job of size pj arrives, jobs of total size µpj can be reassigned. In the
context of online strip packing the migration factor µ ensures that the total area of repacked
items is at most µ times the area of the arrived item.

By a well known relation between strip packing and parallel job scheduling [14], any
(online) strip packing algorithm applies to (online) scheduling of parallel jobs. The latter
problem is highly relevant e. g. in computer systems [14, 27, 23].

Preliminaries. Since strip packing is NP-hard [1], research focuses on efficient approximation
algorithms. Let A(I) denote the packing height of algorithm A on input I and OPT(I) the
minimum packing height. The absolute (approximation) ratio is defined as supI A(I)/OPT(I)
while the asymptotic (approximation) ratio as lim supOPT(I)→∞A(I)/OPT(I). Typically,
the performance of online algorithms is measured by competitive analysis, where an online
algorithm is compared with an optimal offline algorithm. In the following, all ratios mentioned
in the context of online algorithms are competitive.

1.1 Related Work
Offline. Strip packing is one of the classical packing problems and receives ongoing research
interest in the field of combinatorial optimization. Since Baker, Coffman and Rivest [1] gave
the first algorithm with asymptotic ratio 3, strip packing was investigated in many studies,
considering both asymptotic and absolute approximation ratios. We refer the reader to [6]
for a survey. For the asymptotic ratio, a well-known result is the AFPTAS by Kenyon and
Rémila [21]. Concerning the absolute ratio, currently the best known algorithm of ratio
5/3 + ε is by Harren et al. [13].

An interesting result was given by Han et al. in 2007. In [12], they studied the relation
between bin packing and strip packing and developed a framework between both problems.
For the offline case, it is shown that any bin packing algorithm can be applied to strip packing
while maintaining the same asymptotic ratio.

Online. The first algorithm for online strip packing was given by Baker and Schwarz [2] in
1983. Using the concept of shelf algorithms [1], they derived the algorithm First-Fit-Shelf
with asymptotic ratio arbitrary close to 1.7 and absolute ratio 6.99 (where all rectangles
have height at most hmax = 1). Later, Csirik and Woeginger [8] showed a lower bound of
h∞ ≈ 1.69 on the asymptotic ratio for the concept of shelf algorithms and gave an improved
shelf algorithm with asymptotic ratio h∞ + ε for any ε > 0. The framework of Han et al.
[12] is applicable in the online setting if the online bin packing algorithm belongs to the class
Super Harmonic. Using Seiden’s online bin packing algorithm Harmonic++ [25], there exists
an algorithm for online strip packing with an asymptotic ratio of 1.58889. In 2007 and 2009,
the concept of First-Fit-Shelf by Baker and Schwarz was improved independently by two
research groups, Hurink and Paulus [14] and Ye, Han, and Zhang [28]. Both improve the
absolute competitive ratio of from 6.99 to 6.6623 without a restriction on hmax. Further
results on special variants of online strip packing were given by Imeh [16] and Ye, Han, and
Zhang [29].

On the negative side, there is no algorithm for online strip packing (without repacking)
with an asymptotic ratio better then 1.5404 since the lower bound in [3] for online bin packing
is also valid for online strip packing. Regarding the absolute ratio, the first lower bound of 2
from [5] was improved in several studies [19, 15, 22]. Currently, the best known lower bound
by Yu, Mao, and Xiao [30] is (3 +

√
2)/2 ≈ 2.618.

K. Jansen, K.-M. Klein, M. Kosche, and L. Ladewig 13:3

Related results on the migration model. Since its introduction by Sanders, Sivadasan,
and Skutella [24], the migration model became increasingly popular. In the context of online
scheduling on identical machines, Sanders, Sivadasan, and Skutella [24] gave a PTAS with
migration factor 2O((1/ε) log2(1/ε)) for the objective of minimizing the makespan. Thereby,
the migration factor in [24] depends only on the approximation ratio ε and not on the input
size. Such algorithms are called robust.

Skutella and Verschae [26] studied scheduling on identical machines while maximizing
the minimum machine load, called machine covering. They considered the fully dynamic
setting in which jobs are also allowed to depart. Due to the presence of very small jobs,
Skutella and Verschae showed that there is no PTAS for this problem in the migration model.
Instead, they introduced the reassignment cost model, in which an amortized analysis of the
migration factor is allowed. Using the reassignment cost model, they gave a robust PTAS for
the problem with amortized migration factor 2O((1/ε) log2(1/ε)).

Also online bin packing has been investigated in the migration model in a sequence of
papers, inspired by the work of Sanders, Sivadasan, and Skutella [24]: The first robust
APTAS for relaxed online bin packing was given in 2009 by Epstein and Levin [10]. They
obtained an exponential migration factor 2O((1/ε2) log 1/ε). In 2013, Jansen and Klein [17]
improved this result and gave an AFPTAS with polynomial migration factor O

(1
ε3 log 1

ε4

)
.

The development of advanced LP/ILP-techniques made this notable improvement possible.
Furthermore, in [4] Berndt, Jansen, and Klein used the techniques developed in [17] to give
an AFPTAS for fully dynamic bin packing with a similar migration factor.

Our contribution

To the authors knowledge, there exists currently no algorithm for online strip packing in the
migration or any other repacking model. Therefore, we present novel ideas to obtain the
following results: First, a relatively simple argument shows that in the (strict) migration
model it is not possible to maintain solutions that are close to optimal. We prove the
following theorem in Section 1.3:

I Theorem 1.1. In the (strict) migration model, there is no approximation algorithm for
relaxed online strip packing with asymptotic competitive ratio better than 4/3.

For this reason, it is natural to extend the migration model such that amortization is
allowed. We say that an algorithm has an amortized migration factor of µ if for every time
step t, the total migration (i. e. the total area of repacked items) up to time t is bounded
by µ

∑t
i=1 SIZE(it), where SIZE(it) is the area of the item arrived at time t. Adapted

to scheduling problems, this corresponds with the reassignment cost model introduced by
Skutella and Verschae in [26]. Consequently, we focus on an approach that makes use of
amortization and therefore admits an asymptotic approximation scheme. We adapt several
offline and online techniques and combine them with our novel approaches to obtain the
following main result:

I Theorem 1.2. There is a robust AFPTAS for relaxed online strip packing with an amortized
migration factor polynomial in 1/ε.

1.2 Technical Contribution
A general approach in the design of robust online algorithms is to rethink existing algorithmic
strategies that work for the corresponding offline problem in a way that the algorithm can

APPROX/RANDOM’17

13:4 Online Strip Packing with Polynomial Migration

hB

big items

flat items

(a) Packing of items in a container

1hB

2hB

(b) Packing of containers in the strip

Figure 1 Packing structure of our approach. Items are packed into containers of fixed height hB ,
thus the packing of containers results in a bin packing problem.

adapt to a changing problem instance. The experiences that were made so far in the design
of robust algorithms (see [17, 4, 26]) are to design the algorithm in a way such that the
generated solutions fulfill very tight structural properties. Such solutions can then be adapted
more easily as new items arrive.

A first approach would certainly be do adapt the well known algorithm for (offline) strip
packing by Kenyon and Rémila [21] to the online setting. However, we can argue that
the solutions generated by this algorithm do not fulfill sufficient structural properties. In
the algorithm by Kenyon and Rémila, the strip is divided vertically into segments, where
each segment is configured with a set of items. Thereby, each segment can have a different
height. Now consider the online setting, where we are asked for a packing for the enhanced
instance that maintains most parts of the existing packing. Obviously, it is not enough to
place new items on top of the packing as this would exceed the approximation guarantee.
To guarantee a good competitive ratio, existing configurations of the segments need to be
changed. However, this seems to be hard to do as the height of a configuration can change.
Gaps can occur in the packing as a segment might decrease in height or vice versa a segment
might increase in height and therefore does not fit anymore in its current position. Over time
this can lead to a very fragmented packing. On the other hand, closing gaps in a fragmented
packing can cause a huge amount of repacking.

Containers. Therefore, we follow a different approach to develop an algorithm that guar-
antees solutions with a more modular structure. A central idea is to batch items to larger
rectangles of fixed height, called containers (see Figure 1a). As each container has the same
height hB , it is natural to divide the strip into levels of equal height hB (see Figure 1b) and
fill each level with containers best possible. Thus, finding a container packing is in fact a bin
packing problem, where levels correspond with bins and the sizes of the bin packing items
are given by the container widths. This approach was studied in the offline setting by Han
et al. in [12], while an analysis in the online setting is more sophisticated.

Thus, the packing of items into the strip is given by two assignments: By the container
assignment each item is assigned a container where its is placed. Moreover, the level
assignment describes which container is placed in which level (corresponds with the bin
packing solution). To guarantee solutions with good approximation ratio, both functions
have to satisfy certain properties.

Dynamic rounding / Invariant properties. For the container assignment, a natural choice
would certainly be to assign the widest items to the first container, the second widest to
the second container, and so on. In [12], Han et al. show that this container assignment is

K. Jansen, K.-M. Klein, M. Kosche, and L. Ladewig 13:5

g· · ·g0 · · ·· · · left(g)

it

g1

Figure 2 Shift operation moves widest items between groups to insert new item it.

somehow optimal. However, in the online setting we can not maintain this strict order while
bounding the repacking size. Therefore, we use a relaxed ordering by introducing groups
for containers of similar width and requiring the sorting over the groups, rather than over
containers. For this purpose, we adapt the dynamic rounding technique developed by Berndt,
Jansen, and Klein in [4] and formulate important characteristics as invariant properties.

Shift. In order to insert new items, we develop an operation called Shift. The idea is to
move items between containers of different groups such that the invariant properties stay
fulfilled. When inserting an item it via Shift into group1 g, items are moved from g to
the group left(g), where again items are shifted to the next group, and so on (see Figure 2).
Thereby, the total height of the shifted items can increase in each step. However, it is limited
such that items that can not be shifted further (at group g0 in Figure 2) can be packed into
one additional container. This way, we get a new container assignment for the enhanced
instance which maintains the approximation guarantee and all desired structural properties.

LP/ILP-techniques. As a consequence of the shift operation, there may be a new container
which has to be inserted into the packing. Obviously, placing new containers always into new
levels may lead to a level assignment which does not satisfy the approximation guarantee.
Therefore, the existing level assignment has to be changed, which causes further repacking.
We apply the LP/ILP-techniques developed in [17] to maintain a good level assignment while
the amortized migration factor is polynomial in 1/ε.

Packing of small items. Another challenging part regards the handling of items with small
area. Without maintaining an advanced structure, small items can fractionate the packing
in a difficult way. Such difficulties also arise in related optimization problems, see e.g. [26, 4].
For the case of flat items (with small height) we overcome these difficulties by the packing
structure shown in Figure 1a: Flat items are separated from big items in the containers and
are sorted by width such that the least wide item is at the top. Narrow items (small width)
can be used to fill gaps in the packing while grouping narrow items of similar height. We
sketch some ideas for the packing of small items in the Appendix A-B and refer to the full
version [18] for all details.

1.3 Lower Bound
In this section we prove Theorem 1.1. We use an adversary to construct an instance with
arbitrary optimal packing height, but A(I) ≥ 4

3 OPT(I) for any such algorithm A.

Proof. Let A be an algorithm for relaxed online strip packing with migration factor µ. We
show that for any height h there is an instance I with OPT(I) ≥ h and A(I) ≥ 4

3 OPT(I).
The instance consists of two item types: A big item has width 1

2 − ε and height 1, while a flat

1 In the following, by ‘group of an item’ we mean the group of the container in which the item is placed.

APPROX/RANDOM’17

13:6 Online Strip Packing with Polynomial Migration

2K

`/2

2K − `

Flat Items

Figure 3 Optimal online packing.

item has width 1
2 + ε and height 1

2dµe . For an item i let SIZE(i) denote its area. Note that A
can not repack a big item b when a flat item f arrives, as SIZE(b) > µSIZE(f) for ε < 1/6.

First, the adversary sends 2K big items, where K = 3 dhe. Let ` be the number of big
items that are packed by A next to another big item. The packing has a height of at least
`
2 + 2K − ` = 2K − `

2 (see Figure 3). Since the optimum packing height for 2K big items is
K (always two items in one level), A has an absolute ratio of at least 2− `

2K . If ` ≤ 4K
3 , the

absolute ratio is at least 4
3 and nothing else is to show.

Now assume ` > 4K
3 . In this case, the adversary sends k = 4 dµeK flat items of total

height 2K. In the optimal packing of height 2K big items and flat items form separate stacks
that are placed next to each other. Note that no two flat items can be packed next to each
other. Since A can not repack any big item when a flat item arrives, in the best possible
packing achievable by A flat items of total height 2K − ` are packed next to big items (see
Figure 3, flat items are packed in the dashed area). Therefore, the packing height is at least
2K + `

2 and hence the absolute ratio is at least 1 + `
4K ≥

4
3 . In either case, it follows that

the asymptotic ratio is at least 4/3 by considering K →∞. J

1.4 Remainder of the Paper
In the remainder of this paper we give a high-level description of the proof of Theorem 1.2.
Thereby, we focus on big items having minimum area ε2 (see below). For most of the technical
details as well as the handling of small items we refer to the full version [18].

Throughout the following sections, let ε ∈ (0, 1/4] be a constant such that 1/ε is integer.
We denote the height and width of an item i by h(i) and w(i) (both at most 1) and define
SIZE(i) = w(i)h(i). An item i is called big if h(i) ≥ ε and w(i) ≥ ε. Let IL be the set of big
items. If R is a set of items, let SIZE(R) =

∑
i∈R SIZE(i) and h(R) =

∑
i∈R h(i).

2 Container Packing

Recall that we follow a two-level-approach to obtain the actual packing: Items are packed
into containers of equal height hB, whereby the widest item inside a container defines its
width (see Figure 1a). The strip is divided into levels of height hB , where the containers are
packed (see Figure 1b). In this section we state important invariant properties concerning
the relation between items and containers. Further, we show that if these invariant properties
hold, the container packing yields a good approximation to the strip packing problem.

In order to find a container packing, we use a common LP formulation by Eisemann [9]
(see also [4, 17]). However, the number of occurring container widths has to be bounded
to solve the LP efficiently. Therefore, we introduce groups for the containers and round
each container width to the largest width in its group, similar to rounding techniques in bin
packing [20]. Nevertheless, the rounding has to be flexible enough for the online setting. We

K. Jansen, K.-M. Klein, M. Kosche, and L. Ladewig 13:7

(l, A, 0) (l, A, q(l, A)) (l, B, q(l, B))

≤ 2lk

(l, A, 1) (l, B, 0) (l, B, 1)· · · · · ·

= 2lk = 2lk = 2l(k − 1) ≤ 2l(k − 1)= 2l(k − 1)

Block A Block B

Kg

Figure 4 Groups of one category l ∈W and number of containers Kg per group.

adapt the dynamic rounding technique developed in [4], which is described in the following
section.

2.1 Dynamic Rounding
Let C be the set of containers. Each container is assigned to a (width) category l ∈ N,
where container c has width category l if w(c) ∈ (2−(l+1), 2−l]. Let W denote the set of
all non-empty categories and define ω = |W | in the following. It follows immediately that
ω = O (log 1/ε). Furthermore, we build groups within the categories: A group g ∈ G is
a triple (l,X, r), where l ∈ W is the category, X ∈ {A,B} is the block, and r ∈ N is the
position in the block. The maximum position of category l at block X that is non-empty is
denoted by q(l,X). Figure 4 outlines the group structure of one category l ∈W (the values
for Kg will become clear in Section 2.2). For a group g = (l,X, r) the groups left(g) and
right(g) are defined as the respective neighboring groups2 in the order shown in Figure 4.

By the notion of blocks, groups of one category can be partitioned into two types. This
becomes helpful to maintain the invariant properties with respect to the growing set of items.
More details on that are given in the later Sections 2.2 and 3.2.

The assignment from containers to groups is given by a rounding function R : C → G.
Let Kg = |{c ∈ C | R(c) = g}| be the number of containers of group g. Let ILg be the set of
items in (containers of) group g.

2.2 Invariant Properties
In Section 1.2 we argued that only solutions with strong structural properties can be adapted
appropriately in the online setting while maintaining a good competitive ratio. Definition 2.1
formalizes this central properties.

I Definition 2.1 (Invariant properties). Let k ∈ N be a parameter and h(g) =
∑
i∈IL

g h(i)
be the total height of items in group g.
(a) Items correspond to categories

2−(l+1) < w(i) ≤ 2−l ∀i ∈ ILg s.t. g = (l, ·, ·)
(b) Sorting of items over groups

w(i) ≥ w(i′) ∀i ∈ ILg, i′ ∈ ILg
′
s.t. g = left(g′)

(c) Number of containers in block A
K(l,A,0) ≤ 2lk,
K(l,A,r) = 2lk ∀l ∈W and ∀1 ≤ r ≤ q(l, A)

(d) Number of containers in block B
K(l,B,q(l,B)) ≤ 2l(k − 1),
K(l,B,r) = 2l(k − 1) ∀l ∈W and ∀0 ≤ r < q(l, B)

(e) Total height of items per group
(hB − 1)(Kg − 1) ≤ h(g) ≤ (hB − 1)Kg ∀g ∈ G

2 Set left((l, A, 0)) = (l, A,−1) and right((l, B, q(l, B))) = (l, B, q(l, B) + 1) as temporary groups.

APPROX/RANDOM’17

13:8 Online Strip Packing with Polynomial Migration

Property (a) ensures that each item is inserted into the right category. Note that as a
consequence, each container of a group (l, ·, ·) has a width in (2−(l+1), 2−l]. By property (b),
all items in a group g have a width greater or equal than items in the group right(g). That
is, instead of a strict order over all containers, (b) ensures an order over groups of containers.
The properties (c) and (d) set the number of containers to a fixed value, except for special
cases (see Figure 4): Groups in block A have more containers than groups in block B.
Moreover, there are two flexible groups (namely (l, A, 0) and (l, B, q(l, B))) whose number
of containers is only upper bounded. Finally, property (e) ensures an important relation
between items and containers of one group g: Since h(g) ≤ Kg(hB − 1), at least one of the
Kg containers has a filling height of at most hB− 1 and thus can admit a new item. However,
the lower bound (hB − 1)(Kg − 1) ≤ h(g) ensures that each container is well filled in an
average container assignment.

One of the important consequences of the invariant properties is the fact that the number
of non-empty groups |G| can be bounded from above, assuming that the instance is not too
small. Therefore, the parameter k has to be set in a particular way:

I Lemma 2.2. For k =
⌊

ε
4ωhB

SIZE(IL)
⌋
the number of non-empty groups in G is bounded

by O
(
ω
ε

)
= O

(1
ε log 1

ε

)
, assuming that SIZE(IL) ≥ 24ωhB(hB−1)

εhB−2ε .

Proof. Let G1 = G \
(⋃

l∈W (l, A, 0) ∪
⋃
l∈W (l, B, q(l, B))

)
and let g ∈ G1. Since by invari-

ant (a) every container of group g has width greater than 2−(l+1), it follows together with
the further invariant properties

SIZE(ILg) > 2−(l+1)(hB − 1)(Kg − 1) (a), (e)

≥ 2−(l+1)(hB − 1)(2l(k − 1)− 1) (c), (d)

= 1
2(hB − 1)(k − 1)− 2−(l+1)(hB − 1)

≥ 1
2(hB − 1)(k − 1)− hB − 1

2
= 1

2(hB − 1)(k − 2) .

Now, let I(l)
L be the set of items in IL which belong to containers of category l. It holds that

SIZE(I(l)
L) ≥

∑
g=(l,·,·)∈G1

SIZE(ILg) ≥ (q(l, A) + q(l, B))
(1

2 (hB − 1)(k − 2)
)
and resolving

leads to

q(l, A) + q(l, B) ≤ 2 SIZE(I(l)
L)

(hB − 1)(k − 2) . (1)

We now show (hB − 1)(k − 2) ≥ ε
8ωhB

SIZE(IL). The assumption on SIZE(IL) is equivalent
to ε

4ωhB
SIZE(IL)− 3 ≥ ε

8ω(hB−1) SIZE(IL). Therefore,

k − 2 =
⌊

ε

4ωhB
SIZE(IL)

⌋
− 2 ≥ ε

4ωhB
SIZE(IL)− 3 ≥ ε

8ω(hB − 1) SIZE(IL)

and thus

(hB − 1)(k − 2) ≥ (hB − 1)ε
8ω(hB − 1) SIZE(IL) = ε

8ω SIZE(IL) .

Further, we get

2 SIZE(IL)
(hB − 1)(k − 2) ≤

2 SIZE(IL)
ε

8ω SIZE(IL) = 16ω
ε

. (2)

K. Jansen, K.-M. Klein, M. Kosche, and L. Ladewig 13:9

As shown in Figure 4, for each category l there are q(l, A)+q(l, B)+2 groups. Now, summing
over all categories l ∈W concludes the proof:∑

l∈W

q(l, A) + q(l, B) + 2

≤
∑
l∈W

(
2 SIZE(I(l)

L)
(hB − 1)(k − 2) + 2

)
eq. (1)

= 2 |W |+ 2
(hB − 1)(k − 2)

∑
l∈W

SIZE(I(l)
L)

= 2 |W |+ 2 SIZE(IL)
(hB − 1)(k − 2)

≤ 2ω + 16ω
ε

eq. (2) J

2.3 Approximation Guarantee
Furthermore, we can argue that if the invariant properties of Definition 2.1 are fulfilled, the
rounded container packing yields a good approximation to a packing of the instance IL.

Let con : IL → C be a container assignment and R : C → G be a rounding function
fulfilling the invariant properties (a-e). Formally, we define the rounded container instance
CRcon as follows: For each container c ∈ C such that there exists an item i with con(i) = c,
define a rectangle of height h(c) = hB and width w(c) = max{w(i) | i ∈ IL, con(i) = c}.
Then, round each container width to the largest width in its group defined by R.

By choosing hB = 13/ε2 and k =
⌊

ε
4ωhB

SIZE(IL)
⌋
as parameters of the invariant, we

get the following result:

I Lemma 2.3. Let CRcon be the strip packing instance of rounded containers fulfilling all
invariant properties from Definition 2.1. Assuming SIZE(IL) ≥ 4ωhB

ε (hB + 1), it holds that
OPT(CRcon) ≤ (1 + 4ε) OPT(IL) +O

(
1/ε4

)
.

Proof (Sketch). In [18] we give a detailed proof using a proof technique from [12]. For
the sake of intuition, in this paper we only sketch the main arguments necessary to proof
Lemma 2.3. The proof uses a nice combination of all invariant properties from Definition 2.1.

Intuitively, the goal is to show that by packing the containers CRcon instead of the items
IL, we do not loose too much area in the packing. This can be shown formally by defining
two sets of rectangles: Let ÎL be the set of items in IL where the width of each item from
group g is set to the widest item in the group right(g). Note that by invariant (b), the
widths of items from ÎL get rounded down. As the heights remain unchanged, it holds that
OPT(ÎL) ≤ OPT(IL). Furthermore, let C1 be the set of all container rectangles from CRcon,
except from the left- and right-most groups of each category l.

For the moment, assume that each container is filled up to the maximum filling height hB .
Therefore, we have a relation between ÎL and C1: Each stack of rounded-down rectangles
from ÎL corresponds with a container rectangle from C1, namely with one of the group to
the right. Therefore, packing C1 instead of ÎL is basically the same. By invariant (e), the
total height of items in each group is bounded from below. Thus we can think of an average
container assignment, in which each container is well-filled also in height. Therefore, the
packing capacity of each container is used efficiently in height and width.

Finally, we have to argue that the containers dropped from CRcon to obtain C1 can be
packed such that the total packing height increases only by a small term. By invariant (c–d),

APPROX/RANDOM’17

13:10 Online Strip Packing with Polynomial Migration

hB

(a) Set Sout (dark items)

hB

(b) Gaps after removal of Sout

hB

(c) After Sink

Figure 5 Operation Sink closes gaps during a Shift operation.

the left- and right-most groups of a category l have each at most 2lk containers, all of width
at most 2−l by invariant (a). That is, 2k levels of height hB are enough to place all residual
containers in CRcon not contained in C1. By definition of k and ω, it follows that the additional
packing height for the missing containers in C1 is not more than εSIZE(IL) ≤ εOPT(IL). J

3 Shift Operation

So far, we introduced the packing structure and showed important characteristics of it. In
this section we consider the online setting, where new items arrive and have to be integrated
into the structure such that invariant properties (a-e) are maintained. In order to maintain
(a-b) when inserting a new item i, a suitable group has to be found, defined as follows:

I Definition 3.1 (Suitable group). For a group g, let wmin(g) resp. wmax(g) denote the
width of an item with minimal resp. maximal width in ILg. Set wmin(left((l, A, 0))) =∞
and wmax(right((l, B, q(l, B)))) = 0. Group g = (l,X, r) is suitable for a new item i if
w(i) ∈ (2−(l+1), 2−l], wmin(left(g)) ≥ w(i), and wmax(right(g)) < w(i).

Basically, new items can be integrated into the container structure in two ways: They
can be placed into new containers, or they can be placed into existing containers, where
already packed items have to be removed possibly.

Since the first option occurs rather in special cases, in Section 3.1 we describe a simplified
version of the Shift operation which inserts items via the second way. Note that in this case
the number of containers remains unchanged and thus (c) and (d) are maintained anyway.
Afterwards, we briefly describe the issue of new containers in the packing.

3.1 Shift Algorithm (simplified)
Algorithm 1 shows the (simplified) Shift operation. Suppose that S is a set of items to be
inserted into the suitable group g. The easy case is when h(g) + h(S) does not exceed the
upper bound (hB − 1)Kg from invariant (e): Then, Place(g, S) in Line 3 packs each item
in S into any container with sufficient small packing height3 of this group. It can be easily
seen that there must be such a container: Assume that item i ∈ S can not be placed. Then,
each of the Kg containers is filled with items of total height greater than hB − 1. Thus,
h(g) + h(S) > Kg(hB − 1), which contradicts (e).

However, the crucial point is that due to the insertion of S, the total height of items in g
could exceed the upper bound from (e). In order to fulfill (e), items from g are removed. For
this purpose, we choose the widest items from g, as they can be inserted into the group left(g)
while maintaining the sorting property (b). The function WidestItems(ILg ∪S,∆) in Line 5

3 That is, the total height of items in this container plus the height of the new item does not exceed hB .

K. Jansen, K.-M. Klein, M. Kosche, and L. Ladewig 13:11

Algorithm 1: Shift
Input :Group g ∈ G, Items S ⊂ IL, suitable for g according to Definition 3.1

1 ∆ = h(g) + h(S)− (hB − 1)Kg

2 if ∆ ≤ 0 then // No violation of invariant (e)
3 Place(g,S)
4 else
5 Sout = WidestItems(ILg ∪ S, ∆)
6 Remove Sout from group
7 Sink(cj) // For all affected containers cj
8 Place(g,S)
9 Shift(left(g), Sout)

returns a set of items Sout ⊆ ILg ∪ S s.t. w(i) ≥ w(i′) for each i ∈ Sout, i′ ∈ (ILg ∪ S) \ Sout
and h(Sout) ∈ [∆,∆ + 1). Note that after removing the items Sout, gaps may occur in the
packing. These have to be closed before new items can be placed, which is done by the
operation Sink in Line 7 (see Figures 5a to 5c for an illustration). Now, there is enough
room to place the items S in Line 8. The removed items get inserted into left(g) via a further
Shift operation. If the group left(g) does not exist, one has to open a new container for the
remaining items.

An important characteristic of Algorithm 1 is that it maintains all invariant properties.
In the following we give a proof restricted to property (e), as this is somehow the most
fundamental property.

I Lemma 3.2. Suppose that invariant property (e) holds. After shifting items S into group
g via Algorithm 1, invariant property (e) remains fulfilled.

Proof. We show that the total height of items after the removal of Sout and insertion
of S lies in the interval [(hB − 1)(Kg − 1), (hB − 1)Kg]. Since h(Sout) ≥ ∆, it holds
h(g)−h(Sout)+h(S) ≤ h(g)−∆+h(S) = h(g)−h(g)−h(S)+(hB−1)Kg+h(S) = (hB−1)Kg .

On the other side, h(Sout) < ∆ + 1 and thus h(g)− h(Sout) + h(S) > h(g)−∆− 1 + h(S) =
h(g)− h(g)− h(S) + (hB − 1)Kg − 1 + h(S) = (hB − 1)Kg − 1. With hB ≥ 2 it follows that
(hB − 1)Kg − 1 ≥ (hB − 1)(Kg − 1). Hence, property (e) is fulfilled. J

Since the set Sout is inserted via another shift operation into the next group, in general the
insertion of an item it triggers a sequence of shift operations Shift(g0, S0),Shift(g1, S1),
. . . ,Shift(gd, Sd) with S0 = {it}. Thereby, the total height of shifted items h(Sout) grows
linearly in the position of the shift sequence, like the following lemma shows.

I Lemma 3.3. Consider the above defined shift sequence and let Sjout be the set Sout in the
call Shift(gj , Sj). For any j with 0 ≤ j ≤ d it holds that h(Sjout) ≤ h(S0) + j + 1 .

Proof. Let ∆j denote the value of ∆ in the call Shift(gj , Sj). First note that by invariant (e)
∆j ≤ h(Sj) holds for each j . Further, the function WidestItems(·,∆j) returns a set Sjout
with h(Sjout) < ∆j + 1. For j = 0 it holds that h(S0

out) < ∆0 + 1 ≤ h(S0) + 1. Now suppose
h(Sjout) ≤ h(S0) + j + 1 for some j ≥ 0. Note that Sj+1 = Sjout, thus for the index j + 1 we
have h(Sj+1

out) < ∆j+1 +1 ≤ h(Sj+1)+1 = h(Sjout)+1. By assumption, h(Sjout) ≤ h(S0)+j+1
and thus h(Sj+1

out) ≤ h(S0) + (j + 1) + 1. J

Lemma 3.3 is particularly important to bound the amount of items arriving in the leftmost
group. By choosing hB appropriately, the remaining items fit into one additional container.

APPROX/RANDOM’17

13:12 Online Strip Packing with Polynomial Migration

Algorithm 2: Insertion of a big item
Input : Item it ∈ IL

1 if SIZE(IL(t)) < 4ωhB

ε (hB + 1) then // Offline mode
2 Use offline algorithm
3 else // Online mode
4 Find suitable group g = (l,X, r) according to Definition 3.1
5 Shift(g, {it})
6 BlockBalancing

New containers. We already mentioned that most of the repacking happens inside existing
containers and therefore new containers occur rather in special cases. However, note that
these special cases are important: Items which have to be shifted out of group (l, A, 0) can
not be shifted further, as there is no group to the left (see Figures 2 and 4).

Therefore, we also have to deal with new containers in the container packing. Obviously,
updating the level assignment such that new containers are placed in new levels is not enough
to guarantee a good competitive ratio. Instead, a new level assignment has to be found,
which maintains large parts of the existing assignment (in order to bound the repacking).
Since this problem is closely related to an online bin packing problem, here we make use of
the LP/ILP-techniques developed in [17]. For all technical details see [18].

3.2 Insertion Algorithm
Let IL(t) = {i1, i2, . . . , it} denote the instance at time t. The insertion algorithm for big
items, given in Algorithm 2, works in one of two modes: While SIZE(IL(t)) < 4ωhB

ε (hB + 1),
Algorithm 2 works in the offline mode. Here, an offline algorithm fulfilling all invariant
properties repacks the whole instance each time a new item arrives. This is due to the fact
that the operations modifying the LP-solutions require a minimum size of IL(t). As soon as
SIZE(IL(t)) is large enough, in the online mode the algorithm goes over to use Shift(g, {it})
to insert it into the suitable group g.

The last operation in Algorithm 2, denoted as BlockBalancing, adapts the total
number of containers to the increasing value of SIZE(IL(t)). Recall that by choice of the
parameters (see Section 2.3), k depends on SIZE(IL(t)) and thus increases over time. That
is, at some point the parameter k changes to k′ = k + 1. Obviously, we can not rebuild the
whole container assignment to fulfill the new group sizes required by (c-d) according to the
new parameter k′. Instead, the block structure (see Section 2.1) is exactly designed to deal
with this situation: All groups of block A that satisfy invariant property (c) with parameter
k satisfy (d) for parameter k′, if they were in block B. In the procedure BlockBalancing
groups are moved from block B to A parallel to the increasing fractional value of k. When
block B is empty, groups from block A can be ‘renamed’ to block B groups. This way, (c-d)
are fulfilled for the new parameter k′ and the repacking is distributed among all time steps
since the last parameter update. This technique was developed in [4]. For more details and
a precise description of the operations see [18].

With respective results for Shift (including Lemma 3.2) and BlockBalancing, Al-
gorithm 2 maintains all invariant properties. Furthermore, we can show that all operations
modifying the LP/ILP-solutions of the level assignment return feasible solutions with the
desired approximation guarantee. Therefore we obtain the following result:

K. Jansen, K.-M. Klein, M. Kosche, and L. Ladewig 13:13

I Theorem 3.4. Algorithm 2 is an AFPTAS for the insertion of big items with asymptotic
competitive ratio 1 +O (ε).

4 Migration Analysis

It remains to analyze the migration factor of Algorithm 2. Recall the definition of the
migration factor µ = SIZE(Repacking(t))

SIZE(it) , where Repacking(t) is the set of repacked items and
it the item arriving at time t. Since in this extended abstract we focus on big items, the
migration factor can be bound without amortization. First, note that in the offline mode
of Algorithm 2, the repacking size is clearly bounded by SIZE(IL(t)) < O

(1
ε5 log 1

ε

)
. The

analysis for the online mode is quite involved since the operation Shift consists of several
repacking steps performed in different groups. In the maximum shift sequence each group
occurs once (see again Figure 2), thus the maximum number of shift operations can be at
most the number of groups |G|. Again, one crucial argument is that |G| ≤ O

(1
ε log 1

ε

)
(see

Lemma 2.2). We give a detailed analysis for the repacking of the shift operation in [18] and
get eventually:

I Lemma 4.1. The total repacking in a maximum shift sequence is at most O
(

1
ε7

(
log 1

ε

)2
)
.

Recall that in the online mode of Algorithm 2 the procedure BlockBalancing performs
repacking as well. However, it can be shown that its repacking size is dominated by the
Shift part. Since big items have minimum size ε2, we obtain the following corollary:

I Corollary 4.2. Algorithm 2 has the migration factor µ = O
(

1
ε9

(
log 1

ε

)2
)
.

Acknowledgement. We would like to thank Marten Maack for helpful discussions on the
lower bound (Section 1.3).

References
1 Brenda S. Baker, Edward G. Coffman, Jr, and Ronald L. Rivest. Orthogonal packings in

two dimensions. SIAM Journal on Computing, 9(4):846–855, 1980.
2 Brenda S. Baker and Jerald S. Schwarz. Shelf algorithms for two-dimensional packing

problems. SIAM Journal on Computing, 12(3):508–525, 1983.
3 János Balogh, József Békési, and Gábor Galambos. New lower bounds for certain classes

of bin packing algorithms. Theoretical Computer Science, 440:1–13, 2012.
4 Sebastian Berndt, Klaus Jansen, and Kim-Manuel Klein. Fully dynamic bin packing revis-

ited. In International Workshop on Approximation Algorithms for Combinatorial Optimiz-
ation Problems (APPROX), pages 135–151, 2015.

5 Donna J. Brown, Brenda S. Baker, and Howard P. Katseff. Lower bounds for on-line
two-dimensional packing algorithms. Acta Informatica, 18(2):207–225, 1982.

6 Henrik I. Christensen, Arindam Khan, Sebastian Pokutta, and Prasad Tetali. Approxima-
tion and online algorithms for multidimensional bin packing: A survey. Computer Science
Review, 2017.

7 Edward G. Coffman, Jr, Michael R. Garey, David S. Johnson, and Robert E. Tarjan.
Performance bounds for level-oriented two-dimensional packing algorithms. SIAM Journal
on Computing, 9(4):808–826, 1980.

8 János Csirik and Gerhard J. Woeginger. Shelf algorithms for on-line strip packing. Inform-
ation Processing Letters, 63(4):171–175, 1997.

9 Kurt Eisemann. The trim problem. Management Science, 3(3):279–284, 1957.

APPROX/RANDOM’17

13:14 Online Strip Packing with Polynomial Migration

10 Leah Epstein and Asaf Levin. A robust APTAS for the classical bin packing problem.
Mathematical Programming, 119(1):33–49, 2009.

11 Giorgio Gambosi, Alberto Postiglione, and Maurizio Talamo. Algorithms for the relaxed
online bin-packing model. SIAM Journal on Computing, 30(5):1532–1551, 2000.

12 Xin Han, Kazuo Iwama, Deshi Ye, and Guochuan Zhang. Strip packing vs. bin packing.
In International Conference on Algorithmic Applications in Management (AAIM), pages
358–367. Springer, 2007.

13 Rolf Harren, Klaus Jansen, Lars Prädel, and Rob Van Stee. A (5/3+ ε)-approximation for
strip packing. Computational Geometry, 47(2):248–267, 2014.

14 Johann L. Hurink and Jacob J. Paulus. Online algorithm for parallel job scheduling
and strip packing. In International Workshop on Approximation and Online Algorithms
(WAOA), pages 67–74. Springer, 2007.

15 Johann L. Hurink and Jacob J. Paulus. Online scheduling of parallel jobs on two machines
is 2-competitive. Operations Research Letters, 36(1):51–56, 2008.

16 Csanád Imreh. Online strip packing with modifiable boxes. Operations Research Letters,
29(2):79–85, 2001.

17 Klaus Jansen and Kim-Manuel Klein. A robust AFPTAS for online bin packing with poly-
nomial migration. In International Colloquium on Automata, Languages, and Programming
(ICALP), pages 589–600. Springer, 2013.

18 Klaus Jansen, Kim-Manuel Klein, Maria Kosche, and Leon Ladewig. Online strip packing
with polynomial migration. CoRR, abs/1706.04939, 2017. URL: http://arxiv.org/abs/
1706.04939.

19 Berit Johannes. Scheduling parallel jobs to minimize the makespan. Journal of Scheduling,
9(5):433–452, 2006.

20 Narendra Karmarkar and Richard M. Karp. An efficient approximation scheme for the
one-dimensional bin-packing problem. In Foundations of Computer Science (FOCS), pages
312–320, Nov 1982.

21 Claire Kenyon and Eric Rémila. A near-optimal solution to a two-dimensional cutting stock
problem. Mathematics of Operations Research, 25(4):645–656, 2000.

22 Walter Kern and Jacob J. Paulus. A note on the lower bound for online strip packing.
Statistics and Computing, 2009.

23 Kirk Pruhs, Jiri Sgall, and Eric Torng. Online scheduling. Handbook of Scheduling: Al-
gorithms, Models, and Performance Analysis, pages 15–1, 2004.

24 Peter Sanders, Naveen Sivadasan, and Martin Skutella. Online scheduling with bounded
migration. Mathematics of Operations Research, 34(2):481–498, 2009.

25 Steven S. Seiden. On the online bin packing problem. Journal of the ACM (JACM),
49(5):640–671, 2002.

26 Martin Skutella and José Verschae. Robust polynomial-time approximation schemes for
parallel machine scheduling with job arrivals and departures. Mathematics of Operations
Research, 41(3):991–1021, 2016.

27 Christoph Steiger, Herbert Walder, Marco Platzner, and Lothar Thiele. Online scheduling
and placement of real-time tasks to partially reconfigurable devices. In Real-Time Systems
Symposium, 2003. RTSS 2003. 24th IEEE, pages 224–225. IEEE, 2003.

28 Deshi Ye, Xin Han, and Guochuan Zhang. A note on online strip packing. Journal of
Combinatorial Optimization, 17(4):417–423, 2009.

29 Deshi Ye, Xin Han, and Guochuan Zhang. Online multiple-strip packing. Theoretical
Computer Science, 412(3):233–239, 2011.

30 Guosong Yu, Yanling Mao, and Jiaoliao Xiao. A new lower bound for online strip packing.
European Journal of Operational Research, 250(3):754–759, 2016.

http://arxiv.org/abs/1706.04939
http://arxiv.org/abs/1706.04939

K. Jansen, K.-M. Klein, M. Kosche, and L. Ladewig 13:15

l = 0

l = 1

l = 2

l = blog 1/εc

y

y

y

y

Figure 6 F-buffer contains 2l slots of height y for each category l.

A Flat Items

We say an item i is flat if w(i) ≥ ε and h(i) < ε. The main difficulty of flat items
becomes clear in the following scenario: Imagine that flat items of a group g are elements of
Sout = WidestItems(·,∆) in a shifting process. Remember that generally each container,
from which items are removed, has to be sinked (see Section 3.1), i. e. at most |Sout| containers.
In case of big items, due to their minimum height ε we get |Sout| ≤ b∆/εc. In contrast, flat
items can have an arbitrary small height and thus no such bound is possible. But Sink on
all Kg containers would lead to unbounded migration (since Kg depends on SIZE(IL)).

Therefore, we aim for a special packing structure for flat items that avoids the above
problem of sinking too many containers. Like shown in Figure 1a, flat items build a sorted
stack at the top of the container such that the least wide item is placed at the top edge.
Thereby, widest items can be removed from the container without leaving a gap.

To maintain the sorting, we introduce a buffer for flat items called F -buffer. It is located in
a rectangular segment of width 1 and height ωy, somewhere in the packing, for some constant
y. Note that the additional height for the F-buffer is bounded by ωy = O ((log 1/ε)y). The
internal structure of the F-buffer is shown in Figure 6: For each category l, there are 2l slots
in one level of height y. Items can be placed in any slot of their category.

An incoming flat item may overflow the F-buffer, more precisely, the level of one category
in the F-buffer. For this purpose, Algorithm 3 iterates over all groups gq, gq−1, . . . , g0 of this
category, where gq is the rightmost and g0 the leftmost group4. For each group, the set S
contains those items in the F-buffer for which the group is suitable. The set S is split into
smaller subsets of total height at most 1, then each subset gets inserted via a single call of
Shift.

Note that the concept of a ‘buffered insertion’ for small items, like in Algorithm 3,
corresponds with the notion of amortized migration: While flat items can be placed in the
F-buffer, no repacking is performed at all. We save this migration for a later time step,
namely when the F-buffer is full. Then, all items from the F-buffer get inserted into the
containers, maintaining the packing structure and resulting in an empty F-buffer.

4 Note that the direction of the iterative shifting is crucial: Calling Shift for a group g may reassign
items in all groups left to g. Therefore, iterating from ‘right to left’ is necessary to guarantee that after
shifting into group g, no group to the right of g is suitable for a remaining item in S. In other words,
with this direction one shift call for each group is enough, which is in general not true for the direction
‘left to right’.

APPROX/RANDOM’17

13:16 Online Strip Packing with Polynomial Migration

Algorithm 3: Insertion of a flat item
Input :Flat item it of category l

1 if it can be placed in the F-buffer then
2 Place it in the F-buffer
3 else
4 Let B(l) be the set of items in the buffer slots of category l
5 for j = q(l, A) + q(l, B) + 1, . . . , 0 do

6 Let gj =
{

(l, A, j) j ≤ q(l, A)
(l, B, j − q(l, A)− 1) j > q(l, A)

7 Let S = {i ∈ B(l) | gj is suitable for i}
8 Let S1, . . . , Sn be partition of S with h(Sr) ∈ (1− ε, 1] for all 1 ≤ r ≤ n.
9 for r = 1, . . . , n do

10 Shift(gj,Sr)
11 Remove S from B(l)
12 BlockBalancing

(1− α)r−1(1− α)r

w

w − ε

Figure 7 Shelf for narrow items of group r (dense).

B Narrow Items

We say an item i is narrow if w(i) < ε. Narrow items can be packed efficiently if items of
similar height are packed in a row. This is the concept of shelf algorithms introduced by
Baker and Schwarz [2] which is described in the next subsection.

However, the goal is to integrate narrow items into the container packing introduced in
Section 2. We show in Section B.2 how to fill gaps in the container packing with shelfs of
narrow items. This leads to a modified first-fit-algorithm for narrow items with asymptotic
approximation ratio of 1 +O (ε), as finally shown in Lemma B.2.

B.1 Shelf Packing
For a parameter α ∈ (0, 1) item i belongs to group r ∈ N \ {0} if h(i) ∈ [(1−α)r, (1−α)r−1).
Narrow items of group r are placed into a shelf of group r, which is a rectangle of height
(1− α)r−1. Figure 7 shows a shelf for group r. Analogously to [2], we say a shelf of width w
is dense when it contains items of total width greater than w − ε and sparse otherwise.

When the instance consists only of narrow items, the concept of shelf algorithms yields
an online AFPTAS immediately. Consider the following first-fit shelf algorithm: Place an
item of group r into the first shelf of group r where it fits, open a new shelf of group r only
if necessary5.

5 Note that this simple algorithm works in the online setting since no sorting is necessary (in contrast to
the NFDH algorithm [7], for example).

K. Jansen, K.-M. Klein, M. Kosche, and L. Ladewig 13:17

I Lemma B.1. If I contains only narrow items, the shelf algorithm with parameter α = ε2

1−ε2

yields a packing of height at most (1 + ε) OPT(I) +O
(
1/ε4

)
.

Proof. For a group r, let Ir = {i ∈ I | h(i) ∈ [(1− α)r, (1− α)r−1)} . Consider the packing
obtained by the shelf algorithm and let βr the number of shelfs of group r. Each dense shelf
for group r contains items of size at least (1 − α)r(1 − ε), see Figure 7. Note that by the
first-fit-principle, for each group at most one shelf is sparse. Thus there are at least βr − 1
dense shelfs for each group r, hence SIZE(Ir) ≥ (βr − 1)(1− α)r(1− ε), or equivalently

βr ≤ SIZE(Ir)(1− α)−r(1− ε)−1 + 1 . (3)

The packing consists of βr shelfs of height (1 − α)r−1 for each group r (set βr = 0, if the
group does not exist). Therefore, the packing height is:

∞∑
r=0

βr(1− α)r−1

≤
∞∑
r=0

(
SIZE(Ir)(1− α)−r(1− ε)−1 + 1

)
(1− α)r−1 eq. (3)

=
∞∑
r=0

SIZE(Ir)(1− α)−1(1− ε)−1 + (1− α)r−1

= 1
(1− ε)(1− α)

∞∑
r=0

SIZE(Ir) +
∞∑
r=0

(1− α)r−1

≤ 1
(1− ε)(1− α) SIZE(I) + 1

α− α2 Geometric series

≤ 1
(1− ε)(1− α) OPT(I) + 1

α− α2

= (1 + ε) OPT(I) +O
(

1
ε4

)
Choice of α

Note that the total height of sparse shelfs is bounded by a constant, even if the number
of groups is unbounded. This follows by the geometric series:

∞∑
r=0

(1− α)r−1 = 1
1− α

∞∑
r=0

(1− α)r = 1
1− α

1
α

= 1
α− α2 J

B.2 Filling Gaps in the Container Packing
As shown in the previous section, shelfs are a good way to pack narrow items efficiently. But
before opening a new shelf that increases the packing height, we have to ensure that the
existing packing is well-filled. Therefore, the idea is to fill gaps in the container packing
with shelfs of narrow items first. Thereby, a gap is the rectangle of height hB that fills the
remaining width of a level. Only if no significant gaps exist, new shelfs are packed on top of
the packing.

Figure 8a shows the packing structure of the strip on a high level: Here, all C-rectangles
represent containers for big and flat items. If the total width of containers in a level is less
than a threshold value (say 1−O (ε)), these containers get aligned such that the only gap
occurs at the right end of a level. We call these gaps D-containers. Inside, each D-container
is organized in shelfs of narrow items (see Figure 8b).

APPROX/RANDOM’17

13:18 Online Strip Packing with Polynomial Migration

h′

C C C

CCCC

C C C

CC

D

D

D

hB

hB

hB

hB

(a) Well-filled container packing
< ε

< 1

hB

< 1< 1

(b) D-container

Figure 8 D-containers are introduced to fill gaps in the container packing with shelfs.

Since the width of containers changes due to shift operations, without aligning a level
could be fragmented such that no contiguous area can be used for a D-container. As aligning
levels means further repacking, the insertion algorithm for narrow items makes use of a
special buffer, similar to the case of flat items.

Finally, it has to be proven that inserting narrow items this way maintains the overall
approximation guarantee. Note that the first-fit strategy for narrow items (sketched above),
has two important properties: If the item can be placed in a gap, the packing height does
not increase. Now suppose that an item gets placed in a new shelf on top of the packing.
This only occurs, if the existing packing is well-filled, since no significant gaps were found.
As a consequence of this important observation we get the following lemma (proven in [18]):

I Lemma B.2. Let h′ be the height of the container packing. The insertion of narrow items
returns a packing of height hfinal, such that hfinal ≤ max

{
h′, (1 + ε′) SIZE(I) +O

(
ω
ε3

)}
,

where ε′ ∈ O (ε).

Note that I denotes the set of all items (including big, flat, and narrow items). Lemma B.2
immediately implies that the final packing height is at most (1+O (ε)) OPT(I)+O (poly(1/ε)):
We can use Lemma 2.3 to bound the height h′ of the container packing and the fact that
SIZE(I) ≤ OPT(I).

Density Independent Algorithms for Sparsifying
k-Step Random Walks∗

Gorav Jindal1, Pavel Kolev2, Richard Peng3, and Saurabh Sawlani4

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
gjindal@mpi-inf.mpg.de

2 Max-Planck-Institut für Informatik, Saarbrücken, Germany
pkolev@mpi-inf.mpg.de

3 Georgia Institute of Technology, Atlanta, GA, USA
rpeng@gatech.edu

4 Georgia Institute of Technology, Atlanta, GA, USA
sawlani@gatech.edu

Abstract
We give faster algorithms for producing sparse approximations of the transition matrices of k-
step random walks on undirected and weighted graphs. These transition matrices also form
graphs, and arise as intermediate objects in a variety of graph algorithms. Our improvements are
based on a better understanding of processes that sample such walks, as well as tighter bounds
on key weights underlying these sampling processes. On a graph with n vertices and m edges,
our algorithm produces a graph with about n logn edges that approximates the k-step random
walk graph in about m+ k2n log4 n time. In order to obtain this runtime bound, we also revisit
“density independent” algorithms for sparsifying graphs whose runtime overhead is expressed
only in terms of the number of vertices.

1998 ACM Subject Classification F.2.2. [Nonnumerical Algorithms and Problems] Computa-
tions on Discrete Structures, G.3 [Probability and Statistics] Probabilistic algorithms (including
Monte Carlo)

Keywords and phrases random walks, graph sparsification, spectral graph theory, effective res-
istances

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.14

1 Introduction

Random walks are some of the most natural mathematical objects, and have historically been
used to model processes in fields ranging from psychology to economics. Problems related to
random walks on graphs, such as shortest path and minimum cut are well studied in both
static [34] and dynamic settings [21, 17]. While some of these problems, such as shortest
path, aim to find a single walk, other problems such as finding flows/cuts [16] or triangle
densities [4, 38] aim to capture information related to collections of walks. Algorithms and
data structures for such problems often need to store, or can be sped up by, intermediate
structures that capture the global properties of multi-step walks [31, 18, 1, 3]. However, many
intermediate structures are inherently dense and therefore expensive to compute explicitly.

∗ Pavel Kolev is funded by the Cluster of Excellence “Multimodal Computing and Interaction” within
the Excellence Initiative of the German Federal Government. Richard Peng and Saurabh Sawlani are
partially supported by the NSF under Grant No. 1637566.

© Gorav Jindal, Pavel Kolev, Richard Peng, and Saurabh Sawlani;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 14; pp. 14:1–14:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2 Density Independent Algorithms for Sparsifying k-Step Random Walks

Graph sparsification is a technique for efficiently approximating a dense graph by a sparser
one, while preserving some key properties such as sizes of graph cuts, distances between
vertices, or linear operator properties of matrices associated with the graphs. Spectral
sparsifiers are the ones which guarantee linear operator approximations, but they also
inherently approximate all graph cuts. Moreover, they have various applications in graph
algorithms, such as sampling from graphical models [7], solving linear systems [32, 27],
sampling random spanning trees [13, 14]1 and maintaining approximate minimum cuts in
dynamically changing graphs [1]. In these applications, the optimal performance is achieved
by producing a sparsifier of a denser intermediate object directly, instead of generating the
exact larger object. Of these intermediate objects, some of the more commonly studied are
random walk matrices [32, 7]. These matrices contain the pairwise transition probabilities
between vertices under k-step walks. Moreover, such matrices are dense even for sparse
original graphs with k as small as 2: for instance, the 2-step walk on the n-vertex star
contains an n− 1 sized clique.

Cheng et al. [7] studied random walk sparsification, and gave a routine that produces
an ε-spectral sparsifier (which we will formally define in Subsection 2.2) with O(ε−2n logn)
edges for a k-step walk matrix in O(ε−2k2m logO(1) n) time. Our main result, which we show
in Section 3, is a direct improvement of that routine:

I Theorem 1 (Sparsifying Laplacian Monomials). Given a graph G and an error ε ∈ (0, 1),
there is an algorithm that outputs an ε-spectral sparsifier of Gk with at most O(ε−2n logn)
edges in Ô(m+ k2ε−2n log4 n) time.2

We term this type of running time with most of the overhead on the number of vertices, n,
as density independent. Such runtimes arise naturally in many other graph problems [15],
and was first studied for graph sparsification in an earlier manuscript by a subset of the
authors [22], where the authors sparsify certain Laplacian monomials (specifically, monomials
where the degree is a power of 2) in O(m log2 n+ ε−4n log4 n log5 k) time. They also extend
this to specific classes of matrix polynomials - those with coefficients induced by “mixture
of discrete Binomial distributions” with similar running-times. Our algorithm can also be
combined with the repeated-squaring technique in [7] to reduce the runtime dependence on
k to logarithmic [8]. Additionally, if we generalize our results from monomials to general
random walk polynomials [8], this would then supersede all claims from [22]. As these
steps are much closer to the ideas in [7], we will focus on the small k case in this paper.
Furthermore, as our sparsification algorithm has a much more direct interaction with routines
that provide upper bounds of effective resistances, they can likely be combined with tools
from [1] to give dynamic algorithms for maintaining Gk under insertions/deletions to G.
However, as there are currently only few applications of such sparsifiers, we believe it may
be more fruitful to extend the applications before further developing the tools.

Our algorithms, as with the ones from [22, 7] are based on implicit sampling of dense
graphs by probabilities related to effective resistances. Our improvements rely on an a
key insight from the sparse Gaussian elimination algorithm by Kyng and Sachdeva [29]:
using triangle inequality between effective resistances to obtain a tighter set of probability

1 While these manuscripts are simultaneous, the significantly earlier original proposal of density independ-
ent sparsification of walks [22], and the importance of it in the algorithm of [14] were major motivations
for this paper.

2 We use Ô to denote the omission of logarithmic terms lower than the ones shown in the set. In all cases
in this paper, we track terms of log n explicitly and such notation hides terms of log log n. In all these
cases, this notation hides a term of at most (log log n)2.

G. Jindal, P. Kolev, R. Peng, and S. Sawlani 14:3

upper bounds. So, to sample an edge in Gk, we essentially simulate a k-step walk in G

by first sampling an edge, and then “walking” along both directions to make a length k

walk. A simple but crucial detail in the algorithm is the selection of that first edge. Instead
of sampling it uniformly as in [7], we pick an edge e with probability proportional to the
product of its weight and effective resistance (its “leverage score”). Although the change is
subtle, this helps remove any sampling count dependencies on the number of edges, making
a density-independent runtime possible.

Obtaining density-independent bounds is critical for graph sparsification algorithms, since
they are primarily invoked on relatively dense graphs. A graph sparsification routine that
produces a sparsifier with Ô(n log2 n) edges in Ô(m log2 n) time, such as the combinatorial
algorithm given in [28], will only be invoked when m > n log2 n, which means that the
running time of the algorithm is actually Ω(n log4 n). Additionally, a desired property of a
sparsification algorithm is that applying it repeatedly does not cause a blow up in its running
time. One way to achieve this is to ensure that the running time is linear in the number of
edges, and the overhead is only on the number of vertices. As a result, we believe that for
graph sparsification to work as a primitive for processing large graphs, a running time of
Ô(m+ n log2 n), or better, is necessary.

In Section 4, we provide some steps toward this direction by outlining a better density-
independent spectral sparsification algorithm. We combine ideas from previous density-
independent algorithms for sparsifying graphs [26] with recent developments in tree embedding
and numerical algorithms to obtain numerical sparsification routines that run in Ô(m +
n log4 n) time, and combinatorial ones that take Ô(m + n log6 n) time. Although these
routines do not involve new ideas, they utilize some of the latest machinery, and give the
current best time-bounds for density-independent sparsification. Importantly, both of these
routines are in turn applicable to the walk sparsification algorithm in Section 3, giving routines
for sparsifying k-step walks with similar running times: the bound stated in Theorem 1
is via the numerical routine. While these results are far from what we think are the best
possible, we show a variety of new algorithmic tools for designing algorithms that sparsify
k-step random walks matrices.

Our methods of extending density independent sparsification to random walks play a
crucial role in several other types of graph sparsification - in particular, sparsification routines
requiring only an oracle that samples edges from a distribution of approximate resistances,
and oracle access to approximate leverage scores. Even for the ‘simpler’ problem of producing
cut sparsifiers of Gk, these are the only known efficient approaches.

For instance, the routines for approximately sampling and counting spanning trees
from [14] rely on producing determinant preserving sparsifiers of Schur complements of graph
Laplacians, which are themselves sums of random walks. Specifically, the algorithm in [14]
builds a sparse graph H such that (1 − ε) det(G) ≤ det(H) ≤ (1 + ε) det(G), but requires
an overhead of about Θ(

√
n) samples, leading to sparsifiers with about Θ(ε−2n1.5) edges.

On the other hand, the number of calls this algorithm makes to the oracles is given by
O(n−1∑

e∈E `e), where `e is a value dominating the leverage score of e. Thus, to extend
their algorithm to Schur complements and simultaneously guarantee that the time-bound
does not blow up beyond O(n1.5), we have to ensure that these approximate leverages scores
still sum up to O(n). This is similar to our requirement, and is done by picking the initial
edge of the random walk with probability proportional to the product of its weight and its
effective resistance, and extending it to a walk on both sides.

APPROX/RANDOM’17

14:4 Density Independent Algorithms for Sparsifying k-Step Random Walks

2 Background

We start with some background information about graphs and matrices corresponding to
them. These matrices allow us to define graph approximations, as well as compute key
sampling probabilities needed to produce spectral sparsifiers. Due to space constraints, we
will only formally define most of the concepts. More intuition on them can be found in notes
on spectral graph theory and random walks such as [12, 30].

2.1 Random Walks and Matrices
Let G = (V,E,w) be a weighted undirected graph. We define its adjacency matrix A as
Auv

def= wuv, and its degree matrix D as Duu
def=
∑
v∈V wuv and Duv

def= 0 when u 6= v. This
leads to the graph Laplacian LG

def= D −A.
One step of a random walk can be viewed as distributing the ‘probability mass’ at a

vertex evenly among the edges leaving it, and passing them onto its neighbors. In terms of
these matrices, it is equivalent to first dividing by D, and then multiplying by A. Thus, the
left transition matrix of the kth step random walk is given by (D−1A)k. The corresponding
Laplacian matrix of the k-step random walk is defined by

LGk
def= D −A

(
D−1A

)k−1
.

The matrices A(D−1A)k−1 can be viewed as a sum over length k walks. This view is
particularly useful in our algorithm, as well as the earlier walk sparsification algorithm by
Cheng et al. [7] because these walks are a more ‘natural’ unit upon which sparsification
by effective resistances is applied. Formally, we can define the weight of a length k walk
(u0, u1, . . . , uk) by

w(u0,u1,...,uk)
def=
∏k
i=1 wui−1,ui∏k−1
i=1 dui

. (1)

Straightforward checking shows that for any u0, uk ∈ V , the weight of the edge (u0, uk) in
Gk is given by

wGk

u0,uk

def=
[
A
(
D−1A

)k−1]
u0uk

=
∑

u1,...,uk−1

w(u0,u1,...,uk). (2)

2.2 Spectral Approximations of Graphs
Our notion of matrix approximations will be through the ≈ symbol, which is in turn defined
through the Löewner partial ordering of matrices. For two matrices, A, and B, we say that
A � B if B −A is positive semidefinite, and A ≈κ B if there exists bounds λmin and λmax
such that λminA � B � λmaxA, and λmax ≤ κλmin. This notation is identical to generalized
eigenvalues, and in particular, LG ≈κ LH implies that all cuts on them are within a factor
of κ of each other.

The adjacency matrix of a graph has several undesirable properties when it comes to
operator based approximations: it can have a large number of eigenvalues at 0, which must
be exactly preserved under relative error approximations. As a result, graph approximations
are defined in terms of graph Laplacians. As we will discuss below, these approximations are
often in terms of reducing edges. So formally, we say that a graph H is a κ-sparsifier of G if
LH ≈κ LG, and our goal is to compute an ε-sparsifier of the k-step random walk graph Gk.

G. Jindal, P. Kolev, R. Peng, and S. Sawlani 14:5

Algorithm 1 IdealSample(G, ε, τ̃)
Input: A graph G = (V,E,w), an integer k, and leverage score upper bounds τ̃ e that satisfy
τ̃ e ≥ weRGeff(e) for all edges e.
Output: An ε-sparsifier H of G with O(ε−2T logn) edges, where T =

∑
e∈E τ̃ e.

1. Initiate H as an empty graph.
2. Set sample count N ← O(ε−2T logn).
3. Repeat N times:

a. Pick an edge e in G with probability pe = τ̃ e/T .
b. Add e to H with new weight we/(Npe).

2.3 Graph Sparsification by Effective Resistances
There are two ways of viewing graph sparsification: either as tossing coins independently on
the edges, or sampling a number of them from an overall probability distribution. We take
the second view here because it is expensive to access all edges in Gk. The pseudocode of
the generic sampling scheme is given in Algorithm 1.

Algorithmically, the sampling step can be implemented by first generating a number
uniformly random in [0,

∑
e τ̃ e], (considering we want an edge e to be chosen with probability

proportional to a real number τ̃ e) and binary searching among the prefix sums of the τ̃ e
values until it reaches the edge corresponding to that point. In the RealRAM model [5, 33]
of computation, however, this can be done in O(m) preprocessing time and O(1) query time
using “pairing” or “aliasing” [6, 24, 39].

The guarantees of this routine require defining effective resistances and leverage scores.
Effective resistance is a metric on a graph that is defined by:

RGeff(u, v) def= χTuvL
†
Gχuv, (3)

where L†G denotes the pseudoinverse of LG and χuv is the indicator vector with 1 at u and
−1 at v. Intuitively, viewing the graph as an electrical network where an edge e acts as a
resistor having resistance 1/we, the effective resistance between u and v is the potential
difference required between them so that one unit of current flows from u to v.

The effective resistances RGeff are directly related to the statistical leverage scores τ by
the relation τ e = weRGeff(e). Moreover, these scores are well defined for general matrices, and
have a wide range of applications in randomized linear algebra [40, 9, 11]. The guarantees of
sampling by weight times effective resistance, or leverage scores, can then be formalized as:

I Lemma 2. (Sampling by Upper Bounds on Leverage Scores [37]) Suppose G = (V,E,w) is
a graph and τ̃ is a vector such that τ̃ e ≥ weRGeff(e) for every edge e, then, with high probability,
any process that simulates the ideal sampling in Algorithm 1 produces an ε-sparsifier of G
with O(ε−2T logn) edges in O(m+ ε−2T log2 n) time, where T =

∑
e∈E τ̃ e.

Proof Sketch. A variant (in page 10 of [20]) of the Matrix Chernoff bound [37] states that
if Y =

∑N
i=1 Yi, Z = E[Y] and 0 � Yi � RZ for every i ∈ [k] and some scalar R, then for

any ε ∈ (0, 1), it holds

Pr [(1− ε)Z � Y � (1 + ε)Z] ≥ 1− 2n · exp
{
−ε2

3R

}
.

Setting Yi to be the Laplacian of the scaled ith edge added to H in Step 3 of Algorithm 1,
we have Yi = we

τ̃ e ·O(ε−2 logn)χeχ
T
e and Y = LH . Moreover, E[H] = G and thus Z = LG.

APPROX/RANDOM’17

14:6 Density Independent Algorithms for Sparsifying k-Step Random Walks

To prove that H is almost always an ε-sparsifier of G, it suffices to show that there is a
scalar R such that Yi � RZ for small enough R. Since weχeχ

T
e � τ eLG for every edge e

(cf. [9, equation (11) in the proof of Lemma 11]) and by assumption τ e ≤ τ̃ e, it follows that
Yi � RLG for R = Θ(ε2/ logn). Hence, the desired bound on the failure probability holds.

The runtime follows by noting that in O(m) time we can precompute prefix sums of τ̃
and each consecutive edge sample takes O(logn) time using binary search. J

The bound on the number of samples then follows by:

I Fact 3 (Foster’s Theorem). For any undirected graph G = (V,E,w), it holds that∑
e∈E

weRGeff (u, v) = n− 1.

Leverage scores are the preferred objects for defining sampling distributions as they are scale
invariant: doubling the weights of all edges does not change their leverages scores. However,
we will still make extensive uses of effective resistances because of the need to approximate
them across different graphs. Such approximations are difficult to state for leverage scores
because spectrally similar graphs may have very different sets of combinatorial edges.

I Fact 4. If G and H are graphs such that LG � LH , then for any vertices u and v we have

RHeff(u, v) ≤ RGeff(u, v).

Note that this generalizes Rayleigh’s monotonicity law, which postulates that the effective
resistances can only increase as one removes edges from a graph.

3 Random Walk Sparsification via Walk Sampling

In this section, we describe our improved algorithm for sparsifying random walk polynomials.
The main difficulty we need to overcome here is that the actual random walk matrix cannot
be constructed explicitly. Instead, we need to simulate the ideal sampling routine shown in
Algorithm 1 by constructing nearly tight upper bounds of effective resistances in Gk that
can also be efficiently sampled from, without having explicit access to Gk.

To obtain these effective resistances estimates in Gk, the following lemma from [7] provides
a helpful starting point.

I Lemma 5. [7] For odd k, we have 1
2LG � LGk � kLG and for even k, we have LG2 �

LGk � k
2 LG2 .

Furthermore, note that Lemma 5 combined with Fact 4 implies for odd k that

RG
k

eff (u, v) ≤ 2RGeff(u, v) (4)

and for even k that

RG
k

eff (u, v) ≤ RG
2

eff (u, v). (5)

Since Gk might be dense, i.e. E[Gk] = Θ(n2), it is prohibitive to use (4) and (5) directly.
Instead, we upper bound the values with a random walk using the triangle inequality of
effective resistances [36, Lemma 9.6.1].

G. Jindal, P. Kolev, R. Peng, and S. Sawlani 14:7

I Fact 6 (Triangle Inequality for Effective Resistances). For any graph G and any walk
(u0, u1, . . . , uk), we have

RGeff(u0, uk) ≤
∑

0≤i<k
RGeff(ui, ui+1). (6)

Now, suppose we have a vector r̃ that upper bounds the effective resistances, i.e., r̃e ≥ RGeff(e)
for all e. Then, by Lemma 2 and Fact 6, to sparsify Gk, it suffices to sample a length k

random walk in G with probability proportional to

w(u0,u1,...,uk) ·
∑

0≤i<k
r̃ui,ui+1 . (7)

This distribution has the advantage that it is efficiently computable:

I Lemma 7. For any graph G = (V,E,w), and any vector r̃ ∈ RE, we can sample length k
walks such that the probability of sampling the walk (u0, u1, . . . , uk) is proportional to

w(u0,u1,...,uk) ·
k−1∑
i=0

r̃ui,ui+1

using the following procedure:
1. Pick uniformly at random an index i in the range [0, k − 1].
2. Choose an edge (ui, ui+1) with probability proportional to wer̃e.
3. Extend the walk in both directions from ui and ui+1 via two random walks.

Proof.
(Step 1) Let i be the selected number. The probability of this event is 1/k.

(Step 2) The probability of selecting an edge (ui, ui+1) is
wui,ui+1 r̃ui,ui+1

〈w, r̃〉
.

(Step 3) Conditioned on the event that edge (ui, ui+1) is selected, the probability to sample
a walk (u0, . . . , uk) equals i∏

j=1

wuj−1,uj

duj

 ·
 k−1∏
j=i+1

wuj ,uj+1

duj

 =
w(u0,u1,...,uk)

wui,ui+1

.

Thus, summing over all choices of i, and by the total law of probability, the probability
of sampling the walk (u0, u1, . . . , uk) is

k−1∑
i=0

1
k
·

wui,ui+1 r̃ui,ui+1

〈w, r̃〉
·

w(u0,u1,...,uk)

wui,ui+1

=
w(u0,u1,...,uk)

k〈w, r̃〉

k−1∑
i=0

r̃ui,ui+1 . J

The total number of samples needed by Lemma 2 is given by the summation over all
length k random walks, similarly to [7, Lemma 29]. For completeness, we present its proof in
Appendix A.

I Lemma 8. For any weighted graph G = (V,E,w), any k ∈ N+, and any vector r̃ ∈ RE,
it holds that∑

(u0,u1,...,uk)

w(u0,u1,...,uk) ·
∑

0≤i<k
r̃ui,ui+1 = k · 〈w, r̃〉. (8)

APPROX/RANDOM’17

14:8 Density Independent Algorithms for Sparsifying k-Step Random Walks

For every odd k, by setting r̃ to (an approximation of) RGeff , yields an efficient sampling
procedure due to (8) and Lemma 7.

However, when k is even, Lemma 5 gives a bound in terms ofRG2

eff (notRGeff), i.e.RG
k

eff (u, v) ≤
RG2

eff (u, v). Hence, the distribution in Lemma 7 requires an access to the 2-step random walk
matrix G2, which might also be dense and therefore expensive to compute.

Moreover, suppose G is a 2-length path graph u− v − w, then RG2

eff (u, v) = +∞, since
G2 has only one edge (u,w) (and self-loops). A naive approach to tackle these issues is to
substitute RG2

eff with RGeff . However, this fails shortly since it is not true in general that

RGeff(u, v) +RGeff(v, w) ≥ RG
2

eff (u,w). (9)

In particular, (9) does not hold for the length 2 path example from above. To verify this,
note that RGeff(u, u) +RGeff(u, v) is a finite number, whereas RG2

eff (u,w) = +∞ since u and
v are disconnected in G2. For a non-degenerate example, let G be a triangle graph on
vertices u, v, w with wuv = wvw = 1 and wuw = 100. Then, RGeff(u, u) +RGeff(u, v) ≈ 1 and
RG2

eff (u, v) ≈ 50.
We overcome this issue by using effective resistances from the “double cover” of G, instead.

The “double cover” G×P2 is the tensor product of G and a path of length 1. Combinatorially,
G× P2 is a bipartite graph with vertex sets V (A), V (B) each a copy of V such that for every
edge (u, v) ∈ G we insert in G × P2 the following two edges: u(A)v(B) and u(B)v(A) with
wu(A)v(B) = wu(B)v(A) = wuv. The next lemma (proved in Appendix A) relates the effective
resistances of G2 and G× P2.

I Lemma 9. For any vertices u and v in G, it holds

RG
2

eff (u, v) = RG×P2
eff (u(A), v(A)),

where u(A) and v(A) are the corresponding copies of u and v in V (A), respectively.

Lemma 9 combined with Fact 6, fixes (9) by upper bounding the effective resistance
RG2

eff (·) with summation of terms RG×P2
eff (·), i.e. for every edge (u,w) in G2 it holds that

RG
2

eff (u,w) = RG×P2
eff (u(A), w(A)) ≤ RG×P2

eff (u(A), v(B)) +RG×P2
eff (v(B), w(A)). (10)

Using the preceding results, we design an algorithm with improved sampling count. It
takes any procedure that produces effective resistance distribution that dominates the true
one (call this an EREstimator), and produces samples that suffice for simulating the ideal
sampling algorithm on Gk (cf. Subsection 2.3, Algorithm 1). The pseudocode for this routine
is shown in Algorithm 2.

Note that from the perspective of this framework by picking edges with probabilities
proportional to wer̃e, and extending them into walks, the previous result [7] can be viewed
as utilizing a simple EREstimator that returns r̃e = 1/we as the effective resistance of every
edge.

I Theorem 10. Given any graph G = (V,E,w), any values of k and ε, and any effective
resistance estimation algorithm EREstimator that produces w.h.p. estimates r̃e ≥ RGeff(e) for
every edge e ∈ E, then calling SparsifyGk(G, k, ε,EREstimator) produces an ε-sparsifier of
Gk with O(ε−2k〈w, r̃〉 logn) edges in time proportion to the cost of one call to EREstimator
on a graph of twice the size, plus an overhead of O(m+ ε−2k2〈w, r̃〉 log2 n).

Proof. By Lemma 2, it suffices to show that this algorithm simulates the ideal sampling
algorithm given in Algorithm 1. Once again we split into the cases of k being odd or even.

G. Jindal, P. Kolev, R. Peng, and S. Sawlani 14:9

Algorithm 2 SparsifyGk (G, k, ε,EREstimator)
Input: Graph G = (V,E,w), integer k, error ε, routine EREstimator that estimates upper
bounds for effective resistances of a graph G.
Output: An ε-sparsifier of Gk

1. If k is odd
a. set r̃ ← EREstimator(G),

2. else k is even
a. Set r̃(2) ← EREstimator(G× P2),
b. Set r̃e ← r̃(2)(u(A), v(B)), for every edge e = uv ∈ E[G] (cf. Lemma 9).

3. Set sampling overhead h← O(ε−2 logn) and number of samples N ← h · k · 〈w, r̃〉.
4. Repeat N times

a. Pick an edge e in G with probability proportional to wer̃e.
b. Pick an integer 0 ≤ i < k uniformly at random, set ui and ui+1 to be endpoints of e.
c. Perform a random walk by taking i steps from ui and k − 1− i steps from ui+1.
d. Add the edge (u0, u1, . . . , uk) to H with weight 1/(h ·

∑
0≤i<k r̃uiui+1).

When k is odd, Lemma 7 implies that a walk (u0, u1, . . . , uk) is sampled with probability
proportional to w(u0,u1,...,uk)

∑
0≤i<k r̃ui,ui+1 , where r̃ui,ui+1 ≥ RGeff(ui, ui+1). Summing

over all walks with fixed endpoints (u0, uk), by combining (2), (4) and Fact 6, this summation
dominates the product wGk

u0,uk
RGk

eff (u0, uk). Thus, by Lemma 2 the resulting probability
distribution satisfies the statement. The running time and the number of edges in the output
sparsifier follow from Lemma 8.

In the case of k being even, by combining Lemma 5 and Lemma 9, we have

RG
k

eff (u, v) ≤ RG×P2
eff

(
u(A), v(A)

)
= RG×P2

eff

(
u(B), v(B)

)
.

Also, note that because k is even, each k step walk in G also corresponds to a walk in
G × P2 that starts/ends on the same side, but alternates sides at each step. Using (10)
and the symmetry between u(A)v(B) and u(B)v(A), it suffices to sample length k walks with
estimated effective resistances satisfying r̃uv ≥ rG×P2

(
u(A), v(B)), for every edge (u, v) ∈ G.

The rest of the algorithm follows similarly as in the case of odd k.
To enable picking a neighbor randomly, we need O(deg(v)) preprocessing time for every

vertex v, which implies a total preprocessing time of O(m). The extra O(k logn) in the
runtime overhead accounts for performing a random walk of length k, i.e. after preprocessing,
a neighboring edge can be sampled using binary search in O(logn) time. J

This reduces the task of sampling edges in Gk to compute good upper bounds for the
effective resistances of either the original graph G or of its double cover G× P2. In the next
section we discuss this routine, with focus on density-independent routines.

4 Faster Density Independent Sparsification of Graphs

The monomial sparsification routine from the previous section only requires a distribution
that dominates effective resistances for a given graph G. Additionally, we only need a
good approximator of G to efficiently compute these approximate effective resistances. The
major challenge in keeping the routine density independent is that most numerically oriented

APPROX/RANDOM’17

14:10 Density Independent Algorithms for Sparsifying k-Step Random Walks

approaches for estimating effective resistances require O(m logn) time. Instead, a more
relevant approach is to utilize “low stretch spanning trees”.

Given a graph G = (V,E,w), and a tree T , we define the stretch of an edge e = (u, v) ∈ E
w.r.t. T as the ratio of the total resistance on the unique path PT (e) between u and v in T
to the resistance of e:

strT,G(e) def= we

∑
e′∈PT (e)

1
we′

.

Extending this definition, the stretch of a subgraph G′(V ′, E′) of G w.r.t. T is given by

strT,G(G′) def=
∑
e∈E′

strT,G(e).

We will drop the usage of the second term in the subscript when the underlying graph is
obvious from the context.

The advantage of using trees with respect to whom G has low stretch is that the resistance
of the path between vertices u and v in the tree can be used as an estimate for the effective
resistance of (u, v), and more importantly, the stretch of all edges can be computed using
lowest common ancestor queries in only O(m) time [19]. In this context, Lemma 2 can be
rewritten as:

I Lemma 11. If we have a tree T � G, then we can construct an ε-sparsifier of G with
O(ε−2strT (G) logn) edges in O(m) time.

However, we are still left with the issue of constructing such a tree. Abraham and Neiman
[2] showed that a tree with stretch Ô(m logn) can be constructed in time Ô(m logn). This
running time does not help our goal of being density-independent. Also, the average stretch
is not low enough for the stretches to serve as effective resistance estimates. To tackle both
of these issues, we follow the approach used in [26]. We present now a brief overview of this
approach and we include the details in Appendix B.
1. Construct a tree T and a graph Ĝ obtained by removing O(m/ logn) edges from G such

that strT (Ĝ) ≤ Ô(m logn). This can be computed in Ô(m) time, using [10, Lemma 5.9]
applied with k = O(logn).

2. Sparsify the removed edges in O(m) time using any standard sparsification method [27, 28]
to get H ′.

3. To sparsify Ĝ, construct a series of graphs Ĝ(0), Ĝ(1), . . . , Ĝ(τ), where Ĝ(0) = Ĝ and Ĝ(τ)

is a graph with low enough stretch such that an O(1)-sparsifier Ĥ(τ) of Ĝ(τ) can be
constructed in O(m) time.

4. Use the sparsifier Ĥ(τ) to construct an O(1)-sparsifier Ĥ(τ−1) of Ĝ(τ−1) and so on, until
we get an O(1)-sparsifier Ĥ(1) of Ĝ(1). Every sparsifier Ĥ(i) has at most O(n logn) edges.

5. Repeating Step 4 a final time using effective resistance upper bounds computed from
Ĥ(0), we compute an ε-sparsifier Ĥ of Ĝ. Bringing in the small ε only at the last step,
allows us to keep the accuracy-related overhead in the intermediate steps at O(1).

This gives us the following results:

I Lemma 12. There is a routine that takes a weighted undirected graph G with n vertices,
m edges, an error ε > 0, and produces in Ô(m + ε−2n log4 n) time an ε-sparsifier of G
with O(ε−2n logn) edges, as well as effective resistance upper bounds r̃ such that 〈w, r̃〉 =
Ô(n log2 n).

G. Jindal, P. Kolev, R. Peng, and S. Sawlani 14:11

I Corollary 13. There is a combinatorial algorithm that for any graph G on n vertices
and m edges, and any error ε > 0, produces in Ô(m + n log6 n) time an ε-sparsifier of G
with Ô(ε−2n log2 n) edges, as well as effective resistance upper bounds r̃ such that 〈w, r̃〉 =
Ô(n log3 n).

The current fastest sparsification routines compute effective resistances via the Johnson-
Lindenstrauss transform [35], which in turn requires the use of fast linear system solvers [27].

I Lemma 14. Given a graph G, we can compute 2-approximations to its effective resistances
in Ô(m logn+ n log2 n) time.

This runtime bound can be obtained by letting the depth approach n in the proof of Theorem
1.2 on page 49 of [27]. The effective resistances can in turn be extracted from the call to
Sparsify made at i = 0 in the pseudocode in Figure 11 on page 46. We omit details on these
steps in the hope that significantly simpler sparsification routines with similar performances
will be developed.

Now, we can prove our main result.

Proof of Theorem 1. The upper bound on effective resistances obtained by Lemma 12,
when combined with Theorem 10 produces an ε-sparsifier of Gk with Ô(ε−2kn log3 n) edges
in Ô(m+ ε−2k2n log4 n) time. Sparsifying this graph once again using Lemma 14 then leads
to the main result as stated in Theorem 1. J

The combinatorial guarantees follow similarly from Corollary 13.

Acknowledgements. We thank David Durfee for the various discussions related to ap-
plications of these ideas in [14], and the anonymous reviewers of previous versions of this
manuscript for their very helpful comments and suggestions.

References
1 Ittai Abraham, David Durfee, Ioannis Koutis, Sebastian Krinninger, and Richard Peng. On

fully dynamic graph sparsifiers. In Foundations of Computer Science (FOCS), 2016 IEEE
57th Annual Symposium on, pages 335–344. IEEE, 2016. Available at: http://arxiv.org/
abs/1604.02094.

2 Ittai Abraham and Ofer Neiman. Using petal-decompositions to build a low stretch span-
ning tree. In Proceedings of the forty-fourth annual ACM symposium on Theory of com-
puting, pages 395–406. ACM, 2012. Available at: https://www.microsoft.com/en-us/
research/wp-content/uploads/2012/01/spanning-full1.pdf.

3 Sayan Bhattacharya, Monika Henzinger, and Giuseppe F Italiano. Deterministic fully
dynamic data structures for vertex cover and matching. In Proceedings of the Twenty-
Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 785–804. SIAM, 2014.
Available at: https://arxiv.org/abs/1412.1318.

4 Andreas Björklund, Rasmus Pagh, Virginia Vassilevska Williams, and Uri Zwick. Listing
triangles. In International Colloquium on Automata, Languages, and Programming, pages
223–234. Springer, 2014.

5 A. Borodin and I. Munro. The computational complexity of algebraic and numeric problems.
American Elsevier Pub. Co New York, 1975.

6 Karl Bringmann and Konstantinos Panagiotou. Efficient sampling methods for discrete
distributions. In Artur Czumaj, Kurt Mehlhorn, Andrew Pitts, and Roger Wattenhofer,
editors, Automata, Languages, and Programming: 39th International Colloquium, ICALP

APPROX/RANDOM’17

http://arxiv.org/abs/1604.02094
http://arxiv.org/abs/1604.02094
https://www.microsoft.com/en-us/research/wp-content/uploads/2012/01/spanning-full1.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2012/01/spanning-full1.pdf
https://arxiv.org/abs/1412.1318

14:12 Density Independent Algorithms for Sparsifying k-Step Random Walks

2012, Warwick, UK, July 9-13, 2012, Proceedings, Part I, pages 133–144. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012. doi:10.1007/978-3-642-31594-7_12.

7 Dehua Cheng, Yu Cheng, Yan Liu, Richard Peng, and Shang-Hua Teng. Efficient
sampling for Gaussian graphical models via spectral sparsification. Proceedings of The
28th Conference on Learning Theory, pages 364–390, 2015. Available at http://jmlr.
org/proceedings/papers/v40/Cheng15.pdf.

8 Yu Cheng and Dehua Cheng. Personal Communication, 2016.
9 Michael B. Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard Peng, and

Aaron Sidford. Uniform sampling for matrix approximation. In Proceedings of the 2015
Conference on Innovations in Theoretical Computer Science, ITCS’15, pages 181–190, New
York, NY, USA, 2015. ACM. doi:10.1145/2688073.2688113.

10 Michael B. Cohen, Gary L. Miller, Jakub W. Pachocki, Richard Peng, and Shen Chen Xu.
Stretching stretch. arXiv preprint arXiv:1401.2454, 2014. Available at: https://arxiv.
org/abs/1401.2454.

11 Michael B. Cohen, Cameron Musco, and Christopher Musco. Input sparsity time low-
rank approximation via ridge leverage score sampling. In Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain,
Hotel Porta Fira, January 16-19, pages 1758–1777, 2017. doi:10.1137/1.9781611974782.
115.

12 Peter G. Doyle and J. Laurie Snell. Random Walks and Electric Networks, volume 22 of
Carus Mathematical Monographs. Mathematical Association of America, 1984. Available
at: https://arxiv.org/abs/math/0001057.

13 David Durfee, Rasmus Kyng, John Peebles, Anup B. Rao, and Sushant Sachdeva. Sampling
random spanning trees faster than matrix multiplication. CoRR, abs/1611.07451, 2016.
Available at: http://arxiv.org/abs/1611.07451.

14 David Durfee, John Peebles, Richard Peng, and Anup B. Rao. Determinant-preserving
sparsification of SDDM matrices with applications to counting and sampling spanning
trees. CoRR, abs/1705.00985, 2017. URL: http://arxiv.org/abs/1705.00985.

15 Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. J. ACM, 34:596–615, July 1987.

16 Andrew V. Goldberg and Robert E. Tarjan. Efficient maximum flow algorithms. Commu-
nications of the ACM, 57(8):82–89, 2014. Available at: http://cacm.acm.org/magazines/
2014/8/177011-efficient-maximum-flow-algorithms/fulltext.

17 Gramoz Goranci, Monika Henzinger, and Mikkel Thorup. Incremental exact min-cut in
poly-logarithmic amortized update time. In Piotr Sankowski and Christos D. Zaroliagis,
editors, 24th Annual European Symposium on Algorithms, ESA 2016, August 22-24, 2016,
Aarhus, Denmark, volume 57 of LIPIcs, pages 46:1–46:17. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2016. Full version available at: https://arxiv.org/abs/1611.
06500. doi:10.4230/LIPIcs.ESA.2016.46.

18 Manoj Gupta and Richard Peng. Fully dynamic (1+ e)-approximate matchings. In 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October,
2013, Berkeley, CA, USA, pages 548–557, 2013. doi:10.1109/FOCS.2013.65.

19 Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors.
siam Journal on Computing, 13(2):338–355, 1984.

20 Nick Harvey. Matrix concentration and sparsification. Workshop on “Randomized Nu-
merical Linear Algebra (RandNLA): Theory and Practice", 2012. Available at: http:
//www.drineas.org/RandNLA/slides/Harvey_RandNLA@FOCS_2012.pdf.

21 Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Sublinear-time decre-
mental algorithms for single-source reachability and shortest paths on directed graphs. In

http://dx.doi.org/10.1007/978-3-642-31594-7_12
http://jmlr.org/proceedings/papers/v40/Cheng15.pdf
http://jmlr.org/proceedings/papers/v40/Cheng15.pdf
http://dx.doi.org/10.1145/2688073.2688113
https://arxiv.org/abs/1401.2454
https://arxiv.org/abs/1401.2454
http://dx.doi.org/10.1137/1.9781611974782.115
http://dx.doi.org/10.1137/1.9781611974782.115
https://arxiv.org/abs/math/0001057
http://arxiv.org/abs/1611.07451
http://arxiv.org/abs/1705.00985
http://cacm.acm.org/magazines/2014/8/177011-efficient-maximum-flow-algorithms/fulltext
http://cacm.acm.org/magazines/2014/8/177011-efficient-maximum-flow-algorithms/fulltext
https://arxiv.org/abs/1611.06500
https://arxiv.org/abs/1611.06500
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.46
http://dx.doi.org/10.1109/FOCS.2013.65
http://www.drineas.org/RandNLA/slides/Harvey_RandNLA@FOCS_2012.pdf
http://www.drineas.org/RandNLA/slides/Harvey_RandNLA@FOCS_2012.pdf

G. Jindal, P. Kolev, R. Peng, and S. Sawlani 14:13

Proceedings of the Forty-sixth Annual ACM Symposium on Theory of Computing, STOC’14,
pages 674–683, 2014. Available at: https://arxiv.org/abs/1504.07959.

22 Gorav Jindal and Pavel Kolev. Faster spectral sparsification of laplacian and SDDM matrix
polynomials. CoRR, abs/1507.07497, 2015. Available at: http://arxiv.org/abs/1507.
07497.

23 Michael Kapralov and Rina Panigrahy. Spectral sparsification via random spanners. In Pro-
ceedings of the 3rd Innovations in Theoretical Computer Science Conference, pages 393–398.
ACM, 2012. Available at: https://www.microsoft.com/en-us/research/wp-content/
uploads/2012/01/sig-alternate.pdf.

24 Donald E. Knuth. The Art of Computer Programming, Volume 2 (3rd Ed.): Seminumerical
Algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1997.

25 Ioannis Koutis. Simple parallel and distributed algorithms for spectral graph sparsification.
In Proceedings of the 26th ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA’14, pages 61–66, New York, NY, USA, 2014. ACM. Available at: http://arxiv.org/
abs/1402.3851. doi:10.1145/2612669.2612676.

26 Ioannis Koutis, Alex Levin, and Richard Peng. Faster spectral sparsification and numerical
algorithms for SDD matrices. ACM Trans. Algorithms, 12(2):17:1–17:16, December 2015.

27 Rasmus Kyng, Yin Tat Lee, Richard Peng, Sushant Sachdeva, and Daniel A. Spielman.
Sparsified cholesky and multigrid solvers for connection laplacians. In Proceedings of the
48th Annual ACM SIGACT Symposium on Theory of Computing, pages 842–850. ACM,
2016. Available at http://arxiv.org/abs/1512.01892.

28 Rasmus Kyng, Jakub Pachocki, Richard Peng, and Sushant Sachdeva. A framework for
analyzing resparsification algorithms. In Proceedings of the Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA’17, pages 2032–2043, Philadelphia, PA,
USA, 2017. Society for Industrial and Applied Mathematics. Available at: https://arxiv.
org/abs/1611.06940.

29 Rasmus Kyng and Sushant Sachdeva. Approximate gaussian elimination for laplacians-fast,
sparse, and simple. In Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual
Symposium on, pages 573–582. IEEE, 2016. Available at: https://arxiv.org/abs/1605.
02353.

30 László Lovász. Random walks on graphs: A survey, 1993. Available at: http://www.cs.
elte.hu/~lovasz/erdos.pdf.

31 Rasmus Pagh and Charalampos E. Tsourakakis. Colorful triangle counting and a mapreduce
implementation. Information Processing Letters, 112(7):277–281, 2012.

32 Richard Peng and Daniel A. Spielman. An efficient parallel solver for SDD linear systems.
In Proceedings of the 46th Annual ACM Symposium on Theory of Computing, STOC’14,
pages 333–342, New York, NY, USA, 2014. ACM. Available at http://arxiv.org/abs/
1311.3286.

33 Franco P. Preparata and Michael I. Shamos. Computational Geometry: An Introduction.
Springer-Verlag New York, Inc., New York, NY, USA, 1985.

34 Christian Sommer. Shortest-path queries in static networks. ACM Computing Surveys
(CSUR), 46(4):45, 2014. Available at: http://www.shortestpaths.com/spq-survey.pdf.

35 D. Spielman and N. Srivastava. Graph sparsification by effective resistances. SIAM Journal
on Computing, 40(6):1913–1926, 2011. doi:10.1137/080734029.

36 Daniel A. Spielman. Lecture notes on graphs and networks, October 2007. Available at:
http://www.cs.yale.edu/homes/spielman/462/2007/lect9-07.pdf.

37 Joel A. Tropp. User-friendly tail bounds for sums of random matrices. Found. Comput.
Math., 12(4):389–434, August 2012. doi:10.1007/s10208-011-9099-z.

APPROX/RANDOM’17

https://arxiv.org/abs/1504.07959
http://arxiv.org/abs/1507.07497
http://arxiv.org/abs/1507.07497
https://www.microsoft.com/en-us/research/wp-content/uploads/2012/01/sig-alternate.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2012/01/sig-alternate.pdf
http://arxiv.org/abs/1402.3851
http://arxiv.org/abs/1402.3851
http://dx.doi.org/10.1145/2612669.2612676
http://arxiv.org/abs/1512.01892
https://arxiv.org/abs/1611.06940
https://arxiv.org/abs/1611.06940
https://arxiv.org/abs/1605.02353
https://arxiv.org/abs/1605.02353
http://www.cs.elte.hu/~lovasz/erdos.pdf
http://www.cs.elte.hu/~lovasz/erdos.pdf
http://arxiv.org/abs/1311.3286
http://arxiv.org/abs/1311.3286
http://www.shortestpaths.com/spq-survey.pdf
http://dx.doi.org/10.1137/080734029
http://www.cs.yale.edu/homes/spielman/462/2007/lect9-07.pdf
http://dx.doi.org/10.1007/s10208-011-9099-z

14:14 Density Independent Algorithms for Sparsifying k-Step Random Walks

38 Charalampos E. Tsourakakis. Fast counting of triangles in large real networks without
counting: Algorithms and laws. In Data Mining, 2008. ICDM’08. Eighth IEEE Inter-
national Conference on, pages 608–617. IEEE, 2008. Available at http://people.seas.
harvard.edu/~babis/tsourICDM08.pdf.

39 A. J. Walker. New fast method for generating discrete random numbers with arbitrary
frequency distributions. Electronics Letters, 10(8):127–128, April 1974. doi:10.1049/el:
19740097.

40 David P. Woodruff et al. Sketching as a tool for numerical linear algebra. Foundations
and Trends® in Theoretical Computer Science, 10(1–2):1–157, 2014. Available at: http:
//researcher.watson.ibm.com/researcher/files/us-dpwoodru/journal.pdf.

A Omitted Proofs For Section 3

We give here some additional details on lemmas from Section 3 that are direct consequences
of steps in previous works. The total summation of the sampling weights follows from a
summation identical to the special case of uniform sampling, as presented in [7, Lemma 29].
More precisely, it is done by evaluating the total weights of all walks with a fixed edge e ∈ G.

Proof of Lemma 8. We first show by induction that the total weights of all length k walks
whose ith edge is e is exactly we.

The base case of k = 1 is trivial as only e is a length 1 walk between u0 and u1.
The inductive case of k > 1 has two cases: i > 0 or i < k − 1. We consider only the case

i > 0, as the other one follows by symmetry. Expanding the weight of a length k walk gives:

w(u0,u1,...,uk) = w(u0,u1,...,uk−1)
Auk−1uk

duk−1

.

The fact that i < k − 1 means that uk can be any neighbor of uk−1, leading to a sum that
cancels the duk−1 term in the denominator. The result then follows from the inductive
hypothesis applied to walks of length k − 1 that have edge e indexed as the ith walk step:∑

(u0,u1,...,uk)
e=(ui,ui+1)

w(u0,u1,...,uk) =
∑

(u0,u1,...,uk)
e=(ui,ui+1)

w(u0,u1,...,uk−1)
∑
uk

Auk−1uk

duk−1

=
∑

(u0,u1,...,uk−1)
e=(ui,ui+1)

w(u0,u1,...,uk−1)
By I.H.= we.

The proof then uses a double counting argument that breaks the summation over edges
e = (ui, ui+1) ∈ G, so as the original summation in (8) becomes equivalent to∑

e∈G
r̃e

∑
0≤i<k

∑
(u0,u1,...,uk)
e=(ui,ui+1)

w(u0,u1,...,uk) =
∑
e∈G

r̃e · kwe = k 〈w, r̃〉 . J

Before we establish an equivalence relation between the effective resistances of the graphs
G2 and G× P2, we need some notation.

I Definition 15 (Schur Complement). Let M =
(

M [F,F] M [F,C]
M [C,F] M [C,C]

)
be a symmetric matrix.

The Schur Complement of M induced by removing the block F is defined by

Sc (M , F) def= M [C,C] −M [C,F]M−1
[F,F]M [F,C].

http://people.seas.harvard.edu/~babis/tsourICDM08.pdf
http://people.seas.harvard.edu/~babis/tsourICDM08.pdf
http://dx.doi.org/10.1049/el:19740097
http://dx.doi.org/10.1049/el:19740097
http://researcher.watson.ibm.com/researcher/files/us-dpwoodru/journal.pdf
http://researcher.watson.ibm.com/researcher/files/us-dpwoodru/journal.pdf

G. Jindal, P. Kolev, R. Peng, and S. Sawlani 14:15

It is known that for any Laplacian M of a graph G, Sc(M,F) is the Laplacian of a graph
GC which is formed by the following iterative process:

For every vertex u ∈ F
For every pair of edges uv1 and uv2 in the current graph (with edges from prior steps)
∗ Delete edges uv1 and uv2, and add a new edge v1v2 with weight wuv1wuv2/du,

where du is the weighted degree of u w.r.t. the current graph.
Delete vertex u.

I Lemma 16. For every vector z =
(

z1
0

)
it holds that

zT1
(
D −AD−1A

)†
z1 =

(
zT1 0T

)(D −A
−A D

)†(z1
0

)
.

By symmetry for any vector z =
(

0
z2

)
it holds that

zT2
(
D −AD−1A

)† z2 =
(

0T zT2
)(D −A
−A D

)†(0
z2

)
.

In particular, the effective resistances are maintained under Schur complement.

Proof. Consider the linear system(
D −A
−A D

)(
x
y

)
=
(

z1
z2

)
⇐⇒ Dx −Ay = z1

−Ax + Dy = z2‘ ⇐⇒ x = D−1 (z1 + Ay)
y = D−1 (z2 + Ax) .

Since z2 = 0, we have

Dx = z1 + AD−1Ax
y = D−1Ax =⇒ x =

(
D −AD−1A

)† z1.

and thus

(
zT1 zT2

)(x
y

)
= zT1 x = zT1

(
D −AD−1A

)† z1. J

We can now prove that the effective resistance between u and v in G2 is the same as the
effective resistance between u(A) and v(A) in G× P2

Proof of Lemma 9. Notice that

LG2 = D −AD−1A

is the Schur Complement of

LG×P2 =
(

D −A
−A D

)
with respect to one half of the vertices, e.g. V (B). The statement follows by Lemma 16. J

APPROX/RANDOM’17

14:16 Density Independent Algorithms for Sparsifying k-Step Random Walks

B Omitted Proofs For Section 4

The following is a detailed exposition of the techniques used to achieve density independent
sparsification of a given graph G. The ideas are mainly from [26], but the arguments are
tailored to our setting. For the reader’s convenience, we present again the scheme overview:
1. Construct a tree T and a graph Ĝ obtained by removing O(m/ logn) edges from G such

that strT (Ĝ) ≤ Ô(m logn). This can be computed in Ô(m) time, using [10, Lemma 5.9]
applied with k = O(logn).

2. Sparsify the removed edges in O(m) time using any standard sparsification method [27, 28]
to get H ′.

3. To sparsify Ĝ, construct a series of graphs Ĝ(0), Ĝ(1), . . . , Ĝ(τ), where Ĝ(0) = Ĝ and Ĝ(τ)

is a graph with low enough stretch such that an O(1)-sparsifier Ĥ(τ) of Ĝ(τ) can be
constructed in O(m) time.

4. Use the sparsifier Ĥ(τ) to construct an O(1)-sparsifier Ĥ(τ−1) of Ĝ(τ−1) and so on, until
we get an O(1)-sparsifier Ĥ(1) of Ĝ(1). Every sparsifier Ĥ(i) has at most O(n logn) edges.

5. Repeating Step 4 a final time using effective resistance upper bounds computed from
Ĥ(0), we compute an ε-sparsifier Ĥ of Ĝ. Bringing in the small ε only at the last step,
allows us to keep the accuracy-related overhead in the intermediate steps at O(1).

B.1 Proof Of Lemma 12
We give now a detailed description of Step 3. The ith graph Ĝ(i) in the series is defined by

Ĝ(i) = Ĝ+ 2i · T.

We establish next an upper bound on the graph stretch strT (Ĝ(i)), for every i. Our proof
uses the following notation that highlights the relation between edge stretch and edge weight
function.

By definition, the stretch of any tree edge equals 1 and the “on-tree” stretch str
T,Ĝ(i)(T)

has value n− 1. On the other hand, the stretch of every non-tree edge e ∈ Ĝ(i)\T satisfies

str
T,Ĝ(i)(e) = wĜ(i)

e

∑
e′∈PT (e)

(
wĜ(i)

e′

)−1
= wĜ

e

∑
e′∈PT (e)

(
(2i + 1)wĜ

e′

)−1
≤ 2−i · str

T,Ĝ
(e).

Moreover, since

str
T,Ĝ(i)(Ĝ\T) ≤ 2−i · str

T,Ĝ
(Ĝ\T) ≤ 2−i · str

T,Ĝ
(Ĝ) = O(2−i ·m logn),

it follows that the total stretch of graph Ĝ(i) w.r.t. T is bounded by

strT (Ĝ(i)) = str
T,Ĝ(i)(Ĝ\T) + str

T,Ĝ(i)(T) ≤ O(2−i ·m logn).

Therefore, the initial graph Ĝ(τ) for τ = Ω(log logn) has total stretch

strT (Ĝ(τ)) = Ô(m/ log2 n).

Using Lemma 11, we can compute in O(m) time an O(1)-sparsifier G′(τ) of Ĝ(τ) with
Ô(m/ logn) edges. Invoking any standard nearly-linear time sparsification algorithm on G′(τ)

then gives us in O(m) time a O(1)-sparsifier Ĥ(τ) of G(τ) with O(n logn) edges.
We present now the TreeSparsify routine which is used in Step 4 and Step 5.

G. Jindal, P. Kolev, R. Peng, and S. Sawlani 14:17

Algorithm 3 TreeSparsify(G,G′, κ, ε)
Input: Graph G = (V,E,w) with κ-sparsifier G′, and error ε > 0.
Output: G̃ that is an ε-sparsifier of G.

1. Compute a low stretch spanning tree T of G′.
2. Compute an upper bound on all leverage scores τ̃ of G using [19].
3. Sample O(ε−2strT (G) logn) edges of G using IdealSample(G, ε, τ̃) (cf. Algorithm 1).

I Lemma 17. Given a κ-sparsifier G′ of G and ε > 0, TreeSparsify(G,G′, κ, ε) produces an
ε-sparsifier of G with Ô(ε−2κ |E(G′)| log2 n) edges in Ô(m+ ε−2κ |E(G′)| log3 n) time.

Proof. To apply Lemma 2, we have to compute a vector r̃ ≥ RGeff and give an upper bound
on 〈w, r̃〉. Since LG � LG′ , by [26, Lemma 6.4] we have strT (G) ≤ strT (G′). Additionally,
since LT � LG′ � κLG, it follows that

r̃ def= κ · RTeff ≥ RGeff . (11)

Using the above statements, and the low stretch spanning tree construction of Abraham
and Neiman [2], we obtain

〈w, r̃〉 = κ · strT (G) ≤ κ · strT (G′) = Ô(κ |E(G′)| logn).

The statement follows by Lemma 2. J

We present now the core iterative procedure underlying Step 4 and Step 5:
(i) Let δ > 0 be an error parameter. In Step 4, we set δ = O(1), whereas δ = ε in Step 5.
(ii) Straightforward checking shows that by construction Ĥ(i+1) is a O(1)-sparsifier of Ĥ(i).
(iii) Compute a δ/2-sparsifier G′(i) of Ĝ(i) with Ô(δ−2n log3 n) edges in Ô(m+ δ−2n log4 n)

time, calling TreeSparsify(Ĝ(i), Ĥ(i+1), O(1), δ). The guarantees follow by Lemma 17.
(iv) Compute a δ/2-sparsifier Ĥ(i) of G′(i) with O(δ−2n logn) edges in Ô(δ−2n log4 n) time,

using Lemma 14 and Lemma 2. Thus, Ĥ(i) is a δ-sparsifier of Ĝ(i).
We analyze now the runtime of Steps 4 and 5. In Step 4, there are O(log logn) calls to

TreeSparsify each with δ = O(1). Thus, by Lemma 17, Step 4 runs in Ô(m+ n log4 n) time.
In Step 5, we set δ = ε. Then, by Lemma 14 and Lemma 2, the runtime of Step 5 is bounded
by Ô(m+ ε−2n log4 n).

B.2 Proof Of Corollary 13
We use purely combinatorial constructions of graph sparsifiers that are based on spanners [23,
25, 28]. We summarize these results in the following lemma.

I Lemma 18 ([28, Theorem 4.1]). Given G and error ε > 0, we can compute an ε-spectral
sparsifier of G with Ô(n log2 n) edges in Ô(m log2 n) time.

We show now that the algorithm in Lemma 18 applied to our sparsification scheme yields
Corollary 13. We argue in a similar manner as in the routine calling numerical sparsifiers,
outlined in Corollary 12. Here, in contrast, every sparsifier Ĥ(i+1) has Ô(n log2 n) edges, and
thus every sparsifier G′(i) has Ô(n log4 n) edges. Hence, every consecutive re-sparsification
call yield a sparsifier Ĥ(i) with Ô(n log2 n) edges in Ô(n log6 n) time.

APPROX/RANDOM’17

Maximum Matching in Two, Three, and a Few
More Passes over Graph Stream
Sagar Kale1 and Sumedh Tirodkar2

1 Department of Computer Science, Dartmouth College, Hanover, NH, USA
sag@cs.dartmouth.edu

2 School of Technology and Computer Science, TIFR, Mumbai, India
sumedh.tirodkar@tifr.res.in

Abstract
We consider the maximum matching problem in the semi-streaming model formalized by Feigen-
baum, Kannan, McGregor, Suri, and Zhang [13] that is inspired by giant graphs of today. As our
main result, we give a two-pass (1/2 + 1/16)-approximation algorithm for triangle-free graphs
and a two-pass (1/2 + 1/32)-approximation algorithm for general graphs; these improve the ap-
proximation ratios of 1/2 + 1/52 for bipartite graphs and 1/2 + 1/140 for general graphs by
Konrad, Magniez, and Mathieu [20]. In three passes, we are able to achieve approximation ra-
tios of 1/2 + 1/10 for triangle-free graphs and 1/2 + 1/19.753 for general graphs. We also give
a multi-pass algorithm where we bound the number of passes precisely – we give a (2/3 − ε)-
approximation algorithm that uses 2/(3ε) passes for triangle-free graphs and 4/(3ε) passes for
general graphs. Our algorithms are simple and combinatorial, use O(n logn) space, and (can be
implemented to) have O(1) update time per edge.

For general graphs, our multi-pass algorithm improves the best known deterministic algo-
rithms in terms of the number of passes:

Ahn and Guha [1] give a (2/3− ε)-approximation algorithm that uses O(log(1/ε)/ε2) passes,
whereas our (2/3− ε)-approximation algorithm uses 4/(3ε) passes;
they also give a (1−ε)-approximation algorithm that uses O(logn ·poly(1/ε)) passes, where n
is the number of vertices of the input graph; although our algorithm is (2/3−ε)-approximation,
our number of passes do not depend on n.

Earlier multi-pass algorithms either have a large constant inside big-O notation for the number
of passes [9] or the constant cannot be determined due to the involved analysis [22, 1], so our
multi-pass algorithm should use much fewer passes for approximation ratios bounded slightly
below 2/3.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Semi Streaming, Maximum Matching

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.15

1 Introduction

Maximum matching is a well-studied problem in a variety of computational models. We
consider it in the semi-streaming model formalized by Feigenbaum, Kannan, McGregor, Suri,
and Zhang [13] that is inspired by generation of ginormous graphs in recent times. A graph
stream is an (adversarial) sequence of the edges of a graph, and a semi-streaming algorithm
must access the edges in the given order and use O(n polylogn) space only, where n is the
number of vertices; note that a matching can have size Ω(n), so Ω(n logn) space is necessary.
The number of times an algorithm goes over a stream of edges is called the number of
passes. A trivial (1/2)-approximation algorithm that can be easily implemented as a one-pass

© Sagar Kale and Sumedh Tirodkar;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 15; pp. 15:1–15:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

15:2 Maximum Matching in Two, Three, and a Few More Passes over Graph Stream

semi-streaming algorithm is to output a maximal matching. Since the formalization of the
semi-streaming model more than a decade ago, the problem of finding a better than (1/2)-
approximation algorithm or proving that one cannot do better has baffled researchers [21].
In a step towards resolving this, Goel, Kapralov, and Khanna [14] proved that for any ε > 0,
a one-pass semi-streaming (2/3 + ε)-approximation algorithm does not exist; Kapralov [16],
building on those techniques, showed non-existence of one-pass semi-streaming (1− 1/e+ ε)-
approximation algorithms for any ε > 0. A natural next question is: Can we do better in, say,
two passes or three passes? In answering that, Konrad, Magniez, and Mathieu [20] gave three-
pass and two-pass algorithms that output matchings that are better than (1/2)-approximate.
In this work, we give algorithms that improve their approximation ratios for two-pass and
three-pass algorithms. We also give a multi-pass algorithm that does better than the best
known multi-pass algorithms for at least initial few passes. We are able to bound the number
of passes precisely: we give a (2/3 − ε)-approximation algorithm that uses 2/(3ε) passes
for triangle-free graphs and 4/(3ε) passes for general graphs. Earlier works either have a
large constant inside the big-O notation for the number of passes [9] or the constant cannot
be determined due to the involved analysis [22, 1]. For example, the (1− ε)-approximation
algorithm by Eggert et al. [9] potentially uses 288/ε5 passes, and for the (1−ε)-approximation
algorithms by McGregor [22] and Ahn and Guha [1], the constants inside the big-O bound
cannot be determined due to the involved analysis. The (2/3− ε)-approximation algorithm
by Feigenbaum et al. [13] uses O(log(1/ε)/ε) passes, which is O(log(1/ε)) factor larger than
the number of passes we use to get the same approximation ratio. Our algorithms are simple
and combinatorial, use O(n logn) space, and (can be implemented to) have O(1) update
time per edge. We also give an explicit and tight analysis of the three-pass algorithm by
Konrad et al. [20] that is reminiscent of Feigenbaum et al.’s [13] multi-pass algorithm.

Technical overview

If we can find a matching M such that there are no augmenting paths of length 3 in
M ∪M∗, where M∗ is a maximum matching, then M is (2/3)-approximate, i.e., (1/2 + 1/6)-
approximate. This is because, in each connected component of M ∪M∗, the ratio of M -edges
to M∗-edges is at least 2/3. This is the basis for the (2/3− ε)-approximation algorithm by
Feigenbaum et al. [13] that uses O(log(1/ε)/ε) passes. The same idea is used by Konrad et
al. [20] in the analysis of their two-pass algorithms. In the first pass, they find a maximal
matching M0 and some subset of support edges, say S. If M0 is so bad that M0 ∪M∗
is almost entirely made up of augmenting paths of length 3 (i.e., |M0| ≈ |M∗|/2), then
by the end of the second pass, they manage to augment (using length-3 augmentations) a
constant fraction of M0 using S and a fresh access to the edges, resulting in a better than
(1/2)-approximation. On the other hand, if M0 is not so bad, then they already have a good
matching. One limitation this idea faces is that a fraction of the edges in S may become
useless for an augmentation if both its endpoints get matched in M0 by the end of the first
pass. Our main result is a two-pass algorithm (described in Section 5) that differs in two
ways from the former approach. Firstly, in the first pass, we only find a maximal matching
M0 so that in the second pass, where we maintain a set S of support edges, S would not
contain “useless” edges. Secondly, any augmentation in our algorithm happens immediately
when an edge arrives if it forms an augmenting path of length 3 with edges in M0 and S.

Our results

In light of the discussion so far, one way to evaluate an algorithm is how much advantage it
gains over the (1/2)-approximate maximal matching found in the first pass. We summarize

S. Kale and S. Tirodkar 15:3

Table 1 Advantages over a maximal matching – advantage α means (1/2 + α)-approximation.

Problem Previous work Advantage Advantage in this work

Bipartite two-pass Esfandiari et al. [11] 1/12 Not considered separately
Bipartite three-pass Esfandiari et al. [11] 1/9.52
Triangle-free two-pass Not considered separately 1/16 (in Section 5)
Triangle-free three-pass 1/10 (in Appendix A)
General two-pass Konrad et al. [20] 1/140 1/32 (in Section 5)
General three-pass Not considered separately 1/19.753 (in Appendix B)

Table 2 Multi-pass algorithms – see Section 6.

Graph Results Approx # Passes

Bipartite
Feigenbaum et al. [13] 2/3− ε O(log(1/ε)/ε)
Eggert et al.[9] 1− ε 288/ε5

Ahn and Guha [1] 1− ε O(log log(1/ε)/ε2)
Triangle free This work (in Section 6) 2/3− ε 2/(3ε)

General

McGregor [22] randomized 1− ε O((1/ε)1/ε)
Ahn and Guha [1] 2/3− ε O(log(1/ε)/ε2)
Ahn and Guha [1] 1− ε O(logn · poly(1/ε))
This work (in Section 6) 2/3− ε 4/(3ε)

our two-pass and three-pass results in Table 1 and multi-pass results in Table 2. We stress
that we are able to bound the number of passes precisely, without big-O notation. For
general graphs, our multi-pass algorithm improves the best known deterministic algorithms in
terms of number of passes – see the third multi-row of Table 2. We note that our multi-pass
algorithm is not just a repetition of the second pass of our two-pass algorithm. Such a
repetition will give an asymptotically worse number of passes (see, for example, the multi-pass
algorithm due to Feigenbaum et al. [13]; the first row of Table 2). We carefully choose the
parameters for each pass to get the required number of passes. Also note that Table 1 shows
advantages over a maximal matching – an algorithm is said to have advantage α if it is a
(1/2 + α)-approximation algorithm (because a maximal matching is (1/2)-approximate).

Note of independent work

The work of Esfandiari et al. [11] who claim better approximation ratios for bipartite graphs
in two passes and three passes is independent and almost concurrent. Our work differs in
several aspects. We consider triangle-free graphs (superset of bipartite graphs) and general
graphs, and we additionally consider multi-pass algorithms. Also, their algorithm has a
post-processing step that uses time O(

√
n · |E|), whereas our algorithms can be implemented

to have O(1) update time per edge. One further detail about this appears in Appendix D.

1.1 Related Work
Karp, Vazirani, and Vazirani [18] gave the celebrated (1 − 1/e)-competitive randomized
online algorithm for bipartite graphs in the vertex arrival setting. Goel et al. [14] gave the
first one-pass deterministic algorithm with the same approximation ratio, i.e., 1− 1/e, in
the semi-streaming model in the vertex arrival setting. For the rest of this section, results
involving ε hold for any ε > 0. As mentioned earlier, Goel, Kapralov, and Khanna [14] proved

APPROX/RANDOM’17

15:4 Maximum Matching in Two, Three, and a Few More Passes over Graph Stream

nonexistence of one-pass (2/3 + ε)-approximation semi-streaming algorithms, which was
extended to (1−1/e+ε)-approximation algorithms by Kapralov [16]. On the algorithms side,
nothing better than outputting a maximal matching, which is (1/2)-approximate, is known.
Closing this gap is considered an outstanding open problem in the streaming community [21].

On the multi-pass front, in the semi-streaming model, Feigenbaum et al. [13] gave
a (2/3 − ε)-approximation algorithm for bipartite graphs that uses O(log(1/ε)/ε) passes;
McGregor [22] improved it to give a (1 − ε)-approximation algorithm for general graphs
that uses O((1/ε)1/ε) passes. For bipartite graphs, this was again improved by Eggert et
al. [9] who gave a (1− ε)-approximation O((1/ε)5)-pass algorithm. Ahn and Guha [1] gave
a linear-programming based (1 − ε)-approximation O(log log(1/ε)/ε2)-pass algorithm for
bipartite graphs. For general graphs, their (1− ε)-approximation algorithm uses number of
passes proportional to logn, so it is worse than that of McGregor [22].

For the problem of one-pass weighted matching, there is a line of work starting with
Feigenbaum et al. [13] giving a 6-approximation semi-streaming algorithm. Subsequent
results improved this approximation ratio: see McGregor [22], Zelke [24], Epstein et al. [10],
Crouch and Stubbs [8], Grigorescu et al.[15], and most recently in a breakthrough, giving a
(2 + ε)-approximation semi-streaming algorithm, Paz and Schwartzman [23]. The multi-pass
version of the problem was considered first by McGregor [22], then by Ahn and Guha [1].
Chakrabarti and Kale [5] and Chekuri et al. [6] consider a more general version of the
matching problem where a submodular function is defined on the edges of the input graph.

The problem of estimating the size of a maximum matching (instead of outputting the
actual matching) has also been considered. We mention Kapralov et al. [17], Esfandiari et
al. [12], Bury and Schwiegelshohn [4], and Assadi et al. [2].

In the dynamic streams, edges of the input graph can be removed as well. The works of
Konrad [19], Assadi et al. [3], and Chitnis et al. [7] consider the maximum matching problem
in dynamic streams.

1.2 Organization of the Paper

After setting up notation in Section 2, we give a tight analysis of the three-pass algorithm for
bipartite graphs by Konrad et al. [20] in Section 3. In Section 4, we see our simple two-pass
algorithm for triangle-free graphs. Then in Section 5, we see our main result – the improved
two-pass algorithm, and then we see the multi-pass algorithm in Section 6. The results that
are not covered in the main sections are covered in the appendix.

2 Preliminaries

We work on graph streams. The input is a sequence of edges (stream) of a graph G = (V,E),
where V is the set of vertices and E is the set of edges; a bipartite graph is denoted as
G = (A,B,E). A streaming algorithm may go over the stream a few times (multi-pass) and
use space O(n polylogn), where n = |V |. In this paper, we give algorithms that make two,
three, or a few more passes over the input graph stream. A matching M is a subset of edges
such that each vertex has at most one edge in M incident to it. The maximum cardinality
matching problem, or maximum matching, for short, is to find a largest matching in the
given graph. Our goal is to design streaming algorithms for maximum matching.

For a subset F of edges and a subset U of vertices, we denote by U(F) ⊆ U the set of
vertices in U that have an edge in F incident on them. Conversely, we denote by F (U) ⊆ F
the set of edges in F that have an endpoint in U . For a subset F of edges and a vertex

S. Kale and S. Tirodkar 15:5

v ∈ V (F), we denote by NF (v) the set of v’s neighbors in the graph (V (F), F), and we define
degF (v) := |NF (v)|.

In the first pass, our algorithms compute a maximal matching which we denote byM0. We
use M∗ to indicate a matching of maximum cardinality. Assume that M0 and M∗ are given.
For i ∈ {3, 5, 7, . . .}, a connected component of M0∪M∗ that is a path of length i is called an
i-augmenting path (nonaugmenting otherwise). We say that an edge in M0 is 3-augmentable
if it belongs to a 3-augmenting path, otherwise we say that it is non-3-augmentable.

I Lemma 1 (Lemma 1 in [20]). Let α > 0, M0 be a maximal matching in G, and M∗ be a
maximum matching in G such that |M0| 6 (1/2+α)|M∗|. Then the number of 3-augmentable
edges in M0 is at least (1/2− 3α)|M∗|, and the number of non-3-augmentable edges in M0 is
at most 4α|M∗|.

Proof. Let the number of 3-augmentable edges in M0 be k. For each 3-augmentable edge in
M0, there are two edges in M∗ incident on it. Also, each non-3-augmentable edge in M0 lies
in a connected component of M0 ∪M∗ in which the ratio of the number of M∗-edges to the
number of M0-edges is at most 3/2. Hence,

|M∗| 6 2k + 3
2(|M0| − k) since # non-3-augmentable edges = |M0| − k ,

6 2k + 3
2

((
1
2 + α

)
|M∗| − k

)
because |M0| 6 (1/2 + α)|M∗| ,

= 1
2k +

(
3
4 + 3

2α
)
|M∗| ,

which, after simplification, gives k > (1/2− 3α)|M∗|. And the number of non-3-augmentable
edges in M0 is |M0| − k 6 |M0| − (1/2− 3α)|M∗| 6 (1/2 +α− 1/2 + 3α)|M∗| = 4α|M∗|. J

We make the following simple, yet crucial, observation.

I Observation 2. Let M0 be a maximal matching. Then V (M0) is a vertex cover, and there
is no edge between any two vertices in V \ V (M0). Therefore, even if the input graph is not
a bipartite graph, the set of edges incident on V \ V (M0), i.e., E(V \ V (M0)) give rise to a
bipartite graph with bipartition (V \ V (M0), V (M0)).

For all the algorithms in this paper, it can be verified that their space complexity is
O(n logn) and update time per edge is O(1). We also ignore floors and ceilings for the sake
of exposition.

3 Analyzing the Three Pass Algorithm for Bipartite Graphs

We analyze the three-pass algorithm for bipartite graphs given by Konrad et al. [20], i.e., Al-
gorithm 1 by considering the distribution of lengths of augmenting paths. We also give a
tight example.

I Theorem 3. Algorithm 1 is a three-pass, semi-streaming, (1/2 + 1/10)-approximation
algorithm for maximum matching in bipartite graphs.

Proof. Without loss of generality, let M∗ be a maximum matching such that all nonaug-
menting connected components of M0 ∪M∗ are single edges. For i = {3, 5, 7, . . .}, let ki

denote the number of i-augmenting paths in M0 ∪M∗, and let k = |M0 ∩M∗|. Then

|M0| = k +
∑

i

i− 1
2 ki and |M∗| = k +

∑
i

i+ 1
2 ki . (1)

APPROX/RANDOM’17

15:6 Maximum Matching in Two, Three, and a Few More Passes over Graph Stream

Algorithm 1 Three-pass algorithm for bipartite graphs due to Konrad et al. [20]
1: In the first pass, find a maximal matching M0.
2: In the second pass, find a maximal matching

MA in F2 := {ab : a ∈ A(M0), b ∈ B \B(M0)} (see Figure 1).
3: In the third pass, find a maximal matching

MB in F3 := {ab : a ∈ A \A(M0) and ∃a′ ∈ A(MA) such that a′b ∈M0}.
4: Augment M0 using edges in MA and MB and return the resulting matching M .

M0

M∗

MA

MB

A(M0)B \ B(M0) B(M0) A \ A(M0)

Figure 1 Example: state of variables in an execution of Algorithm 1.

Consider an i-augmenting path b1a1b2a2b3 · · · b(i+1)/2a(i+1)/2 in M0 ∪M∗, where for each j,
we have aj ∈ A and bj ∈ B. We call the vertex a(i−1)/2 a good vertex, because an edge in
MA incident to a(i−1)/2 can potentially be augmented using the edge b(i+1)/2a(i+1)/2. To
elaborate, consider the set of all edges in MA incident on good vertices; call it M ′A. Consider
the set of edges of the type b(i+1)/2a(i+1)/2 from each i-augmenting path; call it MF . Note
that MF is a matching. Then we can augment M0 using M ′A and MF by as much as |M ′A|.

There is a matching of size
∑

i ki in F2 formed by edges of the type b1a1 from each
i-augmenting path. Since MA is maximal in F2, we have |MA| > (

∑
i ki)/2. Now, the

number of good vertices is
∑

i ki; therefore, the number of bad (i.e., not good) vertices is
|M0| −

∑
i ki. So the number of edges in MA incident on good vertices (see Figure 2)

|M ′A| >
∑

i ki

2 −

(
|M0| −

∑
i

ki

)
= 3

2
∑

i

ki − |M0| .

Let BG := {b ∈ B : ∃a ∈ A(M ′A) such that ab ∈ M0}. Let M ′F ⊆ MF be defined as
M ′F := {ba ∈MF : b ∈ BG}. Then we know that |M ′F | = |M ′A| and M ′F ⊆MF ⊆ F3. Since
we select a maximal matching in F3 in the third pass,

|MB | >
|M ′F |

2 = |M
′
A|

2 = 3
4
∑

i

ki −
|M0|

2 . (2)

So the output size

|M | = |M0|+ |MB |

> |M0|+
3
4
∑

i

ki −
|M0|

2 by (1) and (2),

= |M0|
2 + 3

4(|M∗| − |M0|) by (1),
∑

i

ki = |M∗| − |M0| ,

S. Kale and S. Tirodkar 15:7

M0

M∗

MA

A(M0)B \ B(M0) B(M0) A \ A(M0)

Figure 2 Tight example for Algorithm 1: MA has only one edge that lands on a bad vertex and
cannot be augmented in the third pass. So |M | = |M0| = 3 and |M∗| = 5.

Algorithm 2 Two-pass algorithm for triangle-free graphs
1: In the first pass: M0 ← maximal matching
2: In the second pass: S ← Semi(λ, V (M0), V \ V (M0)) (see Figure 3).
3: After the second pass, augment M0 greedily using edges in S to get M ; output M .
4: function Semi(λ,X, Y) . based on Algorithm 7 in Konrad et al. [20]
5: S ← ∅
6: foreach edge xy such that x ∈ X, y ∈ Y do
7: if degS(x) = 0 and degS(y) 6 λ− 1 then
8: S ← S ∪ {xy}

i.e., |M | > 3|M∗|/4− |M0|/4, but we also have |M | > |M0|, hence

|M | > max
{
|M0|,

3
4 |M

∗| − 1
4 |M0|

}
.

So the bound is minimized when |M0| = 3|M∗|/4−|M0|/4 = 3|M∗|/5 = (1/2+1/10)|M∗|. J

As we can see in the proof above, the worst case happens when |M | = |M0| = 3|M∗|/5.
Setting k3 = k5 > 1, k = 0, and ki = 0 for i > 5 gives us the tight example shown in Figure 2.

4 A Simple Two Pass Algorithm for Triangle Free Graphs

Before seeing our main result, we see a simple two pass algorithm for triangle-free graphs.
The function Semi() in Algorithm 2 greedily computes a subset of edges such that each
vertex in X has degree at most one and each vertex in Y has degree at most λ; we call such
a subset a (λ,X, Y)-semi-matching (Konrad et al. [20] call this a λ-bounded semi-matching).
In Algorithm 2, we find a maximal matching M0 in the first pass, and, in the second pass, we
find a (λ, V (M0), V \ V (M0))-semi-matching S. After the second pass, we greedily augment
edges in M0 one by one using edges in S.

I Theorem 4. Algorithm 2 is a two-pass, semi-streaming, (1/2 + 1/20)-approximation
algorithm for maximum matching in triangle-free graphs.

Proof. As in the proof of Theorem 3, let M∗ be a maximum matching such that all
nonaugmenting connected components of M0 ∪M∗ are single edges. For i = {3, 5, 7, . . .}, let
ki denote the number of i-augmenting paths in M0 ∪M∗, and let k denote the number of
edges in M∗ ∩M0.

Consider an i-augmenting path x1y1x2y2x3 · · ·x(i+1)/2y(i+1)/2 in M0 ∪M∗. We call the
vertices y1 ∈ V (M0) and x(i+1)/2 ∈ V (M0) good vertices, because the edges x1y1 ∈M∗ and

APPROX/RANDOM’17

15:8 Maximum Matching in Two, Three, and a Few More Passes over Graph Stream

M0

S

u1 v1

u2 v2

u3 v3

u4 v4

u5 v5

u6 v6

Figure 3 Example showing M0 and S at the end of the second pass of Algorithm 2 with λ = 2.
When we greedily augment M0 after the second pass, we may choose to augment u5v5 and lose two
possible augmentations of edges u4v4 and u6v6.

x(i+1)/2y(i+1)/2 ∈ M∗ can potentially be added to S by our algorithm. Denote by VG the
set of good vertices and by VB := V (M0) \ VG the set of bad vertices. Then |VG| = 2

∑
i ki.

Note that VG ∩ VB = ∅ and VG ∪ VB = V (M0) by definition.
Let VNC := VG \ V (S) be the set of good vertices not covered by S. An edge uv ∈ M∗

with u ∈ V \ V (M0) and v ∈ VNC was not added to S, because degS(u) = λ. Hence

λ|VNC| 6 |V (M0)| − |VNC| i.e., |VNC| 6
2

λ+ 1 |M0| , (3)

because at most |V (M0)| − |VNC| vertices in V (M0) are covered by S. Now,

|V (M0) \ V (S)| = |VG \ V (S)|+ |VB \ V (S)| ∵ VG ∩ VB = ∅ and VG ∪ VB = V (M0),
6 |VNC|+ |VB | ∵ VNC = VG \ V (S), |VB \ V (S)| 6 |VB |,

6
2

λ+ 1 |M0|+ |V (M0)| − |VG| by (3) and ∵ |VB | = |V (M0)| − |VG|,

= 2
λ+ 1 |M0|+ |V (M0)| − 2

∑
i

ki because |VG| = 2
∑

i

ki .

Using |V (M0)| = |V (M0) \ V (S)|+ |V (M0) ∩ V (S)| and the above, we get

|V (M0) ∩ V (S)| > |V (M0)| −
(

2
λ+ 1 |M0|+ |V (M0)| − 2

∑
i

ki

)

= 2
(∑

i

ki −
1

λ+ 1 |M0|

)
. (4)

We observe that at most |M0| vertices in V (M0) (one endpoint of each edge) can be
covered by S without having both endpoints of an edge in M0 covered. Hence, at least
|V (M0) ∩ V (S)| − |M0| edges in M0 have both their endpoints covered by S, which, by (4),
is at least

2
(∑

i

ki −
1

λ+ 1 |M0|

)
− |M0| = 2

∑
i

ki −
λ+ 3
λ+ 1 |M0| . (5)

S. Kale and S. Tirodkar 15:9

After the second pass, when we greedily augment an edge from the above edges, i.e., edges
whose both endpoints are covered by S, we may potentially lose 2(λ−1) other augmentations
(see Figure 3). To see this, consider uv ∈M0 such that u, v ∈ V (S) and au ∈ S and vb ∈ S.
The graph is triangle free, so we know that a 6= b, and we can augment M0 using the
3-augmenting path auvb; but we may lose at most λ− 1 edges incident to a in S and at most
λ− 1 edges incident to b in S. Therefore the number of augmentations c we get after the
second pass is at least 1/(2λ− 1) times the right hand side of (5), i.e.,

c >
2

2λ− 1
∑

i

ki −
λ+ 3

(2λ− 1)(λ+ 1) |M0| .

So the output size |M | = |M0|+ c, and using the above bound on c and simplifying we get:

|M | > 2
2λ− 1

∑
i

ki + 2(λ2 − 2)
(2λ− 1)(λ+ 1) |M0| ;

substituting
∑

i ki = |M∗| − |M0|, by (1), in the above,

|M | > 2
2λ− 1 |M

∗|+ 2(λ2 − λ− 3)
(2λ− 1)(λ+ 1) |M0| .

Using λ = 3 and the fact that M0 is 2-approximate, we get

|M | > 2
5 |M

∗|+ 3
10 |M0| >

2
5 |M

∗|+ 3
20 |M

∗| = 11
20 |M

∗| =
(

1
2 + 1

20

)
|M∗| . J

5 Improved Two Pass Algorithm

We present our main result that is a two pass algorithm in this section. In the first pass,
we find a maximal matching M0. In the second pass, we maintain a set S of support edges
xy, such that x ∈ V \ V (M0), y ∈ V (M0), and degS(y) 6 λM and degS(x) 6 λU, where
λM > 1 and λU > 1 are parameters denoting maximum degree allowed in S for matched
and unmatched vertices (with respect to M0), respectively. Whenever a new edge forms a
3-augmenting path with an edge in M0 and an edge in S, we augment. We store the vertices
involved in a 3-augmentation in the variable I. We ignore a new edge if it is incident to
a vertex in I. Unused support edges that are incident to a vertex in I become “useless”;
hence to address this, we store the endpoints of M0 edges that share an endpoint with such
useless edges in the variable IB , and we ignore a new edge if it is incident to a vertex in IB .
Algorithm 3 gives a formal description.

Setting up a charging scheme to lower bound the number of
augmentations
We first lay the groundwork and give a charging scheme.

I Observation 5. For general graphs (that are possibly not triangle-free), we need to set
λM > 2.

To see why, suppose λM = 1. Let uv be a 3-augmentable edge in M0. Then, for the edge uv,
we might end up storing the edges ub and vb in S, and the edge uv would not get augmented.
If λM > 2, and we store at least λM edges incident to u, then an edge incident to v will

APPROX/RANDOM’17

15:10 Maximum Matching in Two, Three, and a Few More Passes over Graph Stream

Algorithm 3 Improved two-pass algorithm: input graph G
1: In the first pass, find a maximal matching M0.
2: if G is triangle-free then
3: Return Improve-Matching(M0, 2, 1)
4: else
5: Return Improve-Matching(M0, 4, 2)
6: function Improve-Matching(M0, λU, λM)
7: M ←M0, S ← ∅, I ← ∅ and IB ← ∅
8: foreach edge xy in the stream do
9: if x or y ∈ I ∪ IB then

10: Continue, i.e., ignore xy.
11: else if x ∈ V (M0) and y ∈ V (M0) then
12: Continue, i.e., ignore xy.
13: else if there exist v and b such that yv ∈M0 and vb ∈ S then
14: M ←M \ {yv} ∪ {xy, vb} . a 3-augmentation

Let Ix ← {ux , vx : xux ∈ S and uxvx ∈M0}.
Let Ib ← {ub , vb : ubvb ∈M0 and vbb ∈ S}.

15: Then I ← I ∪ {x, y, v, b} and IB ← IB ∪ Ix ∪ Ib.
16: else

Without loss of generality, assume that x ∈ V \ V (M0) and y ∈ V (M0).
17: if degS(x) < λU and degS(y) < λM then . See Figure 4.
18: S ← S ∪ {xy} . Note: Once an edge is added to S, it is never removed

from it.
19: Return M .

not form a triangle with at least one of those and uv would get augmented. So, for general
graphs, we need to set λM > 2.

Let |M0| = (1/2 + α)|M∗|. For a 3-augmentable edge uv ∈ M0, let auvb be the 3-
augmenting path such that au, vb ∈M∗. Without loss of generality, assume that au arrived
before vb. Then we make the following observation.

I Observation 6. When au arrived, it may not be added to S for one of the following
reasons:

The vertex a was already matched.
There were λM edges incident to u in S.
There were λU edges incident to a in S.

We call some edges in M0 good, some partially good, and some bad. An edge is good if it got
augmented. An edge uv ∈M0 is bad if it is 3-augmentable, not good, and vertex a or b had
λU edges incident to them in S when edge au or vb arrived. An edge uv ∈M0 is partially
good if it is 3-augmentable, but neither good nor bad (“partially” good because, as we will
see later, we can hold some good edge u′v′ ∈M0 responsible for uv not getting augmented).
Note that all 3-augmentable edges get some label according to our labeling. We require the
following lemma to describe the charging scheme.

I Lemma 7. Suppose au was not added to S because there were already λM edges incident
to u in S. If, later, uv did not get augmented when vb arrived, then

b was already matched via augmenting path a′′u′′v′′b, or
there exists a′u ∈ S and u′v′ ∈M0 such that a′ was matched via augmenting path a′u′v′b′.

S. Kale and S. Tirodkar 15:11

M0

some M∗ edges
some S edges

u1 v1

u2 v2

u3 v3

u4 v4

u5 v5

u6 v6a6 b6

a4 b4

Figure 4 Example showing M0 and some of the edges in M∗ and S during the second pass of
Algorithm 3 for triangle-free graphs with λU = 2 and λM = 1. At most one of ui and vi can have
positive degree in S, because we would rather augment uivi instead of adding the latter edge to
S. By our convention, a4u4 arrived before v4b4, and a6u6 arrived before v6b6. Since a4u4 was not
added to S, we have degS(a4) = λU (S edges incident to a4 are not shown).

Proof. When au arrived, |NS(u)| > λM. If b was unmatched when vb arrived, then some
a′ ∈ NS(u) \ {b} must have been matched, otherwise we would have augmented uv. Now for
triangle-free graphs b /∈ NS(u), so |NS(u) \ {b}| = |NS(u)| > 1, and for general graphs, by
Observation 5, λM > 2, so |NS(u) \ {b}| > λM − 1 > 1. J

Charging Scheme

As alluded to earlier, we charge a partially good edge to some good edge. Recall that
for a 3-augmentable edge uv ∈ M0, we denote by au, vb ∈ M∗ the edges that form the
3-augmenting path with uv such that au arrived before vb. We use Observation 6 and
consider the following cases. See Figure 5.

Suppose au was not added to S because a was already matched. Then, let u′v′ ∈ M0
was augmented using au′v′b′. If degS(a) 6 λU − 1, then we charge uv to u′v′. Otherwise,
uv is bad.
Suppose au was not added to S because degS(u) = λM. Then we use Lemma 7. We
either charge uv to u′v′, or if degS(b) 6 λU − 1, then we charge uv to u′′v′′. Otherwise,
uv is bad.
Suppose au was not added to S because degS(a) = λU, then uv is bad.
Otherwise, au was added to S, but uv did not get augmented when vb arrived. Then:

Either there exists a′ ∈ NS(u) that was matched via augmenting path a′u′v′b′ (note
that a′ may be same as a), then we charge uv to u′v′;
or b was already matched via augmenting path a′′u′′v′′b, and vb was ignored; in this
case, if degS(b) 6 λU − 1, then we charge uv to u′′v′′, otherwise, uv is bad.

We now bound the number of bad edges in M0 from above.

I Lemma 8. The number of bad edges is at most λM|M0|/λU.

Proof. We claim that for any uv ∈ M0, degS(u) + degS(v) 6 λM, hence |S| 6 λM|M0|.
A short argument is that the (λM + 1)th edge would cause an augmentation and will not

APPROX/RANDOM’17

15:12 Maximum Matching in Two, Three, and a Few More Passes over Graph Stream

M0

some M∗ edges

some S edges

a stream edgeu′′ v′′ b′′

u′a′′ v′ y

ua v b

partially good

good

bad

Figure 5 Example showing a good edge, a bad edge, and a partially good edge. We use parameters
λU = 2 and λM = 1, so we are in the triangle-free case. The edge u′v′ is not 3-augmentable but was
augmented using a′′u′v′y, so u′v′ is a good edge. The edge u′′v′′ is a 3-augmentable edge that was
not augmented and when a′′u′′ arrived, degS(a′′) = 2, so u′′v′′ is a bad edge. For uv, we did not
take au in S, because degS(u) = 1, so uv is a partially good edge, and we can charge uv to u′v′
using Lemma 7.

be added to S. Let us assume the claim. By the definition of a bad edge, λU edges in S
are “responsible” for one bad edge in M0. Also, an edge au′ (or v′′b, resp.) in S can be
responsible for at most one bad edge that can only be uv if au /∈ S (or if vb /∈ S, resp.;
considering the 3-augmenting path auvb). Hence, the total number of bad edges is at most
|S|/λU 6 λM|M0|/λU. Now we prove the claim.

We first prove for triangle-free graphs by contradiction. Let degS(u) + degS(v) > λM,
and let vy ∈ S be the (λM + 1)th edge incident to one of u and v that was added to S. Since
λM > 1 and degS(v) 6 λM, we have degS(u) > 1, i.e. NS(u) 6= ∅. Now when vy arrived:

the vertex y was unmatched, otherwise vy would not be added to S;
no vertex x ∈ NS(u) was matched, otherwise u, v ∈ IB , and vy would not be added to S.

The above implies that when vy arrived, due to some x ∈ NS(u) the if condition on Line 14
became true, and we augmented uv via xuvy instead of adding vy to S. This is a contradiction.

For general graphs, we argue by contradiction slightly informally for the sake of brevity.
By Observation 5, for general graphs, λM > 2. Let degS(u) + degS(v) > λM > 2. Let vy be
the second edge incident to one of u and v that was added to S; the first edge can be xu or
vy′.

Suppose xu was the first edge. If x 6= y, then we would have augmented uv via
xuvy instead of adding vy to S – a contradiction. If x = y, then after vy was processed,
NS(u) = NS(v) = {y}, and a third edge incident to one of u and v would not be added to
S, because it would have formed a 3-augmenting path with either yu or vy, resulting in a
contradiction that degS(u) + degS(v) = 2.

Otherwise, suppose vy′ was the first edge; then NS(v) = {y, y′} after vy was processed.
Since eventually degS(u) + degS(v) > λM + 1 > 3 and degS(u), degS(v) 6 λM, we would
eventually have degS(u) > 1, so let xu ∈ S. When xu arrived, it would have formed an
3-augmenting path with either vy or vy′ (here, taking care of the fact that one of y and y′
can be same as x), resulting in a contradiction that xu was not added to S.

Thus, we get the claim and complete the proof. J

As a consequence, we get the following.

I Observation 9. In any call to Improve-Matching(), we need to set λU > λM, i.e.,
λU > 2.

S. Kale and S. Tirodkar 15:13

To see why, suppose λU 6 λM. Then by Lemma 8, potentially all 3-augmentable edges in
M0 could become bad edges.

Recall that a 3-augmentable edge is good, partially good, or bad; so by Lemmas 1 and 8,

good or partially good edges >
(

1
2 − 3α

)
|M∗| − λM|M0|

λU

=
(

1
2 − 3α

)
|M∗| − λM

λU

(
1
2 + α

)
|M∗|

=
(
λU − λM

2λU
−
(

3λU + λM
λU

)
α

)
|M∗| . (6)

In the following lemma, we bound the number of partially good edges in M0 that are charged
to one good edge.

I Lemma 10. At most 2λU − 1 partially good edges in M0 are charged to one good edge in
M0.

Proof. Suppose uv ∈M0 was augmented by edges xu and vy such that xu arrived before vy,
then xu ∈ S. Now |NS(x)|, |NS(y)| 6 λU. Since xu ∈ S, we have |NS(x)\{u}| 6 λU−1. Let
B := (NS(x) \ {u}) ∪NS(y), then |B| 6 2λU − 1. Now, the set of partially good edges that
are charged to uv is a subset of M0(B). Observing that |M0(B)| 6 |B| 6 2λU − 1 finishes
the proof. J

The following lemma characterizes the improvement given by Improve-Matching().

I Lemma 11. Let |M0| = (1/2 +α)|M∗| and M = Improve-Matching(M0, λU, λM), then

|M | >
(

1
2 + λU − λM

4λ2
U

+
(

1− 3λU + λM
2λ2

U

)
α

)
|M∗| >

(
1
2 + λU − λM

4λ2
U

)
|M∗| .

Proof. By (6) and Lemma 10, the total number of augmentations during one call to Improve-
Matching() is at least

1
2λU

(
λU − λM

2λU
−
(

3λU + λM
λU

)
α

)
|M∗| =

(
λU − λM

4λ2
U

−
(

3λU + λM
2λ2

U

)
α

)
|M∗| .

Hence, we get the following bound on the size of the output matching M :

|M | > |M0|+
(
λU − λM

4λ2
U

− 3λU + λM
2λ2

U
α

)
|M∗|

=
(

1
2 + λU − λM

4λ2
U

+
(

1− 3λU + λM
2λ2

U

)
α

)
|M∗| because |M0| = (1/2 + α)|M∗| ,

>

(
1
2 + λU − λM

4λ2
U

)
|M∗| since λU > 2 by Observation 9 . J

Now we state and prove our main result.

I Theorem 12. Algorithm 3 uses two passes and has an approximation ratio of 1/2 + 1/16
for triangle-free graphs and an approximation ratio of 1/2 + 1/32 for general graphs for
maximum matching.

Proof. After the second pass, the output size |M | > (1/2 + (λU − λM)/(4λ2
U))|M∗| due

to Lemma 11; we use λU = 2 and λM = 1 for triangle-free graphs and λU = 4 and λM = 2
(see Observation 5) for general graphs to get the claimed approximation ratios. J

APPROX/RANDOM’17

15:14 Maximum Matching in Two, Three, and a Few More Passes over Graph Stream

Algorithm 4 Multi-pass algorithm: input graph G
1: In the first pass, find a maximal matching M1.
2: M ←M1
3: if G is triangle-free then
4: for i = 2 to d2/(3ε)e do
5: M ← Improve-Matching(M, i, 1)
6: else
7: for i = 2 to d4/(3ε)e do
8: M ← Improve-Matching(M, i+ 1, 2)
9: Return M .

6 Multi Pass Algorithm

We run the function Improve-Matching() in Algorithm 3 with increasing values of λU,
and the approximation ratio converges to 1/2 + 1/6. We note that this multi-pass algorithm
is not just a repetition of the function Improve-Matching(). Such a repetition will give
an asymptotically worse number of passes (see, for example, the multi-pass algorithm due
to Feigenbaum et al. [13]). We carefully choose the parameter λU for each pass to get the
required number of passes.

I Theorem 13. For any ε > 0, Algorithm 4 is a semi-streaming (1/2+1/6−ε)-approximation
algorithm for maximum matching that uses 2/(3ε) passes for triangle-free graphs and 4/(3ε)
passes for general graphs.

Proof. We prove the theorem for triangle-free case; the general case is similar. Let Mi be
the matching computed by Algorithm 4 after ith pass, and let p := d2/(3ε)e, so ε 6 2/(3p).
Since M1 is maximal, it is (1/2)-approximate. Let α1 := 0, and for i ∈ {2, 3, . . . , p}, let

αi := i− 1
4i2 +

(
1− 3i+ 1

2i2

)
αi−1

(see Lemma 11 with λU = i and λM = 1). Then, by Lemma 11 and the logic of Algorithm 4,
for i ∈ [p], the matching Mi is (1/2 + αi)-approximate (by a trivial induction). Now we
bound αp by induction. We claim that for i ∈ [p],

αi >
1
6 −

2
3i ,

which we prove by induction on i.
Base case: For i = 1, we have 1/6− α1 = 1/6− 0 = 1/6 6 2/(3 · 1).
For inductive step, we want to show that

1
6 − αi = 1

6 −
i− 1
4i2 −

(
1− 3i+ 1

2i2

)
αi−1 6

2
3i ,

which is implied by the following (using inductive hypothesis)

1
6 −

i− 1
4i2 +

(
1− 3i+ 1

2i2

)(
2

3(i− 1) −
1
6

)
6

2
3i ,

implied by 1
6 −

i− 1
4i2 +

(
2i2 − 3i− 1

2i2

)(
4− i+ 1
6(i− 1)

)
6

2
3i ,

S. Kale and S. Tirodkar 15:15

multiplying both sides by 12i2(i− 1), we then need to show that,

2i2(i− 1)− 3(i− 1)2 + (2i2 − 3i− 1)(−i+ 5) 6 8i(i− 1) ,
implied by 2i3 − 2i2 − 3(i2 − 2i+ 1) + (−2i3 + 10i2 + 3i2 − 15i+ i− 5) 6 8i2 − 8i ,
implied by 2i3 − 5i2 + 6i− 3 + (−2i3 + 13i2 − 14i− 5) 6 8i2 − 8i ,
implied by 8i2 − 8i− 8 6 8i2 − 8i ,

which is true, so we get the claim. Therefore αp > 1/6− 2/(3p) > 1/6− ε, and by our earlier
observation, Mp is (1/2 + αp)-approximate, and this finishes the proof for triangle-free case.
The proof for general case is very similar. We define p := d4/(3ε)e and α1 := 0, and for
i ∈ {2, 3, . . . , p}, we define

αi := i− 1
4(i+ 1)2 +

(
1− 3(i+ 1) + 2

2(i+ 1)2

)
αi−1 ,

i.e., we use λU = i+ 1 and λM = 2. The corresponding claim then is that for i ∈ [p],

αi >
1
6 −

4
3i ,

which can be verified by induction on i. J

Acknowledgements. We thank Sundar Vishwanathan and Ashish Chiplunkar for helpful
discussions. The first author would like to thank his advisor Amit Chakrabarti and Andrew
McGregor for helpful discussions.

References
1 Kook Jin Ahn and Sudipto Guha. Linear programming in the semi-streaming model with

application to the maximum matching problem. Inf. Comput., 222:59–79, January 2013.
doi:10.1016/j.ic.2012.10.006.

2 Sepehr Assadi, Sanjeev Khanna, and Yang Li. On estimating maximum matching size
in graph streams. In Proc. 28th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1723–1742, 2017. doi:10.1137/1.9781611974782.113.

3 Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. Maximum matchings
in dynamic graph streams and the simultaneous communication model. In Proc. 27th
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1345–1364, 2016. URL:
http://dl.acm.org/citation.cfm?id=2884435.2884528.

4 Marc Bury and Chris Schwiegelshohn. Sublinear estimation of weighted matchings in
dynamic data streams. In Proc. 23rd Annual European Symposium on Algorithms, pages
263–274, 2015. doi:10.1007/978-3-662-48350-3_23.

5 Amit Chakrabarti and Sagar Kale. Submodular maximization meets streaming: matchings,
matroids, and more. Mathematical Programming, 154(1):225–247, 2015. doi:10.1007/
s10107-015-0900-7.

6 Chandra Chekuri, Shalmoli Gupta, and Kent Quanrud. Streaming algorithms for submod-
ular function maximization. In Proc. 42nd International Colloquium on Automata, Lan-
guages and Programming, pages 318–330, 2015. doi:10.1007/978-3-662-47672-7_26.

7 Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Hajiaghayi, An-
drew McGregor, Morteza Monemizadeh, and Sofya Vorotnikova. Kernelization via sampling
with applications to finding matchings and related problems in dynamic graph streams. In
Proc. 27th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1326–1344, 2016.
URL: http://dl.acm.org/citation.cfm?id=2884435.2884527.

APPROX/RANDOM’17

http://dx.doi.org/10.1016/j.ic.2012.10.006
http://dx.doi.org/10.1137/1.9781611974782.113
http://dl.acm.org/citation.cfm?id=2884435.2884528
http://dx.doi.org/10.1007/978-3-662-48350-3_23
http://dx.doi.org/10.1007/s10107-015-0900-7
http://dx.doi.org/10.1007/s10107-015-0900-7
http://dx.doi.org/10.1007/978-3-662-47672-7_26
http://dl.acm.org/citation.cfm?id=2884435.2884527

15:16 Maximum Matching in Two, Three, and a Few More Passes over Graph Stream

8 Michael Crouch and Daniel M. Stubbs. Improved streaming algorithms for weighted match-
ing, via unweighted matching. In Approximation, Randomization, and Combinatorial Op-
timization. Algorithms and Techniques (APPROX/RANDOM 2014), volume 28 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 96–104. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2014. doi:10.4230/LIPIcs.APPROX-RANDOM.2014.96.

9 Sebastian Eggert, Lasse Kliemann, Peter Munstermann, and Anand Srivastav. Bipartite
matching in the semi-streaming model. Algorithmica, 63(1):490–508, 2012. doi:10.1007/
s00453-011-9556-8.

10 Leah Epstein, Asaf Levin, Julian Mestre, and Danny Segev. Improved approximation
guarantees for weighted matching in the semi-streaming model. SIAM Journal on Discrete
Mathematics, 25(3):1251–1265, 2011. doi:10.1137/100801901.

11 H. Esfandiari, M. Hajiaghayi, and M. Monemizadeh. Finding large matchings in semi-
streaming. In 2016 IEEE 16th International Conference on Data Mining Workshops
(ICDMW), pages 608–614, Dec 2016. doi:10.1109/ICDMW.2016.0092.

12 Hossein Esfandiari, Mohammad T. Hajiaghayi, Vahid Liaghat, Morteza Monemizadeh, and
Krzysztof Onak. Streaming algorithms for estimating the matching size in planar graphs
and beyond. In Proc. 26th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1217–1233, 2015. URL: http://dl.acm.org/citation.cfm?id=2722129.2722210.

13 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
On graph problems in a semi-streaming model. Theor. Comput. Sci., 348(2):207–216, De-
cember 2005. doi:10.1016/j.tcs.2005.09.013.

14 Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication and streaming
complexity of maximum bipartite matching. In Proc. 23rd Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 468–485, 2012. URL: http://dl.acm.org/citation.cfm?
id=2095116.2095157.

15 Elena Grigorescu, Morteza Monemizadeh, and Samson Zhou. Streaming weighted match-
ings: Optimal meets greedy. CoRR, abs/1608.01487, 2016. URL: http://arxiv.org/abs/
1608.01487.

16 Michael Kapralov. Better bounds for matchings in the streaming model. In Proc. 24th
Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2013.

17 Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Approximating matching size from
random streams. In Proc. 25th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 734–751, 2014. URL: http://dl.acm.org/citation.cfm?id=2634074.2634129.

18 Richard M. Karp, Umesh V. Vazirani, and Vijay V. Vazirani. An optimal algorithm for
on-line bipartite matching. In Proc. 22nd Annual ACM Symposium on the Theory of
Computing, pages 352–358, 1990. doi:10.1145/100216.100262.

19 Christian Konrad. Maximum matching in turnstile streams. In Proc. 23rd Annual European
Symposium on Algorithms, pages 840–852, 2015. doi:10.1007/978-3-662-48350-3_70.

20 Christian Konrad, Frédéric Magniez, and Claire Mathieu. Maximum matching in semi-
streaming with few passes. In Proc. 15th International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems, pages 231–242, 2012 and CoRR,
abs/1112.0184, 2014. URL: http://arxiv.org/abs/1112.0184.

21 Andrew McGregor. Problem 60: Single-pass unweighted matchings. http://sublinear.
info/index.php?title=Open_Problems:60. Accessed: 2017-02-16.

22 Andrew McGregor. Finding graph matchings in data streams. In Proc. 8th International
Workshop on Approximation Algorithms for Combinatorial Optimization Problems, pages
170–181, 2005. doi:10.1007/11538462_15.

23 Ami Paz and Gregory Schwartzman. A (2+ε)-approximation for maximum weight matching
in the semi-streaming model. In Proc. 28th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 2153–2161, 2017. doi:10.1137/1.9781611974782.140.

24 Mariano Zelke. Weighted matching in the semi-streaming model. In Proc. 25th Interna-
tional Symposium on Theoretical Aspects of Computer Science, pages 669–680, 2008.

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.96
http://dx.doi.org/10.1007/s00453-011-9556-8
http://dx.doi.org/10.1007/s00453-011-9556-8
http://dx.doi.org/10.1137/100801901
http://dx.doi.org/10.1109/ICDMW.2016.0092
http://dl.acm.org/citation.cfm?id=2722129.2722210
http://dx.doi.org/10.1016/j.tcs.2005.09.013
http://dl.acm.org/citation.cfm?id=2095116.2095157
http://dl.acm.org/citation.cfm?id=2095116.2095157
http://arxiv.org/abs/1608.01487
http://arxiv.org/abs/1608.01487
http://dl.acm.org/citation.cfm?id=2634074.2634129
http://dx.doi.org/10.1145/100216.100262
http://dx.doi.org/10.1007/978-3-662-48350-3_70
http://arxiv.org/abs/1112.0184
http://sublinear.info/index.php?title=Open_Problems:60
http://sublinear.info/index.php?title=Open_Problems:60
http://dx.doi.org/10.1007/11538462_15
http://dx.doi.org/10.1137/1.9781611974782.140

S. Kale and S. Tirodkar 15:17

Algorithm 5 Three-pass algorithm for triangle-free graphs
1: In the first pass, find a maximal matching M0.
2: In the second pass, find a maximal matching M1 in F1 := {uv : u ∈ V \ V (M0), v ∈
V (M0)}.

3: After the second pass:
M ′1 ← arbitrary largest subset of M1 such that there is no 3-augmenting path in
M ′1 ∪M0 with respect to M0
V2 ← {x ∈ V (M0) : ∃v, w such that vw ∈M ′1 and wx ∈M0}
For x ∈ V2, denote by P (x) the vertex v such that there exists w with vw ∈M ′1 and
wx ∈M0. See x and P (x) in Figure 6.

4: In the third pass: F2 := {xy : x ∈ V2, y ∈ V \ V (M0)}
5: M2 ← ∅
6: for edge xy ∈ F2 do
7: if x, and y are unmarked then
8: M2 ←M2 ∪ {xy}; since the graph is triangle free, y 6= P (x), and we can augment
M0 using xy.

9: Mark P (x), x, y, and P−1(y) (if exists).
10: Let M be largest of M3 and M ′3 which are computed below.

Augment M0 using edges in M1 to get M3.
Augment M0 using edges in M ′1 and M2 to get M ′3.

11: Output M .

A Three Pass Algorithm for Triangle Free Graphs

For completeness, we present our three-pass algorithm for triangle-free graphs.

I Theorem 14. Algorithm 5 is a three-pass, semi-streaming, (1/2 + 1/10)-approximation
algorithm for maximum matching in triangle-free graphs, and the analysis is tight.

Proof. Let |M0| = (1/2 + α)|M∗|. The number of edges in M∗ incident on V (M∗) \ V (M0)
is

|V (M∗) \ V (M0)| > |V (M∗)| − |V (M0)| = 2|M∗| − 2|M0| = (1− 2α)|M∗| ; (7)

and these edges also belong to F1. Since M1 is a maximal matching in F1,

|M1| > (1− 2α)|M∗|/2 = (1/2− α)|M∗| . (8)

Let c be the number of 3-augmenting paths in M1 ∪M0, so |M ′1| = |M1| − c by the definition
of M ′1. By Lemma 1, there are at most 4α|M∗| non-3-augmentable edges in M0. So at least
|M1| − c− 4α|M∗| edges of M ′1 are incident on 3-augmentable edges of M0. Therefore there
is a matching of size at least |M1| − c− 4α|M∗| in F2; consider one such matching MF . We
claim that |M2| > |MF |/4. See Figure 6. Let xy ∈ M2; we note that xy disallows at most
four edges in MF from being added to M2 due to the (at most) four marks that it adds,
because a marked vertex can disallow at most one edge in MF (due to it being a matching),
which shows the claim. Hence:

APPROX/RANDOM’17

15:18 Maximum Matching in Two, Three, and a Few More Passes over Graph Stream

M0

MF

M ′1

a stream edge

xP (x)

y P−1(y)

Figure 6 An edge xy ∈M2 disallows at most four edges in MF from being added to M2.

|M2| >
|MF |

4

>
|M1| − c− 4α|M∗|

4

>
1
4

((
1
2 − α

)
|M∗| − c− 4α|M∗|

)
by (8) ,

= 1
4

((
1
2 − 5α

)
|M∗| − c

)
.

Now, each edge in M2 gives one augmentation after the second pass. To see this, we observe
that for any x ∈ V2, at any point in the algorithm, x and P (x) are either both marked or
both unmarked. So when an edge xy ∈ M2 arrives, x and y are unmarked, and P (x) and
P−1(y) (if it exists) are also unmarked, otherwise one of x and y would have been marked
and xy would not have been added to M2. Since both P (x) and P−1(y) were unmarked, we
can use the augmenting path {M ′1({P (x)}),M0({x}), xy}. Hence we get at least

max
{
c,

1
4

((
1
2 − 5α

)
|M∗| − c

)}
augmentations after the third pass. This is minimized by setting

c = 1
4

((
1
2 − 5α

)
|M∗| − c

)
= 1

5

((
1
2 − 5α

)
|M∗|

)
=
(

1
10 − α

)
|M∗| .

So we get the following bound:

|M | > |M0|+
(

1
10 − α

)
|M∗| >

(
1
2 + α

)
|M∗|+

(
1
10 − α

)
|M∗| =

(
1
2 + 1

10

)
|M∗| .J

The tight example is shown in Figure 7.

B Three Pass Algorithm for General Graphs

We find a maximal matching M1 in the first pass. Then we use Improve-Matching()
function from Algorithm 3, i.e.,

S. Kale and S. Tirodkar 15:19

M0

M∗

M1

A(M0)B \ B(M0) B(M0) A \ A(M0)

Figure 7 Tight example for Algorithm 5: M1 has only two edges that land on bad vertices and
cannot be augmented in the third pass. So |M | = |M0| = 3 and |M∗| = 5.

in the second pass, M2 ← Improve-matching(M1, 4, 2), and

in the third pass, M3 ← Improve-matching(M2, 5, 2).
We observe that M1 is (1/2)-approximate. Then by double application of Lemma 11, we get
that M3 is (1/2 + 81/1600) ≈ (1/2 + 1/19.753)-approximate.

C Three Pass Algorithm for Bipartite Graphs: Suboptimal Analysis

We now give an analysis of Algorithm 1 that shows approximation ratio of only 1/2 + 1/18
that is based on Konrad et al.’s [20] analysis for their two-pass algorithm for bipartite graphs.
Afterward, we demonstrate that by not considering the distribution of lengths of augmenting
paths, we may prove an approximation ratio of at most 1/2 + 1/14. The better and tight
analysis appears in Section 3.

I Theorem 15. Algorithm 1 is a three-pass, semi-streaming, (1/2 + 1/18)-approximation
algorithm for maximum matching in bipartite graphs.

Proof. As usual, let |M0| = (1/2 + α)|M∗|. Since M0 is a maximal matching, there are
|B(M∗) \B(M0)| edges of M∗ that are also in F2. We have

|B(M∗) \B(M0)| > |B(M∗)| − |B(M0)| = |M∗| − |M0| ,

and since MA is maximal, we then get the following:

|MA| >
1
2 |B(M∗)\B(M0)| > 1

2(|M∗|−|M0|) = 1
2

(
1−

(
1
2 + α

))
|M∗| = 1

2

(
1
2 − α

)
|M∗|.

(9)

By Lemma 1, there are at most 4α|M∗| non-3-augmentable edges in M0. Which means that
at least |MA| − 4α|M∗| edges of MA are incident on 3-augmentable edges of M0; therefore
there is a matching of size at least |MA|−4α|M∗| in F3. Since we output a maximal matching
in F3, we get at least (1/2)(|MA| − 4α|M∗|) augmentations after the third pass. So we get

APPROX/RANDOM’17

15:20 Maximum Matching in Two, Three, and a Few More Passes over Graph Stream

the following bound:

|M | > |M0|+
1
2(|MA| − 4α|M∗|)

> |M0|+
1
2

(
1
2

(
1
2 − α

)
− 4α

)
|M∗| by (9) ,

= |M0|+
(

1
8 −

9
4α
)
|M∗|

=
(

1
2 + α

)
|M∗|+

(
1
8 −

9
4α
)
|M∗| because |M0| = (1/2 + α)|M∗| ,

=
(

1
2 + 1

8 −
5
4α
)
|M∗| .

We also have |M | > |M0| = (1/2 + α)|M∗|. As α increases, the former bound deteriorates
and the latter improves, so the worst case α is when these two bounds are equal, which
happens at α = 1/18, and the approximation ratio we get is 1/2 + 1/18. J

C.1 Improved Analysis Without Considering Longer Augmenting Paths
We can analyze Algorithm 1 better if we bound |MA| more carefully. The claim is that
at least (1/2 − 7α)|M∗|/2 edges of MA are incident on 3-augmentable edges of M0. Let
AG ⊆ A(M0) be the set of vertices in A that are endpoints of 3-augmentable edges of M0;
also, let AN = A(M0) \ AG. So there is a matching of size at least |AG| in F2 that covers
AG. Any maximal matching in F2 has at least (|AG| − |AN |)/2 edges that are incident on
AG. To see the claim, we use the facts |AG| > (1/2− 3α)|M∗| and |AN | 6 4α|M∗|. So there
is a matching of size at least (1/2− 7α)|M∗|/2 in F3. We output a maximal matching in F3;
hence we get at least (1/2− 7α)|M∗|/4 augmentations after the third pass. So we get the
following bound:

|M | > |M0|+
1
4

(
1
2 − 7α

)
|M∗|

=
(

1
2 + α

)
|M∗|+ 1

4

(
1
2 − 7α

)
|M∗|

=
(

1
2 + 1

8 −
3
4α
)
|M∗| .

where the second inequality is by (9). We also have |M | > |M0| = (1/2 + α)|M∗|, so the
worst case α is when these two bounds are equal, which happens at α = 1/14 and the
approximation ratio we get is 1/2 + 1/14, and we get the following theorem.

I Theorem 16. Algorithm 1 is a three-pass, semi-streaming, (1/2 + 1/14)-approximation
algorithm for maximum matching in bipartite graphs.

D A Note on the Analysis by Esfandiari et al.

We demonstrate with an example that the analysis of the algorithm by Esfandiari et al. [11]
given for bipartite graphs cannot be extended for triangle-free graphs to get the same
approximation ratio. See Figure 8. Lemma 6 in their paper, as they correctly claim, holds
only for bipartite graphs and not for triangle-free graphs. Our algorithm in Section 4 is
essentially the same algorithm except for the post-processing step; we augment the maximal
matching computed in the first pass greedily, whereas they use an offline maximum matching
algorithm. We have highlighted some other comparison points in Section 1.

S. Kale and S. Tirodkar 15:21

M

some M∗ edges

golden edges
u1 v1

u2 v2

u3 v3

u4 v4

u5 v5

u6 v6

u7 v7a7

a6

a1

a2

b2

b7

Figure 8 Example demonstrating that Lemma 6 in Esfandiari et al. [11] does not hold when
the input graph is not bipartite but is triangle-free. We use k = 3. For an M edge uivi, there are
two M∗ edges incident on it, which are aiui and vibi, and some of the M∗ edges are not shown,
but all golden edges are shown, which we call support edges or denote by S in our terminology. It
can be seen from this example that their algorithm is not a (1/2 + 1/12)-approximation algorithm
for triangle free graphs, because out of the seven 3-augmentable edges in M , only one will get
augmented, thereby giving a worse approximation ratio.

APPROX/RANDOM’17

Submodular Secretary Problems: Cardinality,
Matching, and Linear Constraints∗

Thomas Kesselheim1 and Andreas Tönnis2

1 Department of Computer Science, TU Dortmund, Dortmund, Germany†

thomas.kesselheim@cs.tu-dortmund.de

2 Department of Computer Science, University of Bonn, Bonn, Germany‡

atoennis@uni-bonn.de

Abstract
We study various generalizations of the secretary problem with submodular objective functions.
Generally, a set of requests is revealed step-by-step to an algorithm in random order. For each
request, one option has to be selected so as to maximize a monotone submodular function while
ensuring feasibility. For our results, we assume that we are given an offline algorithm computing
an α-approximation for the respective problem. This way, we separate computational limitations
from the ones due to the online nature. When only focusing on the online aspect, we can assume
α = 1.

In the submodular secretary problem, feasibility constraints are cardinality constraints, or
equivalently, sets are feasible if and only if they are independent sets of a k-uniform matroid.
That is, out of a randomly ordered stream of entities, one has to select a subset of size k. For
this problem, we present a 0.31α-competitive algorithm for all k, which asymptotically reaches
competitive ratio α/e for large k. In submodular secretary matching, one side of a bipartite graph
is revealed online. Upon arrival, each node has to be matched permanently to an offline node or
discarded irrevocably. We give a 0.207α-competitive algorithm. This also covers the problem, in
which sets of entities are feasible if and only if they are independent with respect to a transversal
matroid. In both cases, we improve over previously best known competitive ratios, using a
generalization of the algorithm for the classic secretary problem.

Furthermore, we give an O(αd−
2

B−1)-competitive algorithm for submodular function maxi-
mization subject to linear packing constraints. Here, d is the column sparsity, that is the maximal
number of none-zero entries in a column of the constraint matrix, and B is the minimal capacity
of the constraints. Notably, this bound is independent of the total number of constraints. We
improve the algorithm to be O(αd−

1
B−1)-competitive if both d and B are known to the algorithm

beforehand.

1998 ACM Subject Classification F.1.2 [Models of Computation] Online Computation

Keywords and phrases Secretary Problem, Online Algorithms, Submodular Maximization

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.16

∗ The full version of this article can be found at http://arxiv.org/abs/1607.08805.
† Work was done while this author was at Max Planck Institute for Informatics and Saarland University,

supported in part by the DFG through Cluster of Excellence MMCI.
‡ Work was done while this author was at RWTH Aachen University, supported by the DFG GRK/1298
“AlgoSyn”.

© Thomas Kesselheim and Andreas Tönnis;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 16; pp. 16:1–16:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.16
http://arxiv.org/abs/1607.08805
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

16:2 Submodular Secretary Problems: Cardinality, Matching, and Linear Constraints

1 Introduction

In the classic secretary problem, one is presented a sequence of items with different scores
online in random order. Upon arrival of an item, one has to decide immediately and
irrevocably whether to accept or to reject the current item. The objective is to accept the
best of these items. Recently, combinatorial generalizations of this problem have attracted
attention. In these settings, feasibility of solutions are stated in terms of matroid or linear
constraints. In most cases, these combinatorial generalizations consider linear objective
functions. This way, the profit gained by the decision in one step is independent of the other
steps.

In this paper, we consider general monotone submodular functions1. For example, the
submodular secretary problem, independently introduced by Bateni et al. [4] and Gupta et
al. [15], is an online variant of monotone submodular maximization subject to cardinality
constraints. In this problem, we are allowed to select up to k items from a set of n items.
The value of a set is represented by a monotone, submodular function. Now, stated as an
online problem, items arrive one after the other and every item can only be selected right
at the moment when it arrives. The values of the submodular function are only known on
subsets of the items that have already arrived. The objective function is designed by an
adversary, but the order of the items is uniformly at random.

We call an algorithm (asymptotically) c-competitive if for any objective function v chosen
by the adversary, the set of selected items ALG satisfies E [v(ALG)] ≥ (c− o(1)) · v(OPT),
where OPT is a size-k subset of items that maximizes v and the o(1)-term is asymptotical
with respect to the length of the sequence n. Note that any algorithm can pretend n to be
larger by adding dummy elements at random positions. Therefore, it is safe to assume that
n is large compared to k.

Previous algorithms for submodular secretary problems were designed by modifying
offline approximation algorithms for submodular objectives so that they could be used in the
online environment [4, 11, 26]. In this paper, we take a different approach. Our algorithms
are inspired by algorithms for linear objective functions [17, 18]. We repeatedly solve the
respective offline optimization problem and use this outcome as a guide to make decisions
in the current round. Generally, it is enough to only compute approximate solutions. Our
results nicely separate the loss due to the online nature and due to limited computational
power. Using polynomial-time computations and existing offline algorithms, we significantly
outperform existing online algorithms. Certain submodular functions or kinds of constraints
allow better approximations, which immediately transfer to even better competitive ratios.
This is, for example, true for submodular maximization subject to a cardinality constraint if
the number of allowed items is constant. Also, if computational complexity is no concern
like in classical competitive analysis, our competitive ratios become even better.

1.1 Our Contribution
Given an α-approximate algorithm for monotone submodular maximization subject to
a cardinality constraint, we present an α

e

(
1−

√
k−1

(k+1)
√

2π

)
-competitive algorithm for the

submodular secretary problem. That is, we achieve a competitive ratio of at least 0.31α for
any k ≥ 2. Asymptotically for large k, we reach α

e .

1 A function f : 2U → R for given ground set U is called submodular if for all S ⊆ T ⊆ U and every
x ∈ U\T holds f(S ∪ {x}) − f(S) ≥ f(T ∪ {x}) − f(T). Additionally for all sets S, T ⊆ U , we call
f(S|T) = f(S ∪ T)− f(T) the marginal gain of S to T .

T. Kesselheim and A. Tönnis 16:3

Our algorithm follows the following natural paradigm. We reject the first n
e items.

Afterwards, for each arriving item, we solve the offline optimization problem of the instance
that we have seen so far. If the current item is included in this solution and we have not
yet accepted too many items, we accept it. Otherwise, we reject it. For the analysis, we
bound the expected value obtained by the algorithm recursively. It then remains to solve the
recursion and to bound the resulting term. Generally, the recursive approach can be used
for any secretary problems with cardinality constraints. It could be of independent interest,
especially because it allows to obtain very good bounds also for rather small values of k.

One option for the black-box offline algorithm is the standard greedy algorithm by
Nemhauser and Wolsey [29]. It always picks the item of maximum marginal increase until it
has picked k items. Generally, this algorithm is 1− 1

e -approximate. However, it is known that
if one compares to the best solution with only k′ ≤ k items the approximation factor improves
to 1− exp

(
− k
k′

)
. We exploit this fact to give a better analysis of our online algorithm when

using the greedy algorithm in each step. We show that the algorithm is 0.238-competitive
for any k and asymptotically for large k it is 0.275-competitive.

Additionally, we consider the submodular secretary matching problem. In this problem,
one side of a bipartite graph arrives online in random order. Upon arrival, vertices are
either matched to a free vertex on the offline side or rejected. The objective is a submodular
function on the set of matched pairs or edges. It is easy to see that the submodular secretary
problem is a special case of this more general problem. Fortunately, similar algorithmic ideas
work here as well. Again, we combine a sampling phase with a black box for the offline
problem and get an 0.207α-competitive algorithm. Notably, the analysis turns out to be
much simpler compared to the submodular secretary algorithm.

Finally, we show how our new analysis technique can be used to generalize previous results
on linear packing programs towards submodular maximization with packing constraints.
Here, we use a typical continuous extension towards the expectation on the submodular
objective. We parameterize our results in d, the column sparsity of the constraint matrix, and
B, the minimal capacity of the constraints. We achieve a competitive ratio of Ω(αd−

2
B−1) if

both parameters are not known to the algorithm. If d and B are known beforehand we give
different algorithm that is Ω(αd−

1
B−1)-competitive.

1.2 Related Work
Although the secretary problem itself dates back to the 1960s, combinatorial generalizations
only gained considerable interest within the last 10 years. One of the earliest combinatorial
generalizations and probably the most famous one is the matroid secretary problem, introduced
by Babaioff et al. [3]. Here, one has to pick a set of items from a randomly ordered sequence
that is an independent set of a matroid. The objective is to maximize the sum of weights of all
items picked. It is still believed that there is an Ω(1)-competitive algorithm for this problem;
the currently best known algorithms achieve a competitive ratio of Ω(1/log log(ρ)) for matroids
of rank ρ [13, 24]. Additionally, there are constant competitive algorithms known for many
special cases, e.g., for transversal matroids there is an 1/e-competitive algorithm [17] and for
k-uniform matroids there is an 1−O(1/

√
k)-competitive algorithm [19]. Both are known to

be optimal. Other examples include graphical matroids, for which there is a 1/2e-competitive
algorithm [21], and laminar matroids, for which a 1/9.6-competitive algorithm is known [26].
Further well-studied generalizations feature linear constraints. This includes online packing
LPs [8, 27, 2, 18] and online edge-weighted matching [17, 21], for which optimal algorithms
are known. Also the online variant of the generalized assignment problem [18] has been
studied.

APPROX/RANDOM’17

16:4 Submodular Secretary Problems: Cardinality, Matching, and Linear Constraints

All these secretary problems have in common that the objective function is linear.
Compared to other objective functions this has the clear advantage that the gain due to a
choice in one round is independent of choices in other rounds. Interdependencies between the
rounds only arise due to the constraints. Bateni et al. [4] and Gupta et al. [15] independently
started work on submodular objective functions in the secretary setting. To this point, the
best known results are a e−1

e2+e ≈ 0.170-competitive algorithm for k-uniform matroids [11]
and a 1

95 -competitive algorithm for submodular secretary matching [26]. In case there are m
linear packing constraints, the best known algorithm is O(1

m)-competitive [4]. For matroid
constraints, Feldman and Zenklusen [14] give a reduction, turning a c-competitive algorithm
for linear objective functions to an Ω(c2)-competitive one for submodular objective functions.
Furthermore, they give the first Ω(1/log log ρ)-competitive algorithm for the submodular
matroid secretary problem. Feldman and Izsak [10] consider more general objective functions,
which are not necessarily submodular. They give competitive algorithms for cardinality
constraint secretary problems that are parameterized in the supermodular degree of the
objective function.

Agrawal and Devanur [1] study concave constraints and concave objective functions.
These results, however, do not generalize submodular objectives because they require the
dimension of the vector space to be low. Representing an arbitrary submodular function
would require the dimension to be as large as n. Another related problem is submodular
welfare maximization. In this case, even the greedy algorithm is known to be 1/2-competitive
in adversarial order, which is optimal [16], but at least 0.505-competitive in random order [20].

In the offline setting, submodular function maximization is computationally hard if the
function is given through a value oracle. There are efficient algorithms that approximate
a monotone, submodular function over a matroid or under a knapsack-constraint with a
factor of (1 − 1/e) [7, 30]. As a special case, the generalized assignment problem can also
be efficiently approximated up to a factor of (1− 1/e) [7]. For a constant number of linear
constraints, there is also a (1− ε)(1− 1/e)-approximation algorithm [23]. In the non-monotone
domain, a number of recent results achieve approximation guarantees close to but strictly
better than 1/e [6, 9, 5].

2 Submodular Secretary Problem

Let us first turn to the submodular secretary problem. Here, a set of items from a universe
U , |U | = n, is presented to the algorithm in random order. For each arriving j ∈ U , the
algorithm has to decide whether to accept or to reject it, being allowed to accept up to k
items in total. The objective is to maximize a monotone submodular function v : 2U → R≥0.
This function is defined by an adversary and known to the algorithm only restricted to the
subsets of items that have already arrived. This problem extends the secretary problem for
k-uniform matroids with linear objective functions, which was solved by Kleinberg [19]. The
previously best known competitive factor is e−1

e2+e ≈ 0.170 [11].
Depending on the kind of the submodular function and its representation, the corre-

sponding offline optimization problem (monotone submodular maximization with cardinality
constraint) can be computationally hard. In order to focus on the online nature of the
problem, we assume that we are given an offline algorithm A that for any L ⊆ U returns an
α-approximation of the best solution within L. Formally, v(A(L)) ≥ αmaxT⊆L,|T |≤k v(T).
Note that A is allowed to exploit any additional structure of the function v. For different L
and L′, A(L) and A(L′) do not have to be consistent, but the output A(L) must be identical,
irrespective of the arrival order on L. It may also be randomized. In this case, let v(A(L))
refer to the expected value achieved on set L.

T. Kesselheim and A. Tönnis 16:5

Algorithm 1: Submodular k-secretary
Drop the first dpne − 1 items;
for item j arriving in round ` ≥ dpne do // online steps ` = dpne to n

Set U≤` := U≤`−1 ∪ {j};
Let S(`) = A(U≤`); // black box α-approximation
if j ∈ S(`) then // tentative allocation

if |Accepted| < k then // feasibility test
Add j to Accepted; // online allocation

Our online algorithm, Algorithm 1, uses algorithm A as a subroutine as follows. It starts
by rejecting the first pn items. For every following item j, it runs A(L), where L is the
set of items that have arrived up to this point. If j ∈ A(L) we call j tentatively selected.
Furthermore if the set of accepted items S contains less than k items and j is tentatively
selected, then the algorithm adds j to S. Otherwise, it rejects j.

I Theorem 1. Algorithm 1 for the submodular secretary problem is α
e

(
1−

√
k−1

(k+1)
√

2π

)
-

competitive with sample size pn = n
e .

2.1 Analysis Technique

Before proving Theorem 1, let us shed some light on the way we lower-bound the value of
the submodular objective function. To this end, we consider the expected value of the set
of all tentatively selected items T . In other words, we pretend all selections our algorithm
tries to make are actually feasible. It seems natural to bound the expected value of T by
adding up the marginal gains round-by-round given the tentative selections in earlier rounds.
Unfortunately, this introduces complicated dependencies on the order of arrival of previous
items. Therefore, we take a different approach and bound the respective marginal gains with
respect of tentative selections in future rounds. The important insight is that this keeps the
dependencies manageable.

I Proposition 2. The set of all items T that are tentatively selected by Algorithm 1 has
an expected value of E [v(T)] ≥

(
α
e −

α
n

)
· v(OPT) if the algorithm is run with sample size

pn = n
e .

Proof. Let T≥` denote the set of tentatively selected items that arrive in or after round `.
Formally, we have T≥` = {j} ∪ T≥`+1 if j ∈ A(U≤`) and T≥` = T≥`+1 otherwise.

We consider a different random process to define the T≥` random variables, which results
in the same distribution. First, we draw one item from U uniformly to come last. This
determines the value of T≥n. Then we continue by drawing on item out of the remaining
ones to come second to last, determining T≥n−1. Generally, this means that conditioning on
U≤` and the values of T≥`′ , for `′ > `, the item j is drawn uniformly at random from U≤`

and the respective outcome determines T≥`.
We bound the expected tentative value collected in rounds ` to n conditioned on the

items that arrived before round ` and conditioned on all items that are tentatively selected.
Through this condition, the value of the sets T≥`+1 to T≥n is already fixed. The expectation

APPROX/RANDOM’17

16:6 Submodular Secretary Problems: Cardinality, Matching, and Linear Constraints

is only over the marginal gain of j with respect to the future tentatively selected items T≥`+1

E
[
v(T≥`)

∣∣∣ U≤`, T≥`′ for all `′ > `
]

= 1
`

(∑
j∈A(U≤`)

v({j}|T≥`+1)
)

+ v(T≥`+1) .

Due to submodularity, the gain of the set A(U≤`) is at most the sum of the individual
marginal gains of the items in A(U≤`). This gives us∑

j∈A(U≤`)

v({j}|T≥`+1) ≥ v
(
A(U≤`)

∣∣ T≥`+1) ≥ v (A(U≤`)
)
− v(T≥`+1) .

In the last inequality, we use monotony of the objective function. This yields

E
[
v(T≥`)

∣∣∣ U≤`, T≥`′ for all `′ > `
]
≥ 1
`
v
(
A(U≤`)

)
+
(

1− 1
`

)
v(T≥`+1) .

We take the expectation over the remaining randomization and get the following recursion

E
[
v(T≥`)

]
≥ 1
`

E
[
v
(
A(U≤`)

)]
+
(

1− 1
`

)
E
[
v(T≥`+1)

]
.

Observe that OPT ∩ U≤` is fully contained in U≤` and has size at most k. Therefore,
the approximation guarantee of A yields that v(A(U≤`)) ≥ αv(OPT ∩ U≤`). Furthermore,
submodularity gives us E

[
v(OPT ∩ U≤`)

]
≥ `

nv(OPT) because each item is included in U≤`
with probability `

n . In combination, this gives us

E
[
v(A(U≤`))

]
≥ αE

[
v(OPT ∩ U≤`)

]
≥ α `

n
v(OPT) . (1)

Now we solve the recursion

E
[
v(T≥`)

]
≥ α

n
v(OPT) +

(
1− 1

`

)
E
[
v(T≥`+1)

]
=

n∑
j=`

j−1∏
i=`

(
1− 1

i

)
α

n
v(OPT) .

We have
∏j−1
i=`

(
1− 1

i

)
= `−1

j−1 and
∑n
j=`

1
j−1 ≥ ln(n`) for all ` ≥ 2. This yields

E
[
v(T≥`)

]
≥

n∑
j=`

j−1∏
i=`

(
1− 1

i

)
α

n
v(OPT) = α

n
v(OPT)

n∑
j=`

`− 1
j − 1 ≥

`− 1
n

ln
(n
`

)
αv(OPT) .

With ` = pn and sample size pn = n
e , we get

E
[
v(T≥pn)

]
≥ pn− 1

n
ln
(

1
p

)
αv(OPT) =

(
1
e
− 1
n

)
αv(OPT) . J

The probability of a tentative selection in round ` is k
` . This means, in expectation, we

make
∑n
`= n

e

k
` ≈ k tentative selections. Therefore, for large values of k, it is likely that most

tentative selections are feasible. This way, we could already derive guarantees for large k.
However, for small k, the derived bound would be far to pessimistic. This is due to the fact
that we bound the marginal gain of an item based on all tentative future ones. If some of
them are indeed not feasible, we underestimate the contribution of earlier items. Therefore,
Theorem 1 requires a more involved recursion that is based on the idea from this section,
but also incorporates the probability that an item is feasible directly.

T. Kesselheim and A. Tönnis 16:7

2.2 Proof of Theorem 1
To prove the theorem, we will derive a lower bound on the value collected by the algorithm
starting from an arbitrary round ` ∈ [n] with an arbitrary remaining capacity r ∈ {0, 1, . . . , k}.
The random variables ALG≥`r ⊆ U represent the set of first r items that a hypothetical run
of the algorithm would collect if it started the for loop of Algorithm 1 in round `. Formally,
we define them recursively as follows. We set ALG≥`0 = ∅ for all ` and ALG≥n+1

r = ∅ for
all r. For ` ∈ [n], r > 0, let j be the item arriving in round `, and U≤` be the set of items
arriving until and including round `. We define ALG≥`r = {j} ∪ALG≥`+1

r−1 if j ∈ A(U≤`) and
ALG≥`r = ALG≥`+1

r otherwise. Note that by this definition ALG = ALG≥pnk . Furthermore,
for every possible arrival order, ALG≥`r is pointwise a superset of ALG≥`r−1 for r > 0.

In Lemma 3, we show a recursive lower bound on the value of these sets. In this part,
the precise definition of ALG≥`r will be crucial to avoid complex dependencies. Afterwards,
in Lemma 4, we solve this recursion. Given this solution, we can finally prove Theorem 1.

I Lemma 3. For all ` ∈ [n] and r ∈ {0, 1, . . . , k}, we have

E
[
v(ALG≥`r)

]
≥ 1
`

(
E
[
v(A(U≤`))

]
+ (k − 1)E

[
v(ALG≥`+1

r−1)
]

+ (`− k)E
[
v(ALG≥`+1

r)
])
.

Proof. As explained in Section 2.1, we first draw one item from U uniformly at random to
be the item that arrives in round n. This defines the values of ALG≥nr for all r. Then we
draw another item to be the second to last one and so on. In this way, we can condition on
U≤` and the values of ALG≥`

′

r , for `′ > ` and all r. In round `, the item j is drawn uniformly
at random from U≤` and the respective outcome determines ALG≥`r for all r. This allows us
to write for r > 0

E
[
v(ALG≥`r)

∣∣∣ U≤`,ALG≥`
′

r′ for all `′ > ` and all r′
]

v = 1
`

 ∑
j∈A(U≤`)

v({j} ∪ALG≥`+1
r−1) + |U≤` \ A(U≤`)|v(ALG≥`+1

r)

 .

By submodularity, we have∑
j∈A(U≤`)

(
v({j} ∪ALG≥`+1

r−1)− v(ALG≥`+1
r−1)

)
≥ v(A(U≤`)∪ALG≥`+1

r−1)− v(ALG≥`+1
r−1) ,

and hence∑
j∈A(U≤`)

v({j} ∪ALG≥`+1
r−1) ≥ v(A(U≤`) ∪ALG≥`+1

r−1) + (|A(U≤`)| − 1)v(ALG≥`+1
r−1) .

This gives us

E
[
v(ALG≥`r)

∣∣∣ U≤`,ALG≥`
′

r′ for all `′ > ` and all r′
]

≥ 1
`
v(A(U≤`) ∪ALG≥`+1

r−1) + |A(U≤`)| − 1
`

v(ALG≥`+1
r−1)

+ |U
≤` \ A(U≤`)|

`
v(ALG≥`+1

r) .

Furthermore, by applying the monotonicity of v and the facts that |A(U≤`)| ≤ k and
ALG≥`+1

r−1 ⊆ ALG≥`+1
r , we get

E
[
v(ALG≥`r)

∣∣∣ U≤`,ALG≥`
′

r′ for all `′ > ` and all r′
]

≥ 1
`

(
v(A(U≤`)) + (k − 1)v(ALG≥`+1

r−1) + (`− k)v(ALG≥`+1
r)

)
.

APPROX/RANDOM’17

16:8 Submodular Secretary Problems: Cardinality, Matching, and Linear Constraints

Taking the expectation over all remaining randomization yields

E
[
v(ALG≥`r)

]
≥ 1
`

E
[
v(A(U≤`))

]
+ k − 1

`
E
[
v(ALG≥`+1

r−1)
]

+ `− k
`

E
[
v(ALG≥`+1

r)
]
.J

The next step is to solve the recursion.

I Lemma 4. For all ` ∈ [n], ` ≥ k2 + k, and r ∈ {0, 1, . . . , k}, we have

E
[
v(ALG≥`r)

]
v(OPT) ≥

 r`

(k − 1)n −
1

k − 1

(
`

n

)k r−1∑
r′=0

r′∑
i=0

(k − 1)i

i! lni
(n
`

)
− 3k2r

(k − 1)n

α . (2)

Proof (Outline). As a first step, we eliminate the recursive reference from ALG≥`r to
ALG≥`+1

r . To this end, we count the rounds until the next item is accepted. Repeat-
edly inserting the bound for ALG≥`+1

r into the one for ALG≥`r gives us

E
[
v(ALG≥`r)

]
≥

n∑
j=`

(
j−1∏
i=`

(
1− k

i

)(
k − 1
j

E
[
v(ALG≥j+1

r−1)
]

+ 1
j

E
[
v(A(U≤j))

]))
.

With Equation (1) in Section 2.1 we have E
[
v(A(U≤j))

]
≥ j

nαv(OPT).

We use
∏j−1
i=`

(
1− k

i

)
= (`−1)!

(`−k−1)!
(j−k−1)!

(j−1)! ≥
(
`−k
j−k

)k
and get

E
[
v(ALG≥`r)

]
≥

n∑
j=`

((
`− k
j − k

)k (
k − 1
j + 1 E

[
v(ALG≥j+1

r−1)
]

+ α

n
v(OPT)

))
. (3)

It can be shown that (2) provides a lower bound on the functions defined by this recursion.
For details, see Appendix A.1. J

Proof of Theorem 1. To complete the proof of the theorem, we apply Lemma 4 for ` = pn

and r = k. This gives us E [v(ALG)] = E
[
v(ALG≥pnk)

]
and thus

E [v(ALG)] ≥

 pk

k − 1 −
1

k − 1p
k
k−1∑
r′=0

r′∑
i=0

(k − 1)i

i! lni
(

1
p

)
− 6k2

n

 · αv(OPT) .

For p such that pn = dne e, we have p ≤ 1
e + 1

n and ln
(1
p

)
= 1 + ln

(
n
n+e

)
≤ 1. For sake

of readability, we omit the error term in the remainder of the proof. The more detailed
calculation is included in Appendix A.2. With p = 1

e , we have ln
(1
p

)
= 1, this allows us to

reorder the double sum as follows

k−1∑
r′=0

r′∑
i=0

(k − 1)i

i! =
k−1∑
i=0

(k − i) (k − 1)i

i! =
k−1∑
i=0

(k − 1)i

i! + (k − 1)k

(k − 1)! .

By definition of the exponential function ex =
∑∞
i=0

xi

i! . For x > 0, all terms of the infinite
sum are positive. This yields ex ≥

∑k−1
i=0

xi

i! + xk

k! + xk+1

(k+1)! and thus by setting x = k − 1 we
get

k−1∑
r′=0

r′∑
i=0

(k − 1)i

i! ≤ ek−1 − (k − 1)k

k! − (k − 1)k+1

(k + 1)! + (k − 1)k

(k − 1)! .

T. Kesselheim and A. Tönnis 16:9

This implies

E [v(ALG)]
αv(OPT) ≥

k

e(k − 1) −
1

ek(k − 1)

(
ek−1 − (k − 1)k

k! − (k − 1)k+1

(k + 1)! + (k − 1)k

(k − 1)!

)
− 6k2

n

= 1
e
− 1
ek
k − 1
k + 1

(k − 1)k−1

(k − 1)! −
6k2

n
.

It only remains to apply the Stirling approximation (k − 1)! ≥
√

2π(k − 1)
(
k−1
e

)k−1 to get

E [v(ALG)]
αv(OPT) ≥

1
e

(
1−

√
k − 1

(k + 1)
√

2π

)
− 6k2

n
. J

2.3 Improved Analysis for the Greedy Algorithm
One possible choice for the algorithm A is the greedy algorithm by Nemhauser and Wolsey [29].
It repeatedly picks the item with the highest marginal increase compared to the items chosen
so far until k items have been picked. As pointed out in [22], the approximation guarantee
would improve further when picking more items according to the greedy rule. In other words,
if we let our algorithm pick k elements but compare the outcome to the optimal solution of
only k′ items, the approximation factor improves to 1− exp

(
− k
k′

)
.

We can exploit this fact in the analysis of the online algorithm that uses the greedy
algorithm as A in Algorithm 1. The reason is that in early rounds only some items of the
optimal solution have arrived. Our algorithm, however, always chooses a set of size k for
S(`) = A(U≤`). In the generic analysis, we show that E

[
v(A(U≤`))

]
≥ α `

nv(OPT). In case
of A being the greedy algorithm, we can improve this bound as follows.

I Lemma 5. E
[
v(A(U≤`))

]
≥ α` `nv(OPT) for α` = 1− `

en −
1
ek .

Proof. Consider the offline optimum OPT and OPT ∩ U≤`, its restriction to the items that
arrive by round `. Let Z = |OPT ∩ U≤`| be the number of OPT items that arrive by round
`.

Condition on any value of Z. Observe that by symmetry the probably of every OPT item
to have arrived by round ` is Z

k . Therefore, submodularity implies E
[
v(OPT ∩ U≤`)

∣∣ Z] ≥
Z
k v(OPT). If the greedy algorithm picks k elements, it achieves value at least

(
1− exp

(
− k
Z

))
·

v(OPT∩U≤`). In combination, this gives us E
[
v(A(U≤`))

∣∣ Z] ≥ (1− exp
(
− k
Z

))
Z
k v(OPT).

We now use the fact that exp
(
k
Z

)
≥ e kZ because Z ≤ k. Therefore exp

(
− k
Z

)
≤ Z

ek and
E
[
v(A(U≤`))

∣∣ Z] ≥ (1− Z
ek

)
Z
k v(OPT) .

It remains to take the expectation over Z. We have E [Z] = `
nk. Letting Zj = 1 if j ∈ U≤`

and 0 otherwise, we have and E
[
Z2] = E

[∑
j∈OPT Zj +

∑
j∈OPT

∑
j′∈OPT,j′ 6=j ZjZj′

]
=

`
nk + k(k − 1) `n

`−1
n−1 ≤

`
nk +

(
`
nk
)2. This implies

E
[
v(A(U≤`))

]
≥

(
E [Z]
k
−

E
[
Z2]
ek2

)
v(OPT) ≥

(
`

n
− `2

en2 −
`

ekn

)
v(OPT) . J

Given this lemma, we can follow similar steps as in the proof of Theorem 1 to show an
improved guarantee of this particular algorithm. In more detail, we get competitive ratios of
at least 0.177 for any k ≥ 2. Asymptotically for large k we reach 0.275.

I Theorem 6. If the greedy algorithm is used as blackbox approximation algorithm A, then
Algorithm 1 is 1+ 1

2e3− 3
2e−

e−1
e2k

e−1

(
1−

√
k−1

(k+1)
√

2π

)
-competitive with sample size pn = n

e .

APPROX/RANDOM’17

16:10 Submodular Secretary Problems: Cardinality, Matching, and Linear Constraints

To prove Theorem 6, we combine Lemmas 3 and 5, which give us a recursive formula for
ALG≥`r . We first solve the recursion (Claim 7) and then show that the occurring coefficients
are non-increasing (Claim 8). This then allows to apply Chebyshev’s sum inequality.

I Claim 7. Lemma 3 implies

E
[
v(ALG≥`r)

]
≥

n∑
j=`

a`,j−1

j
E
[
v(A(U≤`))

] r−1∑
r′=0

∑
M⊆{`,...,j−1}
|M |=r′

(∏
i∈M

k − 1
i

)

with a`,j−1 =
∏j−1
i=`

(
1− k

i

)
.

The proof of this claim is by induction and it is included in Appendix A.3.

I Claim 8. Let

t`,j = a`,j−1

r−1∑
r′=0

∑
M⊆{`,...,j−1}
|M |=r′

(∏
i∈M

k − 1
i

)

with a`,j−1 =
∏j−1
i=`

(
1− k

i

)
. For fixed `, the sequence t`,j is non-increasing in j.

The proof of this claim is included in Appendix A.4.

Proof of Theorem 6. Now we can proceed to the proof of Theorem 6. So far, we have shown
that

E
[
v(ALG≥`r)

]
≥

n∑
j=`

t`,j
j

E
[
v(A(U≤`))

]
for t`,j = a`,j−1

r−1∑
r′=0

∑
M⊆{`,...,j−1}
|M |=r′

(∏
i∈M

k − 1
i

)

with a`,j−1 =
∏j−1
i=`

(
1− k

i

)
. Furthermore, Lemma 5 shows that E[v(A(U≤`))]

j ≥ αjv(OPT)
n for

α` = 1− `
en −

1
ek .

As both t`,j and αj are non-increasing in j, we can use Chebyshev’s sum inequality to get

E
[
v(ALG≥`r)

]
≥

n∑
j=`

t`,j
αjv(OPT)

n
≥

 n∑
j=`

t`,j
v(OPT)

n

 1
n− `

n∑
j=`

αj

 .

It now remains to bound these two terms.
First, we show that the sum

∑n
j=` t`,j

c
n with c = v(OPT) is lower-bounded by a recursion

of the form of Equation (3). Similar calculations to Lemma 4 will then give us the respective

bound. Similar to the previous proof, we use a`,j−1 =
∏j−1
i=`

(
1− k

i

)
≥
(
`−k
j−k

)k
and get

n∑
j=`

t`,j
v(OPT)

n
=

n∑
j=`

a`,j−1

r−1∑
r′=0

∑
M⊆{`,...,j}
|M |=r′

(∏
i∈M

k − 1
i

)
c

n

≥
n∑
j=`

(
`− k
j − k

)k r−1∑
r′=0

∑
M⊆{`,...,j}
|M |=r′

(∏
i∈M

k − 1
i+ 1

)
c

n
.

T. Kesselheim and A. Tönnis 16:11

Let now

b`,r′ =
n∑
j=`

(
`− k
j − k

)k r−1∑
r′=0

∑
M⊆{`,...,j}
|M |=r′

(∏
i∈M

k − 1
i+ 1

)
c

n
.

We combine the two inner sums and then pull out the earliest element m ∈M ⊆ {`, . . . , j}
recursively. We move the corresponding factor out of the product and get

b`,r′ =
n∑
j=`

(
`− k
j − k

)k ∑
M⊆{`,...,j}
|M |≤r′

(∏
i∈M

k − 1
i+ 1

)
c

n

=
n∑
j=`

(
`− k
j − k

)k c

n
+

j−1∑
m=`

k − 1
m+ 1

∑
M⊆{m+1,...,j}
|M |≤r′−1

(∏
i∈M

k − 1
i+ 1

)
c

n

 .

At this point, we change the order of summation such that we sum over m first. We can
keep the constant part in place, since both sums

∑n
j=`

(
`−k
j−k

)k
=
∑n
m=`

(
`−k
m−k

)k
amount

the same. Now the inner part matches the recursion given above

b`,r′ =
n∑

m=`

(
`− k
m− k

)k c

n
+ k − 1

m

n∑
j=m+1

(
m− k
j − k

)k ∑
M⊆{m+1,...,j}
|M |≤r′−1

(∏
i∈M

k − 1
i

)
c

n

=

n∑
m=`

(
`− k
m− k

)k (
c

n
+ k − 1

m
bm+1,r′−1

)
.

From this point on, we follow the proof of Lemma 4 in Appendix A.1 and get the following
lemma.

I Lemma 9. Given a recursion of the form

b`,r =
n∑
j=`

((
`− k
j − k

)k (
k − 1
j + 1 bj+1,r−1 + c

n

))

with bn+1,r = 0 and b`,0 = 0. Then

b`,r ≥

 r(`− k)
(k − 1)n −

1
k − 1

(
`− k
n− k

)k r−1∑
r′=0

r′∑
i=0

(k − 1)i

i! lni
(n
`

)
− 3k2r

(k − 1)n

 c .

Consequently, following the calculations in the proof of Theorem 1

E [v(ALG)] = E
[
v(ALG≥n/e

k

]
≥ 1
e

(
1−

√
k − 1

(k + 1)
√

2π
− 6ek2

n

) 1
n− n/e

n∑
j=n/e

αj

 v(OPT).

For αj = 1− j
en −

1
ek , we can bound the last term through the integral and get

1
n− n/e

n∑
j=n/e

(
1− j

en
− 1
ek

)
≥ 1

1− 1/e

(
1 + 1

2e3 −
3
2e −

e− 1
e2k

)
.

For large k, we have an asymptotic competitive ratio of 1
e

(
1 + 1

2e3 − 3
2e
)
≈ 0.275. J

APPROX/RANDOM’17

16:12 Submodular Secretary Problems: Cardinality, Matching, and Linear Constraints

Algorithm 2: Submodular Bipartite Online Matching
Drop the first dpne − 1 vertices;
for vertex u ∈ L in round ` ≥ dpne do // online steps ` = dpne to n

Set L≤` := L≤`−1 ∪ {u};
Let M (`) = A(L≤` ∪R); // black box α-approximation
Let e(`) := (u, r) be the edge assigned to u in M (`); // tentative edge
if Accepted ∪ e(`) is a matching then // feasibility test

Add e(`) to Accepted; // online allocation

3 Submodular Matching

Next, we consider the online submodular bipartite matching problem. In the offline version,
we are given a bipartite graph G = (L ∪R,E) and a monotone, submodular, non-decreasing
objective function v : 2E → R≥0. The objective is to find a matching M ⊆ E that maximizes
v(M). In the online version, the set L arrives online. Once a vertex in L arrives, we get to
know its incident edges. At any point in time, we know the values of the objective function
only restricted to subsets of the edges incident to the vertices that have already arrived.
This problem also generalizes the submodular matroid secretary problem with transversal
matroids.

We present a 0.207α-competitive algorithm, where α could be 1
3 for a simple greedy

algorithm [28]. The best known approximation algorithms are local search algorithms that
give a 1

2+ε -approximation on bipartite matchings [25, 12]. The previously best known online
algorithm is the simulated greedy algorithm with a competitive ratio of 1/95 [26].

Algorithm 2 first samples a pn-fraction of the input sequence for some constant p. Then,
whenever a new candidate arrives, it α-approximates the optimal matching on the known
part of the graph with respect to the submodular objective function. If the current online
vertex is matched in this matching and if its matching partner is still available, then we
add the pair to the output allocation. This design paradigm has been successfully applied
to linear objective functions before [17]. However, in the submodular case, the individual
contribution on an edge to the eventual objective function value depends on what other
edges are selected. Using an approach similar to the one in the previous section, we keep
dependencies manageable.

I Theorem 10. Algorithm 2 for the submodular secretary matching problem is α(1−p1/p)(p2−
O(1

n))-competitive with sample size pn. For p = 0.614, the algorithm is 0.207α-competitive.

We denote the set of matching edges allocated by the algorithm in rounds ` to n with
ALG≥` and the set of tentative edges over the same period with T≥`. For S, S′ ⊆ E, we
denote the contribution of the subset S to S′ by v(S | S′) = v(S ∪ S′)− v(S′).

We show the following two lemmas.

I Lemma 11. In every round ` fix the tentative edges that will be selected in the future
rounds `+ 1, . . . , n. Then the marginal contribution of the tentative edge e(`) selected by the
online algorithm in round ` is

E
[
v
(
{e(`)}

∣∣∣ ALG≥`+1
) ∣∣∣ L≤`, T≥`+1

]
≥ 1
`

(
v(A(L≤`))− v(T≥`+1)

)
.

Proof. We will use that v
(
{e(`)}

∣∣∣ ALG≥`+1
)
≥ v

(
{e(`)}

∣∣ T≥`+1) because of submodularity
of v and since ALG≥`+1 ⊆ T≥`+1. This allows us to avoid complex dependencies.

T. Kesselheim and A. Tönnis 16:13

With L≤` fixed, the algorithm’s output A(L≤`) is determined as well. The online vertex
in round ` is as drawn uniformly at random from all vertices in L≤`. This gives us

E
[
v
(
{e(`)}

∣∣∣ T≥`+1
) ∣∣∣ L≤`, T≥`+1

]
≥ 1
`
v
(
A(L≤`)

∣∣ T≥`+1)
≥ 1
`

(
v(A(L≤`))− v(T≥`+1)

)
. J

This lemma is shown in a way similar to Proposition 2.

I Lemma 12. The probability that a tentative edge e(`) is feasible given all vertices that
arrived earlier L≤` and all future tentative edges T≥`+1 is

Pr
[
Accepted ∪ e(`) is a matching

∣∣∣ L≤`, T≥`+1
]
≥ pn− 1

`− 1 .

This lemma was already shown in [17].

Proof of Theorem 10. Let ê(`) = {e(`)} if Accepted∪e(`) is a matching and empty otherwise.
We combine Lemmas 11 and 12, and we get that in every round ` for a fixed set L≤` and
T≥`+1, we have

E
[
v
(
ê(`)

∣∣∣ ALG≥`+1
) ∣∣∣ L≤`, T≥`+1

]
≥ 1
`

pn− 1
`− 1

(
v(A(L≤` ∪R))− v(T≥`+1)

)
and therefore

E
[
v
(
ê(`)

∣∣∣ ALG≥`+1
)]
≥ 1
`

pn− 1
`− 1

(
E
[
v(A(L≤` ∪R))

]
−E

[
v(T≥`+1)

])
.

We use Lemma 12 for each future tentative edge e(`′) ∈ T≥`+1 and upperbound `′ ≤ n. This
gives us E

[
v(ALG≥`+1)

]
≥ pE

[
v(T≥`+1)

]
. Furthermore, to bound E

[
v(A(L≤` ∪R))

]
, we

use that the optimal solution on the subgraph induced by L≤` ∪ R is at least as good as
the optimal solution restricted to the edges in this subgraph. As every edge appears with
probability `

n submodularity gives us E
[
v(A(L≤` ∪R))

]
≥ α `

nv(OPT). In combination with
` ≥ pn, this yields

E
[
v
(
ê(`))

∣∣∣ ALG≥`+1
)]
≥ α

n

pn− 1
`− 1 v(OPT)− 1

`

1
p

E
[
v(ALG≥`+1)

]
.

As ALG≥` = ê(`) ∪ALG≥`+1, we get the following tail recursion

E
[
v((ALG≥`)

]
≥ α

n

pn− 1
`− 1 v(OPT) +

(
1−

1/p

`

)
E
[
v(ALG≥`+1)

]
≥

n∑
j=`

j−1∏
i=`

(
1−

1/p

i

)
1

j − 1

(
p− 1

n

)
αv(OPT) .

We use
∏j−1
i=`

(
1− 1/p

i

)
≥
(
`−1/p

j−1/p

)1/p

, see Lemma 14 in Appendix B.1 for a proof. Addi-

tionally we use 1
j−1 = 1

j−1/p

j−1/p

j−1 = 1
j−1/p

(
1− 1/p−1

j−1

)
≥ 1

j−1/p

(
1− 1/p−1

pn−1

)
and get

E
[
v(ALG≥`)

]
≥

n∑
j=`

(`− 1/p)1/p

(j − 1/p)1/p+1

(
1−

1/p− 1
pn− 1

)(
p− 1

n

)
αOPT .

APPROX/RANDOM’17

16:14 Submodular Secretary Problems: Cardinality, Matching, and Linear Constraints

We approximate the sum with the integral and get
∑n
j=`

1
(j−1/p)1/p+1 ≥

∫ n
`

1
(j−1/p)1/p+1 dj−

1
(`−1−1/p)1/p+1 = p

(
1

(`−1/p)1/p
− 1

(n−1/p)1/p
− 1

(`−1−1/p)1/p+1

)
. Together with 1

n = p−1/n

pn−1 this
gives us

E
[
v(ALG≥`)

]
OPT ≥ α

(
1−

(
`− 1/p

n− 1/p

)1/p

− (`− 1/p)1/p

(`− 1− 1/p)1/p+1

)(
p2 − 1 + p2 − p− p/n

pn− 1

)
.

Now the expected value of the online algorithm is E
[
v(ALG≥pn)

]
. We have pn−1/p

n−1/p
=

pn−
1/p2

n−1/p
≤ p and (`−1/p)1/p

(`−1−1/p)1/p+1 =
(

1 + 1
`−1−1/p

)1/p
1

`−1−1/p
∈ O

(1
n

)
. This gives us

E
[
v(ALG≥pn)

]
≥
(

1− p1/p

)(
p2 −O

(
1
n

))
αv(OPT) . J

This bound on the expected competitive ratio has a local maximum of 0.207α when the
parameter for the sample size is p = 0.614.

4 Submodular Function subject to Linear Packing Constraints

We now generalize the setting to feature arbitrary linear packing constraints. That is, each
item j is associated a variable yj and there are m constraints of the form

∑
j∈U ai,jyj ≤ bi

with ai,j ≥ 0. The coefficients ai,j are chosen by an adversary and are revealed to the online
algorithm once the respective item arrives. Immediately and irrevocably, we have to either
accept or reject the item, which corresponds to setting yj to 0 or 1. The best previous
result is a constant competitive algorithm for a single constraint and Ω(1/m)-competitive for
multiple constraints, where m is the number of constraints [4].

Our algorithms extend the ones presented in [18] from linear to submodular objective.
Again, they rely on a suitable algorithm solving the offline optimization problem. In this
case we need a fractional allocation x ∈ [0, 1]U , which we evaluate in terms of the multilinear
extension F (x) =

∑
R⊆U

(∏
i∈R f(R)xi

∏
i/∈R(1− xi)

)
. In more detail, we assume that for

any packing polytope P ⊆ [0, 1]U , F (AF (P)) ≥ α supx∈P F (x). For example, the continuous
greedy process by Calinescu et al. [7] provides a (1− 1/e)-approximation in polynomial time.
As the set P , we use P(`n , S), which is defined to be the set of vectors x ≥ 0, for which
Ax ≤ `

nb and xi = 0 if i 6∈ S. This is the polytope of the solution space with scaled down
constraints and restricted on the variables that arrived so far.

Our bounds are parameterized in the capacity ratio B and the column sparsity d. The
capacity ratio B is defined by B = mini∈[m]

bi

maxj∈[n] ai,j
. The column sparsity d is the

maximal number of non-zero entries in a column of the constraint matrix A. We consider
two variants of this problem, where either the B and d are known to the algorithm or not.

I Theorem 13. There is an Ω
(
αd−

2
B−1

)
-competitive online algorithm for submodular

maximization subject to linear constraints with unknown capacity ratio B ≥ 2 and unknown
column sparsity d. This improves to Ω

(
αd−

1
B−1

)
if B and d are known.

Note that, although the algorithm A returns fractional solutions, the output of our online
algorithms is integral. The competitive ratio is between the integral solution of the online
algorithm and the optimal fractional allocation with respect to the multilinear extension.

The proof for Theorem 13 combines ideas from Section 2 and 3 with [18]. Due to space
limitations, the details are only included in the full version.

T. Kesselheim and A. Tönnis 16:15

Algorithm 3: Submodular Function Maximization subject to Linear Constraints
Let x := 0 and S := ∅ be the index set of known requests;
for each arriving request j do // steps ` = 1 to n

Set S := S ∪ {j} and ` := |S|;
Let x̃(`) := AF (P(`n , S)); // fractional α-approximation on scaled
polytope

Set x̂(`)
j = 1 with probability x̃(`)

j ; // tentative allocation after rand.
rounding

if A(x+ x̂(`)) ≤ b then // feasibility test
Set x(`) := x̂(`), x := x+ x̂(`); // online allocation

References

1 Shipra Agrawal and Nikhil R. Devanur. Fast algorithms for online stochastic convex
programming. In Proc. 26th Symp. Discr. Algorithms (SODA), pages 1405–1424, 2015.
doi:10.1137/1.9781611973730.93.

2 Shipra Agrawal, Zizhuo Wang, and Yinyu Ye. A dynamic near-optimal algorithm for online
linear programming. Operations Research, 62(4):876–890, 2014. doi:10.1287/opre.2014.
1289.

3 Moshe Babaioff, Nicole Immorlica, and Robert Kleinberg. Matroids, secretary problems,
and online mechanisms. In Proc. 18th Symp. Discr. Algorithms (SODA), pages 434–443,
2007. URL: http://dl.acm.org/citation.cfm?id=1283383.1283429.

4 MohammadHossein Bateni, Mohammad Taghi Hajiaghayi, and Morteza Zadimoghaddam.
Submodular secretary problem and extensions. ACM Trans. Algorithms, 9(4):32, 2013.
doi:10.1145/2500121.

5 Niv Buchbinder and Moran Feldman. Constrained submodular maximization via a non-
symmetric technique. CoRR, abs/1611.03253, 2016. URL: http://arxiv.org/abs/1611.
03253.

6 Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. Submodular maximiza-
tion with cardinality constraints. In Proc. 25th Symp. Discr. Algorithms (SODA), pages
1433–1452, 2014. doi:10.1137/1.9781611973402.106.

7 Gruia Călinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a monotone
submodular function subject to a matroid constraint. SIAM J. Comput., 40(6):1740–1766,
2011. doi:10.1137/080733991.

8 Nikhil R. Devenur and Thomas P. Hayes. The adwords problem: online keyword matching
with budgeted bidders under random permutations. In Proc. 10th Conf. Econom. Comput.
(EC), pages 71–78, 2009. doi:10.1145/1566374.1566384.

9 Alina Ene and Huy L. Nguyen. Constrained submodular maximization: Beyond 1/e. In
Proc. 57th Symp. Foundations of Computer Science (FOCS), pages 248–257, 2016. doi:
10.1109/FOCS.2016.34.

10 Moran Feldman and Rani Izsak. Building a good team: Secretary problems and the super-
modular degree. In Proc. 28th Symp. Discr. Algorithms (SODA), pages 1651–1670, 2017.
doi:10.1137/1.9781611974782.109.

11 Moran Feldman, Joseph Naor, and Roy Schwartz. Improved competitive ratios for sub-
modular secretary problems (extended abstract). In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques – 14th International Workshop,
APPROX 2011, and 15th International Workshop, RANDOM 2011, Princeton, NJ, USA,

APPROX/RANDOM’17

http://dx.doi.org/10.1137/1.9781611973730.93
http://dx.doi.org/10.1287/opre.2014.1289
http://dx.doi.org/10.1287/opre.2014.1289
http://dl.acm.org/citation.cfm?id=1283383.1283429
http://dx.doi.org/10.1145/2500121
http://arxiv.org/abs/1611.03253
http://arxiv.org/abs/1611.03253
http://dx.doi.org/10.1137/1.9781611973402.106
http://dx.doi.org/10.1137/080733991
http://dx.doi.org/10.1145/1566374.1566384
http://dx.doi.org/10.1109/FOCS.2016.34
http://dx.doi.org/10.1109/FOCS.2016.34
http://dx.doi.org/10.1137/1.9781611974782.109

16:16 Submodular Secretary Problems: Cardinality, Matching, and Linear Constraints

August 17-19, 2011. Proceedings, pages 218–229, 2011. doi:10.1007/978-3-642-22935-0_
19.

12 Moran Feldman, Joseph Naor, Roy Schwartz, and Justin Ward. Improved approximations
for k-exchange systems – (extended abstract). In Proc. 19th European Symp. Algorithms
(ESA), pages 784–798, 2011. doi:10.1007/978-3-642-23719-5_66.

13 Moran Feldman, Ola Svensson, and Rico Zenklusen. A simple O(log log(rank))-competitive
algorithm for the matroid secretary problem. In Proc. 26th Symp. Discr. Algorithms
(SODA), pages 1189–1201, 2015. doi:10.1137/1.9781611973730.79.

14 Moran Feldman and Rico Zenklusen. The submodular secretary problem goes linear. In
Proc. 56th Symp. Foundations of Computer Science (FOCS), pages 486–505, 2015. doi:
10.1109/FOCS.2015.37.

15 Anupam Gupta, Aaron Roth, Grant Schoenebeck, and Kunal Talwar. Constrained non-
monotone submodular maximization: Offline and secretary algorithms. In Proc. 6th
Int’l Conf. Web and Internet Economics (WINE), pages 246–257, 2010. doi:10.1007/
978-3-642-17572-5_20.

16 Michael Kapralov, Ian Post, and Jan Vondrák. Online submodular welfare maximization:
Greedy is optimal. In Proc. 24th Symp. Discr. Algorithms (SODA), pages 1216–1225, 2013.
doi:10.1137/1.9781611973105.88.

17 Thomas Kesselheim, Klaus Radke, Andreas Tönnis, and Berthold Vöcking. An optimal
online algorithm for weighted bipartite matching and extensions to combinatorial auctions.
In Proc. 21st European Symp. Algorithms (ESA), pages 589–600, 2013. doi:10.1007/
978-3-642-40450-4_50.

18 Thomas Kesselheim, Klaus Radke, Andreas Tönnis, and Berthold Vöcking. Primal beats
dual on online packing lps in the random-order model. In Proc. 46th Symp. Theory of
Computing (STOC), pages 303–312, 2014. doi:10.1145/2591796.2591810.

19 Robert D. Kleinberg. A multiple-choice secretary algorithm with applications to online
auctions. In Proc. 16th Symp. Discr. Algorithms (SODA), pages 630–631, 2005. URL:
http://dl.acm.org/citation.cfm?id=1070432.1070519.

20 Nitish Korula, Vahab S. Mirrokni, and Morteza Zadimoghaddam. Online submodular
welfare maximization: Greedy beats 1/2 in random order. In Proc. 47th Symp. Theory of
Computing (STOC), pages 889–898, 2015. doi:10.1145/2746539.2746626.

21 Nitish Korula and Martin Pál. Algorithms for secretary problems on graphs and hyper-
graphs. In Proc. 36th Int’l Coll. Autom. Lang. Program. (ICALP), pages 508–520, 2009.
doi:10.1007/978-3-642-02930-1_42.

22 Andreas Krause and Daniel Gloving. Submodular function maximization. In Tractability:
Practical Approaches to Hard Problems, chapter 3. Cambridge University Press, 2014.

23 Ariel Kulik, Hadas Shachnai, and Tami Tamir. Approximations for monotone and nonmono-
tone submodular maximization with knapsack constraints. Math. Oper. Res., 38(4):729–739,
2013. doi:10.1287/moor.2013.0592.

24 Oded Lachish. O(log log rank) competitive ratio for the matroid secretary problem. In
Proc. 55th Symp. Foundations of Computer Science (FOCS), pages 326–335, 2014. doi:
10.1109/FOCS.2014.42.

25 Jon Lee, Maxim Sviridenko, and Jan Vondrák. Submodular maximization over multiple
matroids via generalized exchange properties. Math. Oper. Res., 35(4):795–806, 2010. doi:
10.1287/moor.1100.0463.

26 Tengyu Ma, Bo Tang, and Yajun Wang. The simulated greedy algorithm for several
submodular matroid secretary problems. Theoret. Comput. Sci., 58(4):681–706, 2016.
doi:10.1007/s00224-015-9642-4.

27 Marco Molinaro and R. Ravi. The geometry of online packing linear programs. Math. Oper.
Res., 39(1):46–59, 2014. doi:10.1287/moor.2013.0612.

http://dx.doi.org/10.1007/978-3-642-22935-0_19
http://dx.doi.org/10.1007/978-3-642-22935-0_19
http://dx.doi.org/10.1007/978-3-642-23719-5_66
http://dx.doi.org/10.1137/1.9781611973730.79
http://dx.doi.org/10.1109/FOCS.2015.37
http://dx.doi.org/10.1109/FOCS.2015.37
http://dx.doi.org/10.1007/978-3-642-17572-5_20
http://dx.doi.org/10.1007/978-3-642-17572-5_20
http://dx.doi.org/10.1137/1.9781611973105.88
http://dx.doi.org/10.1007/978-3-642-40450-4_50
http://dx.doi.org/10.1007/978-3-642-40450-4_50
http://dx.doi.org/10.1145/2591796.2591810
http://dl.acm.org/citation.cfm?id=1070432.1070519
http://dx.doi.org/10.1145/2746539.2746626
http://dx.doi.org/10.1007/978-3-642-02930-1_42
http://dx.doi.org/10.1287/moor.2013.0592
http://dx.doi.org/10.1109/FOCS.2014.42
http://dx.doi.org/10.1109/FOCS.2014.42
http://dx.doi.org/10.1287/moor.1100.0463
http://dx.doi.org/10.1287/moor.1100.0463
http://dx.doi.org/10.1007/s00224-015-9642-4
http://dx.doi.org/10.1287/moor.2013.0612

T. Kesselheim and A. Tönnis 16:17

28 George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. An analysis of approx-
imations for maximizing submodular set functions – II. Math. Prog., 14(1):265–294, 1978.
doi:10.1007/BF01588971.

29 G.L. Nemhauser and L.A. Wolsey. Best algorithms for approximating the maximum of a
submodular set function. Math. Oper. Res., 3(3):177–188, 1978. doi:10.1287/moor.3.3.
177.

30 Maxim Sviridenko. A note on maximizing a submodular set function subject to a knapsack
constraint. Oper. Res. Lett., 32(1):41–43, 2004. doi:10.1016/S0167-6377(03)00062-2.

A Missing Details in Section 2

A.1 Continued Proof of Lemma 4
To show the lemma, we perform an induction on r. Note that Equation (2) trivially holds
for r = 0. In order to prove it holds for a given r > 0, we assume that it is fulfilled for r − 1
for all ` ∈ [n]. From this, we will conclude that Equation (2) also holds for r for all ` ∈ [n].
To show that (3) is solved by (2), we use the induction hypothesis and plug in the bound for
E
[
v(ALG≥j+1

r−1)
]
. This gives us

E
[
v(ALG≥`r)

]
αv(OPT) ≥

n∑
j=`

(
`− k
j − k

)k
k − 1
j + 1

(
(r − 1)(j + 1)

(k − 1)n − 3k2(r − 1)
(k − 1)n + 1

n

− 1
k − 1

(
j + 1
n

)k r−2∑
r′=0

r′∑
i=0

(k − 1)i

i! lni
(

n

j + 1

))

=
n∑
j=`

(
`− k
j − k

)k
r

n
−

n∑
j=`

(
`− k
j − k

)k 3k2(r − 1)
(j + 1)n

−
n∑
j=`

(
`− k
j − k

)k 1
j + 1

(
j + 1
n

)k r−2∑
r′=0

r′∑
i=0

(k − 1)i

i! lni
(

n

j + 1

)
.

In the negative terms, we bound `−k
j−k ≤

`
j and use

(
j+1
j

)k
≤ e

k
j ≤ e k

` ≤ 1 + 2k` . Finally in
the last sum, we bound 1

j+1 ≤
1
` once

E
[
v(ALG≥`r)

]
αv(OPT) ≥

n∑
j=`

(
`− k
j − k

)k
r

n
−

n∑
j=`

(
`

j

)k 3k2(r − 1)
`n

−
(
`

n

)k n∑
j=`

(
1 + 2k`

)
j + 1

r−2∑
r′=0

r′∑
i=0

(k − 1)i

i! lni
(

n

j + 1

)
.

We approximate both sums over j through integrals by using
n∑
j=`

1
(j − k)k ≥

∫ n

`

1
(j − k)k dj = 1

k − 1

(
1

(`− k)k−1 −
1

(n− k)k−1

)
and

n∑
j=`

lni(n/(j+1))
j + 1 ≤

∫ n−1

`−1

lni(n/(j+1))
j + 1 dj =

[
− lni+1(n/(j+1))

i+ 1

]n−1

`−1
= lni+1(n/`)

i+ 1 .

APPROX/RANDOM’17

http://dx.doi.org/10.1007/BF01588971
http://dx.doi.org/10.1287/moor.3.3.177
http://dx.doi.org/10.1287/moor.3.3.177
http://dx.doi.org/10.1016/S0167-6377(03)00062-2

16:18 Submodular Secretary Problems: Cardinality, Matching, and Linear Constraints

This yields

E
[
v(ALG≥`r)

]
αv(OPT) ≥ r(`− k)

(k − 1)n

(
1−

(
`− k
n− k

)k−1
)
− 3k2(r − 1)

(k − 1)n

(
1−

(
`

n

)k−1
)

−
(
`

n

)k (
1 + 2k

`

) r−2∑
r′=0

r′∑
i=0

(k − 1)i

i!
lni+1 (n

`

)
i+ 1 .

We perform an index shift in the inner sum and propagate the shift to the outer sum

r−2∑
r′=0

r′∑
i=0

(k − 1)i

i!
ln(n/`)i+1

i+ 1 = 1
k − 1

r−2∑
r′=0

r′+1∑
i=1

(k − 1)i

i! lni
(n
`

)

= 1
k − 1

r−1∑
r′=1

r′∑
i=1

(k − 1)i

i! lni
(n
`

)

= 1
k − 1

r−1∑
r′=0

r′∑
i=0

(k − 1)i

i! lni
(n
`

)
− r

k − 1 .

Now we solve the brackets and use the term split off in the index shift to simplify the
expression. We get

E
[
v(ALG≥`r)

]
αv(OPT) ≥ r(`− k)

(k − 1)n −
r(`− k)
(k − 1)n

(
`− k
n− k

)k−1
+
(
`

n

)k (1 + 2k`
)

k − 1 r

−
(
`

n

)k (1 + 2k`
)

k − 1

r−1∑
r′=0

r′∑
i=0

(k − 1)i

i! lni
(n
`

)
− 3k2(r − 1)

(k − 1)n

≥ r`

(k − 1)n −
rk

(k − 1)n −
(
`

n

)k (1 + 2k`
)

k − 1

r−1∑
r′=0

r′∑
i=0

(k − 1)i

i! lni
(n
`

)
− 3k2(r − 1)

(k − 1)n .

At this point, we only have to show that the following inequality holds

rk

(k − 1)n +
(
`

n

)k 2k`
k − 1

r−1∑
r′=0

r′∑
i=0

(k − 1)i

i! lni
(n
`

)
+ 3k2(r − 1)

(k − 1)n ≤
3k2r

(k − 1)n .

We bound the inner sum with the corresponding exponential function

r′∑
i=0

(k − 1)i

i! lni
(n
`

)
≤
∞∑
i=0

(k − 1)i

i! lni
(n
`

)
= exp

(
(k − 1) ln

(n
`

))
=
(n
`

)k−1
.

This term is independent of r′. We eliminate the sum over r′ and get

rk

(k − 1)n + `

n

r2k`
k − 1 = 3kr

(k − 1)n ≤
3k2

(k − 1)n .

T. Kesselheim and A. Tönnis 16:19

A.2 Detailed Proof of Theorem 1
To complete the proof of the theorem, we apply Lemma 4 for ` = pn and r = k. This gives
us E [v(ALG)] = E

[
v(ALG≥pnk)

]
and thus

E [v(ALG)] ≥

 pk

k − 1 −
1

k − 1p
k
k−1∑
r′=0

r′∑
i=0

(k − 1)i

i! lni
(

1
p

)
− 6k2

n

 · αv(OPT) .

For p such that pn = dne e, we have 1
e ≤ p ≤ 1

e + 1
n and ln

(
1
p

)
= 1 + ln

(
n
n+e

)
≤ 1. This

allows us to reorder the occurring double sum as follows

k−1∑
r′=0

r′∑
i=0

(k − 1)i

i! =
k−1∑
i=0

(k − i) (k − 1)i

i! = k

k−1∑
i=0

(k − 1)i

i! − (k − 1)
k−1∑
i=1

(k − 1)i−1

(i− 1)!

=
k−1∑
i=0

(k − 1)i

i! + (k − 1)k

(k − 1)! .

By definition of the exponential function ex =
∑∞
i=0

xi

i! . For x > 0, all terms of the infinite
sum are positive. This yields ex ≥

∑k−1
i=0

xi

i! + xk

k! + xk+1

(k+1)! and thus by setting x = k − 1 we
get

k−1∑
r′=0

r′∑
i=0

(k − 1)i

i! ≤ ek−1 − (k − 1)k

k! − (k − 1)k+1

(k + 1)! + (k − 1)k

(k − 1)! .

We have pkek−1 ≤
(1
e + 1

n

)k
ek−1 =

(
1 + e

n

)k−1 (1
e + 1

n

)
≤ e ek

n

(1
e + 1

n

)
, this implies

E [v(ALG)]
αv(OPT) ≥

k

e(k − 1) −
(1
e + 1

n

)k
(k − 1)

(
ek−1 − (k − 1)k

k! − (k − 1)k+1

(k + 1)! + (k − 1)k

(k − 1)!

)
− 6k2

n

= k

e(k − 1) −
e

ek
n

e(k − 1) −
e

ek
n

n(k − 1)

+
(

1
e

+ 1
n

)k ((k − 1)k−1

k! + (k − 1)k

(k + 1)! −
(k − 1)k−1

(k − 1)!

)
− 6k2

n

= k − e ek
n

e(k − 1) −
(

1
e

+ 1
n

)k
k − 1
k + 1

(k − 1)k−1

(k − 1)! −
6k2

n
.

At this point, we apply the Stirling approximation (k − 1)! ≥
√

2π(k − 1)
(
k−1
e

)k−1 and get

E [v(ALG)]
αv(OPT) ≥

1
e
− e

ek
n − 1

e(k − 1) −
(

1
e

+ 1
n

)k
ek−1

√
k − 1

(k + 1)
√

2π
− 6k2

n

= 1
e
− e

ek
n − 1

e(k − 1) − e
ek
n

(
1
e

+ 1
n

) √
k − 1

(k + 1)
√

2π
− 6k2

n
.

For every fixed k, we can assume that n is arbitrarily larger. This can be guaranteed, for
example, through dummy elements with marginal gain zero for all sets. In the limit, this
yields

E [v(ALG)]
αv(OPT) ≥

1
e

(
1−

√
k − 1

(k + 1)
√

2π

)
.

APPROX/RANDOM’17

16:20 Submodular Secretary Problems: Cardinality, Matching, and Linear Constraints

A.3 Proof of Claim 7
Proof. We perform an induction on `. Assume that the claim has been shown for all r for
`+ 1. In Lemma 3, we have shown

E
[
v(ALG≥`r)

]
≥ 1
`

(
E
[
v(A(U≤`))

]
+ (k − 1)E

[
v(ALG≥`+1

r−1)
]

+ (`− k)E
[
v(ALG≥`+1

r)
])
.

Now we use the induction hypothesis

E
[
v(ALG≥`r)

]
≥ 1
`

E
[
v(A(U≤`))

]
+ k − 1

`

n∑
j=`+1

a`+1,j−1

j
E
[
v(A(U≤`))

] r−2∑
r′=0

∑
M⊆{`+1,...,j−1}

|M |=r′

(∏
i∈M

k − 1
i

)

+ `− k
`

n∑
j=`+1

a`+1,j−1

j
E
[
v(A(U≤`))

] r−1∑
r′=0

∑
M⊆{`+1,...,j−1}

|M |=r′

(∏
i∈M

k − 1
i

)
.

We perform an index shift, use `−k
` a`+1,j−1 = a`,j−1 and get

E
[
v(ALG≥`r)

]
= a`,`−1

`
E
[
v(A(U≤`))

]
+

n∑
j=`+1

a`+1,j−1

j
E
[
v(A(U≤`))

] r−1∑
r′=1

k − 1
`

∑
M⊆{`+1,...,j−1}
|M |=r′−1

(∏
i∈M

k − 1
i

)

+
n∑

j=`+1

a`,j−1

j
E
[
v(A(U≤`))

] r−1∑
r′=0

∑
M⊆{`+1,...,j−1}

|M |=r′

(∏
i∈M

k − 1
i

)
.

We have k−1
` ≥ k−1

i for all i ≥ ` and therefore we can merge the factor for the current
round into the product. In a sense the k−1

` factor stands for choosing an item in the current
round, and it gets worse if we chose one in a future round instead. Additionally we use
a`+1,j−1 ≥ a`,j−1 and omit the second large sum entirely.

For the final equality we use the fact that
∑r−1
r′=0

∑
M⊆∅
|M |=r′

(∏
i∈M

k−1
i

)
= 1 because the

inner sum is empty for all r′ > 0

E
[
v(ALG≥`r)

]
≥ a`,`−1

`
E
[
v(A(U≤`))

]
+

n∑
j=`+1

a`,j−1

j
E
[
v(A(U≤`))

] r−1∑
r′=0

∑
M⊆{`,...,j−1}
|M |=r′

(∏
i∈M

k − 1
i

)

=
n∑
j=`

a`,j−1

j
E
[
v(A(U≤`))

] r−1∑
r′=0

∑
M⊆{`,...,j−1}
|M |=r′

(∏
i∈M

k − 1
i

)
. J

A.4 Proof of Claim 8
Proof. Towards a proof, we show that t`,j+1 ≤ βjt`,j for some βj ≤ 1. We consider the
definition of t`,j+1 and split of a double sum that contains all terms where j ∈M . In those

T. Kesselheim and A. Tönnis 16:21

terms, we know that j is selected and therefore the factor k−1
j should always exist in the

product. We get

t`,j+1 = a`,j

r−1∑
r′=0

∑
M⊆{`,...,j}
|M |=r′

(∏
i∈M

k − 1
i

)

= a`,j

 r−1∑
r′=0

∑
M⊆{`,...,j−1}
|M |=r′

(∏
i∈M

k − 1
i

)
+ k − 1

j

r−1∑
r′=0

∑
M⊆{`,...,j−1}
|M |=r′−1

(∏
i∈M

k − 1
i

) .

Both double sums are nearly identical. We fill up the missing terms in the smaller one and
bound by the following expression. Finally, we replace the remaining double sum with the
definition of t`,j

t`,j+1 ≤ a`,j
(

1 + k − 1
j

) r−1∑
r′=0

∑
M⊆{`,...,j−1}
|M |=r′

(∏
i∈M

k − 1
i

)
= a`,j
a`,j−1

(
1 + k − 1

j

)
t`,j .

As we have a`,j

a`,j−1

(
1 + k−1

j

)
=
(

1 + k−1
j

)(
1− k

j

)
= 1 − k

j + k−1
j −

k(k−1)
j2 ≤ 1 the claim

follows. J

B Missing Details in Section 3: Submodular Matching

B.1 Missing Details in the Proof of Theorem 10: Competitive Ratio
for Submodular Matching

In the proof of Theorem 10, we also required the following technical lemma that is not
problem-specific.

I Lemma 14. For i > c ≥ 1, we have
k∏
i=j

(
1− c

i

)
≥
(

j − c
k − c+ 1

)c
.

Proof. As first step, we show that

1− c

i
= i− c

i
≥
(

i− c
i− c+ 1

)c
=
(

1− 1
i− c+ 1

)c
.

This is equivalent to
i− c

(i− c)c ≥
i

(i− c+ 1)c .

Now we show that this inequality holds for all i > c ≥ 1. We define the function f : [0, 1]→ R
such that

f(x) = i− cx
(i− c+ 1)c .

This function has the properties that f(0) = i
(i−c+1)c and f(1) = i−c

(i−c)c . We show that f is
non-decreasing increasing and therefore the inequality holds as well. The derivative f ′ of f is

f ′(x) = −c(i− c+ 1− x)c − (i− cx)c(i− c+ 1− x)(c−1)(−1)
(i− c+ 1− x)2c .

APPROX/RANDOM’17

16:22 Submodular Secretary Problems: Cardinality, Matching, and Linear Constraints

It suffice to show that f ′ is non-negative for all x ∈ [0, 1]. This holds true if the numerator is
positive for all x ∈ [0, 1] because the denominator is guaranteed to be positive with i > c

and x ∈ [0, 1]. We have

−c(i− c+ 1− x)− (i− cx)c(−1) ≥ 0
c(i− cx) ≥ c(i− c+ 1− x)

c− 1 ≥ (c− 1)x .

This directly gives us the proof for the lemma

k∏
i=j

(
1− c

i

)
≥

k∏
i=j

(
1− 1

i− c+ 1

)c
=

 k∏
i=j

i− c
i− c+ 1

c

=
(

j − c
k − c+ 1

)c
. J

On the Integrality Gap of the Prize-Collecting
Steiner Forest LP∗

Jochen Könemann1, Neil Olver2, Kanstantsin Pashkovich3,
R. Ravi4, Chaitanya Swamy5, and Jens Vygen6

1 Department of Combinatorics and Optimization, University of Waterloo,
Waterloo, ON, Canada
jochen@uwaterloo.ca

2 Department of Econometrics and Operations Research, Vrije Universiteit
Amsterdam, Amsterdam, The Netherlands; and
CWI, Amsterdam, The Netherlands
n.olver@vu.nl

3 Department of Combinatorics and Optimization, University of Waterloo,
Waterloo, ON, Canada
kpashkovich@uwaterloo.ca

4 Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA, USA
ravi@andrew.cmu.edu

5 Department of Combinatorics and Optimization, University of Waterloo,
Waterloo, ON, Canada
jcswamy@uwaterloo.ca

6 Research Institute for Discrete Mathematics, Universität Bonn, Bonn,
Germany
vygen@or.uni-bonn.de

Abstract
In the prize-collecting Steiner forest (PCSF) problem, we are given an undirected graph G =
(V,E), edge costs {ce ≥ 0}e∈E , terminal pairs {(si, ti)}ki=1, and penalties {πi}ki=1 for each terminal
pair; the goal is to find a forest F to minimize c(F) +

∑
i:(si,ti) not connected in F πi. The Steiner

forest problem can be viewed as the special case where πi = ∞ for all i. It was widely believed
that the integrality gap of the natural (and well-studied) linear-programming (LP) relaxation
for PCSF (PCSF-LP) is at most 2. We dispel this belief by showing that the integrality gap
of this LP is at least 9/4. This holds even for planar graphs. We also show that using this
LP, one cannot devise a Lagrangian-multiplier-preserving (LMP) algorithm with approximation
guarantee better than 4. Our results thus show a separation between the integrality gaps of
the LP-relaxations for prize-collecting and non-prize-collecting (i.e., standard) Steiner forest, as
well as the approximation ratios achievable relative to the optimal LP solution by LMP- and
non-LMP- approximation algorithms for PCSF. For the special case of prize-collecting Steiner
tree (PCST), we prove that the natural LP relaxation admits basic feasible solutions with all
coordinates of value at most 1/3 and all edge variables positive. Thus, we rule out the possibility
of approximating PCST with guarantee better than 3 using a direct iterative rounding method.

1998 ACM Subject Classification G.1.6 [Optimization] Integer Programming, Linear Program-
ming

Keywords and phrases Integrality gap, Steiner tree, Steiner forest, prize-collecting, Lagrangian-
multiplier-preserving

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.17

∗ NO was partially supported by an NWO Veni grant. RR was supported in part by the U.S. National
Science Foundation under award number CCF-1527032. CS was supported in part by NSERC grant
327620-09 and an NSERC Discovery Accelerator Supplement Award.

© Jochen Könemann, Neil Olver, Kanstantsin Pashkovich, R.Ravi, Chaitanya Swamy, and
Jens Vygen;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 17; pp. 17:1–17:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.17
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

17:2 On the Integrality Gap of the Prize-Collecting Steiner Forest LP

1 Introduction and Background

In an instance of the well-studied Steiner tree problem one is given an undirected graph
G = (V,E), a non-negative cost ce for each edge e ∈ E, and a set of terminals R ⊆ V .
The goal is to find a minimum-cost tree in G spanning R. In the more general Steiner
forest problem, terminals are replaced by terminal pairs (s1, t1), . . . , (sk, tk) and the goal
now becomes to compute a minimum-cost forest that connects si to ti for all i. Both of
the above problems are well-known to be NP- and APX-hard [7, 17]. The best-known
approximation algorithm for the Steiner tree problem is due to Byrka et al. [5] (see also [11])
and achieves an approximation ratio of ln 4 + ε, for any ε > 0; the Steiner forest problem
admits a (2− 1/k)-approximation algorithm [1, 12].

Our work focuses on the prize-collecting versions of the above problems. In the prize-
collecting Steiner tree problem (PCST) we are given a Steiner-tree instance and a non-
negative penalty πv for each terminal v ∈ R. The goal is to find a tree T that minimizes
c(T) + π(T), where c(T) denotes the total cost of all edges in T , and π(T) denotes the total
penalty of all terminals not spanned by T . In the prize-collecting Steiner forest problem
(PCSF), we are given a Steiner-forest instance and a non-negative penalty πi for each
terminal pair (si, ti), and the goal is to find forest F that minimizes c(F) + π(F) where,
similar to before, c(F) is the total cost of forest F , and π(F) denotes the total penalty of
terminal pairs that are not connected by F . We can view PCST as a special case of PCSF
by guessing a node r in the optimal tree, and then modeling each vertex in v ∈ R \ {r} by
the terminal pair (v, r).

The natural integer program (IP) for PCSF (see e.g. [3]) uses a binary variable xe for
every edge e ∈ E whose value is 1 if e is part of the forest corresponding to x. The IP also
has a variable zi for each pair (si, ti) whose value is 1 if si and ti are not connected by the
forest corresponding to x. We use i � S for the predicate that is true if S ⊆ V contains
exactly one of si and ti, and false otherwise. We use δ(S) to denote the set of edges with
exactly one endpoint in S. In any integer solution to the LP relaxation below, the constraints
insist that every cut separating pair (si, ti) must be crossed by the forest unless we set zi to
1 and pay the penalty for not connecting the terminals.

min c>x+ π>z (PCSF-LP)
s.t. x(δ(S)) + zi ≥ 1 ∀S ⊆ V, i� S

x, z ≥ 0.

Bienstock et al. [3] first presented a 3-approximation for PCST via a natural threshold
rounding technique applied to this LP relaxation. This idea also works for PCSF, and
proceeds as follows. First, we compute a solution (x, z) to the above LP. Let R′ be the
set of terminal pairs (si, ti) with zi < 1/3. Note that 3

2 · x is a feasible solution for the
standard Steiner-forest cut-based LP (obtained from (PCSF-LP) by deleting the z variables)
on the instance restricted to R′. Thus, applying an LP-based 2-approximation for Steiner
forest [1, 12] to terminal pairs R′ yields a forest F ′ of cost at most 2 · 3

2c
>x = 3c>x. The

total penalty of the disconnected pairs is at most 3 · π>z. Hence, c(F ′) + π(F ′) is bounded
by 3(c>x+ π>z), and the algorithm is a 3-approximation. Goemans showed that by choosing
a random threshold (instead of the value 1/3) from a suitable distribution, one can obtain
an improved performance guarantee of 1/(1− e−1/2) ≈ 2.5415 (see page 136 of [20], which
attributes the corresponding randomized algorithm for PCST in Section 5.7 of [20] to
Goemans).

J. Könemann, N. Olver, K. Pashkovich, R. Ravi, C. Swamy, and J. Vygen 17:3

Goemans and Williamson [12] later presented a primal-dual 2-approximation for PCST
based on the Steiner tree special case (PCST-LP) of (PCSF-LP). In fact, the algorithm
gives even a slightly better guarantee; it produces a tree T such that

c(T) + 2π(T) ≤ 2 · optPCST-LP,

where optPCST−LP is the optimum value of (PCST-LP). Algorithms for prize-collecting
problems that achieve a performance guarantee of the form

c(F) + β · π(F) ≤ β · opt

are called β-Lagrangian-multiplier preserving (β-LMP) algorithms. Such algorithms are
useful, for instance, for obtaining approximation algorithms for the partial covering version of
the problem, which in the case of Steiner tree and Steiner forest translates to connecting at
least a desired number of terminals (e.g., see [4, 16, 8, 9, 18]). Archer et al. [2] later used the
strengthened guarantee of Goemans and Williamson’s LMP algorithm for PCST to obtain
a 1.9672-approximation algorithm for the problem.

The best known approximation guarantee for PCSF is 2.5415 obtained, as noted above,
via Goemans’ random-threshold idea applied to the threshold-rounding algorithm of Bienstock
et al. This also shows that the integrality gap of (PCSF-LP) is at most 2.5415. The only
known lower bound prior to this work was 2.

Our contributions

We demonstrate some limitations of (PCSF-LP) for designing approximation algorithms for
PCSF and its special case, PCST, and in doing so dispel some widely-held beliefs about
(PCSF-LP) and its specialization to PCST.

The integrality gap of (PCSF-LP) has been widely believed to be 2 since the work of
Hajiaghayi and Jain [13], who devised a primal-dual 3-approximation algorithm for PCSF
and pose the design of a primal-dual 2-approximation based on (PCSF-LP) as an open
problem. However, as we show here, this belief is incorrect. Our main result is as follows.

I Theorem 1. The integrality gap of (PCSF-LP) is at least 9/4, even for planar instances of
PCSF. Furthermore, any β-LMP approximation algorithm for the problem via (PCSF-LP)
must have β ≥ 4.

When restricted to the non-prize-collecting Steiner forest problem, by setting πi = ∞
for all i, (PCSF-LP) yields the standard LP for Steiner forest, which has an integrality
gap of 2 [1]. Our result thus gives a clear separation between the integrality gaps of the
prize-collecting and standard variants. It also shows a gap between the approximation
ratios achievable relative to optPCSF-LP by LMP and non-LMP approximation algorithms
for PCSF. To the best of our knowledge, no such gaps were known previously for an LP
for a natural network design problem. For example, for Steiner tree, there are no such gaps
relative to the natural undirected LP obtained by specializing (PCSF-LP) to PCST. (There
are however gaps in the current best approximation ratios known for Steiner tree and PCST,
and approximation ratios achievable for PCST via LMP and non-LMP algorithms.)

In order to prove Theorem 1 we construct an instance on a large layered planar graph.
Using a result of Carr and Vempala [6] it follows that (PCSF-LP) has a gap of α iff α · (x, z)
dominates a convex combination of integral solutions for any feasible solution (x, z). We
show that this can only hold if α ≥ 9/4.

In his groundbreaking paper [15] introducing the iterative rounding method, Jain showed
that extreme points x of the Steiner forest LP (and certain generalizations) have an edge e

APPROX/RANDOM’17

17:4 On the Integrality Gap of the Prize-Collecting Steiner Forest LP

with xe = 0 or xe ≥ 1/2. This then immediately yields a 2-approximation algorithm for the
underlying problem, by iteratively deleting an edge of value zero or rounding up an edge of
value at least half to one and proceeding on the residual instance. Again, it was long believed
that a similar structural result holds for PCST: extreme points of (PCST-LP) have an edge
variable of value 0, or a variable of value at least 1/2. In fact, there were even stronger
conjectures that envisioned the existence of a z-variable with value 1 in the case where all
edge variables had positive value less than 1/2. We refute these conjectures.

I Theorem 2. There exists an instance of PCST where (PCST-LP) has an extreme point
with all edge variables positive and all variables having value at most 1/3.

In [14] it was shown, that for every vertex (x, z) of (PCSF-LP) (and hence also (PCST-
LP)) where x is positive, there is at least one variable of value at least 1/3. Moreover for
(PCSF-LP) this result is tight, i.e. there are instances of PCSF such that for some vertex
(x, z) of (PCSF-LP), we have x > 0 and all coordinates are at most 1/3. However, no such
example was known for (PCST-LP). We provide such an example for PCST, showing that
the 1/3 upper bound on variable values is tight also for (PCST-LP).

2 The Integrality Gap for PCSF

2.1 Lower Bound on the Integrality Gap
We start proving Theorem 1 by describing the graph for our instance. Let P be a planar
n-node 3-regular 3-edge-connected graph (for some large enough n to be determined later).
Note that such graphs exist for arbitrarily large n; e.g., the graphs of simple 3-dimensional
polytopes (such as planar duals of triangulations of a sphere) have these properties; they are
3-connected by Steinitz’s theorem [19].

We obtain H from P by subdividing every edge e of P , so that e is replaced by a
corresponding path with n internal nodes. Let r denote an arbitrary degree-3 node in H,
and call it the root. Define H(0) := H and obtain H(i) from H(i−1) by attaching a copy of
H to each degree-2 node v in H(i−1), identifying the root node of the copy with v; we call
this the copy of H with root v. We also define the parent of any node u 6= v in this copy to
be v. In the end, we let G := H(k) for some large k, and we let r0 be the node corresponding
to the root of H(0). Figure 1 gives an example of this construction. Note that each copy of
H can be thought of as a subgraph of G.

Next, let us define the source-sink pairs. We introduce a source-sink pair s, t whenever s
and t are degree-3 nodes in the same copy of H. We also introduce a source-sink pair r0, t

whenever t is a degree-2 node in G.
Now let xe := 1/3, for all e ∈ E, zuv := 0 if u and v are degree-3 nodes in the same copy

of H, and zuv := 1/3 otherwise. (Here and henceforth, we abuse notation slightly and index
z by the source-sink terminal pair that it corresponds to.) Clearly, (x, z) is a feasible solution
for (PCSF-LP) by the 3-edge-connectivity of G.

Let α be the integrality gap of (PCSF-LP). By [6] there is a collection of forests F1, . . . , Fq
in G (the same forest could appear multiple times in the collection) such that picking a forest
F uniformly at random from F1, . . . , Fq satisfies
(a) P [e ∈ F] ≤ α

3 for all e ∈ E, and
(b) Letting u ∼F v denote the event that u and v are connected in F , for all u, v ∈ V (G),

we have

P [u ∼F v] ≥ (1−αzuv) =
{

1 if u, v are degree-3 nodes in the same copy of H,
1− α

3 if u = r0 and v is a degree-2 node in G.

J. Könemann, N. Olver, K. Pashkovich, R. Ravi, C. Swamy, and J. Vygen 17:5

Figure 1 Taking n = 4, and hence P to be the complete graph on 4 vertices, the resulting graph
H(1) is shown.

We begin by observing that we may assume that each forest F1, . . . , Fq induces a tree
when restricted to any of the copies of H in G. For consider any Fi, and a copy of H with
root v; call this H ′. Every degree-3 node in H ′ is connected to v in Fi, by requirement (b).
So consider any degree-2 node u in H ′. If u is not connected to a degree-3 node of H ′ (and
hence to v) in Fi, then any edges of Fi adjacent to u can be safely deleted without destroying
any connectivity amongst the source-sink pairs of the instance.

The argument will show that if α is too small, not all degree-2 nodes can be connected to
r0 with high enough probability. More precisely, we will show a geometrically decreasing
probability, in k. The intuition is roughly as follows. Consider a copy H ′ of H with root
u, where u 6= r0. Almost all of the degree-2 nodes of H ′ that are connected to u in F will
have degree 2 in F , since F [H ′] is a tree and H ′ is made up of long paths. This is rather
wasteful, since both edges adjacent to a typical degree-2 node v are used to connect; as
each edge appears with probability α/3, v can only be part of F (and hence connected to
u) with probability about α/3. Moreover, we will show that even conditioned on the event
that u is not connected to r0, there will be some choice of v such that v is connected to u
in F with probability around 2/3 (see (2) in Claim 3). This is again a waste in terms of
connectivity to r0. If pi denotes the worst connectivity probability amongst nodes in H(i) in
the construction, we have

pi+1 / α
3 −

2
3 (1− pi). ((5) is a more precise version of this inequality)

If α < 9/4, this decreases geometrically, providing a counterexample for n large enough.
For now, let us introduce an abstract event I (that the reader may think of as “an ancestor

of node v is not connected to r0” motivated by the above discussion).

I Claim 3. Let a forest F be picked uniformly at random from F1, . . . , Fq, let I be an event
with P [I] > 0 and let H ′ be a copy of H in G. Then there exists a degree-2 node v in H ′

such that

P
[
degF [H′](v) = 1

]
≤ 2
n

(1)

and

P [Qv ⊆ F | I] ≥ 2(n− 1)
3n , (2)

where Qv is the path in H ′ corresponding to the edge of P containing v.

APPROX/RANDOM’17

17:6 On the Integrality Gap of the Prize-Collecting Steiner Forest LP

Proof. The event I corresponds to a nonempty multiset F ⊆ {F1, . . . , Fq} of the forests.
Each of F1[H ′], . . . , Fq[H ′] is a tree, by our earlier assumption, and so each of them
naturally induce a spanning tree of P . More precisely, for each e ∈ E(P), let Qe denote the
corresponding path in H ′; then {e ∈ E(P) : Qe ⊆ Fi[H ′]} is a spanning tree for each i. Thus∑

e∈E(P)

|{F ′ ∈ F : Qe ⊆ F ′}| =
∑
F ′∈F

|{e ∈ E(P) : Qe ⊆ F ′}| =
∑
F ′∈F

(n− 1) = |F|(n− 1).

So there is an edge f ∈ E(P) for which

P [Qf ⊆ F | I] = |{F
′ ∈ F : Qf ⊆ F ′}|

|F|
≥ (n− 1)
|E(P)| = 2(n− 1)

3n .

At most two of the nodes on Qf are leaves in any of F1[H ′], . . . , Fq[H ′] (again since they
are all trees). The total number of degree-2 nodes in H ′ lying on Qf is n, so there exists a
degree-2 node v in H ′ such that v ∈ Qf and P

[
degF [H′](v) = 1

]
≤ 2

n . J

I Claim 4. Let ε > 0 be given. Then for n and k chosen sufficiently large, there exists a
degree-2 node u in G such that

P [u ∼F r0] ≤ α− 2 + ε ,

where F is a uniformly random forest from F1, . . . , Fq.

Proof. Consider the root copy H(0) of H, with root r0. Set H0 = H(0). Pick a degree-2
node v in H0 that satisfies (1) in Claim 3 for the trivial event I := {r0 ∼F r0} and H ′ := H0.
Let r1 := v. Note that

P [r1 ∼F r0] = P
[
degF [H0](r1) = 2

]
+ P

[
degF [H0](r1) = 1

]
≤ α

3 + 2
n
< 1 .

The first inequality follows from (a) and (1), and the second since α ≤ 2.5415. Therefore
P [r1 6∼F r0] > 0.

Suppose that we have defined (H0, r1), (H1, r2), . . . , (Hi−1, ri) for some i with 1 ≤ i ≤ k,
such that the following hold for all 1 ≤ j ≤ i: (i) rj is a degree-2 node in Hj−1, and rj−1
is the root of Hj−1; (ii) P [rj−1 6∼F r0] > 0 if j ≥ 2; (iii) if j ≥ 2, then (1) and (2) hold in
Claim 3 for H ′ = Hj−1, I = {rj−1 6∼F r0} and v = rj . We now show how to define Hi and
ri+1 such that the above properties continue to hold for j = i+ 1.

First, set Hi to be the copy of H whose root is ri. We have P [ri 6∼F r0] ≥ P [ri−1 6∼F r0] >
0, so property (ii) continues to hold. Given this, pick a degree-2 node v in Hi that satisfies
(1) and (2) in Claim 3 for the event I := {ri 6∼F r0} and H ′ := Hi. Set ri+1 := v. Thus,
properties (i) and (iii) continue to hold as well.

For j ∈ {0, . . . , k}, due to the choice of rj+1 and (1), we have P
[
degF [Hj](rj+1) = 1

]
≤ 2

n

and thus

P [rj+1 ∼F rj] = P
[
degF [Hj](rj+1) = 2

]
+ P

[
degF [Hj](rj+1) = 1

]
≤ α

3 + 2
n
. (3)

For j ∈ {1, . . . , k}, due to (2) and the choice of rj+1, we get

P
[
Qrj+1 ⊆ F ∧ rj 6∼F r0

]
= P

[
Qrj+1 ⊆ F | rj 6∼F r0

]
· P [rj 6∼F r0]

≥ 2(n− 1)
3n P [rj 6∼F r0]

≥ 2
3
(
1− P [rj ∼F r0]

)
− 2

3n . (4)

J. Könemann, N. Olver, K. Pashkovich, R. Ravi, C. Swamy, and J. Vygen 17:7

Hence, for j ∈ {0, . . . , k},

P [rj+1 ∼F r0] = P [rj+1 ∼F rj ∧ rj ∼F r0]
= P [rj+1 ∼F rj]− P [rj+1 ∼F rj ∧ rj 6∼F r0]
≤ P [rj+1 ∼F rj]− P

[
Qrj+1 ⊆ F ∧ rj 6∼F r0

]
≤ α

3 + 2
n
− 2

3 + 2
3P [rj ∼F r0] + 2

3n , (5)

where the first inequality follows from the fact that rj+1 ∼F rj holds whenever Qrj+1 ⊆ F
holds, and the second inequality follows from (3) and (4).

Expanding the recursion, we get

P [rk+1 ∼F r0] ≤
(
α− 2

3 + 8
3n

) k∑
i=0

(
2
3

)i
+
(

2
3

)k+1
,

so for n and k large enough we obtain

P [rk+1 ∼F r0] ≤
(
α− 2

3 + ε

6

) ∞∑
i=0

(
2
3

)i
+ ε

2 = α− 2 + ε.

Since u := rk+1 is a degree-2 node in G, the proof is complete. J

Now, we can prove the first part of Theorem 1. By Claim 4 and property (b) of the
collection of forests, we get the inequality

α− 2 ≥ 1− α/3 ,

leading to α ≥ 9/4.

2.2 The Integrality Gap is Tight for the Construction
We note that for any n and k, the PCSF instance given by our construction has integrality
gap at most 9/4. More generally, we show that the integrality gap over PCSF instances
which admit a feasible solution (x, z) to (PCSF-LP) with zi ∈ {0, 1/3} for all i, is at most
9/4. (That is, the maximum ratio between the optimal values of the IP and the LP for such
instances is at most 9/4.) This nicely complements our integrality-gap lower bound, and
shows that our analysis above is tight (for such instances).

To show the first statement, we simply provide a distribution over forests F1,. . . , Fq
satisfying (a) and (b). (The next paragraph, which proves the second claim above, gives
another proof.) Since (2(n− 1)/(3n)) · 1 is in the spanning tree polytope of P , there is a list
of spanning trees such that every edge is contained in less than 2/3 of them. Consider the
following distribution of forests. With probability 3− α we pick one of these spanning trees
of P uniformly at random and subdivide it to obtain a tree in H; we take this tree in each
copy of H to obtain a (non-spanning) tree in G. With probability α− 2 we pick an arbitrary
spanning tree of G. This random forest F satisfies

P [e ∈ F] ≤ (α− 2) · 1 + (3− α) · 2
3 = α

3 .

Thus (a) holds for the above distribution. To see that (b) holds, note that for every degree-2
node v in G we have P [v ∼F r0] ≥ α− 2 = 1− α/3.

APPROX/RANDOM’17

17:8 On the Integrality Gap of the Prize-Collecting Steiner Forest LP

For the second claim, we utilize threshold rounding to show that the integrality gap is at
most 9/4 for such instances. Consider an instance of PCSF and a feasible point (x, z) for
(PCSF-LP) such that the values of z-variables are 0 or γ for some fixed γ with 0 < γ < 1/2.
Using [1, 12], we can obtain an integer solution of cost at most 2c>x+ π>z/γ by paying the
penalties for all pairs with a non-zero z value. We can also obtain a solution of cost at most
2c>x/(1− γ) by connecting all pairs. Therefore, for any p ∈ [0, 1], we can obtain an integer
solution of cost at most

p

(
2c>x+ π>z

γ

)
+ (1− p)

(
2c>x

1− γ

)
≤ max

{
2− 2pγ
1− γ ,

p

γ

}
(c>x+ π>z)

showing that the integrality gap is at most

µ := min
0≤p≤1

max
{

2− 2pγ
1− γ ,

p

γ

}
.

The number µ is at most 2/(2γ2 − γ + 1), which is equal to 9/4 for γ = 1/3. Note that for
γ = 1/4 the 2/(2γ2 − γ + 1) achieves its maximum value of 16/7.

2.3 Lagrangian-Multiplier Preserving Approximation Algorithms for
PCSF

Recall that a β-Lagrangian-multiplier-preserving (LMP) approximation algorithm for PCSF
is an approximation algorithm that returns a forest F satisfying

c(F) + β · π(F) ≤ β · opt .

We show that we must have β ≥ 4 in order to obtain a β-LMP algorithm relative to the
optimum of the LP-relaxation (PCSF-LP), that is, to obtain the guarantee c(F) +β ·π(F) ≤
β · optPCSF-LP. To obtain this lower bound, we modify our earlier construction slightly. We
construct G = H(k) in a similar fashion as before, but we now choose P (the “base graph”) to
be an n-node l-regular l-edge-connected graph. Let xe := 1/l for all e ∈ E, and let zuv := 0
if u and v are degree-l nodes in the same copy of H, and zuv := 1− 2/l otherwise.

By arguments similar to [6] (see, e.g., the proof of Theorem 7.2 in [10], and Theorem 8
in the Appendix), one can show that if there exists a β-LMP approximation algorithm for
PCSF relative to (PCSF-LP) then there are forests F1,. . . , Fq in G (the same forest could
appear multiple times) such that picking a forest F uniformly at random from F1, . . . , Fq
satisfies
(a’) P [e ∈ F] ≤ β

l for all e ∈ E, and

(b’) P [u ∼F v] ≥ (1− zuv) =
{

1 u, v are degree-l nodes in the same copy of H
2
l if u = r0 and v is a degree-2 node in G

for all u, v ∈ V (G).

It is straightforward to obtain the analogues of Claim 3 and Claim 4.

I Claim 5. Let a forest F be picked uniformly at random from F1, . . . , Fq, let I be an event
with P [I] > 0 and let H ′ be a copy of H in G. There exists a degree-2 node v in H ′, such
that

P
[
degF [H′](v) = 1

]
≤ 2
n

(6)

and

P [Qv ⊆ F | I] ≥ 2(n− 1)
ln

, (7)

where Qv is the path in H ′ that contains v and corresponds to an edge of P .

J. Könemann, N. Olver, K. Pashkovich, R. Ravi, C. Swamy, and J. Vygen 17:9

r

v1 v2 v3 vk−1 vk· · · · · ·

s

Figure 2 Here, each of the nodes v1,. . . , vk corresponds to the gadget in Figure 3. Additionally,
a cut {r} is marked as a tight constraint in (PCST-LP) for the constructed point (x, z). xe = 1/k
for all edges e.

I Claim 6. Let ε > 0 be given. Then for n and k sufficiently large, and choosing F uniformly
at random from F1, . . . , Fq, there exists a degree-2 node u in G such that

P [u ∼F r0] ≤ β − 2
l − 2 + ε .

For the node u from Claim 6, we have (β − 2)/(l − 2) ≥ P [v ∼F r0] ≥ 2/l. Thus, β is at
least 4− 4/l, which approaches 4 as l increases. This completes the proof of the second part
of Theorem 1.

Moreover, the analysis is tight for the above construction. For a solution to (PCSF-LP)
where z takes on only two distinct values, say 0 and γ, threshold rounding shows that for
β = 2 + 2γ < 4 the desired collection of forests exists. However, for an unbounded number of
distinct values of z, no constant-factor upper bound is known.

3 An Extreme Point for PCST with All Values at most 1
3

In this section we present a proof of Theorem 2. Take an integer k ≥ 4 and consider the
graph G = (V,E) in Figure 2. Here, the nodes v1,. . . , vk represent the gadgets shown in
Figure 3. The gadget consists of ten nodes, and there are precisely four edges incident to a
node in the gadget. We let r to be the root node and introduce a source-sink node pair (v, r)
for every node v ∈ V \ {r}.

In the case k = 6, the next claim proves Theorem 2.

I Claim 7. The following is an extreme point of (PCST-LP) for this instance: zs = 0
and zu = 1− 4/k for every node u in V \ {r, s}. For the wavy edges in Figure 3, we have
xu1u2 := xu3u4 := xu5u6 := xu7u8 := xu9u10 := 2/k, and xe = 1/k for all the other edges e.

Proof. It is straightforward to check that the defined point (x, z) is feasible. Let us show
that the defined point (x, z) is a vertex of (PCST-LP). To show this, it is enough to provide
a set of tight constraints in (PCST-LP) which uniquely define the above point (x, z).

APPROX/RANDOM’17

17:10 On the Integrality Gap of the Prize-Collecting Steiner Forest LP

u1 u2

u3u4

u5 u6

u7 u8

u9u10

Figure 3 A gadget used for the construction in Figure 2. Additionally, the cuts are marked as
tight constraints in (PCST-LP) for the constructed point (x, z). For an edge e, xe = 2/k if e is a
wavy edge, and xe = 1/k if it is a straight edge.

Let us consider the gadget in Figure 3. For each such gadget, the set of tight inequalities
from (PCST-LP) contains the following constraints:

x(δ(ui)) + zui
= 1 ∀i ∈ {1, . . . , 10} (8)

x(δ({u1, . . . , u10})) + zui
= 1 ∀i ∈ {1, . . . , 10} (9)

x(δ({ui, ui+1})) + zui
= 1 ∀i ∈ {1, 3, 5, 7, 9} (10)

x(δ({u1, . . . , u4})) + zu1 = 1 (11)
x(δ({u7, . . . , u10})) + zu7 = 1 . (12)

There are two more tight constraints which we use in the proof:

x(δ(r)) + zs = 1 (13)
zs = 0 . (14)

Let us prove that the constraints (8)–(14) define the point (x, z) from Claim 7. First,
let us consider a gadget in Figure 3. It is clear that (9) implies zu1 = . . . = zu10 . By (8)
and (10), we get

2xu1u2 = x(δ(u1))+x(δ(u2))−x(δ({u1, u2})) = (1−zu1)+(1−zu1)−(1−zu1) = (1−zu1) ,

and hence xu1u2 = (1 − zu1)/2. Similarly, we obtain xu1u2 = xu3u4 = . . . = xu9u10 =
(1− zu1)/2.

Now, we have

xu3u5 + xu2u3 = x(δ(u3))− xu3u4 = (1− zu1)/2
xu2u3 + xu2u5 = x(δ(u2))− xu1u2 = (1− zu1)/2
xu2u5 + xu3u5 = x(δ(u5))− xu5u6 = (1− zu1)/2 ,

implying xu2u3 = xu2u5 = xu3u5 = (1 − zu1)/4. Similarly, xu6u7 = xu6u10 = xu7u10 =
(1− zu1)/4.

By (10) and (11), we get

2xu1u4 = x(δ({u1, u2})) + x(δ({u3, u4}))− x(δ({u1, . . . , u4}))− 2xu2u3 = (1− zu1)/2 ,

showing xu1u4 = (1 − zu1)/4. Similarly, we get xu8u9 = (1 − zu1)/4. From here, it is
straightforward to show that all straight edges in Figure 3 have value (1 − zu1)/4 and all
wavy edges have value (1− zu1)/2.

J. Könemann, N. Olver, K. Pashkovich, R. Ravi, C. Swamy, and J. Vygen 17:11

Consider the graph in Figure 2. Due to the edge v1v2, the straight edges in the gadget
associated to v1 have the same x value as the straight edges in the gadget associated to v2.
Thus, due to the cycle v1v2 . . . vk the straight edges in all gadgets have the same x value. To
finish the proof use (13) and (14). J

Acknowledgement. We would like to thank Hausdorff Research Institute for Mathemat-
ics. This research was initiated during the Hausdorff Trimester Program “Combinatorial
Optimization”.

References
1 A. Agrawal, P. Klein, and R. Ravi. When trees collide: an approximation algorithm for

the generalized Steiner problem on networks. SIAM Journal on Computing, 24(3):440–456,
1995.

2 A. Archer, M. Bateni, M. Hajiaghayi, and H. Karloff. Improved approximation algorithms
for prize-collecting Steiner tree and TSP. SIAM Journal on Computing, 40(2):309–332,
2011.

3 D. Bienstock, M.X. Goemans, D. Simchi-Levi, and D. Williamson. A note on the prize
collecting traveling salesman problem. Mathematical Programming, 59(1):413–420, 1993.

4 A. Blum, R. Ravi, and S. Vempala. A constant-factor approximation algorithm for the
k-MST problem. Journal of Computer and System Sciences, 58(1):101–108, 1999.

5 J. Byrka, F. Grandoni, T. Rothvoss, and L. Sanità. Steiner tree approximation via iterative
randomized rounding. Journal of the ACM, 60(1):6, 2013.

6 R.D. Carr and S. Vempala. On the Held-Karp relaxation for the asymmetric and symmetric
traveling salesman problems. Mathematical Programming A, 100:569–587, 2004.

7 M. Chlebík and J. Chlebíková. The Steiner tree problem on graphs: Inapproximability
results. Theoretical Computer Science, 406(3):207–214, 2008. doi:10.1016/j.tcs.2008.
06.046.

8 F.A. Chudak, T. Roughgarden, and D.P. Williamson. Approximate k-MSTs and k-Steiner
trees via the primal-dual method and Lagrangean relaxation. Mathematical Programming,
100(2):411–421, 2004.

9 N. Garg. Saving an epsilon: a 2-approximation algorithm for the k-MST problem in graphs.
In Proceedings of the 37th ACM Symposium on Theory of Computing, pages 396–402, 2005.

10 K. Georgiou and C. Swamy. Black-box reductions for cost-sharing mechanism design.
Games and Economic Behavior, 2013. doi:10.1016/j.geb.2013.08.012.

11 M.X. Goemans, N. Olver, T. Rothvoß, and R. Zenklusen. Matroids and integrality gaps
for hypergraphic Steiner tree relaxations. In Proceedings of the 44th ACM Symposium on
Theory of Computing, pages 1161–1176, 2012.

12 M.X. Goemans and D.P. Williamson. A general approximation technique for constrained
forest problems. SIAM Journal on Computing, 24(2):296–317, 1995.

13 M. Hajiaghayi and K. Jain. The prize-collecting generalized Steiner tree problem via a new
approach of primal-dual schema. In Proceedings of the Seventeenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 631–640, 2006.

14 M. Hajiaghayi and A. Nasri. Prize-collecting Steiner networks via iterative rounding. In
Theoretical Informatics: LATIN 2010, pages 515–526. Springer, 2010.

15 K. Jain. A factor 2 approximation algorithm for the generalized Steiner network problem.
Combinatorica, 21(1):39–60, 2001. doi:10.1007/s004930170004.

16 K. Jain and V.V. Vazirani. Approximation algorithms for metric facility location and k-
median problems using the primal-dual schema and Lagrangian relaxation. Journal of the
ACM, 48(2):274–296, 2001.

APPROX/RANDOM’17

http://dx.doi.org/10.1016/j.tcs.2008.06.046
http://dx.doi.org/10.1016/j.tcs.2008.06.046
http://dx.doi.org/10.1016/j.geb.2013.08.012
http://dx.doi.org/10.1007/s004930170004

17:12 On the Integrality Gap of the Prize-Collecting Steiner Forest LP

17 R.M. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, pages 85–103. Springer, 1972.

18 J. Könemann, O. Parekh, and D. Segev. A unified approach to approximating partial
covering problems. Algorithmica, 59(4):489–509, 2011.

19 E. Steinitz. Polyeder und Raumeinteilungen. In Enzyclopädie der Mathematischen Wis-
senschaften, vol. 3, Geometrie, erster Teil, zweite Hälfte, pages 1–139. Teubner, 1922.

20 D.P. Williamson and D.B. Shmoys. The Design of Approximation Algorithms. Cambridge
University Press, 2010.

A Implications of an LMP Approximation Algorithm for PCSF

We adapt the arguments in [6] to show that a β-LMP approximation relative to (PCSF-LP)
implies that any fractional solution (x, z) to (PCSF-LP) can be translated to a distribution
over integral solutions to (PCSF-LP) satisfying certain properties; this implies the existence
of the forests F1, . . . , Fq in Section 2.3. The arguments below are known (see, e.g., the proof
of Theorem 7.2 in [10]); we include them for completeness.

Let G = (V,E), {ce ≥ 0}e∈E , {(si, ti, πi)}ki=1 be a PCSF-instance. Let {(x(q), z(q))}q∈I
be the set of all integral solutions to (PCSF-LP), where I is simply an index set.

I Theorem 8. Let A be a β-LMP approximation algorithm for PCSF relative to (PCSF-LP).
Given any fractional solution (x∗, z∗) to (PCSF-LP), one can obtain nonnegative multipliers
{λ(q)}q∈I such that

∑
q λ

(q) = 1,
∑
q λ

(q)x(q) ≤ βx∗, and
∑
q λ

(q)z(q) ≤ z∗. Moreover, the
λ(q) values are rational if (x∗, z∗) is rational.

Proof. Consider the following pair of primal and dual LPs.

max
∑

q

λ(q) (P)

s.t.
∑

q

λ(q)x(q)
e ≤ βx∗

e ∀e

∑
q

λ(q)z
(q)
i ≤ z∗

i ∀i

∑
q

λ(q) ≤ 1

λ ≥ 0.

min
∑

e

βx∗
ede +

∑
i

z∗
i ρi + γ (D)

s.t.
∑

e

x(q)
e de +

∑
i

z
(q)
i ρi + γ ≥ 1 ∀q

d, ρ, γ ≥ 0.

It suffices to show that the optimal value of (P) is 1. The rationality of the λ(q) values when
(x∗, z∗) is rational then follows from the fact that an LP with rational data has a rational
optimal solution. (The proof below also yields a polynomial-time algorithm to solve (P) by
showing that A can be used to obtain a separation oracle for the dual.)

Note that both (P) and (D) are feasible, so they have a common optimal value. We
show that optD = 1. Setting γ = 1, d = ρ = 0, we have that optD ≤ 1. Suppose (d, ρ, γ) is
feasible to (D) and

∑
e βx

∗
ede +

∑
i z
∗
i ρi + γ < 1. Consider the PCSF instance given by G,

edge costs {de}e∈E , and terminal pairs and penalties {(si, ti, ρi/β)}ki=1. Running A on this
instance, we can obtain an integral solution (x(q), z(q)) such that∑

e

dex
(q)
e +

∑
i

ρiz
(q)
i + γ ≤ β

(∑
e

dex
∗
e +

∑
i

z∗i ρi/β
)

+ γ < 1

which contradicts the feasibility of (d, ρ, γ). Hence, optD = 1. J

J. Könemann, N. Olver, K. Pashkovich, R. Ravi, C. Swamy, and J. Vygen 17:13

Note that if (x∗, z∗) is rational, then since the λ(q) values are rational, we can multiply
them by a suitably large number to convert them to integers; thus, we may view the
distribution specified by the λ(q) values as the uniform distribution over a multiset of integral
solutions to (PCSF-LP).

We remark that the converse of Theorem 8 also holds in the following sense. If for
every fractional solution (x∗, z∗) to (PCSF-LP), we can obtain λ(q) values (or equivalently, a
distribution over integral solutions to (PCSF-LP)) satisfying the properties in Theorem 8,
then we can obtain a β-LMP approximation algorithm for PCSF relative to (PCSF-LP):
this follows, by simply returning the integral solution (x(q), z(q)) with λ(q) > 0 that minimizes∑
e cex

(q)
e + β

∑
i πiz

(q)
i .

APPROX/RANDOM’17

Approximating Unique Games Using Low
Diameter Graph Decomposition
Vedat Levi Alev∗1 and Lap Chi Lau†2

1 University of Waterloo, Waterloo, ON, Canada
vlalev@uwaterloo.ca

2 University of Waterloo, Waterloo, ON, Canada
lapchi@uwaterloo.ca

Abstract
We design approximation algorithms for Unique Games when the constraint graph admits good
low diameter graph decomposition. For the Max-2Link problem in Kr-minor free graphs, when
there is an assignment satisfying 1 − ε fraction of constraints, we present an algorithm that
produces an assignment satisfying 1 − O(rε) fraction of constraints, with the approximation
ratio independent of the alphabet size. A corollary is an improved approximation algorithm for
the Min-UnCut problem for Kr-minor free graphs. For general Unique Games in Kr-minor free
graphs, we provide another algorithm that produces an assignment satisfying 1−O(r

√
ε) fraction

of constraints.
Our approach is to round a linear programming relaxation to find a minimum subset of edges

that intersects all the inconsistent cycles. We show that it is possible to apply the low diameter
graph decomposition technique on the constraint graph directly, rather than to work on the label
extended graph as in previous algorithms for Unique Games. The same approach applies when
the constraint graph is of genus g, and we get similar results with r replaced by log g in the
Max-2Link problem and by

√
log g in the general problem. The former result generalizes the

result of Gupta-Talwar for Unique Games in the Max-2Link case, and the latter result generalizes
the result of Trevisan for general Unique Games.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases Unique Games, Low Diameter Graph Decomposition, Bounded Genus
Graphs, Fixed Minor Free Graphs, Approximation Algorithms, Linear Programming

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.18

1 Introduction

For a given integer k ≥ 1, an undirected graph G = (V,E) and a set Π = {πuv : uv ∈ E} of
permutations on [k] satisfying πuv = π−1

vu , the Unique Games problem with alphabet size
k (denoted by UGk) is the problem of finding an assignment x : V → [k] to the vertices
such that the number of edges e = uv ∈ E satisfying the constraint πuv(x(u)) = x(v) is
maximized. The value SAT(I) of a Unique Games instance I = (G,Π) is defined as,

SAT(I) = max
x:V→[k]

1
|E|

∑
uv∈E

1[πuv(x(u)) = x(v)]

∗ Supported by the GO-Bell Scholarship and the David R. Cheriton Graduate Scholarship.
† Supported by NSERC Discovery Grant 2950-120715 and NSERC Accelerator Supplement 2950-120719.

© Vedat L. Alev and Lap C. Lau;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 18; pp. 18:1–18:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.18
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

18:2 Approximating Unique Games Using Low Diameter Graph Decomposition

i.e. the maximum fraction of satisfiable constraints over all assignments x. We define
UNSAT(I) = 1− SAT(I) as the minimum fraction of unsatisfied constraints.

The Unique Games Conjecture of Khot [23] postulates that it is NP-hard to distinguish
whether a given instance I = (G,Π) of the Unique Games problem is almost satisfiable or
almost unsatisfiable, and the problem becomes harder as the alphabet size k increases.

I Conjecture 1 (The Unique Games Conjecture, [23]). For every ε > 0, there exists an
integer k := k(ε), such that the decision problem of whether an instance I of UGk satisfies
SAT(I) ≥ 1− ε or SAT(I) ≤ ε is NP-hard.

The Unique Games Conjecture has attracted much attention over the years, due to its
implications regarding the hardness of approximation for many NP-hard problems [25, 24, 31].
An important case of Unique Games is the Max-2Link problem when the constraints are of
the form xu − xv ≡ cuv (mod k) for uv ∈ E. This problem is shown to be as hard as the
general case of the Unique Games problem by Khot et al. [24]. The Max-Cut problem is a
well-studied special case of Max-2Lin2 where xu − xv ≡ 1 (mod 2) for uv ∈ E. Assuming the
Unique Games Conjecture, Khot et al. [24] proved that it is NP-hard to distinguish Max-Cut
instances where the optimal value is at least 1− ε from instances where the optimal value is
at most 1−Θ(

√
ε).

There have been several efforts in designing polynomial time approximation algorithms
for Unique Games [23, 36, 18, 11, 12], where the objective is to minimize the number of
unsatisfied constraints. Let I be the given instance of UGk with n variables and UNSAT(I) = ε.
Trevisan [36] gave an SDP-based algorithm that provides an assignment which violates at
most an O(

√
ε logn) fraction of the constraints. Gupta and Talwar [18] gave an LP-based

algorithm that provides an assignment which violates at most an O(ε · logn) fraction of
the constraints. Charikar, Makarychev, and Makarychev [11] gave an SDP-based algorithm
which finds an assignment violating at most a O(

√
ε log k) fraction of constraints, where k is

the alphabet size. Chlamtac, Makarychev, and Makarychev [12] gave another SDP-based
algorithm which finds an assignment violating at most an O(ε ·

√
log k logn)-fraction of the

constraints.
There are also some previous works exploiting the structures of the constraint graphs.

Arora, Barak and Steurer [5] presented a subexponential time algorithm to distinguish the
two cases in the Unique Games Conjecture. Their approach uses the spectral information of
the constraint graph. If the Laplacian matrix of the constraint graph has only a few small
eigenvalues, then they extend the subspace enumeration approach of Kolla [27] to search over
this eigenspace for a good assignment. On the other hand, if there are many small eigenvalues,
they give a graph decomposition procedure to delete a small fraction of edges so that each
component in the remaining graph has only a few small eigenvalues. Combining these
two steps carefully gives their subexponential time algorithm. There is also an SDP-based
propagation rounding approach to find a good assignment when the constraint graph is an
expander [6] and more generally when the Laplacian matrix of the constraint graph has only
a few small eigenvalues [9, 19]. These gave an alternative SDP-based subexponential time
algorithm for the Unique Games Conjecture.

Our initial motivation is to study the Unique Games problem when the Laplacian matrix of
the constraint graph has many small eigenvalues, as there are no known good approximation
algorithms for Unique Games in these graphs. The most natural graph family possessing
this property is the class of graphs without a Kr minor, where a graph H is a minor of G if
H can be obtained from G by deleting and contracting edges, and Kr is the complete graph
with r vertices. Kelner et al. [22], after a sequence of works [10, 34, 21], proved that the
k-th smallest eigenvalue of the Laplacian matrix of a bounded degree Kr-minor free graph

V. L. Alev and L. C. Lau 18:3

is O(poly(r) · k/n), showing that there are many small eigenvalues. The class of Kr-minor
free graphs is well studied and is known to contain the class of planar graphs and the class
of bounded genus graphs, where a graph is of genus g if the graph can be embedded into a
surface having at most g handles without edge crossings. There are different (non-spectral)
techniques in designing approximation algorithms for various problems in Kr-minor free
graphs (see e.g. [14, 13]), including problems that are known to be harder than Unique
Games. This leads us to the question of whether we can extract those ideas to design better
algorithms for Unique Games.

1.1 Our Results
In this paper, we consider the problem of approximately minimizing the number of unsatisfied
constraints in an UGk instance I = (G,Π), when the constraint graph G is Kr-minor free.
Our first theorem is for the Max-2Link problem.

I Theorem 2. Given a Max-2Link instance I = (G,Π) where G is a Kr-minor free graph and
UNSAT(I) = ε (respectively where G is of genus at most g), there is an LP-based polynomial
time algorithm which outputs an assignment that violates at most an O(r · ε) fraction of
constraints (respectively at most a O(log g · ε) fraction of constraints).

For Max-2Lin, Theorem 2 on bounded genus graphs is a refinement of the O(logn·ε) bound
of Gupta and Talwar [18] as g = O(n). Theorem 2 also implies an improved approximation
algorithm for the Min-Uncut problem (the complement of the Max-Cut problem), where the
objective is to delete a minimum subset of edges so that the resulting graph is bipartite.

I Corollary 3. There is an LP-based polynomial time O(r)-approximation algorithm (re-
spectively a O(log g)-approximation algorithm) for the Min-Uncut problem for Kr-minor free
graphs (respectively for graphs of genus g).

The best known approximation algorithm for Min-Uncut is an SDP-based O(
√

logn)-
approximation algorithm [2, 12]. We are not aware of any improvement of this bound for
Kr-minor free graphs and bounded genus graphs. The above algorithms crucially used the
symmetry of the linear constraints in Max-2Lin. For general Unique Games, we present a
different algorithm with weaker guarantees. The following theorem on bounded genus graphs
is a refinement of the O(

√
ε · logn) bound of Trevisan [36] (see the discussion in [18, Section

4]).

I Theorem 4. Given a UGk instance I = (G,Π) where G is a Kr-minor free graph and
UNSAT(I) = ε (respectively where G is of genus at most g), there is an LP-based polynomial
time algorithm which outputs an assignment that violates at most an O(r ·

√
ε) fraction of

constraints (respectively at most a O(
√

log g · ε) fraction of constraints).

The main tool in our algorithms is the low diameter graph decomposition for Kr-minor
free graphs and bounded genus graphs (see Section 2). Both of our algorithms are LP-based.
The Max-2Link algorithm is based on cutting inconsistent cycles, which is different from most
existing algorithms for Unique Games that are based on finding good assignments. The UGk

algorithm is based on the propagation rounding method in Gupta and Talwar [18]. We defer
the technical overviews to Section 3.2 and Section 5.2, after the preliminaries are defined.

1.2 Related Work
There are polynomial time approximation schemes for many problems in Kr-minor free
graphs (see [13, 14]). For example, there is a (1− ε)-approximation algorithm for Max-Cut

APPROX/RANDOM’17

18:4 Approximating Unique Games Using Low Diameter Graph Decomposition

with running time 21/ε · nOr(1) for Kr-minor free graphs. The approach is a generalization
of Baker’s approach for planar graphs [7] remaining graph is of bounded treewidth, and then
using dynamic programming to solve the problem on each bounded treewidth component.
This approach can be used to distinguish the two cases in the Unique Games Conjecture for
Kr-minor free graphs for any fixed r. However, this approach is not applicable to obtain
multiplicative approximation algorithms for minimizing the number of unsatisfied constraints
for Unique Games, since it requires to remove a constant fraction of edges while the optimal
value could be very small. As mentioned previously, we are not aware of any polynomial time
approximation algorithms with performance ratio better than O(

√
logn) for the Min-Uncut

problem for Kr-minor free graphs.
The low diameter graph decomposition technique is very useful in designing approximation

algorithms for Kr-minor free graphs. It was first developed by Klein, Plotkin and Rao [26]
to establish the multicommodity flow-cut gap of Kr-minor free graphs, and since then
this technique has found numerous applications. A recent result using this technique is a
(Oε(r2), 1 + ε) bicriteria approximation algorithm [8] for the small set expansion problem,
which is shown to be closely related to the Unique Games problem [32, 33].

It is a well-known result of Hadlock [20] that the maximum cut problem can be solved
exactly in polynomial time on planar graphs. In Agarwal’s thesis [3], he showed that an
SDP relaxation (with triangle inequalities) for UG2 is exact for planar graphs, using a
multicommodity flow-cut type argument introduced in Agarwal et al. [4]. It is mentioned
in [3] that this approach of bounding the integrality gap (even approximately) is only known
to work for K5-minor free graphs.

Steurer and Vishnoi [35] showed that the Unique Games problem can be reduced to the
Multicut problem and used it to recover Gupta and Talwar’s result in the case of Max-2Link.
The approach of Steurer and Vishnoi is similar to ours; see Section 3.2 for some discussion.

1.3 Organization
In Section 2, we describe the low diameter graph decomposition results that we will apply. In
Section 3, we first present the proof for the Min-Uncut problem, as it is simpler and illustrates
all the main ideas. Then we generalize the proof to the Max-2Link problem in Section 4. In
Section 5, we show the result for general Unique Games. The proof overviews for Theorem 2
and Theorem 4 will be presented in the corresponding sections, Section 3.2 and Section 5.2,
after the preliminaries are defined.

2 Low Diameter Graph Decompositions

Let G = (V,E) be a graph with non-negative edge weights w : E → R+. A collection
P = {C1, . . . , Ck} of disjoint subsets Cj ⊆ V (called clusters) is a partition if they satisfy
V = ∪k

i=1Cj . We call a partition P weakly ∆-bounded if each of the clusters has weak
diameter ∆, i.e.

dG(u, v) ≤ ∆ ∀u, v ∈ Cj ;∀j ∈ [k]

where dG denotes the shortest path distance on G (induced by the edge weights w). We say
that the partition P is strongly ∆-bounded if each cluster has strong diameter ∆, i.e.

dG[Cj](u, v) ≤ ∆ ∀u, v ∈ Cj ;∀j ∈ [k]

where dG[Cj] denotes the shortest path distance in the induced subgraph G[Cj].

V. L. Alev and L. C. Lau 18:5

We write P (u) for the unique cluster Cj containing the vertex u ∈ V . We call a
distribution A of partitions ∆-bounded D-separating if each cluster is of diameter ∆ and for
each edge uv ∈ E we have

PP∼A[P (u) 6= P (v)] ≤ D

∆ · w(u, v). (1)

This implies that we can cut a graph into clusters with diameter at most ∆ by deleting all
the inter-cluster edges, while only losing a D/∆ fraction of the total edge weight.

We call a ∆-bounded D-separating partitioning scheme efficient, if we can sample it in
polynomial time.

The seminal work of Klein, Plotkin and Rao [26] showed the first low diameter graph
decomposition scheme for planar graphs and more generally for Kr-minor free graphs. We
will use the latest result of this line of work [26, 16, 29, 1], as it gives the best known
quantitative bound and also it guarantees the clusters have strong diameter ∆ which will be
important in our algorithm for general Unique Games.

I Theorem 5 ([1]). Every weighted Kr-minor free graph admits an efficient weakly ∆-bounded
O(r)-separating partitioning scheme for any ∆ ≥ 0.

I Theorem 6 ([1]). Every weighted Kr-minor free graph admits an efficient strongly ∆-
bounded O(r2)-separating partitioning scheme for any ∆ ≥ 0.

We will also use the optimal bounds for bounded genus graphs, to derive better results
for Unique Games in these graphs.

I Theorem 7 ([1, 29]). Every weighted graph of genus g admits an efficient strongly ∆-
bounded O(log g)-separating partitioning scheme for any ∆ ≥ 0.

The results in [1] are stated using the language of padded decompositions, but it is easy to
see that the results we stated are corollaries of the theorems in [1].

3 Minimum Uncut

Given an undirected graph G = (V,E) with a non-negative cost ce for each edge e ∈ E, the
Min-Uncut problem is to find a subset S ⊆ V to minimize the total cost of the uncut edges
(the edges with both endpoints in S or both endpoints in V − S). Alternatively, the problem
is equivalent to finding a subset F ⊆ E of minimum total cost so that G− F is a bipartite
graph (so F is the uncut edges). As a graph is bipartite if and only if it has no odd cycles,
the problem is equivalent to finding a subset of edges of minimum total cost that intersects
all the odd cycles in the graph, which is also known as the Odd Cycle Transversal problem.
We will tackle the Min-Uncut problem using this perspective, by writing a linear program for
the Odd Cycle Transversal problem.

As mentioned already, the Min-Uncut problem is a special case of Max-2Lin2. We will see in
Section 4 that the ideas in this section can be readily generalized to design an approximation
algorithm for the Max-2Link problem.

3.1 Linear Programming Relaxation
We consider the following well-known linear programming relaxation for the Odd Cycle
Transversal problem, which is known to be exact when the input is a planar graph [17].
We note that this is similar to the LP formulation used by Gupta and Talwar [18] when
specialized to the Min-Uncut problem, but their LP formulation is on the “label extended
graph” that we will explain soon.

APPROX/RANDOM’17

18:6 Approximating Unique Games Using Low Diameter Graph Decomposition

0

0

0

1

0

0
11

0

(a) The shortest path distance between
any two pairs of vertices is 0. The bold
edges correspond to an optimal integral
solution to LP-MinUncut.

0.3

0.3

0.23

0.4 0.01

0.59

0.12
0.76

0.12

(b) After removing edges with weight at least 1/2
(the bold edges), all remaining subgraphs are of
diameter at most 1/4 and they are bipartite. The
dashed edges are the inter-cluster edges.

Figure 1 Applying low diameter graph decomposition in a feasible solution to LP-MinUncut.

LP? = min
∑
e∈E

cexe (LP-MinUncut)

subject to∑
e∈C

xe ≥ 1 C ∈ C

xe ≥ 0 e ∈ E

where C is the set of odd cycles of G.

This LP has exponentially many constraints. To solve it in polynomial time using the
ellipsoid method [30], we require a polynomial time separation oracle to check whether a
solution x is feasible or not, and if not provide a violating constraint. For this LP, it is well
known that the separation oracle can be implemented in polynomial time using shortest path
computations (e.g. see [18]). Since this will be relevant to our discussion, we describe the
separation oracle in the following.

The idea is to construct the “label extended graph” H = (V ′, E′) of G = (V,E) (to use
the Unique Games terminology). For each vertex v in V , we create two vertices v+ and v− in
V ′. For each edge uv in E, we add two edges u+v− and u−v+ in E′, and we set the weight
of u+v− and u−v+ to be xuv. By construction, there is an odd cycle in G containing v if
and only if there is a path from v+ to v− in the label extended graph H. So, to check that x
is feasible, we just need to check that the weight of the shortest path from v+ to v− is at
least one for every v.

3.2 Proof Overview
One natural approach to do the rounding is to consider the label extended graph H of G.
From the above discussion, destroying all the odd cycles in G is equivalent to destroying
all the v+-v− paths in H for all v. Since x is feasible, we know that the shortest path
distance between v+ and v− is at least 1 for every v. Therefore, we can apply the low
diameter graph decomposition result in the label extended graph, by setting ∆ < 1 to
ensure that all v+ and v− are disconnected, and hope to delete edges with weight at most∑

e∈E O(r/∆) · cexe = O(r) · LP? by Theorem 5. This is similar to the approach used in [35]

V. L. Alev and L. C. Lau 18:7

to reduce Unique Games to Multicut. The problem of this approach is that the label extended
graph H could have arbitrarily large clique minor, even though the original constraint graph
G is Kr-minor free: Section 2 do not apply. even if the constraint graph G is grid-like and
planar, the label-extended graph H can contain a KΩ(n) minor, even when the alphabet size
is just two. This means that applying the theorems in Section 2 blindly does not give better
than a O(logn)-factor approximation.

This is often a technical issue in analyzing algorithms for Unique Games: It is most natural
to work on the label extended graph but the label extended graph does not necessarily share
the nice properties in the original graph [27]. It is not obvious how to apply low diameter
graph decomposition directly in the original constraint graph to do the rounding. For
example, in the graph shown in Figure 1a, x is an integral solution but the shortest path
distance (using xe as the edge weight of e) is 0 for all pairs of vertices, providing no useful
information about which pairs of vertices we need to separate.

Our main observation is that the shortest path distances are not useful only when there
are edges with large xe. In Lemma 8, we prove that if xe < 1/2 for every e, then every odd
cycle contains a pair of vertices u, v with shortest path distance greater than 1/4 (using xe

as the edge weight of e). Therefore, if we apply low diameter graph decomposition with
∆ = 1/4, then we can ensure that no odd cycle will remain in any cluster, and the above
calculation shows that the total weight of the deleted edges is O(r) · LP?. To reduce to the
case where there are no edges with xe ≥ 1/2, we can simply delete all such edges as their
total weight is at most 2LP?. This preprocessing step is remotely similar to some iterative
rounding algorithms (see [28]). See Figure 1b for an illustration.

3.3 Rounding Algorithm
Algorithm 1 (Min-Uncut).

Intput: A feasible solution x to LP-MinUncut with value LP? on a Kr-minor free graph.
Output: An integral solution to LP-MinUncut with total cost O(r) · LP?

1. Let F1 be the subset of edges with xe ≥ 1/2. Delete all edges in F1 from the graph.
2. Set the weight we of each edge e in the remaining graph to be xe.

Sample a weakly (1/4)-bounded O(r)-separating partition P guaranteed by Theorem 5
in the remaining graph.

3. Let F2 be the set of inter-cluster edges in P , i.e. edges uv with P (u) 6= P (v).
Return F1 ∪ F2 as the output.

3.4 Main Lemma
The following lemma allows us to apply low diameter graph decomposition in the original
constraint graph. The proof uses the simple but crucial fact that if we “shortcut” an odd
cycle, one of the two cycles created is an odd cycle.

I Lemma 8. Let G′ be a graph with edge weight xe for each edge e. Suppose every odd cycle
C has total weight at least 1, i.e.

∑
e∈C xe ≥ 1. If 0 ≤ xe < δ ≤ 1 for every edge e ∈ G′,

then every odd cycle C in G′ contains a pair of vertices u, v satisfying dx(u, v) > (1− δ)/2,
where dx(u, v) denotes the shortest path distance from u to v induced by the edge weights xe.

Proof. Let C be an arbitrary odd cycle and let v0 be an arbitrary vertex in C. We will prove
the stronger statement that if dx(v0, v) ≤ (1− δ)/2 for every v ∈ C, then there is an edge
e ∈ C with xe ≥ δ. Note that the contrapositive of this stronger statement clearly implies
the lemma.

APPROX/RANDOM’17

18:8 Approximating Unique Games Using Low Diameter Graph Decomposition

v0

P
(t)
1 P

(t)
2

v0 v0

u u

P
(t)
1

P
(t)
C1

Q Q

P
(t)
2

P
(t)
C2

Figure 2 The paths involved in the proof of Lemma 8. The shortcut Q is highlighted gray, and
the cycle segments P

(t)
Cj

are highlighted blue. Since the walk we maintain is odd, one of the two
walks we consider in the induction step (right figure) should be odd.

Since all odd cycles have total weight at least 1, any nontrivial odd walk (may visit some
vertices multiple times) from v0 to v0 has total weight at least 1. This is because any odd
walk can be decomposed into edge-disjoint simple cycles, with at least one of which is odd.

We will prove the statement by an inductive argument. In a general inductive step t ≥ 0,
we maintain a walk C(t) from v0 to v0 satisfying the following properties (see Figure 2):

1. C(t) is a nontrivial odd walk from v0 to v0, consisting of three paths P (t)
1 -P (t)

C -P (t)
2 .

2. P
(t)
1 and P (t)

2 contain v0, with v0 being the first vertex of P (t)
1 and v0 being the last vertex

of P (t)
2 .

3. Both P (t)
1 and P (t)

2 have total weight at most (1− δ)/2.

4. P
(t)
C is a continuous segment of C, i.e. if C = (v0, v1, . . . , vk = v0), then P (t)

C = (vi, . . . , vj)
for some 0 ≤ i < j ≤ k. In particular, P (t)

C 6= ∅.

Initially, C(0) is just the cycle C, with P (0)
1 = P

(0)
2 = ∅ and P (0)

C = C.
Let w(P) denote the total weight of a path P , and let |P | denote the number of edges

in P . Since w(P (t)
1), w(P (t)

2) ≤ (1− δ)/2, we must have w(P (t)
C) ≥ δ, as C(t) is a nontrivial

odd walk and thus the total weight is at least one. The inductive step is to show that if
dx(v0, v) ≤ (1−δ)/2 for all v ∈ C, then we can construct C(t+1) from C(t) so that C(t+1) still
satisfies the properties but |P (t+1)

C | < |P (t)
C |. By applying this inductively, we will eventually

construct a walk C(T) that satisfies the properties and |P (T)
C | = 1, and so P (T)

C is an edge of
C with weight w(P (t)

C) ≥ δ, and this will complete the proof.
It remains to prove the inductive step (see Figure 2). Let C(t) be a walk that satisfies

the properties but |P (t)
C | ≥ 2. Let u be an internal vertex of P (t)

C , which splits P (t)
C into P (t)

C1

and P (t)
C2

, so that the walk C(t) consists of P (t)
1 -P (t)

C1
-P (t)

C2
-P (t)

2 . Since dx(v0, u) ≤ (1− δ)/2,
there is a path Q from v0 to u with w(Q) ≤ (1− δ)/2. The path Q splits the walk C(t) into
two walks, P (t)

1 -P (t)
C1

-Q and Q-P (t)
C2

-P (t)
2 As C(t) is an odd walk, a simple parity argument

implies that exactly one of these two walks must be odd, say P (t)
1 -P (t)

C1
-Q (the other case

is similar). Then we let C(t+1) := P
(t)
1 -P (t)

C1
-Q, with P

(t+1)
1 := P

(t)
1 , P (t+1)

C := P
(t)
C1

, and
P

(t+1)
1 := Q. It is straightforward to check that C(t+1) still satisfy all the properties and

furthermore |P (t+1)
C | < |P (t)

C |, completing the proof of the induction step. J

V. L. Alev and L. C. Lau 18:9

3.5 Proof of Corollary 3

We are now ready to prove that the algorithm in Section 3.3 is an O(r)-approximation
algorithm for Min-Uncut. In step 1, since each edge e in F1 has xe ≥ 1/2, the total cost of
edges in F1 is∑

e∈F1

ce ≤ 2
∑
e∈F1

cexe ≤ 2LP?.

Let G′ := G − F1 be the remaining graph. By Lemma 8, every odd cycle of G′ contains
a pair of vertices u, v with shortest path distance greater than 1/4. Let ∆ = 1/4. In a
(1/4)-bounded partition P , no cluster can contain an odd cycle C as otherwise the pair of
vertices u, v ∈ C with dx(u, v) > 1/4 guaranteed by Lemma 8 would contradict that the
cluster has weak diameter at most 1/4. So, each cluster induces a bipartite graph, and thus
G′ − F2 is a bipartite graph where F2 is the set of inter-cluster edges. Therefore, F1 ∪ F2 is
an integral solution to the Odd Cycle Transversal problem, and hence an integral solution to
the Min-Uncut problem.

To complete the proof, it remains to bound the cost of the edges in F2. We use
Theorem 5 to sample from a distribution of partitions which is ∆-bounded and O(r)-
separating, and by definition (1) the probability of an edge e being an inter-cluster edge is at
most O(r) · xe/∆ = O(r) · xe. Therefore, the expected cost of F2 is

E

[∑
e∈F2

ce

]
=

∑
e=uv∈G′

ce·PP∼A[P (u) 6= P (v)] =
∑
e∈G′

ce·O(r)·xe = O(r)
∑
e∈G′

cexe ≤ O(r)·LP?.

Hence, the expected total cost of edges in F1 ∪ F2 is O(r) · LP?, and this concludes the
proof of Corollary 3 about Kr-minor free graphs. For bounded genus graphs, the proof
is the same except that we use Theorem 7 which guarantees the partitioning scheme is
O(log g)-separating.

4 Max-2Link

In this section, we show that the Min-Uncut algorithm can be readily generalized to the
Max-2Link problem. The proofs will be almost identical, so we just highlight the subtle
differences.

One important feature of Theorem 2 is that the approximation ratio does not depend
on the alphabet size. The reason is that the symmetry of the linear constraints allows us
to define inconsistent cycles in the original constraint graph, which will play the same role
as the odd cycles in the Min-Uncut problem. This allows us to reduce Max-2Link to the
Inconsistent Cycle Transversal problem.

4.1 Problem Formulation

Consider the Max-2Link problem where each constraint is of the form xu− xv = cuv (mod k)
where cuv ∈ Zk. The symmetry property that we will exploit is that every permutation
constraint πuv satisfies: πuv(i+c) = πuv(i)+c for all i, c ∈ Zk. Note that there are “directions”
in the constraints, as πuv = (πvu)−1 and they are in general different. In the Max-Cut (or
Min-Uncut) problems, we have πuv = πvu as the alphabet set is of size two, and so the concept
of direction was not discussed.

APPROX/RANDOM’17

18:10 Approximating Unique Games Using Low Diameter Graph Decomposition

IDefinition 9 (Inconsistent cycles for Max-2Link). Let I = (G,Π) be an instance of Max-2Link.
A cycle (v0, v1, . . . , vl = v0) of length l in G is called inconsistent if

πvlvl−1 ◦ πvl−1vl−2 ◦ · · · ◦ πv1v0 6= Id (2)

where Id is the identity permutation. By the aforementioned symmetry property of Max-2Link,
if the product π of permutation constraints along a cycle is not the identity permutation,
then π(i) 6= i for all i ∈ Zk. This is the crucial property that we will use.

The following lemma shows that Max-2Link is equivalent to the Inconsistent Cycle Trans-
versal problem. The reason is that whether a cycle is satisfiable is independent of which label
to assign to the starting vertex because of the symmetry property. Note that this does not
hold for general Unique Games.

I Lemma 10. A Max-2Link instance I = (G,Π) is satisfiable if and only if G contains no
inconsistent cycles.

Proof. Suppose I is satisfiable. Let x be a satisfying assignment. Consider an arbitrary
cycle C = (v0, v1, . . . , vl = v0). The permutation constraints on C enforce that πvlvl−1 ◦
πvl−1vl−2 ◦ · · · ◦ πv1v0(x(v0)) = x(v0) where x(v0) is the value of v0 in the assignment x. By
the symmetry property of the constraints, this implies that πvlvl−1 ◦ πvl−1vl−2 ◦ · · · ◦ πv1v0 is
the identity permutation, and thus it is consistent.

Suppose G has no inconsistent cycles. Then we show that G is satisfiable by the
following trivial algorithm. Pick an arbitrary vertex v0 ∈ G, and set x(v0) an arbitrary
value. Then we propagate this assignment to every other vertex v by using an arbitrary path
P = (v0, v1, . . . , vl = v) from v0 to v and set x(v) = πvlvl−1 ◦ πvl−1vl−2 ◦ · · · ◦ πv1v0(v0). In
particular, we can use a breadth first search tree to propagate the assignment. Since G has
no inconsistent cycles, any two paths P1, P2 from v0 to v will define the same value x(v), as
otherwise following P1 from v0 to v and following P2 from v to v0 will give us an inconsistent
cycle. This implies that any non-tree constraint uv is also satisfied by the assignment, as
otherwise it means that there are two paths from v0 to v defining different values from x(v),
one path being the tree path from v0 to u plus the edge uv, and the other path being the
tree path from v0 to v. J

4.2 Linear Programming Relaxation
Given Lemma 10, we can formulate the minimization version of the Max-2Link problem, the
Min-2Link problem, as the Inconsistent Cycle Transversal problem, where the objective is to
find a subset of edges of minimum cost that intersects all the inconsistent cycles. We can
then use the same linear programming relaxation for the Min-Uncut problem, with C being
the set of inconsistent cycles in the constraint graph. Again, we can design a polynomial
time separation oracle to check whether a solution x is feasible, by constructing the label
extended graph and using shortest path computations as in Section 3.1 (see [18]).

4.3 Rounding Algorithm and Analysis
The rounding algorithm is exactly the same as in Section 3.3, and so we do not repeat it
here. The analysis is also the same, which relies on a generalization of Lemma 8.

I Lemma 11. Let G′ be a graph with edge weight xe for each edge e. Suppose every
inconsistent cycle C has total weight at least 1, i.e.

∑
e∈C xe ≥ 1. If 0 ≤ xe < δ ≤ 1 for every

edge e ∈ G′, then every inconsistent cycle C in G′ contains a pair of vertices u, v satisfying
dx(u, v) > (1− δ)/2, where dx(u, v) denotes the shortest path distance from u to v induced
by the edge weights xe.

V. L. Alev and L. C. Lau 18:11

Proof. The proof is essentially identical, by replacing every occurrence of “odd” by “incon-
sistent”. The only place that needs explanation is in the last paragraph of Lemma 8, when
we split an inconsistent walk using a path Q from v0 to u into two walks P (t)

1 -P (t)
C1

-Q and
Q-P (t)

C2
-P (t)

2 , and we need to argue that at least one of these two walks is inconsistent. Suppose
both walks are consistent. Let πP1 be the composition of the permutation constraints from v0
to u following the path P (t)

1 -P (t)
C1

, πQ be the composition of the permutation constraints from
u to v0 following the path Q, and πP2 be the composition of the permutation constraints from
u to v0 following the path P (t)

C2
-P (t)

2 . The first walk is consistent means that πQ ◦ πP1 = Id,
and the second walk is consistent means that πP2 ◦ (πQ)−1 = Id. But this implies that
following the first walk and then the second walk is consistent, and thus the original walk
is also consistent as Id = (πP2 ◦ (πQ)−1) ◦ (πQ ◦ πP1) = πP2 ◦ πP1 , contradicting that the
original walk is inconsistent. The rest of the proof is identical. J

With Lemma 11, using exactly the same argument as in Section 3.5 gives us the proof of
Theorem 2.

5 General Unique Games

For general Unique Games, we could not reduce the problem to some cycle cutting problem
in the original constraint graph. Instead, we modify the LP-based algorithm of Gupta and
Talwar [18] to prove Theorem 4.

5.1 Linear Programming Relaxation
Gupta and Talwar [18] use the following linear programming relaxation for the Unique Games
problem.

min LP? =
∑

uv∈E

cuv

2

k∑
l=1

d(u, v, l) (LP-UG)

subject to

k∑
l=1

x(u, l) = 1 ∀u ∈ V

d(u, v, l) ≥ |x(u, l)− x(v, πuv(l))| ∀uv ∈ E, l ∈ [k]
t∑

i=1
d(vi−1, vi, li−1) ≥ x(u, l0) ∀C, ∀u ∈ C, ∀l0 ∈ Bu,C

1 ≥ x(u, l) ≥ 0 ∀u ∈ V, ∀l ∈ [k]

The intended value of x(u, l) is 1 if we assign the label l to vertex u and 0 otherwise, and so
the first constraint enforces that we assign exactly one label to each vertex. The intended
value of d(u, v, l) is 1 if we assign u to l but not assign v to πuv(l) or vice versa and is
0 otherwise. So

∑k
l=1 d(u, v, l) is two if the constraint πuv is not satisfied and is 0 if the

constraint is satisfied, and therefore the objective function is to minimize the total cost of
the violated constraints. The third constraint is the inconsistent cycle constraint in the label
extended graph: Bu,C is defined as the set of “bad” labels at u, so that if u is assigned some
label in Bu,C , then propagating this label along the cycle must violate some permutation

APPROX/RANDOM’17

18:12 Approximating Unique Games Using Low Diameter Graph Decomposition

constraint in C. So, the intention of the third constraint is that if we assign some label in
Bu,C to vertex u, then the number of violated constraint along the cycle C must be at least 1.
This is similar to our inconsistent cycle constraint, but defined on the label extended graph.

5.2 Proof Overview

Gupta and Talwar [18] gave a polynomial time randomized algorithm to return an integral
solution of cost O(logn) · LP? from a feasible solution to the LP with objective value LP?.

The main technique in their rounding algorithm is the use of a low average distortion
tree to propagate an assignment from a vertex. Their propagation rounding algorithm picks
an arbitrary vertex u ∈ V and assigns it a random label lu according to the probability
distribution defined by x(u, l). Then they design a correlated sampling scheme to sample
a label lv for a neighbor v of u satisfying the properties that P[lv = l] = x(v, l) and
P[lv 6= πuv(lu)] ≤

∑k
l=1 d(u, v, l). They use this correlated sampling to propagate the

assignment from the starting vertex to every vertex in the graph using the low average
distortion tree. Their approximation ratio comes from the average distortion O(logn) of the
tree given by the FRT embedding [15], which can not be improved even for planar graphs.

We will still use the propagation rounding method of Gupta and Talwar, but we apply it
to different trees. In [18], the tree T needs not be a spanning tree in the constraint graph
(i.e. some edges in the tree may not exist in the graph), and this adds some complication
to the analysis. In our application, all tree edges will be graph edges and we can use a
simpler lemma in their proof. For an edge uv ∈ E, we let dG(u, v) :=

∑k
l=1 d(u, v, l), and let

dT (u, v) :=
∑

xy∈P dG(x, y) where P is the unique path from u to v in the tree T .

I Lemma 12 (Lemma 3.1 in [18]). Let x be the assignment produced by the propagation
rounding algorithm using correlated sampling along a tree T . For every edge uv ∈ G, we have

P[x(v) 6= πuv(x(u))] ≤ dG(u, v) + 2dT (u, v).

The idea of our algorithm is very simple. We use the strongly ∆-bounded O(r2)-separating
partitioning scheme to decompose the graph, using dG(u, v) as the weight of edge uv ∈ E(G).
As each cluster is of strong diameter ∆, we simply use a shortest path tree in each cluster to
do the propagation rounding and apply Lemma 12 to prove Theorem 4. We will choose ∆ to
balance the losses in the two steps.

5.3 Rounding Algorithm

Algorithm 2 (UGk).
Intput: A feasible solution x, d to LP-UG with value LP? on a Kr-minor free graph.
Output: An integral solution to LP-UG with total cost O(r) ·

√
LP?.

1. Set the weight wuv of each edge uv to be dG(u, v).
Sample a strongly ∆-bounded O(r2)-separating partition P guaranteed by Theorem 6.

2. Let F be the set of inter-cluster edges in P , i.e. edges uv with P (u) 6= P (v).
Delete F from G.

3. In each cluster Cj in the remaining graph, compute a shortest path tree Tj .
4. Run Gupta-Talwar propagation rounding on each cluster Cj using tree Tj .
5. Return the solution x, d as the union of the solution in each cluster.

V. L. Alev and L. C. Lau 18:13

5.4 Proof of Theorem 4
Since the partitioning scheme is O(r2)-separating, by definition (1), each edge e is deleted
with probability

P[edge uv is deleted] = O(r2) · dG(u, v)
∆ .

Hence, the expected total cost of the deleted edges in Step 2 is∑
uv∈E

cuv · P[edge uv is deleted] = O(r2/∆)
∑

uv∈E

cuv · dG(u, v) = O(r2/∆) · LP?.

We just assume that all of these edges will be violated by the assignment we produce at the
end. Since each cluster Cj has strong diameter ∆, the shortest path tree Tj satisfies

dTj
(u, v) ≤ ∆ ∀u, v ∈ Cj .

Using the Gupta-Talwar propagation rounding, by Lemma 12, each edge in cluster Cj is
violated with probability O(∆), and therefore the total cost of the violating constraints in
the Step 4 is at most O(∆)

∑
e∈E ce. By choosing ∆ = r ·

√
LP?/

∑
e∈E ce, the total cost of

the violating constraints is at most r ·
√

LP? ·
∑

e∈E ce. When LP? = ε ·
∑

e∈E ce, the total
cost of the violating constraint is at most r

√
ε

∑
e∈E ce, proving Theorem 4 for Kr-minor

free graphs. For bounded genus graphs, we just use the bound in Theorem 7 to replace r2 by
log g, and the same proof gives Theorem 4 for bounded genus graphs.

6 Discussions and Open Problems

The algorithm for general Unique Games has a similar structure to the subexponential time
algorithm [5]. Both algorithms first deletes a small fraction of edges so that each remaining
component has some nice properties, and then solve the problem in each component using a
propagation rounding method. The nice property in [5] is that each component has few small
eigenvalues (which qualitatively means that the components have good expansion property),
and the decomposition result is based on random walks. The nice property in this paper is
that each component has small diameter, and the decomposition result is based on some
combinatorial methods. The key to these algorithms is some graph decomposition result. Is
there some property that captures both good expansion and small diameter so that graph
decomposition is still possible? Is there some property that captures both good expansion
and small diameter so that propagation rounding still works?

Another open question is whether the ideas in this paper can be generalized to handle
graphs with many small eigenvalues.

Acknowledgements. We thank Tsz Chiu Kwok, Akshay Ramachandran and Hong Zhou
for useful discussions.

References
1 Ittai Abraham, Cyril Gavoille, Anupam Gupta, Ofer Neiman, and Kunal Talwar. Cops,

robbers, and threatening skeletons: Padded decomposition for minor-free graphs. In Pro-
ceedings of the 46th Annual ACM Symposium on Theory of Computing. ACM, 2014.

APPROX/RANDOM’17

18:14 Approximating Unique Games Using Low Diameter Graph Decomposition

2 Amit Agarwal, Moses Charikar, Konstantin Makarychev, and Yury Makarychev. O(sqrt(log
n)) approximation algorithms for min uncut. In Proceedings of the 37th Annual ACM
Symposium on Theory of Computing, 2005.

3 Naman Agarwal. Unique games conjecture: The boolean hypercube and connections to
graph lifts. Master’s thesis, University of Illinois at Urbana-Champaign, 2014.

4 Naman Agarwal, Guy Kindler, Alexandra Kolla, and Luca Trevisan. Unique games on the
hypercube. Chicago Journal of Theoretical Computer Science, 2015, 2015.

5 Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential algorithms for unique
games and related problems. In Proceedings of the 51st Annual IEEE Symposium on Found-
ations of Computer Science. IEEE, 2010.

6 Sanjeev Arora, Subhash A. Khot, Alexandra Kolla, David Steurer, Madhur Tulsiani, and
Nisheeth K. Vishnoi. Unique games on expanding constraint graphs are easy. In Proceedings
of the 40th Annual ACM Symposium on Theory of Computing. ACM, 2008.

7 Brenda S. Baker. Approximation algorithms for np-complete problems on planar graphs.
Journal of the ACM, 41, 1994.

8 Nikhil Bansal, Uriel Feige, Robert Krauthgamer, Konstantin Makarychev, Viswanath Naga-
rajan, Joseph Naor, and Roy Schwartz. Min-max graph partitioning and small set expansion.
In Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science.
IEEE, 2011.

9 Boaz Barak, Prasad Raghavendra, and David Steurer. Rounding semidefinite programming
hierarchies via global correlation. In Proceedings of the 52nd Annual IEEE Symposium on
Foundations of Computer Science. IEEE, 2011.

10 Punyashloka Biswal, James R. Lee, and Satish Rao. Eigenvalue bounds, spectral partition-
ing, and metrical deformations via flows. Journal of the ACM, 57, 2010.

11 Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Near-optimal algorithms
for unique games. In Proceedings of the 38th Annual ACM Symposium on Theory of Com-
puting. ACM, 2006.

12 Eden Chlamtac, Konstantin Makarychev, and Yury Makarychev. How to play unique games
using embeddings. In Proceedings of the 47th Annual IEEE Symposium on Foundations of
Computer Science. IEEE, 2006.

13 Erik D. Demaine, Mohammad Taghi Hajiaghayi, and Ken ichi Kawarabayashi. Algorithmic
graph minor theory: Decomposition, approximation, and coloring. In Proceedings of the
46th Annual IEEE Symposium on Foundations of Computer Science, 2005.

14 Erik D. Demaine and MohammadTaghi Hajiaghayi. The bidimensionality theory and its
algorithmic applications. The Computer Journal, 51, 2008.

15 Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating
arbitrary metrics by tree metrics. In Proceedings of the 35th Annual ACM Symposium on
Theory of Computing. ACM, 2003.

16 Jittat Fakcharoenphol and Kunal Talwar. An improved decomposition theorem for graphs
excluding a fixed minor. Approximation, Randomization, and Combinatorial Optimization:
Algorithms and Techniques. Springer Berlin Heidelberg, 2003.

17 Jean Fonlupt, Ali Ridha Mahjoub, and J. P. Uhry. Compositions in the bipartite subgraph
polytope. Discrete mathematics, 105, 1992.

18 Anupam Gupta and Kunal Talwar. Approximating unique games. In Proceedings of the
70th Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2006.

19 Venkatesan Guruswami and Ali Kemal Sinop. Lasserre hierarchy and approximation
schemes for graph partitioning and quadratic integer programming with psd objectives.
In Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science.
IEEE, 2011.

V. L. Alev and L. C. Lau 18:15

20 Frank Hadlock. Finding a maximum cut of a planar graph in polynomial time. SIAM
Journal on Computing, 4, 1975.

21 Jonathan A. Kelner. Spectral partitioning, eigenvalue bounds, and circle packings for
graphs of bounded genus. SIAM Journal on Computing, 35, 2006.

22 Jonathan A. Kelner, James R. Lee, Gregory N. Price, and Shang-Hua Teng. Metric uni-
formization and spectral bounds for graphs. Geometric and Functional Analysis, 21, 2011.

23 Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the 34th
Annual ACM Symposium on Theory of computing. ACM, 2002.

24 Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inapprox-
imability results for max-cut and other 2-variable csps? SIAM Journal on Computing, 37,
2007.

25 Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2-
ε. Journal of Computer and System Sciences, 74, 2008.

26 Philip Klein, Serge A. Plotkin, and Satish Rao. Excluded minors, network decomposition,
and multicommodity flow. In Proceedings of the 25th Annual ACM Symposium on Theory
of Computing, 1993.

27 Alexandra Kolla. Spectral algorithms for unique games. Computational Complexity, 20,
2011.

28 Lap Chi Lau, Ramamoorthi Ravi, and Mohit Singh. Iterative methods in combinatorial
optimization, volume 46. Cambridge University Press, 2011.

29 James R. Lee and Anastasios Sidiropoulos. Genus and the geometry of the cut graph.
In Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM,
2010.

30 Lászlo Lovász, Martin Grötschel, and Alexander Schrijver. Geometric algorithms and com-
binatorial optimization. Springer-Verlag, Berlin, 1988.

31 Prasad Raghavendra. Optimal algorithms and inapproximability results for every csp? In
Proceedings of the 40th Annual ACM Symposium on Theory of Computing. ACM, 2008.

32 Prasad Raghavendra and David Steurer. Graph expansion and the unique games conjecture.
In Proceedings of the 42nd ACM Symposium on Theory of Computing. ACM, 2010.

33 Prasad Raghavendra, David Steurer, and Madhur Tulsiani. Reductions between expansion
problems. In Proceedings of the 27th IEEE Annual Conference on Computational Complex-
ity. IEEE, 2012.

34 Daniel A. Spielman and Shang-Hua Teng. Spectral partitioning works: Planar graphs and
finite element meshes. Linear Algebra and its Applications, 421, 2007.

35 David Steurer and Nisheeth K. Vishnoi. Connections between unique games and multicut.
Electronic Colloquium on Computational Complexity, 16, 2009.

36 Luca Trevisan. Approximation algorithms for unique games. In Proceedings of the 46th
Annual IEEE Symposium on Foundations of Computer Science. IEEE, 2005.

APPROX/RANDOM’17

Greedy Minimization of Weakly Supermodular Set
Functions
Edo Liberty1 and Maxim Sviridenko2

1 Amazon, Inc., New York, NY, USA
libertye@amazon.com

2 Yahoo! Research, New York, NY, USA
sviri@yahoo-inc.com

Abstract
This paper defines weak-α-supermodularity for set functions. It shows that minimizing such
functions under cardinality constrains is a common task in machine learning and data mining.
Moreover, any problem whose objective function exhibits this property benefits from a greedy
extension phase. Explicitly, let S∗ be the optimal set of cardinality k that minimizes f and let
S0 be an initial solution such that f(S0) ≤ ρf(S∗). Then, a greedy extension S ⊃ S0 of size
|S| ≤ |S0|+ dαk ln(ρ/ε)e yields f(S) ≤ (1 + ε)f(S∗).

Example usages of this framework give streamlined proofs and new bi-criteria results for
k-means, sparse regression, column subset selection, and sparse convex function minimization.
Sparse regression and column subset selection are special cases of a new, more general, sparse
multiple linear regression problem that is of independent interest. This paper also corrects
a brittleness of the proof of Natarajan for the properties of the greedy algorithm for sparse
regression.

1998 ACM Subject Classification G.1.3 Numerical Linear Algebra, G.1.6 Optimization,
G.4 Mathematical Software

Keywords and phrases Weak Supermodularity, Greedy Algorithms, Machine Learning, Data
Mining

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.19

1 Introduction

Many problems in data mining and unsupervised machine learning take the form of minimizing
a set function with cardinality constraints. More explicitly, denote by [n] the set {1, . . . , n}
and f(S) : 2[n] → R+. Our goal is to minimize f(S) subject to |S| ≤ k. These problems
include clustering and covering problems as well as sparse regression, matrix approximation
problems and many others. These combinatorial problems are hard to minimize in general.
Finding good (e.g. constant factor) approximate solutions for them requires significant
sophistication and highly specialized algorithms.

In this paper we analyze the behavior of the greedy algorithm to all of these problems.
We start by claiming that the functions above are special. A trivial observation is that they
are non-negative and non-increasing, that is, f(S) ≥ f(S ∪ T) ≥ 0 for any S, T ⊆ [n]. This
immediately shows that expanding solution sets is (at least potentially) beneficial in terms
of reducing the function value. But, monotonicity is not sufficient to ensure that any number
of greedy extensions of a given solution would significantly reduce the objective function.

To this end we need to somehow quantify the gain of adding a single element (greedily)
to a solution set. Let f(S) − f(S ∪ T) be the reduction in f one gains by adding a set

© Edo Liberty and Maxim Sviridenko;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 19; pp. 19:1–19:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.19
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

19:2 Greedy Minimization of Weakly Supermodular Set Functions

of elements T to the current solution S. Then, the average gain of adding elements from
T sequentially is [f(S) − f(S ∪ T)]/|T \ S|. One would hope that there exists an element
in i ∈ T \ S such f(S) − f(S ∪ {i}) ≥ [f(S) − f(S ∪ T)]/|T \ S|. However, that would be
false in general because different element contributions are not independent of each other.
Nevertheless, it is true for supermodular functions (see Fact 3).

Combining this fact with the idea that T could be any set, including the optimal solution
S∗, already gives some useful results for minimizing supermodular set functions. Specifically
those for which f(S∗) is bounded away from zero. Notice that k-means clustering (defined
below) is exactly this kind of problem. Section 4 gives some new bicriteria results obtainable
for k-means via the greedy extension algorithm of Section 3.

Alas, most problems of interest, such as regression, column subset selection, and feature
selection are not supermodular. In Section 2 we define the notion of weak-α-supermodularity.
Intuitively, weak-α-supermodular functions are those conducive to greedy type algorithms.
The property requirers that there exists an element i ∈ T \ S such that adding i first gains
at least [f(S)− f(S ∪ T)]/α|T \ S| for some α ≥ 1.

An analogous relaxation of the submodular property for set functions was considered in
[5] (see definition 2.3). They define a submodularity-ratio for set functions which are not
submodular. They show that if the submodularity-ratio is bonded, a greedy algorithm can
be used to obtain bi-crateria results for the maximization problem. The work of [5] can be
viewed as a direct extension of well know fact. Namely that the greedy algorithm provides a
(1− 1/e)-factor approximation for maximizing set functions g(S) subject to |S| ≤ k if g for
positive, monotone non-decreasing and submodular set functions [15].

This paper complements both [15] and [5] for the intuitively related process of greedily
minimizing supermodular functions. While our setting is not significantly more complex it is
quite different. In contrast to maximizing submodular functions, minimizing supermodular
functions is, in general, hard [10]. The difficulty arrises from the fact that a value of zero of
the objective function could force any constant factor approximation algorithm to find an
optimal solution. Our work cannot overcome this fundamental (and unresolvable) difficulty.

We consider the case where either the objective function is bounded away from zero
or one could obtain an approximate initial solution. In that case, supermodularity (or
weak-α-supermodularity) is shown to be sufficient for obtaining good bi-crateria results using
the greedy algorithm. Section 2 includes notations and concepts that will be used throughout
the paper. In section 3 we present two generic greedy algorithms and analyze their guaranties
for weak-α-supermodular functions.

Many important problems in data mining and machine learning fall into this regime.
As a warm-up, in Section 4 we obtain new bi-creteria results for k-means clustering, the
objective function of which is supermodular. Section 5 presents the sparse multiple linear
regression (SMLR) and shows that it is weakly-α-supermodular. We then streamline and
slightly improve the result of [14] for sparse regression, also known as feature selection.
Column Subset Selection (CSS) for matrix approximation is an instance of SMLR. Section 7
gives new bi-creteria results for CSS with little additional effort. Finally, we recreate the
result of [16] for minimizing smooth and strongly convex functions with sparse solutions.
The result is equivalent but the proof is simpler and shorter.

2 Preliminaries and definitions

Throughout the manuscript we denote by [n] the set {1, . . . , n}. We concern ourselves with
non-negative set function f(S) : 2[n] → R+. More specifically monotone non-increasing set
function such that f(S) ≥ f(S ∪ T) for any two sets S ⊆ [n] and T ⊆ [n].

E. Liberty and M. Sviridenko 19:3

Algorithm 1 Greedy Extension Algorithm
Input: Weakly-α-supermodular function f(S), initial set S0, parameters k ∈ Z+ and the
sequence Λ1,Λ2, . . .

while t ≤ dαk ln Λte do
St ← St−1 ∪ arg mini∈[n] f(St−1 ∪ {i})

Output: St

I Definition 1. A set function f(S) : 2[n] → R+ is said to be supermodular if for any two
sets S, T ⊆ [n]

f(S ∩ T) + f(S ∪ T) ≥ f(S) + f(T). (1)

I Definition 2. A non-negative non-increasing set function f(S) : 2[n] → R+ is said to be
weakly-α-supermodular if there exists α ≥ 1 such that for any two sets S, T ⊆ [n]

f(S)− f(S ∪ T) ≤ α
∑
i∈T\S

(f(S)− f(S ∪ {i})) . (2)

This property is useful because we will later try to minimize f . It asserts that if adding T \S
is beneficial then there is an element i ∈ T \ S that contributes at least a fraction of that.
The reason for the name of this property might also be explained by the following definition
and lemma.

I Fact 3. A non-increasing non-negative supermodular function f is weakly-α-supermodular
with parameter α = 1.

Proof. For S, T ⊆ [n] order the set T \ S in an arbitrary order, i.e. T \ S = {i1, . . . , i|T\S|}.
Define R0 = ∅ and Rt = {i1, . . . it} for t > 0. By supermodularity we have for any t

f(S)− f(S ∪ {it}) ≥ f(S ∪Rt−1)− f(S ∪Rt−1 ∪ {it}) (3)

We note that Rt−1 ∪ {it} = Rt and sum up Equation (3).
|T\S|∑
t=1

[f(S)− f(S ∪ {it})] ≥
|T\S|∑
t=1

f(S ∪Rt−1)− f(S ∪Rt−1 ∪ {it})

= f(S)− f(S ∪ T) .

Since |T \ S| ·maxi∈T\S [f(S)− f(S ∪ {i})] ≥
∑|T\S|
t=1 [f(S)− f(S ∪ {it})] this implies weak-

1-supermodularily. J

3 General Greedy Extension Algorithms

We are given a weakly-α-supermodular set function f(S) and would like to solve the following
optimization problem

min{f(S) : |S| ≤ k}. (4)

Let 0 < Λ1 ≤ Λ2 ≤ . . . be a non-decreasing bounded sequence of reals, i.e. maxt Λt < +∞.
Our algorithm works in phases and we may assume that Λt is computed on step t of the
algorithm. Consider a simple greedy algorithm that starts with some initial solution S0 of
value f(S0) (maybe S0 = ∅) and sequentially and greedily adds elements to it to minimize f .

Note that since the sequence Λt is bounded the algorithm terminates after at most
dαk ln (maxt Λt)e iterations.

APPROX/RANDOM’17

19:4 Greedy Minimization of Weakly Supermodular Set Functions

Algorithm 2 Greedy Extension Algorithm
Input: Weakly-α-supermodular function f(S), initial set S0, k ∈ Z+
while t ≤ dαk ln (f(S0)/εf(St−1))e do
St ← St−1 ∪ arg mini∈[n] f(St−1 ∪ {i})

Output: St

I Lemma 4. Let Sτ be the output of Algorithm 1. Then |Sτ | ≤ |S0| + dαk ln Λτe and
f(Sτ) ≤ f(S∗) + f(S0)−f(S∗)

Λτ+1
where S∗ is an optimal solution of the optimization problem

(4).

Proof. The fact that |Sτ | ≤ |S0|+ dαk ln Λτe is a trivial observation. For the second claim
consider an arbitrary iteration t ∈ [τ] and consider the set S∗ \ St−1. By monotonicity and
weak α-supermodularity

f(St−1)− f(S∗) ≤ f(St−1)− f(St−1 ∪ S∗)
≤ α ·

∑
i∈S∗\St−1

f(St−1)− f(St−1 ∪ {i})

≤ αk ·max
i∈[n]

f(St−1)− f(St−1 ∪ {i})

= αk · (f(St−1)− f(St)) .

By rearranging the above equation and recursing over t we get

f(St)− f(S∗) ≤ (f(St−1)− f(S∗)) (1− 1/αk) ≤ (f(S0)− f(S∗)) (1− 1/αk)t

Substituting τ + 1 > dαk ln Λτ+1e for the last step of the algorithm completes the proof.

f(Sτ)− f(S∗) ≤ (f(S0)− f(S∗)) (1− 1/αk)αk ln Λτ+1

≤ (f(S0)− f(S∗)) e− ln Λτ+1 ≤ f(S0)− f(S∗)
Λτ+1

. J

I Theorem 5. Let Sτ be the output of Algorithm 2 which is an instantiation of Al-
gorithm 1 with parameters Λt = f(S0)/εf(St−1) for some error ε ≥ 0. Then |Sτ | ≤
|S0|+ dαk ln(f(S0)/εf(S∗))e and f(Sτ) ≤ f(S∗)/(1− ε) where S∗ is an optimal solution of
the optimization problem (4).

Proof. By Lemma 4 we have

|Sτ | ≤ |S0|+ dαk ln Λτe ≤ |S0|+ dαk ln(f(S0)/εf(S∗))e

and

f(Sτ) ≤ f(S∗) + f(S0)− f(S∗)
Λτ+1

= f(S∗) + f(S0)− f(S∗)
f(S0) εf(Sτ) ≤ f(S∗) + εf(Sτ). J

I Theorem 6. Assume there exist a ρ-approximation algorithm creating S0 such that f(S0) ≤
ρf(S∗). There exists an algorithm for generating S such that |S| ≤ |S0|+ dαk

(
ln ρ

ε

)
e and

f(S) ≤ f(S∗)/(1− ε).

Proof. Use the ρ-approximation algorithm to create S0 for Algorithm 1 and apply Theorem 5.
J

E. Liberty and M. Sviridenko 19:5

Algorithm 3 Greedy Extension Algorithm; an alternative stopping criterion
Input: Weakly-α-supermodular function f , S0, fstop
repeat
St ← St−1 ∪ arg mini f(St−1 ∪ {i})

until f(St) ≤ fstop
Output: S = St

I Theorem 7. Let k′ be the minimal cardinality of a set S′ such that f(S′) ≤ f ′. For any
fstop and an initial set S0 such that f ′ < fstop < f(S0) Algorithm 3 outputs S such that

|S| ≤ |S0|+
⌈
αk′

(
ln f(S0)− f ′

fstop − f ′

)⌉
Proof. Let f ′ = f(S′). The proof follows from Lemma 4 by setting k = kf , Λt = f(S0)−f ′

fstop−f ′

and noticing that f(S0)−f ′
fstop−f ′ ≤

f(S0)−f
fstop−f . J

This alternative algorithm will be used in Section 6

4 k-means Clustering

As a gentle introduction we begin with deriving new bi-cretiria results for the k-means
clustering problem. We begin by defining the constrained k means problem.

I Definition 8 (Constrained k-means). Given a set of n points X ⊂ Rd, find a set S ⊂ X

minimizing f(S) =
∑
x∈X minx′∈S ‖x− x′‖2 subject to |S| ≤ k.

I Lemma 9. For the constrained k-means problem, one can find in O(n2dk log(1/ε)) time
a set S of size |S| = O(k) + k log(1/ε) such that f(S) ≤ (1 + ε)f(S∗) where f(S∗) is the
optimal solution.

Proof. The constrained k-means objective function f is weakly-1-supermodular because it is
supermodular (Fact 3). This is both well known and not hard to reverify. Using the algorithm
of [1] one obtains a set S0 of size |S0| = O(k) points from X for which f(S0) = O(f(S∗)).
Their technique improves on the analysis of well known k-means++ adaptive sampling
scheme of [2]. Greedily extending S0 and applying the analysis of Theorem 5 completes the
proof. The quadratic dependency of the running time on the number of data points can be
alleviated using the corset construction of [8, 9] J

I Definition 10 (Unconstrained k-means). Given a set of n points X ⊂ Rd, find a set S ⊂ Rd
minimizing f(S) =

∑
x∈X minc∈S ‖x− c‖2 subject to |S| ≤ k.

I Lemma 11. Let f(S∗) be the optimal solution to the unconstrained k-means problem. One
can find in time O(n2dk log(1/ε)) a set S ∈ Rd of size |S| = O(k) + k log(1/ε) such that
f(S) ≤ (2 + ε)f(S∗).

Proof. The proof and the algorithm are identical to the above. The only point to note is
that a 1 + ε/2 approximation to the constrained problem is at most a 2 + ε approximation
to the unconstrained one. See [2], for example, for the argument that the minimum of the
constrained objective is at most twice that of the unconstrained one. J

Alternatively, we can utilize a more computationally expensive approach which goes through
a reduction to the k-median problem.

APPROX/RANDOM’17

19:6 Greedy Minimization of Weakly Supermodular Set Functions

I Definition 12 (k-Median). We are given a set X of data points, the set C of potential
cluster center locations and the nonnegative costs wij ≥ 0 for all i, j ∈ X × C. Find a set
S ⊂ C minimizing f(S) =

∑
i∈X minj∈C wij subject to |S| ≤ k.

It is known that given an instance (X, k) of the Unconstrained k-means problem one can
construct in polynomial time an instance of the k-Median problem (X, C, w, k) where C ⊆ Rd
such that for any solution of value Φ for the Unconstrained k-means problem there exists a
solution of value (1+ε)Φ for the corresponding instance of the k-Median problem (see Theorem
7 [13]). Moreover, |C| = nO(log(1/ε)/ε2). Therefore, after applying this transformation on our
instance of the Unconstrained k-means and using the same initial solution S0 as in Lemma 11
we derive.

I Lemma 13. Let f(S∗) be the optimal solution to the unconstrained k-means problem. One
can find in time O(nO(log(1/ε)/ε2)dk) a set S ∈ Rd of size |S| = O(k) + k log(1/ε) such that
f(S) ≤ (1 + ε)f(S∗).

5 Sparse Multiple Linear Regression

We begin by defining the Sparse Multiple Linear Regression (SMLR) problem. Given two
matrices X ∈ Rm×n and Y ∈ Rm×`, and an integer k find a matrix W ∈ Rn×` that
minimizes ‖XW − Y ‖2F subject to W having at most k non zero rows. We assume for
notational brevity (and w.l.o.g.) that the columns of X have unit norm. An alternative
and equivalent formulation of SMLR is as follows. Let XS be a submatrix of the matrix
X defined by the columns of X indexed by the set S ⊆ [n]. Let X+

S be the Moore-Penrose
pseudo-inverse of XS . It is well-known that the minimizer of ‖XW − Y ‖2F subject to W
whose non zero rows are indexed by S is equal to ‖Y −XSX

+
S Y ‖2F . SMLR can therefore be

reformulated as

min
S⊆[n]

{f(S) = ‖Y −XSX
+
S Y ‖

2
F : |S| ≤ k} .

We can consequently apply our methodology from Section 3 to SMLR if we show that f(S)
is α-weakly-supermodular.

I Lemma 14. For X ∈ Rm×n and Y ∈ Rm×` the SMLR minimization function f(S) =
‖Y −XSX

+
S Y ‖2F is α-weakly-supermodular with α = maxS′ ‖X+

S′‖22.

Proof. We first estimate f(S) − f(S ∪ T). Denote by ZT\S the matrix whose columns
are those of XT\S projected away from the span of XS and normalized. More formally,
ζi = ‖(I −XSX

+
S)xi‖ and zi = (I −XSX

+
S)xi/ζi for all i ∈ T \ S. Note that the column

span of ZT\S is orthogonal to that of XS and that together they are equal to the column
span of XT∪S . Using the Pythagorean theorem and the fact that XSX

+
S is a projection we

obtain f(S) = ‖Y ‖2F −‖XSX
+
S Y ‖2F and f(S ∪T) = ‖Y ‖2F −‖XSX

+
S Y ‖2F −‖ZS\TZ

+
S\TY ‖

2
F .

Substituting T = {i} also gives f(S)− f(S ∪ {i}) = ‖zizTi Y ‖2F = ‖zTi Y ‖22.

f(S)− f(S ∪ T) = ‖ZT\SZ+
T\SY ‖

2
F (5)

= ‖(ZT

T\S)+ · ZT

T\SY ‖
2
F By SVD (6)

≤ ‖(ZT

T\S)+‖22 · ‖ZT

T\SY ‖
2
F (7)

= ‖Z+
T\S‖

2
2 ·

∑
i∈T\S

‖zTi Y ‖22 (8)

E. Liberty and M. Sviridenko 19:7

≤ ‖X+
T∪S‖

2
2 ·

∑
i∈T\S

‖zTi Y ‖22 See below (9)

= α ·
∑
i∈T\S

(f(S)− f(S ∪ {i})) (10)

For Equation (9) we use a non trivial transition, ‖Z+
T\S‖2 ≤ ‖X

+
T∪S‖2. By the definition of

ZT\S we can write for i ∈ T \ S that zi = (xi −
∑
j∈S αijxj)/ζi and ζi = ‖(I −XSX

+
S)xi‖.

For any vector w

ZT\Sw =
∑
i∈T\S

xiwi/ζi +
∑
j∈S

xj
∑
i∈T\S

wiαij/ζi = XT∪Sw
′

where w′i = wi/ζi for i ∈ T \ S and w′j =
∑
i∈T\S wiαij/ζi for j ∈ S. Since, ζi =

‖(I −XSX
+
S)xi‖ ≤ ‖xi‖ = 1 we have ‖w′‖ ≥ ‖w‖. Finally, consider w such that ‖w‖ = 1

and ‖ZT\Sw‖ = ‖Z+
T\S‖

−1. This is the right singular vector corresponding to the smallest
singular value of ZT\S . We obtain

‖Z+
T\S‖

−1 = ‖ZT\Sw‖ = ‖XT∪Sw
′‖ ≥ ‖X+

T∪S‖
−1‖w′‖ ≥ ‖X+

T∪S‖
−1 .

This completes the proof. J

I Lemma 15. Let f(S∗) be the optimal solution to the Sparse Multiple Linear Regres-
sion problem. One can find in time O(αk log(‖Y ‖2F /ε) · nTf) a set S ⊆ [n] of size |S| =
dαk log(‖Y ‖2F /ε)e such that f(S) ≤ f(S∗)/(1− ε) where Tf is the time needed to compute
f(S) once.

6 Sparse Regression

The problem of Sparse Regression defined in [14] is an instance of SMLR where the number
of columns in W and Y is ` = 1. Since both W and Y are vectors we reduce to the more
familiar form of this problem; minimize ‖Xw − y‖22 subject to ‖w‖0 ≤ k.

Natarajan [14] analyzes the greedy algorithm for the sparse regression problem. He sets
a desired threshold error E and defines k to be the minimum cardinality of a solution S∗
that achieves f(S∗) ≤ E′ = E/4. He shows that for α = maxS′ ‖X+

S′‖2 the greedy algorithm
finds a solution S such that f(S) ≤ E such that

|S| ≤
⌈

9kα ln ‖y‖
2
2

E

⌉
.

Natarajan’s implicit assumption

In [14] Natarajan uses α = ‖X+‖2 instead of α = maxS′ ‖X+
S′‖2. This is only correct

if the columns of X are linearly independent which seems to be an implicit assumption.
In this setting α = maxS′ ‖X+

S′‖2 = ‖X+‖2 by Cauchy’s interlacing theorem. Note that
maxS′ ‖X+

S′‖ ≥ ‖X+‖ if the columns of X are linearly dependent. This is the setting in the
hardness result of [10] and is inevitable in the under constrained case where the number of
columns is larger than their dimension.

Here, we apply Theorem 7 with initial solution S0 = ∅ (which gives f(S0) = ‖y‖22) and
E′ = E/4. It immediately yields that the greedy algorithm finds a solution of value f(S) ≤ E
and

|S| ≤
⌈
kα ln ‖y‖

2
2 − E/4

E − E/4

⌉
≤
⌈

4
3kα ln ‖y‖

2
2

E

⌉

APPROX/RANDOM’17

19:8 Greedy Minimization of Weakly Supermodular Set Functions

using the inequality ln(4
3x−

1
3) ≤ 4

3 ln x for x ≥ 1. This improves the result of [14] in three
ways
1. the approximation constant is smaller
2. its proof is more streamlined and
3. it extends to viability of the greedy algorithm to the under constrained case where the

result of [14] does not hold.

7 Column Subset Selection Problem

Given a matrix X, Column Subset Selection (CSS) is concerned with finding a small set
of columns whose span captures as much of the Frobenius norm of X. It was throughly
investigated in the context of numerical linear algebra [11, 12, 4]. CSS can be formulated
as follows, find a subset S ∈ [n], |S| ≤ k of matrix columns that minimize f(S) = ‖X −
XSX

+
S X‖2F . This formulation makes it clear that this is a special case of SMLR where

Y = X.
The work of [17] investigates the notion of a curvature c ∈ [0, 1] for a nonincreasing set

functions. They define it as follows:

c = 1− min
j∈[n]

min
S,T⊆[n]\{j}

f(S)− f(S ∪ {j})
f(T)− f(T ∪ {j}) . (11)

They show that there exists a greedy type algorithm that finds a solution of value at most
1/(1− c) times the optimal value of the minimization problem for any objective set function
with curvature c (Corollary 8.5 in [17]).

I Lemma 16 (Lemma 9.1 from [17]). Let f(S) be the objective function for the Column
Subset Selection Problem corresponding to the matrix X. The curvature c of f(S) is such
that 1

1−c ≤ κ
2(X) where κ(X) is the condition number of X.

Note that for any matrix Xwith full column rank if X̃ is the matrix with normalized columns
then ‖X̃+‖ ≤ κ(X). We can find our initial solution S0 by one of the three known methods:
1. an approximation algorithm from [17] finds a solution S0 such that |S0| = k and perform-

ance guarantee ρ = κ2(X);
2. an approximation algorithm from [7, 6] with |S0| = k and ρ = k + 1;
3. an approximation algorithm from [3] with |S0| = 2k and ρ = 2;

I Lemma 17. For the column subset selection problem for a column normalized matrix X
and α = maxS′ ‖X+

S′‖22 one can find a set S such that

f(S) ≤ (1 + ε)f(S∗) and |S| = O (k) + αk
(

ln ρ
ε

)
.

Proof. Combining one of the above results with the algorithm from Section 3 completes the
proof. J

8 Sparse Convex Function Minimization

One popular extension of the regression problem is to consider

f(S) = min{R(y) : supp(y) ⊆ S} (12)

where R(y) is a convex function and supp(y) = {i | yi 6= 0}. Following Shalev-Shwartz et
al. [16], we consider a special case when the convex function R(y) satisfies two additional
conditions.

E. Liberty and M. Sviridenko 19:9

I Definition 18. A function R(w) is said to be λ-strongly convex for λ ≥ 0 if for each
w, u ∈ Rd we have

R(w) ≥ R(u) + 〈∇R(u), w − u〉+ λ

2 ||w − u||
2
2.

I Definition 19. A function R(w) is said to be β-smooth if for each w, u ∈ Rd we have

R(w) ≤ R(u) + 〈∇R(u), w − u〉+ β

2 ||w − u||
2
1.

Shalev-Shwartz et al. [16] gave many examples of such convex functions. In particular,
they relate our Definition 19 to a class of functions arising in Machine Learning with β-smooth
loss functions (see Lemma B1 and Section 3 in [16]).

I Theorem 20. Given the set function f(S) defined in (12) corresponding to β-smooth
λ-strongly convex function R(w). The set function f(S) is α-weakly-supermodular with
α = β

λ .

Proof. Let yS ∈ Rd be a vector minimizing the function R(y) among vectors with support
S and yS∪T ∈ Rd be a vector minimizing function R(y) among vectors with support S ∪ T .
For any vector x ∈ Rd, let x(j) ∈ R be its j-th coordinate.

For each j ∈ T \ S, we define vector ỹj ∈ Rd such that ỹj(j) = yS∪T (j) and ỹj(i) = 0 for
all i 6= j. It is enough to prove the inequality

R(yS)−R(yS∪T) ≤ β

λ

∑
j∈T\S

R(yS)−R
(
yS + λ

β
ỹj
)

(13)

to prove the statement of the theorem. By applying Definitions 18 and 19 we derive∑
j∈T\S

R(yS)−R
(
yS + λ

β
ỹj
)
≥
∑
j∈T\S

(
−
〈
∇R(yS), λ

β
ỹj
〉
− β

2 ||
λ

β
ỹj ||21

)

≥ −λ
β

 ∑
j∈T\S

〈
∇R(yS), ỹj

〉− λ2

2β ||yS∪T − yS ||
2
2

= −λ
β
〈∇R(yS), yS∪T − yS〉 −

λ2

2β ||yS∪T − yS ||
2
2

≥ λ

β

(
R(yS)−R(yS∪T) + λ

2 ||yS∪T − yS ||
2
2

)
− λ2

2β ||yS∪T − yS ||
2
2

= λ

β
(R(yS)−R(yS∪T))

where the first equality follows from the fact that ∇R(yS)(j) = 0 for all j ∈ S. J

Let R∗ be the target value for our convex function R(y) and kf be the minimal cardinality
of a set S′ such that f(S′) ≤ R∗ where f(S) is defined by (12). Combining Theorem 7 and
Theorem 20 we derive

I Theorem 21. For any ε > 0, let fstop = R∗ + ε then the Algorithm 3 outputs S such that

|S| ≤
⌈
β

λ
kf

(
ln R(∅)−R∗

ε

)⌉
.

The above theorem is analogous to Theorem 2.8 in [16].

APPROX/RANDOM’17

19:10 Greedy Minimization of Weakly Supermodular Set Functions

Acknowledgments. We would like to thanks Christos Boutsidis for his contributions to
early drafts of this paper, Sergei Vassilvitskii and Dan Feldman for their guidance and Petros
Drineas for pointing out that Natarajan’s proof would potentially not carry through for
column subset selection.

References
1 Ankit Aggarwal, Amit Deshpande, and Ravi Kannan. Adaptive sampling for k-means clus-

tering. In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, 12th International Workshop, APPROX 2009, and 13th International
Workshop, RANDOM 2009, Berkeley, CA, USA, August 21-23, 2009. Proceedings, pages
15–28, 2009. doi:10.1007/978-3-642-03685-9_2.

2 David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding. In
SODA, pages 1027–1035, 2007.

3 C. Boutsidis, P. Drineas, and M. Magdon-Ismail. Near-optimal column-based matrix re-
construction. SIAM Journal on Computing, 43(2):687–717, 2014.

4 T.F. Chan and P.C. Hansen. Some applications of the rank revealing qr factorization.
SIAM Journal on Scientific and Statistical Computing, 13:727, 1992.

5 A. Das and D. Kempe. Submodular meets spectral: Greedy algorithms for subset selection,
sparse approximation and dictionary selection. In In Proceedings of ICML, pages 1057–1064,
2011.

6 A. Deshpande and L. Rademacher. Efficient volume sampling for row/column subset selec-
tion. In Proceedings of the 42th Annual ACM Symposium on Theory of Computing (STOC),
2010.

7 Amit Deshpande, Luis Rademacher, Santosh Vempala, and Grant Wang. Matrix approx-
imation and projective clustering via volume sampling. Theory of Computing, 2:225–247,
2006.

8 Dan Feldman, Amos Fiat, Micha Sharir, and Danny Segev. Bi-criteria linear-time approx-
imations for generalized k-mean/median/center. In Proceedings of the Twenty-third Annual
Symposium on Computational Geometry, SCG’07, pages 19–26, New York, NY, USA, 2007.
ACM. doi:10.1145/1247069.1247073.

9 Dan Feldman and Michael Langberg. A unified framework for approximating and cluster-
ing data. In Proceedings of the Forty-third Annual ACM Symposium on Theory of Comput-
ing, STOC’11, pages 569–578, New York, NY, USA, 2011. ACM. doi:10.1145/1993636.
1993712.

10 Dean P. Foster, Howard J. Karloff, and Justin Thaler. Variable selection is hard. In
Proceedings of The 28th Conference on Learning Theory, COLT 2015, Paris, France, July
3-6, 2015, pages 696–709, 2015.

11 G.H. Golub. Numerical methods for solving linear least squares problems. Numer. Math.,
7:206–216, 1965.

12 M. Gu and S.C. Eisenstat. Efficient algorithms for computing a strong efficient algorithms
for computing a strong rank-revealing qr-factorization. SIAM Journal on Scientific Com-
puting, 17(848–869), 1996.

13 K. Makarychev, Y. Makarychev, M. Sviridenko, and J. Ward. A bi-criteria approximation
algorithm for k means. In submission, 2015.

14 B.K. Natarajan. Sparse approximate solutions to linear systems. SIAM J. Comput.,
24(2):227–234, April 1995. doi:10.1137/S0097539792240406.

15 G.L. Nemhauser, L.A. Wolsey, and M.L. Fisher. An analysis of approximations for max-
imizing submodular set functions – i. Mathematical Programming, 14(1):265–294, 1978.
doi:10.1007/BF01588971.

http://dx.doi.org/10.1007/978-3-642-03685-9_2
http://dx.doi.org/10.1145/1247069.1247073
http://dx.doi.org/10.1145/1993636.1993712
http://dx.doi.org/10.1145/1993636.1993712
http://dx.doi.org/10.1137/S0097539792240406
http://dx.doi.org/10.1007/BF01588971

E. Liberty and M. Sviridenko 19:11

16 S. Shalev-Shwartz, N. Srebro, and T. Zhang. Trading accuracy for sparsity in optimization
problems with sparsity constraints. SIAM Journal on Optimization, 20(6):2807–2832, 2010.

17 Maxim Sviridenko, Jan Vondrak, and Justin Ward. Optimal approximation for submodular
and supermodular optimization with bounded curvature. In Proceedings of SODA 2015,
pages 1134–1148, 2014.

APPROX/RANDOM’17

Renyi Entropy Estimation Revisited∗

Maciej Obremski1 and Maciej Skorski2

1 Aarhus University, Aarhus, Denmark†

obremski@cs.au.dk
2 IST Austria, Klosterneuburg, Austria‡

maciej.skorski@gmail.com

Abstract
We revisit the problem of estimating entropy of discrete distributions from independent samples,
studied recently by Acharya, Orlitsky, Suresh and Tyagi (SODA 2015), improving their upper
and lower bounds on the necessary sample size n. For estimating Renyi entropy of order α, up
to constant accuracy and error probability, we show the following

Upper bounds n = O(1) · 2(1− 1
α)Hα for integer α > 1, as the worst case over distributions

with Renyi entropy equal to Hα.
Lower bounds n = Ω(1) · K1− 1

α for any real α > 1, with the constant being an inverse
polynomial of the accuracy, as the worst case over all distributions on K elements.

Our upper bounds essentially replace the alphabet size by a factor exponential in the entropy,
which offers improvements especially in low or medium entropy regimes (interesting for example
in anomaly detection). As for the lower bounds, our proof explicitly shows how the complexity
depends on both alphabet and accuracy, partially solving the open problem posted in previous
works.

The argument for upper bounds derives a clean identity for the variance of falling-power sum
of a multinomial distribution. Our approach for lower bounds utilizes convex optimization to find
a distribution with possibly worse estimation performance, and may be of independent interest
as a tool to work with Le Cam’s two point method.

1998 ACM Subject Classification G.1.2 Approximation, G.3 Statistical Computing

Keywords and phrases Renyi entropy, entropy estimation, sample complexity, convex optimiza-
tion

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.20

1 Introduction

1.1 Renyi Entropy
Renyi entropy [25] arises in many applications as a generalization of Shannon Entropy [27].
It is also of interests on its right, with a number of applications including unsupervised
learning (like clustering) [30, 12], multiple source adaptation [17], image processing [16, 20,
26], password guessability [3, 24, 10], network anomaly detection [15], quantifying neural
activity [22] or to analyze information flows in financial data [13].

In particular Renyi entropy of order 2, known also as collision entropy, is used in
quality tests for random number generators [14, 29], to estimate the number of random bits

∗ Available at http://eprint.iacr.org/2017/588.pdf
† This project has received funding from the European research Council (ERC) under the European

Unions’s Horizon 2020 research and innovation programme (grant agreement No 669255).
‡ Supported by the European Research Council consolidator grant (682815-TOCNeT).

© Maciej Obremski and Maciej Skorski;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 20; pp. 20:1–20:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.20
http://eprint.iacr.org/2017/588.pdf
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

20:2 Renyi Entropy Estimation Revisited

Algorithm 1: Estimation of Renyi Entropy
Input: entropy parameter α > 1 (integer),

alphabet A = {a1, . . . , aK},
samples x1, . . . , xn from an unknown distribution p on A

Output: number H approximating the α-entropy of p
1 I ← {i : ∃j ai = xj} /* compute the list of occurring symbols1 */
2 for i ∈ I do
3 ni ← #{j : xj = ai} /* compute empirical frequencies */
4 end
5 M ←

∑
i
n
α

i

nα /* bias-corrected power sum estimation by falling powers2 */
6 H ← 1

1−α logM /* entropy from power sums */
7 return H

that can be extracted from a physical source [11, 7], characterizes security of certain key
derivation functions [4, 8], helps testing graph expansion [9] and closeness of distributions to
uniformity [6, 23] and bounds the number of reads needed to reconstruct a DNA sequence [19].

1.2 Estimation and Sample Complexity
Motivated by the discussed applications, algorithms that estimate Renyi entropy of an
unknown distribution from samples were proposed for discrete [31] and also for continuous
distributions [21]. For Shannon entropy, estimators with multiplicative errors were studied
in [5] and follow-up works; the existence of sublinear (in terms of the alphabet size) additive
estimators was proved in [22], and the optimal additive estimator was given in [28]. For the
general case of Renyi entropy, the state of the art was established in [1], with upper and
lower bounds on the sample complexity.

Interestingly, the estimation of Renyi entropy of integer orders α > 1 is sublinear in
the alphabet size. More precisely, to estimate the entropy of an integer order α > 1 of
a distribution over an alphabet of size K, with a constant accuracy and constant error
probability, one needs

n = Θ(K1− 1
α)

samples. On the other hand, the necessary sample size for non-integer α > 1 is

n = Ω(K1−o(1)),

with the upper bound O(K/ logK), for large K and the accuracy sufficiently small [1, 2].
The estimator itself is a biased-reduced adaptation of the naive "plug-in" estimator. Note

that computing empirical frequencies as estimates to true probabilities and putting them
straight into the entropy formula (which we refer to as naive estimation) would yield a biased
estimator. To obtain better convergence properties, one needs to add some corrections to
the formula. In the case of Renyi entropy, one replaces powers of empirical frequencies in the
entropy formula by falling powers, obtaining better estimator with the complexity bounds
discussed above [1]. See Algorithm 1 for the pseudocode.

2 Storing and updating empirical frequencies can be implemented with different data structures, we don’t
discuss the optimal solution as our primary interest is in the sample complexity.

2 Here zα stands for the falling α-power of the number z.

M. Obremski and M. Skorski 20:3

1.3 Our contribution

1.3.1 Results
We revisit the analysis of the minimal number of samples n (sample complexity) needed
to estimate Renyi entropy up to certain additive accuracy, obtaining improvements upon
the result in [1]. In the presentation below we consider the estimation up to constant error
probability, unless stated otherwise.
(a) Better upper bounds for the sample complexity, with a simplified analysis:

n = O
(

2(1− 1
α)Hαδ−2

)
, for integer α > 1

valid for Algorithm 1, any accuracy δ > 0, and all distributions with Renyi entropy of
order α equal to Hα

(b) Lower bounds for non-integer α > 1, explicit w.r.t. both alphabet and accuracy:

n = Ω(1) ·max
(
δ−

1
αK1− 1

α , δ−
1
2K

1
2

)
, for any non-integer α > 1

valid for any estimator, any accuracy δ 6 1 and some distribution over K elements.
(c) Refining the technique for proving lower bounds; we explain how to obtain optimal

bounds for the ideas used in [1]; our construction for lower bounds is also simpler.

The first improvement essentially parameterizes the previous bound by the entropy amount,
and is of interest in medium/low entropy regimes. Note that when the entropy is at most
a half of the maximal amount (Hα 6 1

2 logK) then the complexity drops to n = O(K 1
2)

even for most demanding min-entropy (α = ∞). The improvements may be relevant for
anomaly detection algorithms based on evaluating entropy of data streams [15]. The precise
statement, which addresses arbitrary accuracy and error probability, appears in Corollary 7.

The lower bounds given in [1] and improved in the journal version [2] depend only on the
alphabet, and are valid for large K and sufficiently small δ. As opposed to that, our lower
bounds apply to all regimes of K and δ and explicitly show that large alphabets and small
accuracy both contribute to the complexity. Thus we make a progress3 towards understanding
how the sample complexity depends on δ and K, which is an open problem except for integer
α [2]. In particular, our results show that the sample complexity may be much bigger than
Ω
(
K1−o(1)) for δ being small depending on K, which is not guaranteed by the previous

results (e.g. Table 1 in [2]).
The technique for lower bound in [1] essentially boils down to the construction of two

statistically close distributions that differ in entropy (the technique known as Le Cam’s
two-point method). The authors obtained implicitly a suboptimal pair with this property.
We instead construct explicitly a simpler pair with much better properties.

1.3.2 Techniques
The original proof of the upper bounds proceeds by estimating the variance of the falling-
power sum in Line 5 in Algorithm 1. This analysis is somewhat difficult because the empirical
frequencies ni in Line 3 are not independent. A workaround proposed in [1] uses Poisson
sampling to randomize the number n in a convenient way (which doesn’t hurt the convergence

3 Our result is worse in the dependency on K, but the added value is the dependency on δ.

APPROX/RANDOM’17

20:4 Renyi Entropy Estimation Revisited

Table 1 Our lower bounds for estimation of Renyi entropy of order α. By K we denote the
alphabet size, δ is the additive error of estimation, Ω(1) is an absolute constant.

Entropy Accuracy Sample Complexity

1 < α < 2 δ 6 1 Ω(1) ·min
(
δ− 1

2K
1
2 , δ−αK1− 1

α

)
δ > 1 Ω(1) ·min

((
2−δK

) 1
2 , 2−(1− 1

α)δK1− 1
α

)
2 6 α

δ 6 1 Ω(1) · δ− 1
αK1− 1

α

δ > 1 Ω(1) ·
(

2−(1− 1
α)δK

)1− 1
α

much), so that the frequencies are independent and the variance of power sums can directly
computed.

We get rid of the Poisson sampling, by showing that the falling-power sum obeys a nice
and clean algebraic identity, that can be further used to compute the variance (see Lemma 4).
We believe that our technique may be of benefit to related problems, e.g. when estimating
moments for streaming algorithms.

The argument for lower bounds in [1] starts by modifying the estimator so that it is a
function of empirical frequencies (called profiles in [1]). Then, by certain facts on zeros of
polynomials and exponential sums, one exhibits two probability distributions with certain
relations between power sums. As a conclusion, again under Poisson sampling, one obtains
two distributions such that their profiles differ much in entropy, yet are close in total variation.
This yields a contradiction unless n is big enough.

Our approach deviates from these techniques. We share the same core idea, that estimation
should be continuous in total variation, yet use it to conclude a clear bound without referring
to profiles: if distributions are γ-close and the entropy differs by δ, the number n must
satisfy n = Ω(γ−1) (see Corollary 9). It remains to construct two such distributions with
possibly small γ and possibly big δ. By solving the related optimization task (which we do
by an elegant application of majorization theory), we conclude that a simpler and better
choice is one distribution being flat, and other being a combination of a flat distribution
with a unit mass (see the proof of Lemma 11). We remark that our optimization approach
not only gives better lower bounds for Renyi entropy, but may be also applied to similar
estimation problems, e.g. lower bounds on the complexity for estimating functionals of a
discrete distribution. The lower bounds are summarized in Table 1.

2 Preliminaries

For any natural α and real number x, by xα def=
∏α−1
i=0 (x − i) we denote the α-th falling

power of x, with the convention x0 = 1. If a discrete random variable X has a probability
distribution p, we denote p(x) = Pr[X = x]. For any distribution X by Xn we denote the
n-fold product of independent copies of X. The moment of a distribution p of order α equals
pα =

∑
x p(x)α. Through the paper, we use logarithms at base 2.

I Definition 1 (Total variation (statistical closeness)). For two distributions p, q over the
same finite alphabet the total variation equals dTV = 1

2
∑
x |p(x)− q(x)|. If dTV (p, q) 6 ε

we also say that p and q are ε-close.

M. Obremski and M. Skorski 20:5

I Definition 2 (Renyi Entropy). The Renyi entropy of order α for α > 1 equals

Hα(p) def= − 1
α− 1 log

(∑
x

p(x)α
)

= − 1
α− 1 log pα.

Sometimes for shortness we simply say "α-entropy", referring to Renyi entropy of order α.

I Definition 3 (Entropy Estimators). Given an alphabet X and a fixed number n we say that
an algorithm f̂ provides a (δ, ε)-approximation to α-entropy if for any distribution p over X

|f̂(x1, . . . , xn)−Hα(p)| > δ

holds with probability at most ε over samples x1, . . . , xn drawn independently from p.

3 Auxiliary Facts

Define ξi(x) = [Xi = x] and the empirical frequency of the symbol x by

n(x) =
n∑
i=1

ξi(x). (1)

Note that the vector (n(x))x∈X follows a multinomial distribution with sum n and probabilities
(p(x))x∈X . The lemma below states that we have very simple expressions for the falling
powers of n(x).

I Lemma 4 (Falling powers of empirical frequencies). For every x we have

n(x)α =
∑

i1 6=i2 6=...6=iα

ξi1(x)ξi2(x) · . . . · ξiα(x). (2)

In particular, we have

E

[∑
x

n(x)α
]

= nαpα. (3)

The proof appears in Appendix A. We also obtain the following closed-form expressions for
the variance of the sum of falling powers.

I Lemma 5 (Variance of frequency falling powers sums). We have

Var
[∑

x

n(x)α
]

= nα((n− α)α − nα)p2
α +

α∑
`=1

nα(n− α)α−`
(
α

`

)2
l! p2α−`. (4)

The proof appears in Appendix B.

4 Upper Bounds

Similarly as in [1], we observe that to estimate Renyi entropy with additive accuracy O(δ), it
suffices to estimate power sums with multiplicative accuracy O(δ).

I Theorem 6 (Estimator Performance). The number of samples needed to estimate pα up to
a multiplicative error δ and error probability ε equals n = Oα

(
2α−1

α ·Hα(p)δ−2 log(1/ε)
)
.

APPROX/RANDOM’17

20:6 Renyi Entropy Estimation Revisited

From this result one immediately obtains

I Corollary 7. The number of samples needed to estimate Hα(p), up to an additive error δ
and error probability ε, equals n = Oα

(
2α−1

α ·Hα(p)δ−2 log(1/ε)
)
. The matching estimator is

Algorithm 1.

Proof of Theorem 6. It suffices to construct an estimator with error probability 1
3 . We can

amplify this probability to ε with a loss of a factor of O(log(1/ε)) in the sample size, by
a standard argument: running the estimator in parallel on fresh samples and taking the
median (as in [1]).

From Lemma 5 we conclude that the variance of the estimator equals

Var[Est] = −Θα(1) · n−1(pα)2 +
α∑
`=1

Θα(1) · n−`p2α−`,

where Θα(1) are constants dependent on α. Note that we have

p2α−` 6 (pα)
2α−`
α

by elementary inequalities4, and therefore

Var[Est] = Oα(1) · p2
α

α∑
`=1

(
np

1
α
α

)−`
= Oα(1) · n−1p

2− 1
α

α

α−1∑
`=0

(
np

1
α
α

)−`
.

Note that the negative term −Θα(1)n−1(pα)2 we skipped is of smaller order than the term
` = 1 of the sum on the right hand side, so it doesn’t help to improve the bounds. For
n > 2p

1
α
α the right hand side equals Oα(1) · n−1p

1− 1
α

α . By the Chebyszev Inequality

Pr
Xn∼p

[|Est(Xn))− pα| > δpα] < Var[Est]
δ2p2

α

= Oα(1) · n−1p
− 1
α

α δ−2,

which is smaller than 1
3 for some n = Oα(1) · p−

1
α

α δ−2. J

5 Lower Bounds

We will need the following lemma, stated in a slightly different way in [1]. It captures the
intuition that if two distributions differ much in entropy, then they must be far away in total
variation (otherwise the estimator, presumably working well, would distinguish them).

I Lemma 8 (Estimation is continuous in total variation). Suppose that f̂ is a (δ, ε)-estimator
for Hα. Then the following is true:

∀X,Y |Hα(X)−Hα(Y)| > 2δ ⇒ dTV (Xn;Y n) > 1− 2ε. (5)

The proof is illustrated on Figure 1 and appears in Appendix C. By combining Lemma 8
with a simple inequality dTV (Xn, Y n) 6 n · dTV (X,Y) (which can be proved by a hybrid
argument) we obtain

I Corollary 9. Let X,Y be such that (a) dTV (X;Y) 6 γ and (b) |Hα(X) −Hα(Y)| > 2δ.
Then any (δ, ε)-estimator for Hα, where ε 6 1

3 , requires
1
3γ
−1 samples.

M. Obremski and M. Skorski 20:7

Hα(X) Hα(Y)

t0 = Hα(X)+Hα(Y)
2

Est

pm
f

Figure 1 Turning estimators into distinguishers in total variation.

We will need the following inequalities, that refine the known Bernoulli-inequality (1 +
u)α > 1 + αu by introducing higher-order terms.

I Proposition 10 (Bernouli-type inequalities). We have

∀α > 1, ∀u > −1 : (1 + u)α > 1 + αu (6)
∀α > 2, ∀u > 0 : (1 + u)α > 1 + αu+ uα (7)

∀α ∈ [1, 2], ∀u ∈ [0, 1] : (1 + u)α > 1 + αu+ α(α− 1)
4 u2 (8)

∀α ∈ [1, 2], ∀u > 1 : (1 + u)α > 1 + αu+ α− 1
3 uα (9)

Proof. To prove Equation (6) consider the function f(u) = (1+u)α. It is convex when α > 1,
hence its graph is above the tangent line at u = 0. This means that f(u) > f(0) + ∂f

∂ (0)u,
and since f(0) = 1 and ∂f

∂u (0) = α the inequality follows.
In order to prove Equation (7), we consider the function f(u) = (1 + u)α − 1− αu− uα.

Its derivative equals ∂f
∂u (u) = α

(
(1 + u)α−1 − uα−1 − 1

)
. If we show it is non-negative for

u > 0, we establish the claimed inequality as then f(u) > f(0) > 0. We calculate the second
derivative ∂2f

∂u2 (u) = α(α− 1)
(
(1 + u)α−2 − uα−2) and see it is positive when u > 0 (here we

use the assumption that α > 2). We conclude that ∂f
∂u (u) is increasing for u > 0 and hence

∂f
∂u (u) > ∂f

∂u (0) = 0, which finishes the proof.
To prove Equation (8) we define f = (1 + u)α − 1 − αu − α(α−1)

4 u2. We note that
∂f
∂u (u) = α(1 + u)α−1 − α − α(α−1)

2 u. This function is concave because α ∈ [1, 2]. Since
∂f
∂u (0) = 0 and ∂f

∂u (1) = α(1 + 1)α−1 − α − α(α−1)
2 > α2 − α − α(α−1)

2 = 1
2 (α2 − α) > 0

(we have used the Bernouli inequality (1 + 1)α−1 > 1 + α − 1), by concavity we conclude
that the ∂f

∂u (u) > 0 on the whole interval u ∈ [0, 1]. This means that f is decreasing and
f(u) > f(0) = 0 for u ∈ [0, 1], which establishes the claimed inequality.

4 We use the fact that α-norms, defined by ‖p‖α =
(∑

i
|pi|α

) 1
α , are decreasing in α. The same inequality

is applied in [1], the proof of Lemma 2.1.

APPROX/RANDOM’17

20:8 Renyi Entropy Estimation Revisited

To obtain Equation (9) we consider the function f(u) = (1 + u)α − 1− αu− Cuα. Its
derivative equals ∂f

∂u (u) = α
(
(1 + u)α−1 − 1− Cuα−1). It suffices to choose C such that

f(1) > 0 and ∂f
∂u (u) > 0 for u > 1 as then f(u) > 1 for u > 1. The second derivative

equals ∂2f
∂u2 (u) = α(α − 1)

(
(1 + u)α−2 − Cuα−2), and we conclude that, for 1 6 α 6 2

and u > 1, it bigger than zero when C 6 2α−2. Thus the first derivative increases and is
non-negative if, in addition, ∂f∂u (1) > 0, that is C 6 2α−1−1. We conclude that f(u) > 0 with
C = min

(
2α−2, 2α−1 − 1, 2α − α− 1

)
, that is when ∂2f

∂u2 (1), ∂f∂u (1), f(1) are all non-negative.
Under the assumption α 6 2 this can be simplified to C = 2α − 1− α. We notice further
that 2α−1 − 1 − α > (ln 4 − 1)(α − 1) when α ∈ (1, 2) which shows that we can take
C = 0.38(α− 1). J

I Lemma 11 (Distributions with different entropy yet close in total variation). For any real
α > 1 and any set S of size K > 2 there exist distributions on S that are γ-close but with
Renyi α-entropy different by at least ∆, for any parameters satisfying the following

For any ∆ 6 1, any α ∈ [1, 2] and γ = O
(

max
(

∆ 1
2K−

1
2 ,K−1+ 1

α∆ 1
α

))
For any ∆ 6 1, any α > 2 and γ = O

(
∆ 1

αK−1+ 1
α

)
For any ∆ > 1, any α ∈ [1, 2] and γ = max

(
2(1− 1

α∆)K−1+ 1
α , 2 1

2 ∆K−
1
2

)
For any ∆ > 1, any α > 2 and γ = O

(
2(1− 1

α)∆K−1+ 1
α

)
In particular, by applying Corollary 9 to the setting in the lemma above, we obtain the

lower bounds on the sample complexity.

I Corollary 12 (Estimating entropy with constant additive error). For any constant α > 1,
estimating α-entropy with additive error at most 1 requires at least Ω(1) ·max

(
K

1
2 ,K1− 1

α

)
samples. More generally bounds (for any accuracy ∆) apply as shown in Table 1.

Proof of Lemma 11. Fix aK-element set S and a parameter ε > 0 and consider the following
pair of distributions (given the choice of X, the choice of Y is close to the “worst” choice as
shown in Section D):
(a) X is uniform over S,
(b) Y puts a mass of 1

K + γ on one fixed point of S and 1
K −

γ
K−1 on the remaining points

of S,
where the exact value of the parameter γ is to be optimized later. We calculate that∑

x

(PY (x))α =
(
K−1 + γ

)α + (K − 1)
(
K−1 − γ(K − 1)−1)α

and

Kα ·
∑
x

(PY (x))α = (1 +Kγ)α + (K − 1)
(

1− γ K

K − 1

)α
.

Since
∑
x(PX(x))α = K1−α we get∑

x(PY (x))α∑
x(PX(x))α = K−1

(
(1 +Kγ)α + (K − 1)

(
1− γ K

K − 1

)α)
. (10)

Now if either Kγ 6 1 and α ∈ (1, 2) or α > 2, by Proposition 10 we obtain

(1 +Kγ)α + (K − 1)
(

1− γ K

K − 1

)α
> K + Ωα(1) min

(
(Kγ)2, (Kγ)α

)
(11)

M. Obremski and M. Skorski 20:9

for some constants depending on α, where we have used Equation (6) to lower-bound(
1− γ K

K−1

)α
and Equations (8) and (7) to lower-bound (1 +Kγ)α. More precisely, we have

(1 +Kγ)α + (K − 1)
(

1− γ K

K − 1

)α
>

K + α−1

3 (Kγ)α if α ∈ (1, 2) ∧Kγ > 1

K + α(α−1)
4 (Kγ)2 if α ∈ (1, 2) ∧Kγ 6 1

K + (Kγ)α if α > 2

Using this bound in the right-hand side of Equation (10), we obtain

(∑
x(PY (x))α∑
x(PX(x))α

) 1
α−1

>

1 + α−1

3 Kα−1γα if α ∈ (1, 2) ∧Kγ > 1

1 + α(α−1)
4 Kγ2 if α ∈ (1, 2) ∧Kγ 6 1

1 +Kα−1γα if α > 2

(12)

It remains to choose the parameter γ, remembering about the assumptions on γ and α made
in Equation (11). We may choose it the following ways:

Case 1: for ∆ ∈ (0, 1) and α > 2 we will choose: 1
α−1 ·K

α−1γα < 1. By taking the
logarithm of Equation (12) and dividing by α− 1 we obtain

Hα(Y)−Hα(X) > 1
α− 1 log

(
1 +Kα−1γα

)
.

Now the elementary inequality log(1 + u) > u valid for 0 6 u 6 1 yields

Hα(Y)−Hα(X) > 1
α− 1 ·K

α−1γα.

Thus we achieve the entropy gap ∆ = 1
α−1 ·K

α−1γα and the distance γ = ((α− 1)∆)
1
α K−1+ 1

α

for any ∆ between 0 and 1.

Case 2: for ∆ 6 1 and α ∈ (1, 2) we choose min
(
Kγ2,Kα−1γα

)
< 1. Using

Equation (12), taking the logarithm of both sides and dividing by α− 1 we obtain

Hα(Y)−Hα(X) > 1
α− 1 log

(
1 + α(α− 1)

4 ·min
(
Kγ2,Kα−1γα

))
.

Now the elementary inequality log(1 + u) > u valid for 0 6 u 6 1 yields

Hα(Y)−Hα(X) > α

4 ·min
(
Kγ2,Kα−1γα

)
.

Hence we can have the entropy gap ∆ = α
4 · min

(
Kγ2,Kα−1γα

)
and the distance γ =

max
(
K−1+ 1

α

(4∆
α

) 1
α ,K−

1
2
(4∆
α

) 1
2
)
. The number ∆ can be arbitrary between 0 and 1.

Case 3: for ∆ > 1 and α > 2 we choose 1
α−1 ·K

α−1γα > 1. Under this assumption,
Equation (12) holds with the term Kα−1γα on the right-hand side. By taking the logarithm
in Equation (12) and dividing by α− 1 we obtain

Hα(Y)−Hα(X) > 1
α− 1 · log

(
1 +Kα−1γα

)
.

APPROX/RANDOM’17

20:10 Renyi Entropy Estimation Revisited

Now the inequality log(1 + u) > log u implies

Hα(Y)−Hα(X) > 1
α− 1 log

(
Kα−1γα

)
.

Thus, we can have the entropy gap ∆ = 1
α−1 log

(
Kα−1γα

)
and the distance γ = 2∆(1− 1

α)K−1+ 1
α ,

for any 1 6 ∆ 6 logK −O(1) (the upper bound follows by substituting γ = K−1
K which is

the maximal value).

Case 4: for ∆ > 1 and α ∈ (1, 2) we choose min
(
Kγ2,Kα−1γα

)
> 1. Recall, as for

Case 2, that for α < 2 we have Kα−1γα > Kγ2 when Kγ > 1. Using this in Equation (12),
taking the logarithm of both sides and dividing by α− 1 we obtain

Hα(Y)−Hα(X) > 1
α− 1 log

(
1 + α(α− 1)

4 ·min
(
Kγ2,Kα−1γα

))
.

Now the inequality log(1 + u) > log u implies

Hα(Y)−Hα(X) > 1
α− 1 log

(
α(α− 1)

4 ·min
(
Kγ2,Kα−1γα

))
.

Thus, for the entropy gap ∆ = 1
α−1 log

(
α(α−1)

4 ·min
(
Kγ2,Kα−1γα

))
we get the distance

γ = 4
α(α−1) ·max

(
2∆(1− 1

α)K−1+ 1
α , 2 1

2 ∆K−
1
2

)
, for for any 1 6 ∆ 6 1

α−1 logK −O(1) (the
upper bound follows by substituting γ = K−1

K which is the maximal value). J

6 Conclusion

This paper offers stronger upper and lower bounds on the complexity of estimating Renyi
entropy. Except quantitative improvements, it also provides simplifies the analysis, and
provides more insight into the technique used to prove lower bounds.

Applying this technique to related problems, e.g. estimating different properties of
discrete distributions besides entropy, is an interesting problem for future research.

We also emphasize that our construction for the lower bounds can be somewhat improved
in two aspects: firstly, in Lemma 11 the choice of Y is optimal but X may be not - we
assumed for simplicity that it is flat; secondly, there may be need for a more carefull bound
on the variational distance between n-fold product distributions Lemma 8.

As for upper bounds, it remains an intriguing question if we can obtain improvements
also for Shannon entropy estimation in low or medium entropy regimes.

References
1 Jayadev Acharya, Alon Orlitsky, Ananda Theertha Suresh, and Himanshu Tyagi. The

complexity of estimating rényi entropy. In Proceedings of the Twenty-Sixth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January
4-6, 2015, pages 1855–1869, 2015. doi:10.1137/1.9781611973730.124.

2 Jayadev Acharya, Alon Orlitsky, Ananda Theertha Suresh, and Himanshu Tyagi. Estimat-
ing renyi entropy of discrete distributions. IEEE Trans. Information Theory, 63(1):38–56,
2017. doi:10.1109/TIT.2016.2620435.

3 Erdal Arikan. An inequality on guessing and its application to sequential decoding. IEEE
Trans. Information Theory, 42(1):99–105, 1996. doi:10.1109/18.481781.

http://dx.doi.org/10.1137/1.9781611973730.124
http://dx.doi.org/10.1109/TIT.2016.2620435
http://dx.doi.org/10.1109/18.481781

M. Obremski and M. Skorski 20:11

4 Boaz Barak, Yevgeniy Dodis, Hugo Krawczyk, Olivier Pereira, Krzysztof Pietrzak, François-
Xavier Standaert, and Yu Yu. Leftover hash lemma, revisited. In Advances in Cryptology
– CRYPTO 2011 – 31st Annual Cryptology Conference, Santa Barbara, CA, USA, August
14-18, 2011. Proceedings, pages 1–20, 2011. doi:10.1007/978-3-642-22792-9_1.

5 Tugkan Batu, Sanjoy Dasgupta, Ravi Kumar, and Ronitt Rubinfeld. The complexity
of approximating entropy. In Proceedings on 34th Annual ACM Symposium on Theory
of Computing, May 19-21, 2002, Montréal, Québec, Canada, pages 678–687, 2002. doi:
10.1145/509907.510005.

6 Tugkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren D. Smith, and Patrick White.
Testing closeness of discrete distributions. J. ACM, 60(1):4:1–4:25, 2013. doi:10.1145/
2432622.2432626.

7 Charles H. Bennett, Gilles Brassard, Claude Crépeau, and Ueli M. Maurer. Generalized
privacy amplification. IEEE Trans. Information Theory, 41(6):1915–1923, 1995. doi:10.
1109/18.476316.

8 Yevgeniy Dodis and Yu Yu. Overcoming weak expectations. In Theory of Cryptography
– 10th Theory of Cryptography Conference, TCC 2013, Tokyo, Japan, March 3-6, 2013.
Proceedings, pages 1–22, 2013. doi:10.1007/978-3-642-36594-2_1.

9 Oded Goldreich and Dana Ron. On testing expansion in bounded-degree graphs. In Studies
in Complexity and Cryptography. Miscellanea on the Interplay between Randomness and
Computation – In Collaboration with Lidor Avigad, Mihir Bellare, Zvika Brakerski, Shafi
Goldwasser, Shai Halevi, Tali Kaufman, Leonid Levin, Noam Nisan, Dana Ron, Madhu
Sudan, Luca Trevisan, Salil Vadhan, Avi Wigderson, David Zuckerman, pages 68–75. 2011.
doi:10.1007/978-3-642-22670-0_9.

10 Manjesh Kumar Hanawal and Rajesh Sundaresan. Guessing revisited: A large deviations
approach. IEEE Trans. Information Theory, 57(1):70–78, 2011. doi:10.1109/TIT.2010.
2090221.

11 Russell Impagliazzo and David Zuckerman. How to recycle random bits. In 30th Annual
Symposium on Foundations of Computer Science, Research Triangle Park, North Carolina,
USA, 30 October – 1 November 1989, pages 248–253, 1989. doi:10.1109/SFCS.1989.
63486.

12 R. Jenssen, K. E. Hild, D. Erdogmus, J. C. Principe, and T. Eltoft. Clustering using renyi’s
entropy. In Proceedings of the International Joint Conference on Neural Networks, 2003.,
volume 1, pages 523–528 vol.1, July 2003. doi:10.1109/IJCNN.2003.1223401.

13 Petr Jizba, Hagen Kleinert, and Mohammad Shefaat. Rényi’s information transfer between
financial time series. Physica A: Statistical Mechanics and its Applications, 391(10):2971–
2989, 2012. doi:10.1016/j.physa.2011.12.064.

14 Donald E. Knuth. The Art of Computer Programming, Volume 3: (2nd Ed.) Sorting and
Searching. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 1998.

15 Ke Li, Wanlei Zhou, Shui Yu, and Bo Dai. Effective ddos attacks detection using generalized
entropy metric. In Algorithms and Architectures for Parallel Processing, 9th International
Conference, ICA3PP 2009, Taipei, Taiwan, June 8-11, 2009. Proceedings, pages 266–280,
2009. doi:10.1007/978-3-642-03095-6_27.

16 Bing Ma, Alfred O. Hero III, John D. Gorman, and Olivier J. J. Michel. Image registration
with minimum spanning tree algorithm. In Proceedings of the 2000 International Conference
on Image Processing, ICIP 2000, Vancouver, BC, Canada, September 10-13, 2000, pages
481–484, 2000. doi:10.1109/ICIP.2000.901000.

17 Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. Multiple source adaptation
and the rényi divergence. In UAI 2009, Proceedings of the Twenty-Fifth Conference on Un-
certainty in Artificial Intelligence, Montreal, QC, Canada, June 18-21, 2009, pages 367–374,

APPROX/RANDOM’17

http://dx.doi.org/10.1007/978-3-642-22792-9_1
http://dx.doi.org/10.1145/509907.510005
http://dx.doi.org/10.1145/509907.510005
http://dx.doi.org/10.1145/2432622.2432626
http://dx.doi.org/10.1145/2432622.2432626
http://dx.doi.org/10.1109/18.476316
http://dx.doi.org/10.1109/18.476316
http://dx.doi.org/10.1007/978-3-642-36594-2_1
http://dx.doi.org/10.1007/978-3-642-22670-0_9
http://dx.doi.org/10.1109/TIT.2010.2090221
http://dx.doi.org/10.1109/TIT.2010.2090221
http://dx.doi.org/10.1109/SFCS.1989.63486
http://dx.doi.org/10.1109/SFCS.1989.63486
http://dx.doi.org/10.1109/IJCNN.2003.1223401
http://dx.doi.org/10.1016/j.physa.2011.12.064
http://dx.doi.org/10.1007/978-3-642-03095-6_27
http://dx.doi.org/10.1109/ICIP.2000.901000

20:12 Renyi Entropy Estimation Revisited

2009. URL: https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&
article_id=1600&proceeding_id=25.

18 Albert W. Marshall, Ingram Olkin, and Barry C. Arnold. Inequalities : Theory of Major-
ization and its Applications. Springer Science+Business Media, LLC, New York, 2011.

19 Abolfazl S. Motahari, Guy Bresler, and David N.C. Tse. Information theory of DNA
shotgun sequencing. IEEE Trans. Information Theory, 59(10):6273–6289, 2013. doi:10.
1109/TIT.2013.2270273.

20 Huzefa Neemuchwala, Alfred O. Hero III, Sakina Zabuawala, and Paul L. Carson. Image
registration methods in high-dimensional space. Int. J. Imaging Systems and Technology,
16(5):130–145, 2006. doi:10.1002/ima.20079.

21 Dávid Pál, Barnabás Póczos, and Csaba Szepesvári. Estimation of rényi entropy and
mutual information based on generalized nearest-neighbor graphs. In Proceedings of the
23rd International Conference on Neural Information Processing Systems, NIPS’10, pages
1849–1857, USA, 2010. Curran Associates Inc. URL: http://dl.acm.org/citation.cfm?
id=2997046.2997102.

22 Liam Paninski. Estimation of entropy and mutual information. Neural Comput., 15(6):1191–
1253, June 2003. doi:10.1162/089976603321780272.

23 Liam Paninski. A coincidence-based test for uniformity given very sparsely sampled discrete
data. IEEE Trans. Information Theory, 54(10):4750–4755, 2008. doi:10.1109/TIT.2008.
928987.

24 C.E. Pfister and W.G. Sullivan. Rényi entropy, guesswork moments, and large devi-
ations. IEEE Trans. Information Theory, 50(11):2794–2800, 2004. doi:10.1109/TIT.2004.
836665.

25 A. Renyi. On measures of information and entropy. In Proceedings of the 4th Berkeley
Symposium on Mathematics, Statistics and Probability, pages 547–561, 1960. URL: http:
//digitalassets.lib.berkeley.edu/math/ucb/text/math_s4_v1_article-27.pdf.

26 Prasanna K. Sahoo and Gurdial Arora. A thresholding method based on two-dimensional
renyi’s entropy. Pattern Recognition, 37(6):1149–1161, 2004. doi:10.1016/j.patcog.2003.
10.008.

27 C.E. Shannon. A mathematical theory of communication. SIGMOBILE Mob. Comput.
Commun. Rev., 5(1):3–55, January 2001. doi:10.1145/584091.584093.

28 Gregory Valiant and Paul Valiant. Estimating the unseen: an n/log(n)-sample estimator
for entropy and support size, shown optimal via new clts. In Proceedings of the 43rd ACM
Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011,
pages 685–694, 2011. doi:10.1145/1993636.1993727.

29 Paul C. van Oorschot and Michael J. Wiener. Parallel collision search with cryptanalytic
applications. J. Cryptology, 12(1):1–28, 1999. doi:10.1007/PL00003816.

30 Dongxin Xu. Energy, Entropy and Information Potential for Neural Computation. PhD
thesis, University of Florida, Gainesville, FL, USA, 1998. AAI9935317.

31 Dongxin Xu and Deniz Erdogmuns. Renyi’s Entropy, Divergence and Their Nonpara-
metric Estimators, pages 47–102. Springer New York, New York, NY, 2010. doi:
10.1007/978-1-4419-1570-2_2.

https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1600&proceeding_id=25
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1600&proceeding_id=25
http://dx.doi.org/10.1109/TIT.2013.2270273
http://dx.doi.org/10.1109/TIT.2013.2270273
http://dx.doi.org/10.1002/ima.20079
http://dl.acm.org/citation.cfm?id=2997046.2997102
http://dl.acm.org/citation.cfm?id=2997046.2997102
http://dx.doi.org/10.1162/089976603321780272
http://dx.doi.org/10.1109/TIT.2008.928987
http://dx.doi.org/10.1109/TIT.2008.928987
http://dx.doi.org/10.1109/TIT.2004.836665
http://dx.doi.org/10.1109/TIT.2004.836665
http://digitalassets.lib.berkeley.edu/math/ucb/text/math_s4_v1_article-27.pdf
http://digitalassets.lib.berkeley.edu/math/ucb/text/math_s4_v1_article-27.pdf
http://dx.doi.org/10.1016/j.patcog.2003.10.008
http://dx.doi.org/10.1016/j.patcog.2003.10.008
http://dx.doi.org/10.1145/584091.584093
http://dx.doi.org/10.1145/1993636.1993727
http://dx.doi.org/10.1007/PL00003816
http://dx.doi.org/10.1007/978-1-4419-1570-2_2
http://dx.doi.org/10.1007/978-1-4419-1570-2_2

M. Obremski and M. Skorski 20:13

A Proof of Lemma 4

Proof. The proof of Equation (2) goes by induction. It is clearly valid for α = 1. Assuming
that it is valid for some α > 1, we obtain

n(x)α+1 = n(x)α · (n(x)− α)

=
∑

i1 6=i2 6=...6=iα

ξi1(x)ξi2(x) · . . . · ξiα(x) ·
∑
iα+1

(ξiα+1(x)− α)

= −α
∑

i1 6=i2 6=... 6=iα

ξi1(x)ξi2(x) · . . . · ξiα(x)+

+
∑

i1 6=i2 6=...6=iα 6=iα+1

ξi1(x)ξi2(x) · . . . · ξiα(x)

+
∑

i1 6=i2 6=...6=iα
iα+1∈{i1,...,iα}

ξi1(x)ξi2(x) · . . . · ξiα(x)ξiα+1(x).

Since ξi are boolean we have∑
i1 6=i2 6=...6=iα
iα+1∈{i1,...,iα}

ξi1(x)ξi2(x) · . . . · ξiα(x)ξiα+1(x) =

α ·
∑

i1 6=i2 6=... 6=iα

ξi1(x)ξi2(x) · . . . · ξiα(x)

By putting together the last two equations we end the proof of Equation (2). To get
Equation (3) we simply take the expectation and use independence. J

B Proof of Lemma 5

Proof. Note that(∑
x

n(x)α
)2

=
∑
x,y

∑
i1 6=i2 6=... 6=iα
j1 6=j2 6=... 6=jα

α∏
r=1

ξir (x)ξjr (y)

=
∑
x 6=y

∑
i1 6=i2 6=... 6=iα 6=j1 6=j2 6=... 6=jα

α∏
r=1

ξir (x)ξjr (y)+

+
∑
x

∑
i1 6=i2 6=...6=iα
j1 6=j2 6=...6=jα

α∏
r=1

ξir (x)ξjr (x).

Now we have

I1 = E

∑
x 6=y

∑
i1 6=i2 6=... 6=iα 6=j1 6=j2 6=... 6=jα

α∏
r=1

ξir (x)ξjr (y)

= n2α

∑
x 6=y

p(x)αp(y)α

= n2α ((pα)2 − p2α
)
.

APPROX/RANDOM’17

20:14 Renyi Entropy Estimation Revisited

Also

I2 = E

∑
x

∑
i1 6=i2 6=...6=iα
j1 6=j2 6=...6=jα

α∏
r=1

ξir (x)ξjr (x)

= E

∑
x∈X

α∑
`=0

∑
i1 6=i2 6=...6=iα
j1 6=j2 6=...6=jα

|{i1 6=i2 6=...6=iα}∩{j1 6=j2 6=... 6=jα}|=`

α∏
r=1

ξir (x)ξjr (x)

=
∑
x∈X

α∑
`=0

nα(n− α)α−`
(
α

`

)2
l! · p(x)2α−`

=
α∑
`=0

nα(n− α)α−`
(
α

`

)2
l! · p2α−`

= n2αp2α +
α∑
`=1

nα(n− α)α−`
(
α

`

)2
l! · p2α−`,

where we observed that if the sets {i1, . . . , iα} and {j1, . . . , jα} have exactly ` common
elements then E

∏α
r=1 ξir (x)ξjr (x) = p(x)2α−`, and that there are nα(n−α)α−`

(
α
`

)2
l! choices

for the such sets {i1, . . . , iα} and {j1, . . . , jα}5. Putting this all together we obtain

Var
[∑

x

n(x)α
]

= n2α(pα)2 +
α∑
`=1

nα(n− α)α−`
(
α

`

)2
l! · p2α−` − (nαpα)2

= nα((n− α)α − nα)(pα)2 +
α∑
`=1

nα(n− α)α−`
(
α

`

)2
l! · p2α−`

which completes the proof. J

C Proof of Lemma 8

Proof. We will use the fact that if two distributions are ε-close (i.e. dTV (X ′, Y ′) < ε) then
no distinguisher can distinguish between them with advantage greater then ε

2 . Let us assume
that |Hα(X)−Hα(Y)| > 2δ, then by using estimator f̂ as part of the distinguisher i.e. if
|f̂(.)−Hα(X)| ≤ δ then distinguisher "guesses" that initial distribution was Xn, else "guesses"
Y n. Now we notice that initial distribution was Xn distinguisher will "guess" correctly with
probability 1− ε, and if the initial distribution was Y n then estimator with probability 1− ε
will output value in [Hα(Y)− δ ; Hα(Y) + δ] thus distinguisher will guess correctly again.
Our distinguisher achieves 1/2− ε advantage thus we deduce that dTV (Xn;Y n) > 1−2ε. J

5 For a quick sanity check of this formula, note that when pi = 1 (a constant random variable) then
we should get (nα)2 =

∑α

`=0 n
α(n− α)α−`(α

`

)2
l!. For α = 2 this reduces to the identity n(n− 1) =

(n− 2)(n− 3) + 4(n− 2) + 2.

M. Obremski and M. Skorski 20:15

D Maximizing entropy gap within variational distance constraints

I Theorem 13. Let q be a fixed distribution over k elements, and α > 1, ε ∈ (0, 1) be fixed.
Suppose that q1 > q2 > . . . > qk. Then the distribution p which is ε-close to q and has
minimal possible α-entropy is given by

qi =

p1 + ε i = 1

pi 1 < i < i0

pi0 −
∑
j>i0

pj i = i0

0 i > i0

(13)

where i0 is the biggest number such that
∑
i>i0

pi > ε, for some x0 such that p(x0) is the
biggest mass, and for some ε′ < ε.

Proof. We will apply majorization techniques [18]. Let q be optimal. Suppose that q(x1) >
p(x1) and q(x2) > p(x2) where x1 6= x2. Since q has the biggest possible power sum
S(q) =

∑
x q(x)α we see that p(x1) and p(x2) are two biggest probability masses. Assume,

without loss of generality, that q(x1) > q(x2). For some small δ > 0 we perturb q into q′ such
that q′(x1) = q(x1) + δ and q′(x1) = q(x1)− δ and q′(x) = q(x). Note that for small δ the
distance between q′ and p is at most as between p and q, and that q′ majorizes q (considered
as vectors) and the power sum S(q) is Schur convex, hence S(q) > S(q′). The contradiction
means that q(x) > p(x) for only one x = x0.

Consider now the smallest values q(x1), q(x2) such that 0 < q(x1) < p(x1), 0 < q(x2) <
p(x2) for x1 6= x2 that are strictly bigger than zero. For some small δ > 0 we perturb q into
q′ such that q′(x1) = q(x1) + δ and q′(x1) = q(x1)− δ and q′(x) = q(x). We see that for δ
small enough the distance from q′ to p is at most as from q to p and that q′ majorizes q
which means S(q′) > S(q). The contradiction means that 0 < q(x) < p(x) for at most one
x = x0. J

APPROX/RANDOM’17

Approximating Sparsest Cut in Low Rank Graphs
via Embeddings from Approximately Low
Dimensional Spaces
Yuval Rabani1 and Rakesh Venkat∗2

1 Hebrew University of Jerusalem, Jerusalem, Israel
yrabani@cs.huji.ac.il

2 Hebrew University of Jerusalem, Jerusalem, Israel
rakesh@cs.huji.ac.il

Abstract
We consider the problem of embedding a finite set of points {x1, . . . , xn} ∈ Rd that satisfy
`2

2 triangle inequalities into `1, when the points are approximately low-dimensional. Goemans
(unpublished, appears in [20]) showed that such points residing in exactly d dimensions can be
embedded into `1 with distortion at most

√
d. We prove the following robust analogue of this

statement: if there exists a r-dimensional subspace Π such that the projections onto this sub-
space satisfy

∑
i,j∈[n] ‖Πxi −Πxj‖2

2 ≥ Ω(1)
∑

i,j∈[n] ‖xi − xj‖
2
2, then there is an embedding of

the points into `1 with O(
√
r) average distortion. A consequence of this result is that the in-

tegrality gap of the well-known Goemans-Linial SDP relaxation for the Uniform Sparsest Cut
problem is O(

√
r) on graphs G whose r-th smallest normalized eigenvalue of the Laplacian sat-

isfies λr(G)/n ≥ Ω(1)ΦSDP (G). Our result improves upon the previously known bound of O(r)
on the average distortion, and the integrality gap of the Goemans-Linial SDP under the same
preconditions, proven in [7, 6].

1998 ACM Subject Classification F.2.2 Non-Numerical Algorithms

Keywords and phrases Metric Embeddings, Sparsest Cut, Negative type metrics, Approximation
Algorithms

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.21

1 Introduction

A finite metric space consists of a pair (X , d), where X is a finite set of points, and d :
X×X → R≥0 is a distance function on pairs of points in X . Many combinatorial optimization
problems can be naturally formulated as a maximization or minimization problem over metric
spaces (X , d) of some target class. However, since it might be computationally difficult to
optimize over this class, one considers a relaxation that finds a solution (Y, d′) amongst a
class of computationally ‘easy’ metrics, and then looks to produce an embedding Y ↪→ X
into the target space, while minimizing some measure of distortion between the distance
functions d and d′ incurred by the embedding. There has been much work that investigates
various measures and costs of distortion incurred by embeddings between metric spaces, and
applications thereof (see the surveys [12, 21, 18] and references therein).

In this work, we look at embeddings from `2
2 metrics to `1 metrics, motivated by appli-

cations to the Sparsest Cut problem. A `1 metric (or a `1 space) consists of a finite set of

∗ Research supported by an I-CORE Algorithms Fellowship.

© Yuval Rabani and Rakesh Venkat;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 21; pp. 21:1–21:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.21
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

21:2 Sparsest Cut and Embeddings from Approximately Low Dimensional Spaces

points represented in Rd with the distance given by the `1 distance between them. It is a
natural target space that can be viewed as an non-negative combination of ‘cut-metrics’ on
the underlying point set, and hence arises frequently in graph-cut based problems. A `2

2
space, on the other hand, is easy to optimize over, and consists of a finite set of points, say
X = {x1, . . . , xn} ⊂ Rd, that satisfy triangle inequalities on the squares of distances:

‖xi − xj‖2
2 + ‖xj − xk‖2

2 ≥ ‖xi − xk‖
2
2 ∀ i, j, k ∈ [n]. (1.1)

The Sparsest Cut problem is a fundamental NP-hard graph optimization problem that
serves as a striking example of the utility of the metric embedding approach. In the (Uniform)
Sparsest Cut problem, we are given a graph G = (V, c), with a symmetric weight function cij
on pairs {i, j}. The goal is to find a cut (S, S) of minimum sparsity Φ(S), defined as follows
(here, IS(i) is 1, if i ∈ S, and 0 otherwise).

Φ(S) ..=
∑
i<j cij |IS(i)− IS(j)|∑
i<j |IS(i)− IS(j)| .

The best known approximation for the Sparsest Cut problem is due to Arora, Rao and
Vazirani [3] (henceforth called the ARV algorithm), who considered the following semidefinite
programming relaxation (SDP) introduced by Goemans and Linial (see [9] and [18]).

SDP-1: ΦSDP (G) ..= min
{xi}i∈[n]

1
n2

∑
ij

cij ‖xi − xj‖2
2

s.t
{
‖xi − xj‖2

2 + ‖xj − xk‖2
2 ≥ ‖xi − xk‖

2
2 ∀i, j, k ∈ [n].∑

kl ‖xk − xl‖
2
2 = n2.

Clearly, ΦSDP (G) ≤ Φ(G). Notice that any feasible solution to the above SDP constitutes
a `2

2 space. The ARV algorithm works by producing an embedding of the solutions of the
above SDP into a `1 space, with average distortion (see Section 2 for a definition) O(

√
logn).

It was shown in [19, 4] that producing an embedding of the SDP solutions into a `1 space
with average distortion D suffices to get a O(D) approximation to the Uniform Sparsest Cut
problem.

Though the solutions to SDP-1 can lie in up to n dimensions, for certain graph classes,
they are more structured. In particular, if the r-th smallest eigenvalue of the graph Laplacian
satisfies λr(G)/n � ΦSDP (G), then it turns out that the solutions are approximately r-
dimensional (see Definition 1.2 and Section 3.4). Graphs whose r-th smallest eigenvalue
is bounded away from 0 for a typically small r are called low threshold-rank graphs; note
that spectral expanders are a special case of these for r = 2. The work of Guruswami and
Sinop [11] exploited higher levels of the Lasserre SDP hierarchy [16], along with the above
structure, to give constant-factor guarantees for Sparsest Cut on these graphs. However,
this involved partially solving a SDP of size nO(r)1, and did not say anything about the
behaviour of the Goemans-Linial SDP on these graphs.

Goemans showed that if the points satisfying `2
2 triangle inequalities lie in d dimensions,

then they can be embedded into `2 (and hence into `1, since there is an isometry from `2
to `1 [21]) with

√
d distortion (unpublished, appears in [20], see also [6, Section 4] for an

alternative proof).

1 In a separate work, Guruswami and Sinop [10] give an algorithm that solves the SDP partially, running
in 2O(r)poly(n) time, and suffices for their algorithm.

Y. Rabani and R. Venkat 21:3

I Theorem 1.1 (Goemans [20, Appendix B]). Let x1, x2, . . . , xn ∈ Rd be n points satisfying
`2

2 triangle inequalities. Then there exists an embedding of these points into `2, xi 7→ f(xi),
with distortion

√
d, that is,

1√
d
‖xi − xj‖2

2 ≤ ‖f(xi)− f(xj)‖2 ≤ ‖xi − xj‖
2
2 , ∀ i, j ∈ V.

The immediate question that this raises is the following: can one reduce the dimension
of `2

2 metrics, while preserving pairwise distances, and the `2
2 triangle inequalities? The

Johnson-Lindenstrauss lemma [13] reduces the dimension to O(logn), while preserving
pairwise distances approximately. However, this procedure does not preserve the `2

2 triangle
inequalities, if the original points satisfied them. In fact, Magen and Moharammi [20] prove
a strong lower bound against dimension reduction for `2

2 metrics.
It is interesting to note that the Johnson-Lindenstrauss lemma, while not preserving the

`2
2 triangle inequalities exactly, does preserve them approximately, that is, every sequence of
k ≤ n points xi1 , . . . , xik satisfies

∑k−1
j=1

∥∥xij − xij+1

∥∥2
2 ≥ β · ‖xi1 − xik‖

2
2, for some β = Ω(1).

An observation by Luca Trevisan (personal communication) shows that, in fact, Goemans’
theorem is also true for points satisfying approximate triangle inequalities, and the proof
uses the ARV algorithm and analysis. However, even this does not yield anything better
than O(

√
logn) for approximately r-dimensional points, when r is small.

The above discussion motivates one to ask if there is a more ‘robust’ analogue of Goemans’
theorem that can be applied to low threshold-rank graphs. Deshpande, Harsha and Venkat [6]
considered this question, and showed that one can prove a similar theorem for the case where
the points are in approximately r dimensions, albeit giving a bound of O(r) on the average
distortion (which suffices for Sparsest Cut). One would expect an exact analogue to have a
bound of O(

√
r), and it was left open if one could find such an embedding.

We show that there is, indeed, an embedding into `1 (in fact, into `2, since all our embed-
dings are one-dimensional) with O(

√
r) average distortion when the points are approximately

r-dimensional.

1.1 Our Results
In order to state our main result, we use the following definition to quantify the notion of
approximate rank of a set of points:

I Definition 1.2. (η-Subspace rank) For any η ∈ (0, 1], a set of pointsX = {x1, . . . , xn} ⊆ Rd
will be said to have η-subspace rank r, denoted by ssrη(X) = r, if there exists a subspace
given by a projector Π ∈ Rd×d with rank (Π) = r that satisfies:∑

i,j∈[n]

‖Πxi −Πxj‖2
2 ≥ η

∑
i,j∈[n]

‖xi − xj‖2
2 . (1.2)

In this work, we will always consider η = Ω(1).

I Remark. Since the subspace Πr defined by the top-r left singular vectors of the matrix M
with columns {xi − xj}ij satisfies ‖ΠrM‖2

F ≥
∥∥∥Π̃M

∥∥∥2

F
for every Π̃ with rank

(
Π̃
)
≤ r, we

can always assume that Π = Πr(M) when we need to explicitly use the projections. Also,
note that the subspace rank is independent of any scaling or shifting of the points, and is
always at most the rank of the point set.

Deshpande et al. [6] use a slightly different notion of approximate dimension, called the
stable-rank of the point set, defined as sr (M) = ‖M‖2

F /σ1(M)2, where σ1 is the maximum

APPROX/RANDOM’17

21:4 Sparsest Cut and Embeddings from Approximately Low Dimensional Spaces

singular value of the matrixM . Clearly, sr (M) ≤ ssrη(X)/η, and so points with low subspace
rank also have low stable rank. While the stable rank is a well-known proxy for rank (see
[5, 25]), for applications to the Sparsest Cut problem, the notion of subspace rank suffices
and is natural (see Section 3.4). It would be interesting to see if other notions of approximate
rank yield further applications or improvements, in Sparsest Cut, or elsewhere.

Our main result is the following:

I Theorem 1.3. Given a set of points X = {x1, . . . , xn} ∈ Rd with ssrη(X) = r that satisfy
the `2

2 triangle inequalities, there is an embedding X ↪→ `1 with average distortion at most
Oη(
√
r). That is, there is a constant c(η) and a mapping h : X → Rd′ that satisfies:

‖h(xi)− h(xj)‖1 ≤ ‖xi − xj‖
2
2 ∀i, j ∈ [n] (1.3)∑

i,j∈[n]

‖h(xi)− h(xj)‖1 ≥
c(η)√
r
·
∑
ij

‖xi − xj‖2
2 (1.4)

This matches Goemans’ theorem in terms of the dependence on r, albeit for average-case
distortion. Since the subspace rank is an average global condition on the point set, we cannot
hope to prove a worst-case distortion guarantee like Goemans’ theorem that depends only on
the subspace rank (see Appendix A.1).

The above theorem holds even if the points satisfy the `2
2 triangle inequalities only

approximately, since the steps in the analysis of the algorithm only need the points to satisfy
the approximate version of the triangle inequalities (recall the remarks following Theorem 1.1).
Improving on the

√
r bound above with any technique that works with approximate triangle

inequalities would imply an improvement over the ARV algorithm’s guarantee, since dimension
reduction using the Johnson-Lindenstrauss [13] transform preserves pairwise distances (and
hence the `2

2 inequalities) approximately, while reducing the dimension to O(logn). Note
that this, thus, recovers the unconditional guarantee of O(

√
logn) of the ARV algorithm, but

gives better results for points in lower approximate dimension. This is unsurprising, since
our techniques do build on the ARV analysis.

Our main result immediately implies a O(
√
r) approximation algorithm for the Uniform

Sparsest Cut problem on low threshold-rank graphs, using just the Goemans-Linial SDP.

I Corollary 1.4. Let ε ∈ (0, 1]. Given a regular graph G with r-th smallest eigenvalue
of the normalized Laplacian satisfying λr(G) ≥ ΦSDP (G)/(1 − ε), we can find a Oε(

√
r)

approximation to the sparsest cut in the graph using SDP-1.

This improves upon the previously known guarantee of O(r/ε) using the Goemans-Linial
SDP in [6], under the same precondition.

Proof Techniques

In order to prove our main result, we follow the generic approach of the ARV algorithm [3]
that proceeds in two steps: If there is a dense cluster of the solution vectors, then a specific
Fréchet embedding (see Section 2 for a definition) works. If not, then the solutions are
‘well-spread’, and one can always find two Ω(n)-sized sets that are O(1/

√
logn)-apart in `2

2
distance, using a separating hyperplane algorithm. This constitutes the core of the proof,
and the analysis involves a ‘chaining argument’ which relies on the concentration of measure
in high-dimensional spaces. These well-separated sets can then be used to construct a good
Fréchet embedding into `1.

Y. Rabani and R. Venkat 21:5

In our case, we would analogously like to find two large sets that are Ω(1/
√
r)-apart, and

to do this, we need to work with the projections of the points. Note that the projections need
not be in `2

2, while the ARV algorithm’s analysis requires the use of `2
2 triangle inequalities

at various points.
Thus, in order to prove Theorem 1.3, we follow and adapt the techniques in Naor,

Rabani and Sinclair [22] (henceforth called the NRS analysis). Their work generalized the
ARV algorithm’s analysis to apply to the more general case of metrics quasisymmetrically
embeddable into `2, which includes `2

2 as a special case. We do not need the complete
machinery developed by them, though, and extend only a part of their analysis to our setting.
In particular, the chaining argument in [22] works in Euclidean, rather than `2

2 space, making
it useful in our case.

Our result, thus, also demonstrates the utility of isolating the chaining argument from
the use of `2

2 triangle inequalities in the ARV algorithm’s analysis.

1.2 Other related Work
We recall that the best known upper bound for the worst-case distortion of embedding
`2

2 ↪→ `1 is O(
√

logn · log logn) by [2], building on the techniques in [3, 17]. The best known
lower bound is Ω(

√
logn) for worst-case distortion [23], and exp(Ω(

√
log logn)) for average

distortion [14]. On low threshold-rank graphs (where λr ≥ Ω(1)ΦSDP), an approximation
guarantee of O(1) for Sparsest Cut was obtained using O(r) levels of the Lasserre hierarchy
for SDPs [11]. In contrast, the works [7, 6] obtained a weaker O(r) approximation, but
using just the basic SDP relaxation. Oveis Gharan and Trevisan [8] also give a rounding
algorithm for the basic SDP relaxation on low-threshold rank graphs, but require a stricter
pre-condition on the eigenvalues (λr � log2.5 r · Φ(G)), and leverage it to give a stronger
O(
√

log r)-approximation guarantee. Their improvement comes from a new structure theorem
on the SDP solutions of low threshold-rank graphs being clustered, and using the techniques
in ARV for analysis.

Kwok et al. [15] showed that a better analysis of Cheeger’s inequality gives a O(r ·
√

1/λr)
approximation to the sparsest cut on regular graphs. In particular, when λr(G) ≥ ε, this
gives a O(r/

√
ε) approximation. Note that our result gives a better approximation in this

setting (see Section 3.4).

2 Notation

We use [n] = {1, . . . , n}. For a matrixM ∈ Rd×d, we sayM � 0 orM is positive-semidefinite
(psd) if yTXy ≥ 0 for all y ∈ Rd. The unit Euclidean Ball in Rd is denoted by Bd2 .

Graphs and Laplacians: All graphs will be defined on a vertex set V = [n] of size n. The
vertices will usually be referred to by indices i, j, k, l ∈ [n]. Given a graph with a symmetric
weight function on pairs W : V × V 7→ R+, with W (i, i) = 0 ∀i, let D(i) ..=

∑
jW (i, j) be

the degree of vertex i ∈ V . The (normalized) graph Laplacian matrix is defined as:

LW (i, j) :=

−
W (i,j)√
D(i)D(j)

if i 6= j ,

1 if i = j .

Note that LW � 0. We will denote the eigenvalues of (the Laplacian of) the graph G
by 0 = λ1(G) ≤ λ2(G) . . . ≤ λn(G), in increasing order. If the graph is c-regular, we have
D(i) = c for every i ∈ V . Note that c might be a fraction.

APPROX/RANDOM’17

21:6 Sparsest Cut and Embeddings from Approximately Low Dimensional Spaces

For nodes i, j in G, dG(i, j) is the shortest path between vertices i, j in G. For S ⊆ [n],
G[S] is the subgraph induced by G on S. The vertex expansion of G, denoted by h(G)
is defined as the largest constant h such that for every set S ⊆ V with 1 ≥ |S| ≥ |V |/2,
|NG(S)| ≥ h|S| where NG(S) = {j ∈ V : dG(j, S) = 1}.

Embeddings and cuts: For our purposes, a (semi-)metric space (X, d) consists of a finite
set of points X = {x1, x2, . . . , xn} and a distance function d : X ×X 7→ R≥0 satisfying the
following three conditions:
1. d(x, x) = 0, ∀x ∈ X.
2. d(x, y) = d(y, x).
3. (Triangle inequality) d(x, y) + d(y, z) ≥ d(x, z).
An embedding from a metric space (X, d) to a metric space (Y, d′) is a mapping f : X → Y .
The embedding is called a contraction, if

d′(f(xi), f(xj)) ≤ d(xi, xj), ∀xi, xj ∈ X.

For convenience, we will only deal with contractive mappings in this paper (this is without
loss of generality). A contractive mapping is said to have (worst-case) distortion ∆, if:

supi,j
d(xi,xj)

d′(f(xi),f(xj)) ≤ ∆. It is said to have average distortion β, if
∑

i<j
d(xi,xj)∑

i<j
d′(f(xi),f(xj))

≤ β.

Note that a mapping with worst-case distortion ∆ also has average distortion ∆, but not
necessarily vice-versa.

Fréchet embeddings of (X, d) are a class of embeddings of X → Rk into defined on the
basis of distances to point sets: a co-ordinate of the embedding will be given by a map of
the form d(xi, S) ..= minj∈S d(xi, xj) for some S ⊆ X. Note that Fréchet embeddings are
always contractive in every co-ordinate.

When X ⊆ Rk is a `2
2 space, we will use d(i, j) ..= ‖xi − xj‖2

2, and d(S, T) =
mini∈S,j∈T d(i, j) for S, T ⊆ [n]. For c ∈ R, B(i, c) ..= {j : d(i, j) ≤ c}. We refer to
the quantity 1

n2

∑
i,j ‖xi − xj‖

2
2 as the spread of these points.

3 Proof of Main Theorem

3.1 Proof Outline
We prove Theorem 1.3 in two steps. First, we scale the points to lie within a `2 ball of radius
1; note that this would shrink the pairwise distances. Suppose that the points have constant
spread after this scaling; i.e. they satisfy

1
n2

∑
i,j∈V

‖xi − xj‖2
2 ≥ δ, where δ = Ω(1). (3.1)

Since scaling does not affect the subspace rank, we continue to have ssrη(X) = r. In this
case, we adapt the chaining argument from [22] to work on the projections {Πxi}i∈V to
conclude the existence of two large, ∆-separated sets for ∆ = Ω(1/

√
r).

In the general case, we show that by appropriately utilizing the subspace criterion, we
can either reduce it to the case of constant spread, or produce an O(1) distortion Fréchet
embedding by considering distances to an appropriate `2

2 ball centered at one of the points.
Let V ..= [n]. We will require the following definitions, following [3]:

I Definition 3.1 (Largeness). A subset A ⊆ V is β-large, if |A| ≥ βn.

Y. Rabani and R. Venkat 21:7

I Definition 3.2 (∆-separation). Subsets L ⊆ V and R ⊆ V are ∆-separated, if d(L,R) ≥ ∆.

The following lemma, implicit in [3], gives a sufficient condition for the existence of a
Fréchet embedding into `1 with low average distortion.

I Lemma 3.3 (Sufficient condition). If there is a set S ⊆ [n] satisfying

|S|
∑
i/∈S

d(i, S) ≥ c.n2 (3.2)

Then, there is an embedding of the points into `1 with average distortion 1/c.

Proof. Consider the embedding i 7→ d(i, S). Clearly, this is a Fréchet embedding, and hence
a contraction. Furthermore, we have:∑

i,j∈V
|d(i, S)− d(j, S)| ≥

∑
i/∈S,j∈S

|d(i, S)− 0|

= |S|
∑
i/∈S

d(i, S) ≥ cn2

Thus, the average distortion of the map is at most 1/c. J

Note that the existence of two Ω(1)-large, ∆-separated sets L,R would satisfy the above
condition, with S = L and c = O(1/∆). The above can also be thought of as an embedding
into `2, since it is one-dimensional.

3.2 The constant spread case
We will start by stating the following Proposition, which is a simple modification of Proposition
3.11 in [22]. Since the proof closely follows the original, requiring only a simple observation,
we do not give it here.

I Proposition 3.4 (From Proposition 3.11 in [22]). Let G = (V,E) be graph with vertex
expansion h(G) ≥ 1/2. Let f : V → Bd2 be a mapping that satisfies:

1
n2

∑
i,j∈V

‖f(i)− f(j)‖2 ≥ γ (3.3)

Then, there exists a pair i, j ∈ V , and constants c1(γ), c2(γ) such that

‖f(i)− f(j)‖2 ≥ c1(γ) and dG(i, j) ≤ c2(γ)
√
d (3.4)

I Remark. The modification only requires the observation that for any i, j with ‖f(i)− f(j)‖2 ≤
c1(γ), and u : ‖u‖2 = 1, 〈f(i)− f(j), u〉 ≤ c1(γ). This avoids a union bound over the pairs
of points in the last step of the proof, the rest of the steps being identical. Combined with
the original statement of Proposition 3.11 in [22], the term

√
d in the above can be replaced

by min
{√

logn,
√
d
}
.

We now proceed to prove a special case of Theorem 1.3 assuming condition (3.1).

I Theorem 3.5. Let X = {x1, . . . , xn} satisfy `2
2-triangle inequalities, with X ⊆ Bd2 and

ssrη(X) = r. Furthermore, suppose that

1
n2

∑
ij

‖xi − xj‖2
2 ≥ δ, where δ = Ω(1).

Then there exist sets A,B ⊆ X, with |A|, |B| ≥ (ηδ/32)n with d(A,B) ≥ Ω(1/
√
r).

APPROX/RANDOM’17

21:8 Sparsest Cut and Embeddings from Approximately Low Dimensional Spaces

Proof. Let Π be the r-dimensional subspace containing an η fraction of the squared lengths
of the difference vectors upon projection. Let V = [n], and define f : V → Br2 by

f(i) , Πxi

Since the set X has η-subspace rank r, we have, by definition:
1
n2

∑
i,j∈V

‖f(i)− f(j)‖2
2 ≥ ηδ. (3.5)

We will now follow the proof of Theorem 2.4 in [22], but switch to the projections where
appropriate. Consider the graph G = (V,E) with edges E =

{
{i, j} : ‖xi − xj‖2

2 ≤
κ√
r

}
,

where κ = κ(η, δ) is a constant that we will set later.
Suppose, for the sake of contradiction, that every two sets A,B ⊆ V with |A|, |B| ≥

(ηδ/32)n satisfy d(A,B) ≤ κ/
√
r, which implies that dG(A,B) ≤ 1. We use the following

lemma from [22]:

I Lemma 3.6 (Lemma 2.3 in [22]). Fix 0 < ε ≤ 1
10 , and let G = (V,E) be a graph such that

for every X,Y ⊆ V satisfying |X|, |Y | ≥ ε|V |, dG(x, y) ≤ 1. Then there is a U ⊆ V with
|U | ≥ (1− ε)|V | with h(G[U]) ≥ 1

2 .

Invoking Lemma 3.6 on G yields a subset X ′ ⊆ V , with |X ′| ≥ (1 − ηδ
32)n such that

h(G[X ′]) ≥ 1
2 . We claim the following:

1
|X ′|2

∑
i,j∈X′

‖f(i)− f(j)‖2 ≥
(ηδ)3/2

32 . (3.6)

To see this, note that |X ′ ×X ′| ≥ (1− ηδ
16)n2. Let

D =
{

(i, j) ∈ V × V : ‖f(i)− f(j)‖2
2 ≥ ηδ/4

}
.

Since the diameter of the unit ball is 2, in order to satisfy (3.5), we should have |D| ≥ (ηδ/8)n2.
Thus, |D ∩ (X ′ ×X ′)| ≥ ηδ

16n
2. This implies that the average `2-distance in X ′ ×X ′ is at

least:

1
n2 |D ∩ (X ′ ×X ′)| ×

√
ηδ

4 ≥
(ηδ)3/2

32 . (3.7)

This proves (3.6).
We can now apply Proposition 3.4 to G[X ′], and the projections {f(i)}i∈V , with γ =

(ηδ)3/2/32. We infer that there exists a path in G, of k ≤ c2(γ)
√
r = a(η, δ)

√
r vertices

i1, i2, . . . ik ⊆ X ′ such that ‖f(i1)− f(ik)‖2 ≥ c1(γ) = b(η, δ), where a(η, δ) and b(η, δ) are
constants depending on η and δ.

This implies that:

b2(η, δ)
(a)
≤ ‖f(i1)− f(ik)‖2

2

(b)
≤ ‖xi1 − xik‖

2
2

(c)
≤

k−1∑
j=1

∥∥xij − xij+1

∥∥2
2

(d)
≤ a(η, δ)

√
r
κ√
r
. (3.8)

Above, (b) follows from the fact that projections can only decrease distances, (c) from the
`2

2 property, and (d) from the definition of G. This is a contradiction, if we set κ < b2(η,δ)
a(η,δ) . J

I Remark. The last chain of inequalities above is the only place where the `2
2 triangle

inequalities are invoked. Without them, we could still prove a weaker statement with O(1/r)
separation between the large sets, since (c) would hold with an additional multiplicative
factor of k by convexity.

Y. Rabani and R. Venkat 21:9

3.3 The general case
We now extend our argument to the general case. Let us fix some notation before going to
the proofs. We will take V ..= [n], and X = {x1, . . . , xn} to satisfy the `2

2 triangle inequalities,
with ssrη(X) = r. Let Π be the corresponding r-dimensional subspace. Let f(i) ..= Πxi, as
before. Define

df (i, j) ..= ‖f(i)− f(j)‖2
2 .

The terms df (i, S), df (S, T) for S, T ⊆ V are defined naturally, and denote diamf (S) ,
maxi,j∈S df (i, j). Note that df (·, ·) is not necessarily a distance, unlike d(·, ·). However, since
f is a projection map, it satisfies:

d(i, S) ≥ df (i, S) ∀i ∈ V, ∀S ⊆ V, (3.9)

We will also assume that X is scaled to satisfy:

1
n2

∑
i,j∈V

‖xi − xj‖2
2 = 1 . (3.10)

We first record a simple observation.

I Observation 3.7. For any i, j ∈ V , and any S ⊆ V ,

df (i, j) ≤ 3 (df (i, S) + diamf (S) + df (j, S)).

Proof. Let i∗, j∗ ∈ S be such that df (i, S) = df (i, i∗) and df (j, S) = df (j, j∗). Since
√
df

obeys the triangle inequality, we have:(√
df (i, j)

)2
≤
(√

df (i, i∗) +
√
df (i∗, j∗) +

√
df (j, j∗)

)2

≤ 3(df (i, S) + diamf (S) + df (j, S))

The last inequality follows from the convexity of the function g(x) = x2, and the definition
of diamf . J

We now consider various cases, and show that a low average-distortion embedding exists in
each case.

I Lemma 3.8 (Dense Ball). If ∃i ∈ V , with |B(i, 1/12)| ≥ n/12, then we can find an
O(1)-average distortion embedding of X into `1.

Proof. The proof follows the proof of a similar lemma in [3]. Let i0 ∈ V be such that
|B(i0, 1/12)| ≥ n/12, and let S = B(i0, 1/12). Consider the embedding i 7→ d(i, S). This is
a contraction. Since

∑
ij ‖xi − xj‖

2
2 = n2, we have:

n2 =
∑
i,j∈V

d(i, j)

≤
∑
i,j∈V

(d(i, S) + d(j, S)) . . . Using `2
2 triangle inequality

= 2n
(∑
i/∈S

d(i, S)
)

APPROX/RANDOM’17

21:10 Sparsest Cut and Embeddings from Approximately Low Dimensional Spaces

This gives us that
∑
i/∈S d(i, S) ≥ n/12. Since |S| = Ω(n), Lemma 3.3 applies, and proves

that the above embedding has O(1) average-distortion. 2 J

I Lemma 3.9 (Isolating a bounded ball). If there is no i ∈ V such that |B(i, 1/12)| ≥ n/12,
then there is a j ∈ V such that S = B(j, 12/9) satisfies |S| ≥ 3

12n, and∑
i,j∈S

d(i, j) ≥
(

2
12

)(
1
12

)
n2

12

Proof. Suppose we had |B(j, 12/9)| < (3n/12) for every j ∈ V . Then, for any j ∈ V , we
would have |B(j, 12/9)| > 9n/12, which gives us that

∑
i d(j, i) > n. Summing over j ∈ V

contradicts (3.10).
Now, let j0 ..= arg maxj∈V |B(j, 12/9)|, and S ..= B(j0, 12/9). Define the set A =

B(j0, 12/9) \B(j0, 1/12). From our assumption and the preceeding argument, |A| ≥ 2n/12.
Since |B(i, 1/12)| ≤ n/12 for every i ∈ A, we have that

∣∣∣B(i, 1/12) ∩A
∣∣∣ ≥ n/12. This gives

us: ∑
i∈A,j∈A

d(i, j) ≥ 2n
12 ×

1
12 ×

n

12 . J

In next two lemmas, assume that the precondition of Lemma 3.9 holds, i.e., there is no
i ∈ V with |B(i, 1/12)| ≥ n/12.

I Lemma 3.10. Let j0 = arg maxj∈V |B(j, 12/9)|, and S , B(j0, 12/9). If S satisfies:∑
i,j∈S

df (i, j) ≥ η

600 |S|
2,

then there is an embedding of X into `1 with O(
√
r) average distortion.

Proof. Consider the map g : V → Rd given by g(i) ,
√

9/12 ·xi. This ensures that g(i) ∈ Bd2
for every i ∈ S, and the mapping continues to obey the `2

2 triangle inequalities. Furthermore,
from Lemma 3.9, the points in S satisfy:

1
|S|2

∑
i,j∈S

‖g(i)− g(j)‖2
2 ≥

9
12 ×

2
123 = Ω(1). (3.11)

From the assumption on S, we infer that:

1
|S|2

∑
i,j∈S

‖Πg(i)−Πg(j)‖2
2 ≥

9
12 ×

η

600 .

We can now invoke Theorem 3.5 on just the points in S to conclude that there exist sets
A,B ⊆ S, such that |A|, |B| ≥ Ωη(n) with d(A,B) ≥ Ωη(1/

√
r) (the scaling by a constant

factor just shrinks some distances). As before, it is easy to see that A satisfies the conditions
of Lemma 3.3 with c = Ω(1/

√
r) and hence the mapping h(i) , d(i, A) has average distortion

O(
√
r). Note that by the ARV algorithm [3], the sets can be found with good probability by

a random separating hyperplane through j0. J

2 Strictly speaking, one could do without the `2
2 triangle inequality here by adjusting the constants

appropriately, as we did in Observation 3.7.

Y. Rabani and R. Venkat 21:11

I Lemma 3.11. Let j0 = arg maxj∈V |B(j, 12/9)|, and S , B(j0, 12/9). If S satisfies:∑
ij∈S

df (i, j) ≤ η

600 |S|
2,

then we can find an embedding of X into `1 with O(1) average distortion.

Proof. The proof will be similar to the proof of Lemma 3.8, except for the fact that we will
work with projections instead of the original vectors.

First, observe that there exists an i0 ∈ S such that |Bf (i0, η/24) ∩ S| ≥ 24|S|/25. If not,
then for every i ∈ S, we will have

∑
j∈S df (i, j) > 1

25 |S| × η/24 = η|S|/600. Summing over
j ∈ S results in a contradiction to the precondition on S.
Let T , Bf (i0, η/24); from the preceding argument, we have |T | = Ω(n).

I Claim 3.12.
∑
j /∈T df (j, T) ≥ ηn/12

Proof. We know that
∑
i,j∈V ‖f(i)− f(j)‖2

2 =
∑
i,j∈V df (i, j) ≥ ηn2. Using Observation 3.7,

we can infer:

ηn2 ≤
∑
i,j∈V

df (i, j)

≤ 3
∑
i,j∈V

(df (i, T) + diamf (T) + df (j, T)) . . .Using Observation 3.7

= 3
(

2n
∑
i∈V

df (i, T) + 4η
24n

2

)
. . . Since diamf (T) ≤ 4η

24

This yields that
∑
i df (i, T) ≥ η

12n, proving the claim. J

Since |T | = Ω(n), and d(i, T) ≥ df (i, T), T satisfies the conditions of Lemma 3.3. This
gives us an O(1) average-distortion embedding of the points into `1. J

We can now infer the proof of Theorem 1.3 by using the results above.

Proof of Theorem 1.3. The conditions covered in Lemmas 3.8, 3.9, 3.10 and 3.11 on the
set of points {xi}i∈V are exhaustive, and in each case yield an embedding with O(

√
r)

average distortion. It is clear that each of these conditions can be easily checked, and the
corresponding embeddings can be constructed efficiently. J

I Remark. The Hamming Cube on N points, residing in logN dimensions, and having
η-subspace rank Ωη(logN) by symmetry, has two Ω(N)-sized sets that are Ω(1/

√
logN)

apart, and shows that the above analysis is tight up to constants.

3.4 Application to Sparsest Cut
The proof of Corollary 1.4 now follows easily, using the main result.

Proof of Corollary 1.4. Suppose λr/n ≥ ΦSDP /(1 − ε). We invoke the following result of
Guruswami and Sinop [11] (stated here for the special case of Uniform Sparsest Cut):

I Proposition 3.13 (Von-Neumann inequality [11, Theorem 3.3]). Let σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0
be the singular values of the matrix M with columns {(xi − xj)}i<j. Then∑

t≥r σ
2
j∑n

t=1 σ
2
j

≤ ΦSDP
λr(G)/n.

APPROX/RANDOM’17

21:12 Sparsest Cut and Embeddings from Approximately Low Dimensional Spaces

For every l ≤ n, we know that
∑l
i=1 σ

2
i =

∑
i<j ‖Πl(xi − xj)‖2

2, where Πl is the subspace
defined by the the top l left singular vectors of M . This immediately gives us that ssrε(X) =
r − 1. Applying the main theorem gives us an O(

√
r) average distortion embedding into `1,

and hence an Oε(
√
r) approximation to Φ(G) in this setting. J

I Remark. Under the same precondition, Guruswami and Sinop [11] give an O(1/ε) ap-
proximation, but by solving a SDP of size nO(r), using a partial solver that runs in time
2O(r)poly(n) [10]. They need to know r first, and set up the SDP and solver appropri-
ately. The works [7, 6] give a O(r/ε2) and O(r/ε) approximation respectively, using just the
Goemans-Linial SDP; the rounding algorithms do not depend on r. Our algorithm too is
independent of r, and we get a better guarantee of O(

√
r/ε) in this setting.

Though the precondition of the corollary may seem involved, it can easily be related back
to a simpler one, as the following corollary shows (proof in Appendix A.2).

I Corollary 3.14. If G is regular with λr(G) ≥ ε, then we can find a O(
√
r + 1/

√
ε)

approximation to the sparsest cut in G in poly(n) time.

I Remark. It is clear that we get a O(
√
r) approximation for all graphs whose `2

2 representation
always has subspace rank r. Graphs of low threshold-rank are one class of graphs that have
this property.

Acknowledgements. The second named author would like to thank Amit Deshpande and
Prahladh Harsha for prior useful discussions.

References
1 Noga Alon and Vitali D Milman. λ1, isoperimetric inequalities for graphs, and supercon-

centrators. Journal of Combinatorial Theory, Series B, 38(1):73–88, 1985.
2 Sanjeev Arora, James R. Lee, and Assaf Naor. Euclidean distortion and the sparsest

cut. J. Amer. Math. Soc., 21:1–21, 2008. (Preliminary version in 37th STOC, 2005).
doi:10.1090/S0894-0347-07-00573-5.

3 Sanjeev Arora, Satish Rao, and Umesh V. Vazirani. Expander flows, geometric embeddings
and graph partitioning. J. ACM, 56(2), 2009. (Preliminary version in 36th STOC, 2004).
doi:10.1145/1502793.1502794.

4 Yonatan Aumann and Yuval Rabani. An O(log k) approximate min-cut max-flow theorem
and approximation algorithm. SIAM Journal on Computing, 27(1):291–301, 1998.

5 Jean Bourgain and Lior Tzafriri. Invertibility of large submatrices with applications to
the geometry of Banach spaces and harmonic analysis. Israel Journal of Mathematics,
57(2):137—-224, 1987. doi:0.1007/BF02772174.

6 Amit Deshpande, Prahladh Harsha, and Rakesh Venkat. Embedding Approximately Low-
Dimensional `2

2 Metrics into `1. In 36th IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS), 2016, volume 65 of
LIPIcs, pages 10:1–10:13, 2016. doi:10.4230/LIPIcs.FSTTCS.2016.10.

7 Amit Deshpande and Rakesh Venkat. Guruswami-Sinop rounding without higher level
Lasserre. In Proc. 17th International Workshop on Approximation Algorithms for Combi-
natorial Optimization Problems (APPROX), volume 28 of LIPIcs, pages 105–114. Schloss
Dagstuhl, 2014. arXiv:1406.7279, doi:10.4230/LIPIcs.APPROX-RANDOM.2014.105.

8 Shayan Oveis Gharan and Luca Trevisan. Improved ARV rounding in small-set expanders
and graphs of bounded threshold rank, 2013. arXiv:1304.2060.

9 Michel X. Goemans. Semidefinite programming in combinatorial optimization. Mathemat-
ical Programming, 79(1):143–161, 1997.

http://dx.doi.org/10.1090/S0894-0347-07-00573-5
http://dx.doi.org/10.1145/1502793.1502794
http://dx.doi.org/0.1007/BF02772174
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2016.10
http://arxiv.org/abs/1406.7279
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.105
http://arxiv.org/abs/1304.2060

Y. Rabani and R. Venkat 21:13

10 Venkatesan Guruswami and Ali Kemal Sinop. Faster SDP Hierarchy Solvers for Local
Rounding Algorithms. In Proc. 53rd IEEE Symp. on Foundations of Comp. Science
(FOCS), pages 197–206, 2012. doi:10.1109/FOCS.2012.58.

11 Venkatesan Guruswami and Ali Kemal Sinop. Approximating non-uniform sparsest cut
via generalized spectra. In Proc. 24th Annual ACM-SIAM Symp. on Discrete Algorithms
(SODA), pages 295–305, 2013. arXiv:1112.4109, doi:10.1137/1.9781611973105.22.

12 Piotr Indyk and Jirí Matoušek. Low-distortion embeddings of finite metric spaces. In
Jacob E. Goodman and Joseph O’Rourke, editors, Handbook of Discrete and Computational
Geometry, pages 177–196. Chapman and Hall/CRC, 2nd edition, 2004. doi:10.1201/
9781420035315.ch8.

13 William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a
Hilbert space. In Conference on Mondern Analysis and Probability, volume 26 of Contem-
porary Mathematics, pages 189–206. Amer. Math. Soc., 1982. doi:10.1090/conm/026.

14 Daniel M. Kane and Raghu Meka. A PRG for Lipschitz functions of polynomials with
applications to sparsest cut. In Proc. 45th ACM Symp. on Theory of Computing (STOC),
pages 1–10, 2013. arXiv:1211/1109, doi:10.1145/2488608.2488610.

15 Tsz Chiu Kwok, Lap Chi Lau, Yin Tat Lee, Shayan Oveis Gharan, and Luca Trevisan.
Improved Cheeger’s inequality: analysis of spectral partitioning algorithms through higher
order spectral gap. In Proc. 45th ACM Symp. on Theory of Computing (STOC), pages
11–20, 2013. arXiv:1301.5584, doi:10.1145/2488608.2488611.

16 Jean B Lasserre. Global optimization with polynomials and the problem of moments. SIAM
Journal on Optimization, 11(3):796–817, 2001.

17 James R. Lee. On distance scales, embeddings, and efficient relaxations of the cut cone. In
Proc. of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), SODA,
pages 92–101, Philadelphia, PA, USA, 2005. Society for Industrial and Applied Mathemat-
ics. URL: http://dl.acm.org/citation.cfm?id=1070432.1070446.

18 Nathan Linial. Finite metric spaces: combinatorics, geometry and algorithms. In Proc. of
the ICM, Beijing, volume 3, pages 573–586, 2002. arXiv:math/0304466.

19 Nathan Linial, Eran London, and Yuri Rabinovich. The geometry of graphs and some of
its algorithmic applications. Combinatorica, 15(2):215–245, 1995.

20 Avner Magen and Mohammad Moharrami. On the nonexistence of dimension reduction
for `2

2 metrics. In Proc. 20th Annual Canadian Conf. on Comp. Geom., 2008. URL: http:
//cccg.ca/proceedings/2008/paper37full.pdf.

21 Jirí Matoušek. Embedding finite metric spaces into normed spaces. In Lectures on Discrete
Geometry, Graduate Texts in Mathematics, chapter 5, pages 355–400. Springer, 2002. doi:
10.1007/978-1-4613-0039-7_15.

22 Assaf Naor, Yuval Rabani, and Alistair Sinclair. Quasisymmetric embeddings, the ob-
servable diameter, and expansion properties of graphs. Journal of Functional Analysis,
227(2):273–303, 2005.

23 Assaf Naor and Robert Young. The integrality gap of the Goemans–Linial SDP relaxation
for Sparsest Cut is at least a constant multiple of Ω(

√
logn). In Proc. 49th ACM Symp. on

Theory of Computing (STOC), 2017. arXiv:1704.01200.
24 Luca Trevisan. Lecture notes on expansion, sparsest cut, and spectral graph theory, 2011.

Available online. URL: http://www.eecs.berkeley.edu/~luca/books/expanders.pdf.
25 Joel A. Tropp. Column subset selection, matrix factorization, and eigenvalue optimiza-

tion. In Proc. 20th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA), pages
978–986, 2009. URL: http://dl.acm.org/citation.cfm?id=1496770.1496876, arXiv:
0806.4404.

APPROX/RANDOM’17

http://dx.doi.org/10.1109/FOCS.2012.58
http://arxiv.org/abs/1112.4109
http://dx.doi.org/10.1137/1.9781611973105.22
http://dx.doi.org/10.1201/9781420035315.ch8
http://dx.doi.org/10.1201/9781420035315.ch8
http://dx.doi.org/10.1090/conm/026
http://arxiv.org/abs/1211/1109
http://dx.doi.org/10.1145/2488608.2488610
http://arxiv.org/abs/1301.5584
http://dx.doi.org/10.1145/2488608.2488611
http://dl.acm.org/citation.cfm?id=1070432.1070446
http://arxiv.org/abs/math/0304466
http://cccg.ca/proceedings/2008/paper37full.pdf
http://cccg.ca/proceedings/2008/paper37full.pdf
http://dx.doi.org/10.1007/978-1-4613-0039-7_15
http://dx.doi.org/10.1007/978-1-4613-0039-7_15
http://arxiv.org/abs/1704.01200
http://www.eecs.berkeley.edu/~luca/books/expanders.pdf
http://dl.acm.org/citation.cfm?id=1496770.1496876
http://arxiv.org/abs/0806.4404
http://arxiv.org/abs/0806.4404

21:14 Sparsest Cut and Embeddings from Approximately Low Dimensional Spaces

A Appendix

A.1 Ruling out a worst-case distortion bound of O(
√

ssrη(X))
We give a simple example of why one cannot hope to prove a worst-case distortion bound
like Goemans’ result, using the notion of subspace rank. Suppose that a certain point set X
satisfies the `2

2 inequalities, and has worst-case distortion Ω(D) for embedding into `1. It is
known that there exists such an X with D = Ω(

√
logn) [23]. Without loss of generality, let

X be scaled to satisfy
∑
i,j ‖xi − xj‖

2
2 = n2, and ‖x1 − x2‖2

2 = maxi,j ‖xi − xj‖2
2. Consider

the set Y which has X, along with C − 1 additional copies of x1 and x2
3. Clearly, Y satisfies

the `2
2 triangle inequalities. Further, Y has η-subspace rank of 1 for a large enough C: the

sum of all squared distances is at most C + (C2 − C) ‖x1 − x2‖2
2, and the sum of squared

distances along the direction x1 − x2 is at least C2 ‖x1 − x2‖2
2. However, embedding Y with

worst-case distortion O(1) into `1 would contradict the lower bound on embedding X into `1.

A.2 Proof of Corollary 3.14
Proof (Of Corollary 3.14). The proof follows by using a combination of two algorithms,
depending on how λr compares to ΦSDP (G). Suppose that G is 1-regular by scaling the edge
weights, without loss of generality, and let X = {x1, . . . , xn} be the optimal SDP solution.
If ΦSDP ≥ ε/100n, then there is one co-ordinate of the SDP solution with objective value
at least ε/100n. In this case, running the Cheeger rounding algorithm [1, Lemma 2.1] (see
also [24, Section 2.4] for an exposition) on this co-ordinate would output a cut of sparsity
O(
√
ε/n) ≤ O (ΦSDP (G)/

√
ε).

If ΦSDP ≤ ε/100n then we have λr/n ≥ 100ΦSDP . Applying Corollary 1.4 with ε =
99/100 gives us an O(

√
r) average-distortion embedding into `1, and hence an O(

√
r)

approximation to Φ(G) in this setting. Thus, the best of the two cuts will be a O(
√
r+ 1/

√
ε)

approximation to Φ(G). J

3 Technically, we are dealing with semi-metrics, and hence distinct points may overlap.

When Are Welfare Guarantees Robust?∗†

Tim Roughgarden1, Inbal Talgam-Cohen2, and Jan Vondrák3

1 Stanford University, Stanford, CA, USA
tim@cs.stanford.edu

2 Hebrew University of Jerusalem, Jerusalem, Israel
inbal.talgamcohen@mail.huji.ac.il

3 Stanford University, Stanford, CA, USA
jvondrak@stanford.edu

Abstract
Computational and economic results suggest that social welfare maximization and combinatorial
auction design are much easier when bidders’ valuations satisfy the “gross substitutes” condition.
The goal of this paper is to evaluate rigorously the folklore belief that the main take-aways from
these results remain valid in settings where the gross substitutes condition holds only approxim-
ately. We show that for valuations that pointwise approximate a gross substitutes valuation (in
fact even a linear valuation), optimal social welfare cannot be approximated to within a subpoly-
nomial factor and demand oracles cannot be simulated using a subexponential number of value
queries. We then provide several positive results by imposing additional structure on the valu-
ations (beyond gross substitutes), using a more stringent notion of approximation, and/or using
more powerful oracle access to the valuations. For example, we prove that the performance of
the greedy algorithm degrades gracefully for near-linear valuations with approximately decreasing
marginal values; that with demand queries, approximate welfare guarantees for XOS valuations
degrade gracefully for valuations that are pointwise close to XOS; and that the performance of
the Kelso-Crawford auction degrades gracefully for valuations that are close to various subclasses
of gross substitutes valuations.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases Valuation (set) functions, gross substitutes, linearity, approximation

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.22

1 Introduction

Welfare maximization in combinatorial auctions is a central problem in both theory and
practice, and is perhaps the most well-studied problem in algorithmic game theory (e.g., [7]).
The problem is: given a set M of distinct items and descriptions of, or oracle access to,
the valuation functions v1, . . . , vn of n bidders (each a set function from bundles to values),
determine the partition S1, . . . , Sn of items that maximizes the social welfare

∑n
i=1 vi(Si).

This paper focuses on the purely algorithmic and approximation aspects of welfare maxim-
ization. Many possibility and impossibility results for efficiently computing or approximating
the maximum social welfare are known, as a function of the set of allowable bidder valuations.
Very roughly, the current state of affairs can be summarized by a trichotomy:

∗ A full version of the paper is available at https://arxiv.org/abs/1608.02402.
† This work is supported by NSF grants CCF-1215965 and CCF-1524062, and has received funding from the

European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie
grant agreement No. 708935.

© Tim Roughgarden, Inbal Talgam-Cohen, and Jan Vondrák;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 22; pp. 22:1–22:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.22
https://arxiv.org/abs/1608.02402
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

22:2 When Are Welfare Guarantees Robust?

(i) when the valuations satisfy “gross substitutes,” then exact welfare maximization is easy;
(ii) when the valuations are “complement-free” but not necessarily gross substitutes (e.g.,

subadditive), exact welfare maximization is hard but constant-factor approximations
are possible; and

(iii) with sufficiently general valuations, even approximate welfare maximization is hard.1

The rule of thumb that “substitutes are easy, complements are hard” has its origins in the
economic literature on multi-item auction design. For example, simple and natural ascending
auctions converge to a welfare-maximizing Walrasian equilibrium (i.e., to a market-clearing
price vector and allocation) whenever all bidders’ valuations satisfy gross substitutes [24], but
when this condition is violated a Walrasian equilibrium does not generally exist [18, 28]. Sim-
ilarly, the VCG mechanism has a number of desirable properties (like revenue monotonicity)
when bidders’ valuations satisfy gross substitutes, but not in general otherwise [2].

Thus both computational and economic results suggest that social welfare maximization
and combinatorial auction design are much easier when bidders’ valuations satisfy the gross
substitutes condition. More generally, in settings with both substitutes and complements,
the folklore belief in the field is that simple auction formats should produce allocations
with near-optimal social welfare if and only if the substitutes component is in some sense
“dominant.”2 For over twenty years, there has been a healthy (and high-stakes) debate over
whether or not the ideal case of gross substitutes valuations should guide combinatorial
auction design in realistic settings.3

The goal of this paper is to evaluate rigorously the folklore belief that the main take-
aways from the study of gross substitutes valuations are robust, i.e., remain valid in settings
where the substitutes condition holds only approximately. We are interested both in possib-
ility/impossibility results for achieving robustness (Section 3), and also in understanding
the robustness of standard algorithms and auctions for welfare maximization (Sections 4–5,
Appendix D). Our goal relates to a wider research agenda on the robustness or stability
of “nice” classes of valuations: For different notions of closeness to nice valuations (in our
case gross substitutes or even simply linear valuations), do fundamental optimization tasks
(in our case welfare maximization) maintain their algorithmic guarantees? We consider a
standard notion of pointwise closeness (Section 3), and subsequently add to it “semantic”
closeness (Section 4).4 This research agenda is motivated by inherent mathematical interest
in classes of set functions and their stability [10, 14], as well as by applications like data-
driven optimization in which parameters of the optimization problem such as valuations are
approximately estimated from data [5, 4, 43, 19, 3].

1.1 Our Results
We first consider arguably the most natural notion of “approximate gross substitute valu-
ations,” namely valuations that are pointwise within a 1 + ε factor of some gross substitutes

1 “Gross substitutes” means that a bidder’s demand for an item can only increase as prices of other items
increase; see Section 2.1 for a formal definition.

2 For example, Bykowsky et al. [8] write: “In general, synergies across license valuations complicate the
auction design process. Theory suggests that a ‘simple’ (i.e., non-combinatorial) auction will have
difficulty in assigning licenses efficiently in such an environment.”

3 Ausubel et al. [1] write: “A contentious issue in the design of the Federal Communications Commission
(FCC) auctions of personal communications services (PCS) licenses concerned the importance of synergies.
If large synergies are prevalent among the licenses being offered, then the simultaneous ascending auction
mechanism the FCC adopted, which does not permit all-or-nothing bids on sets of licenses, might be
expected to perform poorly.”

4 What does it mean for a valuation to belong to a nice class? If a valuation approximately maintains the
meaningful properties of the class, we say it is semantically close to it.

T. Roughgarden, I. Talgam-Cohen, and J. Vondrák 22:3

valuation. Do the laudable properties of gross substitutes valuations degrade gracefully as ε
increases? At this level of generality, the answer is negative: even for valuations that are
pointwise close to linear (affine) valuations, we prove that the social welfare cannot be
approximated to within a subpolynomial factor using a subexponential number of value
queries, and that demand oracles cannot be approximated in any useful sense by a subex-
ponential number of value queries. When the gross substitutes condition holds exactly, a
demand query can be implemented using a polynomial number of value queries (see [36]),
and the welfare maximization problem can be solved exactly with a polynomial number of
such queries (see [33]). We conclude that there is no sweeping generalization of the properties
of gross substitutes valuations to approximations of such valuations, and that any positive
result must impose additional structure on the valuations (beyond gross substitutes), use
a more stringent notion of approximation, and/or use more powerful oracle access to the
valuations.

We next consider positive results in the value oracle model. Our main result here is
a proof that the (optimal) performance of the greedy algorithm degrades gracefully for
valuations that are close to linear functions, provided these valuations are also approximately
submodular (in a stronger than pointwise sense). (As noted above, some assumption beyond
near-linearity is necessary for any positive result.) The standard arguments for proving
approximation bounds for the greedy algorithm (e.g. [26]) do not imply this result, and we
develop a new analysis for this purpose.

We then consider welfare maximization with demand oracles,5 and find that welfare
guarantees tend to be more robust in this model. First, the value of optimal social welfare
can be approximated using demand queries within a factor of γC + ε, whenever the valuations
are pointwise ε-close to a class C such that the integrality gap of the “configuration LP”
is γC. Since the configuration LP is the primary vehicle for developing approximation
algorithms in the demand oracle model, we recover pointwise robustness essentially for all
known approximation results in the demand oracle model (in terms of the optimal value).
Another question, though, is whether an allocation achieving good welfare can be found
in a computationally-efficient way. For some classes of valuations, we show that this is
possible (and thus we achieve a (1− ε)-approximation for valuations ε-close to linear, and
a (1 − 1/e − ε)-approximation for valuations ε-close to XOS). We remark that no extra
assumption of near-submodularity is required here; this highlights another difference between
the value and demand oracle models.

Another approach to finding an optimal allocation assuming the gross substitutes property
is the Kelso-Crawford algorithm, also known as the tâtonnement procedure. In general, this
procedure requires demand queries and thus also falls within the umbrella of the demand
oracle model. Here we show that the performance of the Kelso-Crawford algorithm degrades
smoothly for certain classes of functions, namely for valuations close to linear, close to
unit-demand with {0, 1} values, and more generally close to transversal valuations (rank
functions of a partition matroid). Unfortunately the Kelso-Crawford algorithm is not going
to be a universally robust solution for general gross substitutes, either. As we show, its
performance degrades discontinuously for valuations close to unit-demand (with unrestricted
values), a seemingly minor extension of the cases above where we showed positive results.

In addition we show a counterexample to an approach based on Murota’s cycle canceling
algorithm, the remaining known way to solve the welfare maximization problem under the
gross substitutes property.

5 As noted above, with valuations that only satisfy gross substitutes approximately, demand oracles are
substantially more powerful than value oracles.

APPROX/RANDOM’17

22:4 When Are Welfare Guarantees Robust?

In summary, the idea that approximation guarantees for various classes of valuations
should degrade gracefully under small deviations from the class should be viewed with
skepticism. Our negative results do not imply that that the folklore belief that “close to
substitutes is easy” is wrong, but they do imply that there is no “generic reason” for why
this might be the case. Our positive results show that robust guarantees can still be obtained
in certain cases, but typically this requires additional care and often new ideas on top of
known techniques.

1.2 Related Work and Organization

There is growing interest in the algorithmic game theory literature in the class of gross
substitutes valuations prominent in the economic literature [36, 21, 37]. One reason for this
is that welfare maximization for gross substitutes has deep mathematical and algorithmic
roots – the simple subcase of unit-demand valuations already subsumes bipartite matching
[39]. The main algorithmic techniques include ascending-price auctions [24], combinatorial
cycle-canceling algorithms that utilize discrete convexity [31, 32], and linear programming
[6, 33]. Submodular valuations are a strict superclass of gross substitutes, and for these the
following is known: exact welfare maximization is hard, a 2-approximation can be achieved
greedily [26], and continuous greedy – the optimal approximation algorithm in the value
oracle model – achieves a (1− 1/e)-approximation [46, 25]. In the demand query model, a
2-approximation is achieved via an ascending-price auction [17], and the 1− 1/e barrier can
be broken [15].

Not much previous work studies the extent to which welfare maximization is robust to
small deviations. The closest result to ours is a theorem of [19], ruling out a constant-factor
approximation when maximizing valuations that are pointwise ε-close to submodular, rather
than to gross substitutes. Our Proposition 4 strengthens this negative result to apply to gross
substitutes valuations and in fact even to valuations that are close to linear. Related lower
bounds appear e.g. in [30, 38, 20], often relying on the same approach of hiding structure in
a seemingly “nice” set function. The challenge in our case is to allow the function to appear
linear.

Several related works differ from ours in the model of deviation, valuation classes con-
sidered, and/or setting: [19] studies welfare maximization with submodular valuations and
random rather than adversarial noise. [29] introduces a distance metric from matroid rank
functions in a single-parameter rather than combinatorial setting. [13] and references within
study deviations from submodularity captured by graphical representations. [27] tests the
convergence and performance of a heuristic approach based on cycle-canceling for subclasses
of submodular valuations.

Finally, it is interesting to compare our work to [23], which studies divisible items and
budgets rather than indivisible items and quasi-linear utilities. [23] defines an approximate
weak gross substitutes property and shows that with this property a known auction mechanism
guarantees each bidder approximately his demand (in a different sense than our Definition
22(4)). The conclusion of [23], by which “markets do not suddenly become intractable if they
slightly violate the weak gross substitutes property”, is quite different from ours, showing an
intriguing discrepancy between the divisible and indivisible models.

Organization. After preliminaries in Section 2, Section 3 presents two cautionary tales
as to what can go wrong when simple valuations undergo smalls perturbations. We then
establish positive results in the value oracle model (Section 4) and in the demand oracle

T. Roughgarden, I. Talgam-Cohen, and J. Vondrák 22:5

model (Section 5), and conclude in Section 6. We defer some proofs to Appendices A–C.
Negative results for standard algorithms appear in Appendix D and in the full version [40].

2 Preliminaries

A combinatorial auction (or market) includes a set of n players (or bidders) N and a set
of m indivisible items M . We call a subset S ⊆ M of items a bundle. For an ordered set
of items S = (s1, s2, . . . , sk) and for j ∈ [k], we use the notation Sj to denote the “prefix”
subset {s1, . . . sj−1} of items that appear before sj (in particular, S1 = ∅).

Every player i has a valuation vi : 2M → R+ over bundles. Valuations are assumed to be
monotone unless stated otherwise, i.e., v(S) ≤ v(T) for every two bundles S ⊆ T . Valuations
are not necessarily normalized, i.e., v(∅) is not always equal to zero (normalization is not
without loss of generality in our model of perturbation). 6 For every two bundles S, T we
denote by v(S | T) the marginal value V (S ∪ T)− v(T) of S given T .

An allocation S is a partition of the items in M into n bundles S1, . . . , Sn where Si is
the allocation of player i. In a full allocation every item is allocated. The social efficiency of
S is measured by its welfare W (S) =

∑n
i=1 vi(Si).

A price vector p ∈ Rm+ is a vector of item prices. We denote by p(S) the aggregate
price

∑
j∈S p(j) of the bundle S. Given p, each player wishes to maximize his quasi-linear

utility, i.e., to receive a bundle S maximizing vi(S)− p(S), which we say is in demand. If the
player is already allocated a bundle T , he wishes to add a bundle S ⊆ (M \ T) maximizing
vi(S | T) − p(S), which we say is in demand given T . A bundle S is individually rational
(IR) for a player i if vi(S) ≥ p(S); it is strongly IR if every subset T ⊆ S is IR for i.

A full allocation S and price vector p form a Walrasian equilibrium if for every player i,
Si is in i’s demand given p. By the 1st welfare theorem, S maximizes welfare.

Since valuations are in general of exponential size in m, the standard assumption is that
they are accessed via value oracles, which return the value of any bundle upon query. In
Sections 3.2 and 5 we discuss demand oracles, which given a price vector p, return a bundle
in the player’s demand given p. We allow p to include negative prices so that a demand
oracle can return a bundle in the player’s demand given a previous allocation T .

2.1 Valuation Classes

A valuation ` is linear (also known as affine) if there exists a vector (l1, . . . , lm) ≥ 0 and a
scalar c ≥ 0 such that `(S) = c+

∑
j∈S lj for every bundle S; it is additive if c = 0. A valuation

r is unit-demand if there exists a vector (ρ1, . . . , ρm) ≥ 0 such that r(S) = maxj∈S ρj for
every bundle S.

Let M = (M, I) be a matroid over the ground set of items M , where I is the family
of feasible bundles. 7 A maximal feasible set is called a basis, and the matroid rank
function maps bundles to the cardinality of their largest feasible subset. Given a vector
(w1, . . . , wm) ≥ 0 of item weights, the corresponding weighted rank function maps bundles to
the weight of their heaviest feasible subset. A valuation r is an unweighted (resp., weighted)

6 A natural example of a non-normalized valuation is that of a firm over sets of workers, where some
positions are already filled [34].

7 A set system M = (M, I) is a matroid if the following properties hold: (i) I is non-empty; (ii) I is
downward-closed, that is, if S ⊆ T and T ∈ I then S ∈ I; (iii) for every S, T ∈ I such that |S| < |T |,
there exists t ∈ T \ S such that S ∪ {t} ∈ I (see, e.g., [35]).

APPROX/RANDOM’17

22:6 When Are Welfare Guarantees Robust?

matroid rank function if there exists a matroidM such that r is its (weighted) rank function.
Both additive and unit-demand valuations are types of weighted matroid rank functions.

A valuation v is gross substitutes if for every two price vectors p ≤ q, for every bundle S
in demand given p, there exists a bundle T in demand given q, which contains every item
j ∈ S for which q(j) = p(j). 8 A valuation v is submodular if for every two bundles S ⊆ T
and item j /∈ T , v(j | S) ≥ v(j | T), i.e., the marginal value of j is decreasing. A valuation v
is XOS (also known as fractionally subadditive) if there exist additive valuations a1, a2, . . .

such that v(S) = maxk ak(S) for every bundle S. It is well-known that gross substitutes ⊂
submodular ⊂ XOS.

2.2 Welfare Maximization
There are three main algorithmic approaches to finding a welfare-maximizing allocation
in combinatorial auctions with gross substitutes: (1) auction-based, (2) LP-based, and (3)
combinatorial. For linear valuations there is also (4) greedy. The first two approaches use
demand queries and run in polynomial time, while the latter two use value queries and run
in strongly-polynomial time. We describe here Approaches (1) and (4); see also Appendix A.

In the Kelso-Crawford auction (Approach (1), Algorithm 1 in Appendix A), in each round
an arbitrary player adds to his existing allocation a bundle in his demand given his current
bundle and the current prices (with a δ-increase in the prices of items not currently in his
allocation). The algorithm terminates when no player wants to add to his allocation. By the
definition of gross substitutes, at any point in the algorithm every player’s allocation is a
subset of a bundle in his demand, and so:

I Proposition 1 ([24]). For gross substitutes valuations, Algorithm 1 converges to a (welfare-
maximizing) Walrasian equilibrium as δ → 0.

The greedy algorithm (Approach (4), Algorithm 2 in Appendix A) finds a value-maximizing
bundle subject to a feasibility constraint I on the bundles;9 this is a problem to which welfare
maximization is well-known to reduce (see proof of Corollary 16). The greedy algorithm
starts with an empty bundle, and in each iteration adds the item with maximum marginal
value among all items that maintain feasibility, breaking ties arbitrarily.

I Proposition 2 ([16]). If v is linear and I is such that M = (M, I) is a matroid, then
Algorithm 2 is optimal.

3 Two Cautionary Tales

Do the nice properties of a valuation class degrade gracefully as one moves outside the
class? This section describes two cautionary tales demonstrating that the answer can subtly
depend on the notion of “being close,” on the tractable class under consideration, and on the
model of access to the valuations. Arguably the most natural general notion of “closeness” is
pointwise:10

8 The intuition behind this definition is revealed by the Kelso-Crawford algorithm below.
9 The constraint I is simply a family of feasible bundles; we assume it is given by a feasibility oracle.
10We use relative error in the interest of scale-invariance (the “units” in which valuations are specified do

not matter). However it is interesting to note that our negative results in this section would hold even
for additive (rather than linear) valuations in a model of additive (rather than multiplicative) error, as
studied e.g. by [10].

T. Roughgarden, I. Talgam-Cohen, and J. Vondrák 22:7

I Definition 3. A valuation ṽ is ε-close to submodular (or linear, gross substitutes, etc.), if
there is a submodular (or linear, gross substitutes, etc.) valuation v such that v(S) ≤ ṽ(S) ≤
(1 + ε)v(S) for all bundles S.

3.1 Close-to-additive vs. Close-to-linear Valuations
We next show that approximate welfare maximization is hard for valuations that are ε-close
to linear (a restrictive subclass of gross substitutes valuations).

I Proposition 4. Given value oracles for valuations ε-close to linear, no algorithm using a
subexponential number of queries can approximate the value of optimal social welfare within
a factor better than polynomial in m,n.

Proof Sketch. Let |M | = m = an and let (A1, A2, . . . , An) be a random partition of M such
that |Ai| = a. We define linear valuations as follows: `i(S) = ε+ 1

a |S ∩Ai|. We also define
wi(S) = (1 + ε)ε+ 1

an |S|. Note that if we do not know the partition (A1, . . . , An), which is
randomized, `i(S) will be close to its expectation which is wi(S). Let us define the following
valuations vi:

If
∣∣|S ∩Ai| − 1

n |S|
∣∣ ≤ ε2a, then vi(S) = wi(S).

If
∣∣|S ∩Ai| − 1

n |S|
∣∣ > ε2a, then vi(S) = `i(S).

Note that in the first case, we have vi(S) ≥ (1 + ε)ε + 1
a (|S ∩ Ai| − ε2a) = `i(S) and

vi(S) ≤ (1 + ε)ε+ 1
a (|S ∩Ai|+ ε2a) ≤ (1 + 2ε)ε+ 1

a |S ∩Ai| ≤ (1 + 2ε)`i(S). So vi is 2ε-close
to `i.

By Chernoff bounds, for a fixed query S, the probability that
∣∣|S ∩Ai| − 1

n |S|
∣∣ > ε2a is

e−Ω(ε4a). Hence, with high probability we are always in the first case above, the returned
value depends only on |S| and hence the algorithm does not learn any information about Ai.
Therefore (by standard arguments), it would require exponentially many queries to find any
set such that

∣∣|S ∩Ai| − 1
n |S|

∣∣ > εa and hence distinguish whether the input valuations are
vi or wi.

The optimal solution under vi is Si = Ai which gives welfare
∑n
i=1 vi(Ai) >

1
a

∑n
i=1 |Ai| =

n, while the optimal welfare under wi is (1 + ε)εn+ 1. So the approximation factor cannot
be better than (1 + ε)ε+ 1

n .
Note that we can set ε = 1/a1/4−δ = (n/m)1/4−δ and the high probability statements

still hold. Therefore, we can push the hardness factor to max{(n/m)1/4−δ, 1/n}. J

This hardness result relies strongly on the value oracle model – things are quite different
in the demand oracle model, as we discuss in Section 3.2 below.

Proposition 4 is a startling contrast to the case of valuations that are ε-close to additive
valuations, which differ only by requiring the empty set to have value 0. Here, approximate
welfare maximization is easy (a proof appears for completeness in Appendix B).

I Proposition 5. Welfare maximization can be solved within a factor of 1 + ε for ε-close to
additive valuations.

The proof of Proposition 5 makes the more general point that, whenever the approximating
“nice” valuation ṽ can be (approximately) recovered from the given valuation v, then welfare
approximation guarantees carry over (applying an off-the-shelf approximation algorithm to
the valuations ṽ). As Proposition 4 makes clear, however, in many cases it is not possible to
efficiently reconstruct an approximating “nice” valuation, even under the promise that such
a valuation exists.

APPROX/RANDOM’17

22:8 When Are Welfare Guarantees Robust?

3.2 Value Queries vs. Demand Queries

One remarkable property of gross substitutes valuations is that there is no difference between
the value oracle and demand oracle models: Demand queries can be simulated efficiently by
value queries (via the greedy algorithm), and hence any algorithm in the demand oracle model
can also be implemented in the value oracle model ([36] and references within). Unfortunately,
this is no longer true for valuations that are ε-close to gross substitutes, or even ε-close to
linear.

I Proposition 6. Given a value oracle to a valuation ε-close to linear, answering demand
queries requires an exponential number of value queries.

This can be proved by a construction similar to the one above. However, let us instead
present an indirect argument which shows more.

I Lemma 7. For any class of valuations C such that the integrality gap of the configuration
LP is γ ≥ 1, it is possible to estimate the optimal social welfare within a multiplicative factor
of (1 + ε)γ for valuations that are ε-close to C in the demand oracle model.

Proof. Consider the configuration LP:

max
∑n
i=1
∑
S⊆[m] vi(S)xi,S :

∀j ∈ [m];
∑n
i=1
∑
S:j∈S xi,S ≤ 1,

∀i ∈ [n];
∑
S⊆[m] xi,S = 1,
xi,S ≥ 0.

Let us denote by LP(v) and OPT(v) the LP optimum and optimal social welfare, respectively,
under valuations v. The assumption is that for valuations v ∈ C, OPT(v) ≤ LP(v) ≤
γ · OPT(v). Let us solve the LP for valuations ṽ that are pointwise ε-close to valuations
v ∈ C. (This is possible since we assume that we have demand oracles for ṽ, which gives a
separation oracle for the dual; see [33].) We have vi(S) ≤ ṽi(S) ≤ (1 + ε)vi(S) for each i and
S. Therefore, the same inequalities hold for the LP optimum as well as optimal social welfare,
and we obtain OPT(ṽ) ≤ LP(ṽ) ≤ (1+ε) LP(v) ≤ (1+ε)γ ·OPT(v) ≤ (1+ε)γ ·OPT(ṽ). J

Since the configuration LP is known to be integral for gross substitutes valuations (see
e.g. [45]), we obtain the following.

I Corollary 8. For valuations ε-close to gross substitutes, it is possible to estimate the optimal
social welfare to within a multiplicative factor of 1 + ε in the demand oracle model.

This implies Proposition 6: a simulation of demand queries would allow us to approximate
social welfare within 1+ε for valuations ε-close to gross substitutes and as a special case ε-close
to linear. We know from Proposition 4 that this (and even much weaker approximations)
would require exponentially many value queries. Actually we obtain a stronger statement: It
is not possible to answer demand queries via value queries for ε-close to linear valuations even
approximately, under any notion of approximation that would be useful for approximating
the optimal social welfare. This is because, again, such a simulation would lead to a
(1 + ε)-approximation of social welfare via value queries, which Proposition 4 rules out.

T. Roughgarden, I. Talgam-Cohen, and J. Vondrák 22:9

4 Positive Results for Restricted Valuation Classes

Motivated by the hardness results in the previous section for valuations ε-close to linear in
the value oracle model, this section considers stronger notions of closeness. In Section 4.1
we define a semantic notion of marginal closeness. In Section 4.2 we analyze the greedy
algorithm for ε-close to linear valuations, but this time to avoid the impossibility results we
assume they are also marginally close to submodular. Intuitively, such valuations enable
positive results by approximately maintaining some of the semantic properties of linear
valuations (namely submodularity).

4.1 Marginal Closeness
Recall that a pointwise approximation of a valuation is a set function with approximately
the same output as the valuation for every input. A natural strengthening of this is to have
the set function’s discrete derivatives approximate those of the valuation – i.e., the items’
marginal values. For every item j, its marginal value v(j | ·) is a set function mapping S
to v(j | S), and together these set functions encode important properties of the valuation.
For example, linear valuations can be characterized as valuations for which the marginal of
every item is a constant function; submodular valuations can be characterized as valuations
for which the marginal of every item is a non-increasing function; and unweighted matroid
rank functions can be characterized as valuations for which the marginal of every item is a
non-increasing zero-one function [41].

We remark that even without any strengthening, pointwise ε-closeness has the following
useful implication regarding the “closeness” of the marginal values of bundles:

I Observation 9. For every valuation v that is ε-close to a valuation v′, and for every two
bundles S, T ⊆M , v′(S | T)− εv′(T) ≤ v(S | T) ≤ v′(S | T) + εv′(S ∪ T).

Proof. By the definition of ε-closeness, v(S | T) = v(S∪T)−v(T) ≥ v′(S∪T)−(1+ε)v′(T) =
v′(S | T)− εv′(T). The upper bound follows similarly. J

Observation 9 will be useful in proving some of our positive results (see Sections 4.2
and 5.2). Yet its guarantee is relatively weak: the “error terms” depend on v′(T) or v′(S∪T),
and so can be large if these terms are large. We now define the stronger notion of marginal
pointwise approximation:11

I Definition 10. A valuation v is marginal-ε-close to a class C of marginals (constant,
non-increasing, etc.), if for every item j the corresponding marginal value function v(j | ·) is
(pointwise) ε-close to a function gj ∈ C.

Let us now see what semantic properties follow from this definition. Consider the class of
valuations that are marginal-ε-close to decreasing. It turns out that this coincides with a
previously-studied class of approximately submodular valuations (see Appendix B for missing
proofs).

I Definition 11 ([26]). Let α ≥ 1. A valuation v is α-submodular if for every two bundles
S ⊆ T and item j /∈ T , αv(j | S) ≥ v(j | T).

I Proposition 12. A valuation v is marginal-ε-close to the class of decreasing functions if
and only if it is (1 + ε)-submodular.

11This notion is equivalent to having erroneous oracle access to marginal values, an idea mentioned in [9].

APPROX/RANDOM’17

22:10 When Are Welfare Guarantees Robust?

Since we are interested in closeness notions that maintain semantic properties, in the
next section we consider what happens when the ε-close to linear valuations from Section 3
are also α-submodular. Such valuations are well-studied in the literature as they contain
submodular valuations with bounded curvature, which were introduced by [11] and arise
frequently in the optimization and learning literatures ([42, 44] and references within):

I Definition 13 ([11, 44]). A valuation v has curvature c ∈ [0, 1] if for every item j and
bundle S such that j /∈ S, v(j | S) ≥ (1− c)v(j | ∅).

I Proposition 14. An α-submodular valuation v with curvature c is α−1+c
1−c -close to a linear

valuation.

4.2 The Greedy Algorithm
Recall that the greedy algorithm (Algorithm 2) is optimal for linear valuations; in this section
and in Appendix B we prove the following robustness theorem, whose implication for welfare
maximization is stated in Corollary 16.

I Theorem 15. Let v be an α-submodular valuation that is ε-close to a linear valuation `.
Let M = (M, I) be a matroid of rank k (represented by an independence oracle). The
greedy algorithm returns an independent set S ∈ I such that v(S) ≥ 1−3ε

α v(S∗), where
S∗ ∈ arg maxI⊆I v(I).

I Corollary 16. In a market with α-submodular valuations v1, . . . , vn that are ε-close to
linear valuations `1, . . . , `n, there is a polynomial time algorithm with value access that finds
an allocation with 1−3ε

α -approximately optimal welfare.

Proof. As in [26], we define a valuation v over player-item pairs, such that for a set S of
such pairs, v(S) =

∑
i vi(Si) where Si is the set of items paired with player i in S. We show

that v is also α-submodular and ε-close to linear: It is ε-close to linear since
∑
i `i(Si) ≤

v(S) ≤ (1 + ε)
∑
i `i(Si), and the sum of linear valuations is linear. It is α-submodular since

for every S ⊆ T and (i, j) /∈ T , αv((i, j) | S) = αvi(j | Si) ≥ vi(j | Ti) = v((i, j), T). The
proof follows by applying Theorem 15 to v and to the partition matroidM over player-item
pairs, which allows each item to be paired with no more than one player. J

The following lemma (whose proof appears in Appendix B) relates the sum of marginals
to the linear contribution, and is applied in the proof of Theorem 15. Recall that v is ε-close
to the linear valuation `, and that for an ordered set of items X = (x1, x2, . . . , xk), Xj

denotes the prefix {x1, . . . xj−1}.

I Lemma 17. Let X and Z be two disjoint sets. X is ordered and has mX items.
Let Y1, . . . , YmX

be sets such that Yj ⊆ Xj ∪ Z for every j. Then α
∑mX

j=1 v(xj | Yj) ≥∑mX

j=1 `(xj)− ε`(Z).

Before proving Theorem 15, we highlight the difference between our proof and the standard
item-by-item analysis of the greedy algorithm (see, e.g., [26]). The standard analysis shows
that greedily choosing the next item maintains the optimal value up to a small error. However
this does not provide a good approximation factor in our case because of the distortion
caused by the pointwise errors. For example, greedy may choose to include an item j from
the optimal solution, but at the particular stage in which j is included its marginal value
may not be high relative to its linear contribution (due to the error term in the marginal
value shown in Observation 9). This suggests analyzing multiple items at a time so that the

T. Roughgarden, I. Talgam-Cohen, and J. Vondrák 22:11

error terms will average out. We split the items chosen by greedy into two sets – those that
coincide with the optimal solution and the rest – and analyze each set as a whole in order to
establish the claimed approximation ratio.

Proof of Theorem 15. Denote by S the independent set that greedy returns given the
valuation v and matroidM, ordered by the order in which the items were greedily added.
Denote by S∗ an independent set with optimal value v(S∗) subject to the matroid constraint.
Due to monotonicity we can assume without loss of generality that the sizes of both S and
S∗ are k, i.e., that both sets are bases.

Let P = {j | sj ∈ S ∩ S∗} be the positions in S of the items that also appear in S∗,
and let Q be the remaining positions in S. Order S∗ such that the items in S ∩ S∗ are in
positions P . The rest of the items in S∗ are ordered among the remaining positions in S∗ in
the following way: By the exchange property of matroids, there exists a bijection f from
S \ S∗ to S∗ \ S, such that for every position j ∈ Q, S \ {sj} ∪ {f(sj)} is independent [41].
For every j ∈ Q we set s∗j = f(sj). This ensures that s∗j can be added to Sj without violating
feasibility. We use the notation S(P) and S(Q) for the set of items in S in positions P and
Q, respectively; similarly for S∗(P) and S∗(Q).

By the definition of greedy, and because adding s∗j to Sj maintains feasibility for every
j ∈ Q, it holds that v(sj | Sj) ≥ v(s∗j | Sj) for every j ∈ [k]. Thus

v(S) ≥ v(∅) +
∑
j∈P

v(sj | Sj) +
∑
j∈Q

v(s∗j | Sj). (1)

We now invoke Lemma 17 twice. By Lemma 17 instantiated with X = S∗(Q) and Z = S

(note these are indeed disjoint), and using that Sj ⊆ S, we get that

α
∑
j∈Q

v(s∗j | Sj) ≥
∑
j∈Q

`(s∗j)− ε`(S). (2)

By Lemma 17 instantiated with X = S(P) and Z = S(Q) (these are also disjoint), and using
that Sj ⊆ S(Q) ∪ {sp1 , . . . , spj−1}, we get that

α
∑
j∈P

v(sj | Sj) ≥
∑
j∈P

`(sj)− ε`(S) =
∑
j∈P

`(s∗j)− ε`(S). (3)

Combining (1), (2) and (3), we get that αv(S) ≥ αv(∅) +
∑k
j=1 `(s∗j) − 2ε`(S). Since

v is ε-close to ` and S∗ is optimal for v, `(S) ≤ v(S) ≤ v(S∗). Again using v’s closeness
to `, αv(∅) ≥ αc ≥ c. Putting these together we get that αv(S) ≥ `(S∗) − 2εv(S∗) ≥
v(S∗)/(1 + ε)− 2εv(S∗) ≥ (1− 3ε)v(S∗), as required. J

5 The Demand Oracle Model

In this section we achieve positive results by considering a stronger oracle model.

5.1 Rounding the Configuration LP
By Lemma 7 and Corollary 8, we already know that polynomial-time estimation of the
optimal welfare is robust in the demand oracle model. A different question is whether finding
an allocation given a fractional solution of the configuration LP is also robust. Here we
observe that in some cases, existing rounding techniques yield the result that we want.

The following proposition does not assume submodularity:

APPROX/RANDOM’17

22:12 When Are Welfare Guarantees Robust?

I Proposition 18. For combinatorial auctions in the demand oracle model, there is a
polynomial time algorithm that finds:

A (1− ε)-approximately optimal allocation, if the valuations are ε-close to linear;
A (1− 1/e− ε)-approximately optimal allocation, if the valuations are ε-close to XOS (or
in particular ε-close to submodular).

Proof. We solve the configuration LP using demand queries. Let ṽi denote the true valuations
and vi the linear/XOS valuations that the ṽi are close to.

In the case of valuations close to linear, we round the fractional solution by allocating
each item j to player i with probability yij =

∑
S:j∈S xi,S . Call the resulting random sets Ri.

For the underlying linear valuations vi, it is clearly the case that E[vi(Ri)] =
∑
S xi,Svi(S).

Therefore,
∑
i E[ṽi(Ri)] ≥

∑
i E[vi(Ri)] =

∑
i,S xi,Svi(S) ≥ 1

1+ε LP(ṽi) ≥ (1− ε) OPT.
For valuations close to XOS, we allocate a set S tentatively to player i with probability

xi,S , and then we use the contention resolution technique to resolve conflicts [12, 15]. This
technique has the property that conditioned on requesting an item j, a player receives it with
conditional probability at least 1− 1/e. Denote by Ri the random set that player i receives
after contention resolution. Using the fractional subadditivity of XOS functions, we obtain
that E[vi(Ri)] ≥ (1− 1/e)

∑
S xi,Svi(S). Hence, similarly to the case above,

∑
i E[ṽi(Ri)] ≥∑

i E[vi(Ri)] ≥ (1− 1/e)
∑
i,S xi,Svi(S) ≥ 1−1/e

1+ε LP(ṽi) ≥ (1− 1/e− ε) OPT . J

5.2 Positive Results for Kelso-Crawford
The Kelso-Crawford algorithm (Algorithm 1) uses demand queries in order to find, in each
iteration, the items to add to a player’s existing bundle. Here we show that it can work
well for markets in which the valuations are approximately submodular (maintain semantic
closeness) and ε-close to simple subclasses of gross substitutes. Our high-level approach
is to show that Kelso-Crawford finds an allocation which achieves approximately optimal
welfare, as well as a price vector that is “approximately stabilizing” (in a sense made precise
in Definition 22, which may be of independent interest).

I Remark. For simplicity, our analysis of the Kelso-Crawford algorithm shall treat prices as
if raised continuously rather than discretely. This means that the approximation factors we
state in this section hold up to a small additive error.12

We first establish that the Kelso-Crawford algorithm works well for the class of α-
submodular and ε-close to linear valuations, as studied above in Section 4.

I Theorem 19 (Linear). In a market with α-submodular valuations that are ε-close to linear
valuations, the Kelso-Crawford algorithm finds an allocation with 1

α+2ε -approximately optimal
welfare (up to a vanishing error).

On the negative side and somewhat surprisingly, we find this positive result does not
extend even to ε-close to unit-demand (and still α-submodular) valuations (see Appendix D
and the full version):

I Proposition 20. For every ε ≤ 1, there exists a market with O(1/ε) players whose
submodular valuations are ε-close to unit-demand, for which the Kelso-Crawford algorithm
with adversarial ordering of the players finds an allocation with ≈ 2/3 of the optimal welfare.

12 If the prices are increased by discrete δ increments, then the additive error is of order O(mnδ).

T. Roughgarden, I. Talgam-Cohen, and J. Vondrák 22:13

1
1

0 1

0
𝑃1 𝑃2

Figure 1 A graphical representation of an unweighted transversal valuation r. The edges
correspond to items and have {0, 1} weights; they are partitioned in this case into two parts P1, P2.
The value that r attributes to the subset of solid bold edges in this example is 1, since this is the
weight of the maximum-weight matching within the subset.

We thus proceed to consider the unweighted version of unit-demand valuations, and more
generally the direct sums of such valuations – called unweighted transversal valuations. Such
valuations arise in natural economic environments, e.g. in the context of labor markets. 13

For these valuations we establish in Theorem 21 that Kelso-Crawford maintains good welfare
guarantees.

I Theorem 21 (Transversal). In a market with α-submodular valuations that are ε-close
to unweighted transversal valuations, the Kelso-Crawford algorithm finds an allocation with

1
α(1+3ε)2 -approximately optimal welfare (up to a vanishing error).

In more detail, a valuation r is an unweighted unit-demand valuation if v(S) = maxj∈S r(j)
for every bundle S and r(j) ∈ {0, 1} for every item j. A valuation r is an unweighted
transversal valuation if there exists a partition P = (P1, . . . , Pk) of the items such that
v(S) =

∑
P∈P maxj∈S∩P r(j) for every bundle S, and r(j) ∈ {0, 1} for every item j. An

equivalent definition in terms of matchings in graphs is the following: r is an unweighted
transversal valuation if it can be represented by a bipartite graph whose vertices on one side
of the graph all have degree 1, and whose edges M have {0, 1} edge weights. The value for a
bundle of edges S is the weight of the maximum matching in the bipartite graph induced by
S – see Figure 1 for an example.

5.2.1 Biased Walrasian Equilibrium: Definition and Properties
The proofs of Theorems 19 and 21 follow from the welfare guarantees of a solution concept
that we call a “biased” Walrasian equilibrium (Definition 22 and Proposition 23), combined
with an appropriate lemma showing that Kelso-Crawford converges to such an equilibrium for
the relevant class of valuations (Lemma 27 for Theorem 19, and Lemma 29 for Theorem 21).
Recall that the standard proof establishing the optimality of Kelso-Crawford for gross
substitutes relies on showing convergence to a Walrasian equilibrium. Unfortunately in our
case it does not hold – even approximately – that Kelso-Crawford allocates to each player
a bundle in his demand. Instead, our proofs will define and utilize a different notion of an
approximate Walrasian equilibrium.

I Definition 22. Consider a market with n players, and let µ ∈ [0, 1]. A full allocation S
and a price vector p form a µ-biased Walrasian equilibrium if there exists µ′ ∈ [µ, 1] such
that for every alternative allocation T and for every player i,

µ′

µ
vi(Si)− p(Si) ≥ µ′vi(Ti)− p(Ti). (4)

13Consider for example a firm wishing to hire a team of several workers, each with a different specialization,
from a pool of specialist workers who are each either acceptable to the firm or not. The firm’s valuation
over workers is unweighted transversal.

APPROX/RANDOM’17

22:14 When Are Welfare Guarantees Robust?

I Proposition 23 (Approximate first welfare theorem.). The welfare of a µ-biased Walrasian
equilibrium is a µ-approximation to the optimal welfare.

Proof. Let S∗ be an optimal allocation. Without loss of generality we can assume that S∗ is
a full allocation. By summing up Inequality (4) over all players, we get (µ′/µ)W (S)−p(S) ≥
µ′W (S∗) − p(S∗). Since both S,S∗ are full allocations, p(S) = p(S∗). We conclude that
W (S) ≥ µOPT. J

A possible economic interpretation of a µ-biased Walrasian equilibrium is that its allocation
and prices induce market stability under the endowment effect (see, e.g., [22]). This effect
is modeled as an increase of factor µ′/µ in a player’s value for the bundle he owns, and a
decrease of factor µ′ in his value for bundles he does not own.

5.2.2 Convergence to Biased Walrasian Equilibrium
To give intuition for establishing convergence to biased Walrasian equilibrium (see Lemmas 27
and 29), let us compare the case of linear valuations to that of ε-close to linear (and α-
submodular) valuations. The analysis of Kelso-Crawford for the linear case is simple – every
player ends up with the items for which he has the highest marginal value and can afford
to pay the highest price. In the close-to-linear case, an item could end up belonging to the
wrong player for two reasons: at some point, given his current allocation (which is subject
to changes), either (1) the right player has a low marginal value for the item, or (2) the
wrong player has a high marginal value for it. The latter issue is resolved by submodularity,
but the former could drive Kelso-Crawford to performance that is bounded away from
optimal, as demonstrated in Proposition 20. Thus the crux of the convergence proofs is to
show this cannot happen for the classes of valuations in question. For the close-to-linear
case (Lemma 27), we achieve this by considering the marginal value of all “under-valued”
items together if we were to add them to the player’s final allocation. The transversal
case (Lemma 29) is more involved since we cannot analyze only the addition of items to
the player’s final allocation – we need to also consider swapping out items from the final
allocation and replacing them with others. This case is deferred to Appendix C.

We conclude this subsection with a generalization of a well-known invariant property of
Kelso-Crawford which holds for submodular valuations [17]. The following generalization to
α-submodular valuations is used below to prove Lemmas 27 and 29.

I Definition 24. Let v be a valuation and p be a price vector. A bundle S is α-IR (α-
individually rational) for v given p if αv(S) ≥ p(S). A bundle S is strongly α-IR for v given
p if αv(T) ≥ p(T) for every T ⊆ S.

I Lemma 25. Consider a market with a player whose valuation v is α-submodular. Then
the Kelso-Crawford algorithm maintains the following invariant: the player’s allocation
throughout the algorithm is strongly α-IR.

Proof. Since removing items from the player’s allocation maintains the strong α-IR property,
the only case we need to check is when a bundle T is added to the player’s current allocation S.
We know that T maximizes the player’s utility given S and the current price vector p. We show
this by induction. In the base case all prices are 0 and so the invariant holds. Now assume for
contradiction that S ∪T is not strongly α-IR, i.e., there exists a set S′∪T ′ where S′ ⊆ S and
T ′ ⊆ T such that αv(S′ ∪ T ′) < p(S′) + p(T ′). By the induction assumption, αv(S′) ≥ p(S′),
and so it must be the case that αv(T ′ | S′) < p(T ′). So using α-submodularity we can write
the utility v(T | S)− p(T) as v(T \T ′ | S) + v(T ′ | S ∪T \T ′)− p(T \T ′)− p(T ′) ≤ v(T \T ′ |

T. Roughgarden, I. Talgam-Cohen, and J. Vondrák 22:15

S) + αv(T ′ | S′) − p(T \ T ′) − p(T ′) < v(T \ T ′ | S) − p(T \ T ′). Thus adding T \ T ′ to S
adds more to the utility than adding T to S, contradiction. J

The following corollary of Lemma 25 generalizes a result of [17, Propositions 1-2].

I Corollary 26. In a market with α-submodular valuations, the Kelso-Crawford algorithm
finds an allocation with (1 + α)-approximately optimal welfare (up to a vanishing error).

5.3 Kelso-Crawford and Close-to-Linear Valuations

I Lemma 27. In a market with α-submodular valuations v1, . . . , vn that are ε-close to linear
valuations r1, . . . , rn, the Kelso-Crawford algorithm converges to a 1

α+2ε -biased Walrasian
equilibrium.

Proof. We can assume without loss of generality that Kelso-Crawford returns a full allocation
(see proof of Theorem 21). From now until the end of the proof, fix a player i. Let Si be
player i’s allocation and let p be the price vector at termination of the KC algorithm. Let Ti
be an alternative bundle for player i. We show that

vi(Si)− p(Si) ≥ vi(Ti)− p(Ti)− (2ε+ α− 1) vi(Si). (5)

This is sufficient to complete the proof, since by summing up over all players and rearranging,
we get

(2ε+ α)
∑
i

vi(Si)−
∑
i

p(Si) ≥
∑
i

vi(Ti)−
∑
i

p(Ti),

and so µ ≥ 1/(α+ 2ε).
It remains to prove Inequality (5). For simplicity we omit i from the notation. Without

loss of generality, assume that in the last round of Kelso-Crawford, the player added to
his existing bundle, which we denote by B, a bundle which maximizes his utility given B
and given the price vector p. So the player’s utility at termination vi(Si)− p(Si) is at least
up(B ∪ T). We use the notation B′ = B \ T , T ′ = T \B, and C = B ∩ T . We can now write
the lower bound on the player’s utility as

up(B ∪ T) = v(∅) + v(B′ | ∅) + v(C | B′) + v(T ′ | B)− p(B′)− p(C)− p(T ′). (6)

By Lemma 25, B is α-strongly IR. So v(B′ | ∅) + (α− 1)v(B′ | ∅) ≥ p(B′). By Observation 9,
v(C | B′) ≥

∑
j∈C `(j) − εv(B). Again by Observation 9, v(T ′ | B) ≥

∑
j∈T ′ `(j) − εv(B).

Plugging in these inequalities to (6) and using v’s ε-closeness to ` we get

up(B ∪ T) ≥ c− (α− 1)v(B′ | ∅) +
∑
j∈T

`(j)− p(T)− 2εv(B)

≥ `(T)− p(T)− (2ε+ α− 1) v(B).

Inequality (5) follows, and this completes the proof. J

Proof of Theorem 19. The proof follows directly from Proposition 23 combined with
Lemma 27. J

APPROX/RANDOM’17

22:16 When Are Welfare Guarantees Robust?

6 Conclusion

Let us summarize the findings of this paper: The robustness of results for various classes
of valuations should not be assumed without further investigation. The default assumption
should be that positive results are not robust and may break down abruptly when small
deviations from the class in question are introduced. Robust results can be attained, but
they are surprisingly challenging to obtain even in simple cases. Most importantly, it matters
how “closeness” to a class is defined, and what the other attributes of the variant of the
problem are (oracle model, class of valuations).

Acknowledgements. A preliminarily version appeared as [40].

References
1 Lawrence M. Ausubel, Peter Cramton, R. Preston McAfee, and John McMillan. Synergies

in wireless telephony: Evidence from the broadband PCS auctions. Journal of Economics
and Management Strategy, 6(3):497–527, 1997.

2 Lawrence M. Ausubel and Paul R. Milgrom. The lovely but lonely Vickrey auction. In
Peter Cramton, Yoav Shoham, and Richard Steinberg, editors, Combinatorial Auctions,
chapter 1, pages 57–95. MIT Press, Boston, MA, USA, 2006.

3 Eric Balkanski, Aviad Rubinstein, and Yaron Singer. The limitations of optimization from
samples. Working paper, 2016.

4 Alexandre Belloni, Tengyuan Liang, Hariharan Narayanan, and Alexander Rakhlin. Es-
caping the local minima via simulated annealing: Optimization of approximately convex
functions. In Proceedings of the 28th Annual Conference on Learning Theory, pages 240–
265, 2015.

5 Dimitris Bertsimas and Aurélie Thiele. Robust and Data-Driven Optimization: Modern
Decision Making Under Uncertainty, chapter 5, pages 95–122. INFORMS PubsOnline,
2014. TutORials in Operations Research.

6 Sushil Bikhchandani and John W. Mamer. Competitive equilibrium in an exchange eco-
nomy with indivisibilities. Journal of Economic Theory, 74(2):385–413, 1997.

7 Liad Blumrosen and Noam Nisan. Combinatorial auctions. In Noam Nisan, Tim
Roughgarden, Eva Tardos, and Vijay V. Vazirani, editors, Algorithmic Game Theory,
chapter 11. Cambridge University Press, 2007.

8 M.M. Bykowsky, R. J. Cull, and J.O. Ledyard. Mutually destructive bidding: The FCC
auction design problem. Journal of Regulatory Economics, 17(3):205–228, 2000.

9 Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a mono-
tone submodular function subject to a matroid constraint. SIAM Journal on Computing,
40(6):1740–1766, 2011.

10 Flavio Chierichetti, Abhimanyu Das, Anirban Dasgupta, and Ravi Kumar. Approximate
modularity. In Proceedings of the 56th Symposium on Foundations of Computer Science,
pages 1143–1162, 2015.

11 Michele Conforti and Gérard Cornuéjols. Submodular set functions, matroids and the
greedy algorithm: Tight worst-case bounds and some generalizations of the Rado-Edmonds
theorem. Discrete Applied Mathematics, 7(3):251–274, 1984.

12 Uriel Feige. On maximizing welfare when utility functions are subadditive. SIAM J. Com-
put., 39(1):122–142, 2009.

13 Uriel Feige, Michal Feldman, Nicole Immorlica, Rani Izsak, Brendan Lucier, and Vasilis
Syrgkanis. A unifying hierarchy of valuations with complements and substitutes. In Pro-
ceedings of the 29th AAAI Conference on Artificial Intelligence, pages 872–878, 2014.

14 Uriel Feige, Michal Feldman, and Inbal Talgam-Cohen. Approximate modularity revisited.
In Proc. of the 49th Annual ACM Symp. on Theory of Computing, 2017. To appear.

T. Roughgarden, I. Talgam-Cohen, and J. Vondrák 22:17

15 Uriel Feige and Jan Vondrák. The submodular welfare problem with demand queries.
Theory of Computing, 6(1):247–290, 2010.

16 M.L. Fisher, G. L. Nemhauser, and L.A. Wolsey. An analysis of approximations for max-
imizing submodular set functions – II. Mathematical Programming Study, 8:73–87, 1978.

17 Hu Fu, Robert Kleinberg, and Ron Lavi. Conditional equilibrium outcomes via ascending
price processes with applications to combinatorial auctions with item bidding. In Pro-
ceedings of the 13th ACM Conference on Economics and Computation, page 586, 2012.
Extended abstract.

18 Faruk Gul and Ennio Stacchetti. Walrasian equilibrium with gross substitutes. Journal of
Economic Theory, 87:95–124, 1999.

19 Avinatan Hassidim and Yaron Singer. Submodular optimization under noise. Manuscript,
2016.

20 John William Hatfield, Nicole Immorlica, and Scott Duke Kominers. Testing substitutab-
ility. Games and Economic Behavior, 75(2):639–645, 2012.

21 Justin Hsu, Jamie Morgenstern, Ryan Rogers, Aaron Roth, and Rakesh Vohra. Do prices
coordinate markets? To appear in STOC 2016, 2016.

22 Daniel Kahneman, Jack L. Knetsch, and Richard H. Thaler. Experimental tests of the
endowment effect and the Coase theorem. Journal of Political Economy, 98(6):1325–1348,
1990.

23 Chinmay Karande and Nikhil R. Devanur. Computing market equilibrium: Beyond weak
gross substitutes. In Proceedings of the 3rd International Workshop on Internet and Network
Economics, pages 368–373, 2007.

24 A. Kelso and V. Crawford. Job matching, coalition formation, and gross substitutes. Eco-
nometrica, 50(6):1483–1504, 1982.

25 Subhash Khot, Richard J. Lipton, Evangelos Markakis, and Aranyak Mehta. Inapproxim-
ability results for combinatorial auctions with submodular utility functions. Algorithmica,
52(1):3–18, 2008.

26 Benny Lehmann, Daniel Lehmann, and Noam Nisan. Combinatorial auctions with decreas-
ing marginal utilities. Games and Economic Behavior, 55:270–296, 2006.

27 Takanori Maehara and Kazuo Murota. Valuated matroid-based algorithm for submodular
welfare problem. Annals of Operations Research, 229:565–590, 2015.

28 Paul R. Milgrom. Putting auction theory to work: The simultaneous ascending auction.
Journal of Political Economy, 108(2):245–272, 2000.

29 Paul R. Milgrom. The substitution metric and the performance of clock auctions,
2015. Talk at Simons Insitute, available at https://simons.berkeley.edu/talks/
paul-milgrom-10-13.

30 Vahab S. Mirrokni, Michael Schapira, , and Jan Vondrák. Tight information-theoretic lower
bounds for welfare maximization in combinatorial auctions. In Proceedings of the 9th ACM
Conference on Economics and Computation, pages 70–77, 2008.

31 Kazuo Murota. Valuated matroid intersection I: Optimality criteria. SIAM J. Discrete
Math., 9(4):545–561, 1996.

32 Kazuo Murota. Valuated matroid intersection II: Algorithms. SIAM J. Discrete Math.,
9(4):562–576, 1996.

33 Noam Nisan and Ilya Segal. The communication requirements of efficient allocations and
supporting prices. Journal of Economic Theory, 129:192–224, 2006.

34 Michael Ostrovsky and Renato Paes Leme. Gross substitutes and endowed assignment
valuations. Theoretical Economics, 2014.

35 J.G. Oxley. Matroid Theory. Oxford, 1992.
36 Renato Paes Leme. Gross substitutability: An algorithmic survey. Working paper, 2014.

APPROX/RANDOM’17

https://simons.berkeley.edu/talks/paul-milgrom-10-13
https://simons.berkeley.edu/talks/paul-milgrom-10-13

22:18 When Are Welfare Guarantees Robust?

37 Renato Paes Leme and Sam Chiu-wai Wong. Computing Walrasian equilibria: Fast al-
gorithms and economic insights. In Proceedings of the 28th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 632–651, 2017.

38 Christos H. Papadimitriou, Michael Schapira, and Yaron Singer. On the hardness of being
truthful. In Proceedings of the 49th Symposium on Foundations of Computer Science, pages
250–259, 2008.

39 Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization: Algorithms
and Complexity. Dover Publications, 2000.

40 Tim Roughgarden, Inbal Talgam-Cohen, and Jan Vondrák. When are welfare guarantees
robust? In 2nd Algorithmic Game Theory and Data Science Workshop, July 2016. Full
version available at https://arxiv.org/abs/1608.02402.

41 A. Schrijver. Combinatorial Optimziation: Polyhedra and Efficiency. Springer, 2003.
42 Dravyansh Sharma, Amit Deshpande, and Ashish Kapoor. On greedy maximization of

entropy. In Proceedings of the 32nd International Conference on Machine Learning, pages
1330–1338, 2015.

43 Yaron Singer and Jan Vondrák. Information-theoretic lower bounds for convex optimization
with erroneous oracles. In Proceedings of the 28th Neural Information Processing Systems
Conference, 2015.

44 Maxim Sviridenko, Jan Vondrák, and Justin Ward. Optimal approximation for submodular
and supermodular optimization with bounded curvature. In Proceedings of the 26th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1134–1148, 2015.

45 Rakesh V. Vohra. Mechanism Design: A Linear Programming Approach. Econometric
Society Monographs, 2011.

46 Jan Vondrák. Optimal approximation for the submodular welfare problem in the value
oracle model. In Proceedings of the 40th Annual ACM Symposium on Theory of Computing,
pages 67–74, 2008.

A Standard Algorithms for Welfare-Maximization

Algorithms 1 and 2 describe the ascending price and the greedy approaches to welfare
maximization.

ALGORITHM 1: The Kelso-Crawford ascending-price auction (formulated as an algorithm).
Input: Player valuations v1, . . . , vn represented by demand oracles; a parameter δ > 0
Output: An allocation S and a price vector p
p := 0 and S := ∅; % Initialization
while there exists a player i and a non-empty bundle Di such that Di is in demand given prices
p+ δ~1j /∈Si

and current allocation Si, do
Si := Si ∪Di;
Si′ := Si′ \Di for every i′ 6= i;
p(j) := p(j) + δ for every j ∈ Di;

end

https://arxiv.org/abs/1608.02402

T. Roughgarden, I. Talgam-Cohen, and J. Vondrák 22:19

ALGORITHM 2: Greedy maximization of value subject to a feasibility constraint.
Input: A valuation v represented by a value oracle; a feasibility constraint represented by a

feasiblity oracle
Output: A bundle S
S := ∅; % Initialization
while there exists an item j /∈ S such that S ∪ {j} is feasible do

Let j∗ be an item that maximizes v(j∗ | S) among all items j /∈ S such that S ∪ {j} is
feasible;
S := S ∪ {j∗};

end

B Missing Proofs from Sections 3 and 4

Proof of Proposition 5. An additive valuation has the form v(S) =
∑
j∈S aj . By assump-

tion, aj ≤ v({j}) ≤ (1 + ε)aj for every singleton j. Hence we can determine the coefficients
aj within a factor of 1 + ε and run welfare maximization on the resulting additive functions.
Each item simply goes to the highest bidder, and we lose a factor of at most 1 + ε due to the
errors in determining aj . J

Proof of Proposition 12. For every S ⊆ T and j /∈ T , let gj be the decreasing function to
which v(j|·) is ε-close. Then (1 + ε)v(j|S) ≥ (1 + ε)gj(S) ≥ (1 + ε)gj(T) ≥ v(j|T), showing
that v is (1 + ε)-submodular. The converse follows from Observation 28. J

I Observation 28. If a valuation v is α-submodular then it is marginal-ε-close for ε = α− 1
to the class of decreasing functions.

Proof Sketch. Fix an item j. We want to show that the set function v(j | ·) is ε-close to
a decreasing function gj . We define gj as follows. For every bundle S, there is a range
[1
1+εv(j | S), v(j | S)] to which gj(S) must belong. Furthermore, for gj to be decreasing,
for every S and every subset T ⊆ S, the upper-bound on the range of gj(T) is also an
upper-bound on the range of gj(S). We claim that: (1) If there is a non-zero range for
gj(S) for every bundle S, then by picking the highest value in the range to be gj(S), we
have defined a decreasing gj such that v(j | ·) is ε-close to it; (2) If there is a bundle S with
negative range then we have found a contradiction to α-submodularity of v. Indeed, if this
is the case then we have found a subset T such that v(j | T) < v(j | S)/1 + ε = v(j | S)/α.
This concludes the proof. J

Proof of Proposition 14. Define a linear valuation ` as follows: `(S) = (1 − c)(v(∅) +∑|S|
j=1 v(sj | ∅)) for every bundle S. Using that v has curvature c, v(S) = v(∅)+

∑|S|
j=1 v(sj |Sj) ≥

(1 − c)(v(∅) +
∑|S|
j=1 v(sj |∅)) = `(S). Using that v is α-submodular, v(S) = v(∅) +∑|S|

j=1 v(sj |Sj) ≤ v(∅) + α
∑|S|
j=1 v(sj |∅) ≤ α

1−c`(S). Thus v is ε-close to ` for ε such that
1 + ε = α

1−c . J

Proof of Lemma 17.

α

mX∑
j=1

v(xj | Yj) ≥
mX∑
j=1

v(xj | Z ∪Xj) (7)

= v(X | Z) (8)
≤ `(X | Z)− ε`(Z), (9)

APPROX/RANDOM’17

22:20 When Are Welfare Guarantees Robust?

where (7) follows since Yj ⊆ Z∪Xj and since v is α-submodular, (8) follows by the disjointness
of X and Z, and (9) follows since v is ε-close to ` and by Observation 9. J

C Kelso-Crawford and Close-to-Transversal Valuations

I Lemma 29. In a market with α-submodular valuations v1, . . . , vn that are ε-close to
unweighted transversal valuations r1, . . . , rn, the Kelso-Crawford algorithm converges to a

1
α(1+3ε)2 -biased Walrasian equilibrium.

Proof. By monotonicity we can assume without loss of generality that all items are allocated
at price 0 in the first step of the Kelso-Crawford algorithm, and once an item is allocated then
it remains allocated throughout. Thus without loss of generality, Kelso-Crawford returns a
full allocation as required by the definition of a µ-biased Walrasian equilibrium.

From now until the end of the proof, fix a player i. For simplicity we omit i from the
notation. Let P = (P1, . . . , Pk) be the partition of the items corresponding to the unweighted
transversal valuation r, to which the player’s valuation v is ε-close. For an item j, let P (j)
denote the part to which this item belongs. We say that a part P is represented in a bundle
X if X contains at least one item j ∈ P with value r(j) = 1.

Towards proving the guarantee in Inequality (4), let S be the bundle allocated to the
player by the Kelso-Crawford algorithm, and let T be an alternative bundle. Let P (S) (resp.,
P (T)) be the parts represented in S (resp., T). Let S′ = {j ∈ S | P (j) ∈ P (S) ∩ P (T)} be
the set of items in S that belong to parts represented both in S and in T , and similarly
T ′ = {j ∈ T | P (j) ∈ P (S) ∩ P (T)}.

I Claim 30. r(S′) = r(T ′).

Proof of Claim 30. The value assigned to a set by valuation r is the number of parts
represented in it. By definition, the same parts are represented in S′ and in T ′. J

We now relate the prices of S′ and T ′ according to the price vector p with which the
Kelso-Crawford algorithm terminated. In particular we show that the price of S′ cannot be
too high in comparison to the price of T ′.

I Claim 31. p(S′) ≤ p(T ′) + 3αεr(S′).

The proof of Claim 31 appears below. We use the above claims to complete the proof
of Lemma 29. Let S′′ = S \ S′ and T ′′ = T \ T ′. We know that when the Kelso-Crawford
algorithm terminates, the player cannot improve his utility by adding T ′′ to his allocation S,
and so:

v(S)− p(S) ≥ v(S ∪ T ′′)− p(S ∪ T ′′)
= v(S′′) + v(S′ | S′′) + v(T ′′ | S)− p(S′′)− p(S′)− p(T ′′). (10)

By α-submodularity Lemma 25 applies and S′′ is α-IR, therefore

v(S′′)− p(S′′) ≥ (1− α)v(S′′). (11)

The marginal value assigned by r to a bundle X given a bundle Y is the number of parts
represented in X but not in Y . Therefore r(S′ | S′′) = r(S′) and r(T ′′ | S) = r(T ′′). By
Observation 9 and since r(S′) = r(T ′) (Claim 30),

v(S′ | S′′) ≥ r(S′ | S′′)− εr(S′′) ≥ r(S′)− εr(S) = r(T ′)− εr(S); (12)
v(T ′′ | S) ≥ r(T ′′ | S)− εr(S) = r(T ′′)− εr(S). (13)

T. Roughgarden, I. Talgam-Cohen, and J. Vondrák 22:21

Plugging (11)–(13) into (10), and using that r(T ′)+r(T ′′) = r(T) and p(S′) ≤ p(T ′)+3αεr(S′)
(Claim 31),

v(S)− p(S) ≥ (1− α)v(S′′) + r(T)− 2εr(S)− p(T)− 3αεr(S′)

≥ 1
1 + ε

v(T)− p(T)− (α− 1 + 2ε+ 3αε)v(S),

where the last inequality uses v’s ε-closeness to r. Thus µ ≥ ((1 + ε)(α + 2ε + 3αε))−1 ≥
(α(1 + 3ε)2)−1. This completes the proof of Lemma 29. J

Proof of Theorem 21. The proof follows directly from Proposition 23 combined with
Lemma 29. J

C.1 Proof of Claim 31

Towards proving Claim 31, the following is a property of valuations that are α-submodular
and ε-close to unweighted transversal valuations. It can be seen as a strengthening of
Observation 9.

I Claim 32. For every part P and bundles X ⊆ P and Y , if P is represented in Y then
v(X | Y) ≤ αε.

Proof. Let y be an item representing P in Y . Then by α-submodularity, v(X | Y) ≤
αv(X | y) ≤ αr(X | y) + αεr(X ∪ {y}) = αε, where the last inequality is by invoking
Observation 9. J

Proof of Claim 31. Fix a part P that is represented in S′ and T ′. Let t be an item
representing P in T ′. Order the items representing P in S′ according to the order in which
the Kelso-Crawford algorithm added them to the player’s allocation for the last time (i.e., at
their termination prices according to p), breaking ties arbitrarily; denote the ordered set by
(s1, s2, . . .). Let Bj be the bundle of the player right before item sj was added, and let Dj

be the set of items (not including sj) with which sj was added to Bj .
We first consider item s1. If it is the case that P is not represented in B1 and no other item

represents P in D1, then we argue that v(s1 | B1 ∪D1)− p(s1) ≥ v(t | B1 ∪D1)− p(t). The
reason for this is that otherwise, the player’s utility could have been improved by replacing s1
by t (using that t’s termination price p(t) is weakly higher than its price when s1 was added).
By monotonicity, we can write v(s1 | B1 ∪D1) ≤ v(s1, t | B1 ∪D1) ≤ v(t | B1 ∪D1) + αε,
where the last inequality is by Claim 32. Therefore p(s1) ≤ p(t) + αε. In the remaining case,
P is represented in either B1 or D1. We know that v(s1 | B1 ∪D1) ≥ p(s1), otherwise the
utility could have been improved by dropping s1. By Claim 32, the left-hand side is at most
αε, and so p(s1) ≤ αε.

Now consider the rest of the items s2, s3, When item sj is added, {s1, . . . , sj−1} ⊆
Bj∪Dj . We also know that, as above, v(sj | Bj∪Dj) ≥ p(sj). By α-submodularity this means
that α

∑
j≥2 v(sj | Sj) ≥

∑
j≥2 p(sj). The left-hand side is equal to αv({s2, s3, . . . } | s1),

and is therefore ≤ αε by Observation 9. We have thus shown that
∑
j≥2 p(sj) ≤ αε, and the

same argument shows that the total payment for items in S′ ∩ P that do not represent P is
at most αε.

We conclude that the total payment for items in S′ ∩ P is at most p(t) + 3αε. Summing
up over all parts represented in S′ and T ′ completes the proof of the claim. J

APPROX/RANDOM’17

22:22 When Are Welfare Guarantees Robust?

D Negative Results for Specific Algorithms

How well do standard algorithms for welfare maximization perform for valuations that are
close to, but are not quite, gross substitutes? After discussing the LP-based approach in
Section 3.2, in this section we discuss the two other main approaches to welfare maximization
for gross substitutes – the ascending auction algorithm of Kelso and Crawford [24], and the
cycle canceling algorithm of Murota [31, 32]. Some of the details are deferred to the full
version [40] due to space limitations.

At first glance, the Kelso-Crawford algorithm seems like a promising approach due to its
known welfare guarantee of a 1/2-approximation for the class of submodular valuations [17].
However Proposition 20 and its proof in the full version [40, Proposition 8] show that the
Kelso-Crawford algorithm cannot in general guarantee much better than that, even for simple
submodular valuations that are arbitrarily close to unit-demand. More precisely, for every
ε ≤ 1 there exists a market with O(1/ε) players whose submodular valuations are ε-close to
unit-demand, and for which the Kelso-Crawford algorithm with adversarial ordering of the
players finds an allocation with ≈ 2/3 of the optimal welfare. An interesting open question
is whether the Kelso-Crawford algorithm can be modified to eliminate such bad examples,
e.g., by ordering the players in an optimal way.

The cycle canceling algorithm of Murota is a different approach which relies on properties
of GS (or equivalently M \-concave) valuations under local improvements. In Section D.1 we
show that such properties hold for submodular valuations in a certain approximate sense,
but unfortunately the cycle canceling algorithm cannot find a local optimum that would
allow us to exploit these properties. In fact we show that a local optimum in Murota’s sense
does not exist for submodular valuations.

D.1 Murota’s Cycle Canceling Approach
The cycle canceling approach is based on the following useful property of gross substitutes
valuations, called the single improvement (SI) property [18]: Given a price vector p, we say
that a bundle S is in local demand for a valuation v if its utility cannot be improved by
adding an item, removing an item or swapping one item for another. The SI property holds
if every bundle S in local demand is also in (global) demand (i.e., v(S)− p(S) ≥ v(T)− p(T)
for every bundle T). Murota’s cycle canceling algorithm finds an allocation and prices such
that each player gets a bundle in local demand, thus arriving at an optimal allocation for
gross substitutes valuations.

We observe that a variant of the SI property characterizes submodular valuations, and
thus the SI property interpolates between submodularity and gross substitutes.

I Definition 33. Let β ∈ [0, 1]. A valuation v is β-SI if for every S in local demand, S is
strongly individually rational,14 and v(S)− βp(S) ≥ v(T)− p(T) for every T .

I Observation 34. A monotone valuation is submodular if and only if it is 0-SI. A monotone
valuation is gross substitutes if and only if it is 1-SI.

Proof. Suppose v is submodular; we want to prove that v is 0-SI. Let S be in local demand,
v(S + i)− v(S) ≤ pi, and v(S − j)− v(S) ≤ −pj . (We don’t even need the swap property.)
By submodularity and the second property, we have v(S ∪T) ≤ v(S) +

∑
i∈T\S pi. Therefore,

14Being strongly IR implicitly holds for SI as well, i.e., if v is SI and S is in local demand then S is
strongly IR.

T. Roughgarden, I. Talgam-Cohen, and J. Vondrák 22:23

v(S) ≥ v(S ∪ T) − p(T \ S) ≥ v(T) − p(T) by monotonicity. Also, for every S′ ⊂ S, by
submodularity we have v(S\S′) ≤ v(S)−

∑
j∈S′ pj . Therefore v(S′) ≥ v(S)−v(S\S′) ≥ p(S′).

Conversely, suppose that v is not submodular, i.e. v(S+a+ b) > v(S) +v(a | S) +v(b | S)
for some S and a, b /∈ S. We set pi = 0 for i ∈ S and pj = v(j | S) for j /∈ S. Clearly S is
in local demand, because swapping at most 1 element does not increase utility. However,
v(S ∪ {a, b})− p(S ∪ {a, b}) > v(S), so v is not 0-SI. J

Moreover, as the next observation shows, finding an allocation with prices such that each
player gets a bundle in their local demand would give a smooth transition would provide a
smooth transition between a 1/2-approximation for submodular valuations and an optimal
solution for gross substitutes.

I Observation 35. For β-SI valuations, any allocation (of all items) with prices such that
each player gets a bundle in their local demand has value at least 1

2−β OPT.

Proof. Suppose that each vi is β-SI and we have an allocation (A1, . . . , An) with prices such
that each Ai is in the local demand of player i. We assume that all items are allocated, and
the allocation is individually rational; therefore,

∑n
i=1 vi(Ai) ≥

∑n
i=1 p(Ai) =

∑
pj .

Suppose that the optimal allocation is (O1, . . . , On). By the β-SI property, we have
vi(Ai) − βp(Ai) ≥ vi(Oi) − p(Oi). Adding up over all players,

∑n
i=1 vi(Ai) − β

∑
pj ≥

OPT−
∑
pj . From here,

∑n
i=1 vi(Ai) ≥ OPT−(1− β)

∑
pj ≥ OPT−(1− β)

∑n
i=1 vi(Ai).

Thus (2− β)
∑n
i=1 vi(Ai) ≥ OPT. J

Unfortunately, this approach (whether by cycle canceling or by any other method) is
doomed to fail: Example 1 in the full version [40] shows a market with submodular valuations
for which it is impossible to find an allocation and prices such that every player’s bundle
is in their local demand. In other words, for this market it is impossible to get rid of all
negative cycles in Murota’s algorithm, ruling out this approach.

APPROX/RANDOM’17

Glauber Dynamics for Ising Model on Convergent
Dense Graph Sequences∗

Rupam Acharyya1 and Daniel Štefankovič2

1 Department of Computer Science, University of Rochester, Rochester,
NY, USA
racharyy@cs.rochester.edu

2 Department of Computer Science, University of Rochester, Rochester,
NY, USA
stefanko@cs.rochester.edu

Abstract
We study the Glauber dynamics for Ising model on (sequences of) dense graphs. We view the
dense graphs through the lens of graphons [19]. For the ferromagnetic Ising model with inverse
temperature β on a convergent sequence of graphs {Gn} with limit graphon W we show fast
mixing of the Glauber dynamics if βλ1(W) < 1 and slow (torpid) mixing if βλ1(W) > 1 (where
λ1(W) is the largest eigenvalue of the graphon). We also show that in the case βλ1(W) = 1 there
is insufficient information to determine the mixing time (it can be either fast or slow).

1998 ACM Subject Classification G.3 Probability and Statistics

Keywords and phrases Spin systems, Glauber dynamics, Ising model, graphons

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.23

1 Introduction

Spin systems have been extensively studied in physics [11], mathematics [25], and machine
learning [24]. An important and challenging computational question is efficiently sampling
configurations from the distribution of a model (spin system). A popular sampling method
(and the focus of our paper) is Glauber dynamics [11]. One of the most studied spin models
is Ising model [14, 12]. Even though there is a polynomial-time algorithm to sample from the
distribution of the ferromagnetic Ising model [13] it is still useful (for reasons of simplicity,
generality, and speed) to study the Glauber dynamics for the model [15, 21]. A basic question
is: what properties of the underlying graph and the temperature make the Glauber dynamics
fast (or slow)? In the case of sparse graphs the dynamics was studied for, for example, Z2

(see, e.g., [20]), general bounded degree graphs [22], and graphs with bounded connective
constant [27, 26].

In the case of dense graphs the dynamics was studied for the complete graph [15] (for
more general models on the complete graph, see [6, 2]). Our goal is to understand the
impact of the structural properties (analaogously to the connective constant) of the dense
graphs and the speed of Glauber dynamics. We will view dense graphs through the lens
of graphons [19] and use the notions of free energy of a spin system on a graphon [4]. We
give a threshold for the inverse temperature below which Glauber dynamics is rapidly mixing

∗ This material is based upon work supported by the National Science Foundation under NSF grant
CCF-1563757.

© Rupam Acharyya and Daniel Štefankovič;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 23; pp. 23:1–23:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 Glauber Dynamics for Ising Model on Convergent Dense Graph Sequences

and above which the mixing is slow. This generalizes [15] from complete graphs to general
dense graph sequences. We also show that at the critical point it is not possible to draw a
conclusion about the mixing time for a convergent sequence of graphs just by looking at the
limit graphon.

We obtain our lower bound results by studying the typical configurations of the model [23,
15]. A phase of a spin configuration denotes what fraction of vertices get what spin. The most
probable (dominant) phases play an important role in influencing the speed of the Glauber
dynamics. Intuitively, a unique dominant phase (at a high temperature) corresponds to
fast mixing of Glauber dynamics, whereas multiple dominant phases (at a low temperature)
correspond to slow mixing of Glauber (and other) dynamics (moving between phases requires
the chain to move through a high energy barrier). The typical phases were previously studied,
for example, to show slow mixing of Glauber dynamics [23, 15, 8] and to prove hardness
results for sampling [10, 9, 28].

2 Background

2.1 Homogeneous Ferromagnetic Ising Model (with no external field)
Ising Model was introduced in 1920’s by Lenz [14] and Ising [12]. Let G = (V (G), E(G))
be a finite graph. In a configuration of the model, each vertex is assigned a spin from
the set {+1,−1}. The energy of a configuration σ, is specified by the Hamiltonian of the
configuration

H(σ) = −
∑
v∼w

J(v, w)σ(v)σ(w),

where v ∼ w denotes v is a neighbor of w in G and J(v, w) denotes the interaction strength
between vertices v and w.

We study homogeneous ferromagnetic Ising Model, that is, we assume J(v, w) = 1 for all
v, w ∈ V . The probability measure µ, on the set of configurations Ω = {+1,−1}|V (G)|, for
this model is given by,

µ(σ) = e−βH(σ)

Z(β) ,

where β > 0 is called the inverse temperature and Z(β), the normalization factor is called
the partition function.

This work focuses on dense graphs. We follow [15] in re-parameterizing the inverse
temperature β as β/n, where n = |V (G)|. So the probability measure for dense graphs can
be rewritten as,

µ(σ) = e(β/n)·S(σ)

Z(β) ,

where S(σ) =
∑
v,w∈V,v∼w σ(v)σ(w).

2.2 Glauber Dynamics
In this paper we analyze Glauber Dynamics to sample from the distribution of the model.
The (single site) Glauber Dynamics for the probability measure µ is defined by the following
transition rule.

R. Acharyya and D. Štefankovič 23:3

1. Pick a vertex v (also called site) uniformly at random from V (G).
2. Change the spin of v with respect to the spins of its neighbors, i.e., in the new configuration,

spin of v will be +1 with a probability of p(σ, v), where

p(σ, v) :=
exp(βnSv(σ))

exp(βnSv(σ)) + exp(−βnSv(σ))
,

and Sv(σ) =
∑
w∈V,v∼w σ(w).

We study the following (standard) notion of mixing time. The mixing time τmix(ε) of a
Markov chain with state space Ω, transition matrix P and stationary distribution π is

τmix(ε) = max
X0∈Ω

min{t : dTV (P t(X0, ·), π) ≤ ε}.

Usually ε = 1
4 or ε = 1

2e is used.

2.3 Convergent Sequence of Dense Graphs
We study sequences of dense graphs using notions of convergence defined in [3, 4].

Let G be a weighted graph with non-negative vertex weights αv that sum to 1 and edge
weights βuv ∈ [0, 1]. Let G′ be another weighted graph with non-negative vertex weights α′i
that sum to 1 and edge weights β′ij ∈ [0, 1]. Let χ(G,G′) be the set of fractional overlays
between G and G′, where a fractional overlay (between G and G′) is X ∈ RV (G)×V (G′)

≥0 such
that

∑
iXvi = αv(G) and

∑
vXvi = α′i(G′). The cut distance between G and G′ is (see [19])

δ�(G,G′) = min
X∈χ(G,G′)

d�(G,G′, X), (1)

where

d�(Gn, G,X) = max
Q,R⊂V (G)×V (G′)

∣∣∣∣ ∑
(v,i)∈Q,(u,j)∈R

XviXuj(βuv − β′ij)
∣∣∣∣. (2)

The free energy of an Ising model with parameter β/n for a dense graph Gn is defined as
follows (see [17]).

F̂(Gn, β) = − 1
|V (Gn)| lnZ(Gn, β),

where Z(Gn, β) =
∑
σ:V (Gn)→{+1,−1} exp(1

n

∑
(u,v)∈E(Gn) βσ(u)σ(v)).

Microcanonical free energy is a more detailed version of free energy – we compute the
free energy for each phase (by phase we mean the fraction of the vertices with positive spin),
formally defined for a ∈ [0, 1] as follows (see [17]):

F̂a(G, β) = − 1
n

lnZa(G, β),

where Za(G, β) =
∑
σ∈Ωa(G) exp(βn

∑
(u,v)∈E(G) σ(u)σ(v)) and

Ωa(G) = {σ : V (G)→ {−1,+1}
∣∣ |σ−1({+1})| − a|V (G)|

∣∣ ≤ 1}.

In [4] it has been shown that convergence w.r.t. cut metric implies convergence w.r.t. mi-
crocanonical free energy and free energy (they also show converse if one has convergence
w.r.t. microcanonical free energies for all spin models).

APPROX/RANDOM’17

23:4 Glauber Dynamics for Ising Model on Convergent Dense Graph Sequences

2.4 Limit Object of Convergence: Graphon
The limits of the convergence w.r.t. the cut norm are graphons [19].

I Definition 1 (Graphon, [19]). A graphon W is a symmetric measurable function W :
[0, 1]2 → [0, 1]. (The symmetry means W (x, y) = W (y, x) for all x, y ∈ [0, 1].)

The simplest graphons correspond to step functions with finitely many steps.

I Definition 2 (Step Graphon, [19]). Let S1, . . . , Sk be a disjoint decomposition of [0, 1] into
intervals for some finite k and let P be a symmetric k × k matrix with entries from [0, 1]. A
function U : [0, 1]2 → [0, 1] is a step graphon with value matrix P if ∀i, j and ∀(x, y) ∈ Si×Sj
U(x, y) = Pij . We call α1, . . . , αk the step sizes of the step graphon, where αi = |Si| for
i ∈ {1, . . . , k}.

Given a weighted graph H (with |V (H)| = n) a step graphon WH can be naturally
constructed as follows. Let S1, . . . , Sn be disjoint sub-intervals of [0, 1] such that Si is of
size αi, where αi is the weight of the vertex i ∈ V (G). For x ∈ Si and y ∈ Sj we let
WH(x, y) = βij , where βij is the weight of the edge between vertices i and j (if there is no
edge between i and j we let βij = 0).

I Definition 3 (Eigenvalue of a Graphon). [17] Given a graphon W , consider the following
operator TW : L2[0, 1]→ L1[0, 1]:

(TW f)(x) =
∫

[0,1]
W (x, y)f(y) dy.

The operator TW has discrete spectrum, i.e., a multi-set of real nonzero eigenvalues λ1, λ2, . . .

(sorted in the non-increasing order by their absolute value), such that λn → 0. We call these
the eigenvalues of the graphon W . The eigenvalue with highest absolute value is denoted
λ1(W).

The notions of cut distance, free energy, and micro-canonical free energy extend from graphs
to graphons (see [17]).

The cut distance between two graphons is:

δ�(W,U) := inf
φ
‖Wφ − U‖� := inf

φ
sup
S,T

∣∣∣∣ ∫
S×T

Wφ(x, y)− U(x, y) dx dy
∣∣∣∣,

where φ : [0, 1] → [0, 1] is a measure preserving function and Wφ(x, y) = W (φ(x), φ(y)).
The cut distance between a graph G and a step graphon W is denoted by δ�(G,W) =
δ�(WG,W).

The free energy of a graphon is defined as

F(W,β) = inf
m:[0,1]→[−1,1]

E(W,β,m), (3)

where

E(W,β,m) = −β2 〈m,TWm〉 − Ent(m), (4)

and

Ent(m) = −
∫ 1

0

1
2(1−m(x)) log(1

2(1−m(x))) dx−
∫ 1

0

1
2(1 +m(x)) log(1

2(1 +m(x))) dx,

R. Acharyya and D. Štefankovič 23:5

and

〈m,TWm〉 =
∫

[0,1]2
W (x, y)m(x)m(y) dx dy.

The microcanonical free energy of a graphon with phase a ∈ [0, 1] is

Fa(W,β) = inf
m:[0,1]→[−1,1] and

∫
[0,1]

m(x) dx=a
E(W,β,m), (5)

where E(W,β,m) is defined as in (4).
A sequence of dense graphs {Gn} is said to be convergent to a graphonW if δ�(Gn,W)→

0. For a sequence of dense graphs {Gn} converging to a graphon W it has been shown [3, 4]
that the free energy and microcanonical free energy of the dense graphs converge to the free
energy and microcanonical free energy of the graphon.

I Proposition 4 ([4]). Suppose {Gn} be a sequence of dense graphs convergent to a graphon
W : [0, 1]2 → [0, 1]. Then
1. F̂(Gn, β)→ F(W,β).
2. ∀a ∈ [0, 1], F̂a(Gn, β)→ Fa(W,β).

3 Main Results and Related Works

3.1 Results for Mixing Time
The Glauber dynamics for Ising model has been extensively studied in [13, 15, 22]. The
dynamics is well understood when the graph has bounded degree [13, 21, 1]. In the dense
scenario the dynamics has been analyzed for the complete graph [15] (so-called mean field
model). The complete graph corresponds to graphon with W (x, y) = 1 (for all x, y ∈ [0, 1]).
Our goal here is to extend this work to general graphons (we aim to understand the connection
between the mixing time, the inverse temperature, and the structure of the graphon).

For the Ising model on the complete graph [15] show that the mixing of Glauber Dynamics
is fast when β < 1 and it is exponentially slow when β > 1. This threshold behavior extends
to convergent dense graph sequences – we provide a threshold for the parameter β, such that,
below the threshold mixing of Glauber dynamics is fast and above the threshold mixing is
slow (our result matches the threshold for the complete graph – the threshold is β = 1/λ1(W)
and for complete graph λ(W) = 1). Formally we have the following results.

I Theorem 5. Consider a homogeneous ferromagnetic Ising model (with no external field)
with inverse temperature β and a graphon W . If {Gn} → W , then the mixing time of the
Glauber Dynamics for Ising model on Gn satisfies the following:
1. If λ1(W) · β < 1 then τmix(Gn) = O(n log(n)).
2. If λ1(W) · β > 1 then τmix(Gn) = eΩ(n).

Remark (mixing in critical case): In the above theorem we haven’t stated any result for
the critical temperature, i.e., when λ1(W)β = 1. This is because, at the critical temperature
one cannot draw conclusion about the mixing time for a convergent sequence of graphs just
by looking at the limit graphon. We show examples of two different graph sequences which
converge to the same graphon, even though at critical temperature mixing is fast for one
sequence and slow for the other. These examples are discussed in Section 9.

APPROX/RANDOM’17

23:6 Glauber Dynamics for Ising Model on Convergent Dense Graph Sequences

3.2 Results for Phase Diagram
A phase α of the Ising model is the set of configurations which has αn fraction of vertices with
+1 spin. The weight of a phase is the value of the partition function when restricted to the
configurations with the given phase signature. The phase which has maximum weight is called
the dominant phase. It has been seen earlier that when the model is studied on a graph, the
phase diagram of the model changes with different values of the parameter β. For example,
when Ising model is studied on complete graphs the model exhibits an unique dominant
phase if β < 1 and it has multiple dominant phases when β > 1. It has been shown in [15]
that coexistence of multiple dominant phases implies slow mixing, because to get from one
phase to another it requires to pass through a high free energy barrier. Hence studying phase
diagram for spin models has been focus of numerous previous studies [23, 10, 9]. The goal of
these studies was to understand the speed of the dynamics. As we know from Section 2.4
that the free energy is defined as the negative of the logarithm of the partition function, to
find the dominant phase we need to find the phase which minimizes the free energy. In this
paper our interest is to study the behavior of the phase transition on a sequence of graphs.
For this purpose we study the behavior of the free energy on the limit graphon, i.e., we try to
find for what values of β there is an unique minimizer (equivalently unique dominant phase)
in the expression for the free energy. Formally we have the following theorem.

I Theorem 6. Consider a graphon W and the free energy function for the graphon W with
respect to the inverse temperature parameter β is defined as in (4).
1. If λ1(W) · β < 1 then the function E(W,β,m) has unique1 local minimum.
2. If λ1(W) · β > 1 then the function E(W,β,m) has multiple2 global minima.

4 Organization

In Section 5 we prove for a convergent graph sequence than one can align the graphs in the
sequence with a step graphon (that is close to the limit graphon) in such a way that most
vertices have same neighborhood statistics as the step graphon. This property will later
be used to prove the upper bound result of Theorem 5. Next in Section 6 we establish the
phase digram for different values of β (Theorem 6). The result about phase diagram is an
important tool to prove the lower bound of mixing time of Theorem 5. Finally in Section 7
we prove the upper bound result at high temperature and in Section 8 we prove that the
mixing is slow on the graphs in the sequence at low temperature. All the remaining proofs
can be found in the Appendix.

5 Labeling Graphs in a Convergent Graph Sequence

In this section we will deduce some properties of convergent graph sequences which will be
used to prove the upper bound result of Theorem 5.

I Definition 7 (GOOD and BAD vertices). Let U be a step graphon with k steps, value
matrix P , and step sizes α1, . . . , αk. Let G be a graph and let φ : V (G)→ {1, . . . , k} be a

1 By unique we mean unique up to measurability, i.e., m1 and m2 are two solutions then the set where
they differ has measure zero

2 By multiple we mean there exists at least two functions m1 and m2 such that the set where they differ
has measure greater than zero

R. Acharyya and D. Štefankovič 23:7

labeling. Let v be a vertex of G and let i = φ(v). We call the vertex v to be GOOD with ε
tolerance if for all j ∈ {1, . . . , k},

|{w |w ∼ v;φ(w) = j}| ≤ (Pijαj + ε)n.

Otherwise we call the vertex to be BAD w.r.t. ε tolerance.

I Definition 8 (Proper Labeling). Let G be a graph and U be a step graphon. A labeling
φ : V (G)→ {1, . . . , k} is said to be proper up to ε tolerance w.r.t. U if there are at most εn
many BAD vertices w.r.t. ε tolerance.

With the above definitions we can now state the following lemma.

I Lemma 9. Let {Gn} be a sequence of graphs such that Gn → W for some graphon W .
Then for any ε > 0 there exists k = k(ε), n0 = n0(ε) and a step graphon U with k steps such
that δ�(W,U) ≤ ε and such that ∀n ≥ n0 we have that Gn has a proper labeling up to ε
tolerance w.r.t. U .

To prove the Lemma 9 we will first prove an easier version of the lemma when the limit
graphon is a step graphon.

I Lemma 10. Let {Gn} be a sequence of graphs such that Gn → U for some step graphon
U . Then for any ε > 0 there exists n0 = n0(ε) such that ∀n ≥ n0 we have that Gn has a
proper labeling up to ε tolerance w.r.t. U .

Proof of Lemma 10. We know that Gn → U implies that for given ε > 0 there exists n0
such that ∀n ≥ n0,

δ�(Gn, U) ≤ ε2/2. (6)

Since every step graphon can be viewed as arising from a weighted graph G by the construction
shown in in Section 2.3, we will, w.l.o.g., assume U = WG. Hence δ�(Gn, U) = δ�(Gn,WG) =
δ�(Gn, G). Now for two weighted graphs we have

δ�(Gn, G) = min
X∈χ(Gn,G)

d�(Gn, G,X), (7)

where X is a fractional overlay, i.e.,
∑
iXvi = 1

n and
∑
vXvi = αi(G) and

d�(Gn, G,X) = max
Q,R⊂V (Gn)×V (G)

∣∣∣∣ ∑
(v,i)∈Q,(u,j)∈R

XviXuj(1− Pij)
∣∣∣∣. (8)

Note that we give weight 1
n to each vertex v ∈ V (Gn) (as Gn is originally unweighted). The

1 in (8) is the weight of the edge (u, v) ∈ E(Gn). Similarly αi(G) is the weight of the vertex
i ∈ V (G) and Pij is the weight of the edge (i, j) ∈ E(G). Now let X be the fractional overlay
which minimizes the cut distance. We assign the label φ of a vertex v ∈ V (Gn) from the
distribution {nXvi}i, i.e., φ(v) = i with probability nXvi. Note that for any vertex,

E
[∣∣{w|w ∼ v;φ(w) = j}

∣∣] = n
∑
w|w∼v

Xwj .

Now we call a vertex v to be dangerous for (i, j) if φ(v) = i and∑
w|w∼v

Xwj ≥ αjPij + ε

2 . (9)

Now we will show that there are not too many such dangerous vertices.

APPROX/RANDOM’17

23:8 Glauber Dynamics for Ising Model on Convergent Dense Graph Sequences

Bound on number of Dangerous Vertices: First we fix i and j. Let Q be the set of all
dangerous vertices for (i, j) and R be the set of all vertices w ∈ V (G) with label j . Then
from (9), (6) and (8) we have:∑

v∈Q
Xvi(αjPij + ε

2) ≤
∑
v∈Q

Xvi

∑
w∼v

Xwj ≤
∑
v∈Q

Xvi

∑
w∈R

XwjPij + ε2

2 =
∑
v∈Q

XviαjPij + ε2

2 .

(10)

Hence from (10) we have
∑
v∈QXvi ≤ ε. So from Chernoff Bound w.h.p. the number of

dangerous vertices are at most εn. Next we look at the vertices which are not dangerous for
any (i, j), i.e., if φ(v) = i, then for all j we have∑

w|w∼v

Xwj ≤ αjPij + ε

2 . (11)

We now move on to prove that the probability there there exists too many BAD vertices is
very low. We now use Yv as an indicator variable to denote whether the vertex v is BAD or
not. Hence it is enough to bound Pr[

∑
v Yv ≥ εn]. Now from Markov’s inequality we have:

Pr[
∑
v

Yv ≥ εn] ≤
∑
v E[Yv]
εn

. (12)

Hence we now need to bound E[Yv]. Again using Markov’s inequality we have

E[Yv] = Pr[v is BAD]

=
∑
i

Pr[v gets label i] · Pr[∃j 3 |{w|w ∼ v;φ(w) = j}| ≥ (Pijαj + ε)n
∣∣∣φ(v) = i]

≤
∑
i

nXvi

∑
j

Pr[|{w|w ∼ v;φ(w) = j}| ≥ (Pijαj + ε)n]. (13)

Using Chernoff-Hoeffding bound for any non-dangerous vertex v we have,

Pr[|{w|w ∼ v;φ(w) = j}| ≥ (Pijαj + ε)n] ≤ exp(−nε2/4). (14)

Now from (12) and (13) we have:

Pr[
∑
v

Yv ≥ εn] ≤ kn exp(−nε2/4)
εn

= k

ε
exp(−nε2/4).

Hence we have the lemma. J

Proof of Lemma 9. As Gn →W we have for given ε > 0 there exists n0 such that

δ�(Gn,W) ≤ ε2

4 . (15)

Also from [17] we have for any graphon W we have that ∃ a step function U with k steps
(where k is sufficiently large) such that

δ�(U,W) ≤

√
2

log2 k
‖U‖2 ≤

ε2

4 . (16)

Hence from (15) and (16) we have the following analog of (6)

δ�(U,Gn) = δ�(GU , Gn) ≤ ε2

2 , (17)

where GU is a graph on k vertices. Now the remainder of the proof of the lemma is identical
to the proof of Lemma 10. J

R. Acharyya and D. Štefankovič 23:9

6 Phase Diagram

In this section we will prove Theorem 6. As free energy of the model is the infimum over the
set of all measurable functions from [0, 1] to [−1, 1] (defined in Section 2.4) we first need to
prove that there exists some such function at which the infimum is achieved. Then we will
analyze its properties.

I Lemma 11. Let E(W,β,m) be the function as defined by (4). Then the following infimum
is attained for some measurable function m:

inf
m:[0,1]→[−1,1]

E(W,β,m). (18)

Proof of Lemma 11 has been deferred to Appendix. Assuming the existence we now move on
to prove Theorem 6.

Proof of Theorem 6.
Case I: λ1(W)β < 1. In this case we will prove that the functional m 7→ E(W,β,m) is
strictly convex. Then there will be an unique minimum up to measurability (strict convexity
implies unique minimum because if there were two minima available then by strict convexity
there average will have a strictly lesser functional value which is a contradiction). Formally
we prove the following lemma.

I Lemma 12. E(W,β,m) is defined as in (3). Then for all 0 ≤ α ≤ 1 and for all measurable
functions m, p from [0, 1] to [−1, 1] we have :

E(W,β, (1− α)m+ αp) < (1− α)E(W,β,m) + αE(W,β, p).

whenever λ1(W)β < 1.

We prove the above lemma in the Appendix.

Case II: λ1(W)β > 1. For the purpose of the proof we slightly re-parameterize the
functions. In particular we define ρ(x) := 1

2 (m(x) + 1). Hence the optimization problem can
be written as:

inf
ρ:[0,1]→[0,1]

E(W,β, 2ρ− 1). (19)

If two measurable functions f, g : [0, 1]→ [0, 1] differ on a set of measure zero we write f ≈
m
g.

Now we define a new set S = {ρ : [0, 1]→ [0, 1]|
∫

[0,1] ρ(x) dx = 1
2}. We will show that the

minimum doesn’t lie in the set S. For the function ρ(x) = 1/2 everywhere we argue that it
cannot be the minimum by a local perturbation argument. For all the other functions ρ ∈ S
we use the following transformation to produce a function with a smaller value.

I Definition 13. Given a function ρ ∈ S we define another measurable function ρ̂ : [0, 1]→
[0, 1] as follows:

ρ̂(x) =
{ ρ(x) if ρ(x) ≥ 1

2 ,

1− ρ(x) otherwise.

Now we have the following lemma for ρ̂ the proof of which has been deferred to Appendix.

APPROX/RANDOM’17

23:10 Glauber Dynamics for Ising Model on Convergent Dense Graph Sequences

I Lemma 14. If ρ ∈ S = {ρ : [0, 1] → [0, 1]|
∫

[0,1] ρ(x) dx = 1
2} \ {ρ : [0, 1] → [0, 1]|f ≈

m

ρ and ρ(x) = 1
2∀x ∈ [0, 1]} and ρ̂ is defined as in Definition 13, then

E(W,β, 2ρ̂− 1) < E(W,β, 2ρ− 1). (20)

It remains to rule out the function ρ(x) = 1
2 (for x ∈ [0, 1]), that is, to show that this

function is also not an minimum point for E(W,β, 2ρ − 1). More formally we have the
following lemma.

I Lemma 15. Consider the following minimization problem from (18)

inf
ρ:[0,1]→[0,1]

E(W,β, 2ρ− 1).

If λ1(W)β > 1 then ρ : [0, 1] → [0, 1]|ρ(x) = 1
2∀x is not a minimizer of the optimization

problem.

Hence from the Lemma 14 and 15 we have that the minimizers of E(W,β, 2ρ−1) is not in the
set S = {ρ : [0, 1]→ [0, 1]|

∫
[0,1] ρ(x) dx = 1

2}. Note that E(W,β, 2ρ−1) = E(W,β, 2(1−ρ)−1).
Hence if ρopt is a minimizer of E(W,β, 2ρ− 1) so is 1− ρopt. Hence the optimization problem
has multiple minima. J

7 Upper Bound for the Mixing Time

We will now prove the upper bound result stated in the Theorem 5 using path coupling, a
well known proof technique for bounding mixing time. We state a lemma from [5] which will
be used for the proof.

I Lemma 16. [5] Let X be a Markov chain. Let GX be the graph of the Markov chain. Let
` be a length function on the edges of GX such that `(x, y) ≥ 1 for each edge {x, y} ∈ E(GX).
This then naturally extends to a metric (which we also denote by `), where `(x, y) is the
length of the shortest path from x to y. Suppose that for each edge (x, y) ∈ GX there exists a
coupling (X1, Y1) of P (x, ·) and P (y, ·) such that the following holds:

Ex,y[`(X1, Y1)] ≤ `(x, y)e−α.

Then

tmix(η) ≤
⌈
− log(η) + log(diam(X))

α

⌉
,

where diam(X) = maxx,y∈GX `(x, y) is the diameter of GX

Now we prove the main theorem about fast mixing in high temperature.

Proof of Theorem 5.1. From Lemma 9 we know that for any ε > 0 for any sufficiently
large n the graph Gn can be properly labeled up to ε tolerance (call) w.r.t. some step
graphon U such that U is ε-close to the limit graphon W , i.e., δ�(U,W)ε. Let’s call the
labeling as φ. Let k be the number of steps in U and α1, . . . , αk be the step sizes. Now we
define the length function ` to be used in the path coupling argument.

R. Acharyya and D. Štefankovič 23:11

Defining the Distance: For a vertex v ∈ V (G) we define the following quantity,

d̂v =
{ dφ(v) if v is GOOD w.r.t. φ,

1
λ1(U)

∑
j dj if v is BAD w.r.t. φ,

where (d1, . . . , dk) is the eigenvector corresponding to the largest eigenvalue (λ1(U)) of the
step graphon U , where the eigenvector is scaled so that di ≥ 1. Note that if for all i we have
di ≥ 1 then 1

λ1(U)
∑
j dj ≥ 1. Now the distance between any two arbitrary configurations σ′

and τ ′ is defined as:

`(σ′, τ ′) =
∑

v∈V (G) and σ′(v)6=τ ′(v)

d̂v.

Choice of ε: Now let ε0 > 0 be such that (λ1(W) + ε0)β = 1. We will choose U such that
|λ1(W) − λ1(U)| ≤ ε0/4 and take ε > 0 such that εdbad(1 + λ1(U)) = (minj dj) ε0

4 , where
dbad = 1

λ1(U)
∑
j dj .

Defining the Path Coupling: Let σ, τ be two configurations such that the two configurations
differ only at v and σ(v) = −1 and τ(v) = +1. Now we describe a coupling (X,Y) such that
X starts with σ and Y starts with τ .

Pick one vertex w u.a.r from V .
If w /∈ N (v) then update the spin of w in both X and Y with transition probability
specified by the dynamics [in Section 2.2].
If w ∈ N (v) then pick a number Z ∈ [0, 1] and set

X1(w) =
{ +1, if Z ≤ p(σ, v),
−1, otherwise,

and

Y1(w) =
{ +1, if Z ≤ p(τ, v)
−1, otherwise,

where

p(σ, v) = eβSv(σ)

eβSv(σ) + e−βSv(σ) , (21)

and Sv(σ) =
∑
v∼w σ(w).

From the definition of the coupling we can see that the disagreement of the two configurations
spreads further with probability p(τ, v)− p(σ, v). We have the following upper bound on the
probability of spreading disagreement.

I Claim 17 (see, e.g., [16]). Consider Ising model on a dense graph G with inverse temperature
β and let σ, τ be two configurations such that the two configurations differ only at v and
σ(v) = −1 and τ(v) = +1. Also p(σ, v) is defined as in (21). Then we have

p(τ, v)− p(σ, v) ≤ tanh(β
n

).

Now we analyze the expected decrease of the coupling distance in two cases to satisfy the
hypothesis of the Lemma 16.

APPROX/RANDOM’17

23:12 Glauber Dynamics for Ising Model on Convergent Dense Graph Sequences

Case I: v is GOOD: As we can see from Lemma 9 if v is a GOOD vertex then we have
number of neighboring vertices of v with label j is ≤ (Pijαj + ε)n. As we have seen in the
coupling we choose a vertex w u.a.r., i.e., w.p. 1

n . Now we have the following cases:
If w = v, then d(X1, Y1) = 0.
If w /∈ N (v) ∪ {v}, then d(X1, Y1) = di.
If w ∈ N (v) and w gets label j by the labeling, then w.p. p(τ, v)− p(σ, v),
`(X1, Y1) = di + dj , if w is GOOD,
`(X1, Y1) = di + dbad, if w is BAD.

where dbad = 1
λ1(U)

∑
j dj . Also from Lemma 9 there are at most εn many BAD vertices. So

from Claim 17 and the above discussion we have

E[`(X1, Y1)] ≤ di(1−
1
n

) + 1
n
· tanh(β/n)

[∑
j

(Pijαj + ε)n · dj + εn · dbad

]
≤ di(1−

1
n

) + 1
n
· β
[∑

j

(Pijαj + ε) · dj + ε · dbad

]
= di(1−

1
n

) + 1
n
· β
[∑

j

(
Pijαjdj + εdbad(1 + λ(U))

]
= di(1−

1
n

) + 1
n
· β
[
λ1(U)di + εdbad(1 + λ(U))

]
≤ di exp

(
− 1
n

(
1− β

(
λ1(U) + ε

dbad

di
(1 + λ1(U))

)))
. (22)

By the choice of ε we then have

β
(
λ1(U) + ε

dbad

di
(1 + λ1(U)

)
≤ β

(
λ1(U) + ε0

4
)
≤ (λ1(W) + ε0

2)β < 1. (23)

Hence using (23) in (22) we have

E[`(X1, Y1)] ≤ di exp(− 1
n
c),

where c = 1− β
(
λ1(U) + εdbad

di
(1 + λ1(U))

)
> 0 and so from Lemma 16 we have the theorem.

Case II: v is BAD: In this case we will consider that v is BAD w.r.t. the labeling and so it
can be connected to all the vertices in the worst case. Using similar discussion for case I we
have:

If w = v, then d(X1, Y1) = 0.
If w /∈ N (v) ∪ {v}, then d(X1, Y1) = dbad.
If w ∈ N (v) and w gets label j by the labeling, then w.p. p(τ, v)− p(σ, v),
`(X1, Y1) = dbad + dj , if w is GOOD.
`(X1, Y1) = dbad + dbad, if w is BAD.

Similarly we have,

E[`(X1, Y1)] ≤ dbad(1− 1
n

) + 1
n
· tanh(β/n)

[∑
j

ndj + εn · dbad

]
≤ dbad(1− 1

n
) + 1

n
· β
[∑

j

dj + ε · dbad

]
≤ dbad(1− 1

n
) + 1

n
· β · dbad

[
λ1(U) + ε

]
≤ dbad exp

(
− 1
n

(
1− β

(
λ1(U) + ε

)))
.

R. Acharyya and D. Štefankovič 23:13

By the choice of ε we then have

β(λ1(U) + ε) ≤ β(λ1(W) + ε0

2) < 1.

Hence we will have the theorem from Lemma 16. J

8 Lower Bound for Mixing Time

Here we will prove the result about slow mixing of Theorem 5 using the well known
conductance bound technique [7].

I Lemma 18. [7] LetM be a Markov chain with state space Ω, transition matrix P , and
stationary distribution µ. Let A ⊂ Ω such that µ(A) ≤ 1

2 , and B ⊂ Ω that forms a barrier in
the sense Pij = 0 for i ∈ A \B and j ∈ Ac \B. Then the mixing time ofM is at least µ(A)

8µ(B) .

To find such sets we look at the sets with given signature or phase. Formally we define

Aα := {σ
∣∣|{v ∈ V (G)|σ(v) = +}| = αn}. (24)

Now let Zα denotes the partition function with signature α. To apply the Lemma 18 we
consider A = A< 1

2
=
⋃
α< 1

2

Aα and B = A 1
2
. Trivially B is barrier between A and A{. Now to

show lower bound of µ(A)
8µ(B) we give a lower bound on µ(A) and an upper bound on µ(B).

Lower bound on µ(A). Assume {Gn} be a convergence sequence of dense graphs which
converges to a graphon W , then the graphs also converge w.r.t. the microcanonical free
energy, where microcanonical energy Fa(W,β) is defined as

Fa(W,β) := inf
ρ:α(ρ)=a

E(W,β, 2ρ− 1).

Now let’s look at the free energy from (3):

F(W,β) = inf
ρ:[0,1]→[0,1]

E(W,β, 2ρ− 1) = E(W,β, 2ρopt − 1).

Now let’s say we have
∫

[0,1] ρ
opt(x) dx = αc for some constant αc (w.l.o.g., we can assume

αc < 1/2). We denote Z ′α = Z(β)|Ωα and Zα = Z(β)|Aα , where Ωα is defined in Section 2.3.
Then from Proposition 4 we have :∣∣∣ 1

n
log(Z ′αc)− sup∫

[0,1]
ρ(x) dx=αc

(
−Fαc(W,β)

)∣∣∣ < ε

⇒
∣∣∣ 1
n

log(Z ′αc) + E(W,β, 2ρopt − 1)
∣∣∣ < ε

⇒ 1
n

log(Z ′αc) > E(W,β, 2ρopt − 1)− ε

⇒ 1
n

log(Z< 1
2
) > 1

n
log(Z ′αc) > −E(W,β, 2ρopt − 1)− ε

⇒ Z< 1
2
> exp(n(−E(W,β, 2ρopt − 1)− ε)). (25)

where we denote Z< 1
2

= ∪α< 1
2
Zα.

APPROX/RANDOM’17

23:14 Glauber Dynamics for Ising Model on Convergent Dense Graph Sequences

Upper bound on µ(B): Suppose sup∫
[0,1]

ρ(x)= 1
2

E 1
2
(W,β, 2ρ−1) = E(W,β, 2ρ∗−1), for some ρ∗.

Now from Proposition 4 we have that,∣∣∣ 1
n

log(Z ′1
2
)− sup∫

[0,1]
ρ(x)= 1

2

(
−F 1

2
(W,β)

)∣∣∣ < ε

⇒
∣∣∣ 1
n

log(Z ′1
2
) + E(W,β, 2ρ∗ − 1)

∣∣∣ < ε

⇒ 1
n

log(Z ′1
2
) < −E(W,β, 2ρ∗ − 1) + ε

⇒ 1
n

log(Z 1
2
) < 1

n
log(Z ′1

2
) < −E(W,β, 2ρ∗ − 1) + ε

⇒ Z 1
2
< exp(n(−E(W,β, 2ρ∗ − 1) + ε)). (26)

Proof of Theorem 5.2. From (25) and (26) we have that

µ(A)
8µ(B) ≥

exp(n(−E(W,β, 2ρopt − 1)− ε))
exp(n(−E(W,β, 2ρ∗ − 1) + ε))

= exp(n(−E(W,β, 2ρopt − 1) + E(W,β, 2ρ∗ − 1)− 2ε))
= exp(n(c− 2ε)). (27)

where c = −E(W,β, 2ρopt − 1) + E(W,β, 2ρ∗ − 1). As in this case we have βλ1(W) > 1
and so from Theorem 6.2 we have c > 0. Hence choosing ε sufficiently small we obtain the
theorem. J

9 Counterexample at Critical Temperature

9.1 Example of Fast Mixing at Critical Temperature
In this section we show a sequence of graphs {Gn} such that {Gn} → W and we assume
λ1(W)β = 1. But the mixing time of Glauber dynamics on Gn is O(n logn). To show this
we consider the graphs sampled from the model G(n, 1

2 −
1

logn). Note that, if Gn is sampled
from the model G(n, 1

2 −
1

logn) then {Gn} → W , where W is constant function such that
W (x, y) = 1

2 for all x, y. So we assume β = 2. By Chernoff bound it can be shown that
w.h.p. for each vertex we have the number of neighbors of v is ≤ n

2 . Hence following the
same path coupling defined in Section 7, we get fast mixing.

9.2 Example of Slow Mixing at Critical Temperature
In this section we show a sequence of graphs {Gn} such that {Gn} → W and we assume
λ1(W)β = 1. But the mixing time of Glauber dynamics on Gn is super-polynomial (more
precisely, exp(Ω(

√
n))). To show this we consider the graphs sampled from the model

G(n, 1
2 + 1

logn). Note that, if Gn is sampled from the model G(n, 1
2 + 1

logn) then {Gn} →W ,
where W is constant function such that W (x, y) = 1

2 for all x, y. So we assume β = 2.

9.2.1 Properties of Random Graph
I Lemma 19. Given a graph G(= (V,E)) ∼ G(n, 1

2 + 1
logn). Assume S ⊂ V such that

|S| = n
2 + k, for some k ≥ 0. Then we have w.h.p.:

R. Acharyya and D. Štefankovič 23:15

1. E(S, Sc) = (1
2 + 1

logn)(n
2

4 − k
2)[1± c√

n
].

2. E(S, S) = (1
2 + 1

logn)(
(
n/2+k

2
)
)[1± c√

n
].

3. E(Sc, Sc) = (1
2 + 1

logn)(
(
n/2−k

2
)
)[1± c√

n
].

Proof. The lemma follows from Chernoff bound. J

Upper Bound on Balanced Configuration: From Lemma 19 we have w.h.p. for balanced
configurations we have

µ(B) ≤
(
n

n/2

)
exp(2 2

n
(1
2 + 1

logn)
(
n/2
2

)
[1 + c√

n
]) exp(− 2

n
(1
2 + 1

logn)n
2

4 [1− c√
n

])

=
(
n

n/2

)
exp(2

n
(1
2 + 1

logn)[2
(
n/2
2

)
(1 + c√

n
)− n2

4 (1− c√
n

)])

≤ 2n exp(2
n

(1
2 + 1

logn)[n
2

4 (1 + c√
n
− 1 + c√

n
)])

= 2n exp(c
√
n[12 + 1

logn]). (28)

Lower Bound on Unbalanced Configuration: Similarly from Lemma 19 we have w.h.p. for
configurations with (n2 + k) pluses and (n2 − k) minuses we have

µ(A) ≥
(

n

n/2 + k

)
exp(2

n
(1
2 + 1

logn)[
(
n/2 + k

2

)
+
(
n/2− k

2

)
] · [1− c√

n
])

· exp(− 2
n

(1
2 + 1

logn)[n
2

4 − k
2][1 + c√

n
])

=
(

n

n/2 + k

)
exp(2

n
(1
2 + 1

logn)[n
2

4 + k2] · [1− c√
n

])

· exp(− 2
n

(1
2 + 1

logn)[n
2

4 − k
2][1 + c√

n
])

=
(

n

n/2 + k

)
exp(2

n
(1
2 + 1

logn)
[
(n

2

4 + k2) · (1− c√
n

)− (n
2

4 − k
2)(1 + c√

n
)
]
)

=
(

n

n/2 + k

)
exp(2

n
(1
2 + 1

logn)
[
2(−n

3/2c

4 + k2)
]
)

≥ 1√
πn/2

2n exp(−2k2

n
− 4k3

n2) exp(2
n

(1
2 + 1

logn)
[
2(−n

3/2c

4 + k2)
]
). (29)

Here we use the fact that,(
n

n/2 + k

)
≥ 1√

πn/2
2n exp(−2k2

n
− 4k3

n2).

Now taking k = c1n
7/8 we have from (28) and (29) we have:

µ(A)
µ(B) ≥

1√
πn/2

exp(−2k2

n
− 4k3

n2) · exp([12 + 1
logn](−2c

√
n+ 4k2

n
))

= 1√
πn/2

exp(−2k2

n
− 4k3

n2 − c
√
n− 2c

√
n

logn + 2k2

n
+ 4k2

n logn)

APPROX/RANDOM’17

23:16 Glauber Dynamics for Ising Model on Convergent Dense Graph Sequences

= 1√
πn/2

exp(4k2

n
[1
logn −

c1
n1/8]− c

√
n− 2c

√
n

logn)

= 1√
πn/2

exp(Ω(
√
n)).

Hence we have the lower bound.

Acknowledgements. The authors thank the anonymous referees for the helpful suggestions.

References
1 Noam Berger, Claire Kenyon, Elchanan Mossel, and Yuval Peres. Glauber dynamics on

trees and hyperbolic graphs. Probability Theory and Related Fields, 131(3):311–340, 2005.
2 Antonio Blanca and Alistair Sinclair. Dynamics for the Mean-field Random-cluster Model.

In Naveen Garg, Klaus Jansen, Anup Rao, and José D.P. Rolim, editors, Approxima-
tion, Randomization, and Combinatorial Optimization. Algorithms and Techniques (AP-
PROX/RANDOM 2015), volume 40 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 528–543, Dagstuhl, Germany, 2015. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik. doi:10.4230/LIPIcs.APPROX-RANDOM.2015.528.

3 Christian Borgs, Jennifer T. Chayes, László Lovász, Vera T. Sós, and Katalin Veszter-
gombi. Convergent sequences of dense graphs I: Subgraph frequencies, metric properties
and testing. Advances in Mathematics, 219(6):1801–1851, 2008.

4 Christian Borgs, Jennifer T. Chayes, László Lovász, Vera T. Sós, and Katalin Vesztergombi.
Convergent sequences of dense graphs II. Multiway cuts and statistical physics. Annals of
Mathematics, 176(1):151–219, 2012.

5 Russ Bubley and Martin E. Dyer. Path coupling: A technique for proving rapid mixing in
Markov chains. In 38th Annual Symposium on Foundations of Computer Science, FOCS’97,
Miami Beach, Florida, USA, October 19-22, 1997, pages 223–231, 1997. doi:10.1109/
SFCS.1997.646111.

6 Paul Cuff, Jian Ding, Oren Louidor, Eyal Lubetzky, Yuval Peres, and Allan Sly. Glauber
dynamics for the mean-field Potts model. Journal of Statistical Physics, 149(3):432–477,
2012.

7 Martin Dyer, Alan Frieze, and Mark Jerrum. On counting independent sets in sparse
graphs. SIAM Journal on Computing, 31(5):1527–1541, 2002.

8 Andreas Galanis, Daniel Štefankovic, and Eric Vigoda. Swendsen-Wang Algorithm on the
Mean-Field Potts Model. In Naveen Garg, Klaus Jansen, Anup Rao, and José D.P. Rolim,
editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques (APPROX/RANDOM 2015), volume 40 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 815–828, Dagstuhl, Germany, 2015. Schloss Dagstuhl – Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs.APPROX-RANDOM.2015.815.

9 Andreas Galanis, Daniel Štefankovič, and Eric Vigoda. Inapproximability of the partition
function for the antiferromagnetic Ising and hard-core models. Combinatorics, Probability
and Computing, 25(04):500–559, 2016.

10 Andreas Galanis, Daniel Štefankovič, Eric Vigoda, and Linji Yang. Ferromagnetic
Potts model: Refined #BIS-hardness and related results. SIAM Journal on Computing,
45(6):2004–2065, 2016.

11 Roy J. Glauber. Time-dependent statistics of the Ising model. Journal of mathematical
physics, 4(2):294–307, 1963.

12 Ernst Ising. Beitrag zur Theorie des Ferromagnetismus. Zeitschrift für Physik, 31(1):253–
258, 1925.

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.528
http://dx.doi.org/10.1109/SFCS.1997.646111
http://dx.doi.org/10.1109/SFCS.1997.646111
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.815

R. Acharyya and D. Štefankovič 23:17

13 Mark Jerrum and Alistair Sinclair. Polynomial-time approximation algorithms for the Ising
model. SIAM Journal on computing, 22(5):1087–1116, 1993.

14 Wilhelm Lenz. Beitrag zum Verständnis der magnetischen Erscheinungen in festen Körpern.
Z. Phys., 21:613–615, 1920.

15 David A. Levin, Malwina J. Luczak, and Yuval Peres. Glauber dynamics for the mean-field
Ising model: cut-off, critical power law, and metastability. Probability Theory and Related
Fields, 146(1):223–265, 2010.

16 David Asher Levin, Yuval Peres, and Elizabeth Lee Wilmer. Markov chains and mixing
times. American Mathematical Soc., 2009.

17 László Lovász. Large networks and graph limits, volume 60. American Mathematical Soc.,
2012.

18 László Lovász and Vera T. Sós. Generalized quasirandom graphs. Journal of Combinatorial
Theory, Series B, 98(1):146–163, 2008.

19 László Lovász and Balázs Szegedy. Limits of dense graph sequences. Journal of Combinat-
orial Theory, Series B, 96(6):933–957, 2006.

20 Fabio Martinelli. Lectures on Glauber dynamics for discrete spin models. Lectures on
probability theory and statistics, pages 93–191, 2004.

21 Fabio Martinelli, Alistair Sinclair, and Dror Weitz. Glauber dynamics on trees: boundary
conditions and mixing time. Communications in Mathematical Physics, 250(2):301–334,
2004.

22 Elchanan Mossel and Allan Sly. Exact thresholds for Ising–Gibbs samplers on general
graphs. The Annals of Probability, 41(1):294–328, 2013.

23 Elchanan Mossel, Dror Weitz, and Nicholas Wormald. On the hardness of sampling in-
dependent sets beyond the tree threshold. Probability Theory and Related Fields, 143(3-
4):401–439, 2009.

24 Kevin P. Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.
25 Wolfgang Paul and Jörg Baschnagel. Stochastic processes. Springer, 1999.
26 Alistair Sinclair, Piyush Srivastava, Daniel Štefankovič, and Yitong Yin. Spatial mixing

and the connective constant: Optimal bounds. In Proceedings of the Twenty-Sixth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1549–1563. Society for Industrial
and Applied Mathematics, 2015.

27 Alistair Sinclair, Piyush Srivastava, and Yitong Yin. Spatial mixing and approximation
algorithms for graphs with bounded connective constant. In 54th Annual Symposium on
Foundations of Computer Science (FOCS), pages 300–309, 2013.

28 Allan Sly and Nike Sun. The computational hardness of counting in two-spin models on d-
regular graphs. In 53rd Annual Symposium on Foundations of Computer Science (FOCS),
pages 361–369. IEEE, 2012.

10 Appendix

10.1 Proof of Theorem 6
Here we will prove the remaining proofs of Theorem 6. Before moving on to the proofs we
need the following standard definitions.

10.1.1 Preliminaries
We will use the following with X being the space of measurable functions [0, 1]→ [0, 1] and
X∗ will be the dual space.

APPROX/RANDOM’17

23:18 Glauber Dynamics for Ising Model on Convergent Dense Graph Sequences

I Definition 20 (Weak Convergence). Let X be a normed space. Then a sequence {fn} in
X is said to be weak-convergent to f ∈ X if

∀L ∈ X∗ we have L(fn)→ L(f) as n→∞,

and we denote this by fn →
w
f .

I Definition 21 (Weak Compactness). Let (X, ‖ · ‖) be a normed space with dual space X∗.
Then a set M ⊂ X is called weak compact, if every sequence in M has a weak convergent
subsequence with limit in M .

Next we will state two facts and a lemma which we will use in the proof of main theorem.

I Fact 22. Let {fn} be a sequence in X such that fn →
w
f then 〈fn, h〉 → 〈f, h〉 for all

h ∈ X.

I Fact 23. The set of measurable function from [0, 1] to [0, 1] are weak-compact.

I Lemma 24. Let fn →
w
f then we have

lim sup
n→∞

H(fn) ≤ H(f).

I Definition 25 (Smoothed Function). Let U be a step graphon with steps S1, . . . , Sk and f
be a measurable function such that f : [0, 1]→ [0, 1]. Then smoothed version of f w.r.t. U is
defined by the step function g with the step S1, . . . , Sk as follows:

g(x) = ci if x ∈ Si,

where ci =
√

〈fn,TWnfn〉∫
Si×Si

W (x,y) dx dy
.

I Fact 26. Let f be a measurable function from [0, 1] to [0, 1] and gn be the smoothed version
of f w.r.t. the step graphon Wn. Then
1. 〈f, TWn

f〉 = 〈gn, TWn
gn〉,

2. Ent(fn) ≤ Ent(gn).

10.1.2 Proof of Lemma 11
Proof of Lemma 11. Let’s denote the value of the objective function at infimum by D, i.e.,

D = inf
m:[0,1]→[−1,1]

E(W,β,m) = inf
m:[0,1]→[−1,1]

(
− β

2 〈m,TWm〉 − Ent(m)
)
,

where

Ent(m) = −
∫ 1

0

1
2(1−m(x)) log(1

2(1−m(x))) dx

−
∫ 1

0

1
2(1 +m(x)) log(1

2(1 +m(x))) dx.

Let {m′n} be the sequence of functions such that −β2 〈m
′
n, TWm

′
n〉 −Ent(m′n)→ D. By weak

compactness of the set of measurable functions we know that there exists a subsequence
{mn} of {m′n} and a measurable function m such that −β2 〈mn, TWmn〉 → −β2 〈m,TWm〉.
From [18] we also have for any graphon W there exist a sequence of step graphons {Wt}’s

R. Acharyya and D. Štefankovič 23:19

such that Wt →W in L1 distance. Hence we can also write −β2 〈m,TWtm〉 → −
β
2 〈m,TWm〉.

Let gt be the smoothed version of m w.r.t. the step graphon Wt as defined in Definition 25.
Using Fact 26 and the weak compactness of the set of measurable functions there exists a
function g such that

〈m,TWt
m〉 = 〈gt, TWt

gt〉 → 〈g, TW g〉. (30)

Now let’s assume another function ρ : [0, 1] → [0, 1] such that ρ(x) = 1
2 (1 −m(x)) ∀x ∈

[0, 1]. Also we define the functional for any measurable ρ : [0, 1] → [0, 1] as H(ρ) =
−
∫

[0,1] ρ(x) log(ρ(x)) dx. Hence Ent(m) = H(ρ) +H(1− ρ). Now Now from Lemma 24 and
Fact 26 we have

Ent(g) ≥ lim sup
n→∞

Ent(gt) ≥ lim sup
t→∞

Ent(m). (31)

Hence from (30) and (31) we have

lim inf
t→∞

(
− β

2 〈m,TWt
m〉 − Ent(m)

)
≥ −β2 〈g, TW g〉 − Ent(g)

D ≥ − c2 〈g, TW g〉 − Ent(g). (32)

Hence the optimum is achieved for g which is a measurable function from [0, 1] to [0, 1] by
weak*-compactness of the set. Hence the infimum is achieved. J

10.1.3 Remaining Proofs for Theorem 6.1
We need to prove the strict convexity of the functional defined in Lemma 12. Taking
ρ(x) := 1

2 (m(x) + 1) in (3) we have

E(W,β,m) = −β2 〈m,TWm〉 − Ent(m)

= −β2 〈(2ρ− 1), TW (2ρ− 1)〉 − Ent(2ρ− 1)

= −β2

∫
[0,1]2

(2ρ(x)− 1)(2ρ(y)− 1)W (x, y) dx dy︸ ︷︷ ︸
I(ρ)

−Ent(2ρ− 1). (33)

We use this re-parameterization of the function as the function ρ is an eigenvector for the
operator TW and we will use the property of the eigenvector in the proof.

Proof of Lemma 14. We assume ρ(x) := 1
2 (m(x) + 1) and s(x) := 1

2 (p(x) + 1). Now from
(33) for any α ∈ [0, 1] we have the following lemma about the functional I defined in (33).

I Lemma 27. For any ρ, s : [0, 1]→ [0, 1] (ρ 6= s up to measurability) and any α ∈ [0, 1] we
have

I((1− α)ρ+ αs)− (1− α)I(ρ)− αI(s) < 2α(1− α)||ρ− s||22.

Also for the Ent functional we have the following lower bound.

I Lemma 28. For any ρ, s : [0, 1]→ [0, 1] and any α ∈ [0, 1] we have

Ent((1−α)(2ρ−1) +α(2s−1))− (1−α)Ent(2ρ−1)−αEnt(2s−1) ≥ 2α(1−α)||ρ− s||22.

From the statement of Lemma 27 and 28, Lemma 12 directly follows. J

APPROX/RANDOM’17

23:20 Glauber Dynamics for Ising Model on Convergent Dense Graph Sequences

Now we finish the remaining proofs.

Proof of Lemma 27. From (33) we have

I((1− α)ρ+ αs)− (1− α)I(ρ)− αI(s)

= −β2

[∫
[0,1]2

(2((1− α)ρ(x) + αs(x))− 1)(2((1− α)ρ(y) + αs(y))− 1)W (x, y) dx dy

−
∫

[0,1]2

(
(1− α)(2ρ(x)− 1)(2ρ(y)− 1)− α(2s(x)− 1)(2s(y)− 1)

)
W (x, y) dx dy

]
= β

2

∫
[0,1]2

[
4α(1− α)[ρ(x)ρ(y) + s(x)s(y)− 2ρ(x)s(y)]

]
W (x, y) dx dy

= 2βα(1− α)
∫

[0,1]2

[
(ρ(x)− s(x))(ρ(y)− s(y))

]
W (x, y) dx dy. (34)

Now in (34) we use the fact that λ1(W) is the largest eigenvalue of the graphon W as defined
in Definition 3 and also λ1(W)β < 1. So we can rewrite (34) as,

I((1− α)ρ+ αs)− (1− α)I(ρ)− αI(s)

= 2α(1− α)β
∫

[0,1]
(ρ(y)− s(y))

[∫
[0,1]

(ρ(x)− s(x))W (x, y) dx
]
dy

≤ 2α(1− α)(λ1(W)β)
∫

[0,1]
(ρ(y)− s(y))2 dy < 2α(1− α)||ρ− s||22. (35)

This completes the proof. J

Proof of Lemma 28. To prove the lemma we will use the following lemma as the main tool.

I Lemma 29. Let α ∈ [0, 1] and R,S ∈ (0, 1). Then we have

−(1− α)R ln(1 + α

R
(S −R))− αS ln(1 + 1− α

S
(R− S))

−(1− α)(1−R) ln(1 + α

1−R (R− S))− α(1− S) ln(1 + 1− α
1− S (S −R))

≥ 2α(1− α)(S −R)2.

Now we apply Lemma 29 for each point of the integral, i.e., we set R = ρ(x) and S = s(x)
and taking integral over [0, 1] we have

Ent((1− α)(2ρ− 1) + α(2s− 1))− (1− α)Ent(2ρ− 1)− αEnt(2s− 1)

= −(1− α)
∫

[0,1]

[
ρ(x) ln(1 + α

ρ(x) (s(x)− ρ(x)))− αs(x) ln(1 + 1− α
s(x) (ρ(x)− s(x)))

− (1− α)(1− ρ(x)) ln(1 + α

1− ρ(x) (ρ(x)− s(x)))

− α(1− s(x)) ln(1 + 1− α
1− s(x) (s(x)− ρ(x)))

]
dx

≥ 2α(1− α)
∫

[0,1]
(ρ(x)− s(x))2 dx = 2α(1− α)||ρ− s||22.

This completes the proof of Lemma 28. J

R. Acharyya and D. Štefankovič 23:21

Now we state another lemma which is used to prove Lemma 29.

I Lemma 30. Let R ∈ (0, 1) and x ∈ (−R, 1−R). Then

F (R, x) := −R ln(1 + x

R
)− (1−R) ln(1− x

1−R)− 2x2 ≥ 0. (36)

Proof. We have F (R, x) = F (1−R,−x) and hence it is enough to show (36) for x ≥ 0. Note
that

F (R, 0) = 0 and lim
x→(1−R)−

F (R, x) =∞. (37)

We have that F (R, x) is differentiable on (−R, 1−R) with

∂

∂x
F (R, x) = −x(2x+ 2R− 1)2

(x+R)(x− (1−R)) .

If R ≥ 1/2 there are no critical points of F (R, x) on (0, 1 − R) and from (37) we get
F (R, x) ≥ 0 for x ∈ (0, 1−R). Now assume R < 1/2. The only critical point of F (R, x) on
(0, 1−R) is x = 1/2−R. We only need to prove that for all R ∈ (0, 1/2)

F (R, 1/2−R) ≥ 0.

It will be convenient to parameterize R = 1/2− T . We have

F (1/2− T, T) = (1/2− T) ln(1− 2T) + (1/2 + T) ln(1 + 2T)− 2T 2 =: G(T).

Note that G(0) = 0 and

G′(T) = − ln(1− 2T) + ln(1 + 2T)− 4T.

We will show G′(T) ≥ 0 for T ∈ [0, 1/2). Note that G′(0) = 0 and for T ∈ [0, 1/2) we have

G′′(T) = 16T 2

1− 4T 2 ≥ 0,

and hence G′(T) ≥ 0 for T ∈ [0, 1/2). J

Proof of Lemma 29. From Lemma 30 we have

(1− α)F (R,α(S −R)) + αF (S, (1− α(R− S)),

which is equivalent to the inequality we are proving. J

10.1.4 Remaining Proofs for Theorem 6.2
Recall that S = {ρ : [0, 1]→ [0, 1]|

∫
[0,1] ρ(x) dx = 1

2}. Also assume Alρ = {x ∈ [0, 1]|ρ(x) <
1
2} and A

g
ρ = {x ∈ [0, 1]|ρ(x) > 1

2}. Then note that Alρ has positive measure if and only if
Agρ has positive measure. Also denote Ageqρ = Agρ ∪Aeqρ , where Aeqρ = {x ∈ [0, 1]|ρ(x) = 1

2}.

I Definition 31. Given a function ρ ∈ S we define another measurable function ρ̂ : [0, 1]→
[0, 1] as follows:

ρ̂(x) =
{ ρ(x) if x ∈ Agρ,

1− ρ(x) otherwise.

APPROX/RANDOM’17

23:22 Glauber Dynamics for Ising Model on Convergent Dense Graph Sequences

We have the following important property of ρ̂:

I Claim 32. If x ∈ Alρ then ρ̂(x) > ρ(x).

I Claim 33. Assume ρ : [0, 1]→ [0, 1] is a measurable function and ρ̂ as defined in defini-
tion 31. Then
1. ρ̂ is also a measurable function.
2. Ent(2ρ̂− 1) = Ent(2ρ− 1).

Proof of Claim 33.
1. Follows from the properties of measurability.
2. This follows from the symmetry of Ent function. J

Proof of Lemma 33. From Claim 33 we know that Ent(2ρ̂ − 1) = Ent(2ρ − 1). Hence to
prove (20) it is enough to prove that if ρ ∈ S = {ρ : [0, 1] → [0, 1]|

∫
[0,1] ρ(x) dx = 1

2} \ {ρ :
[0, 1]→ [0, 1]|f ≈

m
ρ and ρ(x) = 1

2∀x}, then

I(ρ̂) < I(ρ).

where I(ρ) is defined as in (33). This follows because ρ(x) ≤ ˆρ(x) for all x and in particular
ρ(x) < ˆρ(x), when x ∈ Alρ and also W (x, y) is positive everywhere. J

Proof of Lemma 15. Let’s consider the following function ρb : [0, 1]→ [0, 1]:

ρb(x) = 1
2(1 + εe1(x)),

for all x ∈ [0, 1], where e1 is the eigenfunction w.r.t. the largest eigenvalue of W , i.e.,∫
[0,1]W (x, y)e1(y)dy = λ1(W)e1(x) and ε > 0 is some parameter. Now we have

I(ρb) = I(1
2(1 + εe(x)) = −β2

∫
[0,1]2

(εe1(x))(εe1(y))W (x, y) dx dy

= −ε2 β

2

∫
[0,1]2

e1(x)e1(y)W (x, y) dx dy

= −ε2 β

2 λ1(W)‖e1‖22 < −
ε2

2 ‖e1‖22. (38)

Similarly for entropy we have:

Ent(2ρb − 1) = Ent(ε · e)

= −
∫

[0,1]

1
2(1 + εe1(x)) log(1

2(1 + εe1(x)))−
∫

[0,1]

1
2(1− εe1(x)) log(1

2(1− εe1(x)))

= − log 1
2 −

∫
[0,1]

1
2(1 + εe1(x)) log(1 + εe1(x))−

∫
[0,1]

1
2(1− εe1(x)) log(1− εe1(x))

= − log 1
2 −

∫
[0,1]

1
2(1 + εe1(x))[εe1(x)− ε2e2

1(x) + ε3e3
1(x)− · · ·]

−
∫

[0,1]

1
2(1 + εe1(x))[−εe1(x)− ε2e2

1(x)− ε3e3
1(x)− · · ·]

≈ − log 1
2 −

ε2

2 ‖e1‖2
2. (39)

Hence from (38) and (39) E(W,β, 2ρb − 1) ≈ E(W,β, 2ρ 1
2 − 1)− cε · ε2 which implies that

E(W,β, 2ρ− 1) is decreasing in the given direction and we have the lemma. J

On the Expansion of Group-Based Lifts∗

Naman Agarwal1, Karthekeyan Chandrasekaran2,
Alexandra Kolla3, and Vivek Madan4

1 Princeton University, Princeton, Princeton, NJ, USA
namana@cs.princeton.edu

2 University of Illinois Urbana-Champaign, Urbana-Champaign, IL, USA
karthe@illinois.edu

3 University of Illinois Urbana-Champaign, Urbana-Champaign, IL, USA
akolla@illinois.edu

4 University of Illinois Urbana-Champaign, Urbana-Champaign, IL, USA
vmadan2@illinois.edu

Abstract
A k-lift of an n-vertex base graph G is a graph H on n× k vertices, where each vertex v of G is
replaced by k vertices v1, . . . , vk and each edge uv in G is replaced by a matching representing
a bijection πuv so that the edges of H are of the form (ui, vπuv(i)). Lifts have been investigated
as a means to efficiently construct expanders. In this work, we study lifts obtained from groups
and group actions. We derive the spectrum of such lifts via the representation theory principles
of the underlying group. Our main results are:
1. A uniform random lift by a cyclic group of order k of any n-vertex d-regular base graph G,

with the nontrivial eigenvalues of the adjacency matrix of G bounded by λ in magnitude,
has the new nontrivial eigenvalues bounded by λ + O(

√
d) in magnitude with probability

1 − ke−Ω(n/d2). The probability bounds as well as the dependency on λ are almost optimal.
As a special case, we obtain that there is a constant c1 such that for every k ≤ 2c1n/d

2 , there
exists a lift H of every Ramanujan graph by a cyclic group of order k such that H is almost
Ramanujan (nontrivial eigenvalues of the adjacency matrix at most O(

√
d) in magnitude).

We also show how this result leads to a quasi-polynomial time deterministic algorithm to
construct almost Ramanujan expanders.

2. There is a constant c2 such that for every k ≥ 2c2nd, there does not exist an abelian k-lift H of
any n-vertex d-regular base graph such that H is almost Ramanujan. This can be viewed as
an analogue of the well-known no-expansion result for constant degree abelian Cayley graphs.

Suppose k0 is the order of the largest abelian group that produces expanding lifts. Our two
results highlight lower and upper bounds on k0 that are tight upto a factor of d3 in the exponent,
thus suggesting a threshold phenomenon.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases Expanders, Lifts, Spectral Graph Theory

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.24

1 Introduction

Expander graphs have spawned research in pure and applied mathematics during the
last several years, with applications in multiple fields including complexity theory, robust
computer networks, error-correcting codes, de-randomization, compressed sensing and metric

∗ A full version of the paper is available at https://arxiv.org/abs/1311.3268.

© Naman Agarwal, Karthekeyan Chandrasekaran, Alexandra Kolla, and Vivek Madan;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 24; pp. 24:1–24:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.24
https://arxiv.org/abs/1311.3268
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

24:2 On the Expansion of Group-Based Lifts

embeddings [28, 16]. Informally, an expander is a graph in which every small subset of vertices
has a relatively large edge boundary. Most applications are concerned with d-regular graphs.
The largest eigenvalue of the adjacency matrix of d-regular graphs is d and is known as a
trivial eigenvalue. In case of bipartite d-regular graphs, the largest and smallest eigenvalues
of their adjacency matrix are d and −d and these are referred to as trivial eigenvalues. The
expansion of d-regular graphs is determined by the difference between d and the largest
(in magnitude) non-trivial eigenvalue of the adjacency matrix, denoted λ. Roughly, the
smaller λ is, the better the graph expansion. The Alon-Boppana bound ([25]) states that
λ ≥ 2

√
d− 1− o(1) for non-bipartite graphs. Thus, graphs with λ ≤ 2

√
d− 1 are optimal

expanders and are called Ramanujan.
A simple probabilistic argument shows the existence of infinite families of expander graphs

[26]. However, constructing such infinite families explicitly has proven to be a challenging and
important task. It is easy to construct Ramanujan graphs with a small number of vertices:
d-regular complete graphs and complete bipartite graphs are Ramanujan. The challenge is
to construct an infinite family of d-regular graphs that are all Ramanujan, which was first
achieved by Lubotzky, Phillips and Sarnak [19] and Margulis [23]. They built Ramanujan
graphs from Cayley graphs. All of their graphs are regular, have degrees p+ 1 where p is a
prime, and their proofs rely on deep number theoretic facts. In two breakthrough papers,
Marcus, Spielman, and Srivastava showed the existence of bipartite Ramanujan graphs of
all degrees [21, 22]. However they do not provide an efficient algorithm to construct those
graphs. Cohen [7] adapted the techniques of [22]to design an efficient algorithm to construct
Ramanujan multi-graphs. A striking result of Friedman [10] and a slightly weaker but more
general result of Puder [27], shows that almost every d-regular graph on n vertices is very
close to being Ramanujan, i.e., for every ε > 0, asymptotically almost surely, λ < 2

√
d− 1+ ε.

It is still unknown whether the event that a random d-regular graph is exactly Ramanujan
happens with constant probability. Despite a large body of work on the topic, all attempts
to efficiently construct large Ramanujan expander (simple) graphs of any given degree have
failed, and exhibiting such a construction remains an intriguing open problem.

A combinatorial approach to constructing expanders, initiated by Friedman [9], is to
obtain new (larger) Ramanujan graphs from smaller ones. In this approach, we start with
a base graph which is “lifted” to obtain a larger graph. Concretely, a k-lift of an n-vertex
base-graph G is a graph H on k × n vertices , where each vertex u of G is replaced by k
vertices u1, . . . , uk and each edge uv in G is replaced by a matching between u1, . . . , uk and
v1, . . . , vk. In other words, for each edge uv of G there is a permutation πuv of k elements so
that the corresponding k edges of H are of the form uivπuv(i). The graph H is a (uniformly)
random lift of G if for every edge uv the bijection πuv is chosen uniformly at random from
the set Sk of permutations of k elements.

Since we are focusing on Ramanujan graphs, we will restrict our attention to lifts of
d-regular graphs. It is easy to see that any lift H of a d-regular base-graph G is itself
d-regular and inherits all the eigenvalues of G. We will refer to the inherited eigenvalues as
“old” eigenvalues and the rest of the eigenvalues as “new” eigenvalues. In order to use the lifts
approach for constructing expanders, it is necessary that the lift also inherit the expansion
properties of the base graph. Naturally, one hopes that a random lift of a Ramanujan graph
will also be (almost) Ramanujan with high probability.

Friedman [9] first studied the eigenvalues of random k-lifts of regular graphs and proved
that every new eigenvalue of H is O(d3/4) with high probability. He conjectured a bound
of 2
√
d− 1 + o(1), which would be tight (see, e.g. [14]). Linial and Puder [17] improved

Friedman’s bound to O(d2/3). Lubetzky, Sudakov and Vu [18] showed that the magnitude

N. Agarwal, K. Chandrasekaran, A. Kolla, and V. Madan 24:3

of every nontrivial eigenvalue of the lift is O(λ log d), where λ is the largest (in magnitude)
nontrivial eigenvalue of the base graph, thus improving on the previous results when G

is significantly expanding. Adarrio-Berry and Griffiths [1] further improved the bounds
above by showing that every new eigenvalue of H is O(

√
d), and Puder [27] proved the

nearly-optimal bound of 2
√
d− 1 + 1. All those results hold with probability tending to 1 as

k → ∞, thus the order k of the lift in question needs to be large. Nearly no results were
known in the regime where k is bounded with respect to the number of nodes n of the graph.
A “relativized” version of the Alon-Boppana Conjecture regarding lower-bounding the new
eigenvalues of lifts was also recently shown in [12] and [4].

Bilu and Linial [3] were the first to study k-lifts of graphs with bounded k, and suggested
constructing Ramanujan graphs through a sequence of 2-lifts of a base graph: start with
a small d-regular Ramanujan graph on some finite number of nodes (e.g. Kd+1). Every
2-lift operation doubles the number of vertices in the graph. If there is a way to preserve
expansion after lifting, then repeating this operation will give large good expanders of the
same bounded degree d. The authors in [3] showed that if the starting graph G is significantly
expanding so that λ(G) = O(

√
d log d), then there exists a random 2-lift of G that has all its

new eigenvalues upper-bounded in magnitude by O(
√
d log3 d). In a recent breakthrough

work, Marcus, Spielman and Srivastava [21] showed that for every bipartite d-regular graph
G, there exists a 2-lift of G, such that the new eigenvalues achieve the Ramanujan bound of
2
√
d− 1. But their result still does not provide an efficient algorithm to find such lifts.

1.1 Our Results
In this work, we study the lifts approach to efficiently construct almost Ramanujan expanders
of all degrees. We derive these lifts from groups. This is a natural generalization of Cayley
graphs.

I Definition 1 (Γ-lift). Let Γ be a group of order k with · denoting the group operation. A
Γ-lift of an n-vertex base graph G = (V,E) is a graph H = (V × Γ, E′) obtained as follows:
it has k × n vertices, where each vertex u of G is replaced by k vertices {u} × Γ. For each
edge uv of G, we choose an element guv ∈ Γ and replace that edge by a perfect matching
between {u} × Γ and {v} × Γ that is given by the edges uivj for which guv · i = j.

We denote the order k of the group Γ to be the order of the lift. We refer to Γ-lifts
obtained using Γ = Z/kZ, the additive group of integers modulo k, as shift k-lifts. Since
every cyclic group of order k is isomorphic to Z/kZ, we have that Γ-lifts are shift k-lifts
whenever Γ is a cyclic group of order k.

A tight connection between the spectrum of Γ-lifts and the representation theory of
the underlying group Γ is known [24, 8]. This connection tells us that the lift incurs the
eigenvalues of the base graph, while its new eigenvalues are the union of eigenvalues of a
collection of matrices arising from the group elements assigned to the edges and the irreducible
representations of the group. We note that this connection has also been recently used in
[15] in the context of expansion of lifts, aiming to generalize the results in [22]. In this work,
we address the expansion of Γ-lifts obtained from cyclic groups and abelian groups.

In order to understand the expansion properties of lifts, it suffices to focus on the new
eigenvalues of the lifted graph by the above-mentioned connection. We present a high
probability bound on the expansion of random shift k-lifts for bounded k.

I Theorem 2. Let G be a d-regular n-vertex graph, where 2 ≤ d ≤
√
n/(3 lnn), with largest

(in magnitude) non-trivial eigenvalue λ, where λ ≥
√
d. Let H be a random shift k-lift of G

APPROX/RANDOM’17

24:4 On the Expansion of Group-Based Lifts

with λnew being the largest (in magnitude) new eigenvalue of H. Then

λnew = O(λ)

with probability 1−k·e−Ω(n/d2). Moreover, if G is moderately expanding such that λ ≤ d/ log d,
then

λnew − λ = O(
√
d)

with probability 1− k · e−Ω(n/d2).

We say that a graph is almost Ramanujan if all its non-trivial eigenvalues are bounded
by O(

√
d) in magnitude. By the above result, if the base graph G is Ramanujan, then the

random shift k-lift will be almost Ramanujan with high probability.

Remark 1. In contrast to lifts of order k, where k →∞ when n→∞, the dependency of
λnew on λ is necessary for the case of bounded k. This has previously been observed by the
authors in [3] who gave the following example: Let G be a disconnected graph on n vertices
that consists of n/(d + 1) copies of Kd+1, and let H be a random 2-lift of G. Then the
largest non-trivial eigenvalue of G is λ = d and it can be shown that with high probability,
λnew = λ = d. Therefore, our eigenvalue bounds are nearly tight.

Specializing Theorem 2 for the case of 2-lifts gives the following Corollary which improves
upon the multiplicative log d factor in the eigenvalue bound that is present in the result of
Bilu-Linial [3].

I Corollary 3. Let G be a d-regular n-vertex graph, where 2 ≤ d ≤
√
n/(3 lnn), with largest

(in magnitude) non-trivial eigenvalue λ, where λ ≥
√
d. Let H be a random 2-lift of G with

λnew being the largest (in magnitude) new eigenvalue of H. Then

λnew = O(λ)

with probability 1− e−Ω(n/d2). Moreover, if G is moderately expanding such that λ ≤ d/ log d,
then

λnew − λ = O(
√
d)

with probability 1− e−Ω(n/d2).

Remark 2. The multiplicative log d factor in the eigenvalue bound present in the result of
Bilu-Linial [3] arises due to the use of the converse of the Expander Mixing Lemma along
with an epsilon-net style argument in their analysis. The converse of the Expander Mixing
Lemma is provably tight, so straightforward use of the converse will indeed incur the log d
factor. We are able to improve the eigenvalue bound by performing a fine-grained analysis of
the epsilon-net argument, avoiding direct use of the converse.

Lifts based on groups immediately suggest an algorithm towards building d-regular n-
vertex Ramanujan expanders. In order to describe this algorithm, we first describe the
brute-force algorithm that follows from the existential result of [21]. The approach is to start
with the complete bipartite graph Kd,d and lift the graph log2(n/2d) times. At each stage,
we do a brute-force search over the space of all possible 2-lifts and pick the best one (i.e.,

N. Agarwal, K. Chandrasekaran, A. Kolla, and V. Madan 24:5

one with smallest new maximum eigenvalue in magnitude). However, since a graph (V,E)
has 2|E| possible 2-lifts, it follows that the final lift will be chosen from among 2nd/4 possible
2-lifts, which means that the brute force algorithm will run in time exponential in nd.

Next, suppose that for every k ≥ 2, we are guaranteed the existence of a group Γ of order
k such that for every base graph there exists a Γ-lift that has all its new eigenvalues at most
2
√
d− 1 in magnitude. For example, [5] suggests the possibility that for every k and for every

base graph, there exists a shift k-lift that has all new eigenvalues with magnitude at most
2
√
d− 1. Then a brute force algorithm similar to the one above, would perform only one lift

operation of the base graph Kd,d to create a Γ-lift with n = 2dk vertices. This algorithm
would only have to choose the best among kd2 possibilities (k different choices of group
element per edge of the base graph), which is polynomial in n, the size of the constructed
graph (here we have assumed that d is a constant). This motivates the following question:
what is the largest possible group Γ that might produce expanding Γ-lifts? Our next result
rules out the existence of large abelian groups that might lead to (even slightly) expanding
lifts.

I Theorem 4. For every n-vertex d-regular graph G, every real-value ε ∈ (0, 1/e), and every
abelian group Γ of size at least

k = exp

(
nd log 1

ε + logn
log 1

eε

)
,

all Γ-lifts H of G has a new eigenvalue that is at least εd in magnitude. In particular, when
k = 2Ω(nd), there is no Γ-lift H of any n-vertex d-regular graph G all of whose eigenvalues
are bounded by O(

√
d) in magnitude whenever Γ is an abelian group of order k.

Theorem 4 shows that we cannot expect to have arbitrarily large abelian groups with
expanding lifts as suggested in [5].

Remark 3. The first and only known efficient construction of Ramanujan expander simple
graphs are Cayley graphs of certain groups [19]. We observe that a Cayley graph for a
group Γ with generator set S can be obtained as a Γ-lift of the bouquet graph (a graph that
consists of one vertex with multiple self loops) [20]. Our no-expansion result for abelian
groups complements the known result on no-expansion of abelian Cayley graphs [13].

Remark 4. Our Theorems 4 and 2 can be viewed as lower and upper bounds on the largest
order k0 of an abelian group Γ such that for every n-vertex graph, there exists a Γ-lift
for which all new eigenvalues are O(

√
d). On the one hand, Theorem 2 shows that, for

k = 2O(n/d2), most of the shift k-lifts of a Ramanujan graph have their new eigenvalues to
be O(

√
d). On the other hand, Theorem 4 shows that for k = 2Ω(nd), there is no shift k-lift

that achieves such eigenvalue guarantees. This suggests a threshold behavior for k0.

We observe that Theorem 2 leads to a deterministic quasi-polynomial time algorithm for
constructing almost Ramanujan families of graphs.

I Theorem 5. There exists an algorithm that runs in time 2O(d4 log2 n) to construct a d-regular
n-vertex graph such that all its non-trivial eigenvalues are O(

√
d) in magnitude.

Proof. We use Algorithm 1. We note that the choice of r in the first step ensures that
r = O(d2 logn). By Theorem 2, there exists a lift G of the base graph G′ such that

APPROX/RANDOM’17

24:6 On the Expansion of Group-Based Lifts

Algorithm 1 Quasi-polynomial time algorithm to construct expanders of arbitrary size n.

1: Pick an r such that r2cr/d2 = n, for a constant c that appears in the eigenvalue bound
in Theorem 2. Do an exhaustive search to find a d-regular graph G′ on r vertices with
λ = O(

√
d).

2: For k = 2cr/d2 , do an exhaustive search to find a shift k-lift G of the base graph G′ with
minimum new eigenvalue (in magnitude).

λ(G) = O(
√
d). Thus, the exhaustive search in the second step gives a graph G whose

non-trivial eigenvalues are O(
√
d) in magnitude.

In order to bound the running time, we note that the first step can be implemented to
run in time 2O(r2) = 2O(d4 log2 n). To bound the running time of the second step, we observe
that for each edge in G′, there are k possible choices. Therefore, the size of the search space
is at most krd/2 = 2cr2/2d = 2O(d3 log2 n) and for each k-lift, it takes poly(n) time to compute
λ(G). Thus, the overall running time of the algorithm is 2O(d4 log2 n). J

Organization. We give some preliminary definitions, notations, facts and lemmas in Sec-
tion 2. We prove Theorem 4 in Section 3. We illustrate the techniques behind proving
Theorem 2 by presenting and proving a slightly weaker version of Theorem 2 (see Theorem 11)
in Section 4. For proofs of the concentration inequality (Lemma 12) needed for the weaker
version and Theorem 2, we refer the reader to the full version of the paper [2].

2 Preliminaries

In this section, we define certain notations and present the needed combinatorial inequalities
and facts.

Notations. Let G := (V,E) be a d-regular graph with n vertices. If G is d-regular bipartite,
we will assume that the bipartition of the vertex set is given by ({1, . . . , n/2}, {n/2+1, . . . , n}).
Let A be the adjacency matrix of G. Since A is a real symmetric matrix, its eigenvalues are
also real. Let the eigenvalues of A be λ1 ≥ λ2 ≥ . . . ≥ λn. For a d-regular graph G, it is
well-known that λ1 = d. If G is bipartite, then λn = −d and we define λG := max{|λi| : i ∈
{2, 3, . . . , n− 1}}. If G is non-bipartite, we define λG := max{|λi| : i ∈ {2, 3, . . . , n}}. Thus,
λG denotes the largest (in magnitude) non-trivial eigenvalue of G. When G is clear from the
context, we will drop the subscript and simply write λ. For subsets S, T ⊆ V , let E(S, T)
be the number of edges uv ∈ E with u ∈ S and v ∈ T . We denote the largest eigenvalue of
a matrix M by ‖M‖ and the support of a vector x by S(x). We define log() to be the log
function with base 2. We represent ex by exp(x). Given a vector x whose coordinates are
from {0,±2−1,±2−2, . . . ,±2−i, . . .} we define the diadic decomposition of x as the collection
of vectors {2−iui}i∈Z where each ui is a vector whose j’th coordinate is defined as

[ui]j :=

1 if xj = 2−i,
−1 if xj = −2−i,
0 otherwise.

I Lemma 6 (Discretization Lemma). Let M ∈ Rn×n be a matrix with diagonal entries
being 0.

N. Agarwal, K. Chandrasekaran, A. Kolla, and V. Madan 24:7

1. For every x ∈ Rn with ||x||∞ ≤ 1/2 there exists y ∈ {0,±2−1,±2−2, . . . ,±2−i, . . .}n such
that |xTMx| ≤ |yTMy| and ‖y‖2 ≤ 4‖x‖2. Moreover, each coordinate of x between 2−i
and 2−(i−1) is rounded to either 2−i or 2−(i−1) and between −2−i and −2−(i−1) is rounded
to either −2−i or −2−(i−1) in y.

2. For every x1, x2 ∈ Rn with ||x1||∞, ||x2||∞ ≤ 1/2, there exist y1, y2 ∈ {0,±2−1, ..,±2−i, ..}n
such that |xT1 Mx2| ≤ |yT1 My2|, ‖y1‖2 ≤ 4‖x1‖2, ‖y2‖2 ≤ 4‖x2‖2 and for b ∈ {1, 2} each
coordinate of xb between 2−i and 2−(i−1) is rounded to either 2−i or 2−(i−1) and between
−2−i and −2−(i−1) is rounded to either −2−i or −2−(i−1) in yb.

We need the following theorem showing that expanders have small diameter in order to
show no-expansion of large abelian lifts.

I Theorem 7 ([6]). The diameter of a d-regular graph G with n vertices is at most logn
log(d/λG) .

Lifts. We now state the relevant spectral properties of lifts (we derive the spectrum of
general group-based lifts in the full version [2]). Some initial easy observations can be made
about the structure of any lift: (i) the lifted graph is also regular with the same degree
as the base graph and (ii) the eigenvalues of the adjacency matrix of the base graph are
also eigenvalues of AH . Therefore we call the n eigenvalues of the base graph as the old
eigenvalues and the n(k− 1) other eigenvalues of AH as the new eigenvalues. We will denote
by λnew the largest new eigenvalue of H in magnitude, which we also refer to as the “first”
new eigenvalue for simplicity.

I Definition 8 (Signing). Let G = (V,E) be a base graph. Let Ef denote an arbitrary
orientation of the edges of G and Er denote the reverse orientation. Given a group Γ, a set
S and an action · of Γ on S as in the Definition 1, we define a signing of G as a function
s : Ef ∪ Er → Γ with the property that if s(u, v) = g then s(v, u) = g−1.

We observe that there is a bijection between signings and Γ-lifts. For the purposes of proving
the results, we only need the spectrum of shift k-lifts. For a shift k-lift of a graph G = (V,E)
with adjacency matrix A, which is given by the signing (s(i, j) = gi,j)(i,j)∈E , define the
following family of Hermitian matrices As(ω) parameterized by ω where ω is a primitive k-th
root of unity:

[As(ω)]ij =
{

0 if Aij = 0, and
ωgi,j if Aij = 1.

The following lemma regarding the spectrum of shift k-lifts follows from classic results in
representation theory.

I Lemma 9. Let G = (V,E) be a graph and H be a shift k-lift of G with the corresponding
signing of the edges (s(i, j) = gi,j)(i,j)∈E, where gi,j ∈ Ck. Then the set of eigenvalues of H
are given by ⋃

ω: ω is a primitive k-th root of unity
eigenvalues (As(ω)) .

The above simplifies significantly for 2-lifts as noted in the next corollary.

I Corollary 10. When k = 2, the set of eigenvalues of a 2-lift H is given by the eigenvalues
of A and the eigenvalues of As, where As is the signed adjacency matrix corresponding to
the signing s, with entries from {0, 1,−1}.

APPROX/RANDOM’17

24:8 On the Expansion of Group-Based Lifts

3 No-expansion of Abelian Lifts

In this section we show that it is impossible to find (even slightly) expanding graphs using
lifts in large abelian groups Γ and thus prove Theorem 4 . By Theorem 7, we know that if a
graph is an expander, then it has small diameter. We show that if the size of the (abelian)
group Γ is large, then all Γ-lifts of any base graph have large diameter, and hence they
cannot be expanders. We restate Theorem 4 for convenience.

I Theorem 4. For every n-vertex d-regular graph G, every real-value ε ∈ (0, 1/e), and every
abelian group Γ of size at least

k = exp

(
nd log 1

ε + logn
log 1

eε

)
,

all Γ-lifts H of G has a new eigenvalue that is at least εd in magnitude. In particular, when
k = 2Ω(nd), there is no Γ-lift H of any n-vertex d-regular graph G all of whose eigenvalues
are bounded by O(

√
d) in magnitude whenever Γ is an abelian group of order k.

Proof. We prove the contrapositive. Let Γ be an abelian group of order k and G = (V,E)
be a base graph on n-vertices that is d-regular. Let e1, . . . , end/2 be an arbitrarily chosen
ordering of the edges E. Let H be a lift graph obtained using a Γ-lift. Recall that the signing
of the edges of the base graph correspond to group elements, which in turn correspond to
permutations of k elements. Let these signing of the edges be (σe)e∈E(G). Let us define a
layer Li of H to be the set of vertices {vi : v ∈ V }. We note that H has k layers.

Let us fix an arbitrary vertex v in G. Let ∆ denote the diameter of H. Then, for every j ∈
{2, . . . , k} there exists a path of length at most ∆ in H from v1 to a vertex in Lj . A layer j is
reachable within distance ∆ in H iff there exists a walk e1, e2, . . . , et from v of length t ≤ ∆ in
G such that σetσet−1 . . . σe2σe1(1) = j. Thus the set of layers reachable within distance ∆ inH
is contained in the set S := {σet . . . σe1(1) : e1, . . . , et is a walk from v in G of length t ≤ ∆}.
Since the group Γ is abelian, S ⊆ {σa1

e1
σa2
e2
. . . σ

and/2
end/2 (1) |

∑nd/2
i=1 |ai| ≤ ∆} =: T . Since H has

k layers, the cardinality of S is at least k.
The number of integral ai’s satisfying

∑nd/2
i=1 |ai| ≤ ∆ is at most

((nd/2)+∆
(nd/2)

)
· 2(nd/2).

Therefore,

k ≤ |T | ≤
(nd

2 + ∆
nd
2

)
2nd2 ≤

(
2e
(

1 + 2∆
nd

))nd
2

≤ (2e)nd2 e∆.

Since H has nk vertices, using Theorem 7, we have ∆ ≤ (lognk)/ log(d/λ(H)). Thus, if
λ(H) ≤ εd, then ∆ ≤ (lognk)/ log(1/ε) and consequently,

k ≤ (2e)nd2 e
lognk
log 1

ε .

Rearranging the terms, we obtain that

k ≤ (2e)

nd

2

(
1− 1

log 1
ε

)
exp

 logn(
log 1

ε

) (
1− 1

log 1
ε

)
 ≤ exp(nd log 1

ε + logn
log 1

eε

)
. J

4 Expansion of Random 2-lifts: Overview

In this section, we illustrate the main techniques involved in proving Theorem 2 by stating
and proving a slightly weaker version, namely Theorem 11. It focuses only on 2-lifts akin

N. Agarwal, K. Chandrasekaran, A. Kolla, and V. Madan 24:9

to Corollary 3 and is weaker in comparison to the eigenvalue bound in Corollary 3 by a
multiplicative factor of four. The proof of this weaker result captures the main ideas involved
in the proof of Theorem 2.

I Theorem 11. Let G be a d-regular n-vertex graph, where 2 ≤ d ≤
√
n/(3 lnn), with largest

(in magnitude) non-trivial eigenvalue λ, where λ ≥
√
d. Let H be a random 2-lift of G with

λnew being the largest (in magnitude) new eigenvalue of H. Then,

λnew ≤ 4λ+ 1014 max
(√

λ log d,
√
d
)

with probability at least 1− e−n/d2 .

In order to prove this theorem, we use the concentration inequality in Lemma 12 (recall that
for a vector x, its support is denoted by S(x)).

I Lemma 12. Let G be a d-regular n-vertex graph, where 2 ≤ d ≤
√
n/(3 lnn), with largest

(in magnitude) non-trivial eigenvalue λ, where λ ≥
√
d. Let H be a random 2-lift of G with

corresponding signed adjacency matrix As. The following statements hold with probability at
least 1− e−n/d2 :
1. For all u1, . . . , ur ∈ {0,±1}n, and v1, . . . , v` ∈ {0,±1}n satisfying

(I) S(ui) ∩ S(uj) = ∅ for every i, j ∈ [r] and S(vi) ∩ S(vj) = ∅ for every i, j ∈ [`], and
(II) Either |S(ui)| > n/d2 for every i ∈ [r] with non-zero ui, or |S(vi)| > n/d2 for every

i ∈ [`] with non-zero vi,
we have∣∣∣∣∣∣

∑
i≤j

(2−iuTi)As(2−jvj)

∣∣∣∣∣∣ ≤ 377 max(
√
λ log d,

√
d)

r∑
i=1
|S(ui)|2−2i+

(
λ

5 + 1012
√
d

)∑̀
j=1
|S(vj)|2−2j .

3. For all u1, . . . , ur ∈ {0,±1}n, and v1, . . . , v` ∈ {0,±1}n satisfying (I), (II) and
(III) |S(ui)| > |S(vj)| for every i ∈ [r], j ∈ [`] with non-zero ui,
we have∣∣∣∣∣∣
∑
i≤j

(2−iuTi)As(2−jvj)

∣∣∣∣∣∣ ≤ 31 max
(√

λ log d,
√
d
) r∑

i=1
|S(ui)|2−2i +

∑̀
j=1
|S(vj)|2−2i

 .

We show the concentration inequality in Lemma 12 from Hoeffding’s inequality by taking
a suitable union bound (see the full version of the work [2] for a complete proof). We will
now prove Theorem 11 using the lemma above. Our proof strategy resembles the proof
strategy in [11].

Proof of Theorem 11. Let s denote the signing corresponding to H and As denote the
signed adjacency matrix. By Corollary 10, the largest (in magnitude) new eigenvalue of
the lift is λnew = maxx∈Rn |xTAsx|/xTx. To prove an upper bound on λnew, we will bound
|xTAsx|/xTx for all x with high probability. In particular, assuming that the events given
by Lemma 12 hold, we will show that∣∣xTAsx∣∣ ≤ 4

(
λ+ 1013

√
d
)
‖x‖2.

APPROX/RANDOM’17

24:10 On the Expansion of Group-Based Lifts

By re-scaling we may assume that the maximum entry of x is less than 1/2 in absolute
value. By Lemma 6, there exists a vector y ∈ {0,±2−1,±2−2, . . . ,±2−i, . . .}n such that
|xTAsx| ≤ |yTAsy| and ‖y‖2 ≤ 4‖x‖2. We will prove a bound on |yTAsy| for every
y ∈ {0,±2−1,±2−2, . . . ,±2−i, . . .}n, which in turn will imply the desired bound on |xTAsx|.
Let us consider the diadic decomposition of y =

∑∞
i=1 2−iui obtained as follows: a coordinate

of ui is 1 if the corresponding coordinate of y is 2−i, it is −1 if the corresponding coordinate
of y is −2−i, and is zero otherwise. We note that S(ui) ∩ S(uj) = ∅ for every pair i, j ∈ N.

Next, we partition the set of vectors ui’s based on their support sizes. Let M := {i ∈ N :
|S(ui)| ≤ n/d2} and L := {i ∈ N : |S(ui)| > n/d2} (we abbreviateM and L for mini and large
supports respectively). Correspondingly, define yM :=

∑
i∈M 2−iui and yL =

∑
i∈L 2−iui.

We note that y = yM + yL, ‖y‖2 = ‖yM‖2 + ‖yL‖2 =
∑
i∈N |S(ui)|2−2i, and

|yTAsy| ≤ |yTMAsyM |+ 2|yTMAsyL|+ |yTLAsyL|.

We next bound each term in the following three claims.

I Claim 13.

|yTMAsyM | ≤
(
λ+ 8

d

)
‖yM‖2.

Proof. Let y′M be a vector obtained from yM by taking the absolute values of each entry.
Then ‖yM‖2 = ‖y′M‖2 and |yTMAsyM | ≤ y′TMAy

′
M . Let J = vvT and J ′ = v′v′T where v

is all ones vector and v′ is defined as follows: v′i = 1 for 1 ≤ i ≤ n/2 and v′i = −1 for
n/2 + 1 ≤ i ≤ n. For non-bipartite graph G, we have

y′TMAy
′
M = y′TM

(
A− d

n
J

)
y′M + y′TM

(
d

n
J

)
y′M ≤ λ‖y′M‖2 + y′TM

(
d

n
J

)
y′M .

Above, we have used the fact that A− d
nJ has the same set of eigenvalues as A except for

one – the eigenvalue d for the matrix A is translated to zero for the matrix A− d
nJ . Similarly,

for bipartite graphs, we have

y′TMAy
′
M = y′TM

(
A− d

n
J + d

n
J ′
)
y′M + y′TM

(
d

n
J

)
y′M − y′TM

(
d

n
J ′
)
y′M

≤ λ‖y′M‖2 + y′TM

(
d

n
J

)
y′M − y′TM

(
d

n
J ′
)
y′M .

Above, we have used the fact that A− d
nJ + d

nJ
′ has the same set of eigenvalues as A except

for two – the largest (in magnitude) two eigenvalues d for the matrix A are translated to
zero for the matrix A− d

nJ + d
nJ
′. It remains to bound |y′TM

(
d
nJ
)
y′M | and |y′TM

(
d
nJ
′) y′M |.

Consider the diadic decomposition of y′M =
∑
i∈M 2−iu′i, where the coordinates of u′i are the

absolute values of the coordinates of ui.∣∣∣∣y′TM (dnJ
)
y′M

∣∣∣∣ , ∣∣∣∣y′TM (dnJ ′
)
y′M

∣∣∣∣ ≤ 2
∑
i∈M

∑
j∈M :j≥i

d

n
2−i|S(ui)|2−j |S(uj)|

≤ 2
∑
i∈M

1
d

2−2i|S(ui)|
∑

j∈M :j≥i
2i−j

≤ 4
d
‖y′M‖2.

The second inequality follows by noting that |S(uj)| ≤ n/d2 ∀ j ∈M J

N. Agarwal, K. Chandrasekaran, A. Kolla, and V. Madan 24:11

I Claim 14.

|yTLAsyL| ≤
(

2λ
5 + (3 · 1012) max

(√
λ log d,

√
d
))
‖yL‖2.

Proof. By triangle inequality,

|yTLAsyL| =

∣∣∣∣∣∣
∑
i,j∈L

(2−iuTi)As(2−juj)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

i,j∈L:i≤j
(2−iui)As(2−juj)

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

i,j∈L:i>j
(2−iui)As(2−juj)

∣∣∣∣∣∣ .
We bound each term using the first part of Lemma 12. We now clarify our choice of

parameters to apply Lemma 12. For both terms, our choice is r ← max{i ∈ L}, ` = r,
ui ← ui if i ∈ L and ui ← 0 if i 6∈ L, vi = ui for every i ∈ [r], where 0 is the all-zeroes vector.
We note that the conditions (I) and (II) of Lemma 12 are satisfied by this choice since every
pair S(ui), S(uj) is mutually disjoint and |S(ui)| > n/d2 for all i ∈ L. Consequently,

|yTLAsyL| ≤ 754 max
(√

λ log d,
√
d
)∑
i∈L
|S(ui)|2−2i +

(
λ

5 + 2 · 1012
√
d

)∑
j∈L
|S(uj)|2−2j

≤
(

2λ
5 + (2 · 1012 + 754) max

(√
λ log d,

√
d
))
‖yL‖2. J

I Claim 15.

|yTMAsyL| ≤ 408 max
(√

λ log d,
√
d
)
‖yM‖2 +

(
λ

5 + (2 · 1012) max
(√

λ log d,
√
d
))
‖yL‖2.

Proof. By triangle inequality,

|yTMAsyL| =

∣∣∣∣∣∣
∑

i∈M,j∈L
(2−iuTi)As(2−juj)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

i∈M,j∈L:i≤j
(2−iui)As(2−juj)

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

i∈M,j∈L:i>j
(2−iui)As(2−juj)

∣∣∣∣∣∣ .
We bound the first and second terms by the first and second parts of Lemma 12 respectively.

Let 0 be the all-zeroes vector. We now clarify our choice of parameters to apply Lemma 12.
For the first term, our choice is r ← max{i ∈ M}, ` ← max{i ∈ L}, ui ← ui if i ∈ M and
ui ← 0 if i 6∈M , and vi ← ui if i ∈ L and vi ← 0 if i 6∈ L. For the second term, our choice
is r ← max{i ∈ L}, `← max{i ∈ M}, ui ← ui if i ∈ L and ui ← 0 if i 6∈ L, and vi ← ui if
i ∈M and vi ← 0 if i 6∈M . The conditions (I), (II) and (III) of Lemma 12 are satisfied for
the respective choices since every pair S(ui), S(uj) is mutually disjoint, |S(ui)| > n/d2 for
all i ∈ L and |S(ui)| > n/d2 ≥ |S(uj)| for every i ∈ L, j ∈M . Consequently,

|yTMAsyL| ≤ 377 max
(√

λ log d,
√
d
)∑
i∈M
|S(ui)|2−2i +

(
λ

5 + 1012
√
d

)∑
j∈L
|S(uj)|2−2j

+31 max
(√

λ log d,
√
d
)∑

j∈L
|S(uj)|2−2j +

∑
j∈M
|S(uj)|2−2j

≤ 408 max

(√
λ log d,

√
d
)
‖yM‖2 +

(
λ

5 + (1012 + 31) max
(√

λ log d,
√
d
))
‖yL‖2. J

APPROX/RANDOM’17

24:12 On the Expansion of Group-Based Lifts

From the above three claims, we have

|yTAsy| ≤
(
λ+ 817 max

(√
λ log d,

√
d
))
‖yM‖2+(

4λ
5 + 7 · 1012 max

(√
λ log d,

√
d
))
‖yL‖2

≤
(
λ+ 8 · 1012 max

(√
λ log d,

√
d
))
‖y‖2.

Therefore, we have

|xTAsx| ≤ |yTAsy| ≤
(
λ+ 8 · 1012 max

(√
λ log d,

√
d
))
‖y‖2

≤ 4
(
λ+ 8 · 1012 max

(√
λ log d,

√
d
))
‖x‖2. J

We note that in the above proof, the multiplicative factor of 4 is a by-product of the
discretization of x. This can be avoided if we do not discretize x straightaway, but instead
“push” the discretization a little deeper into the proof. Indeed, we can see that the proof
of Claim 13 where we bound |yTM (A− (d/n)J)yM | by λ‖yM‖2 does not require yM to be a
discretized vector. This is how we are able to prevent the multiplicative factor loss to obtain
Theorem 2.

References
1 L. Addario-Berry and S. Griffiths. The spectrum of random lifts. Preprint arXiv:1012.4097,

2010.
2 N. Agarwal, K. Chandrasekaran, A. Kolla, and V. Madan. On the expansion of group–based

lifts. Preprint arXiv:1311.3268, 2016. URL: https://arxiv.org/abs/1311.3268.
3 Y. Bilu and N. Linial. Lifts, discrepancy and nearly optimal spectral gap. Combinatorica,

26(5):495–519, 2006.
4 C. Bordenave. A new proof of friedman’s second eigenvalue theorem and its extension to

random lifts. Preprint arXiv:1502.04482, 2015.
5 K. Chandrasekaran and A. Velingker. Shift lifts preserving ramanujan property. Linear

Algebra and its Applications, 529:199–214, 2017.
6 F. Chung. Diameters and eigenvalues. Journal of the American Mathematical Society,

2(2):187–196, 1989.
7 M. Cohen. Ramanujan graphs in polynomial time. In 2016 IEEE 57th Annual Symposium

on Foundations of Computer Science (FOCS), pages 276–281, 2016.
8 R. Feng, J. Kwak, and J. Lee. Characteristic polynomials of graph coverings. Bull. Austal.

Math. Soc., 69:133–136, 2004.
9 J. Friedman. Relative expanders or weakly relatively ramanujan graphs. Duke Math. J,

118:2003, 2003.
10 J. Friedman. A proof of alon’s second eiganvalue conjecture and related problems. Mem.

Amer. Math,Soc, 195(910), 2008.
11 J. Friedman, J. Kahn, and E. Szemerédi. On the second eigenvalue of random regular

graphs. In Proceedings of the Twenty-first Annual ACM Symposium on Theory of Comput-
ing, STOC’89, pages 587–598, 1989.

12 J. Friedman and D.-E. Kohler. The Relativized Second Eigenvalue Conjecture of Alon.
Preprint arXiv:1403.3462, 2014.

13 J. Friedman, R. Murty, and J. Tillich. Spectral estimates for abelian cayley graphs. J.
Comb. Theory Ser. B, 96(1):111–121, 2006.

14 Y. Greenberg. On the spectrum of graphs and their universal coverings. Ph.D Thesis, 1995.

https://arxiv.org/abs/1311.3268

N. Agarwal, K. Chandrasekaran, A. Kolla, and V. Madan 24:13

15 Chris Hall, Doron Puder, and William F. Sawin. Ramanujan coverings of graphs. In Pro-
ceedings of the Forty-eighth Annual ACM Symposium on Theory of Computing, STOC’16,
pages 533–541, 2016.

16 S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their applications. Bull.
Amer. Math. Soc, 43(4):439–561, 2006.

17 N. Linial and D. Puder. Word maps and spectra of random graph lifts. Random Struct.
Algorithms, 37(1)):100–135, 2010.

18 E. Lubetzky, B. Sudakov, and V. Vu. Spectra of lifted ramanujan graphs. Advances in
Mathematics, 227:1612–1645, 2011.

19 A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica, 8(3):261–277,
1988.

20 A. Makelov. Expansion in lifts of graphs, 2015. Undergraduate Thesis, Harvard University.
21 A. Marcus, D. Spielman, and N. Srivastava. Interlacing families i: Ramanujan graphs of

all degrees. In Proceedings, FOCS 2013, 2013.
22 A. Marcus, D. Spielman, and N. Srivastava. Interlacing families iv: Bipartite ramanujan

graphs of all sizes. In IEEE 56th Annual Symposium on Foundations of Computer Science,
pages 1358–1377, 2015.

23 G. Margulis. Explicit group-theoretic constructions of combinatorial schemes and their ap-
plications in the construction of expanders and concentrators. Probl. Inf. Transm, 24(1):39–
46, 1988.

24 H. Mizuno and I. Sato. Characteristic polynomials of some graph coverings. Discrete
Mathematics, 142:295–298, 1995.

25 A. Nilli. On the second eigenvalue of a graph. Discrete Math, 91(2):207–210, 1991.
26 M. Pinsker. On the complexity of a concentrator. 7th International Teletraffic Conference,

pages 318/1–318/4, 1973.
27 D. Puder. Expansion of random graphs: New proofs, new results. Preprint arXiv:1212.5216,

2013.
28 P. Sarnak. What is an expander? Notices Amer. Math. Soc, 51(7):762–763, 2006.

APPROX/RANDOM’17

Efficient Removal Lemmas for Matrices
Noga Alon∗1 and Omri Ben-Eliezer2

1 Departments of Mathematics and Computer Science, Tel Aviv University, Tel
Aviv, Israel
nogaa@tau.ac.il

2 Department of Computer Science, Tel Aviv University, Tel Aviv, Israel
omrib@mail.tau.ac.il

Abstract
The authors and Fischer recently proved that any hereditary property of two-dimensional matrices
(where the row and column order is not ignored) over a finite alphabet is testable with a constant
number of queries, by establishing the following (ordered) matrix removal lemma: For any finite
alphabet Σ, any hereditary property P of matrices over Σ, and any ε > 0, there exists fP(ε)
such that for any matrix M over Σ that is ε-far from satisfying P, most of the fP(ε) × fP(ε)
submatrices of M do not satisfy P. Here being ε-far from P means that one needs to modify at
least an ε-fraction of the entries of M to make it satisfy P.

However, in the above general removal lemma, fP(ε) grows very fast as a function of ε−1, even
when P is characterized by a single forbidden submatrix. In this work we establish much more
efficient removal lemmas for several special cases of the above problem. In particular, we show
the following: For any fixed s× t binary matrix A and any ε > 0 there exists δ > 0 polynomial in
ε, such that for any binary matrix M in which less than a δ-fraction of the s× t submatrices are
equal to A, there exists a set of less than an ε-fraction of the entries of M that intersects every
A-copy in M .

We generalize the work of Alon, Fischer and Newman [SICOMP’07] and make progress to-
wards proving one of their conjectures. The proofs combine their efficient conditional regularity
lemma for matrices with additional combinatorial and probabilistic ideas.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Property Testing, Removal Lemma, Matrix Regularity Lemma, Binary
Matrix

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.25

1 Introduction

Removal lemmas are structural combinatorial results that relate the density of “forbidden”
substructures in a given large structure S with the distance of S from not containing any
of the forbidden substructures, stating that if S contains a small number of forbidden
substructures, then one can make S free of such substructures by making only a small
number of modifications in it. Removal lemmas are closely related to many problems in
Extremal Combinatorics, and have direct implications in Property Testing and other areas
of Mathematics and Computer Science, such as Number Theory and Discrete Geometry.

The first known removal lemma has been the celebrated (non-induced) graph removal
lemma, established by Rusza and Szemerédi [24] (see also [3, 4]). This fundamental result in

∗ Research supported in part by a USA-Israeli BSF grant 2012/107, by an ISF grant 620/13 and by the
Israeli I-Core program.

© Noga Alon and Omri Ben-Eliezer;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 25; pp. 25:1–25:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.25
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

25:2 Efficient Removal Lemmas for Matrices

Graph Theory states that for any fixed graph H on h vertices and any ε > 0 there exists
δ > 0, such that for any graph G on n vertices that contains at least εn2 copies of H that are
pairwise edge-disjoint, the total number of H-copies in G is at least δnh. Many extensions
and strengthenings of the graph removal lemma have been obtained, as is described in more
detail in Section 2.

In this work, we consider removal lemmas for two-dimensional matrices (with row and
column order) over a finite alphabet. For simplicity, the results are generally stated for
square matrices, but are easily generalizable to non-square matrices. Some of the results also
hold for matrices in more than two dimensions.

The notation below is given for two-dimensional matrices, but carries over naturally to
other combinatorial structures, such as graphs and multi-dimensional matrices.

An m× n matrix M over the alphabet Γ is viewed here as a function M : [m]× [n]→ Γ,
and the row and column order is dictated by the natural order on their indices. Any matrix
that can be obtained from a matrix M by deleting some of its rows and columns (while
preserving the row and column order) is considered a submatrix of M . We say that M is
binary if the alphabet is Γ = {0, 1} and ternary if Γ = {0, 1, 2}. A matrix property P over Γ
is simply a collection of matrices M : [m]× [n]→ Γ. A matrix is ε-far from P if one needs
to change at least an ε-fraction of its entries to get a matrix that satisfies P. A property P
is hereditary if it is closed under taking submatrices, that is, if M ∈ P then any submatrix
M ′ of M satisfies M ′ ∈ P. For any family F of matrices over Γ, the property of F -freeness,
denoted by PF , consists of all matrices over Γ that do not contain a submatrix from F .
Observe that P is hereditary if and only if it is characterized by some family F of forbidden
submatrices, i.e. P = PF .

While the investigation of graph removal lemmas has been quite extensive, as described
in Section 2 below, the first known removal lemma for ordered graph-like two-dimensional
structures, and specifically for (row and column ordered) matrices, was only obtained very
recently by the authors and Fischer [2].

I Theorem 1 ([2]). Fix a finite alphabet Γ. For any hereditary property P of matrices over
Γ and any ε > 0 there exists fP(ε) satisfying the following. If a matrix M is ε-far from P
then at least a 2/3-fraction of the fP(ε)× fP(ε) submatrices of M do not satisfy P.

However, even when P is characterized by a single forbidden submatrix, the upper bound on
fP(ε) guaranteed by the removal lemma in [2] is very large; in fact, it is at least as large as a
wowzer (tower of towers) type function of ε. On the other hand, a lower bound of Fischer
and Rozenberg [15] implies that one cannot hope for a polynomial dependence of fP(ε) in
ε−1 in general (for the non-binary case), even when P is characterized by a single forbidden
submatrix.

Thus, it is natural to ask for which hereditary matrix properties P there exist removal
lemmas with more reasonable upper bounds on fP(ε), and specifically, to identify large
families of properties P for which fP(ε) is polynomial in ε−1. In this work we focus on this
question, mainly for matrices over a binary alphabet.

A natural motivation for the investigation of removal lemmas comes from property testing.
This active field of study in computer science, initiated by Rubinfeld and Sudan [23] (see
[18] for the graph case), is dedicated to finding fast algorithms to distinguish between
objects that satisfy a certain property and objects that are far from satisfying this property;
these algorithms are called testers. An ε-tester for a matrix property P is a (probabilistic)
algorithm that is given query access to the entries of the input matrix M , and is required to
distinguish, with error probability at most 1/3, between the case that M satisfies P and the

N. Alon and O. Ben-Eliezer 25:3

case that M is ε-far from P. If the tester always answers correctly when M satisfies P, we
say that the tester has a one-sided error. We say that P is testable if there is a one-sided
error tester for P that makes a constant number of queries (that depends only on P and ε
but not on the size of the input). Furthermore, P is easily testable if the number of queries
is polynomial in ε−1. Clearly, any hereditary property of matrices is testable by Theorem 1,
while any property P for which fP(ε) is shown to be polynomial in ε−1 is easily testable.

1.1 Background and main results
The results here are stated and proved for square n× n matrices, but can be generalized to
non-square matrices in a straightforward manner. Our first main result is an efficient weak
removal lemma for binary matrices.

I Theorem 2. If an n×n binary matrix M contains εn2 pairwise-disjoint copies of an s× t
binary matrix A, then the total number of A-copies in M is at least δns+t, where δ−1 is
polynomial in ε−1.

Here a set of pairwise-disjoint A-copies in M is a set of s× t submatrices of M , all equal to
A, such that any entry of M is contained in at most one of the submatrices.

Theorem 2 is an analogue for binary matrices of the non-induced graph removal lemma.
However, in the graph removal lemma, δ−1 is not polynomial in ε−1 in general, in contrast
to the situation in Theorem 2.

Alon, Fischer and Newman [5] proved an efficient induced removal lemma for a certain
type of finite families F of binary matrices. A family F of matrices, or equivalently, a
hereditary matrix property PF , is closed under row (column) permutations if for any A ∈ F ,
any matrix created by permuting the rows (columns respectively) of A is in F . F is closed
under permutations if it is closed under row permutations and under column permutations.

I Theorem 3 ([5]). Let F be a finite family of binary matrices that is closed under per-
mutations. For any ε > 0 there exists δ > 0, where δ−1 is polynomial in ε−1, such that any
n× n binary matrix that is ε-far from F-freeness contains δns+t copies of some s× t matrix
A ∈ F .

The main consequence of Theorem 3 is an efficient induced removal lemma for bipartite
graphs. Indeed, when representing a bipartite graph by its (bi-)adjacency matrix, a forbidden
subgraph H is represented by the family F of all matrices that correspond to bipartite
graphs isomorphic to H. Note that F is indeed closed under permutations in this case. Thus,
any hereditary bipartite graph property characterized by a finite set of forbidden induced
subgraphs is easily testable.

The problem of understanding whether the statement of Theorem 3 holds for any finite
family F of binary matrices, was raised in [5] and is still open. Only recently in [2] it
was shown that the statement holds if we ignore the polynomial dependence, as stated in
Theorem 1.

I Problem 4. Is it true that for any fixed finite family F of binary matrices and any ε > 0,
there exists δ > 0 with δ−1 polynomial in ε−1, such that any n× n binary matrix M that is
ε-far from F-freeness contains δns+t copies of some s× t matrix A ∈ F?

Theorem 2 implies that to settle Problem 4 it is enough to show the following. Fix a finite
family F of binary matrices. Then for any ε > 0 there exists τ > 0, with τ−1 polynomial in
ε−1, such that any n× n binary matrix that is ε-far from F-freeness contains τn2 pairwise
disjoint copies of matrices from F .

APPROX/RANDOM’17

25:4 Efficient Removal Lemmas for Matrices

Our second main result makes progress towards solving Problem 4 by generalizing the
statement of Theorem 3 to any family F of binary matrices that is closed under row (or
column) permutations. From now on we only state the results for families that are closed under
row permutations, but analogous results hold for families closed under column permutations.

I Theorem 5. Let F be a finite family of binary matrices that is closed under row permuta-
tions. For any ε > 0 there exists δ > 0, where δ−1 is polynomial in ε−1, such that any n× n
binary matrix that is ε-far from F-freeness contains δns+t copies of some s× t matrix A ∈ F .

I Corollary 6. Any hereditary property of binary matrices that is characterized by a finite
forbidden family closed under row permutations is easily testable.

Our proof of Theorem 5 is somewhat simpler than the original proof of Theorem 3. One
of the main tools in the proofs of Theorems 2 and 5 is an efficient conditional regularity
lemma for matrices developed in [5] (see also [20]). In the proof of Theorem 5 we only use a
simpler form of the lemma, which is also easier to prove. The statement of the lemma and
the proofs of Theorems 2, 5 appear in Section 4.

Besides the above two main results, we also describe a simpler variant of the construction
of Fischer and Rozenberg [15], showing that for ternary matrices, the dependence between
the parameters is not polynomial in general. We further suggest a way to tackle the weak
removal lemma (i.e. the analogue of Theorem 2, without the polynomial dependence) in high
dimensional matrices over arbitrary alphabets, by reducing it to an equivalent problem that
looks more accessible. For more details, see Section 5.

2 Related work

Removal lemmas have been studied extensively in the context of graphs. The non-induced
graph removal lemma (which was stated in the beginning of Section 1) has been one of the
first applications of the celebrated Szemerédi graph regularity lemma [26]. The induced
graph removal lemma, established in [4] by proving a stronger version of the graph regularity
lemma, is a similar result considering induced subgraphs. It states that for any finite family
F of graphs and any ε > 0 there exists δ = δ(F , ε) > 0 with the following property. If an
n-vertex graph G is ε-far from F -freeness, then it contains at least δnv(F) induced copies of
some F ∈ F . Here v(F) denotes the number of vertices in F , and G is said to be (induced)
F-free if no induced subgraph of G is isomorphic to a graph from F .

The induced graph removal lemma was later extended to infinite families [9], stating the
following. For any finite or infinite family F of graphs and any ε > 0 there exists fF (ε) with
the following property. If an n-vertex graph G is ε-far from F -freeness, then with probability
at least 2/3, a random induced subgraph of G on fF (ε) vertices contains a graph from F .
Note that when F is finite, the statement of the infinite induced removal lemma is indeed
equivalent to that of the finite version of the induced removal lemma.

The graph removal lemma was also extended to hypergraphs [19, 22, 21, 27]. See [13] for
many more useful variants, quantitative strengthenings and extensions of the graph removal
lemma.

Very recently, the authors and Fischer [2] generalized the (finite and infinite) induced
graph removal lemma by obtaining an order-preserving version of it, and also showed that
the same type of proof can be used to obtain a removal lemma for two-dimensional matrices
(with row and column order) over a finite alphabet; this it Theorem 1 above.

However, even for the non-induced graph removal lemma where the forbidden subgraph is
a triangle, the best known general upper bound for δ−1 in terms of ε−1 is of tower-type [16, 12].

N. Alon and O. Ben-Eliezer 25:5

On the other hand, the best known lower bound for the dependence is super-polynomial
but sub-exponential, and builds on a construction of Behrend [10]. See [1] for more details.
Understanding the “right” dependence of δ−1 in ε−1, even for the simple case where the
forbidden graph H is a triangle, is considered an important and difficult open problem.

In view of the above discussion, a lot of effort has been dedicated to the problem of
characterizing the hereditary graph properties P for which fP(ε) is polynomial in ε−1, i.e.,
the easily testable graph properties. See the recent work of Gishboliner and Shapira [17];
for other previous works on this subject, see, e.g., [1, 8, 6]. Our work also falls under this
category, but for (ordered) matrices instead of graphs; it is the first work of this type for
ordered two-dimensional graph-like structures.

We finish by mentioning several other relevant removal lemma type results. Removal
lemmas for vectors (i.e. one dimensional matrices where the order is important) are generally
easier to obtain; in particular, a removal lemma for vectors over a fixed finite alphabet can
be derived from a removal lemma for regular languages proved in [7]. A removal lemma for
partially ordered sets with a grid-like structure, which can be seen as a generalization of
the removal lemma for vectors, can be deduced from a result of Fischer and Newman in
[14], where they mention that this problem for submatrices is more complicated and not
understood. Recently, Ben-Eliezer, Korman and Reichman [11] obtained a removal lemma for
patterns in multi-dimensional matrices. A pattern must be taken from consecutive locations,
whereas in our case the rows and columns of a submatrix need not be consecutive. The
case of patterns behaves very differently than that of submatrices, and in particular, in the
removal lemma for patterns the parameters are linearly related (for any alphabet size) unlike
the case of submatrices (in which, for alphabets of 3 letters or more, the relation cannot be
polynomial).

3 Notation

Here we give some more notation that will be useful throughout the rest of the paper. We
give the notation for rows but the notation for columns is equivalent. Let M : [m]× [n]→ Γ
be an m× n matrix. For two rows in M whose indices in I are r < r′, we say that row r is
smaller than row r′ and row r′ is larger than row r. The predecessor of row r in M is the
largest row r̄ in M smaller than r. In this case we say that r is the successor of r̄.

Let S be the submatrix of M on {r1, . . . , rs} × {c1, . . . , ct} where r1 < . . . < rs and
c1 < . . . < ct. For i = 1, . . . , s, the i-row-index of S in M is ri; For two submatrices S, S′ of
the same dimensions and with i-row-indices ri, r′i respectively we say that S is i-row-smaller
than S′ if ri < r′i and i-row-bigger if ri > r′i.

Let X = {x1, . . . , xs−1} ⊆ [m] with 0 < x1 < . . . < xs−1 < m and Y = {y1, . . . , yt−1} ⊆
[n] with 0 < y1 < . . . < yt−1 < n be subsets of indices. The submatrix S is row-separated by
X if ri ≤ xi < ri+1 for any i = 1, . . . , s− 1, column-separated by Y if cj ≤ yj < cj+1 for any
j = 1, . . . , t− 1 and separated by X × Y if it is row separated by X and column separated
by Y . The elements of X,Y are called row separators, column separators respectively.

3.1 Folding and unfoldable matrices
A matrix is unfoldable if no two neighboring rows in it are equal and no two neighboring
columns in it are equal. The folding of a matrix A is the unique matrix Ã generated from A

by deleting any row of A that is equal to its predecessor, and then deleting any column of
the resulting matrix that is equal to its predecessor. Note that Ã is unfoldable.

APPROX/RANDOM’17

25:6 Efficient Removal Lemmas for Matrices

I Lemma 7. Fix an s× t matrix A and let Ã be its s′ × t′ folding. For any ε > 0 there exist
n0, δ > 0, where n0 and δ−1 are polynomial in ε−1, such that for any n ≥ n0, any n × n
matrix M that contains εns′+t′ copies of Ã also contains δns+t copies of A.

Lemma 7 implies that generally, to prove removal lemma type results for finite families, it is
enough to only consider families of unfoldable matrices. The proof follows immediately from
the following lemma.

I Lemma 8. Let A be an s× t fixed matrix and let A′ be an s′ × t matrix created from A

by deleting rows that are equal to their predecessors in A. Then for any ε > 0 there exist
n1 = n1(A, ε) > 0 and τ = τ(A, ε) > 0, where n1 and τ−1 are polynomial in ε−1, such that
for any n ≥ n1, any n× n matrix M that contains εns′+t copies of A′ also contains τns+t

copies of A.

Proof of Lemma 8. Let T be the family of all n× t submatrices S of M containing at least
εns

′
/2 copies of A′. Any S ∈ T has

(
n
s′

)
≤ ns

′
s′ × t submatrices, so the number of A′

copies in submatrices from T is at most |T |ns′ . On the other hand, there are
(
n
t

)
≤ nt n× t

submatrices of M so the number of A′ copies in n × t submatrices not in T is less than
εns

′+t/2. Hence the total number of A′ copies in submatrices from T is at least εns′+t/2,
implying that |T | ≥ εnt/2.

Observe that any S ∈ T contains a collection A(S) of εn/2s′ pairwise disjoint copies of
A′. To show this, we follow a greedy approach, starting with a collection B of all A′-copies
in S and with empty A. As long as B is not empty, we arbitrarily choose a copy C ∈ B of
A′, add C to A and delete all A′-copies intersecting C (including itself) from B. In each
step, the number of deleted copies is at most s′ns′−1, so the number of steps is at least
εns

′
/2s′ns′−1 = εn/2s′.
Let δ = ε/5ss′ and take S ∈ T . Assuming that n is large enough, pick disjoint collections

A1, . . . ,As ⊆ A(S), each of size at least δn, so that all A′-copies in Ai are i-row-smaller than
all A′-copies in Ai+1 for any 1 ≤ i ≤ s− 1. Then there are δsns copies of A in S: Each s× t
submatrix of S whose i-th row is taken as the i-th row of a matrix from Ai is equal to A.
Therefore, the total number of A-copies in M is at least |T |δsns ≥ εδsns+t/2, as desired. J

4 Proofs for the binary case

This section is dedicated to the proof of our main results in the binary domain: Theorem 2
and Theorem 5. As a general remark for the proofs in this section, We may and will assume
that a square matrix M is sufficiently large (given ε > 0), by which we mean that M is an
n× n matrix with n ≥ n0 for a suitable n0 > 0 that is polynomial in ε−1.

One of the main tools in the proofs of this section is a conditional regularity lemma for
matrices due to Alon, Fischer and Newman [5]. We describe a simpler version of the lemma
(this is Lemma 9 below) along with another useful result from their paper (Lemma 10 below).
Combining these results together yields the original version of the conditional regularity
lemma used in the original proof of Theorem 3 in [5]. It is worth to note that even though
Theorem 5 generalizes Theorem 3, for its proof we only need the simpler Lemma 9 and not
the original regularity lemma, whose proof requires significantly more work. Lemma 10 is
only used in the proof of Theorem 2.

We start with some definitions. A (δ, r)-row-clustering of an n×n matrixM is a partition
of the set of rows of M into r + 1 clusters R0, . . . , Rr such that the error cluster R0 satisfies
|R0| ≤ δn and for any i = 1, . . . , r, every two rows in Ri differ in at most δn entries. That
is, for every e, e′ ∈ Ri, one can make row e equal to e′ by modifying at most δn entries.

N. Alon and O. Ben-Eliezer 25:7

A (δ, r)-column-clustering is defined analogously on the set of columns of M . The first
conditional regularity lemma states the following.

I Lemma 9 ([5]). Let k be a fixed positive integer and let δ > 0 be a small real. For every
n× n binary matrix M with n > (k/δ)O(k), either M admits (δ, r)-clusterings for both the
rows and the columns with r ≤ (k/δ)O(k), or for every k × k binary matrix A, at least a
(δ/k)O(k2) fraction of the k × k submatrices of M are copies of A.

Let R be a set of rows and let C be a set of columns in an n × n matrix M . The block
R× C is the submatrix of M on R× C. A block B is δ-homogeneous with value b if there
exists b ∈ {0, 1} such that at least a 1 − δ fraction of the entries of B are equal to b. A
(δ, r)-partition of M is a couple (R, C) where R = {R1, . . . , Rr} is a partition of the set of
rows and C = {C1, . . . , Cr} is a partition of the set of columns of M , such that all but a
δ-fraction of the entries of M lie in blocks Ri × Cj that are δ-homogeneous. The second
result that we need from [5], relating clusterings and partitions of a matrix, is as follows.

I Lemma 10 ([5]). Let δ > 0. If a square binary matrix M has (δ2/16, r)-clusterings R, C
of the rows and the columns respectively then (R, C) is a (δ, r + 1)-partition of M .

For the proofs of the above lemmas see [5]. We continue to the proof of Theorem 2. The
following lemma is a crucial part of the proof.

I Lemma 11. Fix an s × t matrix A. For any ε > 0 there exists τ > 0, where τ−1 is
polynomial in ε−1, such that any n× n matrix M containing εn2 pairwise-disjoint copies of
A either contains τns+t copies of any s× t matrix, or there exist subsets of indices X,Y of
sizes s− 1, t− 1 respectively such that M contains τn2 pairwise disjoint copies of A that are
separated by X × Y .

Before providing the full proof of Lemma 11, we present a sketch of the proof. Clearly,
whenever we apply Lemma 9 throughout the proof, we may assume that the outcome is
that M has suitable row and column clusterings, as the other possible outcome of Lemma 9
finishes the proof immediately. The main idea of the proof is to gradually find row separators,
and then column separators, while maintaining a large set of pairwise disjoint copies of A
that conform to these separators. This is done inductively (first for the rows, and then for
the columns). The inductive step is described in what follows.

Assume we currently have j− 1 ≥ 0 row-separators, and a set A of many pairwise disjoint
A-copies that have their first j rows separated by these row-separators. We take a clustering
of the rows of M , and consider a cluster in which many rows are “good”, in the sense that
they contain the j-th row of many of the disjoint A-copies from A. We put our j-th separator
as the medial row among the good rows. Next, we consider a matching of pairs (r1, r2) of
good rows, where in each such pair r1 lies before the j-th separator and r2 lies after the j-th
separator. Observe that all good rows lie after the (j − 1)-th separator.

If we take all pairwise-disjoint A-copies from A whose j-th row is r2, and “shift” their
j-th row to be r1, then most of them will still be A-copies (as rows r1 and r2 are very similar,
since they are in the same row cluster). This process creates a set A′ of many pairwise
disjoint A-copies whose i-th row lies between separators i− 1 and i for any i ≤ j, and the
(j + 1)-th row lies after separator j. This finishes the inductive step.

We now continue to the full proof of Lemma 11.

Proof of Lemma 11. Let ε > 0 and let M be a large enough n×n binary matrix containing
a collection U0 of εn2 pairwise disjoint A-copies.

APPROX/RANDOM’17

25:8 Efficient Removal Lemmas for Matrices

We prove the following claim by induction on i, for i = 0, 1, . . . , s− 1: there exist τi, δi
with τ−1

i , δ−1
i polynomial in ε−1 such that either M contains τins+t copies of any s × t

matrix or there exist 0 = x0 < x1 < . . . < xi and a set Ui of δin2 pairwise disjoint A-copies
in M whose j-th row is bigger then xj−1 and no bigger than xj for any 1 ≤ j ≤ i, and
the (i + 1)-th row is bigger than xi. The base case i = 0 is trivial with δ0 = ε. Suppose
now that i ≥ 1 and that x0, . . . , xi−1, δi−1 and Ui−1 are already determined. Applying
Lemma 9 on M with parameters k = max{s, t} and δi−1/4, either M contains τins+t copies
of any s × t matrix with τ−1

i polynomial in ε−1 and we are done, or M has a (δi−1/4, ri)-
row-clustering Ri of M for ri polynomial in δ−1

i−1 and so in ε−1. The number of rows of
M that contain the i-th row of at least δi−1n/2 of the A-copies in Ui−1 is at least δi−1n/2,
since the number of A-copies in Ui−1 whose i-th row is not taken from such a row of M is
less that n · δi−1n/2 = δi−1n

2/2. Let Ri be a row cluster that contains at least δi−1n/2ri
such rows. Note that all of these rows are bigger than xi−1. Take subclusters R1

i , R
2
i of Ri,

each containing at least bδi−1n/4ric ≥ δi−1n/5ri such rows (the inequality holds for n large
enough) where each row in R1

i is smaller than each row in R2
i . Take xi to be the row index

of the biggest row in R1
i .

Take arbitrarily δi−1n/5ri couples of rows (r, r′) where r ∈ R2
i and r′ ∈ R1

i and every
row participates in at most one couple. Let (r, r′) be such a couple. There exist δi−1n/2
s× t submatrices of M that are A-copies from Ui−1 and whose i-th row is r. Moreover, for
any j < i the j-th row of each of these submatrices lies between xj−1 (non-inclusive) and
xj (inclusive). Since r and r′ differ in at most δi−1n/4 entries, there are at least δi−1n/4
such submatrices T that satisfy the following: If we modify T by taking its i-th row to be r′
instead of r, T remains an A-copy. Moreover, after the modification, the i-th row of T is in
R1
i and is therefore no bigger than xi, whereas the (i+ 1)-th row of T is bigger than the i-th

row of T before the modification which is bigger than xi, as needed. For every couple (r, r′)
we can produce δi−1n/4 pairwise disjoint copies of A whose j-th row is between xj−1 and xj
for any j ≥ i and the (i+ 1)-th row is after xi. There are δi−1n/5ri such couples (r, r′), and
in total we get a set Ui of δin2 copies of A with the desired structure for δi = δ2

i−1/20ri where
δ−1
i is polynomial in δ−1

i−1 and so in ε−1. Note that the copies in Ui are pairwise disjoint. In
the end of the process there is a set U = Us of δsn2 pairwise disjoint copies of A whose rows
are separated by X = {x1, . . . , xs−1}. A feature that is useful in what follows is that each
copy in U has exactly the same set of columns (as a submatrix of M) as one of the original
copies of U0.

Now we apply the same process as above but in columns instead of rows, starting with
the δsn2 copies in U . In the end of the process, we obtain that for some τ̂t, δ̂t such that
τ̂−1
t and δ̂−1

t are polynomial in δ−1
s and so in ε−1, either M contains τ̂tns+t copies of any

s× t matrix, or there exists a set Û of δ̂tn2 pairwise disjoint copies of A whose columns are
separated by a set of indices Y of size t − 1. Moreover, by the above feature, each of the
copies in Û has the same set of rows as some copy of A from U , so each copy has its rows
separated by X. Hence X × Y separates all copies in Û . Taking τ = min{τ̂t, δ̂t} finishes the
proof. J

Next we show how Theorem 2 follows from Lemma 11. The idea of the proof is to show,
using Lemmas 10 and 11, that there is a partition of M with blocks Ri × Cj (for 1 ≤ i ≤ s,
1 ≤ j ≤ t) satisfying the following.

All row clusters Ri and all column clusters Cj are large enough.
All rows of Ri (Cj) lie before all rows (columns) of Ri+1 (Cj+1 respectively) for any i
and j.
Ri × Cj is almost homogeneous, and its “popular” value is Aij .

Using these properties, it is easy to conclude that M contains many A-copies.

N. Alon and O. Ben-Eliezer 25:9

We now complete the proof of Theorem 2.

Proof of Theorem 2. Let A be an s× t binary matrix and let k = max{s, t}. Let ε > 0 and
let M be a large enough n× n binary matrix that contains εn2 pairwise disjoint A-copies.
Lemma 11 implies that either M contains τns+t copies of A where τ−1 is polynomial in
ε−1 (in this case we are done), or M contains at least τn2 pairwise disjoint copies of A
separated by X × Y for suitable index subsets X,Y . By Lemma 9 we get that either M
has (τ2/128, r)-clusterings of the rows and the columns where r is polynomial in τ−1 and
so in ε−1, or at least a ζ = (τ2/128k)O(k2) fraction of the s × t submatrices are A; in the
second case we are done. Suppose then that M has (τ2/128, r)-clusterings R, C of the rows,
columns respectively. The next step is to create refinements of the clusterings. Write the
elements of X as x1 < . . . < xs−1 and let x0 = 0, xs = n. Partition each R ∈ R into s parts
where the i-th part for i = 1, . . . , s consists of all rows in R with index at least xi−1 and less
than xi. Each such part is also a τ2/128-cluster. Now separate each C ∈ C into t parts in a
similar fashion. This creates (τ2/128, (r+ 1)k)-clusterings R′, C′ of the rows and the columns
respectively (where some of the clusters might be empty). By Lemma 10, P = (R′, C′) is a
(τ/4, r′)-partition of M where r′ = (r + 1)k + 1, and each block of the partition has all of
its entries between two neighboring row separators from X and between two neighboring
column separators from Y .

There are at most τn2/4 entries of M that lie in non-τ/4-homogeneous blocks of P and at
most τn2/4 entries of M that lie in τ/4-homogeneous blocks of P but do not agree with the
value of the block. Therefore, the number of entries as above is no more than τn2/2, and so
there exists a set of τn2/2 pairwise disjoint copies of A in M separated by X×Y in which all
the entries come from τ/4-homogeneous blocks and agree with the value of the block in which
they lie. Hence there exist sets of rows R1, . . . , Rs ∈ R′ and sets of columns C1, . . . , Ct ∈ C′
and a collection A of τn2/2(r′)2k pairwise disjoint A-copies separated by X × Y such that
for any 1 ≤ i ≤ s, 1 ≤ j ≤ t, the block Ri × Cj is τ/4-homogeneous, has value A(i, j),
lies between row separators xi−1 and xi and between column separators yj−1 and yj , and
contains the (i, j) entry of any A-copy in A. This implies that |Ri|, |Cj | ≥ τn/2(r′)2k for any
1 ≤ i ≤ s and 1 ≤ j ≤ t, So there are (τ/2(r′)2k)s+tns+t s× t submatrices of M whose (i, j)
entry lies in Ri × Cj for any i, j. Picking such a submatrix S at random, the probability
that S(i, j) 6= A(i, j) for a specific couple i, j is at most τ/4; thus S is equal to A with
probability at least 1− stτ/4 > 1/2 for small enough τ . Hence the number of A-copies in M
is at least(τ/2(r′)2k)s+tns+t/2. J

Next we give the proof of Theorem 5. For the proof, recall the definition of an unfoldable
matrix and a folding of a matrix from Section 3. A family of matrices is unfoldable if
all matrices in it are unfoldable. The folding of a finite family F of matrices is the set
F̃ = {Ã : A ∈ F} of the foldings of the matrices in F . Observe that F̃ is unfoldable for any
family F . Note that if F is closed under (row) permutations then F̃ is also closed under
(row) permutations.

We start with a short sketch of the proof, before turning to the full proof: As before, we
may assume that our matrix M has a row clustering with suitable parameters. We may also
assume that the forbidden family is unfoldable. Consider a submatrix Q of M that contains
exactly one “representative” row from any large enough row cluster. The crucial idea is that
if Q does not contain many A-copies, then M is close to F -freeness. Indeed, one can modify
all rows in M to be equal to rows from Q without making many entry modifications, and
after this modification, it is possible to eliminate all F-copies in M (without creating new
F -copies) by only modifying those columns in M that participate in some F -copy in Q; if Q

APPROX/RANDOM’17

25:10 Efficient Removal Lemmas for Matrices

does not contain many F -copies then the number of such columns is small. Since the above
statement is true for any possible choice of Q, we conclude that if M is ε-far from F -freeness
then it must contain many A-copies.

Proof of Theorem 5. It is enough to prove the statement of the theorem only for unfoldable
families that are closed under row permutations. Indeed, suppose that Theorem 5 is true
for all unfoldable families that are closed under row permutations. Let F be a family of
binary matrices that is closed under row permutations and let F̃ be its folding. Then for
any ε > 0 there exists δ̃ > 0 such that any square binary matrix M which is ε-far from
F̃ -freeness contains δ̃ns′+t′ copies of some s′ × t′ matrix B ∈ F̃ , where δ̃−1 is polynomial in
ε−1. Thus, provided that M is large enough (i.e. that it is an n× n matrix where n ≥ n0
for a suitable choice of n0 polynomial in ε−1), we can apply Lemma 7 to get that M also
contains δns+t copies of the matrix A ∈ F whose folding is B, for a small enough δ > 0
where δ−1 is polynomial in ε−1.

Therefore, suppose that F is an unfoldable finite family of binary matrices that is closed
under row permutations. Let k be the maximal row or column dimension of a matrix from F .
Let ε > 0 and apply Lemma 9 with parameters k and ε/6. Let M be a large enough n× n
matrix with n > (k/ε)O(k), then either M contains δ2n

2k copies of any k × k matrix, where
δ−1

2 is polynomial in ε−1, orM has an (ε/6, r)-clustering of the rows with r polynomial in ε−1.
In the first case we are done, so suppose that M has an (ε/6, r)-clustering R = {R0, . . . , Rr}
of the rows where R0 is the error cluster.

Suppose that M is ε-far from F -freeness. We say that a cluster R 6= R0 in R is large if it
contains at least εn/6r rows. Note that the total number of entries that do not lie in large
clusters is at most εn/6 + εn/6 = εn/3. Pick an arbitrary row r(R) from every large cluster
R ∈ R and denote by Q the submatrix of M created by these rows. Let A(Q) be a collection
of pairwise disjoint copies of matrices from F in Q that has the maximal possible number of
copies. Suppose to the contrary that |A| ≤ εn/3k and let C be the set of all columns of M
that intersect a copy from A, then C contains no more than εn/3 columns. We can modify
M to make it F -free as follows: First modify every row that lies in a large cluster R ∈ R to
be equal to r(R). Then pick some row r of Q and modify all rows that are not contained in
large clusters to be equal to r. Finally do the following: As long as C is not empty, pick a
column c ∈ C that has a neighbor (predecessor or successor) not in C and modify c to be
equal to its neighbor, and then remove c from C.

It is not hard to see that since F is unfoldable and closed under row permutations, after
these modifications M is F-free. Indeed, after the first and the second steps, all rows of M
are equal to rows from Q; the order of the rows does not matter since F is closed under row
permutations. Now each time that we modify a column c ∈ C in the third step, all copies
of matrices from F that intersect it are destroyed and no new copies are created. By the
maximality of A, any copy of a matrix from F in the original Q intersected some column from
C, so we are done. The number of entry modifications needed in the first, second, third step
respectively is at most εn2/6, εn2/3, εn2/3 and thus by making only 5εn2/6 modifications of
entries of M we can make it F-free, contradicting the fact that M is ε-far from F-freeness.

Let Q be any matrix of representatives of the large row clusters as above. Then Q

contains a collection A of εn/3k pairwise disjoint copies of matrices from F . In particular,
there exist a certain s×n submatrix T of Q and an s× t matrix A(Q) ∈ F such that at least
εn/3k|F|rs of the copies in A are A-copies that lie in T . The following elementary removal
lemma implies that T contains many A-copies.

N. Alon and O. Ben-Eliezer 25:11

I Observation 12. Fix an s× t matrix A. For any ε > 0 there exists δ > 0 such that if an
s× n matrix T contains εn pairwise-disjoint A-copies, then the total number of A-copies in
T is at least δnt, with δ−1 polynomial in ε−1.

Proof. Let ε > 0 and let T be a large enough s× n matrix containing εn pairwise disjoint
copies of A. We construct t disjoint subcollectionsA1, . . . ,At ofA, each of size εn/2t ≤ bεn/tc,
such that for any i < j, all copies in Ai are i-column-smaller than all copies in Aj . This is
done by the following process for i = 1, . . . , t: take Ai to be the set of the εn/2t i-smallest
copies in A and delete these copies from A. Now observe that any s× t submatrix of T that
takes its i-th column (for i = 1, . . . , t) as the i-th column of some copy from Ai is equal to A.
There are (εn/2t)t such submatrices among all

(
n
t

)
≤ nt s× t submatrices of T , and so T

contains (ε/2t)tnt A-copies. J

Observation 12 implies that for Q and A(Q) as above, Q contains γns+t A-copies where
γ−1 is polynomial in (ε/3k|F|rs)−1 and so in ε−1. Finally we show that M contains δns+t

copies of some A ∈ F where δ−1 is polynomial in γ−1 and so in ε−1, finishing the proof of
the Theorem. For any large cluster R ∈ R let R′ be some subcluster that contains exactly
bεn/6rc > 0 rows. Let R′ = {R′ : R ∈ R is large} and note that an α-fraction of the
k × k submatrices S of M have all of their rows in subclusters from R′ with no subcluster
containing more than one row of S, where α−1 is polynomial in ε−1. Let S be a random
k × k submatrix of M . Conditioning on the event that S satisfies the above property, we
can assume that S is chosen in the following way: First a random Q is created by picking
uniformly at random one representative from every R′ ∈ R′, and then S is taken as a random
k × k submatrix of Q. Let A = A(Q) be defined as above. The probability that S contains
a copy of A is at least γ. That is, a random k × k submatrix S of M contains a copy of
a matrix from F with probability at least αγ, so there exists an s × t matrix A ∈ F that
is contained in a randomly chosen such S with probability at least αγ/|F|, so M contains
αγ

(
n
s

)(
n
t

)
/|F|k2k copies of some A ∈ F : To see this, observe that we can choose a random

s× t submatrix S′ of M by first picking a random k × k submatrix S and then picking an
s× t random submatrix S′ of S. The event that S contains a copy of A has probability at
least αγ/|F|, and conditioned on this event, S′ is equal to A with probability at least k−2k,
as the number of s× t submatrices of S is at most sktk ≤ k2k. The proof is concluded by
taking a suitable δ = δ(ε) > 0 that satisfies δns+t ≤ αγ

(
n
s

)(
n
t

)
/|F|k2k for large enough values

of n. Note that indeed δ−1 is polynomial in ε−1. J

5 Multi-dimensional matrices over arbitrary alphabets

As opposed to the polynomial dependence in the above results on binary matrices, Fischer
and Rozenberg [15] showed that in analogous results for ternary matrices, as well as binary
three-dimensional matrices, the dependence is super-polynomial in general. The proof builds
on a construction of Behrend [10]. For the ternary case, it gives the following.

I Theorem 13 ([15]). There exists a (finite) family F of 2× 2 binary matrices that is closed
under permutations and satisfies the following. For any small enough ε > 0, there exists an
arbitrarily large n×n ternary matrix M that contains εn2 pairwise-disjoint copies of matrices
from F , yet the total number of submatrices from F in M is no more than ε−c log εn4 where
c > 0 is an absolute constant.

Theorem 13 implies that an analogue of Theorem 2 with polynomial dependence cannot
be obtained when the alphabet is bigger than binary, even when F is a small finite family

APPROX/RANDOM’17

25:12 Efficient Removal Lemmas for Matrices

that is closed under permutations. In Subsection 5.1 we describe another construction that
establishes Theorem 13, which is slightly simpler than the original construction in [15].

In what follows, we focus on the problem of finding a “weak” removal lemma analogous
to Theorem 2 for matrices in more than two dimensions over an arbitrary alphabet. Here
we do not try to optimize the dependence between the parameters, but rather to show that
such a removal lemma exists. Note that in two dimensions this removal lemma follows from
Theorem 1, but our results here suggest a direction to prove a weak high dimensional removal
lemma without trying to generalize the heavy machinery used in [2] to the high dimensional
setting. Our main result here states that this problem is equivalent in some sense to the
problem of showing that if a hypermatrix M contains many pairwise-disjoint copies of a
hypermatrix A, then it contains a “wide” copy of A; more details are given later. In what
follows, we use the term d-matrix to refer to a matrix in d dimensions. An (n, d)-matrix is a
d-matrix whose dimensions are n× · · · × n.

A weak removal lemma for families of d-matrices that are closed under permutations follows
easily from the hypergraph removal lemma [19, 22, 21, 27] using a suitable construction.

I Proposition 14. Let Γ be an arbitrary alphabet and let F be a finite family of d-matrices
over Γ that is closed under permutations (in all d coordinates). For any ε > 0 there exists
δ > 0 such that the following holds. If an (n, d)-matrix M over Γ contains εnd pairwise
disjoint copies of d-matrices from F , then M contains δns1+···+sd copies of some s1× . . .×sd
matrix A ∈ F .

Note that Theorem 13 implies that the dependence of δ−1 on ε−1 in Proposition 14 cannot
be polynomial. The question whether the statement of Proposition 14 holds for any finite
family F is open for d-matrices with d > 2. Here we state the question in the following
equivalent but simpler form.

I Problem 15. Let d > 2 be an integer. Is it true that for any alphabet Γ, s1 × . . . × sd
matrix A over Γ and ε > 0 there exists δ > 0, such that for any (n, d)-matrix M over Γ
containing εnd pairwise-disjoint copies of A, the total number of A-copies in M is at least
δns1+···+sd?

Note that Theorem 2 settles the two-dimensional binary case of Problem 15 with δ−1

polynomial in ε−1, and Theorem 1 settles the two-dimensional case over any alphabet. On
the other hand, δ−1 cannot be polynomial in ε−1 if |Γ| > 2 or d > 2.

Our main theorem in this domain shows that Problem 15 is equivalent to another
statement that looks more accessible. We need the following definition to describe it. Let
M : [n1] × . . . × [nd] → Γ and let S be the submatrix of M on the indices {r1

1, . . . , r
1
s1
} ×

. . .× {rd1 , . . . , rdsd
} where rij < rij+1 for any 1 ≤ i ≤ d, 1 ≤ j ≤ si − 1. The (i, j)-width of S

(for 1 ≤ i ≤ d and 1 ≤ j ≤ si − 1) is (rij+1 − rij)/ni.

I Theorem 16. The following statements are equivalent for any d ≥ 2.
1. For any alphabet Γ, s1 × . . .× sd matrix A over Γ and ε > 0 there exists δ > 0 such that

for any (n, d)-matrix M that contains εnd pairwise disjoint copies of A, the total number
of A-copies in M is at least δns1+···+sd .

2. For any alphabet Γ, s1 × . . . × sd matrix A over Γ and ε > 0 there exists δ > 0 such
that for any (n, d)-matrix M that contains εnd pairwise disjoint copies of A, and any
1 ≤ i ≤ d, 1 ≤ j ≤ si, there exists an A-copy in M whose (i, j)-width is at least δ.

The proofs of the statements here are given, for simplicity, only for two dimensional
matrices, but they translate directly to higher dimensions. The only major difference in

N. Alon and O. Ben-Eliezer 25:13

the high dimensional case is the use of the hypergraph removal lemma instead of the graph
removal lemma. Due to space considerations, the proof of Theorem 16 is relegated to
Appendix A, and here we only give the proof of Proposition 14.

Some definitions are required for the proof of Proposition 14. An s× t reordering σ is a
permutation of [s]× [t] that is a Cartesian product of two permutations σ1 : [s]→ [s] and
σ2 : [t]→ [t]. Given an s× t matrix A, the s× t matrix σ(A) is the result of the following
procedure: First reorder the rows of A according to the permutation σ1 and then reorder the
columns of the resulting matrix according to the permutation σ2.

Proof of Proposition 14. Let k(F) denote the largest row or column dimension of matrices
from F . Let ε > 0 and let M be an n× n matrix over Γ that contains εn2 pairwise-disjoint
copies of matrices from F . In particular, there is an s× t matrix A ∈ F such that M contains
εn2/|F| pairwise-disjoint copies of A.

We construct an (s+ t)-partite graph G on (s+ t)n vertices as follows: There are s row
parts R1, . . . , Rs and t column parts T1, . . . , Tt, each containing n vertices. The vertices of
Ri (Ci) are labeled ri1, . . . , rin (ci1, . . . , cin respectively). Two vertices rai and rbj (or cai and cbj)
with a 6= b are connected by an edge iff i 6= j. rai and cbj are connected iff M(i, j) = A(a, b).

We now show that there exists a bijection between copies of Ks+t in G and couples
(S, σ) where S is an s× t submatrix of M and σ is an s× t reordering such that σ(S) = A.
Indeed, take the following mapping: A couple (S, σ), where S is the submatrix of M on
{a1, . . . , as} × {b1, . . . , bt} with a1 < . . . < as and b1 < . . . < bt and σ = σ1 × σ2, is mapped
to the induced subgraph of G on {rσ1(1)

a1 , . . . , r
σ1(s)
as , c

σ2(1)
b1

, . . . , c
σ2(t)
bt
}.

It is not hard to see that (S, σ) is mapped to a copy of Ks+t if and only if σ(S) is equal
to A. On the other hand, every copy of Ks+t in G has exactly one vertex in each row part
and in each column part, and there exists a unique couple (S, σ) mapped to it.

There exist εn2/|F| pairwise-disjoint A-copies in M that are mapped (with the identity
reordering) to edge-disjoint copies of Ks+t in G. By the graph removal lemma, there exists
δ > 0 such that at least a δ-fraction of the subgraphs of G on s + t vertices are cliques.
Therefore, at least a δ-fraction of the possible couples (S, σ) (where S is an s× t submatrix
of M and σ is an s× t reordering) satisfy σ(S) = A, concluding the proof. J

The proof of Theorem 16 is given in Appendix A.

5.1 Lower bound
In this subsection we give an alternative constructive proof of Theorem 13. Our main tool is
the following result in additive number theory from [1], based on a construction of Behrend
[10].

I Lemma 17 ([1, 10]). For every positive integer m there exists a subset X ⊆ [m] =
{1, . . . ,m} with no non-trivial solution to the equation x1 + x2 + x3 = 3x4, where X is of
size at least

|X| ≥ m

e20
√

logm
. (1)

Proof of Theorem 13. Consider the family F = {A,B} where

A =
(

1 0
0 1

)
, B =

(
0 1
1 0

)
,

and observe that F is closed under permutations. Let m be a positive integer divisible by 10
and let X ⊆ [m/10] be a subset with no non-trivial solution to the equation x1 +x2 +x3 = 3x4

APPROX/RANDOM’17

25:14 Efficient Removal Lemmas for Matrices

that is of maximal size. We construct the following m × m ternary matrix M . For any
1 ≤ i ≤ m/5 and any x ∈ X we put a copy of A in M as follows:

M(i, i+ x) = M(m/2 + i+ 2x,m/2 + i+ 3x) = 1
M(i,m/2 + i+ 3x) = M(m/2 + i+ 2x, i+ x) = 0.

We set all other entries of M to 2. Let A be the collection of q = m|X|/5 ≥ m2/50e20
√

logm

pairwise disjoint copies of A in M that are created as above. Note that all A-copies in M
are separated by {n/2} × {n/2}, where there are two opposite quarters (with respect to
the separation) that do not contain the entry 0 and the two other opposite quarters do not
contain 1. Hence, every A-copy must contain one entry from each quarter, and M does not
contain copies of B. The main observation is that all of the A-copies in M are actually copies
from A, so M contains exactly q A-copies.

To see this, suppose that the rows of an A-copy in M are i and j + n/2 for some
1 ≤ i, j ≤ n/2, then there exist x1, x2, x3, x4 ∈ X such that the entries of the copy were
taken from locations (i, i+ x1), (i,m/2 + i+ 3x2), (m/2 + j, j − x3), (m/2 + j,m/2 + j + x4)
in M and so we have i+ x1 = j − x3 and i+ 3x2 = j + x4. Reordering these two equations
we get that 3x2 = x1 + x3 + x4, implying that x1 = x2 = x3 = x4 and j = i+ 2x1, so the
above A-copy is indeed in A.

Let n be an arbitrarily large positive integer divisible by m. Given M as above, we create
an n×n ‘blowup’ matrixN as follows: For any 1 ≤ i, j ≤ n, N(i, j) = M(bim/nc, bjm/nc). N
can also be seen as the result of replacing any entry e inM with an n/m×n/mmatrix of entries
equal to e. The total number of A-copies in N is exactly (n/m)4q = n4|X|/5m3, whereas
the maximum number of pairwise disjoint A-copies in N is exactly (n/m)2q = n2|X|/5m.
Assuming that ε > 0 is small enough and picking m to be the smallest integer divisible by 10
and larger than εc log ε for a suitable absolute constant c > 0 gives that |X|/5m > ε, but the
number of A-copies in N is at most n4|X|/5m3 ≤ n4/m2 < ε−c log εn4 as needed. J

6 Concluding remarks

Generally, understanding property testing seems to be easier for objects that are highly
symmetric. A good example of this phenomenon is the problem of testing properties of
(ordered) one-dimensional binary vectors. There are some results on this subject, but it is
far from being well understood. On the other hand, the binary vector properties P that are
invariant under permutations of the entries (these are the properties in which for any vector
v that satisfies P , any permutation of the entries of v also satisfies P) are merely those that
depend only on the length and the Hamming weight of a vector. This makes the task of
testing these properties trivial.

A central example of the symmetry phenomenon is the well investigated subject of
property testing in (unordered) graphs, that considers only properties of functions from([n]

2
)
to {0, 1} that are invariant under permutations of

([n]
2

)
induced by permutations on

[n]. That is, if a labeled graph G satisfies some graph property, then any relabeling of its
vertices results in a graph that also satisfies this property. Indeed, the proof of the only
known general result on testing properties of ordered graphs (here the functions are generally
not invariant under permutations), given in [2], is substantially more complicated than the
proof of its unordered analogue. See [25] for further discussion on the role of symmetries in
property testing.

In general, matrices (with row and column order) do not have any symmetries. Therefore,
the above reasoning suggests that proving results on the testability of matrix properties is

N. Alon and O. Ben-Eliezer 25:15

likely to be harder than proving similar results on properties of matrices where only the rows
are ordered (such properties are invariant under permutations of the columns), which might
be harder in turn than proving the same results for properties of matrices without row and
column orders, i.e. bipartite graphs, as these properties are invariant under permutations of
both the rows and the columns.

Theorem 2 is a weak removal lemma for binary matrices with row and column order,
while Theorem 3 is an induced removal lemma for binary matrices without row and column
order, and our generalization of it, Theorem 5, is an induced removal lemma for binary
matrices with a row order but without a column order. It will be very interesting to settle
Problem 4, that asks whether a polynomial induced removal lemma exists for binary matrices
with row and column orders.

It will be interesting to expand our knowledge of matrices in higher dimensions and of
ordered combinatorial objects in general. Proposition 14 is a non-induced removal lemma
for (multi-dimensional) matrices without row and column orders. It will be interesting to
get results of this type for less symmetric objects, ultimately for ordered multi-dimensional
matrices. We believe that providing a direct solution (that does not go through Theorem 1) for
the following seemingly innocent problem is of interest, and might help providing techniques
to help settling Problem 15 in general. In what follows, the height of a 2× 2 submatrix S in
an n× n matrix M is the difference between the indices of the rows of S in M , divided by n.

I Problem 18. Let A =
(

0 1
2 3

)
and suppose that an n× n matrix contains εn2 pairwise

disjoint copies of A. Show (without relying on Theorem 1) that there exists δ = δ(ε) such
that M contains an A-copy with height at least δ.

The three dimensional analogue of this problem is obviously also of interest. Here Theorem 1
cannot be applied, so currently we do not know whether such a δ = δ(ε) that depends only on
ε exists. Solving the three-dimensional analogue will settle Problem 15 when the forbidden
hypermatrix has dimensions 2× 2× 2, and the techniques might lead to settling Problem 15
in its most general form.

As a final remark, in the results in which δ−1 is polynomial in ε−1 we have not tried to
obtain tight bounds on the dependence, and it may be interesting to do so.

Acknowledgements. The authors wish to thank the anonymous reviewers for useful feed-
back.

References
1 N. Alon. Testing subgraphs in large graphs. Random Structures and Algorithms, 21:359–

370, 2002.
2 N. Alon, O. Ben-Eliezer, and E. Fischer. Testing hereditary properties of ordered graphs

and matrices. arXiv, 1704:02367, 2017.
3 N. Alon, R.A. Duke, H. Lefmann, V. Rödl, and R. Yuster. The algorithmic aspects of the

regularity lemma. Journal of Algorithms, 16:80–109, 1994.
4 N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy. Efficient testing of large graphs.

Combinatorica, 20:451–476, 2000.
5 N. Alon, E. Fischer, and I. Newman. Efficient testing of bipartite graphs for forbidden

induced subgraphs. SIAM J. Comput., 37:959–976, 2007.
6 N. Alon and J. Fox. Easily testable graph properties. Combin. Probab. Comput, 24:646–657,

2015.

APPROX/RANDOM’17

25:16 Efficient Removal Lemmas for Matrices

7 N. Alon, M. Krivelevich, I. Newman, and M. Szegedy. Regular languages are testable with
a constant number of queries. SIAM J. Comput., 30:1842–1862, 2001.

8 N. Alon and A. Shapira. A characterization of easily testable induced subgraphs. Combin.
Probab. Comput., 15:791–805, 2006.

9 N. Alon and A. Shapira. A characterization of easily testable induced subgraphs. SIAM J.
Comput., 37:1703–1727, 2008.

10 F. Behrend. On sets of integers which contain no three terms in arithmetic progression.
Proc. Nat. Acad. Sci., 32:331–332, 1946.

11 O. Ben-Eliezer, S. Korman, and D. Reichman. Deleting and Testing Forbidden Patterns
in Multi-Dimensional Arrays. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and
Anca Muscholl, editors, 44th International Colloquium on Automata, Languages, and Pro-
gramming (ICALP 2017), volume 80 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 9:1–9:14, Dagstuhl, Germany, 2017. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik. doi:10.4230/LIPIcs.ICALP.2017.9.

12 D. Conlon and J. Fox. Bounds for graph regularity and removal lemmas. Geom. Funct.
Anal., 22:1191–1256, 2012.

13 D. Conlon and J. Fox. Graph removal lemmas. In Surveys in Combinatorics, pages 1–49.
Cambridge Univ. Press, 2013.

14 E. Fischer and I. Newman. Testing of matrix-poset properties. Combinatorica, 27:293–327,
2007.

15 E. Fischer and E. Rozenberg. Lower bounds for testing forbidden induced substructures in
bipartite-graph-like combinatorial objects. In Proc. 10th International Workshop, APPROX
2007, and 11th International Workshop, RANDOM 2007, Princeton, NJ, USA, August 20-
22, 2007, pages 464–478. Springer Berlin, Heidelberg, 2007.

16 J. Fox. A new proof of the graph removal lemma. Ann. of Math., 174:561–579, 2011.
17 L. Gishboliner and A. Shapira. Removal lemmas with polynomial bounds. In Proceedings

of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, pages
510–522. ACM, 2017. doi:10.1145/3055399.3055404.

18 O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning
and approximation. J. ACM, 45:653–750, 1998.

19 T. Gowers. A new proof of Szemerédi’s theorem. Geom. Funct. Anal., 11:465–588, 2001.
20 L. Lovász and B. Szegedy. Regularity partitions and the topology of graphons. In An

irregular mind, pages 415–445. János Bolyai Math. Soc., Budapest, 2010.
21 B. Nagle, V. Rődl, and M. Schacht. The counting lemma for regular k-uniform hypergraphs.

Random Structures and Algorithms, 28:113–179, 2006.
22 V. Rödl and J. Skokan. Regularity lemma for uniform hypergraphs. Random Structures

and Algorithms, 25:1–42, 2004.
23 R. Rubinfeld and M. Sudan. Robust characterizations of polynomials with applications to

program testing. Siam J. Comput., 25:252–271, 1996.
24 I. Z. Ruzsa and E. Szemerédi. Triple systems with no six points carrying three triangles.

In Combinatorics, Vol. II, pages 939–945. Coll. Math. Soc. J. Bolyai 18, North-Holland,
Amsterdam-New York, 1978.

25 M. Sudan. Invariance in property testing. In Property Testing: Current Research and
Surveys, pages 211–227. Springer Brelin, Heidelberg, 2010.

26 E. Szemerédi. Regular partitions of graphs. In Problèmes Combinatoires et Théorie des
Graphes, pages 399–401. Colloq. Internat. CNRS 260, Orsay, 1976.

27 T. Tao. A variant of the hypergraph removal lemma. J. Combin. Theory Ser. A, 113:1257–
1280, 2006.

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.9
http://dx.doi.org/10.1145/3055399.3055404

N. Alon and O. Ben-Eliezer 25:17

A Proof of Theorem 16

The proof is given for the two-dimensional case, but it translates to the high-dimensional
case naturally (using the hypergraph removal lemma instead of the graph removal lemma).
We may and will assume throughout the proof that M is an n× n matrix where n is large
enough with respect to ε. The terms i-height and j-width correspond to (1, i)-width and
(2, j)-width, respectively, in the definition given before the statement of Theorem 16.

Proof of Theorem 16. We start with deriving Statement 2 from Statement 1; this direction
is quite straightforward, while the other direction is more interesting. Fix an s× t matrix A.
Let ε > 0 and assume that Statement 1 holds. There exists δ = δ(ε), such that if M contains
εn2 pairwise-disjoint A-copies then it contains δns+t copies of A. To prove Statement 2 we
can pick δ′ = δ′(ε) > 0 small enough such that for any large enough n× n matrix M , any
1 ≤ i ≤ s − 1 and any 1 ≤ j ≤ t − 1, the fraction of s × t submatrices with i-height (or
j-width) smaller than δ′ among all s× t submatrices is at most δ/2. Fix an 1 ≤ i ≤ s− 1.
This choice of δ′ implies that any matrix M containing εn2 pairwise disjoint A-copies also
contains an A-copy with i-height at least δ′. Similarly, for any 1 ≤ j ≤ t − 1 there is an
A-copy with j-width at least δ′.

Next we assume that Statement 2 holds and prove Statement 1. Fix an s × t matrix
A over an alphabet Γ, let ε > 0 and let M be a large enough n × n matrix containing a
collection A0 of εn2 pairwise disjoint A-copies. We will show that there exist ε∗ > 0 that
depends only on ε, sets X,Y of row and column separators respectively of sizes s− 1 and
t − 1 and a collection of ε∗n2 disjoint A-copies separated by X × Y in M . Then we will
combine a simpler variant of the construction used in the proof of Proposition 14 with the
graph removal lemma to show that M contains δns+t copies of A for a suitable δ(ε) > 0.

The number of A-copies in M does not depend on the alphabet, so we may consider A
and M as matrices over the alphabet Γ′ = Γ ∪ {α} for some α /∈ Γ, even though all symbols
in A and M are from Γ. Without loss of generality we assume that no two entries in A are
equal.

Let X0 = φ, ε0 = ε and let M0 be the following n× n matrix over Γ′: All A-copies in A0
appear in the same locations in M0, and all other entries of M0 are equal to α. Clearly, any
A-copy in M0 also appears in M . Next, we construct iteratively for any i = 1, . . . , s− 1 an
n× n matrix Mi over Γ′ that contains a collection Ai of εin2 pairwise disjoint copies of A
where εi > 0 depends only on εi−1, such that all A-copies in Mi also exist in Mi−1. We also
maintain a set Xi of row separators whose elements are x1 < . . . < xi, such that any entry
of Mi between xj−1 and xj for j = 1, . . . , i (where we define x0 = 0, xs = n) is either equal
to one of the entries of the j-th row of A or to α.

The construction of Mi given Mi−1 is done as follows. By Statement 2, there exists
δi = δi(εi−1) such that any matrix M ′ over Γ′ containing at least εi−1n

2/2 copies of A also
contains a copy of A with i-height at least δi. We start with a matrix M ′ equal to Mi−1 and
an empty Ai, and as long as M ′ contains a copy of A with i-height at least δi, we add it to
Ai and modify (in M ′) all entries of all A-copies from Ai−1 that intersect it to α. By the
separation that Xi−1 induces on M ′, each such copy has its j-th row between xj−1 and xj
for any 1 ≤ j ≤ i− 1.

This process might stop only when at least εi−1n
2/2 of the copies from Ai−1 in M ′ have

one of their entries modified. Since in each step at most st copies of A are deleted from
M ′, in the end Ai contains at least εi−1n

2/2st pairwise disjoint copies of A with i-height at
least δi. Pick uniformly at random a row index xi > xi−1. The probability that a certain
copy of A in Ai has its i-th row at or above xi and its (i+ 1)-th row below xi is at least δi.

APPROX/RANDOM’17

25:18 Efficient Removal Lemmas for Matrices

Therefore, the expected number of A-copies in Ai with this property is at least εin2 with
εi = δiεi−1/2st, so there exists some xi such that at least εin2 A-copies in Ai have their first
i+ 1 rows separated by Xi = Xi−1 ∪ {xi}; delete all other copies from Ai. We construct Mi

as follows: All A-copies from Ai appear in the same locations in Mi, and all other entries of
Mi are equal to α.

After iteration s − 1 we have a matrix Ms−1 with εs−1n
2 copies of A separated by

X = Xs−1. We apply the same process in columns instead of rows, starting with the matrix
Ms−1. The resulting matrix M∗ contains ε∗n2 pairwise disjoint copies of A separated by
X × Y where Y consists of the column separators y1 < . . . < yt−1, ε∗ depends on ε, and M∗
only contains A-copies that appeared in the original M .

Finally, construct an (s + t)-partite graph G on 2n vertices as follows: The row parts
are R1, . . . , Rs and the column parts are C1, . . . , Ct where Ri (Ci) contains vertices labeled
xi−1 + 1, . . . , xi (yi−1 + 1, . . . , yi respectively) with x0 = y0 = 0, xs = yt = n. Any two row
(column) vertices not in the same part are connected. Vertices a ∈ Ri, b ∈ Cj are connected
if and only if M∗(a, b) = A(i, j). Clearly there exists a bijection between A-copies in M∗ and
Ks+t copies in G that maps disjoint A-copies to edge disjoint Ks+t-copies in G, so it contains
ε∗n2 edge disjoint (s+ t)-cliques. By the graph removal lemma there exists δ = δ(ε∗) > 0
such that a δ-fraction of the subgraphs of G on s+ t vertices are cliques. Hence at least a
δ-fraction of the s× t submatrices of M are equal to A. J

The String of Diamonds Is Tight for Rumor
Spreading∗

Omer Angel1, Abbas Mehrabian2, and Yuval Peres3

1 Department of Mathematics, University of British Columbia, Vancouver, BC,
Canada
angel@math.ubc.ca

2 Department of Computer Science, University of British Columbia, Vancouver,
BC, Canada
abbasmehrabian@gmail.com

3 Microsoft Research, Redmond, WA, USA
peres@microsoft.com

Abstract
For a rumor spreading protocol, the spread time is defined as the first time that everyone learns
the rumor. We compare the synchronous push&pull rumor spreading protocol with its asyn-
chronous variant, and show that for any n-vertex graph and any starting vertex, the ratio between
their expected spread times is bounded by O

(
n1/3log2/3 n

)
. This improves the O(

√
n) upper

bound of Giakkoupis, Nazari, and Woelfel (in Proceedings of ACM Symposium on Principles of
Distributed Computing, 2016). Our bound is tight up to a factor of O(logn), as illustrated by
the string of diamonds graph.

1998 ACM Subject Classification C.2.1 Network Architecture and Design, G.2.2 Graph Theory,
G.3 Probability and Statistics

Keywords and phrases randomized rumor spreading, push&pull protocol, asynchronous time
model, string of diamonds

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.26

1 Introduction

Randomized rumor spreading is an important paradigm for information dissemination in
networks with numerous applications in network science, ranging from spreading information
in the WWW and Twitter to spreading viruses and diffusion of ideas in human communities.
A well studied rumor spreading protocol is the (synchronous) push&pull protocol, introduced
by Demers, Greene, Hauser, Irish, Larson, Shenker, Sturgis, Swinehart, and Terry [4] and
popularized by Karp, Schindelhauer, Shenker, and Vöcking [11].

I Definition 1 (Synchronous push&pull protocol). Suppose that one node s in a network
G is aware of a piece of information, the ‘rumor’, and wants to spread it to all nodes

∗ This work started in the Random Geometric Graphs and Their Applications to Complex Networks
workshop held in the Banff International Research Station in November 2016. The authors thank the
workshop organizers and BIRS for making it happen. The first author is supported by NSERC. The
second author was supported by an NSERC Postdoctoral Fellowship and a Simons-Berkeley Research
Fellowship. Part of this work was done while he was visiting the Simons Institute for the Theory of
Computing at UC Berkeley. This work was completed at Microsoft Research in Redmond. The authors
thank Microsoft for their support.

© Omer Angel, Abbas Mehrabian, and Yuval Peres;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 26; pp. 26:1–26:9

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.26
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

26:2 The String of Diamonds Is Tight for Rumor Spreading

quickly. The protocol proceeds in rounds; in each round 1, 2, . . . , all vertices perform actions
simultaneously. That is, each vertex x calls a random neighbor y, and the two share any
information they may have: If x knows the rumor and y does not, then x tells y the rumor
(a push operation), and if x does not know the rumor and y knows it, y tells x the rumor (a
pull operation). Note that this is a synchronous protocol, e.g. a vertex that receives a rumor
in a certain round cannot send it on in the same round. The synchronous spread time of
G, denoted by S(G, s), is the first time that everyone knows the rumor. Note that this is a
discrete random variable.

A point to point communication network can be modeled as an undirected graph: the
nodes represent the processors and the links represent communication channels between
them. Studying rumor spreading has several applications to distributed computing in such
networks, of which we mention just two (see [7] also). The first is in broadcasting algorithms:
a single processor wants to broadcast a piece of information to all other processors in the
network. The push&pull protocol has several advantages over other protocols: it puts less
load on the edges than the naive flooding protocol; it is simple and naturally distributed
(each node makes a simple local decision in each round; no knowledge of the global state
or topology is needed; no internal states are maintained); it is scalable (the protocol is
independent of the size of network: it does not grow more complex as the network grows)
and it is robust (the protocol tolerates random node/link failures without the need for error
recovery mechanisms).

A second application comes from the maintenance of databases replicated at many sites,
e.g., yellow pages, name servers, or server directories. Updates to the database may be
injected at various nodes, and these updates must propagate to all nodes in the network.
In each round, a processor communicates with a random neighbor and they share any new
information, so that eventually all copies of the database converge to the same contents.
See [4] for details.

The above protocol assumed a synchronized model, i.e. all nodes take action simultaneously
at discrete time steps. In many applications and certainly for modeling information diffusion
in social networks, this assumption is not realistic. Boyd, Ghosh, Prabhakar, Shah [3]
proposed an asynchronous time model with a continuous time line. This too is a randomized
distributed algorithm for spreading a rumor in a graph, defined as follows. An exponential
clock with rate λ is a clock that, once turned on, rings at times of a Poisson process with
rate λ.

I Definition 2 (Asynchronous push&pull protocol). Given a graph G, independent exponential
clocks of rate 1 are associated with the vertices of G, one to each vertex. Initially, one vertex
s of G knows the rumor, and we turn on all clocks. Whenever the clock of a vertex x rings,
it calls a random neighbor y: if x knows the rumor and y does not, then x tells y the rumor
(a push operation); if x does not know the rumor and y knows it, y tells x the rumor (a pull
operation). The asynchronous spread time of G, denoted by A(G, s), is the first time that
everyone knows the rumor.

Rumor spreading protocols in this model turn out to be closely related to Richardson’s
model for the spread of a disease [12, 6]. For a single rumor, the push&pull protocol is
almost equivalent to the first passage percolation model introduced by Hammersley and
Welsh [9] with edges having independent exponential weights (see also the survey [2]). The
difference between the push&pull model and first passage percolation stems from the fact
that in the rumor spreading models each vertex contacts one neighbor at a time, and so the
rate at which x pushes the rumor to y is inversely proportional to the degree of x. A rumor

O. Angel, A. Mehrabian, and Y. Peres 26:3

...

Figure 1 The string of diamonds graph.

can also be pulled from x to y at rate determined by the degree of y. On regular graphs,
the asynchronous push&pull protocol, Richardson’s model, and first passage percolation
are essentially the same process, assuming appropriate parameters are chosen. For general
graphs, the equivalence is to first passage percolation with exponential edge weights that are
independent, but have different means. Hence, the degrees of vertices play a different role
here than they do in Richardson’s model or first passage percolation. A collection of known
bounds for the average spread times of many graph classes is given in [1, Table 1].

Doerr, Fouz, and Friedrich [5] experimentally compared the spread time in the two time
models. They state that ‘Our experiments show that the asynchronous model is faster on all
graph classes [considered here].’ The first general relationship between the spread times of
the two variants was given in [1], where it was proved using a coupling argument that

E [S(G, s)]
E [A(G, s)] = Õ

(
n2/3

)
.

Here Õ (and Ω̃ below) allow for poly-logarithmic factors. Building on the ideas of [1] and
using more involved couplings, Giakkoupis, Nazari and Woelfel [8] improved this bound to
O
(
n1/2). In this note we improve the bound to Õ(n1/3). A graph was given in [1] with

E [S(G, s)]
E [A(G, s)] = Ω̃

(
n1/3

)
,

known as the string of diamonds (see Figure 1), which shows the exponent 1/3 is optimal.
We use a rather different coupling than previous ones. Our coupling is motivated by

viewing rumor spreading as a special case of first passage percolation. This novel approach
involves carefully intertwined Poisson processes. Our proof also yields a natural interpretation
for the exponent 1/3: using non-trivial counting arguments, we prove that the longest distance
the rumor can traverse during a unit time interval in the asynchronous protocol is O(n1/3)
(see the proof of Lemma 6), which is tight.

Regarding lower bounds, it is proved in [8] that E [A(G, s)] ≤ E [S(G, s)] +O(logn). We
will use the following bounds that hold for all G and s (see [1, Theorem 1.3]):

logn/5 ≤ E [A(G, s)] ≤ 4n .

In this paper n always denotes the number of vertices of the graph, and all logarithms are in
natural base.

1.1 Our results
For an n-vertex graph G and a starting vertex s, recall A(G, s) and S(G, s) denote the
asynchronous and synchronous spread times, respectively. Our main theorem is the following.

APPROX/RANDOM’17

26:4 The String of Diamonds Is Tight for Rumor Spreading

I Theorem 3. Given any K > 0, there is a C > 0 such that for any (G, s) and any t ≥ 1
we have

P
[
S(G, s) > C(t+ t2/3n1/3 logn)

]
≤ P

[
A(G, s) > t

]
+ Cn−K .

I Corollary 4. For any (G, s), we have E [S(G, s)] = O
(
E [A(G, s)]2/3 n1/3 logn

)
.

Proof. Apply Theorem 3 with K = 1 and t = 3E [A(G, s)] ≤ 12n. By Markov’s inequality,
P
[
S(G, s) > C(t+ t2/3n1/3 logn)

]
≤ 1/3 + C/n ≤ 1/2 for n large enough. Since t = O(n),

this implies the median of S(G, s), denoted by M , is O(t2/3n1/3 logn). To complete the
proof we need only show that E [S(G, s)] = O(M).

Consider the protocol which is the same as synchronous push&pull except that, if the rumor
has not spread to all vertices by time M , then the new process reinitializes. Coupling the
new process with push&pull, we obtain for any i ∈ {0, 1, 2, . . . } that P [S(G, s) > iM] ≤ 2−i.
Thus,

E [S(G, s)] =
∞∑
i=0

P [S(G, s) > i] ≤
∞∑
i=0

M × P [S(G, s) > iM] ≤M ×
∞∑
i=0

2−i = 2M. J

Since for all G and s, E [A(G, s)] = Ω(logn), we also obtain:

I Corollary 5. For any (G, s) we have

E [S(G, s)]
E [A(G, s)] = O

(
n1/3log2/3 n

)
.

This corollary is tight up to logarithmic factors. Indeed, let G be the string of diamonds
(see Figure 1) with m diamonds, each consisting of k paths of length 2, and let s be an
end vertex of it. Then, S(G, s) ≥ 2m deterministically and E [A(G, s)] = O(logn+m/

√
k)

(see [1] for the proof). If we let m = Θ(n1/3(logn)2/3) and k = Θ((n/ logn)2/3), we obtain a
graph with

E [S(G, s)]
E [A(G, s)] = Ω (n/logn)1/3

,

which means Corollary 5 is tight up to an O(logn) factor.

2 Proof of Theorem 3

For the rest of the paper we fix the graph G and the starting vertex s. Let Γ(s, v) be the
set of all simple paths in G from s to v. For a path γ, let E(γ) be its set of edges and
|γ| := |E(γ)| denote its length. Let deg(u) denote the degree of a vertex u.

For any ordered pair (u, v) of adjacent vertices, let Yu,v be an exponential random
variable with rate 1/deg(u). Assume these random variables are mutually independent. In
the asynchronous protocol, since each vertex u calls any adjacent v at a rate of 1/ deg(u), we
can write:

A := A(G, s) = max
v∈V

min
γ∈Γ(s,v)

∑
xy∈E(Γ)

min{Yx,y, Yy,x}. (1)

Here Yx,y is the time it takes after one of x, y learns the rumor before x calls y.

O. Angel, A. Mehrabian, and Y. Peres 26:5

For any positive integer L, consider the restriction to short paths

AL := max
v∈V

min
γ∈Γ(s,v)
|γ|≤L

∑
xy∈E(Γ)

min{Yx,y, Yy,x}.

For any L we have AL ≥ A. To bound A from below, we have the following “with high
probability” stochastic domination result.

I Lemma 6. There exists a C > 0 such that for any t ≥ 1 and L ≥ Ct2/3n1/3 we have

P [AL > t] ≤ P [A > t] + e−L .

Proof. We show that, in the asynchronous protocol, with probability 1− e−L, during the
interval [0, t], the rumor does not travel along any simple path of length L. We prove this by
taking a union bound over all paths of length L. As there is no simple path of length n or
more, we will assume L < n.

Consider a path γ with vertices γ0, γ1, . . . , γL. In order for the rumor to travel along γ,
it is necessary that there are calls along the edges of γ in order, at some sequence of times
0 ≤ t1 < · · · < tL ≤ t. Since along each edge the rumor can travel via a push or a pull, the
rate of calls along an edge xy is 1/ deg(x) + 1/ deg(y). Since the volume of the L-dimensional
simplex of possible sequences (ti) is tL/L!, the probability of such a sequence of calls along
the path γ is at most

tL

L!

L∏
i=1

(
1

deg(γi−1) + 1
deg(γi)

)
≤
(

2et
L

)L L∏
i=1

1
min(deg(γi−1), deg(γi))

. (2)

In light of this, define

Q(γ) :=
|γ|∏
i=1

1
min(deg(γi−1), deg(γi))

.

Our objective is therefore a bound for
∑
|γ|=LQ(γ).

For a path γ of length L, consider the sequence of degrees (deg(γi))Li=0. We say the
sequence has a local minimum at i if deg(γi−1) > deg(γi) ≤ deg(γi+1), and a local maximum
at i if deg(γi−1) ≤ deg(γi) > deg(γi+1). In both of these definitions we use the convention
that inequalities involving γ−1 or γL+1 always hold. The edge set of γ can be partitioned
into segments starting and ending at local maxima. For example, suppose L = 7 and the
degree sequence is

(deg(γ0), deg(γ1),deg(γ2), deg(γ3), deg(γ4), deg(γ5), deg(γ6),deg(γ7)) = (5, 5, 7,3, 4, 4,2, 5).

Then the segments are (γγγ0, γ1, γ2), (γ2,γγγ3, γ4, γ5), and (γ5,γγγ6, γ7). Thus, in each segment
the degrees strictly decrease to a local minimum (bolded in the example), then weakly
increase up to the local maximum at the end of the segment. (The first and last segments
are special in that the local minimum could be at the beginning and end of the segment,
respectively.) Henceforth, we use the term segment for a path with this property.

Each path gives rise to an ordered sequence of segments. Denote the segments of γ by
σ1, . . . , σs, and note that s ≤ L/2 + 1, since each segment except possibly the first and the
last one contains at least two edges. The next observation is that we have Q(γ) =

∏
Q(σi);

that is, the Q value of a path equals the product of Q values of its segments (this is true for
any partition of a path into sub-paths). Note that not every sequence of segments can arise

APPROX/RANDOM’17

26:6 The String of Diamonds Is Tight for Rumor Spreading

in this way: each segment must start at the last vertex of the previous segment. Since we are
interested only in simple paths, the segments are otherwise disjoint. Thus for a collection of
segments there is at most one order in which it could arise. Therefore,

∑
|γ|=L

Q(γ) ≤
L/2+1∑
s=1

∑
|σ1|+···+|σs|=L

1
s!

s∏
i=1

Q(σi) , (3)

where the last sum is over s-tuples of segments whose lengths add up to L, but without the
condition that they form a path (that is why we have an inequality rather than an equality).

We now bound the right-hand-side of (3). We say a segment has type (x, `−, `+) ∈
V (G)× Z× Z if the local minimum is at a vertex x (called the center of the segment), and
the segment has `− edges before x and `+ edges after x. (The example path above had s = 3
segments, of types (γ0, 0, 2), (γ3, 1, 2), and (γ6, 1, 1) respectively.) For a segment σ, let π(σ)
denote its type, and let T denote the set of all possible types.

For bounding the right-hand-side of (3), we first fix s and bound the number of options
for the sequence (π(σ1), . . . , π(σs)). There are n!/(n− s)! choices for the centers (the number
of ways to choose s ordered distinct vertices), and at most 2L choices for the lengths `±
(the number of ways to write L as an ordered sum of natural numbers). Thus there are at
most 2Ln!/(n − s)! options for (π(σ1), . . . , π(σs)). Enumerate these s-vectors of types by
T1, . . . , Tm ∈ T s with m ≤ 2Ln!/(n− s)!, and let Tj,k denote the kth component of Tj , i.e.
the type specified for σk in Tj . Thus,

∑
|σ1|+···+|σs|=L

s∏
i=1

Q(σi) =
m∑
j=1

∑
(π(σ1),...,π(σs))=Tj

s∏
i=1

Q(σi)

≤
m∑
j=1

s∏
k=1

 ∑
π(σk)=Tj,k

Q(σk)

Next, we claim that each of the brackets, which is the sum of Q values of segments of

a given type can be bounded by 1. Fix some type (x, `−, `+), and let ` = `− + `+. Then
the constraints on the degrees along a segment σ = v0, v1, · · · , v`− , · · · , v` of this type imply
x = v`− and

Q(σ) =
`−∏
i=1

1
deg(vi)

`−1∏
i=`−

1
deg(vi)

.

If we sum this up over all walks of length `− + `+ whose `−th vertex is x, we get 1 (since the
number of choices for the neighbors cancel out the degree reciprocals). Restricting to simple
paths with piecewise monotone degrees only decreases this. Thus we obtain

∑
|σ1|+···+|σs|=L

s∏
i=1

Q(σi) ≤ m× 1 ≤ 2Ln!/(n− s)! .

Plugging this back into (3) yields

∑
|γ|=L

Q(γ) ≤
L/2+1∑
s=1

2Ln!/(n− s)!s! = 2L
L/2+1∑
s=1

(
n

s

)
≤ 2L(2en/L)L/2+1,

where we used the standard bound
∑k
i=0
(
n
i

)
≤ (en/k)k valid for all 0 ≤ k ≤ n.

O. Angel, A. Mehrabian, and Y. Peres 26:7

Therefore, by (2), the probability that the rumor travels along some path of length L is
bounded by∑
|γ|=L

(
2et
L

)L
Q(γ) ≤

(
2et
L

)L
2L(2en/L)L/2+1 ≤ c1n(c2nt2/L3)L/2,

which is at most e−L for L ≥ Ct2/3n1/3, completing the proof. J

In (1) we wrote A(G, s) in a max-min form. We would like to write S(G, s) in a similar
way. To achieve this, let quv = qvu be the first (discrete) round at which one of u or v
is informed. Suppose the first round strictly after quv that u calls v is Fuv. Then define
Tu,v = Fuv − quv. Note that Tu,v is a positive integer, and it is a geometric random variable:
P [Tu,v ≥ k] = (1− 1/ deg(u))k−1 for any k = 1, 2, Moreover, observe that, both u and v
are informed by round quv + min{Tu,v, Tv,u} hence, we have

S := S(G, s) ≤ max
v∈V

min
γ∈Γ(s,v)

∑
xy∈E(Γ)

min{Tx,y, Ty,x}. (4)

Now we have a max-min expression for S(G, s). However, the major trouble here is that
the {Tx,y} are not independent. We will stochastically dominate them by another collection
{Xx,y} of random variables, which are independent. To prove their independence, we first
define the synchronous protocol in an equivalent but more convenient way.

Consider for each ordered pair u ∼ v a pair of exponential clocks Zu,v, Z ′u,v, both with
rate 1/ deg(u). All these clocks are independent. We say the clocks Zu,v, Z ′u,v are located at
vertex u. Initially, the clocks Zu,v are turned on, and the clocks Z ′u,v are off. For each round
1, 2, . . . , we visit the vertices one by one. For each vertex u, we wait for the next clock at u
to ring. If that ring comes from clock Zu,v or Z ′u,v, we say that u calls v in that round. Once
the choice of calls at every vertex has been made, we use these to perform the push&pull
operations in a round of the protocol. (Note that the time of the clocks is separate from
the discrete rounds of the synchronous protocol: in each vertex, a different amount of time
is elapsed on the clocks.) Moreover, whenever a vertex u gets informed of the rumor, for
each adjacent v we turn off the clocks Zu,v and Zv,u, and turn on Z ′u,v and Z ′v,u. (If v was
already informed, these status changes had already taken place.) Observe that, because of
memorylessness of the exponential distribution, for each vertex u, this process generates a
random sequence of independent uniform neighbors, so it is equivalent to the synchronous
protocol.

Now let us see what are the random variables Tu,v in this setup. For each ordered pair u, v,
observe that the collection of ringing times of clocks Zu,v, Z ′u,v forms a Poisson process Pu,v
with rate 1/ deg(u). (It does not matter that the initial rings come from Z and subsequent
rings from Z ′.) Let

Pu :=
⋃
v∼u

Pu,v,

and note that Pu is a Poisson process with rate 1.
For a pair u, v, suppose the quvth point in Pu is at α, and suppose the first point of

Pu,v strictly larger than α is at β. Then, Tu,v is precisely the number of points of Pu in the
interval (α, β]. Define Xu,v = β − α. By construction, Xu,v is the first time that clock Z ′u,v
rung from the time it was turned on, hence it is exponential with rate 1/ deg(u). Since these
clocks are independent, the random variables Xu,v are also independent. (Only the times at
which the clocks are turned on depend on other clocks in a non-trivial manner.) Thus we
have proven:

APPROX/RANDOM’17

26:8 The String of Diamonds Is Tight for Rumor Spreading

I Lemma 7. The random variables {Xx,y} defined above are mutually independent.

On the other hand, we can use these to control the Tx,y:

I Lemma 8. For any fixed K there is a fixed C such that with probability at least 1− n−K ,
for all adjacent pairs x, y we have Tx,y ≤ C logn+ CXx,y.

Proof. We show that for any adjacent pair x, y, we have Tx,y > C logn + CXx,y with
probability at most n−K−2, and then apply the union bound over all edges.

Observe that, conditioned on Xx,y = t, the random variable Tx,y − 1 is Poisson with
rate t × (deg(u) − 1)/ deg(u) ≤ t. We will use a standard tail inequality for the Poisson
distribution, which follows from Theorem 5.1(iii) in [10]. Let Po(t) denote a Poisson random
variable with mean t > 0. Then for any α ≥ 1 we have P [Po(t) ≥ αt] ≤ (eα−1α−α)t. This
gives

P [Tx,y − 1 > C logn+ CXx,y|Xx,y = t] ≤ P [Po(t) > C logn+ Ct]
≤ (e/C)C logn ≤ n−K−2

for C ≥ max(e2,K + 2). J

Our main result now follows easily from our lemmas.

Proof of Theorem 3. Given K, pick C sufficiently large so that Lemmas 6 and 8 hold. Fix
t ≥ 1 and let L = Ct2/3n1/3. We have

P [S > Ct+ CL logn]

≤ P

[(
max
v∈V

min
γ∈Γ(s,v)

∑
xy∈E(γ)

min{Tx,y, Ty,x}
)
> Ct+ CL logn

]

≤ P

[(
max
v∈V

min
γ∈Γ(s,v)
|γ|≤L

∑
xy∈E(γ)

min{Tx,y, Ty,x}
)
> Ct+ CL logn

]

≤ P

[(
max
v∈V

min
γ∈Γ(s,v)
|γ|≤L

∑
xy∈E(γ)

C logn+ C min{Xx,y, Xy,x}

)
> Ct+ CL logn

]
+ n−K

≤ P

[(
max
v∈V

min
γ∈Γ(s,v)
|γ|≤L

∑
xy∈E(γ)

C min{Xx,y, Xy,x}

)
> Ct

]
+ n−K

= P [AL > t] + n−K

≤ P [A > t] + n−K + e−Cn
1/3
.

Here, the first inequality is copied from (4). The second inequality is because restricting
the feasible region of a minimization problem can only increase its optimal value. The third
inequality follows from Lemma 8. The fourth inequality is straightforward. The equality
follows from the definition of AL and noting that {Xx,y} have the same joint distribution
as {Yx,y}, and the last inequality follows from Lemma 6. This completes the proof of
Theorem 3. J

Acknowledgements. We would like to thank an anonymous referee for pointing out a
mistake in the statement of Corollary 5 in an earlier version.

O. Angel, A. Mehrabian, and Y. Peres 26:9

References
1 Hüseyin Acan, Andrea Collevecchio, Abbas Mehrabian, and Nick Wormald. On the

push&pull protocol for rumor spreading. SIAM Journal on Discrete Mathematics,
31(2):647–668, 2017. Available in https://arxiv.org/abs/1411.0948 (conference version
in PODC’15). doi:10.1137/15M1033113.

2 A. Auffinger, M. Damron, and J. Hanson. 50 years of first passage percolation. arXiv,
1511.03262 [math.PR], 2016.

3 Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. Randomized gossip
algorithms. IEEE Trans. Inform. Theory, 52(6):2508–2530, 2006. doi:10.1109/TIT.2006.
874516.

4 Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker, Howard
Sturgis, Dan Swinehart, and Doug Terry. Epidemic algorithms for replicated database
maintenance. In Proceedings of the Sixth Annual ACM Symposium on Principles of
Distributed Computing, PODC’87, pages 1–12, New York, NY, USA, 1987. ACM. doi:
10.1145/41840.41841.

5 B. Doerr, M. Fouz, and T. Friedrich. Experimental analysis of rumor spreading in social
networks. In Design and analysis of algorithms, volume 7659 of Lecture Notes in Comput.
Sci., pages 159–173. Springer, Heidelberg, 2012. doi:10.1007/978-3-642-34862-4_12.

6 R. Durrett. Stochastic growth models: recent results and open problems. In Mathe-
matical approaches to problems in resource management and epidemiology (Ithaca, NY,
1987), volume 81 of Lecture Notes in Biomath., pages 308–312. Springer, Berlin, 1989.
doi:10.1007/978-3-642-46693-9_21.

7 Uriel Feige, David Peleg, Prabhakar Raghavan, and Eli Upfal. Randomized broadcast in net-
works. Random Structures Algorithms, 1(4):447–460, 1990. doi:10.1002/rsa.3240010406.

8 G. Giakkoupis, Y. Nazari, and P. Woelfel. How asynchrony affects rumor spreading
time. In Proceedings of the 2016 ACM Symposium on Principles of Distributed Comput-
ing, PODC’16, pages 185–194, New York, NY, USA, 2016. ACM. doi:10.1145/2933057.
2933117.

9 J.M. Hammersley and D. J.A. Welsh. First-Passage Percolation, Subadditive Processes,
Stochastic Networks, and Generalized Renewal Theory, pages 61–110. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 1965.

10 S. Janson. Tail bounds for sums of geometric and exponential variables. Available in
http://www2.math.uu.se/~svante/papers/sjN14.pdf.

11 R. Karp, C. Schindelhauer, S. Shenker, and B. Vöcking. Randomized rumor spreading. In
Proceedings 41st Annual Symposium on Foundations of Computer Science, pages 565–574,
2000. doi:10.1109/SFCS.2000.892324.

12 D. Richardson. Random growth in a tessellation. Proc. Cambridge Philos. Soc., 74:515–528,
1973.

APPROX/RANDOM’17

https://arxiv.org/abs/1411.0948
http://dx.doi.org/10.1137/15M1033113
http://dx.doi.org/10.1109/TIT.2006.874516
http://dx.doi.org/10.1109/TIT.2006.874516
http://dx.doi.org/10.1145/41840.41841
http://dx.doi.org/10.1145/41840.41841
http://dx.doi.org/10.1007/978-3-642-34862-4_12
http://dx.doi.org/10.1007/978-3-642-46693-9_21
http://dx.doi.org/10.1002/rsa.3240010406
http://dx.doi.org/10.1145/2933057.2933117
http://dx.doi.org/10.1145/2933057.2933117
http://www2.math.uu.se/~svante/papers/sjN14.pdf
http://dx.doi.org/10.1109/SFCS.2000.892324

Sharper Bounds for Regularized Data Fitting∗

Haim Avron1, Kenneth L. Clarkson2, and David P. Woodruff3

1 Tel Aviv University, Tel Aviv, Israel
haimav@post.tau.ac.il

2 IBM Research – Almaden, San Jose, CA, USA
klclarks@us.ibm.com

3 IBM Research – Almaden, San Jose, CA, USA
dpwoodru.ibm.com

Abstract
We study matrix sketching methods for regularized variants of linear regression, low rank approx-
imation, and canonical correlation analysis. Our main focus is on sketching techniques which
preserve the objective function value for regularized problems, which is an area that has re-
mained largely unexplored. We study regularization both in a fairly broad setting, and in the
specific context of the popular and widely used technique of ridge regularization; for the lat-
ter, as applied to each of these problems, we show algorithmic resource bounds in which the
statistical dimension appears in places where in previous bounds the rank would appear. The
statistical dimension is always smaller than the rank, and decreases as the amount of regulariza-
tion increases. In particular, for the ridge low-rank approximation problem minY,X‖Y X−A‖2F +
λ‖Y ‖2F + λ‖X‖2F , where Y ∈ Rn×k and X ∈ Rk×d, we give an approximation algorithm needing
O(nnz(A)) + Õ((n + d)ε−1kmin{k, ε−1 sdλ(Y ∗)}) + poly(sdλ(Y ∗)ε−1) time, where sλ(Y ∗) ≤ k

is the statistical dimension of Y ∗, Y ∗ is an optimal Y , ε is an error parameter, and nnz(A) is
the number of nonzero entries of A. This is faster than prior work, even when λ = 0. We also
study regularization in a much more general setting. For example, we obtain sketching-based al-
gorithms for the low-rank approximation problem minX,Y ‖Y X−A‖2F +f(Y,X) where f(·, ·) is a
regularizing function satisfying some very general conditions (chiefly, invariance under orthogonal
transformations).

1998 ACM Subject Classification G.1.3 Numerical Linear Algebra

Keywords and phrases Matrices, Regression, Low-rank approximation, Regularization, Canoni-
cal Correlation Analysis

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.27

1 Introduction

The technique of matrix sketching, such as the use of random projections, has been shown
in recent years to be a powerful tool for accelerating many important statistical learning
techniques. Indeed, recent work has proposed highly efficient algorithms for, among other
problems, linear regression, low-rank approximation [22, 30] and canonical correlation anal-
ysis [3]. In addition to being a powerful theoretical tool, sketching is also an applied one;
see [31] for a discussion of state-of-the-art performance for important techniques in statistical
learning.

Many statistical learning techniques can benefit substantially, in their quality of results,
by using some form of regularization. Regularization can also help by reducing the computing

∗ Condensed version; most proofs omitted. Full version: https://arxiv.org/abs/1611.03225.

© Haim Avron, Kenneth L. Clarkson, and David P. Woodruff;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 27; pp. 27:1–27:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.27
https://arxiv.org/abs/1611.03225
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

27:2 Sharper Bounds for Regularized Data Fitting

resources needed for these techniques. While there has been some prior exploration in this
area, as discussed in §1.1, commonly it has featured sampling-based techniques, often focused
on regression, and often with analyses using distributional assumptions about the input
(though such assumptions are not always necessary). Our study considers fast (linear-time)
sketching methods, a breadth of problems, and makes no distributional assumptions. Also,
where most prior work studied the distance of an approximate solution to the optimum, our
guarantees are concerning approximation with respect to a relevant loss function - see below
for more discussion.

It is a long-standing theme in the study of randomized algorithms that structures that
aid statistical inference can also aid algorithm design, so that for example, VC dimension and
sample compression have been applied in both areas, and more recently, in cluster analysis
the algorithmic advantages of natural statistical assumptions have been explored. This work
is another contribution to this theme. Our high-level goal in this work is to study generic
conditions on sketching matrices that can be applied to a wide array of regularized problems
in linear algebra, preserving their objective function values, and exploiting the power of
regularization.

1.1 Results
We study regularization both in a fairly broad setting, and in the specific context of the
popular and widely used technique of ridge regularization. We discuss the latter in sections 2, 3
and B; our main results for ridge regularization, Theorem 15, on linear regression, Theorem 26,
on low-rank approximation, and Theorem 33, on canonical correlation analysis, show that
for ridge regularization, the sketch size need only be a function of the statistical dimension
of the input matrix, as opposed to its rank, as is common in the analysis of sketching-based
methods. Thus, ridge regularization improves the performance of sketching-based methods.

Next, we consider regularizers under rather general assumptions involving invariance
under left and/or right multiplication by orthogonal matrices, and show that sketching-based
methods can be applied, to regularized multiple-response regression in §C and to regularized
low-rank approximation, in §D. Here we obtain running times in terms of the statistical
dimension. Along the way, in §D.1, we give a “base case” algorithm for reducing low-rank
approximation, via singular value decomposition, to the special case of diagonal matrices.

Throughout we rely on sketching matrix constructions involving sparse embeddings
[10, 24, 23, 6, 12], and on Sampled Randomized Hadamard Transforms (SRHT) [1, 26, 14,
15, 28, 7, 16, 33]. Here for matrix A, its sketch is SA, where S is a sketching matrix. The
sketching constructions mentioned can be combined to yield a sketching matrix S such that
the sketch of matrix A, which is simply SA, can be computed in time O(nnz(A)), which is
proportional to the number of nonzero entries of A. Moreover, the number of rows of S is
small. Corollary 14 summarizes our use of these constructions as applied to ridge regression.

A key property of a sketching matrix S is that it be a subspace embedding, so that
‖SAx‖2 ≈ ‖Ax‖2 for all x. Definition 20 gives the technical definition, and Definition 22
gives the definition of the related property of an affine embedding that we also use. Lemma 23
summarizes the use of sparse embeddings and SRHT for subspace and affine embeddings.

In the following we give our main results in more detail. However, before doing so, we
need the formal definition of the statistical dimension.

I Definition 1 (Statistical Dimension). For real value λ ≥ 0 and rank-k matrix A with singular
values σi, i ∈ [k], the quantity sdλ(A) ≡

∑
i∈[k] 1/(1 + λ/σ2

i) is the statistical dimension (or
effective dimension, or “hat matrix trace”) of the ridge regression problem with regularizing
weight λ.

H. Avron, K. L. Clarkson, and D. P. Woodruff 27:3

Note that sdλ(A) is decreasing in λ, with maximum sd0(A) equal to the rank of A. Thus
a dependence of resources on sdλ(A) instead of the rank is never worse, and will be much
better for large λ.

In §A, we give an algorithm for estimating sdλ(A) to within a constant factor, in
O(nnz(A)) time, for sdλ(A) ≤ (n+d)1/3. Knowing sdλ(A) to within a constant factor allows
us to set various parameters of our algorithms.

1.1.1 Ridge Regression
In §2 we apply sketching to reduce from one ridge regression problem to another one with
fewer rows.

I Theorem 2 (Less detailed version of Thm. 15). Given ε ∈ (0, 1] and A ∈ Rn×d, there
is a sketching distribution over S ∈ Rm×n, where m = Õ(ε−1 sdλ(A)), such that SA
can be computed in O(nnz(A)) + d · poly(sdλ(A)/ε) time, and with constant probability
x̃ ≡ argminx∈Rd‖S(Ax− b)‖2 + λ‖x‖2 satisfies

‖Ax̃− b‖2 + λ‖x̃‖2 ≤ (1 + ε) min
x∈Rd
‖Ax− b‖2 + λ‖x‖2.

Here poly(κ) denotes some polynomial function of the value κ.

In our analysis (Lemma 10), we map ridge regression to ordinary least squares (by using
a matrix with

√
λI adjoined), and then apply prior analysis of sketching algorithms, but

with the novel use of a sketching matrix that is “partly exact”; this latter step is important
to obtain our overall bounds. We also show that sketching matrices can be usefully composed
in our regularized setting; this is straightforward in the non-regularized case, but requires
some work here.

As noted, the statistical dimension of a data matrix in the context of ridge regression is
also referred to as the effective degrees of freedom of the regression problem in the statistics
literature, and the statistical dimension features, as the name suggests, in the statistical
analysis of the method. Our results show that the statistical dimension affects not only the
statistical capacity of ridge regression, but also its computational complexity.

The reduction of the above theorem is mainly of interest when n� sdλ(A), which holds
in particular when n � d, since d ≥ rank(A) ≥ sdλ(A). We also give a reduction using
sketching when d is large, discussed in §2.2. Here algorithmic resources depend on a power
of σ2

1/λ, where σ1 is the leading singular value of A. This result falls within our theme of
improved efficiency as λ increases, but in contrast to our other results, performance does not
degrade gracefully as λ→ 0. The difficulty is that we use the product of sketches AS>SA>
to estimate the product AA> in the expression ‖AA>y − b‖. Since that expression can be
zero, and since we seek a strong notion of relative error, the error of our overall estimate is
harder to control, and impossible when λ = 0.

As for related work on ridge regression, Lu et al. [21] apply the SRHT to ridge regression,
analyzing the statistical risk under the distributional assumption on the input data that b is a
random variable, and not giving bounds in terms of sdλ. El Alaoui et al. [17] apply sampling
techniques based on the leverage scores of a matrix derived from the input, with a different
error measure than ours, namely, the statistical risk; here for their error analysis they consider
the case when the noise in their ridge regression problem is i.i.d. Gaussian. They give results
in terms of sdλ(A), which arises naturally for them as the sum of the leverage scores. Here
we show that this quantity arises also in the context of oblivious subspace embeddings, and
with the goal being to obtain a worst-case relative-error guarantee in objective function value

APPROX/RANDOM’17

27:4 Sharper Bounds for Regularized Data Fitting

rather than for minimizing statistical risk. Chen et al. [9] apply sparse embeddings to ridge
regression, obtaining solutions x̃ with ‖x̃− x∗‖2 small, where x∗ is optimal, and do this in
O(nnz(A) + d3/ε2) time. They also analyze the statistical risk of their output. Yang et
al. [32] consider slower sketching methods than those here, and analyze their error under
distributional assumptions using an incomparable notion of statistical dimension. Frostig et
al. [18] make distributional assumptions, in particular a kurtosis property. Frostig et al. [19]
give bounds in terms of a convex condition number that can be much larger than sdλ(A).
Another related work is that of Pilanci et al. [25] which we dicuss below.

1.1.2 Ridge Low-rank Approximation
In §3 we consider the following problem: for given A ∈ Rn×d, integer k, and weight λ ≥ 0,
find:

min
Y ∈Rn×k

X∈Rk×d

‖Y X −A‖2F + λ‖Y ‖2F + λ‖X‖2F , (1)

where, as is well known (and discussed in detail later), this regularization term is equivalent
to 2λ‖Y X‖∗, where ‖·‖∗ is the trace (nuclear) norm, the Schatten 1-norm. We show the
following.

I Theorem 3 (Less detailed Thm. 26). Given input A ∈ Rn×d, there is a sketching-based
algorithm returning Ỹ ∈ Rn×k, X̃ ∈ Rk×d such that with constant probability, Ỹ and X̃ form
a (1 + ε)-approximate minimizer to (1), that is,

‖Ỹ X̃ −A‖2F + λ‖Ỹ ‖2F + λ‖X̃‖2F (2)
≤ (1 + ε) min

Y ∈Rn×k

X∈Rk×d

‖Y X −A‖2F + λ‖Y ‖2F + λ‖X‖2F . (3)

The matrices Ỹ and X̃ can be found in O(nnz(A)) + Õ((n+ d)ε−1kmin{k, ε−1 sdλ(Y ∗)}) +
poly(ε−1 sdλ(Y ∗)) time, where Y ∗ is an optimum Y in (1) such that sdλ(X∗) = sdλ(Y ∗) ≤
rank(Y ∗) ≤ k.

This algorithm follows other algorithms for λ = 0 with running times of the form
O(nnz(A)) + (n+ d)poly(k/ε) (e.g. [10]), and has the best known dependence on k and ε for
algorithms of this type, even when λ = 0.

Our approach is to first extend our ridge regression results to the multiple-response case
minZ‖AZ −B‖2F + λ‖Z‖2F , and then reduce the multiple-response problem to a smaller one
by showing that up to a cost in solution quality, we can assume that each row of Z lies in
the rowspace of SA, for S a suitable sketching matrix. We apply this observation twice to
the low-rank approximation problem, so that Y can be assumed to be of the form ARỸ , and
X of the form X̃SA, for sketching matrix S and (right) sketching matrix R. Another round
of sketching then reduces to a low-rank approximation problem of size independent of n and
d, and finally an SVD-based method is applied to that small problem.

Regarding related work: the regularization “encourages” the rank of Y X to be small,
even when there is no rank constraint (k is large), and this unconstrained problem has
been extensively studied; even so, the rank constraint can reduce the computational cost
and improve the output quality, as discussed by [8], who also give further background, and
who give experimental results on an iterative algorithm. Pilanci et al. [25] consider only
algorithms where the sketching time is at least Ω(nd), which can be much slower than our
nnz(A) for sparse matrices, and it is not clear if their techniques can be extended. In the

H. Avron, K. L. Clarkson, and D. P. Woodruff 27:5

case of low-rank approximation with a nuclear norm constraint (the closest to our work), as
the authors note, their paper gives no improvement in running time. While their framework
might imply analyses for ridge regression, they did not consider it specifically, and such an
analysis may not follow directly.

1.1.3 Regularized Canonical Correlation Analysis
Canonical correlation analysis (CCA) is an important statistical technique whose input is a
pair of matrices, and whose solution depends on the Gram matrices A>A and B>B. If these
Gram matrices are ill-conditioned it is useful to regularize them by instead using A>A+λ1Id
and B>B + λ2Id′ , for weights λ1, λ2 ≥ 0. Thus, in this paper we consider a regularized
version of CCA, defined as follows (our definition is in the same spirit as the one used by [3]).

I Definition 4. Let A ∈ Rn×d and B ∈ Rn×d′ , and let

q = min(rank(A>A+ λ1Id), rank(B>B + λ2Id′)).

Let λ1 ≥ 0 and λ2 ≥ 0. The (λ1, λ2) canonical correlations σ
(λ1,λ2)
1 ≥ · · · ≥ σ

(λ1,λ2)
q and

(λ1, λ2) canonical weights u1, . . . , uq ∈ Rd and v1, . . . , vq ∈ Rd′ are ones that maximize

tr(U>A>BV)

subject to

U>(A>A+ λ1Id)U = Iq

V >(B>B + λ2Id′)V = Iq

U>A>BV = diag(σ(λ1,λ2)
1 , . . . , σ(λ1,λ2)

q)

where U = [u1, . . . , uq] ∈ Rn×q and V = [v1, . . . , vq] ∈ Rd′×q.

One classical way to solve non-regularized CCA (λ1 = λ2 = 0) is the Björck-Golub
algorithm [5]. In §B we show that regularized CCA can be solved using a variant of the
Björck-Golub algorithm.

Avron et al. [3] showed how to use sketching to compute an approximate CCA. In §B we
show how to use sketching to compute an approximate regularized CCA.

I Theorem 5 (Loose version of Thm. 33). There is a distribution over matrices S ∈ Rm×n
with m = O(max(sdλ1(A), sdλ2(B))2/ε2) such that with constant probability, the regularized
CCA of (SA, SB) is an ε-approximate CCA of (A,B). The matrices SA and SB can be
computed in O(nnz(A) + nnz(B)) time.

Our generalization of the classical Björck-Golub algorithm shows that regularized canonical
correlation analysis can be computed via the product of two matrices whose columns are
non-orthogonal regularized bases of A and B. We then show that these two matrices are
easier to sketch than the orthogonal bases that arise in non-regularized CCA. This in turn
can be tied to approximation bounds of sketched regularized CCA versus exact CCA.

1.1.4 General Regularization
A key property of the Frobenius norm ‖·‖F is that it is invariant under rotations; for example,
it satisfies the right orthogonal invariance condition ‖AQ‖F = ‖A‖F , for any orthogonal
matrix Q (assuming, of course, that A and Q having dimensions so that AQ is defined). In

APPROX/RANDOM’17

27:6 Sharper Bounds for Regularized Data Fitting

§C and §D, we study conditions under which such an invariance property, and little else, is
enough to allow fast sketching-based approximation algorithms.

For regularized multiple-response regression, we have the following.

I Theorem 6 (Implied by Thm. 39). Let f(·) be a real-valued function on matrices that is
right orthogonally invariant, subadditive, and invariant under padding the input matrix by
rows or columns of zeros. Let A ∈ Rn×d, B ∈ Rn×d′ . Suppose that for r ≡ rankA, there is
an algorithm that for general n, d, d′, r and ε > 0, in time τ(d, n, d′, r, ε) finds X̃ with

‖AX̃ −B‖2F + f(X̃) ≤ (1 + ε) min
X∈Rd×d′

‖AX −B‖2F + f(X).

Then there is another algorithm that with constant probability finds such an X̃, taking time

O(nnz(A) + nnz(B) + (n+ d+ d′)poly(r/ε)) + τ(d,poly(r/ε), poly(r/ε), r, ε).

That is, sketching can be used to reduce to a problem in which the only remaining large
matrix dimension is d, the number of columns of A.

This reduction is a building block for our results for regularized low-rank approximation.
Here the regularizer is a real-valued function f(Y,X) on matrices Y ∈ Rn×k, X ∈ Rk×d. We
show that under broad conditions on f(·, ·), sketching can be applied to

min
Y ∈Rn×k

X∈Rk×d

‖Y X −A‖2F + f(Y,X). (4)

Our conditions imply fast algorithms when, for example, f(Y,X) = ‖Y X‖(p), where ‖·‖(p)
is a Schatten p-norm, or when f(Y,X) = min{λ1‖Y X‖(1), λ2‖Y X‖(2)}, for weights λ1, λ2,
and more. Of course, there are norms, such as the entriwise `1 norm, that do not satisfy
these orthogonal invariance conditions.

I Theorem 7 (Implied by Thm. 44). Let f(Y,X) be a real-valued function on matrices that
in each argument is subadditive and invariant under padding by rows or columns of zeros,
and also right orthogonally invariant in its right argument and left orthogonally invariant in
its left argument.

Suppose there is a procedure that solves (4) when A, Y , and X are k × k matrices, and
A is diagonal, and Y X is constrained to be diagonal, taking time τ(k) for a function τ(·).

Then for general A, there is an algorithm that finds a (1 + ε)-approximate solution (Ỹ , X̃)
in time O(nnz(A)) + Õ(n+ d)poly(k/ε) + τ(k).

The proof involves a reduction to small matrices, followed by a reduction, discussed in
§D.1, that uses the SVD to reduce to the diagonal case. This result, Corollary 43, generalizes
results of [29], who gave such a reduction for f(Y,X) = ‖X‖2F + ‖Y ‖2F ; also, we give a very
different proof.

As for related work, [29] survey and extend work in this setting, and propose iterative algo-
rithms for this problem. The regularizers f(Y,X) they consider, and evaluate experimentally,
are more general than we can analyze.

The conditions on f(Y,X) are quite general; it may be that for some instances, the
resulting problem is NP-hard. Here our reduction would be especially interesting, because
the size of the reduced NP-hard problem depends only on k.

H. Avron, K. L. Clarkson, and D. P. Woodruff 27:7

1.2 Basic Definitions and Notation

We denote scalars using Greek letters. Vectors are denoted by x, y, . . . and matrices by
A,B, We use the convention that vectors are column-vectors. We use nnz(·) to denote
the number of nonzeros in a vector or matrix. We denote by [n] the set {1, . . . , n}. The
notation α = (1 ± γ)β means that (1 − γ)β ≤ α ≤ (1 + γ)β. Throughout the paper, A
denotes an n× d matrix, and σ1 ≥ σ2 ≥ · · · ≥ σmin(n,d) its singular values.

I Definition 8 (Schatten p-norm). The Schatten p-norm of A is ‖A‖(p) ≡ [
∑
i σ

p
i]1/p. Note

that the trace (nuclear) norm ‖A‖∗ = ‖A‖(1), the Frobenius norm ‖A‖F = ‖A‖(2), and the
spectral norm ‖A‖2 = ‖A‖(∞).

The notation ‖·‖ without a subscript denotes the `2 norm for vectors, and the spectral
norm for matrices. We use a subscript for other norms. We use range(A) to denote the
subspace spanned by the columns of A, i.e. range(A) ≡ {Ax | x ∈ Rd}. Id denotes the d× d
identity matrix, 0d denotes the column vector comprising d entries of zero, and 0a×b ∈ Ra×b
denotes a zero matrix.

The rank rank(A) of a matrix A is the dimension of the subspace range(A) spanned by
its columns (equivalently, the number of its non-zero singular values). Bounds on sketch
sizes are often written in terms of the rank of the matrices involved.

I Definition 9 (Stable Rank). The stable rank sr(A) ≡ ‖A‖2F /‖A‖22. The stable rank satisfies
sr(A) ≤ rank(A).

Paper Outline: Due to space constraints, most proofs are omitted, and all results except
our results for ridge regression and ridge low-rank approximation are deferred to the appendix.
The missing proofs and results can also be found in the full version of our paper on arXiv
under the same title: https://arxiv.org/abs/1611.03225.

2 Ridge Regression

Let A ∈ Rn×d, b ∈ Rn, and λ > 0. In this section we consider the ridge regression problem:

min
x∈Rd
‖Ax− b‖2 + λ‖x‖2, (5)

Let x∗ ≡ argminx∈Rd‖Ax − b‖2 + λ‖x‖2 and ∆∗ ≡ ‖Ax∗ − b‖2 + λ‖x∗‖2. In general
x∗ = (A>A+ λId)−1A>b = A>(AA> + λIn)−1b, so x? can be found in O(nnz(A) min(n, d))
time using an iterative method (e.g., LSQR). Our goal in this section is to design faster
algorithms that find an approximate x̃ in the following sense:

‖Ax̃− b‖2 + λ‖x̃‖2 ≤ (1 + ε)∆∗ . (6)

In our analysis, we distinguish between two cases: n� d and d� n.

I Remark. In this paper we consider only approximations of the form (6). Although we
do not explore it in this paper, our techniques can also be used to derive preconditioned
methods. Analysis of preconditioned kernel ridge regression, which is related to the d� n

case, is explored in [4].

APPROX/RANDOM’17

https://arxiv.org/abs/1611.03225

27:8 Sharper Bounds for Regularized Data Fitting

2.1 Large n

In this subsection we design an algorithm that is aimed at the case when n� d. However,
the results themselves are correct even when n < d. The general strategy is to design a
distribution on matrices of sizem-by-n (m is a parameter), sample an S from that distribution,
and solve x̃ ≡ argminx∈Rd‖S(Ax− b)‖2 + λ‖x‖2 .

The following lemma defines conditions on the distribution that guarantee that (6) holds
with constant probability (which can be boosted to high probability by repetition and taking
the solution with minimum objective value).

I Lemma 10. Let x∗ ∈ Rd, A and b as above. Let U1 ∈ Rn×d comprise the first n rows of
an orthogonal basis for

[
A√
λId

]
. Let sketching matrix S ∈ Rm×n have a distribution such

that with constant probability

‖U>1 S>SU1 − U>1 U1‖2 ≤ 1/4, (7)

and

‖U>1 S>S(b−Ax∗)− U>1 (b−Ax∗)‖ ≤
√
ε∆∗/2. (8)

Then with constant probability, x̃ ≡ argminx∈Rd‖S(Ax−b)‖2+λ‖x‖2 has ‖Ax̃−b‖2+λ‖x̃‖2 ≤
(1 + ε)∆∗.

Proof. Omitted in this version. J

I Lemma 11. For U1 as in Lemma 10, ‖U1‖2F = sdλ(A) =
∑
i 1/(1 + λ/σ2

i), where A has
singular values σi. Also ‖U1‖2 = 1/

√
1 + λ/σ2

1.

This follows from (3.47) of [20]; for completeness, a proof is given here.

Proof. Suppose A = UΣV >, the full SVD, so that U ∈ Rn×n, Σ ∈ Rn×d, and V ∈ Rd×d.
Let D ≡ (Σ>Σ + λId)−1/2. Then Â =

[
UΣD
V
√
λD

]
has Â>Â = Id, and for given x, there is

y = D−1V >x with Ây =
[

A√
λId

]
x. We have ‖U1‖2F = ‖UΣD‖2F = ‖ΣD‖2F =

∑
i 1/(1+λ/σ2

i)
as claimed. Also ‖U1‖2 = ‖UΣD‖2 = ‖ΣD‖2 = 1/

√
1 + λ/σ2

1 , and the lemma follows. J

I Definition 12 (large λ). Say that λ is large for A with largest singular value σ1, and error
parameter ε, if λ/σ2

1 ≥ 1/ε.

The following lemma implies that if λ is large, then x = 0 is a good approximate solution,
and so long as we include a check that a proposed solution is no worse than x = 0, we can
assume that λ is not large.

I Lemma 13. For ε ∈ (0, 1], large λ, and all x, ‖Ax− b‖2 + λ‖x‖2 ≥ ‖b‖2/(1 + ε). If λ is
not large then ‖U1‖22 ≥ ε/2.

Proof. If σ1‖x‖ ≥ ‖b‖, then λ‖x‖2 ≥ σ2
1‖x‖2 ≥ ‖b‖2. Suppose σ1‖x‖ ≤ ‖b‖. Then:

‖Ax− b‖2 + λ‖x‖2 = ‖Ax‖2 + ‖b‖2 − 2b>Ax+ λ‖x‖2

≥ (‖b‖ − ‖Ax‖)2 + λ‖x‖2 Cauchy-Schwartz
≥ (‖b‖ − σ1‖x‖)2 + λ‖x‖2 assumption
≥ ‖b‖2/(1 + σ2

1/λ) calculus
≥ ‖b‖2/(1 + ε), large λ

as claimed. The last statement follows from Lemma 11. J

H. Avron, K. L. Clarkson, and D. P. Woodruff 27:9

Below we discuss possibilities for choosing the sketching matrix S. We want to emphasize
that the first condition in Lemma 10 is not a subspace embedding guarantee, despite having
superficial similarity. Indeed, notice that the columns of U1 are not orthonormal, since we
only take the first n rows of an orthogonal basis of

[
A√
λId

]
. Rather, the first condition is

an instance of approximate matrix product with a spectral norm guarantee with constant
error, for which optimal bounds in terms of the stable rank sr(U1) were recently obtained
[13]. As we discuss in the proof of part (i) of Corollary 14 below, sr(U1) is upper bounded
by sdλ(A)/ε.

We only mention a few possibilities of sketching matrix S below, though others are
possible with different tradeoffs and compositions.

I Corollary 14. Suppose λ is not large (Def. 12). There is a constant K > 0 such that
for
(i) m ≥ K(ε−1 sdλ(A) + sdλ(A)2) and S ∈ Rm×n a sparse embedding matrix (see [10, 23,

24]) with SA computable in O(nnz(A)) time, or one can choose m ≥ K(ε−1 sdλ(A) +
min((sdλ(A)/ε)1+γ , sdλ(A)2)) an OSNAP (see [24, 6, 12]) with SA computable in
O(nnz(A)) time, where γ > 0 is an arbitrarily small constant, or

(ii) m ≥ Kε−1(sdλ(A) + log(1/ε)) log(sdλ(A)/ε) and S ∈ Rm×n a Subsampled Randomized
Hadamard Transform (SRHT) embedding matrix (see, e.g., [7]), with SA computable in
O(nd logn) time, or

(iii) m ≥ Kε−1 sdλ(A) and S ∈ Rm×n a matrix of i.i.d. subgaussian values with SA

computable in O(ndm) time,
the conditions (7) and (8) of Lemma 10 apply, and with constant probability the corresponding
x̃ = argminx∈Rd‖S(Ax− b)‖+ λ‖x‖2 is an ε-approximate solution to minx∈Rd‖b− Ax‖2 +
λ‖x‖2.

Proof. Recall that sdλ(A) = ‖U1‖2F . For (i): sparse embedding distributions satisfy the
bound for matrix multiplication

‖W>S>SH −W>H‖F ≤ C‖W‖F ‖H‖F /
√
m,

for a constant C [10, 23, 24]; this is also true of OSNAP matrices. We set W = H = U1 and
use ‖X‖2 ≤ ‖X‖F for all X and m ≥ K‖U1‖4F to obtain (7), and set W = U1, H = b−Ax∗
and use m ≥ K‖U1‖2F /ε to obtain (8). (Here the bound is slightly stronger than (8), holding
for λ = 0.) With (7) and (8), the claim for x̃ from a sparse embedding follows using
Lemma 10.

For OSNAP, Theorem 1 in [13] together with [24] imply that for m = O(sr(U1)1+γ),
condition (7) holds. Here sr(U1) = ‖U1‖2

F

‖U1‖2
2
, and by Lemma 11 and Lemma 13, sr(U1) ≤

sdλ(A)/ε. We note that (8) continues to hold as in the previous paragraph. Thus, m is at
most the min of O((sdλ(A)/ε)1+γ) and O(sdλ(A)/ε+ sdλ(A)2).

For (ii): Theorems 1 and 9 of [13] imply that for γ ≤ 1, with constant probability

‖W>S>SH −W>H‖2 ≤ γ‖W‖2‖H‖2 (9)

for SRHT S, when

m ≥ C(sr(W) + sr(H) + log(1/γ)) log(sr(W) + sr(H))/γ2

for a constant C. We let W = H = U1 and γ = min{1, 1/4‖U1‖2}. We have

‖U>1 S>SU1 − U>1 U1‖2 ≤ min{1, 1/4‖U1‖2}‖U1‖22 = min{‖U1‖22, 1/4} ≤ 1/4,

APPROX/RANDOM’17

27:10 Sharper Bounds for Regularized Data Fitting

and

sr(U1)/γ2 = ‖U1‖2F
‖U1‖22

max{1, 4‖U1‖22} = ‖U1‖2F max{1/‖U1‖22, 4} ≤ 2‖U1‖2F /ε

using Lemma 13 and the assumption that λ is large. (And assuming ε ≤ 1/2.) Noting that
log(1/γ) = O(log(1/ε)) and log(sr(U1)) = O(log‖U1‖F /ε) using Lemma 13, we have that m
as claimed suffices for (7).

For (8), we use (9) with W = U1, H = Ax∗ − b, and γ =
√
ε/2/‖U1‖2; note that using

Lemma 13 and by the assumption that λ is large, γ ≤ 1 and so (9) can be applied. We have

‖U>1 S>S(Ax∗ − b)‖ ≤ (
√
ε/2/‖U1‖2)‖U1‖2‖Ax∗ − b‖ ≤

√
ε∆∗/2,

and

sr(U1) log(sr(U1))/γ2 ≤ ‖U1‖2F
‖U1‖22

[2 log(‖U1‖F /ε)][2‖U1‖22/ε] = 4‖U1‖2F log(‖U1‖F /ε)/ε.

Noting that since Ax∗ − b is a vector, its stable rank is one, we have that m as claimed
suffices for (8). With (7) and (8), the claim for x̃ from an SRHT follows using Lemma 10.

The claim for (iii) follows as (ii), with a slightly simpler expression for m. J

Here we mention the specific case of composing a sparse embedding matrix with an
SRHT.

I Theorem 15. Given A ∈ Rn×d, there are dimensions within constant factors of those
given in Cor. 14 such that for S1 a sparse embedding and S2 an SRHT with those dimensions,

x̃ ≡ argmin
x∈Rd

‖S2S1(Ax− b)‖2 + λ‖x‖2,

satisfies ‖Ax̃− b‖2 + λ‖x̃‖2 ≤ (1 + ε) minx∈Rd‖Ax− b‖2 + λ‖x‖2 with constant probability.
Therefore in O(nnz(A)) + Õ(d sdλ(A)/ε+ sdλ(A)2) time, a ridge regression problem with

n rows can be reduced to one with O(ε−1(sdλ(A) + log(1/ε)) log(sdλ(A)/ε)) rows, whose
solution is a (1 + ε)-approximate solution.

Proof. This follows from Corollary 14 and the general comments of Appendix A.3 of [13];
the results there imply that ‖SiU1‖F = Θ(‖U1‖F) and ‖SiU1‖2 = Θ(‖U1‖2) for i ∈ [3] with
constant probability, which implies that sr(S1U1) and sr(S2S1U1) are O(sr(U1)). Moreover,
the approximate multiplication bounds of (7) and (8) have versions when using S2S1U1 and
S2S1(Ax∗ − b) to estimate products involving S1U1 and S1(Ax∗ − b), so that for example,
using the triangle inequality,

‖U>1 S>1 S>2 S2S1U1 − U>1 U1‖2 ≤ ‖U>1 S>1 S>2 S2S1U1 − U>1 S>1 S1U1‖2
+ ‖U>1 S>1 S1U1 − U>1 U1‖2

≤ 1/8 + 1/8 = 1/4.

We have that S = S2S1 satisfies (7) and (8), as desired. J

Similar arguments imply that a reduction also using a sketching matrix S3 with sub-
gaussian entries could be used, to reduce to a ridge regression problem with O(ε−1 sdλ(A))
rows.

H. Avron, K. L. Clarkson, and D. P. Woodruff 27:11

2.2 Large d
If the number of columns is larger than the number of rows, it is more attractive to sketch the
rows, i.e., to use AS>. In general, we can express (5) as minx∈Rd‖Ax‖2−2b>Ax+‖b‖2+λ‖x‖2.
We can assume x has the form x = A>y, yielding the equivalent problem

min
y∈Rn
‖AA>y‖2 − 2b>AA>y + ‖b‖2 + λ‖A>y‖2. (10)

Sketching A> with S in the first two terms yields

ỹ ≡ argmin
y∈Rn

λ‖SA>y‖2 + ‖AS>SA>y‖2 − 2b>AA>y + ‖b‖2 (11)

Now let c> ≡ b>AA>. Note that we can compute c in O(nnz(A)) time. The solution to (11)
is, for B ≡ SA> with B>B invertible, ỹ = (λB>B +B>BB>B)+c/2.

In the main result of this subsection, we show that provided λ > 0 then a sufficiently
tight subspace embedding to range(A>) suffices.

I Theorem 16. Suppose A has rank k, and its SVD is A = UΣV >, with U ∈ Rn×k,
Σ ∈ Rk×k and V ∈ Rd×k. If S ∈ Rm×d has
1. (Subspace Embedding) E ≡ V >S>SV − Ik with ‖E‖2 ≤ ε/2
2. (Spectral Norm Approximate Matrix Product) for any fixed matrices C,D, each with d

rows,

‖CTSTSD − CTD‖2 ≤ ε′‖C‖2‖D‖2,

where ε′ ≡ (ε/2)/(1 + 3σ2
1/λ).

Then (11) has x̃ ≡ A>ỹ approximately solving (5), that is, ‖Ax̃− b‖2 + λ‖x̃‖2 ≤ (1 + ε)∆∗.

Proof. To compare the sketched with the unsketched formulations, let A have full SVD
A = UΣV >, and let w = ΣU>y. Using ‖Uz‖ = ‖z‖ and ‖V w‖ = ‖w‖ yields the unsketched
problem

min
w∈Rk

‖Σw‖2 − 2b>AV w + ‖b‖2 + λ‖w‖2, (12)

equivalent to (10). The corresponding sketched version is

min
w∈Rk

‖ΣV >S>SV w‖2 − 2b>AV w + ‖b‖2 + λ‖SV w‖2.

Now suppose S has E satisfying the first property in the theorem statement. This implies
S is an ε/2-embedding for V :

|‖SV w‖2 − ‖w‖2| = |w>(V >S>SV − Ik)w| ≤ (ε/2)‖w‖2,

and, using the second property in the theorem statement with CT = ΣV T and D = V (which
do not depend on w),

‖ΣV >S>SV − Σ‖2 = f,

where f satisfies |f | ≤ ε′σ1. It follows by the triangle inequality for any w that

‖ΣV >S>SV w‖ ∈ [‖Σw‖ − f‖w‖, ‖Σw‖+ f‖w‖].

APPROX/RANDOM’17

27:12 Sharper Bounds for Regularized Data Fitting

Hence,

|‖ΣV >S>SV w‖2 − ‖Σw‖2| ∈ |(‖Σw‖ ± f‖w‖)2 − ‖Σw‖2|
≤ 2f‖Σw‖‖w‖+ f2‖w‖2

≤ 3ε′σ2
1‖w‖2

The value of (12) is at least λ‖w‖2, so the relative error of the sketch is at most

λ(ε/2)‖w‖2 + 3ε′σ2
1‖w‖2

λ‖w‖2
≤ ε.

The statement of the theorem follows. J

We now discuss which matrices S can be used in Theorem 16. Note that the first property
is just the oblivious subspace embedding property, and we can use CountSketch, Subsampled
Randomized Hadamard Transform, or Gaussian matrices to achieve this. One can also use
OSNAP matrices [24]; note that here, unlike for Corollary 14, the running time will be
O(nnz(A)/ε) (see, e.g., [30] for a survey). For the second property, we use the recent work of
[13], where tight bounds for a number of oblivious subspace embeddings S were shown.

In particular, applying the result in Appendix A.3 of [13], it is shown that the composition
of matrices each satisfying the second property, results in a matrix also satisfying the second
property. It follows that we can let S be of the form Π ·Π′, where Π′ is an r× d CountSketch
matrix, where r = O(n2/(ε′)2), and Π is an Õ(n/(ε′)2)×r Subsampled Randomized Hadamard
Transform. By standard results on oblivious subspace embeddings, the first property of
Theorem 16 holds provided r = Θ(n2/ε2) and Π has Õ(n/ε2) rows. Note that ε′ ≤ ε, so in
total we have O(n/(ε′)2) rows.

Thus, we can compute B = Π · Π′AT in O(nnz(A)) + Õ(n3/(ε′)2) time, and B has
Õ(n/(ε′)2) rows and n columns. We can thus compute ỹ as above in Õ(n3/(ε′)2) additional
time. Therefore in O(nnz(A)) + Õ(n3/(ε′)2) time, we can solve the problem of (5).

We note that, using our results in Section 2.1, in particular Theorem 15, we can first
replace n in the above time complexities with a function of sdλ(A) and ε, which can further
reduce the overall time complexity.

2.3 Multiple-response Ridge Regression
In multiple-response ridge regression one is interested in finding X∗ ≡ argminX∈Rd×d′‖AX −
B‖2F + λ‖X‖2F , where B ∈ Rn×d′ . It is straightforward to extend the results and algorithms
for large n to multiple regression. Since we use these results when we consider regularized
low-rank approximation, we state them next. The proofs are omitted as they are entirely
analogous to the proofs in subsection 2.1.

I Lemma 17. Let A, U1, U2 as in Lemma 10, B ∈ Rn×d′ ,

X∗ ≡ argmin
X∈Rd×d′

‖AX −B‖2F + λ‖X‖2F ,

and ∆∗ ≡ ‖AX∗ −B‖2F + λ‖X∗‖2F . Let sketching matrix S ∈ Rm×n have a distribution such
that with constant probability,

‖U>1 S>SU1 − U>1 U1‖2 ≤ 1/4, (13)

H. Avron, K. L. Clarkson, and D. P. Woodruff 27:13

and

‖U>1 S>S(B −AX∗)− U>1 (B −AX∗)‖F ≤
√
ε∆∗. (14)

Then with constant probability,

X̃ ≡ argmin
X∈Rd×d′

‖S(AX −B)‖2F + λ‖X‖2F (15)

has ‖AX̃ −B‖2 + λ‖X̃‖2F ≤ (1 + ε)∆∗.

I Theorem 18. There are dimensions within a constant factor of those given in Thm. 15,
such that for S1 a sparse embedding and S2 SRHT with those dimensions, S = S2S1 satisfies
the conditions of Lemma 17, therefore the corresponding X̃ does as well. That is, in time

O(nnz(A) + nnz(B)) + Õ((d+ d′)(sdλ(A)/ε+ sdλ(A)2)

time, a multiple-response ridge regression problem with n rows can be reduced to one with
Õ(ε−1 sdλ(A)) rows, whose solution is a (1 + ε)-approximate solution.

I Remark. Note that the solution to (15), that is, the solution to minX‖Ŝ(ÂX − B̂)‖2F ,
where Ŝ and Â are as defined in the proof of Lemma 10, and B̂ ≡

[
B

0d×d′

]
, is X̃ = (ŜÂ)+ŜB̂;

that is, the matrix ÂX̃ = Â(ŜÂ)+ŜB̂ whose distance to B̂ is within 1 + ε of optimal has
rows in the rowspace of B̂, which is the rowspace of B. This property will be helpful building
low-rank approximations.

3 Ridge Low-Rank Approximation

For an integer k we consider the problem

min
Y ∈Rn×k

X∈Rk×d

‖Y X −A‖2F + λ‖Y ‖2F + λ‖X‖2F . (16)

From [29] (see also Corollary 43 below), this has the solution

Y ∗ = Uk(Σk − λIk)1/2
+

X∗ = (Σk − λIk)1/2
+ V >k

=⇒ sdλ(Y ∗) = sdλ(X∗) =
∑
i∈[k]
σi>λ

(1− λ/σi) (17)

where UkΣkV >k is the best rank-k approximation to A, and for a matrix W , W+ has entries
that are equal to the corresponding entries of W that are nonnegative, and zero otherwise.

While [29] gives a general argument, it was also known (see for example [27]) that when
the rank k is large enough not to be an active constraint (say, k = rank(A)), then Y ∗X∗ for
Y ∗, X∗ from (17) solves

min
Z∈Rn×d

‖Z −A‖2F + 2λ‖Z‖∗,

where ‖Z‖∗ is the nuclear norm of X (also called the trace norm).
It is also well-known that

‖Z‖∗ = 1
2(min
Y X=Z

‖Y ‖2F + ‖X‖2F),

so that the optimality of (17) follows for large k.

APPROX/RANDOM’17

27:14 Sharper Bounds for Regularized Data Fitting

I Lemma 19. Given integer k ≥ 1 and ε > 0, Y ∗ and X∗ as in (17), there are

m = Õ(ε−1 sdλ(Y ∗)) = Õ(ε−1k) and m′ = Õ(ε−1 min{k, ε−1 sdλ(Y ∗)}),

such that there is a distribution on S ∈ Rm×n and R ∈ Rd×m′ so that for

Z∗S , Z
∗
R ≡ argmin

ZS∈Rk×m

ZR∈Rm′×k

‖ARZRZSSA−A‖2F + λ‖ARZR‖2F + λ‖ZSSA‖2F ,

with constant probability Ỹ ≡ ARZ∗R and X̃ ≡ Z∗SSA satisfy

‖Ỹ X̃ −A‖2F + λ‖Ỹ ‖2F + λ‖X̃‖2F ≤ (1 + ε)(‖Y ∗X∗ −A‖2F + λ‖Y ∗‖2F + λ‖X∗‖2F).

The products SA and AR take altogether O(nnz(A))+Õ((n+d)(ε−2 sdλ(Y ∗)+ε−1 sdλ(Y ∗)2)
to compute.

Proof. Omitted in this version. J

We can reduce to an even yet smaller problem, using affine embeddings, which are built
using subspace embeddings. These are defined next.

I Definition 20 (subspace embedding). Matrix S ∈ RmS×n is a subspace ε-embedding for A
with respect to the Euclidean norm if ‖SAx‖2 = (1± ε)‖Ax‖2 for all x.

I Lemma 21. There are sparse embedding distributions on matrices S ∈ Rm×n with
m = O(ε−2 rank(A)2) so that SA can be computed in nnz(A) time, and with constant
probability S is a subspace ε-embedding. The SRHT (of Corollary 14) is a distribution on
S ∈ Rm×n with m = Õ(ε−2 rank(A)) such that S is a subspace embedding with constant
probability.

Proof. The sparse embedding claim is from [10], sharpened by [24, 23]; the SRHT claim is
from for example [7]. J

I Definition 22 (Affine Embedding). For A as usual and B ∈ Rn×d′ , matrix S is an affine
ε-embedding for A,B if ‖S(AX−B)‖2F = (1±ε)‖AX−B‖2F for all X ∈ Rd×d′ . A distribution
over RmS×n is a poly-sized affine embedding distribution if there is mS = poly(d/ε) such that
constant probability, S from the distribution is an affine ε-embedding.

I Lemma 23. For A as usual, B ∈ Rn×d′ , suppose there is a distribution over S ∈ Rm×n
so that with constant probability, S is a subspace embedding for A with parameter ε, and
for X∗ ≡ argminX∈Rd×d′‖AX − B‖2F and B∗ ≡ AX∗ − B, ‖SB∗‖2F = (1 ± ε)‖B∗‖2F and
‖U>S>SB∗ − U>B∗‖ ≤ ε‖B∗‖2F . Then S is an affine embedding for A,B. A sparse
embedding with m = O(rank(A)2/ε2) has the needed properties. By first applying a sparse
embedding Π, and then a Subsampled Randomized Hadamard Transform (SHRT) T , there is
an affine ε-embedding S = TΠ with m = Õ(rank(A)/ε2) taking time O(nnz(A) + nnz(B)) +
Õ((d+ d′) rank(A)1+κ/ε2) time to apply to A and B, that is, to compute SA = TΠA and
SB. Here κ > 0 is any fixed value.

Proof. Shown in [10], sharpened with [24, 23]. J

I Theorem 24. With notation as in Lemma 19, there are

p′ = Õ(ε−2m) = Õ(ε−3 sdλ(Y ∗)) = Õ(ε−3k) and
p = Õ(ε−2m′) = Õ(ε−3 min{k, ε−1 sdλ(Y ∗)}),

H. Avron, K. L. Clarkson, and D. P. Woodruff 27:15

such that there is a distribution on S2 ∈ Rp×n, R2 ∈ Rd×p′ so that for

Z̃S , Z̃R ≡ argmin
ZS∈Rk×m

ZR∈Rm′×k

‖S2ARZRZSSAR2 − S2AR2‖2F + λ‖S2ARZR‖2F + λ‖ZSSAR2‖2F ,

with constant probability Ỹ ≡ ARZ̃R and X̃ ≡ Z̃SSA satisfy

‖Ỹ X̃ −A‖2F + λ‖Ỹ ‖2F + λ‖X̃‖2F ≤ (1 + ε)(‖Y ∗X∗ −A‖2F + λ‖Y ∗‖2F + λ‖X∗‖2F).

The matrices S2AR, SAR, and SAR2 can be computed in O(nnz(A)) + poly(sdλ(Y ∗)/ε)
time.

Proof. Omitted in this version. J

I Lemma 25. For C ∈ Rp×m′ , D ∈ Rm×p′ , G ∈ Rp×p′ , the problem of finding

min
ZS∈Rk×m

ZR∈Rm′×k

‖CZRZSD −G‖2F + λ‖CZR‖2F + λ‖ZSD‖2F , (18)

and the minimizing CZR and ZSD, can be solved in

O(pm′rC + p′mrD + rDp(p′ + rC))

time, where rC ≡ rank(C) ≤ min{m′, p}, and rD ≡ rank(D) ≤ min{m, p′}.

Proof. Please see §E. J

I Theorem 26. The matrices Z̃S , Z̃R of Theorem 24 can be found in

O(nnz(A)) + poly(sdλ(Y ∗)/ε)

time, in particular O(nnz(A)) + Õ(ε−7 sdλ(Y ∗)2 min{k, ε−1 sdλ(Y ∗)}) time, such that with
constant probability, ARZ̃R, Z̃SSA is an ε-approximate minimizer to (16), that is,

‖(ARZ̃R)(Z̃SSA)−A‖2F + λ‖ARZ̃R‖2F + λ‖Z̃SSA‖2F (19)
≤ (1 + ε) min

Y ∈Rn×k

X∈Rk×d

‖Y X −A‖2F + λ‖Y ‖2F + λ‖X‖2F . (20)

With an additional O(n+ d)poly(sdλ(Y ∗)/ε) time, and in particular

Õ(ε−1k sdλ(Y ∗)(n+ d+ min{n, d}min{k/ sdλ(Y ∗), ε−1}))

time, the solution matrices Ỹ ≡ ARZ̃R, X̃ ≡ Z̃SSA can be computed and output.

An expression for sdλ(Y ∗) is given at (17).

Proof. Follows from Theorem 24 and Lemma 25, noting that for efficiency’s sake we can use
the transpose of A instead of A. J

Acknowledgement. We acknowledge the support from XDATA program of the Defense
Advanced Research Projects Agency (DARPA), administered through Air Force Research
Laboratory contract FA8750-12-C-0323.

APPROX/RANDOM’17

27:16 Sharper Bounds for Regularized Data Fitting

References
1 Nir Ailon and Bernard Chazelle. Approximate nearest neighbors and the fast johnson-

lindenstrauss transform. In ACM Symposium on Theory of Computing (STOC), 2006.
2 Alexandr Andoni and Huy L. Nguyen. Eigenvalues of a matrix in the streaming model. In

Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1729–1737. Society for Industrial and Applied Mathematics, 2013.

3 Haim Avron, Christos Boutsidis, Sivan Toledo, and Anastasios Zouzias. Efficient dimension-
ality reduction for canonical correlation analysis. SIAM Journal on Scientific Computing,
36(5):S111–S131, 2014. doi:10.1137/130919222.

4 Haim Avron, Kenneth L. Clarkson, and David P. Woodruff. Faster kernel ridge regression
using sketching and preconditioning. CoRR, abs/1611.03220, 2016. URL: http://arxiv.
org/abs/1611.03220.

5 A. Björck and G.H. Golub. Numerical methods for computing angles between linear sub-
spaces. Mathematics of Computation, 27(123):579–594, 1973.

6 Jean Bourgain, Sjoerd Dirksen, and Jelani Nelson. Toward a unified theory of sparse
dimensionality reduction in euclidean space. In Proceedings of the Forty-Seventh Annual
ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June
14-17, 2015, pages 499–508, 2015.

7 C. Boutsidis and A. Gittens. Improved matrix algorithms via the Subsampled Randomized
Hadamard Transform. ArXiv e-prints, March 2012. arXiv:1204.0062.

8 Ricardo Cabral, Fernando De la Torre, João P Costeira, and Alexandre Bernardino. Unify-
ing nuclear norm and bilinear factorization approaches for low-rank matrix decomposition.
In Computer Vision (ICCV), 2013 IEEE International Conference on, pages 2488–2495.
IEEE, 2013.

9 Shouyuan Chen, Yang Liu, Michael Lyu, Irwin King, and Shengyu Zhang. Fast relative-
error approximation algorithm for ridge regression. In 31st Conference on Uncertainty in
Artificial Intelligence, 2015.

10 Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and regression in
input sparsity time. In STOC, 2013. Full version at http://arxiv.org/abs/1207.6365.

11 M.B. Cohen, S. Elder, C. Musco, C. Musco, and M. Persu. Dimensionality Reduction for
k-Means Clustering and Low Rank Approximation. ArXiv e-prints, October 2014. arXiv:
1410.6801.

12 Michael B. Cohen. Nearly tight oblivious subspace embeddings by trace inequalities. In
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 278–287, 2016.

13 Michael B. Cohen, Jelani Nelson, and David P. Woodruff. Optimal approximate matrix
product in terms of stable rank. CoRR, abs/1507.02268, 2015.

14 P. Drineas, M.W. Mahoney, and S. Muthukrishnan. Sampling algorithms for `2 regression
and applications. In Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1127–1136, 2006.

15 P. Drineas, M.W. Mahoney, S. Muthukrishnan, and T. Sarlos. Faster least squares ap-
proximation, Technical Report, arXiv:0710.1435, 2007. URL: http://www.citebase.org/
abstract?id=oai:arXiv.org:0710.1435.

16 Petros Drineas, Michael W. Mahoney, Malik Magdon-Ismail, and David P. Woodruff. Fast
approximation of matrix coherence and statistical leverage. In Proceedings of the 29th
International Conference on Machine Learning, ICML 2012, Edinburgh, Scotland, UK,
June 26 – July 1, 2012, 2012.

17 Ahmed El Alaoui and Michael W. Mahoney. Fast randomized kernel methods with statis-
tical guarantees. stat, 1050:2, 2014.

http://dx.doi.org/10.1137/130919222
http://arxiv.org/abs/1611.03220
http://arxiv.org/abs/1611.03220
http://arxiv.org/abs/1204.0062
http://arxiv.org/abs/1410.6801
http://arxiv.org/abs/1410.6801
http://www.citebase.org/abstract?id=oai:arXiv.org:0710.1435
http://www.citebase.org/abstract?id=oai:arXiv.org:0710.1435

H. Avron, K. L. Clarkson, and D. P. Woodruff 27:17

18 R. Frostig, R. Ge, S.M. Kakade, and A. Sidford. Competing with the Empirical Risk
Minimizer in a Single Pass. ArXiv e-prints, December 2014. Appeared in COLT 2015.
arXiv:1412.6606.

19 R. Frostig, R. Ge, S.M. Kakade, and A. Sidford. Un-regularizing: approximate proximal
point and faster stochastic algorithms for empirical risk minimization. In International
Conference on Machine Learning (ICML), 2015.

20 Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learn-
ing. Springer, 2013.

21 Yichao Lu, Paramveer Dhillon, Dean P Foster, and Lyle Ungar. Faster ridge regression
via the subsampled randomized hadamard transform. In Advances in Neural Information
Processing Systems, pages 369–377, 2013.

22 Michael W. Mahoney. Randomized algorithms for matrices and data. Found. Trends Mach.
Learn., 3(2):123–224, February 2011. doi:10.1561/2200000035.

23 Xiangrui Meng and Michael W. Mahoney. Low-distortion subspace embeddings in input-
sparsity time and applications to robust linear regression. In STOC, pages 91–100, 2013.

24 Jelani Nelson and Huy L. Nguyen. OSNAP: Faster numerical linear algebra algorithms via
sparser subspace embeddings. In FOCS, pages 117–126, 2013.

25 Mert Pilanci and Martin J. Wainwright. Randomized sketches of convex programs with
sharp guarantees. CoRR, abs/1404.7203, 2014. URL: http://arxiv.org/abs/1404.7203.

26 T. Sarlós. Improved approximation algorithms for large matrices via random projections.
In IEEE Symposium on Foundations of Computer Science (FOCS), 2006.

27 Nathan Srebro and Adi Shraibman. Rank, trace-norm and max-norm. In Learning Theory,
pages 545–560. Springer, 2005.

28 Joel Tropp. Improved analysis of the subsampled randomized Hadamard transform. Adv.
Adapt. Data Anal., Special Issue, “Sparse Representation of Data and Images”, 2011.

29 M. Udell, C. Horn, R. Zadeh, and S. Boyd. Generalized Low Rank Models. ArXiv e-prints,
October 2014. arXiv:1410.0342.

30 David P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations and
Trends® in Theoretical Computer Science, 10(1–2):1–157, 2014. doi:10.1561/0400000060.

31 Jiyan Yang, Xiangrui Meng, and M.W. Mahoney. Implementing randomized matrix algo-
rithms in parallel and distributed environments. Proceedings of the IEEE, 104(1):58–92,
Jan 2016. doi:10.1109/JPROC.2015.2494219.

32 Y. Yang, M. Pilanci, and M. J. Wainwright. Randomized sketches for kernels: Fast and
optimal non-parametric regression. ArXiv e-prints, January 2015. arXiv:1501.06195.

33 Dean Foster Yichao Lu, Paramveer Dhillon and Lyle Ungar. Faster ridge regression via the
subsampled randomized hadamard transform. In Proceedings of the Neural Information
Processing Systems (NIPS) Conference, 2013.

A Estimation of statistical dimension

I Theorem 27. If the statistical dimension sdλ(A) is at most

M ≡ min{n, d, b(n+ d)1/3/poly(log(n+ d))c},

it can be estimated to within a constant factor in O(nnz(A)) time, with constant probability.

Proof. From Lemma 18 of [11], generalizing the machinery of [2], the first z squared singular
values of A can be estimated up to additive ε

z‖A−z‖
2
F in time O(nnz(A)) + Õ(z3/poly(ε)),

where A−z ≡ A−Az denotes the residual error of the best rank-z approximation Az to A.
Therefore ‖Az‖2F can be estimated up to additive ε‖A−z‖2F , and the same for ‖A−z‖2F . This

APPROX/RANDOM’17

http://arxiv.org/abs/1412.6606
http://dx.doi.org/10.1561/2200000035
http://arxiv.org/abs/1404.7203
http://arxiv.org/abs/1410.0342
http://arxiv.org/abs/1410.0342
http://dx.doi.org/10.1561/0400000060
http://dx.doi.org/10.1109/JPROC.2015.2494219
http://arxiv.org/abs/1501.06195

27:18 Sharper Bounds for Regularized Data Fitting

implies that for small enough constant ε, ‖A−z‖2F can be estimated up to constant relative
error, using the same procedure.

Thus in O(nnz(A)) time, the first 6M singular values of A can be estimated up to additive
1

6M ‖A−6M‖2F error, and there is an estimator γ̂z of ‖A−z‖2F up to relative error 1/3, for
z ∈ [6M].

Since 1/(1 + λ/σ2
i) ≤ min{1, σ2

i /λ}, for any z the summands of sdλ(A) for i ≤ z are at
most 1, while those for i > z are at most σ2

i /λ, and so sdλ(A) ≤ z + ‖A−z‖2F /λ.
When σ2

z ≤ λ, the summands of sdλ(A) for i ≥ z are at least 1
2
σ2

i

λ , and so sdλ(A) ≥
1
2‖A−z‖

2
F /λ. When σ2

z ≥ λ, the summands of sdλ(A) for i ≤ z are at least 1/2. Therefore
sdλ(A) ≥ 1

2 min{z, ‖A−z‖2F /λ}.
Under the constant-probability assumption that γ̂z = (1± 1/3)‖A−z‖2F , we have

3
8 min{z, γ̂z/λ} ≤ sdλ(A) ≤ 3

2(z + γ̂z/λ). (21)

Let z′ be the smallest z of the form 2j for j = 0, 1, 2, . . ., with z′ ≤ 6M , such that z′ ≥
γ̂z′/λ. SinceM ≥ sdλ(A) ≥ 3

8z for z ≤ γ̂z/λ, there must be such a z′. Then by considering the
lower bound of (21) for z′ and for z′/2, we have sdλ(A) ≥ 3

8 max{z′/2, γ̂z′/λ} ≥ 1
16 (z′+γ̂z′/λ),

which combined with the upper bound of (21) implies that z′ + γ̂z′/λ is an estimator of
sdλ(A) up to a constant factor. J

B Regularized Canonical Correlation Analysis

First, we show how to compute regularized CCA using a modified Björck-Golub algorithm.

I Definition 28. Let A ∈ Rn×d with n ≥ d and let λ ≥ 0. A = QR is a λ-QR factorization
if Q is full rank, R is upper triangular and R>R = A>A+ λId.

I Remark. A λ-QR factorization always exists, and R will be invertible for λ > 0. Q has
orthonormal columns for λ = 0.

I Fact 29. For a λ-QR factorization A = QR we have Q>Q+ λR−>R−1 = Id.

Proof. A direct consequence of R>R = A>A+ λId (multiply from the right by R−1 and the
left by R−>). J

I Fact 30. For a λ-QR factorization A = QR we have sdλ(A) = ‖Q‖2F .

Proof. Omitted in this version. J

I Theorem 31 (Regularized Björck-Golub). Let A = QARA be a λ1-QR factorization of A,
and B = QBRB be a λ2-QR factorization of B. Assume that λ1 > 0 and λ2 > 0. The
(λ1, λ2) canonical correlations are exactly the singular values of Q>AQB. Furthermore, if
Q>AQB = MΣNT is a thin SVD of Q>AQB, then the columns of R−1

A M and R−1
B N are

canonical weights.

Proof. Omitted in this version. J

We now consider how to approximate the computation using sketching. The basic idea
is similar to the one used in [3] to accelerate the computation of non-regularized CCA:
compute the regularized canonical correlations and canonical weights of the pair (SA, SB)
for a sufficiently large subspace embedding matrix S. Similarly to [3], we define the notion
of approximate regularized CCA, and show that for large enough S we find an approximate
CCA with high probability.

H. Avron, K. L. Clarkson, and D. P. Woodruff 27:19

I Definition 32 (Approximate (λ1, λ2) regularized CCA)). For 0 ≤ η ≤ 1, an η-approximate
(λ1, λ2) regularized CCA of (A,B) is a set of positive numbers σ̂1 ≥ · · · ≥ σ̂q, and vectors
û1, . . . , ûq ∈ Rd and v̂1, . . . , v̂q ∈ Rd′ such that
(a) For every i,∣∣∣σ̂i − σ(λ1,λ2)

i

∣∣∣ ≤ η .
(b) Let Û = [û1, . . . , ûq] ∈ Rn×q and V̂ = [v̂1, . . . , v̂q] ∈ Rd′×q. We have,∣∣∣Û>(A>A+ λ1Id)Û − Iq

∣∣∣ ≤ η
and∣∣∣V̂ >(B>B + λ2Id′)V̂ s− Iq

∣∣∣ ≤ η .
In the above, the notation |X| ≤ α should be understood as entry-wise inequality.

(c) For every i,∣∣∣û>i A>Bv̂i − σ(λ1,λ2)
i

∣∣∣ ≤ η .
I Theorem 33. If S is a sparse embedding matrix with m = Ω(max(sdλ1(A), sdλ2(B))2/ε2)
rows, then with high probability the (λ1, λ2) canonical correlations and canonical weights of
(SA, SB) form an ε-approximate (λ1, λ2) regularized CCA for (A,B).

Proof. Omitted in this version. J

Taking an optimization point of view, the following Corollary shows that the suboptimality
in the objective is not too big (the fact that the constraints are approximately held is
established in the previous theorem).

I Corollary 34. Let UL and VL (respectively, ÛL and V̂L) denote the first L columns of U
and V (respectively, Û and V̂ . Then,

tr(Û>L A>BV̂L) ≤ tr(U>L A>BVL) + εL .

C General Regularization: Multiple-response Regression

In this section we consider the problem

X∗ ≡ argmin
X∈Rd×d′

‖AX −B‖2F + f(X)

for a real-valued function f on matrices. We show that under certain assumptions on f

(generalizing from f(X) = ‖X‖h for some orthogonally invariant norm ‖·‖h), if we have an
approximation algorithm for the problem, then via sketching the running time dependence
of the algorithm on n can be improved.

I Definition 35 ((left/right) orthogonal invariance(loi/roi)). A matrix measure f() is left
orthogonally invariant (or loi for short) if f(UA) = f(A) for all A and orthogonal U .
Similarly define right orthogonal invariance (roi). Note that f() is orthogonally invariant if
it is both left and right orthogonally invariant.

APPROX/RANDOM’17

27:20 Sharper Bounds for Regularized Data Fitting

When norm ‖·‖g is orthogonally invariant, it can be expressed as ‖A‖g = g(σ1, σ2, . . . , σr),
where the σi are the singular values of A, and g() is a symmetric gauge function: a function
that is even in each argument, and symmetric, meaning that its value depends only on the
set of input values and not their order.

I Definition 36 (padding invariance). Say that a matrix measure f() is padding invariant if it
is preserved by padding A with rows or columns of zeroes: f(

[
A

0z×d

]
) = f (A 0n×z′) = f(A).

I Lemma 37. Unitarily invariant norms and v-norms are padding invariant.

Proof. Omitted in this version. J

I Definition 38 (piloi, piroi). Say that a matrix measure is piloi if it is padding invariant
and left orthogonally invariant, and piroi if it is padding invariant and right orthogonally
invariant.

The following is the main theorem of this section.

I Theorem 39. Let f() be a real-valued function on matrices that is piroi and subadditive.
Let B ∈ Rn×d′ . Let

X∗ ≡ argmin
X∈Rd×d′

‖AX −B‖2F + f(X), (22)

and ∆∗ ≡ ‖AX∗ − B‖2F + f(X∗). Suppose that for r ≡ rankA, there is an algorithm that
for general n, d, d′, r and ε > 0, finds X̃ with ‖AX̃ − B‖2F + f(X̃) ≤ (1 + ε)∆∗ in time
τ(d, n, d′, r, ε). Then there is an algorithm that with constant probability finds such a X̃,
taking time

O(nnz(A) + nnz(B) + (n+ d+ d′)poly(r/ε)) + τ(d, poly(r/ε), poly(r/ε), r, ε).

Although earlier results for constrained least squares (e.g. [10]) can be applied to obtain
approximation algorithms for regularized multiple-response least squares, via the solution
of minX∈Rd×d′‖AX −B‖2F , subject to f(X) ≤ C for a chosen constant C, such a reduction
yields a slower algorithm if properties of f(X) are not exploited, as here.

Proof. Omitted in this version. J

D General Regularization: Low-rank Approximation

For an integer k we consider the problem

min
Y ∈Rn×k

X∈Rk×d

‖Y X −A‖2F + f(Y,X), (23)

where f(·, ·) is a real-valued function that is piloi in the left argument, piroi in the
right argument, and left and right reduced by contraction in its left and right arguments,
respectively.

For example f̂(‖Y ‖`, ‖X‖r) for piloi ‖·‖` and piroi ‖·‖r would satisfy these conditions,
as would ‖Y X‖g for orthogonally invariant norm ‖·‖g. The function f̂ could be zero for
arguments whose maximum is less than some µ, and infinity otherwise.

H. Avron, K. L. Clarkson, and D. P. Woodruff 27:21

D.1 Via the SVD

First, a solution method relying on the singular value decomposition for a slightly more
general problem than (23).

I Theorem 40. Let k be a positive integer, f1 : R 7→ R increasing, and f : Rn×k×Rk×d 7→ R,
where f is piloi and subadditive in its left argument, and piroi and subadditive in in its
right argument.

Let A have full SVD A = UΣV >, Σk ∈ Rk×k the diagonal matrix of top k singular values
of A. Let matrices W ∗, Z∗ ∈ Rk×k solve

min
W∈Rk×k

Z∈Rk×k

WZ diagonal

f1(‖WZ − Σk‖(p)) + f(W,Z), (24)

and suppose there is a procedure taking τ(k) time to find W ∗ and Z∗. Then the solution to

min
Y ∈Rn×k

X∈Rk×d

f1(‖Y X −A‖(p)) + f(Y,X) (25)

is Y ∗ = U
[

W∗

0(n−k)×k

]
and X∗ = [Z∗ 0k×(d−k)]V >. Thus for general A, (25) can be solved in

time O(ndmin{n, d}) + τ(k).

Proof. Omitted in this version. J

We sharpen this result for the case that the regularization term comes from orthogonally
invariant norms.

I Theorem 41. Consider (25) when f(·, ·) has the form f̂(‖Y ‖`, ‖X‖r), where ‖·‖` and ‖·‖r
are orthogonally invariant, and f̂ : R× R 7→ R increasing in each argument. Suppose in that
setting there is a procedure that solves (25) when A, Y , and X are diagonal matrices, taking
time τ(r) for a function τ(·), with r ≡ rank(A). Then for general A, (25) can be solved by
finding the SVD of A, and applying the given procedure to k × k diagonal matrices, taking
altogether time O(ndmin{n, d}) + τ(k).

Proof. Omitted in this version. J

I Definition 42 (clipping to nonnegative (·)+). For real number a, let (a)+ denote a, if a ≥ 0,
and zero otherwise. For matrix A, let (A)+ denote coordinatewise application.

I Corollary 43. If the objective function in (25) is ‖Y X − A‖2F + 2λ‖Y X‖(1) or ‖Y X −
A‖2F + λ(‖Y ‖2F + ‖X‖2F), then the diagonal matrices W ∗ and Z∗ from Theorem 41 yielding
the solution are W ∗ = Z∗ =

√
(Σk − λIk)+, where Σk is the k × k diagonal matrix of top k

singular values of A [29].
If the objective function is ‖Y X − A‖(p) + λ‖Y X‖(1) for p ∈ [1,∞], then W ∗ = Z∗ =√

(Σk − αIk)+, for an appropriate value α.
If the objective function is ‖Y X −A‖2F + λ‖Y X‖2F , then W ∗ = Z∗ =

√
Σk/(1 + λ).

Proof. Omitted in this version. J

APPROX/RANDOM’17

27:22 Sharper Bounds for Regularized Data Fitting

D.2 Reduction to a small problem via sketching
I Theorem 44. Suppose there is a procedure that solves (23) when A, Y , and X are k × k
matrices, and A is diagonal, and Y X is constrained to be diagonal, taking time τ(k) for
a function τ(·). Let f also inherit a sketching distribution on the left in its left argument,
and on the right in its right argument. Then for general A, there is an algorithm that finds
ε-approximate solution (Ỹ , X̃) in time

O(nnz(A)) + Õ(n+ d)poly(k/ε) + τ(k).

Proof. Omitted in this version. J

E Proof of Lemma 25

Proof. Let UC be an orthogonal basis for colspace(C), so that every matrix of the form
CZR is equal to UCZ ′R for some Z ′R. Similarly let U>D be an orthogonal basis for rowspan(D),
so that every matrix of the form ZSD is equal to one of the form Z ′SUD. Let PC ≡ UCU>C
and PD ≡ UDU>D . Then using PC(I − PC) = 0, PD(I − PD) = 0, and matrix Pythagoras,

‖CZRZSD −G‖2F + λ‖CZR‖2F + λ‖ZSD‖2F
= ‖PCUCZ ′RZ ′SU>DPD −G‖2F + λ‖UCZ ′R‖2F + λ‖Z ′SU>D‖2F
= ‖PCUCZ ′RZ ′SU>DPD − PCGPD‖2F + ‖(I − PC)G‖2F

+ ‖PCG(I − PD)‖2F + λ‖Z ′R‖2F + λ‖Z ′S‖2F .

So minimizing (18) is equivalent to minimizing

‖PCUCZ ′RZ ′SU>DPD − PCGPD‖2F + λ‖Z ′R‖2F + λ‖Z ′S‖2F
= ‖UCZ ′RZ ′SU>D − UCU>CGUDU>D‖2F + λ‖Z ′R‖2F + λ‖Z ′S‖2F
= ‖Z ′RZ ′S − U>CGUD‖2F + λ‖Z ′R‖2F + λ‖Z ′S‖2F .

This has the form of (16), mapping Y of (16) to Z ′R, X to Z ′S , and A to U>CGUD, from
which a solution of the form (17) can be obtained.

To recover ZR from Z ′R: we have C = UC [TC T ′C], for matrices TC and T ′C , where upper
triangular TC ∈ RrC×rC . We recover ZR as

[
T−1

C
Ẑ′R

0m−rC×k

]
, since then UCZ ′R = CZR. A similar

back-substitution allows recovery of ZS from Z ′S .
Running times: to compute UC and UD, O(pm′rC + mp′rD); to compute U>CGUD,

O(rDp(p′ + rC)); to compute and use the SVD of U>CGUD to to solve (16) via (17),
O(rCrD min{rC , rD}); to recover ZR and ZS , O(k(r2

C +r2
D)). Thus, assuming k ≤ min{p, p′}

and using rC ≤ min{p,m′} and rD ≤ min{m, p′}, the total running time is O(pm′rC +
p′mrD + pp′(rC + rD)), as claimed. J

The Lovász Theta Function for Random Regular
Graphs and Community Detection in the Hard
Regime
Jess Banks1, Robert Kleinberg2, and Cristopher Moore3

1 Department of Mathematics, University of California, Berkeley, CA, USA
jess.m.banks@berkeley.edu

2 Santa Fe Institute, Santa Fe, NM, USA
moore@santafe.edu

3 Department of Computer Science, Cornell University, Ithaca, NY, USA
rdk@cs.cornell.edu

Abstract
We derive upper and lower bounds on the degree d for which the Lovász ϑ function, or equivalently
sum-of-squares proofs with degree two, can refute the existence of a k-coloring in random regular
graphs Gn,d. We show that this type of refutation fails well above the k-colorability transition,
and in particular everywhere below the Kesten-Stigum threshold. This is consistent with the
conjecture that refuting k-colorability, or distinguishing Gn,d from the planted coloring model,
is hard in this region. Our results also apply to the disassortative case of the stochastic block
model, adding evidence to the conjecture that there is a regime where community detection
is computationally hard even though it is information-theoretically possible. Using orthogonal
polynomials, we also provide explicit upper bounds on ϑ(G) for regular graphs of a given girth,
which may be of independent interest.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases Lovász Theta Function, Random Regular Graphs, Sum of Squares, Or-
thogonal Polynomials

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.28

1 Introduction

Many constraint satisfaction problems have phase transitions in the random case: as the
ratio between the number of constraints and the number of variables increases, there is a
critical value at which the probability that a solution exists, in the limit n→∞, suddenly
drops from one to zero. Above this transition, most instances are too constrained and hence
unsatisfiable. But how many constraints do we need before it becomes easy to prove that a
typical instance is unsatisfiable? When is there likely to be a short refutation, which we can
find in polynomial time, proving that no solution exists?

For a closely related problem, suppose that a constraint satisfaction problem is generated
randomly, but with a particular solution “planted” in it. Given the instance, can we recover
the planted solution, at least approximately? For that matter, can we tell whether the
instance was generated from this planted model, as opposed to an un-planted model with
no built-in solution? We can think of this as a statistical inference problem. If there is an
underlying pattern in a dataset (the planted solution) but also some noise (the probabilistic
process by which the instance is generated) the question is how much data (how many
constraints) we need before we can find the pattern, or confirm that one exists.

© Jess Banks, Robert Kleinberg, and Cristopher Moore;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 28; pp. 28:1–28:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.28
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

28:2 The Lovász Theta Function for Random Regular Graphs

Here we focus on the k-colorability of random graphs, and more generally the community
detection problem. Let G = G(n, p = d/n) denote the Erdős-Rényi graph with n vertices and
average degree d. A simple first moment argument shows that with high probability G is is
not k-colorable if

d ≥ dfirst = 2k ln k − ln k . (1)

(We say that an event En on graphs of size n holds with high probability if limn→∞ Pr[En] = 1,
and with positive probability if lim infn→∞ Pr[En] > 0.) Sophisticated uses of the second
moment method [8, 24] shows that this is essentially tight, and that the k-colorability
transition occurs at

dc = dfirst −O(1) .

Now consider the planted coloring model, where we choose a coloring σ uniformly at random
and condition G on the event that σ is proper.

If d > dc, then G(n, d/n) is probably not k-colorable, while graphs drawn from the
planted model are k-colorable by construction. Thus, above the k-colorability transition, we
can tell with high probability whether G was drawn from the planted or un-planted model
by checking to see if G is k-colorable. However, searching exhaustively for k-colorings would
take exponential time.

A similar situation holds for the stochastic block model, a model of graphs with community
structure also known as the planted partition problem (see [47, 2] for reviews). For our
purposes, we will define it as follows: fix a constant τ , and say a partition σ of the vertices into
k groups is “good” if a fraction τ/k of the edges connect vertices within groups. Equivalently,
if G has m edges, σ is a multiway cut with (1 − τ/k)m edges crossing between groups.
Generalizing the planted coloring model where τ = 0, the block model chooses σ uniformly,
and conditions G on the event that σ is good. The cases τ > 1 and τ < 1, where vertices are
more or less likely to be connected to others in the same group, are called assortative (or
ferromagnetic) and disassortative (or antiferromagnetic) respectively.

Two natural problems related to the block model are detection, i.e., telling with high
probability whether G was drawn from the block model or from G(n, d/n), and reconstruction,
finding a partition which is significantly correlated with the planted partition σ. (This is
sometimes called weak reconstruction to distinguish it from finding σ exactly, which becomes
possible when d = Θ(logn) [16, 1, 3, 30, 31, 9, 50].) Both problems become information-
theoretically possible at a point called the condensation transition [39, 22, 19], and the first
and second moment methods [12] show that this scales as

dc ∼
k log k

(τ − 1)2 , (2)

where ∼ hides a multiplicative constant. As in k-coloring this is roughly the first-moment
bound above which, with high probability, no good partitions exist in G(n, d/n). However,
the obvious algorithms for detection and reconstruction, such as searching exhaustively for
good partitions or sampling from an appropriate Gibbs distribution [6, 4], require exponential
time.

In fact, conjectures from statistical physics [40, 25, 26] suggest this exponential difficulty is
sometimes unavoidable. Specifically, these conjectures state that polynomial-time algorithms
for detection and reconstruction exist if and only if d is above the Kesten-Stigum threshold [34,
35],

dKS =
(
k − 1
τ − 1

)2
. (3)

J. Banks, R. Kleinberg, and C. Moore 28:3

Several polynomial-time algorithms are now known to succeed whenever d > dKS, including
variants of belief propagation [49, 5] and spectral algorithms based on non-backtracking
walks [48, 38, 43, 17]. Moreover, for k = 2 we know that the information-theoretic and
Kesten-Stigum thresholds coincide [51]. Comparing (2) and (3) we see that for any τ 6= 1 we
have dc < dKS for sufficiently large k, and in fact this occurs for some τ < 1 when k = 4 and
more generally when k ≥ 5 [6, 4, 12].

Thus in the regime dc < d < dKS, detection and reconstruction are information-
theoretically possible, but are conjectured to be computationally hard. In particular, this
conjecture implies that there is no way to refute the existence of a coloring, or of a good
partition, whenever d < dKS, even when d is large enough so that a coloring or partition
probably does not exist. Our goal in this paper is to rule out spectral refutations based on
the Lovász theta function, or equivalently sum-of-squares proofs of degree two.

For technical reasons, we focus on random d-regular graphs, which we denote Gn,d. A
series of papers applying the first and second moment methods in this setting [46, 7, 33, 21]
have determined the likely chromatic number of Gn,d for almost all d, showing that the
critical d for k-colorability is dc = dfirst −O(1) just as for G(n, d/n). (There are a few values
of d and k where Gn,d could be k-colorable with probability strictly between 0 and 1, so this
transition might not be completely sharp.)

We define the d-regular block model by choosing a planted partition σ uniformly at
random and conditioning Gn,d on the event that σ is good. Equivalently, we choose G
uniformly from all d-regular graphs such that a fraction τ/k of their m = dn/2 edges
connect vertices within groups. We claim that our results also apply to the regular block
model proposed in [51] where d-regular graphs are chosen with probability proportional to
τ# within-group edges((k − τ)/(k − 1))# between-group edges: in that case, the fraction of within-
group edges fluctuates, but is τ/k + o(1) with high probability.1 We again conjecture that
refuting the existence of a coloring or a good partition is exponentially hard below the
Kesten-Stigum bound. Since the branching ratio of a d-regular tree is d− 1, in the regular
case this becomes

d < dKS =
(
k − 1
τ − 1

)2
+ 1 .

Main Results
The Lovászϑ function, which we review below, gives a lower bound on the chromatic
number which can be computed in polynomial time. In particular, if ϑ(G) > k, this
provides a polynomial-time refutation of G’s k-colorability. We first prove that this type of
refutation exactly corresponds to sum-of-squares proofs of degree two in a natural encoding
of k-colorability as a system of polynomials; the connection between SDP relaxations and
degree-two SOS is standard [54] but we give an explicit proof here for completeness. We then
show the following bounds on the likely value of ϑ(G) when G is a random d-regular graph.

I Theorem 1. Let d be constant. For any constant ε > 0, with high probability

d

2
√
d− 1

+ 1− ε ≤ ϑ(Gn,d) ≤
d

2
√
d− 1

+ 2 + ε . (4)

1 These models are not to be confused with a stricter model, where for some constants qrs each vertex
in group r has exactly qrs neighbors in group s [18, 23, 53, 15]. Our model only constrains the total
number of edges within or between groups.

APPROX/RANDOM’17

28:4 The Lovász Theta Function for Random Regular Graphs

As a consequence, the Lovászϑ function cannot refute k-colorability with high probability if

k > 2 + d

2
√
d− 1

, (5)

and in particular if d is below the Kesten-Stigum threshold.

A strict inequality suffices in (5) by appropriately choosing ε in (4). Rearranging, no refutation
of this kind can exist when

d < 2(k − 2)
(

(k − 2) +
√

(k − 2)2 − 1
)

= (4− ok(1))dKS .

Our lower bound on ϑ(Gn,d) follows easily from Friedman’s theorem [29] on the spectrum of
Gn,d. For the upper bound, we first use orthogonal polynomials to derive explicit bounds on
ϑ(G) for arbitrary regular graphs of a given girth – which may be of independent interest –
and then employ a concentration argument for Gn,d.

We also relate the Lovászϑ function to the existence of a good partition in the disassort-
ative case of the block model, giving

I Theorem 2. Fix τ < 1 and say a partition is good if a fraction τ/k of its edges connect
endpoints in the same group. Then sum-of-squares proofs of degree two cannot refute the
existence of a good partition in Gn,d if

k − τ
1− τ > 2 + d

2
√
d− 1

.

Thus degree-two sum-of-squares cannot distinguish the regular stochastic block model from
Gn,d until d is roughly a factor of 4 above the Kesten-Stigum threshold.

Related Work
The distribution of ϑ(G) for the Erdős-Rényi graph G = G(n, p) and the random d-regular
graph G = Gn,d were studied in [20]. In particular, that work showed that when d is
sufficiently large, with high probability ϑ(Gn,d) > c

√
d for a constant c > 0. Our results

tighten this lower bound, making the constant c explicit, and provide a nearly-matching
upper bound.

Our results on the power of degree-two sum-of-squares refutations for k-colorability
contribute to a recent line of work on refutations of random CSPs, which we briefly survey.
If we define the density of a CSP as the ratio of constraints to variables – which for coloring
equals half the average degree of the graph – then the conjectured hard regime for k-coloring
corresponds to a range of densities bounded below and above by constants (i.e., depending on
k but not n). For CSPs such as k-SAT and k-XOR, there is again a satisfiability transition at
constant density, but with high probability sum-of-squares refutations with constant degree
do not exist unless the density is much higher, namely Ω(nk/2−1) [55], a result which was
recently extended to general CSPs whose constraint predicate supports a (k−1)-wise uniform
distribution [36]. Conversely, if a predicate does not support a t-wise uniform distribution,
then [10] shows that there is an efficient sum-of-squares refutation when the density is
Õ(nt/2− 1). For coloring, this gives refutations at roughly constant density; our contribution
makes this a nearly-precise constant in the special case of degree-two sum-of-squares on
random regular graphs.

The hidden clique problem also has a conjectured hard regime. It is well known that
the random graph G(n, 1/2) has no cliques larger than O(logn) [28] but it is conjectured
to be computationally hard to distinguish G(n, 1/2) from a graph with a planted clique

J. Banks, R. Kleinberg, and C. Moore 28:5

of size o(n1/2). A sequence of progressively stronger sum-of-squares lower bounds for this
problem [27, 32, 45] have culminated in the theorem that with high probability the degree-d
sum-of-squares proof system cannot refute the existence of a clique of size n1/2−c(d/ logn)1/2

in G(n, 1/2) for some constant c > 0 [13].
In contrast to the aforementioned work on refuting random k-CSPs and planted cliques,

our result pertains to a much more specific pair of problems, namely k-coloring and the
stochastic block model, and only to degree-two sum-of-squares refutations; but it attains a
sharp bound, within an additive constant, on the density at which these refutations become
possible. We conjecture that sum-of-squares refutations of any constant degree do not exist
below the Kesten-Stigum threshold, but it seems difficult to extend our current techniques
to degree higher than two.

2 Colorings, Partitions, and the Lovász ϑ Function

2.1 Background on sum-of-squares
One type of refutation which has gained a great deal of interest recently is sum-of-squares
proofs: see [14] for a review. Suppose we encode our variables and constraints as a system of
m polynomial equations on n variables, fj(x1, x2, . . . , xn) = 0 for all j = 1, . . . ,m.

One way to prove that no solution x ∈ Rn exists – in algebraic terms, that this variety
is empty – is to find a linear combination of the fj which is greater than zero for all x.
Moreover, the positivstellensatz of Krivine [37] and Stengle [57] shows that a polynomial is
nonnegative over Rn if and only if it can be written as a sum of squares of rational functions.
Thus, clearing denominators, we need polynomials g1, . . . , gm and h1, . . . , ht and a constant
ε > 0 (which we can always scale to 1 if we like) such that

m∑
j=1

gj(x)fj(x) = S + ε where S =
t∑
`=1

h`(x)2 . (6)

This proof technique is complete as well as sound. That is, there is such a set of polynomials
{gj} and {h`} if and only if no solution exists.

Even when the fj are of low degree, the polynomials gj and h` might be of high degree,
making them difficult to find. However, we can ask when a refutation exists where both sides
of (6) have degree δ or less. As we take δ = 2, 4, 6, . . . we obtain the SOS hierarchy. The
case δ = 2 is typically equivalent to a familiar semidefinite relaxation of the problem. More
generally, a degree-δ refutation exists if and only if a certain semidefinite program on O(nδ)
variables is feasible: thus we can find degree-δ refutations, or confirm that they do not exist,
in time poly(nδ) [56, 52, 54, 41]. To see why, note that if we write a polynomial S(x) as a
bilinear form on monomials x(α) =

∏
i x

αi of degree δ/2,

S(x) =
∑
α,α′

S(α, α′)x(α)x(α′) ,

then S(x) is a sum of squares of degree δ/2 polynomials if and only if the matrix S is positive
semidefinite, or equivalently if S is the sum of positive symmetric rank-one matrices. These
are outer products of vectors with themselves, so there are vectors w1, . . . , wt such that
S =

∑t
`=1 w`⊗w` and S =

∑
` h

2
` where h`(x) =

∑
α w`(α)x(α). Finally, the constraint that

S =
∑
j gjfj − ε for some {gj} and some ε > 0 corresponds to a set of linear inequalities on

the entries of S.

APPROX/RANDOM’17

28:6 The Lovász Theta Function for Random Regular Graphs

The dual object to a degree-δ refutation is a pseudoexpectation. This is a linear operator
Ẽ on polynomials of degree at most δ with the properties that

Ẽ[1] = 1, (7)
Ẽ[fj] = 0 for all j, (8)
Ẽ[p2] ≥ 0 for any polynomial p of degree at most δ/2. (9)

If we write Ẽ as a bilinear form on monomials x(α), then (7) and (8) are linear constraints
on its entries, and (9) states that this matrix is positive semidefinite. The resulting SDP is
dual to the SDP for refutations, so each of these SDPs is feasible precisely when the other is
not. Thus there is a degree-δ refutation if and only if no degree-δ pseudoexpectation exists,
and vice versa.

We can think of a pseudoexpectation as a way for an adversary to fool the SOS proof
system. The adversary claims there are are many solutions – even if in reality there are none
– and offers to compute the expectation of any low-degree polynomial over the set of solutions.
As long as (7) and (8) hold, this appears to be a distribution over valid solutions, and as
long as (9) holds, the SOS prover cannot catch the adversary in an obvious lie like the claim
that some quantity of degree δ/2 has negative variance.

2.2 Colorings, partitions, and sum-of-squares
For a given graph G with adjacency matrix A, we can encode the problem of k-colorability
as the following system of polynomial equations in kn variables x = {xi,c}, where i ∈ [n]
indexes vertices and c ∈ [k] indexes colors:

The xi,c are Boolean: pbooli,c , x2
i,c − xi,c = 0 ∀i, c (10)

Each vertex has one color: psingi , −1 +
∑
c

xi,c = 0 ∀i (11)

The coloring is proper: pcolij ,
∑
c

xi,c xj,c = 0 ∀(i, j) ∈ E (12)

Then G is k-colorable if and only if (10)–(12) has a solution in Rkn. We can encode the
stochastic block model similarly: fix τ , and recall that a partition of G into k groups is good
if a fraction τ/k of the edges have endpoints in the same group. If G has m edges, we can
replace constraint (12) with

Good partition: pcut , −τ
k

+ 1
2m

∑
i,j

Aij
∑
c

xi,c xj,c = 0 . (13)

A degree-δ sum-of-squares refutation of (10)–(12) is an equation of the form∑
i,c

bi,cp
bool
i,c +

∑
i

sip
sing
i +

∑
(i,j)∈E

gijp
col
ij = S + ε (14)

where bi,c, si, gij are polynomials over x, S is a sum of squares of polynomials, ε is a small
positive constant which we will omit when clear, and the degree of each side is at most δ.
Such an equation is a proof that no coloring exists. Replacing

∑
i,j gijp

col
ij with gcutpcut gives

a refutation of the system formed by (10), (11), and (13), proving that no good partition
exists. We focus on refutations of degree two, which as we will see are related to a classic
relaxation of graph coloring.

J. Banks, R. Kleinberg, and C. Moore 28:7

2.3 The Lovász ϑ function
An orthogonal representation of a graph G with n vertices is an assignment of a unit vector
ui ∈ Rn to each vertex i such that

〈
ui, uj

〉
= 0 for all (i, j) ∈ E. The Lovász function,

denoted ϑ(G) by convention, is the smallest κ for which there is an orthogonal representation
{ui} and an additional unit vector z ∈ Rn such that

〈
ui, z

〉
= 1/

√
κ: that is, such that all

the ui lie on a cone2 of width cos−1(1/
√
κ).

The Gram matrix Pij =
〈
ui, uj

〉
of an orthogonal representation is positive semidefinite

with Pii = 1 and Pij = 0 for (i, j) ∈ E. Adding an auxiliary row and column for the inner
products with z, we can define ϑ in terms of a semidefinite program,

ϑ(G) = min
P

κ > 0 such that
(

1 1/
√
κ

1/
√
κ P

)
� 0 (15)

Pii = 1 ∀i
Pij = 0 ∀(i, j) ∈ E ,

where 1 is the n-dimensional vector whose entries are all 1s. The dual of this program can
be written as

ϑ(G) = max
D
〈D, J〉 such that D � 0 (16)

trD = 1
Dij = 0 ∀(i, j) /∈ E ,

where J is the matrix of all 1s and
〈
A,B

〉
= tr(A†B) =

∑
i,j AijBij denotes the matrix inner

product.
If G is k-colorable then ϑ(G) ≤ k, since we can use the first k basis vectors e1, . . . , ek

as an orthogonal representation and take z = (1/
√
k)
∑k
t=1 et. Thus if ϑ(G) > k, the

Lovász function gives a polynomial-time refutation of k-colorability. As stated above, degree-
two sum-of-squares proofs typically correspond to well-known semidefinite relaxations, and
the next theorem shows that this is indeed the case here.

I Theorem 3. There is a degree-2 SOS refutation of k-colorability for a graph G if and only
if ϑ(G) > k.

We prove this in the Appendix, where we show that any orthogonal representation of G that
lies on an appropriate cone lets us define a pseudoexpectation for the system (10)–(12). This
will also allow us to modify the SDPs for refutations and pseudoexpectations, and work with
simplified but equivalent versions.

2.4 Good partitions and a relaxed Lovász function
The reader may have noticed that while the coloring constraint (12) fixes the inner product∑

c xi,cxj,c =
〈
xi, xj

〉
to zero for each edge (i, j) ∈ E, the “good partition” constraint (13)

only fixes the sum of all these inner products. This suggests a slight relaxation of the Lovászϑ
function, where we weaken the SDP (15) by replacing the individual constraints on Pij for

2 To see that this definition of ϑ is equivalent to the more common one that
〈
ui, z
〉
≤ 1/

√
κ for every i,

i.e., where the ui can be in the interior of this cone, simply rotate each ui in the subspace perpendicular
to its neighbors until

〈
ui, z
〉
is exactly 1/

√
κ.

APPROX/RANDOM’17

28:8 The Lovász Theta Function for Random Regular Graphs

all (i, j) ∈ E with a constraint on their sum. In other words, we allow a vector coloring
where neighboring vectors are orthogonal on average. We denote the resulting function ϑ̂:

ϑ̂(G) = min
P

κ > 0 such that
(

1 1/
√
κ

1/
√
κ P

)
� 0 (17)

Pii = 1 ∀i〈
P,A

〉
= 0 ,

The dual SDP tightens (16) by requiring that the matrix D take the same value on every
edge. Thus D is a multiple of A plus a diagonal matrix,

ϑ̂(G) = max
η,b
〈D, J〉 such that D , ηA+ diag b � 0 (18)

trD =
〈
b,1
〉

= 1

Since ϑ̂ is a relaxation of ϑ, we always have ϑ̂(G) ≤ ϑ(G).
This modified Lovász function ϑ̂ is equivalent to degree-two SOS for good partitions in

the dissasortative case of the block model, in the following sense.

I Theorem 4. If τ < 1, there exists a degree-two SOS refutation of a partition of G where a
fraction τ/k of the edges are within groups if and only if

ϑ̂(G) > k − τ
1− τ . (19)

Once again we leave the proof to the Appendix. Note that the SDP (17) for ϑ̂ contains no
information about k or τ : this relaxed orthogonal representation has the uncanny capacity
to fool degree-two SOS about an entire family of related cuts of different sizes and qualities.

2.5 Upper and lower bounds
With these theorems in hand, we can set about producing degree-two sum-of-squares refut-
ations and pseudoexpectations for our problems; throughout this section we will refer to
these simply as ‘refutations’ and ‘pseudoexpectations’. In fact, the same construction will
give us asymptotically optimal refutations and pseudoexpectations for both the coloring and
partition problems.

To warm-up, we have the following simple construction of a refutation, which we will
phrase in terms of the Lovász theta function and its relaxed version.

I Lemma 5. Let G be a d-regular graph, and let λmin be the smallest eigenvalue of its
adjacency matrix A. Then

ϑ(G) ≥ ϑ̂(G) ≥ 1 + d/|λmin| . (20)

Proof. Denote by 1 the identity matrix. We construct a feasible solution D to the dual
SDP (18) by taking

D ,
1
n

(
1 + 1
|λmin|

A

)
,

and use the fact that
〈
A, J

〉
= dn. J

By invoking Friedman’s theorem [29] that (as n→∞) the smallest eigenvalue of a random
d-regular graph is with high probability larger than −2(1 + ε)

√
d− 1 for any ε > 0, we obtain:

J. Banks, R. Kleinberg, and C. Moore 28:9

I Corollary 6. When G = Gn,d, for any ε > 0, with high probability

ϑ(G) ≥ ϑ̂(G) > 1 + d

2
√
d− 1

− ε . (21)

Putting this together with Theorems 3 and 4 gives

I Corollary 7. If G = Gn,d and τ < 1, with high probability there exists a refutation of a
partition with a fraction τ/k of within-group edges when

k − τ
1− τ < 1 + d

2
√
d− 1

. (22)

Setting τ = 0, a refutation of k-colorability exists with high probability when

k < 1 + d

2
√
d− 1

.

Note that for large k, the minimum value of d satisfying (22) is a factor of four above the
Kesten-Stigum threshold in both the coloring and partition problems.

Our construction for this lower bound on ϑ is quite simple, but remarkably we find that
for both the coloring and partition problems, it is asymptotically optimal in d and k. In
particular,

I Theorem 8. For any d-regular graph G with girth at least γ, we have

ϑ̂(G) ≤ ϑ(G) < 1 + d

2(1− εγ)
√
d− 1

. (23)

where εγ is a sequence of constants which decrease to zero as γ →∞.

Since for any constant γ a random regular graph has girth γ with positive probability [59,
Theorem 2.12], we rely on the following result showing that ϑ(Gn,d) is concentrated in an
interval of width one. The proof is essentially the same as that of [7] for the chromatic
number, and is given in the Appendix.

I Lemma 9. Let θ ≥ 3. If ϑ(Gn,d) ≤ θ with positive probability, then ϑ(Gn,d) ≤ θ + 1 with
high probability.

I Corollary 10. If G = Gn,d, with high probability there does not exist a refutation of a
partition with a fraction τ/k of within-group edges when

k − τ
1− τ > 2 + d

2
√
d− 1

. (24)

Setting τ = 0, with high probability no refutation of k-colorability exists when

k > 2 + d

2
√
d− 1

.

Thus for both problems, no degree-two sum-of-squares refutation exists until d is roughly a
factor of 4 above the Kesten-Stigum threshold.

APPROX/RANDOM’17

28:10 The Lovász Theta Function for Random Regular Graphs

3 Constructing a Pseudoexpectation with Orthogonal Polynomials

We now prove Theorem 8 by constructing a feasible solution to the primal SDP (15): that
is, unit vectors {ui} such that

〈
ui, uj

〉
= 0 for every edge (i, j), and a unit vector z so that〈

ui, z
〉

= 1/
√
κ for all i. Recall that such a collection exists if and only if ϑ(G) ≤ κ.

It is convenient to instead define a set of unit vectors {vi} such that
〈
vi, vj

〉
= −1/(κ− 1)

for every edge (i, j). We claim that such a set exists if and only if ϑ(G) ≤ κ. In one direction,
given {ui} and z with the above properties, if we define

vi =
√

κ

κ− 1 ui −
1√
κ− 1

z

then the vi are unit vectors with
〈
vi, vj

〉
= −1/(κ− 1) for (i, j) ∈ E. For instance, if the ui

are k orthogonal basis vectors, then the vi point to the corners of a k-simplex. In the other
direction, given {vi} we can take z to be a unit vector perpendicular to all the vi, and define

ui =
√
κ− 1
κ

vi + 1√
κ
z .

Then
〈
ui, uj

〉
= 0 for (i, j) ∈ E, and

〈
ui, z

〉
= 1/

√
κ for all i. This means that we can

characterize the Lovászϑ function with a slightly different SDP, which uses the Gram matrix
of the {vi}:

ϑ(G) = min
P

κ > 1 such that P � 0 (25)

Pii = 1 ∀i
Pij = −1/(κ− 1) ∀(i, j) ∈ E

Alternatively, the matrix P above is a scaled Schur complement of the block matrix in (15).
We will show that for any d-regular graph G with girth at least γ, this SDP has a feasible

solution with

κ = 1 + d

2(1− εγ)
√
d− 1

,

where εγ depends only on γ and tends to zero as γ → ∞. Therefore, there is a pseudoex-
pectation that prevents degree-two SOS from refuting k-colorability for any k ≥ κ. We will
construct this pseudoexpectation by taking a linear combination of the “non-backtracking
powers” of G’s adjacency matrix A.

Denote by A(t) the matrix whose i, j entry is the number of non-backtracking walks of
length t from i to j; that is, walks which may freely wander the graph so long as they do
not make adjacent pairs of steps a→ b→ a for any vertices a, b. There is a simple two-term
recursion for these matrices: to count non-backtracking walks of length t+ 1, we first extend
each walk of length t by one edge, and then subtract off those that backtracked on the last
step. This gives

A(0) = 1

A(1) = A

A(2) = A2 − d1

A(t) = A ·A(t−1) − (d− 1)A(t−2) t ≥ 3 . (26)

J. Banks, R. Kleinberg, and C. Moore 28:11

Borrowing notation from [11], we can write A(t) in closed form as

A(t) =
√
d(d− 1)t−1 qt

(
A

2
√
d− 1

)
t ≥ 1 (27)

where qt(z) is a polynomial of degree t. Specifically,

q0(z) = 1

q1(z) = 2
√
d− 1
d

z

and for t > 1 the qt satisfy the Chebyshev recurrence

qt+1(z) = 2zqt(z)− qt−1(z) .

We can write qt explicitly as

qt(z) =
√
d− 1
d

Ut(z)−
1√

d(d− 1)
Ut−2(z) t ≥ 1 (28)

and Ut is the tth Chebyshev polynomial of the second kind (note that U−1(z) = 0).
Let µ(z) denote the Kesten-McKay measure µ on the interval [−1,+1], which after scaling

by 2
√
d− 1 describes the typical spectral density of a random regular graph [44]:

µ(z) = 2
π

(
d(d− 1)

d2 − 4(d− 1)z2

)√
1− z2 . (29)

Then the polynomials qt are orthonormal with respect to this measure. That is, if we define
the inner product

〈f, g〉 =
∫
f(z) g(z) dµ =

∫ 1

−1
f(z) g(z)µ(z) dz ,

then

〈q`(z), qm(z)〉 =
{

1 ` = m

0 ` 6= m.
(30)

If the girth of the graph is at least γ, there is no way for a non-backtracking walk of
length γ − 2 or less to return to its starting point or to a neighbor of its starting point,
so
〈
1, A(t)〉 =

〈
A,A(t)〉 = 0 for 1 < t ≤ γ − 2. We can thus satisfy the diagonal and edge

constraints of (25) by considering solutions of the form

P = 1− 1
κ− 1A+

γ−2∑
t=2

atA
(t)

= 1−
√
d

κ− 1 q1

(
A

2
√
d− 1

)
+
γ−2∑
t=2

at
√
d(d− 1)t−1 qt

(
A

2
√
d− 1

)
(31)

, f

(
A

2
√
d− 1

)
,

since the first two terms ensure that P has 1s on its diagonal and −1/(κ− 1) on the edges.
If we write

f(z) =
γ−2∑
t=0

ctqt(z) where c0 = 1 and c1 = −
√
d

κ− 1 , (32)

APPROX/RANDOM’17

28:12 The Lovász Theta Function for Random Regular Graphs

our job is to optimize the coefficients ct for 1 < t ≤ γ − 2 so as to minimize c1, and hence κ,
while ensuring that P � 0.

The eigenvalues of the matrix f(A/(2
√
d− 1)) are of the form f(λ/(2

√
d− 1)) where λ

ranges over all of A’s eigenvalues. Therefore, P � 0 if and only if f(λ/(2
√
d− 1)) for all

eigenvalues λ of A. Friedman’s celebrated theorem [29] shows that, with high probability,
the eigenvalues of A are contained in the set

S =
(
−(1 + ε)2

√
d− 1, (1 + ε)2

√
d− 1

)
∪ {d}

for any ε > 0. Thus we require that

f(z) ≥ 0 for all z ∈
(
− (1 + ε), 1 + ε

)
∪
{

d

2
√
d− 1

}
. (33)

We will relax this condition slightly by demanding just that f is nonnegative on [−1,+1],
although as we will see the resulting optimum is achieved by a function which is nonnegative
on all of R. First we use orthonormality (30) to write the coefficients ct as inner products,

ct = 〈qt, f〉 .

Then we optimize the pseudoexpectation as follows,

min 〈q1, f〉 (34)
such that 〈q0, f〉 = 1

f(z) ≥ 0 ∀z ∈ [−1,+1] .

When the degree γ − 2 of f is even, we can solve this optimization problem explicitly.
Set m = γ/2, and let r1 > · · · > rm be the roots of qm in decreasing order; it follows from
standard arguments about orthogonal polynomials that these are all in the support of µ, i.e.,
in the interval [−1,+1]. Consider the following polynomial of degree 2(m− 1) = γ − 2,

s(z) = 1
ζ

m−1∏
j=1

(z − rj)2 , (35)

where

ζ =
〈
q0,

m−1∏
j=1

(z − rj)2

〉

is a normalizing factor to ensure that
〈
q0, s

〉
= 1. We claim that s(z) is the optimum of (34).

To prove this, we begin with a general lemma on orthogonal polynomials and quadrature.
The proof is standard (e.g. [58]) but we include it in the Appendix for completeness.

I Lemma 11. Let {pt} be a sequence of polynomials of degree t which are orthogonal with
respect to a measure ρ supported on a compact interval I. Then the roots r1, . . . , rt of pt
form a quadrature rule which is exact for any polynomial u of degree less than 2t, in that∫

I

u(z) dρ =
t∑
i=1

ωiu(ri)

for some positive weights {ω1, . . . , ωt} independent of u.

J. Banks, R. Kleinberg, and C. Moore 28:13

Now let g(z) = z − rm. In view of Lemma 11, for any polynomial f(z) of degree at
most γ − 2, the inner product 〈g, f〉 can be expressed using the roots r1, . . . , rm of qm as a
quadrature,

〈g, f〉 =
∫

(z − rm)f(z)dµ =
m∑
j=1

ωj(rj − rm)f(rj) =
m−1∑
j=1

ωj(rj − rm)f(rj) .

Note that ωj(rj − rm) > 0 for every 1 ≤ j ≤ m− 1, since rm is the left-most root. If impose
the constraints that f(rj) ≥ 0 for all j = 1, . . . ,m− 1, then 〈g, f〉 ≥ 0. If we also impose the
constraint 〈f, q0〉 = 1, then

〈q1, f〉 =
〈

2
√
d− 1
d

z, f

〉

= 2
√
d− 1
d
〈g, f〉+ 2

√
d− 1
d

rm〈q0, f〉

≥ 2
√
d− 1
d

rm , (36)

with equality if and only if f(rj) = 0 for all j = 1, . . . ,m− 1. Since s(z) obeys this equality
condition, we have

〈q1, s〉 = 2
√
d− 1
d

rm ,

and this is the minimum possible value of c1 = 〈q1, s〉 subject to the constraints that
〈q0, f〉 = 1 and f(rj) ≥ 0 for j = 1, . . . ,m− 1. Moreover, s(z) ≥ 0 on all of R, so s(z) in fact
obeys the stronger constraint (33).

Referring back to (32) gives

c1 = −
√
d

κ− 1 = 2
√
d− 1
d

rm ,

and so

ϑ ≥ κ = 1 + d

2(−rm)
√
d− 1

.

Finally, we obtain (23) by defining εγ = rm + 1. Since rm → −1 as m tends to infinity3, we
have εγ → 0 as γ →∞, completing the proof.

We end with a brief note on the above construction. Recall that our project for the
last several pages has been to set the coefficients of non-backtracking paths of length t in a
feasible solution P to the SDP (25),

P =
γ∑
t=0

atA
(t).

As discussed in the Appendix, this matrix can be translated into a degree-two pseudoexpect-
ation Ẽ for the coloring problem: a linear operator that claims to give the joint distribution

3 The fact that rm → −1 as m→∞ can be deduced, for example, by using the definition of qm in (28)
to observe that qm(−1) and qm(− cos(π

m−1)) have opposite signs, and then applying the intermediate
value theorem.

APPROX/RANDOM’17

28:14 The Lovász Theta Function for Random Regular Graphs

of colors at at each pair of vertices i and j. The reader will find there that Pij is related to
the ‘pseudocorrelation’ between vertices i and j, by

k

k − 1 (Pij − 1/k) = P̃r[i and j are the same color] .

Our expansion of P in terms of non-backtracking paths means that, for most pairs i, j, this
pseudoexpectation depends only on the shortest path distance d(i, j). Specifically, whenever
d(i, j) = t ≤ γ − 2 and the shortest path is unique, we have Pij = at, and if d(i, j) > γ − 2
then Pij = 0. One might think that in the limit of large γ, the optimal pseudoexpectation
would make the natural choice that at = (1 − k)−t: in that, case, the pseuodocorrelation
would decay just as if these shortest paths were colored uniformly at random, ignoring
correlations with the remainder of the graph. However, a quick calculation shows that this
choice is in fact not optimal. In fact, the optimal coefficients we derive above cause the
pseudocorrelation to decay more quickly with distance than this naïve guess.

Acknowledgements. We are grateful to Charles Bordenave, Emmanuel Abbe, Amin Coja-
Oghlan, Yash Deshpande, Marc Lelarge, and Alex Russell for helpful conversations. Part of
this work was done while C.M. was visiting École Normale Supérieure. Part of this work was
done while R.K. was a researcher at Microsoft Research New England.

References
1 E. Abbe, A. S. Bandeira, and G. Hall. Exact recovery in the stochastic block model. IEEE

Transactions on Information Theory, 62(1):471–487, 2016.
2 Emmanuel Abbe. Community detection and stochastic block models: recent developments.

J. Machine Learning Research, 2017. to appear.
3 Emmanuel Abbe and Colin Sandon. Community detection in general stochastic block

models: Fundamental limits and efficient algorithms for recovery. In Proc. 56th Annual
Symposium on Foundations of Computer Science, FOCS, pages 670–688, 2015.

4 Emmanuel Abbe and Colin Sandon. Detection in the stochastic block model with mul-
tiple clusters: proof of the achievability conjectures, acyclic BP, and the information-
computation gap. ArXiv preprints, 1512.09080, 2015. URL: http://arxiv.org/abs/1512.
09080.

5 Emmanuel Abbe and Colin Sandon. Achieving the KS threshold in the gen-
eral stochastic block model with linearized acyclic belief propagation. In
Proc. Neural Information Processing Systems (NIPS), pages 1334–1342, 2016.
URL: http://papers.nips.cc/paper/6365-achieving-the-ks-threshold-in-the-
general-stochastic-block-model-with-linearized-acyclic-belief-propagation.

6 Emmanuel Abbe and Colin Sandon. Crossing the KS threshold in the stochastic block
model with information theory. In IEEE Intl. Symp. on Information Theory, ISIT, pages
840–844, 2016. doi:10.1109/ISIT.2016.7541417.

7 Dimitris Achlioptas and Cristopher Moore. The chromatic number of random regular
graphs. In Proc. 8th International Workshop on Randomization and Computation (RAN-
DOM), pages 219–228, 2004.

8 Dimitris Achlioptas and Assaf Naor. The two possible values of the chromatic number of
a random graph. Ann. Math., 162:1335–1351, 2005.

9 Naman Agarwal, Afonso S. Bandeira, Konstantinos Koiliaris, and Alexandra Kolla. Multi-
section in the stochastic block model using semidefinite programming. ArXiv preprints,
1507.02323, 2015. URL: http://arxiv.org/abs/1507.02323.

http://arxiv.org/abs/1512.09080
http://arxiv.org/abs/1512.09080
http://papers.nips.cc/paper/6365-achieving-the-ks-threshold-in-the-general-stochastic-block-model-with-linearized-acyclic-belief-propagation
http://papers.nips.cc/paper/6365-achieving-the-ks-threshold-in-the-general-stochastic-block-model-with-linearized-acyclic-belief-propagation
http://dx.doi.org/10.1109/ISIT.2016.7541417
http://arxiv.org/abs/1507.02323

J. Banks, R. Kleinberg, and C. Moore 28:15

10 Sarah R. Allen, Ryan O’Donnell, and David Witmer. How to refute a random CSP. In
IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS), pages 689–
708, 2015.

11 Noga Alon, Itai Benjamini, Eyal Lubetzky, and Sasha Sodin. Non-backtracking random
walks mix faster. Communications in Contemporary Mathematics, 9(04):585–603, 2007.

12 Jess Banks, Cristopher Moore, Joe Neeman, and Praneeth Netrapalli. Information-theoretic
thresholds for community detection in sparse networks. In Proc. 29th Conference on Learn-
ing Theory, COLT, pages 383–416, 2016. URL: http://jmlr.org/proceedings/papers/
v49/banks16.html.

13 Boaz Barak, Samuel B. Hopkins, Jonathan Kelner, Pravesh Kothari, Ankur Moitra, and
Aaron Potechin. A nearly tight sum-of-squares lower bound for the planted clique problem.
In Proc. 57th Annual IEEE Symposium on Foundations of Computer Science, FOCS, pages
428–437, 2016.

14 Boaz Barak and David Steurer. Sum-of-squares proofs and the quest toward optimal al-
gorithms. Electronic Colloquium on Computational Complexity (ECCC), 21:59, 2014. URL:
https://eccc.weizmann.ac.il/report/2014/059/.

15 P. Barucca. Spectral partitioning in random regular blockmodels. ArXiv e-prints,
1610.02668, 2016. URL: https://arxiv.org/abs/1610.02668.

16 Peter J. Bickel and Aiyou Chen. A nonparametric view of network models and Newman–
Girvan and other modularities. Proc. Natl. Acad. Sci. USA, 106:21068–21073, 2009.

17 Charles Bordenave, Marc Lelarge, and Laurent Massoulié. Non-backtracking spectrum of
random graphs: Community detection and non-regular Ramanujan graphs. In Proc. 56th
Annual Symposium on Foundations of Computer Science, FOCS, pages 1347–1357, 2015.

18 Gerandy Brito, Ioana Dumitriu, Shirshendu Ganguly, Christopher Hoffman, and Linh V.
Tran. Recovery and rigidity in a regular stochastic block model. In Proceedings of the
Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Ar-
lington, VA, USA, January 10-12, 2016, pages 1589–1601, 2016.

19 A. Coja-Oghlan, C. Efthymiou, N. Jaafari, M. Kang, and T. Kapetanopoulos. Charting
the replica symmetric phase. ArXiv preprints, 1704.01043, 2017. URL: https://arxiv.
org/abs/1704.01043.

20 Amin Coja-Oghlan. The Lovász number of random graphs. In 7th International Workshop
on Randomization and Approximation Techniques in Computer Science (RANDOM), pages
228–239, 2003.

21 Amin Coja-Oghlan, Charilaos Efthymiou, and Samuel Hetterich. On the chromatic number
of random regular graphs. J. Comb. Theory, Ser. B, 116:367–439, 2016.

22 Amin Coja-Oghlan, Florent Krzakala, Will Perkins, and Lenka Zdeborová. Information-
theoretic thresholds from the cavity method. Proc. 49th Annual ACM on Symposium on
Theory of Computing, STOC, 2017. URL: http://arxiv.org/abs/1611.00814.

23 Amin Coja-Oghlan, Elchanan Mossel, and Dan Vilenchik. A spectral approach to analysing
belief propagation for 3-colouring. Combinatorics, Probability and Computing, 18(6):881–
912, 2009.

24 Amin Coja-Oghlan and Dan Vilenchik. Chasing the K-colorability threshold. In 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS, pages 380–389,
2013.

25 Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka Zdeborová. Asymptotic
analysis of the stochastic block model for modular networks and its algorithmic applications.
Phys. Rev. E, 84:066106, 2011. doi:10.1103/PhysRevE.84.066106.

26 Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka Zdeborová. Inference
and phase transitions in the detection of modules in sparse networks. Phys. Rev. Lett.,
107:065701, 2011. doi:10.1103/PhysRevLett.107.065701.

APPROX/RANDOM’17

http://jmlr.org/proceedings/papers/v49/banks16.html
http://jmlr.org/proceedings/papers/v49/banks16.html
https://eccc.weizmann.ac.il/report/2014/059/
https://arxiv.org/abs/1610.02668
https://arxiv.org/abs/1704.01043
https://arxiv.org/abs/1704.01043
http://arxiv.org/abs/1611.00814
http://dx.doi.org/10.1103/PhysRevE.84.066106
http://dx.doi.org/10.1103/PhysRevLett.107.065701

28:16 The Lovász Theta Function for Random Regular Graphs

27 Yash Deshpande and Andrea Montanari. Improved sum-of-squares lower bounds for hidden
clique and hidden submatrix problems. In Proc. 28th Conference on Learning Theory,
COLT, pages 523–562, 2015.

28 Paul Erdős. Some remarks on the theory of graphs. Bulletin of the American Mathematical
Society, 53(4):292–294, 1947.

29 Joel Friedman. A Proof of Alon’s Second Eigenvalue Conjecture and Related Problems.
American Mathematical Society, 2008.

30 B. Hajek, Y. Wu, and J. Xu. Achieving exact cluster recovery threshold via semidefinite
programming. IEEE Transactions on Information Theory, 62(5):2788–2797, 2016.

31 B. Hajek, Y. Wu, and J. Xu. Achieving exact cluster recovery threshold via semidefinite
programming: Extensions. IEEE Trans. on Information Theory, 62(10):5918–5937, 2016.

32 Samuel B. Hopkins, Pravesh Kothari, Aaron Henry Potechin, Prasad Raghavendra, and
Tselil Schramm. On the integrality gap of degree-4 sum of squares for planted clique. In
Proc. of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1079–1095, 2016.

33 Graeme Kemkes, Xavier Pérez-Giménez, and Nicholas Wormald. On the chromatic number
of random d-regular graphs. Advances in Mathematics, 223(1):300–328, 2010.

34 H. Kesten and B.P. Stigum. Additional limit theorems for indecomposable multidimen-
sional Galton–Watson processes. Ann. Math. Stat., 37:1463–1481, 1966.

35 H. Kesten and B.P. Stigum. Limit theorems for decomposable multi-dimensional Galton–
Watson processes. J. Math. Anal. Appl., 17:309, 1966.

36 Pravesh K. Kothari, Ryuhei Mori, Ryan O’Donnell, and David Witmer. Sum of squares
lower bounds for refuting any CSP. In Proc. 49th Annual ACM Symposium on Theory of
Computing, STOC, 2017.

37 J. L. Krivine. Anneaux préordonnés. Journal d’Analyse Mathématique, 12(1):307–326, 1964.
38 F. Krzakala, C. Moore, E. Mossel, J. Neeman, A. Sly, L. Zdeborová, and P. Zhang. Spectral

redemption in clustering sparse networks. Proc. Natl. Acad. Sci. USA, 110(52):20935–20940,
2013. doi:10.1073/pnas.1312486110.

39 Florent Krzakala, Andrea Montanari, Federico Ricci-Tersenghi, Guilhem Semerjian, and
Lenka Zdeborová. Gibbs states and the set of solutions of random constraint satisfaction
problems. Proc. Natl. Acad. Sci. USA, 104(25):10318–10323, 2007. doi:10.1073/pnas.
0703685104.

40 Florent Krzakala and Lenka Zdeborová. Hiding quiet solutions in random constraint satis-
faction problems. Phys. Rev. Lett., 102:238701, 2009.

41 Jean B. Lasserre. Global optimization with polynomials and the problem of moments.
SIAM Journal on Optimization, 11(3):796–817, 2001.

42 Tomasz Łuczak. A note on the sharp concentration of the chromatic number of random
graphs. Combinatorica, 11(3):295–297, 1991.

43 Laurent Massoulié. Community detection thresholds and the weak Ramanujan property.
In Proc. 46th Annual ACM Symposium on Theory of Computing (STOC), pages 694–703,
2014.

44 Brendan D. McKay. The expected eigenvalue distribution of a random labelled regular
graph. Linear Algebra and its Applications, 40:203–216, 1981.

45 Raghu Meka, Aaron Potechin, and Avi Wigderson. Sum-of-squares lower bounds for planted
clique. In Proc. 47th Annual ACM on Symposium on Theory of Computing (STOC), pages
87–96, 2015.

46 M. Molloy and B.A. Reed. The chromatic number of sparse random graphs, 1992. Masters
thesis, University of Waterloo.

47 Cristopher Moore. The computer science and physics of community detection: Landscapes,
phase transitions, and hardness. Bulletin of the EATCS, 121:25–61, 2017.

http://dx.doi.org/10.1073/pnas.1312486110
http://dx.doi.org/10.1073/pnas.0703685104
http://dx.doi.org/10.1073/pnas.0703685104

J. Banks, R. Kleinberg, and C. Moore 28:17

48 Elchanan Mossel, Joe Neeman, and Allan Sly. A proof of the block model threshold con-
jecture. ArXiv preprints, 1311.4115, 2013. URL: http://arxiv.org/abs/1311.4115.

49 Elchanan Mossel, Joe Neeman, and Allan Sly. Belief propagation, robust reconstruction
and optimal recovery of block models. In Proc. 27th Conference on Learning Theory, COLT,
pages 356–370, 2014. URL: http://jmlr.org/proceedings/papers/v35/mossel14.html.

50 Elchanan Mossel, Joe Neeman, and Allan Sly. Consistency thresholds for the planted bisec-
tion model. In Proc. Forty-Seventh Annual ACM on Symposium on Theory of Computing,
STOC, pages 69–75, 2015. doi:10.1145/2746539.2746603.

51 Elchanan Mossel, Joe Neeman, and Allan Sly. Reconstruction and estimation in the planted
partition model. Probability Theory and Related Fields, 162(3-4):431–461, 2015.

52 Yurii Nesterov. Squared functional systems and optimization problems. High Performance
Optimization, 33:405–440, 2000.

53 M.E. J. Newman and Travis Martin. Equitable random graphs. Phys. Rev. E, 90:052824,
2014.

54 Pablo A. Parrilo. Structured semidefinite programs and semialgebraic geometry methods in
robustness and optimization. PhD thesis, California Institute of Technology, 2000.

55 Grant Schoenebeck. Linear level Lasserre lower bounds for certain k-CSPs. In Proc. 49th
Annual IEEE Symposium on Foundations of Computer Science, FOCS, pages 593–602,
2008.

56 N.Z. Shor. An approach to obtaining global extremums in polynomial mathematical pro-
gramming problems. Cybernetics, 23(5):695–700, 1987.

57 Gilbert Stengle. A nullstellensatz and a positivstellensatz in semialgebraic geometry. Math-
ematische Annalen, 207(2):87–97, 1974.

58 Gabor Szegő. Orthogonal Polynomials. American Mathematical Society, 1939.
59 N. Wormald. Models of random regular graphs. In Surveys in Combinatorics, pages 239–

298. Cambridge University Press, 1999.

A Proof of Theorems 3 and 4

We prove Theorems 3 and 4 by directly simplifying the SDP that defines feasible degree-
two pseudoexpectations. The first step is a broad result on the structure of these objects
that applies to any set of constraints which includes the boolean (10) and single-color (11)
constraints and is suitably symmetric; we then specialize to the coloring and partition
problems.

Recall that a degree-two pseudoexpectation for a system of polynomials fj(x) = 0 is a
linear operator Ẽ : R[x]≤2 → R which satisfies

Ẽ[1] = 1,
Ẽ[fjq] = 0 for any polynomials fj and q such that deg fjq ≤ 2,
Ẽ[p2] ≥ 0 for any polynomial p with deg p2 ≤ 2.

We can identify such objects with PSD (nk + 1)× (nk + 1) matrices of the form

Ẽ =
(

1 `†

` E

)
(37)

where `i,c = Ẽ[xi,c] and E(i,c),(j,c′) = Ẽ[xi,c xj,c′]. It is useful to think of E as a block matrix,
with a k × k block Eij corresponding to each pair of vertices i, j. Consistency with the
boolean and single-color constraints (10), (11) then controls the diagonal elements and row

APPROX/RANDOM’17

http://arxiv.org/abs/1311.4115
http://jmlr.org/proceedings/papers/v35/mossel14.html
http://dx.doi.org/10.1145/2746539.2746603

28:18 The Lovász Theta Function for Random Regular Graphs

and colum sums of each of these blocks,

E(i,c),(i,c) = Ẽ[x2
i,c] = Ẽ[xi,c] = `i,c ∀i (38)∑

c′

E(i,c),(j,c′) =
∑
c′

Ẽ[xi,c xj,c′] = Ẽ[xj,c] = `i,c ∀i, j (39)

Moreover, each of our constraints is fixed under permutations of the colors, and Ẽ inherits
this symmetry. That is the matrix carries with it a natural Sk action that simultaneously
permutes Ẽ[xi,c]→ Ẽ[xi,σ(c)] and Ẽ[xi,c xj,c′]→ Ẽ[xi,σ(c) xi,σ(c′)]. This action preserves the
spectrum of Ẽ as a matrix, as well as every hard constraint. By convexity, we may assume
that Ẽ is stabilized under it, by beginning with an arbitrary pseudoexpectation and averaging
over its orbit.

This assumption substantially constrains and simplifies Ẽ. In particular we are free to
(i) assume that `i,c = Ẽ[xi,c] = 1/k and (ii) assume that each k × k block in E has only two
distinct values: one on the diagonal and the other off the diagonal. In other words, the
pseudoexpectation claims that the marginal distribution of each vertex is uniform, and that
joint marginal of any two vertices depends only on the probability that they have the same
or different colors.

As a result, for each i, j we can assume that Eij is a linear combination of the identity
matrix 1k and the matrix Jk of all 1s, and that the row and column sums of Eij are all 1/k.
In that case for each i, j we can write

Eij = 1
k − 1

(
Pij −

1
k

)(
1k −

Jk
k

)
+ Jk
k2 (40)

for some Pij , or equivalently that

E = 1
k − 1(P − Jn/k)⊗

(
1k −

Jk
k

)
+ Jnk

k2 (41)

for some n× n matrix P . Note that

tr Eij = Pij ,

so (38) requires that Pii = 1 for all i.
Since the pseudoexpectation (37) consists of E with an additional row and column, we

consider the following lemma. We leave its proof as an exercise for the reader.

I Lemma 12. For any matrix X, vector v and scalar b > 0,(
b v†

v X

)
� 0

if and only if X − (1/b)v ⊗ v � 0 .

Since ` is the nk-dimensional vector whose entries are all 1/k, we have ` ⊗ ` = Jnk/k2.
Thus (41) and Lemma 12 imply that Ẽ � 0 if and only if

(P − Jn/k)⊗ (1k − Jk/k) � 0 .

Since 1k − Jk/k is a projection operator, this in turn occurs if and only if

P − Jn/k � 0 .

J. Banks, R. Kleinberg, and C. Moore 28:19

To summarize, finding a pseudoexpectation is equivalent to finding a PSD matrix P ∈
Rn×n with Pii = 1 for all i, such that P remains PSD when we subtract the rank-one matrix
Jn/k. However, we have thus far only reasoned about the boolean and single color constraints,
and including either the coloring or cut constraint places an additional restriction on P . In
the case of coloring, we demanded that∑

c

E(i,c),(j,c) =
∑
c

Ẽ[xi,c xj,c] = 0 (42)

for every edge (i, j). This implies that tr Eij = 0, and so Pij = 0 for each edge. Collecting
these observations, a pseudoexpectation for coloring exists exactly when k > ϑ(G), where

ϑ(G) , min
P

κ > 0 such that P − Jn/κ � 0 (43)

Pii = 1 ∀i
Pij = 0 ∀(i, j) ∈ E .

Finally, note that Jn/κ = v ⊗ v where v = 1n/
√
κ. Applying Lemma 12 again then gives

exactly the PSD (15) for the Lovasz ϑ function, thus completing the proof of Theorem 3.
In the case of good partitions, we required that∑
i,j

Aij
∑
c

E(i,c),(j,c) =
∑
i,j

Aij
∑
c

Ẽ[xi,c xj,c] = (τ/k)dn , (44)

but this means that∑
i,j

Aij tr Eij =
∑
i,j

AijPij = 〈P,A〉 = (τ/k)dn .

Following the path above, a degree-two pseudoexpectation exists for community detection
when k > ϑ̂τ (G), where

ϑ̂τ (G) , min
Pτ

κτ such that Pτ − Jn/κτ � 0 (45)

(Pτ)ii = 1 ∀i
〈Pτ , A〉 = (τ/κτ)dn .

A priori, it seems that we may need to solve a different SDP for each value of τ , but a bit
more work shows that this is not the case. Lemma 12 lets us transform the SDP (17) for ϑ̂
to the following problem,

ϑ̂(G) , min
P

κ such that P − Jn/κ � 0 (46)

Pii = 1 ∀i
〈P,A〉 = 0 .

The following lemma then shows us how to relate optima of (46) to those of (45) for any τ
in the disassortative range τ < 1, thus completing the proof of Theorem 4.

I Lemma 13. For any τ < 1,

ϑ̂(G) = ϑ̂τ (G)− τ
1− τ . (47)

APPROX/RANDOM’17

28:20 The Lovász Theta Function for Random Regular Graphs

Proof. We show how to translate back and forth between solutions of (45) and (46). Given
a matrix P , define

Pτ = (1− τ/κτ)P + (τ/κτ)Jn .

It is easy to check that Pii = 1 if and only if (Pτ)ii = 1, and 〈Pτ , A〉 = (τ/κτ)dn if and only
if 〈P,A〉 = 0. Finally, if we set

κ = κτ − τ
1− τ , (48)

then

Pτ − Jn/κτ = (1− τ/κτ) (P − Jn/κ) ,

so Pτ − Jn/κτ � 0 if and only if P − Jn/κ � 0. Thus (46) is feasible for κ if and only if (45)
is feasible for κτ . Since ϑ̂(G) and ϑ̂τ (G) are the smallest κ and κτ respectively for which
this is the case, (48) implies (47). J

B Proof of Lemma 11

It is immediate that there is such a quadrature rule for polynomials of degree strictly less
than t, since the space of linear functionals on such polynomials has dimension t and is thus
spanned by the t linearly independent functionals which evaluate at the roots xi. Now let
deg u < 2t. We can divide u by pt to write u(z) = a(z)pt + b(z) where deg a,deg b < t. We
have∫

I

u(z) dρ =
∫
I

(
a(z)pt(z) + b(z)

)
dρ = 〈pt, a〉+

∫
I

b(z) dρ = 0 +
t∑
i=1

ωib(ri) =
t∑
i=1

ωiu(ri),

since pt is orthogonal to all polynomials of degree less than t and has roots ri. This verifies
exactness of the quadrature rule for polynomials of degree smaller than 2t.

To show that the weights {ωi} are positive, let i ∈ {1, . . . , t} and let vi(z) = (pt(z)/(z −
ri))2 be the polynomial with double roots at every root of pt save ri. Since vi is everywhere
nonnegative and is a polynomial of degree 2t− 2 < t, we have

0 <
∫
I

vi(z) dρ =
t∑

j=1
ωjvi(rj) = ωivi(ri) ,

but since v(z) is nonnegative, ωi must be positive.

C Proof of Lemma 9

The proof closely follows [7, Theorem 4] which shows that the chromatic number of Gn,d is
concentrated on two adjacent integers, and which is in turn based on the proof in [42] of
two-point concentration for G(n, p) with p = O(n−5/6−ε). Recall the configuration model [59],
where we make d “copies” of each vertex corresponding to its half-edges, and then choose
uniformly from all (dn − 1)!! = (dn)!/(2dn/2(dn/2)!) perfect matchings of these copies. If
we denote the set of such matchings by Pn,d and condition the corresponding multigraphs
on having no self-loops or multiple edges, the resulting distribution is uniform on the set of
d-regular graphs, and occupies a constant fraction of the total probability of Pn,d. Thus any

J. Banks, R. Kleinberg, and C. Moore 28:21

property which holds with high probability for Pn,d holds with high probability for Gn,d as
well.

If P, P ′ are two perfect matchings in Pn,d, we write P ∼ P ′ if they differ by a single
swap, changing {(a, b), (c, d)} to {(a, c), (b, d)} or {(a, d), (b, c)}. The following martingale
inequality [59, Theorem 2.19] shows that a random variable which is Lipschitz with respect
to these swaps is concentrated.

I Lemma 14. Let c be a constant, and let X be a random variable defined on Pn,d such that
|X(P)−X(P ′)| ≤ c whenever P ∼ P ′. Then

Pr[|X − E[X]| > t] ≤ 2e− t2
dnc .

Now fix θ, and define X as the minimum number of edge constraints Pij = 0 in the SDP (15)
violated by an otherwise feasible solution with κ = θ. This meets the Lipschitz condition
with c = 2. By assumption X = 0 with positive probability. Lemma 14 then implies that
(say) E[X] ≤ (1/2)

√
n logn, in which case X <

√
n logn with high probability.

Let S denote the set of endpoints of the violated edges. Then there is an orthogonal
representation {ui} of the subgraph induced by V \ S and a unit vector z such that

〈
ui, z

〉
=

1/
√
θ and

〈
ui, uj

〉
= 0 if (i, j) ∈ E and i, j /∈ S. Our goal is to “fix” {ui} on the violated

edges, and if necessary on some additional vertices, to give an orthogonal representation {vi}
for all of G.

As in [7, 42], we inductively build a set of vertices S = U0, U1, . . . , UT = U as follows.
Given Ut, let Ut+1 = Ut ∪{i, j} where i, j /∈ Ut, (i, j) ∈ E, and i and j each have at least one
neighbor in Ut. We define T as the step at which there is no such pair i, j and this process
ends. Let I denote U ’s neighborhood, i.e., the set of vertices outside U which have a neighbor
in U . Then I is an independent set, since otherwise the process would have continued. We
make the following claim:

I Lemma 15. With high probability, the subgraph induced by U is 3-colorable.

Proof. For all 0 ≤ t ≤ T we have |Ut| = 2t+ |S|. Moreover, the subgraph induced by Ut has
at least 3t+ |S|/2 = (3/2)|Ut| − |S| edges and thus average degree at least 3− 2|S|/|Ut|. On
the other hand, a crude union bound shows that for any d and any β > 2, there is an α > 0
such that, with high probability, all induced subgraphs of G containing αn or fewer vertices
have average degree less than β. Since |S| = o(n) with high probability, this implies that
|Ut| ≤ (2 + o(1))|S| for all t, and in particular that |U | = o(n).

The same union bound then implies that with high probability the subgraph induced
by |U |, and all its subgraphs, have average degree less than 3. But this means that this
subgraph has no 3-core: that is, it has at least one vertex of degree less than 3, and so will
the subgraph we get by deleting this vertex, and so on. Working backwards, we can 3-color
the entire subgraph by starting with the empty set and adding these vertices back in, since
at least one of the three colors will always be available to them. J

To define our orthogonal representation, let w be a unit vector such that
〈
z, w
〉

=〈
ui, w

〉
= 0 for all i /∈ S; such a vector exists since |S| ≥ 2. Then define

z′ =
√

θ

θ + 1 z + 1√
θ + 1

w .

Then |z′|2 = 1, and
〈
w, z′

〉
=
〈
ui, z

′〉 = 1/
√
θ + 1 for all i /∈ S. Moreover, there exist three

mutually orthogonal unit vectors y1, y2, y3 such that
〈
yj , z

′〉 = 1/
√
θ + 1 and

〈
yj , w

〉
= 0 for

APPROX/RANDOM’17

28:22 The Lovász Theta Function for Random Regular Graphs

all j ∈ {1, 2, 3}. This follows from the fact that the following matrix is PSD whenever θ ≥ 3,
in which case it can be realized as the Gram matrix of {y1, y2, y3, w, z

′}:
1 0 0 0 1√

θ+1
0 1 0 0 1√

θ+1
0 0 1 0 1√

θ+1
0 0 0 1 1√

θ+1
1√
θ+1

1√
θ+1

1√
θ+1

1√
θ+1 1

 .

Finally, let σ(i) ∈ {1, 2, 3} be a proper 3-coloring of the subgraph induced by U . Then the
following is an orthogonal representation of G,

vi =

ui i ∈ V \ (U ∪ I)
w i ∈ I
yσ(i) i ∈ U ,

and
〈
vi, z

′〉 = 1/
√
θ + 1 for all i. This gives a feasible solution to the SDP (15) with κ = θ+1,

implying that ϑ(G) ≤ θ + 1.

Cutoff for a Stratified Random Walk on the
Hypercube
Anna Ben-Hamou1 and Yuval Peres2

1 IMPA, Rio de Janeiro, Brasil
benhamou@impa.br

2 Microsoft Research, Redmond, WA, USA
peres@microsoft.com

Abstract
We consider the random walk on the hypercube which moves by picking an ordered pair (i, j) of
distinct coordinates uniformly at random and adding the bit at location i to the bit at location
j, modulo 2. We show that this Markov chain has cutoff at time 3

2n logn with window of size n,
solving a question posed by Chung and Graham (1997).

1998 ACM Subject Classification G.3 Probability

Keywords and phrases Mixing times, cutoff, hypercube

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.29

1 Introduction

Let SLn(Z2) be the set of invertible matrices with coefficients in Z2, and consider the Markov
chain on SLn(Z2) which moves by picking two distinct rows at random and adding the first
one to the other. This walk has received significant attention, both from group theoreticians
and cryptologists. Diaconis and Saloff-Coste [4] showed that the `2-mixing time was O(n4),
and the powerful results of Kassabov [5] yield the upper-bound O(n3). One may observe
that if Zt ∈ {0, 1}n\{0} denotes the first column of the matrix at time t, then the process
{Zt}t≥0 is also a Markov chain (defined more precisely below). Diaconis and Saloff-Coste [4]
showed that the log-Sobolev constant of this chain is O(n2), which yields an upper-bound of
order n2 logn on the `2-mixing time. They however conjectured that the right order for the
total-variation mixing was n logn. Chung and Graham [3] confirmed this conjecture. They
showed that the relaxation time of {Zt} was of order n (which yields a tight upper-bound of
order n2 for `2-mixing) and that the total-variation mixing time tmix(ε) was smaller than
cεn logn for some constant cε. They asked whether one could make this bound more precise
and replace cε by a universal constant which would not depend on ε. We answer this question
positively by proving that the chain {Zt} has cutoff at time 3

2n logn, with window of order
n.

The matrix walk problem was brought to our attention by Ron Rivest, who was mostly
interested in computational mixing aspects [7]. The question of determining the total-
variation mixing time of this walk is still largely open. By a diameter bound, it can be lower
bounded by Ω

(
n2

logn

)
(see Andrén et al. [1], Christofides [2]). The best known upper-bound

is O(n3) as established by Kassabov [5].

Main result
Let X = {0, 1}n\{0} and consider the Markov chain {Zt}t≥0 on X defined as follows: if
the current state is x and if x(i) denotes the bit at the ith coordinate of x, then the walk

© Anna Ben-Hamou and Yuval Peres;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 29; pp. 29:1–29:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.29
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

29:2 Cutoff for a Stratified Random Walk on the Hypercube

proceeds by choosing uniformly at random an ordered pair (i, j) of distinct coordinates, and
replacing x(j) by x(j) + x(i) (mod 2).

The transition matrix P of this chain is symmetric, irreducible and aperiodic. Its
stationary distribution π is the uniform distribution over X , i.e. for all x ∈ X , π(x) = 1

2n−1 .
We are interested in the total-variation mixing time, defined as

tmix(ε) = min {t ≥ 0, d(t) ≤ ε} ,

where d(t) = max
x∈X

dx(t) and dx(t) is the total-variation distance between P t(x, ·) and π:

dx(t) = sup
A⊂X

(
π(A)− P t(x,A)

)
=
∑
y∈X

(
P t(x, y)− π(y)

)
+ .

I Theorem 1. The chain {Zt} has total-variation cutoff at time 3
2n logn with window n,

i.e.

lim
α→+∞

lim inf
n→+∞

d

(
3
2n logn− αn

)
= 1 ,

and

lim
α→+∞

lim sup
n→+∞

d

(
3
2n logn+ αn

)
= 0 .

Before proving Theorem 1, we first state some useful properties of the birth-and-death
chain given by the Hamming weight of Zt. In particular, we show that this projected chain
also has cutoff at 3

2n logn (Section 2). Section 3 is then devoted to the proof of Theorem 1.

2 The Hamming weight

For a vertex x ∈ X , we denote by H(x) the Hamming weight of x, i.e.

H(x) =
n∑
i=1

x(i) .

Consider the birth-and-death chain Ht := H(Zt), and denote by PH , πH , and dH(·) its
transition matrix, stationary distribution, and total-variation distance to equilibrium. For
1 ≤ k ≤ n, we have

PH(k, k + 1) = k(n− k)
n(n− 1) ,

PH(k, k − 1) = k(k − 1)
n(n− 1) ,

PH(k, k) = n− k
n

,

and

πH(k) =
(
n
k

)
2n − 1 .

The hitting time of state k is defined as

Tk = min {t ≥ 0, Ht = k} .

A.Ben-Hamou and Y. Peres 29:3

One standard result in birth-and-death chains is that, for 2 ≤ ` ≤ n,

E`−1(T`) = 1
PH(`, `− 1)

`−1∑
i=1

πH(i)
πH(`) , (1)

(see for instance [6, Section 2.5]). The following lemma will be useful.

I Lemma 2. Let 0 < β < 1 and K = (1 − β)n2 . Then there exist constants cβ , Cβ ∈ R
depending on β only such that

E1(TK) ≤ n logn+ cβn ,

and

Var1TK ≤ Cβn2 .

Proof of Lemma 2. For 2 ≤ k ≤ K, let µk = Ek−1Tk and vk = Vark−1(Tk). Resorting to
(1), we have

µk =
(
n
k−1
)(

n−2
k−2
) k−1∑
i=1

(
n
i

)(
n
k−1
) ≤ (

n
k−1
)(

n−2
k−2
) k−1∑
i=1

(
k − 1

n− k + 2

)k−i−1
≤ n2

k(n− 2k) (2)

Summing from 2 to K yields the desired bound on E1TK . Moving on to the variance, by
independence of the successive hitting times, we have

Var1TK =
K−1∑
k=1

vk+1 .

Hence, it is sufficient to show that there exists a constant aβ > 0 such that vk+1 ≤ aβn
2

k2 for
all k ≤ K. To do so, we consider the following distributional identity for the hitting time
Tk+1 starting from k:

Tk+1 = 1 + (1− I)T̃k+1 + IJ(T̂k + T̂k+1) ,

where I is the indicator that the chain moves (i.e. that a one is picked as updating coordinate),
J is the indicator that the chain decreases given that it moves (i.e. that the chosen one
is added to another one), T̃k+1 and T̂k+1 are copies of Tk+1, and T̂k is the hitting time
of k starting from k − 1. All those variables may be assumed to be independent. After
computation we obtain the following induction relation:

vk+1 = k − 1
n− 1(vk + vk+1) +

(
1− k

n

)
µ2
k+1 + k − 1

n− 1

(
1− k(k − 1)

n(n− 1)

)
(µk + µk+1)2

≤ k

n
(vk + vk+1) + µ2

k+1 + k

n
(µk + µk+1)2 .

Using the fact that for all k ≤ K, we have µk ≤ n
βk (which can be seen by inequality (2)),

and after some simplification, we get

vk+1 ≤
k

n− k
vk + 3n3

β2k2(n− k) ≤
k

n− k
vk + 6n2

β2k2 ·

By induction and using that v2 ≤ n2, we obtain that vk+1 ≤ aβn
2

k2 for all k ≤ K. J

APPROX/RANDOM’17

29:4 Cutoff for a Stratified Random Walk on the Hypercube

The following proposition establishes cutoff for the chain {Ht} and will be used in the
next section to prove cutoff for the chain {Zt}.

I Proposition 3. The chain Ht exhibits cutoff at time 3
2n logn with window n.

Proof. For the lower bound, we want to show that for t = 3
2n logn− 2αn

dH(t) ≥ 1− ε(α) ,

where ε(α) → 0 as α → +∞. Consider the chain started at H0 = 1 and let k = n
2 − α

√
n

and A = {k, k + 1, . . . , n}. By definition of total-variation distance,

dH(t) ≥ πH(A)− P tH(1, A) ≥ πH(A)− P1(Tk ≤ t) .

By the Central Limit Theorem, lim
α→∞

lim
n→∞

πH(A) = 1. Moving on to P1(Tk ≤ t), let us write

P1(Tk ≤ t) = P1
(
Tn/3 ≤ n logn− αn

)
+ Pn/3

(
Tk ≤

n logn
2 − αn

)
.

Note that Tn/3 is stochastically larger than
∑n/3
i=1 Gi, where (Gi)n/3i=1 are independent Geo-

metric random variables with respective parameter i/n (this is because at each step, we need
at least to pick a one to just move from the current position). By Chebyshev’s Inequality,

P1
(
Tn/3 ≤ n logn− αn

)
= O

(
1
α2

)
.

Now, starting from Hamming weight n/3 and up to time Tk, we may couple Ht with H̃t, the
Hamming weight of the standard lazy random walk on the hypercube (at each step, pick a
coordinate uniformly at random and randomize the bit at this coordinate), in such a way
Tk ≥ Sk, where Sk = inf{t ≥ 0, H̃t = k}. It is known that Sk satisfies

Pn/3
(
Sk ≤

n logn
2 − αn

)
≤ ε(α) ,

with ε(α) → 0 as α → +∞ (see for instance the proof of [6, Proposition 7.13]), which
concludes the proof of the lower bound.

For the upper bound, letting t = 3
2n logn+ 2αn, we have

dH(t) ≤ P1
(
Tn/3 > n logn+ αn

)
+ max
k≥n/3

d
(k)
H

(
n logn

2 + αn

)
. (3)

Lemma 2 entails that Tn/3 concentrates well: E1(Tn/3) = n logn + cn for some absolute
constant c, and Var1(Tn/3) = O(n2). By Chebyshev’s Inequality,

P1
(
Tn/3 > n logn+ αn

)
= O

(
1
α2

)
. (4)

To control the second term in the right-hand side of (3), we use the coupling method
(see Levin et al. [6, Chapter 5]). For all starting point k ≥ n/3, we consider the following
coupling between a chain Ht started at k and a chain Hπ

t started from stationarity: at
each step t, if Ht makes an actual move (a one is picked as updating bit in the underlying
chain Zt), we try “as much as possible” not to move Hπ

t (picking a zero as updating bit).
Conversely, when Ht does not move, we try “as much as possible” to move Hπ

t , the goal
being to increase the chance that the two chains do not cross each other. The chains stay

A.Ben-Hamou and Y. Peres 29:5

together once they have met for the first time. We claim that the study of the coupling time
can be reduced to the study of the first time when the chain started at n/3 reaches n/2.
Indeed, as πH([2n/3, n]) = o(1), with high probability, Hπ

0 ≤ 2n/3, and as starting from
a larger Hamming weight can only speed up the chain, P2n/3(Tn/2 > t) ≤ Pn/3(Tn/2 > t).
Now, when both chains have reached n/2, either they have met, or they have crossed each
other. In this last situation, we know however that the expected time of their first return to
n/2 is O(

√
n), so that Pn/2

(
T+
n/2 >

√
αn
)

= O(1/
√
α). Moreover, thanks to our coupling,

during each of those excursions, the chains have positive probability to meet, so that after
an additional time of order α

√
n we can guarantee that they have met with large probability.

We are thus left to prove that Pn/3
(
Tn/2 >

n logn
2 + αn

)
≤ ε(α), for a function ε tending to

0 at +∞.
Starting from H0 = n/3, we first argue that Ht will remain above 2n/7 for a very long

time. Namely, defining Gt =
{
T2n/7 > t

}
, we have

Pn/3 (Gn2) = 1− o(1) . (5)

This can easily be seen by considering T+
k = min{t ≥ 1, Ht = k} and taking a union bound

over the excursions around k = n/3 which visit m = 2n/7:

Pk(Tm ≤ n2) ≤ n2Pk(Tm ≤ T+
k) ,

and

Pk(Tm ≤ T+
k) =

Ek(T+
k)

Em(Tk) + Ek(Tm) ≤
Ek(T+

k)
Em(T+

m)
= πH(m)

πH(k) ,

which decreases exponentially fast in n.
Our goal now will be to analyse the tail of τ = inf{t ≥ 0, Dt ≤ 0}, where

Dt = n

2 −Ht .

Observe that

Dt+1 −Dt =

1 with probability Ht(Ht−1)

n(n−1)

−1 with probability Ht(n−Ht)
n(n−1)

0 otherwise.

(6)

We get

E
[
Dt+1 −Dt

∣∣Dt

]
= −

2
(
n
2 −Dt

)
(Dt + 1)

n(n− 1) ≤ −Dt

n
+ 2D2

t

n(n− 1) · (7)

Writing a similar recursion for the second moment of Dt gives

E
[
D2
t+1 −D2

t

∣∣Dt

]
= −4HtDt(Dt + 1/2)

n(n− 1) + Ht

n
≤ −4HtD

2
t

n2 + 2 .

On the event Gt,

E
[
D2
t+1 −D2

t

∣∣Dt

]
≤ −8D2

t

7n + 2 .

APPROX/RANDOM’17

29:6 Cutoff for a Stratified Random Walk on the Hypercube

By induction, letting Dt = 1GtDt (and noticing that Gt+1 ⊂ Gt), we get

E
[
D2
t

]
≤ E[D2

0]
(

1− 8
7n

)t
+ 7n

4 ≤ n2

4 e−8t/7n + 2n .

Plugging this back in (7),

E [Dt+1] ≤
(

1− 1
n

)
E [Dt] + e−8t/7n + 4/n ,

and by induction,

E [Dt] ≤ an e−t/n + b , (8)

for absolute constants a, b ≥ 0. Also, letting τ? = inf{t ≥ 0, Dt = 0}, we see by (6) that,
provided τ? > t, the process {Dt} is at least as likely to move downwards than to move
upwards and that there exists a constant σ2 > 0 such that Var

(
Dt+1

∣∣Dt) ≥ σ2 (this is
because, on Gt the probability to make a move at time t in larger than some positive absolute
constant). By Levin et al. [6, Proposition 17.20], we know that for all u > 0 and k ≥ 0,

Pk(τ? > u) ≤ 4k
σ
√
u
. (9)

Now take H0 = n/3, D0 = n/6, s = 1
2n logn and u = αn. We have

PD0 (τ > s+ u) ≤ PD0 (τ? > s+ u) + PH0 (Gcn2) .

By equation (5), PH0

(
Gcn2

)
= o(1), and, combining (9) and (8), we have

PD0 (τ? > s+ u) = ED0 [PDs (τ? > u)] ≤ ED0

[
4Ds
σ
√
u

]
= O

(
1√
α

)
,

which implies

max
k≥n/3

d
(k)
H (s+ u) = O

(
1√
α

)
, (10)

and concludes the proof of the upper bound. J

3 Proof of Theorem 1

First note that, as projections of chains can not increase total-variation distance, the lower
bound on d(t) readily follows from the lower bound on dH(t), as established in Proposition 3.
Therefore, we only have to prove the upper bound.

Let E = {x ∈ X , H(x) ≥ n/3} and τE be the hitting time of set E . For all t, s > 0, we
have

d(t+ s) ≤ max
x0∈X

Px0 (τE > s) + max
x∈E

dx(t) .

By (4), taking s = n logn+ αn, we have maxx0∈X Px0(τE > s) = O(1/α2), so that our task
comes down to showing that for all x ∈ E ,

dx

(
n logn

2 + αn

)
≤ ε(α) ,

A.Ben-Hamou and Y. Peres 29:7

with ε(α) → 0 as α → +∞. Let us fix x ∈ E . Without loss of generality, we may assume
that x is the vertex with x̄ ≥ n/3 ones on the first x̄ coordinates, and n− x̄ zeros on the last
n− x̄ coordinates. We denote by {Zt} the random walk started at Z0 = x and for a vertex
z ∈ X , we define a two-dimensional object W(z), keeping track of the number of ones within
the first x̄ and last n− x̄ coordinates of z, that is

W(z) =
(

x̄∑
i=1

z(i),
n∑

i=x̄+1
z(i)

)
.

The projection of {Zt}t≥0 induced by W will be denoted Wt = W(Zt) = (Xt, Yt). We argue
that the study of {Zt}t≥0 can be reduced to the study of {Wt}t≥0, and that, when coupling
two chains distributed as Wt, we can restrict ourselves to initial states with the same total
Hamming weight. Indeed, letting νx̄ be the uniform distribution over {z ∈ X , H(z) = x̄}.
By the triangle inequality,

dx(t) ≤
∥∥Px (Zt ∈ ·)− Pνx̄ (Zt ∈ ·)

∥∥
tv +

∥∥Pνx̄ (Zt ∈ ·)− π(·)
∥∥

tv (11)

Starting from νx̄, the conditional distribution of Zt given {H(Zt) = h} is uniform over
{y ∈ X , H(y) = h}. This entails∥∥Pνx̄ (Zt ∈ ·)− π(·)

∥∥
tv =

∥∥Px̄ (Ht ∈ ·)− πH(·)
∥∥

tv .

For t = n logn
2 + αn, we know by (10) in the proof of Proposition 3 that

∥∥Px̄ (Ht ∈ ·) −
πH(·)

∥∥
tv = O(1/

√
α). As for the first term in the right-hand side of (11), note that if z and

z′ are two vertices such that W(z) = W(z′), then for all t ≥ 0, Px(Zt = z) = Px(Zt = z′),
and that for all y ∈ X such that W(y) = (k, `)

Pνx̄ (Zt = y) =
∑
i,j

i+j=x̄

∑
z,W(z)=(i,j)

1(
n
x̄

)Pz (Zt = y)

=
∑
i,j

i+j=x̄

(
x̄
i

)(
n−x̄
j

)(
n
x̄

) ∑
z,W(z)=(i,j)

Pz (Zt = y)(
x̄
i

)(
n−x̄
j

)
=
∑
i,j

i+j=x̄

(
x̄
i

)(
n−x̄
j

)(
n
x̄

) P(i,j) (Wt = (k, `))(
x̄
k

)(
n−x̄
`

) ·

Hence,∥∥Px (Zt ∈ ·)− Pνx̄ (Zt ∈ ·)
∥∥

tv ≤ max
i,j

i+j=x̄

∥∥P(x̄,0) (Wt ∈ ·)− P(i,j) (Wt ∈ ·)
∥∥

tv .

Now let y ∈ E such that H(y) = x̄, and consider the chains Zt, Z̃t started at x and
y respectively. Let W(Zt) = (Xt, Yt) and W(Z̃t) = (X̃t, Ỹt). We couple Zt and Z̃t as
follows: at each step t, provided H(Zt) = H(Z̃t) and W(Zt) 6= W(Z̃t), we consider a random
permutation πt which is such that Zt(i) = Z̃t(πt(i)) for all 1 ≤ i ≤ n, that is, we pair
uniformly at random the ones (resp. the zeros) of Zt with the ones (resp. the zeros) of
Z̃t. If Zt moves to Zt+1 by choosing the pair (it, jt) and updating Zt(jt) to Zt(jt) + Zt(it),
then we move from Z̃t to Z̃t+1 by updating Z̃t(πt(jt)) to Z̃t(πt(jt)) + Z̃t(πt(it)). Once
W(Zt) = W(Z̃t), the permutation πt is chosen in such a way that the ones in the top (resp.
in the bottom) in Zt are matched with the ones in the top (resp. in the bottom) in Z̃t,

APPROX/RANDOM’17

29:8 Cutoff for a Stratified Random Walk on the Hypercube

guaranteeing that from that time W(Zt) and W(Z̃t) remain equal. Note that this coupling
ensures that for all t ≥ 0, the Hamming weight of Zt is equal to that of Z̃t, and we may
unequivocally denote it by Ht. In particular, coupling of the chains W(Zt) and W(Z̃t)
occurs when Xt and X̃t are matched. As Xt ≥ X̃t for all t ≥ 0, we may consider

τ = inf{t ≥ 0, Dt = 0} ,

where Dt = Xt − X̃t.
Before analysing the behaviour of {Dt}, we first notice that the worst possible y for the

coupling time satisfies W(y) = (max{0, 2x̄− n},min{x̄, n− x̄}). We now fix y to be such a
vertex, and show that, starting from x, y, the variables W(Zt),W(Z̃t) remain “nice” for a
very long time. More precisely, defining

Bt =
t⋂

s=0

{
Hs ≥ 2n/7, Xs ≥

x̄

p
, Ỹs ≥

min{x̄, n− x̄}
p

}
,

we claim that we can choose p ≥ 1 fixed such that

Px,y (Bn2) = 1− o(1) . (12)

Indeed, the fact that Pn/3(T2n/7 ≤ n2) = o(1) has already been established in the proof
of Proposition 3 (equation (5)), and with the same kind of arguments, we show that
P(x̄,0)

(
∪n

2

s=0{Xs < x̄/p}
)

= o(1). Letting A = {(x̄/p, `), ` = 0, . . . , n − x̄}, πW be the
stationary distribution of Wt, and kx̄ = min

{
x̄
2 ,

n−x̄
2
}
, we have

P(x̄,0)(TA ≤ n2) ≤ P(x̄/2,kx̄)(TA ≤ n2) ≤ n2
n−x̄∑
`=0

P(x̄/2,kx̄)

(
T(x̄/p,`) ≤ T+

(x̄/2,kx̄)

)
≤ n2

n−x̄∑
`=0

πW(x̄/p, `)
πW(x̄/2, kx̄) =

n22n−x̄
(
x̄
x̄/p

)(
x̄
x̄/2
)(
n−x̄
kx̄

) ,

and we can choose p large enough such that this quantity decreases exponentially fast in n.
Similarly, starting from y, the value of Ỹs will remain at a high level for a very long time,
establishing (12).

Let us now turn to the analysis of {Dt}. On the event {t < τ},

Dt+1 −Dt =

1 with probability pt1

−1 with probability pt−1

0 otherwise,

(13)

where

pt1 = Ht

n
· n−Ht

n− 1 ·
x̄−Xt

n−Ht
· n− x̄− Ỹt

n−Ht
+ Ht

n
· Ht − 1
n− 1 ·

Yt
Ht
· X̃t

Ht
,

and

pt−1 = Ht

n
· n−Ht

n− 1 ·
x̄− X̃t

n−Ht
· n− x̄− Yt

n−Ht
+ Ht

n
· Ht − 1
n− 1 ·

Xt

Ht
· Ỹt
Ht
·

After computation, we get, on {t < τ},

E
[
Dt+1 −Dt

∣∣Zt, Z̃t] = − HtDt

n(n− 1)

(
1 + Ht − 1

Ht

)
≤ −Dt

n2 (2Ht − 1) (14)

A.Ben-Hamou and Y. Peres 29:9

From (14), it is not hard to see that the variable

Mt = 1{τ>t}Dt exp
(
t−1∑
s=0

(2Hs − 1)
n2

)

is a super-martingale, which implies Ex,y [Mt] ≤ Ex,y [D0] ≤ n.
Now let τ? = inf{t ≥ 0, 1BtDt = 0}. By (13), we see that, provided {τ? > t}, the process

{1BtDt} is a supermartingale (pt−1 ≥ pt1) and that there exists a constant σ2 > 0 such that
the conditional variance of its increments is larger than σ2 (because on Bt, the probability to
make a move pt−1 + pt1 is larger than some absolute constant). By Levin et al. [6, Proposition
17.20], for all u > 0 and k ≥ 0,

Pk(τ? > u) ≤ 4k
σ
√
u
· (15)

Now take t = n logn
2 and u = αn. We have

Px,y(τ > t+ u) ≤ Px,y(Bcn2) + Px,y(τ? > t+ u) .

By (12), we know that Px,y(Bcn2) = o(1). Also, considering the event

At−1 =
{
t−1∑
s=0

Hs ≥
n2 logn

4 − βn2

}
,

and resorting to (15), we get

Px,y (τ? > t+ u) ≤ Ex,y
[
1{τ?>t}PZt,Z̃t (τ? > u)

]
≤ Px,y

(
{τ? > t} ∩ Act−1

)
+ Ex,y

[
1At−11{τ?>t}

4Dt

σ
√
u

]
·

On the one hand, recalling the notation and results of Section 2 (in particular equation (8)),
and applying Markov’s Inequality,

Px,y
(
{τ? > t} ∩ Act−1

)
≤ Px,y

(
t−1∑
s=0
Ds > βn2

)

≤ 1
βn2

t−1∑
s=0

(
an e−s/n + b

)
= O

(
1
β

)
·

On the other hand,

Ex,y
[
1{τ?>t}1At−1Dt

]
≤ exp

(
− logn

2 + t

n2 + 2β
)
Ex,y [Mt] = O

(
e2β√n

)
.

In the end, we get

Px,y (τ > t+ u) = O

(
1
β

+ e2β
√
α

)
·

Taking for instance β = 1
5 logα concludes the proof of Theorem 1.

Acknowledgements. We thank Persi Diaconis and Ohad Feldheim for helpful discussions
and references. We thank Ryokichi Tanaka and Alex Lin Zhai for helpful comments and
corrections. We also thank Ron Rivest for suggesting this problem to us.

APPROX/RANDOM’17

29:10 Cutoff for a Stratified Random Walk on the Hypercube

References
1 Daniel Andrén, Lars Hellström, and Klas Markström. On the complexity of matrix reduc-

tion over finite fields. Advances in applied mathematics, 39(4):428–452, 2007.
2 Demetres Christofides. The asymptotic complexity of matrix reduction over finite fields.

arXiv preprint arXiv:1406.5826, 2014.
3 Fan R.K. Chung and Ronald L. Graham. Stratified random walks on the n-cube. Random

Structures and Algorithms, 11(3):199–222, 1997.
4 Persi Diaconis and Laurent Saloff-Coste. Walks on generating sets of abelian groups. Prob-

ability theory and related fields, 105(3):393–421, 1996.
5 Martin Kassabov. Kazhdan constants for SLn(Z). International Journal of Algebra and

Computation, 15(05n06):971–995, 2005.
6 D.A. Levin, Y. Peres, and E. L. Wilmer. Markov chains and mixing times. AMS, 2009.
7 Aikaterini Sotiraki. Authentication protocol using trapdoored matrices. PhD thesis, Mas-

sachusetts Institute of Technology, 2016.

Lower Bounds for 2-Query LCCs over Large
Alphabet∗

Arnab Bhattacharyya1, Sivakanth Gopi2, and Avishay Tal3

1 Department of Computer Science and Automation, Indian Institute of Science
Bangalore, Bangalore, India
arnabb@csa.iisc.ernet.in

2 Department of Computer Science, Princeton University, Princeton, NJ, USA
sgopi@cs.princeton.edu

3 School of Mathematics, Institute for Advanced Study, Princeton, NJ, USA
avishay.tal@gmail.com

Abstract
A locally correctable code (LCC) is an error correcting code that allows correction of any arbitrary
coordinate of a corrupted codeword by querying only a few coordinates. We show that any 2-
query locally correctable code C : {0, 1}k → Σn that can correct a constant fraction of corrupted
symbols must have n > exp(k/ log |Σ|) under the assumption that the LCC is zero-error. We say
that an LCC is zero-error if there exists a non-adaptive corrector algorithm that succeeds with
probability 1 when the input is an uncorrupted codeword. All known constructions of LCCs are
zero-error.

Our result is tight upto constant factors in the exponent. The only previous lower bound on
the length of 2-query LCCs over large alphabet was Ω((k/ log |Σ|)2) due to Katz and Trevisan
(STOC 2000). Our bound implies that zero-error LCCs cannot yield 2-server private information
retrieval (PIR) schemes with sub-polynomial communication. Since there exists a 2-server PIR
scheme with sub-polynomial communication (STOC 2015) based on a zero-error 2-query locally
decodable code (LDC), we also obtain a separation between LDCs and LCCs over large alphabet.

1998 ACM Subject Classification E.4 Coding and Information Theory

Keywords and phrases Locally correctable code, Private information retrieval, Szemerédi regu-
larity lemma

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.30

1 Introduction

In this work, we study error-correcting codes that are equipped with local algorithms. A
code is called a locally correctable code (LCC) if there is a randomized algorithm which, given
an index i and a received word w close to a codeword c in Hamming distance, outputs ci by
querying only a few positions of w. The maximum number of positions of w queried by the
local correction algorithm is called the query complexity of the LCC.

The main problem studied regarding LCCs is the tradeoff between their query complexity
and length. Intuitively, these two parameters enforce contrasting properties. Small query

∗ AB was partially supported by a DST Ramanujan Fellowship. SG was supported by NSF grants
CCF-1523816, CCF-1217416 and part of this research was done while the author was at Microsoft
Research, Redmond. AT was supported by the Simons Collaboration on Algorithms and Geometry, and
by the National Science Foundation grant No. CCF-1412958.

© Arnab Bhattacharyya, Sivakanth Gopi, and Avishay Tal;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 30; pp. 30:1–30:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.30
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

30:2 Lower Bounds for 2-Query LCCs over Large Alphabet

complexity means that individual codeword symbols carry substantial information, while
short length along with resilience to corruption means that information is spread out among
the codeword symbols. In this paper, we explore one end of the spectrum of tradeoffs by
studying 2-query locally correctable codes.

Also called “self-correction”, the idea of local correction originated in works by Lipton [22]
and by Blum and Kannan [7] on program checkers. In particular, [22, 3] used the fact that
the Reed-Muller code is locally correctable to show average-case hardness of the Permanent
problem. LCCs are closely related to locally decodable codes (LDCs), where the goal is to
recover a symbol of the underlying message when given a corrupted codeword using a small
number of queries [18]. LDCs are weaker than LCCs, in the sense that any LCC can be
converted into an LDC while preserving relevant parameters (see Appendix A for a formal
statement and proof). LDCs and LCCs have found applications in derandomization and
hardness results [25, 15, 19]. See [29] for a detailed survey on LDCs and LCCs, as of 2010.
In more recent years, the analysis of LDCs and LCCs has led to a greater understanding of
basic problems in incidence geometry, the construction of design matrices and the theory of
matrix scaling, e.g. [2, 14, 13].

One particularly important feature of LDCs is their tight connection to information-
theoretic private information retrieval (PIR) schemes. PIR is motivated by the scenario
where a user wants to retrieve an item from a database without revealing to the database
owner what item he is asking for. Formally, the user wants to retrieve xi from a k-bit
database x = (x1, . . . , xk). A trivial solution is for the database owner to transmit the entire
database no matter what query the user has in mind, but this has a huge communication
overhead. Chor et al. [8] observed that while with one database, nothing better than the
trivial solution is possible, there are non-trivial PIR schemes if multiple servers can hold
replicas of the database. It turns out that t-server PIR schemes with low communication are
roughly equivalent to short t-query LDCs. More precisely, a 2-server PIR scheme for k bits
of data with s bits of communication translates to a 2-query LDC C : {0, 1}k → Σ2s where
Σ = {0, 1}s. Note that in this translation, |Σ| equals the length of the code.

Let C : {0, 1}k → Σn be a 2-query LDC/LCC such that the corrector algorithm can
tolerate corruptions at δn positions. Katz and Trevisan in their seminal work [18] showed
that for 2-query LDCs, n > Ω(δ(k/ log |Σ|)2). (Since LDCs are weaker than LCCs, a lower
bound on the length of LDCs also implies a lower bound on the length of LCCs). More than
15 years later, the Katz-Trevisan bound is still the best known for large alphabet Σ. However
for small alphabet size, the dependence on k is shown to be exponential. Goldreich et al. [16]
showed that n > exp(δk/|Σ|) for linear 2-query LDCs, while Kerenedis and de Wolf [20] (with
further improvements in [28]) showed using quantum techniques that n > exp(δk/|Σ|2) for
arbitrary 2-query LDCs. But these lower bounds become trivial when |Σ| = Ω(n). However,
the case of large alphabet |Σ| ≈ n is quite important to understand as this is the regime
through which we would be able to prove lower bounds on the communication complexity of
PIR schemes.

Given the lack of progress on LDC and PIR lower bounds, it is a natural question to
ask whether strong lower bounds are possible for LCCs. In this work, we demonstrate an
exponential improvement on the Katz-Trevisan bound for zero-error LCCs. We define a
zero-error LCC to be an LCC for which the corrector algorithm is non-adaptive and succeeds
with probability 1 when the input is an uncorrupted codeword. All current LCC constructions
are zero-error, and in fact, any linear LCC can be made zero-error. We state our main
theorem below informally, see Theorem 5 for a formal statement.

A. Bhattacharyya, S. Gopi, and A. Tal 30:3

I Theorem 1 (Informal). If C : {0, 1}k → Σn is a zero-error 2-query LCC that can correct
δn corruptions, then n > exp(poly(δ) · k/ log |Σ|).1

1.1 Discussion of Main Result
The lower bound in Theorem 1 is tight in its dependence on k and Σ. Specifically, Yekhanin in
the appendix of [4] gives the following elegant construction of a 2-query LCC C : {0, 1}k → Σn
with n = 2O(k/ log |Σ|) for any δ 6 1/6,Σ and k. Assume |Σ| = 2b and b | k for simplicity. Write
x ∈ {0, 1}k as (xi,j)i∈[b],j∈[k/b]. Then, for any a ∈ [2k/b], let (C(x))a = (H(xi,1, . . . , xi,k/b)a :
i ∈ [b]) ∈ {0, 1}b where H is the classical Hadamard encoding H : {0, 1}r → {0, 1}2r defined
as H(y) = (

∑r
i=1 yiξi (mod 2) : ξ1, . . . , ξr ∈ {0, 1}). It is well-known that H is a 2-query

LCC, and from this, it is easy to check that C is also. The parameters follow directly from the
construction. A simple modification of this construction gives (2O(δk/ log |Σ|)/δ)-length 2-query
LCCs that tolerate δn corruptions. The proof of Theorem 1 shows n > exp(δ4k/ log |Σ|)
which is therefore tight upto poly(δ) factors in the exponent.

The 2-query LCC described above is a linear code over F2b . For linear codes C ⊆ Fnq (i.e.,
C is a linear subspace of Fnq), where q = pr for a prime p, [4] showed that n > exp(δk/r) =
exp(δk/ logp |Σ|) where k = log |C| is the message length and |Σ| = pr. Thus, in terms of
dependence on k and |Σ|, we extend the result of [4] from linear codes to all zero-error LCCs.
Moreover, this work is much more elementary and simple than [4] which uses non-trivial
results from additive combinatorics.

It is important to note that Theorem 1 cannot be true for 2-query LDCs. Such a result
would contradict the construction in [12] of a zero-error 2-query LDC with logn = log |Σ| =
exp(
√

log k) = ko(1) and δ = Ω(1). So, our result can be interpreted as giving a separation
between zero-error LCCs and LDCs over large alphabet. We conjecture that the zero-error
restriction in the theorem can be removed, which if true, would yield the first separation
between general LCCs and LDCs. It is still quite unclear what the correct lower bound
for 2-query LDCs should look like. As mentioned above, Katz and Trevisan [18] show
that n > Ω(δk2/ log2 |Σ|). And the quantum arguments of [20, 28] give the lower bound
n > exp(δk/|Σ|2) which becomes trivial when |Σ| = Ω(n).

1.2 Proof Overview
Like most prior work on 2-query LDCs and LCCs, we view the query distribution of the local
correcting algorithm as a graph. However, these previous works did not exploit the structure
of the graph much beyond its size and degree, whereas our bound is due to a detailed use of
the graph structure.

Let C : {0, 1}k → Σn be a 2-query LCC. So, for every i ∈ [n], there is a corrector
algorithm Ai that when given access to z ∈ Σn with Hamming distance at most δn from
some codeword y, returns yi with probability at least 2/3. Assuming non-adaptivity, the
algorithm Ai chooses its queries from a distribution on [n]2. Katz and Trevisan [18] show
how to extract a matching Mi of Ω(δn) disjoint edges on n vertices such that for any edge
e = (j, k) in Mi,

Pr
y

[Ai(y) = yi | A queries y at positions j and k] > 1
2 + ε

1 An earlier version [5] of this paper showed that n > exp(cδ · k/ log |Σ|) where cδ has tower type
dependence on δ due to the use of the Szemerédi regularity lemma.

APPROX/RANDOM’17

30:4 Lower Bounds for 2-Query LCCs over Large Alphabet

for some constant ε > 0, where the probability is over a uniformly random codeword y ∈ C.
For zero-error LCCs, the situation is simpler in that essentially, for every codeword y and
edge e ∈Mi, Ai(y) returns yi when it queries the elements of e. This is not exactly correct
but let us suppose it’s true for the rest of this section.

Let G be the union of M1, . . . ,Mn. So, for every edge (j, k) in G, there is an i such that
(j, k) ∈Mi. Suppose our goal is to guess an unknown codeword c given the values of a small
subset of coordinates of c. We assign labels in Σ to vertices of G corresponding to the subset
of coordinates of c that we know already. Now, imagine a propagation process where we
deduce the labels of unlabeled vertices by using the corrector algorithms. For example, if
(j, k) ∈Mi, j and k are labeled but i is not, we can use Ai to deduce the label at vertex i.
Similarly, if (x, y) ∈Mu and (u, v) ∈Mw, and x, y, v are labeled but u and w are not, we can
run Au to deduce the label of u and then Aw to deduce the label of w. The set of labels we
infer will be the values of c at the corresponding coordinates. The goal of our analysis is to
show that there is a set S of Oδ(logn)2 vertices such that if the labels of S are known, then
the propagation process can determine the labels of all n vertices. This immediately implies
that the total number of codewords, 2k, is at most |Σ||S| and therefore, k = Oδ(logn · log |Σ|).
Instead, Katz and Trevisan [18] show that if you know the labels of

√
n uniformly random

coordinates, then you can recover the labels of most of the coordinates which leads to the
bound k = Oδ(

√
n · log |Σ|). Intuitively, their lower bound is just one step of the propagation

process.
The propagation process is perhaps more naturally described on a (directed) 3-uniform

hypergraph where there is an edge (i, j, k) if (j, k) ∈Mi. It “captures” i if (i, j, k) is an edge
and j, k are already captured. Coja-Oghlan et al. [9] study exactly this process on random
undirected 3-uniform hypergraphs in the context of constraint satisfaction problem solvers.
Unfortunately, their techniques are specialized to random hypergraphs. The propagation
process is also related to hypergraph peeling [23, 24], but again, most theoretical work is
limited to random hypergraphs.

To motivate our approach, suppose M1, . . . ,Mn are each a perfect matching. For a set
S ⊆ [n], let R(S) denote the set of vertices to which we can propagate starting from S. If
R(S) = [n], we are done. Otherwise, we show that we can double |R(S)| by adding one
more vertex to S. Note that for any i /∈ R(S), no edge in Mi can lie entirely inside R(S),
for then, i would also have been reached. So, each vertex in R(S) must be incident to one
edge in Mi for every i /∈ R(S). This makes the total number of edges between R(S) and
[n] \R(S) belonging to Mi for some i 6∈ R(S) equal to |R(S)| · (n− |R(S)|). By averaging,
there must be j /∈ R(S) that is incident to at least |R(S)| edges, each belonging to some
Mi for i /∈ R(S). Moreover, all these |R(S)| edges must belong to matchings of different
vertices. Hence, adding j to S doubles the size of R(S). Hence, for some S of size O(logn),
R(S) = [n].

In the above special case (where all the matchings were perfect), we used the fact that
the size of the cut between R(S) and the rest of the graph is large and that many of these
edges belong to Mi for i 6∈ R(S). We observe that for any graph obtained from an LCC
as above, this situation exists whenever R(S) is not too large already and the minimum
degree of every vertex in the graph is large (say, poly(δ) · n). This is because each vertex
in R(S) will be incident to many edges in matchings Mi for i /∈ R(S) (using the minimum
degree requirement and that |R(S)| is small) and such edges cannot have both endpoints
inside R(S) (as then i ∈ R(S)). So, indeed, there will be many edges with labels not in R(S)

2 Oδ(·) means that the involved constant can depend on δ.

A. Bhattacharyya, S. Gopi, and A. Tal 30:5

crossing the cut, and averaging will yield a vertex whose addition to S will make R(S) grow
by a multiplicative factor. Therefore, if the minimum degree requirement is met, we can keep
repeating this process until R(S) becomes large, of size poly(δ) · n. Now, in a key lemma
of our proof, we show that for any graph obtained from an LCC as above, we can greedily
find a subset of the vertices V ′ such that the the subgraph induced by the vertices of V ′
and the edges labeled by V ′ has large minimum degree. So, we can repeatedly apply the
above argument to V ′ to find a subset S of size Oδ(logn) such that R(S) contains poly(δ) ·n
vertices.

Recall that our goal is to find a small set S such that R(S) = [n]. So, at this stage,
we would ideally like to continue the argument on V ′′ = [n] \ R(S). The only issue we
can face is that the graph on V ′′ restricted to edges labeled by V ′′ may not have the LCC
structure. Indeed, it could be that most edges labeled by V ′′ are not spanned by vertices in
V ′′. However in this case, there will be a vertex u in V ′′ incident to many V ′′-labeled edges
that have their other endpoints in R(S), so that we can increase R(S) by adding u to S.
Thus, either R(S) may be grown directly or else the rest of the vertices looks approximately
like an LCC, so that we can recurse. Modulo some important technical details, our proof is
now complete3.

The zero-error assumption seems necessary to make the propagation process well-defined.
Otherwise, for each labeled vertex, there is some probability that the label is incorrect for
the codeword in question. But since there may be Ω(logn) = ω(1) steps of propagation, the
error probability may blow up by this factor. So, it seems we need different techniques to
handle correctors that have constant probability of error when the input is a codeword. One
possibility is using information theory to better handle the spread of error4.

2 Zero-error 2-query LCCs

We begin by formally defining zero-error 2-query LCCs.

I Definition 2. Let Σ be some finite alphabet and let C ⊂ Σn be a set of codewords. C
is called a (2, τ)-LCC with zero-error if there exists a randomized algorithm A such that
following is true:
1. A is given oracle access to some z ∈ Σn and an input i ∈ [n]. It outputs a symbol in Σ

after making at most 2 non-adaptive queries to z.
2. If z ∈ Σn is τ -close to some codeword c ∈ C in Hamming distance, then for every i ∈ [n],

Pr[Az(i) = ci] > 2/3.
3. If c ∈ C, then for every i ∈ [n], Pr[Ac(i) = ci] = 1 i.e. if the received word has no errors,

then the local correction algorithm will not make any error.
Note that the above definition differs from the standard notion of non-adaptive 2-query LCCs
only in part (3) above. The choice of 2/3 in part (2) of the definition above is somewhat
arbitrary. We can make it any constant greater than 1/2. More generally, it is only required

3 An earlier version [5] of this paper had a different argument for the main theorem, based on a
“decomposition theorem” proved using the Szeméredi regularity lemma for directed graphs [26, 1]. The
idea was to partition the graph into a constant number of edge expanders. In each such part, the sizes
of cuts are large and so the propagation process can be easily analyzed. The proof given here is simpler
and yields much better dependence on δ. However, because the decomposition theorem for directed
graphs may be of general interest, we have included it in Appendix B of this paper.

4 This approach is taken in [17] to prove an exponential lower bound for smooth 2-query LDCs over
binary alphabet when the decoder has subconstant error probability. Jain’s analysis seems to work only
for binary codes but is similar in spirit to ours.

APPROX/RANDOM’17

30:6 Lower Bounds for 2-Query LCCs over Large Alphabet

that for every σ 6= ci,Pr[Az(i) = ci] > Pr[Az(i) = σ] + ε for some ε > 0, i.e., ci should win
the plurality vote among all symbols by a constant margin.

We next show that the corrector for any zero-error LCC can be brought into a “normal"
form. A similar statement is known for general LDCs and LCCs [18, 29] but we need to be a
bit more careful because we want to preserve the zero-error property. Note that the proof
overview in Section 1.2 assumed that the set T1 below is empty.

I Lemma 3. Let C ⊂ Σn be a (2, τ)-LCC with zero error. Then, there exists a partition of
[n] = T1 ∪ T2 such that:
1. For every i ∈ T1, there exists a distribution Di over [n]∪{φ} and algorithms Rij for every

j ∈ [n] ∪ {φ} such that for every codeword c ∈ C,

Pr
j∼Di

[
Rij(cj) = ci

]
>

2
3 .

5

Moreover the distribution Di is smooth over [n] i.e. for every j ∈ [n], PrDi
[j] 6 4

τn .
2. For every i ∈ T2, there exists a matchingMi of edges in [n] \ {i} of size |Mi| > τ

4n such
that: For every c ∈ C, ci can be recovered from (cj , ck) for any (j, k) ∈Mi i.e. there exists
algorithms Rij,k for every edge (j, k) ∈Mi such that for every c ∈ C,

Rij,k(cj , ck) = ci.

Proof. Fix ε = τ/4. Let A be the local corrector algorithm for C and let Qi be the
distribution over 2-tuples of [n] corresponding to the queries A(i) makes to correct coordinate
i.6 Let supp(Qi) be the set of edges in the support of Qi. We have two cases:
Case 1: supp(Qi) contains a matching of size εn.

In this case, we include i ∈ T2 and defineMi to be a matching of size εn in supp(Qi).
Let Rij,k(zj , zk) be the output7 of Az(i) when it samples (j, k) from the distribution Qi.
So we have for every σ ∈ Σ,

Pr
(j,k)∼Qi

[Rij,k(zj , zk) = σ] = Pr[Az(i) = σ].

Now since our LCC is zero-error, for every (j, k) ∈ supp(Qi), we have Rij,k(cj , ck) = ci.
This takes care of part (2).

Case 2: supp(Qi) doesn’t contain a matching of size εn.
In this case we include i ∈ T1. Since supp(Qi) doesn’t contain a matching of size εn,
there exists a vertex cover of size at most 2εn, say Vi. Also define Bi ⊂ [n] to be the set
of vertices which are queried with high probability by Az(i) i.e.

Bi =
{
j : Pr[Az(i) queries j] > 1

εn

}
.

Clearly |Bi| 6 2εn because Az(i) makes at most two queries. We now define a new
one-query corrector for i, Ãz(i) as follows: simulate Az(i), but whenever Az(i) queries
z at a coordinate in Vi ∪Bi, Ãz(i) doesn’t query that coordinate and assumes that the
queried coordinate is 0 (or some fixed symbol in Σ). Note that Ãz(i) makes at most one
query to z since Vi is a vertex cover for the support of Qi. Also Ãc(i) behaves exactly

6 Wlog, we can assume A(i) always queries two coordinates.
7 Note that Rij,k might use additional randomness.

A. Bhattacharyya, S. Gopi, and A. Tal 30:7

like Ac′(i) where c′ is the word formed by zeroing out the Vi ∪Bi coordinates of c. Since
|Vi ∪Bi| 6 4εn 6 τn, we have

Pr[Ãc(i) = ci] = Pr[Ac
′
(i) = ci] >

2
3 .

Now define the distribution Di over [n] ∪ {φ} as:

Pr
Di

[j] = Pr[Ãz(i) queries j]

for j ∈ [n] and

Pr
Di

[φ] = Pr[Ãz(i) doesn’t make any query].

Since we never query elements of Bi, we have the required smoothness i.e. PrDi [j] 6 1/(εn)
for all j ∈ [n]. Also define Rij(zj) to be the output (can be randomized) of Ãz(i) when it
queries j ∈ [n] and Riφ(cφ) to be the output (can be randomized) of Ãz(i) when it doesn’t
make any query where cφ is an empty input defined for ease of notation. By definition,
we have

Pr
j∼Di

[Rij(cj) = ci] = Pr[Ãc(i) = ci] >
2
3 .

This proves part (1). J

3 Proof of lower bound

3.1 An information theoretic lemma
The proof of Theorem 1 works by showing that there is randomized algorithm which can
guess an unknown codeword c ∈ C ⊂ Σn with high probability by making a small number
of queries. From this we would like to show that |C| cannot be large. We will apply Fano’s
inequality which is a basic information theoretic inequality to achieve this. We will assume
familiarity with basic notions in information theory; we refer the reader to [10] for precise
definitions and the proofs of the facts we use. Given random variables X,Y, Z, let H(X)
be the entropy of X which is the amount of information contained in X. H(X|Y) is the
conditional entropy of X given Y which is the amount of information left in X if we know
Y . The mutual information I(X;Y) = H(X)−H(X|Y) = H(Y)−H(Y |X) is the amount
of common information between X,Y . If X,Y are independent, then I(X;Y) = 0. The
conditional mutual information I(X;Y |Z) is the mutual information between X,Y given Z.
We have the following chain rule for mutual information:

I(X;Y Z) = I(X;Z) + I(X;Y |Z).

We also need the following basic inequality:

I(X;Y |Z) 6 H(X|Z) 6 log |X |

where X is the support of the random variable X. We will now state Fano’s inequality which
says that if we can predict X very well from Y i.e. there is a predictor X̂(Y) such that
Pr[X̂(Y) 6= X] 6 pe where pe is small, then H(X|Y) should be small as well (see [10] for a
proof). More precisely,

H(X|Y) 6 h(pe) + pe log(|X | − 1) (Fano’s inequality)

where h(x) = −x log x− (1−x) log(1−x) is the binary entropy function and X is the support
of random variable X.

APPROX/RANDOM’17

30:8 Lower Bounds for 2-Query LCCs over Large Alphabet

I Lemma 4. Suppose there exists a randomized algorithm P such that for every c ∈ C ⊂ Σn,
given oracle access to c, P makes at most t queries to c and outputs c with probability > 1/2,
then log |C| 6 O(t log |Σ|).

Proof. Let X be a random variable which is uniformly distributed over C. Let R be the
random variable corresponding to the random string of the algorithm P and let S(R) be the
set of coordinates queried by P when the random string is R. We can guess the value of
X with probability > 1/2 given XS(R), R where XS(R) is the restriction of X to S(R). By
Fano’s inequality,

H(X | XS(R), R) 6 h(1/2) + 1
2 · log(|C| − 1) 6 1 + 1

2 log |C|.

We can bound the mutual information between X and XS(R),R as follows:

I(X;XS(R), R) = I(X;R) + I(X;XS(R)|R) (Chain rule for mutual information.)
6 0 +H(XS(R)|R) (Since X and R are independent.)
6 t log |Σ|.

But we also have

I(X;XS(R), R) = H(X)−H(X|XS(R), R) > log |C| − 1
2 log |C| − 1 >

1
2 log |C| − 1.

Combining the upper and lower bound for I(X;XS(R), R), we get the required bound. J

3.2 Proof of Theorem 1
The following is a restatement of Theorem 1.

I Theorem 5. Let C ⊂ Σn be a (2, τ)-LCC which is zero-error, then

|C| 6 exp
(
O(1

τ4 · logn · log |Σ|)
)
.

Proof. We will construct a randomized algorithm P such that for every c ∈ C, given oracle
access to c, P makes at most O(1

τ4 · logn) queries to c and outputs c with probability
> 1− 1/n. By Lemma 4, we get the required bound.

Let [n] = T1 ∪ T2 be partition of coordinates given by Lemma 3.

I Claim 6. Algorithm P can learn c|T1 with probability > 1− 1/n by querying a uniformly
random (sampled with repetitions) subset S of size r = O(1

τ2 · logn).

Proof. Let S = {Z1, · · · , Zr} where each Zi is a uniformly random element of [n]. By
Lemma 3, for every u ∈ T1, we have a smooth distribution Du over [n] and algorithms Ruv
for every v ∈ [n]. Let’s fix u ∈ T1 and let pv = PrDu [v]. By smoothness, pv 6 4

τn for every
v ∈ [n]. The algorithm P estimates cu as follows: Define the weight of σ to be

Wσ = pφ ·Pr[Ruφ = σ] + 1
r

r∑
i=1

npZi ·Pr[RuZi
(cZi) = σ]

and output the symbol with the maximum weight. We will show that

Pr[P guesses cu incorrectly] 6 1
n2 .

A. Bhattacharyya, S. Gopi, and A. Tal 30:9

For σ ∈ Σ and v ∈ [n] ∪ {φ}, let fσv = Pr[Ruv (cv) = σ]. The weight of σ is given by

Wσ = pφf
σ
φ + 1

r

r∑
i=1

npZi
fσZi

.

We can calculate the expected value of the weight as

E[Wσ] = pφf
σ
φ + E[npZ1f

σ
Z1

]

= pφ Pr[Ruφ(cφ) = σ] +
∑
v∈[n]

pv Pr[Ruv (cv) = σ] = Pr
v∼Du

[Ruv (cv) = σ].

Therefore Wσ is an unbiased estimator for Prv∼Du
[Ruv (cv) = σ]. Also pZi

6 4
τn and fσZi

6 1,
so npZi

fσZi
6 4

τ . Applying Hoeffding’s inequality,

Pr
[
|Wσ −E[Wσ]| > 1

20

]
6 exp

(
−Ω(rτ2)

)
6 1/2n2

when r � 1
τ2 logn. By Lemma 3,

E[Wcu] = Pr
v∼Du

[Ruv (cv) = cu] > 2
3 .

Therefore, Pr[Wcu 6 2
3 −

1
20] 6 1/2n2. Now we will show that no other symbol can have

higher weight than Wcu
except with probability 1

2n2 . For this let us look at∑
σ∈Σ

Wσ =
∑
σ

pφf
σ
φ + 1

r

r∑
i=1

npZi

∑
σ

fσZi

= pφ
∑
σ

Pr[Ruφ = σ] + 1
r

r∑
i=1

npZi

∑
σ

Pr[RuZi
(cZi) = σ]

= pφ + 1
r

r∑
i=1

npZi

So E[
∑
σ∈ΣWσ] = pφ + E[npZ1] = 1 and npZi

6 4
τ . Therefore by Hoeffding’s inequality

applied again, we get

Pr
[∣∣∣∣∣∑
σ∈Σ

Wσ − 1

∣∣∣∣∣ > 1
20

]
6 exp

(
−Ω(rτ2)

)
6

1
2n2

when r � 1
τ2 logn. So with probability > 1− 1

n2 , we have Wcu
> 2

3 −
1
20 and

∑
σ∈ΣWσ 6

1 + 1
20 . Therefore with probability > 1− 1

n2 , cu will be the symbol with maximum weight
and the algorithm P will guess cu correctly with probability > 1− 1

n2 . By union bound, we
get that P can guess cu correctly for all u ∈ T1 with probability > 1− 1

n . J

We will now show that after learning c|T1 , P can now learn c|T2 by querying a further
Oτ (logn) coordinates from c and this process will be deterministic i.e. no further randomness
is needed. Define R(S) to be the set of coordinates of c that can be recovered correctly given
c|S . In Claim 6, we have shown that if S is a randomly chosen subset of size Oτ (logn), then
T1 ⊆ R(S) with probability > 1− 1

n . From now on we assume that P has already recovered
coordinates of T1 correctly i.e. T1 ⊆ R(S). If T2 ⊆ R(S) then we are done, the algorithm
P can output the entire c with probability > 1 − 1

n . So we can assume that T2 * R(S).
Our goal is to show that we can add a further O(poly(1/τ) · logn) vertices to S and have
R(S) = V = T1 ∪ T2. We show that this is indeed the case in the next section by proving
the following claim, which completes the proof.

I Claim 7. There exists a set S of size O((1/τ)4 · logn) such that R(S ∪ T1) = V . J

APPROX/RANDOM’17

30:10 Lower Bounds for 2-Query LCCs over Large Alphabet

3.3 Proof of Claim 7
Claim 7 is purely graph theoretical. Let G = (V,E) be the graph with V = [n] = T1 ∪ T2
and E = ∪i∈T2Mi whereMi are partial matchings of size at least (τ/4)n given by Lemma 3.
Let δ := τ/4. We will label each edge in E with a label in T2 indicating which matching it
belongs to. We can have parallel edges in E, but they will have different labels since they
belong to different matchings. Recall that R(S) is the set of coordinates of c that can be
inferred from c|S . Lemma 3 implies the following closure property for R(S): if (i, j) ∈Mk

and i, j ∈ R(S) then k ∈ R(S). Next, we define R(S) formally based on the graph G using
this closure property.

I Definition 8. Let G = (V,E) as above. Let S ⊆ V . We define the set RG(S) ⊆ V to be
the smallest set of vertices such that:
1. S ⊆ RG(S)
2. For all i, j ∈ RG(S) and k ∈ [n], if (i, j) ∈Mk, then k ∈ RG(S). (In words, if there exists

an edge (i, j) in the graph G labeled with k and both i and j are in RG(S), then so is k.)

(When the context is clear, we will use R(S) instead of RG(S).) Our goal is to show
that in any graph G as above, there exists a set S ⊆ V of size poly(1/δ) · log(n) such that
RG(S ∪ T1) = V . As a first step, we get rid of the set T1, by showing that proving the claim
in the case T1 = ∅ implies Claim 7 for any other set. To see that observe that if we take G′ to
be the union of G with a collection of partial matching {Mj}j∈T1 , then RG′(S) ⊆ RG(S∪T1)
for any set S ⊆ V . Thus, it suffices to introduce dummy matchings {Mj}j∈T1 for eachMj

of size δn, and prove that there exists a set S of size poly(1/δ) · log(n) such that RG′(S) = V .

I Claim 9 (Claim 7, case T1 = ∅, restated). Let G = (V,E) be a graph with V = [n] and
E =M1 ∪ · · · ∪Mn where each Mi is a partial matching of size at least δn. Then, there
exists a subset S ⊆ V of size O((1/δ)4 · logn) such that RG(S) = V .

From here henceforth we assume (without loss of generality) that T1 = ∅ and T2 = [n],
and prove Claim 9. The following lemma tells us that we can find a subgraph G′ of G such
that each vertex in G′ has high degree. Note that the lemma finds a subgraph restricted to a
set of vertices V ′, and also restricted to the set of edges labeled with V ′.

We shall use this lemma inductively. During induction, we will remove some edges from
the matchings. Thus, instead of asserting that all matchings are of size at least δ|V |, we
assume that all but 0.1δ|V | of the matchings have at least 0.9δ|V | edges.

I Lemma 10 (Clean-Up Lemma). Let G = (V,E) be a graph with a finite set of vertices V
and E =

⋃
i∈V Mi, where each Mi is a partial matching on V . Assume all but 0.1δ|V | of

the matchingsMi have size at least 0.9δ|V |. Then, there exists a subset V ′ ⊆ V of size at
least δ · |V | so that the graph G′ = (V ′, E′) where E′ =

⋃
i∈V ′Mi ∩ (V ′ × V ′) has minimal

degree at least (δ2/4) · |V |.

Proof. We find the set V ′ greedily. Let δ′ := δ2/4. Initialize V ′ = V . If the minimum degree
in the remaining graph on V ′ is at least δ′ · |V | then we stop. Otherwise, remove the vertex
i ∈ V ′ with minimal degree, and remove all edges labeled i. We repeat this process until no
vertices of degree smaller than δ′ · |V | exist.

If the process stopped when |V ′| > δ|V | then we are done. We are left to show that the
process cannot proceed past this point. Let’s assume by contradiction that we can continue
the process after this point. As we decrease the size of V ′ by one in each iteration, we must
reach at a certain point of the process to a set of vertices V ′ = V ∗ of size exactly δ|V |.

A. Bhattacharyya, S. Gopi, and A. Tal 30:11

Denote by

E∗(V ′) :=
⋃
i∈V ∗

Mi ∩ (V ′ × V ′).

Next, we upper and lower bound |E∗(V ∗)| to derive a contradiction.
The upper bound |E∗(V ∗)| 6 |V ∗|·|V ∗|/2 follows since the edges E∗(V ∗) form a collection

of |V ∗| partial matchings on V ∗. To lower bound |E∗(V ∗)| we use the properties of the greedy
process. The initial size of the set E∗(V ′) (when V ′ = V) is at least 0.9δ|V |·(|V ∗|−0.1δ|V |) >
0.92δ2 · |V |2. In every iteration, we remove at most δ′|V | edges from this set of edges.
As there are at most |V | steps, we are left with at least 0.92δ2|V |2 − δ′|V |2 edges, i.e.,
|E∗(V ∗)| > 0.92δ2|V |2 − δ′|V |2. Combining both upper and lower bounds on |E∗(V ∗)| gives

1
2 · δ

2 · |V |2 > |E∗(V ∗)| > (0.92δ2 − δ′) · |V |2 = (0.92δ2 − δ2/4) · |V |2

which yields a contradiction since 1/2 < 0.92 − 1/4. J

I Lemma 11 (Exponentially growing a set of known coordinates). Let G = (V,E) be a graph
with V and E =

⋃
i∈V Mi such that each v ∈ V has degree at least d. Then, there exists a

subset S ⊆ V of size at most O((|V |/d) · log |V |) with |R(S)| > d/2.

Proof. We pick the set S ⊆ V iteratively, picking one element in each step. We start with
S = {v} for some arbitrary v ∈ V .

Assume we picked t elements so far for the set S. If |R(S)| > d/2, then we are done.
Otherwise, by the definition of R(S), for any i ∈ V \R(S), none of the edges in the matching
Mi is inside R(S). We wish to show that there exists an i ∈ V \R(S) with many edges into
R(S) marked with labels outside R(S). Then, we will add i to S, which will reveal a lot of
new coordinates.

For two disjoint sets of vertices A,B ⊆ V we denote by E(A,B) the set of edges
between A and B in the graph G. If A consists of one element, i.e., A = {a} we denote
E(a,B) = E(A,B). Let A = R(S). Let B = V \A. We have∣∣∣∣∣E(A,B) ∩

⋃
i∈B
Mi

∣∣∣∣∣ =
∑
a∈A

∣∣∣∣∣E(a,B) ∩
⋃
i∈B
Mi

∣∣∣∣∣ =
∑
a∈A

∣∣∣∣∣E(a, V \ {a}) ∩
⋃
i∈B
Mi

∣∣∣∣∣ (1)

where the last equality follows since there are no edges labeled i ∈ B between any two vertices
in A. For each a ∈ A there are at least d edges touching a and at most |A| of them appeared
in
⋃
i∈AMi, hence

∣∣E(a, V \ {a}) ∩
⋃
i∈BMi

∣∣ > d − |A| > d/2. Plugging this estimate to
Eq. (1) gives∣∣∣∣∣E(A,B) ∩

⋃
i∈B
Mi

∣∣∣∣∣ > |A| · d/2 .
By averaging there exists a vertex b ∈ B with at least |A| · d

2|V | edges to A labeled with B.
So as long as |A| = |R(S)| 6 d/2 we are extending the set R(S) by at least |R(S)| · d

2|V |
elements, i.e. by a multiplicative factor of (1 + d

2|V |). Hence, after t iterations, either
|R(S)| > (1 + d

2|V |)
t or |R(S)| > d/2. Taking t = O(|V |d · log |V |) gives that after at most t

iterations |R(S)| > d/2. J

I Lemma 12 (Covering 1− δ fraction of the coordinates implies covering all coordinates). Let
G = (V,E) be a graph with V = [n] and E =M1 ∪M2 ∪ . . .∪Mn and eachMi is a partial
matching of size at least δn. Let S ⊆ V . If |R(S)| > (1− δ)n, then R(S) = V .

APPROX/RANDOM’17

30:12 Lower Bounds for 2-Query LCCs over Large Alphabet

Proof. Let v ∈ V . We show that there is an edge inside R(S) marked v. Indeed, there are
at least δn edges labeled v and they form a partial matching. If |V \ R(S)| < δn, one of
these edges do not touch (V \R(S)), i.e., it is an edge connecting two vertices in R(S). J

I Lemma 13 (Two Cases). Let G = (V,E) be a graph with V = [n] and E =M1 ∪M2 ∪
. . . ∪Mn where each Mi is a partial matching of size at least δn. Let S ⊆ V . Assume
|R(S)| 6 (1− δ)n. Then, either
1. There exists an i ∈ V \R(S) such that |R(S ∪ {i})| > |R(S)|+ 0.01 · δ2 · n.
2. In the graph G′ = (V ′, E′) with V ′ = V \ R(S) and E′ =

⋃
i∈V ′Mi ∩ (V ′ × V ′) all but

at most 0.1δ · |V ′| of the matchings have at least 0.9δ · n edges.

Proof. Recall that the labels of edges incident to any vertex i are distinct, since the graph
is a union of partial matchings. Denote by A = R(S) and B = V \R(S). Assume for any
i ∈ B there are at most 0.01δ2 · n edges to A labeled with labels in B. (Otherwise, extend
S by i and get |R(S ∪ {i})| > |R(S)|+ 0.01δ2 · n.) Then, there are at most 0.01δ2 · n · |B|
edges in the cut (A,B) with labels in B. By definition of A = R(S), there are no edges
between A and A labeled with B. Thus, at most 0.01δ2n · |B| edges are missing from the
matchings labeled by B if we restrict to edges between B and B. Hence, at most 0.1δ · |B|
of the matchings may miss more than 0.1δ · n of their edges. J

We are now ready to prove Claim 9.

Proof of Claim 9. Initialize S := ∅. We repeat the following process. While R(S) 6= V ,
check if there exists i ∈ V \R(S) such that |R(S ∪ {i})| > |R(S)|+ 0.01δ2n. We have two
cases:
1. If such an i exists, update S := S ∪ {i}.
2. Else, let G′ = (V ′, E′) where V ′ = V \ R(S) and E′ =

⋃
i∈V ′Mi ∩ (V ′ × V ′). Let

M ′i := Mi ∩ (V ′ × V ′). By Lemma 12, |V ′| > δn. By Lemma 13, all but at most
0.1δ|V ′| of the matchings M ′i for i ∈ V ′ have at least 0.9δn edges. Denote by δ′ =
0.9δn/|V ′| > δ. We apply Lemma 10 on G′ to get a subgraph G′′ = (V ′′, E′′) defined
by a subset V ′′ of size Ω(δ′|V ′|) and E′′ =

⋃
i∈V ′′Mi ∩ (V ′′ × V ′′) with minimal degree

d = Ω((δ′)2 · |V ′|) > Ω(δ2n). We apply Lemma 11 on G′′ to get a set S′′ ⊆ V ′′ of size
O(log |V ′′| · (|V ′′|/d)) = O(logn · (1/δ′)2) with |RG′′(S′′)| > Ω(d) > Ω(δ2n). We update
S := S ∪ S′′.

The number of times we apply case 1 or case 2 is at most O(1/δ2), since each such step
introduces Ω(δ2n) new vertices to R(S). In each application of case 2, at most O((1/δ′)2 ·
logn) 6 O((1/δ2) · logn) elements are added to S. Overall, the size of S at the end of the
process will be

O
(1
δ2

)
+O

(1
δ2 · 1

δ2 · logn
)

= O
(1
δ4 · logn

)
. J

References
1 Noga Alon and Asaf Shapira. Testing subgraphs in directed graphs. Journal of Computer

and System Sciences, 3(69):354–382, 2004.
2 Boaz Barak, Zeev Dvir, Amir Yehudayoff, and Avi Wigderson. Rank bounds for design

matrices with applications to combinatorial geometry and locally correctable codes. In
Proceedings of the forty-third annual ACM symposium on Theory of computing, pages 519–
528. ACM, 2011.

3 Donald Beaver and Joan Feigenbaum. Hiding instances in multioracle queries. In Annual
Symposium on Theoretical Aspects of Computer Science, pages 37–48. Springer, 1990.

A. Bhattacharyya, S. Gopi, and A. Tal 30:13

4 Arnab Bhattacharyya, Zeev Dvir, Shubhangi Saraf, and Amir Shpilka. Tight lower bounds
for linear 2-query LCCs over finite fields. Combinatorica, 36(1):1–36, 2016.

5 Arnab Bhattacharyya and Sivakanth Gopi. Lower bounds for 2-query LCCs over large
alphabet. CoRR, abs/1611.06980v1, 2016. URL: http://arxiv.org/abs/1611.06980v1.

6 Arnab Bhattacharyya and Sivakanth Gopi. Lower bounds for constant query affine-invariant
LCCs and LTCs. In 31st Conference on Computational Complexity, CCC 2016, May 29 to
June 1, 2016, Tokyo, Japan, pages 12:1–12:17, 2016. doi:10.4230/LIPIcs.CCC.2016.12.

7 Manuel Blum and Sampath Kannan. Designing programs that check their work. J. ACM,
42(1):269–291, 1995.

8 Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private information
retrieval. J. ACM, 45(6):965–981, 1998.

9 Amin Coja-Oghlan, Mikael Onsjö, and Osamu Watanabe. Propagation connectivity of
random hypergraphs. The Electronic Journal of Combinatorics, 19(1):P17, 2012.

10 Thomas M. Cover and Joy A. Thomas. Elements of information theory. John Wiley &
Sons, 2012.

11 Richard M. Dudley. Central limit theorems for empirical measures. The Annals of Probab-
ility, pages 899–929, 1978.

12 Zeev Dvir and Sivakanth Gopi. 2-server PIR with sub-polynomial communication. In
Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing,
pages 577–584. ACM, 2015.

13 Zeev Dvir, Shubhangi Saraf, and Avi Wigderson. Breaking the quadratic barrier for 3-
LCC’s over the reals. In Proceedings of the 46th Annual ACM Symposium on Theory of
Computing, pages 784–793. ACM, 2014.

14 Zeev Dvir, Shubhangi Saraf, and Avi Wigderson. Improved rank bounds for design matrices
and a new proof of Kelly’s theorem. In Forum of Mathematics, Sigma, volume 2, page e4.
Cambridge Univ Press, 2014.

15 Zeev Dvir and Amir Shpilka. Locally decodable codes with two queries and polynomial
identity testing for depth 3 circuits. SIAM Journal on Computing, 36(5):1404–1434, 2007.

16 Oded Goldreich, Howard Karloff, Leonard J. Schulman, and Luca Trevisan. Lower bounds
for linear locally decodable codes and private information retrieval. Computational Com-
plexity, 15(3):263–296, 2006.

17 Rahul Jain. Towards a classical proof of exponential lower bound for 2-probe smooth codes.
arXiv:cs/0607042, 2006.

18 Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for error-
correcting codes. In Proceedings of the thirty-second annual ACM symposium on Theory
of computing, pages 80–86. ACM, 2000.

19 Neeraj Kayal and Shubhangi Saraf. Blackbox polynomial identity testing for depth 3 cir-
cuits. In Foundations of Computer Science, 2009. FOCS’09. 50th Annual IEEE Symposium
on, pages 198–207. IEEE, 2009.

20 Iordanis Kerenidis and Ronald De Wolf. Exponential lower bound for 2-query locally
decodable codes via a quantum argument. In Proceedings of the thirty-fifth annual ACM
symposium on Theory of computing, pages 106–115. ACM, 2003.

21 Michel Ledoux and Michel Talagrand. Probability in Banach Spaces: isoperimetry and
processes. Springer Science & Business Media, 2013.

22 Richard J. Lipton. Efficient checking of computations. In Annual Symposium on Theoretical
Aspects of Computer Science, pages 207–215. Springer, 1990.

23 Michael Mitzenmacher and Justin Thaler. Peeling arguments and double hashing. In Com-
munication, Control, and Computing (Allerton), 2012 50th Annual Allerton Conference on,
pages 1118–1125. IEEE, 2012.

APPROX/RANDOM’17

http://arxiv.org/abs/1611.06980v1
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.12

30:14 Lower Bounds for 2-Query LCCs over Large Alphabet

24 Ryuhei Mori and Osamu Watanabe. Peeling algorithm on random hypergraphs with super-
linear number of hyperedges. arXiv preprint arXiv:1506.00718, 2015.

25 Madhu Sudan, Luca Trevisan, and Salil Vadhan. Pseudorandom generators without the
XOR lemma. Journal of Computer and System Sciences, 62(2):236–266, 2001.

26 Endre Szemerédi. Regular partitions of graphs. In J. C. Bremond, J. C. Fournier, M. Las
Vergnas, and D. Sotteau, editors, Proc. Colloque Internationaux CNRS 260 – Problèmes
Combinatoires et Théorie des Graphes, pages 399–401, 1978.

27 Amelia Taylor. The regularity method for graphs and digraphs. arXiv preprint
arXiv:1406.6531, 2014.

28 Stephanie Wehner and Ronald De Wolf. Improved lower bounds for locally decodable codes
and private information retrieval. In International Colloquium on Automata, Languages,
and Programming, pages 1424–1436. Springer, 2005.

29 Sergey Yekhanin. Locally decodable codes. In Computer Science – Theory and Applications,
pages 289–290. Springer, 2011.

A LDCs from LCCs

In this section, we will show that q-query LCCs can be converted into q-query LDCs with
only a constant loss in rate and preserving other parameters. Below we define LCCs and
LDCs formally.

I Definition 14 (Locally Correctable Code). Let Σ be some finite alphabet and let C ⊆ Σn

be a set of codewords. C is called a (q, δ, ε)-LCC if there exists a randomized algorithm A
such that following is true:
1. A is given oracle access to some z ∈ Σn and an input i ∈ [n]. It outputs a symbol in Σ

after making at most q queries to z.
2. If z ∈ Σn is δ-close to some codeword c ∈ C in Hamming distance, then for every i ∈ [n],

Pr[Az(i) = ci] > 1
2 + ε.

It is easy to see that LCCs should have large minimum distance.

I Lemma 15 (Lemma 3.2 in [6]). If C ⊆ Σn is a (q, δ, ε)-LCC, then C has minimum distance
2δ i.e. every two points in C are 2δ-far in Hamming distance.

I Definition 16 (Locally Decodable Code). Let Σ be some finite alphabet and let C : {0, 1}k →
Σn. C is called a (q, δ, ε)-LDC if there exists a randomized algorithm A such that following
is true:
1. A is given oracle access to some z ∈ Σn and an input i ∈ [k]. It outputs a bit after

making at most q queries to z.
2. If z ∈ Σn is δ-close to a codeword C(x) in Hamming distance for some x ∈ {0, 1}k, then

for every i ∈ [k], Pr[Az(i) = xi] > 1
2 + ε.

We will need the notion of VC-dimension for the reduction.

I Definition 17. Let A ⊆ {0, 1}n, then the VC-dimension of A, denoted by vc(A) is the
cardinality of the largest set I ⊆ [n] which is shattered by A i.e. the restriction of A to I,
A|I = {0, 1}I .

The following lemma due to Dudley([11]) says that if a set A ⊆ {0, 1}n has points that are
far apart from each other, then it has large VC-dimension.

A. Bhattacharyya, S. Gopi, and A. Tal 30:15

I Lemma 18 (Theorem 14.12 in [21]). Let A ⊆ {0, 1}n such that for every distinct x, y ∈ A,
‖x− y‖`2 > ε

√
n. Then

vc(A) > Ω
(

log |A|
log(2/ε)

)
.

We are now ready to prove the reduction from LCCs to LDCs.

I Theorem 19. Let C ⊆ Σn be a (q, δ, ε)-LCC, then there exists a (q, δ, ε)-LDC C′ : {0, 1}k →
Σn with

k = Ω
(

log |C|
log(1/δ)

)
.

Proof. Wlog let us assume Σ = {0, 1}s. Let C0 : {0, 1}s → {0, 1}t be an error correcting
code with distance δ0 which is some fixed constant. We can extend C0 : Σn → {0, 1}nt as

C0(z1, · · · , zn) = (C0(z1), · · · , C0(zn)).

By Lemma 15, every two points in C are 2δ-far in Hamming distance, it is easy to see that
in the concatenated code C1 = C0 ◦ C ⊆ {0, 1}tn every two points are 2δ · δ0 far apart in
Hamming distance. So every two points in C1 are separated by ε

√
nt distance in `2 norm

where ε =
√

2δδ0. So by Lemma 18,

vc(C1) > Ω
(

log |C1|
log(2/ε)

)
= Ω

(
log |C|

log(1/δ)

)
.

Therefore there exists a set I ⊆ [nt] of size k = vc(C1) such that C1|I = {0, 1}I .
Now define C′ : {0, 1}I → Σn as follows: C′(x) = z where z ∈ C is chosen such that

C0(z)|I = x (if there are many such z, you can choose one arbitrarily). So the image
C′({0, 1}I) ⊆ C. Now we claim that C′ is an q-query LDC. Given a word r ∈ Σn which is
δ-close to C′(x), say we want to decode the ith message coordinate xi. Suppose i belongs
to the jth block of ({0, 1}t)n for some j ∈ [n]. The local decoder of C′ will run the local
corrector of C to correct the jth coordinate of r and apply C0 to find the required bit xi.
So the local decoder for C′ makes at most q queries and the probability that it outputs xi
correctly is at least 1/2 + ε. J

B Decomposition into expanding subgraphs

The goal of this section is to develop a decomposition lemma that approximately partitions
any directed graph into a collection of disjoint expanding subgraphs. We use the following
notion of edge expansion:

I Definition 20. A directed graph G = (V,E) is an α-edge expander if for every nonempty
S ⊂ V ,

|E(S, V \ S)| > α|S||V \ S|.

Here, E(A,B) is the set of edges going from A to B.

We will need the following degree form of Szemerédi regularity lemma which can be
derived from the usual form of Szemerédi regularity lemma for directed graphs proved in [1].

APPROX/RANDOM’17

30:16 Lower Bounds for 2-Query LCCs over Large Alphabet

I Definition 21. Let G = (V,E) be a directed graph. We denote the indegree of a vertex
v ∈ V by deg−G(v) and the outdegree by deg+

G(v). Given disjoint subsets A,B ⊂ V , the
density d(A,B) between A,B is defined as

d(A,B) = E(A,B)
|A||B|

where E(A,B) is the set of edges going from A to B. We say that (A,B) is ε-regular if for every
subsets A′ ⊂ A and B′ ⊂ B such that |A′| > ε|A| and |B′| > ε|B|, |d(A′, B′)− d(A,B)| 6 ε.

Note that the order of A,B is important in the definition of an ε-regular pair.

I Lemma 22 (Szemerédi regularity lemma for directed graphs (see Lemma 39 in [27])). For
every ε > 0, there exists an M(ε) > 0 such that the following is true. Let G = (V,E) be
any directed graph on |V | = n vertices and let 0 < d < 1 be any constant. Then there
exists a directed subgraph G′ = (V ′, E′) of G and an equipartition of V ′ into k disjoint parts
V1, · · · , Vk such that
1. k 6M(ε).
2. |V \ V ′| 6 εn.
3. All parts V1, · · · , Vk have the same size m 6 εn.
4. deg+

G′(v) > deg+
G(v)− (d+ ε)n for every v ∈ V ′.

5. deg−G′(v) > deg−G(v)− (d+ ε)n for every v ∈ V ′.
6. G′ doesn’t contain edges inside the parts Vi i.e. E′(Vi, Vi) = ∅ for every i.
7. All pairs G′(Vi, Vj) with i 6= j are ε-regular, each with density 0 or at least d.

The regularity lemma above asserts pseudorandomness in the edges going between parts
of the partition. For our application and others, it is more natural to require the edges inside
each subgraph to display pseudorandomness. As the proof of our Decomposition Lemma
shows, we can obtain this from Lemma 22 with some work.

I Lemma 23 (Decomposition Lemma). Let G = (V,E) be any directed graph on |V | = n

vertices. For 0 < d < 1 and 0 < ε < d/6, there exists a directed subgraph G′ = (V ′, E′) and
a partition of V ′ into U1, U2, · · · , UK where K 6M(ε) depends only on ε such that:
1. |V \ V ′| 6 3εn.
2. deg+

G′(v) > deg+
G(v)− (d+ 3ε)n for every v ∈ V ′.

3. deg−G′(v) > deg−G(v)− (d+ 3ε)n for every v ∈ V ′.
4. There are no edges from Ui to Uj where i > j.
5. For 1 6 i 6 K, the induced subgraph G′(Ui) is either empty or is a α-edge expander

where α = α(ε) > 0.

Proof. We will first apply Lemma 22 to G to get a directed subgraph G′′(V ′′, E′′) along with
a partition of V ′′ = V1 ∪ · · · ∪ Vk as in the lemma where k 6M(ε). We know that every pair
G′′(Vi, Vj) is ε-regular with density 0 or at least d. Let us construct a reduced directed graph
R([k], ER) where (i, j) ∈ ER iff G′′(Vi, Vj) has density at least d. Now R has a partition
into strongly connected components say given by [k] = S1 ∪ · · · ∪ SK where K 6M(ε) and
S1, S2, · · · , SK are in topological ordering i.e. there are no edges from Si to Sj when i > j.
We will find a large subset V ′j ⊂ Vj for each of the parts such that |Vj \ V ′j | 6 2ε|Vj | and
define Ui = ∪j∈SiV

′
j . Our final vertex set will be V ′ = ∪Ki=1Ui and the graph G′ will be the

subgraph G′′(V ′). We have

|V \ V ′| 6 |V \ V ′′|+
k∑
i=1
|Vi \ V ′i | 6 3εn.

A. Bhattacharyya, S. Gopi, and A. Tal 30:17

For every v ∈ V ′,

deg−G′(v) > deg−G′′(v)−
k∑
i=1
|Vi \ V ′i | > deg−G(v)− (d+ ε)n− 2εn = deg−G(v)− (d+ 3ε)n.

Similarly deg+
G′(v) > deg+

G(v) − (d + 3ε)n. Because the components S1, · · · , Sk are in
topological ordering with respect to the reduced graph R, we cannot have any edges between
Ui and Uj where i > j.

Now we describe how to find these subsets V ′j where j ∈ Si for each of the Si’s and also
show the required expansion property. If Si is a singleton set i.e. Si = {j} for some j, then
we just define V ′j = Vj . In this case, we will have Ui = Vj and the subgraph G′(Ui) will be
empty. If |Si| > 1, the subgraph R(Si) is strongly connected with at least two vertices. So
every vertex j ∈ Si has at least one outgoing neighbor and one incoming neighbor in R(Si);
choose one outgoing neighbor and call it N+(j) and choose one incoming neighbor and call it
N−(j). Let V ′j ⊂ Vj be the subset of vertices with at least (d− ε)|VN+(j)| outgoing neighbors
in VN+(j) and at least (d− ε)|VN−(j)| incoming neighbors in VN−(j). We will now show that
|Vj \V ′j | 6 2ε|Vj |. Let B+

j ⊂ Vj be the set of vertices with less than (d− ε)|VN+(j)| neighbors
in VN+(j). Define B−j ⊂ Vj similarly. We have V ′j = Vj \ (B+

j ∪B
−
j). So it is enough to show

|B+
j | 6 ε|Vj | and |B−j | 6 ε|Vj |.
Consider the ε-regular pair (Vj , VN+(j)) which has density at least d. The density between

B+
j and VN(j) can be bounded as

|E′′(B+
j , VN+(j))|

|B+
j ||VN+(j)|

< d− ε 6 d(Vj , VN+(j))− ε.

By ε-regularity of G′′(Vj , VN+(j)), we must have |B+
j | 6 ε|Vj | as required. Similarly we have

|B−j | 6 ε|Vj |.
Now we need to show that G′(Ui) is an α-edge expander. Let A ⊂ Ui. For j ∈ Si, define

Aj = A∩ V ′j and Āj = V ′j \A and let Ā = Ui \A. We want to show that E′(A, Ā) > α|A||Ā|
for some constant α(ε) > 0. We have three cases:
Case 1: ∃j, ` ∈ Si such that |Aj | > 2ε|V ′j | and |Ā`| > 2ε|V ′` |.

Label vertices of R(Si) with A if |Aj | > 2ε|V ′j | and also with a label Ā if |Āj | > 2ε|V ′j |.8
Every vertex should get at least one of the labels and j has label A and ` has label Ā.
Since |Si| > 1, we can assume with out loss of generality that j 6= `. Since the graph
R(Si) is strongly connected, there is a directed path from j to `. On this path, there
must exist two adjacent vertices p, q ∈ Si such that p has label A, q has label Ā and
there is an edge from p to q in R(Si). We have

|Ap| > 2ε|V ′p | > 2ε(1− 2ε)|Vp| > ε|Vp|

and similarly |Āq| > ε|Vq|. By ε-regularity of G′′(Vp, Vq), we can lower the bound the
number of edges between A and Ā as follows:

|E′(A, Ā)| > |E′′(Ap, Āq)| > (d− ε)|Ap||Āq| > ε2(d− ε)n2/k2 > α0|A||Ā|

where α0(ε) = 5ε3/M(ε)2 is some constant depending on ε.

8 Some vertices can get both labels, but every vertex will get at least one label.

APPROX/RANDOM’17

30:18 Lower Bounds for 2-Query LCCs over Large Alphabet

Case 2: For every j ∈ Si, |Aj | < 2ε|V ′j |.
By averaging there exists some j ∈ Si such that |Aj | > |A|/|Si| > |A|/k. We know that
every vertex in V ′j has at least (d− ε)|VN+(j)| out neighbors in VN+(j), out of these at
least

(d− ε)|VN+(j)| − |VN+(j) \ V ′N+(j)| − |AN+(j)| > (d− 5ε)|VN+(j)|

should lie in ĀN+(j). So we can bound the expansion as follows:

|E′(A, Ā)| > |E′′(Aj , ĀN+(j))| > (d− 5ε)|VN+(j)||Aj | > (d− 5ε)n
k

|A|
k

> α1|A||Ā|

where α1 = ε/M(ε)2 is some constant depending only on ε.
Case 3: For every j ∈ Si, |Āj | < 2ε|V ′j |.

This is very similar to Case 2. By averaging there exists some j ∈ Si such that |Āj | >
|Ā|/|Si| > |Ā|/k. Every vertex in V ′j has at least (d− ε)|VN−(j)| incoming neighbors in
VN−(j), out of these at least

(d− ε)|VN−(j)| − |VN−(j) \ V ′N−(j)| − |ĀN−(j)| > (d− 5ε)|VN−(j)|

should lie in AN−(j). So,

|E′(A, Ā)| > |E′′(AN−(j), Āj)| > (d− 5ε)|VN−(j)||Āj | > (d− 5ε)n
k

|Ā|
k

> α1|A||Ā|

where α1 = ε/M(ε)2.
Finally we can take α = min(α0, α1), to get the required expansion property. J

The decomposition lemma allows to give an alternative proof for Claim 7, with worse
dependency on τ . To account for that, we restate Claim 7 and replace O((1/τ4) · logn) with
Oτ (logn).

I Claim 24. Let S be a set of size Oτ (logn) such that R(S) = T1. Then, S can be extended
by at most Oτ (logn) elements, such that R(S) = V .

Proof. Let {Mv : v ∈ T2} be the matchings obtained from Lemma 3, we know that
|Mv| > τ

4n for each v ∈ T2. We will construct a directed graph G(V,E) where V = [n] and
E is defined as follows. For every v ∈ T2 \R(S) and every edge {i, j} ∈ Mv, add directed
edges (i, v), (j, v) to E. Thus there is a natural pairing among the directed edges of G, we
will call (j, v) the pairing edge of (i, v) and vice versa. {i, j} is called the matching edge
corresponding to the pair (i, v), (j, v). Since each matchingMv has size > τn/4, we have
deg−G(v) > δn where δ := τ/2 for every v ∈ T2 \R(S) = V \R(S).

We now apply Lemma 23 to get a subgraph G′ = (V ′, E′) as described in the lemma
where we will choose ε = δ/100 and d = δ/10. Let V ′ = U1 ∪ · · · ∪UK be the partition of G′
as described in the lemma where K 6M(δ). Let V0 = [n] \ V ′ be the remaining vertices, we
have |V0| 6 3εn. Each vertex v ∈ V ′ ∩ (T2 \ R(S)) has deg−G′(v) > (δ − d− 3ε)n. We also
know that each sub-graph G′(Ui) is either empty or is an α-edge expander for some constant
α(ε) > 0.

Note that S already has Oτ (logn) vertices. We will now grow the set S of coordinates
queried by P iteratively, adding one at a time. Algorithm 1 gives the procedure for growing
the set S.

We will finish the analysis in a series of claims. Let us start with a simple claim about
properties of R(S).

A. Bhattacharyya, S. Gopi, and A. Tal 30:19

Algorithm 1 Algorithm for growing S
for i = 1 to K do

Intialization: Pick one vertex from Ui and add it to S.
while Ui * R(S) do
Pick any v ∈ V \ R(S) such that adding it to S will add the maximum number of
vertices in Ui \R(S) to R(S).

end while
end for

I Claim 25. R(S) has the following properties:
1. If i, j ∈ R(S) and (i, j) ∈Mk then k ∈ R(S).
2. For every edge (i, k) ∈ E(R(S), V \ R(S)), there is a unique j ∈ V \ R(S) such that

(i, j) ∈Mk.

Proof. (1) We can recover ci, cj from c|S and then use them to recover ck since by Lemma 3,
there exists an algorithm Rki,j such that for every c ∈ C, Rki,j(ci, cj) = ck.
(2) Let (j, k) be the pairing edge of (i, k) so that (i, j) ∈ Mk. Now j cannot be in R(S)
because of (1). J

Algorithm 1 should terminate, since |Ui∩R(S)| increases by at least one in every iteration
of the while loop. At the end of the procedure we clearly have V ′ = U1 ∪ · · · ∪ UK ⊂ R(S).
In fact, we can claim that at the end of the procedure R(S) = V i.e. we can recover all the
coordinates of c from c|S .

I Claim 26. After Algorithm 1 terminates, R(S) = V = [n].

Proof. After Algorithm 1 terminates, we have V ′ ⊂ R(S). Now we are left with V0 = V \ V ′
where we know that |V0| 6 3εn. Now if w ∈ V0 \R(S) then w ∈ T2 \R(S) since T1 ⊂ R(S).
Therefore deg−G(w) > δn. So there must be δn− |V0| > (δ − 3ε)n incoming edges from V ′ to
w. So two of these incoming edges must from a pair and so we have w ∈ R(S) by part (1) of
Claim 25. Therefore V0 ⊂ R(S) as well. J

I Claim 27. Algorithm 1 terminates after Oδ(logn) rounds.

Proof. We just need to show that the while loop runs for Oδ(logn) rounds for each i ∈ [K]
since the outer for loop runs for K times where K 6M(δ). There are two cases:
Case 1: The subgraph G′(Ui) is empty.

In this case, we will show that Ui must already be contained in R(S). Suppose not, let
w ∈ Ui \R(S), we have deg−G′(w) > (δ − d− 3ε)n. Moreover, all of these incoming edges
come from U1, · · · , Ui−1 (note that this means i > 1 for this case to happen). Therefore
there must be two incoming edges from U1 ∪ · · · ∪Ui−1 which form a pair i.e. there exists
u, v ∈ U1 ∪ · · · ∪Ui−1 such that (u, v) ∈Mw. So by part (1) of Claim 25, w ∈ R(S). This
is a contradiction.

Case 2: The subgraph G′(Ui) is an α-edge expander.
If Ui * R(S), we will show that after the end of the iteration ti := |R(S) ∩ Ui| increases
by a factor of (1 + εα). This will prove the required claim because ti is upper bounded
by n.
We first claim that |Ui \R(S)| > εn. Suppose this is not true i.e. |Ui \R(S)| 6 εn. Let
w ∈ Ui \ R(S). We know that w has deg−G′(w) > (δ − d − 3ε)n incoming edges in G′.
Since no edges come from Uj for j > i, at least (δ− d− 3ε)n− |Ui \R(S)| > (δ− d− 4ε)n

APPROX/RANDOM’17

30:20 Lower Bounds for 2-Query LCCs over Large Alphabet

of them come from U1 ∪ · · · ∪ Ui−1 ∪ (Ui ∩R(S)) ⊂ R(S). Therefore two of the incoming
edges must form a pair and so w ∈ R(S) which is a contradiction.
Since G′(Ui) is an α-edge expander, we have

E(Ui ∩R(S), Ui \R(S)) > αti|Ui \R(S)| > αεtin.

By part (2) of Claim 25, each edge from Ui∩R(S) to Ui \R(S) corresponds to a matching
edge between Ui∩R(S) and V \R(S) and it belongs to a matching which corresponds to a
vertex in Ui \R(S). Therefore there are at least αεtin matching edges between Ui ∩R(S)
and V \ R(S) which belong to ∪w∈Ui\R(S)Mw; by averaging there exists v ∈ V \ R(S)
which is incident to αεtin/|V \R(S)| > αεti of these matching edges. So adding this v to
S will add αεti new vertices of Ui \R(S) to R(S), increasing ti by a factor of (1 + αε).

J
J

Sum-of-Squares Certificates for Maxima of
Random Tensors on the Sphere
Vijay Bhattiprolu∗1, Venkatesan Guruswami†2, and Euiwoong Lee‡3

1 Computer Science Department, Carnegie Mellon University, Pittsburgh, PA,
USA
vpb@cs.cmu.edu

2 Computer Science Department, Carnegie Mellon University, Pittsburgh, PA,
USA
guruswami@cmu.edu

3 Computer Science Department, Carnegie Mellon University, Pittsburgh, PA,
USA
euiwoonl@cs.cmu.edu

Abstract
For an n-variate order-d tensor A, define Amax := sup‖x‖2=1〈A, x⊗d〉 to be the maximum value
taken by the tensor on the unit sphere. It is known that for a random tensor with i.i.d. ±1
entries, Amax .

√
n · d · log d w.h.p. We study the problem of efficiently certifying upper bounds

on Amax via the natural relaxation from the Sum of Squares (SoS) hierarchy. Our results include:
When A is a random order-q tensor, we prove that q levels of SoS certifies an upper bound
B on Amax that satisfies

B ≤ Amax ·
(

n

q 1−o(1)

)q/4−1/2

w.h.p.

Our upper bound improves a result of Montanari and Richard (NIPS 2014) when q is large.
We show the above bound is the best possible up to lower order terms, namely the optimum
of the level-q SoS relaxation is at least

Amax ·
(

n

q 1+o(1)

)q/4−1/2

.

When A is a random order-d tensor, we prove that q levels of SoS certifies an upper bound
B on Amax that satisfies

B ≤ Amax ·
(
Õ(n)
q

)d/4−1/2

w.h.p.

For growing q, this improves upon the bound certified by constant levels of SoS. This answers
in part, a question posed by Hopkins, Shi, and Steurer (COLT 2015), who gave the tight
characterization for constant levels of SoS.

1998 ACM Subject Classification G.1.6 Optimization, F.2.1 Numerical Algorithms and Prob-
lems

Keywords and phrases Sum-of-Squares; Optimization over Sphere; Random Polynomials

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.31

∗ Supported by NSF grants CCF-1422045 and CCF-1526092.
† Research supported in part by NSF grants CCF-1526092 and CCF-1563742.
‡ Supported by a Samsung Fellowship, a Simons Award for Graduate Students in Theoretical Computer

Science, and NSF CCF-1526092.

© Vijay Bhattiprolu, Venkatesan Guruswami, and Euiwoong Lee;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 31; pp. 31:1–31:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.31
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

31:2 Sum-of-Squares Certificates for Maxima of Random Tensors on the Sphere

1 Introduction

It is a well-known fact from random matrix theory that for an n× n matrix M whose entries
are i.i.d. Rademacher or standard normal random variables, the maximum value xTMx

taken by the associated quadratic form on the unit sphere ‖x‖2 = 1, is Θ(
√
n) with high

probability. Further, this maximum value can be computed efficiently for any matrix, as
it equals the largest eigenvalue of (M +MT)/2, so one can also efficiently certify that the
maximum of a random quadratic form is at most O(

√
n).

This paper is motivated by the problem of analogous question for tensors. Namely, given
a random order-d tensor A who entries are i.i.d. random ± entries, we would like to certify
an upper bound on the maximum value Amax := max‖x‖=1〈A, x⊗d〉 taken by the tensor on
the unit sphere. This value is at most Od(

√
n) with high probability [18]. However, for d ≥ 3,

computing Amax for a d-tensor A is NP-hard, and it is likely that the problem is also very
hard to approximate. Assuming the Exponential Time Hypothesis, Barak et al. [1] proved
that computing 2→ 4 norm of a matrix, a special case of computing the norm of a 4-tensor,
is hard to approximate within a factor exp(log1/2−ε(n)) for any ε > 0.

Our goal is to certify an approximate upper bound on Amax is not too far from the true
value. Specifically, we seek an estimate B(A) which always upper bounds Amax, and with
high probability is as close to Od(

√
n) as possible for a random A.

In addition to its intrinsic interest, the problem of maximizing tensors and closely
related tasks of computing tensor norms, has connections to diverse topics, such as quantum
information theory [7, 2], the Small Set Expansion Hypothesis (SSEH) and the Unique
Games Conjecture (UGC) (via 2→ 4 norm, see [1, 2]), refuting random CSPs [16], tensor
decomposition [3, 10], tensor PCA [15, 12], and planted clique (via the parity tensor, see
[9, 8]). Many of these applications are of considerable interest in the 2nε-runtime regime.

A natural approach to tackle the above problem is through the Sum of Squares (SoS)
semidefinite programming relaxations. There are several ways to represent a tensor A ∈ R[n]d

(assume d is even) in matrix form as M ∈ R[n]d/2×[n]d/2 so that 〈A, x⊗d〉 = (x⊗d/2)TMx⊗d/2

for all x ∈ Rn. The largest eigenvalue λmax(M) of any such matrix representationM serves as
an (efficiently computable) upper bound on Amax. The basic SoS relaxation looks for the best
matrix representation, i.e., the one minimizing λmax(M), among all possible representations
of the tensor A. This can be expressed as a semidefinite program, and also has a natural
dual view in terms of pseudo-expectations or moment matrices (see Section 2.2).

The SoS hierarchy offers a sequence of relaxations, parameterized by the level q, with
larger q giving a (potentially) tighter relaxation. In our context, this amounts to optimizing
over matrix representations of Aq/d (we assume q is divisible by 2d); in the dual view, this
involves optimizing over pseudo-expectations for polynomials of degree up to q (as opposed
to degree d for the basic relaxation). The level-q relaxation can be solved in nO(q) time by
solving the associated semidefinite program. The SoS hierarchy thus presents a trade-off
between approximation guarantee and runtime, with larger levels giving more accurate
estimates at the expense of higher complexity.

This work is concerned with both positive and negative results on the efficacy of the SoS
hierarchy to approximately certify the maxima of random tensors. We now turn to stating
our results formally.

V. Bhattiprolu, V. Guruswami, and E. Lee 31:3

1.1 Our Results
For an order-q tensor A ∈ (IRn)⊗d, the polynomial A(x) and its maximum on the sphere
Amax are defined as

A(x) := 〈A, x⊗d〉 Amax := sup
‖x‖=1

A(x).

When the entries of A are i.i.d. Rademacher random variables (or i.i.d. Gaussians), it is
known that Amax .

√
n · d · log d (see [18]). We will also use, for a polynomial g, gmax to

denote sup‖x‖=1 g(x).

SoS degree = Polynomial Degree

We study the performance of degree-q SoS on random tensors of order-q. The formal definition
and basic properties of SoS relaxations are presented in Section 2.2.

I Theorem 1. For any even q ≤ n, let A ∈ (IRn)⊗q be a q-tensor with independent,
Rademacher entries. With high probability, the value B of the degree-q SoS relaxation of
Amax satisfies

2−O(q) ·
(
n

q

)q/4−1/2
≤ B

Amax
≤ 2O(q) ·

(
n

q

)q/4−1/2
.

This improves upon the O(nq/4) upper bound by Montanari and Richard [15].

SoS Degree � Polynomial Degree

I Theorem 2. Let A ∈ (IRn)⊗d be a d-tensor with independent, Rademacher entries. Then
for any even q satisfying d ≤ q ≤ n, with high probability, the degree-q SoS certifies an upper
bound B on Amax where w.h.p.,

B

Amax
≤

(
Õ(n)
q

)d/4−1/2

I Remark. Combining our upper bounds with the work of [12] would yield improved tensor-
PCA guarantees on higher levels of SoS.
I Remark. Raghavendra, Rao, and Schramm [16] have independently and concurrently
obtained similar (but weaker) results to Theorem 2 for random degree-d polynomials. Spe-
cifically, their upper bounds appear to require the assumption that the SoS level q must be
less than n1/(3d2) (our result only assumes q ≤ n). Further, they certify an upper bound that
matches Theorem 2 only when q ≤ 2

√
logn.

1.2 Related Work
Upper Bounds

Montanari and Richard [15] presented a nO(d)-time algorithm that can certify that the
optimal value of Amax for a random d-tensor is at most O(n

dd/2e
2) with high probability.

Hopkins, Shi, and Steurer [12] improved it to O(n d4) with the same running time. They also
asked how many levels of SoS are required to certify a bound of n3/4−δ for d = 3.

Our analysis asymptotically improves the aforementioned bound when q is growing with n,
and we prove an essentially matching lower bound (but only for the case q = d). Secondly, we

APPROX/RANDOM’17

31:4 Sum-of-Squares Certificates for Maxima of Random Tensors on the Sphere

consider the case when d is fixed, and give improved results for the performance of degree-q
SoS (for large q), thus answering in part, a question posed by Hopkins, Shi and Steurer [12].

Raghavendra, Rao, and Schramm [16] also prove results analogous to Theorem 2 for the
case of sparse random polynomials (a model we do not consider in this work, and which
appears to pose additional technical difficulties). This implied upper bounds for refuting
random instances of constraint satisfaction problems using higher levels of the SoS hierarchy,
which were shown to be tight via matching SoS lower bounds in [13].

Lower Bounds

While we only give lower bounds for the case of q = d, subsequent to our work, Hopkins et
al. [11] proved the following theorem, which gives lower bounds for the case of q � d:

I Theorem 3. Let f be a degree-d polynomial with i.i.d. gaussian coefficients. If there is
some constant ε > 0 such that q ≥ nε, then with high probability over f , the optimum of the
level-q SoS relaxation of fmax is at least

fmax · Ωd
(

(n/qO(1))d/4−1/2
)
.

Note that this almost matches our upper bounds from Theorem 2, modulo the exponent
of q. For this same reason, the above result does not completely recover our lower bound in
Theorem 1 for the special case of q = d.

Results for worst-case tensors

It is proved in [5] that the q-level SoS gives an (O(n)/q)d/2−1 approximation to ‖A‖2 in
the case of arbitrary d-tensors and an (O(n)/q)d/4−1/2 approximation to Amax in the case
of d-tensors with non-negative entries (for technical reasons one can only approximate
‖A‖2 = max{|Amax|, |Amin|} in the former case).

It is interesting to note that the approximation factor in the case of non-negative tensors
matches the approximation factor (upto polylogs) we achieve in the random case. Additionally,
the gap given by Theorem 1 for the case of random tensors provides the best degree-q SoS
gap for the problem of approximating the 2-norm of arbitrary q-tensors. Hardness results for
the arbitrary tensor 2-norm problem is an important pursuit due to its connection to various
problems for which subexponential algorithms are of interest.

1.3 Organization
We begin by setting some important notation concerning SoS matrices, and describe some
basic preliminaries about the SoS hierarchy in Section 2. We touch upon the main technical
ingredients driving our work, and give an overview of the proof of Theorem 2 and the lower
bound in Theorem 1 in Section 3. We present the proof of Theorem 2 for the case of even d
in Section 4, with the more tricky odd d case handled in the full version of our paper [6].
The lower bound on the value of SoS-hierarchy claimed in Theorem 1 is proved in Section 5,
and the upper bound in Theorem 1 also follows based on some techniques in that section.

2 Notation and Preliminaries

Multi-index and Multiset

A multi-index is defined as a sequence α ∈ Nn. We use |α| to denote
∑n
i=1 αi and Nnd (resp.

Nn≤d) to denote the set of all multi-indices α with |α| = d (resp. |α| ≤ d). We use 1 to denote

V. Bhattiprolu, V. Guruswami, and E. Lee 31:5

the multi-index 1n. Thus, a homogeneous polynomial f of degree d can be expressed in
terms of its coefficients as

f(x) =
∑
α∈Nn

d

fα · xα,

where xα is used to denote the monomial corresponding to α. In general, with the exception of
absolute-value, any scalar function/operation when applied to vectors/multi-indices, returns
the vector obtained by applying the function/operation entry-wise.

2.1 Matrices

For k ∈ N, we will consider [n]k × [n]k matrices M with real entries. All matrices considered
in this paper should be taken to be symmetric (unless otherwise stated). We index entries of
the matrix M as M [I, J] by tuples I, J ∈ [n]k. ⊕ denotes tuple-concatenation.

A tuple I = (i1, . . . , ik) naturally corresponds to a multi-index α(I) ∈ Nnk with |α(I)| = k,
i.e. α(I)j = |{` | i` = j}|. For a tuple I ∈ [n]k, we define O(I) the set of all tuples J
which correspond to the same multi-index i.e., α(I) = α(J). Thus, any multi-index α ∈ Nnk ,
corresponds to an equivalence class in [n]k. We also use O(α) to denote the class of all tuples
corresponding to α.

Note that a matrix of the form
(
x⊗k

)(
x⊗k

)T has many additional symmetries, which are
also present in solutions to programs given by the SoS hierarchy. To capture this, consider
the following definition:

I Definition 4 (SoS-Symmetry). A matrix M which satisfies M[I, J] = M[K,L] whenever
α(I) + α(J) = α(K) + α(L) is referred to as SoS-symmetric.

I Definition 5 (Matrix-Representation). For a homogeneous degree-t (t even) polynomial
g, we say a matrix Mg ∈ IR[n]t/2×[n]t/2

is a degree-t matrix representation of g if for all x,
g(x) = (x⊗t/2)T Mg x

⊗t/2. (We note here that every homogeneous polynomial has a unique
SoS-Symmetric matrix representation.)

Note that λmax(Mg) is an upper bound on gmax. This prompts the following relaxation of
gmax that is closely related to the final SoS relaxation used in our upper bounds:

I Definition 6. For a homogeneous degree-t (t even) polynomial g, define

Λ(g) := inf
{
λmax(Mg)

∣∣∣Mg represents g
}
.

As we will see shortly, Λ(g) is the dual of a natural SoS relaxation of gmax.

2.2 SoS Hierarchy

Let IR[x]≤q be the vector space of polynomials with real coefficients in variables x =
(x1, . . . , xn), of degree at most q. For an even integer q, the degree-q pseudo-expectation
operator is a linear operator Ẽ : IR[x]≤q 7→ IR such that
1. Ẽ [1] = 1 for the constant polynomial 1.
2. Ẽ [p1 + p2] = Ẽ [p1] + Ẽ [p2] for any polynomials p1, p2 ∈ IR[x]≤q.
3. Ẽ

[
p2] ≥ 0 for any polynomial p ∈ IR[x]≤q/2.

APPROX/RANDOM’17

31:6 Sum-of-Squares Certificates for Maxima of Random Tensors on the Sphere

The pseudo-expectation operator Ẽ can be completely described by the moment matrix
(while x is a column vector, we abuse notation and let (1, x) denote the column vector
(1, x1, . . . , xn)T)

X := Ẽ
[
(1, x)⊗q/2 ((1, x)⊗q/2)T

]
. (2.1)

Moreover, the condition Ẽ
[
p2] ≥ 0 for all p ∈ IR[x]≤q/2 can be shown to be equivalent to

X � 0.

Constrained Pseudoexpectations

For a system of polynomial constraints

C = {f1 = 0, . . . , fm = 0, g1 ≥ 0, . . . , gr ≥ 0} ,

we say ẼC is a pseudoexpectation operator respecting C, if in addition to the above conditions,
it also satisfies
1. ẼC [p · fi] = 0, ∀i ∈ [m] and ∀p such that deg(p · fi) ≤ q.
2. ẼC

[
p2 ·

∏
i∈S gi

]
≥ 0, ∀S ⊆ [r] and ∀p such that deg(p2 ·

∏
i∈S gi) ≤ q.

It is well-known that such constrained pseudoexpectation operators can be described as
solutions to semidefinite programs of size nO(q) [4, 14]. This hierarchy of semidefinite
programs for increasing q is known as the SoS hierarchy.

Additional Facts about SoS

We shall record here some well-known facts about SoS that come in handy later.

I Claim 7. For polynomials p1, p2, let p1 � p2 denote that p1 − p2 is a sum of squares. It
is easy to verify that if p1, p2 are homogeneous degree d polynomials and there exist matrix
representations Mp1 and Mp2 of p1 and p2 respectively, such that Mp1 −Mp2 � 0, then
p1 − p2 � 0.

I Claim 8 (Pseudo-Cauchy-Schwarz [2]). Ẽ [p1p2] ≤ (Ẽ
[
p2

1
]

Ẽ
[
p2

2
]
)1/2 for any p1, p2 of degree

at most q/2.

SoS Relaxations for Amax

Given an order-q tensor A, our degree-q SoS relaxation for Amax which we will henceforth
denote by SoSq(A(x)) is given by,

maximize ẼC [A(x)]

subject to : ẼC is a degree-q
pseudoexpectation

ẼC respects C ≡ {‖x‖q2 = 1}

Assuming q is divisible by 2d, we make an observation that is useful in our upper bounds:

Amax ≤ SoSq(A(x)) ≤ SoSq
(
A(x) q/d

)d/q
= Λ

(
A(x) q/d

)d/q
(2.2)

where the second inequality follows from Pseudo-Cauchy-Scwarz, and the equality follows
from well known strong duality of the following programs (specifically, take g(x) := A(x) q/d):1

1 Compared to (2.1), the primal formulation here uses a homogeneous moment matrix or pseudo-
expectation operator, defined for polynomials of degree exactly q.

V. Bhattiprolu, V. Guruswami, and E. Lee 31:7

Dual

Λ(g) := inf
{
λmax(Mg)

∣∣∣Mg represents g
}

Primal I

maximize 〈Mg,X〉
subject to : Tr(X) = 1

X is SoS symmetric
X � 0

Primal II

maximize ẼC [g]

subject to : ẼC is a degree-q
pseudoexpectation

ẼC respects C ≡
{
‖x‖q

2 = 1
}

Figure 2.1 Duals of Λ(g) for the degree-q homogeneous polynomial g.

Note

In the rest of the paper, we will drop the subscript C of the pseudo-expectation operator
since throughout this work, we only assume the hypersphere constraint.

3 Overview of our Methods

We now give a high level view of the two broad techniques driving this work, followed by a
more detailed overview of the proofs.

Higher Order Mass-Shifting

Our approach to upper bounds on a random low degree (say d) polynomial f , is through
exhibiting a matrix representation of fq/d that has small operator norm. Such approaches
had been used previously for low-degree SoS upper bounds. However when the SoS degree
is constant, the set of SoS symmetric positions is also a constant and the usual approach
is to shift all the mass towards the diagonal which is of little consequence when the SoS-
degree is low. In contrast, when the SoS-degree is large, many non-trivial issues arise when
shifting mass across SoS-symmetric positions, as there are many permutations with very
large operator norm. In our setting, mass-shifting approaches like symmetrizing and diagonal-
shifting fail quite spectacularly to provide good upper bounds. For our upper bounds, we
crucially exploit the existence of "good permutations", and moreover that there are qq · 2−O(q)

such good permutations. On averaging the representations corresponding to these good
permutations, we obtain a matrix that admits similar spectral preperties to those of a matrix
with i.i.d. entries, and with much lower variance (in most of the entries) compared to the
naive representations.

Square Moments of Wigner Semicircle Distribution

Often when one is giving SoS lower bounds, one has a linear functional that is not necessarily
PSD and a natural approach is to fix it by adding a pseudo-expectation operator with large
value on square polynomials (under some normalization). Finding such operators however,
is quite a non-trivial task when the SoS-degree is growing. We show that if x1, . . . , xn are
independently drawn from the Wigner semicircle distribution, then for any polynomial p

APPROX/RANDOM’17

31:8 Sum-of-Squares Certificates for Maxima of Random Tensors on the Sphere

of any degree, E
[
p2] is large (with respect to the degree and coefficients of p). Our proof

crucially relies on knowledge of the Cholesky decomposition of the moment matrix of the
univariate Wigner distribution. This tool was useful to us in giving tight q-tensor lower
bounds, and we believe it to be generally useful for high degree SoS lower bounds.

3.1 Overview of Upper Bound Proofs

For even d, let A ∈ IR[n]d be a d-tensor with i.i.d. ±1 entries and let A ∈ IR[n]d/2×[n]d/2
be the

matrix flattening of A, i.e., A[I, J] = A[I ⊕ J] (recall that ⊕ denotes tuple concatenation).
Also let f(x) := A(x) = 〈A, x⊗d〉. It is well known that fmax ≤ O(

√
n · d · log d) with high

probability [18]. For such a polynomial f and any q divisible by d, in order to establish
Theorem 2, by Eq. (2.2) it is sufficient to prove that with high probability,(

Λ
(
fq/d

))d/q
≤ Õ

(
n

q1−2/d

)d/4
= Õ

(
n

q

)d/4−1/2
· fmax.

We give an overview of the proof. Let d = 4 for the sake of clarity of exposition. To prove
an upper bound on Λ

(
fq/4

)
using degree-q SoS (assume q is a multiple of 4), we define a

suitable matrix representation M := Mfq/4 ∈ R[n]q/2×[n]q/2 of fq/4 and bound ‖M‖2. Since
Λ(f) ≤ (‖M‖2)q/4 for any representation M , a good upper bound on ‖M‖2 certifies that
Λ(f) is small.

One of the intuitive reasons taking a high power gives a better bound on the spectral
norm is that this creates more entries of the matrix that correspond to the same monomial,
and distributing the coefficient of this monomial equally among the corresponding entries
reduces variance (i.e., Var [X] is less than k ·Var [X/k] for k > 1). In this regard, the most
natural representation M of fq/4 is the complete symmetrization.

Mc[(i1, . . . , iq/2), (iq/2+1, . . . , iq)]

= 1
q! ·

∑
π∈Sq

A⊗q/4[(iπ(1), . . . , iπ(q/2)), (iπ(q/2+1), . . . , iπ(q))]

= 1
q! ·

∑
π∈Sq

q/4∏
j=1

A[(iπ(2j−1), iπ(2j)), (iπ(q/2+2j−1), iπ(q/2+2j))].

However, ‖Mc‖2 turns out to be much larger than Λ(f), even when q = 8. One intuitive
explanation is that Mc, as a n4 × n4 matrix, contains a copy of Vec(A) Vec(A)T , where
Vec(A) ∈ R[n]4 is the vector with Vec(A) [i1, i2, i3, i4] = A[(i1, i2), (i3, i4)]. Then Vec(A)
is a vector that witnesses ‖Mc‖2 ≥ Ω(n2), regardless of the randomness of f . Our final
representation2 is the following row-column independent symmetrization that simultaneously
respects the spectral structure of a random matrix A and reduces the variance. Our M is
given by

M [(i1, . . . , iq/2), (j1, . . . , jq/2)]

= 1
(q/2)!2 ·

∑
π,σ∈Sq/2

A⊗q/4[(iπ(1), . . . , iπ(q/2)), (jσ(1), . . . , jσ(q/2))]

= 1
(q/2)!2 ·

∑
π,σ∈Sq/2

q/4∏
k=1

A[(iπ(2k−1), iπ(2k)), (jσ(2k−1), jσ(2k))].

2 The independent and concurrent work of [16] uses the same representation.

V. Bhattiprolu, V. Guruswami, and E. Lee 31:9

To formally show ‖M‖2 = Õ(n/√q)q/4 with high probability, we use the trace method to
show

E [Tr(Mp)] ≤ 2O(pq log p)n
pq/4+q/2

qpq/8
,

where E [Tr(Mp)] can be written as (let Ip+1 := I1)

E

 ∑
I1,...,Ip∈[n]q/2

p∏
j=1

M [Ij , Ij+1]

=

∑
I1,...,Ip

E

 p∏
j=1

(
∑

πj ,σj∈Sq/2

q/4∏
k=1

A[(Ikπj(2k−1), I
k
πj(2k)), (I

k+1
σj(2k−1), I

k+1
σj(2k))])

.
Let E(I1, . . . , Ip) be the expectation value for I1, . . . , Ip in the right hand side. We study
E(I1, . . . , Ip) for each I1, . . . , Ip by careful counting of the number of permutations on a
given sequence with possibly repeated entries. For any I1, . . . , Ip ∈ [n]q/2, let #

(
I1, . . . , Ip

)
denote the number of distinct elements of [n] that occur in I1, . . . , Ip, and for each s =
1, . . . ,#

(
I1, . . . , Ip

)
, let cs ∈ ({0}∪ [q/2])p denote the number of times that the jth smallest

element occurs in I1, . . . , Ip. When E(I1, . . . , Ip) 6= 0, it means that for some permutations
{πj , σj}j , every term A[·, ·] must appear even number of times. This implies that the number
of distinct elements in I1, . . . , Ip is at most half the maximal possible number pq/2. This
lemma proves the intuition via graph theoretic arguments.

I Lemma 9. If E(I1, . . . , Ip) 6= 0, #
(
I1, . . . , Ip

)
≤ pq

4 + q
2 .

The number of I1, . . . , Ip that corresponds to a sequence c1, . . . , cs is at most n
s

s! ·
((q/2)!)p∏
`∈[p]

c1
`
!·cp
`
!
.

Furthermore, there are at most 2O(pq)ppq/2 different choices of c1, . . . , cs that corresponds to
some I1, . . . , Ip. The following technical lemma bounds E(I1, . . . , Ip) by careful counting
arguments.

I Lemma 10. For any I1, . . . , Ip, E(I1, . . . , Ip) ≤ 2O(pq) p5pq/8

q3pq/8

∏
`∈[p] c

1
` ! . . . cs` !.

Summing over all s and multiplying all possibilities,

E [Tr(Mp)] ≤
pq/4+q/2∑
s=1

(
2O(pq)ppq/2

)
·
(
ns

s! · ((q/2)!)p
)
·
(

2O(pq) p
5pq/8

q3pq/8

)
= max

1≤s≤pq/4+q/2
2O(pq log p) · ns · q

pq/8

s! .

When q ≤ n, the maximum occurs when s = pq/4+q/2, so E [Tr(Mp)] ≤ 2O(pq log p) · n
pq/4+q/2

qpq/8

as desired.

3.2 Overview of Lower Bound Proofs
Let A, A, f be as in Section 3.1. To prove the lower bound in Theorem 1, we construct a
moment matrix M that is positive semidefinite, SoS-symmetric, Tr(M) = 1, and 〈A,M〉 ≥
2−O(d) · n

d/4

dd/4 . At a high level, our construction is M := c1A + c2W for some c1, c2, where
A contains entries of A only corresponding to the multilinear indices, averaged over all
SoS-symmetric positions. This gives a large inner product with A, SoS-symmetry, and nice

APPROX/RANDOM’17

31:10 Sum-of-Squares Certificates for Maxima of Random Tensors on the Sphere

spectral properties even though it is not positive semidefinite. The most natural way to make
it positive semidefinite is adding a copy of the identity matrix, but this will again break the
SoS-symmetry.

Our main technical contribution here is the construction of W that acts like a SoS-
symmetrized identity. It has the minimum eigenvalue at least 1

2 , while the trace being
nd/2 · 2O(d), so the ratio of the average eigenvalue to the minimum eigenvalue is bounded
above by 2O(d), which allows us to prove a tight lower bound. To the best of our knowledge,
no such bound was known for SoS-symmetric matrices except small values of d = 3, 4.

Given I, J ∈ [n]d/2, we let W[I, J] := E[xα(I)+α(J)], where x1, . . . , xn are independently
sampled from the Wigner semicircle distribution, whose probability density function is the
semicircle f(x) = 2

π

√
1− x2. Since E[x`1] = 0 if ` is odd and E[x2`

1] = 1
`+1
(2`
`

)
, which is the

`th Catalan number, each entry of W is bounded by 2O(d) and Tr(W) ≤ nd/2 ·2O(d). To prove
a lower bound on the minimum eigenvalue, we show that for any degree-` polynomial p with
m variables, E[p(x1, . . . , xm)2] is large by induction on ` and m. We use another property
of the Wigner semicircle distribution that if H ∈ R(d+1)×(d+1) is the univariate moment
matrix of x1 defined by H[i, j] = E[xi+j1] (0 ≤ i, j ≤ d) and H = (RT)R is the Cholesky
decomposition of H, R is an upper triangular matrix with 1’s on the main diagonal. This
nice Cholesky decomposition allows us to perform the induction on the number of variables
while the guarantee on the minimum eigenvalue is independent of n.

4 Upper bounds for even degree tensors

For even d, let A ∈ IR[n]d be a d-tensor with i.i.d. ±1 entries and let A ∈ IR[n]d/2×[n]d/2
be the

matrix flattening of A, i.e., A[I, J] = A[I ⊕ J] (recall that ⊕ denotes tuple concatenation).
Also let f(x) := A(x) = 〈A, x⊗d〉. With high probability fmax = O(

√
n · d · log d). In this

section, we prove that for every q divisible by d, with high probability,

(
Λ
(
fq/d

))d/q
≤ Õ

(
n

q1−2/d

)d/4
= Õ

(
n

q

)d/4−1/2
· fmax.

To prove it, we use the following matrix representation M of fq/d, and show that ‖M‖2 ≤

Õd

((
n log5 n
q1−2/d

)q/4)
. Given a tuple I = (i1, . . . , iq), and an integer d that divides q and

1 ≤ ` ≤ q/d, let I`;d be the d-tuple (Id(`−1)+1, . . . , Id`) (i.e., if we divide I into q/d tuples
of length d, I`;d be the `-th tuple). Furthermore, given a tuple I = (i1, . . . , iq) ∈ [n]q and
a permutation π ∈ [n]q, let π(I) be another q-tuple whose `th coordinate is π(i`). For
I, J ∈ [n]q/2, M [I, J] is formally given by

M [I, J] = 1
q! ·

∑
π,σ∈Sq/2

A⊗q/d[π(I), σ(J)]

= 1
q! ·

∑
π,σ∈Sq/2

q/d∏
`=1

A[(π(I))`;d/2, (σ(J))`;d/2].

We perform the trace method to bound ‖M‖2. Let p be an even integer, that will be
eventually taken as Θ(logn). Tr(M) can be written as (let Ip+1 := I1)

E

 ∑
I1,...,Ip∈[n]q/2

p∏
`=1

M [I`, I`+1]

V. Bhattiprolu, V. Guruswami, and E. Lee 31:11

=
∑

I1,...,Ip

E

 p∏
`=1

(
∑

πj ,σj∈Sq/2

q/d∏
m=1

A[(π(I`))m;d/2, (σ(I`+1))m;d/2)])

.
Let E(I1, . . . , Ip) := E

[∏p
`=1M [I`, I`+1]

]
, which is the expected value in the right hand

side. To analyze E(I1, . . . , Ip), we first introduce notions to classify I1, . . . , Ip depending
on their intersection patterns. For any I1, . . . , Ip ∈ [n]q/2, let ek denote the k-th smallest
element in

⋃̀
, j

{i`j}. For any c1, . . . , cs ∈ [q/2]p, let

C(c1 . . . cs) :={
(I1, . . . , Ip)

∣∣∣# (I1, . . . , Ip
)

= s, ∀k ∈ [s], ` ∈ [p], ek appears ck` times in I`
}
.

The following two observations on c1, . . . , cs can be easily proved.

I Observation 11. If C(c1, . . . , cs) 6= φ,∣∣C(c1, . . . , cs)∣∣ ≤ ns

s! ×
((q/2)!)p∏

`∈[p]
c1` ! . . . cs` !

.

Moreover,∣∣∣{(c1, . . . , cs) ∈ ([q/2]p)s
∣∣∣ C(c1, . . . , cs) 6= φ

}∣∣∣ ≤ 2O(pq)p pq/2.

The following lemma bounds E(I1, . . . , Ip) in terms of the corresponding c1, . . . , cs.

I Lemma 12. Consider any c1, . . . , cs ∈ [q/2]p and (I1, . . . , Ip) ∈ C(c1, . . . , cs). We have

E(I1, . . . , Ip) ≤ 2O(pq) p
1/2+1/2d

q1/2−1/2d

∏
`∈[p]

c1` ! . . . cs` !

Proof. Consider any c1, . . . , cs ∈ [q/2]p and (I1, . . . , Ip) ∈ C(c1, . . . , cs). We have

E(I1, . . . , Ip)

= E

[
p∏
`=1

M [I`, I`+1]
]

=
∑

πj ,σj∈Sq/2

E

 p∏
`=1

q/d∏
m=1

A[(π(I`))m;d/2, (π(I`+1))m;d/2]

=
(∏

`

∏
s(cs` !)2

((q/2)!)2p

)
·

∑
(J`,K`∈O(I`))`∈[p]

E

 p∏
`=1

q/d∏
m=1

A[J`m;d/2,K
`+1
m;d/2]

 (4.1)

Thus, E(I1, . . . , Ip) is bounded by the number of choices for J1, . . . , Jp,K1, . . . ,Kp such
that J`,K` ∈ O

(
I`
)
for each ` ∈ [p], and E

[∏p
`=1
∏q/d
m=1A[J`m;d/2,K

`+1
m;d/2]

]
is nonzero.

Given J1, . . . , Jp and K1, . . . ,Kp, consider the (pq/d)-tuple T where each coordinate is
indexed by (`,m)`∈[p],m∈[q/d] and has a d-tuple T`,m := (J`m;d/2)⊕ (K`+1

m;d/2) ∈ Rd as a value.
Note that

∑
`,m α(T`,m)) = (2o1, . . . , 2on) where or is the number of occurences of r ∈ [n] in

(pq/2)-tuple ⊕p`=1I
`. The fact that E

[∏p
`=1
∏q/d
m=1A[jm;d/2, km;d/2]

]
6= 0 means that every

d-tuple occurs even number of times in T .

APPROX/RANDOM’17

31:12 Sum-of-Squares Certificates for Maxima of Random Tensors on the Sphere

We count the number of (pq/d)-tuples T = (T`,m)`∈[p],m∈[q] that
∑
`,m α(T`,m) =

(2o1, . . . , 2on) and every d-tuple occurs an even number of times. Let Q = (Q1, . . . , Qpq/2d),
R = (R1, . . . , Rpq/2d) be two (pq/2d)-tuples of d-tuples where for every d-tuple P , the number
of occurences of P is the same in Q and R, and

∑pq/2d
`=1 α(Q`) =

∑pq/2d
`=1 α(R`) = (o1, . . . , on).

At most 2pq/d tuples T can be made by interleaving Q and R – for each (`,m), choose T`,m
from the first unused d-tuple in either Q or R. Furthermore, every tuple T that meets our
condition can be constructed in this way.

Due to the condition
∑pq/2d
`=1 α(Q`) = (o1, . . . , on), the number of choices for Q is at most

the number of different ways to permute I1⊕ · · ·⊕ Ip, which is at most (pq/2)!/
∏
m∈[s](c̄m)!,

where c̄m :=
∑
`∈[p] c

m
` for m ∈ [s]. For a fixed choice of Q, there are at most (pq/2d)! choices

of R. Therefore, the number of choices for (J`,K` ∈ O
(
I`
)
)`∈[p] with nonzero expected value

is at most

2pq/d · (pq/2)!∏
m∈[s](c̄m)! · (pq/2d)! = 2O(pq) · (pq)1/2+1/2d∏

m∈[s](c̄m)! .

Combining with Eq. (4.1),

E(I1, . . . , Ip) ≤
(

2O(pq) (pq)1/2+1/2d∏
m∈[s](c̄m)!

)
·
(∏

`

∏
s(cs` !)2

((q/2)!)2p

)
≤ 2O(pq) · p

1/2+1/2d

q1/2−1/2d ·
∏
`

∏
s

cs` !

as desired. J

I Lemma 13. For all I1, . . . , Ip ∈ [n]q/2, if E(I1, . . . , Ip) 6= 0, #
(
I1, . . . , Ip

)
≤ pq

4 + q
2 .

Proof. Note that E(I1, . . . , Ip) 6= 0 implies that there exist J1, . . . , Jp,K1, . . . ,Kp such
that J`,K` ∈ O

(
I`
)
and every d-tuple occurs exactly even number of times in ((J`m;d/2)⊕

(K`+1
m;d/2))`∈[p],m∈[q/d]. Consider the graph G = (V,E) defined by

V :=
⋃
`∈[p]

⋃
k∈[q/2]

{
I`k
}

E :=
⋃

m∈[q/2]

{{
J1
m,K

2
m

}
,
{
J2
m,K

3
m

}
, . . . ,

{
Jpm,K

1
m

}}
.

The even multiplicity condition implies that every element in E has even multiplicity and
consequently |E| ≤ pq/4. We next show that E is the union of q/2 paths. To this end, we
construct G1 ∈ O

(
I1), . . . , G` ∈ O

(
I`
)
as follows:

1. Let G2 := K2

2. For 3 ≤ ` ≤ p do:
a. Since G` ∈ O

(
J`
)
, there exists π ∈ Sq/2 s.t. π(J`) = G`.

b. Let G`+1 := π(K`+1).
We observe that by construction,⋃

m∈[q/2]

{{
J1
m, G

2
m

}
,
{
G2
m, G

3
m

}
, . . . ,

{
Gpm, G

1
m

}}
=

⋃
m∈[q/2]

{{
J1
m,K

2
m

}
,
{
J2
m,K

3
m

}
, . . . ,

{
Jpm,K

1
m

}}
= E

which establishes that E is a union of q/2 paths.
Now since E is the union of q/2 paths G has at most q/2 connected components, and one

needs to add at most q/2− 1 edges make it connected, we have |V | ≤ |E|+ (q/2− 1) + 1 ≤
pq/4 + q/2. But #

(
I1, . . . , Ip

)
= |V |, which completes the proof. J

V. Bhattiprolu, V. Guruswami, and E. Lee 31:13

Finally, E [Tr(Mp)] can be bounded as follows.

E [Tr(Mp)]

=
∑

I1,...,Ip∈[n]q/2

E(I1, . . . , Ip)

=
∑

s∈[pq/4+q/2]

∑
(I1,...,Ip)=s

E(I1, . . . , Ip) (by Lemma 13)

=
∑

s∈[pq/4+q/2]

∑
c1,...,cs∈[q/2]p

∑
(I1,...,Ip)∈C(c1...cs)

E(I1, . . . , Ip)

=
∑

s∈[pq/4+q/2]

∑
c1,...,cs∈[q/2]p

∑
(I1,...,Ip)∈C(c1...cs)

E(I1, . . . , Ip)

≤
∑

s∈[pq/4+q/2]

∑
c1,...,cs∈[q/2]p∑

(I1,...,Ip)∈C(c1...cs)

2O(pq) p
(1/2+1/2d)pq

q(1/2−1/2d)pq

∏
`∈[p]

c1` ! . . . cs` ! (by Lemma 12)

≤
∑

s∈[pq/4+q/2]

2O(pq) n
s

s! p
(1+1/2d)pqqpq/2d (by Observation 11)

≤
∑

s∈[pq/4+q/2]

2O(pq) npq/4+q/2

s! qpq/4+q/2−s p
(1/2+1/2d)p1q(1/2−1/2d)pq (assuming q ≤ n)

≤
∑

s∈[pq/4+q/2]

2O(pq) n
pq/4+q/2 p(1+1/2d)pq

q(1/4−1/2d)pq

≤ 2O(pq) n
pq/4+q/2 p(1+1/2d)pq

q(1/4−1/2d)pq .

Choose p to be even and let p = Θ(logn). Applying Markov inequality shows that with high
probability,(

Λ
(
fq/d

))d/q
≤ (‖M‖2)d/q ≤ (E [Tr(Mp)])d/pq = Od

(
nd/4 · (logn) d+1/2

q d/4−1/2

)
.

Thus we obtain

I Theorem 14. For even d, let A ∈ IR[n]d be a d-tensor with i.i.d. ±1 entries. Then for
any even q such that q ≤ n, we have that with probability 1− nΩ(1),

SoSq(A(x))
Amax

≤

(
Õ(n)
q

)d/4−1/2

.

5 Proof of SoS Lower Bound in Theorem 1

For even q, let A ∈ IR[n]q be a q-tensor with i.i.d. ±1 entries and let A ∈ IR[n]q/2×[n]q/2
be the

matrix flattening of A, i.e., A[I, J] = A[I ⊕ J] (recall that ⊕ denotes tuple concatenation).
Also let f(x) := A(x) = 〈A, x⊗q〉. This section proves the lower bound in Theorem 1, by
constructing a moment matrix M that is positive semidefinite, SoS-symmetric, Tr(M) = 1,
and 〈A,M〉 ≥ 2−O(q) · n

q/4

qq/4 . In Section 5.1, we construct the matrix Ŵ that acts as a
SoS-symmetrized identity matrix. The moment matrix M is presented in Section A.

APPROX/RANDOM’17

31:14 Sum-of-Squares Certificates for Maxima of Random Tensors on the Sphere

5.1 Wigner Moment Matrix
In this section, we construct an SoS-symmetric and positive semidefinite matrix Ŵ ∈
IRNnq/2×N

n
q/2 such that λmin(Ŵ)/Tr

(
Ŵ
)
≥ 1/(2q+1 · |Nnq/2|), i.e. the ratio of the minimum

eigenvalue to the average eigenvalue is at least 1/2q+1.

I Theorem 15. For any positive integer n and any positive even integer q, there exists a
matrix Ŵ ⊆ IRNnq/2×N

n
q/2 that satisfies the following three properties: (1) Ŵ is degree-q SoS

symmetric. (2) The minimum eigenvalue of Ŵ is at least 1
2 . (3) Each entry of Ŵ is in [0, 2q].

Theorem 15 is proved by explicitly constructing independent random variables x1, . . . , xn
such that for any n-variate polynomial p(x1, . . . , xn) of degree at most q

2 , E[p2] is bounded
away from 0. The proof consists of three parts. The first part shows the existence of a
desired distribution for one variable xi. The second part uses induction to prove that E[p2]
is bounded away from 0. The third part constructs Ŵ ⊆ IRNnq/2×N

n
q/2 from the distribution

defined.

Wigner Semicircle Distribution and Hankel Matrix

Let k be a positive integer. In this part, the rows and columns of all (k+ 1)× (k+ 1) matrices
are indexed by {0, 1, . . . , k}. Let T be a (k+ 1)× (k+ 1) matrix where T [i, j] = 1 if |i− j| = 1
and T [i, j] = 0 otherwise. Let e0 ∈ IRk+1 be such that (e0)0 = 1 and (e0)i = 0 for 1 ≤ i ≤ k.
Let R ∈ IR(k+1)×(k+1) be defined by R := [e0, T e0, T

2e0, . . . , T
ke0]. Let R0, . . . , Rk be the

columns or R so that Ri = T ie0. It turns out that R is closely related to the number of ways
to consistently put parantheses. Given a string of parantheses ‘(’ or ‘)’, we call it consistent
if any prefix has at least as many ‘(’ as ‘)’. For example, ((())(is consistent, but ())((is not.

I Claim 16. R[i, j] is the number of ways to place j parantheses ‘(’ or ‘)’ consistently so
that there are i more ‘(’ than ‘)’.

Proof. We proceed by the induction on j. When j = 0, R[0, 0] = 1 and R[i, 0] = 0 for all
i ≥ 1. Assume the claim holds up to j − 1. By the definition Rj = TRj−1.

For i = 0, the last parenthesis must be the close parenthesis, so the definition R[0, j] =
R[1, j − 1] still measures the number of ways to place j parantheses with equal number
of ‘(’ and ‘)’.
For i = k, the last parenthesis must be the open parenthesis, so the definition R[k, j] =
R[k − 1, j − 1] still measures the number of ways to place j parantheses with k more ‘(’.
For 0 < i < k, the definition of R gives R[i, j] = R[i− 1, j − 1] + R[i+ 1, j − 1]. Since
R[i − 1, j] corresponds to plaincg ‘)’ in the jth position and R[i + 1, j] corresponds to
placing ‘(’ in the jth position, R[i, j] still measures the desired quantity.

This completes the induction and proves the claim. J

Easy consequences of the above claim are (1) R[i, i] = 1 for all 0 ≤ i ≤ k, and R[i, j] = 0
for i > j, and (2) R[i, j] = 0 if i+ j is odd, and R[i, j] ≥ 1 if i ≤ j and i+ j is even.

Let H := (RT)R. Since R is upper triangular with 1’s on the main diagonal, H = (RT)R
gives the unique Cholesky decomposition, so H is positive definite. It is easy to see that
H[i, j] = 〈Ri, Rj〉 is the total number of ways to place i+ j parantheses consistently with
the same number of ‘(’ and ‘)’. Therefore, H[i, j] = 0 if i+ j is odd, and if i+ j is even (let
l := i+j

2), H[i, j] is the lth Catalan number Cl := 1
l+1
(2l
l

)
. In particular, H[i, j] = H[i′, j′]

for all i+ j = i′ + j′. Such H is called a Hankel matrix.
Given a sequence of m0 = 1,m1,m2, . . . of real numbers, the Hamburger moment problem

asks whether there exists a random variable W supported on IR such that E[W i] = mi. It

V. Bhattiprolu, V. Guruswami, and E. Lee 31:15

is well-known that there exists a unique such W if for all k ∈ N, the Hankel matrix H ∈
IR(k+1)×(k+1) defined by H[i, j] := E[W i+j] is positive definite [17]. Since our construction
of H ∈ IR(k+1)×(k+1) ensures its positive definiteness for any k ∈ N, there exists a unique
random variable W such that E[W i] = 0 if i is odd, E[W i] = C i

2
if i is even. It is known as

the Wigner semicircle distribution with radius R = 2.
I Remark. Some other distributions (e.g., Gaussian) will give an asymptotically weaker
bound. Let G be a standard Gaussian random variable. The quantitative difference comes
from the fact that E[W 2l] = Cl = 1

l+1
(2l
l

)
≤ 2l while E[G2l] = (2l − 1)!! ≥ 2Ω(l log l).

Multivariate Distribution

Fix n and q. Let k = q
2 . Let H ∈ IR(k+1)×(k+1) be the Hankel matrix defined as above,

and W be a random variable sampled from the Wigner semicircle distribution. Consider
x1, . . . , xn where each xi is an independent copy of W

N for some large number N to be
determined later. Our Ŵ is later defined to be Ŵ[α, β] = E[xα+β] ·Nq so that the effect of
the normalization by N is eventually cancelled, but large N is needed to prove the induction
that involves non-homogeneous polynomials.

We study E[p(x)2] for any n-variate (possibly non-homogeneous) polynomial p of degree
at most k. For a multivarite polynomial p =

∑
α∈Nn≤k

pαx
α, define `2 norm of p to be

‖p‖`2
:=
√∑

α p
2
α. For 0 ≤ m ≤ n and 0 ≤ l ≤ k, let σ(m, l) := infp E[p(x)2] where the

infimum is taken over polynomials p such that ‖p‖`2
= 1, deg(p) ≤ l, and p depends only on

x1, . . . , xm.

I Lemma 17. There exists N := N(n, k) such that σ(m, l) ≥ (1− m
2n)

N2l for all 0 ≤ m ≤ n and
0 ≤ l ≤ k.

Proof. We prove the lemma by induction on m and l. When m = 0 or l = 0, p becomes the
constant polynomial 1 or −1, so E[p2] = 1.

Fix m, l > 0 and a polynomial p = p(x1, . . . , xm) of degree at most l. Decompose
p =

∑l
i=0 pix

i
m where each pi does not depend on xm. The degree of pi is at most l − i.

E[p2] = E[(
l∑
i=0

pix
i
m)2] =

∑
0≤i,j≤l

E[pipj] E[xi+jm].

Let Σ = diag(1, 1
N , . . . ,

1
N l

) ∈ IR(l+1)×(l+1). Let Hl ∈ IR(l+1)×(l+1) be the submatrix of
H with the first l + 1 rows and columns. The rows and columns of (l + 1)× (l + 1) matrices
are still indexed by {0, . . . , l}. Define Rl ∈ IR(l+1)×(l+1) similarly from R, and rt (0 ≤ t ≤ l)
be the tth column of (Rl)T . Note Hl = (Rl)TRl =

∑l
t=0 rtr

T
t . Let H ′ = ΣHlΣ such that

H ′[i, j] = E[xi+jm]. Finally, let P ∈ IR(l+1)×(l+1) be defined such that P [i, j] := E[pipj]. Then
E[p2] is equal to

Tr(PH ′) = Tr(PΣHlΣ) = Tr
(
PΣ(

l∑
t=0

rtr
T
t)Σ

)

=
l∑
t=0

E[(pt
1
N t

+ pt+1
(rt)t+1

N t+1 + · · ·+ pl
(rt)l
N l

)2],

where the last step follows from the fact that (rt)j = 0 if j < t and (rt)t = 1. Consider the
polynomial

qt := pt
1
N t

+ pt+1
(rt)t+1

N t+1 + · · ·+ pl
(rt)l
N l

.

APPROX/RANDOM’17

31:16 Sum-of-Squares Certificates for Maxima of Random Tensors on the Sphere

Since pi is of degree at most l− i, qt is of degree at most l− t. Also recall that each entry of
R is bounded by 2k. By the triangle inequality,

‖qt‖`2
≥ 1
N t

(
‖pt‖`2

−
(
‖pt+1‖`2

(rt)t+1

N
+ · · ·+ ‖pl‖`2

(rt)l
N l−t

))
≥ 1
N t

(
‖pt‖`2

− k2k

N

)
,

and

‖qt‖2`2
≥ 1
N2t

(
‖pt‖2`2

− 2k2k

N

)
.

Finally,

E[p2] =
l∑
t=0

E[q2
t]

≥
l∑
t=0

σ(m− 1, l − t) · ‖qt‖2`2

≥
l∑
t=0

σ(m− 1, l − t) · 1
N2t

(
‖pt‖2`2

− 2k2k

N

)

≥
l∑
t=0

(1− m−1
2n)

N2l−2t · 1
N2t ·

(
‖pt‖2`2

− 2k2k

N

)

=
(1− m−1

2n)
N2l ·

l∑
t=0

(
‖pt‖2`2

− 2k2k

N

)
≥

(1− m−1
2n)

N2l ·
(
1− 2K22k

N

)
.

Take N := 4nK22k so that
(
1 − m−1

2n
)
·
(
1 − 2K22k

N

)
≥ 1 − m−1

2n −
2K22k
N = 1 − m

2n . This
completes the induction and proves the lemma. J

Construction of Ŵ

We now prove Theorem 15. Given n and q, let k = q
2 , and consider random variables

x1, . . . , xn above. Let Ŵ ∈ IRNnk×N
n
k be such that for any α, β ∈ Nnk , Ŵ[α, β] = E[xα+β] ·N2k.

By definition, Ŵ is degree-q SoS symmetric. Since each entry of Ŵ corresponds to a
monomial of degree exactly q and each xi is drawn independently from the Wigner semicircle
distribution, each entry of Ŵ is at most the q

2 th Catalan number C q
2
≤ 2q. For any unit vector

p = (pS)S∈Nn
k
∈ IRNnk , Lemma 17 shows pT Ŵp = E[p2] ·N2k ≥ 1

2 where p also represents a
degree-k homogeneous polynomial p(x1, . . . , xn) =

∑
α∈([n]

k) pαx
α. Therefore, the minimum

eigenvalue of Ŵ is at least 1
2 .

Due to space constraints, we defer the final construction of the moment matrix to the
appendix (see Section A).

References
1 Boaz Barak, Fernando G. S. L. Brandao, AramW. Harrow, Jonathan Kelner, David Steurer,

and Yuan Zhou. Hypercontractivity, sum-of-squares proofs, and their applications. In
Proceedings of the forty-fourth annual ACM symposium on Theory of computing, pages
307–326. ACM, 2012.

2 Boaz Barak, Jonathan A. Kelner, and David Steurer. Rounding sum-of-squares relaxations.
In Proceedings of the 46th Annual ACM Symposium on Theory of Computing, pages 31–40.
ACM, 2014.

V. Bhattiprolu, V. Guruswami, and E. Lee 31:17

3 Boaz Barak, Jonathan A. Kelner, and David Steurer. Dictionary learning and tensor
decomposition via the sum-of-squares method. In Proceedings of the Forty-Seventh Annual
ACM on Symposium on Theory of Computing, pages 143–151. ACM, 2015.

4 Boaz Barak and David Steurer. Sum-of-squares proofs and the quest toward optimal al-
gorithms. arXiv preprint arXiv:1404.5236, 2014.

5 Vijay Bhattiprolu, Mrinalkanti Ghosh, Venkatesan Guruswami, Euiwoong Lee, and Madhur
Tulsiani. Weak decoupling, polynomial folds, and approximate optimization over the sphere.
Electronic Colloquium on Computational Complexity (ECCC), 23:185, 2016. URL: https:
//eccc.weizmann.ac.il/report/2016/185/.

6 Vijay Bhattiprolu, Venkatesan Guruswami, and Euiwoong Lee. Certifying random polyno-
mials over the unit sphere via sum of squares hierarchy. arXiv preprint arXiv:1605.00903,
2016.

7 Fernando G. S. L. Brandao and Aram W. Harrow. Quantum de finetti theorems under local
measurements with applications. In Proceedings of the forty-fifth annual ACM symposium
on Theory of computing, pages 861–870. ACM, 2013.

8 S. Charles Brubaker and Santosh S. Vempala. Random tensors and planted cliques. In Ap-
proximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
pages 406–419. Springer, 2009.

9 Alan Frieze and Ravi Kannan. A new approach to the planted clique problem. In LIPIcs-
Leibniz International Proceedings in Informatics, volume 2. Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, 2008.

10 Rong Ge and Tengyu Ma. Decomposing overcomplete 3rd order tensors using sum-of-
squares algorithms. Approximation, Randomization, and Combinatorial Optimization. Al-
gorithms and Techniques, page 829, 2015.

11 Samuel B. Hopkins, Pravesh K. Kothari, Aaron Potechin, Prasad Raghavendra, Tselil
Schramm, and David Steurer. Personal communication, 2017.

12 Samuel B. Hopkins, Jonathan Shi, and David Steurer. Tensor principal component analysis
via sum-of-square proofs. In Proceedings of The 28th Conference on Learning Theory, pages
956–1006, 2015.

13 Pravesh K. Kothari, Ryuhei Mori, Ryan O’Donnell, and David Witmer. Sum of squares
lower bounds for refuting any CSP. In Proceedings of the 49th ACM Symposium on Theory
of Computing, 2017. To appear.

14 Monique Laurent. Sums of squares, moment matrices and optimization over polynomials.
In Emerging applications of algebraic geometry, pages 157–270. Springer, 2009.

15 Andrea Montanari and Emile Richard. A statistical model for tensor PCA. In Advances
in Neural Information Processing Systems, pages 2897–2905, 2014.

16 Prasad Raghavendra, Satish Rao, and Tselil Schramm. Strongly refuting random CSPs
below the spectral threshold. In Proceedings of the 49th ACM Symposium on Theory of
Computing, 2017. To appear.

17 Barry Simon. The classical moment problem as a self-adjoint finite difference operator.
Advances in Mathematics, 137(1):82–203, 1998.

18 R. Tomioka and T. Suzuki. Spectral norm of random tensors. ArXiv e-prints, July 2014.
arXiv:1407.1870.

A Constructing the Moment Matrix Realizing the Lower Bound

For even d, let A ∈ IR[n]q be a q-tensor with i.i.d. ±1 entries and let A ∈ IR[n]q/2×[n]q/2
be the

matrix flattening of A, i.e., A[I, J] = A[I ⊕ J] (recall that ⊕ denotes tuple concatenation).
Also let f(x) := A(x) = 〈A, x⊗q〉. Our lower bound on fmax by is proved by constructing a
moment matrix M ∈ R[n]q/2×[n]q/2 that satisfies

APPROX/RANDOM’17

https://eccc.weizmann.ac.il/report/2016/185/
https://eccc.weizmann.ac.il/report/2016/185/
http://arxiv.org/abs/1407.1870

31:18 Sum-of-Squares Certificates for Maxima of Random Tensors on the Sphere

Tr(M) = 1.
M � 0.
M is SoS-symmetric.
〈A,M〉 ≥ 2−O(q) · nq/4/qq/4,

where A ∈ IR[n]q/2×[n]q/2
is any matrix representation of f (SoS-symmetry of M ensures

〈A,M〉 does not depend on the choice of A).
Let A be the SoS-symmetric matrix such that for any I = (i1, . . . , iq/2) and J =

(j1, . . . , jq/2),

A[I, J] =
{
fα(I)+α(J)

q! , if i1, . . . , iq/2, j1, . . . , jq/2 are all distinct.
0 otherwise.

We bound ‖A‖2 in two steps. Let ÂQ ∈ IRNnq/2×N
n
q/2 be the quotient matrix of A defined by

ÂQ[β, γ] := A[I, J] ·
√
|O(β)| · |O(γ)|,

where I, J ∈ [n]q/2 are such that β = α(I), γ = α(J).

I Lemma 18. With high probability, ‖ÂQ‖2 ≤ 2O(q) · n
q/4

qq/4 .

Proof. Consider any y ∈ IRNnq/2 s.t. ‖y‖ = 1. Since

yT · ÂQ · y =
∑

β+γ≤ 1

ÂQ[β, γ] · yβ · yγ

=
∑

β+γ≤ 1

yβ · yγ
∑

α(I)+α(J)
=β+γ

A[I, J] ·
√
|O(β)||O(γ)|
|O(β + γ)|

=
∑

I,J∈[n]q/2

A[I, J]
∑

β+γ≤ 1
β+γ=

α(I)+α(J)

√
|O(β)||O(γ)|
|O(β + γ)| · yβ · yγ

So yT · ÂQ · y is a sum of independent random variables∑
I,J∈[n]q

A[I, J] · cI,J

where each A[I, J] is independently sampled from the Rademacher distribution and

cI,J :=
∑

β+γ≤ 1
β+γ=

α(I)+α(J)

√
|O(β)||O(γ)|
|O(β + γ)| · yβ · yγ .

Fix any I, J ∈ [n]q/2 and let α := α(I) + α(J). By Cauchy-Schwarz,

c2I,J ≤
(∑
β+γ=α

|O(β)||O(γ)|
|O(α)|2

)
·
(∑
β+γ=α

y2
β ·y2

γ

)
≤ 2O(q)

|O(α)| ·
∑

β+γ=α
y2
β ·y2

γ =: c2α ,

(A.1)

V. Bhattiprolu, V. Guruswami, and E. Lee 31:19

since there are at most 2O(q) choices of β and γ with β + γ = α, and |O(β)| · |O(γ)| ≤ |O(α)|.
Therefore, yT · ÂQ · y is the sum of independent random variables that are centred and
always lie in the interval [−1,+1]. Furthermore, by Eq. (A.1), the total variance is∑
I,J∈[n]q/2

c2I,J ≤
∑
α∈Nnq

c2α ·|O(α)| ≤ 2O(q) ·
∑

β,γ∈Nn
q/2

y2
β ·y2

γ = 2O(q) ·
(∑
β∈Nn

q/2

y2
β

)2 = 2O(q)

The claim then follows from combining standard concentration bounds with a union bound
over a sufficiently fine net of the unit sphere in |Nnq/2| ≤ 2O(q) · n

q/2

qq/2 dimensions. J

I Lemma 19. For any SoS-symmetric A ∈ IR[n]q/2×[n]q/2
, ‖A‖2 ≤

∥∥∥ÂQ
∥∥∥

2
.

Proof. For any u, v ∈ IR[n]q/2
s.t. ‖u‖ = ‖v‖ = 1, we have

uTAv

=
∑

I,J∈[n]q/2

A[I, J]uIvJ

=
∑

I,J∈[n]q/2

ÂQ[α(I), α(J)]√
|O(I)| |O(J)|

· uIvJ

=
∑

α,β∈Nn
q/2

A[α, β]√
|O(α)| |O(β)|

〈u|O(α)
, 1〉〈v|O(β)

, 1〉

= aT ÂQ b where aα :=
〈u|O(α)

, 1〉√
|O(α)|

, bα :=
〈v|O(α)

, 1〉√
|O(α)|

≤
∥∥∥ÂQ

∥∥∥
2
‖a‖ · ‖b‖

=
∥∥∥ÂQ

∥∥∥
2

√√√√√ ∑
α∈Nn

q/2

〈u|O(α)
, 1〉2

|O(α)|

√√√√√ ∑
α∈Nn

q/2

〈v|O(α)
, 1〉2

|O(α)|

≤
∥∥∥ÂQ

∥∥∥
2

√ ∑
α∈Nn

q/2

‖u|O(α)
‖2
√ ∑
α∈Nn

q/2

‖u|O(α)
‖2 (by Cauchy-Schwarz)

≤
∥∥∥ÂQ

∥∥∥
2
‖u‖ · ‖v‖ =

∥∥∥ÂQ
∥∥∥

2
.

J

The above two lemmas imply that ‖A‖2 ≤ ‖ÂQ‖2 ≤ 2O(q) · n
q/4

qq/4 . Our moment matrix M
is defined by

M := 1
c1

(
1
c2
· q

3q/4

n3q/4 A + W
nq/2

)
,

where W is the direct extension of Ŵ constructed in Theorem 15 – W[I, J] := Ŵ[α(I), α(J)]
for all I, J ∈ [n]q/2, and c1, c2 = 2Θ(q) that will be determined later.

We first consider the trace of M . The trace of A is 0 by design, and the trace of W is
nq/2 · 2O(q). Therefore, the trace of M can be made 1 by setting c1 appropriately. Since both
A and W are SoS-symmetric, so is M. Since E[W, A] = 0 and for each I, J ∈ [n]q/2 with
i1, . . . , iq/2, j1, . . . , jq/2 all distinct we have E[A[I, J]A[I, J]] = 1

q! , with high probability

〈A,M〉 = 1
c1
· 〈A,

(
1
c2
· q

3q/4

n3q/4 A + W
nq/2

)
〉 ≥ 2O(−q) · q

3q/4

n3q/4 ·
nq

qq
= 2O(−q) · n

q/4

qq/4
.

APPROX/RANDOM’17

31:20 Sum-of-Squares Certificates for Maxima of Random Tensors on the Sphere

It finally remains to show that M is positive semidefinite. Take an arbitrary vector v ∈ R[n]q/2 ,
and let

p =
∑

α∈Nn
q/2

xαpα =
∑

α∈Nn
q/2

xα ·
(∑
I∈[n]q/2:α(I)=α

vI

)

be the associated polynomial. If p = 0, SoS-symmetry of M ensures vMvT = 0. Normalize v
so that ‖p‖`2

= 1. First, consider another vector vm ∈ [n]q/2 such that

(vm)I =
{
pα(I)

(q/2)! , if i1, . . . , iq/2 are all distinct.
0 otherwise.

Then

‖vm‖22 ≤
∑

α∈Nn
q/2

p2
α/(q/2)! = 1

(q/2)! ,

so ‖vm‖2 ≤ 2O(q)

qq/4 . Since A is SoS-symmetric, has the minimum eigenvalue at least −2O(q) · n
q/4

qq/4 ,
and has nonzero entries only on the rows and columns (i1, . . . , iq/2) with all different entries,

vTAv = (vm)TA(vm) ≥ 2−O(q) · n
q/4

q3q/4 .

We finally compute vTWv. Let vw ∈ [n]q/2 be the vector where for each α ∈ Nnq/2,
we choose one I ∈ [n]q/2 arbitrarily and set (vw)I = pα (all other (vw)I ’s are 0). By
SoS-symmetry of W,

vTWv = (vw)TW(vw) = pT Ŵp ≥ 1
2 ,

by Theorem 15. Therefore,

vT ·M·v = 1
c1
·vT ·

(
1
c2
· q

3q/4

n3q/4 A+ W
nq/2

)
·v ≥ 1

c1
·
(

1
c2
·2−O(q)· n

q/4

q3q/4 ·
q3q/4

n3q/4 +1
2 ·

1
nq/2

)
≥ 0,

by taking c2 = 2Θ(q). So M is positive semidefinite, and this finishes the proof of the lower
bound in Theorem 1.
Thus we obtain,

I Theorem 20 (Lower bound in Theorem 1). For even q ≤ n, let A ∈ IR[n]q be a q-tensor
with i.i.d. ±1 entries. Then with probability 1− nΩ(1),

SoSq(A(x))
Amax

≥
(

Ω(n)
q

)q/4−1/2
.

As a side note, observe that by applying Lemma 19 and the proof of Lemma 18 to the
SoS-symmetric matrix representation of f(x) = A(x) (instead of A), we obtain a stronger
SoS upper bound (by polylog factors) for the special case of d = q:

I Theorem 21 (Upper bound in Theorem 1). For even q ≤ n, let A ∈ IR[n]q be a q-tensor
with i.i.d. ±1 entries. Then with probability 1− nΩ(1),

SoSq(A(x))
Amax

≤
(
O(n)
q

)q/4−1/2
.

Continuous Monitoring of `p Norms in Data
Streams∗

Jarosław Błasiok1, Jian Ding2, and Jelani Nelson3

1 Harvard University, Cambridge, MA, USA
jblasiok@g.harvard.edu

2 University of Chicago, Chicago, MA, USA
jianding@galton.uchicago.edu

3 Harvard University, Cambridge, MA, USA
minilek@seas.harvard.edu

Abstract
In insertion-only streaming, one sees a sequence of indices a1, a2, . . . , am ∈ [n]. The stream
defines a sequence of m frequency vectors x(1), . . . , x(m) ∈ Rn with (x(t))i

def= |{j : j ∈ [t], aj = i}|.
That is, x(t) is the frequency vector after seeing the first t items in the stream. Much work in
the streaming literature focuses on estimating some function f(x(m)). Many applications though
require obtaining estimates at time t of f(x(t)), for every t ∈ [m]. Naively this guarantee is
obtained by devising an algorithm with failure probability � 1/m, then performing a union
bound over all stream updates to guarantee that all m estimates are simultaneously accurate
with good probability. When f(x) is some `p norm of x, recent works have shown that this union
bound is wasteful and better space complexity is possible for the continuous monitoring problem,
with the strongest known results being for p = 2 [29, 10, 9]. In this work, we improve the state
of the art for all 0 < p < 2, which we obtain via a novel analysis of Indyk’s p-stable sketch [30].

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases data streams, continuous monitoring, moment estimation

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.32

1 Introduction

Estimating statistics of frequency vectors implicitly defined by insertion-only update streams,
as defined in the abstract, was first studied by Flajolet and Martin in [24]. They studied the
so-called distinct elements problem, in which f(x) is the support size of x. In the insertion-
only model, the support size of x is equivalent to the number of distinct ai appearing in the
stream. One goal in such streaming algorithms, both for this particular distinct elements
problem as well as for many others function estimation problems studied in subsequent works,
is to minimize the space consumption of the stream-processing algorithm, ideally using o(n)
words of memory (note there is always a trivial n space algorithm by storing x explicitly in
memory).

For over two decades, work on estimating statistics of frequency vectors of streams
remained dormant, until the work of [1] on estimating the p-norm ‖x‖p = (

∑n
i=1 x

p
i)1/p in

∗ J.B. supported by ONR grant N00014-15-1-2388. J.D. partially supported by NSF grant DMS-1455049
and an Alfred P. Sloan Research Fellowship. J.N. supported by NSF grant IIS-1447471 and CAREER
award CCF-1350670, ONR Young Investigator award N00014-15-1-2388, and a Google Faculty Research
Award.

© Jarosław Błasiok, Jian Ding, and Jelani Nelson;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 32; pp. 32:1–32:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.32
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

32:2 Continuous Monitoring of `p Norms in Data Streams

streams for integer p ≥ 1. Since then several works have studied these and several other
problems, from the perspective of both upper and lower bounds, including estimating ‖x‖p
for all 0 < p ≤ 2 (not necessarily integral) [1, 30, 32, 49, 41, 42, 39, 44, 38, 37], ‖x‖p for
p > 2 [1, 4, 21, 33, 7, 26, 34, 2, 16, 13, 25], empirical entropy [19, 20, 6, 28] and other
information-theoretic quantities [31, 27, 14], cascaded norms [22, 36, 35], and several others.
There have also been general theorems classifying which statistics of frequency vectors admit
space-efficient streaming estimation algorithms [15, 8, 17, 12, 11].

Taking a dynamic data structural viewpoint, “streaming algorithms” is simply a synonym
for “dynamic data structures” but with an implied focus on minimizing memory consumption
(typically striving for an algorithm using sublinear memory). Elements in the stream can
be viewed as updates to the frequency vector x (seeing a ∈ [n] in the stream can be seen
as update(a, 1), causing the change xa → xa + 1), and the request for an estimate of some
statistic of x is a query. In this data structural language, all the works cited in the previous
paragraph provide Monte-Carlo guarantees of the following form for queries: starting from any
fixed frequency vector and after executing any fixed sequence of updates, the probability that
the output of a subsequent query then fails is at most δ. Here we say a query fails if, say, the
output is not a good approximation to some particular f(x) (this will be made more formal
later). In many applications however, one does not simply want the answer to one query
at the end of some large number of updates, but rather one wants to continuously monitor
the data stream. That is, the sequence of data structural operations is an intermingling of
updates and queries. For example, one may have a threshold T in mind, and if f(x) ever
increases beyond T some data analyst should be alerted. Such a goal could be achieved
(approximately) by querying after every update to determine whether the updated frequency
vector satisfies this property. Indeed, the importance of supporting continuous queries in
append-only databases (analogous to the insertion-only model of streaming) was recognized
25 years ago in [47], with several later works focused on continuous stream monitoring with
application areas in mind such as trend detection, anomaly detection, financial data analysis,
and (bio)sensor data analysis [3, 18, 46].

If one assumes that a query is being issued after every update, then in a stream of m
updates the failure probability should be set to δ � 1/m so that, by a union bound, all
queries succeed. Most Monte-Carlo streaming algorithms achieve some space S to achieve
failure probability 1/3, at which point one can achieve failure probability δ by running
Θ(lg(1/δ)) instantiations of the algorithm in parallel and returning the median estimate (see
for example [1]). This method increases the space from S to Θ(S lg(1/δ)), and for many
problems (such as `p-norm estimation) it is known that at least in the so-called strict turnstile
model (i.e. update(a,∆) is allowed for both positive and negative ∆, but we are promised
xi ≥ 0 for all i at all times) this form of space blow-up is necessary [37]. Nevertheless,
although improved space lower bounds have been given when desiring that the answer to
a single query fails with probability at most δ, no such blow-up has been shown necessary
for the continuous monitoring problem in which one wants, with failure probability 1/3, to
provide simultaneously correct answers for m queries intermingled with m updates. In fact
to the contrary, in certain scenarios such as estimating distinct elements or the `2-norm in
insertion-only streams, improved upper bounds have been given!

I Definition 1. We say a Monte-Carlo randomized streaming algorithm A provides strong
tracking for f in a stream of length m with failure probability η if at each time t ∈ [m], A
outputs an estimate f̃t such that

P(∃t ∈ [m] : |f̃ t − f(x(t))| > εf(x(t))) < η.

J. Błasiok, J. Ding, and J. Nelson 32:3

We say that A provides weak tracking for f if

P(∃t ∈ [m] : |f̃ t − f(x(t))| > ε sup
t′∈[m]

f(x(t′))) < η.

Note if f is monotonically increasing, then for insertion-only streams supt′∈[m] f(x(t′)) is
simply f(x(m)).

The first non-trivial tracking result we are aware of which outperformed the median trick
for insertion-only streaming was the RoughEstimator algorithm given in [40] for estimating
the number of distinct elements in a stream. RoughEstimator provided a strong tracking
guarantee for f(x) = | support(x)| (the distinct elements problem) for constant ε, η, using the
same space as what is what is required to answer only a single query. This strong tracking
algorithm was used as a subroutine in the main non-tracking algorithm of that work for
approximating the number of distinct elements in a data stream up to 1 + ε.

For `p-estimation for p ∈ (0, 2], without tracking, it is known that O(ε−2 lg(1/δ)) words
of memory is achievable to return a (1 + ε)-approximate value of f(x) = ‖x‖p with failure
probability δ [1, 30, 39]1. This upper bound thus implies a strong tracking algorithm with
space complexity O(ε−2 lgm) for tracking failure probability η = 1/3, by setting δ < 1/(3m)
and performing a union bound. The work [29] considered the strong tracking variant of
`p-estimation in insertion-only streams for for any p in the more restricted interval (1, 2].
They showed that the same algorithms of [1, 30], unchanged, provide strong tracking with
η = 1/3 with space O(ε−2(lgn+ lg lgm+ lg(1/ε))) words2. This is an improvement over the
standard median trick and union bound when the stream length is very long (m > nω(1))
and ε is not too small (ε > 1/mo(1)). They also showed that in an update model which
allows deletions of items (“turnstile streaming”), any algorithm which only maintains a linear
sketch Πx of x must use Ω(lgm) words of memory for constant ε, showing that the median
trick is optimal for this restricted class of algorithms.

A different algorithm was given in [10] for strong tracking for `2 using spaceO(ε−2(lg(1/ε)+
lg lgm)). It was then most recently shown in [9] that the AMS sketch itself of [1] (though
with 8-wise independent hash functions instead of the original 4-wise independence proposed
in [1]) provides strong tracking in space O(ε−2 lg lgm), and weak tracking in space O(1/ε2).
That is, the AMS sketch provides weak tracking without any asymptotic increase in space
complexity over the requirement to correctly answer only a single query.

Despite the progress in upper bounds for tracking `2, the only non-trivial improvement
for tracking `p is the O(ε−2(lgn + lg lgm + lg(1/ε))) upper bound of [29]. Although this
bound provides an improvement for very long streams (m super-polynomial in n), it does
not provide any improvement over the standard median trick for the case most commonly
studied case in the literature of m,n being polynomially related.

Our contribution

We show that Indyk’s p-stable sketch [30] for 0 < p ≤ 2, derandomized using bounded
independence as in [39], provides weak tracking while using O(lg(1/ε)/ε2) words of space.
It also provides strong tracking using O(ε−2(lg lgm+ lg(1/ε)) words of space. Our bounds
thus both improve the space complexity achieved in [29] for `p-tracking, and well as the

1 For constant δ and p = 2, [1] shows that space O(ε−2(lgn+ lg lgm)) bits is achievable in insertion-only
streams.

2 For p = 2 their space is as written including the space required to store all hash functions, but for
1 < p < 2 this space bound assumes that the storage of hash functions is for free.

APPROX/RANDOM’17

32:4 Continuous Monitoring of `p Norms in Data Streams

range of p supported from p ∈ (1, 2] to all p ∈ (0, 2] (note for p > 2, it is known that any
algorithm requires polynomial space even to obtain a 2-approximation for a single query, i.e.
the non-tracking variant of the problem [4]).

2 Notation

We use [n] for integer n to denote {1, . . . , n}. We measure space in words unless stated
otherwise, where a single word is at least lg(nm) bits. For p ∈ (0, 2], we let Dp denote the
symmetric p-stable distribution, scaled so that for Z ∼ Dp, P(|Z| > 1) = 1

2 . The distribution
Dp has the property that it is supported on the reals, and for any fixed vector v ∈ Rn
and Z1, . . . , Zn, Z i.i.d. from Dp,

∑n
i=1 Zixi is equal in distribution to ‖x‖p · Z. See [45] for

further reading on these distributions.
For two vectors u, v ∈ Rn we write u � v to denote coordinatewise comparison, i.e. u � v

iff ∀iui ≤ vi. For a finite set S, we write #S to denote cardinality of this set.

3 Preliminaries

The following lemma is standard. A proof with explicit constants can be found in [43,
Theorem 42].

I Lemma 2. If Z ∼ Dp, then P(Z > λ) ≤ Cp

λp for some explicit constant Cp depending only
on p.

We also state some other results we will need.

I Lemma 3 (Paley-Zygmund). If Z ≥ 0 is a random variable with finite variance, then

P(Z > θEZ) ≥ (1− θ)2 (EZ)2

E(Z2) .

I Corollary 4. For fixed vector v ∈ Rn, if σ ∈ {±1}n is a vector of 4-wise independent
random signs, then

P(〈σ, v〉2 ≥ 2
3‖v‖

2
2) ≥ 1

27 .

Proof. This follows from E〈σ, v〉4 < 3(E〈σ, v〉2)2 and the Paley-Zygmund inequality. J

I Theorem 5 ([10, 9, Theorem 15]). Let v(1), v(2), . . . v(m) ∈ Rn, be a sequence of vectors
such that 0 � v(1) � v(2) � . . . � v(m). Let σ ∈ {±1}n be a vector of 4-wise independent
random signs. Then

P
(

sup
i≤m
|〈σ, v(i)〉| > λ‖v(n)‖2

)
<
C

λ2

for some universal constant C.

I Theorem 6. [39, 23] If Zi ∼ Dp for i ∈ [n] are k-wise independent random variables, then
for every vector x ∈ Rn and every pair a, b ∈ R ∪ {±∞} we have

P(〈Z, x〉 ∈ (a, b)) = P(‖x‖pZ1 ∈ (a, b))±O(k−1/p) .

I Theorem 7. [5, Lemma 2.3] Let X1, . . . Xn ∈ {0, 1} be a sequence of k-wise independent
random variables, and let µ =

∑n
i=1 EXi. Then

∀λ > 0, P(
n∑
i=1

Xi ≥ (1 + λ)µ) ≤ exp(−Ω(min{λ, λ2}µ)) + exp(−Ω(k)) .

J. Błasiok, J. Ding, and J. Nelson 32:5

4 Overview of approach

Indyk’s p-stable sketch picks a random matrix Π ∈ Rd×n such that each entry is drawn
according to the distribution Dp. It then maintains the sketch Πx(t) of the current frequency
vector. This sketch can be easily updated as the frequency vector changes, i.e. after observing
an index aj ∈ [n] we update the sketch by Πx(t+1) := Πx(t) + Πeaj

. An ‖x‖p-estimate query
is answered by returning the median of |Πx(i)|j over j ∈ [d]. Since storing Π in memory
explicitly is prohibitively expensive, we generate it so that the entries in each row are k-wise
independent for k = O(1/εp) (as done in [39]), and the d seeds used to generate the rows of Π
are O(lg(1/(εδ)))-wise independent. We also work with discretized p-stable random variables
to take bounded memory. All together, the bounded independence and discretization, also
performed in [39], allow us to store Π using low memory.

We then show that instantiating Indyk’s algorithm with d = O(ε−2 lg(1/(εδ))) provides
the weak tracking guarantee with failure probability δ. The analysis of the correctness of this
algorithm is as follows. Let πi denote the ith row of Π. We first show a result resembling the
Doob’s martingale inequality – namely, in Section 5 we show that for a fixed i, if we look at
the evolution of 〈πi, x(t)〉 as t increases, the largest attained value (supt≤m〈πi, x(t)〉) is with
good probability not much larger than the median of the distribution |〈πi, x(m)〉|, which is
the typical magnitude of the counter at the end of the stream. This fact resembles similar
facts shown in [10, 9] for when the πi have independent Rademachers as entries, though our
situation is complicated by the fact that p-stable random variables have much heavier tails.

We then, discussed in Section 5.1, show how the previous paragraph implies a weak
tracking algorithm with d = O(ε−2 lg(1/(εδ))): we split the sequence of updates into poly(1/ε)
intervals such that the `p-norm of the frequency vector of updates in each of those intervals,
i.e. ‖x(t+1) − x(t)‖p, is of the order εΘ(1)‖x(m)‖p. We then union bound over the poly(1/ε)
intervals to argue that the algorithm’s estimate is good at each of the interval endpoints.
This is the source of the extra factor of lg(1/ε) in our space bound: to obtain ε−Ω(1) failure
probability to union bound over these intervals. On the other hand, within each of the
intervals most of the counters do not change too rapidly by the argument developed in
Section 5.

Finally, in Section 5.2 we show how given an algorithm satisfying a weak tracking
guarantee, one can use it to get a strong-tracking algorithm with slightly larger space
complexity. This argument was already present in [9]. One first identifies q points in the
input stream at which the `p norm roughly doubles when compared to the previously marked
point. There are only O(lgm) such intervals. It is then enough to ensure that our algorithm
satisfies weak tracking for all those O(lgm) prefixes simultaneously, in order to deduce that
the algorithm in fact satisfies strong tracking. This is done by union bound over O(lgm)
bad events (as opposed to standard union bound over O(m) bad events), which introduces
an extra lg lgm factor in the space complexity as when compared to weak tracking.

5 Analysis

We first show two lemmas that play a crucial role in our weak tracking analysis.

I Lemma 8. Let x ∈ Rn be a fixed vector, and Z ∈ Rn be a random vector with k-wise
independent entries drawn according to Dp. Then

P(
n∑
i=1

x2
iZ

2
i ≥ λ2‖x‖2p) ≤

C

λp
+O(k−1/p)

for some universal constant C.

APPROX/RANDOM’17

32:6 Continuous Monitoring of `p Norms in Data Streams

Proof. Let E0 be the event
∑n
i=1 x

2
iZ

2
i ≥ λ2‖x‖2p. Note that E0 depends only on |Zi|, and

does not depend on the signs of the Zi. We write Zi = |Zi|σi, where σi are k-wise independent
random signs. Conditioning on |Zi|,

E
σ

(n∑
i=1

xi|Zi|σi

)2
∣∣∣∣∣∣|Z1|, . . . |Zn|

 =
n∑
i=1

x2
iZ

2
i

and therefore for any |Z1|, . . . , |Zm| for which E0 holds, by Corollary 4

P
σ

(n∑
i=1

xi|Zi|σi

)2

≥ 2
3λ

2‖x‖2p

∣∣∣∣∣∣|Z1|, . . . , |Zm|

≥ P

σ

(n∑
i=1

xi|Zi|σi

)2

≥ 2
3

n∑
i=1

x2
iZ

2
i

∣∣∣∣∣∣|Z1|, . . . , |Zm|

≥ 1

27

and thus

P
σ

(n∑
i=1

xi|Zi|σi

)2

≥ 2
3λ

2‖x‖2p

∣∣∣∣∣∣|Z1|, . . . |Zn|

 ≥ 1E0

27 ,

where 1E0 is an indicator random variable for event E0. Integrating over |Zi|,

P
σ,Z

(n∑
i=1

xi|Zi|σi

)2

≥ 2
3λ

2‖x‖2p

 ≥ 1
27 P

Z
(E0). (1)

On the other hand |Zi|σi has the same distribution as Zi, and moreover

P
Z

(n∑
i=1

xiZi

)2

≥ 2
3λ

2‖x‖2p

 = P
Z

(
|〈x, Z〉| ≥

√
2
3λ‖v‖p

)

≤ P
Z

(
‖x‖pZ̃ ≥

√
2
3λ‖x‖p

)
+O(k−1/p)

≤ C

λp
+O(k−1/p) (2)

where Z̃ ∼ Dp. The inequalities are obtained via Theorem 6 and Lemma 2. Combining (1),
(2) yields

P
Z

(E0) ≤ 27C
λp

+O(k−1/p). J

I Lemma 9. Let x(1), x(2), . . . x(m) ∈ Rn satisfy 0 � x(1) � x(2) � . . . � x(m). Let Z ∈ Rn
have k-wise independent entries marginally distributed according to Dp. Then for some Cp
depending only on p,

P
(

sup
k≤m
|〈Z, x(k)〉| ≥ λ‖x(m)‖p

)
≤ Cp

(
1

λ2p/(2+p) + k−1/p
)
.

J. Błasiok, J. Ding, and J. Nelson 32:7

Proof. Observe that for any β we have

P
(

sup
k≤m
|〈Z, x(k)〉| ≥ λ‖x(m)‖p

)
≤ P

(
n∑
i=1

Z2
i (x(m))2

i ≥ β2‖x(m)‖2p

)

+ P

(
sup
k≤m
|〈Z, x(k)〉| ≥ λ‖x(m)‖p

∣∣∣∣∣
n∑
i=1

Z2
i (x(m))2

i < β2‖x(m)‖2p

)
.

Lemma 8 directly implies that

P

(
n∑
i=1

Z2
i (x(m))2

i ≥ β2‖x(m)‖2p

)
≤ C

βp
+ C

k1/p . (3)

On the other hand we can write Zi = |Zi|σi, where σi are k-wise independent Rademacher
random variables, independent from |Zi|. Let us define w(k) ∈ Rn for k ∈ [m] to be the
vector with coordinates (w(k))i := (x(k))i|Zi|, so that 〈x(k), Z〉 = 〈w(k), σ〉, and in particular

sup
k≤m

∣∣∣〈Z, x(i)〉
∣∣∣ = sup

k≤m

∣∣∣〈σ,w(i)〉
∣∣∣ .

Now, if we condition on |Z1|, . . . |Zn|, then the sequence w(1), . . . w(k) of vectors satisfies the
assumptions of Theorem 5, and we can conclude that

P
(

sup
k≤m

∣∣∣〈σ,w(k)〉
∣∣∣ > λ

β
‖w(m)‖2

)
≤ Cβ2

λ2 .

Moreover if |Zi| are such that
∑n
i=1 Z

2
i (x(m))2

i ≤ β2‖x(m)‖2p, or equivalently ‖w(m)‖22 ≤
β2‖x(m)‖2p, we have

P
(

sup
k≤m

∣∣∣〈σ,w(k)〉
∣∣∣ > λ‖x(m)‖p

)
≤ Cβ2

λ2 ,

which implies

P

(
sup
k≤m
|〈Z, x(k)〉| ≥ λ‖x(m)‖p

∣∣∣∣∣
n∑
i=1

(Zix(m)
i)2 < β‖x(m)‖2p

)
≤ Cβ2

λ2 .

This together with Equation (3) yields

P
(

sup
k≤m
|〈Z, x(k)〉| ≥ λ‖x(m)‖p

)
≤ 1
βp

+ Cβ2

λ2 + C

k1/p .

We can take β := Θ(λ
2

2+p), to have 1
βp + Cβ2

λ2 = O(λ−
2p

2+p). J

5.1 Weak tracking of ‖x‖p

In this section we upper bound the number of rows needed in Indyk’s p-stable sketch with
boundedly independent entries to achieve weak tracking.

I Lemma 10. Let x(1), . . . x(m) ∈ Rn be any sequence satisfying 0 � x(1) � x(2) � . . . � x(m).
Take Π ∈ Rd×n to be a random matrix with entries drawn according to Dp, and such that the
rows are r-wise independent, and all entries within a row are s-wise independent.

For every k ∈ [m], define sk to be median
(
|(Πx(k))1|, . . . , |(Πx(k))d|

)
. If d = Ω(ε−2(lg 1

ε +
lg 1

δ)), r = Ω(lg 1
ε + lg 1

δ) and s = Ω(ε−p), then with probability at least 1− δ we have

∀k ∈ [m], ‖x(k)‖p − ε‖x(m)‖p ≤ sk ≤ ‖x(k)‖p + ε‖x(m)‖p .

APPROX/RANDOM’17

32:8 Continuous Monitoring of `p Norms in Data Streams

Proof. Consider a sequence of indices 1 < t1 < t2 < . . . < tq+1 = m, constructed inductively
in the following way. We take t1 to be the smallest index with ‖x(t1)‖p ≥ ε4‖x(m)‖p. Given
tk, we take tk+1 to be the smallest index such that ‖x(tk+1) − x(tk)‖p ≥ ε4‖x(m)‖p if there
exists one, and tk+1 = m otherwise.

Observe q ≤ ε−8. Indeed, for p ≥ 1 we have

‖x(m)‖pp = ‖x(t1)+
∑

1≤i<q
(x(ti+1)−x(ti))‖pp ≥ ‖x(t1)‖pp+

∑
1≤i<q

‖x(ti+1)−x(ti)‖pp ≥ qε4p‖x(m)‖pp

where the inequality ‖x(t1) +
∑
i≥1(x(ti+1) − x(ti))‖pp ≥ ‖x(t1)‖pp +

∑
1≤i<q ‖x(ti+1) − x(ti)‖pp

holds because all vectors x(1) and x(ti+1) − x(ti) for every i have non-negative entries – we
can consider each coordinate separately, and use the fact that for p ≥ 1 and nonnegative
numbers ai we have (

∑
ai)p ≥

∑
api – or equivalently, ‖a‖p1 ≥ ‖a‖pp. After rearranging this

yields q ≤ ε−4p.
Similarly, for p ≤ 1, we have that for non-negative numbers ai, (

∑
i≤q ai)p ≥ qp−1∑ i ≤ qapi

(this is true because for fixed
∑
ai, the sum

∑
api is maximized when all ai are equal), and

therefore

‖x(m)‖pp = ‖x(t1) +
∑

1≤i<q
(x(ti+1) − x(ti))‖pp ≥ qp−1

‖x(t1)‖pp +
∑

1≤i<q
‖x(ti+1) − x(ti)‖pp

≥ qpε4p‖x(m)‖pp

which implies q ≤ ε−4.
For j ∈ [m], let us define

lj := #{i : |〈πi, x(j)〉| < (1− ε)‖x(j)‖p}

uj := #{i : |〈πi, x(j)〉| > (1 + ε)‖x(j)‖p}.

Let π̃i be a vector of i.i.d. random variables drawn according to Dp. We know
that 〈π̃i, x(j)〉 ∼ ‖x(j)‖pDp. Hence P(|〈π̃i, x(j)〉| > ‖x(j)‖p) = 1

2 , and P(|〈π̃i, x(j)〉| >
(1 + ε)‖x(j)‖p) ≤ 1

2 − 2Cε for some universal constant C. Similarly P(|〈π̃i, x(j)〉| <
(1− ε)‖x(j)‖p) ≤ 1

2 − 2Cε.
Entries of πi are s-wise independent, for s ≥ C2ε

−p with some large constant C2 depending
on C. Thus by Theorem 6, P(|〈πi, x(j)〉| < (1− ε)‖x(j)‖p) ≤ P(|〈π̃i, x(j)〉| < (1− ε)‖x(j)‖p) +
Cε ≤ 1

2 − Cε, and analogously for P(|〈πi, x(j)〉| > (1 + ε)‖x(j)‖p) < 1
2 − Cε.

Hence

E lj ≤ d
(

1
2 − Cε

)
Euj ≤ d

(
1
2 − Cε

)
.

For j ∈ [q], let Sj be the event{
ltj ≤

d

2 −
Cd

2 ε

}
∧
{
utj ≤

d

2 −
Cd

2 ε

}
Note that for fixed j and varying i, indicator random variables for the events “|〈πi, x(j)〉| <

(1− ε)‖x(j)‖p” are r-wise independent. Thus by Theorem 7, P(Sj) ≥ 1−C ′ exp(−Ω(dε2))−
exp(−Ω(r)). Taking d = Ω(ε−2(lg 1

ε + lg 1
δ)) and r = Ω(lg 1

εδ) we obtain P(Sj) ≥ 1 − δε8

2 ,

J. Błasiok, J. Ding, and J. Nelson 32:9

and hence by a union bound all Sj hold simultaneously except with probability at most δ
2

since the number of events Sj is q ≤ ε−8.
For i ∈ [d] and j ∈ [q], let Ei,j be the event

∃s ∈ [tj , tj+1 − 1], |〈x(s) − x(tj), πi〉| > ε‖x(m)‖p.

By construction of the sequence tj , all x(s)−x(tj) above have `p norm at most ε4‖x(m)‖p,

we can invoke Lemma 9 to deduce that P(Eij) ≤ C3

(
ε4

ε

)2/3
+ C3s

−1/p. Again if we pick
s ≥ C4ε

−p for sufficiently large C4 and small enough ε we have P(Eij) ≤ C
4 ε. Therefore for

any fixed j, we have

E
d∑
i=1

1Eij
≤ C

4 dε

And finally again by Theorem 7, for each j

P(
d∑
i=1

1Eij ≥
C

2 dε) . exp(−C ′dε) + exp(−C ′r)

We have d ≥ C3ε
−2 lg 1

δε , and q ≤ ε
−8, hence for sufficiently small ε, we have exp(−C ′dε) ≤

δ
2q . On the other hand if r = Ω(lg 1

δε) is sufficiently large, we have exp(−C ′r) ≤ δ
2q . We

invoke the union bound over all j to deduce that with probability at least 1− δ
2 the following

event V holds:

∀j,
d∑
i=1

1Eij
≤ C

2 dε.

We know that with probability at least 1 − δ simultaneously V and all the events Sj
hold. We will show now that, when these events all hold, then ∀k ‖x(k)‖p −Kε‖x(m)‖p ≤
sk ≤ ‖x(k)‖p +Kε‖x(m)‖p for some universal constant K. Indeed, consider some k, and let
us assume that tj ≤ k ≤ tj+1. With event Sj satisfied, we know that #{i : |〈πi, x(tj)〉| ≤
‖x(tj)‖p + ε‖x(m)‖p} ≥ d

(1
2 + Cε

2
)
, and with event V satisfied, we know that for all but Cε

2 d

of indices i we have |〈πi, x(k) − x(tj)〉| ≤ ε‖x(m)‖.
By the triangle inequality |〈πi, x(k)〉| ≤ |〈πi, x(tj)〉|+ |〈πi, x(k) − x(tj)〉|, yielding

#{i : |〈πi, vk〉| ≤ ‖vtj‖p + 2ε‖vm‖p} ≥
d

2 .

With similar reasoning we can deduce that

#{i : |〈πi, x(k)〉| ≥ ‖x(tj)‖p − 2ε‖x(m)‖p} ≥
d

2 ,

which implies the median of |〈πi, x(k)〉| over i ∈ [d] is in the range ‖x(tj)‖p ± 2ε‖x(m)‖p. In
other words

‖x(tj)‖p − 2ε‖x(m)‖p ≤ sk ≤ ‖x(ti)‖p + 2ε‖x(m)‖p.

Finally we also have
∣∣‖x(k)‖p − ‖x(tj)‖p

∣∣ ≤ ε‖x(m)‖p by construction of the sequence
{tj}qj=1, so the claim follows up to rescaling ε by a constant factor. J

I Lemma 11. The above algorithm can be implemented using O(ε−2 lg(1/(εδ)) lgm) bits of
memory to store fixed precision approximations of all counters (Πx(k))i, and
O(ε−p lg(1/(εδ)) lg(nm)) bits to store Π.

APPROX/RANDOM’17

32:10 Continuous Monitoring of `p Norms in Data Streams

Proof. Consider a sketch matrix Π as in Lemma 10 – i.e. Π ∈ Rd×n with random Dp
entries, such that all rows are r-wise independent and all entries within a row are s-wise
independent. Moreover let us pick some γ = Θ(εm−1) and consider discretization Π̃ of Π,
namely each entry Π̃ij is equal to Πij rounded to the nearest integer multiple of γ. The
analysis identical to the one in [39, A.6] shows that this discretization have no significant
effect on the accuracy of the algorithm, and moreover that one can sample from a nearby
distribution using only τ = O(lgmε−1) uniformly random bits. Therefore we can store such
a matrix succinctly using O (rs(lgn+ τ) + r lg d) bits of memory, by storing a seed for a
random r-wise independent hash function h : [d]→ {0, 1}O(s(lgn+τ)) and interpreting each
h(i) as a seed for an s-wise independent hash function describing the i-th row of Π̃ [48,
Corollary 3.34]. Hence the total space complexity of storing the sketch matrix Π̃ in a succinct
manner is O

(
lg δ−1+lg ε−1

εp (lgn+ lgm)
)
bits.

Additionally we have to store the sketch of the current frequency vector itself, i.e. for
all i ∈ [d] we need to store 〈π̃i, x(k)〉; for every such counter we need O(lgmε−1) = O(lgm)
bits, and there are d = O

(
lg ε−1+lg δ−1

ε−2

)
counters. J

We thus have the following main theorem of this section.

I Theorem 12. For any p ∈ (0, 2] there is an insertion-only streaming algorithm that
provides the weak tracking guarantees for f(x) = ‖x‖p with probability 1− δ using at most
O
(

lgm+lgn
ε2 (lg ε−1 + lg δ−1)

)
bits of memory.

5.2 Strong tracking of ‖x‖p

In this section we discuss achieving a strong tracking guarantee. The same argument for
`2-tracking appeared in [9]. The reduction is in fact general, and shows that for any monotone
function f the strong tracking problem for f reduces to the weak tracking version of the
same problem with smaller failure probability.

I Lemma 13. Let f : Rn → R+ be any monotone functon of Rn (i.e. x � y =⇒ f(x) ≤
f(y)), such that mini f(ei) = 1 (where ei are standard basis vectors). Let A be an insertion-
only streaming algorithm satisfying weak tracking for any sequence of updates with probability
1 − δ and accuracy ε. Then for a sequence of frequency vectors 0 � x(1) � . . . � x(m)

algorithm A satisfies strong tracking with probability 1− δ lg f(x(m)) and accuracy 2ε.

Proof. Define t1 < t2 < · · · < tq so that ti is the smallest index in [m] larger than ti−1 with
f(x(ti)) ≥ 2i (if no such index exists, define q = i and tq = m). Note that q ≤ lg f(x(m)).

The algorithm will fail with probability at most δ to satisfy the conclusion of Theorem 12
for a particular sequence of vectors x(1), x(2), . . . x(tj). That is, for every j, with probability
1− δ, we have that

∀i ≤ tj , f(x(i))− εf(x(tj)) ≤ f̃ i ≤ f(x(i)) + εf(x(tj)),

where f̃ t is the estimate output by the algorithm at time t.
We can union bound over all j ∈ [q] to deduce that except with probability qδ ≤

δ lg f(x(m)),

∀i ≤ tj , f(x(i))− εf(x(tj)) ≤ f̃ i ≤ f(x(i)) + εf(x(tj)).

By construction of the sequence of tj , we know that for every i, if we take tj to be smallest
such that i ≤ tj , then f(x(tj)) ≤ 2f(x(i)), and the claim follows. J

J. Błasiok, J. Ding, and J. Nelson 32:11

I Theorem 14. For any p ∈ (0, 2] there is an insertion-only streaming algorithm that
provides strong tracking guarantees for estimating the `p-norm of the frequency vector
with probability 1 − δ and multiplicative error 1 + ε, with space usage in bits bounded by
O
(

lgm+lgn
ε2 (lg ε−1 + lg δ−1 + lg lgm)

)
.

Proof. This follows from Lemma 11 and Lemma 13 by observing that after a sequence of
m insertions, the `p norm of the frequency vector is bounded by m2, i.e. lg(‖x(m)‖p) =
O(lgm). J

References
1 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the

frequency moments. J. Comput. Syst. Sci., 58(1):137–147, 1999.
2 Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Streaming algorithms via

precision sampling. In Proc. of the 52nd IEEE Annual Symposium on Foundations of
Computer Science (FOCS), pages 363–372, 2011.

3 Shivnath Babu and Jennifer Widom. Continuous queries over data streams. SIGMOD
Record, 30(3):109–120, 2001.

4 Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics
approach to data stream and communication complexity. Journal of Computer and System
Sciences, 68(4):702–732, 2004.

5 Mihir Bellare and John Rompel. Randomness-efficient oblivious sampling. In Proc. of
the 35th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
276–287, 1994.

6 Lakshminath Bhuvanagiri and Sumit Ganguly. Estimating entropy over data streams. In
Proc. of the 14th Annual European Symposium on Algorithms (ESA), pages 148–159, 2006.

7 Lakshminath Bhuvanagiri, Sumit Ganguly, Deepanjan Kesh, and Chandan Saha. Simpler
algorithm for estimating frequency moments of data streams. In Proc. of the 17th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 708–713, 2006.

8 Vladimir Braverman and Stephen R. Chestnut. Universal sketches for the frequency neg-
ative moments and other decreasing streaming sums. In Proc. of the 18th International
Workshop on Approximation, Randomization, and Combinatorial Optimization: Algorithms
and Techniques (APPROX), pages 591–605, 2015.

9 Vladimir Braverman, Stephen R. Chestnut, Nikita Ivkin, Jelani Nelson, Zhengyu Wang,
and David P. Woodruff. BPTree: an `2 heavy hitters algorithm using constant memory.
In Proc. of the 36th SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems (PODS), 2017.

10 Vladimir Braverman, Stephen R. Chestnut, Nikita Ivkin, and David P. Woodruff. Beating
countsketch for heavy hitters in insertion streams. In Proc. of the 48th Annual ACM
SIGACT Symposium on Theory of Computing (STOC), pages 740–753, 2016.

11 Vladimir Braverman, Stephen R. Chestnut, Robert Krauthgamer, and Lin F. Yang. Stream-
ing symmetric norms via measure concentration. In Proc. of the 49th Annual ACM Sym-
posium on Theory of Computing (STOC), to appear, 2017.

12 Vladimir Braverman, Stephen R. Chestnut, David P. Woodruff, and Lin F. Yang. Streaming
space complexity of nearly all functions of one variable on frequency vectors. In Proc. of
the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems
(PODS), pages 261–276, 2016.

13 Vladimir Braverman, Jonathan Katzman, Charles Seidell, and Gregory Vorsanger. An
optimal algorithm for large frequency moments using o(n1−2/k) bits. In Proc. of the 17th
International Workshop on Approximation, Randomization, and Combinatorial Optimiza-
tion: Algorithms and Techniques (APPROX), pages 531–544, 2014.

APPROX/RANDOM’17

32:12 Continuous Monitoring of `p Norms in Data Streams

14 Vladimir Braverman and Rafail Ostrovsky. Measuring independence of datasets. In Proc.
of the 42nd ACM Symposium on Theory of Computing (STOC), pages 271–280, 2010.

15 Vladimir Braverman and Rafail Ostrovsky. Zero-one frequency laws. In Proc. of the 42nd
ACM Symposium on Theory of Computing (STOC), pages 281–290, 2010.

16 Vladimir Braverman and Rafail Ostrovsky. Approximating large frequency moments with
pick-and-drop sampling. In Proc. of the 16th International Workshop on Approximation,
Randomization, and Combinatorial Optimization: Algorithms and Techniques (APPROX),
pages 42–57, 2013.

17 Vladimir Braverman, Rafail Ostrovsky, and Alan Roytman. Zero-one laws for sliding win-
dows and universal sketches. In Proc. of the 18th International Workshop on Approximation,
Randomization, and Combinatorial Optimization: Algorithms and Techniques (APPROX),
pages 573–590, 2015.

18 Donald Carney, Ugur Çetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee, Greg
Seidman, Michael Stonebraker, Nesime Tatbul, and Stanley B. Zdonik. Monitoring streams -
A new class of data management applications. In Proc. of the 28th International Conference
on Very Large Data Bases (VLDB), pages 215–226, 2002.

19 Amit Chakrabarti, Khanh Do Ba, and S. Muthukrishnan. Estimating entropy and entropy
norm on data streams. Internet Mathematics, 3(1):63–78, 2006.

20 Amit Chakrabarti, Graham Cormode, and Andrew McGregor. A near-optimal algorithm
for estimating the entropy of a stream. ACM Trans. Algorithms, 6(3):51:1–51:21, 2010.

21 Amit Chakrabarti, Subhash Khot, and Xiaodong Sun. Near-optimal lower bounds on the
multi-party communication complexity of set disjointness. In Proc. of the 18th Annual
IEEE Conference on Computational Complexity (CCC), pages 107–117, 2003.

22 Graham Cormode and S. Muthukrishnan. Space efficient mining of multigraph streams. In
Proc. of the 24th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS), pages 271–282, 2005.

23 Ilias Diakonikolas, Daniel M. Kane, and Jelani Nelson. Bounded independence fools degree-
2 threshold functions. In Proc. of the 51st Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 11–20, 2010.

24 Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data base
applications. J. Comput. Syst. Sci., 31(2):182–209, 1985.

25 Sumit Ganguly. Taylor polynomial estimator for estimating frequency moments. In Proc. of
the 42nd International Colloquium on Automata, Languages, and Programming (ICALP),
pages 542–553, 2015.

26 André Gronemeier. Asymptotically optimal lower bounds on the nih-multi-party inform-
ation complexity of the and-function and disjointness. In Proc. of the 26th International
Symposium on Theoretical Aspects of Computer Science (STACS), pages 505–516, 2009.

27 Sudipto Guha, Piotr Indyk, and Andrew McGregor. Sketching information divergences.
Machine Learning, 72(1-2):5–19, 2008.

28 Nicholas J.A. Harvey, Jelani Nelson, and Krzysztof Onak. Sketching and streaming entropy
via approximation theory. In Proc. of the 49th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 489–498, 2008.

29 Zengfeng Huang, Wai Ming Tai, and Ke Yi. Tracking the frequency moments at all times.
CoRR, abs/1412.1763, 2014.

30 Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream
computation. J. ACM, 53(3):307–323, May 2006.

31 Piotr Indyk and Andrew McGregor. Declaring independence via the sketching of sketches.
In Proc. of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
737–745, 2008.

J. Błasiok, J. Ding, and J. Nelson 32:13

32 Piotr Indyk and David P. Woodruff. Tight lower bounds for the distinct elements problem.
In Proc. of the 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 283–, 2003.

33 Piotr Indyk and David P. Woodruff. Optimal approximations of the frequency moments
of data streams. In Proc. of the 37th Annual ACM Symposium on Theory of Computing
(STOC), pages 202–208, 2005.

34 T. S. Jayram. Hellinger strikes back: A note on the multi-party information complexity of
AND. In Proc. of the 12th International Workshop on Randomization and Approximation
Techniques (RANDOM), pages 562–573, 2009.

35 T. S. Jayram. On the information complexity of cascaded norms with small domains. In
IEEE Information Theory Workshop (ITW), pages 1–5, 2013.

36 T. S. Jayram and David P. Woodruff. The data stream space complexity of cascaded norms.
In Proc. of the 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 765–774, 2009.

37 T. S. Jayram and David P. Woodruff. Optimal bounds for johnson-lindenstrauss transforms
and streaming problems with subconstant error. ACM Trans. Algorithms, 9(3):26:1–26:17,
2013.

38 Daniel M. Kane, Jelani Nelson, Ely Porat, and David P. Woodruff. Fast moment estimation
in data streams in optimal space. In Proc. of the 43rd ACM Symposium on Theory of
Computing (STOC), pages 745–754, 2011.

39 Daniel M. Kane, Jelani Nelson, and David P. Woodruff. On the exact space complexity of
sketching and streaming small norms. In Proc. of the 21st Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1161–1178, 2010.

40 Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm for the
distinct elements problem. In Proc. of the 29th SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems (PODS), pages 41–52, 2010.

41 Ping Li. Estimators and tail bounds for dimension reduction in `α (0 < α ≤ 2) using stable
random projections. In Proc. of the 19th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 10–19, 2008.

42 Ping Li. Compressed counting. In Proc. of the 20th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 412–421, 2009.

43 Jelani Nelson. Sketching and streaming high-dimensional vectors. PhD thesis, Massachu-
setts Institute of Technology, 2011.

44 Jelani Nelson and David P. Woodruff. Fast manhattan sketches in data streams. In Proc. of
the 29th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems
(PODS), pages 99–110, 2010.

45 J. P. Nolan. Stable Distributions – Models for Heavy Tailed Data. Birkhauser, Boston,
2017. In progress, Chapter 1 online at http://fs2.american.edu/jpnolan/www/stable/
stable.html.

46 Chris Olston, Jing Jiang, and Jennifer Widom. Adaptive filters for continuous queries
over distributed data streams. In Proc. of the ACM SIGMOD International Conference on
Management of Data (SIGMOD), pages 563–574, 2003.

47 Douglas B. Terry, David Goldberg, David A. Nichols, and Brian M. Oki. Continuous queries
over append-only databases. In Proc. of the ACM SIGMOD International Conference on
Management of Data (SIGMOD), pages 321–330, 1992.

48 Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer
Science, 7(1-3):1–336, 2012. doi:10.1561/0400000010.

49 David P. Woodruff. Optimal space lower bounds for all frequency moments. In Proc. of
the 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 167–175,
2004.

APPROX/RANDOM’17

http://fs2.american.edu/jpnolan/www/stable/stable.html
http://fs2.american.edu/jpnolan/www/stable/stable.html
http://dx.doi.org/10.1561/0400000010

Vertex Isoperimetry and Independent Set Stability
for Tensor Powers of Cliques∗†

Joshua Brakensiek

Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh,
PA, USA
jbrakens@andrew.cmu.edu

Abstract
The tensor power of the clique on t vertices (denoted by Kn

t) is the graph on vertex set {1, . . . , t}n
such that two vertices x, y ∈ {1, . . . , t}n are connected if and only if xi 6= yi for all i ∈ {1, . . . , n}.
Let the density of a subset S of Kn

t to be µ(S) := |S|
tn . Also let the vertex boundary of a set S

to be the vertices of the graph, including those of S, which are incident to some vertex of S. We
investigate two similar problems on such graphs.

First, we study the vertex isoperimetry problem. Given a density ν ∈ [0, 1] what is the
smallest possible density of the vertex boundary of a subset of Kn

t of density ν? Let Φt(ν) be
the infimum of these minimum densities as n → ∞. We find a recursive relation allows one to
compute Φt(ν) in time polynomial to the number of desired bits of precision.

Second, we study given an independent set I ⊆ Kn
t of density µ(I) = 1

t (1− ε), how close it is
to a maximum-sized independent set J of density 1

t . We show that this deviation (measured by
µ(I \J)) is at most 4ε

log t
log t−log(t−1) as long as ε < 1− 3

t + 2
t2 . This substantially improves on results

of Alon, Dinur, Friedgut, and Sudakov (2004) and Ghandehari and Hatami (2008) which had
an O(ε) upper bound. We also show the exponent log t

log t−log(t−1) is optimal assuming n tending
to infinity and ε tending to 0. The methods have similarity to recent work by Ellis, Keller, and
Lifshitz (2016) in the context of Kneser graphs and other settings.

The author hopes that these results have potential applications in hardness of approximation,
particularly in approximate graph coloring and independent set problems.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases extremal combinatorics, independent sets, isoperimetry, stability

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.33

1 Introduction

A growing subfield in extremal combinatorics is understanding the structure of combinatorial
objects which are close in size to the maximal such objects. In this work, we study such
questions in the context of independent sets of tensor power of cliques. We establish this by
first understanding the isoperimetric properties of such graphs.

1.1 Vertex isoperimetry
For any undirected graph G = (VG, EG) and S ⊆ VG, we define the vertex boundary of S to
be

∂S := {x ∈ VG : exists y ∈ S such that {x, y} ∈ EG}.

∗ Full version available at [6], http://arxiv.org/abs/1702.04432.
† This work was partially supported by REU supplements to NSF CCF-1526092 and CCF-1422045.

© Joshua Brakensiek;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 33; pp. 33:1–33:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.33
http: //arxiv.org/abs/1702.04432
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

33:2 Vertex Isoperimetry and Independent Set Stability for Tensor Powers of Cliques

Furthermore, we define the density of S to be

µ(S) := |S|
|VG|

.

The relationship between µ(S) and µ(∂S) is typically captured by vertex isoperimetric
inequalities. Such inequalities are particularly studied when µ(S) is sufficiently small (typ-
ically at most 1/2). These relationships are captured by the isoperimetric parameter (or
isoperimetric profile) of a graph

Φ(G, ν) = inf{µ(∂S) : µ(S) ≥ ν}.

Proving such inequalities for various graphs is a frequent topic in the literature (e.g., [4, 8]).
Typically such works focus on a linear or near-linear relationship between µ(∂S) and µ(S),
known as the isoperimetric constant.

h(G) = inf
{
µ(∂S)
µ(S)

∣∣∣∣S ⊂ VG, µ(S) ∈ (0, 1/2]
}
. (1)

In this paper, we study graphs for which there is an order-of-magnitude difference between
µ(S) and µ(∂S), when µ(S) is sufficiently small. For example, if µ(∂S) ≥

√
µ(S) for all

S, we would like to say that G expands by a power of 2. Such ‘hyper-expansion’ can be
captured by what we coin as the isoperimetric exponent. For all ε > 0 consider.

η(G, ε) = inf
{

logµ(S)
logµ(∂S)

∣∣∣∣S ⊂ VG, µ(S) ∈ (0, ε)
}

(2)

where log is the natural logarithm. In other words, for every subset S of G of density δ, the
boundary of S has density at least δ1/η(G,ε). The larger the parameter η(G) is, the more
‘expansive’ the graph is. It is easy to see that η(G, ε) is in general a decreasing function of ε.
As we often work with large subsets of our graph, we let η(G) := η(G, 1).

In this paper, we study the isoperimetric profile of the tensor powers of cliques. For
undirected graphs G = (VG, EG), H = (VH , EH), we define the tensor product G⊗H to be
the undirected graph on vertex set V1 × V2 such that an edge connects (u1, v1) and (u2, v2)
if and only if {u1, u2} ∈ EG, and {v1, v2} ∈ EH . Note that up to isomorphism, the tensor
product is both commutative and associative. We then denote ⊗nG to be the tensor product
of n copies of G. Since this is the only graph product discussed in this article, we shorten
this to Gn. In this article, we focus on the case that G = Kt, where Kt is the complete graph
on t ≥ 3 vertices. It turns out for such graphs that for all ε > 1

tn , η(G) = η(G, ε).
In particular, we shall compute the following.

I Theorem 1.1. For all t ≥ 3 and all positive integers n,

η(Kn
t) = η(Kt) = log t

log t− log(t− 1) = t log t+ Θ(log t). (3)

In addition to this high-level structure, we give a more-fine-tuned analysis of the behavior
of Φt(η) := infn≥1 Φ(Kn

t , η). (See Theorem 2.8.)

1.2 Independent set stability
Next, we apply these vertex isoperimetric inequalities to understand the structure of near-
maximum independent sets of graphs. Such results are known as stability results.

J. Brakensiek 33:3

Such results are not just of interest within combinatorics, a better understanding of
independent set stability of certain graphs, such as Kn

t , have resulted in advances in hardness
of approximation, particularly in construct dictatorship tests for approximate graph coloring
and independent set problems (e.g., [1, 10, 7]). In fact the investigation which led to the
results in this paper was inspired by the pursuit of such results.

A landmark result of this form due to [1] is as follows.

I Theorem 1.2 ([1]). For all t ≥ 3 there exist Ct with the following property. For any
positive integer n, Let I ⊂ Kn

t be an independent set such that ε = 1 − tµ(I), then there
exists an independent set J ⊂ Kn

t of maximum size (µ(J) = 1/t) such that µ(I∆J) ≤ Ctε,
where S∆T = (S \ T) ∪ (T \ S).

In other words, independent sets of near-maximum size are similar in structure to the
maximum independent sets. Note that if J is an independent set of maximum size, then for
some i ∈ [n] and j ∈ [t], we have that

J = [t]i−1 × {j} × [t]n−i.

This is a well-known result due to [22] (see [2] for a proof using Fourier analysis).
Ghandehari and Hatami improved this result (Theorem 1 of [21]) to show that if t ≥ 20

and ε ≤ 10−9 then Ct can be replaced with 40/t. Both results were proven using Fourier
analysis.

We improve upon this result in two steps. First, by applying Theorem 1.1 we improve
Theorem 1.2 in a black-box matter to obtain the following result.

I Theorem 1.3. For all t ≥ 3, there exists εt > 0 with the following property. For any
positive integer n, let I ⊂ Kn

t be an independent set such that ε = 1 − tµ(I) < εt. Then
there exists an independent set J ⊂ Kn

t of maximum size (µ(J) = 1/t) such that

µ(I \ J) ≤ 4εη(Kt) = 4εlog t/(log t−log(t−1)). (4)

I Remark 1.4. Since µ(I \ J) ≤ 4εη(Kt),

µ(I∆J) = µ(I \ J) + µ(J \ I) = µ(J)− µ(I) + 2µ(I \ J) = ε

t
+ 8εη(Kt),

so our result gives the optimal first-order structure for Theorem 1.2 assuming ε is sufficiently
small. Furthermore, in Appendix B, we give examples of independent sets of Kn

t with
arbitrarily small density (assuming n→∞) for which the exponent η(Kt) is optimal.

Next, using a purely combinatorial argument we pin down a precise value for εt.

I Theorem 1.5. In Theorem 1.3, for all t ≥ 3, one may set εt = 1− 3
t + 2

t2 . In other words,
the theorem applies for all independent sets I such that µ(I) > 3t−2

t3 .

The choice of εt is not arbitrary, it corresponds to the density of the following independent
set.

I = {(1, 1, a), (1, a, 1), (a, 1, 1) : a ∈ [t]} × [t]n−3.

Note that µ(I) = 3t−2
t3 . This set represents a phase transition in the independent sets from

‘dictators’ to ‘juntas,’ as the I constructed above is equally influenced by 3 coordinates
(where ‘influence’ is in the sense of [1]). Such phase transitions have been studied in the
literature [10], but this may be the first work to highlight the exact transition point.

Additionally, to the best of the author’s knowledge, this is the first known purely
combinatorial proof of Theorem 1.2.

APPROX/RANDOM’17

33:4 Vertex Isoperimetry and Independent Set Stability for Tensor Powers of Cliques

1.3 Related work
Such stability results for independent sets have also been studied for Kneser graphs. A
result similar to that of Theorem 1.2 was proved by [20]. Numerous other works in the
literature [9, 11, 18, 19] use Fourier analysis to prove generalized stability results for Kneser
graphs or other structures related to intersecting families. Other related works find purely
combinatorial characterizations [3, 26, 27]. These results typically have a linear error bound
(η = 1) on the closeness to maximal independent sets.

A result which also finds a “tight” super constant exponent η > 1 for the independent
set stability is proved in some very recent work [14, 13, 16, 29, 28, 15] on Kneser graphs
and related structures. (See also [12] and Proposition 4.3 of [17].) The techniques have
high-level similarity to the ones adopted here:1 particularly in their use of compressions to
prove a isoperimetric inequality which they then bootstrap to a combinatorial independent
set stability result.

1.4 Paper organization
In Section 2 we prove the claimed vertex isoperimetric inequalities. In Section 3, we prove
the stability results for near-maximum independent sets in Kn

t . Appendix A proves some
algebraic inequalities omitted from the main text. Appendix B shows that the exponent of
η(t) in Theorems 1.3 and 1.5 is optimal.

2 Vertex isoperimetric Inequalities

In this section, we proceed to prove the isoperimetry results claimed in Section 1.1.
Identify the vertex set of Kn

t with [t]n. Two vertices of x, y ∈ [t]n are connected in Kn
t if

and only if xi 6= yi for all i ∈ [n]. Denote y¬i := (y1, . . . , yi−1, yi+1, . . . , yn). We often write
y as (yi, y¬i) when it is clear from context which coordinate is being inserted.

2.1 Compressions
A useful tool in our study will be the operation of the well-known technique of compressions
(e.g., [30, 31]). Although compressions are not strictly necessary to prove Theorem 1.1, they
are essential in the proof of stronger isoperimetry results as well as Theorem 1.5, so we
introduce the machinery now.

For S ⊆ [t]n be a subset, define the compression of S in coordinate i to be

ci(S) = {x ∈ [t]n : xi ≤ |{y ∈ S : y¬i = x¬i}|} . (5)

This notion of compression appeared in the work of Bollobás and Leader [5].
Informally, we ‘shift’ each element of S to be as small as possible in the ith direction. Note

that µ(ci(S)) = µ(S) for all S ⊆ [t]n. It is easy to see that ci is idempotent: ci(ci(S)) = ci(S)
for all S ⊆ [t]n and i ∈ [n].

We say that a set S is compressed if ci(S) = S for all i ∈ [n]. Equivalently, for all x ∈ S
there is no y ∈ [t]n \ S such that xi ≤ yi for all i ∈ [n].
I Remark 2.1. Note that every time a compression ci is applied, the quantity

Σ(S) :=
∑
x∈S

∑
j∈[n]

xj

1 The author became aware of these similar proofs only after writing major portions of the manuscript.

J. Brakensiek 33:5

decreases or stays the same (in which case ci(S) = S). Thus, since Σ(S) is always positive,
there must exist a finite sequence of compressions which can be applied to S to make the set
compressed.

Now we show that compressions respect independent sets of Kn
t . This result is not needed

until Section 3, but the proof does give intuition for how the compressions work.

I Claim 2.2. For all i ∈ [n] and all I ⊂ [t]n independent set of Kn
t , ci(I) is also an

independent set of Kn
t .

Proof. Assume not, then there exist x, y ∈ ci(I) such that {x, y} is an edge. In particular,
since xi 6= yi, we must have that xi 6= 1 or yi 6= 1. Assume without loss of generality that
yi 6= 1. Then, by definition of ci(I), there must be z := (1, y¬i) ∈ ci(I). Since x, y, z ∈ ci(I),
there must be x′, y′, z′ ∈ I such that

x¬i = x′¬i

y¬i = z¬i = y′¬i = z′¬i

y′i 6= z′i.

Since y′i 6= z′i, we must either have that x′i 6= y′i or x′i 6= z′i. In the former case, {x′, y′} is an
edge of Kn

t and in the latter case {x′, z′} is an edge of Kn
t . This contradicts the fact that I

is an independent set. J

Next we show that compressions can only decrease the size of the vertex boundary.

I Claim 2.3. For all i ∈ [n] and S ⊆ [t]n, |∂ci(S)| ≤ |∂S|.

Proof. Fix ā := a1, . . . , ai−1, ai+1, . . . , an ∈ [t]. Consider T = {(a1, . . . , ai−1)} × [t] ×
{(ai+1, . . . , an} ⊂ [t]n.

Note that for every vertex v ∈ [t]n, ∂{v} ∩ T either has 0 or t − 1 elements. Thus,
|T ∩ ∂S| ∈ {0, t− 1, t}. We claim that |T ∩ ∂ci(S)| ≤ |T ∩ ∂S| for all T .

If |T ∩ ∂S| = 0, then there are no edges between S and T and shifting the vertices of S
in the ith coordinate cannot change that. Thus, |T ∩ ∂ci(S)| = 0.
If |T ∩ ∂S| = t− 1, then the set ∂T ∩ S must be constant in the ith coordinate. Thus,
ci(∂T ∩ S) = ∂T ∩ ci(S) is constant in the ith coordinate, so |T ∩ ∂ci(S)| = t− 1.
If |T ∩ ∂S| = t, then trivially |T ∩ ∂ci(S)| ≤ t.

Thus, summing |T ∩ ∂ci(S))| ≤ |T ∩ ∂S| across all possible T , we have that |∂ci(S)| ≤
|∂S|. J

I Remark 2.4. The proof crucially uses the fact that ∂S can include elements of S. If we
instead had defined the vertex boundary to be ∂S \ S, there is a simple counterexample.
Consider t = 3 and n = 2 and S = {(1, 2), (1, 3), (2, 1), (3, 1)}. Then it is not hard to check
that |∂S| = |∂c1(S)| = 8, but |∂S \ S| = 4 < 5 = |∂c1(S) \ c1(S)|.

2.2 Proof of Theorem 1.1
Define

η(t) := log t
log t− log(t− 1) = t log t+ Θ(log t). (6)

First, we show that η(Kn
t) ≤ η(t). In fact, we show a whole family of equality cases.

APPROX/RANDOM’17

33:6 Vertex Isoperimetry and Independent Set Stability for Tensor Powers of Cliques

I Claim 2.5. For all positive integers n and t such that t ≥ 3, η(Kn
t) ≤ η(t).

Proof. For all integers k ∈ [n], consider S = {1}k × [t]n−k. Then ∂S = {2, . . . , t}k × [t]n−k.
Thus,

η(Kn
t) ≤ logµ(S)

logµ(∂S) = log t−k

log((t− 1)kt−k) =
k log 1

t

k log t−1
t

= η(t). J

The lower-bound is more difficult, we first need the following inequality, proved in
Appendix A.

I Claim 2.6. Let t ≥ 2 be a positive integer and let x ≥ y ≥ 0 be real numbers, then

y1/η(t) + (t− 1)x1/η(t) ≥ (t− 1)(x+ (t− 1)y)1/η(t) (7)

I Lemma 2.7. For positive integers n ≥ 1 and t ≥ 3 and all S ⊆ [t]n, we have that

µ(∂(S)) ≥ µ(S)1/η(t). (8)

Therefore η(Kn
t) ≥ η(t).

Proof. By Claim 2.3 and Remark 2.1, it suffices to consider the case that S is compressed.
We now proceed by induction on n.

For our base case, n = 1, we must have that S = ∅ in which case (8) is trivial, or S = [k]
for some positive integer k ≤ t. If S = [1], then ∂S = {2, . . . , t}, in which case we have
an equality case of (8) by the proof of Claim 2.5. Otherwise, if k ≥ 2, then ∂S = [t], so
µ(∂S) = 1, so (8) holds.

For n ≥ 2, assume by the induction hypothesis that (8) is true for all S ⊆ Zmt where
1 ≤ m < n. For all i ∈ [t], let

Si := {x¬n : x ∈ S, xn = i} (9)
(∂S)i := {x¬n : x ∈ ∂S, xn = i}. (10)

Since S is compressed for all 1 ≤ i ≤ j ≤ t, we have that Si ⊇ Sj . Thus, if i ∈ {2, . . . , t}
is nonzero, for any x ∈ (∂S)i, there is y ∈ S1 connected to x by an edge of Kn−1

t . Thus,
∂S1 ⊆ (∂S)i. Similarly, for any x ∈ (∂S)1, there is y ∈ S2 such that x is disjoint from y.
Therefore, ∂S2 ⊆ (∂S)1. Putting these together,

µ(∂S) = 1
t

∑
i∈[t]

µ((∂S)i)

≥ 1
t
(µ(∂S2) + (t− 1)µ(∂S1))

≥ 1
t

(
µ(S2)1/η(t) + (t− 1)µ(S1)1/η(t)

)
,

where we applied the inductive hypothesis in the last step. Applying Claim 2.6, using the

J. Brakensiek 33:7

fact that 0 ≤ µ(S2) ≤ µ(S1), we have that

µ(∂(S)) ≥ 1
t

(
µ(S2)1/η(t) + (t− 1)µ(S1)1/η(t)

)
≥ t− 1

t
(µ(S1) + (t− 1)µ(S2))1/η(t)

≥ t− 1
t

∑
i∈[t]

µ(Si)

1/η(t)

=

1
t

∑
i∈[t]

µ(Si)

1/η(t)

= µ(S)1/η(t),

as desired. J

Claim 2.5 and Lemma 2.7 together imply Theorem 1.1.

2.3 A fine-tuned understanding of the isoperimetric profile
Recall that the (vertex) isoperimetric profile of a graph G is

Φ(G, ν) := inf{µ(∂S) : µ(S) ≥ ν}.

For t ≥ 3 fixed, define

Φt(ν) := inf
n≥1

Φ(Kn
t , ν).

Note that Φt is non-decreasing. To avoid complications with the discrete behavior of Φ(Kn
t , ν)

when n is small, it is easier to instead work with Φt(ν). By Theorem 1.1,

Φt(ν) ≥ ν1/η(t). (11)

This is tight whenever ν = t−k for any integer k ≥ 0, but ceases to be tight when logt(ν) is
non-integral (see Figure 1).

The following recursive relationship allows one to compute Φt(ν) to arbitrary precision.

I Theorem 2.8. For all t ≥ 3,

Φt(ν) =

t−1
t Φt(tν) ν < 1/t
t−1
t + 1

tΦt
(
tν−1
t−1

)
ν ≥ 1/t

. (12)

Using the simple fact that Φt(0) = 0 and Φt(1) = 1, the above equation is extremely powerful.
For example,

Φ3

(
5
9

)
= 2

3 + 1
3Φ3

(
1
3

)
= 8

9 ,

which is an exact bound compared to (5
9)1/η(3) ≈ 7.24

9 . This recursion is what allowed the
creation of Figure 1.

Theorem 2.8 is proved in the full version. This more refined understanding of Φt proves
critical in the combinatorial proof of Theorem 1.5.

APPROX/RANDOM’17

33:8 Vertex Isoperimetry and Independent Set Stability for Tensor Powers of Cliques

0.0 0.2 0.4 0.6 0.8 1.0
ν

0.0

0.2

0.4

0.6

0.8

1.0

Φt

Φt(ν) t = 3

Figure 1 A graph of Φt(ν) for t = 3. The dashed curve ν1/η(t) is for reference.

3 Independent set stability results

In this section, we seek to prove the main independent set stability result, Theorem 1.5. This
is done in two stages. First, we prove a simpler version (Theorem 1.3) where we use the
weaker vertex isoperimetry inequality to amplify Theorem 1.2 of [1] in a “black-box” manner.
Second, we utilize the fine-grained vertex isoperimetry inequality in a fully combinatorial
inductive proof to obtain the full Theorem 1.5 without dependence of Theorem 1.2 of [1].

3.1 Black-box result for clique tensor powers
First, we show that if a large independent set I is somewhat close to a maximum-sized
independent set J , then it is really close to J . We fix positive integers n and t ≥ 3.

I Lemma 3.1. Let I ⊂ [t]n be an independent set with ε := 1− tµ(I). Assume there exists a
maximum-sized independent set J such that

µ(I \ J) < 1
t3
.

Then,

µ(I \ J) < 4εη(t).

Proof. Without loss of generality, we may assume that J = [t]n−1×[1]. Pick J ′ = [t]n−1×{j}
such that j 6= 1 but otherwise µ(I ∩ J ′) is maximal. Let δ := µ(I \ J). Since J and J ′ are
disjoint, we have that

µ(I ∩ J ′) ≥ µ(I \ J)
t− 1 = δ

t− 1 .

Now, consider S = ∂(I ∩ J ′). Recall the definition of Sk ⊆ [t]n−1 from (9). Since I ∩ J ′ ⊆ J ′
has the property that every element has the same last coordinate, Sk = Sk′ for all k, k′ 6= j

and Sj = ∅. Thus, µ(Sk) = t
t−1µ(S) for all k 6= j. Therefore,

µ(S ∩ J) = 1
t
µ((S ∩ J)i) = 1

t
µ(Si) = 1

t− 1µ(S).

J. Brakensiek 33:9

0.00 0.05 0.10 0.15 0.20 0.25
δ

0.00

0.05

0.10

0.15

0.20

0.25

ε

ε ≥
(
tδ
t−1

)1/η(t) − tδ, t = 3

Figure 2 Plot of (15) when t = 3. Notice the bifurcation of solutions to (15) for a fixed ε (line
ε = 0.05 is dashed).

Applying Theorem 1.1, we get that

µ(S ∩ J) = 1
t− 1µ(∂(I ∩ J ′)) ≥ 1

t− 1µ(I ∩ J ′)1/η(t) ≥ 1
t− 1

(
δ

t− 1

)1/η(t)
.

Since I is an independent set, ∂I is disjoint from I. Since S ∩ J = ∂(I ∩ J ′)∩ J ⊆ ∂I, we
have that I ∩ J and S ∩ J are disjoint. Therefore,

µ(I ∩ J) ≤ µ(J)− µ(S ∩ J) ≤ 1
t
− 1
t− 1

(
δ

t− 1

)1/η(t)
. (13)

But, we also know that

µ(I ∩ J) = µ(I)− µ(I \ J) = 1
t
(1− ε)− δ. (14)

By (13) and (14)

1
t
(1− ε)− δ ≤ 1

t
− 1
t− 1

(
δ

t− 1

)1/η(t)
= 1
t
− 1
t

(
tδ

t− 1

)1/η(t)
.

Thus,

ε ≥
(

tδ

t− 1

)1/η(t)
− tδ ≥ δ1/η(t) − tδ. (15)

Consider Figure 2 which has a plot of the RHS of (15) when t = 3. If ε is sufficiently small,
then the inequality holds only when δ is very small (polynomial in ε) or very large (about 1

t).
Since is ‘moderately’ small (δ ≤ 1

t3), we must have that δ is very small. Quantitatively, note
that

tδ = tδ1/η(t)δ1−1/η(t)

≤ tδ1/η(t)
(

1
t3

)1−1/η(t)

= tδ1/η(t) 1
t3

(
t3

(t− 1)3

)
≤ tδ1/η(t)

(t− 1)3 .

APPROX/RANDOM’17

33:10 Vertex Isoperimetry and Independent Set Stability for Tensor Powers of Cliques

So

ε ≥ δ1/η(t)
(

1− t

(t− 1)3

)
.

Therefore,

δ ≤
(

(t− 1)3

(t− 1)3 − t

)η(t)

εη(t) ≤ 4εη(t),

where the last inequality follows from the following claim which is proved in Appendix A.

I Claim 3.2. For all t ≥ 3,(
(t− 1)3

(t− 1)3 − t

)η(t)

≤ 4. J

We now use this lemma to ‘amplify’ Theorem 1.2 to prove Theorem 1.3.

Proof of Theorem 1.3. Set εt := 1
Ctt3

> 0. Consider any independent set I of of Kn
t such

that ε := 1− tµ(I) < εt. Pick any maximum-sized J guaranteed by Theorem 1.2 such that

δ := µ(I \ J) ≤ µ(I∆J) ≤ Ctε <
1
t3
. (16)

By Lemma 3.1, we have that

δ ≤ 4εη(t),

as desired. J

3.2 Improved stability result for clique tensor powers
In this section we improve εt in Theorem 1.3 to an explicit expression. In fact, we may show
that

εt = 1− 3
t

+ 2
t2

which corresponds to independent sets I for which µ(I) > 3t−2
t3 .

Proofs of claims and lemmas in this section are reserved for the full version.
First, we try to show that if an independent set I is large enough, then I is either very

close to or very far from a maximum-sized independent set. To do this, we show that if I is
‘moderately far’ from a maximum-sized independent set, then this moderate-sized portion
which is not in the maximum-sized independent set has such a large vertex boundary that it
precludes a large portion of the maximum-sized independent set from being part of I, forcing
the density of I to be at or below our threshold of 3t−2

t3 .
We need a notation for the maximum sized independent sets. For all i ∈ [t] and j ∈ [n]

let

Ji,j = [t]j−1 × {i} × [t]n−j . (17)

We say that I is sorted if there exists that for all i1, i2 ∈ [t] and j ∈ [n] we have that
i1 ≤ i2 implies that

µ(I ∩ Ji1,j) ≤ µ(I ∩ Ji2,j).

Note that unlike compressions, we may assume without loss of generality that I is sorted
since permuting the labels so that an independent set is sorted does not change its intersection
sizes with the maximum independent sets.

J. Brakensiek 33:11

I Claim 3.3. Let I ⊂ [t]n be a sorted independent set such that µ(I) > 3t−2
t3 (or 1−tµ(I) < εt),

then for all j ∈ [n],

µ(I \ J1,j) <
t− 1
t4

or µ(I \ J1,j) >
t− 1
t3

. (18)

From Theorem 2.8, we can attain a bound that is even better.

I Claim 3.4. Let I ⊂ [t]n be a sorted independent set such that µ(I) > 3t−2
t3 , then for all

j ∈ [n],

µ(I \ J1,j) <
t− 1
t4

or µ(I \ J1,j) >
(2t− 1)(t− 1)

t4
. (19)

The next key step is to show Theorem 1.5 essentially holds for compressed independent
sets I.

I Lemma 3.5. Let I ⊂ [t]n be a compressed independent set such that µ(I) > 3t−2
t3 , then for

some j ∈ [n],

µ(I \ J1,j) <
t− 1
t4

. (20)

Note that by Lemma 3.1, we immediately have that Theorem 1.5 holds for compressed
independent sets.

Now we extend this result to sorted independent sets; and thus all independent sets.

I Lemma 3.6. Let I ⊂ [t]n be a sorted independent set such that µ(I) > 3t−2
t3 , then for some

j ∈ [n],

µ(I \ J1,j) <
t− 1
t4

. (21)

Proof of Theorem 1.5. Let I ⊂ [t]n be an independent set with µ(I) > 3t−2
t3 . Assume

without loss of generality that I is sorted. By Lemma 3.6, we know that there is j ∈ [n] such
that

µ(I \ J1,j) ≤
t− 1
t4

<
1
t3
.

Thus, by Lemma 3.1, we have that

µ(I \ J1,j) ≤ 4εη(t),

as desired. J

Acknowledgments. The author is indebted to Venkatesan Guruswami for numerous in-
sightful discussions and comments, in particular for pointing the author to [1].

The author would also like to thank Boris Bukh and Po-Shen Loh for helpful comments
and discussions as well as David Ellis and anonymous reviewers for comments on an earlier
version of the manuscript.

The 2D plots were created using Matplotlib [25]. The 3D visualizations were created
using Asymptote [23].

APPROX/RANDOM’17

33:12 Vertex Isoperimetry and Independent Set Stability for Tensor Powers of Cliques

References

1 N. Alon, I. Dinur, E. Friedgut, and B. Sudakov. Graph Products, Fourier Analysis and
Spectral Techniques. Geometric & Functional Analysis GAFA, 14(5):913–940, 2004. doi:
10.1007/s00039-004-0478-3.

2 Noga Alon and Joel H. Spencer. The Probabilistic Method. John Wiley & Sons, April 2004.
Google-Books-ID: q3lUjheWiMoC.

3 József Balogh and Dhruv Mubayi. A new short proof of a theorem of Ahlswede and
Khachatrian. Journal of Combinatorial Theory, Series A, 115(2):326–330, February 2008.
doi:10.1016/j.jcta.2007.03.010.

4 S. Bobkov, C. Houdré, and P. Tetali. λ∞, Vertex Isoperimetry and Concentration. Combi-
natorica, 20(2):153–172, February 2000. doi:10.1007/s004930070018.

5 Béla Bollobás and Imre Leader. Compressions and isoperimetric inequalities. Journal of
Combinatorial Theory, Series A, 56(1):47–62, January 1991. doi:10.1016/0097-3165(91)
90021-8.

6 Joshua Brakensiek. Vertex isoperimetry and independent set stability for tensor powers
of cliques. arXiv:1702.04432 [cs, math], February 2017. arXiv: 1702.04432. URL: http:
//arxiv.org/abs/1702.04432.

7 Joshua Brakensiek and Venkatesan Guruswami. New Hardness Results for Graph and
Hypergraph Colorings. In Ran Raz, editor, 31st Conference on Computational Complexity
(CCC 2016), volume 50 of Leibniz International Proceedings in Informatics (LIPIcs), pages
14:1–14:27, Dagstuhl, Germany, 2016. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.CCC.2016.14.

8 Demetres Christofides, David Ellis, and Peter Keevash. An Approximate Vertex-
Isoperimetric Inequality for r-sets. The Electronic Journal of Combinatorics, 20(4):P15, Au-
gust 2013. URL: http://www.combinatorics.org/ojs/index.php/eljc/article/view/
v20i4p15.

9 Irit Dinur and Ehud Friedgut. Intersecting Families Are Essentially Contained in Juntas.
Comb. Probab. Comput., 18(1-2):107–122, March 2009. doi:10.1017/S0963548308009309.

10 Irit Dinur, Ehud Friedgut, and Oded Regev. Independent Sets in Graph Powers are Almost
Contained in Juntas. Geometric and Functional Analysis, 18(1):77–97, April 2008. doi:
10.1007/s00039-008-0651-1.

11 Irit Dinur and Samuel Safra. On the Hardness of Approximating Minimum Vertex Cover.
Annals of Mathematics, 162(1):439–485, 2005. URL: http://www.jstor.org/stable/
3597377.

12 David Ellis, Gil Kalai, and Bhargav Narayanan. On symmetric intersecting families.
arXiv:1702.02607 [math], February 2017. arXiv: 1702.02607. URL: http://arxiv.org/
abs/1702.02607.

13 David Ellis, Nathan Keller, and Noam Lifshitz. On the structure of subsets of the dis-
crete cube with small edge boundary. arXiv:1612.06680 [math], December 2016. arXiv:
1612.06680. URL: http://arxiv.org/abs/1612.06680.

14 David Ellis, Nathan Keller, and Noam Lifshitz. Stability versions of Erdős-Ko-Rado type
theorems, via isoperimetry. arXiv:1604.02160 [math], April 2016. arXiv: 1604.02160. URL:
http://arxiv.org/abs/1604.02160.

15 David Ellis, Nathan Keller, and Noam Lifshitz. On a Biased Edge Isoperimetric Inequality
for the Discrete Cube. arXiv:1702.01675 [math], February 2017. arXiv: 1702.01675. URL:
http://arxiv.org/abs/1702.01675.

16 David Ellis and Noam Lifshitz. On the union of intersecting families. arXiv:1610.03027
[math], October 2016. arXiv: 1610.03027. URL: http://arxiv.org/abs/1610.03027.

http://dx.doi.org/10.1007/s00039-004-0478-3
http://dx.doi.org/10.1007/s00039-004-0478-3
http://dx.doi.org/10.1016/j.jcta.2007.03.010
http://dx.doi.org/10.1007/s004930070018
http://dx.doi.org/10.1016/0097-3165(91)90021-8
http://dx.doi.org/10.1016/0097-3165(91)90021-8
http://arxiv.org/abs/1702.04432
http://arxiv.org/abs/1702.04432
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.14
http://www.combinatorics.org/ojs/index.php/eljc/article/ view/v20i4p15
http://www.combinatorics.org/ojs/index.php/eljc/article/ view/v20i4p15
http://dx.doi.org/10.1017/S0963548308009309
http://dx.doi.org/10.1007/s00039-008-0651-1
http://dx.doi.org/10.1007/s00039-008-0651-1
http://www.jstor.org/stable/3597377
http://www.jstor.org/stable/3597377
http://arxiv.org/abs/1702.02607
http://arxiv.org/abs/1702.02607
http://arxiv.org/abs/1612.06680
http://arxiv.org/abs/1604.02160
http://arxiv.org/abs/1702.01675
http://arxiv.org/abs/1610.03027

J. Brakensiek 33:13

17 Yuval Filmus. Ahlswede-Khachatrian Theorems: Weighted, Infinite, and Hamming.
arXiv:1610.00756 [math], October 2016. arXiv: 1610.00756. URL: http://arxiv.org/
abs/1610.00756.

18 Yuval Filmus, Guy Kindler, Elchanan Mossel, and Karl Wimmer. Invariance Principle
on the Slice. In Ran Raz, editor, 31st Conference on Computational Complexity (CCC
2016), volume 50 of Leibniz International Proceedings in Informatics (LIPIcs), pages 15:1–
15:10, Dagstuhl, Germany, 2016. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:
10.4230/LIPIcs.CCC.2016.15.

19 Yuval Filmus and Elchanan Mossel. Harmonicity and Invariance on Slices of the Boolean
Cube. In Ran Raz, editor, 31st Conference on Computational Complexity (CCC 2016),
volume 50 of Leibniz International Proceedings in Informatics (LIPIcs), pages 16:1–16:13,
Dagstuhl, Germany, 2016. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.
4230/LIPIcs.CCC.2016.16.

20 Ehud Friedgut. On the measure of intersecting families, uniqueness and stability. Combi-
natorica, 28(5):503–528, September 2008. doi:10.1007/s00493-008-2318-9.

21 Mahya Ghandehari and Hamed Hatami. Fourier analysis and large independent sets in
powers of complete graphs. Journal of Combinatorial Theory, Series B, 98(1):164–172,
January 2008. doi:10.1016/j.jctb.2007.06.003.

22 D. Greenwell and L. Lovász. Applications of product colouring. Acta Mathematica
Academiae Scientiarum Hungarica, 25(3-4):335–340, September 1974. doi:10.1007/
BF01886093.

23 Andy Hammerlindl, John Bowman, and Tom Prince. Asymptote: The vector graphics
language, 2014.

24 A. J.W. Hilton and E.C. Milner. Some intersection theorems for systems of finite sets. The
Quarterly Journal of Mathematics, 18:369–384, 1967. doi:10.1093/qmath/18.1.369.

25 John D. Hunter. Matplotlib: A 2d Graphics Environment. Computing in Science & Engi-
neering, 9(3):90–95, May 2007. doi:10.1109/MCSE.2007.55.

26 Peter Keevash. Shadows and intersections: Stability and new proofs. Advances in Mathe-
matics, 218(5):1685–1703, August 2008. doi:10.1016/j.aim.2008.03.023.

27 Peter Keevash and Dhruv Mubayi. Set systems without a simplex or a cluster. Combina-
torica, 30(2):175–200, March 2010. doi:10.1007/s00493-010-2401-x.

28 Nathan Keller and Noam Lifshitz. On Large H-Intersecting Families. arXiv:1609.01884
[math], September 2016. arXiv: 1609.01884. URL: http://arxiv.org/abs/1609.01884.

29 Nathan Keller and Noam Lifshitz. A tight stability version of the Complete Intersection
Theorem. arXiv:1604.06135 [math], April 2016. arXiv: 1604.06135. URL: http://arxiv.
org/abs/1604.06135.

30 N. Sauer. On the density of families of sets. Journal of Combinatorial Theory, Series A,
13(1):145–147, July 1972. doi:10.1016/0097-3165(72)90019-2.

31 Saharon Shelah. A combinatorial problem; stability and order for models and theories in
infinitary languages. Pacific Journal of Mathematics, 41(1):247–261, April 1972. URL:
http://msp.org/pjm/1972/41-1/p21.xhtml.

A Proofs of algebraic inequalities

Proof of Claim 2.6. Let α(t) = 1/η(t). For c ≥ 0, let fc(z) = (z + c)α(t) − zα(t). Notice
that if z > 0, then f ′c(z) = (α(t))((z + c)α(t)−1 − zα(t)−1) ≤ 0. Thus, we have that
(t− 1)fc(y) ≥ (t− 1)fc(x) for all c ≥ 0. Consider c = (t− 1)y; we then have that

(t− 1)fc(y) = (t− 1)((ty)α(t) − yα(t)) = (t− 1)(tα(t) − 1)yα(t) = yα(t) ≥

(t− 1)fc(x) = (t− 1)((x+ (t− 1)y)α(t) − xα(t)).

Rearranging, we obtain (7). J

APPROX/RANDOM’17

http://arxiv.org/abs/1610.00756
http://arxiv.org/abs/1610.00756
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.15
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.15
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.16
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.16
http://dx.doi.org/10.1007/s00493-008-2318-9
http://dx.doi.org/10.1016/j.jctb.2007.06.003
http://dx.doi.org/10.1007/BF01886093
http://dx.doi.org/10.1007/BF01886093
http://dx.doi.org/10.1093/qmath/18.1.369
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1016/j.aim.2008.03.023
http://dx.doi.org/10.1007/s00493-010-2401-x
http://arxiv.org/abs/1609.01884
http://arxiv.org/abs/1604.06135
http://arxiv.org/abs/1604.06135
http://dx.doi.org/10.1016/0097-3165(72)90019-2
http://msp.org/pjm/1972/41-1/p21.xhtml

33:14 Vertex Isoperimetry and Independent Set Stability for Tensor Powers of Cliques

Proof of Claim 3.2. First, verify the cases t = 3 and t = 4 using a calculator. Notice that
η(t) = log t

log t−log(t−1) ≤ t log t so(
(t− 1)3

(t− 1)3 − t

)η(t)

≤ e
tη(t)

(t−1)3−t ≤ e
t2 log t

(t−1)3−t .

Also use a calculator to verify that h(t) := t2 log t
(t−1)3−t is less than 1 for t = 5. Now observe

that when going from t to t+ 1, the numerator increases by

(t+ 1)2 log(t+ 1)− t2 log t = (2t+ 1) log(t+ 1) + t2 log(1 + 1
t
)

≤ (2t+ 1) log(t+ 1) + t ≤ (2t+ 1)t+ t

= 2t2 + 2t.

and the denominator increases by

t3 − (t+ 1)− (t− 1)3 + t = 3t2 − 3t

Since 2t2 + 2t ≤ 3t2 − 3t for all t ≥ 5 and h(5) ≤ 1, we have by a simple inductive proof that
h(t) ≤ 1 for all t ≥ 5. Thus, for all t ≥ 5,(

(t− 1)3

(t− 1)3 − t

)η(t)

≤ e1 < 4,

as desired. J

B Optimality of exponent in Theorem 1.3

In this appendix, we show in (4) of Theorem 1.3 that the exponent η(t) = log t
log t−log(t−1) is

optimal and that the constant factor of 4 is nearly optimal. In other words, the stability
result is optimal up to a constant factor.

I Lemma 2.1. For all t ≥ 3, there exists an infinite sequence of independent sets {In}n≥3
such that In ⊂ [t]n, εn = 1 − tµ(In) > 0 tends to 0 as n → ∞, and for any n and any
maximum-sized independent set Jn of Kn

t ,

µ(In \ Jn) > t− 1
t

εη(t).

Proof. For n ≥ 3, consider Jn = [1]× [t]n−1 and

In := (([t]× [1]n−1) ∪ Jn) \ ([1]× {2, . . . , t− 1}n) (22)

See Figure 3 for a visualization. It has been noted to the author that this construction is
similar in structure to the constructions in the Hilton-Milner theorem [24].

One may check that In is an independent set ofKn
t and Jn is a maximum-sized independent

set which minimizes µ(In \ Jn). Furthermore,

µ(In) = t− 1
tn

+ 1
t
− (t− 1)n−1

tn
.

Thus,

εn = (t− 1)n−1 − (t− 1)
tn−1 (23)

δn := µ(In \ Jn) = t− 1
tn

. (24)

J. Brakensiek 33:15

Figure 3 Schematic of I3 when t = 3.

Notice that since t1/η(t) = t−1
t .

δ1/η(t)
n = (t− 1)1/η(t)

tn/η(t)

=
(
t− 1
t

)1/η(t)(
t− 1
t

)n−1

=
(
t− 1
t

)1/η(t)
(εn + tδn)

>

(
t− 1
t

)1/η(t)
εn.

Therefore, raising both sides to the η(t) power,

δn >
t− 1
t

εη(t)
n ,

as desired. J

APPROX/RANDOM’17

Polynomial Mixing of the Edge-Flip Markov Chain
for Unbiased Dyadic Tilings∗

Sarah Cannon1, David A. Levin2, and Alexandre Stauffer3

1 College of Computing, Georgia Institute of Technology, Atlanta, GA, USA
sarah.cannon@gatech.edu

2 Department of Mathematics, University of Oregon, Eugene, OR, USA
dlevin@uoregon.edu

3 Department of Mathematical Sciences, University of Bath, Bath, UK
a.stauffer@bath.ac.uk

Abstract
We give the first polynomial upper bound on the mixing time of the edge-flip Markov chain
for unbiased dyadic tilings, resolving an open problem originally posed by Janson, Randall, and
Spencer in 2002 [16]. A dyadic tiling of size n is a tiling of the unit square by n non-overlapping
dyadic rectangles, each of area 1/n, where a dyadic rectangle is any rectangle that can be written
in the form [a2−s, (a+ 1)2−s]× [b2−t, (b+ 1)2−t] for a, b, s, t ∈ Z≥0. The edge-flip Markov chain
selects a random edge of the tiling and replaces it with its perpendicular bisector if doing so yields
a valid dyadic tiling. Specifically, we show that the relaxation time of the edge-flip Markov chain
for dyadic tilings is at most O(n4.09), which implies that the mixing time is at most O(n5.09).
We complement this by showing that the relaxation time is at least Ω(n1.38), improving upon
the previously best lower bound of Ω(n logn) coming from the diameter of the chain.

1998 ACM Subject Classification G.3 Markov Processes, G.2.1 Combinatorics

Keywords and phrases Random dyadic tilings, spectral gap, rapid mixing

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.34

1 Introduction

We study the edge-flip Markov chain for dyadic tilings. An interval is dyadic if it can be
written in the form [a2−s, (a+ 1)2−s] for non-negative integers a and s with 0 ≤ a < 2s. A
rectangle is dyadic if it is the Cartesian product of two dyadic intervals. A dyadic tiling of
size n is a tiling of the unit square by n non-overlapping dyadic rectangles with the same area
1/n; see Figure 1. Lagarias, Spencer, and Vinson [17] showed that dyadic tilings are precisely
those tilings that can be constructed by bisecting the unit square, either horizontally or
vertically; bisecting each half again, either horizontally or vertically; and repeatedly bisecting
all remaining rectangular regions until there are n total dyadic rectangles, each of equal area.
We necessarily assume n is a power of 2. There is a natural Markov chain which connects
the state space of all dyadic tilings of size n by moves we refer to as edge-flips.

We analyze this edge-flip Markov chain over the set of dyadic tilings of size n. Given
any dyadic tiling, this chain evolves by selecting an edge of the tiling uniformly at random
and replacing it by its perpendicular bisector, if doing so yields a valid dyadic tiling of size

∗ This work was partially supported by NSF DGE-1650044 and a grant from the Simons Foundation
(#361047) (Cannon), a Marie Curie Career Integration Grant PCIG13-GA-2013-618588 DSRELIS and
an EPSRC Early Career Fellowship (Stauffer).

© Sarah Cannon, David A. Levin, and Alexandre Stauffer;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 34; pp. 34:1–34:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.34
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

34:2 Polynomial Mixing of the Edge-Flip Markov Chain for Unbiased Dyadic Tilings

(a) (b) (c)

Figure 1 (a) A dyadic tiling of size 16 with a vertical bisector. (b) A dyadic tiling of size 16 with
both a vertical and horizontal bisector. (c) A tiling that is not dyadic; the vertical component of the
shaded rectangles is not a dyadic interval.

n; an illustration is given in Figure 2(a). Our main result gives the first polynomial upper
bound for the mixing time of this Markov chain. (The precise definitions of mixing time and
relaxation time are deferred to Section 2.2.) In this paper, all logarithms have base 2.

I Theorem 1. The relaxation time of the edge-flip Markov chain for dyadic tilings of size n
is at most O(nlog 17). As a consequence, the mixing time of this chain is at most O(n1+log 17).

The best previously known lower bound for the mixing time is Ω(n logn), which is a
simple consequence of the fact that the diameter of the Markov chain is of order n logn [16].
In the theorem below we improve this bound.

I Theorem 2. The relaxation time and mixing time of the edge-flip Markov chain for dyadic
tilings of size n are both at least Ω(n2 logφ), where φ =

√
5+1
2 is the golden ratio.

We note that log 17 ∼ 4.09 and 2 log φ ∼ 1.38.

1.1 Related work
The edge-flip Markov chain for dyadic tilings was first considered by Janson, Randall, and
Spencer in 2002 [16], who showed it is irreducible but left as an open problem to derive that
the mixing time is polynomial in n. Instead, they presented another Markov chain, which
has additional global moves consisting of rotations at all scales, and showed that this chain
mixes in polynomial time. However, applications of the comparison technique of Diaconis
and Saloff-Coste [10] have failed to extend this polynomial mixing bound to the more natural
edge-flip Markov chain (which, in fact, corresponds to only performing rotations at the
smallest scale).

Cannon, Miracle, and Randall considered the mixing time of the edge-flip Markov chain
for a weighted version of dyadic tilings [3]. In this version, given a parameter λ > 0, the
stationary probability of a dyadic tiling x is proportional to λ|x|, where |x| is the sum of the
length of the edges of x. The Metropolis rule [24] is incorporated into the edge-flip Markov
chain so that the chain has the desired stationary distribution. They showed the mixing
time of this chain is at least exponential in n2 for any λ > 1, and at most O(n2 logn) for
any λ < 1. This establishes a phase transition at critical point λ = 1, which corresponds
to the unweighted case considered here. However, their techniques did not extend to the
critical point, and they left as an open problem bounding the mixing time when λ = 1; it is
notoriously often quite difficult to bound mixing times at or near critical points. Our main
result, Theorem 1, uses a different, non-local approach to finally answer the question of [16]

S. Cannon, D. A. Levin, and A. Stauffer 34:3

and [3] by showing the mixing time of the edge-flip Markov chain at critical point λ = 1 is at
most polynomial in n, substantially less than the mixing time when λ > 1. Furthermore, our
Theorem 2 combined with the result for the weighted case in [3] shows that the behavior at
the (unweighted) critical point λ = 1 is also substantially different than when λ < 1. While
it follows from the path coupling analysis in [3] that the relaxation time is O(n) for all fixed
λ < 1, Theorem 2 establishes a super-linear lower bound on the relaxation time when λ = 1.
(The path coupling technique is due to [1].)

It is a general principle in statistical physics that in systems with some bias parameter
(temperature) that induces different phases, the mixing time of the natural heat-bath dynamics
should be as fast as possible at high temperature, a larger polynomial at the critical
temperature, and exponential at low temperature. (See [20] for a precise statement for
the Ising model on the square lattice.) However, there are very few instances for which
this behavior has been rigorously confirmed. Exceptions are the Ising model on complete
graphs [18, 11], regular trees [12], and the two-dimensional lattice [20], and the Potts model
on the complete graph [9] and the two-dimensional lattice [13], all of which required significant
effort to analyze. The edge-flip Markov chain for dyadic tilings is an example of heat-bath
dynamics, and the parameter λ introduced by Cannon et al. can be viewed as a function of
inverse temperature. Their work confirms exponential mixing at low temperature (λ > 1)
and polynomial mixing at high temperature (λ < 1). Our work shows that the mixing time
at the critical point (λ = 1) is indeed polynomial but strictly larger than the diameter of
the state space (which is n log(n)/2), providing further evidence for the general statistical
physics principle above.

Variants of the edge-flip Markov chain offer a natural way to sample from many structures,
but establishing rigorous polynomial upper bounds on the mixing time has often proven
difficult, even in simple cases. Perhaps the most studied case is that of triangulations of a
given point set; efficiently generating uniformly random triangulations of general planar point
sets has been a problem of great interest in computer graphics and computational geometry.
However, the mixing time of the edge-flip Markov chain for triangulations remains open in
the general case, and no polynomial upper bound is known. The only known exception is for
n points in convex position, which corresponds to triangulations of a convex polygon. In this
case, the edge-flip Markov chain is known to mix in at most O(n5) steps [23], but the correct
order of the mixing time is still unknown. For the case of lattice triangulations, which are
triangulations of an m× n grid of points, no polynomial upper bound on the mixing time is
known even when m ≥ 2 is kept fixed as n→∞. The only known results in this case are
limited to the weighted case [4, 5, 27].

Another example of a related Markov chain that uses natural edge-flip type moves is
the switch Markov chain for sampling from graphs with a given degree sequence. In this
chain, at each iteration two random non-adjacent edges are removed and their four endpoints
are randomly rematched; the move is rejected if it results in a multiple edge. Again, in the
general case the mixing time of this Markov chain is unknown, though polynomial upper
bounds exist when certain restrictions are placed on the degree sequence [8, 14].

For the case of rectangular tilings, results for the mixing time of the edge-flip Markov
chain have been quite rare. One important result was obtained for domino tilings, which are
tilings of an n×n square by rectangles of dimensions 1× 2 or 2× 1. In this case, the edge-flip
Markov chain is known to mix in time polynomial in the number of dominoes, a result that
heavily relies on the connection between domino tilings and random lattice paths [21, 25].

The case of dyadic tilings exhibits interesting asymptotic properties that have been
studied by combinatorialists [17, 16]. Tilings in which all rectangles are dyadic, but may

APPROX/RANDOM’17

34:4 Polynomial Mixing of the Edge-Flip Markov Chain for Unbiased Dyadic Tilings

have different areas, have been used as a basis for subdivision algorithms to solve problems
such as approximating singular algebraic curves [2] and classifying data using decision trees
[26]. In both of these examples, the unit square is repeatedly subdivided into smaller and
smaller dyadic rectangles until the desired approximation or classification is achieved, with
more subdivisions in the areas of the most interest (e.g., near the algebraic curve or where
data classified differently is close together).

1.2 Proof ideas

We identify a certain block structure on dyadic tilings that allows us to relate the spectral
gap of the edge-flip Markov chain to that of another, simpler Markov chain. In the simpler
Markov chain, which we refer to as the block dynamics, for each transition a large region
of the tiling is selected and retiled uniformly at random, if possible. At the smallest scale,
n = 4, these correspond to exactly the moves of the (lazy) edge-flip Markov chain. The
structure of these block moves allows us to set up a recursion that relates the spectral gap of
the edge-flip Markov chain for tilings of size n with that of sizes smaller than n and that of
the block dynamics. This produces an inverse polynomial lower bound on the spectral gap of
the edge-flip Markov chain.

Specifically, we adapt a bisection approach inspired by spin system analysis [22, 6]. We
bound the spectral gap γk of the Markov chainMk for dyadic tilings of size n = 2k by the
product of the spectral gap γblock of the block dynamics Markov chain and the spectral gap
γk−1 ofMk−1, and then use recursion to obtain γk ≥ (γblock)k = (γblock)logn. As γblock is
constant, this implies a polynomial relaxation time and thus a polynomial mixing time.

To establish the explicit upper bound in Theorem 1, we use a coupling argument to
bound γblock; see, e.g., Chapter 13 of [19]. The distance metric we use is a carefully weighted
average of two different notions of distance between tilings. We do a case analysis and show
this distance metric contracts by a factor of at least 1 − 1/17 in each step, implying the
spectral gap γblock is at least 1/17.

We use a distinguishing statistic to show the mixing time and relaxation time of the
edge-flip Markov chain for dyadic tilings are at least Ω(n1.38); again, see Chapter 13 of [19].
That is, we define a specific function f on the state space of all dyadic tilings of size n = 2k.
By considering the variance and Dirichlet form of f , and using combinatorial properties of
dyadic tilings, we can give an upper bound on the spectral gap and thus a lower bound on
the relaxation and mixing times.

2 Background

Here we present some necessary information on dyadic tilings, including their asymptotic
behavior, and on Markov chains, including mixing time and local variance.

2.1 Dyadic Tilings

A dyadic interval is an interval that can be written in the form [a2−s, (a+ 1)2−s] for non-
negative integers a and s with 0 ≤ a < 2s. A dyadic rectangle is the product of two dyadic
intervals. A dyadic tiling of size n = 2k is a tiling of the unit square by n dyadic rectangles
of equal area 1/n = 2−k that do not overlap except on their boundaries; see Figure 1. Let Ωk
be the set of all dyadic tilings of size n = 2k. We say a dyadic tiling has a vertical bisector if
the line x = 1/2 does not intersect the interior of any dyadic rectangle in the tiling. We say

S. Cannon, D. A. Levin, and A. Stauffer 34:5

it has a horizontal bisector if the same is true of the line y = 1/2. It is easy to prove that
every dyadic tiling of size n > 1 has a horizontal bisector or a vertical bisector.

The asymptotics of dyadic tilings were first explored by Lagarias, Spencer, and Vinson
[17], and we present a summary of their results. Let Ak = |Ωk| denote the number of dyadic
tilings of size n = 2k. The unit square is the unique dyadic tiling consisting of one dyadic
rectangle, so A0 = 1. There are two dyadic tilings of size 2, since the unit square may be
divided by either a horizontal or vertical bisector, so A1 = 2. One can also observe that
A2 = 7, A3 = 82, A4 = 11047 (The sequence appears in the Online Encyclopedia of
Integer Sequences (OEIS) as A062764. [15]) In fact, the values Ak can be shown to satisfy
the recurrence Ak = 2A2

k−1 − A4
k−2; we include a proof of this fact as presented in [16],

because we will use these ideas later.

I Proposition 3 ([17]). For k ≥ 2, the number of dyadic tilings of size 2k is Ak = 2A2
k−1 −

A4
k−2.

Proof. A dyadic tiling of size 2k has a horizontal bisector, a vertical bisector, or both. If it
has a vertical bisector, the number of ways to tile the left half of the unit square is Ak−1; by
mapping x→ 2x, we can see that the left half of a dyadic tiling of size 2k is equivalent to a
dyadic tiling of the unit square of size 2k−1 because dyadic rectangles scaled by factors of two
remain dyadic. Similarly, mapping x→ 2x− 1, the right half of a dyadic tiling of size 2k is
equivalent to a dyadic tiling of size 2k−1. We conclude the number of dyadic tilings of size 2k
with a vertical bisector is A2

k−1. Similarly, by appealing to the maps y → 2y and y → 2y− 1,
the number of dyadic tilings of size 2k with a vertical bisector is A2

k−1. The number of dyadic
tilings of size 2k with both a horizontal and a vertical bisector is A4

k−2, as each quadrant of
any such tiling is equivalent to a dyadic tiling of size 2k−2. This follows from appealing to the
map (x, y)→ (2x, 2y) for the lower left quadrant, and appropriate translations of this for the
other three quadrants. Altogether, we see Ak = A2

k−1 +A2
k−1 −A4

k−2 = 2A2
k−1 −A4

k−2. J

It is believed this recurrence does not have a closed form solution. As proved in [17],
Ak ∼ φ−1ω2k = φ−1ωn, where φ = (1 +

√
5)/2 is the golden ratio and ω = 1.84454757...; an

exact value for ω is not known.
We now define a recurrence for another useful statistic. We say that a dyadic tiling has

a left half-bisector if the straight line segment from (0, 1/2) to (1/2, 1/2) doesn’t intersect
the interior of any dyadic rectangles. Figure 1(a) does not have a left half-bisector, while
Figure 1(b) does. We are interested in the number of ways to tile the left half of a vertically-
bisected dyadic tiling of size 2k such that it has a left half-bisector. Appealing to the dilation
maps defined in the proof of Proposition 3, this number is A2

k−2. Among all possible ways to
tile the left half of a vertically-bisected tiling σ ∈ Ωk, we define fk to be the fraction with a
left half-bisector. We see

fk =
A2
k−2

Ak−1
.

We can similarly define right half-bisectors, top half-bisectors, and bottom half-bisectors by
considering the straight line segments between (1/2, 1/2) and, respectively, (1, 1/2), (1/2, 1),
and (1/2, 0). Then fk is also the fraction of tilings of the right half of vertically-bisected
tiling σ with a right half-bisector, or the fraction of tilings of the top or bottom halves of a
horizontally-bisected tiling σ with a top or bottom half-bisector, respectively. Note f2 = 0.5,
f3 = 4/7 ∼ 0.571, and f4 = 49/82 ∼ 0.598. We now examine the asymptotic behavior of fk;
the following lemmas are proved in Section B.

I Lemma 4. For all k ≥ 3, fk = 1
2−f2

k−1
.

APPROX/RANDOM’17

34:6 Polynomial Mixing of the Edge-Flip Markov Chain for Unbiased Dyadic Tilings

I Lemma 5. The sequence {fk}∞k=2 is strictly increasing and bounded above by (
√

5− 1)/2.
Furthermore, limk→∞ fk = (

√
5− 1)/2.

2.2 Markov Chains
We will consider only discrete time Markov chains in this paper, though identical results hold
for the analogous continuous time Markov chains. Any finite ergodic Markov chain converges
to a unique stationary distribution π. The time a Markov chain with transition matrix P
takes to converge to its stationary distribution is measured by the total variation distance,
which captures how far the distribution after t steps is from the stationary distribution given
a worst case starting configuration:

‖P t − π‖TV = max
x∈Ω

1
2
∑
y∈Ω
|P t(x, y)− π(y)|.

The mixing time of a Markov chainM is defined to be

tmix(ε) = min{t : ‖P t
′
− π‖TV ≤ ε ∀ t′ ≥ t}.

For convenience, as is standard we define tmix = tmix(1/4).
We will bound the mixing time of the edge-flip Markov chain for dyadic tilings by studying

its relaxation time and spectral gap. The spectral gap γ of a Markov chainM with transition
matrix P is 1 − λ2, where λ2 is the second largest eigenvalue of P . A lazy Markov chain
is one where P (x, x) ≥ 1/2 for all x ∈ Ω; for a lazy Markov chainM, the relaxation time,
denoted by trel, is then the inverse of this spectral gap. We will see in the next section that
the edge-flip Markov chain for dyadic tilings is lazy. The following well-known proposition
relates the relaxation time and mixing time for Markov chains; for a proof, see, e.g., [19,
Theorem 12.3 and Theorem 12.4].

I Proposition 6. Let M be an ergodic Markov chain on state space Ω with reversible
transition matrix P and stationary distribution π. Let πmin = minx∈Ω π(x). Then:

(trel − 1) log
(

1
2ε

)
≤ tmix(ε) ≤ log

(
1

επmin

)
trel.

We will bound the spectral gap, and thus the relaxation and mixing times, of the edge-flip
Markov chain for dyadic tilings by considering functions on the chain’s state space. For
f : Ω→ R, the variance of f with respect to a distribution π on Ω can be expressed as:

varπ(f) =
∑
x∈Ω

π(x) (f(x)− Eπ[f(x)])2 = 1
2
∑
x,y∈Ω

π(x)π(y)(f(x)− f(y))2.

We will only be considering the variance with respect to the uniform distribution on Ω, so the
subscript π will be omitted. For a given reversible transition matrix P on state space Ω with
stationary distribution π, the Dirichlet form, also known as the local variance, associated to
the pair (P, π) is, for any function f : Ω→ R,

E(f) = 1
2
∑
x,y∈Ω

[f(x)− f(y)]2π(x)P (x, y).

As we see in the following well-known proposition, the Dirichlet form and variance of a
function f can be used to bound the spectral gap of a transition matrix, and therefore the
relaxation time and mixing time of a Markov chain; see, e.g., [19, Lemma 13.12].

S. Cannon, D. A. Levin, and A. Stauffer 34:7

R e R e Re

(a) (c)(b)

Figure 2 A random rectangle R and one of its edges e are selected in each iteration of Mk. (a)
Random choices of R and e as shown yield a valid edge flip. (b) Random choices of R and e as shown
do not yield a valid edge flip as flipping edge e results in a tiling that is not dyadic. (c) Random
choices of R and e as shown do not yield a valid edge flip as flipping edge e does not produce a tiling
of the unit square by rectangles.

I Proposition 7. Given a Markov chain with reversible transition matrix P and stationary
distribution π, the spectral gap γ = 1− λ2 of P satisfies

γ = min
f :Ω→R

varπ(f)6=0

E(f)
varπ(f) .

3 The Edge-Flip Markov Chain Mk

Let n = 2k. For k ≥ 1, the edge-flip Markov chainMk on the state space Ωk of all dyadic
tilings of size 2k is given by the following rules.

Beginning at any σ0 ∈ Ωk, repeat:
Choose a rectangle R of σi uniformly at random.
Choose left, right, top, or bottom uniformly at random; let e be the corresponding side
of R.
If e bisects a rectangle of area 2−k+1, remove e and replace it with its perpendicular
bisector to obtain σi+1 if the result is a valid dyadic tiling; else, set σi+1 = σi.

An example of an edge-flip move ofMk is shown in Figure 2(a); two selections of R and e
that do not yield valid moves are shown in (b) and (c). Let Pk,edge denote the transition
matrix of this edge-flip Markov chain and γk its spectral gap. For every valid edge flip, there
are two choices of (R, e) that produce that move. This implies every move between two
tilings differing by an edge flip occurs with probability 1/(2n) = 2−k−1, so all off-diagonal
entries of Pk,edge are 2−k−1 or 0.

The Markov chainMk, in a slightly different form, was introduced by Janson, Randall
and Spencer [16]. NoteMk is lazy, as for any rectangle R of a dyadic tiling at most one of
its left and right edges can be flipped to produce another valid dyadic tiling. This is because
if R’s projection onto the x-axis is dyadic interval [a2−s, (a + 1)2−s] for a, s ∈ Z≥0, then
flipping its left edge yields a rectangle with x-projection [(a− 1)2−s, (a+ 1)2−s] and flipping
its right edge yields a rectangle with x-projection [a2−s, (a+ 2)2−s]. If a is even, the first
of these intervals is not dyadic, while if a is odd, the second is not, so at most one of these
edge flips produces a valid dyadic tiling. Similarly, at most one of R’s top and bottom edges
yields a valid edge flip. This implies in each iteration with probability at least 1/2 a pair
(R, e) is selected that does not yield a valid edge flip move.

It was previously shown that this Markov chain is irreducible [16], soMk is ergodic and
thus has a unique stationary distribution. The uniform distribution satisfies the detailed

APPROX/RANDOM’17

34:8 Polynomial Mixing of the Edge-Flip Markov Chain for Unbiased Dyadic Tilings

balance equation, implying both thatMk is reversible and that its stationary distribution is
uniform on Ωk.

While we index this edge-flip Markov chain for dyadic tilings of size n = 2k by k instead
of by n, note we wish to show the mixing time ofMk is polynomial in n, not polynomial
in k.

3.1 The Block Dynamics Markov Chain Mblock
k

To analyze the mixing time of Markov chainMk, we will appeal to a similar Markov chain
that uses larger block moves instead of single edge flips. We use in a crucial way the bijection
between tilings in Ωk−1 and the left or right (resp. top or bottom) half of a tiling in Ωk that
has a vertical (resp. horizontal) bisector, as discussed in the proof of Proposition 3. For
k ≥ 2, the block dynamics Markov chainMblock

k on the state space Ωk of all dyadic tilings of
size 2k is given by the following rules.

Beginning at any dyadic tiling σ0, repeat:
Uniformly at random choose a tiling ρ ∈ Ωk−1.
Uniformly at random choose Left, Right, Top, or Bottom.
To obtain σi+1:

If Left was chosen and σ has a vertical bisector, retile σ’s left half with ρ, under the
mapping x→ x/2.
If Right was chosen and σ has a vertical bisector, retile σ’s right half with ρ, under
the mapping x→ (x+ 1)/2.
If Bottom was chosen and σ has a horizontal bisector, retile σ’s bottom half with ρ,
under the mapping y → y/2.
If Top was chosen and σ has a horizontal bisector, retile σ’s top half with ρ, under the
mapping y → (y + 1)/2.

Else, set σi+1 = σi.

Let Pk,block be the transition matrix of this Markov chain and let γk,block be its spectral
gap. Any valid nonstationary transition ofMblock

k occurs with probability 1/(4|Ωk−1|). This
Markov chain is not lazy, but it is aperiodic, irreducible, and reversible. This implies it is
ergodic and thus has a unique stationary distribution, which by detailed balance is uniform
on Ωk.

4 A Polynomial upper bound on the mixing time of Mk

Recall we wish to show the mixing time of Mk is polynomial in n = 2k, not polynomial
in k. We show the spectral gap γk ofMk and the spectral gap γk−1 ofMk−1 differ by a
multiplicative constant (specifically, 1/17) by appealing to the Dirichlet forms of both of
these Markov chains as well as the block dynamics Markov chain Mblock

k . We can then
use recursion to show γk is bounded below by (1/17)k, which, because k = logn, gives a
polynomial upper bound on the relaxation time and thus on the mixing time ofMk.

For any function f : Ωk → R, we will denote the Dirichlet form of f with respect
to transition matrix Pk,edge and the uniform stationary distribution as Ek,edge(f). The
Dirichlet form of f with respect to transition matrix Pk,block and the uniform stationary
distribution will be Ek,block(f). We will let the variance of function f on Ωk with respect to
the uniform stationary distribution be vark(f). Here the k indicates which state space Ωk

we are considering, rather than which distribution on Ωk the variance is taken with respect
to; all variances we consider will be with respect to the uniform distribution.

S. Cannon, D. A. Levin, and A. Stauffer 34:9

Because we consider two different Markov chains on the same state space Ωk, there are
two different notions of adjacencies on this state space, each corresponding to the moves of
one of these Markov chains. For x, y ∈ Ωk, we say x ∼e y if x and y differ by a single edge
flip move ofMk and x ∼b y if x and y differ by a single move of the block dynamics chain
Mblock

k . More specifically, if x and y differ by a retiling of their left half (implying x and
y both have a vertical bisector and are the same on their right half), we say x ∼L y; then
x ∼R y, x ∼T y, and x ∼B y are defined similarly for the right, top, and bottom halves.

I Theorem 8. For any k ≥ 2, the spectral gap γk of the edge-flip Markov chainMk satisfies

γk ≥ γk,block · γk−1

Proof. We begin by relating the Dirichlet forms for block dynamics and for the edge-flip
dynamics, which will allow comparison of their spectral gaps. Recall that for any function
f : Ωk → R,

Ek,block(f) = 1
2

∑
x∼by∈Ωk

π(x)Pk,block(x, y) (f(x)− f(y))2
.

This sum can be split into four terms, corresponding to the type of block move (left, right,
top, or bottom) transforming x into y. If x and y differ only in their top-left quadrants, then
x could transition to y via either a left block move or a top block move; each of these moves
occurs with probability 1

4|Ωk−1| , and the total probability of Pk,block(x, y) = 1
2|Ωk−1| will be

split correspondingly between the terms for left block moves and top block moves.
We now analyze the first of these terms, containing all x, y differing by a retiling of their

left halves. For xL, xR ∈ Ωk−1, by xLxR below we mean the tiling in Ωk with a vertical
bisector whose left half is xL under the map x→ x/2 and whose right half is xR under the
map x→ (x+ 1)/2.

ELk,block(f) = 1
2
∑
x∼Ly

1
|Ωk|

1
4|Ωk−1|

(f(x)− f(y))2

= 1
8

∑
xR∈Ωk−1

∑
xL,yL∈Ωk−1

1
|Ωk|

1
|Ωk−1|

(f(xLxR)− f(yLxR))2

= 1
4

∑
xR∈Ωk−1

|Ωk−1|
|Ωk|

1
2

∑
xL,yL∈Ωk−1

1
|Ωk−1|2

(f(xLxR)− f(yLxR))2

 .

We note that the second sum above is over all pairs of tilings in Ωk−1. While the Dirichlet
form of a function sums over all pairs of states that differ by a transition of a Markov chain,
the variance of a function sums over all pairs of states, regardless of the local structure
imposed on the state space by the Markov chain. In fact, we have written the second sum
above suggestively, and note that it is in fact a variance of a function over the state space
Ωk−1. For each xR ∈ Ωk−1, the function f |xR : Ωk−1 → R given by f |xR(z) = f(zxR) has
variance vark−1(f |xR) (with respect to the uniform distribution) that is exactly equal to the
term in parentheses above. Because the variance of a function is the same regardless of which
transitions on the state space we are considering, it is through this variance we can relate
Ek,block, which we have calculated above, to a Dirichlet form for edge-flip moves. That is,
by Proposition 7, we can bound this variance with the Dirichlet form of f |xR associated to
Pk−1,edge and the spectral gap γk−1 ofMk−1. Thus,

ELk,block(f) = 1
4

∑
xR∈Ωk−1

|Ωk−1|
|Ωk|

vark−1(f |xR) ≤ 1
4

∑
xR∈Ωk−1

|Ωk−1|
|Ωk|

Ek−1,edge(f |xR)
γk−1

.

APPROX/RANDOM’17

34:10 Polynomial Mixing of the Edge-Flip Markov Chain for Unbiased Dyadic Tilings

We now see that the Dirichlet form for the edge-flip Markov chain on Ωk−1 is

Ek−1,edge(f |xR) = 1
2

∑
xL,yL∈Ωk−1
xL∼eyL

π(xL)P (xL, yL) (f(xLxR)− f(yLxR))2

=
∑

xL,yL∈Ωk−1
xL∼eyL

1
|Ωk−1|

1
2n (f(xLxR)− f(yLxR))2

.

Using this expression, we see that

ELk,block(f) ≤ 1
4γk−1

∑
xR∈Ωk−1

|Ωk−1|
|Ωk|

 ∑
xL,yL∈Ωk−1
xL∼eyL

1
|Ωk−1|

1
2n (f(xLxR)− f(yLxR))2

= 1

4γk−1

∑
x,y∈Ωk
x∼ey
x∼Ly

1
|Ωk|

1
2n (f(x)− f(y))2

.

We now compare this to the Dirichlet form for the edge flip Markov chain on Ωk, which we
recall is

Ek,edge(f) = 1
2
∑

x,y∈Ωk
x∼ey

1
|Ωk|

1
2n (f(x)− f(y))2

.

We note for every x, y ∈ Ωk such that x ∼e y, at least one of and at most two of x ∼L y,
x ∼R y, x ∼T y, and x ∼B y hold. Thus each summand of Ek,edge(f) appears at most twice
as a summand of

Ek,block(f) = ELk,block(f) + ERk,block(f) + ETk,block(f) + EBk,block(f).

It follows that

Ek,block(f) ≤ 1
4γk−1

· 2 · (2Ek,edge(f)) = Ek,edge(f)
γk−1

.

Note this implies that for any f ,

vark(f) ≤ Ek,block(f)
γk,block

≤ Ek,edge(f)
γk,block · γk−1

.

Let f be chosen to be the function achieving equality in vark(f) ≤ Ek,edge(f)
γk

. We conclude

γk = Ek,edge(f)
vark(f) ≥ γk,block · γk−1. J

In Section A we prove that γk,block is at least 1/17 for sufficiently large k. This can be
used to bound the spectral gap, the relaxation time, and finally the mixing time ofMk.

I Theorem 9. There exists a positive integer k0 such that for all k ≥ k0, γk,block ≥ 1/17.

Proof. See Section A. We introduce a distance metric on dyadic tilings, and then give a
coupling where the distance between two tilings decreases in expectation after one iteration
by a multiplicative factor of 1− 1

17 for all k sufficiently large. By a result of Chen [7] (see
also [19, Theorem 13.1]), this implies the theorem. J

S. Cannon, D. A. Levin, and A. Stauffer 34:11

We are now ready to prove our first main theorem, Theorem 1, which states that the
relaxation time ofMk for n = 2k is O(nlog 17) and its mixing time is O(n1+log 17)

Proof of Theorem 1. By Theorems 8 and 9, the spectral gap ofMk satisfies

γk ≥
1
17γk−1 ≥ 17−(k−k0)γk0 ,

where k0 is the value from Theorem 9. Since γk0 is a constant that does not depend on n,

γk = Ω
(
17−k

)
= Ω

(
n− log 17) = Ω

(
n−4.09) .

BecauseMk is a lazy Markov chain, its relaxation time satisfies

trel = O
(
nlog 17) .

To use this to bound the mixing time ofMk, we appeal to Proposition 6, though we first must
calculate πmin. For π the uniform distribution, minx∈Ωk π(x) = 1/|Ωk|. By Proposition 3,
|Ωk| < 2|Ωk−1|2, so a loose bound is 1/πmin = |Ωk| < 22k = 2n. This implies

tmix = O
(
n1+log 17) . J

5 Lower bound on the mixing time of Mn

In this section we give the proof of Theorem 2. For this, we define the following subsets of
Ωk:

Ω+
k = {x ∈ Ωk : x has both a horizontal and a vertical bisector} ,

Ω|k = {x ∈ Ωk : x has a vertical bisector} , and
Ω−k = {x ∈ Ωk : x has a horizontal bisector} .

By definition, we have Ω+
k = Ω|k ∩ Ω−k . We start with the following simple lemma.

I Lemma 10. For all k ≥ 2, we have

|Ωk|
|Ω+
k |

= 2
f2
k

− 1 ≥ 2φ+ 1 ,

where φ =
√

5+1
2 is the golden ratio. Furthermore, limk→∞

|Ωk|
|Ω+
k
| = 2φ+ 1.

Proof. Using that |Ω+
k | = |Ωk−2|4, and Proposition 3, we have

|Ωk|
|Ω+
k |

= 2|Ωk−1|2 − |Ωk−2|4

|Ωk−2|4
= 2
f2
k

− 1.

By Lemma 5, fk ≤
√

5−1
2 = 1

φ = limk→∞ fk. This, along with the identity φ2 = 1+φ, implies
the lemma. J

We will also require the following technical estimate.

I Lemma 11. For any k ≥ 2, we have

1
|Ωk|

k−2∏
i=0
|Ωi|2 ≤ φ−2k+2 .

APPROX/RANDOM’17

34:12 Polynomial Mixing of the Edge-Flip Markov Chain for Unbiased Dyadic Tilings

(a) (b) (c) (d)

2

2

3 3 2

2

3 3

4

4

5 5

2

2

3 3

4

4

5 5

6
6
77

Figure 3 The construction of a tiling to count
∏k−2

i=0 |Ωi|2. A rectangle with number a indicates
that we tile it with a tiling from Ωk−a.

Proof. We will show how to estimate
∏k−2
i=0 |Ωi|2 via the construction of a tiling in Ωk. We

start with a tiling with both a horizontal and a vertical bisector, as in Figure 3(a). Then we
inductively do the following. Both quadrants of the left half are tiled independently with a
uniformly random tiling from Ωk−2. In the top-right quadrant, we add a vertical bisector and
complete the two halves of this quadrant with independent, uniformly random tilings from
Ωk−3. Finally, in the bottom-right quadrant, we create a horizontal and a vertical bisector,
reaching the tiling in Figure 3(b). Then we take this bottom-right quadrant, and iterate the
procedure above; see Figure 3(c,d) for the configurations after one and two more iterations.

This iteration continues until creating a bisector will result in rectangles of area less than
2−k. In the case where an attempt is made to divide a rectangle of area 2−k+1 into four
rectangles of equal area by adding both a horizontal and vertical bisector, we instead add
just a horizontal bisector, resulting in two rectangles each of area 2−k.

Let Υk ⊂ Ωk be the set of tilings obtained in this way. Note that the number of tilings in
Υk is exactly

∏k−2
i=0 |Ωi|2. Since Υk ⊂ Ω+

k , we have that
|Υk|
|Ωk| ≤

|Ω+
k
|

|Ωk| , where the first expression
is exactly the value we wish to bound. Using the construction above until Figure 3(b), we
obtain that

|Υk|
|Ωk|

≤
|Ω+
k |
|Ωk|

|Ω|k−2|
|Ωk−2|

,

where the second factor stands for the fact that the top-right quadrant must contain a vertical
bisector. Iterating this in the bottom-right quadrant, we obtain

|Υk|
|Ωk|

≤
|Ω+
k |
|Ωk|

|Ω|k−2|
|Ωk−2|

|Ω+
k−2|

|Ωk−2|
|Ω|k−4|
|Ωk−4|

... (1)

Proposition 3 gives that

|Ω|k|
|Ωk|

= |Ωk|+ |Ωk−2|4

2|Ωk|
= 1

2

(
1 +
|Ω+
k |
|Ωk|

)
≤ 1

2

(
1 + 1

2φ+ 1

)
= φ2

2φ+ 1 ,

where the inequality follows from Lemma 10. For even k, because |Ω|0| = 0 the last term we
can obtain in (1) is |Ω

+
2 |
|Ω2| , so we can write

|Υk|
|Ωk|

≤

k/2−2∏
i=0

|Ω+
k−2i|

|Ωk−2i|
·
|Ω|k−2i−2|
|Ωk−2i−2|

 |Ω+
2 |
|Ω2|

≤ 1
2φ+ 1

(
1

2φ+ 1 ·
φ2

2φ+ 1

) k
2−1

= φ−2k+4

2φ+ 1 ≤ φ
−2k+2,

S. Cannon, D. A. Levin, and A. Stauffer 34:13

where the last expressions come from, respectively, identities for φ and the easily-checked
inequality 2φ+ 1 > φ2. When k is odd, the last term in (1) is |Ω

|
1|

|Ω1| because |Ω
+
1 | = 0, so we

can write

|Υk|
|Ωk|

≤

(k−3)/2∏
i=0

|Ω+
k−2i|
|Ωk−2i|

·
|Ω|k−2i−2|
|Ωk−2i−2|

 ≤ (1
2φ+ 1 ·

φ2

2φ+ 1

) k−1
2

≤ φ−2k+2,

where again the last expression is the result of applying identities for φ and simplifying. J

We are now ready to prove our second main theorem, giving a lower bound on the mixing
and relaxation times ofMk of Ω(n2 logφ).

Proof of Theorem 2. We will derive a upper bound on the spectral gap γk. To do this, we
consider the test function f : Ωk → {0, 1} such that

f(x) is 1 if x ∈ Ω|k, and 0 otherwise. (2)

We will apply this function to the characterization of the spectral gap in Proposition 7.
We start by showing that the variance of f is bounded away from 0 as k →∞. Recall

that vark denotes variance with respect to the uniform measure on Ωk.

I Claim 12. With f : Ωk → {0, 1} as in (2), we have that

lim
k→∞

vark(f) =
√

5− 2.

Proof of Claim. We start by writing

vark(f) =
∑
x∈Ω|

k

∑
y∈Ωk\Ω|k

1
|Ωk|2

=
|Ω|k| · |Ωk \ Ω|k|

|Ωk|2
. (3)

Since |Ω|k| = |Ωk−1|2, using Proposition 3 we obtain

|Ω|k| =
|Ωk|+ |Ωk−2|4

2 =
|Ωk|+ |Ω+

k |
2 , (4)

and

|Ωk \ Ω|k| = |Ωk| − |Ω
|
k| =

|Ωk| − |Ω+
k |

2 . (5)

Plugging (4) and (5) into (3), we get

vark(f) = 1
4

(
1 +
|Ω+
k |
|Ωk|

)(
1−
|Ω+
k |
|Ωk|

)
= 1

4

(
1−

(
|Ω+
k |
|Ωk|

)2)
.

Then Lemma 10 yields

lim
k→∞

vark(f) = 1
4

(
1− 1

(2φ+ 1)2

)
.

Plugging in the value of φ completes the proof of the claim. J

APPROX/RANDOM’17

34:14 Polynomial Mixing of the Edge-Flip Markov Chain for Unbiased Dyadic Tilings

Figure 4 A tiling in ∂Ω|k, with the red edge being the flip that brings the tiling into Ω|k.

Now it remains to obtain an upper bound for E(f). Let ∂Ω|k be the set of tilings in
Ωk \ Ω|k which can be obtained from a tiling in Ω|k via one edge flip. Recall for two tilings
x, y ∈ Ωk, we write x ∼e y if x can be obtained from y by one edge flip. Hence,

E(f) =
∑
x∈∂Ω|

k

∑
y∈Ω|

k
: y∼ex

1
|Ωk|

1
2n.

Note that each tiling in ∂Ω|k has a horizontal bisector and is not in Ω+
k . This means that it

has exactly one edge flip that can bring it into Ω|k, which is the flip that creates a vertical
bisector. Then, we have

E(f) =
|∂Ω|k|

2n · |Ωk|
.

Now we need to describe the set ∂Ω|k. It is a set of tilings with no vertical bisector, but with
one edge flip that creates a vertical bisector; see Figure 4.

Note that the edge whose flip creates a vertical bisector must be a horizontal edge of
length 1 which flips to a vertical edge of length 2/n. From now on we will refer to this edge
as the pivotal edge.

In order to estimate the cardinality of ∂Ω|k, we will describe a procedure to construct a
tiling x ∈ ∂Ω|k, observing the position of the pivotal edge. Note that x must have a horizontal
bisector, which splits [0, 1]2 into its top and bottom halves. Assume that the pivotal edge is in
the top half of x. This implies that the bottom half of x must itself contain a vertical bisector
since the pivotal edge must be the only edge that forbids a vertical bisector to exist, see
Figure 5(a). The two quadrants in the bottom half are simply any tilings of Ωk−2. Note also
that the top half of x must contain a horizontal bisector, otherwise x 6∈ ∂Ω|k, see Figure 5(b).
Then we iterate the above construction: among the two halves of the top half, one must
contain the pivotal edge, say the bottom one, while the other contains a vertical bisector,
each side of which being completed with a tiling from Ωk−3, which gives the configuration in
Figure 5(c). Continuing this for k − 2 steps concludes the construction.

To estimate the cardinality of ∂Ω|k, note that in each step of the construction we have
two choices for where the pivotal edge is: either in the top half or the bottom half of the
corresponding region. Therefore, the number of tilings in ∂Ω|k is

|∂Ω|k| =
k∏
i=2

(
2|Ωk−i|2

)
= 2k−1

k−2∏
i=0
|Ωi|2 = n

2

k−2∏
i=0
|Ωi|2.

S. Cannon, D. A. Levin, and A. Stauffer 34:15

Ωk−2 Ωk−2

(a) (b)

Ωk−2 Ωk−2

(c)

Ωk−2 Ωk−2

Ωk−3 Ωk−3

(d)

Ωk−2 Ωk−2

Ωk−3 Ωk−3

Ωk−4 Ωk−4

Figure 5 The construction of a tiling in ∂Ω|k. The grey areas represent the part that contains
the pivotal edge.

Hence,

E(f) = 1
4|Ωk|

k−2∏
i=0
|Ωi|2 ≤

1
4φ
−2k+2

where the last step follows from Lemma 11. Therefore, there exists a constant c > 0 such
that

γk ≤ cφ−2k.

This implies that the relaxation time and mixing time satisfy

trel, tmix ≥
1
c
φ2k = 1

c
φ2 logn = 1

c
n2 logφ = Ω(n2 logφ).

This completes the proof of the theorem. J

Acknowledgements. This work started during the 2016 AIM workshop Markov chain
mixing times. We thank the organizers for the invitation and the stimulating atmosphere.

References
1 Russ Bubley and Martin Dyer. Path coupling: A technique for proving rapid mixing in

markov chains. In FOCS’97: Proceedings of the 38th Annual Symposium on Foundations
of Computer Science (FOCS), 1997.

2 Michael Burr, Sung Woo Choi, Ben Galehouse, and Chee K. Yap. Complete subdivision
algorithms, II: Isotopic meshing of singular algebraic curves. Journal of Symbolic Compu-
tation, 47(2):131–152, 2012. doi:10.1016/j.jsc.2011.08.021.

3 Sarah Cannon, Sarah Miracle, and Dana Randall. Phase transitions in random dyadic
tilings and rectangular dissections. In Proceedings of the 26th Symposium on Discrete
Algorithms (SODA), 2015.

4 Pietro Caputo, Fabio Martinelli, Alistair Sinclair, and Alexandre Stauffer. Random lattice
triangulations: Structure and algorithms. The Annals of Applied Probability, 25(4):1650–
1685, 2015.

5 Pietro Caputo, Fabio Martinelli, Alistair Sinclair, and Alexandre Stauffer. Dynamics of
lattice triangulations on thin rectangles. Electronic Journal of Probability, 21(29), 2016.

6 Filippo Cesi. Quasi-factorization of the entropy and logarithmic Sobolev inequalities for
Gibbs random fields. Probability Theory and Related Fields, 120(4):569–584, 2001. doi:
10.1007/PL00008792.

APPROX/RANDOM’17

http://dx.doi.org/10.1016/j.jsc.2011.08.021
http://dx.doi.org/10.1007/PL00008792
http://dx.doi.org/10.1007/PL00008792

34:16 Polynomial Mixing of the Edge-Flip Markov Chain for Unbiased Dyadic Tilings

7 Mu-Fa Chen. Trilogy of couplings and general formulas for lower bound of spectral gap. In
Probability towards 2000 (New York, 1995), volume 128 of Lecture Notes in Statist., pages
123–136. Springer, New York, 1998. doi:10.1007/978-1-4612-2224-8_7.

8 Colin Cooper, Martin Dyer, and Catherine Greenhill. Sampling regular graphs and a peer-
to-peer network. Combinatorics, Probability and Computing, 16(4):557–593, July 2007.
doi:10.1017/S0963548306007978.

9 P. Cuff, J. Ding, O. Louidor, E. Lubetzky, Y. Peres, and A. Sly. Glauber dy-
namics for the mean-field Potts model. Journal of Statistical Physics, 149(3):432–
477, 2012. URL: https://search.ebscohost.com/login.aspx?direct=true&db=a9h&
AN=82730695&site=eds-live&scope=site.

10 Persi Diaconis and Laurent Saloff-Coste. Comparison theorems for reversible Markov chains.
The Annals of Applied Probability, 3:696–730, 1993.

11 Jian Ding, Eyal Lubetzky, and Yuval Peres. The mixing time evolution of Glauber dynamics
for the mean-field Ising model. Communications in Mathematical Physics, 289(2):725–764,
2009. doi:10.1007/s00220-009-0781-9.

12 Jian Ding, Eyal Lubetzky, and Yuval Peres. Mixing time of critical Ising model on trees is
polynomial in the height. Communications in Mathematical Physics, 295(1):161–207, 2010.
doi:10.1007/s00220-009-0978-y.

13 Reza Gheissari and Eyal Lubetzky. Mixing times of critical 2D Potts models. Submitted.
Available at https://arxiv.org/abs/1607.02182.

14 Catherine Greenhill. The switch Markov chain for sampling irregular graphs. In Proceedings
of the 26th Symposium on Discrete Algorithms (SODA), 2015.

15 OEIS Foundation Inc. The on-line encyclopedia of integer sequences, 2017. http://oeis.
org/A062764.

16 Svante Janson, Dana Randall, and Joel Spencer. Random dyadic tilings of the unit square.
Random Structures and Algorithms, 21:225–251, 2002.

17 Jeffery C. Lagarias, Joel H. Spencer, and Jade P. Vinson. Counting dyadic equipartitions of
the unit square. Discrete Mathematics, 257(2-3):481–499, November 2002. doi:10.1016/
S0012-365X(02)00508-3.

18 David A. Levin, Malwina J. Luczak, and Yuval Peres. Glauber dynamics for the mean-field
Ising model: cut-off, critical power law, and metastability. Probab. Theory Related Fields,
146(1-2):223–265, 2010. doi:10.1007/s00440-008-0189-z.

19 David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov Chains and Mixing Times.
American Mathematical Society, Providence, RI, 2009.

20 Eyal Lubetzky and Allan Sly. Critical Ising on the square lattice mixes in polynomial
time. Communications in Mathematical Physics, 313(3):815–836, 2012. doi:10.1007/
s00220-012-1460-9.

21 Michael Luby, Dana Randall, and Alistair Sinclair. Markov chain algorithms for planar
lattice structures. SIAM Journal on Computing, 31:167–192, 2001.

22 Fabio Martinelli. Lectures on Glauber dynamics for discrete spin models. In Pierre Bernard,
editor, Lectures on Probability Theory and Statistics: Ecole d’Eté de Probailités de Saint-
Flour XXVII – 1997, pages 93–191. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999.
doi:10.1007/978-3-540-48115-7_2.

23 Leslie McShine and Prasad Tetali. On the mixing time of the triangulation walk and
other Catalan structures. DIMACS-AMS Volume on Randomization Methods in Algorithm
Design, 43:147–160, 1998.

24 N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller. Equation of
state calculations by fast computing machines. Journal of Chemical Physics, 21:1087–1092,
1953.

http://dx.doi.org/10.1007/978-1-4612-2224-8_7
http://dx.doi.org/10.1017/S0963548306007978
https://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=82730695&site=eds-live&scope=site
https://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=82730695&site=eds-live&scope=site
http://dx.doi.org/10.1007/s00220-009-0781-9
http://dx.doi.org/10.1007/s00220-009-0978-y
https://arxiv.org/abs/1607.02182
http://oeis.org/A062764
http://oeis.org/A062764
http://dx.doi.org/10.1016/S0012-365X(02)00508-3
http://dx.doi.org/10.1016/S0012-365X(02)00508-3
http://dx.doi.org/10.1007/s00440-008-0189-z
http://dx.doi.org/10.1007/s00220-012-1460-9
http://dx.doi.org/10.1007/s00220-012-1460-9
http://dx.doi.org/10.1007/978-3-540-48115-7_2

S. Cannon, D. A. Levin, and A. Stauffer 34:17

25 Dana Randall and Prasad Tetali. Analyzing Glauber dynamics by comparison of Markov
chains. Journal of Mathematical Physics, 41:1598–1615, 2000.

26 Clayton Scott and Robert D. Nowak. Minimax-optimal classification with dyadic decision
trees. IEEE Transactions on Information Theory, 52(4), 2006.

27 Alexandre Stauffer. A Lyapunov function for Glauber dynamics on lattice triangulations.
Probability Theory and Related Fields, to appear.

A The spectral gap of the block dynamics

We now present the proof of Theorem 9, which states that there exists a positive integer k0
such that for all k ≥ k0, the spectral gap γk,block is at least 1/17.

Proof of Theorem 9. We start defining the distance between two dyadic tilings x, y ∈ Ωk.
In order to do this, we recall the notion of half-bisectors. We say that a tiling x has a left
half-bisector if the line segment from (0, 1/2) to (1/2, 1/2) does not intersect the interior
of any dyadic rectangle. In an analogous way we can define a right half-bisector using the
line segment from (1/2, 1/2) to (1, 1/2), a top half-bisector using the line segment from
(1/2, 1) to (1/2, 1/2), and a bottom half-bisector using the line segment from (1/2, 1/2) to
(1/2, 0). Note that if x has a horizontal bisector, then it has both a left half-bisector and a
right half-bisector. However, x may have a left half-bisector but no horizontal bisector. For
example, the dyadic tiling in Figure 1(a) has top, right and bottom half-bisectors, but no
left half-bisector.

Now we define the distance between x and y as follows. For each of the four possible
half-bisectors, let `1 be the number of such half-bisectors that are present in either x or y,
but not in both of them. Also, for each of the four possible quadrants (top-left, top-right,
bottom-left and bottom-right) of x and y, let `2 denote the number of such quadrants for
which the rectangles in x intersecting that quadrant are not the same as the rectangles in
y intersecting that quadrant. Then, introducing a parameter b > 0 that we will take to be
sufficiently large later, we define the distance between x and y as

d(x, y) = b`1 + `2.

For instance, consider the two dyadic tilings in Figure 1(a,b). In this case we have `1 = 1 due
to the left half-bisector that is present in (b) but not in (a), and `2 = 3 for top-left, top-right
and bottom-left quadrants. The distance between these two tilings is then b+ 3.

Our goal is to couple two instances of the block dynamicsMblock
k , one starting from a

state x ∈ Ωk and the other from a state y ∈ Ωk, such that the distance between x and y
contracts after one step of the chains. More precisely, letting Ex,y denote the expectation
with respected to the coupling, and if x′ and y′ are the dyadic tilings obtained after one step
of each chain, respectively, we want to obtain a coupling and a value ∆ > 0 such that

Ex,y[d(x′, y′)] ≤ (1−∆)d(x, y) for all x, y ∈ Ωk. (6)

Once we have the above inequality, then a result of Chen [7] (see also [19, Theorem 13.1]),
implies that γk,block ≥ ∆.

We will use the following simple coupling between x′ and y′:
Uniformly at random choose a tiling ρ ∈ Ωk−1.
Uniformly at random choose Left, Right, Top or Bottom.
Retile the choosen half (left, right, top or bottom) of x with ρ, if possible.
Retile the choosen half (left, right, top or bottom) of y with ρ, if possible.

APPROX/RANDOM’17

34:18 Polynomial Mixing of the Edge-Flip Markov Chain for Unbiased Dyadic Tilings

4b+ 4 3b+ 4 2b+ 4− id(x, y) =

(a) (b) (c)

Figure 6 Possible configurations for the half-bisectors of x and y in case 1. In figure (c), i ∈ {0, 1}
denotes how many grey quadrants are tiled identically in x and y.

For a more detailed description of the retiling step, see the definition of the transition rule
ofMblock

k in Section 3.1. When we update the left (resp., right) half of x and ρ contains a
horizontal bisector, note that x′ will contain a left (resp., right) half-bisector. Similarly, if
we update the top (resp., bottom) half of x and ρ contains a vertical bisector, then x′ will
contain a top (resp., bottom) half-bisector. In any of these cases, we say that the retiling
yields a half-bisector of x.

The remaining of the proof is devoted to showing that we can set b large enough so
that (6) holds with ∆ = 1

17 . In order to see this, we will split into three cases, and show
that (6) holds with ∆ = 1

17 for each case.

Case 1: x and y have no common bisector. The maximum number of common half-
bisectors of x and y in this case is two. Figure 6 illustrates the three possible configurations
for the number of common half-bisectors of x and y.

Consider first that x and y have no common half-bisector, which is illustrated in Figure 6(a)
and has d(x, y) = 4b + 4. Then, whichever half (left, right, top or bottom) is chosen to
be retiled, note that either x or y is actually retiled, but never both. With probability
|Ω2
k−2|

|Ωk−1| = fk the retiling yields a half-bisector, which increases the number of common half-
bisectors between x and y, and thus decreases their distance by b. Hence, using that fk ≥ 1/2,
we have

Ex,y[d(x′, y′)] = d(x, y)− fkb ≤ 4b+ 4− b

2 <

(
1− 1

17

)
(4b+ 4),

where the last step is true by setting b large enough (in this case, b ≥ 1 suffices).
Now consider that x and y have one common half-bisector, and use Figure 6(b) as a

reference, with x being the left tiling and y being the right tiling. We have d(x, y) = 3b+4. If
we retile the left or right halves, so only x gets retiled, and the retiling yields a half-bisector,
then the number of common half-bisectors of x and y decreases by 1. A similar behavior
happens if we retile the top half. However, if we retile the bottom half, and the retiling does
not yield a half-bisector, then the number of common half-bisectors decreases by 1. Hence,
using that fk ≥ 1/2, we obtain

Ex,y[d(x′, y′)] ≤ d(x, y)− 3fkb
4 + (1− fk)b

4 ≤ 3b+ 4− b

4 <

(
1− 1

17

)
(3b+ 4),

where the last step is true by setting b large enough (in this case, b ≥ 4 suffices).
Finally, suppose x and y have two common half-bisectors, as illustrated in Figure 6(c),

where they may or may not be tiled the same in the quadrant bounded by these common
half-bisectors. In this case d(x, y) = 2b+ 4− i, where i = 1 if they agree on this quadrant
and i = 0 otherwise. Retiling the left and top halves can yield a new common half-bisector,

S. Cannon, D. A. Levin, and A. Stauffer 34:19

4− i b+ 4− i 2b+ 4 4− id(x, y) =

(a) (b) (c) (d)

Figure 7 Possible configurations for the half-bisectors of x and y in case 2. The value of
i ∈ {0, 1, 2, 3} denotes the number of grey quadrants which is tiled identically in x and y.

while retiling the right and bottom halves may remove a common half-bisector. Moreover, if
i = 1 and we retile the right or bottom halves, the tilings of the bottom-right quadrant of x
and of y may become different, increasing the distance between x and y by 1. Putting these
together, we have

Ex,y[d(x′, y′)] ≤ d(x, y)− 2fkb
4 + 2(1− fk)b

4 + i
2
4

≤ 2b+ 4− i

2 −
(2fk − 1)b

2 = (5− 2fk)b
2 + 4− i

2 .

Since fk →
√

5−1
2 as k → ∞, the right-hand side above goes to

(
6−
√

5
2

)
b + 4 − i

2 . In
particular, for k ≥ 10, the coefficient of b above satisfies 5−2fk

2 < 2
(
1− 1

17
)
− 0.0002, and

so we can set b large enough so that Ex,y[d(x′, y′)] ≤
(
1− 1

17
)

(2b+ 4− i). We note that as
6−
√

5
2 > 2

(
1− 1

16
)
, this particular coupling and distance metric cannot be used to show the

spectral gap is at least 1/16. This concludes the first case.

Case 2: x and y have a common bisector, but neither x nor y has both bisectors.
Without loss of generality we assume x and y both have a vertical bisector and neither has a
horizontal bisector. Each of x and y has at least 2 and at most 3 half-bisectors. Figure 7
illustrates the four possible configurations for the number of half-bisectors of x and y; the
shaded quadrants are those where x and y could have the same tiling.

In all the situations of Figure 7, if we retile the left or right halves, then we match up the
configuration of x and y in that half. In particular, if x and y don’t agree on the presence
of left half-bisector, then they also do not have the same tiling of the top left or bottom
left quadrants, so the decrease in distance due to a retiling of the left half, a move that
occurs with probability 1/4, is (b+ 2). If x and y agree on the presence of a left half-bisector
and have the same tiling on i′ ∈ {0, 1, 2} of the two left quadrants, then the decrease in
distance due to a retiling of the left half is (2− i′). The same holds for right half-bisectors
and retilings of the right half. As there are no moves of the coupling that can increase the
distance between x and y, it can be shown that in all of the cases shown in Figure 7 the
distance decreases by 1/4 in expectation. Hence,

Ex,y[d(x′, y′)] ≤ d(x, y)− d(x, y)
4 ≤

(
1− 1

17

)
d(x, y),

which concludes the second case.

Case 3: y has both vertical and horizontal bisectors. Here there are three situations,
depending on whether x has two, three or four half-bisectors; see Figure 8.

In the situation of Figure 8(a), if the left or right halves are retiled, then we match up x
and y in that half, decreasing the distance by b+ 2. But if we retile the top or bottom halves,

APPROX/RANDOM’17

34:20 Polynomial Mixing of the Edge-Flip Markov Chain for Unbiased Dyadic Tilings

d(x, y) =

(a) (b) (c)

2b+ 4 b+ 4− i 4− i

Figure 8 Possible configurations for the half-bisectors of x and y in case 3. The value of
i ∈ {0, 1, 2, 3} denotes the number of grey quadrants which is tiled identically in x and y.

then we may increase the distance by b if the retiling does not yield a half-bisector. Hence,

Ex,y[d(x′, y′)] ≤ d(x, y)− 2(b+ 2)
4 + 2(1− fk)b

4 = (4− fk)b
2 + 3.

Since 4−fk
2 → 9−

√
5

4 <
(
1− 1

17
)

2, the right-hand side above is smaller than
(
1− 1

17
)

(2b+ 4)
when k and b are large enough. A similar situation occurs in Figure 8(b), but the distance
increases a bit more when the top or bottom half is retiled as quadrants that were equal in x
and y may become different. In this case, we have

Ex,y[d(x′, y′)] ≤ d(x, y)− (b+ 4− i)
4 + 2(1− fk)b

4 + 2
4 = (5− 2fk)b

4 + 6− i
4 .

Since 5−2fk
4 → 6−

√
5

4 <
(
1− 1

17
)
, the right-hand side above is smaller than

(
1− 1

17
)

(b+4− i)
when k and b are large enough; as in Case 1, we obtain a contraction by a factor of 1− 1

17
but not by 1− 1

16 . Finally, for the situation in Figure 8(c), regardless of which half we choose
to retile, the distance will not increase; if we choose a half containing a quadrant on which x
and y differ, the distance will decrease. Each quadrant on which x and y differ is contained
in two halves and thus is retiled so that x and y agree there with probability 1/2. That is,

Ex,y[d(x′, y′)] ≤ d(x, y)− d(x, y)
2 ≤

(
1− 1

17

)
d(x, y).

This concludes the third case. We have shown that for all possible tilings x and y, it holds
that Ex,y[d(x′, y′)] ≤

(
1− 1

17
)
d(x, y). This implies γk,block ≥ 1

17 for all k sufficiently large,
as desired. J

B Omitted Proofs

Here we include proofs of some basic facts about dyadic tilings and their structure that were
omitted in Section 2 due to space constraints. Recall that fk is the fraction of all dyadic
tilings in Ωk with a left half-bisector.

I Lemma 4. For all k ≥ 3, fk = 1
2−f2

k−1
.

Proof. This follows from the recurrence for Ak given in Proposition 3:

fk =
A2
k−2

Ak−1
=

A2
k−2

2A2
k−2 −A4

k−3
= 1

2− A4
k−3

A2
k−2

= 1
2− f2

k−1
. J

I Lemma 5. The sequence {fk}∞k=2 is strictly increasing and bounded above by (
√

5− 1)/2.
Furthermore, limk→∞ fk = (

√
5− 1)/2.

S. Cannon, D. A. Levin, and A. Stauffer 34:21

Proof. Note f2 = 0.5 < (
√

5− 1)/2. Suppose by induction that fk−1 <
√

5−1
2 . Then

fk = 1
2− f2

k−1
<

1

2−
(√

5−1
2

)2 = 4
8− (6− 2

√
5)

= 4
2 + 2

√
5

= 2
1 +
√

5
=
√

5− 1
2 .

To show fk < fk+1 for all k ≥ 3, it suffices to show x < 1/(2 − x2) for all x ∈[
0.5, (

√
5− 1)/2

)
. This is equivalent to showing the polynomial x3−2x+ 1 is positive in that

range. Factoring shows this polynomial has roots at 1, (
√

5− 1)/2, and −(
√

5 + 1)/2, and is
positive in the range

(
−(
√

5 + 1)/2, (
√

5− 1)/2
)
. This implies fk < fk+1, so the sequence is

strictly increasing.
The sequence {fk}∞k=2 is bounded and monotone, so it must converge to some limit β.

To find β, we consider the function g(x) = 1/(2 − x2), which is the recurrence for the fk.
This function is continuous away from

√
2 and −

√
2, and thus certainly is continuous on[

0.5, (
√

5− 1)/2
]
, the range of possible values for the fk and their limit β. This continuity

implies

g(β) = g

(
lim
k→∞

fk

)
= lim
k→∞

g(fk) = lim
k→∞

fk+1 = β.

Thus the limit β is necessarily a fixed point of g(x). The fixed points of g(x) are exactly the
three roots of x3 − 2x+ 1 found above, and the only one in

[
0.5, (

√
5− 1)/2

]
is (
√

5− 1)/2.
We conclude limk→∞ fk = (

√
5− 1)/2, as desired. J

APPROX/RANDOM’17

Agnostic Learning from Tolerant Natural Proofs
Marco L. Carmosino1, Russell Impagliazzo2, Valentine Kabanets3,
and Antonina Kolokolova4

1 Department of Computer Science, University of California San Diego, La Jolla,
CA, USA
mcarmosi@cs.ucsd.edu

2 Department of Computer Science, University of California San Diego, La Jolla,
CA, USA
russell@cs.ucsd.edu

3 School of Computing Science, Simon Fraser University, Burnaby, BC, Canada
kabanets@cs.sfu.ca

4 Department of Computer Science, Memorial University of Newfoundland,
St. John’s, NL, Canada
kol@mun.ca

Abstract
We generalize the “learning algorithms from natural properties” framework of [4] to get agnostic
learning algorithms from natural properties with extra features. We show that if a natural
property (in the sense of Razborov and Rudich [28]) is useful also against functions that are close
to the class of “easy” functions, rather than just against “easy” functions, then it can be used to
get an agnostic learning algorithm over the uniform distribution with membership queries.

For AC0[q], any prime q (constant-depth circuits of polynomial size, with AND, OR, NOT,
and MODq gates of unbounded fanin), which happens to have a natural property with the
requisite extra feature by [27, 31, 28], we obtain the first agnostic learning algorithm for
AC0[q], for every prime q. Our algorithm runs in randomized quasi-polynomial time, uses
membership queries, and outputs a circuit for a given boolean function f : {0, 1}n → {0, 1}
that agrees with f on all but at most (poly logn) · opt fraction of inputs, where opt is the
relative distance between f and the closest function h in the class AC0[q].
For the ideal case, a natural proof of strongly exponential correlation circuit lower bounds
against a circuit class C containing AC0[2] (i.e., circuits of size exp(Ω(n)) cannot compute
some n-variate function even with exp(−Ω(n)) advantage over random guessing) would yield
a polynomial-time query agnostic learning algorithm for C with the approximation error
O(opt).

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases agnostic learning, natural proofs, circuit lower bounds, meta-algorithms,
AC0[q], Nisan-Wigderson generator

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.35

1 Introduction

Recently many new connections have been discovered between the two complementary
domains: proving circuit lower bounds and designing meta-algorithms for the corresponding
circuit classes (see, e.g., [30, 33, 34, 15, 16, 5, 4]). In particular, [4] shows that a natural
property (in the sense of Razborov and Rudich [28]) for a (sufficiently powerful) circuit class
Λ yields an efficient PAC learning algorithm for the same circuit class, under the uniform

© Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 35; pp. 35:1–35:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.35
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

35:2 Agnostic Learning from Tolerant Natural Proofs

distribution, with membership queries; this approach led to a first learning algorithm for
the class AC0[q] (of constant-depth circuits with AND, OR, NOT, and modulo q gates), for
every prime q.

The “learning algorithms from natural proofs” technique of [4] applies only to realizable
case learning: if a function f is computed exactly by an appropriate circuit class Λ for which
there is a natural proof of a circuit lower bound, then we can learn f using membership
queries in time dependent on the strength of the circuit lower bound. A more realistic
learning model is agnostic learning, where we select some “touchstone” class Λ and attempt
to find a hypothesis that isn’t “too far off” from the best Λ-approximation to the target
function.

We show that, even in this agnostic setting, we can (somewhat generically) obtain
learning algorithms from natural proofs. We instantiate this framework to give the first
membership-query agnostic learning algorithm over the uniform distribution for AC0[q], the
class of constant-depth circuits of polynomial-size with unbounded fanin AND, OR, NOT,
and MODq gates. Previously, only the case of AC0 circuits was known (albeit for an agnostic
algorithm without membership queries, and with better approximation error) [19] (based on
the LMN algorithm of [23]).
I Theorem 1 (AC0[q] agnostic learning). Let q be any prime. There is a randomized quasi-
polynomial-time algorithm such that, given oracle access to a function f : {0, 1}n → {0, 1}
that agrees with some unknown function in AC0[q] on at least 1− β fraction of inputs (for
some non-negligible β > 0), the algorithm outputs a circuit that computes f on all but at
most poly(logn) · β fraction of inputs.

As an interesting special case, we get a quasipolynomial-time agnostic learning algorithm
for n-variate polynomials over GF(q) of low degree (say, at most poly(logn)), for prime q ≥ 2
(as every polynomial of degree d is computable by an AC0[q] circuit of size O(nd)). Before
our result, no such learning algorithm for polynomials was known.

For an algorithm with error c(n) · β, for some function c, we call the factor c(n) the
weakness parameter of the learning algorithm. It is desirable to have c(n) = 1. Our algorithm
for AC0[q] above has weakness poly(logn). In general, we have a trade-off between the quality
of a natural property for the circuit class, and the quality of the resulting agnostic learning
algorithm for the same class. For simplicity, we state here just the result for the best-case
scenario; see Theorem 11 below for the fully general statement.
I Theorem 2 (Ideal-case trade-off). Suppose there is a natural property for a circuit class
C ⊇ AC0[2] that is useful against functions that agree on 1/2 + exp(−Ω(n)) of inputs with
some function of C-circuit complexity exp(Ω(n)). Then, for some constant c > 0, there is a
polynomial-time query agnostic learning algorithm for C with weakness c.

Theorem 2 yields a “search-to-decision” reduction for a version of the Minimal Circuit
Size Problem (MCSP). Define the Minimal Approximate Circuit Size Problem (MACSP) as
follows: Given a truth table of an n-variate boolean function f , and parameters s ∈ N and
δ ∈ [0, 1], decide if there exists a boolean circuit C of size at most s that agrees with f on all
but at most δ fraction of inputs. (MCSP is a special case of MACSP for δ = 0.) Clearly, if
MACSP is easy (say, in P), then, for a given size bound s (our “budget”), we can determine
the best approximation parameter δ for every given truth table of a boolean function f .
But, since MACSP is an ideal-case tolerant natural property for general circuits, we get by
Theorem 2 that a polynomial-time algorithm for MACSP would yield a polynomial-time
algorithm to actually find a circuit of size poly(s), with an approximation guarantee O(δ).1

1 In [4], a similar “search-to-decision” reduction was given for MCSP: if a given boolean function f is

M.L. Carmosino, R. Impagliazzo, V. Kabanets, and A. Kolokolova 35:3

Another way to interpret Theorem 2 is as follows. If MACSP is in P, then, given oracle
access to a boolean function f , and a budget s ∈ N, we can learn, in polynomial time, a
circuit of size poly(s) that agrees with f on all but at most O(δ) fraction of inputs, where δ
is the error of the best size s circuit for f . That is, we can learn essentially the best possible
circuit for f , given our budget s on the circuit size.

1.1 Our approach
The key observation in adapting to the agnostic setting is that many natural properties
contain even more useful distinguishers than required for realizable-case learning. As defined
by [28], the distinguisher from a natural property rejects truth tables that are exactly
computed by Λ-circuits. But existing natural properties give us something even stronger:
they reject truth tables which are just close to those computed by Λ-circuits. Using this
observation and the same “play to lose” distinguisher-to-predictor reduction as in [4], we
obtain agnostic learning algorithms from such natural properties.

More precisely, we show that if a natural property for a circuit class Λ (containing AC0[q])
is tolerant in the sense that it distinguishes from random the truth tables of functions
“close” to the class Λ (of “large” circuit complexity), then it can be used to get an agnostic
membership-query algorithm for learning Λ. We argue that such a tolerant natural property
exists for AC0[q] [27, 31, 28], which is then used to prove our Theorem 1. For AC0[2], we
need to dig inside the arguments of [27], and show that his original circuit lower bound proof
does yield a certain tolerant natural property. For AC0[q], for prime q > 2, we actually need
to re-do the “natural proof” argument of [28] by adapting it to the case of GF(q)-valued
functions (rather than boolean functions). Not only does it allow us to get tolerant natural
properties for AC0[q], but also simplifies and streamlines the analysis in [4] of the learning
algorithm for AC0[q].

By definition, tolerant natural properties can be used for proving average-case circuit
lower bounds (as opposed to the worst-case circuit lower bounds implied by standard natural
properties). Thus the main message of the present paper can be summarized as follows:

Natural proofs of average-case circuit lower bounds imply agnostic learning algorithms!

In contrast, the main result of [4] says that natural proofs of worst-case circuit lower bounds
imply standard (non-agnostic) learning algorithms.

1.2 Our techniques
We build upon the framework of [4] who use a natural property for a given circuit class Λ in
order to devise a learning algorithm for the same class. Recall that a natural property (in the
sense of [28]) is an efficient algorithm that tells apart truth tables of functions in the class Λ
(of some “large” circuit complexity u) from those of random functions. To learn a function
f ∈ Λ, for some circuit class Λ that has an associated natural property, the idea is to apply
(as only a thought experiment!) an appropriate “function generator” that maps f to a family
of functions all of which are “easy” (of small Λ circuit complexity) and so will be rejected by

exactly computable by a polynomial-size circuit, then one can find a polynomial-size circuit approximately
computing f , given a polynomial-time algorithm for MCSP. In contrast, here we say that if f can be
non-trivially approximated by a polynomial-size circuit, we can find another polynomial-size circuit that
achieves the same approximation error up to a constant factor, given a polynomial-time algorithm for
MACSP.

APPROX/RANDOM’17

35:4 Agnostic Learning from Tolerant Natural Proofs

the natural property for the class. Thus an efficient algorithm from the natural property
acts as a distinguisher “breaking” the function generator. If the function generator has an
“efficient reconstruction” property, meaning that a distinguisher for the generator can be used
to build a small circuit approximately computing the original function f , we get a learning
algorithm for f . Thus, the actual learning algorithm is using the natural property algorithm
as a distinguisher, and applies the efficient reconstruction procedure (associated with the
given function generator) to build a circuit approximating f . Usually, such a reconstruction
procedure requires oracle access to the function generator; if, however, the function generator
is “local” in the sense that such oracle access to the generator can be efficiently reduced to
oracle access to the original function f , one gets a query learning algorithm for the concept
class Λ.

To adapt this approach to the case of agnostic learning, where a function f to be learned
is not in the class Λ, but rather just somewhat close to the class, we need to satisfy the
following requirements:
1. the outputs of the function generator applied to f must be close to the class Λ (of some

circuit size u), and
2. the natural property for Λ must reject not only functions in Λ (of size u), but also

functions that are close to those.
We call natural properties satisfying condition (2) above tolerant. We say that a natural
property has ρ-tolerant u-usefulness for the circuit class Λ if it rejects all truth tables of
functions that agree with some function in Λ[u] (computable by a Λ circuit of size u) on all
but at most ρ fraction of inputs. We show that the natural property for the circuit class
AC0[2] from [27] is in fact ρ-tolerant, for some small but nontrivial ρ > 0, and with large
(weakly-exponential) usefulness u.

With tolerant natural properties in hand, we turn to requirement (1) above: getting the
truth tables output by the function generator on a given function f to be close to those
from the circuit class Λ[u]. We need to take a closer look at the function generator used
in [4]. It comprises two components: (1) amplification, and (2) Nisan-Wigderson (NW)
generator [25] applied to the amplified version Amp(f) of the function f . The purpose of the
amplification component is to “error-correct” f so that even a circuit that computes Amp(f)
with small advantage over random guessing can be used to construct a circuit that computes
f almost everywhere. The NW generator applied to Amp(f) has the properties required of
the function generator: locality and efficient reconstruction.

In our case, suppose that f agrees with some function h ∈ Λ on a large fraction of inputs.
Once we apply amplification to both f and h, we get Amp(f) and Amp(h) that are pushed
further apart (as one would expect when using error-correcting codes). In order to keep the
amplified functions close to each other, we will tone down the amplification procedure, which
will adversely affect the approximation error of our learning algorithm, but the error can still
be kept relatively small.

Next we need to ensure that the NW generator when applied to Amp(f) generates a family
of functions such that most of them are sufficiently close to the family generated on Amp(h).
In other words, we would like the generator to almost preserve the relative distance between
the functions it is applied to. This can be achieved as follows. First, we observe that the
definition of the NW generator guarantees that on a random seed z, the functions generated
for Amp(f) and Amp(h) have the expected distance (over random z) equal to the actual
distance between Amp(f) and Amp(h). Thus we have distance preservation in expectation.
To make it concentrated around the expectation, we modify the NW construction by adding
a pairwise-independent generator inside the NW construction. This ensures that the truth

M.L. Carmosino, R. Impagliazzo, V. Kabanets, and A. Kolokolova 35:5

tables output by the modified NW generator are evaluations of Amp(f) (or Amp(h)) on a
sequence of pairwise independent inputs. The required concentration then follows by the
Chebyshev bound. (A similar modification of the NW generator was done in [17], where an
expander-walk generator was used for even better concentration; we use a simple pairwise
generator as it can be easily implemented in AC0[2], and it provides sufficient concentration
for our purposes.)

1.3 Related work
The concept of agnostic learning was introduced by Kearns et al. [20], where it was also
shown that piecewise linear functions are agnostically learnable. Agnostic learning is also
known for certain geometric patterns [10], and restricted neural networks [21]. More results
are known for the restricted versions of agnostic learning, for instance, when the distribution
over examples is uniform. The class of AC0 functions was shown to be (weakly) agnostically
learnable under the uniform distribution by [20]. It was later shown by [19] that the well-
known LMN learning algorithm of [23] achieves a constant-factor approximation of the
optimal error (improved to the constant factor 2 in [18]), and that a modification of the
algorithm (using L1 regression) achieves the optimal error; the runtime of the algorithm is
quasipolynomial. In fact, the result of [19] is generic in the following sense: any concept class
of functions with certain “Fourier concentration” (as is the case, e.g., for AC0 functions by
the results of [23]) admits an agnostic learning algorithm under the uniform distribution,
with an optimal error, whose runtime depends on the strength of the Fourier concentration
for the concept class.

In distribution-independent setting, allowing membership queries does not give extra power
to agnostic learning, yet membership queries can help when the distribution is uniform [6]. In
particular, under the uniform distribution, Gopalan, Kalai and Klivans [12] and Feldman [7]
give polynomial-time agnostic learning algorithms with membership queries for decision trees.

Agnostic learning of parities is closely related to the well-studied problem of learning
noisy parities, which has a number of applications beyond learning theory, from decoding
random linear codes to cryptography[2, 9, 1, 24, 26].

Under the uniform distribution, agnostic learning of parities (that is, learning parities
with adversarial noise) reduces to learning parities with random noise [8]. Blum, Kalai
and Wasserman [3] give an algorithm that properly learns length k parities with random
noise under uniform distribution in time and sample size poly((1/(1 − 2η))2a , 2b), where
η < 1/2 is the noise probability, and ab ≥ k. This is in contrast to the NP-hardness of
properly learning noisy parities under arbitrary distributions, which follows from [13]. Later,
Lyubashevsky [24] improved query complexity of the [3] algorithm to n1+ε, at the expense of
bringing the running time up to 2O(n/ log logn), for η < 1/2− 2−(logn)δ for a constant δ. A
corollary of the latter result is a subexponential algorithm for decoding n× n1+ε random
binary linear codes, in the random noise setting.

Regev [29] considered an extension of learning parity with noise to mod p, which he called
LWE (learning with error). He has shown that an efficient solution to LWE (for some range
of parameters) implies an efficient quantum approximation of two variants of the shortest
vector problem (GapSVP and the shortest independent vectors problem) and presented a
public-key cryptosystem based on its hardness.

Remainder of the paper

We start with some basic definitions in Section 2. In Section 3, we prove our main result, The-
orem 1, by instantiating the “agnostic learning from tolerant natural properties” framework

APPROX/RANDOM’17

35:6 Agnostic Learning from Tolerant Natural Proofs

to the case of AC0[q] circuits, for any prime q. We present this framework in full generality in
Section 4, where, in particular, we prove Theorem 2. In Section 5, we discuss the difficulty of
removing membership queries from our agnostic learning algorithms for AC0[2] (as it would
have consequences for learning noisy parities). We conclude with some open questions in
Section 6. The appendix contains some proofs omitted from the main body of the paper.

2 Preliminaries

For n-variate boolean functions f and g, we define the distance between them, denoted
DIST(f, g), to be the number of inputs x where f(x) 6= g(x). We denote by dist(f, g) the
relative distance DIST(f, g)/2n. For a class F of n-variate boolean functions, and an n-variate
boolean function f , we define the distance of f from the class F , denoted DIST(f,F), as
minh∈F DIST(f, h). The relative distance of f from F is dist(f,F) = DIST(f,F)/2n.

I Definition 3 (Distinguishers). Let L : N → N be a stretch function, let 0 < ε < 1 be
an error bound, and let G = {gm : {0, 1}m → {0, 1}L(m)} be a sequence of functions.
Define DIS(G, ε) to be the set of all Boolean circuits D on L(m)-bit inputs satisfying:
Prz∈{0,1}m [D(gm(z))]−Pry∈{0,1}L(m) [D(y)] > ε. We say that D ∈ DIS(G, ε) is a distinguisher
for G with the distinguishing probability ε.

2.1 Learning algorithms
The concept of agnostic learning was introduced by [20]. As in the PAC model of Valiant
[32], we have a distribution over labeled examples (x, f(x)) for some function f , and we wish
to learn f up to a small additive error over the given distribution. However, unlike in the
PAC model, we don’t assume that f belongs to some concept class C, but rather that f is
“close” to C. More precisely, setting opt to be the disagreement probability between f and
the best (closest) function h ∈ C, the agnostic learning algorithm is supposed to output, with
high probability 1− δ, a hypothesis that disagrees with f with probability at most opt + ε,
for given ε, δ ∈ [0, 1]. If the underlying distribution over examples is uniform, we say that
the concept class C is agnostically learnable under the uniform distribution.

In the special case where we allow membership oracle, i.e., our learning algorithm has
oracle access to the function f it is trying to learn, we call it a (membership) query agnostic
learning algorithm. If, in addition, the hypothesis error is measure under the uniform
distribution, we call it a query agnostic learning algorithm under the uniform distribution.

The learning algorithms considered in our paper are query algorithms under the uniform
distribution. However, they don’t achieve the ideal error opt + ε. Rather, we get the error
of the form c(n) · opt, for some function c, which we call the weakness parameter of the
agnostic learning algorithm; we also assume that opt is non-negligible and so we can drop
the additive error ε to simplify the notation. For example, in the case of C = AC0[2], our
learning algorithm has weakness poly(logn).

2.2 Tolerant natural properties
We extend the definition of a natural property [28] to the case of a tolerant one, which
intuitively says that not only all “easy” functions are rejected by the property, but also all
functions “sufficiently close” to the “easy ones” are rejected. Such tolerant properties yield
not just worst-case, but also average-case circuit lower bounds.

Let Fn be the collection of all Boolean functions on n variables. Λ and Γ denote complexity
classes. A combinatorial property is a sequence of subsets of Fn for each n.

M.L. Carmosino, R. Impagliazzo, V. Kabanets, and A. Kolokolova 35:7

I Definition 4 (Tolerant Natural Property). A combinatorial property {Rn}n≥0 is Γ-natural
with density δ and τ -tolerant u-usefulness, for some functions δ, τ : N→ [0, 1] and u : N→ N,
if it satisfies the following conditions:
Γ-Constructivity: Given the truth table of fn, a Γ-algorithm decides if fn∈Rn.
δ-Largeness: |Rn| ≥ δ(n) · |Fn|.
τ -Tolerant u-Usefulness: For all fn ∈ Fn (for large n), if dist(fn,Λ[u(n)]) ≤ τ(n), then

fn 6∈ Rn.

The standard natural property [28] is 0-tolerant in our language. For a number of
complexity classes, including AC0[q] for primes q, 0-tolerant natural properties were given in
[28]. We prove that the natural property of [27] has in fact (1/n3)-tolerant usefulness against
d-depth AC0[2] circuits of size exp(Ω(n1/(2d))); see Section A of the appendix for the proof
of the following.

I Lemma 5 (Tolerant natural property for AC0[2]). There is a P-natural property {Rn}n≥0
with largeness 1/2, and (1/n3)-tolerant exp(Ω(n1/(2d)))-usefulness against d-depth AC0[2]
circuits.

3 Agnostic learning from tolerant natural properties for AC0[2]

3.1 The CIKK framework
Recall the way non-agnostic learning algorithms follow from natural properties in the
framework of [4]. Suppose we want to learn a function f in some circuit class Λ; for simplicity,
assume f has polynomial-size circuits of type Λ.

As a thought experiment, imagine the following transformations applied to f . First, we
amplify f , getting a new function F = Amp(f), on polynomially larger inputs, with the
property:

If we are given a small circuit computing F on at least 1/2 + ε fraction of inputs, then
we can construct a circuit computing the original function f on at least 1− 1/poly(n)
fraction of inputs, in randomized time poly(n, 1/ε), using membership queries to f .

Then F is used as a “hard function” for the NW generator G. For each seed z of the NW
generator, we view the output binary string G(z) of length L as the truth table of an `-variate
boolean function, for ` = logL. The crucial observation in [4] is that the circuit complexity
of this `-variate boolean function is polynomial in the circuit size of the original function f ,
which is poly(n).

We need to express this circuit complexity poly(n) as the function of the input size
`. Note that if the stretch L is small, for example, if L = poly(n), then ` = O(logn),
and so the `-variate function (whose truth table is) output by G(z) has circuit complexity
exponential in its input size `. Thus, to reduce the circuit complexity of the function output
by G(z), we need to increase the stretch L of the NW generator. For example, by taking
L = exp(poly logn), we can ensure that the circuit complexity of G(z) (for each seed z) is
only weakly exponential in the input size `.

The point of using the NW generator to produce truth tables of relatively easy functions
G(z) is that we assumed the existence of an efficient natural property (with sufficient
usefulness) which will accept many random truth tables, but will reject all truth tables of
easy functions. In other words, this natural property provides an efficient (polynomial-time)
algorithm that distinguishes the outputs of the NW generator G from truly random strings.

APPROX/RANDOM’17

35:8 Agnostic Learning from Tolerant Natural Proofs

But then, the analysis of the NW generator construction implies that we get from this
distinguisher a new algorithm that computes F (the function upon which the NW generator
was based) on at least 1/2 + Ω(1/L) fraction of inputs; where the reconstruction algorithm
requires membership oracle for f . The latter implies (by the aforementioned properties of
F = Amp(f)) that we can construct a circuit computing f on almost all inputs, in time
poly(n,L) (again, using membership oracle for f). Thus we get a learning algorithm from
the natural property, using the efficient reconstruction algorithm for the NW generator and
the amplification procedure.

For example, using natural properties against AC0[2] that are useful against circuits
of weakly-exponential size [28], the above framework yields a learning algorithm, with
membership queries, for functions computable by polynomial-size AC0[2] circuits, running in
quasipolynomial time.

3.2 Extension to the agnostic learning case
We wish to apply the same framework to the task of agnostic learning. Suppose we wish to
learn a function f which is only somewhat close to a function h in some circuit class Λ (of
polynomial-size circuits). Suppose that dist(f,Λ) ≤ β, and that h ∈ Λ is the closest function
to f . Assume we are given a membership oracle for f .

To apply the [4] approach to learn f , we need to ensure the following:

For most seeds z, the function G(z) (for the NW generator based on F = Amp(f)) is
rejected by the appropriate natural property for our circuit class Λ.

If so, then we have a distinguisher for the NW generator based on F , and, as before, can
efficiently construct a circuit for computing f almost everywhere.

As f is not in the class Λ, but rather just close to it, the best we can hope for is that the
amplified function F = Amp(f) is also somewhat close to Λ, and that the outputs of the
NW generator G(z) based on F are also somewhat close to the class Λ (of larger circuit size).
If we can guarantee that (most of) the strings G(z) are at the relative distance at most τ
from Λ[u], then our natural property with τ -tolerant u-usefulness will be a distinguisher for
the NW generator, and we can reconstruct a circuit approximately computing f .

We need to balance the opposing constraints. On the one hand, to keep F = Amp(f)
close to Λ, we cannot amplify f too much, as the amplification, like an error-correcting
encoding, pushes the originally close functions far apart. On the other hand, the stronger
the amplification applied to f , the smaller the approximation error we get from a circuit for
f constructed by the learning algorithm. As we are restricted by the tolerance parameter τ
of our natural property, we are forced to keep the amplification relatively weak, which in
turn implies a weak approximation error for the learned circuit for f .

Suppose that f : {0, 1}n → {0, 1} is at the relative distance β from some n-variate function
h ∈ Λ[poly]. We will fine-tune the amplification procedure of [4] so that F = Amp(f) and
H = Amp(h) are at the relative distance at most µ(n), for some µ : N → [0, 1] to be
determined. Then we need to ensure that the outputs of the NW generator on F and on H,
for most random seeds z, produce truth tables of length L that are at the relative distance
at most τ(`) from each other, where ` = logL is the input size of such a function output by
G(z).

To ensure that the NW generator based on close functions F and H produces strings that
are close (for most seeds z), we modify the NW generator by adding a pairwise-independent
generator as an extra component. (Similar modification to the NW generator, using an

M.L. Carmosino, R. Impagliazzo, V. Kabanets, and A. Kolokolova 35:9

expander-walk generator, was done in [17], for a different purpose.) We will show that such
a modified NW generator, when run on functions F and H that are at the relative distance
µ(n) from each other, indeed outputs, for most seeds z, strings GF (z) and GH(z) of length
L each, which are at the relative distance at most 2µ(n) from each other. Expressing 2µ(n)
as a function of the input length ` = logL, we get an upper bound on the relative distance
between GF (z) and Λ[u] (as GH(z) ∈ Λ[u] by our assumption that h ∈ Λ[poly]), for most
seeds z. Here we choose the stretch L long enough so that the circuit complexity of the
functions GH(z) is at most u, where u is usefulness of our natural property. For example,
for AC0[2], we have usefulness against weakly-exponential circuit size exp(n1/(2d)) for depth
d circuits, and so we can make L to be quasi-polynomial, exp(poly logn).

3.3 Outline of the general method
In converting a tolerant natural property to an agnostic learning algorithm, we go through
the following steps, mostly analogous to the steps in [4].

Initial assumptions. We start with access via membership queries to a Boolean function f .
We are promised that there is a function h ∈ C so that dist(f, h) ≤ β, for some parameter
β. We do not have any access to h, but can refer to it in the analysis.

Amplification. The first step is to perform an amplification construction, Amp(f), to obtain
a function F . Similarly, we can (conceptually) apply Amp(h) to obtain a function H. We
need the following properties:
1. We can simulate membership queries to F via membership queries to f
2. H ∈ C
3. We can bound dist(F,H) away from 1/2. The exact bound we will require will depend

on the tolerance of the natural property.
Pseudo-random Function Generator. We next convert F to a pseudo-random function gen-

erator, GFs (I) (and, conceptually, convert H into GHs (I). For each seed s, GFs is a Boolean
function on ` bits, producing a truth table of size L = 2`. We call L the stretch of the
generator. We need the following properties:
1. Given s, the truth table for GFs can be computed via membership queries to F (and

hence, f).
2. For each s, GHs (I) has small C circuit complexity (as a function of ` bit input I)
3. With good probability over s, dist(GFs , GHs) is small
Again, the exact quantitative requirements will depend on the quality of the tolerant
natural property. The stronger the circuit lower bound the property is useful against, the
smaller we can make the stretch and so the larger the relative circuit complexity of GHs
in (2) can be. The more tolerant the property is, the larger the allowed distance in (3)
can be. The greater the density, the smaller the probability over seeds of small distance
between GFs and GHs in (3) can be.

Apply tolerant natural property to get a distinguisher. Now we use the tolerant natural
property as a distinguisher, telling the difference between GFs and a random function
of the same size. The second and third conditions above imply that, for many seeds s,
GFs is close to a function with small C complexity. Thus, the property will not hold
for many such functions (as long as close is within the tolerance, and small within the
usefulness of the property). On the other hand, largeness implies that it will hold for
many random functions. A gap between these two probabilities implies a distinguishing
probability. The size of the distinguisher we obtain will depend on the stretch L and the
constructivity of the property.

APPROX/RANDOM’17

35:10 Agnostic Learning from Tolerant Natural Proofs

Convert distinguisher to a predictor. We use the contrapositive of the correctness proof of
the PRFG construction to obtain a predictor that non-trivially predicts F . Note that
non-trivially usually means with advantage at most 1/L over random guessing, so the
smaller the stretch, the better the predictor will be.

Reverse the amplification. Finally, we apply the converse of the hardness amplification
correctness proof to obtain a circuit that computes the original function f with good
probability. Note that the agreement of the circuit for f will depend on the strength
of the hardness amplifier we can use (which is largely determined by the tolerance) but
also on the prediction advantage (largely determined by the stretch, itself determined
by the usefulness of the property). Thus, the strongest results will only apply when the
tolerance is exponentially close to 1/2 and the usefulness is exponential.

3.4 The case of AC0[2]
We first consider the case of amplification for AC0[2]. The case of AC0[q] for primes q > 2 can
be done in a similar way, where we work with GF(q)-valued rather than Boolean functions;
we sketch the argument in Section 3.5 below.

Given a boolean function f : {0, 1}n → {0, 1}, and a parameter k = k(n) ∈ N, the
amplification Ampk(f) is defined as the Goldreich-Levin (Hadamard code) encoding of the
k-wise direct product of f :

Ampk(f) = F (x1, . . . , xk, b1, . . . , bk) =
k∑
i=1

bi · f(xi),

where x1, . . . , xk ∈ {0, 1}n, b1, . . . , bk ∈ {0, 1}, and the summation is modulo 2.
It is shown in [4] that the error parameter of the learning algorithm for f is a function of

k and the stretch L of the generator.

I Theorem 6 ([4]). Suppose the NW generator based on the function F = Ampk(f), with
output strings of length L, is broken with a constant distinguishing probability. Then, using
the distinguisher and membership queries to f , one can construct a circuit computing f
on at least 1 − ε fraction of inputs, for ε ≤ O((lnL)/k). The construction algorithm is a
randomized poly(n, k, L)-time algorithm.

Suppose there is a function h ∈ AC0[2] such that dist(f, h) = β. As observed in [4],
the function H = Ampk(h) ∈ AC0[2] for any k = k(n) ≤ poly(n). It is also easy to argue
that dist(F,H) = 1/2 − (1 − β)k/2. For a given τ = τ(`), we want to choose k so that
dist(F,H) ≤ τ/4. That is, we want (1− β)k ≥ 1− τ/2. Using the inequalities 1 + x ≤ ex

(true for all x), and 1−x ≥ e−2x (true for all 0 ≤ x ≤ 0.7), we are allowed to take k = τ/(4β).
Then the NW generator based on F outputs a truth table of an `-variate function that

has the expected (over random seeds z to the generator) relative distance at most τ/4
from the class of AC0[2] circuits of size u, for weakly-exponential circuit size u (for which
we have a tolerant natural property given by Theorem 5). By Markov’s inequality, we
get that the actual distance is at most τ for at least 3/4 fraction of the random seeds z
to the generator.2 Thus, for AC0[2], we can make the stretch L of our generator to be
quasipolynomial, L = exp(poly(logn)). Then ` = logL = poly(logn).

2 Here, and for the case of AC0[q] for primes q > 2 later, we can use a simple averaging argument and keep
the NW generator as is, because we have natural properties for these classes with very poor tolerance
parameters. However, for the general case, when we may have better tolerance parameters, we achieve
better concentration by combining the NW generator with a pairwise-independent generator.

M.L. Carmosino, R. Impagliazzo, V. Kabanets, and A. Kolokolova 35:11

As we have (1/`3)-tolerant natural property for AC0[2] circuits of size u computing `-input
boolean functions (Theorem 5), we set τ = (1/`3), and get that k = (4β`3)−1. As the
τ -tolerant natural property breaks the NW generator based on F , we get by Theorem 6 that
f can be learned up to the error O((logL)/k) ≤ O(β · `4) ≤ poly(logn) · β.

Thus we have proved the following.

I Theorem 7 (Agnostic learning of AC0[2]). There is a randomized quasipolynomial-time
algorithm for agnostically learning, with membership queries, a function f : {0, 1}n → {0, 1}
with dist(f,AC0[2]) ≤ β (for a non-negligible β > 0), producing a circuit that computes f on
all but at most poly(logn) · β fraction of inputs.

3.5 The case of AC0[q] for prime q > 2
Next, we consider the case of agnostic learning for AC0[q] for prime q > 2. While this follows
the general outline of the AC0[2] case, there are some differences. In particular, to keep
the function generators close to functions in AC0[q], we need to consider them as producing
functions which take Boolean {1,−1} inputs to outputs in the range {0, . . . , q−1} of integers
modulo q. We need to adjust the natural property from [28] to handle such functions. This
turns out to actually simplify the argument from [28] and to eliminate one step (the von
Neumann construction) from the PRFG construction in [4].

Our learning algorithm follows the general outline.

Preconditions. We assume membership query access to a Boolean function f : {0, 1}n →
{0, 1}, and a value β and integer d so that we are promised that there is an h in AC0[q]
computable by a depth d circuit and dist(f, h) ≤ β.

Amplification. Given a parameter k = k(n), the mod q amplification Ampk,q(f) is defined as
the mod q Goldreich-Levin (Hadamard code) encoding of the k-wise direct product of f :

Ampk,q(f) = F (x1, . . . , xk, b1, . . . , bk) =
k∑
i=1

bi · f(xi),

where x1, . . . , xk ∈ {1,−1}n, b1, . . . , bk ∈ {0, . . . , q − 1}, and the summation is modulo q.
Note that this function takes on values in {0, . . . , q− 1}. We will extend the class AC0[q]
to include such functions in any of several obvious ways, e.g., by having q output gates
with the one true one selecting the output. We can code inputs taking on such values
similarly.
In our construction, we will set k = 1/(10 · β). Let the functions H and F be defined by
H = Ampk,q(h) ∈ AC0[q] and F = Ampk,q(f). Then dist(F,H) = (1−(1−β)k)(1−1/q) ≤
kβ = .01, since if f and h agree on all k inputs, the functions F and H will agree, and
otherwise, they agree with conditional probability 1/q. Also, H is computable by a depth
d+ 2 AC0[q] circuit of polynomial size, and a query to F can be simulated with k queries
to f .

Pseudo-random function generator. As in [4], we use a version of the NW generator with
a design based on polynomials over GF(q). We are applying this to the function F

with non-Boolean outputs from GF(q), so the resulting truth table will be, for each
seed s, a vector of values mod q. We will set the stretch L to be quasi-polynomial in n,
L = exp(C · logqd+c n) for some constants C and c, where we need the q in the exponent
of the polylog because of the overhead of GL reconstruction for circuits with outputs in
GF(2). Note that we can construct such a truth table with L queries to F . A subtlety is
that, while we look at the sets in the design as determined by polynomials over GF(q),

APPROX/RANDOM’17

35:12 Agnostic Learning from Tolerant Natural Proofs

we only consider those L polynomials of degree `− 1, where ` = log2 L, with co-efficients
in {1,−1}.
Call this pseudo-random function generator using F and H respectively, and seed s, GFs
and GHs . As noted in [4], for each seed s, GHs can be computed by poly(n) sized circuits
of depth d+O(1).
Since for a random seed s and random position I, the value F is queried at is uniform,
Es
[
dist(GFs , GHs)

]
= dist(F,H) ≤ .01. By Markov, we get Pr

[
dist(GFs , GHs) ≥ .1

]
≤ .1.

Apply natural property. At this point, we apply a tolerant natural property. We need a
variant of natural property that applies to functions with Boolean inputs and outputs in
GF(q). It turns out that the Razborov-Rudich [28] natural property for AC0[q] is actually
simpler in this case. We prove the following in Section B of the appendix.

I Lemma 8 (Tolerant natural property for AC0[q]). There is a P-natural property {Rn}n≥0 with
largeness 1/2, and (.15)-tolerant exp(Ω(n1/(2d)))-usefulness against d-depth AC0[q] circuits
computing functions f : {1,−1}n → GF(q).

We get that at most 1/10 of the functions GFs will be of high complexity, whereas a
random function will be of high complexity with probability 1/2. So testing whether a
function has high complexity gives us a poly(L) size distinguisher with constant advantage
for distinguishing GFs from a random function.

Converting to a predictor. Using the standard hybrid argument and proof of correctness
for the NW generator, we can convert this distinguisher into a predictor circuit of size
poly(L) and advantage Ω(1/L) of predicting F (z) over random guessing. (To compute
this predictor, we need to query F and hence f at poly(L) positions; see [4]. This is the
main step that requires membership queries.)

Converse of amplification. Applying the converse of the generalized GL construction and
the direct product theorems, we can convert this predictor circuit into one that computes
f on 1−γ inputs, where (1−γ)Ωk = Ω(1/L). Thus, e−C1γk = C2/L, or γ = O(logL/k) =
O(β · logL) = O(β · logqd+c n). So we get an agnostic learner that works in time and
queries quasi-polynomial in n, and with error at most O(logqd+c n) · β. (Note that this
assumes β is non-negligible; otherwise, the time and circuit size depend on 1/β as well).

Combining all these pieces, we have the following.

I Theorem 9 (Agnostic learning of AC0[q]). Let q > 2 be any prime. There is a randomized
quasipolynomial-time algorithm for agnostically learning, with membership queries, a function
f : {0, 1}n → {0, 1} with dist(f,AC0[q]) ≤ β (for a non-negligible β > 0), producing a circuit
that computes f on all but at most poly(logn) · β fraction of inputs.

4 Agnostic learning from tolerant natural properties

Next, we consider the case of agnostic learning for any Λ closed under AC0[2]-reductions for
any natural property against Λ with super-constant tolerance and usefulness. This follows
the general outline of the AC0[2] case, but we need to use a variant of the NW pseudorandom
generator to take advantage of (potentially) better tolerance. We will use Chebyshev instead
of Markov to bound the probability, over random seeds z, that the functions mapped to by
the generator have small distance. Our generic learning algorithm also follows the outline.

Preconditions. Let Λ be some complexity class closed under AC0[2]-reductions. Let R be
a BPP-constructive, τ -tolerant, u-useful natural property against Λ, for super-constant

M.L. Carmosino, R. Impagliazzo, V. Kabanets, and A. Kolokolova 35:13

τ with largeness δ > (1/2). Write τ = (1/2) − τ ′, because it will sometimes be easier
to work with τ as an “advantage.” We assume membership query access to a Boolean
function f : {0, 1}n → {0, 1}, and a value β so that we are promised that there is an h in
Λ with dist(f, h) ≤ β.

Amplification. We use Ampk identically to the specific case of AC0[2], except that we
set k later based on abstract τ and u. Let F = Ampk(f), H = Ampk(h), as before
dist(F,H) = (1/2)− (1/2)(1− β)k, which we call µ.

Pseudo-random function generator. As in [4], we use a version of the NW generator with
a design based on polynomials over GF(2). Recall that the NW design for parameters
n,m,L ∈ N is a family of sets S1, . . . , SL ⊆ [m], of size |Si| = n, for all 1 ≤ i ≤ L, and
small overlap |Si ∩ Sj | ≤ logL = ` for all 1 ≤ i 6= j ≤ L. It was shown in [4] that such
designs can be efficiently locally computed by AC0[q] circuits, for any prime q.

I Lemma 10 (NW design in AC0[q] [25, 4]). Let q be any prime. There is a constant d0 ∈ N
such that, for any n and L < 2n, there exists an NW design S1, . . . , SL with parameters
as defined above, so that the function MXNW : {0, 1}` × {0, 1}m → {0, 1}n, defined by
MXNW (i, z) = z|Si , where z|Si denotes the substring of z indexed by Si, is computable by
an AC0[q] circuit of depth d0 and size poly(`, n).

The NW generator [25] based on a boolean function F : {0, 1}n → {0, 1} is GF : {0, 1}m →
{0, 1}L defined as GF (z) = F (z|S1) ◦ · · · ◦F (z|SL), where S1, . . . , SL is the NW design as
above. Lemma 10 implies that if F ∈ AC0[2], then, for each seed z, the output GF (z) is
the truth table of an (` = logL)-variate Boolean function of AC0[2] circuit complexity at
most poly(`, n).
Let H : {0, 1}n → {0, 1} be another boolean function such that dist(F,H) ≤ µ, for
some µ ∈ [0, 1]. By the definition of the NW generator, we have that the expected
hamming distance between the L-bit strings GF (z) and GH(z), over random seeds z, is
dist(F,H) · L ≤ µ · L. For our agnostic learning framework, it is important (as explained
in the previous section) that the NW generator have the concentration property: for
most seeds z, the hamming distance between GF (z) and GH(z) is close to the expected
distance µ · L.
We achieve this concentration property by adding a pairwise-independent string generator
as a component of the NW generator. Let PI : {0, 1}` × {0, 1}m′ → {0, 1}n be a pairwise
independent generator such that
1. for each i ∈ [L], the distribution PI(i, z) over uniformly random z ∈ {0, 1}m′ is uniform

over {0, 1}n, and
2. for all i 6= j ∈ [L], the distribution of PI(i, z) and PI(j, z), over uniformly random

seeds z ∈ {0, 1}m′ , is uniform over {0, 1}n × {0, 1}n.
Such generators exist for m′ ≤ n(` + 1); for example, pick a random 0/1 matrix A of
dimension n × ` and a random 0/1 vector v of dimension n. Let z = (A, v). Define
P (i, (A, v)) = A · i + v, where A · i denotes the matrix-vector multiplication, and all
operations are over GF(2). It is easy to see that this generator PI(i, z) is computable by
an AC0[2] circuit of polynomial size.
Define the modified NW generator G′F : {0, 1}m × {0, 1}m′ → {0, 1}L, based on the
n-variate boolean function F , as follows:

G′F (z1, z2) = F (z1|S1 ⊕ PI(1, z2)) ◦ · · · ◦ F (z1|SL ⊕ PI(L, z2)),

where Si’s form the NW design, and PI is the pairwise-independent generator as above,
and ⊕ denotes the bit-wise XOR of the corresponding n-bit strings.

APPROX/RANDOM’17

35:14 Agnostic Learning from Tolerant Natural Proofs

Observe that since the generator PI is efficiently locally computable in AC0[2], we still
get (by Lemma 10) that the `-bit function output by G′F , for F ∈ AC0[2], has AC0[2]
circuit complexity at most poly(`, n). Next, the generator G′ allows the same kind of
reconstruction as the original NW generator: given a distinguisher for G′ with a constant
distinguishing probability, one can efficiently construct (using membership queries to F)
a small circuit computing F on at least 1/2 + Ω(1/L) fraction of inputs. Finally, the
generator G′F (z1, z2), for uniformly random seeds z1 and z2, outputs L values of F on
pairwise-independent uniformly random n-bit inputs.
From pairwise independence we get that the hamming distance between G′F (z1, z2)
and G′H(z1, z2), over random z1 and z2, is concentrated around the expectation, by
the Chebyshev bound. More precisely, for F and H with dist(F,H) ≤ µ, we have by
Chebyshev that

Prz
[∣∣DIST(G′F (z), G′H(z))− µ · L

∣∣ > ζ · L
]
<

1
ζ2 · L

,

which we will require to be less than 1/4. We parameterize the bound with ζ =
(1/4)(1− β)k. For the selected ζ, and the stretch L we are forced to pick later, this is
immediate.

Apply natural property. At this point, we apply a tolerant natural property to produce
a distinguisher circuit for the generator above. This induces the following system of
constraints, which relate the usefulness, tolerance, and density of the property to the
stretch and concentration of the generator. Let Λ-SIZE(G′H(z)) = sH . We require
that sH ≤ u(`), to respect the size lower bound. We re-arrange the Chebyshev bound
above and see that we should require µ + ζ < τ(`), respect tolerance, and ensure a
good distinguishing gap from the property. We satisfy the first requirement by setting
` ≥ u−1(sH). The second one is equivalent to (1/4)(1 − β)k > τ ′(`). In this case, the
tolerant property can only accept GF (z) with probability (1/4) but accepts a random
function with probability at least (1/2), giving us a (1/4) distinguishing gap. We can
satisfy both constraints by setting k = Θ(log(τ ′(`))/β).

Converting to a predictor. Using a small modification of the standard hybrid argument
and proof of correctness for the NW generator, we can convert this distinguisher into a
predictor circuit of size poly(L) and advantage Ω(1/L) of predicting F (z) over random
guessing. The modified predictor just embeds a construction of PI and shifts/unshifts
inputs to the distinguisher circuit as necessary. (To compute this predictor, we need to
query F and hence f at poly(L) positions; see [4]. This is the main step that requires
membership queries.) From this step we know that our runtime is at most poly(L), and
the circuit output at this stage is already size poly(L).

Converse of amplification. Identical to the case of AC0[q], but with the additional con-
straints mentioned above. Note that the runtime of these algorithms is randomized time
in the size of the input circuit, so runtime, number of queries, and output circuit size of this
stage will also be dominated by L. Use of this algorithm imposes the following constraint
from the direct product reconstruction stage: poly(1/L) > e−kε/c. So ε > Θ(log(L)/k).
Substituting in our value for k, this gives us ε = Θ(`β/ log(τ ′(`))) for ` = u−1(sH).

Summarizing, we get a generic reduction from tolerant natural properties to agnostic
learning.

I Theorem 11 (Tolerant natural properties imply agnostic learning algorithms). Let R be a natu-
ral property against Λ closed under AC0[2] reductions with (1/2−τ ′)-tolerant u-usefulness and

M.L. Carmosino, R. Impagliazzo, V. Kabanets, and A. Kolokolova 35:15

largeness δ ≥ 1/2. Then there is a randomized algorithm such that, for any n-ary boolean func-
tions f and h with dist(f, h) < β and sh = Λ-SIZE(h), the algorithm, given oracle access to
f , produces a circuit ε-approximating f , for any ε > β ·u−1(poly(sh))/ log(τ ′(u−1(poly(sh)))),
in time poly(max{2u−1(poly(sh)), 1/ε}).

In particular, this means if we have a “perfect” natural property, with exponential
usefulness u and inverse exponential tolerance τ ′, we have a polynomial-time learning
algorithm with error bound Θ(β). Thus Theorem 2 is a special case of Theorem 11.

5 Hardness of removing membership queries

Is it possible to eliminate membership queries from our algorithm, learning just from random
examples? We note that removing membership queries would give us quasipolynomial-time
algorithms for two notoriously difficult problems: learning parities with noise (LPN) for the
case of AC0[2] and a variant of learning with errors (LWE) for AC0[q].

Though learning parities with noise under uniform distribution can be done in polynomial
time with membership queries (by the Goldreich-Levin algorithm [11]), without membership
queries this problem is believed to be hard. Learning parities with noise efficiently under
uniform distribution would give learning algorithms for DNFs and k-juntas (and in general,
for any problem reducible to finding a heavy Fourier coefficient of a function) [8].

In the worst case, LPN is known to be NP-hard (and MAX-SNP-hard). The average-case
hardness of LPN has been considered as early as 1993, when Blum, Furst, Kearns and Lipton
have given a simple construction of a pseudorandom bit generator based on the assumption
that learning parities with constant noise rate is hard [2]. In practical cryptography, average-
case hardness of LPN is the basis for Hopper and Blum authentication protocol [14]. There,
the noise rate is usually set to a constant η ∈ (0, 1/2), in particular η = 1/8 has been used in
applications [22]. Though for AC0[2] our algorithm works for noise up to 1/polylog(n), we
can tolerate constant noise for AC0[q].

Hardness of LWE problem follows from worst-case hardness of variants of the lattice
shortest vector problem [29]. Whereas LPN has been used to build "minicrypt" cryptographic
primitives, LWE has been used for public-key cryptosystems [1, 29].

6 Open questions

While there are correlation bounds for AC0[q] circuits that say that some explicit functions
cannot be computed by “small” circuits on significantly more that 1/2 + 1/

√
n fraction of

inputs, we do not know how to get natural properties with tolerance close to 1/2. Getting
natural properties with better tolerance parameters would immediately imply improved
parameters for our agnostic learning algorithms for the corresponding circuit classes. (Of
course, getting stronger correlation bounds for AC0[q], whether obtained by natural proofs or
not, is in itself a very important problem in circuit complexity.)

Can one get a query agnostic learning algorithm for AC0[q] with the optimal error opt + ε?
It seems that, even with ideal tolerance and usefulness, our approach of getting learning
algorithms from natural properties will at best achieve the error O(opt) + ε. So one needs a
new approach, perhaps inspired by the learning algorithm in this paper.

In fact, probably the main open problem is to get a more “natural” (understandable)
learning algorithm for AC0[q] than our construction, which combines the NW-style generator
analysis with circuit lower bound proofs. As a possible first step, it would be interesting to
get an alternative agnostic learning algorithm for low-degree polynomials over GF(2).

APPROX/RANDOM’17

35:16 Agnostic Learning from Tolerant Natural Proofs

References
1 Michael Alekhnovich. More on average case vs approximation complexity. In Foundations

of Computer Science, 2003. Proceedings. 44th Annual IEEE Symposium on, pages 298–307.
IEEE, 2003.

2 Avrim Blum, Merrick Furst, Michael Kearns, and Richard J Lipton. Cryptographic prim-
itives based on hard learning problems. In Annual International Cryptology Conference,
pages 278–291. Springer, 1993.

3 Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity problem,
and the statistical query model. Journal of the ACM (JACM), 50(4):506–519, 2003.

4 Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova.
Learning algorithms from natural proofs. In Ran Raz, editor, 31st Conference on Compu-
tational Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan, volume 50, pages
10:1–10:24. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016.

5 Ruiwen Chen, Valentine Kabanets, Antonina Kolokolova, Ronen Shaltiel, and David Zuck-
erman. Mining circuit lower bound proofs for meta-algorithms. Computational Complexity,
24(2):333–392, 2015.

6 Vitaly Feldman. On the power of membership queries in agnostic learning. Journal of
Machine Learning Research, 10:163–182, 2009.

7 Vitaly Feldman. Distribution-specific agnostic boosting. In Innovations in Computer Sci-
ence – ICS 2010, Tsinghua University, Beijing, China, January 5-7, 2010. Proceedings,
pages 241–250, 2010.

8 Vitaly Feldman, Parikshit Gopalan, Subhash Khot, and Ashok Kumar Ponnuswami. New
results for learning noisy parities and halfspaces. In Foundations of Computer Science,
2006. FOCS’06. 47th Annual IEEE Symposium on, pages 563–574. IEEE, 2006.

9 Jean-Bernard Fischer and Jacques Stern. An efficient pseudo-random generator provably as
secure as syndrome decoding. In International Conference on the Theory and Applications
of Cryptographic Techniques, pages 245–255. Springer, 1996.

10 Sally A. Goldman, Michael J. Kearns, and Robert E. Schapire. On the sample complexity
of weakly learning. Inf. Comput., 117(2):276–287, 1995.

11 Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In
David S. Johnson, editor, Proceedings of the 21st Annual ACM Symposium on Theory of
Computing, May 14-17, 1989, Seattle, Washigton, USA, pages 25–32. ACM, 1989.

12 Parikshit Gopalan, Adam Tauman Kalai, and Adam R. Klivans. Agnostically learning
decision trees. In Cynthia Dwork, editor, Proceedings of the 40th Annual ACM Symposium
on Theory of Computing, Victoria, British Columbia, Canada, May 17-20, 2008, pages
527–536. ACM, 2008.

13 Johan Håstad. Some optimal inapproximability results. Journal of the ACM (JACM),
48(4):798–859, 2001.

14 Nicholas J. Hopper and Manuel Blum. Secure human identification protocols. In Advances
in Cryptology – ASIACRYPT 2001, 7th International Conference on the Theory and Ap-
plication of Cryptology and Information Security, Gold Coast, Australia, December 9-13,
2001, Proceedings, pages 52–66, 2001.

15 Russell Impagliazzo, William Matthews, and Ramamohan Paturi. A satisfiability algorithm
for AC0. In Yuval Rabani, editor, Proceedings of the Twenty-Third Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages
961–972. SIAM, 2012.

16 Russell Impagliazzo, Raghu Meka, and David Zuckerman. Pseudorandomness from shrink-
age. In 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012,
New Brunswick, NJ, USA, October 20-23, 2012, pages 111–119. IEEE Computer Society,
2012.

M.L. Carmosino, R. Impagliazzo, V. Kabanets, and A. Kolokolova 35:17

17 Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits:
Derandomizing the XOR lemma. In Frank Thomson Leighton and Peter W. Shor, editors,
Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing, El
Paso, Texas, USA, May 4-6, 1997, pages 220–229. ACM, 1997.

18 Jeffrey C. Jackson. Uniform-distribution learnability of noisy linear threshold functions with
restricted focus of attention. In Proceedings of the 19th Annual Conference on Learning
Theory, COLT’06, pages 304–318, Berlin, Heidelberg, 2006. Springer-Verlag.

19 Adam Tauman Kalai, Adam R. Klivans, Yishay Mansour, and Rocco A. Servedio. Agnos-
tically learning halfspaces. SIAM J. Comput., 37(6):1777–1805, 2008.

20 Michael J. Kearns, Robert E. Schapire, and Linda Sellie. Toward efficient agnostic learning.
Machine Learning, 17(2-3):115–141, 1994.

21 Wee Sun Lee, Peter L. Bartlett, and Robert C. Williamson. Efficient agnostic learning of
neural networks with bounded fan-in. IEEE Trans. Information Theory, 42(6):2118–2132,
1996.

22 Éric Levieil and Pierre-Alain Fouque. An improved lpn algorithm. In International Con-
ference on Security and Cryptography for Networks, pages 348–359. Springer, 2006.

23 Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, Fourier trans-
form, and learnability. J. ACM, 40(3):607–620, 1993.

24 Vadim Lyubashevsky. The parity problem in the presence of noise, decoding random linear
codes, and the subset sum problem. In Approximation, Randomization and Combinatorial
Optimization. Algorithms and Techniques, pages 378–389. Springer, 2005.

25 Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci., 49(2):149–
167, 1994.

26 Krzysztof Pietrzak. Cryptography from learning parity with noise. In International Con-
ference on Current Trends in Theory and Practice of Computer Science, pages 99–114.
Springer, 2012.

27 A.A. Razborov. Lower bounds on the size of bounded depth circuits over a complete
basis with logical addition. Mathematical notes of the Academy of Sciences of the USSR,
41(4):333–338, 1987.

28 Alexander A. Razborov and Steven Rudich. Natural proofs. J. Comput. Syst. Sci., 55(1):24–
35, 1997.

29 Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
Journal of the ACM (JACM), 56(6):34, 2009.

30 Rahul Santhanam. Fighting perebor: New and improved algorithms for formula and QBF
satisfiability. In 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 183–192. IEEE Computer
Society, 2010.

31 Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit
complexity. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing,
1987, New York, New York, USA, pages 77–82, 1987.

32 Leslie G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, November
1984.

33 Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds. In
Leonard J. Schulman, editor, Proceedings of the 42nd ACM Symposium on Theory of Com-
puting, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 231–240. ACM,
2010.

34 Ryan Williams. Non-uniform ACC circuit lower bounds. In Proceedings of the 26th Annual
IEEE Conference on Computational Complexity, CCC 2011, San Jose, California, June
8-10, 2011, pages 115–125. IEEE Computer Society, 2011.

APPROX/RANDOM’17

35:18 Agnostic Learning from Tolerant Natural Proofs

A Tolerant natural property for AC0[2]

Razborov [27] showed the following natural property for AC0[2]:

Given an n-variate boolean function f , construct certain matrices A1, . . . , Ab, for
b = n/2−

√
n, of dimensions at most 2n× 2n, and check if at least one of the matrices

has rank at least 2n/(140 · n2) over GF(2).

More precisely, for a = n/2−
√
n and all i ≤ a, define Ai to be the matrix whose rows

are labeled by size a subsets of [n], and whose columns are labeled by size i subsets of [n].
For K ⊆ [n], let Z(K) = {x ∈ {0, 1}n | x|K = ~0}. For a row I ⊆ [n] and a column J ⊆ [n],
define (Ai)I,J = ⊕x∈Z(I∪J)f(x).

It is possible to show that at least 1/2 of all n-variate boolean functions satisfy this
property; so we have largeness (see [4]). The usefulness of this property is due to the following
two lemmas. Below we denote by P(D) the linear space of all n-variate degree D multilinear
polynomials over GF(2).

I Lemma 12 ([27]). For an n-variate boolean function f and the corresponding matrices
A1, . . . , Ab, for b = n/2−

√
n, we have for all 1 ≤ i ≤ b that

DIST(f,P(
√
n)) ≥ rank(Ai).

I Lemma 13 ([27]). For an n-variate boolean function f , if f is computable by a d-depth
AC0[2] circuit of size s, then

dist(f,P((O(log(s/ε))d)) ≤ ε.

So for ε = 1/n3 and size s < exp(Ω(n1/(2d)))/n3, we get by Lemma 13 that any f

computable by a d-depth AC0[2] circuit of size s is such that DIST(f,P(
√
n)) ≤ 2n/n3. Hence,

by Lemma 12, all the corresponding matrices Ai for f have rank at most 2n/n3 ≤ 2n/(140·n2)
(for all sufficiently large n), and so f is rejected by the natural property.

Now suppose that h is an n-variate boolean function that is close to f , i.e., for some
0 ≤ β ≤ 1,

dist(h, f) ≤ β,

where f is as above. Then we get by the triangle inequality that

DIST(h,P(
√
n)) ≤ (β + n−3) · 2n,

which, in particular, means that for any β ≤ 1/n3, such a function h will also be rejected by
the natural property above.

Thus we have proved the following.

I Lemma 14 (Tolerant natural property for AC0[2]). There is a P-natural property {Rn}n≥0
with largeness 1/2, and (1/n3)-tolerant exp(Ω(n1/(2d)))-usefulness against d-depth AC0[2]
circuits.

B Tolerant natural property for AC0[q] for prime q > 2

Here we prove the following.

M.L. Carmosino, R. Impagliazzo, V. Kabanets, and A. Kolokolova 35:19

I Lemma 15 (Tolerant natural property for AC0[q]). There is a P-natural property {Rn}n≥0
with largeness 1/2, and (.15)-tolerant exp(Ω(n1/(2d)))-usefulness against d-depth AC0[q]
circuits computing functions f : {1,−1}n → GF(q).

Proof. LetM be the vector space of all n-variate multilinear polynomials over GF (q), and
let L be the subspace of those polynomials of degree at most n/2. Given such a multilinear
polynomial f (and any truth table indexed by {1,−1}n over GF (q) defines such a polynomial),
we say that f is high complexity if the dimension dim(L+ f · L) ≥ 3/4 ·N , where N = 2n.

Note that, for any function f of degree d, L + f · L is contained within the space of
multilinear polynomials of degree l/2 + d, which has dimension at most N(1/2 +O(d/

√
n)).

Changing any D values can increase this dimension by at most D (since adding the dimension
D vector space of all functions on these D points to the subspace for the original function
includes the subspace functions for the changed function). So in particular, any high
complexity function must have distance at least 1/5 from any function of degree c

√
n for

some c > 0. Since by work by Razborov [27] and Smolensky [31], any function in AC0[q] of
depth d and size s is within ε distance of a multilinear polynomial over GF(q) of degree
O(log(s/ε)d), any high complexity function must be distance .15 from any function computed
by size exp(Ω(n1/(2d+C))) depth d+ C circuits with mod q gates.

At least half of such functions have high complexity. From [31], for p the product of all l
inputs (i.e., the parity of the number of -1 inputs), L+ p · L =M. Then for f any function,
either f has high complexity or p− f does. Because if both have low complexity, then

dim(L+ f · L) = dimL+ dim((f · L)/L) < 3
4 ·N,

so dim((f · L)/L) < (1/4) ·N , and similarly for p− f . Then

dimM = dim(L+ p · L)
≤ dim(L+ f · L+ (p− f) · L)
≤ dimL+ dim((f · L)/L) + dim(((p− f) · L)/L)
< N/2 +N/4 +N/4
= N,

a contradiction. Since all functions can be paired up into f, p − f pairs, at least half the
functions have high complexity. Clearly, we can test whether a function has high complexity
in poly(N) time. J

APPROX/RANDOM’17

On the Complexity of Constrained Determinantal
Point Processes

L. Elisa Celis1, Amit Deshpande2, Tarun Kathuria3,
Damian Straszak4, and Nisheeth K. Vishnoi5

1 École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
2 Microsoft Research, Bangalore, India
3 Microsoft Research, Bangalore, India
4 École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
5 École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

Abstract
Determinantal Point Processes (DPPs) are probabilistic models that arise in quantum physics
and random matrix theory and have recently found numerous applications in theoretical com-
puter science and machine learning. DPPs define probability distributions over subsets of a
given ground set, they exhibit interesting properties such as negative correlation, and, unlike
other models of negative correlation such as Markov random fields, have efficient algorithms
for sampling. When applied to kernel methods in machine learning, DPPs favor subsets of the
given data with more diverse features. However, many real-world applications require efficient
algorithms to sample from DPPs with additional constraints on the sampled subset, e.g., parti-
tion or matroid constraints that are important from the viewpoint of ensuring priors, resource
or fairness constraints on the sampled subset. Whether one can efficiently sample from DPPs in
such constrained settings is an important problem that was first raised in a survey of DPPs for
machine learning by Kulesza and Taskar and studied in some recent works.

The main contribution of this paper is the first resolution of the complexity of sampling from
DPPs with constraints. On the one hand, we give exact efficient algorithms for sampling from
constrained DPPs when the description of the constraints is in unary; this includes special cases
of practical importance such as a small number of partition, knapsack or budget constraints. On
the other hand, we prove that when the constraints are specified in binary, this problem is #P-
hard via a reduction from the problem of computing mixed discriminants; implying that it may
be unlikely that there is an FPRAS. Technically, our algorithmic result benefits from viewing the
constrained sampling problem via the lens of polynomials and we obtain our complexity results
by providing an equivalence between computing mixed discriminants and sampling from partition
constrained DPPs. As a consequence, we obtain a few corollaries of independent interest: 1) An
algorithm to count, sample (and, hence, optimize) over the base polytope of regular matroids
when there are additional (succinct) budget constraints and, 2) An algorithm to evaluate and
compute mixed characteristic polynomials, that played a central role in the resolution of the
Kadison-Singer problem, for certain special cases.

1998 ACM Subject Classification F.2.1 Numerical Algorithms and Problems, G.2.1 Counting
Problems

Keywords and phrases determinantal point processes, constraints, matroids, sampling and count-
ing, polynomials, mixed discriminant

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.36

© L. Elisa Celis, Amit Deshpande, Tarun Kathuria, Damian Straszak, and Nisheeth K. Vishnoi;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 36; pp. 36:1–36:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.36
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

36:2 On the Complexity of Constrained Determinantal Point Processes

1 Introduction

Algorithms for sampling from a discrete set of objects are sought after in various disciplines
of computer science, optimization, mathematics and physics due to their far reaching
applications. For instance, sampling from the Gibbs distribution was one of the original
optimization methods (see, e.g., [17]) and sampling from dependent distributions is often used
in the design of approximation algorithms (see, e.g., [5, 8, 19]). In machine learning, algorithms
for sampling from discrete probability distributions are desired in various summarization,
inference and learning tasks [33, 28, 24]. A particular class of probability distributions that
has received much attention are the Determinantal Point Processes (DPP). In the discrete
setting, a DPP is a distribution over subsets of a finite data set [m] def= {1, 2, . . . ,m}. Here, a
data point i is associated to a feature vector vi ∈ Rd, and an m×m positive semidefinite
(PSD) kernel L gives the dot product of the feature vectors of any two data points as a
measure of their pairwise similarity. Determinants, then, provide a natural measure of the
diversity of a subset of data points, often backed by a physical intuition based on volume
or entropy. A DPP is thus defined with respect to the kernel L such that for all S ⊆ [m]
we have P(S) ∝ det(LS,S), where LS,S is the principal minor of L corresponding to rows
and columns from S.1 The quantity det(LS,S) can be interpreted as the squared volume
of the |S|-dimensional parallelepiped spanned by the vectors {vi : i ∈ S} and, intuitively,
the larger the volume, the more diverse the set of vectors. Hence such distributions tend
to prefer most diverse or informative subsets of data points. Mathematically, the fact that
the probabilities are derived from determinants allows one to deduce elegant and non-trivial
properties of such distributions, such as negative correlation and concentration of measure.
Efficient polynomial time algorithms for sampling from DPPs (see [20, 10]) is what sets them
apart from the other probabilistic models of negative correlation such as Markov random
fields. As a consequence, sampling from DPPs has been successfully applied to a number of
problems, such as document summarization, sensor placement and recommendation systems
[26, 23, 37, 36, 35].

Given the wide applicability of DPPs, a natural question is whether they can be generalized
to incorporate priors, budget or fairness constraints, or other natural combinatorial constraints.
In other words, given an m×m kernel L and a family C ⊆ 2[m] that represents constraints
on the subsets, can we efficiently sample from the DPP distribution supported only on C;
that is, P(S) ∝ det(LS,S) for S ∈ C, and P(S) = 0 otherwise. Here are two important special
cases.

Fairness (or Partition) constraints: Consider the setting where [m] is a collection of data
points and each point is associated with a sensitive attribute such as gender. Then C is
the family of attribute-unbiased subsets of [m] – e.g., those subsets that contain an equal
number of male and female points. Thus, the corresponding C-constrained DPP outputs
a diverse set of points while maintaining fairness with respect to the sensitive attribute;
see [7] for this and other applications of constrained DPPs to eliminating algorithmic
bias.
Budget constraints: In data subset selection or active learning, when there is a cost ci ∈ Z
associated with each data point, it is natural to ask for a diverse training sample S from
a corresponding DPP such that its cost

∑
i∈S ci is bounded from above by C ∈ Z. See

also [34] for a related optimization variant.

1 We treat DPPs via L-ensembles, while commonly they are defined using kernel matrices, for practical
purposes these two definitions are equivalent.

L. E. Celis, A. Deshpande, T. Kathuria, D. Straszak, and N.K. Vishnoi 36:3

In their survey, [24] posed the open question of efficiently sampling from DPPs with additional
combinatorial constraints on the support of the distribution. Sampling from constrained DPPs
is algorithmically non-trivial, as many natural heuristics fail. The probability mass on the
constrained family of subsets can be arbitrarily small, hence, ruling out a rejection sampling
approach. For partition constraints, a natural heuristic is to sample from independent
smaller-sized DPPs, each defined over a different part. However, such a product distribution
would select two (potentially very similar) items from two different parts independently,
whereas in a constrained DPP distribution they must be negatively correlated. Unlike DPPs
and the special case of cardinality-constrained k-DPPs (in which C is the family of all subsets
of size k – see Section 1.2), it is not clear that there is a clean expression for the partition
function or the marginals of a constrained DPP. Another approach to approximately sample
from constrained DPPs is via Markov Chain Monte Carlo (MCMC) methods as in the recent
work of [25]. This approach can be shown to be efficient when the underlying Markov chain is
connected and the DPP kernel is close to a diagonal matrix (or nearly-log-linear; see Theorem
4 of [25]). However, the above conditions do not hold for sampling partition-constrained
subsets – even with constant number of parts – from most DPP kernels. Thus, while the
problem of sampling from constrained DPPs has attracted attention, its complexity has
remained open.

The main contribution of our paper is the first resolution of the problem of sampling from
constrained DPPs. Our results give a dichotomy for the complexity of this problem: On the
one hand, we give exact algorithms which are polynomial time when the description of C (in
terms of the costs and budgets) is in unary; this includes special cases of practical importance
such as the fairness, partition or budget constraints mentioned above. On the other hand,
we prove that in general this problem is #P-hard when the constraints of C are specified in
binary. Our algorithmic results go beyond the MCMC methods and include special cases of
practical importance such as (constantly-many) partition or fairness constraints (studied,
e.g., by [7]) and a more general class of budget constraints and linear families defined in the
following section.

Our algorithmic results benefit from viewing the probabilities arising in constrained
DPPs as coefficients of certain multivariate polynomials. This viewpoint also allows us to
extend our result on constrained DPPs to derive important consequences of independent
interest. For instance, using the intimate connection between linear matroids and DPPs, we
arrive at efficient algorithms to sample a basis of regular matroids when there are additional
budget constraints – significantly extending results of [12, 6] for spanning trees. To prove
the hardness result, we present an equivalence between the problem of computing the mixed
discriminant of a tuple of PSD matrices and that of sampling from partition-constrained
DPPs. Mixed discriminants (see Section 4.1 for a definition) generalize the permanent, arise
in the proof of the Kadison-Singer problem ([27], see [18] for a survey on this topic) and are
closely related to mixed volumes (see, e.g., [4]). However, unlike the result for permanent [21]
and volume computation [11], there is evidence that the mixed discriminant problem may
be much harder and may not admit an FPRAS; see [15]. Thus, in light of our equivalence
between mixed discriminants and partition DPPs, it may be unlikely that we can even
approximately sample from partition DPPs (with an arbitrary number of parts) efficiently.
Further, this connection implies that important special cases of the mixed discriminant
problem, for instance computing the higher order coefficients of the mixed-characteristic
polynomial or evaluating the mixed characteristic polynomial of low rank matrices at a given
point, can be solved efficiently, which may be of independent interest.

APPROX/RANDOM’17

36:4 On the Complexity of Constrained Determinantal Point Processes

1.1 Our Framework and Results
The starting point of our work is the observation that if we let µ be the measure on subsets
of [m] corresponding to the kernel matrix L (i.e., µ(S) def= det(LS,S)), then given L, there is
an efficient algorithm to evaluate the polynomial

gµ(x) def=
∑
S⊆[m]

µ(S)xS

where xS denotes
∏
i∈S xi for any setting of its variables. Indeed, consider the Cholesky

decomposition of the kernel L = V V >. Then, the polynomial x 7→ det(V >XV + I) (where
X denotes the diagonal matrix with x on the diagonal) is equal to gµ(x) (see Fact 8) and
hence can be efficiently evaluated using Gaussian elimination for any input x. We say that
such a µ has an efficient evaluation oracle and, as it turns out, this is the only property
we need from DPPs and our results generalize to any measure µ for which we have such an
evaluation oracle. Before we explain our results, we formally introduce the sampling problem
in this general framework.

I Definition 1 (Sampling). Let µ : 2[m] → R≥0 be a function assigning non-negative real
values to subsets of [m] and let C ⊆ 2[m] be any family of subsets of [m]. We denote the
(sampling) problem of selecting a set S ∈ C with probability pS = µ(S)∑

T∈C
µ(T)

by Sample[µ, C].

Building up on the equivalence between sampling and counting [22], we show that if one
is given oracle access to the generating polynomial gµ and if µ is a nonnegative measure,
the problem Sample[µ, C] is essentially equivalent to the following counting problem; see
Theorem 21 in Appendix B.

I Definition 2 (Counting). Let µ : 2[m] → R≥0 be a function assigning non-negative real
values to subsets of [m] and let C ⊆ 2[m] be any family of subsets of [m]. We denote the
(counting) problem of computing the sum

∑
S∈C µ(S) by Count[µ, C].

In particular, a polynomial time algorithm for Count[µ, C] can be translated into a polynomial
time algorithm for Sample[µ, C]. Interestingly, this relation holds no matter what C is; in
particular, no specific assumptions on how the access to C is provided are required.

Towards developing counting algorithms in our framework, we focus on a class of families
C ⊆ 2[m], which we call Budget Constrained Families, where a cost vector c ∈ Zm and a
budget value C ∈ Z are given, and the family consists of all sets S ⊆ [m] of total cost
c(S) def=

∑
i∈S ci at most C. We call the counting and sampling problems for this special case

BCount[µ, c, C] and BSample[µ, c, C] respectively.
Our key result is that the BCount problem (and hence also BSample) is efficiently

solvable whenever the costs are not too large in magnitude.

I Theorem 3 (Counting under Budget Constraints). There is an algorithm, which given a
function µ : 2[m] → R (via oracle access to gµ), a cost vector c ∈ Zm and a cost value C ∈ Z
solves the BCount[µ, c, C] problem in polynomial time with respect to m and ‖c‖1.

The proof of Theorem 3 (see Section 2) benefits from an interplay between probability
measures and polynomials. It reduces the counting problem to computing the coefficients of
a certain univariate polynomial which, in turn, can be evaluated efficiently given access to
the generating polynomial for µ. We can then employ interpolation in order to recover the
required coefficients.

L. E. Celis, A. Deshpande, T. Kathuria, D. Straszak, and N.K. Vishnoi 36:5

It is not hard to see that Theorem 3 also implies the same result for families with a single
equality constraint (c(S) = C) or for any constraint of the form c(S) ∈ K, where K ⊆ Z is
given as input together with c ∈ Zm and C ∈ Z. Furthermore, our framework can be easily
extended to the case of multiple (constant number of) such constraints.

As mentioned earlier, what makes DPPs attractive is that their generating polynomial,
arising from a determinant, is efficiently computable. Using this fact, Theorem 3 and the
equivalence between sampling and counting, we can deduce the following result.

I Corollary 4. There is an algorithm, which given a PSD matrix L ∈ Rm×m, a cost vector
c ∈ Zm and a cost value C ∈ Z samples a set S of cost c(S) ≤ C with probability proportional
to det(LS,S). The running time of the algorithm is polynomial with respect to m and ‖c‖1.

From the above one can derive efficient sampling algorithms for several classes of constraint
families C which have succinct descriptions. Indeed, we establish counting and sampling
algorithms for a general class of linear families of the form

C = {S ⊆ [m] : c1(S) ∈ K1, c2(S) ∈ K2, . . . , cp(S) ∈ Kp} (1)

where c1, c2, . . . , cp ∈ Zm and K1, . . . ,Kp ⊆ Z. We prove the following

I Corollary 5. There is an algorithm, which given a PSD matrix L ∈ Rm×m and a description
of a linear family C as in (1), samples a set S ∈ C with probability proportional to det(LS,S).
The running time of the algorithm is polynomial in m and

∏p
j=1

(
‖cj‖1 + 1

)
.

One particular class of families for which the above yields polynomial time sampling algorithms
are partition families (families of bases of partition matroids) over constantly many parts
(see Corollary 10). An important open problem that remains is to come up with even faster
algorithms.

Another application of Theorem 3, which we present in Section 6, is to combinatorial
sampling and counting problems. More precisely, we note that the indicator measure of bases
of regular matroids has an efficiently computable generating polynomial; hence, we can solve
their corresponding budgeted versions of counting and sampling problems.

One may ask if the dependence on ‖c‖1 in Theorem 3 can be improved. We prove that
the answer to this question is no in a very strong sense. To state our hardness result, we
introduce ECount – a natural variant of the BCount problem – in which the sum is
over subsets of cost equal to a given value C instead of at most C (such a problem is no
harder than BCount). We provide an approximation preserving reduction showing that
ECount[µ, c, C] is at least as hard as computing mixed discriminants of tuples of positive
semidefinite (PSD) matrices when c and C are given in binary, and can be exponentially
large in magnitude. Recall that for a tuple of m×m PSD matrices A1, . . . , Am, their mixed
discriminant is the coefficient of the monomial

∏m
i=1 xi in the polynomial det(

∑m
i=1 xiAi).

I Theorem 6 (Hardness of Counting under Budget Constraints). BCount[µ, c, C] is #P−hard.
Moreover, when µ is a determinantal function, ECount[µ, c, C] is at least as hard to
approximate as mixed discriminants of tuples of PSD matrices.

To prove this result we show an equivalence between the counting problem corresponding to
partition-constrained DPPs (with a large, super-constant number of parts) and computing
mixed discriminants. Unlike permanents [21], no efficient approximation scheme is known for
estimating mixed discriminants and there is some evidence [15] that there may be none. To
further understand to what extent gµ is the cause of computational hardness, in Appendix A
(see Theorem 20) we provide another hardness result; it considers a µ that is a 0/1 indicator
function for spanning trees in a graph (with efficiently computable gµ). We prove that

APPROX/RANDOM’17

36:6 On the Complexity of Constrained Determinantal Point Processes

ECount[µ, c, C] is at least as hard to approximate as the number of perfect matchings in
general (non-bipartite) graphs, which is another problem for which existence of an FPRAS is
open.

Finally, this connection between partition-DPPs and mixed discriminants, along with our
results to efficiently solve the counting problem for partition-DPPs with constantly many
parts, gives us other applications of independent interest. 1) The ability to compute the
top few coefficients of the mixed characteristic polynomial that arises in the proof of the
Kadison-Singer problem; see Theorem 15. 2) The ability to compute in polynomial time, the
mixed characteristic polynomial exactly, when the linear matrix subspace spanned by the
input matrices has constant dimension; see Theorem 17 and Corollary 18.

1.2 Other Related Work
For sampling from k-DPPs there are exact polynomial time algorithms (see [20, 10, 24]).
There is also recent work on faster approximate MCMC algorithms for sampling from various
unconstrained discrete point processes (see [31, 1] and the references therein), and algorithms
that are efficient for constrained DPPs under certain restrictions on the kernel and constraints
(see [25] and the references therein). To the best of our knowledge, our result is the first
efficient sampling algorithm that works for all kernels and for any constraint set with small
description complexity. Recently, approximate algorithms for the counting and sampling
were presented in [32]. On the practical side, diverse subset selection and DPPs arise in a
variety of contexts such as structured prediction [30], recommender systems [14] and active
learning [34], where the study of DPPs with additional constraints is of importance.

2 Counting with Budget Constraints

Proof of Theorem 3. Let us first consider the case in which the cost vector c is nonnegative,
i.e., c ∈ Nm. We introduce a new variable z and consider the polynomial

h(z) def= gµ(zc1 , zc2 , . . . , zcm).

Since gµ(x1, . . . , xm) =
∑
S⊆[m] µ(S)

∏
i∈S xi, we have

h(z) =
∑
S⊆[m]

µ(S)
∏
i∈S

zci =
∑
S⊆[m]

µ(S)zc(S) =
∑

0≤d≤‖c‖1

zd
∑

S: c(S)=d

µ(S).

Hence, the coefficient of zd in h(z) is equal to the sum of µ(S) over all sets S such that
c(S) = d. In particular, the output is the sum of coefficients over d ≤ C.

It remains to show how to compute the coefficients of h. Note that we do not have direct
access to gµ. However, we can evaluate gµ(x) at any input x ∈ Rm, which in turn allows us
to compute h(z) for any input z ∈ R. Since h(z) is a polynomial of degree at most ‖c‖1, in
order to recover the coefficients of h, it suffices to evaluate it at ‖c‖1 + 1 inputs and perform
interpolation. When using FFT, the total running time becomes:

(‖c‖1 + 1) · Tµ + Õ(‖c‖1),

where Tµ is the running time of the evaluation oracle for gµ.
In order to deal with the case in which c has negative entries, consider a modified version

of h:

h(z) def= z‖c‖1gµ(zc1 , zc2 , . . . , zcm).

Clearly, h(z) is a polynomial of degree at most 2 · ‖c‖1 whose coefficients encode the desired
output. J

L. E. Celis, A. Deshpande, T. Kathuria, D. Straszak, and N.K. Vishnoi 36:7

I Remark. Note that the bit complexity of the output of the proposed algorithm is polynomial
in the input size since it is a result of solving a linear system with all the coefficients being
polynomially bounded.
We also state a simple consequence of the above proof that is often convenient to work with.

I Corollary 7. There is an algorithm that, given a vector c ∈ Zm, a value C ∈ Z and oracle
access to gµ computes the sum

∑
S: c(S)=C µ(S) in time polynomial with respect to m and

‖c‖1.

In the above, note the equality c(S) = C instead of c(S) ≤ C as in BCount.

3 Determinantal Point Processes

A Determinantal Point Process (DPP) is a probability distribution µ over subsets of [m]
defined with respect to a symmetric positive semidefinite matrix L ∈ Rm×m by µ(S) ∝
det(LS,S); i.e.,

µ(S) def= det(LS,S)∑
T⊆[m] det(LT,T) .

We will often use a different matrix to represent the measure µ; let V ∈ Rm×n be a matrix,
such that L = V V > (the Cholesky decomposition of L). Then, det(LS,S) = det(VSV >S).

An important open problem related to DPPs is the sampling problem under additional
combinatorial constraints imposed on the ground set [m]. We prove that these problems
are polynomial time solvable for succinct budget constraints, as in Theorem 3. We start
by establishing the fact that generating polynomials for determinantal distributions are
efficiently computable.

I Fact 8. Let L ∈ Rm×m be a PSD matrix with L = V V > for some V ∈ Rm×n. If
µ : 2[m] → R≥0 is defined as µ(S) def= det(LS,S) then det(V >XV + I) =

∑
S⊆[m] x

Sµ(S),
where X is the diagonal matrix of indeterminates X = Diag (x1, . . . , xm) and I is the n× n
identity matrix.

Proof. We start by applying the Sylvester’s determinant identity

det(V >XV + I) = det
((√

XV
)(√

XV
)>

+ I

)
.

It is well known that for a symmetric matrix A ∈ Rm×n the coefficient of tk in the polynomial
det(A+ tI) is equal to

∑
|S|=n−k det(AS,S). Applying this result to A =

(√
XV

)(√
XV

)>
,

we get

det(AS,S) = xS det(VSV >S) = xS det(LS,S),

which concludes the proof by simply taking t = 1. J

Now we are ready to deduce Corollary 4.

Proof of Corollary 4. A polynomial time counting algorithm follows directly from Theorem 3
and Fact 8. To deduce sampling we apply the result on equivalence between sampling and
counting Theorem 21. In fact when applied to an exact counting algorithm we obtain an
exact sampling procedure. J

APPROX/RANDOM’17

36:8 On the Complexity of Constrained Determinantal Point Processes

We move to the general result on sampling for linear families – Corollary 5. One can deduce
it directly from Theorem 3, but this leads to a significantly suboptimal algorithm. Instead
we take a different path and reprove Theorem 3 in a slightly higher generality.

Proof of Corollary 5. We will show how to solve the counting problem – sampling will then
follow from Theorem 21. Also, for simplicity we assume that all the entries in the cost vectors
are nonnegative, this can be extended to the general setting as in the proof of Theorem 3.

Let g be the generating polynomial of the determinantal function µ(S) = det(LS,S),
which is efficiently computable by Fact 8. For notational clarity we will use superscripts
to index constraints. For every constraint “c(j)(S) ∈ Ki” (j = 1, 2, . . . , p) introduce a new
formal variable yj . For every index i ∈ [m] define the monomial:

si =
p∏
j=1

y
c

(j)
i
j .

The above encodes the cost of element i with respect to all cost vectors c(j) for j = 1, 2, . . . , p.
Consider the polynomial h(y1, . . . , yp) = g(s1, s2, . . . , sm). It is not hard to see that the
coefficient of a given monomial

∏p
j=1 y

dj

j in h is simply the sum of µ(S) over all sets S
satisfying c(1)(S) = d1, c

(2)(S) = d2, . . . , c
(p)(S) = dp. Hence the solution to our counting

problem is simply the sum of certain coefficients of h. It remains to show how to recover all
the coefficients efficiently.

Note that we can efficiently evaluate the polynomial h at every input (y1, . . . , yp) ∈ Rp.
One can then apply interpolation to recover all coefficients of h. The running time is
polynomial in the total number of monomials in h (this is the number of variables of a linear
system which can be used to find the coefficients), which can be bounded from above by∏p
j=1

(∥∥c(j)
∥∥

1 + 1
)
. J

We derive now one interesting application of Corollary 5 – sampling from partition constrained
DPPs. Let us first define partition families formally.
I Definition 9. Let [m] = P1 ∪ P2 ∪ · · · ∪ Pp be a partition of [m] into disjoint, nonempty
sets and let b1, b2, . . . , bp be integers such that 0 ≤ bi ≤ |Pi|. A family of sets of the form

C = {S ⊆ [m] : |S ∩ Pj | = bj , for every j = 1, 2, . . . , p}

is called a partition family.
We prove the following consequence of Corollary 5, which asserts that polynomial time
counting and sampling is possible for DPPs under partition constraints for constant p.
I Corollary 10. Given a DPP defined by L ∈ Rm×m and a partition family C with a constant
number of parts, there exists a polynomial time sampling algorithm for the distribution

µC(S) def= det(LS,S)∑
T∈C det(LT,T) for S ∈ C.

Proof. In light of Corollary 5 it suffices to show that every partition family has a succinct
representation as a linear family. We show that it is indeed the case. Consider a partition
family C induced by the partition P1 ∪P2 ∪ . . .∪Pp = [m] and numbers b1, b2, . . . , bp. Define
the following cost vectors: cj = 1Pj

, for j = 1, 2, . . . , p, i.e., the indicator vectors of the sets
P1, P2, . . . , Pp. Moreover define Kj to be {bj} for every j = 1, 2, . . . , p. It is then easy to see
that “cj(S) ∈ Kj” is implementing the constraint |Pj ∩ S| = bj . In other words the family
C is equal to the linear family defined by cost vectors c1, c2, . . . , cp and sets K1,K2, . . . ,Kp.
It remains to observe that ‖cj‖1 = |Pj | ≤ m and hence

∏p
j=1 (‖cj‖+ 1) = O(mp). Since

p = O(1) the algorithm from Corollary 5 runs in polynomial time. J

L. E. Celis, A. Deshpande, T. Kathuria, D. Straszak, and N.K. Vishnoi 36:9

4 Hardness Result

In this section we study hardness of BCount[µ, c, C]. Theorem 3 implies that BCount is
polynomial time solvable whenever we measure the complexity with respect to the unary
encoding length of the cost vector c. Here we prove that if c is given in binary, the problem
becomes #P−hard. Moreover, existence of an efficient approximation scheme for a closely
related problem (instead of counting all objects of cost at most C, count objects of cost
exactly C) would imply existence of such schemes for counting perfect matchings in non-
bipartite graphs (see Appendix A) and for computing mixed discriminants. In both cases,
these are notorious open questions and the latter is believed to be unlikely.

4.1 Mixed Discriminants
We relate the BCount problem to the well studied problem of computing mixed discriminants
of PSD matrices and prove Theorem 6. Recall the definition:

I Definition 11. Let A1, A2, . . . , Am ∈ Rd×d be symmetric matrices of dimension d. The
mixed discriminant of a tuple (A1, A2, . . . , Ad) is defined as

D(A1, A2, . . . , Ad)
def= ∂d

∂z1 . . . ∂zd
det(z1A1 + z2A2 + · · ·+ zdAd).

Computing mixed discriminants of PSD matrices is known to be #P-hard, since they can
encode the permanent. However, as opposed to the permanent, there is no FPRAS known
for computing mixed discriminants, and the best polynomial time approximation algorithms
by [4, 16] have an exponentially large approximation ratio.

The main technical component in our proof of Theorem 6 is the following lemma.

I Lemma 12. There is a polynomial time reduction, which given a tuple (A1, . . . , An) of
PSD n×n matrices outputs a PSD matrix L ∈ Rm×m, a cost vector c ∈ Zm and a cost value
C ∈ Z such that

n! ·D(A1, A2, . . . , An) =
∑

S⊆[m], c(S)=C

µ(S),

where µ(S) = det(LS,S), for S ⊆ [m]. Moreover, ‖c‖1 ≤ 2O(n logn).

Before proving Lemma 12 let us first state several important properties of mixed discriminants,
which we will rely on; for proofs of these facts we refer the reader to [3].

I Fact 13 (Properties of Mixed Discriminants). Let A,B,A1, A2, . . . , An be symmetric n× n
matrices.
1. D is symmetric, i.e.,

D(A1, A2, . . . , An) = D(Aσ(1), Aσ(2), . . . , Aσ(n)), for any permutation σ ∈ Sn.

2. D is linear with respect to every coordinate, i.e.,

D(αA+ βB,A2, . . . , An) = αD(A,A2, . . . , An) + βD(B,A2, . . . , An).

3. If A =
∑n
i=1 viv

>
i ∈ Rn×n then we have: det(A) = n! D(v1v

>
1 , . . . , vnv

>
n).

APPROX/RANDOM’17

36:10 On the Complexity of Constrained Determinantal Point Processes

Proof of Lemma 12. Consider a tuple (A1, A2, . . . , An) of PSD matrices. The first step is
to decompose them into rank-one summands:

Ai =
r∑
j=1

vi,jv
>
i,j ,

where vi,j ∈ Rn for 1 ≤ i, j ≤ n (some vi,j ’s can be zero if rank(Ai) < n). This step can be
performed using the Cholesky decomposition.

Let M = {(i, j) : 1 ≤ i, j ≤ n} and for every i = 1, 2, . . . , n define Pi = {i}× [n]. We take
m = |M | = n2 and define a family C of n−subsets of M to be

C = {S ⊆ [m] : |S ∩ Pi| = 1 for every i = 1, 2, . . . , n}.

Let V denote an m×n matrix with rows indexed by M , for which the eth row is ve as above
(e ∈ M , i.e., e = (i, j) for some i, j ∈ [n]). We also set L = V V >, hence L is an m ×m
symmetric, PSD matrix. Finally, let µ(S) = det(LS,S). Note that for sets S of cardinality n
we have

µ(S) = det(LS,S) = det(VSV >S) = det(V >S VS) = det
(∑
e∈S

vev
>
e

)
.

In the calculation below we rely on properties of mixed discriminants listed in Fact 13 and
on the fact that |S| = n for S ∈ C.

D(A1, A2, . . . , An) = D

 n∑
j=1

v1,jv
>
1,j ,

n∑
j=1

v2,jv
>
2,j , . . . ,

n∑
j=1

vn,jv
>
n,j

=

∑
1≤j1,j2,...,jn≤n

D(v1,j1v
>
1,j1

, v2,j2v
>
2,j2

, . . . , vn,jn
v>n,jn

)

=
∑

e1∈P1,e2∈P2,...,en∈Pn

D(ve1v
>
e1
, ve2v

>
e2
, . . . , ven

v>en
)

=
∑

{e1,e2,...,en}∈C

1
n! det(ve1v

>
e1

+ ve2v
>
e2

+ . . .+ ven
v>en

) = 1
n!
∑
S∈C

µ(S).

It remains to show that the partition family C can be represented as C = {S ⊆M : c(S) = C}
for some cost vector c ∈ ZM and C ∈ Z, such that ‖c‖1 = 2O(n logn). Indeed, by a reasoning
as in Corollary 10 we can represent C as a linear family with n constraints of the form
c(i)(S) = 1 for i = 1, 2, . . . , n and c(i) ∈ {0, 1}n×n. It is not hard to see that these can be
combined into one constraint c(S) = C with ‖c‖1 = (n2)n+O(1) = 2O(n logn). Now, it remains
to observe that all the steps of the reduction are efficient (since the cost vector is represented
in binary here). J

Proof of Theorem 6. In light of Lemma 12, the problem of computing
∑
S⊆[m],c(S)=C µ(S)

for determinantal functions µ is at least as hard as computing mixed discriminants. The
BCount problem is very similar, with the only difference that it is computing the sum over
all sets of cost c(S) at most C. However, clearly by solving the BCount problem for C and
C − 1 one can compute

∑
S⊆[m],c(S)=C µ(S) by just subtracting the obtained results. J

5 Mixed Discriminants and Mixed Characteristic Polynomials

Mixed Characteristic Polynomials played a crucial role in the proof of the Kadison-Singer
conjecture. Making this proof algorithmic is an outstanding open question that naturally leads

L. E. Celis, A. Deshpande, T. Kathuria, D. Straszak, and N.K. Vishnoi 36:11

to the problem of computing the maximum root of these mixed characteristic polynomials. In
this section, we show how Corollary 10 implies a polynomial time algorithm for higher-order
coefficients of such polynomials. We start by defining mixed characteristic polynomials. We
use the following simplified notation for partial derivatives: ∂xif(x) is an abbreviation for
∂
∂xi

f(x).

I Definition 14. Let A1, A2, . . . , Am ∈ Rd×d be symmetric matrices of dimension d. The
mixed characteristic polynomial of A1, A2, . . . , Am is defined as

µ[A1, . . . , Am](x) def=
m∏
i=1

(1− ∂zi
) det

(
xI +

m∑
i=1

ziAi

)∣∣∣∣
z1=···=zm=0

.

Note in particular that while mixed discriminants are defined for a tuple whose length
matches the dimension d of the matrices, for the case of mixed characteristic polynomials
the number m can be arbitrary. In fact, when m = d, the constant term in the mixed
characteristic polynomial is (up to sign) equal to the mixed discriminant of the input tuple.

However, one may wonder whether all of the coefficients in these polynomials are hard
to compute. The following result shows that higher-degree coefficients are computable
in polynomial time. Roughly, the proof relies on the observation that the higher-degree
coefficients in the mixed characteristic polynomial are sums of mixed discriminants that
only have constantly many distinct matrices. As we demonstrate, computing such mixed
discriminants reduces to counting for DPPs under partition constraints with a constant
number of parts, which allows us to apply Corollary 10. The formal statement of the theorem
follows 2.

I Theorem 15. Given a set of m symmetric, PSD matrices A1, . . . , Am ∈ Rd×d, one can
compute the coefficient of xd−k in µ[A1, . . . , Am](x), in poly(mk) time.

An important component in the proof of Theorem 15 is a reduction from counting for
partition constrained DPPs to mixed discriminants. In fact we use it as a subroutine for
computing higher-order coefficients of the mixed characteristic polynomial. In Section 4 we
provided a reduction in the opposite direction, thus establishing an equivalence between
mixed discriminants and counting for partition constrained DPPs.

I Lemma 16. Given a set of m vectors v1, . . . , vm ∈ Rr and a partition of [m] = P1∪· · ·∪Pp
into disjoint, non-empty sets, consider a partition family C = {S ⊆ [m] : |S ∩ Pj | =
bj for every j = 1, 2, . . . , p} such that

∑p
j=1 bj = r. Let (A1, . . . , Ar) be an r-tuple of PSD

r × r matrices such that (A1, A2, . . . , Ar) = (
b1 times︷ ︸︸ ︷
B1, . . . , B1,

b2 times︷ ︸︸ ︷
B2, . . . , B2, . . . ,

bp times︷ ︸︸ ︷
Bp, . . . , Bp) where

Bi =
∑
e∈Pi

vev
>
e for every partition Pi, the following equality holds:

p∏
i=1

bi! ·D(A1, A2, . . . , Ar) =
∑
S∈C

det(VSV >S),

where V ∈ Rm×r denotes the matrix formed by arranging the vectors v1, . . . , vm row-wise.

Proof. Consider the quantities Bi and (A1, A2, . . . , Ar) as defined in the theorem. By
applying linearity multiple times to all coordinates of D(A1, A2, . . . , Ar) we find that:

D(A1, A2, . . . , Ar) = α
∑
S∈B

D(ve1v
>
e1
, ve2v

>
e2
, . . . , ver

v>er
),

2 Independent of our work which first appeared in [9], a recent preprint [2] devise a different algorithm to
obtain a similar result

APPROX/RANDOM’17

36:12 On the Complexity of Constrained Determinantal Point Processes

where S is {e1, e2, . . . , er} in the summation above and α is
∏p
i=1 bi!. This is because

D(ve1v
>
e1
, ve2v

>
e2
, . . . , ver

v>er
) = 0 whenever e1, e2, . . . , er are not pairwise distinct. We use

Fact 13 again to obtain that

D(ve1v
>
e1
, ve2v

>
e2
, . . . , ver

v>er
) = 1

r! det(ve1v
>
e1

+ ve2v
>
e2

+ . . .+ ver
v>er

) = det(VSV >S).

This concludes the proof. Furthermore, it is evident that the r-tuple (A1, A2, . . . , Ar) is
efficiently computable given the partition family C and matrix V . J

Proof of Theorem 15. First note that without loss of generality we can assume that d ≤ m,
as otherwise – if d > m we can add (d−m) zero-matrices which does not change the result
but places us in the d ≤ m case. The starting point of our proof is an observation made in
[27] which provides us with another expression for the mixed characteristic polynomial in
terms of mixed discriminants:

µ[A1, . . . , Am](x) =
d∑
k=0

xd−k(−1)k
∑

S∈([m]
k)
D((Ai)i∈S) (2)

where we denote D(A1, . . . , Ak) = 1
(d−k)!D(A1, . . . , Ak, I, . . . , I) with the identity matrix I

repeated d− k times. Therefore, our task reduces to computing O(mk) mixed discriminants
of the form D(A1, . . . , Ak, I, . . . , I). Below we show that such a quantity is computable in
poly(dk) time which concludes the proof.

Consider the Cholesky decomposition of Ai for i = 1, 2, . . . , k + 1 (we set Ak+1 = I for
convenience)

Ai =
d∑
j=1

ui,ju
>
i,j .

Let M = {(i, j) : 1 ≤ i ≤ k + 1, 1 ≤ j ≤ d} be the ground set of a partition family of size
m

def= (k + 1)d. Define an m× d matrix U by placing ui,j ’s as rows of U .
Further, consider a partitionM = P1∪· · ·∪Pk+1 with Pi = {i}× [d] for all i = 1, . . . , k+1

and let b1 = . . . = bk = 1 and bk+1 = d− k. This gives rise to a partition family

C = {T ∈M : |T ∩ Pi| = bi for all i = 1, . . . , k + 1}.

We claim that
k+1∏
i=1

bi!
∑
T∈C

det(UTU>T) = D(A1, . . . , Ak, I . . . , I). (3)

This follows from Lemma 16 by considering this partition family C and matrix U as defined
here. Equation (3) combined with the counting result for DPPs under partition constraints
(Corollary 10) conclude the proof. J

The second observation is more general in its nature and tries to answer the question
whether computing mixed characteristic polynomials is strictly harder than computing mixed
discriminants. In fact, as noted above, the coefficients of mixed characteristic polynomials are
expressed as sums of (an exponential number of) mixed discriminants. We show that these
exponential sums can be computed by evaluating a single mixed discriminant of matrices of
size at most d+n. Moreover, our reduction is approximation-preserving, hence demonstrating

L. E. Celis, A. Deshpande, T. Kathuria, D. Straszak, and N.K. Vishnoi 36:13

that approximating mixed discriminants are computationally equally hard as approximating
the coefficients of the mixed characteristic polynomials. We remark that our reduction can
be thought of as a generalization of a result for approximating the number of k-matchings in
a bipartite graph ([13]).

I Theorem 17. Given a tuple of m symmetric, positive semi-definite matrices A1, . . . , Am ∈
Rd×d with d ≤ m and k ∈ {1, . . . , d}, there exist a tuple of m + d − k symmetric, positive
semi-definite matrices B1, . . . , Bm+d−k ∈ R(m+d−k)×(m+d−k) such that the coefficient of xd−k
in the mixed characteristic polynomial µ[A1, . . . , Am](x),

∑
S∈([m]

k)
D((Ai)i∈S) = 1

(m− k)!(d− k)!D(B1, . . . , Bm+d−k)

Proof. We first show how to construct the m + d − k matrices B1, . . . , Bm+d−k from
A1, . . . , Am. The matrices B1, . . . , Bm+d−k that we consider are 2-by-2 block diagonal
matrices that we construct by taking appropriate direct sums. Recall that the direct sum of
two matrices A and B of size d1 × d1 and d2 × d2 is a matrix of size (d1 + d2)× (d1 + d2)
defined as

G =
[

A 0d1×d2

0d2×d1 B

]
where 0m×n is an m-times-n matrix consisting of all zeros. We define the first m matrices to
be direct sums of the Ai matrices with the identity matrix of order m− k, i.e., Im−k and the
remaining d− k matrices to all be equal to the direct sum of the identity matrix of order d,
i.e., Id with the square zero matrix of order m− k, i.e., 0m−k. Formally,

Bi =
{
Ai ⊕ Im−k for i ∈ {1, . . . , k},
Id ⊕ 0m−k otherwise

We now proceed to prove the claim of the theorem from the definition of the mixed discriminant
in Definition 14. For any subset S ⊆ [m], denote ∂S =

∏
i∈S ∂zi

.

D(B1, . . . , Bm+d−k)
= ∂z1 . . . ∂zm+d−k

det(z1B1 + . . .+ zm+d−kBm+d−k)

= ∂z1 . . . ∂zm+d−k
det

m∑
i=1

ziAi +
d−k∑
i=1

zm+iId 0d×(m−k)

0(m−k)×d
m∑
i=1

ziIm−k

= ∂z1 . . . ∂zm+d−k

(z1 + . . .+ zm)m−k det
(

m∑
i=1

ziAi +
d−k∑
i=1

zm+iId

)

=
∑
S⊆[m]
|S|=m−k

[
∂S(z1 + . . .+ zm)m−k

] [
∂S

c
d−k∏
i=1

∂zm+i det
(

m∑
i=1

ziAi +
d−k∑
i=1

zm+iId

)]

=
∑
S⊆[m]
|S|=m−k

(m− k)!∂S
c
d−k∏
i=1

∂zm+i det(
∑
i∈Sc

ziAi + (zm+1 + . . . zm+d−k)Id)

APPROX/RANDOM’17

36:14 On the Complexity of Constrained Determinantal Point Processes

= (m− k)!
∑
S⊆[m]
|S|=k

D((Ai)i∈S ,
d−k times︷ ︸︸ ︷
I, . . . , I)

= (m− k)!(d− k)!
∑
S⊆[m]
|S|=k

D((Ai)i∈S)

The fourth to last equality follows simply from chain rule. Since we have an equality in the
expression, the reduction is clearly approximation preserving and we are done. J

The above theorem in particular allows us to compute in polynomial time, the mixed
characteristic polynomial exactly, when the linear matrix subspace spanned by the input
matrices has constant dimension. This follows by combining Theorem 17 with Theorem 5.1
in [15].

I Corollary 18. Suppose A1, A2, . . . , Am ∈ Rd×d span a linear space of dimension k, then
there exists a deterministic algorithm to compute µ[A1, . . . , Am](x) in poly(mk) time.

Proof. In the proof of Theorem 17, the mixed discriminants computed are not of A1, . . . , Am
but rather are of modified matrices. However, it is easy to see that for all tuples on which
mixed discriminant is called, the dimension of the linear space spanned by them is at most
k + 1. It is proved in [15] that such mixed discriminants can be computed in O(m2k+2)
time. J

6 Budget-Constrained Sampling and Counting for Regular Matroids

Consider the following problem: given an undirected graph G with weights c ∈ Rm on its
edges, sample a uniformly random spanning tree of cost at most C in G. This generalizes
the problem of sampling uniformly random spanning trees [29] and sampling a random
spanning tree of minimum cost [12]. Below we study the generalized version of this problem
by considering regular matroids, indeed spanning trees arise as bases of the graphic matroid,
which is known to be regular. We prove that the counting and sampling problem in this
setting can be solved efficiently whenever c is polynomially bounded.

I Theorem 19 (Counting and Sampling Bases of Matroids). LetM be a regular matroid on
a ground set [m] with a set of bases B. There exists a counting algorithm which, given a
cost vector c ∈ Zm and a value C ∈ Z, outputs the cardinality of the set {S ∈ B : c(S) ≤ C}
and a sampling algorithm which, given a cost vector c ∈ Zm and a value C ∈ Z, outputs
a random element in the set {S ∈ B : c(S) ≤ C}. The running time of both algorithms is
polynomial in m and ‖c‖1.

Proof of Theorem 19. LetM⊆ 2[m] be a regular matroid and B ⊆ 2[m] be its set of bases.
We prove that the generating polynomial

∑
S∈B x

S is efficiently computable. We use the
characterization of regular matroids as those which can be linearly represented by a totally
unimodular matrix. In other words, there exists a totally unimodular matrix A ∈ Zm×d such
that if we denote by Ae ∈ Zd the eth row of A it holds that:

S ∈M ⇔ {Ae : e ∈ S} is linearly independent. (4)

Let r ≤ d be the rank of the matroid M, i.e., the cardinality of any set in B. We claim
that without loss of generality one can assume that d = r. Indeed, we prove that there is

L. E. Celis, A. Deshpande, T. Kathuria, D. Straszak, and N.K. Vishnoi 36:15

a submatrix A′ ∈ Zm×r of A, such that (4) still holds with A replaced by A′. To this end
suppose that d > r. It is easy to see that the rank of A is r, otherwise, by (4) there would
be a set S of cardinality at least r + 1 with S ∈M. Hence there is a column in A which is
a linear combination of the remaining columns, we can freely remove this column from A,
while (4) will be still true. By doing so, we finally obtain a matrix A′ with exactly r rows,
which satisfies (4).

By the fact that A has r columns we have:

S ∈ B ⇔ AS is nonsingular, (5)

where by AS we mean the |S|×r submatrix of A corresponding to rows from S. In particular,
for a set S ⊆ [m] of cardinality r we have:

S ∈ B ⇔ det(AS) 6= 0 ⇔ det(A>SAS) = 1, (6)

where the last equivalence follows from A being totally unimodular. Let us now consider the
polynomial

g(x1, x2, . . . , xm) = det
(

m∑
e=1

xeAeA
>
e

)
.

By the Cauchy-Binet theorem we obtain:

g(x1, x2, . . . , xm) =
∑
|S|=r

det
(∑
e∈S

xeAeA
>
e

)
= xS det(A>SAS).

In other words, g is equal to gµ – the generating polynomial of the function µ : 2[m] → R
given by

µ(S) =
{

1 if S ∈ B
0 otherwise.

Therefore, since gµ is efficiently computable, by Theorem 3 the BCount[µ, c, C] is efficiently
solvable. This fact, together with Theorem 21 imply that sampling also can be made
efficient. J

References
1 N. Anari, S.O. Gharan, and A. Rezaei. Monte Carlo Markov Chain Algorithms for Sampling

Strongly Rayleigh Distributions and Determinantal Point Processes. In COLT, pages 103–
115, 2016.

2 N. Anari, S.O. Gharan, A. Saberi, and N. Srivastava. Approximating the largest root and
applications to interlacing families. CoRR, abs/1704.03892, 2017. URL: http://arxiv.
org/abs/1704.03892.

3 R. B. Bapat. Mixed discriminants of positive semidefinite matrices. Lin. Algebra & Applic-
ations, 126, 1989.

4 A. Barvinok. Computing mixed discriminants, mixed volumes, and permanents. Discrete
& Computational Geometry, 18, 1997.

5 D. Bertsimas and S. Vempala. Solving convex programs by random walks. J. ACM, July
2004.

6 A.Z. Broder and E.W. Mayr. Counting minimum weight spanning trees. J. of Algorithms,
24(1), 1997.

APPROX/RANDOM’17

http://arxiv.org/abs/1704.03892
http://arxiv.org/abs/1704.03892

36:16 On the Complexity of Constrained Determinantal Point Processes

7 L.E. Celis, A. Deshpande, T. Kathuria, and N.K. Vishnoi. How to be fair and diverse?
Fairness, Accountability, and Transparency in Machine Learning, 2016.

8 C. Chekuri, J. Vondrak, and R. Zenklusen. Dependent randomized rounding via exchange
properties of combinatorial structures. In FOCS, 2010.

9 A. Deshpande, T. Kathuria, D. Straszak, and N.K. Vishnoi. Combinatorial Determinantal
Point Processes. ArXiv e-prints, 2016. arXiv:1608.00554.

10 A. Deshpande and L. Rademacher. Efficient Volume Sampling for Row/Column Subset
Selection. In FOCS, Oct 2010.

11 M.E. Dyer, A.M. Frieze, and R. Kannan. A random polynomial time algorithm for ap-
proximating the volume of convex bodies. J. ACM, 38(1):1–17, 1991.

12 D. Eppstein. Representing all minimum spanning trees with applications to counting and
generation. UC Irvine, 1995.

13 S. Friedland and D. Levy. A polynomial-time approximation algorithm for the number of
k-matchings in bipartite graphs. ArXiv, 2006. arXiv:0607135.

14 M. Gartrell, U. Paquet, and N. Koenigstein. Bayesian low-rank determinantal point pro-
cesses. In Proceedings of the 10th ACM Conference on Recommender Systems, Boston, MA,
USA, September 15-19, 2016, pages 349–356, 2016.

15 L. Gurvits. On the complexity of mixed discriminants and related problems. In MFCS,
2005.

16 L. Gurvits and A. Samorodnitsky. A deterministic algorithm for approximating the mixed
discriminant and mixed volume, and a combinatorial corollary. Discrete & Computational
Geometry, 27(4), 2002.

17 B. Hajek. Cooling schedules for optimal annealing. Mathematics of operations research,
13(2), 1988.

18 N. Harvey. An introduction to the Kadison-Singer problem and the paving conjecture,
2013.

19 N. Harvey and N. Olver. Pipage rounding, pessimistic estimators and matrix concentration.
In SODA’14, pages 926–945, 2014.

20 J. B. Hough, M. Krishnapur, Y. Peres, and B. Virág. Determinantal Processes and Inde-
pendence. ArXiv Mathematics e-prints, March 2005. arXiv:math/0503110.

21 M. Jerrum, A. Sinclair, and E. Vigoda. A Polynomial-time Approximation Algorithm for
the Permanent of a Matrix with Nonnegative Entries. J. ACM, 51(4), July 2004.

22 M.R. Jerrum, L.G. Valiant, and V.V. Vazirani. Random generation of combinatorial
structures from a uniform distribution. Theoretical Computer Science, 43:169–188, 1986.

23 A. Krause, A. Singh, and C. Guestrin. Near-Optimal Sensor Placements in Gaussian
Processes: Theory, Efficient Algorithms and Empirical Studies. J. Mach. Learn. Res., 9,
June 2008.

24 A. Kulesza and B. Taskar. Determinantal point processes for machine learning. ArXiv,
July 2012. arXiv:1207.6083.

25 C. Li, S. Jegelka, and S. Sra. Markov chain sampling in discrete probabilistic models with
constraints. In NIPS, 2016.

26 H. Lin and J. Bilmes. A Class of Submodular Functions for Document Summarization.
In Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies, HLT’11, 2011.

27 A.W. Marcus, D.A. Spielman, and N. Srivastava. Interlacing families. II: Mixed char-
acteristic polynomials and the Kadison-Singer problem. Ann. Math. (2), 182(1):327–350,
2015.

28 M. Mezard and A. Montanari. Information, physics, and computation. Oxford University
Press, 2009.

29 R. Pemantle. Uniform random spanning trees. arXiv preprint math/0404099, 2004.

http://arxiv.org/abs/1608.00554
http://arxiv.org/abs/0607135
http://arxiv.org/abs/math/0503110
http://arxiv.org/abs/1207.6083

L. E. Celis, A. Deshpande, T. Kathuria, D. Straszak, and N.K. Vishnoi 36:17

30 A. Prasad, S. Jegelka, and D. Batra. Submodular meets structured: Finding diverse subsets
in exponentially-large structured item sets. In Advances in Neural Information Processing
Systems, December 8-13 2014, Montreal, Quebec, Canada, pages 2645–2653, 2014.

31 P. Rebeschini and A. Karbasi. Fast mixing for discrete point processes. In Proceedings
of The 28th Conference on Learning Theory, COLT 2015, Paris, France, July 3-6, 2015,
pages 1480–1500, 2015.

32 Damian Straszak and Nisheeth K. Vishnoi. Real stable polynomials and matroids: Optim-
ization and counting. In Proceedings of the 49th Annual ACM Symposium on Theory of
Computing. ACM, 2017.

33 M. J. Wainwright, M. I. Jordan, et al. Graphical models, exponential families, and vari-
ational inference. Foundations and Trends® in Machine Learning, 1(1–2):1–305, 2008.

34 K. Wei, R.K. Iyer, and J.A. Bilmes. Submodularity in data subset selection and active
learning. In Proceedings of the 32nd International Conference on Machine Learning, ICML
2015, Lille, France, 6-11 July 2015, pages 1954–1963, 2015.

35 Y. Yue and T. Joachims. Predicting Diverse Subsets Using Structural SVMs. In ICML,
2008.

36 C. X. Zhai, W.W. Cohen, and J. Lafferty. Beyond Independent Relevance: Methods and
Evaluation Metrics for Subtopic Retrieval. In SIGIR, 2003.

37 T. Zhou, Z. Kuscsik, J. Liu, M. Medo, J. R. Wakeling, and Y. Zhang. Solving the apparent
diversity-accuracy dilemma of recommender systems. PNAS, 107(10), 2010.

A Hardness for Spanning Trees

We show that BCount is at least as hard as counting perfect matchings in a non-bipartite
graph. The proof relies on a combinatorial reduction from counting perfect matchings in a
graph to counting budget constrained spanning trees.

I Theorem 20. There is a polynomial time reduction which given a graph G = (V,E) with
n vertices and m edges outputs a graph G′ with n vertices and O(m+n2) edges, a cost vector
c ∈ Nm with ‖c‖1 ≤ 2O(m logm) and a value C ∈ N, such that:

PM(G) = α · STC(G′)

where PM(G) denotes the number of perfect matchings in G, STC(G′) denotes the number
of spanning trees of total cost C in G′ and α = n2

2 (2n)−n/2.

Proof. Let G = (V,E) be an undirected graph, let n = |V | and m = |E|. We construct a
new graph G′ and a cost vector c, such that counting perfect matchings in G is equivalent to
counting spanning trees of specified cost C in G′ .

The graph G′ = (V,E′) is obtained by adding a complete graph to G, i.e.,
(
n
2
)
edges, one

between every pair of vertices. We call the set of new edges F , hence E′ = E ∪ F . Note that
E′ is a multiset. To all edges e ∈ F we assign cost ce = 0, while for the original edges the
costs are positive and defined below.

Let b = m′ + 1, where m′ = |E′| is the number of edges in G′. We define the cost of an
edge e = ij ∈ E to be:

ce = bi + bj .

Note that from the choice of b and c it follows that given a cost c(S) of some set S ⊆ E, we
can exactly compute how many times a given vertex appears as an endpoint of an edge in S.
Indeed, if we have:

c(S) =
n∑
i=1

δib
i

APPROX/RANDOM’17

36:18 On the Complexity of Constrained Determinantal Point Processes

such that 0 ≤ δi ≤ b− 1 (the b−ary representation of c(S)), then the degree of vertex i in S
is δi. This follows from the fact that b is chosen to avoid carry overs when computing c(S)
in the b−ary numerical system. Therefore, it is now a natural choice to define C def=

∑n
i=1 b

i.

We claim that every perfect matching in G corresponds to exactly α = n2

2 (2n)−n/2 different
spanning trees of cost C in G′.

To prove this claim, fix any spanning tree S of cost c(S) = C. Note first that we have
c(S ∩E) = c(S) because all of the edges e /∈ E have cost 0. Moreover, the set M def= S ∩E is
a perfect matching in G, because c(M) = C implies that the degree of every vertex in M
is one. It remains to show that every perfect matching M in G corresponds to exactly α
spanning trees of cost C in G.

Fix any perfect matching M0 in G. We need to calculate how many ways are there to
add n

2 − 1 edges from E′ to obtain a spanning tree of G′. By contracting the matching M0
to n

2 vertices and considering edges in E′ only, we obtain a complete graph on n
2 vertices

with 4 parallel edges going between every pair of vertices. The answer is the number of
spanning trees of the obtained graph. Cayley’s formula easily implies that this number is
4 n

2−1 (n
2
)n

2−2 which equals α−1. J

B Equivalence Between Counting and Sampling

In this section we state and prove a theorem that implies that the Count[µ, C] and
Sample[µ, C] problems are essentially equivalent. We prove that, for a given type of con-
straints C, a polynomial time algorithm for counting can be transformed into a polynomial
time algorithm for sampling and vice versa. This section follows the convention that
µ : 2[m] → R≥0 is any function that assigns nonnegative values to subsets of [m] and C ⊆ 2[m]

is any family of subsets of [m].

I Theorem 21 (Equivalence Between Approximate Counting and Approximate Sampling).
Consider any function µ : 2[m] → R≥0 and a family C of subsets of [m]. Let µC : C → [0, 1]
be a distribution over S ∈ C such that µC(S) ∝ µ(S). We assume evaluation oracle access to
the generating polynomial gµ of µ, and define the following two problems:

Approximate C-sampling: given a precision parameter ε > 0, provide a sample S from a
distribution ρ : C → [0, 1] such that ‖µC − ρ‖1 < ε.
Approximate C-counting: given a precision parameter ε > 0, output a number X ∈ R
such that X(1 + ε)−1 ≤

∑
S∈C µ(S) ≤ X(1 + ε).

The time complexities of the above problems differ by at most a multiplicative factor of
poly(m, ε−1).

I Remark. Note that the above theorem establishes equivalence between approximate variants
of Count[µ, C] and Sample[µ, C]. This is convenient for applications, because the exact
counting variants of these problems are often #P−hard. Still, for some of them, efficient
approximation schemes are likely to exist. Further, we mention that the implication from
exact counting to exact sampling holds, hence the sampling algorithms that we obtain in
this paper are exact.

Theorem 21 follows from a self-reducibility property [22] of the counting problem. Before we
present the proof of Theorem 21, we introduce some terminology and state assumptions for
the remaining part of this section. The function µ : 2[m] → R≥0 is given as an evaluation
oracle for gµ(x) =

∑
S⊆[m] µ(S)xS . In particular, we measure complexity with respect to the

number of calls to such an oracle. An algorithm which, for a fixed family C ⊆ 2[m] and every

L. E. Celis, A. Deshpande, T. Kathuria, D. Straszak, and N.K. Vishnoi 36:19

function µ, given access to gµ computes
∑
S∈C µ(S) is called a C-counting oracle. Similarly,

we define a C-sampling oracle to be an algorithm which, given access to gµ, provides samples
from the distribution

µC(S) def= µ(S)∑
T∈C µ(T) for S ∈ C.

B.1 Counting Implies Sampling
We now show how counting implies sampling. It proceeds by inductively conditioning
on certain elements not being in the sample. For this idea to work one has to implement
conditioning using the C−sampling oracle and access to the generating polynomial only. Below
we state the implication from counting to sampling in the exact variant. The approximate
variant also holds, with an analogous proof.
I Lemma 22 (Counting Implies Sampling). Let C denote a family of subsets of [m]. Suppose
access to a C-counting oracle is given. Then, there exists a C-sampling oracle which, for any
function µ : 2[m] → R≥0, makes poly(m) calls to the counting oracle and to gµ and outputs
a sample from the distribution µC.
Proof. Let S be the random variable corresponding to the sample our algorithm outputs;
our goal is to have S ∼ µC. The sampling algorithm proceeds as follows: It sequentially
considers each element e ∈ [m] and tries to decide (at random) whether to include e ∈ S or
not. To do so, it first computes the probability P(e ∈ S) conditioned on all decisions thus far.
It then flips a biased coin with this probability, and includes e in S according to its outcome.
More formally, the sampling algorithm can be described as follows:
1. Input: V ∈ Rm×r, a number k ≤ r.
2. Initialize: Y = ∅, N = ∅.
3. For e = 1, 2, . . . ,m :

a. Compute the probability p = P(e ∈ S : Y ⊆ S, N ∩ S = ∅) under the distribution
S ∼ µC .

b. Toss a biased coin with success probability p. In case of success add e to the set Y ,
otherwise add e to N .

4. Output: S = Y.

It is clear that the above algorithm correctly samples from µC. It remains to show that
P(e ∈ S : Y ⊆ S,N ∩ S = ∅) can be computed efficiently. This follows from Lemma 23
below. J

I Lemma 23. Let Y and N be disjoint subsets of [m] and consider any e ∈ [m]. Suppose S
is distributed according to µC. If we are given access to a C-counting oracle and to gµ, then
P(e ∈ S : Y ⊆ S, N ∩ S = ∅) can be computed in poly(m) time.
Proof. Assume e ∈ [m]\(Y ∪N); otherwise the probability is clearly 0 or 1. Let Y ′ = Y ∪{e},
then

P(e ∈ S : Y ⊆ S, N ∩ S = ∅) =
∑
S∈C,Y ′⊆S,N∩S=∅ µ(S)∑
S∈C,Y⊆S,N∩S=∅ µ(S) .

We now show how to compute such sums: Introduce a new variable y, and for every e ∈ [m]
define:

we
def=

yxe for e ∈ Y,
0 for e ∈ N,
xe otherwise.

APPROX/RANDOM’17

36:20 On the Complexity of Constrained Determinantal Point Processes

We interpret the expression gµ(w1, w2, . . . , wm) as a generating polynomial for a certain
function µ′(y) : 2[m] → R; i.e.,

gµ′(x) def= gµ(w1, w2, . . . , wm) =
∑

S∩N=∅

y|S∩Y |xSµ(S).

Define a polynomial

h(y) def=
∑

S∈C,S∩N=∅

y|S∩Y |µ(S).

It follows that h(y) is a polynomial of degree at most |Y |. In fact, the sum we are interested
in is simply the coefficient of y|Y | in h(y). The last thing to note is that we can compute h(y)
exactly by evaluating it for |Y |+ 1 different values of y and then performing interpolation.
Hence, we just need to query the C-counting oracle (|Y |+ 1) times giving it µ′ as input (for
various choices of y).3 J

B.2 Sampling Implies Counting
We show the implication from sampling to counting in Theorem 21. Similarly as for the
opposite direction we assume for simplicity that the sampling algorithm is exact, i.e., we
prove the following lemma. The approximate variant holds with an analogous proof.

I Lemma 24 (Sampling Implies Counting). Let C denote a family of subsets of [m]. Suppose
we have access to a C-sampling oracle. Then, there exists a C-counting oracle which for any
input function µ : 2[m] → R (given as an evaluation oracle for gµ) and for any precision
parameter ε > 0 makes poly(m, 1/ε) calls to the sampling oracle, and approximates the sum:∑

S∈C
µ(S)

within a multiplicative factor of (1 + ε). The algorithm has failure probability exponentially
small in m.

Let us first state the algorithm which we use to solve the counting problem. Later in a
sequence of lemmas we explain how to implement it in polynomial time and reason about its
correctness. In the description, S denotes a random variable distributed according to µC .

1. Initialize U def= [m], X def= 1.
2. Repeat

a. Estimate the probability P(S = U : S ⊆ U), if it is larger than (1− 1
m), terminate the

loop.
b. Find an element e ∈ U so that P(e /∈ S : S ⊆ U) ≥ 1

m2 .
c. Approximate pe

def= P(e /∈ S : S ⊆ U) up to a multiplicative factor ε
m .

d. Update X def= X · ρe, where ρe is the estimate for pe.
e. Remove e from U , i.e., set U def= U \ {e}.

3. Return X · µ(U).

3 The provided argument does not generalize directly to the case when the counting oracle is only
approximate (because of the interpolation step). However, as we need to compute the top coefficient of a
polynomial h(y) only, we can alternatively do it by evaluating h(y) and dividing by yd (for d = deg(h))
at a very large input y ∈ R.

L. E. Celis, A. Deshpande, T. Kathuria, D. Straszak, and N.K. Vishnoi 36:21

I Lemma 25. Given U ⊆ [m] and e ∈ U , assuming access to a C-sampling oracle, we can
approximate the quantity

pe = P(e /∈ S : S ⊆ U)

where S is distributed according to µC, up to an additive error δ > 0 in time poly(m)
δ2 . The

probability of failure can be made 1
mc for any c > 0.

Proof. We sample a set S ∈ C from the distribution P(S) ∝ µ(S) conditioned on S ⊆ U .
This can be done using the sampling oracle, however instead of sampling with respect to µ
one has to sample with respect to a modified function µ′ which is defined as µ′(S) = µ(S)
for S ⊆ U and µ′(S) = 0 otherwise. Note that the generating polynomial for µ′ can be easily
obtained from gµ by just plugging in zeros at positions outside of U . Given a sample S from
µ′ we define

X =
{

1 if e /∈ S,
0 otherwise.

Repeat the above independently N times, to obtain X1, X2, . . . , XN and finally compute the
estimator:

Z = X1 +X2 + · · ·+XN

N
.

By Chebyshev’s inequality, we have:

P(|Z − pe| ≥ δ) ≤
1

Nδ2 .

Thus, by taking N = poly(m)
δ2 samples, with probability ≥ 1 − 1

poly(m) we can obtain an
additive error of at most δ. J

I Lemma 26. If U ⊆ [m] is such that P(S = U : S ⊆ U) ≤ (1 − 1
m) then there exists an

element e ∈ U such that P(e /∈ S : S ⊆ U) ≥ 1
m2 , where S is distributed according to µC.

Proof. Let T be the random variable S conditioned on S ⊆ U . Denote qe = P(e ∈ S : S ⊆ U),
we obtain∑

e∈U
qe = E(|T|) ≤

(
1− 1

m

)
|U |+ 1

m
(|U | − 1) = |U | − 1

m
.

The inequality in the above expression follows from the fact that the worst case upper bound
would be achieved when the probability of |T| = |U | is exactly 1− 1

m and with the remaining
probability, |T| = |U | − 1. Hence

∑
e∈U (1− qe) ≥ 1

m , which implies that (1− qe) ≥ 1
m2 for

some e ∈ U . J

We are now ready to prove Lemma 24.

Proof of Lemma 24. We have to show that the algorithm given above can be implemented
in polynomial time and it gives a correct answer.

Step 2(a) can be easily implemented by taking poly(m) samples conditioned on S ⊆ U
(as in the proof of Lemma 25). This gives us an approximation of qU = P(S = U : S ⊆ U)

APPROX/RANDOM’17

36:22 On the Complexity of Constrained Determinantal Point Processes

up to an additive error of at most m−2 with high probability. If the estimate is less than
(1− 1

2m) then with high probability qU ≤ (1− 1
m) otherwise, with high probability we have

µ(U) ≤
∑

S∈C,S⊆U

µ(S) ≤
(

1 + 4
m

)
µ(U) (7)

and the algorithm terminates.
When performing step 2(b) we have a high probability guarantee for the assumption of

Lemma 26 to be satisfied. Hence, we can assume that (by using Lemma 26 and Lemma 25)
we can find an element e ∈ U with pe = P(e /∈ S : S ⊆ U) ≥ 1

2m2 . Again using Lemma 25 we
can perform step 2(c) and obtain a multiplicative (1 + ε

m)-approximation ρe to pe.
Denote the set U at which the algorithm terminated by U ′ and the elements chosen at

various stages of the algorithm by e1, e2, ..., el with l = m−|U ′|. The output of the algorithm
is:

X
def= ρe1ρe2 · · · · · pel

µ(U ′).

While the exact value of the sum is

Z
def= pe1pe2 · · · · · pel

·
∑

S∈C,S⊆U ′
µ(S).

Recall that for every i = 1, 2, . . . , l with high probability it holds that:(
1 + ε

m

)−1
≤ pei

ρei

≤
(

1 + ε

m

)
.

This, together with (7) implies that with high probability:(
1 + ε

m

)−l
≤ X

Z
≤
(

1 + ε

m

)l
·
(

1 + 4
m

)
,

which finally gives (1 + 2ε)−1 ≤ X
Z ≤ (1 + 2ε) with high probability, as claimed. Note that

the algorithm requires poly(m, 1
ε) samples from the oracle in total. J

Sample-Based High-Dimensional Convexity
Testing∗†

Xi Chen1, Adam Freilich2, Rocco A. Servedio3, and Timothy Sun4

1 Columbia University, New York, NY, USA
xichen@cs.columbia.edu

2 Columbia University, New York, NY, USA
freilich@cs.columbia.edu

3 Columbia University, New York, NY, USA
rocco@cs.columbia.edu

4 Columbia University, New York, NY, USA
tim@cs.columbia.edu

Abstract
In the problem of high-dimensional convexity testing, there is an unknown set S ⊆ Rn which
is promised to be either convex or ε-far from every convex body with respect to the standard
multivariate normal distribution N (0, 1)n. The job of a testing algorithm is then to distinguish
between these two cases while making as few inspections of the set S as possible.

In this work we consider sample-based testing algorithms, in which the testing algorithm only
has access to labeled samples (x, S(x)) where each x is independently drawn from N (0, 1)n. We
give nearly matching sample complexity upper and lower bounds for both one-sided and two-
sided convexity testing algorithms in this framework. For constant ε, our results show that the
sample complexity of one-sided convexity testing is 2Θ̃(n) samples, while for two-sided convexity
testing it is 2Θ̃(

√
n).

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases Property testing, convexity, sample-based testing

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.37

1 Introduction

Over the past few decades the field of property testing has developed into a fertile area with
many different branches of active research. Several distinct lines of work have studied the
testability of various kinds of high-dimensional objects, including probability distributions
(see e.g. [9, 37, 4, 38, 2, 13, 1]), Boolean functions (see e.g. [17, 34, 15, 31, 28] and many
other works), and various types of codes and algebraic objects (see e.g. [3, 23, 26, 14] and
many other works). These efforts have collectively yielded significant insight into the abilities
and limitations of efficient testing algorithms for such high-dimensional objects. A distinct
line of work has focused on testing (mostly low-dimensional) geometric properties. Here too
a considerable body of work has led to a good understanding of the testability of various
low-dimensional geometric properties, see e.g. [19, 18, 36, 12, 11, 10].

This paper is about a topic which lies at the intersection of the two general strands
(high-dimensional property testing and geometric property testing) mentioned above: we
study the problem of high-dimensional convexity testing. Convexity is a fundamental property

∗ A full version of the paper is available at https://arxiv.org/abs/1706.09362.
† This work was supported by NSF grants CCF-1149257, CCF-1423100, CCF-1420349 and CCF-1563155.

© Xi Chen, Adam Freilich, Rocco A. Servedio, Timothy Sun;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 37; pp. 37:1–37:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.37
https://arxiv.org/abs/1706.09362
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

37:2 Sample-Based High-Dimensional Convexity Testing

which is intensively studied in high-dimensional geometry (see e.g. [24, 8, 39] and many other
references) and has been studied in the property testing of images (the two-dimensional
case) [36, 12, 11, 10], but as we discuss in Section 1.2 below, very little is known about
high-dimensional convexity testing.

We consider Rn endowed with the standard normal distributionN (0, 1)n as our underlying
space, so the distance dist(S,C) between two subsets S,C ⊆ Rn is

Pr
x←N (0,1)n

[x ∈ S 4 C],

where S 4 C denotes their symmetric difference. The standard normal distribution N (0, 1)n
is arguably one of the most natural, and certainly one of the most studied, distributions on
Rn. Several previous works have studied property testing over Rn with respect to N (0, 1)n,
such as the work on testing halfspaces [31, 6] and the work on testing surface area [30, 33].

1.1 Our results
In this paper we focus on sample-based testing algorithms for convexity. Such an algorithm
has access to independent draws (x, S(x)) ∈ Rn × {0, 1}, where x is drawn from N (0, 1)n
and S ⊆ Rn is the unknown set being tested for convexity (so in particular the algorithm
cannot select points to be queried) with S(x) = 1 if x ∈ S. We say such an algorithm is
an ε-tester for convexity if it accepts S with probability at least 2/3 when S is convex and
rejects with probability at least 2/3 when it is ε-far from convex, i.e., dist(S,C) ≥ ε for
all convex sets C ⊆ Rn. The model of sample-based testing was originally introduced by
Goldreich, Goldwasser, and Ron almost two decades ago [21], where it was referred to as
“passive testing;” it has received significant attention over the years [27, 20, 6, 22], with an
uptick in research activity in this model over just the past year or so [5, 16, 12, 11, 10].

We consider sample-based testers for convexity that are allowed both one-sided (i.e., the
algorithm always accepts S when it is convex) and two-sided error. In each case, for constant
ε > 0 we give nearly matching upper and lower bounds on sample complexity. Our results
are as follows:

I Theorem 1 (One-sided lower bound). Any one-sided sample-based algorithm that is an
ε-tester for convexity over N (0, 1)n for some ε < 1/2 must use 2Ω(n) samples.

I Theorem 2 (One-sided upper bound). For any ε > 0, there is a one-sided sample-based
ε-tester for convexity over N (0, 1)n which uses (n/ε)O(n) samples.

I Theorem 3 (Two-sided lower bound). There exists a positive constant ε0 such that any
two-sided sample-based algorithm that is an ε-tester for convexity over N (0, 1)n for some
ε ≤ ε0 must use 2Ω(

√
n) samples.

I Theorem 4 (Two-sided upper bound). For any ε > 0, there is a two-sided sample-based
ε-tester for convexity over N (0, 1)n which uses nO(

√
n/ε2) samples.

These results are summarized in Table 1. We discuss the main ideas and techniques
behind them in Section 1.3, and prove Theorem 3 in Section 3 and Theorem 1 in Section 4.
We leave proofs of Theorems 2 and 4 to the full version due to space limitations.

1.2 Related work
Convexity testing. As discussed above, [36, 10, 11, 12] studied the testing of 2-dimensional
convexity under the uniform distribution, either within a compact body such as [0, 1]2 [10, 11]

X. Chen, A. Freilich, R. A. Servedio, and T. Sun 37:3

Table 1 Sample complexity bounds for sample-based convexity testing. In line four, ε0 > 0 is
some absolute constant.

Model Sample complexity bound Reference

One-sided 2Ω(n) samples (for ε < 1/2) Theorem 1

2O(n log(n/ε)) samples Theorem 2

Two-sided 2Ω(
√

n) samples (for ε < ε0) Theorem 3

2O(
√

n log(n)/ε2) samples Theorem 4

or over a discrete grid [n]2 [36, 12]. The model of [10, 11] is more closely related to ours:
[11] showed that Θ(ε−4/3) samples are necessary and sufficient for one-sided sample-based
testers, while [10] gave a one-sided general tester (which can make adaptive queries to the
unknown set) for 2-dimensional convexity with only O(1/ε) queries.

The only prior work that we are aware of that deals with testing high-dimensional
convexity is that of [35]. However, the model considered in [35] is different from ours in the
following important aspects. First, the goal of an algorithm in their model is to determine
whether an unknown S ⊆ Rn is not convex or is ε-close to convex in the following sense: the
(Euclidean) volume of S 4 C, for some convex C, is at most an ε-fraction of the volume of
S. Second, in their model an algorithm both can make membership queries (to determine
whether a given point x belongs to S), and can receive samples which are guaranteed to
be drawn independently and uniformly at random from S. The main result of [35] is an
algorithm which uses (cn/ε)n many random samples drawn from S, for some constant c, and
poly(n)/ε membership queries.

Sample-based testing. A wide range of papers have studied sample-based testing from
several different perspectives, including the recent works [12, 11, 10] which study sample-
based testing of convexity over two-dimensional domains. In earlier work on sample-based
testing, [6] showed that the class of linear threshold functions can be tested to constant
accuracy under N (0, 1)n with Θ̃(n1/2) samples drawn from N (0, 1)n. (Note that a linear
threshold function is a convex set of a very simple sort, as every convex set can be expressed
as an intersection of (potentially infinitely many) linear threshold functions.) The work [6] in
fact gave a characterization of the sample complexity of (two-sided) sample-based testing, in
terms of a combinatorial/probabilistic quantity called the “passive testing dimension.” This
is a distribution-dependent quantity whose definition involves both the class being tested
and the distribution from which samples are obtained; it is not a priori clear what the value
of this quantity is for the class of convex subsets of Rn and the standard normal distribution
N (0, 1)n. Our upper and lower bounds (Theorems 4 and 3) may be interpreted as giving
bounds on the passive testing dimension of the class of convex sets in Rn with respect to the
N (0, 1)n distribution.

1.3 Our techniques
1.3.1 One-sided lower bound
Our one-sided lower bound has a simple proof using only elementary geometric and probabil-
istic arguments. It follows from the fact (see Lemma 17) that if q = 2Θ(n) many points are

APPROX/RANDOM’17

37:4 Sample-Based High-Dimensional Convexity Testing

drawn independently from N (0, 1)n, then with probability 1− o(1) no one of the points lies
in the convex hull of the q − 1 others. This can easily be shown to imply that more than q
samples are required (since given only q samples, with probability 1− o(1) there is a convex
set consistent with any labeling and thus a one-sided algorithm cannot reject).

1.4 Two-sided lower bound
At a high-level, the proof of our two-sided lower bound uses the following standard approach.
We first define two distributions Dyes and Dno over sets in Rn such that (i) Dyes is a distribution
over convex sets only, and (ii) Dno is a distribution such that S ← Dno is ε0-far from convex
with probability at least 1− o(1) for some positive constant ε0. We then show that every
sample-based, q-query algorithm A with q = 20.01n must have

Pr
S←Dyes; x

[
A accepts (x,S(x))

]
− Pr

S←Dno; x

[
A accepts (x,S(x))

]
≤ o(1), (1)

where x denotes a sequence of q points drawn from N (0, 1)n independently and (x,S(x))
denotes the q labeled samples from S. Theorem 3 follows directly from (1).

To draw a set S ← Dyes, we sample a sequence of N = 2
√
n points y1, . . . ,yN from the

sphere Sn−1(r) of radius r for some r = Θ(n1/4). Each yi defines a halfspace hi = {x :
x · yi ≤ r2}. S is then the intersection of all hi’s. (This is essentially a construction used by
Nazarov [32] to exhibit a convex set that has large Gaussian surface area, and used by [29] to
lower bound the sample complexity of learning convex sets under the Gaussian distribution.)
The most challenging part of the two-sided lower bound proof is to show that, with q points
x1, . . . ,xq ← N (0, 1)n, the q bits S(x1), . . . ,S(xq) with S ← Dyes are “almost” independent.
More formally, the q bits S(x1), . . . ,S(xq) with S ← Dyes have o(1)-total variation distance
from q independent bits with the ith bit drawn from the marginal distribution of S(xi)
as S ← Dyes. On the other hand, it is relatively easy to define a distribution Dno that
satisfies (ii) and at the same time, S(x1), . . . ,S(xq) when S ← Dno has o(1)-total variation
distance from the same product distribution. (1) follows by combining the two parts.

1.4.1 Structural result
Our algorithms rely on a new structural result which we establish for convex sets in Rn.
Roughly speaking, this result gives an upper bound on the Gaussian volume of the “thickened
surface” of any bounded convex subset of Rn; it is inspired by, and builds on, the classic
result of Ball [7] that upperbounds the Gaussian surface area of any convex subset of Rn.

1.4.2 One-sided upper bound
Our one-sided testing algorithm employs a “gridding-based” approach to decompose the
relevant portion of Rn (namely, those points which are not too far from the origin) into
a collection of disjoint cubes. It draws samples and identifies a subset of these cubes as a
proxy for the “thickened surface” of the target set; by the structural result sketched above,
if the Gaussian volume of this thickened surface is too high, then the one-sided algorithm
can safely reject (as the target set cannot be convex). Otherwise the algorithm does random
sampling to probe for points which are inside the convex hull of positive examples it has
received but are labeled negative (there should be no such points if the target set is indeed
convex, so if such a point is identified, the one-sided algorithm can safely reject). If no such
points are identified, then the algorithm accepts.

X. Chen, A. Freilich, R. A. Servedio, and T. Sun 37:5

1.4.3 Two-sided upper bound
Finally, the main tool we use to obtain our two-sided testing algorithm is a learning algorithm
for convex sets with respect to the normal distribution over Rn. The main result of [29] is an
(improper) algorithm which learns the class of all convex subsets of Rn to accuracy ε using
nO(
√
n/ε2) independent samples from N (0, 1)n. Using the structural result mentioned above,

we show that this can be converted into a proper algorithm for learning convex sets under
N (0, 1)n, with essentially no increase in the sample complexity. Given this proper learning
algorithm, a two-sided algorithm for testing convexity follows from the well-known result of
[21] which shows that proper learning for a class of functions implies (two-sided) testability.

2 Preliminaries and Notation

Notation. We use boldfaced letters such as x,f ,A, etc. to denote random variables (which
may be real-valued, vector-valued, function-valued, set-valued, etc; the intended type will
be clear from the context). We write “x ← D” to indicate that the random variable x is
distributed according to probability distribution D. Given a, b, c ∈ R we use a = b ± c to
indicate that b− c ≤ a ≤ b+ c.

Geometry. For r > 0, we write Sn−1(r) to denote the origin-centered sphere of radius r in
Rn and Ball(r) to denote the origin-centered ball of radius r in Rn, i.e.,

Sn−1(r) =
{
x ∈ Rn : ‖x‖ = r

}
and Ball(r) =

{
x ∈ Rn : ‖x‖ ≤ r

}
,

where ‖x‖ denotes the `2-norm ‖ · ‖2 of x. We also write Sn−1 for the unit sphere Sn−1(1).
Recall that a set C ⊆ Rn is convex if x, y ∈ C implies αx+ (1−α)y ∈ C for all α ∈ [0, 1].

We write Cconvex to denote the class of all convex sets in Rn. Recall that convex sets are
Lebesgue measurable. Given a set C ⊆ Rn we use Conv(C) to denote the convex hull of C.

For sets A,B ⊆ Rn, we write A+B to denote the Minkowski sum {a+b : a ∈ A and b ∈ B}.
For a set A ⊆ Rn and r > 0 we write rA to denote the set {ra : a ∈ A}. Given a point a
and B ⊆ Rn, we use a+B and B − a to denote {a}+B and B + {−a} for convenience.

Probability. We use N (0, 1)n to denote the standard n-dimensional Gaussian distribution
with zero mean and identity covariance matrix. We also recall that the probability density
function for the one-dimensional Gaussian distribution is

ϕ(x) = 1√
2π
· exp(−x2/2).

Sometimes we denote N (0, 1)n by Nn for convenience. The squared norm ‖x‖2 of x ←
N (0, 1)n is distributed according to the chi-squared distribution χ2

n with n degrees of freedom.
The following tail bound for χ2

n (see [25]) will be useful:

I Lemma 5 (Tail bound for the chi-squared distribution). Let X← χ2
n. Then we have

Pr
[
|X− n| ≥ tn

]
≤ e−(3/16)nt2 , for all t ∈ [0, 1/2).

All target sets S ⊆ Rn to be tested for convexity are assumed to be Lebesgue measurable
and we write Vol(S) to denote Prx←Nn [x ∈ S], the Gaussian volume of S ⊆ Rn. Given
two Lebesgue measurable subsets S,C ⊆ Rn, we view Vol(S4C) as the distance between S
and C, where S 4 C is the symmetric difference of S and C. Given S ⊆ Rn, we abuse the
notation and use S to denote the indicator function of the set, so we may write “S(x) = 1”
or “x ∈ S” to mean the same thing.

APPROX/RANDOM’17

37:6 Sample-Based High-Dimensional Convexity Testing

Sample-based property testing. Given a point x ∈ Rn, we refer to (x, S(x)) ∈ Rn×{0, 1}
as a labeled sample from a set S ⊆ Rn. A sample-based testing algorithm for convexity is
a randomized algorithm which is given as input an accuracy parameter ε > 0 and access
to an oracle that, each time it is invoked, generates a labeled sample (x, S(x)) from the
unknown (Lebesgue measurable) target set S ⊆ Rn with x drawn independently each time
from N (0, 1)n. When run with any Lebesgue measurable S ⊆ Rn, such an algorithm must
output “accept” with probability at least 2/3 (over the draws it gets from the oracle and its
own internal randomness) if S ∈ Cconvex and must output “reject” with probability at least
2/3 if S is ε-far from being convex, meaning that for every C ∈ Cconvex it is the case that
Vol(S 4 C) ≥ ε. (We also refer to an algorithm as an ε-tester for convexity if it works for a
specific accuracy parameter ε.) Such a testing algorithm is said to be one-sided if whenever
it is run on a convex set S it always outputs “accept;” equivalently, such an algorithm can
only output “reject” if the labeled samples it receives are not consistent with any convex set.
A testing algorithm which is not one-sided is said to be two-sided.

Throughout the rest of the paper we reserve the symbol S to denote the unknown target
set (a measurable subset of Rn) that is being tested for convexity.

3 Two-sided lower bound

We recall Theorem 3:

I Theorem 3 (Two-sided lower bound). There exists a positive constant ε0 such that any
two-sided sample-based algorithm that is an ε-tester for convexity over N (0, 1)n for some
ε ≤ ε0 must use 2Ω(

√
n) samples.

Let q = 20.01
√
n and let ε0 > 0 be a constant to be specified later. To prove Theorem 3,

we show that no sample-based, q-query (randomized) algorithm A can achieve the following:

Let S ⊂ Rn be a target set that is Lebesgue measurable. Let x1, . . . ,xq be a
sequence of q samples drawn from N (0, 1)n. Upon receiving ((xi, S(xi)) : i ∈ [q]), A
accepts with probability at least 2/3 when S is convex and rejects with probability at
least 2/3 when S is ε0-far from convex.

Recall that a pair (x, b) with x ∈ Rn and b ∈ {0, 1} is a labeled sample; a sample-based
algorithm A is a randomized map from a sequence of q labeled samples to {“accept”,“reject”}.

3.1 Proof Plan

Assume for contradiction that there is a q-query (randomized) algorithm A that accomplishes
the task above. In Section 3.2 we define two probability distributions Dyes and Dno such
that (1) Dyes is a distribution over convex sets in Rn (Dyes is a distribution over certain
convex polytopes that are the intersection of many randomly drawn halfspaces), and (2) Dno
is a probability distribution over sets in Rn that are Lebesgue measurable (Dno is actually
supported over a finite number of measurable sets in Rn) such that S ← Dno is ε0-far from
convex with probability at least 1− o(1).

Given a sequence x = (x1, . . . , xq) of points, we abuse the notation and write

S(x) = (S(x1), . . . , S(xq))

X. Chen, A. Freilich, R. A. Servedio, and T. Sun 37:7

and use (x, S(x)) to denote the sequence of q labeled samples (x1, S(x1)), . . . , (xq, S(xq)). It
then follows from our assumption on A that

Pr
S←Dyes; x←(Nn)q

[
A accepts (x,S(x))

]
≥ 2/3 and

Pr
S←Dno; x←(Nn)q

[
A accepts (x,S(x))

]
≤ 1/3 + o(1).

where we use x← (Nn)q to denote a sequence of q points sampled independently from Nn

and we usually skip the ← (Nn)q part in the subscript when it is clear from the context.
Since A is a mixture of deterministic algorithms, there exists a deterministic sample-based,
q-query algorithm A′ (equivalently, a deterministic map from sequences of q labeled samples
to {“Yes”, “No”}) with

Pr
S←Dyes; x

[
A′ accepts (x,S(x))

]
− Pr

S←Dno; x

[
A′ accepts (x,S(x))

]
≥ 1/3− o(1). (2)

Let Eyes (or Eno) be the distribution of (x,S(x)), where x ← (Nn)q and S ← Dyes (or
S ← Dno, respectively). Both of them are distributions over sequences of q labeled samples.
Then the LHS of (2), for any deterministic sample-based, q-query algorithm A′, is at most
the total variation distance between Eyes and Eno. We prove the following key lemma, which
leads to a contradiction.

I Lemma 6. The total variation distance between Eyes and Eno is o(1).

To prove Lemma 6, it will be convenient for us to introduce a third distribution E∗no over
sequences of q labeled samples, where (x,b)← E∗no is drawn by first sampling a sequence of
q points x = (x1, . . . ,xq) from Nn independently and then for each xi, its label bi is set to
be 1 independently with a probability that depends only on ‖xi‖ (see Section 3.2). Lemma 6
follows from the following two lemmas by the triangle inequality.

I Lemma 7. The total variation distance between Eno and E∗no is o(1).

I Lemma 8. The total variation distance between Eyes and E∗no is o(1).

The rest of the section is organized as follows. We define Dyes and Dno (which are used
to define Eyes and Eno) as well as E∗no in Section 3.2 and prove the necessary properties about
Dyes and Dno as well as Lemma 7. We prove Lemma 8 in Sections 3.3 and Appendix A.

3.2 The Distributions
Let r = Θ(n1/4) be a parameter to be specified later, and let N = 2

√
n. We start with the

definition of Dyes. A random set S ⊂ Rn is drawn from Dyes using the following procedure:
1. We sample a sequence of N points y1, . . . ,yN from Sn−1(r) independently and uniformly

at random. Each point yi defines a halfspace

hi =
{
x ∈ Rn : x · yi ≤ r2}.

2. The set S is then the intersection of hi, i ∈ [N] (this is always nonempty as indeed
Ball(r) is contained in S).

It is clear from the definition that S ← Dyes is always a convex set.
Next we define E∗no (instead of Dno), a distribution over sequences of q labeled samples

(x,b). To this end, we use Dyes to define a function ρ : R≥0 → [0, 1] as follows:

ρ(t) = Pr
S←Dyes

[
(t, 0, . . . , 0) ∈ S

]
.

APPROX/RANDOM’17

37:8 Sample-Based High-Dimensional Convexity Testing

Due to the symmetry of Dyes and Nn, the value ρ(t) is indeed the probability that a point
x ∈ Rn at distance t from the origin lies in S ← Dyes. To draw a sequence of q labeled
samples (x,b)← E∗no, we independently draw q random points x1, . . . ,xq ← Nn and then
independently set bi = 1 with probability ρ(‖xi‖) and bi = 0 with probability 1− ρ(‖xi‖).

Given Dyes and E∗no, Lemma 8 shows that information-theoretically no sample-based
algorithm can distinguish a sequence of q labeled samples (x,b) with S ← Dyes, x← (Nn)q,
and b = S(x) from a sequence of q labeled samples drawn from E∗no. While the marginal
distribution of each labeled sample is the same for the two cases, the former is generated
in a correlated fashion using the underlying random convex S ← Dyes while the latter is
generated independently.

Finally we define the distribution Dno, prove Lemma 7, and show that a set drawn from
Dno is far from convex with high probability. To define Dno, we let M ≥ 2

√
n be a large

enough integer to be specified later. With M fixed, we use

0 = t0 < t1 < · · · < tM−1 < tM = 2
√
n

to denote a sequence of numbers such that the origin-centered ball Ball(2
√
n) is partitioned

into M shells Ball(ti) \ Ball(ti−1), i ∈ [M], and all the M shells have the same probability
mass under Nn. By spherical coordinates, it means that the following integral takes the
same value for all i:∫ ti

ti−1

φ(x, 0, . . . , 0)xn−1dx, (3)

where φ denotes the density function of Nn. We show below that when M is large enough,

|ρ(x)− ρ(ti)| ≤ 2−
√
n, (4)

for any i ∈ [M] and any x ∈ [ti−1, ti]. We will fix such an M and use it to define Dno. (Our
results are not affected by the size of M as a function of n; we only need it to be finite.)

To show that (4) holds when M is large enough, we need the continuity of the function ρ,
which follows directly from the explicit expression for ρ given later in (6).

I Lemma 9. The function ρ : R≥0 → [0, 1] is continuous.

Since ρ is continuous, it is continuous over [0, 2
√
n]. Since [0, 2

√
n] is compact, ρ is also

uniformly continuous over [0, 2
√
n]. Also note that maxi∈[M](ti − ti−1) goes to 0 as M goes

to +∞. It follows that (4) holds when M is large enough.
With M ≥ 2

√
n fixed, a random set S ← Dno is drawn as follows. Start with S = ∅ and

for each i ∈ [M], add the ith shell Ball(ti) \ Ball(ti−1) to S independently with probability
ρ(ti). Thus an outcome of S is a union of some of the shells and Dno is supported over 2M
different sets.

Recall the definition of Eyes and Eno using Dyes and Dno. We now prove Lemma 7.

Proof of Lemma 7. Let x = (x1, . . . , xq) be a sequence of q points in Rn. We say x is bad
if either (1) at least one point lies outside of Ball(2

√
n) or (2) there are two points that lie in

the same shell of Dno; we say x is good otherwise. We first claim that x← (Nn)q is bad with
probability o(1). To see this, we have from Lemma 5 that event (1) occurs with probability
o(1), and from M ≥ 2

√
n and q = 20.01

√
n that event (2) occurs with probability o(1). The

claim follows from a union bound.
Given that x ← (Nn)q is good with probability 1 − o(1), it suffices to show that for

any good q-tuple x, the total variation distance between (1) S(x) with S ← Dno and (2)

X. Chen, A. Freilich, R. A. Servedio, and T. Sun 37:9

b = (b1, . . . ,bq) with each bit bi being 1 with probability ρ(‖xi‖) independently, is o(1).
Let `i ∈ [M] be the index of the shell that xi lies in. Since x is good (and thus, all points lie
in different shells), S(x) has the ith bit being 1 independently with probability ρ(t`i

); for
the other distribution, the probability is ρ(‖xi‖). Using the subadditivity of total variation
distance (i.e., the fact that the dTV between two sequences of independent random variables
is upper bounded by the sum of the dTV between each pair) as well as (4), we have

dTV(S(x),b) ≤ q · 2−
√
n = o(1).

This finishes the proof. J

The next lemma shows that S ← Dno is ε0-far from convex with probability 1− o(1), for
some positive constant ε0. In the proof of the lemma we fix both the constant ε0 and our
choice of r = Θ(n1/4). (We remind the reader that ρ and Dno depend on the value of r.)

I Lemma 10. There exist a real value r = Θ(n1/4) with er2/2 ≥ N/n and a positive constant
ε0 such that a set S ← Dno is ε0-far from convex with probability at least 1− o(1).

Proof. We need the following claim but delay its proof to the end of the subsection:

I Claim 11. There exist an r = Θ(n1/4) with er2/2 ≥ N/n and a constant c ∈ (0, 1/2) such
that c < ρ(x) < 1− c for all x ∈ [

√
n− 10,

√
n+ 10].

Let K ⊂ [M] denote the set of all integers k such that [tk−1, tk] ⊆ [
√
n − 10,

√
n + 10]

(note that K is a set of consecutive integers). Observe that (1) the total probability mass of
all shells k ∈ K is at least Ω(1) (by Lemma 5), and (2) the size |K| is at least Ω(M) (which
follows from (1) and the fact that all shells have the same probability mass).

Consider the following 1-dimensional scenario. We have |K| intervals [tk−1, tk] and draw
T by including each interval independently with probability ρ(tk). We prove the following
claim:

I Claim 12. The random set T satisfies the following property with probability at least
1− o(1): For any interval I ⊆ R≥0, either I contains Ω(M) intervals [tk−1, tk] that are not
included in T , or I contains Ω(M) intervals [tk−1, tk] included in T .

Proof. First note that it suffices to consider intervals I ⊆ ∪k∈K [tk−1, tk] and moreover, we
may further assume that both endpoints of I come from endpoints of [tk−1, tk], k ∈ K.
(In other words, for a given outcome T of T , if there exists an interval I that violates the
condition, i.e., both I and I contain fewer than Ω(M) intervals, then there is such an interval
I with both ends from end points of [tk−1, tk]). This assumption allows us to focus on
|K|2 ≤ M2 many possibilities for I (as we will see below, our argument applies a union
bound over these K2 possibilities).

Given a candidate such interval I, we consider two cases. If I contains Ω(M) intervals
[tk−1, tk], k ∈ K, then it follows from Claim 11 and a Chernoff bound that I contains at
least Ω(M) intervals not included in T with probability 1− 2−Ω(M). On the other hand, if
I contains Ω(M) intervals, then the same argument shows that I contains Ω(M) interals
included in T with probability 1− 2−Ω(M). The claim follows from a union bound over all
the |K|2 possibilities for I. J

We return to the n-dimensional setting and consider the intersection of S ← Dno with
a ray starting from the origin. Note that the intersection of the ray and any convex set is
an interval on the ray. As a result, Claim 12 shows that with probability at least 1− o(1)
(over the draw of S ← Dno), the intersection of any convex set with any ray either contains

APPROX/RANDOM’17

37:10 Sample-Based High-Dimensional Convexity Testing

Ω(M) intervals [tk−1, tk] such that shell k ∈ K is not included in S, or misses Ω(M) intervals
[tk−1, tk] such that shell k ∈ K is included in S. Since by (1) above shells k ∈ K together
have Ω(1) probability mass under Nn and each shell contains the same probability mass,
we have that with probability 1− o(1), S is ε0-far from any convex set for some constant
ε0 > 0. (A more formal argument can be given by performing integration using spherical
coordinates and applying (3).) J

Proof of Claim 11. We start with the choice of r. Let

α =
√
n− 10 and β =

√
n+ 10.

Let cap(t) denote the fractional surface area of the spherical cap Sn−1 ∩ {x : x1 ≥ t}, i.e.,

cap(t) = Pr
x←Sn−1

[
x1 ≥ t

]
.

So cap is a continuous, strictly decreasing function over [0, 1]. Since cap(0) = 1/2 and
cap(1) = 0, there is a unique r ∈ (0, α) such that cap(r/α) = 1/N = 2−

√
n. Below we

show that r = Θ(n1/4) and fix it in the rest of the proof. First recall the following explicit
expression (see e.g. [29]):

cap(t) = an

∫ 1

t

(√
1− z2

)n−3
dz,

where an = Θ(n1/2) is a parameter that only depends on n. We also recall the following
inequalities from [29] about cap(t):

cap(t) ≤ e−nt
2/2, for all t ∈ [0, 1]; cap(t) ≥ Ω

(
t · e−nt

2/2
)
, for t = O(1/n1/4). (5)

By our choice of α and the monotonicity of the cap function, we have r = Θ(n1/4) and

1/N = cap(r/α) ≥ Ω(1/n1/4) · e−n(r/α)2/2

≥ Ω(1/n1/4) · e−(r2/2)(1+O(1/
√
n)) = Ω(1/n1/4) · e−r

2/2

(using r = Θ(n1/4) for the last inequality), and thus, we have er2/2 ≥ N/n.
Next, using the function cap we have the following expression for ρ:

ρ(x) =
(

1− cap
(r
x

))N
. (6)

As a side note, ρ is continuous and thus, Lemma 9 follows. Since cap is strictly decreasing,
we have that ρ is strictly decreasing as well. To finish the proof it suffices to show that there
is a constant c ∈ (0, 1/2) such that ρ(α) < 1− c and ρ(β) ≥ c.

ρ(α) = (1− 1/N)N ≈ e−1

by our choice of r. In the rest of the proof we show that

cap
(
r

β

)
≤ a · cap

(r
α

)
= a

N
, (7)

for some positive constant a. It follows immediately that

ρ(β) =
(

1− cap
(
r

β

))N
≥
(

1− a

N

)N
≥
(
e−2a/N

)N
= e−2a,

using 1− x ≥ e−2x for 0 ≤ x� 1, and this finishes the proof of the claim.

X. Chen, A. Freilich, R. A. Servedio, and T. Sun 37:11

r
β

r
α

A =
B =

h0

h1

r
β

r
α

r
α + w

Figure 1 A plot of the integrand (
√

1− z2)(n−3). Area A is cap(r/β)− cap(r/α) and area B is
cap(r/α). The rectangles on the right are an upper bound of A and a lower bound of B.

Finally we prove (7). Let

w = r

α
− r

β
= Θ

(
1

n3/4

)
since r = Θ(n1/4). Below we show that∫ r/α

r/β

(√
1− z2

)n−3
dz ≤ a′ ·

∫ r/α+w

r/α

(√
1− z2

)n−3
dz, (8)

for some positive constant a′. It follows that

cap
(
r

β

)
− cap

(r
α

)
≤ a′ · cap

(r
α

)
and implies (7) by setting a = a′+ 1. For (8), note that the ratio of the [r/β, r/α]-integration
over the [r/α, r/α+w]-integration is at most(√

1− (r/β)2√
1− (r/β + 2w)2

)n−3

as the length of the two intervals are the same and the function (
√

1− z2)n−3 is strictly
decreasing. Figure 1 illustrates this calculation.

Let τ = r/β = Θ(1/n1/4). We can rewrite the above as(
1− τ2

1− (τ + 2w)2

)(n−3)/2

=
(

1 + 4τw + 4w2

1− (τ + 2w)2

)(n−3)/2

=
(

1 +O

(
1
n

))(n−3)/2
= O(1).

This finishes the proof of the claim. J

3.3 Distributions Eyes and E∗no are close
In the rest of the section we show that the total variation distance between Eyes and E∗no is o(1)
and thus prove Lemma 8. Let z = (z1, . . . , zq) be a sequence of q points in Rn. We use Eyes(z)
to denote the distribution of labeled samples from Eyes, conditioning on the samples being z,
i.e., (z,S(z)) with S ← Dyes. We let E∗no(z) denote the distribution of labeled samples from
E∗no, conditioning on the samples being z, i.e., (z,b) where each bi is 1 independently with
probability ρ(‖zi‖). Then

dTV(Eyes, E∗no) = Ez←(Nn)q

[
dTV(Eyes(z), E∗no(z))

]
. (9)

APPROX/RANDOM’17

37:12 Sample-Based High-Dimensional Convexity Testing

z

0

a

b

r = Θ(n1/4)

Figure 2 The fractional surface area of cover(z), fsa(cover(z)), is the fraction of Sn−1(r) to the
right of the dashed line. By similarity of triangles 0az and 0ba, scaling down to the unit sphere, we
get (10).

We split the proof of Lemma 8 into two steps. We first introduce the notion of typical
sequences z of q points and show in this subsection that with probability 1−o(1), z← (Nn)q
is typical. In the next subsection we show that dTV(Eyes(z), E∗no(z)) is o(1) when z is typical. It
follows from (9) that dTV(Eyes, E∗no) = o(1). We start with the definition of typical sequences.

Given a point z ∈ Rn, we are interested in the fraction of points y (in terms of the
area) in Sn−1(r) such that z · y > r2. This is because if any such point y is sampled in the
construction of S ← Dyes, then z /∈ S. This is illustrated in Figure 2. We refer to the set of
such points y as the (spherical) cap covered by z and we write cover(z) to denote it. (Note
that cover(z) = ∅ if ‖z‖ ≤ r.)

Given a subset H of Sn−1(r) (such as cover(z)), we use fsa(H) to denote the fractional
surface area of H with respect to Sn−1(r). Using Figure 2 and elementary geometry, we
have the following connection between the fractional surface area of cover(z) and the cap
function (for Sn−1):

fsa
(
cover(z)

)
= cap

(
r/‖z‖

)
. (10)

We are now ready to define typical sequences.

I Definition 13. We say a sequence z = (z1, . . . , zq) of q points in Rn is typical if
1. For every point zi, we have

fsa
(
cover(zi)

)
∈
[
e−0.51r2

, e−0.49r2
]
. (11)

2. For every i 6= j, we have

fsa
(
cover(zi) ∩ cover(zj)

)
≤ e−0.96r2

.

The first condition of typicality essentially says that every zi is not too close to and not
too far away from the origin (so that we have a relatively tight bound on the fractional
surface area of the cap covered by zi). The second condition says that the caps covered by
two points zi and zj have very little intersection. We prove the following lemma:

I Lemma 14. z← (Nn)q is typical with probability at least 1− o(1).

X. Chen, A. Freilich, R. A. Servedio, and T. Sun 37:13

Proof. We show that z satisfies each of the two conditions with probability 1− o(1). The
lemma then follows from a union bound.

For the first condition, we let c∗ = 0.001 be a sufficiently small constant. We have from
Lemma 5 and a union bound that every zi satisfies (1− c∗)

√
n ≤ ‖zi‖ ≤ (1 + c∗)

√
n with

probability 1− o(1). When this happens, we have (11) for every zi using (5) and the upper
bound of cap(t) ≤ e−nt2/2.

For the second condition, we note that the argument used in the first part implies that

Ezi←Nn

[
fsa
(
cover(zi)

)]
≤ e−0.49r2

.

Let x0 be a fixed point in Sn−1(r). Viewing the fsa as the following probability:

fsa
(
cover(zi)

)
= Pr

x←Sn−1(r)

[
x ∈ cover(zi)

]
,

we have

e−0.49r2
≥ Ezi←Nn

[
fsa
(
cover(zi)

)]
(12)

= Ezi

[
Pr

x←Sn−1(r)

[
x ∈ cover(zi)

]]
= Pr

x,zi

[
x ∈ cover(zi)

]
= Pr

zi

[
x0 ∈ cover(zi)

]
,

where the last equation follows by sampling x first and spherical and Gaussian symmetry.
Similarly we can express the fractional surface area of cover(zi) ∩ cover(zj) as

fsa
(
cover(zi) ∩ cover(zj)

)
= Pr

x←Sn−1(r)

[
x ∈ cover(zi) and x ∈ cover(zj)

]
.

We consider the expectation over zi and zj drawn independently from Nn:

Ezi,zj

[
fsa
(
cover(zi) ∩ cover(zj)

)]
= Ezi,zj

[
Pr

x←Sn−1(r)

[
x ∈ cover(zi) and x ∈ cover(zj)

]]
= Pr

x,zi,zj

[
x ∈ cover(zi) and x ∈ cover(zj)

]
= Pr

zi

[
x0 ∈ cover(zi)

]
·Pr

zj

[
x0 ∈ cover(zj)

]
,

where the last equation follows by sampling x first, independence of zi, zj , and symmetry.
By (12), the expectation of fsa(cover(zi) ∩ cover(zj)) is at most e−0.98r2 , and hence by

Markov’s inequality, the probability of it being at least e−0.96r2 is at most e−0.02r2 . Using
er

2 ≥ (N/n)2 and a union bound, the probability of one of the pairs having the fsa at least
e−0.96r2 is at most

q2 · e−0.02r2
≤ 20.02

√
n · (n/N)0.04 = o(1),

since q = 20.01
√
n and N = 2

√
n. This finishes the proof of the lemma. J

We prove the following lemma in Appendix A to finish the proof of Lemma 8.

I Lemma 15. For every typical sequence z of q points, we have

dTV
(
Eyes(z), E∗no(z)

)
= o(1).

APPROX/RANDOM’17

37:14 Sample-Based High-Dimensional Convexity Testing

4 One-sided lower bound

We recall Theorem 1:

I Theorem 1 (One-sided lower bound). Any one-sided sample-based algorithm that is an
ε-tester for convexity over N (0, 1)n for some ε < 1/2 must use 2Ω(n) samples.

We say a finite set {x1, . . . , xM} ⊂ Rn is shattered by Cconvex if for every (b1, . . . , bM) ∈
{0, 1}M there is a convex set C ∈ Cconvex such that C(xi) = bi for all i ∈ [M]. Theorem 1
follows from the following lemma:

I Lemma 16. There is an absolute constant c > 0 such that for M = 2cn, it holds that

Pr
xi←N (0,1)n

[
{x1, . . . ,xM} is shattered by Cconvex

]
≥ 1− o(1).

Proof of Theorem 1 using Lemma 16. Suppose that A were a one-sided sample-based al-
gorithm for ε-testing Cconvex using at most M samples. Fix a set S that is ε-far from Cconvex
to be the unknown target subset of Rn that is being tested.1 Since S is ε-far from convex, it
must be the case that

Pr
xi←N (0,1)n

[
A rejects (x1, S(x1)), . . . , (xM , S(xM))

]
≥ 2/3. (13)

But Lemma 16 together with the one-sidedness of A imply that

Pr
xi←N (0,1)n

[
for any (b1, . . . , bM) ∈ {0, 1}M , A rejects (x1, b1), . . . , (xM , bM)

]
≤ o(1),

since A can only reject if the labeled samples are not consistent with any convex set, which
implies that A cannot reject when {x1, . . . ,xM} is shattered by Cconvex. This contradicts
with (13) and finishes the proof of the lemma. J

In the next subsection we prove Lemma 16 for c = 1/500.

4.1 Proof of Lemma 16
Let M = 2cn with c = 1/500. We prove the following lemma:

I Lemma 17. For x1, . . . ,xM drawn independently from N (0, 1)n, with probability 1− o(1)
it is the case that for all i ∈ [M], no xi lies in Conv({xj : j ∈ [M] \ i}).

If x1, . . . ,xM are such that no xi lies in Conv({xj : j ∈ [M] \ i}), then given any tuple
(b1, . . . , bM), by taking C = Conv({xi : bi = 1}) we see that there is a convex set C such that
C(xi) = bi for all i ∈ [M]. Thus to establish Lemma 16 it suffices to prove Lemma 17.

To prove Lemma 17, it suffices to show that for each fixed j ∈ [M] we have

Pr
xi←N (0,1)n

[
xj ∈ Conv({xk : k ∈ [M] \ {j}})

]
≤M−2 (14)

1 An example of such a subset S is as follows (we define it as a function S : Rn → {0, 1}): Given
an odd integer N > (1/2− ε)−1 − 1, let −∞ = τ0 < τ1 < · · · < τN < τN+1 = +∞ be values
such that Prz←N (0,1)[z ≤ τi] = i/(N + 1), and let S : Rn → {0, 1} be the function defined by
S(x1, . . . , xn) = 1[i is even], where i ∈ {0, . . . , N} is the unique value such that τi ≤ x1 < τi+1. Fix any
z = (z2, . . . , zn) ∈ Rn−1 and we let Sz : R→ {0, 1} be the function defined as Sz(x1) = S(x1, z2, . . . , zn).
An easy argument gives that Sz is (1/2− 1/(N + 1))-far (and hence ε-far) from every convex subset of
R, and it follows by averaging (using the fact that the restriction of any convex subset of Rn to a line
is a convex subset of R) that S is ε-far from Cconvex.

X. Chen, A. Freilich, R. A. Servedio, and T. Sun 37:15

since given this a union bound implies that

Pr
xi←N (0,1)n

[
for some j ∈ [M], xj lies in Conv({xk : k ∈ [M] \ {j}})

]
≤M−1 = o(1).

By symmetry, to establish (14) it suffices to show that

Pr
xi←N (0,1)n

[
xM ∈ Conv({x1, . . . ,xM−1})

]
≤M−2. (15)

In turn (15) follows from the following inequalities (v is a fixed unit vector in the second)

Pr
x←N (0,1)n

[
‖x‖ ≤

√
n/10

]
<

1
2M

−2 and Pr
x←N (0,1)n

[
x · v ≥

√
n/10

]
<

1
2M

−3. (16)

The first inequality follows from Lemma 5 using c = 1/500. For the second, by the spherical
symmetry of N (0, 1)n we may take v = (1, 0, . . . , 0). Recall the standard Gaussian tail bound

Pr
z←N (0,1)

[
z ≥ t

]
≤ e−t

2/2

for t ≥ 0. This gives us that

Pr
x←N (0,1)n

[
x · v ≥

√
n/10

]
≤ e−n/200 <

1
2M

−3,

again using that M = 2cn and c = 1/500.
Finally, to see that (15) follows from (16), we observe first that by the first inequality we

may assume that ‖xM‖ >
√
n/10 (at the cost of failure probability at most M−2/2 towards

(15)); fix any such outcome xM of xM . By a union bound over x1, . . . ,xM−1 and the second
inequality, we have

Pr
xi←N (0,1)n

[
any i ∈ [M − 1] has xi · xM

‖xM‖
≥
√
n/10

]
<

1
2M

−2.

But if every xi has xi · (xM/‖xM‖) <
√
n/10 < ‖xM‖, then xM /∈ Conv({x1, . . . ,xM−1}).

References
1 Jayadev Acharya, Constantinos Daskalakis, and Gautam Kamath. Optimal testing for

properties of distributions. In Advances in Neural Information Processing Systems 28
(NIPS), pages 3591–3599, 2015.

2 Michal Adamaszek, Artur Czumaj, and Christian Sohler. Testing monotone continuous
distributions on high-dimensional real cubes. In SODA, pages 56–65, 2010.

3 N. Alon, T. Kaufman, M. Krivelevich, S. Litsyn, and D. Ron. Testing Reed-Muller Codes.
IEEE Transactions on Information Theory, 51(11):4032–4039, 2005.

4 Noga Alon, Alexandr Andoni, Tali Kaufman, Kevin Matulef, Ronitt Rubinfeld, and Ning
Xie. Testing k-wise and almost k-wise independence. In Proceedings of the 39th Annual
ACM Symposium on Theory of Computing, pages 496–505, 2007.

5 Noga Alon, Rani Hod, and Amit Weinstein. On active and passive testing. Combinatorics,
Probability & Computing, 25(1):1–20, 2016.

6 Maria-Florina Balcan, Eric Blais, Avrim Blum, and Liu Yang. Active property testing.
In 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, New
Brunswick, NJ, USA, October 20-23, 2012, pages 21–30, 2012.

7 K. Ball. The Reverse Isoperimetric Problem for Gaussian Measure. Discrete and Compu-
tational Geometry, 10:411–420, 1993.

APPROX/RANDOM’17

37:16 Sample-Based High-Dimensional Convexity Testing

8 Keith Ball. An elementary introduction to modern convex geometry. In Flavors of Geo-
metry, pages 1–58. MSRI Publications, 1997.

9 Tugkan Batu, Ravi Kumar, and Ronitt Rubinfeld. Sublinear algorithms for testing mono-
tone and unimodal distributions. In Proceedings of the 36th Symposium on Theory of
Computing, pages 381–390, 2004.

10 Piotr Berman, Meiram Murzabulatov, and Sofya Raskhodnikova. The power and limita-
tions of uniform samples in testing properties of figures. In 36th IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2016,
December 13-15, 2016, Chennai, India, pages 45:1–45:14, 2016.

11 Piotr Berman, Meiram Murzabulatov, and Sofya Raskhodnikova. Testing convexity of
figures under the uniform distribution. In 32nd International Symposium on Computational
Geometry, SoCG 2016, June 14-18, 2016, Boston, MA, USA, pages 17:1–17:15, 2016.

12 Piotr Berman, Meiram Murzabulatov, and Sofya Raskhodnikova. Tolerant testers of image
properties. In 43rd International Colloquium on Automata, Languages, and Programming,
ICALP 2016, July 11-15, 2016, Rome, Italy, pages 90:1–90:14, 2016.

13 Arnab Bhattacharyya, Eldar Fischer, Ronitt Rubinfeld, and Paul Valiant. Testing mono-
tonicity of distributions over general partial orders. In ICS, pages 239–252, 2011.

14 Arnab Bhattacharyya, Swastik Kopparty, Grant Schoenebeck, Madhu Sudan, and David
Zuckerman. Optimal testing of reed-muller codes. In 51th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2010, pages 488–497, 2010.

15 Eric Blais. Testing juntas nearly optimally. In Proc. 41st Annual ACM Symposium on
Theory of Computing (STOC), pages 151–158, 2009. doi:10.1145/1536414.1536437.

16 Eric Blais and Yuichi Yoshida. A characterization of constant-sample testable properties.
CoRR, abs/1612.06016, 2016. URL: http://arxiv.org/abs/1612.06016.

17 M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to numerical
problems. Journal of Computer and System Sciences, 47:549–595, 1993. Earlier version in
STOC’90.

18 Artur Czumaj and Christian Sohler. Property testing with geometric queries. In Algorithms
– ESA 2001, 9th Annual European Symposium, pages 266–277, 2001.

19 Artur Czumaj, Christian Sohler, and Martin Ziegler. Property testing in computational
geometry. In Algorithms – ESA 2000, 8th Annual European Symposium, pages 155–166,
2000.

20 O. Goldreich, S. Goldwasser, E. Lehman, D. Ron, and A. Samordinsky. Testing monoton-
icity. Combinatorica, 20(3):301–337, 2000.

21 O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning
and approximation. Journal of the ACM, 45:653–750, 1998.

22 Oded Goldreich and Dana Ron. On sample-based testers. TOCT, 8(2):7:1–7:54, 2016.
23 Oded Goldreich and Madhu Sudan. Locally testable codes and pcps of almost-linear length.

J. ACM, 53(4):558–655, 2006.
24 P.M. Gruber and J.M. Wills, editors. Handbook of convex geometry, Volume A. Elsevier,

New York, 1993.
25 Iain M. Johnstone. Chi-square oracle inequalities. In State of the art in probability and

statistics, pages 399–418. Institute of Mathematical Statistics, 2001.
26 Tali Kaufman and Madhu Sudan. Algebraic property testing: the role of invariance. In

Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British
Columbia, Canada, May 17-20, 2008, pages 403–412, 2008.

27 M. Kearns and D. Ron. Testing problems with sub-learning sample complexity. Journal of
Computer and System Sciences, 61:428–456, 2000.

28 Subhash Khot, Dor Minzer, and Muli Safra. On monotonicity testing and boolean isoperi-
metric type theorems. To appear in FOCS, 2015.

http://dx.doi.org/10.1145/1536414.1536437
http://arxiv.org/abs/1612.06016

X. Chen, A. Freilich, R. A. Servedio, and T. Sun 37:17

29 A. Klivans, R. O’Donnell, and R. Servedio. Agnostically learning convex sets via perimeter.
manuscript, 2007.

30 Pravesh Kothari, Amir Nayyeri, Ryan O’Donnell, and Chenggang Wu. Testing surface area.
In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1204–1214, 2014.

31 K. Matulef, R. O’Donnell, R. Rubinfeld, and R. Servedio. Testing halfspaces. SIAM J. on
Comput., 39(5):2004–2047, 2010.

32 F. Nazarov. On the maximal perimeter of a convex set in Rn with respect to a Gaussian
measure. In Geometric aspects of functional analysis (2001-2002), pages 169–187. Lecture
Notes in Math., Vol. 1807, Springer, 2003.

33 Joe Neeman. Testing surface area with arbitrary accuracy. In Proceedings of the 46th
Annual ACM Symposium on Theory of Computing, STOC’14, pages 393–397, 2014.

34 M. Parnas, D. Ron, and A. Samorodnitsky. Testing Basic Boolean Formulae. SIAM J.
Disc. Math., 16:20–46, 2002. URL: citeseer.ifi.unizh.ch/parnas02testing.html.

35 Luis Rademacher and Santosh Vempala. Testing geometric convexity. In FSTTCS 2004:
Foundations of Software Technology and Theoretical Computer Science: 24th International
Conference, Chennai, India, December 16-18, 2004. Proceedings, pages 469–480, 2005.

36 Sofya Raskhodnikova. Approximate testing of visual properties. In Proceedings of RAN-
DOM, pages 370–381, 2003.

37 R. Rubinfeld and R. Servedio. Testing monotone high-dimensional distributions. In Proc.
37th Annual ACM Symposium on Theory of Computing (STOC), pages 147–156, 2005.

38 Ronitt Rubinfeld and Ning Xie. Testing non-uniform k-wise independent distributions over
product spaces. In Automata, Languages and Programming, 37th International Colloquium,
ICALP 2010, Bordeaux, France, July 6-10, 2010, Proceedings, Part I, pages 565–581, 2010.

39 Stanislaw J. Szarek. Convexity, complexity, and high dimensions. In Proceedings of the In-
ternational Congress of Mathematicians, Madrid, Spain, pages 1599–1621. European Math-
ematical Society, 2006.

A Proof of Lemma 15

Fix a typical sequence z = (z1, . . . , zq). Our goal is to show that the total variation distance
of Eyes(z) and E∗no(z) is o(1). For this purpose, we define a distribution F over pairs (b,d) of
strings in {0, 1}q (as a coupling of Eyes(z) and E∗no(z)), where the marginal distribution of b
as (b,d)← F is the same as Eyes(z) and the marginal distribution of d is the same as E∗no(z).
Our goal follows by establishing

Pr
(b,d)←F

[
b 6= d

]
= o(1). (17)

To define F , we use M to denote the q ×N {0, 1}-valued random matrix derived from z

and S ← Dyes (recall that S is the intersection of N random halfspaces hj , j ∈ [N]): the
(i, j)th entry Mi,j of M is 1 if hj(zi) = 1 (i.e., zi ∈ hj) and is 0 otherwise. We use Mi,∗ to
denote the ith row of M, M∗,j to denote the jth column of M, and M(i) to denote the i×N
sub-matrix of M that consists of the first i rows of M. (We note that M is derived from S

and they are defined over the same probability space. So we may consider the (conditional)
distribution of S ← Dyes conditioning on an event involving M, and we may consider the
conditional distribution of M conditioning on an event involving S.)

We now define F . A pair (b,d)← F is drawn using the following randomized procedure.
The procedure has q rounds and generates the ith bits bi and di in the ith round:

APPROX/RANDOM’17

citeseer.ifi.unizh.ch/parnas02testing.html

37:18 Sample-Based High-Dimensional Convexity Testing

1. In the first round, we draw a random real number r1 from [0, 1] uniformly at random. We
set b1 = 1 if r1 ≤ PrS←Dyes [S(z1) = 1] and set b1 = 0 otherwise. We then set d1 = 1 if
r1 ≤ ρ(‖z1‖) and set d1 = 0 otherwise. (Note that for the first round, the two thresholds
are indeed the same so we always have b1 = d1.) At the end of the first round, we also
draw a vector N1,∗ according to the distribution of M1,∗ conditioning on S(z1) = b1.

2. In the ith round, for each i from 2 to q, we draw a random real number ri from [0, 1]
uniformly at random. We set bi = 1 if we have

ri ≤ Pr
S←Dyes

[
S(zi) = 1

∣∣M(i−1) = N(i−1)
]

and set bi = 0 otherwise. We then set di = 1 if ri ≤ ρ(‖zi‖) and set di = 0 otherwise.
At the end of the ith round, we also draw a vector Ni,∗ according to the distribution of
Mi,∗ conditioning on M(i−1) = N(i−1) and S(zi) = bi.

It is clear that the marginal distributions of b and d, as (b,d)← F , are indeed the same as
Eyes and E∗no respectively.

To prove (17), we introduce the following notion of nice and bad matrices.

I Definition 18. We say an i×N {0, 1}-valued matrix M , for some i ∈ [q], is nice if
1. M has at most

√
N many 0-entries; and

2. Each column of M has at most one 0-entry.
We say M is bad otherwise.

We prove the following two lemmas and use them to prove (17).

I Lemma 19. PrS←Dyes

[
M is bad

]
= o(1/q).

Note that when M is nice, we have by definition that M(i) is also nice for every i ∈ [q].

I Lemma 20. For any nice (i− 1)×N {0, 1}-valued matrix M (i−1), we have

Pr
S←Dyes

[
S(zi) = 1

∣∣M(i−1) = M (i−1)
]

= ρ(‖zi‖)± o(1/q). (18)

Before proving Lemma 19 and 20, we first use them to prove (17). Let Ii denote the
indicator random variable that is 1 if (b,d) ← E has bi 6= di and is 0 otherwise, for each
i ∈ [q]. Then (17) is bounded from above by

∑
i∈[q] Pr[Ii = 1]. To bound each Pr[Ii = 1] we

split the event into∑
M(i−1)

Pr
[
N(i−1) = M (i−1)] ·Pr

[
Ii = 1 |N(i−1) = M (i−1)],

where the sum is over all (i− 1)×N {0, 1}-valued matrices M (i−1), and further split the
sum into two sums over nice and bad matrices M (i−1). As N(i−1) has the same distribution
as M(i−1), it follows from Lemma 19 (and the fact that M is bad when M(i−1) is bad) that
the sum over bad M (i−1) is at most o(1/q). On the other hand, it follows from Lemma 20
that the sum over nice M (i−1) is o(1/q). As a result, we have Pr[Ii = 1] = o(1/q) and thus,∑
i∈[q] Pr[Ii = 1] = o(1).
We prove Lemmas 19 and 20 in the rest of the section.

Proof of Lemma 19. We show that the probability of M violating each of the two conditions
in the definition of nice matrices is o(1/q). The lemma then follows by a union bound.

For the first condition, since z is typical the probability of Mi,j = 0 is

fsa
(
cover(zi)

)
≤ e−0.49r2

.

X. Chen, A. Freilich, R. A. Servedio, and T. Sun 37:19

By linearity of expectation, the expected number of 0-entries in M is at most

qN · e−0.49r2
= o(
√
N/q),

using er2/2 ≥ N/n, N = 2
√
n and q = 20.01

√
n. It follows directly from Markov’s inequality

that the probability of M having more than
√
N many 0-entries is o(1/q).

For the second condition, again since z is typical, the probability of Mi,j = Mi′,j = 1 is

fsa
(
cover(zi) ∩ cover(z′i)

)
≤ e−0.96r2

.

By a union bound, the probability of Mi,j = Mi′,j = 1 for some i, i′, j is at most

q2N · e−0.96r2
= o(1/q).

This finishes the proof of the lemma. J

Finally we prove Lemma 20. Fix a nice (i− 1)×N matrix M (we henceforth omit the
superscript (i− 1) since the number of rows of M is fixed to be i− 1). Recall that S(zi) = 1
if and only if hj(zi) = 1 for all j ∈ [N]. As a result, we have

Pr
S←Dyes

[
S(zi) = 1

∣∣M(i−1) = M
]

=
∏
j∈[N]

Pr
hj

[
hj(zi) = 1

∣∣M(i−1)
∗,j = M∗,j

]
.

On the other hand, letting τ = fsa(cover(zi)) = cap(r/‖zi‖), we have ρ(‖zi‖) = (1− τ)N .
In the next two claims we compare

Pr
hj

[
hj(zi) = 1

∣∣M(i−1)
∗,j = M∗,j

]
with 1 − τ for each j ∈ [N] and show that they are very close. The first claim works on
j ∈ [N] with no 0-entry in M∗,j and the second claim works on j ∈ [N] with one 0-entry in
M∗,j . (These two possibilities cover all j ∈ [N] since the matrix M is nice.) Below we omit
M(i−1)
∗,j in writing the conditional probabilities.

I Claim 21. For each j ∈ [N] with no 0-entry in the jth column M∗,j, we have

Pr
hj

[
hj(zi) = 1

∣∣M∗,j] = (1− τ)
(

1± o(1)
qN

)
.

Proof. Let δ be the probability of hj(zi) = 0 conditioning on M∗,j (which is all-1). Then

δ =
fsa
(
cover(zi)−

⋃
j<i cover(zj)

)
1− fsa

(⋃
j<i cover(zj)

) .

Using e−0.51r2 ≤ fsa(cover(zj)) ≤ e−0.49r2 and fsa(cover(zi)∩ cover(zj)) ≤ e−0.96r2 , we have

δ ≤ τ

1− q · e−0.49r2 < τ(1 + 2q · e−0.49r2
) = τ + 2τq · e−0.49r2

.

Using τ ≤ e−0.49r2 and er2/2 ≥ N/n, we have

1− δ ≥ 1− τ − 2τq · e−0.49r2
≥ 1− τ − o

(
1/(qN)

)
≥ (1− τ)

(
1− o(1/(qN))

)
.

On the other hand, we have δ ≥ τ − q · e−0.96r2 and thus,

1− δ ≤ 1− τ + q · e−0.96r2
≤ 1− τ + o

(
1/(qN)

)
= (1− τ)

(
1 + o(1/(qN))

)
.

This finishes the proof of the claim. J

APPROX/RANDOM’17

37:20 Sample-Based High-Dimensional Convexity Testing

I Claim 22. For each j ∈ [N] with one 0-entry in the jth column M∗,j, we have

Pr
hj

[
hj(zi) = 1

∣∣M∗,j] ≥ 1−O
(
e−0.45r2)

.

Proof. Let i′ be the point with Mi′,j = 1 and δ be the conditional probability of hj(zi) = 0.
Then we have

δ ≤
fsa
(
cover(zi) ∩ cover(zi′)

)
fsa
(
cover(z′i)−

⋃
j<i:j 6=i′ cover(zj)

) ≤ e−0.96r2

e−0.51r2 − q · e−0.96r2 = O
(
e−0.45r2)

,

by our choice of q. This finishes the proof of the claim. J

We combine the two claims to prove Lemma 20.

Proof of Lemma 20. Let h be the number of 0-entries in M . We have h ≤
√
N since M is

nice. By Claims 21, the conditional probability of S(zi) = 1 is at most(
(1− τ)

(
1 + o

(
1
qN

)))N−h
= ρ(‖zi‖) ·

1
(1− τ)h ·

(
1 + o

(
1
qN

))N−h
≤ ρ(‖zi‖) · (1 + 2τ)h ·

(
1 + o

(
1
qN

))N
≤ ρ(‖zi‖) · exp

(
2τh+ o(1/q)

)
= ρ(‖zi‖) · exp

(
o(1/q)

)
= ρ(‖zi‖) + o(1/q).

Similarly, the conditional probability of S(zi) = 1 is at least(
(1− τ)

(
1− o

(
1
qN

)))N−h (
1−O

(
e−0.45r2

))h
≥ ρ(‖zi‖) ·

(
1− o

(
1
qN

))N−h (
1−O

(
e−0.45r2

))h
≥ ρ(‖zi‖) ·

(
1− o(1/q)

)
≥ ρ(‖zi‖)− o(1/q).

This finishes the proof of the lemma. J

Adaptivity Is Exponentially Powerful for Testing
Monotonicity of Halfspaces∗†

Xi Chen1, Rocco A. Servedio2, Li-Yang Tan3, and Erik Waingarten4

1 Columbia University, New York, NY, USA
xichen@cs.columbia.edu

2 Columbia University, New York, NY, USA
rocco@cs.columbia.edu

3 Toyota Technological Institute, Chicago, IL, USA
liyang@cs.columbia.edu

4 Columbia University, New York, NY, USA
eaw@cs.columbia.edu

Abstract
We give a poly(logn, 1/ε)-query adaptive algorithm for testing whether an unknown Boolean
function f : {−1, 1}n → {−1, 1}, which is promised to be a halfspace, is monotone versus ε-far
from monotone. Since non-adaptive algorithms are known to require almost Ω(n1/2) queries
to test whether an unknown halfspace is monotone versus far from monotone, this shows that
adaptivity enables an exponential improvement in the query complexity of monotonicity testing
for halfspaces.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases property testing, linear threshold functions, monotonicity, adaptivity

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.38

1 Introduction

Monotonicity testing has been a touchstone problem in property testing for more than
fifteen years [17, 23, 19, 22, 21, 3, 1, 24, 29, 6, 8, 27, 10, 11, 12, 7, 14, 25, 13, 4, 16], with
many exciting recent developments leading to a greatly improved understanding of the
problem in just the past few years. The seminal work of [23] introduced the problem and
gave an O(n/ε)-query algorithm that tests whether an unknown and arbitrary function
f : {−1, 1}n → {−1, 1} is monotone versus ε-far from every monotone function. While steady
progress followed for non-Boolean functions and for functions over other domains, the first
improved algorithm for Boolean-valued functions over {−1, 1}n was only achieved in [10],
who gave a Õ(n7/8) · poly(1/ε)-query non-adaptive testing algorithm. A slightly improved
Õ(n5/6) · poly(1/ε)-query non-adaptive algorithm was given by [14], and subsequently [25]
gave a Õ(n1/2) · poly(1/ε)-query non-adaptive algorithm.

On the lower bounds side, the fundamental class of halfspaces has played a major role in
non-adaptive lower bounds for monotonicity testing to date. We discuss lower bounds for
two-sided error monotonicity testing of Boolean-valued functions over {−1, 1}n, and refer the

∗ A full version of the paper is available at https://arxiv.org/abs/1706.05556.
† X.C. was supported by NSF grants CCF-1149257 and CCF-1423100. R.A. S. was supported by NSF

grants CCF-1420349 and CCF-1563155. L.-Y.T. was supported by NSF grant CCF-1563122. E.W. was
supported by the NSF Graduate Research Fellowship under Grant No. DGE-16-44869.

© Xi Chen, Rocco A. Servedio, Li-Yang Tan, and Erik Waingarten;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 38; pp. 38:1–38:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.38
https://arxiv.org/abs/1706.05556
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

38:2 Adaptivity Is Exponentially Powerful for Testing Monotonicity of Halfspaces

reader to the above references for lower bounds on other variants of the monotonicity testing
problem. The first (two-sided) lower bound was established by Fischer et al [22], who used
a slight variant of the majority function to give an Ω(logn) lower bound for non-adaptive
monotonicity testing. More recently, the lower bound of [13], strengthening [14], shows that
for any constant δ > 0, there is a constant ε = ε(δ) > 0 such that Ω(n1/2−δ) non-adaptive
queries are required to distinguish whether a Boolean function f – which is promised to
be a halfspace – is monotone or ε-far from every monotone function. Together with the
Õ(n1/2) · poly(1/ε)-query non-adaptive monotonicity testing algorithm of [25], this shows
that halfspaces are “as hard as the hardest functions” to non-adaptively test for monotonicity.
Halfspaces are also commonly referred to as “linear threshold functions” or LTFs; for brevity
we shall subsequently refer to them as LTFs.

The role of adaptivity

While the above results largely settle the query complexity of non-adaptive monotonicity
testing, the situation is less clear when adaptive algorithms are allowed. More generally,
the power of adaptivity in property testing is not yet well understood, despite being a
natural and important question.1 A recent breakthrough result of Belovs and Blais [4] gives
a Ω̃(n1/4) lower bound on the query complexity of adaptive algorithms that test whether
f : {−1, 1}n → {−1, 1} is monotone versus ε-far from monotone, for some absolute constant
ε > 0. This result was then improved by [16] to Ω̃(n1/3). [4] also shows that when f is
promised to be an “extremely regular” LTF, with regularity parameter at most O(1)/

√
n,

then logn+Oε(1) adaptive queries suffice. (We define the “regularity” of an LTF in part (a)
of Definition 2 below. Here we note only that every n-variable LTF has regularity between
1/
√
n and 1, so O(1)/

√
n-regular LTFs are “extremely regular” LTFs.)

A very compelling question is whether adaptivity helps for monotonicity testing of Boolean
functions: can adaptive algorithms go below the [13] Ω(n1/2−δ)-query lower bound for non-
adaptive algorithms? While we do not know the answer to this question for general Boolean
functions2, in this work we give a strong positive answer in the case of LTFs, generalizing
the upper bound of [4] from “extremely regular” LTFs to arbitrary unrestricted LTFs. The
main result of this work is an adaptive algorithm with one-sided error that can test any LTF
for monotonicity using poly(logn, 1/ε) queries:

I Theorem 1 (Main). There is a poly(logn, 1/ε)-query3 adaptive algorithm with the following
property: given ε > 0 and black-box access to an unknown LTF f : {−1, 1}n → {−1, 1},

If f is monotone then the algorithm outputs “monotone” with probability 1;
If f is ε-far from every monotone function then the algorithm outputs “non-monotone”
with probability at least 2/3.

1 For monotonicity testing of functions f : [n]2 → {0, 1}, Berman et al. [5] showed that adaptive algorithms
are strictly more powerful than non-adaptive ones (by a factor of log 1/ε). For unateness testing of
real-valued functions f : {0, 1}n → R, a natural generalization of monotonicity, [2] showed that adaptivity
helps by a logarithmic factor. We remark that for another touchstone class in property testing, the
class of Boolean juntas, it was only very recently shown [30, 15] that adaptive algorithms are strictly
more powerful than non-adaptive algorithms.

2 For very special functions such as truncated anti-dictators, it is known [22] that adaptive algorithms
are known to be much more efficient than nonadaptive algorithms (O(logn) versus Ω(

√
n) queries) in

finding a violation to monotonicity.
3 See Theorem 26 of Section 5 for a detailed description of the algorithm’s query complexity; we have

made no effort to optimize the particular polynomial dependence on logn and 1/ε that the algorithm
achieves.

X. Chen, R. A. Servedio, L.-Y. Tan, and E. Waingarten 38:3

Recalling that the Ω(n1/2−δ) non-adaptive lower bound from [13] is proved using LTFs as
both the yes- and no- functions, Theorem 1 shows that adaptive algorithms are exponentially
more powerful than non-adaptive algorithms for testing monotonicity of LTFs. Together
with the Ω̃(n1/3) adaptive lower bound from [16], it also shows that LTFs are exponentially
easier to test for monotonicity than general Boolean functions using adaptive algorithms.

1.1 A very high-level overview of the algorithm
The adaptive algorithm of [4] for testing monotonicity of “extremely regular” LTFs is
essentially based on a simple binary search over the hypercube {−1, 1}n to find an anti-
monotone edge4. [4] succeeds in analyzing such an algorithm, taking advantage of some of
the nice structural properties of regular LTFs, but it is not clear how to carry out such an
analysis for general LTFs.

To deal with general LTFs, our algorithm is more involved and employs an iterative
stage-wise approach, running for up to O(logn) stages. Entering the (t+ 1)-th stage, the
algorithm maintains a restriction ρ(t) that fixes some of the input variables to f , and in the
(t + 1)-th stage the algorithm queries fρ(t) , where we write fρ(t) to denote the function f
after the restriction ρ(t). At a very high level, in the (t+ 1)-th stage the algorithm either
(i) Obtains definitive evidence (in the form of an anti-monotone edge) that fρ(t) , and hence

f , is not monotone. In this case the algorithm halts and outputs “non-monotone.” Or, it
(ii) Extends the restriction ρ(t) to obtain ρ(t+1). This is done by fixing a random subset of

the variables of expected density 1/2 that are not fixed under ρ(t), and possibly some
additional variables, in such a way as to maintain an invariant described later. Or, it

(iii) Fails to achieve (i) or (ii), which we show is very unlikely to happen. In this case the
algorithm simply halts and outputs “monotone.”
We describe the invariant of ρ(t) maintained in Case (ii) in Section 1.2. One of its

implications in particular is that fρ(t) is ε′-far from monotone, where ε′ has a polynomial
dependence on ε. As a result, when the number of surviving variables under ρ(t∗) at the
beginning of a stage t∗ is at most poly(logn), the algorithm can run the simple “edge tester”
of [23] on fρ(t∗) to find an anti-monotone edge with high probability. Although the “edge
tester” has query complexity linear in the number of variables, this is affordable since fρ(t∗)

only has poly(logn) many variables left. Case (ii) ensures that there are at most O(logn)
stages overall. We will also see that each stage makes at most poly(logn, 1/ε) queries; hence
the overall query complexity is poly(logn, 1/ε).

1.2 A more detailed overview of the algorithm and why it works
In this section we give a more detailed overview of the algorithm and a high-level sketch of
its analysis. The algorithm only outputs “non-monotone” if it identifies an anti-monotone
edge, so it will correctly output “monotone” on every monotone f with probability 1. Hence,
establishing correctness of the algorithm amounts to showing that if f is an LTF that is ε-far
from monotone, then with high probability the algorithm will output “non-monotone” when
it runs on f . Thus, for the remainder of this section, f(x) = sign(w1x1 + · · ·+ wnxn − θ)
should be viewed as being an LTF that is ε-far from monotone.

A crucial notion for understanding the algorithm is that of a (τ, γ, λ)-non-monotone LTF.

4 A bi-chromatic edge of f : {−1, 1}n → {−1, 1} is a pair (x, y) of points such that x, y ∈ {−1, 1}n differ
at exactly one coordinate and satisfy f(x) 6= f(y). An anti-monotone edge of f is a bi-chromatic edge
(x, y) that also satisfies xi = −1, yi = 1 for some i ∈ [n] and f(x) = 1, f(y) = −1.

APPROX/RANDOM’17

38:4 Adaptivity Is Exponentially Powerful for Testing Monotonicity of Halfspaces

I Definition 2. Given an LTF f : {−1, 1}S → {−1, 1} of the form f(x) = sign(w · x − θ)
over a set of variables S, we say it is a (τ, γ, λ)-non-monotone LTF with respect to the weights
w if it satisfies the following three properties:
(a) f is τ -weight-regular5 with respect to w, i.e.,

max
i∈S
|wi| ≤ τ ·

√∑
j∈S

w2
j ;

(b) f is γ-balanced, i.e.,
∣∣Ex∈{−1,1}n [f(x)]

∣∣ ≤ 1− γ; and
(c) f has λ-significant squared negative weights in w, i.e.,∑

i∈S:wi<0(wi)2∑
i∈S(wi)2 ≥ λ.

Looking ahead, an insight that underlies this definition (as well as our algorithm) is that,
when f = sign(w ·x−θ) is a weight-regular LTF that is far from monotone, f must satisfy (c)
above for some large value of λ (see Lemma 12 for a precise formulation). The converse also
holds, i.e., an LTF that satisfies all three conditions above must be ε-far from monotone for
some large value of ε (see Lemma 13). This is indeed the reason why we call such functions
(τ, γ, λ)-non-monotone LTFs. An additional motivation for the regularity condition (a) is
that, when f satisfies (c) for some value λ� τ (the parameter in (a)), a random restriction ρ
(that randomly fixes half of the variables to uniform values from {−1, 1}) would have fρ still
satisfy (c) with essentially the same λ. The balance condition (b), on the other hand, may
be viewed as a technical condition that makes it possible for our various subroutines to work
efficiently and correctly; we note that if f is not γ-balanced, then f is trivially (γ/2)-close to
either the monotone function 1 or the monotone function −1.

With Definition 2 in hand, we proceed to a more detailed overview of the algorithm
(still at a rather conceptual level). The algorithm takes as input black-box access to
f : {−1, 1}n → {−1, 1} and a parameter ε > 0. We remind the reader that in the subsequent
discussion f should be viewed as an ε-far-from-monotone LTF. For the analysis of the
algorithm, we also assume that f takes the form of f(x) = sign(w1x1 + · · · + wnxn − θ),
for some unknown (but fixed6) weight vector w and threshold θ. They are unknown to the
algorithm and will be used in the analysis only.

Our algorithm has two main phases: first an initialization phase, and then the phase
consisting of the main procedure.

Initialization. The algorithm runs an initialization procedure Regularize-and-Balance.
Roughly speaking, it with high probability either identifies f as a non-monotone LTF by find-
ing an anti-monotone edge and halts, or constructs a restriction ρ(0) such that fρ(0) becomes
a (τ, γ, λ0)-non-monotone LTF for suitable parameters τ, γ, λ0, with τ = poly(1/ logn, ε),
γ = ε, λ0 = poly(ε) and τ � λ0. In the latter case the algorithm continues with fρ(0) .

Main Procedure. As sketched earlier in Section 1.1 the main procedure operates in a
sequence of O(logn) stages. In its (t + 1)th stage, it operates on the restricted function

5 Our terminology “weight-regular” means the same thing as [4]’s “regular.” We use the terminology
“weight-regular” to distinguish it from the different notion of “Fourier-regularity” which we also require,
see Section 2.2.

6 Note that (w, θ) is not unique for a given f . We pick such a pair and stick to it throughout the analysis.

X. Chen, R. A. Servedio, L.-Y. Tan, and E. Waingarten 38:5

fρ(t) which is assumed to be a (τ, γ, λt)-non-monotone LTF, and with high probability either
identifies f as non-monotone and halts, or constructs an extension ρ(t+1) of the restriction
ρ(t) such that fρ(t+1) remains (τ, γ, λt+1)-non-monotone (for some parameter λt+1 that is
only slightly smaller than λt) while the number of free variables in ρ(t+1) drops by a constant
factor.

To describe each stage in more detail, we need the following notation for restrictions.
Given a restriction ρ ∈ {−1, 1, ∗}[n], we use stars(ρ) to denote the set of indices that are
not fixed in ρ, i.e., the set of i such that ρ(i) = ∗. Given f : {−1, 1}n → {−1, 1} of the form
f(x) = sign(

∑
wixi − θ), we let fρ : {−1, 1}stars(ρ) → {−1, 1} denote the function f after

the restriction ρ:

fρ(x) = sign
(∑

i∈stars(ρ) wi · xi +
∑
j /∈stars(ρ) wj · ρ(j)− θ

)
.

We stress than the weights of fρ remain wi while the threshold is θ −
∑
j /∈stars(ρ) wj · ρ(j).

Now for the (t + 1)th stage, where t = 0, 1, 2, . . . , the main procedure carries out the
following sequence of steps (we defer discussion of how these steps are implemented to
Section 5). Below for convenience we let g denote fρ(t) , the function that the algorithm
operates on in the (t+ 1)th stage.

1. Draw a random subset At ⊂ stars(ρ(t)), which consists of roughly half of its variables.
Assuming that τ � λt, we have that, with high probability, At partitions the positive and
negative weights roughly evenly and the collection of weights of variables in stars(ρ(t))\At
has λt+1-significant squared negative weights for some λt+1 that is only slightly smaller
than λt. (This also justifies the assumption of τ � λt at the beginning.)

2. Find a restriction ρ′ ∈ {−1, 1, ∗}stars(ρ(t)) that fixes the variables in At in such a way
that gρ′ is 0.96-balanced. The exact constant 0.96 here is not important as long as it
is close enough to 1. Note that gρ′ is more balanced than g is promised to be (i.e.,
(γ = ε)-balanced and we may assume that ε ≤ 0.5). This helps in the last step of the
stage. Our analysis shows that if g is (τ, γ, λt)-non-monotone, then this step succeeds
with high probability.

3. Find a set Ht ⊂ stars(ρ(t))\At that contains those variables xi that have “high influence”
in gρ′ . Intuitively, Ht contains variables of gρ′ that violate the τ -weight-regularity
condition; after its removal, the collection of weights of variables in stars(ρ(t))\ (At∪Ht)
becomes τ -weight-regular again.

4. For each i ∈ Ht, find a bi-chromatic edge of gρ′ on the ith coordinate (this can be done
efficiently because the variables in Ht all have high influence in gρ′), which reveals the sign
of wi. If an anti-monotone edge is found, halt and output “non-monotone;” otherwise, we
know that the weight of every variable in Ht is positive.

5. Finally, find a restriction ρ′′ ∈ {−1, 1, ∗}stars(ρ(t)), which extends ρ′ and fixes the variables
in At ∪Ht, such that gρ′′ is γ-balanced. Our analysis shows that if g is (τ, γ, λt)-non-
monotone and gρ′ is 0.96-balanced, then this step succeeds with high probability. By
Step 3, gρ′′ is τ -weight-regular. In addition, gρ′′ has λt+1-significant squared negative
weights because of Step 1 and Step 4 (which makes sure that all variables in Ht have
positive weights). At the end, we set ρ(t+1) to be the composition of ρ(t) and ρ′′ and
move on to the next stage.

To summarize, our analysis shows that if fρ(t) is (τ, γ, λt)-non-monotone (entering the
(t+ 1)th stage) then with high probability the algorithm in the (t+ 1)th stage either finds
an anti-monotone edge and halts, or finds an extension ρ(t+1) of ρ(t) such that:

APPROX/RANDOM’17

38:6 Adaptivity Is Exponentially Powerful for Testing Monotonicity of Halfspaces

(i) The new function fρ(t+1) is (τ, γ, λt+1)-non-monotone (entering the (t + 2)th stage),
where the parameter λt+1 is only slightly smaller than λt (more on this below); and

(ii) The number of surviving variables in ρ(t+1) is only about half of that of ρ(t).

This implies that, with high probability, the main procedure within O(logn) stages either
finds an anti-monotone edge and returns the correct answer “non-monotone” or constructs a
restriction ρ(t) such that fρ(t) is (τ, γ, λt)-non-monotone and the number of surviving variables
under ρ(t) is at most m = poly(logn, 1/ε). For the latter case, our analysis (Lemma 13)
together with the fact that λt drops only slightly in each stage show that fρ(t) remains
ε′ = poly(ε)-far from monotone. Thus, the algorithm concludes by running the “edge tester”
from [23] to ε′-test the m-variable function fρ(t) , which uses O(m/ε′) = poly(logn, 1/ε)
queries to fρ(t) and finds an anti-monotone edge with high probability. To summarize, when
f is an LTF that is ε-far from monotone, our algorithm finds an anti-monotone edge and
outputs “non-monotone” with high probability. As discussed earlier at the beginning of
Section 1.2 about its one-sideness, the correctness of the algorithm follows.

1.3 Relation to previous work

We have already discussed how our main result, Theorem 1, relates to the recent upper
and lower bounds of [25, 13, 4] for monotonicity testing. At the level of techniques, several
aspects of our algorithm are reminiscent of some earlier work in property testing of Boolean
functions and probability distributions as we describe below.

At a high level, the poly(1/ε)-query algorithm of [26] for testing whether a function
is an LTF identifies high-influence variables and “deals with them separately” from other
variables, as does our algorithm. The more recent algorithm of [28], for testing whether a
function is a signed majority function, like our algorithm proceeds in a series of stages which
successively builds up a restriction by fixing more and more variables. Like our algorithm the
[28] algorithm makes only poly(logn, 1/ε) adaptive queries, but there are many differences
both between the two algorithms and between their analyses. To briefly note a few of these
differences, the [28] algorithm has two-sided error while our algorithm has one-sided error;
the former also heavily leverages both the very “rigid” structure of the degree-1 Fourier
coefficients of any signed majority function and the near-perfect balancedness of any signed
majority function between the two outputs 1 and −1, neither of which hold in our setting.
Finally, we note that the general approach of iteratively selecting and retaining a random
subset of the remaining “live” elements, then doing some additional pruning to identify,
check, and discard a small number of “heavy” elements, then proceeding to the next stage
is reminiscent of the Approx-Eval-Simulator procedure of [9], which deals with testing
probability distributions in the “conditional sampling” model.

1.4 Organization

In Section 2 we recall the necessary background concerning monotonicity, LTFs, and restric-
tions, and state a few useful algorithmic and structural results from prior work. In Section 3
we establish several new structural results about “regular” LTFs: we first show that its
distance to monotonicity corresponds (approximately) to its total amount of squared negative
coefficient weights; we also prove that its distance to monotonicity is preserved under a
random restriction to a set of its non-decreasing variables. In Section 4 we present and analyze
some simple algorithmic subroutines that will be used to identify high influence variables and
check that they are non-decreasing. Finally in Section 5, we give a detailed description of our

X. Chen, R. A. Servedio, L.-Y. Tan, and E. Waingarten 38:7

overall algorithm for testing monotonicity of LTFs, and prove its correctness, establishing
our main result (Theorem 1).

2 Background

We write [n] for {1, . . . , n}, and use boldface letters (e.g. x and X) to denote random variables.
We briefly recall some basic notions. A function f : {−1, 1}n → {−1, 1} is monotone (short
for “monotone non-decreasing”) if x � y implies f(x) ≤ f(y), where “x � y” means that
xi ≤ yi for all i ∈ [n]. A function f is unate if there is a bit vector a ∈ {−1, 1}n such that
f(a1x1, . . . , anxn) is monotone. It is well known that every LTF (defined below) is unate.

We measure distance between functions f, g : {−1, 1}n → {−1, 1} with respect to the
uniform distribution, so we say that f and g are ε-close if

dist(f, g) : = Pr
x∈{−1,1}n

[
f(x) 6= g(x)

]
≤ ε,

and that f and g are ε-far otherwise. A function f is ε-far from monotone if it is ε-far from
every monotone function g.We write dist(f,Mono) to denote the minimum value of dist(f, g)
over all monotone functions g. Throughout the paper all probabilities and expectations
are with respect to the uniform distribution over {−1, 1}n unless otherwise indicated. As
indicated in Definition 2, we say that a {−1, 1}-valued function f is γ-balanced if∣∣∣∣ E

x∈{−1,1}n
[f(x)]

∣∣∣∣ ≤ 1− γ.

A function g : {−1, 1}n → {−1, 1} is a junta over S ⊆ [n] if g depends only on the
coordinates in S. We say f is ε-close to a junta over S if f is ε-close to g for some g that is
a junta over S.

2.1 LTFs and weight-regularity
A function f : {−1, 1}n → {−1, 1} is an LTF (also commonly referred to as a halfspace) if
there exist real weights w1, . . . , wn ∈ R and a real threshold θ ∈ R such that

f(x) =
{

1 if w1x1 + · · ·+ wnxn ≥ θ,
−1 if w1x1 + · · ·+ wnxn < θ.

We say that w = (w1, . . . , wn) are the weights and θ the threshold of the LTF, and we say
that (w, θ) represents the LTF f , or simply that f(x) is the LTF given by sign(w · x− θ).
Note that for any LTF f there are in fact infinitely many pairs (w, θ) that represent f ; we
fix a particular pair (w, θ) for each n-variable LTF f and work with it in what follows.

An important notion in our arguments is that of weight-regularity. As indicated in
Definition 2, given a weight vector w ∈ Rn, we say that w is τ -weight-regular if no more than
a τ -fraction of the 2-norm of w = (w1, . . . , wn) comes from any single coefficient wi, i.e.,

max
i∈[n]
|wi| ≤ τ ·

√
w2

1 + · · ·+ w2
n. (1)

If we have fixed a representation (w, θ) for f such that w is τ -weight-regular, we frequently
abuse the terminology and say that f is τ -weight-regular.

APPROX/RANDOM’17

38:8 Adaptivity Is Exponentially Powerful for Testing Monotonicity of Halfspaces

2.2 Fourier analysis of Boolean functions and Fourier-regularity
Given a function f : {−1, 1}n → R, we define its Fourier coefficients by f̂(S) = E[f · xS]
for each S ⊆ [n], where xS denotes

∏
i∈S xi, and we have that f(x) =

∑
S f̂(S) · xS . We

will be particularly interested in f ’s degree-1 coefficients, i.e., f̂(S) for |S| = 1; we will
write these as f̂(i) rather than f̂({i}). We recall Plancherel’s identity 〈f, g〉 =

∑
S f̂(S)ĝ(S),

which has as a special case Parseval’s identity, Ex[f(x)2] =
∑
S f̂(S)2. It follows that every

f : {−1, 1}n → {−1, 1} has
∑
S f̂(S)2 = 1.

We further recall that, for any unate function f : {−1, 1}n → {−1, 1} (and hence any
LTF), we have |f̂(i)| = Inf i(f), where the influence of variable i on f is

Inf i(f) = Pr
x∈{−1,1}n

[
f(x) 6= f(x⊕i)

]
,

where x⊕i is the vector obtained from x by flipping coordinate i.
We say that f : {−1, 1}n → {−1, 1} is τ -Fourier-regular if maxi∈[n] |f̂(i)| ≤ τ . Section 2.5

summarizes some relationships between weight-regularity and Fourier-regularity of LTFs.

2.3 Restrictions
A restriction ρ is an element of {−1, 1, ∗}[n]; we view ρ as a partial assignment to the n
variables x1, . . . , xn, where ρ(i) = ∗ indicates that variable xi is unassigned. We write supp(ρ)
to denote the set of indices i such that ρ(i) ∈ {−1, 1} and stars(ρ) to denote the set of i
such that ρ(i) = ∗ (and thus, stars(ρ) is the complement of supp(ρ)).

Given restrictions ρ, ρ′ ∈ {−1, 1, ∗}[n] we say that ρ′ is an extension of ρ if supp(ρ) ⊆
supp(ρ′) and ρ′(i) = ρ(i) for all i ∈ supp(ρ). If ρ and ρ′ are restrictions with disjoint
support we write ρρ′ to denote the composition of these two restrictions (that has support
supp(ρ) ∪ supp(ρ′)).

2.4 Useful algorithmic tools from prior work
We recall some algorithmic tools for working with black-box functions f : {−1, 1}n → {−1, 1}.

Estimating sums of squares of degree-1 Fourier coefficients. We first recall Corollary 16 of
[26] (slightly specialized to our context):

I Lemma 3 (Corollary 16 [26]). There is a procedure Estimate-Sum-of-Squares(f, T, η, δ)
with the following properties. Given as input black-box access to f : {−1, 1}n → {−1, 1},
a subset T ⊆ [n], and parameters η, δ > 0, it runs in time O(n · log(1/δ)/η4), makes
O(log(1/δ)/η4) queries, and with probability at least 1− δ outputs an estimate of

∑
i∈T f̂(i)2

that is accurate to within an additive ±η.

Checking Fourier regularity. We recall Lemma 18 of [26], which is an easy consequence of
Lemma 3:

I Lemma 4 (Lemma 18 [26]). There is a procedure Check-Fourier-Regular(f, T, τ, δ) with
the following properties. Given as input black-box access to f : {−1, 1}n → {−1, 1}, T ⊆ [n],
and τ, δ > 0, it runs in time O(n · log(1/δ)/τ16), makes O(log(1/δ)/τ16) queries, and

If |f̂(i)| ≥ τ for some i ∈ T then it outputs “not regular” with probability 1− δ;
If every i ∈ T has |f̂(i)| ≤ τ2/4 then it outputs “regular” with probability 1− δ.

X. Chen, R. A. Servedio, L.-Y. Tan, and E. Waingarten 38:9

Estimating the mean. For completeness we recall the following simple fact (which follows
from a standard Chernoff bound):

I Fact 5. There is a procedure Estimate-Mean(f, ε, δ) with the following properties. Given
as input black-box access to f : {−1, 1}n → {−1, 1} and ε, δ > 0, it makes O(log(1/δ)/ε2)
queries and with probability at least 1− δ it outputs a value µ̃ such that |µ̃− µ| ≤ ε, where
µ = Ex∈{−1,1}n [f(x)].

The edge tester of [23]. We recall the performance guarantee of the “edge tester” (which
works by querying both endpoints of uniform random edges and outputting “non-monotone”
if and only if it encounters an anti-monotone edge):

I Theorem 6 ([23]). There is a procedure Edge-Tester(f, ε, δ) with the following proper-
ties: Given black-box access to f : {−1, 1}n → {−1, 1} and parameters ε, δ > 0, it makes
O(n log(1/δ)/ε) queries and outputs either “monotone” or “non-monotone” such that:

If f is monotone then it outputs “monotone” with probability 1;
If f is ε-far from monotone then it outputs “non-monotone” with probability at least 1− δ.

2.5 Useful structural results from prior work
Gaussian distributions and the Berry–Esséen theorem. Recall that the p.d.f. of the
standard Gaussian distribution N (0, 1) with mean 0 and variance 1 is given by

φ(x) = 1√
2π
· e−x

2/2.

The Berry–Esséen theorem (see e.g., [20]) is a version of the central limit theorem for sums of
independent random variables (stating that such a sum converges to a normal distribution)
that provides a quantitative error bound. It is useful for analyzing weight-regular LTFs and
we recall it below (as well as the standard Hoeffding inequality).

I Theorem 7 (Berry–Esséen). Let `(x) = c1x1 + · · ·+ cnxn be a linear form of n unbiased,
independent random {±1}-valued variables xi. Let τ be such that |ci| ≤ τ for all i, and let
σ = (

∑
c2i)1/2. Write F for the c.d.f. of `(x)/σ, i.e., F (t) = Pr[`(x)/σ ≤ t]. Then for all

t ∈ R, we have that |F (t)− Φ(t)| ≤ τ/σ, where Φ denotes the c.d.f. of a standard N (0, 1)
Gaussian random variable.

I Theorem 8 (Hoeffding’s Inequality). Let x be a random variable drawn uniformly from
{−1, 1}n. Let w ∈ Rd and t > 0. Then we have

Pr
x

[
|x · w| ≥ t

]
≤ 2 exp

(
− t2

2‖w‖22

)
and Pr

x

[
x · w ≥ t

]
≤ exp

(
− t2

2‖w‖22

)
.

Weight-regularity versus Fourier-regularity for LTFs. An easy argument, using the Berry–
Esséen, shows that weight-regularity always implies Fourier-regularity for LTFs:

I Theorem 9 (Theorem 38 of [26]). Let f : {−1, 1}n → {−1, 1} be a τ -weight-regular LTF.
Then f is O(τ)-Fourier-regular.

The converse is not always true; for example, the constant 1 function, which is τ -Fourier-
regular for all τ > 0, may be written as f(x) = sign(x1 + 2). However, if we additionally
impose the condition that f is not too biased towards +1 or −1, then a converse holds.
Sharpening an earlier result (Theorem 39 of [26]), Dzindzalieta has proved the following:

I Theorem 10 (Theorem 20 of [18]). Let f(x) = sign(w · x − θ) be an LTF such that
|Ex[f(x)]| ≤ 1− γ. If f is τ -Fourier-regular, then it is also O(τ/γ)-weight-regular.

APPROX/RANDOM’17

38:10 Adaptivity Is Exponentially Powerful for Testing Monotonicity of Halfspaces

Making LTFs Fourier-regular by fixing high-influence variables. Finally, we will need the
following simple result (Proposition 62 from [26]), which shows that LTFs typically become
Fourier-regular when their highest-influence variables are fixed to constants:

I Proposition 11. Let f : {−1, 1}n → {−1, 1} be an LTF and let J ⊇ {i : |f̂(i)| ≥ β}. Then
fρ is not (β/η)-Fourier-regular for at most an η-fraction of all 2|J| restrictions ρ that fix
variables in J .

3 New structural results about LTFs

Our analysis requires a few new structural results about LTFs. We collect these results in
this section; their proofs can be found in the full version.

First we show that, for weight-regular LTFs, the distance to monotonicity corresponds
(approximately) to its total amount of squared weights of negative coefficients (under any
representation (w, θ)). Lemma 12 below shows that if f is far from monotone then this
quantity is large, and Lemma 13 establishes a converse (both for weight-regular LTFs). We
note that Lemma 12 is essentially equivalent to a lemma proved in [4].

We introduce some notation. Given an LTF f : {−1, 1}n → {−1, 1} with f(x) = sign(w ·
x− θ), we let P = P (f) and N = N(f) denote the set of non-negative and negative indices,
respectively: P = {i ∈ [n] : wi ≥ 0} and N = {j ∈ [n] : wj < 0}. We let pos(f) and neg(f)
denote the sum of squared weights of positive and negative coefficients, respectively:

pos(f) =
∑
i∈P

w2
i and neg(f) =

∑
j∈N

w2
j .

Recall that we say f has λ-significant squared negative weights if neg(f)/(pos(f)+neg(f)) ≥ λ.
We state Lemma 12 and Lemma 13. Their proofs can be found in the full version.

I Lemma 12. Let f : {−1, 1}n → {−1, 1} be an LTF given by f(x) = sign(w · x − θ). If
f is both ε-far from monotone and τ -weight-regular for some τ ≤ ε/16, then f must have
λ-significant squared negative weights, where λ = ε2/(16 ln(8/ε)).

I Lemma 13. Let f(x) = sign(
∑
i∈[n] wi ·xi− θ) be (τ, γ, λ)-non-monotone with τ ≤

√
λ/16.

Then we have

dist(f,Mono) ≥ min
{

Ω
(√
λγ2)−O(τ),Ω

(
γ3

ln(8/γ)

)
−O(τγ)

}
.

Our next goal is to show that for any LTF f : {−1, 1}n → {−1, 1}, a random restriction
that fixes variables of f that are monotonically non-decreasing has, in expectation, the same
distance to monotonicity as the original function f . We state Lemma 14 below, which will
be used later in the proof of Lemma 19. Its proof can be found in the full version.

I Lemma 14. Let f : {−1, 1}n → {−1, 1} be an LTF and let S ⊆ [n] be a set of variables
of f that are monotonically non-decreasing. Then a random restriction ρ that fixes each
variable in S independently and uniformly to a random element of {−1, 1} satisfies

E
ρ

[
dist(fρ,Mono)

]
= dist(f,Mono).

X. Chen, R. A. Servedio, L.-Y. Tan, and E. Waingarten 38:11

4 Algorithmic tools for LTFs

Our algorithm uses a few simple subroutines that may be viewed as relatively low-level
algorithmic tools for working with LTFs. We present these tools in this section; the underlying
algorithms and their analysis can be found in the full version.

We start with a subroutine Find-Hi-Influence-Vars that finds high-influence variables.

I Lemma 15. Suppose that the subroutine Find-Hi-Influence-Vars(f, ρ, τ, δ) is called on
a function f : {−1, 1}n → {−1, 1}, a restriction ρ ∈ {−1, 1, ∗}n, and parameters τ, δ > 0.
Then it runs in Õ(logn · log(1/δ)/τ10) ·n time, makes at most Õ(logn · log(1/δ)/τ10) queries,
and with probability at least 1− δ it outputs a set H ⊆ stars(ρ) such that:

If |f̂ρ(i)| ≥ τ then i ∈ H;
If |f̂ρ(i)| < τ/2 then i /∈ H.

Given an LTF, the next subroutine Check-Weight-Positive checks whether the weight
of a variable is positive.

I Lemma 16. Suppose that the subroutine Check-Weight-Positive(f, ρ, i, τ, δ) is called on
an LTF f(x) = sign(

∑n
i=1 wixi − θ), a restriction ρ ∈ {−1, 1, ∗}n, i ∈ stars(ρ), and two

parameters τ, δ > 0 such that |f̂ρ(i)| ≥ τ (note that the latter implies that wi 6= 0). Then it
runs in O(log(1/δ)/τ) · n time, makes O(log(1/δ)/τ) queries, and:

If it does not output “fail”, which happens with probability at most δ;
It outputs “positive” if wi > 0, and it outputs “negative” if wi < 0.

5 Detailed description of the algorithm

We present our algorithm and its analysis in this section.

5.1 The algorithm
Our main testing algorithm, Mono-Test-LTF, is presented in Figure 1. Its main components
are two procedures called Regularize-and-Balance and Main-Procedure, described and
analyzed in Sections 5.2 and 5.3. As will become clear later, Mono-Test-LTF is one-sided,
i.e., it always outputs “monotone” when the input function f is monotone (because it only
outputs “non-monotone” when an anti-monotone edge is found, via Check-Weight-Positive
or Edge-Tester). Thus, our analysis of correctness below focuses on the case when f is
an LTF that is ε-far from monotone, and shows that in this case Mono-Test-LTF outputs
“non-monotone” with probability at least 2/3.

5.2 Key properties of procedure Regularize-and-Balance

Let f : {−1, 1}n → {−1, 1} be an LTF, given by f(x) = sign(w · x − θ). Assume that f is
ε-far from monotone. The goal of the procedure Regularize-and-Balance(f, ε) is to return
a restriction ρ ∈ {−1, 1, ∗}[n] such that fρ is a (τ, ε, λ)-non-monotone LTF (with respect to
(w, θ)), where

λ = ε2

36 ln(12/ε) and τ = λε

log2 n
. (2)

Here is some intuition that may be helpful in understanding Regularize-and-Balance.
If the procedure halts and outputs “monotone” in Step 2, this signals that the (low-
probability) failure event of Find-Hi-Influence-Variables has taken place (since it has

APPROX/RANDOM’17

38:12 Adaptivity Is Exponentially Powerful for Testing Monotonicity of Halfspaces

Algorithm Mono-Test-LTF(f, ε)
Input: Oracle access to an LTF f : {−1, 1}n → {−1, 1} and a parameter ε > 0.
Output: Returns “monotone” or “non-monotone.”
1. Call Regularize-and-Balance(f, ε). If it returns a restriction ρ ∈ {−1, 1, ∗}[n] then

continue to Step 2; if it returns “non-monotone,” halt and output “non-monotone;”
if it returns “monotone,” halt and output “monotone.”

2. Call Main-Procedure(f, ρ, ε). If it returns “non-monotone,” halt and output “non-
monotone;” if it returns “monotone,” halt and output “monotone.”

Figure 1 Main algorithm Mono-Test-LTF. If f is monotone it outputs “monotone” with
probability 1; if f is ε-far from monotone, it outputs “non-monotone” with probability ≥ 2/3.

spuriously identified more variables as having high influence than is possible given Par-
seval’s identity; see Lemma 15). The procedure halts and outputs “non-monotone” in
Step 3 only if Check-Weight-Positive has unambiguously found an anti-monotone edge. If
the procedure outputs “monotone” in Step 3, this signals the (low-probability) event that
Check-Weight-Positive failed to identify some index i ∈ H (which was supposed to have
high influence) as either having wi > 0 or wi < 0. Finally if it outputs “monotone” in Step 4,
this signals that f appears to be close to monotone.7

It is clear that Regularize-and-Balance is one-sided.

I Fact 17. Regularize-and-Balance(f, ε) never returns “non-monotone” if f is monotone.

We also have the following upper bound for the number of queries it uses (which can be
straight forwardly verified by tracing through procedure calls and parameter settings):

I Fact 18. The number of queries used by Regularize-and-Balance(f, ε) is Õ(log41 n/ε90).

We prove the main property of the procedure Regularize-and-Balance in Appendix A.

I Lemma 19. If f(x) = sign(w · x − θ) is ε-far from monotone, then with probability at
least 9/10, Regularize-and-Balance(f, ε) returns either “non-monotone,” or a restriction
ρ such that fρ is a (τ, ε, λ)-non-monotone LTF with respect to (w, θ).

5.3 Key properties of Main-Procedure

Main-Procedure is presented in Figure 3. Given Lemma 19 we may assume that the input
(f, ρ, ε) satisfies that fρ is a (τ, ε, λ)-non-monotone LTF (see the choices of τ and λ in (2)).

We prove the following main lemma in this section.

I Lemma 20. Main-Procedure(f, ρ, ε) never returns “non-monotone” when f is monotone.
When fρ is a (τ, ε, λ)-non-monotone LTF, it returns “non-monotone” with probability at least
81/100.

The procedure only returns “non-monotone” when it finds an anti-monotone edge in the
subroutine Check-Weight-Positive. Hence we may focus on the case when fρ is (τ, ε, λ)-
non-monotone. For this purpose, we analyze the three steps 2(a), 2(b), 2(c) of each while
loop of Main-Procedure, and prove the following lemma.

7 This will become clear later in the proof of Lemma 19 where we show that Step 4 fails with low
probability when f is far from monotone.

X. Chen, R. A. Servedio, L.-Y. Tan, and E. Waingarten 38:13

Procedure Regularize-and-Balance(f, ε)
Input: Parameter ε > 0 and black-box oracle access to an LTF f : {−1, 1}n → {−1, 1}
of the form f(x) = sign(w · x− θ), with unknown weights w and threshold θ.
Output: Either “non-monotone,” “monotone,” or a restriction ρ ∈ {−1, 1, ∗}[n].

1. Let CRB > 0 be a large enough constant; let τ ′ and δ be the following parameters:

τ ′ = τ2ε3/CRB and δ = τ ′2/CRB .

2. Call Find-Hi-Influence-Vars(f, (∗)n, τ ′, δ) and let H be the set it returns.
If |H| > 4/τ ′2, halt and output “monotone.”

3. For each i ∈ H, call Check-Weight-Positive(f, (∗)n, i, τ ′/2, δ). If any call returns
“negative,” halt and output “non-monotone;” if any call returns “fail,” halt and output
“monotone;” otherwise (when all calls return “positive”) continue to Step 4.

4. Repeat CRB/ε times:
Draw a restriction ρ, which has support H and is obtained by selecting a random
assignment from {−1, 1}H . Call

Check-Fourier-Regular(fρ, [n] \H,
√

12τ ′/ε, δ/2)

and Estimate-Mean(fρ, ε/6, δ/2).
Halt and output the first ρ where Check-Fourier-Regular outputs “regular” and
Estimate-Mean returns a number of absolute value ≤ 1− 7ε/6. If the procedure fails
to find such a restriction ρ, halt and output “monotone.”

Figure 2 Procedure Regularize-and-Balance. Our analysis (Lemma 19) focuses on the case
when f is ε-far from monotone.

I Lemma 21. Let t ≤ 4 logn, and suppose that at the beginning of the (t + 1)th loop of
Main-Procedure, fρ(t) is (τ, ε, λ(1− t/(8 logn)))-non-monotone. Then with probability at
least 1− 1/(40 logn), it either returns “non-monotone” within this loop or obtains a set
At ⊆ [n] \ supp(ρ(t)) and a restriction ρ(t+1) extending ρ(t) at the end of this loop such
that
1. |At| ≥ |stars(ρ(t))|/4;
2. supp(ρ(t)) ∪At ⊆ supp(ρ(t+1)); and
3. fρ(t+1) is a (τ, ε, λ(1− (t+ 1)/(8 logn)))-non-monotone LTF.

We use Lemma 21 to prove Lemma 20 in Appendix B.1.

5.3.1 Proof of Lemma 21
The proof of Lemma 21 consists of three lemmas, one for each steps 2(a), 2(b) and 2(c).
Below we assume that the condition of Lemma 21 holds at the beginning of the (t + 1)th
loop, for some t ≤ 4 logn. We introduce the following notation for convenience. We let
I = stars(ρ(t)), with m = |I|. Given the random subset At of I found in Step 2(a), we let
Bt = I \At. Also note that m ≥ 1/τ2.

We start with the lemma for Step 2(a), which states that with high probability, At is
large and splits the weights (both positive and negative) in I evenly. We present the proof in
Appendix B.2.

APPROX/RANDOM’17

38:14 Adaptivity Is Exponentially Powerful for Testing Monotonicity of Halfspaces

Procedure Main-Procedure(f, ρ, ε)
Input: Parameter ε > 0, oracle access to an LTF f : {−1, 1}n → {−1, 1} of the form
f(x) = sign(w · x− θ) with unknown weights w and threshold θ, and a restriction ρ.
Output: Either “non-monotone” or “monotone.”
1. Set t = 0 and ρ(0) = ρ.
2. While |stars(ρ(t))| ≥ 1/τ2, repeat the following steps:

a. Construct a subset At ⊆ stars(ρ(t)) by independently putting each index i ∈
stars(ρ(t)) into At with probability 1/2.

b. Call Find-Balanced-Restriction(f, ρ(t), At, ε). If it returns “monotone”
then halt and return “monotone;” otherwise, it returns a restriction ρ′ with
supp(ρ′) = supp(ρ(t)) ∪At.

c. Call Maintain-Regular-and-Balance(f, ρ′, ε). If it returns “non-monotone”
then halt and output “non-monotone;” if it returns “monotone” then halt and
output “monotone;” otherwise, it returns a restriction η and we set ρ(t+1) to ρ′η.

d. Increment t by 1. If t > 4 logn, halt and output “monotone;” otherwise proceed
to the next iteration of step (a) of the loop.

3. Let ε′ = ε3/(Clog(1/ε)) for some large constant C; run Edge-Tester(fρ(t) , ε′, 1/10)
and output what it outputs (either “monotone” or “non-monotone”).

Figure 3 Procedure Main-Procedure. Our analysis in Section 5.3 focuses on the case when fρ is
a (τ, ε, λ)-non-monotone LTF.

Subroutine Find-Balanced-Restriction(f, ρ(t), At, ε)
Input: Access to f : {−1, 1}n → {−1, 1}, restriction ρ(t), At ⊆ stars(ρ(t)), and ε > 0.
Output: “monotone” or a ρ′ with supp(ρ′) = supp(ρ(t)) ∪At that extends ρ(t).

Repeat CBR · logn/ε3 times for some large enough constant CBR:

Draw a ρ∗, which has support At and is obtained by selecting a random assignment
from {−1, 1}At , and let ρ′ = ρ(t)ρ∗. Call Estimate-Mean(fρ′ , 0.01, δ), where
δ = ε3/(200CBR log2 n). If it returns a number of absolute value at most 0.03,
halt and output ρ′.

Otherwise, output “monotone.”

Figure 4 Subroutine Find-Balanced-Restriction. We are interested in the case when fρ(t) is a
(τ, ε, λ(1− t/(8 logn)))-non-monotone LTF, and At satisfies the conditions of Lemma 23.

I Lemma 22. Assume that fρ(t) is a (τ, ε, λ(1 − t/(8 logn))-non-monotone LTF. With
probability at least 1− exp(−Ω(log2 n)), At and Bt satisfy |At| ≥ m/4,

1
2 −

1
32 logn ≤

∑
i∈At

w2
i∑

i∈I w
2
i

≤ 1
2 + 1

32 logn and
∑
i∈Bt:wi<0 w

2
i∑

i∈Bt
w2
i

≥ λ
(

1− t+ 1
8 logn

)
. (3)

We give Find-Balanced-Restriction in Figure 4 and show the following lemma for
Step 2(b). (The Find-Balanced-Restriction subroutine is similar to Algorithm 1 of [28],
and Lemma 23 and its proof (presented in Appendix B.3) are reminiscent of Lemma 7 of
[28]; however, because of some technical differences we cannot directly apply those results,
so we give a self-contained presentation here.)

X. Chen, R. A. Servedio, L.-Y. Tan, and E. Waingarten 38:15

Subroutine Maintain-Regular-and-Balanced(f, ρ′, ε)
Input: Oracle access to f : {−1, 1}n → {−1, 1}, restriction ρ′, parameter ε > 0.
Output: “non-monotone,” “monotone,” or an η with supp(η) ⊆ Bt extending ρ′.

1. Let CM > 0 be a large enough constant; let τ ′, δ and τ∗ be the following parameters:

τ ′ = (τε/CM)2 ·
√
λ, δ = τ ′2/(CM logn) and τ∗ = τ ′/

√
λ.

2. Call Find-Hi-Influence-Vars(f, ρ′, τ ′, δ) and let H be the set that it returns.
If |H| > 4/τ ′2, halt and return “monotone.”

3. For each i ∈ H, call Check-Weight-Positive(f, ρ′, i, τ ′/2, δ). If any call returns
“negative” then halt and output “non-monotone;” if any call returns “fail” then halt
and output “monotone;” otherwise (every call returns “positive”) continue to Step 4.

4. Repeat CM logn/
√
λ times:

Draw a restriction η with support H, by selecting a random assignment from
{−1, 1}H . Call Check-Fourier-Regular(fρ′η, [n] \ supp(ρ′η),

√
CMτ∗, δ/2) and

Estimate-Mean(fρ′η, ε/6, δ/2).

Halt and output the first restriction η where Check-Fourier-Regular outputs “reg-
ular” and Estimate-Mean returns a number of absolute value ≤ 1 − 7ε/6. If the
procedure fails to find such a restriction η, halt and output “monotone.”

Figure 5 Subroutine Maintain-Regular-and-Balanced. Lemma 24 assumes that fρ(t) is an
(τ, ε, λ(1− t/(8 logn)))-non-monotone LTF, |At| ≥ m/4 and (3), and fρ′ is 0.96-balanced.

I Lemma 23. Assume that fρ(t) is a (τ, ε, λ(1− t/(8 logn)))-non-monotone LTF, and sets
At and Bt satisfy |At| ≥ m/4 and (3). With probability at least 1/(100 logn), the subroutine
Find-Balanced-Restriction outputs a restriction ρ′ with supp(ρ′) = supp(ρ(t)) ∪At such
that ρ′ extends ρ(t) and fρ′ is 0.96-balanced.

For Step 2(c) of Main-Procedure, the subroutine Maintain-Regular-and-Balanced is
given in Figure 5. It is very similar to Regularize-and-Balance except the number of
rounds in Step 4 and the choice of parameters τ ′ and δ. We leave the proof of the following
lemma to the full version. Lemma 21 follows directly from Lemmas 22, 23, and 24.

I Lemma 24. Suppose that fρ(t) is a (τ, ε, λ(1− t/(8 logn)))-non-monotone LTF, sets At
and Bt satisfy |At| ≥ m/4 and (3), and fρ′ is 0.96-balanced. Then with probability at least 1−
1/(100 logn), Maintain-Regular-and-Balance returns either “non-monotone,” or a restric-
tion η with supp(η) ⊆ Bt such that fρ(t+1) , where ρ(t+1) = ρ′η, is (τ, ε, λ(1− (t+ 1)/(8 logn)))-
non-monotone.

5.4 Final analysis of the algorithm
We conclude by stating the correctness and query complexity of the algorithm. The proofs
of the following two theorems appear in Appendix C.

I Theorem 25. The algorithm Mono-Test-LTF(f, ε) correctly tests whether a given LTF is
monotone or ε-far from monotone.

I Theorem 26. The algorithm Mono-Test-LTF(f, ε) makes Õ(log42 n/ε90) queries.

Theorem 1 follows as an immediate consequence of Theorems 25 and 26.

APPROX/RANDOM’17

38:16 Adaptivity Is Exponentially Powerful for Testing Monotonicity of Halfspaces

References
1 N. Ailon, B. Chazelle, S. Comandur, and D. Liu. Estimating the distance to a monotone

function. Random Structures and Algorithms, 31(3):371–383, 2007.
2 Roksana Baleshzar, Deeparnab Chakrabarty, Ramesh Krishnan S. Pallavoor, Sofya Rask-

hodnikova, and C. Seshadhri. Optimal unateness testers for real-values functions: Adaptiv-
ity helps. In Proceedings of the 44th International Colloquium on Automata, Languages
and Programming (ICALP ’2017), 2017.

3 T. Batu, R. Kumar, and R. Rubinfeld. Sublinear algorithms for testing monotone and un-
imodal distributions. In Proceedings of the 36th ACM Symposium on Theory of Computing,
pages 381–390, 2004.

4 A. Belovs and E. Blais. A polynomial lower bound for testing monotonicity. In Proceedings
of the 48th ACM Symposium on Theory of Computing, 2016.

5 Piotr Berman, Sofya Raskhodnikova, and Grigory Yaroslavtsev. Lp-testing. In Symposium
on Theory of Computing, STOC 2014, New York, NY, USA, May 31 – June 03, 2014,
pages 164–173, 2014.

6 E. Blais, J. Brody, and K. Matulef. Property testing lower bounds via communication
complexity. Computational Complexity, 21(2):311–358, 2012.

7 E. Blais, S. Raskhodnikova, and G. Yaroslavtsev. Lower bounds for testing properties
of functions on hypergrid domains. Electronic Colloquium on Computational Complexity
(ECCC), 20:36, 2013.

8 J. Briët, S. Chakraborty, D. García-Soriano, and A. Matsliah. Monotonicity testing and
shortest-path routing on the cube. Combinatorica, 32(1):35–53, 2012.

9 C. Canonne, D. Ron, and R. Servedio. Testing probability distributions using conditional
samples. SIAM Journal on Comput., 44(3):540–616, 2015.

10 D. Chakrabarty and C. Seshadhri. A o(n) monotonicity tester for boolean functions over
the hypercube. In Proceedings of the 45th ACM Symposium on Theory of Computing, pages
411–418, 2013.

11 D. Chakrabarty and C. Seshadhri. Optimal bounds for monotonicity and Lipschitz testing
over hypercubes and hypergrids. In Proceedings of the 45th ACM Symposium on Theory
of Computing, pages 419–428, 2013.

12 D. Chakrabarty and C. Seshadhri. An optimal lower bound for monotonicity testing over
hypergrids. Theory of Computing, 10(17):453–464, 2014.

13 X. Chen, A. De, R.A. Servedio, and L.-Y. Tan. Boolean function monotonicity testing
requires (almost) n1/2 non-adaptive queries. In Proceedings of the 47th ACM Symposium
on Theory of Computing, pages 519–528, 2015.

14 X. Chen, R.A. Servedio, and L.-Y. Tan. New algorithms and lower bounds for monotonicity
testing. In Proceedings of the IEEE 55th Annual Symposium on Foundations of Computer
Science, pages 286–295, 2014.

15 Xi Chen, Rocco A. Servedio, Li-Yang Tan, Erik Waingarten, and Jinyu Xie. Settling the
query complexity of non-adaptive junta testing. In Proceedings of the 32nd Conference on
Computational Complexity (CCC ’2017), 2017.

16 Xi Chen, Erik Waingarten, and Jinyu Xie. Beyond talagrand functions: new lower bounds
for testing monotonicity and unateness. In Proceedings of the 49th ACM Symposium on
the Theory of Computing (STOC ’2017), 2017.

17 Y. Dodis, O. Goldreich, E. Lehman, S. Raskhodnikova, D. Ron, and A. Samorodnitsky.
Improved testing algorithms for monotonocity. In Proceedings of the 3rd International
Workshop on Randomization and Approximation Techniques in Computer Science, pages
97–108, 1999.

18 D. Dzindzalieta. Tight Bernoulli tail probability bounds. Technical Report Doctoral Dis-
sertation, Physical Sciences, Mathematics (01 P), Vilnius University, 2014.

X. Chen, R. A. Servedio, L.-Y. Tan, and E. Waingarten 38:17

19 F. Ergün, S. Kannan, S.R. Kumar, R. Rubinfeld, and M. Vishwanthan. Spot-checkers.
Journal of Computer and System Sciences, 60:717–751, 2000.

20 W. Feller. An introduction to probability theory and its applications. John Wiley & Sons,
1968.

21 E. Fischer. On the strength of comparisons in property testing. Information and Compu-
tation, 189(1):107–116, 2004.

22 E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova, R. Rubinfeld, and A. Samorodnitsky.
Monotonicity testing over general poset domains. In Proceedings of the 34th Annual ACM
Symposium on the Theory of Computing, pages 474–483, 2002.

23 O. Goldreich, S. Goldwasser, E. Lehman, D. Ron, and A. Samordinsky. Testing monoton-
icity. Combinatorica, 20(3):301–337, 2000.

24 S. Halevy and E. Kushilevitz. Testing monotonicity over graph products. Random Struc-
tures and Algorithms, 33(1):44–67, 2008.

25 S. Khot, D. Minzer, and M. Safra. On monotonicity testing and boolean isoperimetric
type theorems. In Proceedings of the 56th Annual Symposium on Foundations of Computer
Science, pages 52–58, 2015.

26 K. Matulef, R. O’Donnell, R. Rubinfeld, and R. Servedio. Testing halfspaces. SIAM Journal
on Comput., 39(5):2004–2047, 2010.

27 D. Ron, R. Rubinfeld, M. Safra, A. Samorodnitsky, and O. Weinstein. Approximating the
influence of monotone Boolean functions in O(

√
n) query complexity. ACM Transactions

on Computation Theory, 4(4):1–12, 2012.
28 D. Ron and R.A. Servedio. Exponentially improved algorithms and lower bounds for testing

signed majorities. Algorithmica, 72(2):400–429, 2015.
29 R. Rubinfeld and R.A. Servedio. Testing monotone high-dimensional distributions. Random

Structures and Algorithms, 34(1):24–44, 2009. doi:10.1002/rsa.20247.
30 R.A. Servedio, L.-Y. Tan, and J. Wright. Adaptivity helps for testing juntas. In Proceedings

of the 30th IEEE Conference on Computational Complexity, pages 264–279, 2015.

A Proof of Lemma 19

Proof. Using Lemma 15, with probability 1− δ, Find-Hi-Influence-Vars in Step 2 returns
a set H ⊆ [n] of indices that satisfies the following property:

If |f̂(i)| ≥ τ ′ then i ∈ H; If |f̂(i)| < τ ′/2 then i /∈ H. (4)

When this happens, we have by Parseval |H| ≤ 4/τ ′2, and the procedure continues to Step 3.
We consider two subevents: E′0: H satisfies (4) but contains an elements i with wi < 0;

and E0: H satisfies (4) and every i ∈ H has wi > 0. We have Pr[E′0] + Pr[E0] ≥ 1 − δ
as discussed above. Below we show that the procedure returns “non-monotone” with high
probability, conditioning on E′0, and it returns a restriction with the desired property with
high probability, conditioning on E0. By the end we combine the two cases to conclude that

Pr[E′0] · Pr
[
the procedure returns “non-monotone” | E′0

]
+ Pr[E0] · Pr

[
it returns ρ such that fρ is (τ, ε, λ)-non-monotone | E0

]
≥ 9/10.

We first address the (easier) case of E′0. Assume i ∈ H satisfies wi < 0. From (4),
|f̂(i)| ≥ τ ′/2 and thus, Check-Weight-Positive(f, (∗)n, i, τ ′/2, δ) in Step 3 returns “neg-
ative” with probability 1− δ, and the procedure returns “non-monotone” with probability
1− δ, conditioning on E′0.

APPROX/RANDOM’17

http://dx.doi.org/10.1002/rsa.20247

38:18 Adaptivity Is Exponentially Powerful for Testing Monotonicity of Halfspaces

Next we address the (harder) case of E0. First we use E1 to denote the event that
every call to Check-Weight-Positive in Step 3 returns the correct answer, i.e., it returns
“positive” for every i ∈ H. By a union bound we have Pr[E1 | E0] ≥ 1− 4δ/τ ′2.

Assuming that E1 happens, the procedure proceeds to Step 4 and we use E2 to denote
the event that Check-Fourier-Regular and Estimate-Mean return the correct answer, i.e.:
1. Check-Fourier-Regular outputs “not regular” if |f̂ρ(i)| ≥

√
12τ ′/ε for some i ∈ [n] \H,

and outputs “regular” if |f̂ρ(i)| ≤ 3τ ′/ε for all i ∈ [n] \H, for every ρ in Step 4, and
2. Estimate-Mean returns a number a with |a−E[fρ]| ≤ ε/6, for every ρ in Step 4.
We also write E3 to denote the event that one of the restrictions ρ drawn in Step 4 satis-
fies that fρ is both (2ε/3)-far from monotone and (3τ ′/ε)-Fourier-regular. By a union bound,
we have that Pr[E2 | E0 ∧ E1] ≥ 1− CRBδ/ε.

In the rest of the proof we show that
1. Pr[E3 | E0 ∧ E1] ≥ 99/100 and
2. Given E0, E1, E2 and E3, the procedure always returns a restriction ρ such that fρ is

(τ, ε, λ)-non-monotone.
Together we have that it returns such a ρ with probability at least (conditioning on E0)

(1− 4δ/τ ′2) · (1− CRBδ/ε− 1/100).

Summarizing the two cases of E′0 and E0 we have that Regularize-and-Balance returns
either “non-monotone” or a ρ such that fρ is (τ, ε, λ)-non-monotone with probability at least

Pr[E′0] · (1− δ) + Pr[E0] · (1− 4δ/τ ′2) · (1− CRBδ/ε− 1/100) > 9/10,

using Pr[E′0] + Pr[E0] ≥ 1− δ and our choice of δ (by letting CRB be large enough).
We use the following claim to show that Pr[E3 | E0 ∧ E1] ≥ 99/100.

I Claim 27. A random restriction ρ over H satisfies that fρ is both (2ε/3)-far from monotone
and (3τ ′/ε)-Fourier-regular with probability at least ε/3.

Proof. For each of the two properties, we have
1. Proposition 11: with probability at least 1− (ε/3), fρ is (3τ ′/ε)-Fourier-regular.
2. Lemma 14: with probability at least 2ε/3, fρ is (2ε/3)-far from monotone. To see this, let

c be the probability of fρ being (2ε/3)-far from monotone. Then c ≥ 2ε/3 follows from

(1− c) · (2ε/3) + c · (1/2) ≥ ε,

where we used the fact that distance to monotonicity is always at most 1/2.
The claim then follows from a union bound. J

By choosing CRB to be a large enough constant, we have Pr[E3 | E0 ∧ E1] ≥ 99/100.
Finally we show that conditioning on all four events E0, E1, E2, E3 the procedure always

returns a restriction ρ such that fρ is a (τ, ε, λ)-non-monotone LTF. We do this in two steps:
1. First, given E3, one of the restrictions ρ drawn in Step 4 is both (2ε/3)-far from monotone

and (3τ ′/ε)-Fourier-regular. Given E2, ρ must pass both tests, i.e.,
Check-Fourier-Regular outputs “regular” and Estimate-Mean returns a number of
absolute value at most 1− 7ε/6 in Step 4. The former is trivial; to see the latter, note
that being (2ε/3)-far from monotone implies that |E[fρ]| ≤ 1− 4ε/3 and therefore, the
number returned by Estimate-Mean is at most 1− 7ε/6, given E2.

X. Chen, R. A. Servedio, L.-Y. Tan, and E. Waingarten 38:19

2. Second, we show that if a restriction ρ passes both tests in Step 4 of the procedure, then
fρ must be (τ, ε, λ)-non-monotone. One can think of this as a soundness property, saying
that if the procedure halts and returns some ρ, that it returns a correct one. To see this,
note that by E2, fρ is both

√
12τ ′/ε-Fourier regular and ε-balanced. By Theorem 10, fρ

is O(
√
τ ′/ε3)-weight-regular, and τ -weight-regular by letting CRB be large enough. It

also follows from Lemma 12 that fρ has λ-significant squared negative weights.
This finishes the proof of the lemma. J

B Proofs of Lemma 20, Lemma 22, and Lemma 23

B.1 Proof of the Second Part of Lemma 20 using Lemma 21

Proof. We consider the event E where the conclusion of Lemma 21 holds for every iteration
of the while loop of Main-Procedure. As the condition of Lemma 21 holds for the first loop
(t = 0) and there are at most 4 logn many loops, this happens with probability at least 9/10.
Since E implies |At| ≥ |stars(ρ(t))|/4, we can also assume that the procedure never halts
and outputs “monotone” due to line 2(d).

Given E, Main-Procedure either returns “non-monotone” as desired or reaches line 3.
Furthermore, if it reaches line 3, fρ(t) must be (τ, ε, λ/2)-non-monotone by Lemma 21 and
have at most 1/τ2 variables. It follows from Lemma 13 that fρ(t) is ε′-far from monotone,
where ε′ = ε3/(Clog(1/ε)) for some large enough constant C. Finally, by Theorem 6,
Edge-Tester outputs “non-monotone” (by finding an anti-monotone edge) with probability
at least 9/10 and the proof is complete. J

B.2 Proof of Lemma 22

Proof. We consider the three events separately and then apply a union bound.
First by Chernoff bound, |At| ≥ m/4 holds with probability at least 1− e−Ω(m).
Next for the first inequality in (3), assume without loss of generality that

∑
i∈I w

2
i = 1

(as fρ(t) cannot be all-1 or all-(−1)). By Hoeffding bound the probability that it does not
hold is at most

2 exp
(
−Ω

(
1/ log2 n∑
i∈I w

4
i

))
.

Since fρ(t) is τ -weight-regular (over I), we have that |wi| ≤ τ for all i ∈ I and thus,∑
i∈I

w4
i ≤ τ2 ·

∑
i∈I

w2
i = τ2.

As a result, the second inequality holds with probability at least 1− exp(−Ω(1/(τ2 log2 n))).
For the last inequality, note that

∑
i∈I:wi<0 w

2
i ≥ λ(1−t/(8 logn)). Similarly by Hoeffding,

Pr

[∑
i∈Bt:wi<0

w2
i <

(
λ

2

)(
1− t+ 0.5

8 logn

)]
≤ exp

(
−Ω
(

λ2/ log2 n∑
i∈I:wi<0 w

4
i

))
≤ exp

(
−Ω
(
log2 n

))
.

Combining the above with the analysis of the first inequality in (3), the last inequality holds
with probability at least 1− exp(−Ω(log2 n)). The lemma follows from a union bound. J

APPROX/RANDOM’17

38:20 Adaptivity Is Exponentially Powerful for Testing Monotonicity of Halfspaces

B.3 Proof of Lemma 23
Proof. For convenience we use f ′ to denote fρ(t) , w′ to denote the weight vector w but
restricted on I, and θ′ to denote the new threshold, i.e.,

θ′ = θ −
∑

i∈supp(ρ(t))

ρ(t)(i) · wi.

Without loss of generality we assume that
∑
i∈I w

′2
i = 1. We may additionally assume

that θ′ ≥ 0. This assumption is without loss of generality, because 1) if ρ′ is a 0.96-
balanced restriction when −θ′ ≥ 0, then −ρ′ is a 0.96-balanced restriction for θ′ ≤ 0, and 2)
Find-Balanced-Restriction will test the only take into account the absolute value of the
output of Estimate-Mean. Let

α =
∑
i∈At

w′2i and β =
∑
i∈Bt

w′2i .

We use a = b± c to denote the inequalities b− c ≤ a ≤ b+ c. Then from (3) we have that
α, β = 1/2±O(1/ logn). By assumption, f ′ is τ -weight-regular and ε-balanced.

For the analysis we define two events E1 and E2. Here E1 denotes the event that every call
to Estimate-Mean returns a number a such that |a−E[fρ′]| ≤ 0.01. By a union bound, this
happens with probability 1− 1/(200 logn). Let E2 be the event that one of the restrictions
ρ∗ drawn has f ′ρ∗ being 0.98-balanced. When E1 and E2 both occur, the subroutine outputs
a restriction ρ′ such that fρ′ is 0.96-balanced. In the rest of the proof we show that event E2
happens with high probability.

To analyze the probability of f ′ρ∗ being 0.98-balanced, we use xi to denote an independent
and unbiased random {−1, 1}-variable for each i ∈ I, and let

xA =
∑
i∈At

xi · w′i, xB =
∑
i∈Bt

xi · w′i and x = xA + xB .

By Hoeffding bound and the assumption that f ′ is ε-balanced, we have

2ε = Pr[x ≥ θ′] ≤ exp(−θ′2/2). (5)

Using Berry–Esséen xA + xB is O(τ)-close to a standard N (0, 1) Gaussian random
variable, denoted by G, xA is O(τ)-close to

√
αG, and xB is O(τ)-close to

√
βG.

Let θ∗ > 0 be the threshold such that Pr[|
√
βG| ≤ θ∗] = 0.01. Then

Pr
[
f ′ρ∗ is 0.98-balanced

]
≥ Pr

[
xA ∈ [θ′ − θ∗, θ′ + θ∗]

]
.

This is because, for any number xA ∈ [θ′ − θ∗, θ′ + θ∗], we have

0.495−O(τ) ≤ Pr
[
xB ≥ θ′ − xA

]
= Pr

[√
βG ≥ θ′ − xA

]
±O(τ) ≤ 0.505 +O(τ),

in which case the function f ′ρ∗ is 0.99−O(τ) = 0.98-balanced. To bound
Pr [xA ∈ [θ′ − θ∗, θ′ + θ∗]], we note that θ′ ≥ 0 (by assumption) and θ∗ = Ω(1) (by our choice
of θ∗ and β > 1/3). As a result,

Pr
[
xA ∈ [θ′ − θ∗, θ′]

]
≥ Pr

[√
αG ∈ [θ′ − θ∗, θ′]

]
−O(τ) = Ω(1) · Ω(ε3)−O(τ) = Ω(ε3),

where we used α > 1/3 by (3), τ = o(ε3), and exp(−θ′2/2) = Ω(ε) from (5) to obtain

min
(

exp
(
−(θ∗)2/(2α)

)
, exp

(
−θ′2/(2α)

))
= Ω(ε3).

X. Chen, R. A. Servedio, L.-Y. Tan, and E. Waingarten 38:21

As a result, a random restriction ρ∗ is 0.98-balanced with probability at least Ω(ε3). Thus with
probability 1−1/n (by choosing a large enough constant CBR), Find-Balanced-Restriction
gets such a restriction that would pass the Estimate-Mean test. By a union bound on E1
and E2, Find-Balanced-Restriction returns a 0.96-balanced ρ′ with probability at least
1− 1/(200 logn)− 1/n > 1− 1/(100 logn). This finishes the proof of the lemma. J

C Proofs of the Final Analysis

Proof of Theorem 25. The algorithm is one-sided because it outputs “non-monotone” only
when an anti-monotone edge is found. The only interesting case is when the input LTF f

is ε-far from monotone. Combining Lemmas 19 and 20, the algorithm Mono-Test-LTF(f, ε)
outputs “non-monotone” with probability at least (9/10)(81/100) > 2/3. This completes the
proof. J

Proof of Theorem 26. From Fact 18, the number of queries used by Regularize-and-
Balance is Õ(log41 n/ε90), since the main bottleneck is the call to Find-Hi-Influence-Vars.
In Main-Procedure, the bottleneck is the O(logn) calls to Find-Hi-Influence-Vars in
Maintain-Regular-and-Balance, each of query complexity Õ(log41 n/ε90), despite the
slightly different parameters. Note that we run the edge tester when there are fewer
than 1/τ2 many stars, so it makes Õ

(
log4 n/ε9

)
many queries. J

APPROX/RANDOM’17

On Axis-Parallel Tests for Tensor Product Codes
Alessandro Chiesa1, Peter Manohar2, and Igor Shinkar3

1 UC Berkeley, Berkeley, CA, USA
alexch@berkeley.edu

2 UC Berkeley, Berkeley, CA, USA
manohar@berkeley.edu

3 UC Berkeley, Berkeley, CA, USA
igors@berkeley.edu

Abstract
Many low-degree tests examine the input function via its restrictions to random hyperplanes of a
certain dimension. Examples include the line-vs-line (Arora, Sudan 2003), plane-vs-plane (Raz,
Safra 1997), and cube-vs-cube (Bhangale, Dinur, Livni 2017) tests.

In this paper we study tests that only consider restrictions along axis-parallel hyperplanes,
which have been studied by Polishchuk and Spielman (1994) and Ben-Sasson and Sudan (2006).
While such tests are necessarily “weaker”, they work for a more general class of codes, namely
tensor product codes. Moreover, axis-parallel tests play a key role in constructing LTCs with
inverse polylogarithmic rate and short PCPs (Polishchuk, Spielman 1994; Ben-Sasson, Sudan
2008; Meir 2010). We present two results on axis-parallel tests.
1. Bivariate low-degree testing with low-agreement. We prove an analogue of the Bivariate Low-

Degree Testing Theorem of Polishchuk and Spielman in the low-agreement regime, albeit
with much larger field size. Namely, for the 2-wise tensor product of the Reed–Solomon code,
we prove that for sufficiently large fields, the 2-query variant of the axis-parallel line test
(row-vs-column test) works for arbitrarily small agreement. Prior analyses of axis-parallel
tests assumed high agreement, and no results for such tests in the low-agreement regime were
known.
Our proof technique deviates significantly from that of Polishchuk and Spielman, which relies
on algebraic methods such as Bézout’s Theorem, and instead leverages a fundamental result
in extremal graph theory by Kövári, Sós, and Turán. To our knowledge, this is the first time
this result is used in the context of low-degree testing.

2. Improved robustness for tensor product codes. Robustness is a strengthening of local testabil-
ity that underlies many applications. We prove that the axis-parallel hyperplane test for the
m-wise tensor product of a linear code with block length n and distance d is Ω(dm

nm)-robust.
This improves on a theorem of Viderman (2012) by a factor of 1/ poly(m). While the im-
provement is not large, we believe that our proof is a notable simplification compared to prior
work.

1998 ACM Subject Classification E.4 Coding and Information Theory

Keywords and phrases tensor product codes, locally testable codes, low-degree testing, extremal
graph theory

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.39

1 Introduction

Locally testable codes (LTCs) are error-correcting codes for which, given an input word,
one can verify whether the word belongs to or is far from the code by inspecting the
word in a few random locations. LTCs have been studied extensively in different contexts,

© Alessandro Chiesa, Peter Manohar, and Igor Shinkar;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 39; pp. 39:1–39:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.39
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

39:2 On Axis-Parallel Tests for Tensor Product Codes

including program checking, interactive proofs, and probabilistically checkable proofs (PCPs)
[17, 30, 5, 4, 28, 22]. Goldreich and Sudan [22] describe LTCs as “combinatorial counterparts
of the complexity theoretic notion of PCPs”, motivating the study of these objects separately.

LTC constructions

The first constructions of LTCs were algebraic in nature, and relied on multivariate polynomi-
als. Starting with the seminal work of Blum, Luby, and Rubinfeld [17], there has been much
work on such algebraic LTCs by way of results on linearity testing and low-degree testing in
numerous settings [17, 7, 12, 6, 1, 16]. Many other constructions [26, 33, 24] further optimize
parameters of these codes, including rate, distance, and the number of queries made by the
tester.

Ben-Sasson and Sudan [10] suggested a combinatorial approach to construct LTCs starting
from any linear code by
(i) applying the tensor product operation [34, 35] to the code, and
(ii) testing the resulting code via the axis-parallel hyperplane test.
We now discuss both.

The 2-wise tensor product of a linear code C ⊆ Fn, denoted C2, is the code in Fn2

consisting of all 2-dimensional matrices whose n rows and n columns are codewords in C;
similarly, the m-wise tensor product of C, denoted Cm, is the code in Fnm consisting of
all m-dimensional matrices M whose restrictions to any axis-parallel (m− 1)-dimensional
hyperplane is a codeword in Cm−1. For example, the code of evaluations of all m-variate
polynomials of individual degree at most r is the m-wise tensor product of the code of
evaluations of all univariate polynomials of degree at most r.

The axis-parallel hyperplane test for the code Cm works as follows: given a word M ,
sample a random axis-parallel hyperplane and check if the restriction of M to this hyperplane
is a codeword in Cm−1. This natural test extends ideas of axis-parallel line tests used in
early PCP constructions [5, 4, 2] to arbitrary tensor product codes.

We study two aspects of the axis-parallel hyperplane test for tensor product codes.

(1) Low-agreement regime

All of the aforementioned works study the axis-parallel hyperplane test in the “high-agreement
regime”, in which the given codeword is within the unique decoding radius of the tensor
product code. What can be said about the “low-agreement regime”, in which the given
codeword may be as far as the list-decoding radius? This setting is more challenging because
one wishes to deduce that a given word has some noticeable global correlation with a
codeword, or a short list of codewords, by only assuming that local views of the test have
some non-trivial agreement with accepting views (but may not necessarily be very close to
such views).

Results in the low-agreement regime are known for other tests, such as tests for the
Hadamard code [6] and the long code [23] as well as random non-axis-parallel hyperplane tests
in various dimensions [29, 3, 27]. Moreover, these have applications to PCP constructions
and hardness of approximation. However, to our knowledge prior to our work no results are
known for the low-agreement regime of axis-parallel tests.

(2) Robustness

Ben-Sasson and Sudan [10] analyze the axis-parallel hyperplane test via the notion of
robustness, a stronger notion of local testability borrowed from the PCP literature [9, 19].

A. Chiesa, P. Manohar, and I. Shinkar 39:3

Informally, a test for a code is robust if, given any input that is far from the code, the local
view of the test is also far from an accepting view on average. For example, the axis-parallel
hyperplane test is robust if, given any M that is far from Cm, the restriction of M to a
random hyperplane is far from Cm−1 on average.

Robustness thus relates the global distance to the expected local view distance and, as
shown in [10], facilitates query reduction via a natural way to compose tests; this notion has
also found applications to proof composition in the setting of PCPs [9]. These works have
motivated the study of the robustness of the axis-parallel hyperplane test for tensor product
codes, establishing both positive results [20, 13, 14, 32] and limitations [31, 18, 21].

Despite significant progress, robustness results for the axis-parallel hyperplane test seem
to be far from tight. The best known relation between the global distance and the local
distance is due to Viderman [32], but no examples that come anywhere close to his proven
bound are known.

2 Main results

We present two main results about tests for tensor product codes. First, we prove an
analogue of the Bivariate Low-Degree Testing Theorem of Polishchuk and Spielman [28] in
the low-agreement regime, albeit with much larger field size. Second, we improve on the
robustness of the hyperplane test for testing the tensor product code Cm, for m ≥ 3. We
now discuss our results.

2.1 Bivariate low-degree testing in the low-agreement regime
One of the applications of locally testable codes is constructing PCPs, where it is often
desirable to reduce the number of queries made by the test. Typically this is done by increasing
the alphabet size so that each “large” symbol bundles together several “small” symbols from
different locations of the given word. This bundling now introduces a consistency problem,
because two large symbols may in principle disagree about the same location in the word.

For example, in [29, 3, 27, 15] the test has access to (alleged) restrictions of a low-degree
polynomial to all lines, planes, cubes, or other low-degree manifolds. The test samples several
queries that intersect, and checks that their answers are consistent on the intersection. These
works establish that if the test accepts with probability above a certain threshold, then the
restrictions are close to the restrictions of some low-degree polynomial.

We study this problem in a modified setting, where the test only has access to axis-parallel
restrictions. Restricting the test in this way makes its task more difficult, but doing so
provides other advantages. First, axis-parallel restrictions are sometimes the only natural
restrictions, such as when testing the m-wise tensor product of a general linear code C (one
may consider restrictions to all (m − 1)-dimensional hyperplanes). Second, having fewer
restrictions enables more efficiency, e.g., it facilitates the construction of short PCPs [28, 11].

Indeed, for this very reason, Polishchuk and Spielman [28] study the above problem for
bivariate polynomials, where m = 2 and C is the degree-r Reed–Solomon code. That is, the
test has access to a table of row polynomials and a table of column polynomials, and its goal
is to check if these are consistent with restrictions of a bivariate polynomial of individual
degree r. The test works by as follows: pick a random (x, y) ∈ F2, read the row and column
polynomials through this point, and accept if and only if the two polynomials are equal on
(x, y).

Clearly, if all the row polynomials and column polynomials are restrictions of a bivariate
polynomial of individual degree r, then the test always accepts. They prove that, conversely,

APPROX/RANDOM’17

39:4 On Axis-Parallel Tests for Tensor Product Codes

if the test accepts with probability close to 1, then the given polynomials are “close” to being
restrictions (to axis-parallel lines) of some low-degree bivariate polynomial, as written below.
In the statement, we say that a bivariate polynomial in variables x and y has degree (a, b) if
the degree in x is at most a and that in y is at most b. This means that the table of row
polynomials, R(x, y), has degree (r, n) and the table of column polynomials, C(x, y), has
degree (n, r), where n is the size of the table.

I Theorem 1 ([28]). Let F be a field and X,Y ⊆ F subsets of size n := |X| = |Y |. Let
R(x, y) be a polynomial of degree (r, n) and C(x, y) a polynomial of degree (n, r) such that

Pr
(x,y)∈X×Y

[C(x, y) = R(x, y)] = 1− γ2

for some γ > 0. If n > 2γn+ 2r, then there exists a polynomial Q(x, y) of degree (r, r) such
that

Pr
(x,y)∈X×Y

[C(x, y) = R(x, y) = Q(x, y)] ≥ 1− 2γ2 .

The theorem above assumes that n > 2γn+2r, which means that γ2 < (1/2−r/n)2 < 1/4.
In other words, it requires the row polynomials and column polynomials to agree on (at least)
more than three quarters of the points in X × Y . A slight improvement in the parameters of
this theorem is shown in [8]. However, their result still requires the polynomials to agree on
a large fraction of the points in X × Y . But what, if anything, can be said if we only assume
that they agree, for example, on more than a 0.1-fraction of those points?

There are several results on low-degree testing that show that, even if we only assume
that the test accepts with noticeable probability (for the row-vs-column test this probability
equals the agreement between row and column polynomials), one can still prove the existence
of a short list of polynomials that ‘explain’ most of this probability, and this in turn has
applications to constructing PCPs with small errors (see, e.g., [29, 3, 27]).

Our next result gives a positive answer to the question above, stating that even in the
low-agreement regime, we can still deduce some structure about the polynomials R and C,
assuming that the field size is sufficiently large.

I Theorem 2. Let F be a field of size n, r ∈ N, and δ, ε ∈ R be such that δ > ε > 6
√
r/n.

Let R(x, y) be a polynomial of degree (r, n) and C(x, y) a polynomial of degree (n, r) such that

Pr
(x,y)∈F2

[C(x, y) = R(x, y)] = δ .

If n > exp(Ω(r
ε log(1

ε))), then there exist t = O(1
ε) polynomials Q1(x, y), . . . , Qt(x, y) of

degree (r, r) such that

Pr
(x,y)∈F2

[∃i ∈ [t] C(x, y) = R(x, y) = Qi(x, y)] ≥ δ − ε .

We remark that Theorem 2 holds in general for the 2-wise tensor of any linear code
C ⊆ Fn with minimal distance ≥ n− r such that n > exp(Ω(r

ε log(1
ε))). In particular, this

means that the minimal distance of C is at least n−O(logn). See the paragraph Beyond
polynomials below for details.

Note that in the above theorem, δ is the agreement probability, while γ2 in Theorem 1 is
the disagreement probability. Also, since r = o(n), both δ and ε can be sub-constant. This is
the first result that analyzes the row-vs-column test in the low acceptance regime that we
are aware of.

A. Chiesa, P. Manohar, and I. Shinkar 39:5

The row-vs-column test and its higher-dimensional analogues underly many known PCP
constructions [5, 4, 28, 11]. However, in all these constructions the low degree tests are
only analyzed in the high agreement regime. We believe that analyzing the test in the low-
agreement regime may imply short PCP constructions with small (sub-constant) soundness. A
weakness of the result stated in Theorem 2 is the requirement that the field size must be very
large, which restricts us from getting PCPs with polynomial-size proof length. Nonetheless,
we consider Theorem 2 as a promising first step in this direction. More generally, our result
suggests that the low-agreement regime for tensor product codes merits further study.

To prove the theorem we leverage a fundamental result in extremal graph theory by
Kövári, Sós, and Turán. To our knowledge, this is the first time this result is used in the
context of low-degree testing. See Section 3.1 below for a high-level description of our proof.

Beyond polynomials

While [28]’s proof relies on polynomials (a key step is Bézout’s Theorem), we rely on
combinatorial techniques, so that our Theorem 2 holds in general for the 2-wise tensor of
any linear code C ⊆ Fn with minimal distance ≥ n − r such that n > exp(Ω(r

ε log(1
ε))).

In particular, this means that the minimal distance of C is at least n − O(logn). The
row-vs-column test is now given two matrices R, C ∈ Fn×n such that every row of R is in
C, and every column of C is in C. If Pr(x,y)∈[n]2 [R(x, y) = C(x, y)] = δ, then there exist
t = O(1/ε) codewords Q1, . . . , Qt ∈ C2 such that Pr(x,y)∈[n]2 [∃i ∈ [t] s.t. R(x, y) = C(x, y) =
Qi(x, y)] > δ − ε.

In this context it is worth mentioning that there has been a lot of work on the robustness
of the axis-parallel line test for 2-wise tensor products, proving both positive results [10, 20]
and negative ones [31, 18, 21]. We find it quite remarkable that this result holds for general
pairwise tensor codes, albeit with very high distance, as the closely related notion of robustness
does not hold for general 2-wise tensor products.

Finally, in the high-agreement regime there is a correspondence between the robustness
of the axis-parallel line test and the soundness of the row-vs-column test (the matrix is given
as a collection of lines rather than explicitly).1 Yet this correspondence does not hold in the
low-agreement regime. Consider a matrix M whose rows are random independent codewords:
the tensor product test passes with probability at least 0.5 (when reading a row), but M is
typically far from a tensor codeword.

Open problems

We raise two questions on the low-agreement regime of axis-parallel line tests.
Smaller field size. Our result (Theorem 2) assumes that the field size n is exponential in
the degree r. Can one prove a similar result for smaller fields, such as n = poly(r)?
Higher dimensions. Polishchuk and Spielman [28] explain that their result (in the high-
acceptance regime) also holds in higher dimensions, where now the test is given a table
of low-degree polynomials for each axis-parallel line in Fm and works as follows: pick
a random p ∈ Fm, read the polynomials along the m axis-parallel lines through p, and
check that all polynomials agree on p. Can one prove a high-dimensional analogue of

1 Let M ∈ Fn×n be such that the average relative distance of a row/column of M to some codeword is
1− ε. One can verify that by considering the closest codewords in each row and in each column, the
obtained table of row/column codewords passes the row-vs-column test with probability at least 1− 2ε.
Therefore, there exists a tensor codeword that agrees with most of the rows and most of the columns,
which in turn implies its agreement with M .

APPROX/RANDOM’17

39:6 On Axis-Parallel Tests for Tensor Product Codes

Theorem 2? Namely, is it true that if this test accepts with probability δ > 0, then there
is a short list of low-degree polynomials that explain most of the agreements?

2.2 Improved robustness for the axis-parallel hyperplane test
We study the robustness of the axis-parallel hyperplane test for the tensor product code
Cm ⊆ Fnm , for an arbitrary linear code C with minimal distance d and block length n

over the field F. Let H be the test that, given a word M ∈ Fnm , samples a random
axis-parallel (m − 1)-dimensional hyperplane H and checks if M |H ∈ Cm−1. For a word
M ∈ Fnm , we define δ(M) to be the relative distance of the word M to the code Cm and
ρ(M) to be EH [δ(M |H , Cm−1)], the expected local distance of M . The test H is α-robust if
ρ(M) ≥ α · δ(M) for every word M ∈ Fnm . The ‘strength’ of the test increases with α, so
the goal is to establish the largest α for which this inequality holds.

What is known

There are two main prior works that study the robustness of the test H for general m. We
state the results of these works, starting with one of Ben-Sasson and Sudan [10].

I Theorem 3 ([10]). Let C ⊆ Fn be a linear code with minimal distance d. For m ≥ 3 and(
d−1

n

)m ≥ 7/8, the test H is α-robust for Cm with α = 2−16.

The above theorem is limited in that the proved robustness is small and, moreover, only
provides a guarantee when C has a very large distance. Viderman [32] shows that this
condition on the distance is not necessary in order to show some robustness guarantee.

I Theorem 4 ([32]). Let C ⊆ Fn be a linear code with minimal distance d. For m ≥ 3, the
test H is α-robust Cm with α = 1

2m2

(
d
n

)m.

The above theorem, the state of the art in this setting, improves on the previous one as
1. even if

(
d−1

n

)m ≥ 7/8, the robustness provided by Theorem 4 is larger than that provided
by Theorem 3 for m ≤ 169;

2. a robustness guarantee is provided for any choice of m, d, n (as long as m ≥ 3).

Our result

We present a simpler proof of Theorem 4, which also achieves a 1
m2 improvement in the

robustness by showing that the hyperplane test is Ω(dm

nm)-robust. This improved value for
the robustness appears more “natural”, because dm

nm is the distance of the code Cm.

I Theorem 5. Let C ⊆ Fn be a linear code with minimal distance d. For m ≥ 3, the test H
is α-robust for Cm with α = 1

12
(

d
n

)m.

Tight or not?

Several works have studied the test H and all resulting analyses have an exponential
dependence on m in the robustness. Yet, there is no evidence indicating that this dependence
is necessary. Perhaps a “dream” result of constant robustness, for all codes C and m ≥ 3,
is possible. Like previous results, we too incur the same exponential dependence in the
robustness. We present some observations that may suggest that this dependence is not
necessary.

A. Chiesa, P. Manohar, and I. Shinkar 39:7

Under certain conditions on M , we can prove that ρ(M) ≥ max{ 1
m+c , c

′ dm

nm } · δ(M) for
constants c, c′ > 0. These two expressions are incomparable, as we can set the parameters
m, d, n to make either expression bigger than the other. (See Claim 25.)
The guarantees of Theorem 3, Theorem 4, and Theorem 5 all degrade as dm

nm decreases.
In particular, the proven value of α in all these cases tends to 0 as d

n tends to 0. However,
if C is the Reed–Solomon code (or any other code with a similar interpolation property),
then we can prove that δ(M) ≤ ρ(M) + d

n for all M . (See Claim 27.)
We, thus, think that determining the optimal robustness of H is an intriguing open problem:

What is the optimal robustness of the hyperplane test H?
Can one prove that α = Ω

(
max

(1
m ,

dm

nm

))
, or even α = Ω(1), for all codes?

In [10], [32], and our result, the proof shows that when ρ(M) is below some threshold (related
to the code’s unique decoding radius), then δ(M) is also small. However, when ρ(M) is not
below this threshold, the analysis says nothing about δ(M), and naively uses δ(M) ≤ 1 to
prove robustness in this regime. We believe that progress on understanding the optimal
robustness of H hinges on understanding what techniques (if any) can be used to bound
δ(M) in terms of ρ(M) for a larger range of ρ(M).

Open problems

Several intriguing questions on testing tensor product codes remain open.
Optimal robustness of H. What is the optimal robustness of the hyperplane test H? Can
one prove that α = Ω

(
max

(1
m ,

dm

nm

))
, or even α = Ω(1), for all codes?

Special cases. Can one simplify the proof and/or prove a higher robustness if one assumes
that C satisfies “nice” properties? For instance, what if C is the Reed–Solomon code (so
that Cm is a Reed–Muller code of bounded individual degree)?

3 Techniques

We give an overview of the proof techniques behind Theorem 2 and Theorem 5.

3.1 Theorem 2: bivariate testing in the low agreement regime
Polishchuk and Spielman [28] prove their result (Theorem 1) using the following approach.
Given R and C (as in the theorem) such that Prx,y[R(x, y) = C(x, y)] > 1− δ, they define
an “error polynomial” E that equals 0 for all (x, y) such that R(x, y) 6= C(x, y). Since the
fraction of points where R(x, y) 6= C(x, y) is small, E is a low-degree polynomial. However,
in the low-agreement regime that we consider, the degree of E is rather large, which seems
to preclude their approach. In particular, a key step based on Bézout’s Theorem in their
proof appears to break down.

We take a completely different approach, which relies on a combinatorial statement from
extremal graph theory. Given R and C such that Prx,y[R(x, y) = C(x, y)] = δ, we define
A ∈ {0, 1}n×n to be the ‘agreement matrix’: A(x, y) = 1 if and only if R(x, y) = C(x, y).
By the assumption it follows that A has at least δn2 ones. By invoking the Kövári-Sós-and
Turán Theorem (which may be thought of as an analogue of Ramsey’s Theorem for bipartite
graphs) it follows that there are some S, T ⊆ [n] such that |S| , |T | > Ω(log(n)) � r and
A|S×T ≡ 1. Since the rows of R and the columns of C are polynomials of degree r, we deduce
that there exists a unique polynomial Q of degree (r, r) such that for all (x, y) ∈ S × T it
holds that R(x, y) = C(x, y) = Q(x, y).

APPROX/RANDOM’17

39:8 On Axis-Parallel Tests for Tensor Product Codes

The argument above may appear to be good progress toward our goal. However, there is
a total of ≈ δn2 ones in A, and the rectangle S × T is of size O(log(n)), i.e., tiny compared
to n. This means that the progress is actually rather small!

Nevertheless, we can now set A|S×T to be zero, and repeat the same argument again,
thus covering all but a small fraction of ones of A with small rectangles. However, this raises
a new problem. Each rectangle S × T found in the previous step can be very small, and so
there are potentially many different polynomials Q that explain the agreements of R and C.
Our next goal is therefore to “stitch” these rectangles together to show that, in fact, there is
only a small number of distinct polynomials. We do so by “making the rectangles larger”, as
we now explain.

Consider a rectangle S × T from the first step, and let t′ ∈ F \ T . Note that if there
are r + 1 points s′ ∈ S such that A(s′, t′) = 1, then the row polynomial R(·, t′) is uniquely
defined by these r+ 1 points, and hence A(s, t′) = 1 for all s ∈ S. Therefore, we can increase
T by adding t′ to it. On the other hand, if there are less that r + 1 such points s′ ∈ S, then
we may disregard these points as they amount to only a small fraction of the points (since
|S| � r). Thus, on a typical rectangle S × T , we can go from size O(log(n))×O(log(n)) to
size roughly O(log(n))× Ω(n).

In the last step, we show that if we have many rectangles of size O(log(n))×Ω(n) then it
is possible to “stitch” them together using the fact that if we have two rectangles S1×T1 and
S2 × T2 with corresponding polynomials Q1 and Q2 such that |T1 ∩ T2| > r, then Q1 ≡ Q2.
Indeed, this follows by the fact that if two univariate polynomials of degree r agree on more
than r points, then they are equal. We then use the inclusion-exclusion principle to show
that for ε >

√
2r
n we cannot have more than 2

ε subsets Ti ⊆ [n] of size at least εn such that
|Ti ∩ Tj | ≤ r for all i 6= j.

The full proof of Theorem 2 is provided in Section 4.

3.2 Theorem 5: improved robustness for the hyperplane test

Our goal is to prove that the axis-parallel hyperplane test H is α-robust for α = 1
12
(

d
n

)m.
We prove this statement via a careful combination of the approaches taken by [10] and [32].
Specifically, we analyze ρ(M) and δ(M) by studying the following combinatorial object: the
inconsistency graph G of the hyperplane test H, which we now informally describe.

The test H has access to a word M ∈ Fnm , allegedly in Cm. For any axis-parallel
hyperplane H, we denote by gH the closest codeword to M |H in Cm−1 (breaking ties by
picking an arbitrary closest codeword). The vertex set of the graph G is the set of (m− 1)-
dimensional hyperplanes, which are the local views of the test. There is an edge between two
different hyperplanes H and H ′ if gH and gH′ disagree on the intersection of the hyperplanes,
H ∩H ′. (See Definition 10 for details.) In other words, the graph has an edge between two
planes if the local codewords assigned to the planes are inconsistent. The graph G that we
study is similar to the inconsistency graph analyzed in [10]. The difference is that, for some
threshold parameter τ , the graph used in [10] adds an edge from H to every other H ′ in the
graph if δ(M |H , gH) > τ .

First, we show that if G has a large independent set I, then there is a codeword f in Cm

that agrees with the local codewords gH on every hyperplane H in I. For an independent set
I, we define Ib to be the set of i ∈ [n] such that the hyperplane {p ∈ [n]m : pb = i} is in I. A
key property of tensor product codes is the unique extension property, which we formally
state later on as Claim 21. Using the unique extension property of tensor product codes,
we show that if there are two axes b1 and b2 where Ib1 and Ib2 both have at least n− d+ 1

A. Chiesa, P. Manohar, and I. Shinkar 39:9

planes, then there is a word f in Cm where f |H = gH for every H in the independent set.
Without loss of generality assume b1 = 1 and b2 = 2. Intuitively, we fill in the restricted
hypercube in FI1×I2×nm−2 with the values of the closest codewords to M |H for each H in
the independent set. Since the independent set is large, the restricted hypercube is large
enough so that we can extend the partially filled-in hypercube to a unique codeword f in
Cm. The uniqueness of the extension implies that f |H = gH for every H in I.

Next, we analyze the structure of G to show that every edge is adjacent to a vertex of
degree at least (m−2)d/2. The key point is that two different Cm−2 codewords must disagree
on at least dm−2 points, and these points have a particular structure. For two distinct Cm−2

codewords, we prove that on each of the m−2 remaining axes there must be at least d planes,
parallel to that axis, that contain points of disagreement. If not, then using the unique
extension property we show that the two codewords must be equal, which is a contradiction.
For any edge (H,H ′), this gives us a total of (m− 2)d planes that disagree with at least one
of gH and gH′ on H ∩H ′, which shows that deg(H)+deg(H ′) is at least (m−2)d. Therefore,
at least one of H and H ′ has degree at least (m− 2)d/2. As an immediate consequence, the
set of planes with degree at least (m− 2)d/2, which we denote by L, is a vertex cover, and
the set of planes not in L is an independent set I.

With some algebraic manipulation, we relate the size of this vertex cover to the expected
local distance ρ(M). By expressing ρ(M) as a sum over pairs of intersecting planes, we show
that

ρ(M) ≥ 1
nmm(m− 1)

∑
(H,H′):H∩H′ 6=∅

∆|H∩H′(gH , gH′) .

This allows us to express the robustness of the test H in terms of the size of the vertex
cover L.

Similar to the analysis of [32], we break up the proof into two cases. If |L| is somewhat
large, then ρ(M) ≥ 1

12
(

d
n

)m, and the theorem follows immediately because δ(M) is anyways
at most 1. If |L| is small, then the corresponding independent set has two axes where
|Ib| ≥ n − d + 1. Therefore, there is a global codeword f that is consistent with all the
hyperplanes in the independent set. We use this fact to show that δ(M) must be small when
ρ(M) is small, which concludes the proof.

The full proof of Theorem 5 is provided in Section 5.

4 Proof of Theorem 2

The discussions below rely on notations and statements introduced in Section A. The key
step in the proof of Theorem 2 is the following lemma.

I Lemma 6 (Key lemma). Suppose that |F| > exp(Ω(r
ε log(1

ε))). Then, for any ε >
√

2r
|F| there

are t ≤ 2
ε polynomials Q1, . . . , Qt each of degree (r, r), and subsets S1, . . . , St, B1, . . . , Bt ⊆ F

such that
1. For all i ∈ [t] and (x, y) ∈ (Si, Bi) it holds that C(x, y) = R(x, y) = Qi(x, y).
2. All Si’s are pairwise disjoint.
3. |∪i∈[t]Si×Bi|

|F|2 ≥ δ − 3ε, where δ = Pr[C(x, y) = R(x, y)].

Before proving Lemma 6 let us see how it immediately implies Theorem 2.

APPROX/RANDOM’17

39:10 On Axis-Parallel Tests for Tensor Product Codes

Proof of Theorem 2 using Lemma 6. Let ε > 6
√

r
n , and apply Lemma 6 with ε/3 >

√
2r
n .

By Lemma 6 for some t ≤ 2
ε/3 = 6

ε there are disjoint subsets S1 × B1, . . . , St × Bt ⊆ F2

such that |∪i∈[t]Si×Bi|
|F|2 ≥ δ − ε, and for all i ∈ [t] and (x, y) ∈ (Si, Bi) it holds that

R(x, y) = C(x, y) = Qi(x, y). This implies that

Pr
(x,y)∈F2

[∃i ∈ [t] s.t. R(x, y) = C(x, y) = Qi(x, y)] ≥ Pr[(x, y) ∈ ∪i∈[t]Si ×Bi] ,

which is at least δ − ε, as required. J

We devote the rest of this section to proving Lemma 6.

4.1 Proof of Lemma 6
Let n = |F|, and define the binary matrix A ∈ {0, 1}n×n where A(x, y) = 1 if C(x, y) =
R(x, y) and A(x, y) = 0 otherwise. Note that by the assumption of Theorem 2, we have∑

x,y∈[n]
A(x,y)

n2 = δ, i.e., the matrix A is δ-dense.

4.1.1 Step 1
In the first step we apply Theorem 19 iteratively to show that there exists a collection of
disjoint sets S1, . . . , Su ⊆ [n] with |Si| ≥ r

ε such that for most points (x, y) it holds that if
A(x, y) = 1, then x ∈ ∪Si, and for each i ∈ [u] there exists Ti ⊆ [n] of size |Ti| ≥ r

ε such that
ASi×Ti ≡ 1.

I Claim 7. Let n, r ∈ N, δ > ε > 0, and let k = dr/εe. Let A ∈ {0, 1}n×n be a δ-dense
matrix as above, and suppose that n > 2k2 (1

ε

)k+1. Then, there exist u ∈ N and two sequences
Si ⊆ [n], Ti ⊆ [n] with i = 1, . . . , u satisfying the following conditions.
1. The Si’s are pairwise disjoint.
2. |Si| = |Ti| = k.
3. A(x, y) = 1 for every (x, y) ∈ (Si, Ti) and i ∈ [u].
4.
∑

(x,y)∈([n]\(∪Si),[n]) A(x, y) < εn2.

Proof. We will use Theorem 19 to find a submatrix of A of size k × k whose entries are
all 1s. By the choice of k and the assumption that n is sufficiently large we have that
(ε− k

n)k = εk(1− k
εn)k > εk(1− k2

εn) > εk/2 > k−1
εn , and hence ε > k

√
k−1
εn + k

n . Hence, since

A is δ-dense, we have δ(A) ≥ δ ≥ ε > k

√
k−1

n + k
n . Therefore, by Theorem 19 there exist

S1 ⊆ [n], T1 ⊆ [n] each of size |S1| = |T1| = k such that A|S1×T1 ≡ 1.
Next, we remove the rows contained in S1 from A, and apply the same argument again.

Let M1 = [n] \ S1 and define A1 to be the (n − k) × n submatrix of A whose rows are
indexed by M1. Note that if

∑
x∈M1,y∈[n] A1(x, y) > εn2 then δ(A1) ≥ εn

|M1| , and thus we

have δ(A1) ≥ εn
n−k > ε > k

√
k−1
|M1| + k

n . Therefore, we can apply Theorem 19 again, and find
S2 ⊆M1 and T2 ⊆ [n] of size |S2| = |T2| = k such that A|S2×T2 ≡ 1.

We repeat the same argument again, for each i ≥ 2 defining the the subset Mi =
Mi−1 \ Si−1, and letting Ai = AMi×[n]. Note that if

∑
x∈Mi,y∈[n] A(x, y) ≥ εn2 then

|Mi| ≥ εn, and δ(Ai) ≥ εn
|Mi| ≥ ε > k

√
k−1
|Mi| + k

n . Therefore, by Theorem 19 there exist
Si ⊆Mi and Ti ⊆ [n] of size |Si| = |Ti| = k such that A|Si×Ti

≡ 1.
We stop the process after u iterations when

∑
x∈Mu,y∈[n] A(x, y) < εn2. By definition of

the Si’s and Ti’s, this gives us the subsets with the desired properties. J

A. Chiesa, P. Manohar, and I. Shinkar 39:11

By the assumption |F| = n > exp(Ω(r
ε log(1

ε))) in Theorem 2 we have n > 2k2 (1
ε

)k+1.
Therefore, we can apply Claim 7 on A to get Si’s and Ti’s as in the claim.

4.1.2 Step 2
Next, we show that the sets Ti in the previous step can be chosen to be of size at least εn.

I Claim 8. Let {(Si, Ti)}u
i=1 be the sets from Claim 7. For each i ∈ [u] define Bi = {y0 ∈

[n] :
∑

x∈Si
A(x, y0) ≥ r + 1}. Then

1.
∑

i∈[u]
∑

x∈Si

y∈[n]\Bi

A(x, y) ≤ εn2.

2. For every i ∈ [u] if y0 ∈ Bi then A(x, y0) = 1 for all x ∈ Si.

Proof. The first item is by the choice of k ≥ r/ε. In each i ∈ [u] and y ∈ [n] \ Bi it holds
that less than ε fraction of the entries are ones, and hence the total number of ones in all
i ∈ [u] and y ∈ [n] \Bi is less that εn2. Formally, we have∑

i∈[u]

∑
x∈Si

y∈[n]\Bi

A(x, y) ≤
∑
i∈[u]

∑
y∈[n]\Bi

r ≤ u · n · r ≤ εn2 ,

where the last inequality uses the fact that u ≤ n/k, and k ≥ r/ε.
To prove the second item, we use Corollary 17. Suppose that A(x0, y0) = 0 for some

x0 ∈ Si and y0 ∈ Bi. By the assumption on Bi, it holds that |{x ∈ Si : A(x, y0) = 1}| ≥ r+1.
Let S = {x0} ∪ {x ∈ Si : A(x, y0) = 1}, and let T = {y0} ∪ Ti, so that A(x, y) = 1 for all
(x, y) ∈ S×T \{(x0, y0)}. Recall that, by definition of A, R(x, y) = C(x, y) for all such (x, y),
and hence, by Corollary 17 we also have R(x0, y0) = C(x0, y0), and thus A(x0, y0) = 1. J

Note that the ones not covered by ∪i(Si ×Bi) are the ≤ εn2 ones omitted in Claim 7 and
the ≤ εn2 ones disregarded in the proof of Claim 8 above. Let us also disregard all Si’s and
Bi’s such that |Bi| ≤ εn, and consider only the remaining subsets. Note that the set of Bi’s
with |Bi| ≤ εn can contain at most εn2 ones. Redefining u to be the number of remaining
sets, we get two collections of subsets {Si ⊆ [n], Bi ⊆ [n]}u

i=1 such that
1. the Si’s are pairwise disjoint.
2. |Bi| > εn for all i ∈ [u].
3.
∑

(x,y)∈∪u
i=1Si×Bi

≥ (δ − 3ε)n2.
4. A|Si×Bi

≡ 1 for all i ∈ [u].
In particular, by Lemma 16 for each i = 1, . . . , u there is a polynomial Pi of degree (r, r)
such that R(x, y) = C(x, y) = Pi(x, y) for all (x, y) ∈ Si ×Bi.

4.1.3 Step 3
Next, we observe that if two sets Bi, Bj from the previous step have large intersection, then
the corresponding polynomials Pi and Pj are equal.

I Claim 9. Suppose that |Bi ∩Bj | ≥ r+ 1 for some i 6= j ∈ [u]. Then Pi = Pj and Bi = Bj .

Proof. Denote B = Bi ∩ Bj . Note that, for each y ∈ B, Pi(x, y) = C(x, y) for all |Si| =
k > r + 1 values of x ∈ Si, and hence Pi(x, y) = C(x, y) for all x ∈ [n]. In particular,
Pi(x, y) = C(x, y) for all (x, y) ∈ Sj×B. Therefore, Pi|Sj×B ≡ Pj |Sj×B , and thus Pi ≡ Pj by
Lemma 15. Applying Corollary 17, we conclude that Pi(x, y) = Pj(x, y) = C(x, y) = R(x, y)
for all (x, y) ∈ (Si ∪ Sj)× (Bi ∪Bj). This implies that Bi = Bj , as required. J

APPROX/RANDOM’17

39:12 On Axis-Parallel Tests for Tensor Product Codes

4.1.4 Completing the proof
In the last step we will show that there is a short list of t ≤ 2

ε polynomials Q1, . . . , Qt such
that each of the Pi’s is in fact equal to one of the Qj ’s. Indeed, denote the number of different
Bi’s by t. By Claim 9, if Bi 6= Bj then |Bi ∩ Bj | ≤ r, and thus by the inclusion-exclusion
principle we have

n ≥
∣∣∪t

i=1Bi

∣∣ ≥ t∑
i=1
|Bi| −

∑
i 6=j

|Bi ∩Bj | ≥ t · εn−
(
t

2

)
r ,

where in the last inequality we used the bound |Bi| > εn for all i. If t ≥ 2
ε , then n ≥

t · εn −
(

t
2
)
r ≥ 2n − 2

ε2 r, and thus ε <
√

2r
n , which contradicts the assumption on ε.

Therefore t < 2
ε , as required.

5 Proof of Theorem 5

We prove Theorem 5. The discussions below rely on notations and statements introduced in
Section B.

Let C be a linear code with distance d and block length n over F, and let Cm be the
m-wise tensor product of C, for some m ≥ 3. Let M be the input to the test H, which is an
evaluation table of a function from [n]m → F. Define gH to be the closest Cm−1 word to
M |H , where ties are broken by picking an arbitrary closest codeword. We will view M as
fixed throughout the analysis.

We need to show that ρ(M) ≥ α · δ(M), for α = 1
12
(

d
n

)m. The main idea in the proof is
to upper bound δ(M) by figuring out how to “stitch” together the gH ’s to make a global
codeword f . We begin by defining the inconsistency graph G. The graph G has each
hyperplane as a vertex, and has an edge between two hyperplanes H and H ′ if they have
nonzero intersection and their respective local codewords gH and gH′ are inconsistent, i.e.,
they disagree on some point p in their intersection H ∩H ′.

I Definition 10 (Inconsistency Graph). The inconsistency graph G of the test H is a graph
where V is the set of hyperplanes, and E = {(H,H ′) : ∃p ∈ H ∩H ′ s.t. gH(p) 6= gH′(p)}.

The proof will be divided into several steps. First, we will show that if G contains a large
independent set, namely a large set of planes which are all consistent with each other, then
there is a global codeword f that stitches together all of the local codewords gH for every
H in the independent set. Then, we will show that every edge in G is adjacent to a vertex
of (somewhat) large degree. This will imply that the set of vertices that have large degree
is a vertex cover, and its complement is an independent set. We will then show that ρ(M)
is lower bounded by some function that is linear in the number of vertices that have large
degree. Using these components, we will conclude the proof.

5.1 Step 1: the case of a large independent set
We will show that if G has a large independent set I, then there is an f in Cm that agrees
with gH on H for every H in I. In other words, f is the codeword of Cm that stitches
together all of the gH ’s in the independent set. The proof relies on Claim 21.

I Lemma 11 (Interpolation). If G has an independent set I of size |I| > (m− 1)(n− d) + n,
then there exists f in Cm such that f |H = gH for every H ∈ I.

A. Chiesa, P. Manohar, and I. Shinkar 39:13

Our proof of this lemma is similar to the proof of a different lemma in [10].

Proof. Define Ib to be the set of i ∈ n such that the plane (b, i) is in I. Since |I| >
(m− 1)(n− d) +n, there must exist b1 6= b2 such that |Ib1 | and |Ib2 | are at least n− d+ 1, as
otherwise |I| =

∑m
b=1 |Ib| ≤ (m−1)(n−d) +n. Without loss of generality assume b1 = 1 and

b2 = 2. Let S = I1 × I2 × [n]m−2 and let g : S → F be a matrix in FS . Define g(p) = gH(p)
for every p ∈ S, where H is some plane in I1∪ I2 such that p ∈ H. Note that g is well-defined
since all the planes in I are consistent with each other, as I is an independent set.

We claim that g ∈ C|I1 ⊗ C|I2 ⊗ Cm−2. This is because for any H ∈ I1 it holds that
g|H ∈ C|I2 ⊗ Cm−2, as g|H = gH except that the second axis is now restricted to I2. This
means that for every axis b 6= 1, 2 and for every line `b parallel to the b-th axis it holds that
g|`b
∈ C. Also, for every line `2 parallel to the second axis we have that g|`2 ∈ C|I2 , because

we took a Cm−1 codeword and restricted it to the subset I2. However, by symmetry we can
repeat the same argument, swapping axis 1 and axis 2, and hence for every line `1 parallel to
the first axis it must hold that g`1 ∈ C|I1 . Thus, g ∈ C|I1 ⊗C|I2 ⊗Cm−2. Since |I1| and |I2|
are at least n− d+ 1, we can apply Claim 21 to the code C|I1 ⊗C|I2 ⊗Cm−2 to extend g to
a unique codeword f ∈ Cm.

We still need to show that f |H = gH for every H ∈ I. By definition of Cm we have
f |H ∈ Cm−1. There are three cases. If H ∈ I1, then f agrees with gH on a subset of H
of size I2 × [n]m−2, because gH |I2×[n]m−2 = g|I2×[n]m−2 = f |I2×[n]m−2 . Similarly, if H ∈ I2,
then f agrees with gH on a subset of size I1 × [n]m−2, and if H ∈ I \ (I1 ∪ I2), then f agrees
with gH on a subset of size I1 × I2 × [n]m−3. In all 3 of the cases, since |I1| and |I2| are at
least n− d+ 1, by Claim 21 there is a unique codeword w ∈ Cm−1 that equals f |H (or gH)
on that subset of H. But f |H is in Cm−1, so by the uniqueness of the extension it follows
that f |H = gH . J

5.2 Step 2: the structure of G
We will now show that every edge (H,H ′) in G is adjacent to a vertex of large degree. The
proof uses the structure of Cm to show that if two planes disagree on a point, they must
disagree on many points, and these points have a certain structure. Using the structure of
these points, we find (m− 2)d planes that intersect H ∩H ′ on at least one point that gH

and gH′ disagree, and therefore each of these new planes must be adjacent to at least one of
H and H ′.

I Lemma 12. If (H,H ′) ∈ E, then deg(H) + deg(H ′) ≥ (m− 2)d.

A similar lemma appears in [10], but the graph they consider is different from ours.

Proof. Without loss of generality assume that H = (1, i) and H ′ = (2, j). Fix k ∈ {3, . . . ,m}.
Let Ik be the set of l’s such that the plane (k, l) is not adjacent to both H and H ′. Suppose
|Ik| ≥ n − d + 1. Then gH |Ik×[n]m−3 = gH′ |Ik×[n]m−3 . Since |Ik| ≥ n − d + 1, by Claim 21
gH |Ik×[n]m−3 can be extended to a unique w ∈ Cm−2, and so w = gH |H∩H′ . Similarly,
gH′ |Ik×[n]m−3 can be extended to a unique v ∈ Cm−2, and so v = gH′ |H∩H′ . However, since
both gH |H∩H′ and gH′ |H∩H′ agree on Ik × [n]m−3, the uniqueness of the extension implies
that they are equal, contradicting the fact that (H,H ′) is an edge in the graph. Therefore,
|Ik| ≤ n− d for every k. This means that for a fixed k, there are at least d planes (k, l) such
that gH and gH′ disagree on the intersection of all 3 planes. Since gH and gH′ disagree, g(k,l)
can agree with at most one of them, so at least one of (H, (k, l)) and (H ′, (k, l)) is an edge.
This holds for at least d planes for every k, which is a total of (m− 2)d planes. Therefore,
deg(H) + deg(H ′) ≥ (m− 2)d. J

APPROX/RANDOM’17

39:14 On Axis-Parallel Tests for Tensor Product Codes

Thus, for every edge (H,H ′) one of H and H ′ has degree ≥ (m− 2)d/2, so we deduce the
following corollary.

I Corollary 13 (Vertex Cover). The set L of vertices with degree ≥ (m− 2)d/2 is a vertex
cover.

5.3 Step 3: relating the expected local distance to the vertex cover
We now relate the set of vertices of large degree to the expected local view distance of the
test H. The main idea is to put the expression for ρ(M) into a particular form, and then
apply the triangle inequality to express ρ(M) as a sum over edges in the graph. Using a
simple relation between |L| and |E|, the lemma follows.

I Lemma 14. Let L be the set of vertices with large degree. Then ρ(M) ≥ m−2
4(m−1)

dm−1

nm−1
|L|
nm .

Proof. By definition, ρ(M) = 1
nmm

∑
H ∆(M |H , gH). For any H = (b, i),

∆(M |H , gH) = 1
m− 1

∑
c∈[m]\{b}

∑
j∈[n]

∆|H∩(c,j)(M, gH) = 1
m− 1

∑
H′:H∩H′ 6=∅

∆|H∩H′(M, gH) .

This is because for any point p ∈ H and for any axis c 6= b, the point p is in the intersection
H ∩ (c, j) for exactly one j. Therefore,

ρ(M) = 1
nmm

∑
H

∆(M |H , gH) = 1
nmm

∑
H

1
m− 1

∑
H′:H∩H′ 6=∅

∆|H∩H′(M, gH)

Every pair (H,H ′) with H ∩ H ′ 6= ∅ appears exactly twice in the sum, contributing
∆|H∩H′(M, gH) and ∆|H∩H′(M, gH′) to the sum. Therefore,

ρ(M) = 1
nmm(m− 1)

∑
(H,H′):H∩H′ 6=∅

∆|H∩H′(M, gH) + ∆|H∩H′(M, gH′)

≥ 1
nmm(m− 1)

∑
(H,H′):H∩H′ 6=∅

∆|H∩H′(gH , gH′) = 1
nmm(m− 1)

∑
(H,H′)∈E

∆|H∩H′(gH , gH′) .

as (H,H ′) /∈ E =⇒ ∆|H∩H′(gH , gH′) = 0 by definition. Fix (H,H ′) ∈ E. The local
codewords gH and gH′ are both in Cm−1, so gH |H∩H′ and gH′ |H∩H′ are both Cm−2 code-
words. In particular, since ∆|H∩H′(gH , gH′) > 0, they are distinct codewords, and so
∆|H∩H′(gH , gH′) ≥ dm−2. Therefore,

ρ(M) ≥ 1
nmm(m− 1)

∑
(H,H′)∈E

∆|H∩H′(gH , gH′) ≥
|E| dm−2

nmm(m− 1) .

Since L is the set of vertices of degree ≥ (m− 2)d/2,

2 |E| =
∑
H

deg(H) ≥
∑
H∈L

deg(H) ≥ |L| (m− 2)d
2 =⇒ |E| ≥ |L| (m− 2)d

4 .

Thus,

ρ(M) ≥ |E| dm−2

nmm(m− 1) ≥
(m− 2) |L| dm−1

4nmm(m− 1) = (m− 2)
4(m− 1)

dm−1

nm−1
|L|
nm

. J

A. Chiesa, P. Manohar, and I. Shinkar 39:15

5.4 Putting things together
We are now ready to prove Theorem 5. The result follows from straightforward applications
of the previous steps.

Proof of Theorem 5. If |L| ≥ (m− 1)d, then by Lemma 14 we have

ρ(M) ≥ (m− 2)
4(m− 1)

dm−1

nm−1
|L|
nm
≥ (m− 2)

4(m− 1)
dm−1

nm−1
(m− 1)d
nm

= m− 2
4m

dm

nm
≥ m− 2

4m
dm

nm
δ(M) ,

where the last inequality holds because δ(M) ≤ 1. Therefore, assume that |L| < (m− 1)d.
For every f in Cm, using triangle inequality we have

δ(M) ≤ δ(M,f) = 1
nm

∑
H

δ|H(M,f) ≤ 1
nm

∑
H

δ|H(M, gH) + 1
nm

∑
H

δ|H(gH , f) .

Recalling that ρ(M) = 1
nm

∑
H δ|H(M, gH) we get that

δ(M) ≤ ρ(M) + 1
nm

∑
H

δ|H(gH , f) .

Since L is a vertex cover, the set L = V \ L is an independent set. Since |L| < (m − 1)d,∣∣L∣∣ > nm− (m− 1)d = (m− 1)(n− d) + n. By Lemma 11, ∃f∗ ∈ Cm such that f∗|H = gH

for every H ∈ L. Thus,

δ(M) ≤ ρ(M) + 1
nm

∑
H

δ|H(gH , f
∗) = ρ(M) + 1

nm

∑
H∈L

δ|H(gH , f
∗) ≤ ρ(M) + |L|

nm
.

By Lemma 14, ρ(M) ≥ (m−2)
4(m−1)

dm−1

nm−1
|L|
nm . Therefore, |L|nm ≤

4(m−1)nm−1

(m−2)dm−1 ρ(M) and so

δ(M) ≤ ρ(M)+ |L|
nm
≤ ρ(M)

(
1 + 4(m− 1)nm−1

(m− 2)dm−1

)
=⇒ ρ(M) ≥ 1

1 + 4(m−1)nm−1

(m−2)dm−1

δ(M) .

Thus, ∀M , ρ(M) ≥ αδ(M), for α = min
(

1
1+ 4(m−1)nm−1

(m−2)dm−1

, m−2
4m

dm

nm

)
. Since m ≥ 3, we

have that 1
1+ 4(m−1)nm−1

(m−2)dm−1

≥ 1
1+8 nm−1

dm−1
≥ dm−1

9nm−1 and m−2
4m

dm

nm ≥ 1
12

dm

nm . Therefore, α ≥

min(dm−1

9nm−1 ,
1

12
dm

nm) = 1
12

dm

nm . J

Acknowledgements. The authors thank Eli Ben-Sasson, Oded Goldreich, and Madhu
Sudan for helpful discussions, and the anonymous referees for their very useful comments.
This work was supported in part by the Center for Long-Term Cybersecurity at UC Berkeley.

References
1 Noga Alon, Tali Kaufman, Michael Krivelevich, Simon Litsyn, and Dana Ron. Testing

Reed-Muller codes. IEEE Transactions on Information Theory, 51(11):4032–4039, 2005.
2 Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: a new characterization

of NP. Journal of the ACM, 45(1):70–122, 1998. Preliminary version in FOCS’92.
3 Sanjeev Arora and Madhu Sudan. Improved low-degree testing and its applications. Com-

binatorica, 23(3):365–426, 2003. Preliminary version appeared in STOC’97.

APPROX/RANDOM’17

39:16 On Axis-Parallel Tests for Tensor Product Codes

4 László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computations
in polylogarithmic time. In Proceedings of the 23rd Annual ACM Symposium on Theory of
Computing, STOC’91, pages 21–32, 1991.

5 László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential time has
two-prover interactive protocols. Computational Complexity, 1:3–40, 1991. Preliminary
version appeared in FOCS’90.

6 Mihir Bellare, Don Coppersmith, Johan Håstad, Marcos A. Kiwi, and Madhu Sudan. Lin-
earity testing in characteristic two. IEEE Transactions on Information Theory, 42(6):1781–
1795, 1996.

7 Michael Ben-Or, Don Coppersmith, Mike Luby, and Ronitt Rubinfeld. Non-abelian homo-
morphism testing, and distributions close to their self-convolutions. Random Structures
and Algorithms, 32(1):49–70, 2008.

8 Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. On the concrete
efficiency of probabilistically-checkable proofs. In Proceedings of the 45th ACM Symposium
on the Theory of Computing, STOC’13, pages 585–594, 2013.

9 Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan.
Robust PCPs of proximity, shorter PCPs, and applications to coding. SIAM Journal on
Computing, 36(4):889–974, 2006.

10 Eli Ben-Sasson and Madhu Sudan. Robust locally testable codes and products of codes.
Random Structures and Algorithms, 28(4):387–402, 2006.

11 Eli Ben-Sasson and Madhu Sudan. Short PCPs with polylog query complexity. SIAM
Journal on Computing, 38(2):551–607, 2008. Preliminary version appeared in STOC’05.

12 Eli Ben-Sasson, Madhu Sudan, Salil Vadhan, and Avi Wigderson. Randomness-efficient
low degree tests and short PCPs via epsilon-biased sets. In Proceedings of the 35th Annual
ACM Symposium on Theory of Computing, STOC’03, pages 612–621, 2003.

13 Eli Ben-Sasson and Michael Viderman. Tensor products of weakly smooth codes are ro-
bust. In Proceedings of the 11th International Workshop on Approximation Algorithms for
Combinatorial Optimization Problems, and of the 12th International Workshop on Random-
ization and Computation, APPROX-RANDOM’08, pages 290–302, 2008.

14 Eli Ben-Sasson and Michael Viderman. Composition of semi-LTCs by two-wise tensor
products. Computational Complexity, 24(3):601–643, 2015.

15 Amey Bhangale, Irit Dinur, and Inbal Livni Navon. Cube vs. cube low degree test. In
Proceedings of the 8th Innovations in Theoretical Computer Science Conference, ITCS’17,
2017.

16 Arnab Bhattacharyya, Swastik Kopparty, Grant Schoenebeck, Madhu Sudan, and David
Zuckerman. Optimal testing of Reed-Muller codes. In Property Testing – Current Research,
pages 269–275, 2010.

17 Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applica-
tions to numerical problems. Journal of Computer and System Sciences, 47(3):549–595,
1993.

18 Don Coppersmith and Atri Rudra. On the robust testability of product of codes, 2005.
ECCC TR05-104.

19 Irit Dinur and Omer Reingold. Assignment testers: Towards a combinatorial proof of the
PCP theorem. In Proceedings of the 45th Annual IEEE Symposium on Foundations of
Computer Science, FOCS’04, pages 155–164, 2004.

20 Irit Dinur, Madhu Sudan, and Avi Wigderson. Robust local testability of tensor products
of LDPC codes. In Proceedings of the 9th International Workshop on Approximation Al-
gorithms for Combinatorial Optimization Problems, and of the 10th International Workshop
on Randomization and Computation, APPROX-RANDOM’06, pages 304–315, 2006.

A. Chiesa, P. Manohar, and I. Shinkar 39:17

21 Oded Goldreich and Or Meir. The tensor product of two good codes is not necessarily
robustly testable. Information Processing Letters, 112(8-9):351–355, 2012.

22 Oded Goldreich and Madhu Sudan. Locally testable codes and PCPs of almost-linear length.
Journal of the ACM, 53:558–655, July 2006. Preliminary version in STOC’02.

23 Johan Håstad. Some optimal inapproximability results. Journal of the ACM, 48(4):798–859,
2001.

24 Swastik Kopparty, Or Meir, Noga Ron-Zewi, and Shubhangi Saraf. High-rate locally-
correctable and locally-testable codes with sub-polynomial query complexity. In Proceedings
of the 48th ACM Symposium on the Theory of Computing, STOC’16, pages 202–215, 2016.

25 T. Kövári, V. T. Sós, and P. Turán. On a problem of Zarankiewicz. Colloquium Mathem-
aticae, 3:50–57, 1954.

26 Or Meir. Combinatorial construction of locally testable codes. SIAM Journal on Computing,
39(2):491–544, 2009. Preliminary version appeared in STOC’08.

27 Dana Moshkovitz and Ran Raz. Sub-constant error low degree test of almost-linear size.
SIAM Journal on Computing, 38(1):140–180, 2008. Preliminary version in STOC’06.

28 Alexander Polishchuk and Daniel A. Spielman. Nearly-linear size holographic proofs. In
Proceedings of the 26th Annual ACM Symposium on Theory of Computing, STOC’94, pages
194–203, 1994.

29 Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP. In Proceedings of the 29th Annual
ACM Symposium on Theory of Computing, STOC’97, pages 475–484, 1997.

30 Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with applic-
ations to program testing. SIAM Journal on Computing, 25(2):252–271, 1996.

31 Paul Valiant. The tensor product of two codes is not necessarily robustly testable. In Pro-
ceedings of the 8th International Workshop on Approximation, Randomization, and Com-
binatorial Optimization, APPROX-RANDOM’05, pages 472–481, 2005.

32 Michael Viderman. A combination of testability and decodability by tensor products. In
Proceedings of the 15th International Workshop on Approximation, Randomization, and
Combinatorial Optimization, APPROX-RANDOM’12, pages 651–662, 2012.

33 Michael Viderman. Strong ltcs with inverse poly-log rate and constant soundness. In
Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer Science,
FOCS’13, pages 330–339, 2013.

34 Jack Keil Wolf. On codes derivable from the tensor product of check matrices. IEEE
Transactions on Information Theory, 11(2):281–284, 1965.

35 Jack Keil Wolf and Bernard Elspas. Error-locating codes – a new concept in error control.
IEEE Transactions on Information Theory, 9(2):113–117, 1963.

A Preliminaries for Theorem 2

A.1 Low-degree polynomials
We will use the following lemmas about low-degree polynomials in the proof of Theorem 2.
These are standard interpolation lemmas, and direct proofs can be found in [28].

I Lemma 15. Let S, T ⊆ F be two sets each of size at least r + 1. Suppose that for
two polynomials Q1(x, y), Q2(x, y) of degree (r, r), if holds that Q1(x, y) = Q1(x, y) for all
(x, y) ∈ (S, T). Then Q1 ≡ Q2.

I Lemma 16. Let S, T ⊆ F be two sets each of size at least r + 1. Suppose that there
is polynomial R(x, y) of degree (r, n), and a polynomial C(x, y) of degree (n, r) such that

APPROX/RANDOM’17

39:18 On Axis-Parallel Tests for Tensor Product Codes

R(x, y) = C(x, y) for all (x, y) ∈ (S, T). Then, there exists a polynomial Q(x, y) of degree
(r, r) such that Q(x, y) = C(x, y) = R(x, y) for all (x, y) ∈ (S, T).

I Corollary 17. Let S, T ⊆ F be two sets each of sizes |S| ≥ r + 2 and |T | ≥ r + 2, and let
(x0, y0) ∈ (S, T). Suppose that there is a polynomial R(x, y) of degree (r, n), and a polynomial
C(x, y) of degree (n, r) such that R(x, y) = C(x, y) for all (x, y) ∈ (S, T) \ {(x0, y0)}. Then
C(x0, y0) = R(x0, y0).

A.2 The Kövári–Sós–Turán theorem
We first define the density of a binary matrix.

I Definition 18. Let A ∈ {0, 1}k×` be a binary matrix. Define the density of A to be

δ(A) =
∑

i∈[k],j∈[`]
Ai,j

k·` . We say that A is τ -dense if δ(A) ≥ τ .

In the proof of Theorem 2 we will use a result due to Kövári, Sós, and Turán [25], which
states that any sufficiently dense binary matrix contains a large submatrix where every entry
is 1.

I Theorem 19 (Kövári, Sós, Turán). Let N,M, t, s be natural numbers that satisfy N ≥ s

and M ≥ t ≥ s, and let A ∈ {0, 1}N×M be a binary matrix. If A is
(

s

√
t−1
M + s

N

)
-dense,

then there are S ⊆ [N] and T ⊆ [M] of sizes |S| = s and |T | = t such that A|S×T ≡ 1.

I Remark. The Kövári–Sós–Turán theorem is usually stated as saying that any sufficiently
dense bipartite graph contains a large bipartite clique. It is clear, however, that the matrix
formulation above is equivalent by associating a bipartite graph with its adjacency matrix,
where the rows correspond to the vertices on the left, and the columns correspond to the
vertices on the right.

B Preliminaries for Theorem 5

B.1 Linear codes
A linear code C over a field F is a linear subspace C of the vector space Fn. Each codeword
w in C is a string of length n, which is the block length of the code. The dimension of the
code dim(C) is the dimension of C as a vector space in Fn. For any two words w and v in Fn,
the Hamming distance between w and v, denoted by ∆(w, v), is the number of indices where
i where wi 6= vi. Formally, ∆(w, v) = |{i ∈ [n] : wi 6= vi}|. The relative distance between
w and v is δ(w, v) = ∆(w, v)/n, which is the fraction of points where w and v disagree.
For any subset S of [n], we will define ∆|S(w, v) to be |{i ∈ S : wi 6= vi}|, which is the
Hamming distance between w and v on the subset S. Similarly, δ|S(w, v) = ∆|S(w, v)/ |S|.
The distance d of a code C is the minimum Hamming distance between any two distinct
codewords of C, i.e. d = d(C) = minw 6=v∈C ∆(w, v). For any w in Fn, the distance from w

to C is defined as ∆(w,C) = minv∈C ∆(w, v), and the relative distance is defined similarly.
For any subset S ⊆ [n], the distance from w to C on S is ∆|S(w,C) = minv∈C ∆|S(w, v).
We will write δ(w) instead of δ(w,C) when the code is clear from the context.

Linear codes have a unique extension property.

I Claim 20 (Unique Extension). Let I be a subset of [n] of size at least n− d+ 1. Let C ′ be
the restriction of the code C to the subset I. Then, for every codeword w ∈ C ′ there exists a
unique v ∈ C such that v|I = w.

A. Chiesa, P. Manohar, and I. Shinkar 39:19

Proof. By definition, for every w in C ′ there must exist at least one v in C such that v|I = w.
Suppose there exists v1 and v2 such that v1|I = v2|I = w. Then v1 and v2 agree on S, so
∆(v1, v2) ≤ n − |I| ≤ d − 1. Since v1 and v2 are codewords, ∆(v1, v2) < d if and only if
v1 = v2. Therefore, the codeword w has a unique extension to C. J

B.2 Tensor product codes
For any linear code C, the 2-wise tensor product of C, denoted by C2 = C ⊗ C is the linear
code in Fn2 , where every codeword M ∈ Fn2 is an n× n matrix whose each row and column
is a codeword of C. The m-wise tensor of C, denoted by Cm, is defined recursively as
Cm−1 ⊗ C. The code Cm has block length nm and distance dm. Furthermore, each f ∈ Cm

can be written as an n× n× · · · × n (m times) matrix where the entries are values in F, and
each axis-parallel line is in C. It is easy to see that f is in Cm if and only if the restriction of
f to any (m− 1)-dimensional axis-parallel hyperplane H is in Cm−1. It is also worth noting
that the fractional distance of the code Cm is (d/n)m, so the fractional distance of the code
decays exponentially in m.

Tensor product codes have a unique extension property that will be used many times in
the proof of Theorem 5.

I Claim 21 (Unique Extension for Tensor Product Codes). Let {Cb}m
b=1 be codes with blocklength

nb and distance db. Let Ib ⊆ [nb] be a set of size at least nb − db + 1, and let C ′b be the
projection of Cb to Ib. Then for every w ∈ C ′ = C ′1 ⊗ · · · ⊗ C ′m, there exists a unique v in
C = C1 ⊗ · · · ⊗ Cm such that v|I1×···×Im = w.

Proof. By Claim 20, for all b ∈ [m] the projection map πb : Cb → C ′b is bijective. We can
extend πb to be a bijective map from the hybrid code C ′1 ⊗ · · · ⊗ C ′b−1 ⊗ Cb ⊗ · · · ⊗ Cm

to C ′1 ⊗ · · · ⊗ C ′b ⊗ Cb+1 ⊗ · · · ⊗ Cm. For any v in the first hybrid code, define πb(v) =
v|I1×···×Ib×nb+1×···×nm

, which is the projection of v to Ib along the bth axis, and the identity
map everywhere else. Clearly, πb is still a bijection, and so the composition of maps
π = πm ◦ πm−1 ◦ · · · ◦ π1 is therefore a bijection from C to C ′, which proves the claim. J

B.3 Locally testable codes and robust tests
A q-query test T for a code C ⊆ Fn is a probabilistic algorithm that, given oracle access to a
word w ∈ Fn, makes q (non-adaptive) queries to w and then accepts or rejects. Informally,
C is locally testable if there is a test T that accepts (with probability 1) whenever w is in C,
and rejects (say with probability at least 0.5) when w is far from C.

The expected local view distance ρT (w) of T on a word w is the average, over the local
views of T , of the distance of w to an accepting view. Instead of analyzing the local testability
of Cm, we will instead consider a stronger notion of local testability called robustness, that
was introduced in [10]. The test T is α-robust if ρT (w) ≥ α · δ(w,C) for every word w ∈ Fn.
The ‘strength’ of the test increases with α, so the goal is to establish the largest α for which
this inequality holds.

B.4 The axis-parallel hyperplane test
I Definition 22. Let C be a linear code, and let Cm be the m-wise tensor of C. The
axis-parallel hyperplane test H for Cm is the test that given a word M ∈ Fnm samples a
random axis-parallel (m− 1)-dimensional hyperplane H and checks if M |H ∈ Cm−1.

APPROX/RANDOM’17

39:20 On Axis-Parallel Tests for Tensor Product Codes

We introduce several observations about the test H that will be useful in the proof of
Theorem 5. Since the hyperplanes sampled by H are axis-parallel, each hyperplane H ⊆ [n]m
must be a set of the form H = {p ∈ [n]m : pb = i}, for some b ∈ [m] and i ∈ [n]. This means
that there are nm hyperplanes in total, and each hyperplane can be specified by the pair
(b, i). We will use (b, i) to refer to the hyperplane {p ∈ [n]m : pb = i}.

For M ∈ Fnm and an axis-parallel hyperplane H in [n]m, we define gH to be the closest
Cm−1 codeword to M |H . If this codeword is not unique, then we break ties by picking an
arbitrary closest codeword. Using this notation, the expected local view distance ρ(M) can
be expressed as

ρ(M) = EH [δ|H(M,Cm−1)] = EH [δ|H(M, gH)] ,

where the expectation is taken over all axis-parallel hyperplanes H.

I Definition 23. The test H is α-robust if ρ(M) ≥ α · δ(M,Cm) for every word M ∈ Fnm ,
where δ(M,Cm) is the relative distance of the word M to the code Cm, and ρ(M) is the
expected local distance of M .

Note that robustness α for the test H is at most 1.

I Lemma 24. The robustness of the axis-parallel hyperplane test H is α ≤ 1.

Proof. Let f be any Cm codeword such that δ(M) = δ(M,f). Then,

δ(M) = δ(M,f) = 1
nm

∑
H

δ|H(M,f) ≥ 1
nm

∑
H

δ|H(M, gH) = ρ(M)

since gH is closer to M |H than f |H , as f |H ∈ Cm−1. Thus α ≤ ρ(M)/δ(M) ≤ 1. J

C Other Results

Here we will prove other results that are incomparable to Theorem 5.
We have already shown in Theorem 5 that H is robust for α ≥ 1

12
(

d
n

)m. Most of the
proof was dedicated to analyzing the test when the set of large degree vertices, L, was less
than (m− 1)d. In this same regime, we can prove an incomparable value for α. Specifically,
we can show that for every M such that |L| < (m− 1)d it holds that ρ(M) ≥ 1

m+c · δ(M),
where c is a constant.

I Claim 25. If |L| < (m − 1)d, then ρ(M) ≥ 1
m+c · δ(M), for c = 32/9. Combining with

Theorem 5, this implies that ρ(M) ≥ max
(

1
m+c ,

1
12
(

d
n

)m
)
· δ(M) when |L| < (m− 1)d.

Proof. Let I be the set of planes that are not in L. By the assumption |L| < (m − 1)d,
we have |I| > (m − 1)(n − d) + n, and thus, by Lemma 11 there exists f ∈ Cm such that
f |H = gH for all H ∈ I.

Let K = {p : ∀H ∈ I, p /∈ H} be the set of points that are not contained in any plane in
I. Writing I = ∪m

b=1Ib, where Ib is the set of planes (b, i) that are in I, it is clear that we
can rewrite K as K = {p : pb /∈ Ib ∀b ∈ [m]}. Therefore,

|K| =
m∏

b=1
(n− |Ib|) ≤

(
n− 1

m

m∑
b=1
|Ib|

)m

= nm

(
1− 1

nm

m∑
b=1
|Ib|

)m

= nm

(
|L|
nm

)m

.

Now, we show that δ(M,f) ≤ (m+ c) · ρ(M). We start by writing δ(M,f) as follows.

δ(M,f) = 1
nm
|{p : M(p) 6= f(p)}| = 1

nm
|{p ∈ K : M(p) 6= f(p)}|+ 1

nm
|{p /∈ K : M(p) 6= f(p)}| .

A. Chiesa, P. Manohar, and I. Shinkar 39:21

The first term is upper bounded by |K|nm , and so it is at most
(
|L|
nm

)m

. In order to bound the
second term, note that for all p /∈ K there exists a plane Hp ∈ I such that p ∈ Hp, and thus,
f(p) = gHp

(p). Therefore,

1
nm
|{p /∈ K : M(p) 6= f(p)}| = 1

nm

∣∣{p /∈ K : M(p) 6= gHp
(p)}

∣∣
≤ 1

nm

∣∣{p ∈ [n]m : M(p) 6= gHp
(p)}

∣∣
≤ 1

nm

∑
p∈[n]m

|{H : p ∈ H,M(p) 6= gH(p)}|

= m · ρ(M) .

This implies that

δ(M,f) ≤
(
|L|
nm

)m

+m · ρ(M)

Next, using the bound |L| < (m− 1)d in the assumption of the claim, as well as the bound
|L|
nm ≤ ρ(M) · 4(m−1)

m−2 ·
nm−1

dm−1 from Lemma 14, we get that

δ(M,f) ≤
(

(m− 1)d
nm

)m−1
·
(
ρ(M) · 4(m− 1)

m− 2 · n
m−1

dm−1

)
+m · ρ(M)

=
((

1− 1
m

)m

· 4m
m− 2 +m

)
· ρ(M) .

For m ≥ 3 we get that δ(M) ≤ (m+ 32/9)ρ(M), as required. J

I Remark. In fact, by a slightly modified argument (writing ρ(M) as the sum over the
intersections of k planes) we can prove that for |L| < (m − 1)d it holds that δ(M) ≤
ρ(M)

(
k + ck

nm−k

dm−k

)
, where ck is a constant for a fixed k ∈ [m]. The proof of Theorem 5

used k = 1.

We can also show that when |L| < (m−1)d, we get a robustness of α = 1 plus an additive
term of d/n. Note that d is the distance of the code, so when d = O(n), the additive term is
not small.

I Claim 26. If |L| < (m− 1)d, then δ(M) ≤ ρ(M) + d/n.

Proof. In the proof of Theorem 5, we showed that if |L| < (m− 1)d, then

δ(M) ≤ ρ(M) + |L|
nm
≤ ρ(M) + (m− 1)d

nm
≤ ρ(M) + d

n
. J

Next, we observe that if C is the Reed–Solomon code (or any code with a similar
interpolation property), then the above holds without the constraint on |L|.

I Claim 27. If C is the Reed–Solomon code, then δ(M) ≤ ρ(M) + d/n unconditionally.

Proof. Define vb =
∑

H=(b,i) ∆|H(M, gH), and without loss of generality assume that v1 ≤
v2 ≤ · · · ≤ vm. Observe that

ρ(M) = 1
nmm

m∑
b=1

vb .

APPROX/RANDOM’17

39:22 On Axis-Parallel Tests for Tensor Product Codes

Let S be any subset of (1, i) planes of size exactly n − d + 1. By m-variate polynomial
interpolation, there exists f in Cm such that f |H = gH for every H in S. Therefore,

δ(M) ≤ δ(M,f) = 1
nm

∑
H=(1,i)

∆|H(M,f) ≤ 1
nm

∑
H∈S

∆|H(M,f) + 1
nm

(n− |S|)nm−1

= 1
nm

∑
H∈S

∆|H(M, gH) + d− 1
n
≤ 1
nm

v1 + d− 1
n

= 1
nmm

(mv1) + d− 1
n

≤ 1
nmm

m∑
b=1

vb + d− 1
n
≤ ρ(M) + d

n
. J

Charting the Replica Symmetric Phase∗

Amin Coja-Oghlan†1, Charilaos Efthymiou‡2, Nor Jaafari3,
Mihyun Kang§4, and Tobias Kapetanopoulos¶5

1 Goethe University, Mathematics Institute, Frankfurt, Germany
acoghlan@math.uni-frankfurt.de

2 Goethe University, Mathematics Institute, Frankfurt, Germany
efthymiou@math.uni-frankfurt.de

3 Goethe University, Mathematics Institute, Frankfurt, Germany
jaafari@math.uni-frankfurt.de

4 Technische Universität Graz, Institute of Discrete Mathematics, Graz, Austria
kang@math.tugraz.at

5 Goethe University, Mathematics Institute, Frankfurt, Germany
kapetano@math.uni-frankfurt.de

Abstract
Random graph models and associated inference problems such as the stochastic block model
play an eminent role in computer science, discrete mathematics and statistics. Based on non-
rigorous arguments physicists predicted the existence of a generic phase transition that separates
a “replica symmetric phase” where statistical inference is impossible from a phase where the
detection of the “ground truth” is information-theoretically possible. In this paper we prove a
contiguity result that shows that detectability is indeed impossible within the replica-symmetric
phase for a broad class of models. In particular, this implies the detectability conjecture for
the disassortative stochastic block model from [Decelle et al.: Phys. Rev. E 2011]. Additionally,
we investigate key features of the replica symmetric phase such as the nature of point-to-set
correlations (‘reconstruction’).

1998 ACM Subject Classification G.2 Discrete Mathematics, G.3 Probability and Statistics

Keywords and phrases Random factor graph, bounds for condensation phase transition, Potts
antiferromagnet, diluted k-spin model, stochastic block model.

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.40

1 Introduction

1.1 The cavity method
Models based on random graphs have come to play a role in combinatorics, probability,
statistics and computer science that can hardly be overstated. For example, the random
k-SAT model is of fundamental interest in computer science [4], the stochastic block model
has gained prominence in statistics [1, 24, 36], low-density parity check codes have become a

∗ A full version of the paper is available at https://arxiv.org/abs/1704.01043.
† The research leading to these results has received funding from the European Research Council under

the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n.
278857–PTCC.

‡ Supported by DFG grant EF 103/1-1.
§ Supported by Austrian Science Fund (FWF): P26826.
¶ Supported by Stiftung Polytechnische Gesellschaft PhD grant.

© Amin Coja-Oghlan, Charilaos Efthymiou, Nor Jaafari, Mihyun Kang, and Tobias Kapetanopoulos;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 40; pp. 40:1–40:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.40
https://arxiv.org/abs/1704.01043
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

40:2 Charting the Replica Symmetric Phase

pillar of modern coding theory [40] and problems such as random graph coloring have been
the lodestars of probabilistic combinatorics since the days of Erdős and Rényi [4, 10, 39].
Additionally, very similar models have been studied in statistical physics as models of
disordered systems [31] and over the past 20 years physicists developed an analytic but
non-rigorous technique for the study of such models called the ‘cavity method’. This non-
rigorous approach has inspired numerous “predictions” with an impact on an astounding
variety of problems (e.g., [15, 31, 33, 42]). Hence the task of putting the cavity method
on a rigorous foundation has gained substantial importance. Despite recent successes (e.g.,
[13, 17, 22, 36, 8, 16, 28]) much remains to be done. In particular, while the cavity method
can be applied almost mechanically to a wide variety of problems, most rigorous arguments
still hinge on model-specific deliberations, a state of affairs that begs the questions of whether
we can rigorise the physics calculations wholesale. This is the thrust of the present paper.

One of the most important predictions of the cavity method is that random graph models
generically undergo a condensation phase transition [27] that separates a “replica symmetric
phase” without extensive long-range correlations from a phase where long-range correlations
prevail. The fact that a phase transition occurs at the location predicted by the cavity
method was recently proved for a fairly broad family of models [13]. However, that result fell
short of establishing the connection to the nature of correlations claimed by the physics work.
We rigorise the entire “physics story” of how correlations evolve up to the condensation phase
transition as predicted in [18, 27, 29], including the nature of long-range correlations and
the onset of point-to-set correlations known as the “reconstruction threshold”. Furthermore,
verifying a prominent prediction from [15], we prove a contiguity statement that has an
impact on statistical inference problems such as the stochastic block model.

The results of this paper cover a wide class of random graph models, even broader than the
family of models for which the condensation threshold was previously derived in [13]. Before
presenting the general results in Section 2, we illustrate their impact on three important
examples: the Potts antiferromagnet on the Erdős-Rényi random graph, the stochastic block
model and the diluted k-spin model.

1.2 The Potts antiferromagnet
Let q ≥ 2 be an integer, let Ω = {1, . . . , q} be a set of q “colors” and let β > 0. The
antiferromagnetic q-spin Potts model on a graph G = (V,E) at inverse temperature β is the
distribution on ΩV defined by

µG,q,β(σ) = (Zq,β(G))−1 ∏
{v,w}∈E

exp(−β1{σ(v) = σ(w)}), (1.1)

where Zq,β(G) =
∑
τ∈ΩV

∏
{v,w}∈E exp(−β1{τ(v) = τ(w)}).

The Potts model can be viewed as a version of the graph coloring problem where
monochromatic edges are not strictly forbidden but merely incur a ‘penality factor’ of
exp(−β). The model has received attention in the context of the complexity of counting
(e.g., [20]).

The Potts model on the random graph G = G(n, p) with vertex set Vn = {x1, . . . , xn}
whose edge set E(G) is obtained by including each of the possible edge with probability
p ∈ [0, 1] independently, has received considerable attention as well (e.g. [5, 12, 14]). The
most challenging case turns out to be that p = d/n for a fixed real d > 0. The key problem
associated with the model is to determine the distribution of the variable lnZβ(G, q, β).

Recently Coja-Oghlan, Krzakala, Perkins and Zdeborová [13] determined the condensation
threshold dcond(q, β). Specifically, this is defined as the smallest value of d where the function

A. Coja-Oghlan, C. Efthymiou, N. Jaafari, M. Kang, and T. Kapetanopoulos 40:3

d 7→ limn→∞
1
nE[lnZβ(G, q, β)] is non-analytic (the existence of the limit was proved by

Bayati, Gamarnik and Tetali [9]). The precise formula for dcond(q, β) is complicated and not
important here, but we recall the explicit Kesten-Stigum bound

dcond(q, β) ≤ dKS(q, β) =
(
q − 1 + e−β

1− e−β

)2

. (1.2)

Moreover, Azuma’s inequality shows that 1
n lnZq,β(G) converges to limn→∞

1
nE[lnZq,β(G)]

in probability, and thus lnZq,β(G) has fluctuations of order o(n). On the other hand, given
that, e.g., the size of the largest component of G exhibits fluctuations of order

√
n even once

we condition on the number |E(G)| of edges, one might expect that so does lnZq,β(G). Yet
remarkably, the following theorem shows that lnZq,β(G) merely has bounded fluctuations
given |E(G)|. In fact, we can determine the precise limiting distribution.

I Theorem 1. Let q ≥ 2, β > 0 and 0 < d < dcond(q, β). With (Kl)l≥3 a sequence of
independent Poisson variables with mean E[Kl] = dl/(2l), let

K =
∞∑
l=3

Kl ln(1 + δl)−
dlδl
2l where δl = (q − 1)

(
e−β − 1

q − 1 + e−β

)l
.

Then E|K| <∞ and as n→∞ the random variable,

lnZq,β(G)−
(
n+ 1

2

)
ln q − |E(G)| ln

(
1− 1− e−β

q

)
+ q − 1

2 ln
(

1 + d(1− e−β)
q − 1 + e−β

)
+ dδ1

2 + d2δ2
4

converges in distribution to K.

Arguably the key element of the physics narrative is that for d < dcond(q, β) the measure
µG,q,β is free from extensive long-range correlations, while such correlations emerge for
d > dcond(q, β). Our next result verifies this conjecture. Formally, we define the overlap of
two colorings σ, τ : Vn → Ω as the probability distribution ρσ,τ = (ρσ,τ (s, t))s,t∈Ω on Ω× Ω
with ρσ,τ (s, t) = |σ−1(s) ∩ τ−1(t)|/n for s, t ∈ Ω. Thus, ρσ,τ (s, t) is the probability that a
random vertex v is colored s under σ and t under τ . Let ρ̄ denote the uniform distribution
on Ω×Ω. We write σ1,σ2 for two independent samples from µG,q,β , denote the expectation
with respect to σ1,σ2 by 〈 · 〉G,q,β and the expectation over the choice of G by E [·].

I Theorem 2. For all q ≥ 2, β > 0 we have

dcond(q, β) = inf
{
d > 0 : lim sup

n→∞
E 〈‖ρσ1,σ2 − ρ̄‖TV〉G > 0

}
.

Theorem 2 implies the absence of extensive long-range correlations in the replica symmetric
phase. Indeed, for two vertices x, y ∈ Vn and s, t ∈ Ω let

µG,x,y(s, t) = 〈1{σ1(x) = s,σ1(y) = t}〉G

be the joint distribution of the spins assigned to x, y. It is known (e.g., [6, Section 2]) that

lim
n→∞

E 〈‖ρσ1,σ2 − ρ̄‖TV〉G = 0 iff lim
n→∞

1
n2

∑
x,y∈Vn

E‖µG,x,y − ρ̄‖TV = 0. (1.3)

APPROX/RANDOM’17

40:4 Charting the Replica Symmetric Phase

Hence, Theorem 2 implies that for d < dcond(q, β), with probability tending to 1, the colors
assigned to two random vertices x, y of G are asymptotically independent. By contrast,
Theorem 2 and (1.3) also show that the same ceases to be true beyond dcond(q, β).

The condensation transition is conjectured to be preceded by another threshold where
certain “point-to-set correlations” emerge [27]. Intuitively, the reconstruction threshold is the
point from where for a random vertex y ∈ Vn correlations between the color assigned to y
and the colors assigned to all vertices at a large enough distance ` from y persist. Formally,
with σ chosen from µG let ∇`,(G, y) be the σ-algebra on ΩVn generated by the random
variables σ(z) with z ranging over all vertices at distance at least ` from y. Then

corr(d) = lim
`→∞

lim sup
n→∞

1
n

∑
y∈Vn

∑
s∈Ω

E
〈∣∣∣〈1{σ(y) = s}

∣∣∇`(G, y)
〉
G, − 1/q

∣∣∣〉
G

(1.4)

measures the extent of correlations between y and a random boundary condition in the limit
`, n→∞ (the outer limit exists due to mononicity). Indeed, with the expectation E [·] in
(1.4) referring to the choice of G, the outer 〈 · 〉G chooses a random coloring of the vertices at
distance at least ` from y and the inner 〈 · |∇`(G, y)〉G averages over the color of y given the
boundary condition.

The reconstruction threshold is defined as drec(q, β) = inf{d > 0 : corrq,β(d) > 0}. A
priori, calculating drec(q, β) appears to be quite challenging because we seem to have to
control the joint distribution of all the colors at distance ` from y. However, according to
physics predictions drec(q, β) is identical to the corresponding threshold on a random tree
[27], conceptually a much simpler object. Formally, let T(d) be the Galton-Watson tree with
offspring distribution Po(d). Let r be its root and for an integer ` ≥ 1 let T`(d) be the finite
tree obtained by deleting all vertices at distance greater than ` from r. Then

corr?(d) = lim
`→∞

∑
s∈Ω

E
〈∣∣∣〈1{σ(r) = s}

∣∣∇`(T`(d), r)
〉
T`(d) − 1/q

∣∣∣〉
T`(d)

measures the extent of correlations between the color of the root and the colors at the
boundary of the tree. Accordingly, the tree reconstruction threshold is defined as d?rec(q, β) =
inf{d > 0 : corr?(d) > 0}. Combining Theorem 2 with a result in [21], we obtain

I Corollary 3. For every q ≥ 2 and β > 0 we have 1 ≤ drec(q, β) = d?rec(q, β) ≤ dcond(q, β).

1.3 The stochastic block model
The disassortative stochastic block model, first introduced in [24], is defined as follows: First
choose a random q-coloring σ∗ : Vn → Ω of n vertices with q ≥ 2 . Then, setting

din = dqe−β

q − 1 + e−β and dout = dq

q − 1 + e−β (1.5)

we generate a random graph G∗ by connecting any two vertices v, w of the same color with
probability din/n and any two with distinct with probability dout/n independently. Thus,
the average degree of G∗ converges to d in probability.

Two fundamental statistical problems arise [15]. First, given q, β, for what values of d is
it possible to perform non-trivial inference, i.e., obtain a better approximation to σ∗ given
the random graph G∗ that just a random guess (see [15] for a formal definition)? A second,
more modest task is the detection problem, which merely asks whether the random graph G∗
can be told apart from the natural “null model”, i.e., the plain Erdős-Rényi graph G.

A. Coja-Oghlan, C. Efthymiou, N. Jaafari, M. Kang, and T. Kapetanopoulos 40:5

Decelle, Krzakala, Moore and Zdeborová [15] predicted that for d < dcond(q, β), i.e.,
below the Potts condensation threshold, it is information-theoretically impossible to solve
either problem. On the other hand, they predicted that there exist efficient algorithms to
solve either problem if d > dKS(q, β) from (1.2). Both of these conjectures were proved
in the case q = 2 by Mossel, Neeman and Sly [37, 38] and Massoulié [30]. The positive
algorithmic conjecture was proved in full by Abbe and Sandon [2]. On the negative side, [13]
shows that no algorithm can infer a non-trivial approximation to σ∗ if d < dcond(q, β) for
any q ≥ 3, β > 0. Further, Banks, Moore, Neeman, and Netrapalli [5] employed a second
moment argument to determine an explicit range of d where it is impossible to discern G∗
from G. However, there remained an extensive gap between their explicit bound and the
actual condensation threshold. Our next result closes this gap and thus settles the conjecture
from [15].

G and G∗ are mutually contiguous for d > 0 if for any sequence (An)n of events we have

lim
n→∞

P [G ∈ An] = 0 iff lim
n→∞

P [G∗ ∈ An] = 0.

If so, then clearly no algorithm (efficient or not) can discern with probability 1−o(1) whether
a given graph stems from the stochastic block model G∗ or the “null model” G.

I Theorem 4. For all q ≥ 3, β > 0, d < dcond(q, β) the models G and G∗ are mutually
contiguous.

This result is tight since [13, Theorem 2.6] implies that G,G∗ fail to be contiguous for
d > dcond(q, β).
I Remark. There is a similar conjecture regarding the assortative version of the stochastic
block model, which can be seen as an inference version of the ferromagnetic Potts model.
However, the assortative block model, and ferromagnetic models generally, are beyond the
scope of the present work as such models violate one of the key technical assumptions that
our proofs require (condition POS and BAL below).

1.4 The diluted k-spin model
Our third application deals with a model that is of fundamental interest in physics [23, 31, 34].
For integers k ≥ 2, n ≥ 1 and a real p ∈ [0, 1] let H = Hk(n, p) be the random k-uniform
hypergraph on Vn = {x1, . . . , xn} whose edge set E(H) is obtained by including each of the

(
n
k

)
possible k-subsets of Vn with probability p independently. Additionally, let J = (Je)e∈E(H) be
a family of independent standard Gaussians. The k-spin model on H at inverse temperature
β > 0 is the distribution on the set {−1, 1}Vn defined by

µH,J,β(σ) = 1
Zβ(H,J)

∏
e∈E(H)

exp
(
βJe

∏
y∈e

σ(y)
)
, (1.6)

where Zβ(H,J) =
∑
τ∈{±1}Vn

∏
e∈E(H) exp

(
βJe

∏
y∈e τ(y)

)
.

The most interesting and at the same time most challenging scenario arises in the case of
a sparse random hypergraph [32]. Specifically, set p = d/

(
n−1
k−1
)
for a fixed d > 0.

Guerra and Toninelli [23] determined the condensation threshold in the special case where
k = 2 but noticed that their argument does not extend to k ≥ 3. Proving a conjecture
from [19], the following theorem pinpoints the condensation thereshold for all k ≥ 3.

Let us write P(X) for the set of all probability distributions on a finite set X and
identify P(X) with the standard simplex in RX . Moreover, let P2(X) be the space of all

APPROX/RANDOM’17

40:6 Charting the Replica Symmetric Phase

probability measures on P(X) and let P2
∗ (X) be the space of all π ∈ P2(X) whose barycenter∫

P(X) µdπ(µ) is the uniform distribution on X . Finally, let Λ(x) = x ln x.

I Theorem 5. Suppose that d > 0, β > 0 and that k ≥ 3. Let γ be a Poisson variable with
mean d, let I1, I2, . . . be standard Gaussians and for π ∈ P2

∗ ({±1}) let ρπ1 ,ρπ2 , . . . ∈ P({±1})
be random variables with distribution π, all mutually independent. Define

Bk−spin(d, β, π)

= 1
2E

Λ

 ∑
σk∈{±1}

γ∏
j=1

∑
σ1,...,σk−1∈{±1}

(1 + tanh(βIjσ1 · · ·σk))
k−1∏
h=1

ρπkj+h(σh)

−d
k
E

Λ

1 +
∑

σ1,...,σk{±1}

tanh(βI1σ1 · · ·σk)
k∏
h=1

ρπh(σh)

 .
and dcond(k, β) = inf{d > 0 : supπ∈P2

∗({1,−1}) Bk−spin(d, β, π) > ln 2}. Then 0 < dcond(k, β) <
∞ and

lim
n→∞

1
n
E[lnZβ(H,J)]

{
= ln 2 + d√

2πk

∫∞
−∞ ln(cosh(z)) exp(−z2/2)dz if d ≤ dcond(k, β),

< ln 2 + d√
2πk

∫∞
−∞ ln(cosh(z)) exp(−z2/2)dz if d > dcond(k, β).

As in the Potts model, the condensation threshold is conjectured to be related to the
nature of correlations under µH,J,β . The following theorem proves this conjecture for even
values of k. We recall the overlap notation from Section 1.2.

I Theorem 6. For all β > 0 and k ≥ 4 even, it holds that

dcond(k, β) = inf
{
d > 0 : lim sup

n→∞
E
〈
‖%σ1,σ2 − ρ̄‖TV

〉
H,β > 0

}
.

The corresponding statement for k = 2 was proved by Guerra and Toninelli, but they point
out that their argument does not extend to larger k [23]. Furthermore, arguing as for the
Potts model, we get that E〈‖ρσ1,σ2 − ρ̄‖TV〉H = o(1) iff the spins of two randomly chosen
vertices of H are asymptotically independent with probability tending to one.

2 Main results

2.1 Definitions and assumptions
Factor graphs have emerged as a unifying framework for a multitude of problems. The main
results of this paper, which we present in this section, therefore deal with a general class of
random factor graph models, subject merely to a few easy-to-check assumptions. Formally, let
Ω be a finite set of spins, let k ≥ 2 be an integer and let Ψ be a set of functions ψ : Ωk → (0, 2)
that we call weight functions. A Ψ-factor graph G = (V, F, (∂a)a∈F , (ψa)a∈F) consists of a set
V of variable nodes, a set F of constraint nodes, an ordered k-tuple ∂a = (∂1a, . . . , ∂ka) ∈ V k
for each a ∈ F and a weight function ψa ∈ Ψ for each a ∈ F . We can picture G as a bipartite
graph with variable nodes on one side and constraint nodes on the other in which each
constraint node a is adjacent to ∂1a, . . . , ∂ka and adorned with a weight function ψa. This
allows us to speak of, e.g., the distance of two nodes. But we keep in mind that actually the
neighborhood ∂a is an ordered tuple. The Gibbs distribution of G is the distribution on ΩV
defined by µG(σ) = ψG(σ)/Z(G) for σ ∈ ΩV , where

ψG(σ) =
∏
a∈F

ψa(σ(∂1a), . . . , σ(∂ka)) and Z(G) =
∑
τ∈ΩV ψG(τ).

A. Coja-Oghlan, C. Efthymiou, N. Jaafari, M. Kang, and T. Kapetanopoulos 40:7

For a weight function ψ : Ωk → (0, 2) and a permutation θ : [k] → [k] we define
ψθ : Ωk → (0, 2), (σ1, . . . , σk) 7→ ψ(σθ(1), . . . , σθ(k)). Throughout the paper we assume that
Ψ is a measurable set of weight functions such that for all ψ ∈ Ψ and all permutations θ we
have ψθ ∈ Ψ. Moreover, we fix a probability distribution P on Ψ. We always denote by ψ
an element of Ψ chosen from P , and we set

q = |Ω| and ξ = ξ(P) = q−k
∑
σ∈Ωk E[ψ(σ)].

Furthermore, we always assume that P is such that the following three inequalities hold:

E[ln8(1−max{|1−ψ(τ)| : τ ∈ Ωk})] < ∞,
E[max{ψ(τ)−4 : τ ∈ Ωk}] < ∞,∑

τ∈Ωk

E[(ψ(τ)− ξ)2] > 0.
(2.1)

The first two bound the ‘tails’ of ψ(τ) for τ ∈ Ωk. The third one provides that ψ is
non-constant.

We define the random Ψ-factor graph G(n,m,P) as follows. The set of variable nodes is
Vn = {x1, . . . , xn}, the set of constraint nodes is Fm = {a1, . . . , am} and the neighborhoods
∂ai ∈ V kn are chosen uniformly and independently for i = 1, . . . ,m. Furthermore, the
weight functions ψai ∈ Ψ are chosen from the distribution P mutually independently and
independently of (∂ai)i=1,...,m. Where P is apparent we just write G(n,m) rather than
G(n,m,P). For a fixed d > 0, i.e. independent of n, let m = md(n) have distribution
Po(dn/k) and write G = G(n,m, P) for brevity. Then the expected degree of a variable
node is equal to d.

Apart from the condition (2.1) the main results require (some of) the following four
assumptions; crucially, they only refer to the distribution P on the set Ψ of weight functions.

SYM. For all i ∈ {1, . . . , k}, ω ∈ Ω and ψ ∈ Ψ we have∑
τ∈Ωk 1{τi = ω}ψ(τ) = qk−1ξ (2.2)

and for every permutation θ and every measurable A ⊂ Ψ we have that P (A) = P ({ψθ :
ψ ∈ A}).

BAL. The function

φ : µ ∈ P(Ω) 7→
∑
τ∈Ωk E[ψ(τ)]

∏k
i=1 µ(τi)

is concave and attains its maximum at the uniform distribution on Ω.
MIN. Let R(Ω) be the set of all probability distribution ρ = (ρ(s, t))s,t∈Ω on Ω × Ω such

that
∑
s∈Ω ρ(s, t) =

∑
s∈Ω ρ(t, s) = q−1 for all t ∈ Ω. The function

ρ ∈ R(Ω) 7→
∑
σ,τ∈Ωk E[ψ(σ)ψ(τ)]

∏k
i=1 ρ(σi, τi)

has the uniform distribution on Ω× Ω as its unique global minimizer.
POS. For all π, π′ ∈ P2

∗ (Ω) the following is true. With ρ1,ρ2, . . . chosen from π, ρ′1,ρ′2, . . .
chosen from π′ and ψ ∈ Ψ chosen from P , all mutually independent, we have

0 ≤ E

[
Λ
(∑
τ∈Ωk

ψ(τ)
∏
i∈[k]

ρi(τi)
)]

+ (k − 1)E
[

Λ
(∑
τ∈Ωk

ψ(τ)
∏
i∈[k]

ρ′i(τi)
)]

−E

[
kΛ
(∑
τ∈Ωk

ψ(τ)ρ1(τ1)
∏

i∈[k]\{1}
ρ′i(τi)

)]
.

(2.3)

APPROX/RANDOM’17

40:8 Charting the Replica Symmetric Phase

Conditions similar to SYM, BAL and POS appeared in [13], too. The upshot is that
all four conditions can be checked solely by inspecting the distribution P on weight functions,
and this is not normally difficult. For a more detailed discussion of these conditions see the
full version of this paper in [11].

It is not difficult to cast the Potts antiferromagnet and the k-spin model as factor graph
models. For the Potts model we let k = 2 and we merely introduce a single weight function
ψq,β(σ, τ) = exp(−β1{σ = τ}). The four conditions SYM, BAL, POS and MIN are easily
verified. For the k-spin model we need infinitely many weight functions, one for each J ∈ R,
defined by ψJ,β(σ1, . . . , σk) = 1 + tanh(Jβ)σ1 · · ·σk, and P is the distribution of ψJ,β with
J a standard Gaussian. The conditions SYM, BAL and POS hold for this model for any k
and MIN is satisfied for even k.

2.2 Results
We proceed with the results on the condensation phase transition, the limiting distribution
of the free energy, the overlap, the reconstruction and the detection thresholds for general
random factor graph models.

I Theorem 7. Assume that P satisfies SYM, BAL and POS and let d > 0. With γ a
Po(d)-random variable, ρπ1 ,ρπ2 , . . . chosen from π ∈ P2

∗ (Ω) and ψ1,ψ2, . . . ∈ Ψ chosen from
P , all mutually independent, let

B(d, P, π) = E

[
1
qξγ Λ

(∑
σ∈Ω

∏
i∈[γ]

∑
τ∈Ωk

1{τk = σ}ψi(τ)
∏

j∈[k−1]
ρπki+j(τj)

)]

−d(k−1)
kξ E

[
Λ
(∑
τ∈Ωk

ψ1(τ)
∏
i∈[k]

ρπj (τj)
)] (2.4)

and let dcond = inf
{
d > 0 : supπ∈P2

∗(Ω) B(d, P, π) > ln q + d
k ln ξ

}
. Then 1/(k−1) ≤ dcond <

∞ and

lim
n→∞

1
n
E[lnZ(G)]

{
= ln q + d

k ln ξ if d ≤ dcond,

< ln q + d
k ln ξ if d > dcond.

Theorem 7 generalizes [13, Theorem 2.7], which requires that the set Ψ of weight functions
be finite (and thus does not cover the k-spin model).

Admittedly the formula for dcond provided by Theorem 7 is neither very simple nor very
explicit, but we are not aware of any reason why it ought to be. Yet there is a natural
generalization of the Kesten-Stigum bound from (1.2) that provides an easy-to-compute
upper bound on dcond in terms of the spectrum of a certain linear operator. The operator is
constructed as follows. For ψ ∈ Ψ let Φψ ∈ RΩ×Ω be the matrix with entries

Φψ(ω, ω′) = q1−kξ−1∑
τ∈Ωk 1{τ1 = ω, τ2 = ω′}ψ(τ) (ω, ω′ ∈ Ω) (2.5)

and let Ξ = ΞP be the linear operator on the q2-dimensional space RΩ ⊗ RΩ defined by

Ξ = ΞP = E[Φψ ⊗ Φψ]. (2.6)

Furthermore, letting E = {z ∈ Rq ⊗ Rq : ∀y ∈ Rq : 〈z,1⊗ y〉 = 〈z, y ⊗ 1〉 = 0}, with 1 denot-
ing the vector with all entries equal to one, we introduce

dKS =
(

(k − 1) max
x∈E:‖x‖=1

〈Ξx, x〉
)−1

, (2.7)

with the convention that dKS =∞ if maxx∈E:‖x‖=1 〈Ξx, x〉 = 0.

A. Coja-Oghlan, C. Efthymiou, N. Jaafari, M. Kang, and T. Kapetanopoulos 40:9

I Theorem 8. If P satisfies SYM and BAL, then dcond ≤ dKS.

We shall see in Section 3 that Ξ is related to the “broadcasting matrix” of a suitable
Galton-Watson tree, which justifies referring to dKS as a generalized version of the classical
Kesten-Stigum bound from [26]. While this bound is not generally tight, it plays a major
conceptual role, as will emerge in due course.

Theorem 7 easily implies that n−1 lnZ(G) converges to ln q + d
k ln ξ in probability if

d < dcond. Yet due to the scaling factor of 1/n this is but a rough first order approximation.
The next theorem, arguably the principal achievement of the paper, yields the exact limiting
distribution of the unscaled free energy lnZ(G) in the entire replica symmetric phase.
Recalling (2.5), let the Ω× Ω-matrix

Φ = ΦP = E[Φψ]. (2.8)

I Theorem 9. Assume that P satisfies SYM, BAL, POS and MIN and that 0 < d < dcond.
Let (Kl)l≥1 be a family of Poisson variables with means E[Kl] = 1

2l (d(k − 1))l and let
(ψl,i,j)l,i,j≥1 be a sequence of samples from P , all mutually independent. Then the random
variable

K =
∑∞
l=1

[
(d(k−1))l

2l
(
1− tr(Φl)

)
+
∑Kl

i=1 ln tr
∏l
j=1 Φψl,i,j

]
(2.9)

satisfies E|K| <∞ and we have the following convergence in distribution:

lnZ(G)−
(
n+ 1

2
)

ln q −m ln(ξ) + 1
2
∑
λ∈Eig(Φ)\{1} ln(1− d(k − 1)λ) n→∞−→ K.

(2.10)

Let ρ̄ be the uniform distribution on Ω× Ω, while for σ, τ ∈ ΩVn we defined the overlap
ρσ,τ such that ρσ,τ (ω, ω′) = |σ−1(ω) ∩ τ−1(ω′)|/n. The following theorem confirms one of
the core tenets of the physicists’ cavity method, namely the absence of extensive long-range
correlations for d < dcond.

I Theorem 10. If SYM, BAL, POS , MIN hold, then it holds that

dcond = inf
{
d > 0 : lim sup

n→∞
E 〈‖ρσ,τ − ρ̄‖TV〉G > 0

}
.

The condensation phase transition is generally preceded by another threshold where
certain point-to-set correlations emerge, the reconstruction threshold [27]. Indeed, the
quantity corr(d) as defined in (1.4) generalises naturally to any random factor graph model.
Further, we can easily construct a mulit-type Galton-Watson tree T (d, P) that mimics the
local geometry of a random factor graph G. Its types are variable and constraint nodes, each
of the latter endowed with a weight function ψ ∈ Ψ. The root is a variable node r. The
offspring of a variable node is a Po(d) number of constraint nodes whose weight functions are
chosen from P independently. Moreover, the offspring of a constraint node is k − 1 variable
nodes. For an integer ` ≥ 0 we let T `(d, P) denote the (finite) tree obtained from T (d, P) by
deleting all variable nodes at distance greater than 2` from r. We set

corr?(d) = lim
`→∞

∑
s∈Ω E

〈∣∣∣∣〈1{σ(r) = s}
∣∣∇`(T `(d, P), r)

〉
T `(d,P)

− 1/q
∣∣∣∣〉
T `(d,P)

. (2.11)

The tree reconstruction threshold is defined as d?rec = inf{d > 0 : corr?(d) > 0}.

I Theorem 11. If P satisfies SYM, BAL, POS and MIN, then 0 < drec = d?rec ≤ dcond.

APPROX/RANDOM’17

40:10 Charting the Replica Symmetric Phase

Theorem 11 generalises results from [21, 35]. For further discussion see the full version [11].
Finally, there is a natural statistical inference version of the random factor graph model,

the teacher-student model [42], a generalisation of the stochastic block model. The model is
defined as follows.

TCH1 an assignment σ∗ : Vn → Ω, the ground truth, is chosen uniformly at random.
TCH2 independently of σ∗, draw m = md(n) from the Poisson distribution with mean

dn/k.
TCH3 generate G∗ with factor nodes a1, . . . , am by choosing the neighborhoods ∂aj and

the weight functions ψaj
from the distribution

P
[
∂aj = (y1, . . . , yk), ψaj ∈ A

]
∝ E[1{ψ ∈ A}ψ(σ(y1), . . . , σ(yk))], (2.12)

independently for i = 1, . . . ,m.

As in the case of the stochastic block model, the detection problem arises: given a factor
graph G, for what d is it possible to discern whether G was chosen from the model G∗ or
from the “null model” G? The following theorem shows that the detection threshold is
always given by dcond.

I Theorem 12. If P satisfies SYM, BAL, POS and MIN, then G,G∗ are mutually
contiguous for all d < dcond, while G,G∗ fail to be mutually contiguous for d > dcond.

The disassortative stochastic block model and the teacher-student model G∗ are known
to be mutually contiguous [13] and thus Theorem 4 follows from Theorem 12.

3 Proof strategy

The apex of the present work is Theorem 9 about the limiting distribution of the free energy;
all the other results follow from it almost immediately. For such a result the usual approach
would be the second moment method, pioneered by Achlioptas and Moore [3], in combination
with the small subgraph conditioning technique of Robinson and Wormald [25, 41]. However,
this approach does not generally allow for tight results (in particular, it typically stops
working well below the condensation threshold).

We craft a proof around the teacher-student model G∗ instead. Specifically, the main
achievement of the recent paper [13] was to verify the cavity formula for the leading order
lim
n→∞

1
nE[lnZ(G∗)] of the “free energy” lnZ(G∗) (in the case that the set Ψ is finite). We will

replace the second moment calculation by that free energy formula, generalized to infinite
Ψ, and combine it with a suitably generalized small subgraph conditioning technique. The
challenge is to integrate these two components seamlessly. We accomplish this by realizing
that, remarkably, both arguments are inherently and rather elegantly tied together via the
spectrum of the linear operator Ξ from (2.6). But to develop this novel approach we first
need to recall the classical second moment argument and understand why it founders.

3.1 Two moments do not suffice
For any second moment calculation it is crucial to fix the number of constraint nodes as
otherwise its fluctuations would boost the variance. Hence, we will work with an integer
sequence m = m(n) ≥ 0. We fix d > 0 and consider specific integer sequences m = m(n) ≥ 0
such that |m(n)− dn/k| ≤ n3/5 for all n. LetM(d) be the set of all such sequences.

A. Coja-Oghlan, C. Efthymiou, N. Jaafari, M. Kang, and T. Kapetanopoulos 40:11

The second moment method rests on showing that E[Z(G(n,m))2] = O(E[Z(G(n,m))]2).
If this is the case, then from Azuma’s inequality we get that limn→∞ n−1E[lnZ(G(n,m))] =
limn→∞ n−1 lnE[Z(G(n,m))]. The second limit is easy to compute because the expecta-
tion sits inside the logarithm, and thus we obtain the leading order of the “free energy”
lnZ(G(n,m)). In fact, if we can calculate the second moment E[Z(G(n,m))2] sufficiently
accurately, then it may be possible to determine the limiting distribution of lnZ(G(n,m))
precisely. Suppose that there is a sufficiently simple random variable Q(G(n,m)) such that

Var[Z(G(n,m))] = (1 + o(1))Var[E[Z(G(n,m))|Q(G(n,m))]]. (3.1)

The formula

Var[Z(G(n,m))] = Var[E[Z(G(n,m))|Q(G(n,m))]] + E[Var[Z(G(n,m))|Q(G(n,m))]]

implies

E[Var[Z(G(n,m))|Q(G(n,m))]] = o(E[Z(G(n,m))]2) (3.2)

and it is not difficult to deduce from (3.2) that lnZ(G(n,m))− lnE[Z(G(n,m))|Q(G(n,m))]
converges to 0 in probability. Hence, we get the limiting distribution of lnZ(G(n,m)) if
Q(G(n,m)) is simple enough so that the law of lnE[Z(G(n,m))|Q(G(n,m))] is easy to
express. The basic insight behind the small subgraph conditioning technique is that (3.1)
sometimes holds with a variable Q that is determined by the statistics of bounded-length
cycles in G(n,m) [25, 41].

Anyhow, the crux of the entire argument is to calculate E[Z(G(n,m))2]. Stirling’s formula
yields the following approximation of E[Z(G(n,m))2] in terms of the overlaps:

lnE[Z(G(n,m))2] = max
ρ∈P(Ω2)

nH(ρ) +m ln
(∑
s,t∈Ωk

E[ψ(s)ψ(t)]
∏
i∈[k]

ρ(si, ti)
)

+O(lnn),

(3.3)

where H(ρ) denotes the entropy of ρ. Hence, computing the second moment comes down
to identifying the overlap ρ that renders the dominant contribution to the second moment.
Indeed, the second moment bound E[Z(G(n,m))2] = O(E[Z(G(n,m))]2) holds if and only if
the maximum (3.3) is attained at the uniform overlap ρ̄. However, this is not generally true
for d below but near the condensation threshold.

This problem was noticed and partly remedied in prior work by applying the second
moment method to a suitably truncated random variable (e.g. [7, 12]). This method revealed,
e.g., the condensation threshold in a few special cases such as the random graph q-coloring
problem [7] and the random regular k-SAT model, albeit only for large q and k. Yet apart
from introducing such extraneous conditions, arguments of this kind require a meticulous
combinatorial study of the specific model.

3.2 The condensation phase transition and the overlap
The merit of the present approach is that we avoid combinatorial deliberations altogether.
Instead we employ an asymptotic formula for E[lnZ(G∗)] for the teacher-student model G∗.

I Theorem 13. If P satisfies SYM, BAL and POS and d > 0, then with B(d, P, π) from
(2.4) we have lim

n→∞
n−1E[lnZ(G∗)] = sup

π∈P2
∗(Ω)
B(d, P, π).

APPROX/RANDOM’17

40:12 Charting the Replica Symmetric Phase

Theorem 13 was established in [13] for a set Ψ of weight functions that is finite and the proof
of Theorem 13 is based on a limiting argument.

We deduce the following result from Theorem 13 by observing that ∂
∂d lnZ(G∗) can be

expressed in terms of the overlap. Let G∗(n,m) be the teacher-student model with a fixed
number m of constraint nodes.

I Proposition 14. Assume that BAL, SYM, POS and MIN hold and that d < dcond.
There exists a sequence ζ = ζ(n), ζ(n) = o(1) but n1/6ζ(n)→∞ as n→∞, such that for
all m ∈M(d) we have

E
〈
‖ρσ1,σ2 − ρ̄‖TV

〉
G∗(n,m) ≤ ζ

2. (3.4)

Proposition 14 resolves our second moment troubles. Indeed, it enables a generic way of
setting up a ‘truncated’ random variable: with ζ from Proposition 14 we define

Z(G) = Z(G)1
{〈
‖ρσ1,σ2 − ρ̄‖TV

〉
G
≤ ζ
}
. (3.5)

Hence, Z(G) = Z(G) if “most” pairs σ1,σ2 drawn from µG have overlap close to ρ̄, and
Z(G) = 0 otherwise. Since up to contiguity the teacher-student model G∗(n,m) corresponds
to a reweighted version of the random factor graph model G(n,m) where each graph G is
weighted according to its partition function Z(G), Proposition 14 shows immediately that
this truncation does not diminish the first moment.

I Corollary 15. If BAL, SYM, POS and MIN hold and d < dcond, then E[Z(G(n,m))] ∼
E[Z(G(n,m))] uniformly for all m ∈M(d).

The second moment calculation for Z is easy, too. Indeed, the very construction (3.5) of
Z guarantees that the dominant contribution to the second moment of Z comes from pairs
with an overlap close to ρ̄. Hence, computing the second moment comes down to expanding
the right hand side of (3.3) around ρ̄ via the Laplace method. Yet in order to do so we need
to verify that ρ̄ is a local maximum of the function

ρ ∈ P(Ω2) 7→ H(ρ) + d

k
ln
∑
s,t∈Ωk

E[ψ(s)ψ(t)]
k∏
i=1

ρ(si, ti) (3.6)

from (3.3). For the special case of the Potts antiferromagnet the overlap concentration (3.4)
was established and the second moment argument for Z was carried out in [13]. While the
generalization to random factor graph models is anything but straightforward, an even more
important difference lies in the application of the Laplace method. But of course there ought
to be a general, conceptual explanation. As we shall see momentarily, there is one indeed,
namely the generalized Kesten-Stigum bound.

3.3 The Kesten-Stigum bound
To see the connection, we observe that the Hessian of (3.6) at the point ρ̄ is equal to
q(id− d(k − 1)Ξ), where Ξ us the matrix from (2.6). Hence, taking into account that the
argument ρ is a probability distribution on Ω×Ω, we find that ρ̄ is a local maximum of (3.6)
if and only if

〈(id− d(k − 1)Ξ)x, x〉 > 0 for all x ∈ Rq ⊗ Rq such that x ⊥ 1⊗ 1. (3.7)

In order to get a handle on the spectrum of the operator Ξ from (2.6) we begin with the
following observation about the matrices Φψ and Φ from (2.5) and (2.8).

A. Coja-Oghlan, C. Efthymiou, N. Jaafari, M. Kang, and T. Kapetanopoulos 40:13

I Lemma 16. Let P satisfy SYM. Then the matrix Φψ is stochastic and thus Φψ1 = 1 for
every ψ ∈ Ψ. Moreover, Φ is symmetric and doubly-stochastic. If, additionally, P satisfies
BAL, then maxx⊥1 〈Φx, x〉 ≤ 0.

Proceeding to the operator Ξ, we recall the definition of E from (2.7) and we introduce

E ′ = {x ∈ Rq ⊗ Rq : 〈x,1⊗ 1〉 = 0} ⊃ E . (3.8)

I Lemma 17. Assume that P satisfies SYM, BAL. The operator Ξ is self-adjoint, Ξ(1⊗1) =
1⊗ 1 and for every x ∈ Rq we have Ξ(x⊗ 1) = (Φx)⊗ 1, Ξ(1⊗ x) = 1⊗ (Φx) and

〈Ξ(x⊗ 1), x⊗ 1〉 ≤ 0, 〈Ξ(1⊗ x),1⊗ x〉 ≤ 0 if x ⊥ 1. (3.9)

Furthermore, ΞE ⊂ E and ΞE ′ ⊂ E ′.

Lemma 17 shows that Ξ induces a self-adjoint operator on the space E .
The following proposition yields a bound on the spectral radius of this operator. Let

Eig∗(Ξ) = {λ ∈ R : ∃x ∈ E \ {0} : Ξx = λx} .

I Proposition 18. If P satisfies SYM and BAL, then dcond(k − 1) maxλ∈Eig∗(Ξ) |λ| ≤ 1.

The proof of Proposition 18 is based on establishing an inherent connection between the
spectrum of Ξ and the Bethe free energy functional B from (2.4). Specifically, we use the
eigenvector of Ξ to construct a candidate maximum of the functional B. Theorem 8 is
immediate from Proposition 18.

Lemma 17 and Proposition 18 show that (3.7) is satisfied, and thus that ρ̄ is a local max-
imum of (3.6), for all d < dcond. Indeed, it is immediate from (3.9) that 〈(id− d(k − 1)Ξ)x, x〉 >
0 if x is of the form 1 ⊗ y or y ⊗ 1 for some 1 ⊥ y ∈ Rq, and Theorem 8 shows that
〈(id− d(k − 1)Ξ)x, x〉 > 0 for all x ∈ E . Hence, Proposition 18 links the free energy calcula-
tion for G∗ with the second moment of Z.

3.4 Second moment redux
Observe that by Lemma 16 the set Eig (Φ) of eigenvalues of Φ contains precisely one non-
negative element, namely 1. Therefore, the following formula makes sense.

I Proposition 19. Suppose that P satisfies SYM and BAL and let 0 < d. Then uniformly
for all m ∈M(d),

E[Z(G(n,m))] ∼ qn+ 1
2 ξm∏

λ∈Eig(Φ)\{1}
√

1− d(k − 1)λ
. (3.10)

Proceeding to the second moment, we recall from Lemma 17 that Ξ induces an endomorphism
on the subspace E ′ from (3.8) and for the spectrum of Ξ on E ′ we write

Eig′(Ξ) = {λ ∈ R : ∃x ∈ E ′ \ {0} : Ξx = λx}.

Lemma 17 and Proposition 18 imply that dcond(k − 1)λ ≤ 1 for all λ ∈ Eig′(Ξ). Therefore,
the following formula for the second moment makes sense, too.

I Proposition 20. If P satisfies SYM and BAL and let 0 < d < dcond. Then uniformly
for all m ∈M(d),

E[Z(G(n,m))2] ≤ (1 + o(1))q2n+1ξ2m∏
λ∈Eig′(Ξ)

√
1− d(k − 1)λ

. (3.11)

APPROX/RANDOM’17

40:14 Charting the Replica Symmetric Phase

Combining Corollary 15 with Propositions 19 and 20 and applying Lemma 17, we obtain for
m ∈M(d),

E[Z(G(n,m))2]
E[Z(G(n,m))]2 ∼

∏
λ∈Eig(Φ)\{1} 1− d(k − 1)λ∏
λ∈Eig′(Ξ)

√
1− d(k − 1)λ

=
∏

λ∈Eig∗(Ξ)

1√
1− d(k − 1)λ

if d < dcond.

(3.12)

In particular, the ratio of the second moment and the square of the first is bounded as
n→∞.

3.5 Virtuous cycles
In order to determine the limiting distribution of lnZ(G(n,m)) we are going to “explain”
the remaining variance of Z(G(n,m)) in terms of the statistics of the bounded-length cycles
of G(n,m). However, by comparison to prior applications of the small subgraph conditioning
technique, here it does not suffice to merely record how many cycles of a given length occur.
We also need to take into account the specific weight functions along the cycle. Yet this
approach is complicated substantially by the fact that there may be infinitely many different
weight functions. To deal with this issue we are going to discretize the set of weight functions
and perform a somewhat delicate limiting argument.

For integer ` > 0, E1, . . . , E` ⊂ Ψ and s1, t1, . . . , s`, t` ∈ {1, . . . , k} a signature of order `
is a family

Y = (E1, s1, t1, E2, s2, t2, . . . , E`, s`, t`)

such that si 6= ti for all i ∈ {1, . . . , `} and s1 < t1 if ` = 1. We let Y be the set of all
signatures.

For a factor graph G we call a family (xi1 , ah1 , . . . , xi` , ah`
) a cycle of signature Y in G

if the following holds: All i1, . . . , i` ∈ {1, . . . , n} are pairwise distinct, the same holds for
h1, . . . , h` ∈ {1, . . . ,m}. We impose an orientation on how we traverse the cycle, i.e. we start
from xi1 and we traverse towards the constraint node with the smaller index or s1 < t1 if
` = 1. For this reason we require i1 = min{i1, . . . , i`}, while h1 < h` if ` > 1. The weight
functions along the cycle belong to E1, . . . , E`, i.e. ψahj

∈ Ej , for j = 1, . . . , `. Finally, we
require that the cycle enters the jth constraint node in position sj and leaves in position tj .

Let CY (G) denote the number of cycles of signature Y . Moreover, for an event A ⊂ Ψ
with P (A) > 0 and h, h′ ∈ {1, . . . , k} define the q × q matrix ΦA,h,h′ by letting

ΦA,h,h′(ω, ω′) = q1−kξ−1
∑
τ∈Ωk

1{τh = ω, τh′ = ω′}E[ψ(τ)|A] (ω, ω′ ∈ Ω). (3.13)

In addition, for a signature Y = (E1, s1, t1, . . . , E`, s`, t`) define

κY = 1
2`

(
d

k

)` ∏̀
i=1

P (Ei), ΦY =
∏̀
i=1

ΦEi,si,ti , κ̂Y = κY tr(ΦY). (3.14)

A cycle of order ` is a family (xi1 , ah1 , . . . , xi` , ah`
) of signature (Ψ, s1, t1, . . . ,Ψ, s`, t`)

for some sequence s1, t1, . . . , s`, t`, and we let C` signify the number of such cycles. Finally,
two signatures Y = (E1, s1, t1, . . . , E`, s`, t`), Y ′ = (E′1, s′1, t′1, . . . , E′`′ , s′`′ , t′`′) are disjoint if
either ` 6= `′, or for some for some i we have (si, ti) 6= (s′i, t′i) or Ei ∩ E′i = ∅. We establish
the following enhancement that takes the weight functions along the cycles into account.

A. Coja-Oghlan, C. Efthymiou, N. Jaafari, M. Kang, and T. Kapetanopoulos 40:15

I Proposition 21. Suppose that P satisfies SYM and BAL. Let Y1, Y2, . . . Yl ∈ Y be pairwise
disjoint signatures and let y1, . . . , yl be non-negative integers. Let d > 0. Then uniformly for
all m ∈M(d),

P [∀t ≤ l : CYt
(G(n,m)) = yt] ∼

∏l
t=1 P [Po(κYt

) = yt] ,

P [∀t ≤ l : CYt(G∗(n,m)) = yt] ∼
∏l
t=1 P [Po(κ̂Yt) = yt] .

Thus, for disjoint Y1, . . . , Yl the cycle counts CYt
are asymptotically independent Poisson.

Finally, we establish that K from Theorem 9 is well-defined. We view Ψ ⊂ [0, 2]Ωk as
a subset of a cube in Euclidean speace. For an integer r ≥ 1 let Cr be the partition of Ψ
induced by slicing the cube into pairwise disjoint sub-cubes of side length 1/r. Further,
let Y`,r denote the set of all signatures (E1, s1, t1, . . . , E`, s`, t`) such that E1, . . . , E` ∈ Cr
and such that P (Ei) > 0 for all i ≤ `, and define Y≤`,r =

⋃`
l=1 Yl,r. Furthermore, if ψ ∈ Ψ

belongs to a sub-cube C ∈ Cr, then we let

ψ(r)(τ) = E[ψ(τ)|C] (τ ∈ Ωk).

I Proposition 22. Assume that P satisfies SYM and BAL and let 0 < d < dcond. Let
(Kl)l≥1 be a family of independent Poisson variables with E[Kl] = (d(k − 1))l/(2l) and let
(ψl,i,j)l,i,j be a family of independent samples from P . Furthermore, define

K`,r =
∑̀
l=1

 (d(k − 1))l

2l
(
1− tr(Φl)

)
+

Kl∑
i=1

ln tr
l∏

j=1
Φ
ψ

(r)
l,i,j

 ,
K` =

∑̀
l=1

 (d(k − 1))l

2l
(
1− tr(Φl)

)
+

Kl∑
i=1

ln tr
l∏

j=1
Φψl,i,j

and K =

∑∞
`=1K`. Then all K`,r are uniformly bounded in the L1-norm, K`,r is L1-convergent

to K` as r →∞ and K` is L1-convergent to K as `→∞. Furthermore,

lim
`→∞

lim
r→∞

exp
∑

Y ∈Y≤`,r

(κY − κ̂Y)2

κY
=

∏
λ∈Eig∗(Ξ)

1√
1− d(k − 1)λ

.

Equipped with Propositions 19–22 we can determine the limiting distribution of lnZ(G)
and thus prove Theorem 9 by applying Janson’s version of the small subgraph conditioning
theorem [25] if the set Ψ is finite. In the case of infinite Ψ additional steps are necessary, see
in the full version of this paper in [11].

Acknowledgment. We thank Will Perkins, Guilhem Semerjian and Nick Wormald for
helpful discussions.

References
1 Emmanuel Abbe. Community detection and stochastic block models: recent developments.

CoRR, abs/1703.10146, 2017. URL: http://arxiv.org/abs/1703.10146.
2 Emmanuel Abbe and Colin Sandon. Detection in the stochastic block model with multiple

clusters: proof of the achievability conjectures, acyclic bp, and the information-computation
gap. CoRR, abs/1512.09080, 2015. URL: http://arxiv.org/abs/1512.09080.

3 Dimitris Achlioptas and Cristopher Moore. Random k-SAT: Two moments suffice to cross
a sharp threshold. SIAM J. Comput., 36(3):740–762, 2006.

4 Dimitris Achlioptas, Assaf Naor, and Yuval Peres. Rigorous location of phase transitions
in hard optimization problems. Nature, 435(7043):759–764, 06 2005.

APPROX/RANDOM’17

http://arxiv.org/abs/1703.10146
http://arxiv.org/abs/1512.09080

40:16 Charting the Replica Symmetric Phase

5 Jess Banks, Cristopher Moore, Joe Neeman, and Praneeth Netrapalli. Information-theoretic
thresholds for community detection in sparse networks. In Proceedings of the 29th Confer-
ence on Learning Theory, COLT 2016, New York, USA, June 23-26, 2016, pages 383–416,
2016.

6 Victor Bapst and Amin Coja-Oghlan. Harnessing the bethe free energy. Random Struct.
Algorithms, 49(4):694–741, 2016.

7 Victor Bapst, Amin Coja-Oghlan, Samuel Hetterich, Felicia Raßmann, and Dan Vilenchik.
The condensation phase transition in random graph coloring. Communications in Math-
ematical Physics, 341(2):543–606, 2016.

8 Jean Barbier, Mohamad Dia, Nicolas Macris, Florent Krzakala, Thibault Lesieur, and
Lenka Zdeborová. Mutual information for symmetric rank-one matrix estimation: A proof
of the replica formula. In Advances in Neural Information Processing Systems 29, pages
424–432. Curran Associates, Inc., 2016.

9 Mohsen Bayati, David Gamarnik, and Prasad Tetali. Combinatorial approach to the inter-
polation method and scaling limits in sparse random graphs. Ann. Probab., 41(6):4080–4115,
11 2013.

10 Amin Coja-Oghlan. Phase transitions in discrete structures. In 7th European Congress of
Mathematics, (In press) 2016.

11 Amin Coja-Oghlan, Charilaos Efthymiou, Nor Jaafari, Mihyun Kang, and Tobias Kapetan-
opoulos. Charting the replica symmetric phase. CoRR, abs/1704.01043, 2017. URL:
https://arxiv.org/abs/1704.01043.

12 Amin Coja-Oghlan and Nor Jaafari. On the potts antiferromagnet on random graphs.
Electr. J. Comb., 23(4):P4.3, 2016.

13 Amin Coja-Oghlan, Florent Krzakala, Will Perkins, and Lenka Zdeborová. Information-
theoretic thresholds from the cavity method. CoRR, abs/1611.00814, 2016. URL: http:
//arxiv.org/abs/1611.00814.

14 Pierluigi Contucci, Sander Dommers, Cristian Giardinà, and Shannon Starr. Antiferromag-
netic potts model on the Erdős-Rényi random graph. Communications in Mathematical
Physics, 323(2):517–554, 2013.

15 Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka Zdeborová. Asymptotic
analysis of the stochastic block model for modular networks and its algorithmic applications.
Physical Review E, 84(6):066106–, 12 2011.

16 Yash Deshpande, Emmanuel Abbe, and Andrea Montanari. Asymptotic mutual informa-
tion for the binary stochastic block model. In IEEE International Symposium on Inform-
ation Theory, ISIT 2016, Barcelona, Spain, July 10-15, 2016, pages 185–189, 2016.

17 Jian Ding, Allan Sly, and Nike Sun. Proof of the satisfiability conjecture for large k. In
Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing,
STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 59–68, 2015.

18 Ulisse Ferrari, Carlo Lucibello, Flaviano Morone, Giorgio Parisi, Federico Ricci-Tersenghi,
and Tommaso Rizzo. Finite-size corrections to disordered systems on Erdős-Rényi random
graphs. Physical Review B, 88(18):184201–, 11 2013.

19 Silvio Franz, Michele Leone, Federico Ricci-Tersenghi, and Riccardo Zecchina. Exact
solutions for diluted spin glasses and optimization problems. Physical Review Letters,
87(12:127209), 08 2001.

20 Andreas Galanis, Daniel Stefankovic, and Eric Vigoda. Inapproximability for antiferromag-
netic spin systems in the tree nonuniqueness region. J. ACM, 62(6):50:1–50:60, 2015.

21 Antoine Gerschenfeld and Andrea Montanari. Reconstruction for models on random graphs.
In 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007), Oc-
tober 20-23, 2007, Providence, RI, USA, Proceedings, pages 194–204, 2007.

https://arxiv.org/abs/1704.01043
http://arxiv.org/abs/1611.00814
http://arxiv.org/abs/1611.00814

A. Coja-Oghlan, C. Efthymiou, N. Jaafari, M. Kang, and T. Kapetanopoulos 40:17

22 Andrei Giurgiu, Nicolas Macris, and Rüdiger L. Urbanke. Spatial coupling as a proof
technique and three applications. IEEE Trans. Information Theory, 62(10):5281–5295,
2016.

23 Francesco Guerra and Fabio Lucio Toninelli. The high temperature region of the Viana–
Bray diluted spin glass model. Journal of Statistical Physics, 115(1):531–555, 2004.

24 Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic block-
models: First steps. Social Networks, 5(2):109–137, 1983.

25 Svante Janson. Random regular graphs: Asymptotic distributions and contiguity. Combin-
atorics, Probability & Computing, 4:369–405, 1995.

26 Harry Kesten and Bernt P. Stigum. Additional limit theorems for indecomposable mul-
tidimensional galton-watson processes. Ann. Math. Statist., 37(6):1463–1481, 1966. doi:
10.1214/aoms/1177699139.

27 Florent Krzakała, Andrea Montanari, Federico Ricci-Tersenghi, Guilhem Semerjian, and
Lenka Zdeborová. Gibbs states and the set of solutions of random constraint satisfaction
problems. Proceedings of the National Academy of Sciences, 104(25):10318–10323, 06 2007.

28 Marc Lelarge and Léo Miolane. Fundamental limits of symmetric low-rank matrix estima-
tion. CoRR, abs/1611.03888, 2016. URL: https://arxiv.org/abs/1611.03888.

29 Carlo Lucibello, Flaviano Morone, Giorgio Parisi, Federico Ricci-Tersenghi, and Tommaso
Rizzo. Finite-size corrections to disordered ising models on random regular graphs. Physical
Review E, 90(1):012146–, 07 2014.

30 Laurent Massoulié. Community detection thresholds and the weak ramanujan property. In
Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 – June
03, 2014, pages 694–703, 2014.

31 Marc Mézard and Andrea Montanari. Information, physics and computation. Oxford
University Press, 2009.

32 Marc Mézard and Giorgio Parisi. The bethe lattice spin glass revisited. Eur. Phys. J. B,
20(2):217–233, 3 2001.

33 Marc Mézard, Giorgio Parisi, and Ricardo Zecchina. Analytic and algorithmic solution of
random satisfiability problems. Science, 297(5582):812, 08 2002.

34 Marc Mézard, Federico Ricci-Tersenghi, and Riccardo Zecchina. Two solutions to diluted
p-spin models and XORSAT problems. Journal of Statistical Physics, 111(3):505–533, 2003.

35 Andrea Montanari, Ricardo Restrepo, and Prasad Tetali. Reconstruction and clustering in
random constraint satisfaction problems. SIAM J. Discrete Math., 25(2):771–808, 2011.

36 Cristopher Moore. The computer science and physics of community detection: Landscapes,
phase transitions, and hardness. CoRR, abs/1702.00467, 2017. URL: http://arxiv.org/
abs/1702.00467.

37 Elchanan Mossel, Joe Neeman, and Allan Sly. A proof of the block model threshold con-
jecture. CoRR, abs/1311.4115, 2013. URL: http://arxiv.org/abs/1311.4115.

38 Elchanan Mossel, Joe Neeman, and Allan Sly. Reconstruction and estimation in the planted
partition model. Probability Theory and Related Fields, 162(3):431–461, 2015. doi:10.
1007/s00440-014-0576-6.

39 Paul Erdős and Alfred Rényi. On the evolution of random graphs. Magyar Tud. Akad.
Mat. Kutató Int. Közl, 5:17–61, 1960.

40 Tom Richardson and Rüdiger Urbanke. Modern coding theory. Cambridge University Press,
2008.

41 Robert W. Robinson and Nicholas C. Wormald. Almost all cubic graphs are hamiltonian.
Random Struct. Algorithms, 3(2):117–126, 1992.

42 Lenka Zdeborová and Florent Krzakala. Statistical physics of inference: thresholds and
algorithms. Advances in Physics, 65(5):453–552, 2016.

APPROX/RANDOM’17

http://dx.doi.org/10.1214/aoms/1177699139
http://dx.doi.org/10.1214/aoms/1177699139
https://arxiv.org/abs/1611.03888
http://arxiv.org/abs/1702.00467
http://arxiv.org/abs/1702.00467
http://arxiv.org/abs/1311.4115
http://dx.doi.org/10.1007/s00440-014-0576-6
http://dx.doi.org/10.1007/s00440-014-0576-6

Probabilistic Logarithmic-Space Algorithms for
Laplacian Solvers
Dean Doron∗1, François Le Gall†2, and Amnon Ta-Shma‡1

1 The Blavatnik School of Computer Science, Tel-Aviv University, Tel Aviv,
Israel
deandoron@mail.tau.ac.il, amnon@tau.ac.il

2 Graduate School of Informatics, Kyoto University, Kyoto, Japan
legall@i.kyoto-u.ac.jp

Abstract
A recent series of breakthroughs initiated by Spielman and Teng culminated in the construction
of nearly linear time Laplacian solvers, approximating the solution of a linear system Lx = b,
where L is the normalized Laplacian of an undirected graph. In this paper we study the space
complexity of the problem. Surprisingly we are able to show a probabilistic, logspace algorithm
solving the problem. We further extend the algorithm to other families of graphs like Eulerian
graphs (and directed regular graphs) and graphs that mix in polynomial time.

Our approach is to pseudo-invert the Laplacian, by first “peeling-off” the problematic kernel
of the operator, and then to approximate the inverse of the remaining part by using a Taylor
series. We approximate the Taylor series using a previous work and the special structure of the
problem. For directed graphs we exploit in the analysis the Jordan normal form and results from
matrix functions.

1998 ACM Subject Classification F.2.1 Numerical Algorithms and Problems

Keywords and phrases Laplacian solvers, Randomized logspace, Bounded-space complexity classes,
Random walks, Matrix computation

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.41

1 Introduction

Approximating the solution of a linear system Lx = b, where L is the normalized Laplacian of
a graph G, is an important algorithmic challenge with multitude of algorithmic applications
(see [39] and references therein). In the time-bounded setting this problem has drawn a lot
of attention over the past decade. A series of breakthroughs initiated by Spielman and Teng
culminated in the construction of almost linear-time algorithms [24, 29, 33, 34, 35, 36].

We are interested in studying the space complexity of this problem, and specifically
achieving a probabilistic logspace algorithm that approximates a solution to such a system.
We show that the class BPL is powerful enough to approximate the solution to a linear

∗ Supported by the Israel science Foundation grant no. 994/14 and by the United States – Israel Binational
Science Foundation grant no. 2010120. This work was done in part while the author was visiting Kyoto
University.

† Supported by the Grant-in-Aid for Young Scientists (A) No. 16H05853, the Grant-in-Aid for Scientific Re-
search (A) No. 16H01705, and the Grant-in-Aid for Scientific Research on Innovative Areas No. 24106009
of the Japan Society for the Promotion of Science and the Ministry of Education, Culture, Sports,
Science and Technology in Japan.

‡ Supported by the Israel science Foundation grant no. 994/14 and by the United States – Israel Binational
Science Foundation grant no. 2010120.

© Dean Doron, François Le Gall, and Amnon Ta-Shma;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 41; pp. 41:1–41:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.41
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

41:2 Probabilistic Logarithmic-Space Algorithms for Laplacian Solvers

system of equations for a wide and important variety of linear operators, and in particular
for Laplacians of undirected graph (which is the focus of the work of Spielman and Teng).
In fact we do more and approximate a generalized inverse of the Laplacian, i.e., a matrix L?
such that LL?L = L, which is sufficient for solving such a set of equations. In essence this
means that we invert the matrix on the subspace defined by its image, leaving the kernel
unchanged. We prove:

I Theorem 1. There exists a probabilistic algorithm that gets as input an n× n stochastic
matrix S that is the transition matrix of an undirected graph and desired accuracy and
confidence parameters ε, δ > 0, and outputs with probability at least 1− δ an approximation
of the generalized inverse L? = (I − S)? to within an ε-accuracy, using

O

(
log n

ε
+ log log 1

δ

)
space.

We are not aware of any previous space bounded algorithm approximating the solution
of Laplacian systems.

It is commonly believed that BPL = L.1 There are not too many natural, non-trivial
problems in L, with the exception of undirected st-connectivity (and the problems that reduce
to it [26, 2]) that was solved by Reingold with an intricate and beautiful algorithm [30]
(see also [38]). The situation is similar with BPL. Thus the fact that probabilistic logspace
algorithms are capable of approximating a solution to a large class of linear-algebra problems
comes as a surprise.2

We now proceed to discuss our technique. Our goal is to approximate f(S) where f is
the function corresponding to the generalized inverse of I − S. We begin by considering the
simpler case where f has a Taylor expansion.

Let G be a regular undirected graph with an associated transition matrix S. As G is
undirected and regular, S is normal and we can represent it as S = VΣV † where Σ is a
diagonal matrix with the eigenvalues of S lying on the diagonal. Consider a function f

with a Taylor expansion f(x) =
∑
i cix

i. We would like to approximate f(S) =
∑
i ciSi =

V f(Σ)V †.3 Using Taylor expansion in the space-bounded setting is appealing, as in BPL
we can approximate powers of stochastic matrices (in fact, even matrices with induced `∞
norm of at most 1 [17]). Hence, if the series expansion of f behaves “nicely”, we can also
approximate f(S) in BPL. Using this approach we can, e.g., approximate the matrix eS
using the Taylor expansion ex =

∑∞
i=0

xi

i! .
We now consider the real problem which is approximating a generalized inverse of the

Laplacian L = I − S. This means that we want to invert L = I − S on its image, leaving
the kernel unchanged. Thus, the function f we want to compute is 1

1−x when x 6= 1 and
1 otherwise (think of x here as an eigenvalue of S). The function f is not continuous and

1 Some support for this conjecture is given by the following results. Nisan [27] constructed a pseudorandom
generator against logspace-bounded non-uniform algorithms that uses seed length O(log2 n). Using that
he showed BPL is contained in the class having simultaneously polynomial time and O(log2 n) space
[28]. Saks and Zhou [31] showed that BPL is contained in DSPACE(log1.5 n). Reingold [30] showed
undirected st-connectivity can be solved in deterministic logspace. BPL = L is also implied by the
conjectured existence of certain circuit lower bounds [25].

2 Note that finding the exact inverse of a matrix, as well as many other important problems in linear
algebra, is complete for the class DET ⊆ NC2 – the class of languages that are NC1 Turing-reducible to
computing the determinant of an integer matrix [5, 7, 14].

3 The fact that
∑

i
ciSi = V f(Σ)V † is a theorem, see, e.g., [23].

D. Doron, F. Le Gall, and A. Ta-Shma 41:3

so does not have a Taylor series around 1. Also notice that the operator L always has a
non-trivial kernel (1 is always an eigenvalue of S). Thus, we cannot directly employ the
Taylor series approach.

Our solution to the problem is to first “peel-off” the 1-eigenspace using the stationary
distribution of the corresponding random walk on G. We are then left with an invertible
operator I − A whose eigenvalues are bounded away from 0. We now wish to use the Taylor
series approach and approximate (I − A)−1 by

∑∞
i=0Ai, which corresponds to the Taylor

series 1
1−x =

∑∞
i=0 x

i. There is yet one obstacle we need to overcome, which is that the
operator A that we get after peeling off the stationary distribution of G, is not stochastic,
and in fact has `∞ norm larger than 1. Thus, offhand, we do not necessarily know how to
simulate high powers of it in BPL. Nevertheless, we exploit its unique structure and show it
can be simulated in BPL. Finally, by recovering the peeled-off layer, we essentially recover
the required operator L?.

We now take a step further, and consider directed graphs. The directed case poses major
challenges, even if just for the mere fact that directed graphs are not necessarily diagonalizable.
In fact, even directed graphs with a favorable structure such as vertex-transitive graphs can
be non diagonalizable [20]. The directed Laplacian and its application were studied in, e.g.,
[6, 12, 3]. Recently, Cohen et al. [13] gave faster algorithms for computing fundamental
quantities associated with random walks on directed graphs by improving the running time
of solving directed Laplacian systems.

Any operator A can be represented by its singular value decomposition (SVD) A = UΣV ,
where U and V are unitary, and Σ is diagonal with the singular values on the diagonal.
Another representation of A is by its Jordan normal form, A = VAV −1, where V is a basis
and A is the matrix of Jordan blocks. The elements on the diagonals of the Jordan blocks
are the eigenvalues of A (with multiplicity as the multiplicity of the roots of its characteristic
polynomial). The SVD is the usual representation of choice as it is stable, whereas the Jordan
normal form is notoriously unstable to compute (see, e.g., [22, Chapter 7], [15, Chapter 4] and
[19]). However, the SVD representation is not convenient when considering BPL algorithms,
as A does not share the same singular vectors with powers of A. Thus, in this paper, we
choose to analyze our algorithm using the Jordan normal form. Admittedly, one should
expect severe stability problems using such an approach. Surprisingly, we show that under
mild conditions we manage to overcome these stability problems.

As before, we would like to approximate the generalized inverse L?. There are two main
issues to consider:
1. Peeling-off the 1-subspace. To do so, we need a good approximation of the stationary

distribution of the corresponding random walk. In the undirected case, it can be easily
inferred (i.e., in L) from the input. Here, we require it as an input to our algorithm.

2. Analyzing the convergence of the Taylor series of (I − A)−1 for a non diagonalizable A.
Recall that when a function f acts on a diagonalizable matrix A, it acts on its eigenvalues
in the natural way. In the non diagonalizable case, f acts on a Jordan block, which might
have a large dimension, and although an eigenvalue λ on the diagonal is still mapped to
an eigenvalue f(λ), the structure of the rest of the block is no longer maintained, so we
need to give this issue further consideration.

To address the second issue above, we use the theory of matrix functions that tells us
exactly what f(A) is. It turns out that there is a direct connection between f(A), the
dimension of the Jordan block, and the derivatives of f on the corresponding eigenvalue.
Exploiting this connection, we manage to bound the number of terms in the Taylor series
that is sufficient for convergence. The caveat here is that two “stability” parameters enter

APPROX/RANDOM’17

41:4 Probabilistic Logarithmic-Space Algorithms for Laplacian Solvers

the picture. First, the spectral gap (whose formal definition we defer), which for directed
graphs may no longer be at most polynomially-small and naturally affect the performance of
our algorithm. Second, we also need the Jordan basis matrix V of L to be well-conditioned.
We prove:

I Theorem 2 (Informal). There exists a probabilistic algorithm that gets as input an n× n
stochastic matrix S, desired accuracy and confidence parameters ε, δ > 0, γ > 0 which is a
lower-bound on the spectral gap of S, κ which is an upper bound on the condition number
of the Jordan basis of S, and outputs with probability at least 1 − δ an approximation of
L? = (I − S)? to within an ε-accuracy, using

O

(
log n

γε
+ log log κ

δ

)
space.

Remarkably, the dependency of the space complexity on the condition number of the
Jordan basis matrix is doubly-logarithmic. This also allows us to show our algorithm operates
well on operators for which the eigenvalues are polynomially far apart (see Theorem 29).

Having this theorem we show that in addition to undirected graphs, our approximation
algorithm works for well-conditioned regular and Eulerian directed graph (which we know
have a non-negligible spectral gap and their stationary distribution is fully-explicit) and
general well-conditioned rapidly-mixing directed graphs. We thus see that the algorithm
manages to approximate the solution of Laplacian systems over a large (and natural) class of
directed graphs.

We conclude with a more philosophical note. In recent years we have seen several
results showing that some natural linear-algebraic tasks capture the strength of various
space-bounded models of computation. Results along this line are:
1. Ta-Shma [37] showed that it is possible to approximate the SVD of any matrix, and in

particular to approximate its inverse, in BQL, with polynomially-small accuracy.4 As
no classical analogue is known, this result is one of the very few cases where a natural
problem is known to lie in BQL but is not known to be in BPL.

2. Doron et al. [16] gave a BPL algorithm that computes the eigenvalues of stochastic matrices
having real eigenvalues with constant accuracy. Moreover, they gave a linear-algebraic
problem which is complete for BPL – roughly speaking, approximating, to polynomially-
small accuracy, the second eigenvalue of a stochastic matrix (whose eigenvalues are not
necessarily real).

3. Fefferman and Lin [18] gave two complete problems for BQL – approximating the inverse
and the minimum eigenvalue of positive semi-definite matrices (both to polynomially-small
accuracy).

We hence see that the deterministic, probabilistic and quantum space-bounded com-
plexity classes can be roughly characterized by linear-algebraic promise problems, where
the difference between the classes lies in the family of operators they can handle, be-
ing Hermitian, stochastic or general operators. The exact computation can be done in
DET ⊆ NC2 ⊆ DSPACE(O(log2 n)). Our result is in line with the above, showing that
approximating with polynomially-small accuracy the generalized inverse of a large class of
stochastic matrices is in BPL.

4 Roughly, BQL stands for the class of languages for which there exists an L-uniform family of quantum
circuits solving it with only O(log n) qubits. It is known that BQL ⊆ NC2 [40].

D. Doron, F. Le Gall, and A. Ta-Shma 41:5

2 Preliminaries

2.1 Basic facts from linear algebra

For a matrix A ∈ Cn×n, A† is its conjugate transpose. When it might not be clear from the
context, for a vector v ∈ Cn, we denote |v〉 as the column vector and 〈v| as the row vector,
so 〈u| v〉 is a scalar and |v〉〈u| is a rank-one matrix.

Every matrix A has a singular value decomposition (SVD) A = UΣV †, where U and V
are unitary and Σ is a diagonal matrix with non-negative entries, known as the singular
values of A.

The spectrum of a matrix A, denoted Spec(A), is its set of (complex or real) eigenvalues.
The spectral radius ρ(A) ofA is the largest absolute value of its eigenvalues. The operator norm
‖A‖ is max‖x‖2=1 ‖Ax‖, which is also the largest singular value of A. Notice that it is possible
for ‖A‖ to be strictly larger than ρ(A). The operator norm is sub-multiplicative. When A is
invertible, κ(A) = ‖A‖

∥∥A−1
∥∥ is its condition number. Also, we denote ‖A‖∞ as the induced

`∞ norm, that is ‖A‖∞ = maxi∈[n]
∑
j∈[n] |A[i, j]|. It holds that ‖A‖∞ ≤

√
n ‖A‖.

For an eigenvalue λ of A, a λ-right-eigenvector (or simply an eigenvector with eigenvalue
λ) is a vector v such that Av = λv. A λ-left-eigenvector is a vector v such that v†A =
λv†. We define the spectral gap γ(A) = 1 − maxλ∈Spec(A),λ 6=1 |λ|. Note that γ(A) ≤
minλ∈Spec(A),λ6=1 |1− λ|.

We denote by 1 the column vector of all ones and similarly 0 the column vector of all
zeros.

2.2 The Perron-Frobenius theorem

The underlying graph of a matrix A has an edge (i, j) iff A[i, j] 6= 0. A matrix A is irreducible
if its underlying directed graph is strongly connected. When A is irreducible, its period is
the greatest common divisor of the lengths of the closed directed paths in the underlying
directed graph of A. We say that A is aperiodic if its period is 1. A matrix A is non-negative
if all its entries are non-negative, and it is stochastic if it is non-negative and every row sums
to 1. We will need the Perron-Frobenius theorem for irreducible non-negative matrices (see,
e.g., [21, Chapter 8]).

I Theorem 3. Let A be an irreducible non-negative n× n matrix with period h and spectral
radius ρ(A) = r. Then:
1. There exists an r-right-eigenvector v1 and an r-left-eigenvector u1 whose components are

all positive.
2. A has exactly h complex eigenvalues with absolute value r and each one of them is a

product of r with a different h-th root of unity. Consequently, if A is aperiodic then r is
a simple eigenvalue, and all other eigenvalues have absolute value strictly smaller than r.

3. It holds that limk→∞Ak/rk = |v1〉〈u1|, where v1 and u1 are normalized so that 〈v1|u1〉 =
1.

If A is stochastic then r = 1. Furthermore, if A is stochastic, irreducible and aperiodic then
v1 is the all-ones vector 1 and u1 = π is the stationary distribution of the corresponding
random walk (all up to normalizations).

APPROX/RANDOM’17

41:6 Probabilistic Logarithmic-Space Algorithms for Laplacian Solvers

2.3 Jordan normal form

I Fact 4. Every complex n × n matrix A can be expressed in a Jordan normal form
A = VAV −1 where A = diag(A1, . . . ,AB),

Ab = Ab(λb) =

λb 1

λb
. . .
. . . 1

λb

 ∈ Cdimb× dimb ,

and dim1 + . . .+ dimb = n. The Jordan matrix A has the eigenvalues of A on its diagonal,
and is unique up to the ordering of the blocks Ab. For an eigenvalue λb, its algebraic
multiplicity is the number of times it appears on the diagonal A and its geometric multiplicity
is the number of blocks having λb on their diagonal. We say an eigenvalue is simple if its
algebraic multiplicity is one.

I Claim 5 ([9], Chapter 3). Let A be an n × n complex matrix and let A = VAV −1 be
the Jordan normal form of A, where A = diag(A1, . . . ,AB). Then, every Jordan block Ab

corresponds to an A-invariant subspace Eb = Ker
(
(λbI − A)dimb

)
of dimension dimb. This

gives a decomposition Cn =
⊕B

b=1Eb.

For a Jordan decomposition A = VAV −1, we will often write A =
∑B
b=1 VbAbUb, where

Ab is the b-th Jordan block, Vb are the columns of V that correspond to this block and
similarly Ub are the rows of V −1 that correspond to this block.

When the operator is irreducible, aperiodic and stochastic, we can express the Perron-
Frobenius theorem in the Jordan terminology and get:

I Claim 6. Let S be an irreducible, aperiodic and stochastic matrix with a stationary
distribution π so that 〈1|π〉 = 1 and let S =

∑B
b=1 VbSbUb be a Jordan decomposition of S.

Then,
S1 = (1), the 1× 1 matrix with an entry 1.
For all b ≥ 2, UbV1 = Ub |1〉 = 0 and U1Vb = 〈π|Vb = 0†. Also,

∑B
b=1 VbUb = I.

V1S1U1 = |1〉 〈π| so S = |1〉 〈π|+
∑B
b=2 VbSbUb.

Proof. If v is a (right) eigenvector of S with eigenvalue λ then v ∈ Im(∪b:λb=λVb). Similarly,
if w is a left eigenvector of S, then its eigenvalue is an eigenvalue of S and w ∈ Im(∪b:λb=λUb)
(this is because A and A† have the same spectrum, see, e.g., [8, Chapter 9]).

Now, since S is stochastic, 1 is a 1-eigenvector. Also, there is a 1-left-eigenvector that we
denote by π, and we normalize π such that 〈π|1〉 = 1. Furthermore, by the Perron-Frobenius
theorem, the 1-eigenvalue is simple, so S1 = (1), U1 is a 1 × n matrix and V1 is a n × 1
matrix. Furthermore, by the above, π ∈ Im(U1), and since the dimension of the image is
1, we must have Im(U1) = Span({π}). Similarly, Im(V1) = Span({1}). This completes the
proof of the first item.

For the second item, let U = V −1 and observe that since UV = I, 〈ui| vj〉 = δi,j (where
ui is the i-th row of U and vj is the j-th column of V). Now, consider b 6= b′ and the product
P = UbVb′ . Every entry of P is of the form 〈ub,i| vb′,j〉 where i ∈ [dimb] and j ∈ [dimb′]. By
the previous observation, they are all zeros. Also, I has a Jordan decomposition V IU , so
immediately it is clear that

∑B
b=1 VbUb = I.

D. Doron, F. Le Gall, and A. Ta-Shma 41:7

For the third item, Suppose V1 = α1 and U1 = β 〈π| for some nonzero α, β ∈ C. We see
that V1S1U1 = αβ |1〉〈π|. We want to determine αβ. Since 〈π| S = 〈π| we have that

〈π| = 〈π| S = β−1U1S = β−1U1

B∑
b=1

VbSbUb

= β−1U1V1I1U1 + β−1
B∑
b=2

U1VbSbUb = β−1βαβ 〈π|1〉 〈π| = αβ 〈π| ,

so αβ = 1. Hence, V1S1U1 = V1U1 = |1〉〈π|. J

2.4 Functions of matrices

This subsection follows the book of Higham [23]. In the Jordan basis, each Jordan block is a
matrix with some complex value λ over the main diagonal and 1 in the diagonal above it.
We want to distinguish upper triangular matrices in which elements on the same diagonal
have the same value. We note that this class D of matrices is closed under matrix addition
and multiplication. We denote:

I Definition 7. For 0 ≤ i ≤ n − 1 let Dn,i be the n × n matrix that has 1 over the i-th
diagonal and 0 elsewhere, where the 0-th diagonal is the main diagonal and the i-th diagonal
is the diagonal i elements above it.

Clearly D = Span {Dn,0, . . . ,Dn,n−1} is closed under matrix addition. Also, since

Dn,i · Dn,j = Dn,i+j ,

D is also closed under matrix multiplication.
Suppose p ∈ C[x] is a polynomial p(x) =

∑d
i=0 cix

i. We can evaluate the polynomial over
the ring Mn(C), i.e., given an n× n matrix A we let

p(A) =
d∑
i=0

ciAi.

Note that if A = VAV −1 then p(A) = V p(A)V −1. Also, if A = diag(A1, . . . ,AB) then
p(A) = diag(p(A1), . . . , p(AB)). In the extreme case where A is diagonalizable and all
Jordan blocks have dimension 1, we see that p acts on the eigenvalues of A. In the general
case, we need to understand how p acts on a Jordan block Ab = λbI +Ddimb,1. The answer
is quite surprising and holds for arbitrary differentiable functions.

I Lemma 8 ([23], Chapter 1). Let f : C → C and suppose it is differentiable n times on
Spec(A). Let A ∈ Cn×n be a Jordan block A = λI +Dn,1. Then,

f(A) =

f(λ) f ′(λ) . . . f(n−1)(λ)

(n−1)!

f(λ)
. . .

...
. . . f ′(λ)

f(λ)

 =
n−1∑
t=0

f (t)(λ)
t! Dn,t.

APPROX/RANDOM’17

41:8 Probabilistic Logarithmic-Space Algorithms for Laplacian Solvers

2.5 The generalized inverse

Let A be any complex linear operator. A generalized (reflexive) inverse A+ of A is a matrix
that satisfies both AA+A = A and A+AA+ = A+. A generalized inverse is not unique,
however if we further demand that both AA+ and A+A are Hermitian, then such an operator
is unique, and is called the Moore-Penrose pseudo-inverse and can be computed using the
singular values decomposition (SVD). If A = UΣV † is the SVD of A then the pseudo-inverse
is A+ = VΣ+U† where Σ+ = inv(Σ) and inv(x) is the univariate function that is 1/x when
x 6= 0 and 0 otherwise.

We will not work with the SVD but rather with the Jordan canonical form. Let A =
VAV −1 be a Jordan decomposition of a singular matrix A. When the algebraic multiplicity
of the eigenvalue 0 is one, the matrix A? = inv(A), according to Subsection 2.4, is well
defined. Namely, inv(A) = VAinvV −1 where Ainv is obtained by inverting every Jordan block
that does not correspond to the zero eigenvalue. It is immediate that A? is a generalized
inverse, although it does not generally coincide with the pseudo-inverse. From here onward,
we denote A? as the generalized inverse inv(A).

Any generalized inverse A? can be used to determine if a system of linear equations has
any solution (and if so, to give them all). More concretely, if the system Ax = b has a
solution then all its solution are given by x = A?b+ (I −A?A)w for an arbitrary w. All of
the above claims can be found, e.g., in [4].

It will later be evident that when A = L = I − S is a Laplacian corresponding to an
irreducible, aperiodic and stochastic matrix S with a stationary distribution π, the expression
I − A?A is simply |1〉〈π|. Thus, if we find L? we can solve any set of equations Lx = b that
has a solution. In fact, this also works when we try to solve the system Lx = b for b that
does not admit any perfect solution, but is close to a vector in Im(L). To see that, say b
is arbitrary, and on input b and L we output z = L?b. Then ‖Lz − b‖ = ‖(LL? − I)b‖ =
‖|1〉〈π| b‖ =

√
n · |〈π, b〉|, and so if b is δ close to being perpendicular to π (and so close to

being in Im(L)) then the solution z = L?b is such that Lz is
√
nδ close to the desired value b.

2.6 Space-bounded probabilistic computation

2.6.1 The model of computation

A space-bounded probabilistic Turing machine has four semi-infinite tapes: a read-only
input tape, a work tape, a read-only uni-directional random-coins tape and a write-only
uni-directional output tape. We say a language is accepted by a probabilistic TM if for every
input in the language the acceptance probability is at least 2/3 and for every input not in the
language it is at most 1/3. As usual, the acceptance probability can be amplified as long as
there is some non-negligible gap between the acceptance probability of yes and no instances.

The complexity class BPL comprises all languages accepted by a space-bounded proba-
bilistic TM with space complexity O(logn) and polynomial time.

2.6.2 Simulatable matrices

We are often interested in approximating a value (e.g., a matrix entry) with probabilistic
machines. Assume that for an input x ∈ {0, 1}n there exists a value u = u(x) ∈ C. We say a
probabilistic TM (ε, δ)-approximates u(x) if

∀x∈{0,1}n Pr
y

[|M(x, y)− u(x)| ≥ ε] ≤ δ.

D. Doron, F. Le Gall, and A. Ta-Shma 41:9

If u is multi-valued (say, a vector) we say a TM (ε, δ)-approximates u if given an index i it
(ε, δ)-approximates u[i].

I Definition 9. We say that a family of matrices A is simulatable if there exists a probabilistic
algorithm that on input A ∈ A of dimension n, k ∈ N, s, t ∈ [n], ε, δ > 0 runs in space
O(log nk

ε + log log 1
δ) and (ε, δ)-approximates Ak[s, t].

Probabilistic logspace machines can approximate random walks well. In [17], it is shown
that:

I Lemma 10. The family of stochastic matrices is simulatable.

We can also conclude:

I Lemma 11 ([17]). Let A ∈ Cn×n be a stochastic matrix and let p =
∑d
i=0 cix

i be a complex
polynomial such that:

For every i, |ci| ≤M , and,
The coefficients ci are explicit in the sense that there exists an algorithm that given
k ≤ d, ε, δ outputs an (ε, δ)-approximation of ck using O(log nMd log 1

δ

ε) space.
Then, the entries of p(A) can be (ε, δ)-approximated using O(log nMd log 1

δ

ε) space.

3 Approximating (I − A)−1 by the Taylor series

We start with the simple case of normal matrices, and consider general functions.

I Theorem 12. Let f, p : C → C and ε > 0. Suppose A is a normal matrix such that for
every λ ∈ Spec(A), |f(λ)− p(λ)| ≤ ε. Then, ‖f(A)− p(A)‖ ≤ ε.

Proof. A is normal, so it is diagonalizable by a unitary matrix, A = UDU†. Also, f(A) =
Uf(D)U† and p(A) = Up(D)U†. Thus, we have that

‖f(A)− p(A)‖ ≤ ‖U‖ ‖U†‖ ‖f(D)− p(D)‖ = ‖f(D)− p(D)‖ ,

and ‖f(D)− p(D)‖ is simply maxλ∈Spec(A) |f(λ)− p(λ)| ≤ ε. J

With that we can easily see that when A is normal,
∑T
i=0Ai approximates (I − A)−1

pretty well. Formally,

I Corollary 13. Let A be a normal matrix and suppose Spec(A) ⊆ [0, 1) and in particular
I − A is invertible. Then,∥∥∥∥∥(I − A)−1 −

T∑
i=0
Ai
∥∥∥∥∥ ≤ e−Tλ(A)

λ(A)
.

Proof. For λ ∈ [0, 1), it holds that∣∣∣∣∣ 1
1− λ −

T∑
i=0

λi

∣∣∣∣∣ ≤
∞∑
T+1

λi = λT+1

1− λ.

The above expression is maximized where λ = 1− γ(A), so we have:∣∣∣∣∣ 1
1− λ −

T∑
i=0

λi

∣∣∣∣∣ ≤ (1− γ(A))T

γ(A) ≤ e−Tγ(A)

γ(A) ,

and the corollary follows. J

APPROX/RANDOM’17

41:10 Probabilistic Logarithmic-Space Algorithms for Laplacian Solvers

We would like to extend this result to arbitrary operators A. As a first attempt we begin
with generalizing Theorem 12 to arbitrary operators. For that we need the representation
of A in its Jordan normal form, and we also need the function p and its derivatives to
approximate the target function f and its derivatives well. We prove:

I Theorem 14. Let f, p : C → C. Suppose A is an n × n matrix such that for every
λ ∈ Spec(A) and every k ≤ n, |f (k)(λ) − p(k)(λ)| ≤ k! · εk. Furthermore, assume A has a
Jordan decomposition A = VAV −1, and the largest Jordan block has dimension D. Then,
‖f(A)− p(A)‖ ≤ κ(V) ·

∑D−1
k=0 εk.

Proof. Let A = A1 ⊕ . . .⊕Ab, corresponding to the different Jordan blocks. By Lemma 8,
f(A) = V f(A)V −1 where f(A) = f(A1)⊕ . . .⊕ f(Ab),

f(Ai) =

f(λi) f ′(λi) . . . f(dimi −1)(λi)

(dimi−1)!

f(λi)
. . .

...
. . . f ′(λi)

f(λi)

 =
dimi−1∑
k=0

f (k)(λi)
k! Ddimi,k,

and λi is the eigenvalue corresponding to the block Ai of dimension dimi. The same of
course holds for p. Thus,

‖f(A)− p(A)‖ =
∥∥V (f(A)− p(A))V −1∥∥ ≤ κ(V) · ‖f(A)− p(A)‖ .

To bound the latter expression, note that

‖f(A)− p(A)‖ = max
i∈[b]
‖f(Ai)− p(Ai)‖

≤ max
i∈[b]

dimi−1∑
k=0

∣∣∣∣f (k)(λi)− p(k)(λi)
k!

∣∣∣∣ ‖Ddimi,k‖ ≤
D−1∑
k=0

εk. J

When A is normal, κ(V) = 1 and the maximal block length is 1, so we recover Theorem 12.
We now check what we get for (I − A)−1 and an arbitrary operator A:

I Corollary 15. Suppose A is an n×n matrix that has a Jordan decomposition A = VAV −1.
Suppose every eigenvalue λ of A satisfies |λ| < 1 and in particular I − A is invertible. Let
T ∈ N such that T ≥ 8n2

γ(A)2 , let f(A) = (I − A)−1 and p(A) =
∑T
i=0Ai. Then,

‖f(A)− p(A)‖ ≤ 2nκ(V)e
−Tγ(A)/4

γ(A) .

Proof. Let A be an n × n matrix and suppose every eigenvalue λ of A satisfies |λ| < 1.
We consider, again, inverting I − A by considering the function f(λ) = 1

1−λ and its power-
series expansion p(λ) =

∑T
i=0 λ

i. For k ≤ n, one can verify that 1
k!f

(k)(λ) = 1
(1−λ)k+1 and

1
k!p

(k)(λ) =
∑T−k
i=0

(
k+i
k

)
λi. Also, 1

k!f
(k)(λ) =

∑∞
i=0
(
k+i
k

)
λi so we see that

εk =

∣∣∣∣∣
∞∑

i=T−k+1

(
k + i

k

)
λi

∣∣∣∣∣ .
As T ≥ 4n, T − k + 1 ≥ T/2. Also,

(
k+i
k

)
≤ (k + i)k ≤ (2i)k, so εk ≤

∑∞
i=T/2(2i)kλi. Now,

D. Doron, F. Le Gall, and A. Ta-Shma 41:11

we have that (2i)k ≤ |λ|−i/2, since

(2i)k|λ|i/2 = ek ln(2i)−(i/2) ln 1
|λ| = e

1
2

(
2k ln(2i)−i ln 1

|λ|

)
≤ e

1
2

(
n
√
i−i ln 1

|λ|

)
≤ e

√
i

2

(
n−
√
i ln 1
|λ|

)
≤ e

√
i

2

(
n−
√
T/2·ln 1

1−γ(A)

)
≤ e

√
i

2

(
n−
√
T/2·γ(A)

)
≤ e

√
i

2 (n−2n) ≤ 1.

Plugging it to the above bound for εk, we obtain:

εk ≤

∣∣∣∣∣∣
∞∑

i=T/2

λi/2

∣∣∣∣∣∣ =
∣∣∣∣ λT/4

1−
√
λ

∣∣∣∣ .
To bound

∣∣∣ 1
1−
√
λ

∣∣∣, we use the fact that:

∣∣∣∣ 1
1−
√
λ

∣∣∣∣ = |1 +
√
λ|

|1− λ| ≤
2

γ(A) .

Altogether,

εk ≤
2

γ(A) (1− γ(A))T/4 ≤ 2e−Tγ(A)/4

γ(A) .

The Corollary follows by applying Theorem 14 and using the fact that D ≤ n. J

4 Computing the generalized inverse of the Laplacian

In this section we approximate the generalized inverse of the Laplacian of directed graphs as
long as we have a good approximation of its stationary distribution. Formally,

I Theorem 16. There exists a probabilistic algorithm that gets as input:
An n× n irreducible, aperiodic stochastic matrix S,
Two parameters, κ and γ, which describe how stable the input S is:

Suppose κ ≥ κ(V), where S = V SV −1 is any Jordan decomposition of S, and,
γ(S) ≥ γ.

Desired accuracy and confidence parameters ε, δ > 0.
An approximation π̃ of the stationary distribution π of S, where ‖π̃ − π‖ ≤ τ and
τ ≤ ε

(T+1)
√
n
for T = 8n2

γ2

(
1 + log nκ

εγ

)
.

Let L denote the Laplacian, L = I − S. Then, the algorithm outputs a (3ε, δ)-approximation
of L? using

O

(
log n

γε
+ log log κ

δ

)
space.

Intuitively, we would like to employ the following approach. Given a stochastic operator
S with a unique stationary distribution π, we would like to “peel off” the 1× 1 Jordan block
with eigenvalue 1, so that we are left with an operator A such that I −A is invertible. Then,
we would like to use Corollary 15 to approximate (I −A)−1 by

∑T
i=0Ai, using the fact that

we can approximate Ai well with a BPL algorithm.
There are two obstacles that we need to overcome:

APPROX/RANDOM’17

41:12 Probabilistic Logarithmic-Space Algorithms for Laplacian Solvers

First, when S in not normal, we do not have an orthonormal basis, so we need to explain
what “peeling off” the stationary distribution means. It turns out that A = S − |1〉〈π|.
Second, while S is stochastic, A = S − |1〉〈π| is not, and furthermore, its `∞ norm
is usually greater than 1. In particular, we cannot immediately assume that we can
approximate high powers of it in BPL. We will show that A is still simulatable because
|1〉〈π| commutes with both S and A.

We also need to check that the fact that π̃ is only close to π and not exactly it, does not
affect the parameters by too much.

We start the formal exposition with a precise description of the algorithm.

4.1 The Algorithm
The algorithm first computes the parameter

T =
⌈

8n2

γ2

(
1 + log nκ

εγ

)⌉
.

The algorithm then computes an (ε, δ)-approximation of the matrix

Q̃T (S) =
(

T∑
i=0
Si
)
− (T + 1) |1〉〈π̃|

using Lemma 11 (note that since π̃ is given, we approximate the power series and compute
(T + 1) |1〉〈π̃| exactly).

We first argue that the algorithm runs in small space and then analyze correctness.

4.2 Efficiency
We observe:

I Lemma 17. For every ε, δ > 0 and integer T , and any n × n stochastic matrix S, the
entries of Q̃T (S) can be (ε, δ)-approximated using O

(
log nT log 1

δ

ε

)
space.

Proof. The claim follows directly from Lemma 11 since S is stochastic. J

4.3 Correctness
We first do the analysis in the ideal situation that π̃ = π and see that in this case the
algorithm (2ε, δ)-approximates L?. We then show that when ‖π − π̃‖ ≤ τ the algorithm
(3ε, δ)-approximates L?.

4.3.1 Peeling off the 1-eigenspace
Throughout the proof we use the representation of S guaranteed by Claim 6. Namely, S can
be written as S =

∑B
b=1 VbSbUb where

S1 is a 1× 1 matrix and S1 = (1). Also, V1U1 = |1〉 〈π| and 〈1|π〉 = 1,
For all b ≥ 2, Ub |1〉 = 0 and 〈π|Vb = 0†, and∑B
b=1 VbUb = I.

D. Doron, F. Le Gall, and A. Ta-Shma 41:13

Our goal is to find the generalized inverse of L = I − S. As explained before, our first
step is to “peel-off” from S the 1-eigenspace, and the correct way to do that is by annihilating
the 1× 1 Jordan block with eigenvalue 1. We therefore define:

A = S − |1〉 〈π| .

We notice that S, A, L and L? share the same Jordan basis, therefore, if we express
S =

∑B
b=1 UbSbVb then

L =
B∑
b=2

Vb(Ib − Sb)Ub,

and,

A =
B∑
b=2

VbSbUb.

We denote Lb = Ib − Sb for b ≥ 2 (and L1 is the zero matrix). The big advantage of A
over S is that in A all eigenvalues have magnitude smaller than 1, as A =

∑B
b=2 VbSbUb, and

therefore I − A is invertible. We still need, however, to relate L? to (I − A)−1. We prove:

I Lemma 18. L? = (I − A)−1 − |1〉 〈π|.

Proof. Recall that S = |1〉 〈π| +
∑B
b=2 VbSbUb, A =

∑B
b=2 VbSbUb and I =

∑B
b=1 VbUb.

Hence,

I − A =
B∑
b=1

VbUb −
B∑
b=2

VbSbUb = V1U1 +
B∑
b=2

Vb(Ib − Sb)Ub = |1〉〈π|+
B∑
b=2

VbLbUb.

The inverse is thus given by

(I − A)−1 = |1〉 〈π|+
B∑
b=2

VbL−1
b Ub = |1〉 〈π|+ L?,

as desired. J

Intuitively, this means that approximating (I − A)−1 suffices for approximating L?, and
we next consider approximating (I − A)−1.

4.3.2 Approximating (I − A)−1

Since all eigenvalues of A have magnitude smaller than 1, we can apply Corollary 15 and get:

I Lemma 19.∥∥∥∥∥(I − A)−1 −
T∑
k=0
Ak
∥∥∥∥∥ ≤ ε.

Proof. We saw that A =
∑B
b=2 VbSbUb, and by the Perron-Frobenius theorem the eigenvalues

that are written on Sb for b ≥ 2, are at most 1−γ < 1 in absolute value. Thus, all eigenvalues
of A have absolute value at most γ(S). By Corollary 15, for T ≥ 8n2

γ(S)2 ,∥∥∥∥∥(I − A)−1 −
T∑
k=0
Ak
∥∥∥∥∥ ≤ 2nκ(V)e

−Tγ(S)/4

γ(S) .

Substituting T =
⌈

8n2

γ(S)2 ln 2nκ(V)
εγ(S)

⌉
, the desired bound holds. J

APPROX/RANDOM’17

41:14 Probabilistic Logarithmic-Space Algorithms for Laplacian Solvers

Thus, the problem now reduces to simulating Ai in small space. As mentioned before, A
is not stochastic and its `∞ norm is often larger than 1. However A = S − |1〉〈π| has a very
special form that conforms with the Jordan basis structure, which we now employ:

I Claim 20. The matrices S and |1〉 〈π| commute, and furthermore S · |1〉 〈π| = |1〉 〈π| · S =
|1〉 〈π|.

Proof.

S · |1〉 〈π| = |1〉 〈π|+
B∑
b=2

VbSbUb · |1〉 〈π| = |1〉 〈π| ,

and,

|1〉 〈π| · S = |1〉 〈π|+
B∑
b=2
|1〉 〈π| · VbSbUb = |1〉 〈π| . J

I Claim 21. For every k ≥ 1, Ak = Sk − |1〉 〈π|.

Proof. The proof is by induction on k. For k = 1 the claim follows by the definition. Assume
the statement holds for k ∈ N, and consider Ak+1, so By Claim 20:

Ak+1 = (S − |1〉 〈π|) · (Sk − |1〉 〈π|)
= Sk+1 − S · |1〉 〈π| − |1〉 〈π| · Sk + |1〉 〈π|1〉 〈π|
= Sk+1 − |1〉 〈π| − |1〉 〈π|+ |1〉 〈π| = Sk+1 − |1〉 〈π| . J

Thus, A is simulatable and we can approximate (I − A)−1 in small space.

4.3.3 Putting everything together
Define the ideal polynomial QT by:

QT (S) =
(

T∑
i=0
Si
)
− (T + 1) |1〉〈π| .

I Lemma 22. ‖L? −QT (S)‖ ≤ ε.

Proof.

‖L? −QT (S)‖ =
∥∥(I − A)−1 − |1〉〈π| −QT (S)

∥∥
≤

∥∥∥∥∥
(

T∑
i=0
Ai
)
− |1〉〈π| −QT (S)

∥∥∥∥∥+ ε

=

∥∥∥∥∥A0 +
T∑
i=1

(
Si − |1〉〈π|

)
− |1〉〈π| −QT (S)

∥∥∥∥∥+ ε

=

∥∥∥∥∥
(

T∑
i=0
Si
)
− (T + 1) |1〉〈π| −QT (S)

∥∥∥∥∥+ ε = ε. J

Finally, we check how the fact that π̃ is only close to π, affects our accuracy. We see that:

I Claim 23.
∥∥∥Q̃T (S)−QT (S)

∥∥∥ ≤ ε.

D. Doron, F. Le Gall, and A. Ta-Shma 41:15

Proof. Notice that Q̃T (S)−QT (S) = (T + 1) |1〉〈π̃ − π|. Therefore,
∥∥∥Q̃T (S)−QT (S)

∥∥∥ ≤
(T + 1) · ‖1‖ · ‖π̃ − π‖. The proof follows because ‖1‖ =

√
n and ‖π̃ − π‖ ≤ τ ≤ ε√

n(T+1) . J

Now, since we (ε, δ)-approximate Q̃T (S), then except for probability δ what we output is
ε-close to Q̃T (S), and therefore it is 2ε-close to QT (S) and 3ε-close to L?, which completes
the proof of Theorem 16.

5 Some specific families of graphs

Ultimately, we would like to solve in BPL any set of equations Lx = b, where b is close to
Im(L), and where L is the Laplacian of a stochastic matrix S. Theorem 16 is a step towards
this goal, but it works only when:
S is irreducible, namely, its underlying graph is strongly connected,
S is aperiodic,
We can approximate well the unique stationary distribution π,
γ(S) ≥ 1

na for some constant a, i.e., all eigenvalues except the largest one, are at most
1− γ in absolute value, and,
κ(V) ≤ 2nb for some constant b, where S = V SV −1 is a Jordan decomposition and
κ(V) = ‖V ‖ ·

∥∥V −1
∥∥. Notice that here we may tolerate exponential κ(V) as the space

complexity dependency on κ is doubly-logarithmic.

In this section we want to examine which requirements can be relaxed. The section is
organized as follows. First, we note that we can get rid of the aperiodicity requirement and
we can somewhat relax the spectral gap requirement. Then we show that in some cases
we can get rid of the κ(V) requirement (when the eigenvalues are polynomially separated).
Finally, we give specific results for:

Undirected graphs,
Directed Eulerian graphs (which generalize directed regular graphs), and,
Directed rapidly-mixing graphs.

5.1 Omitting the aperiodicity requirement using lazy walks
Given a stochastic matrix S we can convert it to the corresponding lazy walk S ′ = 1

2 (I + S),
that stays in place with probability half. Define:

γ′(S) = max
λ∈Spec(S′),λ6=1

(1−<(λ)).

The conversion has two benefits. First, the walk is clearly aperiodic. Also, we will be able to
replace the condition γ ≤ γ(S), with the milder condition γ ≤ γ′(S). We will also show that
we can recover the generalized inverse of the Laplacian of a graph G from that of the lazy
walk variant of G. We prove:

I Theorem 24. There exists a probabilistic algorithm that gets as input:
An n× n irreducible, stochastic matrix S.
Two parameters, κ and γ, which describe how stable the input S is:

Suppose κ ≥ κ(V), where S = V SV −1 is any Jordan decomposition of S, and,
γ′(S) ≥ γ.

Desired accuracy and confidence parameters ε, δ > 0.
An approximation π̃ of the stationary distribution π of S, where ‖π̃ − π‖ ≤ τ and
τ ≤ ε

(T+1)
√
n
for T = 8n2

γ2

(
1 + log nκ

εγ

)
.

APPROX/RANDOM’17

41:16 Probabilistic Logarithmic-Space Algorithms for Laplacian Solvers

Let L denote the Laplacian, L = I − S. Then, the algorithm outputs a (3ε, δ)-approximation
of L? using

O

(
log n

γε
+ log log κ

δ

)
space.

Proof. We run the algorithm of Theorem 16 over S ′ = 1
2 (I + S). It is clear that S ′ is

stochastic and aperiodic. By assumption, S ′ is irreducible (since S is). Also, S and S ′ have
the same V and by assumption κ(V) ≤ κ. They also share the same stationary distribution
π, and we are given π′ which is close to π.

We will soon prove that γ(S ′) ≥ γ′(S)
4 . Therefore, by Theorem 16, we get a (3ε, δ)-

approximation of (I − S ′)?. Finally, we will see that (I − S ′)? = 2(I − S)? and so we easily
get an approximation for (I − S)?.

To see that indeed (I − S ′)? = 2(I − S)?, notice that I and S share the same Jordan
basis V . The first block in S ′ and S is the same, and for b ≥ 2, if the b-th block in S is Sb,
then the b-th block in (I − S ′)? is (I − 1

2 (I + Sb))−1 = 2(I − Sb)−1 and the b-th block of
(I − S)? is (I− Sb)−1.

Thus, all that is left is to prove:

I Claim 25. It holds that γ(S ′) ≥ γ′(S)
4 .

Proof. Fix λ ∈ Spec(S), |λ| ≤ 1, and write λ = a+ bi for a, b ∈ R. Also, let λ′ = 1
2 + 1

2λ =
1+a

2 + b
2 i, which is the corresponding eigenvalue in S ′. Thus:

|λ′|2 = a2 + b2 + 2a+ 1
4 ≤ 1 + 2a+ 1

4 = 1 + <(λ)
2 ,

so 1−|λ′| ≤ 1−
√

1+<(λ)
2 . The claim follows since for every R such that |R| ≤ 1, 1−

√
1+R

2 ≥
1
4 (1−R). J

J

5.2 Undirected graphs
Given an undirected graph we can easily partition it to its connected components using the
fact that st-connectivity of undirected graphs is in BPL [1] (in fact, Reingold showed it is
in L [30]). Therefore, we can solve the system of equations on each connected component
separately.

Now, say we are given an undirected graph G and A is its adjacency matrix. The
stochastic matrix S associated with G is D−1A, where D is a diagonal matrix with the
degree degi of the i-th vertex on the i-th element of the diagonal. While A is Hermitian,
S is usually not. Still, S is similar to a Hermitian matrix in the following form: Express
D−1/2AD−1/2 = VAV −1 where V is unitary and A diagonal with real entries (because
D−1/2AD−1/2 is Hermitian), then S = (D−1/2V)A(D−1/2V)−1. Thus, S has Jordan normal
form WAW−1 with W = D−1/2V . We see that

κ(W) =
∥∥∥D−1/2V

∥∥∥ · ∥∥∥V D1/2
∥∥∥ ≤ ∥∥∥D−1/2

∥∥∥∥∥∥D1/2
∥∥∥ ‖V ‖ ∥∥V −1∥∥

≤

√
λmax(D)
λmin(D) ≤

√
n

1 =
√
n.

D. Doron, F. Le Gall, and A. Ta-Shma 41:17

We can therefore always take κ =
√
n in Theorem 24 when we deal with undirected graphs,

even when the graph is irregular.
The above discussion shows that S is similar to the diagonal matrix A which has a set of

real eigenvalues, and therefore so does S. Chung proved that:

I Lemma 26 ([11], Lemma 1.9). Let S be a transition matrix of an undirected connected
graph with diameter Γ. Then γ′(S) ≥ 1

Γ·
∑

i
degi

.

Finally, we need the stationary distribution π. However, for an undirected graph G =
(V,E) the stationary distribution π is fully explicit and gives weight 2 degi

|E| to the vertex i.
Altogether, we get the theorem for undirected graphs that was stated in the introduction:

I Theorem 27. There exists a probabilistic algorithm that gets as input an n× n stochastic
matrix S that is the transition matrix of an undirected graph and desired accuracy and
confidence parameters ε, δ > 0, outputs a (ε, δ)-approximation of L? = (I − S)? using

O

(
log n

ε
+ log log 1

δ

)
space.

We note that the above theorem also holds for weighted undirected graphs. To see this,
view degi as the sum of weights of the i-th vertex, degi =

∑
j A[i, j], which is also λi(D).

Then, we can take κ =
√
λmax(D)/λmin(D) in Theorem 24. The stationary distribution is

again fully explicit. Finally, analogues of Lemma 26 for weighted undirected graph show that
γ′(S) is at least inverse-polynomially large in the weights of the graph (e.g., Section 5 in
[10]).

When G is undirected we can also approximate in BPL the often used symmetric normal-
ized Laplacian , which is

Lsym = I −D−1/2AD−1/2,

where A is the graph’s adjacency matrix and D is the diagonal degrees matrix. We have
seen that we can approximate L? = (I −D−1A)? in BPL, and

(Lsym)? =
(
D1/2LD−1/2

)?
= D1/2L?D−1/2.

5.3 On the parameter κ(V)
Our algorithm’s space complexity has a doubly-logarithmic dependency on κ(V) – the minimal
condition number of all Jordan bases. When the matrix S has well-separated eigenvalues
(namely, the minimal distance between every two eigenvalues is at least polynomially-small),
the dependency can be omitted. This is implied by the following theorem:

I Theorem 28 ([32]). Let A be an n × n matrix with eigenvalues λ1, . . . , λn and suppose
∆ > 0 is such that mini 6=j |λi − λj | ≥ ∆. Also, let κA be the minimal value of κ(V) over all
V such that A = VAV −1 is a Jordan decomposition of A. Then, κA ≤ n · e

‖A‖2

2∆2 .

We can thus conclude:

I Theorem 29. There exists a probabilistic algorithm that gets as input:
An n × n irreducible, stochastic matrix S and a real parameter ∆ > 0 so that it is
guaranteed that all the eigenvalues of S are ∆-separated (that is, |λi − λj | ≥ ∆ for every
distinct λi, λj ∈ Spec(S)).

APPROX/RANDOM’17

41:18 Probabilistic Logarithmic-Space Algorithms for Laplacian Solvers

A parameter γ such that γ′(S) ≥ γ.
An approximation π̃ of the stationary distribution π of S, where ‖π̃ − π‖ ≤ τ and
τ ≤ ε

(T+1)
√
n
for T = 8n2

γ2

(
1 + log nκ

εγ

)
.

Let L denote the Laplacian, L = I − S. Then, the algorithm outputs a (3ε, δ)-approximation
of L? using

O

(
log n

∆γε + log log 1
δ

)
space.

5.4 Eulerian directed graphs
Eulerian graphs are directed graphs where the in-degree and out-degree of each vertex are
the same, and so they generalize both regular directed graphs, and general undirected graphs.
The stationary distribution is fully explicit (as in undirected graphs that we mentioned
before). In this section we note that for Eulerian graphs γ′ is always non-negligible.

I Claim 30. Let S be a transition matrix of a strongly connected Eulerian directed graph
with m edges. Then, γ′(S) ≥ 4

m2 .

Proof. Chung [12] proved that γ′(S) is at least the second smallest eigenvalue µn−1 (the
smallest eigenvalue is 0) of

LC
G = I − Π1/2SΠ−1/2 + Π−1/2S†Π1/2

2 ,

where Π is a diagonal matrix with the stationary distribution π on the diagonal. Also, in the
same paper it is proven that µn−1 ≥ 4

m2 , which completes the proof. J

5.5 Rapidly-mixing graphs
Finally, one way to approximate the stationary distribution is by taking a random walk on G
until it converges. This follows directly from Lemma 11 and the fact that limk→∞ P kG = |1〉〈π|
(see Theorem 3). For undirected graphs (and also Eulerian directed graphs) the walk converges
in polynomial time, hence, we can approximate the stationary distribution in logarithmic
space, except that there is no need to do that because we have an explicit formula for the
stationary distribution anyway.

For general directed graphs (even with bounded degree) the convergence rate can be
exponentially small and the approach does not work. Nevertheless, there is a whole class of
directed graphs, called rapidly-mixing graphs, that converge rapidly even though, usually,
there is no explicit formula for the stationary distribution. Clearly, for graphs where the walk
converges in polynomial time we can approximate the stationary distribution π in logarithmic
space.

References
1 Romas Aleliunas, Richard M. Karp, Richard J. Lipton, László Lovász, and Charles Rackoff.

Random walks, universal traversal sequences, and the complexity of maze problems. In
Proceedings of the 20th Annual Symposium on Foundations of Computer Science, pages
218–223, 1979.

2 Carme Alvarez and Raymond Greenlaw. A compendium of problems complete for symmet-
ric logarithmic space. Computational Complexity, 9(2):123–145, 2000.

D. Doron, F. Le Gall, and A. Ta-Shma 41:19

3 Frank Bauer. Normalized graph laplacians for directed graphs. Linear Algebra and its
Applications, 436(11):4193–4222, 2012.

4 Adi Ben-Israel and Thomas N.E. Greville. Generalized inverses: theory and applications,
volume 15. Springer, 2003.

5 Stuart J. Berkowitz. On computing the determinant in small parallel time using a small
number of processors. Information Processing Letters, 18(3):147–150, 1984. doi:10.1016/
0020-0190(84)90018-8.

6 Anders Björner and László Lovász. Chip-firing games on directed graphs. Journal of
Algebraic Combinatorics, 1(4):305–328, 1992.

7 Allan Borodin, Joachim von zur Gathen, and John E. Hopcroft. Fast parallel matrix
and GCD computations. Information and Control, 52(3):241–256, 1982. doi:10.1016/
S0019-9958(82)90766-5.

8 Richard Bronson. Matrix Methods: an Introduction. Gulf Professional Publishing, 1991.
9 William Clough Brown. A Second Course in Linear Algebra. Wiley-Interscience, 1988.
10 Fan R.K. Chung. Laplacian of graphs and cheeger’s inequalities. Combinatorics, Paul

Erdos is Eighty, 2(157-172):13–2, 1996.
11 Fan R.K. Chung. Spectral Graph Theory. American Mathematical Society, 1997.
12 Fan R.K. Chung. Laplacians and the cheeger inequality for directed graphs. Annals of

Combinatorics, 9(1):1–19, 2005.
13 Michael B. Cohen, Jonathan Kelner, John Peebles, Richard Peng, Aaron Sidford, and

Adrian Vladu. Faster algorithms for computing the stationary distribution, simulating
random walks, and more. In Proceedings of the 57th Annual Symposium on Foundations
of Computer Science, pages 583–592, 2016.

14 Laszlo Csanky. Fast parallel matrix inversion algorithms. SIAM Journal of Computing,
5(6):618–623, 1976.

15 James W. Demmel. Applied numerical linear algebra. Society for Industrial and Applied
Mathematics, 1997.

16 Dean Doron, Amir Sarid, and Amnon Ta-Shma. On approximating the eigenvalues of
stochastic matrices in probabilistic logspace. Computational Complexity, pages 1–28, 2016.

17 Dean Doron and Amnon Ta-Shma. On the problem of approximating the eigenvalues
of undirected graphs in probabilistic logspace. In Proceedings of the 42nd International
Colloquium on Automata, Languages, and Programming, pages 419–431, 2015.

18 Bill Fefferman and Cedric Yen-Yu Lin. A complete characterization of unitary quantum
space. arXiv preprint arXiv:1604.01384, 2016.

19 Peter W. Glynn. Upper bounds on poisson tail probabilities. Operations Research Letters,
6(1):9–14, 1987.

20 Chris Godsil. Eigenvalues of graphs and digraphs. Linear Algebra and its Applications,
46:43–50, 1982.

21 Chris Godsil and Gordon F. Royle. Algebraic Graph Theory. Springer, 2013.
22 Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins University

Press, Baltimore, MD, USA, 3rd edition, 1996.
23 Nicholas J. Higham. Functions of Matrices: Theory and Computation. Society for Industrial

and Applied Mathematics, 2008.
24 Jonathan A. Kelner, Lorenzo Orecchia, Aaron Sidford, and Zeyuan Allen Zhu. A simple,

combinatorial algorithm for solving SDD systems in nearly-linear time. In Proceedings of
the 45th Annual Symposium on Theory of Computing, pages 911–920, 2013. doi:10.1145/
2488608.2488724.

25 Adam R. Klivans and Dieter Van Melkebeek. Graph nonisomorphism has subexponential
size proofs unless the polynomial-time hierarchy collapses. SIAM Journal on Computing,
31(5):1501–1526, 2002.

APPROX/RANDOM’17

http://dx.doi.org/10.1016/0020-0190(84)90018-8
http://dx.doi.org/10.1016/0020-0190(84)90018-8
http://dx.doi.org/10.1016/S0019-9958(82)90766-5
http://dx.doi.org/10.1016/S0019-9958(82)90766-5
http://dx.doi.org/10.1145/2488608.2488724
http://dx.doi.org/10.1145/2488608.2488724

41:20 Probabilistic Logarithmic-Space Algorithms for Laplacian Solvers

26 Harry R. Lewis and Christos H. Papadimitriou. Symmetric space-bounded computation.
Theoretical Computer Science, 19(2):161–187, 1982.

27 Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992.

28 Noam Nisan. RL⊆SC. Computational Complexity, 4(1):1–11, 1994.
29 Richard Peng and Daniel A. Spielman. An efficient parallel solver for SDD linear systems.

In Proceedings of the 46th Annual Symposium on Theory of Computing, pages 333–342,
2014. doi:10.1145/2591796.2591832.

30 Omer Reingold. Undirected connectivity in log-space. Journal of the ACM, 55(4), 2008.
31 Michael E. Saks and Shiyu Zhou. BPHSPACE(S) ⊆ DSPACE(S3/2). Journal of Computer

and System Sciences, 58(2):376–403, 1999.
32 Russell A. Smith. The condition numbers of the matrix eigenvalue problem. Numerische

Mathematik, 10(3):232–240, 1967.
33 Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph parti-

tioning, graph sparsification, and solving linear systems. In Proceedings of the 36th Annual
Symposium on Theory of Computing, pages 81–90, 2004. doi:10.1145/1007352.1007372.

34 Daniel A. Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM Journal
on Computing, 40(4):981–1025, 2011. doi:10.1137/08074489X.

35 Daniel A. Spielman and Shang-Hua Teng. A local clustering algorithm for massive graphs
and its application to nearly linear time graph partitioning. SIAM Journal on Computing,
42(1):1–26, 2013. doi:10.1137/080744888.

36 Daniel A. Spielman and Shang-Hua Teng. Nearly linear time algorithms for preconditioning
and solving symmetric, diagonally dominant linear systems. SIAM Journal on Matrix
Analysis and Applications, 35(3):835–885, 2014. doi:10.1137/090771430.

37 Amnon Ta-Shma. Inverting well conditioned matrices in quantum logspace. In Proceedings
of the 45th Annual Symposium on Theory of Computing, pages 881–890, 2013. doi:10.
1145/2488608.2488720.

38 Vladimir Trifonov. An O(logn log logn) space algorithm for undirected st-connectivity.
SIAM Journal on Computing, 38(2):449–483, 2008.

39 Nisheeth K. Vishnoi. Lx = b – Laplacian Solvers and their Algorithmic Applications. Now
publishers, 2013.

40 John Watrous. Space-bounded quantum complexity. Journal of Computer and System
Sciences, 59(2):281–326, 1999.

http://dx.doi.org/10.1145/2591796.2591832
http://dx.doi.org/10.1145/1007352.1007372
http://dx.doi.org/10.1137/08074489X
http://dx.doi.org/10.1137/080744888
http://dx.doi.org/10.1137/090771430
http://dx.doi.org/10.1145/2488608.2488720
http://dx.doi.org/10.1145/2488608.2488720

Streaming Periodicity with Mismatches∗†

Funda Ergün1, Elena Grigorescu2, Erfan Sadeqi Azer3, and
Samson Zhou4

1 School of Informatics and Computing, Indiana University, Bloomington,
IN, USA
fergun@indiana.edu

2 Department of Computer Science, Purdue University, West Lafayette,
IN, USA
elena-g@purdue.edu

3 School of Informatics and Computing, Indiana University, Bloomington,
IN, USA
esadeqia@indiana.edu

4 Department of Computer Science, Purdue University, West Lafayette,
IN, USA
samsonzhou@gmail.com

Abstract
We study the problem of finding all k-periods of a length-n string S, presented as a data stream.
S is said to have k-period p if its prefix of length n − p differs from its suffix of length n − p in
at most k locations.

We give a one-pass streaming algorithm that computes the k-periods of a string S using
poly(k, logn) bits of space, for k-periods of length at most n

2 . We also present a two-pass
streaming algorithm that computes k-periods of S using poly(k, logn) bits of space, regardless
of period length. We complement these results with comparable lower bounds.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases String algorithms, Streaming algorithms, Pattern matching, Randomized
algorithms, Sublinear algorithms

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.42

1 Introduction

In this paper we are interested in finding (possibly imperfect) periodic trends in sequences
given as streams. Informally, a sequence is said to be periodic if it consists of repetitions
of a block of characters; e.g., abcabcabc consists of repetitions of abc, of length 3, and thus
has period 3. The study of periodic patterns in sequences is valuable in fields such as string
algorithms, time series data mining, and computational biology. The question of finding
the smallest period of a string is a fundamental building block for many string algorithms,
especially in pattern matching, such as the classic Knuth-Morris-Pratt [21] algorithm. The
general technique for many pattern matching algorithms is to find the periods of prefixes of
the pattern in a preprocessing stage, then use them as a guide for ruling out locations where
the pattern cannot occur, thus improving efficiency.

∗ A full version of the paper is available at http://homes.soic.indiana.edu/fergun/PUBLICATIONS/
mismatchperiodicity.pdf.

† Funda Ergün’s research is supported by NSF CCF-1619081; Elena Grigorescu’s and Samson Zhou’s
research is supported by NSF CCF-1649515.

© Funda Ergün, Elena Grigorescu, Erfan Sadeqi Azer, and Samson Zhou;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 42; pp. 42:1–42:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.42
http://homes.soic.indiana.edu/fergun/ PUBLICATIONS/mismatchperiodicity.pdf
http://homes.soic.indiana.edu/fergun/ PUBLICATIONS/mismatchperiodicity.pdf
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

42:2 Streaming Periodicity with Mismatches

While finding exact periods is fundamental to pattern matching, in real life, it is unrealistic
to expect data to be perfectly periodic. In this paper, we assume that even when there is a
fixed period, data might subtly change over time. In particular, we might see mismatches,
defined as locations in the sequence where a block is not the same as the previous block. For
instance, while abababababab is perfectly periodic, abababacacac contains one mismatch where
ab becomes (and stays) ac. This model captures periodic events that undergo permanent
modifications over time (e.g., statistics that remain generally cyclic but experience infrequent
permanent changes or errors). We consider our problem in the streaming setting, where the
input is received in a sequential manner, and is processed using sublinear space.

Our problem generalizes exact periodicity studied in [12], where the authors give a
one-pass, O

(
log2 n

)
-space algorithm for finding the smallest exact period of stream S of

length n, when the period is at most n/2, as well as a linear space lower bound when the
period is longer than n/2. They use two standard and equivalent definitions of periodicity: S
has period p if it is of the form B`B′ where B is a block of length p that appears ` ≥ 1 times
in a row, and B′ is a prefix of B. For instance, abcabcabcab has period 3 where B = abc,
and B′ = ab. Equivalently, the length n− p prefix of S is identical to its length n− p suffix.
These definitions imply that at most k of the repeating blocks differ from the preceding ones.
According to this definition, for instance, abcabdabdae is 2-periodic with period 3, with the
mismatches occurring at positions 6 and 11.

In order to allow mismatches in S while looking for periodicity in small space, we utilize
the fingerprint data structure introduced for pattern matching with mismatches by [25, 7].
Ideally, one would hope to combine results from [12] and [7] to readily obtain an algorithm
for detecting k-periodicity. Unfortunately, reasonably direct combinations of these techniques
do not seem to work. This is due to the fact that, in the presence of mismatches, the essential
structural properties of periods break down. For instance, in the exact setting, if S has
periods p and q, it must also have period r, where r is any positive multiple of p or q. It must
also have period d = gcd(p, q). These are not necessarily true when there are mismatches; as
an example consider the following.

I Example 1. S = aaaaba has only one mismatch where S[i] 6= S[i + 2] (over all non
range-violating values of i); likewise where S[i] 6= S[i+ 3], thus S is 1-periodic with periods
2 and 3. S is not 1-periodic with period 1 = gcd (2, 3) as it has two mismatches where
S[i] 6= S[i+ 1].

In the exact setting the smallest period t determines the entire structure of S as all other
periods must be multiples of t. This property does not necessarily hold when we allow
mismatches, thus the smallest period does not carry as much information as in the exact
case. Similarly, overlaps of a pattern with itself in S exhibits a much less well-defined
periodic structure in the presence of mismatches. This makes it much harder to achieve the
fundamental space reduction achievable in exact periodicity computation, where this kind of
structure is crucially exploited.

1.1 Our Results

Given the structural challenges introduced by the presence of mismatches, we first focus on
understanding the unique structural properties of k-periods and the relationship between the
period p, and the number of mismatches k (See Theorem 9). This understanding gives us
tools for “compressing” our data into sublinear space. We proceed to present the following
on a given stream S of length n:

F. Ergün, E. Grigorescu, E. Sadeqi Azer, and S. Zhou 42:3

1. a two-pass streaming algorithm that computes all k-periods of S using O
(
k4 log9 n

)
space,

regardless of period length (see Section 4)
2. a one-pass streaming algorithm that computes all k-periods of length at most n/2 of S

using O
(
k4 log9 n

)
space (see Section 5)

3. a lower bound that any one-pass streaming algorithm that computes all k-periods of S
requires Ω(n) space (see Section 6)

4. a lower bound that for k = o(
√
n) with k > 2, any one-pass streaming algorithm that

computes all k-periods of S with probability at least 1− 1/n requires Ω(k logn) space,
even under the promise that the k-periods are of length at most n/2. (see Section 6)

Given the above results, it is trivial to modify the algorithms to return, rather than all
k-periods, the smallest, largest, or any particular k-period of S.

1.2 Related Work
Our work extends two natural directions in sublinear algorithms for strings: on one hand
the study of the repetitive structure of long strings, and on the other hand the notion of
approximate matching of patterns, in which the algorithm can detect a pattern even when
some of it got corrupted.

In the first line of work, Ergün et al. [12] initiate the study of streaming algorithms
for detecting the period of a string, using poly(logn) bits of space. Indyk et al. [19] also
studied mining periodic patterns in streams, [10] studied periodicity in time-series databases
and online data, and Crouch and McGregor [9] study periodicity via linear sketches. [13]
and [23] studied the problem of distinguishing periodic strings from aperiodic ones in the
property testing model of sublinear-time computation. Furthermore, [1] studied approximate
periodicity in RAM model under the Hamming and swap distance metrics.

The pattern matching literature is a vast area (see [3] for a survey) with many variants.
Following the pattern matching streaming algorithm of Porat and Porat [25], Clifford et al.
[7] recently show improved streaming algorithms for the k-mismatch problem, as well as
offline and online variants. We adapt the use of sketches from [7] though there are some
other works with different sketches for strings ([2], [5], [27] and [26]). [8] also showed several
lower bounds for online pattern matching problem.

This line of work is also related to the detection of other natural patterns in strings, such
as palindromes or near palindromes. Ergün et al. [4] initiate the study of this problem and
give sublinear-space algorithms, while [16] show lower bounds. In recent work, [18] extend
this problem to finding near-palindromes (i.e., palindromes with possibly a few corrupted
entries).

Many ideas used in these sublinear algorithms stem from related work in the classical
offline model. The well-known KMP algorithm [22] initially used periodic structures to
search for patterns within a text. Galil et al.[14] later improved the space performance of
this pattern matching algorithm. Recently, [15] also used the properties of periodic strings
for pattern matching when the strings are compressed. These interesting properties have
allowed several algorithms to satisfy some non-trivial requirements of respective models (see
[17], [6] for example).

2 Preliminaries

We assume our input is a stream S[1, . . . , n] of length |S| = n over some alphabet Σ. The ith

character of S is denoted S[i], and the substring between locations i and j (inclusive) S[i, j].
Two strings S, T ∈ Σn are said to have a mismatch at index i if S[i] 6= T [i], and their Hamming

APPROX/RANDOM’17

42:4 Streaming Periodicity with Mismatches

distance is the number of such mismatches, denoted HAM (S, T) =
∣∣∣{i | S[i] 6= T [i]}

∣∣∣. We
denote the concatenation of S and T by S ◦ T .

S is said to have period p if S[x] = S[x + p] for all 1 ≤ x ≤ n − p; more succinctly, if
S[1, n − p] = S[p + 1, n]. In general, we say S has k-period p (i.e., S has period p with k
mismatches) if S[x] = S[x + p] for all but at most k valid indices x. Equivalently, S has
k-period p if and only if HAM (S[1, n− p], S[p+ 1, n]) ≤ k.

I Observation 2. If p is a k-period of S, then at most k of the sequence of substrings
S[1, p], S[p+ 1, 2p], S[2p+ 1, 3p], . . . can differ from the previous substring in the sequence.

When obvious from the context, given k-period p, we denote as a mismatch a position i for
which S[i] 6= S[i+ p].

I Example 3. The string S = aaaaaabbccd has 3-period equal to 1, since S[i] = S[i+ 1] for
all valid locations i except mismatches at i = 6, 8, 10. On the other hand, S = abcabcadcabc

has 2-period equal to 3 since S[i] = S[i+ 3] for all valid i except mismatches i = 5, 8.

The following observation notes that the number of mismatches between two strings is an
upper bound on the number of mismatches between their prefixes of equal length.

I Observation 4. If p is a k-period of S, then for any x ≤ n− p, the number of mismatches
between S[1, x] and S[p+ 1, p+ x] is at most k.

Given two integers x and y, we denote their greatest common divisor by gcd (x, y).
We repeatedly use data structures and subroutines that use Karp-Rabin fingerprints. For

more about the properties of Karp-Rabin fingerprints see [20], but for our purposes, the
following suffice:

I Theorem 5 ([7]). Given two strings S and T of length n, there exists a data structure
that uses O

(
k log6 n

)
bits of space, and outputs whether HAM (S, T) > k or HAM (S, T) ≤ k,

along with the set of locations of the mismatches in the latter case.

From here, we use the term fingerprint to refer to this data structure.

2.1 The k-Mismatch Algorithm
For our string-matching tasks, we utilize an algorithm from [7], whose parameters are given
in Theorem 6. For us, string matching is a tool rather than a goal; as a result, we require
additional properties from the algorithm that are not obvious at first glance. In Corollary 7
we consider these properties. Throughout our algorithms and proofs, we frequently refer to
this algorithm as the k-Mismatch Algorithm.

I Theorem 6 ([7]). Given a pattern P of length `, a text T of length n and some mismatch
threshold k, there exists an algorithm that, with probability 1− 1

n2 , outputs all indices i such
that HAM (T [i, i+ `− 1], P) ≤ k using O

(
k2 log8 n

)
bits of space.

Whereas the pattern in the k-Mismatch Algorithm is given in advance and can be
preprocessed before the text, in our case the pattern is a prefix of the text, and the algorithm
must return any matches of this pattern, starting possibly at location 2, well within the
original occurrence of the pattern itself. (Consider text ‘abcdabcdabcdabcd’ and the pattern
‘abcdabcd,’ the first six characters of the text. The first match starts at location 4, but the
algorithm does not finish reading the full pattern until it has read location 6.) To eliminate
a potential problem due to this requirement, we make modifications so that the algorithm
can search for all matches in S of a prefix of S.

F. Ergün, E. Grigorescu, E. Sadeqi Azer, and S. Zhou 42:5

I Corollary 7. Given a string S and an index x, there exists an algorithm which, with proba-
bility 1− 1

n2 , outputs all indices i where HAM (S[1, x], S[i+ 1, i+ x]) ≤ k using O
(
k2 log8 n

)
bits of space.

Proof. We claim that the algorithm of Theorem 6 can be arranged and modified to output
all such indices i. We need to input S[1, x] as the pattern and S[2, n] as the text for this
algorithm.

Thus, it suffices to argue that the data structure for the pattern is built in an online
fashion. That is, after reading each symbol of the pattern, the data structure corresponding
to the prefix of the pattern that has already been read is updated and ready to use. Moreover,
the process of building the data structure for the text should not depend on the pattern.
The only dependency between these two processes can be that they need to use the same
randomness. Therefore, the algorithm only needs to decide the randomness before starting
to process the input and share it between processes.

The algorithm of Theorem 6 has a few components, explained in the proof of Theorem
1.2 in [7]. Here, we go through these components and explain how they satisfy the conditions
we mentioned.

The main data structure for this algorithm is also used in Theorem 5. In this data
structure, each symbol is partitioned to various subpatterns determined by the index of
the symbol along with predetermined random primes. Each subpattern is then fed to a
dictionary matching algorithm. The dictionary entries are exactly the subpatterns of the
original patterns and thus can be updated online.

The algorithm also needs to consider run-length encoding for each of these subpatterns in
case they are highly periodic. It is clear that run-length encoding can be done independently
for the pattern and the text.

Finally the approximation algorithm (Theorem 1.3 of [7]) uses a similar data structure
to Theorem 5, but with different magnitudes for primes. Thus, the entire algorithm can be
modified to run in an online fashion. J

3 Our Approach

Our approach to find all the k-periods of S is to first determine a set T of candidate k-periods,
which is guaranteed to be a superset of all the true k-periods. We first describe the algorithm
to find the k-period in two passes. In the first pass, we let T be the set of indices π that
satisfy

HAM (S[1, x], S[π + 1, π + x]) ≤ k,

for some appropriate value of x that we specify later. Note that by Observation 4, all
k-periods must satisfy the above inequality. We show that even though T may be linear in
size, we can succinctly represent T by adding a few additional indices into T . We then show
how to use the compressed version of T during the second pass to verify the candidates and
output the true k-periods of S.

This strategy does not work if we are allowed only one pass; by the time we discover a
candidate k-period p, it may be too late for us to start collecting the extra data needed to
verify p (in the two-pass version this is not a problem, as the extra pass allows us to go back
to the start of S and any needed data). We approach this problem by utilizing a trick from
[12] of identifying candidate periods p using non-uniform criteria depending on the value of
p. Using this idea, once a candidate period is found, it is not too late to verify that it is a
true k-period, and the data can still be compressed into sublinear size.

APPROX/RANDOM’17

42:6 Streaming Periodicity with Mismatches

Perhaps the biggest hidden challenge in the above approach is due to the major structural
differences between exactly periodic and k-periodic strings; k-periodic strings show much
less structure than exactly periodic strings. As a result, incremental adaptations of existing
techniques on periodic strings do not yield corresponding schemes for k-periodic strings.
In order to achieve small space, one needs to explore the weaker structural properties of
k-periodic streams. A large part of the effort in this work is in formalizing said structure (see
Appendix A), culminating in Theorem 23 and its proof, as well as exploring its application
to our algorithms.

To show lower bounds for randomized algorithms finding the smallest k-period, we use
a strategy similar to that in [12], using a reduction from the Augmented Index Problem.
To show lower bounds for randomized algorithms finding the smallest k-period given the
promise that the smallest k-period is at most n

2 , we use Yao’s Principle [28].

4 Two-Pass Algorithm to Compute k-Periods

In this section, we provide a two-pass, O
(
k4 log9 n

)
-space algorithm to output all k-periods of

S. The general approach is to first identify a superset of the k-periods of S, based on the self-
similarity of S, detected via the k-Mismatch algorithm of [7] as a black box. Unfortunately,
while this tool allows us to match parts of S to each other, we get only incomplete information
about possible periods, and this information is not readily stored in small space due to
insufficient structure. We explore the structure of periods with mismatches in order to come
up with a technique that massages our data into a form that can be compressed in small
space, and is easily uncompressed. During the second pass, we go over S as well as the
compressed data to verify the candidate periods.

We consider two classes of periods by their length, and run two separate algorithms in
parallel. The first algorithm identifies all k-periods p with p ≤ n

2 , while the second algorithm
identifies all k-periods p with p > n

2 .

4.1 Finding small k-periods
Our algorithm for finding periods of length at most n/2 proceeds in two passes. In the first
pass, we identify a set T of candidate k-periods, and formulate its compressed representation,
T C . In the second pass, we recover each index from T C and verify whether or not it is a
k-period. We need T and T C to satisfy four properties.
1. All true k-periods (likely accompanied by some candidate k-periods that are false positives)

are in T .
2. T C can be stored in sublinear space.
3. T can be fully recovered from T C in small space.
4. The verification process in the second pass weeds out those candidates that are not true

periods in sublinear space.
We now describe our approach and show how it satisfies the above properties.

4.2 Pass 1: Property 1
We crucially observe that any k-period p must satisfy the requirement

HAM (S[1, x], S[p+ 1, p+ x]) ≤ k

for all x ≤ n− p, and specifically for x = n
2 . This observation allows us to refer to indices

as periods, as the index p+ 1 where the requirement is satisfied corresponds to (possible)

F. Ergün, E. Grigorescu, E. Sadeqi Azer, and S. Zhou 42:7

. . .S:

1

H1 H2 H3 H4 H5

π1 π2 π3 π4 = −1 π5

Figure 1 Observe that all dots in each interval are equally spaced after the first. These dots
represent T c: the black dots represent T , while the white dots are added to convert the irregularly
spaced black dots into regularly spaced dot sequences.

k-period p. For the remainder of this algorithm, we set x = n
2 , and designate the indices p+ 1

that satisfy the requirement with x = n
2 as candidate k-periods; collectively these indices

serve as T . Since satisfying this requirement is necessary but not sufficient for a candidate
to be a real k-period, Property 1 follows.

4.3 Pass 1: Property 2
Observe that T could be linear in size, so we cannot store each index explicitly. We observe
that if our indices followed an arithmetic progression, they could be kept implicitly in very
succinct format (as is the case where there are no mismatches). Unfortunately, due to the
presence of mismatches in S, such a regular structure does not happen. However, we show
that it is still possible to implicitly add a small number of extra indices to our candidates
and end up with an arithmetic series and allow for succinct representation. Our algorithm
produces several such series, and represents each one in terms of its first index and the
increment between consecutive terms, obtaining T C from T , with the details given below.

In order to compress T into T C , we partition [1, x] into the 2mk + 2 disjoint intervals
Hj =

[
jx

2(mk+1) + 1, (j+1)x
2(mk+1)

)
, where m = logn. The goal is, possibly through the addition

of extra candidates, to represent the candidates in each interval as a single arithmetic
series. This series will be represented by its first term, as well as the increment between its
consecutive terms, πj . As each new candidate arrives, we update πj (except for the first
update, πj never increases, and it may shrink by an integer factor). Throughout the process,
we maintain the invariant, by updating πj , that the arithmetic sequence represented in Hj

contains all candidates in Hj output by the k-Mismatch algorithm. Then it is clear that T C
and {πj} take sublinear space, satisfying Property 2.

4.4 Pass 1: Property 3
It remains to describe how to update πj . The first time we see two candidates in Hj , we set
πj to be the increment between the candidates (before, it is set to −1). Each subsequent time
we see a new candidate index in the interval Hj , we update πj to be the greatest common
divisor of πj and the increment between the candidate and the smallest index in T ∩Hj ,
which is kept explicitly. For instance, if our first candidate index is 10, and afterwards we
receive 22, 26, 32 (assume the interval ends at 35), our πj values over time are −1, 12, 4, 2.
Ultimately, the candidates that we will be checking in Pass 2 will be 10, 12, 14, 16, 18, . . . ,
34. For another example, see Figure 1.

We now need to show that the above invariant is maintained throughout the algorithm.
To do this, we show that any k-period p ∈ Hj is an increment of some multiple of πj away
from the smallest index in T ∩Hj . Then, if we insert implicitly into T all indices in Hj

whose distance from the smallest index in T ∩Hj is a multiple of πj , we will guarantee that
any k-period in Hj will be included in T .

APPROX/RANDOM’17

42:8 Streaming Periodicity with Mismatches

We now show that any k-period p is implicitly represented in, and can be recovered from
T C and the values {πj} at the end of the first pass.

I Lemma 8. If p < n
2 is a k-period and p ∈ Hj, then p can be recovered from T C and πj.

Proof. Since p ∈ Hj is a k-period, then it satisfies HAM (S[1, n− p], S[p+ 1, n]) ≤ k. More
specifically, i = p satisfies

HAM
(
S
[
1, n2

]
, S
[
i+ 1, n2 + i

])
≤ k

and will be reported by the k-Mismatch Algorithm. If there is no other index in T C ∩Hj ,
then p will be inserted into T C in the first pass, so p can clearly be recovered from T C .

On the other hand, if there is another index q in T C ∩Hj , then πj will be updated to
be a divisor of the pairwise distances. Hence, the increment p− q is a multiple of πj . Any
change that might later happen to πj will be due to a gcd operation, and thus, will reduce it
by a factor by at least 2. Thus, p− q will remain a multiple of the final value of πj , and p
will be recovered at the end of the first pass as a member of T . J

Thus Property 3 is satisfied. The first pass algorithm in full appears below.

(To determine any k-period p with p ≤ n
2):

First pass:
1. Initialize πj = −1 for each 0 ≤ j < 2k logn+ 2.
2. Initialize T C = ∅.
3. For each index i such that (using the k-Mismatch algorithm)

HAM
(
S
[
1, n2

]
, S
[
i+ 1, n2 + i

])
≤ k .

For the integer j for which i is in the interval Hj =
[

jn
4(k logn+1) + 1, (j+1)n

4(k logn+1)

)
:

a. If there exists no candidate t ∈ T C in the interval Hj , then add i to T C .
b. Otherwise, let t be the smallest candidate in T C and either πj = −1 or πj > 0.

If πj = −1, then set πj = i− t. Otherwise, set πj = gcd (πj , i− t).

4.5 Pass 2: Property 4
Our task in the second pass is to verify whether each candidate recovered from T C
and {πj} is actually a k-period or not. Thus, we must simultaneously check whether
HAM (S[1, n− p], S[p+ 1, n]) ≤ k for each candidate p, without using linear space. Fortu-
nately, Theorem 9 states that at most 32k2 logn + 1 unique fingerprints for substrings of
length πj are sufficient to recover the fingerprints of both S[1, n− p] and S[p+ 1, n] for any
p ∈ Hj .

Before detailing, we first state a structural property, whose proof we defer to Appendix A.
This property states that the greatest common divisor of the pairwise difference of any
candidate k-periods within Hj must be a (32k2 logn+ 1)-period.

I Theorem 9. For some 0 ≤ j < 2mk + 2, let

Ij = {i ∈ Hj |HAM (S[1, x], S[i+ 1, i+ x]) ≤ k} .

F. Ergün, E. Grigorescu, E. Sadeqi Azer, and S. Zhou 42:9

For any p1 < . . . < pm ∈ I, the greatest common divisor d of p2 − p1, p3 − p1 . . . , pm − p1
satisfies

HAM (S[1, x], S[d+ 1, d+ x]) ≤ 32mk2 + 1.

Observe that πj is exactly d. Moreover, each time the value of πj changes, it gets divided by
an integer factor at least equal to 2, ending up finally as a positive integer. Since πj ≤ n,
this change can occur at most logn times, and so m ≤ logn. We now show that we can
verify all candidates in sublinear space.

I Lemma 10. Let pi be a candidate k-period for a string S, with p1 < p2 < . . . < pm all
contained within Hj . Given the fingerprints of S[1, n−p1] and S[p1 + 1, n], we can determine
whether or not S has k-period pi for any 1 ≤ i ≤ m by storing at most 32k2 logn + 1
additional fingerprints.

Proof. Consider a decomposition of S into substrings wi of length pi, so that S = w1 ◦ w2 ◦
w3 ◦ Note that each index i for which wi 6= wi+1 corresponds with at least one mismatch.
It follows from Observation 2 that there exist at most k indices i for which wi 6= wi+1. Thus,
recording the fingerprints and locations of these indices i suffice to determine whether or not
there are k mismatches for candidate period pi.

By Theorem 9, the greatest common divisor of the difference between each term in I is a
(32k2 logn+ 1)-period πj . Thus, S can be decomposed S = v ◦ v1 ◦ v2 ◦ v3 ◦ . . . so that v has
length p1, and each substring vi has length πj . It follows from Observation 2 that there exist
at most 32k2 logn + 1 indices i for which vi 6= vi+1. Therefore, recording the fingerprints
and locations of these indices i allow us to recover the fingerprint of S[1, n− pi] from the
fingerprint of S[1, n − pi−1], since pi − pi−1 is a multiple of πj . Similarly, we can recover
the fingerprint of S[pi + 1, n] from the fingerprint of S[pi−1 + 1, n]. Hence, we can confirm
whether or not pi is a k-period. J

The second pass algorithm in full follows.

(To determine all the k-periods p with p ≤ n
2):

Second pass:
1. For each t such that t ∈ T C :

a. Let j be the integer for which t is in the intervalHj =
[

jn
4(k logn+1) + 1, (j+1)n

4(k logn+1)

)
b. If πj > 0, then record up to 32k2 logn+ 1 unique fingerprints of length πj and of

length t, starting from t.
c. Otherwise, record up to 32k2 logn + 1 unique fingerprints of length t, starting

from t.
d. Check if HAM (S[1, n− t], S[t+ 1, n]) ≤ k and return t if this is true.

2. For each t which is in interval Hj =
[

jn
4(k logn+1) + 1, (j+1)n

4(k logn+1)

)
for some integer j:

If there exists an index in T C ∩Hj whose distance from t is a multiple of πj , then
check if HAM (S[1, n− t], S[t+ 1, n]) ≤ k and return t if this is true.

This proves Property 4. Next, we show the correctness of the algorithm for small k-periods.

I Lemma 11. For any k-period p ≤ n
2 , the algorithm outputs p.

Proof. Since the intervals {Hj} cover
[
1, n2

]
, then p ∈ Hj for some j. It follows from

Lemma 8 that after the first pass, p can be recovered from T and πj . Thus, the second pass
tests whether or not p is a k-period. By Lemma 10, the algorithm outputs p, as desired. J

APPROX/RANDOM’17

42:10 Streaming Periodicity with Mismatches

4.6 Finding large k-periods
As in the previous discussion, we would like to pick candidate periods during our first pass.
However, if a k-period p satisfies p > n

2 , then clearly it will no longer satisfy

HAM
(
S
[
1, n2

]
, S
[
p+ 1, p+ n

2

])
≤ k,

as p+n
2 > n, and S

[
p+ n

2
]
is undefined. Instead, recall that HAM (S[1, x] = S[p+ 1, p+ x]) ≤

k for all x ≤ n− p. Ideally, when choosing candidate periods p based on their satisfying this
formula, we would like to use as large an x as possible without exceeding n−p, but we cannot
do this without knowing the value of p. Instead, [12] observes we can try exponentially
decreasing values of x: we run logn instances of the algorithm sequentially, with x = n

2 ,
n
4 , . . .,

since one of these values of x must be the largest one that does not lead to an illegal index
of S. Therefore, the desired instance produces p, while all other instances do not.

(To determine a k-period p if p > n
2):

First pass:
1. Initialize π(m)

j = −1 for each 0 ≤ j < 2k logn+ 2 and 0 ≤ m ≤ logn.
2. Initialize T Cm = ∅.
3. For each index i, let r be the largest m such that n

2 + n
4 + . . .+ n

2r ≤ i. Using the
k-Mismatch algorithm, check whether

HAM
(
S
[
1, n2r

]
, S
[
i+ 1, i+ n

2r
])
≤ k.

If so, let R = n
2 + n

4 + . . .+ n
2r−1 and j be the integer for which i is in the interval

H
(r)
j =

[
R+ nj

2r+1(k logn+ 1) + 1, R+ n(j + 1)
2r+1(k logn+ 1)

)
a. If there exists no candidate t ∈ T Cr in the interval H(r)

j , then add i to T Cr .
b. Otherwise, let t be the smallest candidate in T Cr and either π(r)

j = −1 or π(r)
j > 0.

If π(r)
j = −1, then set π(r)

j = i− t. Otherwise, set π(r)
j = gcd

(
π

(r)
j , i− t

)
.

This partition of [1, n] into the disjoint intervals
[
1, n2

]
,
[
n
2 + 1, n2 + n

4
]
, . . . guarantees that

any k-period p is contained in one of these intervals. Moreover, the intervals {H(r)
j } partition[n

2 + n

4 + . . .+ n

2r−1 ,
n

2 + . . .+ n

2r
]
,

and so p can be recovered from T Cr and {π(r)
j }. We now present the algorithm for the

second-pass to find all k-periods p for which p > n
2 .

F. Ergün, E. Grigorescu, E. Sadeqi Azer, and S. Zhou 42:11

Second pass:
1. For each t and any r such that t ∈ T Cr :

a. Let R = n
2 + n

4 + . . .+ n
2r−1 and j be the integer for which t is in the interval

H
(r)
j =

[
R+ nj

2r+1(k logn+ 1) + 1, R+ n(j + 1)
2r+1(k logn+ 1)

)
b. If π(r)

j > 0, then record up to 32k2 logn+ 1 unique fingerprints of length π(r)
j and

of length t, starting from t.
c. Otherwise, record up to 32k2 logn + 1 unique fingerprints of length t, starting

from t.
d. Check if HAM (S[1, n− t], S[t+ 1, n]) ≤ k and return t if this is true.

2. For each t which is in interval H(r)
j =

[
R+ nj

2r+1(k logn+1) + 1, R+ n(j+1)
2r+1(k logn+1)

)
for some integer j:
a. If there exists an index in T Cr ∩H

(r)
j whose distance from t is a multiple of π(r)

j ,
then check if HAM (S[1, n− t], S[t+ 1, n]) ≤ k and return t if this is true.

Since correctness follows from the same arguments as the case where p ≤ n
2 , it remains to

analyze the space complexity of our algorithm.

I Theorem 12. There exists a two-pass algorithm that outputs all the k-periods of a given
string using O

(
k4 log9 n

)
space.

Proof. In the first pass, for each Tm, we maintain a k-Mismatch algorithm which requires
O
(
k2 log8 n

)
bits of space, as in Corollary 7. Since 1 ≤ m ≤ logn, we require O

(
k2 log9 n

)
bits of space in total. In the second pass, we keep up to O

(
k2 logn

)
fingerprints for any set

of indices in Tm. Each fingerprint requires space O
(
k log6 n

)
and there may be O (k logn)

indices in Tm for each 1 ≤ m ≤ logn, for a total of O
(
k4 log7 n

)
bits of space. Thus,

O
(
k4 log9 n

)
bits of space suffice for both passes. J

5 One-Pass Algorithm to Compute k-Periods

We now give a one-pass algorithm that outputs all the k-periods smaller than n
2 . Similar to

two-pass algorithm, we have two processes running in parallel. The first process handles all
the k-periods p with p ≤ n

4 , while the second process handles the k-periods p with p > n
4 .

Both processes are designed again based on the crucial observation that all the k-periods
p must satisfy HAM (S[1, x], S[p+ 1, p+ x]) ≤ k for all x ≤ n − p. In the first process, we
set x = n

2 and find all indices i such that S
[
i+ 1, i+ n

2
]
has at most k mismatches from

S
[
1, n2

]
.

The second process cannot use the same approach, because the k-Mismatch Algorithm
reports that index i is a candidate after reading position n

2 + i, at which point we have
already passed n − i. This means that the fingerprint of S[1, n − i] cannot be built. For
example, see Figure 2.

Thus, for a fixed p in the second process, if we set x to be the largest power of two which
does not exceed n− 2p, the k-mismatch algorithm could report p. However, we cannot do
this without knowing the value of p.

Building off the ideas in [12], we run logn instances of the algorithm in parallel, with
x = 1, 2, 4, . . ., then one of these values of x must correspond to the instance of k-mismatch
algorithm that recognizes p and reports it for later verification.

APPROX/RANDOM’17

42:12 Streaming Periodicity with Mismatches

S
[
i+ 1, i+ n

2
]

S:

S[1, n− i]

1 i+ 1 n− i i+ n
2

Recognizes i is candidate

n

Figure 2 When i is recognized as a candidate, the algorithm has already passed n− i and cannot
build S[1, n− i].

5.1 Finding small k-periods
We consider all the k-periods p with p ≤ n

4 for this subsection. Run the k-Mismatch algorithm
to find

T =
{
i
∣∣∣i ≤ n

4 ,HAM
(
S
[
1, n2

]
, S
[
i+ 1, i+ n

2

])
≤ k

}
.

Upon finding an index i ∈ T , the algorithm uses the fingerprint for S
[
i+ 1, i+ n

2
]
to

continue building S[i + 1, n]. Simultaneously, it builds S[1, n − i], and checks whether
HAM (S[1, n− i], S[i+ 1, n]) ≤ k. The algorithm identifies that i ∈ T upon reading character
i+ n

2 − 1. Since i ≤ n
4 , then i+ n

2 − 1 < 3n
4 ≤ n− i. Thus, the algorithm can identify i in

time to build S[1, n− i]. By Theorem 9, these entries can be computed from a sequence of
compressed fingerprints.

5.2 Finding large k-periods
Now, consider all the k-periods p with n

4 < p ≤ n
2 . Let Im =

[
n
2 − 2m + 1, n2 − 2m−1] and

for 1 ≤ m ≤ logn− 1, define

Tm = {i |i ∈ Im,HAM (S[1, 2m], S[i+ 1, i+ 2m]) ≤ k} .

Let πm be a k-period of S[1, 2m]. We first consider the case where πm ≥ 2m

4 and then the
case where πm < 2m

4 .

I Observation 13 ([7]). If p is a k-period for S[1, n/2], then each i such that

HAM
(
S
[
1, n2

]
, S
[
i+ 1, i+ n

2

])
≤ k

2

must be at least p symbols apart.

By Observation 13, if πm ≥ 2m

4 , then |Tm| ≤ 4. Moreover, we can detect whether i ∈ Tm
by index n

2 − 2m−1 + 2m. On the other hand, n− i ≥ n
2 + 2m + 1, and so we can properly

build S[1, n− i].
Now, suppose πm < 2m

4 . Since Tm may be linear in size, we use the same trick to obtain
a succinct representation, whose properties satisfy those in Section 4, while including a few
additional indices. Let S[2m + 1, 2m+1] = w1w2 . . . wtw

′, where each wi has length πm and
for 0 ≤ d ≤ 3k, let xd be the largest index such that S[1, 2m] ◦w1 ◦w2 ◦ · · · ◦wx has d-period
πm.

Let Tm = i1, i2, . . . , ir in increasing order. Let S
[
ir + 2m + 1, n2 + 2m

]
= v1v2 . . . vsv

′,
where each vi has length πm and let y be the largest index such that S[ir + 1, ir + 2m] ◦ v1 ◦
v2 ◦ · · · ◦ vy has 3k-period πm.

F. Ergün, E. Grigorescu, E. Sadeqi Azer, and S. Zhou 42:13

If y = s, then at most k of the substrings vi can be unique by Observation 2. Moreover,
by storing the fingerprints and positions of O

(
k2 logn

)
substrings, as well as v′, we can

recover the fingerprint of each S[n− ij+1, n− ij] by Lemma 10. Thus, we keep the fingerprint
of S

[
n
2 + 1, n− ir

]
, and can construct the fingerprint of each S

[
n
2 + 1, n− ij

]
On the other hand if y 6= s, then for each ij , let ∆ be the number of indices z such that

ij ≤ z ≤ ir and S[z] 6= S[z+πm]. That is, ∆ = |{z|ij ≤ z ≤ ir, S[z] 6= S[z+πm]}|. Since πm
is a k-period of S[1, 2m], HAM (S[1, 2m], S[ij + 1, ij + 2m]) ≤ k, and each mismatch between
S[1, 2m] and S[ij + 1, ij + 2m] can cause up to two indices z such that S[z] 6= S[z+πm], then
it follows that 0 ≤ ∆ ≤ 3k. Then if y + |r − j| 6= x3k−∆, then ij /∈ Tm, since x3k−∆ is the
largest index with (3k −∆)-period πm, while y is the largest index with 3k-period πm.

Thus, for each 0 ≤ ∆ ≤ 2k, there is at most one index j with y + |r − j| 6= x2k+∆. Again
by Lemma 10, we can compute the fingerprint of S

[
n
2 + 1, n− ij

]
by storing the fingerprints

and positions of O
(
k2 logn

)
substrings.

Computing each xd requires determining πm and the fingerprint of S[2m − πm + 1, 2m].
Since πm ≤ 2m

4 , the algorithm determines πm by position πm + 2m < 2m − πm + 1. Thus,
the algorithm knows πm in time to start creating the fingerprint of S[2m − πm + 1, 2m].

To compute y, we compute the fingerprint of S[ir + 1, ir + πm]. We then compute the
fingerprint of each non-overlapping substring of length πm starting from ir+πm, and compare
the fingerprint to the previous fingerprint. We only record the fingerprint of the most recent
substring, but keep a running count of the number of mismatches.

I Theorem 14. There exists a one-pass algorithm that outputs all the k-periods p of a given
string with p ≤ n

2 , and uses O
(
k4 log9 n

)
bits of space.

Proof. The process for small k-periods uses O
(
k2 log8 n

)
bits of space determining T .

Verifying whether an index in T is actually a k-period requires the fingerprints of O
(
k2 logn

)
substrings, each using O

(
k log6 n

)
bits of space (Theorem 5). This adds up to a total of

O
(
k3 log7 n

)
bits of space.

The process for large k-periods has logn parallel instances of the k-Mismatch algorithm
to compute Tm for 1 ≤ m ≤ logn, using O

(
k2 log9 n

)
bits of space. To reconstruct the

fingerprint of S[1, n− i] for each i ∈ Tm the algorithm needs to store the fingerprints of at
most O

(
k2 logn

)
unique substrings (Lemma 10). Each fingerprint uses O

(
k log6 n

)
bits of

space (Theorem 5) and there can be up to O (k logn) indices in Tm. This adds up to a total
of O

(
k4 log9 n

)
bits of space.

Thus, O
(
k4 log9 n

)
bits of space suffice for both processes. J

6 Lower Bounds

6.1 Lower Bounds for General Periods
Recall the following variant of the Augmented Indexing Problem, denoted INDn,δ, where
Alice is given a string S ∈ Σn. Bob is given an index i ∈ [n], as well as S[1, i− 1], and must
output S[i] correctly with probability at least 1− δ.

I Lemma 15 ([24]). The one-way communication complexity of INDn,δ is Ω((1− δ)n log |Σ|).

I Theorem 16. Any one-pass streaming algorithm which computes the smallest k-period of
an input string S requires Ω(n) space.

Proof. Consider the following communication game between Alice and Bob, who are given
strings A and B respectively. Both A and B have length n, and the goal is to compute

APPROX/RANDOM’17

42:14 Streaming Periodicity with Mismatches

the smallest k-period of a ◦ b. Then we show that any one-way protocol which successfully
computes the smallest k-period of a ◦ b requires Ω(n) communication by a reduction from
the augmented indexing problem.

Suppose Alice gets a string S ∈ {0, 1}n, while Bob gets an index i ∈ [n − 1] and
S[1, i − 1]. Let u be the binary negation of S[1], i.e., u = 1 − S[1]. Then Alice sets
A = (S[1])k(S[2])k . . . (S[n])k and Bob sets B = uk(n−i) ◦ (S[1])k(S[2])k . . . (S[i− 1])k ◦ 1k
so that both A and B have length kn. Moreover, the smallest k-period of A ◦B is k(2n− i)
if and only if S[i] = 1. J

6.2 Lower Bounds for Small Periods
We now show that for k = o(

√
n), even given the promise that the smallest k-period is at

most n
2 , any randomized algorithm which computes the smallest k-period with probability at

least 1− 1
n requires Ω(k logn) space. By Yao’s Minimax Principle [28], it suffices to show a

distribution over inputs such that every deterministic algorithm using less than k logn
6 bits of

memory fails with probability at least 1
n .

Define an infinite string 110112021303 . . ., as in [16], and let ν be the prefix of length n
4 . Let

X be the set of binary strings of length n
4 at Hamming distance k

2 from ν. Given x ∈ X, let
Yx be the set of binary strings of length n

4 with either HAM (x, y) = k
2 or HAM (x, y) = k

2 + 1.
We pick (x, y) uniformly at random from (X,Yx).

I Theorem 17. Given an input x ◦ y, any deterministic algorithm D that uses less than
k logn

6 bits of memory cannot correctly output whether HAM (x, y) = k
2 or HAM (x, y) > k

2
with probability at least 1− 1

n , for k = o(
√
n).

Proof. Note that |X| =
(
n/4
k/2
)
. By Stirling’s approximation, |X| ≥

(
n
2k
)k/2 ≥ (n4)k/4 for

k = o(
√
n).

Because D uses less than k logn
6 bits of memory, then D has at most 2

k log n
6 = nk/6 unique

memory configurations. Since |X| ≥
(
n
4
)k/4, then there are at least 1

2 (|X| − nk/6) ≥ |X|
4

pairs x, x′ such that D has the same configuration after reading x and x′. We show that D
errs on a significant fraction of these pairs x, x′.

Let I be the positions where either x or x′ differ from ν, so that k
2 + 1 ≤ |I| ≤ k. Observe

that if HAM (x, y) = k
2 , but x and y do not differ in any positions of I, then HAM (x′, y) > k

2 .
Recall that D has the same configuration after reading x and x′, so then D has the same
configuration after reading x ◦ y and x′ ◦ y. But since HAM (x, y) = k

2 and HAM (x′, y) > k
2 ,

then the output of D is incorrect for either x ◦ y or x′ ◦ y.
For each pair (x, x′), there are

(
n/4−|I|
k/2

)
≥
(
n/4−k
k/2

)
such y with HAM (x, y) = k

2 , but x
and y do not differ in any positions of I. Hence, there are |X|4

(
n/4−k
k/2

)
strings S(x, y) for

which D errs. Recall that y satisfies either HAM (x, y) = k
2 or HAM (x, y) = k

2 + 1 so that
there are |X|

((
n/4
k/2
)

+
(
n/4
k/2+1

))
strings x◦y in total. Thus, the probability of error is at least

|X|
4
(
n/4−k
k/2

)
|X|

((
n/4
k/2
)

+
(
n/4
k/2+1

)) = 1
4 ·

(
n/4−k
k/2

)(
n/4+1
k/2+1

) = (k/2 + 1)
4

(n/4− 3k/2 + 1) . . . (n/4− k)
(n/4− k/2 + 1) . . . (n/4 + 1)

≥ k/2 + 1
n+ 4

(
n/4− 3k/2 + 1
n/4− k/2 + 1

)k/2
= k + 2

2n+ 8

(
1− k

n/4− k/2 + 1

)k/2
≥ k + 2

2n+ 8

(
1− k2

n/2− k + 2

)
≥ 1
n

where the last line holds for large n, from Bernoulli’s Inequality and k = o(
√
n). J

F. Ergün, E. Grigorescu, E. Sadeqi Azer, and S. Zhou 42:15

I Lemma 18. For k = o(
√
n), any k-period of the string S(x, y) = x ◦ y ◦ x ◦ x is at least n

4 .

Proof. We show that stronger result that if p < n
4 , k > 2, and n > 4(18k+ 1)(18k+ 2), then

|{z|S[z] 6= S[z + p]}| >
√

n
8 > k, for k = o(

√
n).

Let T = ν ◦ ν ◦ x ◦ x and for each z, consider T [z] and T [z + p]. For each j > 0, some
position z + p in 12j02j12j+102j+1 in the second ν corresponds with a mismatch in z. Since
HAM (x, ν) = k

2 and HAM (x, y) ≤ k
2 + 1, then HAM

(
S
[
1, n2

]
, T
[
1, n2

])
≤ 3k

2 + 1. Each
mismatch between S and T can cause at most two indices z for which T [z] 6= T [z + p]
but S[z] = S[z + p]. Thus, by setting j = 6k > 2

(3k
2 + 1

)
+ 2k, we have that for n

4 >

(12k+ 1)(12k+ 2), there are at least 6k indices z for which T [z] 6= T [z + p], and thus at least
2k indices for which S[z] 6= S[z + p]. J

I Corollary 19. If HAM (x, y) = k
2 , then the string S(x, y) = x ◦ y ◦ x ◦ x has period n

4 . On
the other hand, if HAM (x, y) = k

2 + 1, then S(x, y) has period greater than n
4 .

I Theorem 20. For k = o(
√
n) with k > 2, any one-pass streaming algorithm which computes

the smallest k-period of an input string S with probability at least 1− 1
n requires Ω(k logn)

space, even under the promise that the k-period is at most n
2 .

Proof. By Theorem 17, any algorithm using less than k logn
6 bits of memory cannot distinguish

between HAM (x, y) = k
2 and HAM (x, y) = k

2 + 1 with probability at least 1− 1/n. Thus, no
algorithm can distinguish whether the period of S(x, y) is n

4 with probability at least 1− 1/n
while using less than k logn

6 bits of memory. J

References
1 Amihood Amir, Estrella Eisenberg, and Avivit Levy. Approximate periodicity. Algorithms

and Computation, pages 25–36, 2010.
2 Alexandr Andoni, Assaf Goldberger, Andrew McGregor, and Ely Porat. Homomorphic

fingerprints under misalignments: sketching edit and shift distances. In Proceedings of the
forty-fifth annual ACM symposium on Theory of computing, pages 931–940, 2013.

3 Alberto Apostolico and Zvi Galil, editors. Pattern Matching Algorithms. Oxford University
Press, Oxford, UK, 1997.

4 Petra Berenbrink, Funda Ergün, Frederik Mallmann-Trenn, and Erfan Sadeqi Azer. Palin-
drome recognition in the streaming model. In 31st International Symposium on Theoretical
Aspects of Computer Science (STACS), pages 149–161, 2014.

5 Raphaël Clifford, Klim Efremenko, Ely Porat, and Amir Rothschild. From coding theory to
efficient pattern matching. In Proceedings of the twentieth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 778–784, 2009.

6 Raphaël Clifford, Allyx Fontaine, Ely Porat, Benjamin Sach, and Tatiana A. Starikovskaya.
Dictionary matching in a stream. In Algorithms – ESA 23rd Annual European Symposium,
Proceedings, pages 361–372, 2015.

7 Raphaël Clifford, Allyx Fontaine, Ely Porat, Benjamin Sach, and Tatiana A. Starikovskaya.
The k-mismatch problem revisited. In Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA, pages 2039–2052, 2016.

8 Raphaël Clifford, Markus Jalsenius, Ely Porat, and Benjamin Sach. Space lower bounds
for online pattern matching. Theoretical Computer Science, 483:68–74, 2013.

9 Michael S. Crouch and Andrew McGregor. Periodicity and cyclic shifts via linear sketches.
In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques – 14th International Workshop, APPROX, and 15th International Workshop, RAN-
DOM. Proceedings, pages 158–170, 2011.

APPROX/RANDOM’17

42:16 Streaming Periodicity with Mismatches

10 Mohamed G. Elfeky, Walid G. Aref, and Ahmed K. Elmagarmid. STAGGER: periodicity
mining of data streams using expanding sliding windows. In Proceedings of the 6th IEEE
International Conference on Data Mining (ICDM), pages 188–199, 2006.

11 Funda Ergün, Elena Grigorescu, Erfan Sadeqi Azer, and Samson Zhou. Streaming
periodicity with mismatches, 2017. URL: http://homes.soic.indiana.edu/fergun/
PUBLICATIONS/mismatchperiodicity.pdf.

12 Funda Ergün, Hossein Jowhari, and Mert Saglam. Periodicity in streams. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, 13th Inter-
national Workshop, APPROX 2010, and 14th International Workshop, RANDOM 2010.
Proceedings, pages 545–559, 2010.

13 Funda Ergün, S. Muthukrishnan, and Süleyman Cenk Sahinalp. Periodicity testing with
sublinear samples and space. ACM Trans. Algorithms, 6(2):43:1–43:14, 2010.

14 Zvi Galil and Joel Seiferas. Time-space-optimal string matching. Journal of Computer and
System Sciences, 26(3):280–294, 1983.

15 Pawel Gawrychowski. Optimal pattern matching in LZW compressed strings. ACM Trans-
actions on Algorithms (TALG), 9(3):25, 2013.

16 Pawel Gawrychowski, Oleg Merkurev, Arseny M. Shur, and Przemyslaw Uznanski. Tight
tradeoffs for real-time approximation of longest palindromes in streams. In 27th Annual
Symposium on Combinatorial Pattern Matching, CPM, pages 18:1–18:13, 2016.

17 Shay Golan, Tsvi Kopelowitz, and Ely Porat. Streaming Pattern Matching with d Wild-
cards. In 24th Annual European Symposium on Algorithms (ESA), pages 44:1–44:16, 2016.

18 Elena Grigorescu, Erfan Sadeqi Azer, and Samson Zhou. Streaming for aibohphobes:
Longest palindrome with mismatches. CoRR, abs/1705.01887, 2017. URL: http://arxiv.
org/abs/1705.01887.

19 Piotr Indyk, Nick Koudas, and S. Muthukrishnan. Identifying representative trends in
massive time series data sets using sketches. In VLDB, Proceedings of 26th International
Conference on Very Large Data Bases, pages 363–372, 2000.

20 Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching algorithms.
IBM Journal of Research and Development, 31(2):249–260, 1987.

21 Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast pattern matching in
strings. SIAM J. Comput., 6(2):323–350, 1977.

22 Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast pattern matching in
strings. SIAM journal on computing, 6(2):323–350, 1977.

23 Oded Lachish and Ilan Newman. Testing periodicity. Algorithmica, 60(2):401–420, 2011.
24 Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. On data structures

and asymmetric communication complexity. In Proceedings of the Twenty-Seventh Annual
ACM Symposium on Theory of Computing, pages 103–111, 1995.

25 Benny Porat and Ely Porat. Exact and approximate pattern matching in the streaming
model. In 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS,
pages 315–323, 2009.

26 Ely Porat and Ohad Lipsky. Improved sketching of hamming distance with error correcting.
In Annual Symposium on Combinatorial Pattern Matching, pages 173–182, 2007.

27 Jakub Radoszewski and Tatiana Starikovskaya. Streaming k-mismatch with data recovery
and applications. arXiv preprint arXiv:1607.05626, 2016.

28 Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of complexity
(extended abstract). In 18th Annual Symposium on Foundations of Computer Science,
FOCS, pages 222–227, 1977.

http://homes.soic.indiana.edu/fergun/PUBLICATIONS/mismatchperiodicity.pdf
http://homes.soic.indiana.edu/fergun/PUBLICATIONS/mismatchperiodicity.pdf
http://arxiv.org/abs/1705.01887
http://arxiv.org/abs/1705.01887

F. Ergün, E. Grigorescu, E. Sadeqi Azer, and S. Zhou 42:17

A Structural Properties of k-Periodic Strings

In this section, we show several steps towards proving Theorem 9. We defer the detailed
proofs to the full version [11].

We first show Theorem 23, which assumes there are only two candidate k-periods and
both are small. We then relax these conditions and prove Theorem 30, which does not
restrict the number of candidate k-periods, but still assumes that their magnitudes are small.
Theorem 9 considers all candidate k-periods in some interval. We use the fact that the
difference between these candidates is small, thus meeting the conditions of Theorem 30,
although with an increase in the number of mismatches.

To show that the greatest common divisor d of any two reasonably small candidates p < q

for k-periods is also a (16k2 + 1)-period (Theorem 23), we consider the cases where either
all candidates are less than (2k + 1)d (Lemma 24) or some candidate is at least (2k + 1)d
(Lemma 25).

In the first case, where all candidate period are less than (2k + 1)d, we partition the
string into disjoint intervals of a certain length, followed by partitioning the intervals further
into congruence classes. We show in Lemma 22 that any partition which contains an index i
such that S[i] 6= S[i+ d] must also contain an index j which is a mismatch from some symbol
p or q distance away. Since there are at most 2k indices j, we can then bound the number of
such partitions, and then extract an upper bound on the number of such indices i.

In the second case, where some candidate is at least (2k + 1)d, our argument relies on
forming a grid (such as in Figure 3) where adjacent points are indices which either differ by
p or q. We include 2k + 1 rows and columns in this grid. Since q

d ≥ 2k + 1, then no index in
S is represented by multiple points in the grid. We call an edge between adjacent points
“bad” if the two corresponding indices form a mismatch.

I Observation 21. S[i] 6= S[i+ d] only if each path between i and i+ d contains a bad edge.

Our grid contains at most 2k bad edges, since p and q are both k-periods, and each index is
represented at most once. We then show that for all but at most (16k2 + 1) indices i, there
exists a path between indices i and i+ d that avoids bad edges. Therefore, there are at most
(16k2 + 1) indices i such that S[i] 6= S[i+ d], which shows that d is an (16k2 + 1)-period.

Before proving Lemma 24, we first show a number theoretic result that given integers
i, p, q, we can repeatedly hop by distance p or q, starting from i, ending at i+ gcd (p, q), all
the while staying in a “small” interval.

I Lemma 22. Suppose p < q are two positive integers with gcd (p, q) = d. Let i be an integer
such that 1 ≤ i ≤ p+ q − d. Then there exists a sequence of integers i = t0, . . . , tm = i+ d

where |ti − ti+1| is either p or q, and 1 ≤ ti < p+ q. Furthermore, each integer is congruent
to i (mod d). In other words, any interval of length p+ q which contains indices i, i+ d such
that S[i] 6= S[i+d] also contains an index j such that either S[j] 6= S[j+p] or S[j] 6= S[j+ q].

Proof. Since d is the greatest common divisor of p and q, then there exist integers a, b such
that ap+ bq = d. Suppose a > 0. Then consider the sequence ti = ti−1 + p if 1 ≤ ti−1 ≤ q.
Otherwise, if ti−1 > q, let ti = ti−1 − q. Then clearly, each |ti − ti+1| is either p or q, and
1 ≤ ti < p+ q. That is, each ti either increases the coefficient of p by one, or decreases the
coefficient of q by one. Thus, at the last time the coefficient of p is a, ti = ap + bq = d,
since any other coefficient of q would cause either ti > q or ti < 1. Hence, terminating the
sequence at this step produces the desired output, and a similar argument follows if b > 0
instead of a > 0. Since p ≡ q ≡ 0 (mod d), then all integers in these sequence are congruent
to i (mod d). J

APPROX/RANDOM’17

42:18 Streaming Periodicity with Mismatches

We now prove that the greatest common divisor d of any two reasonably small candidates
p, q for k-periods is also a (16k2 + 1)-period.

I Theorem 23. For any 1 ≤ x ≤ n
2 , let I =

{
i
∣∣∣i ≤ x

4k+2 ,HAM (S[1, x], S[i+ 1, i+ x]) ≤ k
}
.

For any two p, q ∈ I with p < q, their greatest common divisor, d = gcd (p, q) satisfies

HAM (S[1, x], S[d+ 1, d+ x]) ≤ (16k2 + 1).

We now proceed to the proof of Theorem 23 for the case q < (2k + 1)d.

I Lemma 24. Theorem 23 holds when q < (2k + 1)d.

Proof. If x ≤ 16k2, then clearly there are at most 16k2 indices i such that S[i] 6= S[i+ d],
and so d is a (16k2 +1)-period. Otherwise, suppose x > 16k2 +1, and by way of contradiction,
that there are at least 16k2 + 1 indices i such that S[i] 6= S[i+ d].

Consider the following two classes of intervals of length p+q
2 :

I1 =
[
1, p+ q

2

]
,

[
p+ q + 1, 3(p+ q)

2

]
,

[
2(p+ q) + 1, 5(p+ q)

2

]
, . . .

and

I2 =
[
p+ q

2 + 1, p+ q

]
,

[
3(p+ q)

2 + 1, 2(p+ q)
]
,

[
5(p+ q)

2 + 1, 3(p+ q)
]
,

If there are at least 16k2 + 1 indices i such that S[i] 6= S[i+ d], then either I1 or I2 contains
at least 8k2 + 1 of these indices.

Suppose I1 has at least 8k2+1 indices i such that S[i] 6= S[i+d]. Now, consider the disjoint
intervals of length p+q: [1, p+q], [p+q+1, 2(p+q)], [2(p+q)+1, 3(p+q)], Furthermore,
for each of these intervals, consider the congruence classes modulo d. Since x > 16k2 + 1
and each of these congruence classes within an intervals have p+q

d < 2q
d ≤ 2(2k) = 4k indices,

then S[1, x] certainly contains at least 2k + 1 of these congruence classes.
If I1 has at least 8k2 + 1 indices i such that S[i] 6= S[i+ d] and each congruence class

within an interval contains less than 4k indices, then there are at least 2k + 1 congruence
classes containing such an index i. Because each of these indices occur within I1, it follows
that both i and i+ d are contained within the interval (and therefore, the same congruence
class). By Lemma 22, each congruence class within an interval containing indices i and i+ d

S[i] 6= S[i+ d] also contains an index j such that either S[j] 6= S[j + p] or S[j] 6= S[j + q].
Since there are at least 2k + 1 congruence classes within intervals, then there are at least
2k + 1 such indices j. This either contradicts that there are at most k indices j such that
S[j] 6= S[j + p] or there are at most k indices j such that S[j] 6= S[j + q].

The proof for the case where I2 has at least 8k2 + 1 indices i such that S[i] 6= S[i+ d] is
symmetric. J

The following lemma considers the case where at least one of candidate periods p or q is at
least (2k + 1)d. Without loss of generality, assume q ≥ (2k + 1)d. We form a grid, such as in
Figure 3, where adjacent points in the grid correspond to indices which either differ by p or q.
An edge between adjacent points is “bad” if the two corresponding indices form a mismatch.

From Observation 21, S[i] 6= S[i + d] only if each path between i and i + d contains
a bad edge. Thus, if S[i] 6= S[i + d], then the point in the grid corresponding to i must
be contained in some region whose boundary is formed by bad edges. We partition the

F. Ergün, E. Grigorescu, E. Sadeqi Azer, and S. Zhou 42:19

indices into congruence classes modulo d, count the number of mismatches in each class, and
aggregate the results.

That is, in a particular congruence class, we assume p is a k1-period, and q is a k2-period,
where k1, k2 ≤ k. Then the grid contains at most k1 + k2 bad edges, which bounds the
perimeter of the regions. From this, we deduce a generous bound of (16k1k2 + 1) on the
number of points inside these regions, which is equivalent to the number of indices i such
that S[i] 6= S[i+ d] in the congruence class. We then aggregate over all congruence classes to
show that d is a (16k2 + 1)-period.

I Lemma 25. Let p ≤ q and k be positive integers with q ≥ (2k + 1)d and let d = gcd (p, q).
Given a string S and an integer 0 ≤ m < d, let there be k1 > 0 indices i ≡ m (mod d) such
that S[i] 6= S[i + p] and k2 > 0 indices i ≡ m (mod d), not necessarily disjoint, such that
S[i] 6= S[i+ q] and k1, k2 ≤ k. If d = gcd (p, q), then there exist at most 8k1k2 + 1 indices
i ≡ m (mod d) such that S[i] 6= S[i+ d].

Proof. Consider a pair of indices (i, i + d) with S[i] 6= S[i + d] in congruence class m
(mod d). We ultimately want to build a grid of “large” size around i, but this may result
in illegal indices if i is too small or too large. Therefore, we first consider the case where
k(p+ q) ≤ i ≤ x− k(p+ q), where we can place i in the center of the grid. We then describe
a similar argument with modifications for i < k(p+ q) or i > x− k(p+ q), when we must
place i near the periphery of the grid.

Given index i with k(p+ q) ≤ i ≤ x− k(p+ q), we define a grid on a subset of indices of
S[1, x]. The node at the center is i and for any node j, the nodes j + p, j + q, j− p and j− q
are the top, right, bottom and left neighbors of j, respectively. See Figure 3 for example of
such a grid.

We include (2k + 1) rows and columns in this grid, where i is the intersection of the
middle row and the middle column. Note that since k(p+ q) ≤ i ≤ x− k(p+ q), all points in
the grid correspond to indices of S.

I Claim 26. No indices of S correspond to multiple points in the grid.

Proof. Suppose, by way of contradiction, there exists some index j which is represented
by multiple points in the grid. That is, j = i + a1p + b1q = i + a2p + b2q with a1 6= a2.
Since d = gcd (p, q), there exist integers r, s with p = rd, q = sd, and gcd (r, s) = 1. Then
(a1 − a2)p = (b2 − b1)q so (a1 − a2)r = (b2 − b1)s. Because gcd (r, s) = 1, it follows that
(a1 − a2) is divisible by s = q

d ≥ 2k + 1. Therefore, |a1 − a2| ≥ 2k + 1, and so a1 and a2 are
at least 2k + 1 columns apart. However, this contradicts both points being in the grid, since
the grid contains exactly 2k + 1 columns. J

I Claim 27. There exist at least k+ 1 rows and k+ 1 columns in the grid that do not contain
any bad edge.

Proof. Since HAM (S[1, x], S[α+ 1, α+ x]) ≤ k, for α = p, q, there are at most k indices i
for which S[i] 6= S[i+ p] or S[i] 6= S[i+ q]. By Claim 26, each index is represented at most
once. Hence, there are at most k vertical bad edges and at most k horizontal bad edges in
this grid. Because the grid contains 2k + 1 rows and columns, then there exist at least k + 1
rows and columns in the grid that do not contain any bad edge. J

We call these rows and columns no-change.

APPROX/RANDOM’17

42:20 Streaming Periodicity with Mismatches

I Claim 28. If there exists a path between i and a no-change row or column in a grid
containing i avoiding bad edges, and a path between i+ d and a no-change row or column
in a grid containing i+ d avoiding bad edges, then there exists a path between i and i+ d

avoiding bad edges.

Proof. Notice that some no-change row in the grid centered at i must also be a no-change
row in the grid centered at i+ q, since there are at least k + 1 no-change rows in each grid,
but the two grids overlap in 2k + 1 rows. Similarly, some no-change column in the grid
centered at i must also be a no-change row in the grid centered at i + p. These common
no-change rows and columns allow traversal between grids, as we can freely traverse between
any no-change rows and columns while avoiding bad edges. Thus, if we can traverse from i

to any no-change row in the first grid, we can ultimately reach any no-change row in the
final grid containing i+ d while avoiding all bad edges. Finally, if we can traverse between
i+ d and any no-change row in the final grid, then there exists a path between i and i+ d

without any bad edges. J

This construction describes a possible path from i to i+ d with the help of these no-change
rows and columns between grids. Notice that it is possible that there is no path from i to
i+ d simply because a lot of bad edges have surrounded node i or i+ d. (This is a necessary
but not sufficient condition.)

We use the term isolated node, to describe any node which is in a region enclosed by
bad edges. Note that points in such enclosed regions are also possibly part of mismatched
indices (j, j + d). We argue that the most number of unique indices which can enclosed with
k1 vertical edges and k2 horizontal edges is k1k2

2 + 2k1 + 2k2, even on an extended grid with
no boundaries and multiple vertices/edges which correspond to the same index.

I Claim 29. The number of isolated nodes is at most k1k2
2 + 2k1 + 2k2.

We sketch the details of the proof of Claim 29, with full details provided in [11]. The total
area of regions enclosed by at most k1 vertical bad edges and at most k2 horizontal bad edges
is at most k1k2

4 . Thus, the number of isolated nodes cannot exceed k1k2
4 .

The number of (i, i+ d) mismatches is at most double the number of isolated nodes (if i
is isolated, both (i, i+ d) and (i− d, i) may be mismatches) plus the number of mismatched
edges. The former is bounded by k1k2

4 , the latter by k1 + k2. See Figure 3 for example.
We defer the casework for i < k(p+ q) and i > x− k(p+ q) to the full version [11]. J

The proof of Theorem 23 follows by aggregating each congruence class with mismatched
indices, handled in Lemma 25.

We generalize Theorem 23 by showing that the greatest common divisor of any m ≥ 2
reasonably small candidates for k-periods is also a (2mk2 + 1)-period. We emphasize that it
is sufficient for m ≤ logn, since the greatest common divisor can change at most logn times.

I Theorem 30. Let I =
{
i
∣∣∣i ≤ x

2(mk+1) ,HAM (S[1, x], S[i+ 1, i+ x]) ≤ k
}
. The greatest

common divisor of any p1, . . . , pm ∈ I, d = gcd (p1, . . . , pm), satisfies

HAM (S[1, x], S[d+ 1, d+ x]) ≤ 8mk2 + 1.

Although the pairwise greatest common divisor between two candidates pi and pj is no
longer d, considering δ = gcd (p1, pm) suffices for the analysis. If pm

δ < 2k+ 1, then the proof
is similar to that of Lemma 24. Otherwise if pm

δ ≥ 2k + 1, the proof is similar to that of
Lemma 25. We show a k2 bound on the volume of an enclosed region, whose surface area

F. Ergün, E. Grigorescu, E. Sadeqi Azer, and S. Zhou 42:21

i i + q i + 2qi − q

i + p

i + 2p

i − p

Figure 3 The dashed lines are bad edges. The total area of the enclosed regions can be at most
k2 if the perimeter is at most 4k.

is at most mk, within a hypergrid. This yields a related bound on the number of isolated
nodes.

Observe that Theorem 9 relaxes the constraints of Theorem 30. The full details for the
proof of Theorem 23, Theorem 30, and Theorem 9 are provided in [11].

APPROX/RANDOM’17

Locality via Partially Lifted Codes∗

S. Luna Frank-Fischer1, Venkatesan Guruswami†2, and
Mary Wootters‡3

1 Computer Science Department, Stanford University, Stanford, CA, USA
luna16@stanford.edu

2 Computer Science Department, Carnegie Mellon University, Pittsburgh, PA,
USA
venkatg@cs.cmu.edu

3 Computer Science Department, Stanford University, Stanford, CA, USA
marykw@stanford.edu

Abstract
In error-correcting codes, locality refers to several different ways of quantifying how easily a small
amount of information can be recovered from encoded data. In this work, we study a notion
of locality called the s-Disjoint-Repair-Group Property (s-DRGP). This notion can interpolate
between two very different settings in coding theory: that of Locally Correctable Codes (LCCs)
when s is large – a very strong guarantee – and Locally Recoverable Codes (LRCs) when s is
small – a relatively weaker guarantee. This motivates the study of the s-DRGP for intermediate
s, which is the focus of our paper. We construct codes in this parameter regime which have a
higher rate than previously known codes. Our construction is based on a novel variant of the
lifted codes of Guo, Kopparty and Sudan. Beyond the results on the s-DRGP, we hope that our
construction is of independent interest, and will find uses elsewhere.

1998 ACM Subject Classification E.4 Error Control Codes

Keywords and phrases Error correcting codes, locality, lifted codes

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.43

1 Introduction

In the theory of error correcting codes, locality refers to several different ways of quantifying
how easily a small amount of information can be recovered from encoded data. Slightly
more formally, suppose that C ⊂ ΣN is a code over an alphabet Σ; that is, C is any subset of
ΣN . Suppose that c ∈ C, and that we have query access to a noisy version c̃ of c. We are
tasked with finding ci ∈ Σ for some i ∈ [N]. Informally, we say that the code C exhibits good
locality if we may recover ci using very few queries to c̃. Of course, the formal definition of
locality in this set-up depends on the nature of the noise, and the question is interesting for
a wide variety of noise models.

One (extremely strong) model of noise is that handled by Locally Correctable Codes
(LCCs), which have been extensively studied in theoretical computer science for over 15
years. This model is motivated by a variety of applications in theoretical computer science
and cryptography, including probabilistically checkable proofs (PCPs), derandomization,
and private information retrieval (PIR); we refer the reader to [30] for an excellent survey

∗ Full version available at https://arxiv.org/abs/1704.08627.
† Research supported in part by NSF grants CCF-1563742 and CCF-1422045.
‡ Research supported in part by NSF grants DMS-1400558 and CCF-1657049.

© S. Luna Frank-Fischer, Venkatesan Guruswami, and Mary Wootters;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 43; pp. 43:1–43:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.43
https://arxiv.org/abs/1704.08627
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

43:2 Locality via Partially Lifted Codes

on LCCs. In the LCC setting, c̃ ∈ ΣN has a constant fraction of errors: that is, we are
guaranteed that the Hamming distance between c̃ and c is no more than δN , for some small
constant δ > 0. The goal is to recover ci with high probability from Q = o(N) randomized
queries to c̃.

Another (much weaker) model of noise is that handled by Locally Recoverable Codes
(LRCs) and related notions, which have been increasingly studied recently motivated by
applications in distributed storage [14, 10, 23]. In this model, c̃ ∈ (Σ∪ {⊥})N has a constant
number of erasures: that is, we are guaranteed that the number of ⊥ symbols in c̃ is at most
some constant e = O(1), and further that ci = c̃i whenever c̃i 6= ⊥. As before, the goal is to
recover ci using as few queries as possible to c̃. Batch codes [15, 7] and PIR codes [8, 6] are
other variants that are interesting in this parameter regime.

A key question in both of these lines of work is how to achieve these recovery guarantees
with as high a rate as possible. The rate of a code C ∈ ΣN is defined to be the ratio
log|Σ|(|C|)/N ; it captures how much information can be transmitted using such a code. In
other words, given N , we seek to find a C ⊆ ΣN with good locality properties, so that |C| is
as large as possible.

In the context of the second line of work above, recent work [28, 21, 25, 27, 1, 8] has
studied (both implicitly and explicitly) the trade-off between rate and something called the
s-Disjoint-Repair-Group-Property (s-DRGP) for small s. Informally, C has the s-DRGP
if any symbol ci can be obtained from s disjoint query sets c|S1 , c|S2 , . . . , c|Ss

for Si ⊆ [N].
(Notice that there is no explicit bound on the size of these query sets, just that they must be
disjoint).

One observation which we will make below is that the s-DRGP provides a natural way
to interpolate between the first (LCC) setting and the second (LRC) setting above. More
precisely, while the LRC setting corresponds to small s (usually, s = O(1)), the LCC setting
is in fact equivalent to the case when s = Ω(N). This observation motivates the study of
intermediate s, which is the goal in this paper.

Contributions

Before we give a more detailed overview of previous work, we outline the main contributions
of this paper.
1. Constructions of codes with the s-DRGP for intermediate s. We give a construction

of a family of codes which have the s-DRGP for s ∼ N1/4. Our construction can achieve
a higher rate than previous constructions with the same property.

2. A general framework, based on partially lifted codes. Our codes are based on a novel
variant of the lifted codes of Guo, Kopparty and Sudan [12]. In that work, with the
goal of obtaining LCCs, the authors showed how to construct affine-invariant codes by a
“lifting" operation. In a bit more detail, their codes are multivariate polynomial codes,
whose entries are indexed by Fm

q (so N = qm). These codes have the property that, the
restriction of each codeword to every line in Fm

q is a codeword of a suitable univariate
polynomial code. (For example, a Reed-Muller code is a subset of a lift of a Reed-Solomon
code; the beautiful insight of [12] is that in fact the lifted code may be much larger.)
In our work, we introduce a version of the lifting operation where we only require that the
restriction to some lines lie in the smaller code, rather than the restriction to all lines; we
call such codes “partially lifted codes." This partial lifting operation potentially allows for
higher-rate codes, and, as we will see, it naturally gives rise to codes with the s-DRGP.
One of our main contributions is the introduction of these codes, as well as some machinery
which allows us to control their rate. We instantiate this machinery with a particular

S. L. Frank-Fischer, V. Guruswami, and M. Wootters 43:3

example, in order to obtain the construction advertised above. We can also recover
previous results in the context of this machinery.

3. Putting the study of the s-DRGP in the context of LRCs and LCCs. While the s-
DRGP has been studied before, to the best of our knowledge, it is not widely viewed as a
way to interpolate between the two settings described above. One of the goals of this
paper is to highlight this property and its potential importance to our understanding of
locality, both from the LRC/batch code/PIR code side of things, and from the LCC side.

1.1 Background and related work
As mentioned above, in this work we study the s-Disjoint-Repair-Group Property (s-DRGP).
We begin our discussion of the s-DRGP with some motivation from the LRC end of the
spectrum, from applications in distributed storage. The following model is common in
distributed storage: imagine that each server or node in a distributed storage system is
holding a single symbol of a codeword c ∈ C. Over time, nodes fail, usually one at a time,
and we wish to repair them (formally, recovering ci for some i). Moreover, when they fail,
it is clear that they have failed. This naturally gives rise to the second parameter regime
described above, where c̃ has a constant number of erasures.

Locally recoverable (or repairable) codes (LRCs) [14, 10, 23] were introduced to deal with
this setting. The guarantee of an LRC1 with locality Q is that for any i ∈ {1, . . . , n}, the i’th
symbol of the codeword can be determined from a set of at most Q other symbols. There has
been a great deal of work recently aimed at pinning down the trade-offs between rate, distance,
and the locality parameter Q in LRCs. At this point, we have constructions which have
optimal trade-offs between these parameters, as well as reasonably small alphabet sizes [26].
However, there are still many open questions; a major question is how to handle a small
number of erasures, rather than a single erasure. This may result from either multiple node
failures, or from “hot" data being overloaded with requests. There are several approaches in
the literature, but the approach relevant to this work is the study of multiple disjoint repair
groups.

I Definition 1. Given a code C ⊂ ΣN , we say that a set S ⊂ {1, . . . , N} is a repair group
for i ∈ {1, . . . , N} if i 6∈ S, and if there is some function g : Σ|S| → Σ so that g(c|S) = ci

for all c ∈ C. That is, the codeword symbols indexed by S uniquely determine the symbol
indexed by i.

I Definition 2. We say that C has the s-Disjoint-Repair-Group Property (s-DRGP) if for
every i ∈ {1, . . . , N}, there are s disjoint repair groups S(i)

1 , . . . , S
(i)
s for i.

In the context of LRCs, the parameter s is called the availability of the code. An LRC
with availability s is not exactly the same as a code with the s-DRGP (the difference is that,
in Definition 2, there is no mention of the size Q of the repair groups), but it turns out to be
deeply related; it is also directly related to other notions of locality in distributed storage
(like batch codes), as well as in cryptography (like PIR codes). We will review some of this
work below, and we point the reader to [24] for a survey of batch codes, PIR codes, and their
connections to LRCs and the s-DRGP.

While originally motivated for small s, as we will see below, the s-DRGP is interesting
(and has already been implicitly studied) for a wide range of s, from O(1) to Ω(N). For

1 In some works, the guarantee holds for information symbols only, rather than for all codeword symbols;
we stick with all symbols here for simplicity of exposition.

APPROX/RANDOM’17

43:4 Locality via Partially Lifted Codes

s = o(N), we can hope for codes with very high rate, approaching 1; the question is how fast
we can hope for this rate to approach 1. More formally, if K = log|Σ| |C|, then the rate is
K/N , and we are interested in how the gap N −K behaves with N and s. We will refer to
the quantity N −K as the co-dimension of the code; when C is linear (that is, when Σ = F
is a finite field and C ⊆ FN is a linear subspace), then this is indeed the co-dimension of C in
FN . The main question we seek to address in this paper is the following.

I Question 1. For a given s and N , what is the smallest codimension N −K of any code
with the s-DGRP? In particular, how does this quantity depend on s and N?

We know a few things about Question 1, which we survey below. However, there are many
things about this question which we still do not understand. In particular, the dependence
on s is wide open, and this dependence on s is the focus of the current work. Below, we
survey the state of Question 1 both from the LRC end (when s is small) and the LCC end
(when s is large).

The s-DRGP when s is small

In [28, 21, 25, 27], the s-DRGP was explicitly considered, with a focus on small s (s = 2 is
of particular interest). In those works, some bounds on the rate and distance of codes with
the s-DRGP were derived (some of them in terms of the locality Q). However, for larger s,
these bounds degrade. More precisely, [28, 21] establish bounds on N −K in terms of Q, s,
and the distance of the code, but as s grows these are not much stronger than the Singleton
bound. The results of [25, 27] give an upper bound on the rate of a code in terms of Q and
s. One corollary is that the rate satisfies K/N ≤ (s+ 1)−1/Q; if we are after high-rate codes,
this implies that we must take Q = Ω(ln(s + 1)), and this implies that the codimension
N −K must be at least Ω(N ln(s)/Q).

A similar notion to the s-DRGP was introduced in [8], with the application of Private
Information Retrieval (PIR). PIR schemes are an important primitive in cryptography, and
they have long been linked to constant-query LCCs. In [8], PIR was also shown to be related
to the s-DRGP. The work [8] introduces PIR codes, which enable PIR schemes with much
less storage overhead. It turns out that the requirement for PIR codes is very similar to the
s-DRGP.2

In the context of PIR codes [8, 6], there are constructions of s-DRGP codes with
N − K ≤ O(s

√
N). For s = 2, this is known to be tight, and there is a matching lower

bound [20]. However, it seems difficult to use this lower bound technique to prove a stronger
lower bound when s is larger (possibly growing with N).

The s-DRGP when s is large

As we saw above, when s is small then the s-DRGP is intimately related to LRCs, PIR codes
and batch codes. On the other end of the spectrum, when s is large (say, Ω(N) or Ω(N1−ε))
then it is related to LCCs.

When s = Ω(N), then the s-DRGP is in fact equivalent to a constant-query LCC (that
is, an LCC as described above, where the number of queries to c̃ is O(1)). The fact that the
Ω(N)-DRGP implies a constant-query LCC is straightforward: the correction algorithm to
recover ci is to choose a random j in {1, . . . , s} and use the repair group S(i)

j to recover ci.

2 The only difference is that PIR codes only need to recover information symbols, but possibly with
non-systematic encoding.

S. L. Frank-Fischer, V. Guruswami, and M. Wootters 43:5

Since in expectation the size of S(i)
j is constant, we can restrict our attention only to the

constant-sized repair groups. Then, with some constant probability none of the indices in S(i)
j

will be corrupted, and this success probability can be amplified by independent repetitions.
The converse is also true [16, 29], and any constant-query LCC has the s-DRGP for s = Ω(n);
in fact, this connection is one of the few ways we know how to get lower bounds on LCCs.

When s is large, but not as large as Ω(N), there is still a tight relationship with LCCs. By
now we know of several high-rate ((1− α), for any constant α) LCCs with query complexity
Q = Nε for any ε > 0 [17, 12, 13] or even Q = No(1) [18]. It is easy to see3 that any LCC
with query complexity Q has the s-DGRP for s = Ω(N/Q). Thus, these codes immediately
imply high-rate s-DRGP codes with s = Ω(N1−ε) or even larger. (See also [1]). Conversely,
the techniques of [13, 18] show how to take high-rate linear codes with the s-DGRP for
s = Ω(N1−ε) and produce high-rate LCCs with query complexity O(Nε′) (for a different
constant ε′).

These relationships provide some bounds on the codimension N −K in terms of s: from
existing lower bounds on constant-query LCCs [29], we know that any code with the s-DGRP
and s = Ω(N) must have vanishing rate. On the other hand from high-rate LCCs, there
exist s-DGRP codes with s = Ω(N1−ε) and with high rate. However, these techniques do
not immediately given anything better than high (constant) rate, while in Question 1 we are
interested in precisely controlling the co-dimension N −K.

The s-DRGP when s is intermediate

The fact that the s-DRGP interpolates between the LRC setting for small s and the LCC
setting for large s motivates the question of the s-DGRP for intemediate s, say s = log(N) or
s = N c for c < 1/2. Our goal is to understand the answer to Question 1 for intermediate s.

We have only a few data points to answer this question. As mentioned above, the construc-
tions of [8, 6] show that there are codes with N −K ≤ s

√
N for s ≤

√
N . However, the best

general lower bounds known [20, 27] can only establish N−K ≥ max
{√

2N,N − N
(s+1)1/Q

}
.

Above, we recall that Q is a parameter bounding the size of the repair groups; in order for
the second term above (from [27]) to be o(N), we require Q� ln(s+ 1); in this case, the
second bound on the codimension reads N −K ≥ Ω(N ln(s)/Q). As the size of the repair
groups Q may in general be as large as N/s, in our setting this second bound gives better
dependence on s, but worse dependence on N .

The upper bound of s
√
N is not tight, at least for large s. For s =

√
N , there are several

classical constructions which have the s-DRGP and with N −K = Θ(N log4(3)); for example,
this includes affine geometry codes and/or codes constructed from difference sets (see [2],
[19], or [12] – we will also recover these in Corollary 15). Notice that this is much better
than the upper bound of N −K ≤ s

√
N , which for s =

√
N would be trivial.

However, other than these codes, before this work we did not know of any constructions for

3 Indeed, suppose that C is an LCC with query complexity Q and error tolerance δ, and let s = δN/Q.
In order to obtain s disjoint repair groups for a symbol ci from the LCC guarantee, we proceed as
follows. First, we make one (randomized) set of queries to c; this gives the first repair group. Continuing
inductively, assume we have found t ≤ s disjoint repair groups already, covering a total of at most
tQ < δN symbols. To get the t + 1’st set of queries, we again choose at random as per the LCC
requirement. These queries may not be disjoint from the previous queries, but the LCC guarantee can
handle errors (and hence erasures) in up to δN positions, so it suffices to query the points which have
not been already queried, and treat the already-queried points as unavailable. We repeat this process
until t reaches s = δN/Q.

APPROX/RANDOM’17

43:6 Locality via Partially Lifted Codes

s�
√
N which beat the bounds in [8, 6] of N−K ≤ s

√
N .4 One of the main contributions of

this work is to give a construction with s = N1/4, which achieves codimension N−K = N0.714.
Notice that the bound of s

√
N would beN0.75 in this case, so this is a substantial improvement.

We remark that we do not believe that our construction is optimal, and unfortunately we
don’t have any deep insight about the constant 0.714. Rather, we stress that the point of
this work is to (a) highlight the fact that the s

√
N bound can be beaten for s�

√
N , and

(b) highlight our techniques, which we believe may be of independent interest.

1.2 Lifted codes, and our construction
Our construction is based on the lifted codes of Guo, Kopparty and Sudan [12]. The original
motivation for lifted codes was to construct high-rate LCCs, as described above. However,
since then they have found several other uses, for example list-decoding and local-list-
decoding [11]. The codes are based on multivariate polynomials, and we describe them below.
Suppose that F ⊆ Fq[X,Y] is a collection of bivariate polynomials over a finite field Fq of
order q. This collection naturally gives rise to a code C ⊆ Fq2 :

C =
{
〈P (x, y)〉(x,y)∈F2

q
: P ∈ F

}
. (1)

Above, we assume some fixed order on the elements of F2
q , and by 〈P (x, y)〉(x,y)∈F2

q
, we mean

the vector in Fq2

q whose entries are the evaluations of P in this prescribed order. For example,
a bivariate Reed-Muller code is formed by taking F to be the set of all polynomials of total
degree at most d.

One nice property of Reed-Muller codes is their locality. More precisely, suppose that
P (X,Y) is a bivariate polynomial over Fq of total degree at most d. For an affine line in F2

q ,
parameterized as L(T) = (αT + β, γT + δ), we can consider the restriction P |L of P to L,
given by

P |L(T) := P (αT + β, γT + δ) mod T q − T,

where we think of the above as a polynomial of degree at most q − 1. It is not hard to
see that if P has total degree at most d, then P |L(T) also has degree at most d; in other
words, it is a univariate Reed-Solomon codeword. This property – that the restriction of any
codeword to a line is itself a codeword of another code – is extremely useful, and has been
exploited in coding theory since Reed’s majority logic decoder in the 1950’s [22]. A natural
question is whether or not there exist any bivariate polynomials P (X,Y) other than those of
total degree at most d which have this property. That is, are there polynomials which have
high degree, but whose restrictions to lines are always low-degree? In many settings (for
example, over the reals, or over prime fields) the answer is no. However, the insight of [12] is
that there are settings – high degree polynomials over small-characteristic fields – for which
the answer is yes.

This motivates the definition of lifted codes, which are multivariate polynomial evaluation
codes, all of whose restrictions to lines lie in some other base code. Guo, Kopparty and

4 We note that there have been some works in the intermediate-s parameter regime which can obtain
excellent locality Q but are not directly relevant for Question 1. In particular, the work of [21] gives
a construction of s-DRGP codes with s = Θ(K1/3−ε) and Q = Θ(K1/3) for arbitarily small constant
ε; while this work obtains a smaller Q than we will eventially obtain (our results will have Q ∼

√
N),

they are only able to establish high (constant) rate codes, and thus do not yield tight bounds on the co-
dimension. The work of [3] gives constructions of high-rate fountain codes which have s,Q = Θ(log(N)).
As these are rateless codes, again they are not directly relevant to Question 1.

S. L. Frank-Fischer, V. Guruswami, and M. Wootters 43:7

Sudan showed that, in the case above, not only do these codes exist, but in fact they may
have rate much higher than the corresponding Reed-Muller code.

Lifted codes very naturally give rise to codes with the s-DRGP. Indeed, consider the
bivariate example above, with d = q − 2. That is, C is the set of codewords arising
from evaluations of functions P that have the property that for all lines L : Fq → F2

q,
deg(P |L) ≤ q − 2. The restrictions then lie in the parity-check code: we always have∑

t∈Fq
P |L(t) = 0. Thus, for every coordinate of a codeword in C – which corresponds to an

evaluation point (x, y) ∈ F2
q – there are q disjoint repair groups for this symbol, corresponding

to the q affine lines through (x, y).
However, it’s not obvious how to use these codes to obtain the s-DRGP for s �

√
N ;

increasing the number of variables causes s to grow, and this is the approach taken in [12] to
obtain high-rate LCCs. Since we are after smaller s, we take a different approach. We stick
with bivariate codes, but instead of requiring that the functions P ∈ F restrict to low-degree
polynomials on all affine lines L, we make this requirement only for some lines. This allows
us to achieve the s-DRGP (if there are s lines through each point), while still being able to
control the rate.

While special cases of this idea – notably tensor codes – have been considered before,
allowing more complicated sets of lines requires some new machinery, and we hope that this
machinery may be useful more generally. In the next section, we will set up our notation and
give an outline of this approach, after a brief review of the notation we will use throughout
the paper.

1.3 Outline

Next, in Section 2, we define partially lifted codes, and give a technical overview of our
approach. This approach consists of two parts. The first is a general framework for
understanding the dimension of partially lifted codes of a certain form, which we then discuss
more in Section 3. The second part is to instantiate this framework, which we do in Section 4.
This gives rise to the s-DRGP code with s = N1/4 described above. Due to space constraints,
we omit many details from this extended abstract, and refer the reader to the full version of
the paper [9].

2 Technical Overview

In this section, we give a high-level overview of our construction and approach. We begin
with some basic definitions and notation.

2.1 Notation and basic definitions

We study linear codes C ⊆ FN
q of block length N over an alphabet of size q. We will always

assume that Fq has characteristic 2, and write q = 2`. (We note that this is not strictly
necessary for our techniques to apply – the important thing is only that the field is of
relatively small characteristic – but it simplifies the analysis, and so we work in this special
case).

The specific codes C that we consider are polynomial evaluation codes. Formally, let F be
a collection of m-variate polynomials over Fq. Letting N = qm, we may identify F with a
code C ⊆ FN

q as in (1); we assume that there is some fixed ordering on the elements of Fm
q to

make this well-defined. For a polynomial P ∈ Fq[X1, . . . , Xm], we write its corresponding

APPROX/RANDOM’17

43:8 Locality via Partially Lifted Codes

codeword as

eval(P) = 〈P (x1, . . . , xm)〉(x1,...,xm)∈Fm
q
∈ C.

We will only focus on m = 1, 2, as we consider the restriction of bivariate polynomial codes
to lines, which results in univariate polynomial codes. Formally, a (parameterization of an)
affine line is a map L : Fq → F2

q, of the form L(T) = (αT + β, γT + δ) for α, β, γ, δ ∈ Fq. We
say that two parameterizations L,L′ are equivalent if the result in the same line as a set:
{L(t) : t ∈ Fq} = {L′(t) : t ∈ Fq} . We denote the restriction of a polynomial P ∈ Fq[X,Y]
to L by P |L:

I Definition 3. For a line L : Fq → F2
q with L(T) = (L1(T), L2(T)), and a polynomial

P : F2
q → Fq, we define the restriction of P on L, denoted P |L : Fq → Fq, to be the unique

polynomial of degree at most q − 1 so that P |L(T) = P (L1(T), L2(T)).

We note that the definition above makes sense, because all functions f : Fq → Fq can be
written as polynomials of degree at most q − 1 over Fq; in this case, we have P |L(T) =
P (L1(T), L2(T)) mod (T q − T).

I Remark 1. Throughout this paper, all polynomials will be considered mod T q−T , although
we will frequently drop this notation for ease of reading.

Finally, we’ll need some tools for reasoning about integers and their binary expansions.

I Definition 4. Let m < q be a positive integer. If m =
∑`−1

i=0 mi2i, where mi ∈ {0, 1}, then
we let B(m) = {i ∈ {0, ..., ` − 1} | mi = 1}. That is, B(m) is the set of indices where the
binary expansion of m has a 1.

I Definition 5. For any two integers m,n < q, we say that m lies in the 2-shadow of n,
denoted m ≤2 n, if B(m) ⊆ B(n). Equivalently, letting m =

∑`−1
i=0 mi2i and n =

∑`−1
i=0 ni2i,

we write m ≤2 n if for all i ∈ {0, ..., `− 1}, whenever mi = 1 then also ni = 1.

The reason that we are interested in 2-shadows is because of Lucas’ Theorem.

I Theorem 6 (Lucas’ Theorem). For any m,n ∈ Z,
(

m
n

)
≡ 0 mod 2 exactly when m 6≤2 n.

Finally, for integers a, b, s, we will say a ≡s b if a is equal to b modulo s. For a positive
integer n, we use [n] to denote the set [n] = {0, . . . , n− 1}.

2.2 Partially lifted codes

With the preliminaries out of the way, we proceed with a description of our construction and
techniques. As alluded to above, our codes will be bivariate polynomial codes, which are
“partial lifts" of parity check codes.

I Definition 7. Let F0 ⊆ Fq[T] be a collection of univariate polynomials, and let L be a
collection of parameterizations of affine lines L : Fq → F2

q. We define the partial lift of F0
with respect to L to be the set

F = {P ∈ Fq[X,Y] : ∀P ∈ F ,∀L ∈ L, P |L ∈ F0} .

We make a few remarks about Definition 7 before proceeding.

S. L. Frank-Fischer, V. Guruswami, and M. Wootters 43:9

I Remark 2 (Equivalent lines). We remark that the definition above allows L to be a collection
of parameterizations of lines. A priori, it is possible that equivalent parameterizations may
behave very differently with respect to F0, and it is also possible to include several equivalent
parameterizations in L. In this work, F0 will always be affine-invariant (in particular, it will
just be the set of polynomials of degree strictly less than q− 1), and so if L and L′ equivalent,
then P |L ∈ F0 if and only if P |L′ ∈ F0. Thus, these issues won’t be important for this work.
I Remark 3 (Why only bivariate lifts?). This definition works just as well for m-variate partial
lifts, and we hope that further study will explore this direction. However, as all of our results
are for bivariate codes, we will stick to the bivariate case to avoid having to introduce another
parameter.

Let F0 := {P ∈ Fq[X],deg(P) < q − 1}. Then it is not hard to see that the code
C0 = {eval(P) : P ∈ F0} is just the parity-check code, C0 =

{
c ∈ Fq

q :
∑q

i=1 ci = 0
}
. Indeed,

for any d < q − 1, we have
∑

x∈Fq
xd = 0.

We will construct codes with the s-DRGP by considering codes that are partial lifts of F0.
We first observe that such codes, with an appropriate set of lines L, will have the s-DRGP.
Indeed, suppose we wish to recover a particular symbol, given by P (x, y) for (x, y) ∈ F2

q.
Let L(1), . . . , L(s) ∈ L be s distinct (non-equivalent) lines that pass through (x, y); say they
are parameterized so that L(j)(0) = (x, y). Then the s disjoint repair groups are the sets
indices corresponding to Sj := {L(j)(t) : t ∈ Fq \ {0}}. For any P in the partial lift of F0,
we have P |L(0) =

∑
t∈Fq\{0} P |L(t), which means that P (x, y) =

∑
(a,b)∈Sj

P (a, b). That is,
P (x, y) can be recovered from the coordinates of eval(P) indexed by Sj , as desired. Finally
we observe that the Sj are all disjoint, as the lines are all distinct, and intersect only at
(x, y). We summarize the above discussion in the following observation.

I Observation 8. Suppose that F0 = {P ∈ Fq[T] : deg(P) < q − 1}, and let L be any
collection of parameterizations of affine lines so that every point in F2

q is contained in at
least s non-equivalent elements of L. Let F be the bivariate partial lift of F0 with respect to
L. Then the code C ⊆ Fq2

q corresponding to F is a linear code with the s-DRGP.

To save on notation later, we say that a polynomial P : F2
q → Fq restricts nicely on a

line L : Fq → F2
q if P |L has degree strictly less than q − 1. Thus, to define our construction,

we have to define the collection L of lines used in Definition 7. We will actually develop
a framework that can handle a family of such collections, but for intuition in this section,
let us just consider lines L(T) = (T, αT + β) where α lives in a multiplicative subgroup Gs

of F∗q of size s, and β ∈ Fq. That is, we are essentially restricting the slope of the lines to
lie in a multiplicative subgroup. It is not hard to see that every point (x, y) ∈ F2

q has s
non-equivalent lines in L that pass through it.

Following Observation 8, the resulting code will immediately have the s-DRGP. The only
question is, what is the rate of this code? Equivalently, we want to know:

I Question 2. How many polynomials P ∈ Fq[X,Y] have deg(P |L) < q − 1 for all L ∈ L,
where L is as described above?

In [12], Guo, Kopparty and Sudan develop some machinery for answering this question when
L is the set of all affine lines. What they show in that work is that in fact the (fully) lifted
code is affine-invariant, and is equal to the span of the monomials P (X,Y) = XaY b so that
deg(P |L) < q − 1 for all affine lines L. We might first hope that this is the case for partial
lifts – but then upon reflection we would immediately retract this hope, because it turns out
that we do not get any more monomials this way: Theorem 13 establishes that if a monomial
restricts nicely on even one line of the form (T, αT + β) (for nonzero α, β), then in fact it

APPROX/RANDOM’17

43:10 Locality via Partially Lifted Codes

restricts nicely on all such lines. In fact, the partial lift is not in general affine-invariant,
and this is precisely where we are able to make progress. More precisely, there may be
polynomials P (X,Y) of the form

P (X,Y) = Xa1Y b1 +Xa2Y b2 (2)

which are contained in the partial lift F , but so that Xa1Y b1 , Xa2Y b2 6∈ F . This gives us
many more polynomials to use in a basis for F than just the relevant monomials, and allows
us to construct families F of larger dimension.
I Remark 4 (Breaking affine invariance). We emphasize that breaking affine-invariance is
a key departure from [12]. In some sense, it is not surprising that we are able to make
progress by doing this: the assumption of affine-invariance is one way to prove lower bounds
on locality [4, 5]. This is also where our techniques diverge from those of [12]. Because
of their characterization of affine-invariant codes, that work focused on understanding the
dimension of the relevant set of monomials. This is not sufficient for us, and so to get a
handle on the dimension of our constructions, we must study more complicated polynomials.
This may seem daunting, but we show – perhaps surprisingly – that one can make a great
deal of progress by considering only the additional “more complicated" polynomials of the
form (2), which are arguably the simplest of the “more complicated" polynomials.

In order to obtain a lower bound on the dimension of F , our strategy get a handle on the
dimension of the space of these binomials (2). If we can show that there are many linearly
independent such binomials, then the answer to Question 2 must be “lots."

Following this strategy, we examine binomials of the form (2), and we ask, for which
a1, b1, a2, b2 and which L(T) = (T, αT + β) does P (X,Y) restrict nicely? Our main tool is
Lucas’s Theorem (Theorem 6), which was also used in [12]. To see why this is useful, consider
the restriction of a monomial P (X,Y) = XaY b to a line L(T) = (T, αT + β). We obtain

P |L(T) = T a (αT + β)b =
∑
i≤b

(
b

i

)
αiβb−iT a+i.

Above, the binomial coefficient
(

b
j

)
is shorthand for the sum of 1 with itself

(
b
j

)
times. Thus,

in a field of characteristic 2, this is either equal to 1 or equal to 0; Lucas’s theorem tells us
which it is. This means that our question reduces to asking, when does the coefficient of
T q−1 vanish? The above gives us an expression for this coefficient, and allows us to compute
an answer, in terms of the binary expansions of a and b.

So far, this is precisely the approach of [12]. From here, we turn to the binomials of
the form (2). When do these restrict nicely? As above, we may compute the coefficient
of the T q−1 term and examine it. Fortunately, when the set of lines L is chosen as above,
the number of linearly independent binomials that restrict nicely ends up having a nice
expression, in terms of the number of non-empty equivalence classes of a particular relation
defined by the binary expansion of the numbers 1, . . . , q − 1; this is our main technical
theorem (Theorem 12, which is proved in Section 3.2).

The approach of Section 3.2 holds for more general families than the L described above;
instead of taking α in a multiplicative subgroup of F∗q , we may alternately restrict β, or
restrict both. However, numerical calculations indicated that the choice above (where α is in
a multiplicative subgroup of order s) is a good one, so for our construction we make this
choice and we focus on that for our formal analysis in Section 4.

In order to get our final construction and obtain the results advertised above, it suffices
to count these equivalence classes. For the result advertised in the introduction, we choose

S. L. Frank-Fischer, V. Guruswami, and M. Wootters 43:11

the order of the multiplicative subgroup to be s = 2`/2 − 1 = √q − 1. Then, we use an
inductive argument in Section 4 to count the resulting equivalence classes, obtaining the
bounds advertised above. More precisely, we obtain the following theorem.

I Theorem 9. Suppose that q = 2` for even `, and let N = q2 − 1. There is a linear code C
over Fq of length N and dimension

K ≥ N −O(N .714)

which has the s-DRGP for s = √q − 2 = (N + 1)1/4 − 1.

I Remark 5 (Puncturing at the origin). We note that the statement of the theorem differs
slightly from the informal description above; in our analysis, we will puncture the origin, and
ignore lines that go through the origin; that is, our codes will have length q2 − 1, rather than
q2, and the number of lines through every point will be s− 1, rather than s, as it makes the
calculations somewhat easier and does not substantially change the results.

2.3 Discussion and open questions
Before we dive into the technical details in Section 3, we close the front matter with some
discussion of open questions left by our work and our approach. We view the study of the
s-DRGP for intermediate s to be an important step in understanding locality in general, since
the s-DRGP nicely interpolates between the two extremes of LRCs and LCCs. When s = 2,
we completely understand the answer to Question 1. However, by the time s reaches Ω(N),
this becomes a question about the best rate of constant-query LCCs, which is a notoriously
hard open problem. It is our hope that by better understanding the s-DRGP, we can make
progress on these very difficult questions.

The main question left by our work is Question 1, which we do not answer. What is the
correct dependence on s in the codimension of codes with the s-DRGP? We have shown
that it is not s

√
N , even for s �

√
N . However, we have no reason to believe that our

construction is optimal.
Our work also raises questions about partially lifted codes. These do not seem to have

been studied before. The most immediate question arising from our work is to improve
or generalize our approach; in particular, is our analysis tight? Our approach proceeds by
counting the binomials of the form (2). This is in principle lossy, but empirical simulations
suggest that at least in the setting of Theorem 9, this approach is basically tight. Are there
situations in which this is not tight? Or can we prove that it is tight in any situation? Finally,
are there other uses of partially lifted codes? As with lifted codes, we hope that these prove
useful in a variety of settings.

3 Framework

As discussed in the previous section, the proof of Theorem 9 is based on the partially lifted
codes of Definition 7. In this section, we lay out the partially lifted codes we consider, as well
as the basic tools we need to analyize them. As before, we say that a polynomial P : F2

q → Fq

restricts nicely to a line L : Fq → F2
q if P |L has degree strictly less than q − 1. We will

consider partial lifts of the parity-check code with respect to a collection of affine lines L;
reasoning about the rate of this code will amount to reasoning about the polynomials which
restrict nicely to lines in L. To ease the computations, we will form our family L out of lines
that have a simple parameterization:

APPROX/RANDOM’17

43:12 Locality via Partially Lifted Codes

I Definition 10. We say a line L : F → F2 is simple if it can be written in the form
L(T) = (T, αT + β), with α, β 6= 0.

Notice that this rules out lines through the origin. At the end of the day, we will pucture our
code at the origin to achieve our final result. Note also that no two simple parameterizations
of lines are equivalent to each other (that is, they form distinct lines as sets), so as we go
forward, we may apply Observation 8 without worry of the repair groups coinciding.

We consider a family of constructions, indexed by parameters s and t, so that s, t | q − 1.
This family will be the partial lift with respect to the following set of simple lines.

I Definition 11. Let s, t | q − 1, and let Gs, Gt ⊆ F∗q be multiplicative subgroups of F∗q of
orders s and t, respectively. That is, Gs =

{
x ∈ F∗q : xs = 1

}
and Gt =

{
x ∈ F∗q : xt = 1

}
.

Then we define Ls,t to be the family of simple lines

Ls,t = {L(T) = (T, αT + β) : α ∈ Gs, β ∈ Gt} .

For the rest of the paper, we will study the following construction, for various choices of
s and t.

I Construction 1. Let Ls,t be as in Definition 11 for s, t | q − 1, and let F0 be the set of
univariate polynomials of degree strictly less than q − 1. Define Fs,t to be the partial lift of
F0 with respect to Ls,t.

Our main theorem, which we will prove in the rest of this section, is a characterization of
the dimension of Fs,t as in Construction 1. (We recall the definition of ≤2 from Definition 5
above).

I Theorem 12. Suppose that s, t | q − 1. For nonnegative integers i < s, j < t, define

e(s, t) = |{(i, j) : i < s, and j < t,

so that there is some m,n ∈ [q]2 with m ≡s i, n ≡t j, and n ≤2 m
}∣∣ .

Then the dimension of Fs,t ⊆ Fq[X,Y] is at least

dim(Fs,t) ≥ q2 − e(s, t).

Theorem 12 may seem rather mysterious. The expression e(s, t) comes up in counting the
number of binomials of the form (2) the restrict nicely on lines in Ls,t. We omit the full
proof of Theorem 12 in this extended abstract, but we will sketch the outline in Section 3.2.

The reason that Theorem 12 is useful is that for some s and t, it turns out to be possible
to get a very tight handle on e(s, t), which leads to the quantitative result in Thorem 9. For
now, we focus on proving Theorem 12. Our starting point is the work of [12]; we summarize
the relevant points below in Section 3.1.

3.1 Basic Setup: Lucas’ Theorem and Monomials
In [12], Guo, Kopparty and Sudan give a characterization of lifted codes. In our setting,
their work shows that when the set L is the set of all affine lines, then the lifted code F is
affine invariant and in fact is equal to the span of the monomials which restrict nicely. In
the case where the number of variables is large, or the base code F0 is more complicated
than a parity-check code, [12] provides some bounds, but it seems quite difficult to get a
tight characterization of these monomials. However, for bivariate lifts of the parity-check

S. L. Frank-Fischer, V. Guruswami, and M. Wootters 43:13

code, it is actually possible to completely understand the situation, and this was essentially
done in [12]. We review their approach here.

First, we use Lucas’ Theorem (Theorem 6) to characterize which monomials XaY b restrict
nicely to simple lines. Theorem 13 follows from the analysis in [12]; we refer the reader to
the full version of this paper [9] for a direct proof.

I Theorem 13. Suppose a + b < 2(q − 1) and let P (X,Y) = XaY b. Then for all simple
lines L(T) = (T, αT + β), P |L has degree < q − 1 if and only if q − 1− a 6≤2 b. Further, if
q − 1− a ≤2 b, then P |L is a degree q − 1 polynomial with leading coefficient α−aβb+a

Theorem 13 implies that whether a monomial P (X,Y) = XaY b restricts nicely to a
simple line L is independent of the choice of L. Thus it makes sense to consider this a
property of the monomial itself.

I Definition 14. We say that a monomial P (X,Y) = XaY b with 0 ≤ a, b ≤ q − 1 is good if
it restricts nicely on all simple lines.

I Remark 6 (The special case of Xq−1Y q−1). In Theorem 13, we required a+ b < 2(q − 1),
which does not cover the monomial P∗(X,Y) = Xq−1Y q−1. However, in Definition 14, we
allow a = b = q− 1, and in fact according to this definition P∗(X,Y) is good; we will treat it
that way in this work, even though it would not be considered good in the analysis of [12].
(In their language, P∗ does not live in the lift of the degree set {0, . . . , q − 2}).

Theorem 13 implies (see [9]) that there are q2 − 3` + 1 good monomials. This allows us
to recover the codes of Theorem 1.2 in [12] up to the technicalities about simple lines vs. all
lines. Following Observation 8, these codes have the s-DRGP for s = q − 1; indeed, there
are q − 1 simple lines through every non-zero point of F2

q. The dimension of these codes
is at least the number of monomials that they contain (indeed, all monomials are linearly
independent), which by the above is at least q2 − 3` + 1 = (N + 1)− (N + 1)log4(3) + 1.

I Corollary 15 (Implicit in [12]). There are codes linear C over Fq of length N = q2 − 1 with
dimension K ≥ N + 2− (N + 1)log4(3) which have the s-DRGP for s = q − 1 =

√
N + 1− 1.

We note that this recovers the results of one of the classical constructions of the s-DRGP
for s =

√
N mentioned in the introduction (and this is not an accident: these codes are

in fact the same as affine geometry codes). In the next section, we show how to use the
relaxation to partial lifts in order to create codes with the s-DRGP for s�

√
N .

3.2 Partially lifted codes
In this section we extend the analysis above to partial lifts. The work of [12] characterizes the
polynomials which restrict nicely on all lines L : Fq → F2

q : they show that this is exactly the
span of the good monomials (except the special monomial P∗ of Remark 6, which restricts
to degree lower than q − 1 only on simple lines). However, since our goal is to obtain codes
with the s-DRGP for s�

√
N , increasing the dimension while decreasing s, we would like to

allow for more polynomials.
Thus, as in Definition 7, we will consider polynomials which restrict nicely only on some

particular subset L of simple lines. We would like to find a subset L such that the space of
polynomials which restrict nicely on all lines in L has large degree. Additionally, we would
like to guarantee the s-DRGP by ensuring that, for every point (x, y), there are many lines
in L that pass through (x, y). Relaxing requirements in this manner will allow us to get
codes with good rate and locality trade-offs.

APPROX/RANDOM’17

43:14 Locality via Partially Lifted Codes

Theorem 13 shows that if a monomial restricts nicely on one simple line, it will restrict
nicely on all simple lines. This means that in order to find a larger space of polynomials, we
cannot only consider monomials. Towards this end, we will consider binomials of the form

P (X,Y) = Xa1Y b1 +Xa2Y b2 . (3)

That is, we will look only at binomials with both coefficients equal to 1.
We note that this ability to extend beyond monomials is possible crucially because our

partially lifted codes are not affine-invariant. While affine-invariance allowed [12] to get a
beautiful characterization of (fully) lifted codes, it also greatly restricts the flexibility of these
codes. By breaking affine-invariance, we also break some of the rigidity of these constructions.
This is in some sense not surprising: affine invariance is often exploited in order to prove
lower bounds on locality [4, 5].

3.2.1 Which binomials play nice with which lines?
We would like to characterize which binomials of the form (3) restrict nicely on which lines.
Unlike the case with monomials, now this will depend on the line as well as on the binomial.
When both individual terms in the binomial are good monomials, the binomial will certainly
restrict nicely. However, if this is not the case, then the binomial could still restrict nicely, if
the contributions to the leading coefficient of P |L from the two terms cancel with each other.
Using Theorem 13, we may write down these contributions and characterize when the cancel;
we omit the details due to space constraints, but (see [9]) this approach can establish the
following Corollary.

I Corollary 16. Let s and t divide q − 1, and let Gs = {x ∈ Fq : xs = 1} and Gt = {x ∈
Fq : xt = 1}. Let

Ls,t = {(T, αT + β) : α ∈ Gs, β ∈ Gt}

as in Definition 11. Suppose that P (X,Y) = Xa1Y b1 +Xa2Y b2 is a binomial so that neither
term is good. Suppose that a1 ≡ a2 mod s and a1 + b1 ≡ a2 + b2 mod t. Then for all
L ∈ Ls,t, P restricts nicely to L.

Thus, a choice of s and t dividing q − 1 produces a code by using Ls,t in Construction 1.
Each choice of s and t produces a different code, and by varying s and t we can vary the
parameters of this code. This is the general framework for our construction, but we still
must explore the dimension and the number of disjoint repair groups produced by different
choices of s and t.

3.2.2 Dimension
Given some choice of s and t, we would like to understand dimension of the space of
polynomials Fs,t which restrict nicely on all lines in Ls,t. We will lower bound this dimension
by building a linearly independent set S ⊆ Fs,t comprised of monomials and binomials. In
order to construct S and understand its size, we will need some more notation.

Let i < s and j < t be nonnegative integers. Define

Ei,j = {(m,n) ∈ [q]2 : m ≡s i, n ≡t j, n ≤2 m}.

Thus, the term e(s, t) from Theorem 12 is the number of (i, j) so that Ei,j is not empty. It
turns out, that Ei,j is (up to a ±1 term that we are careful about in the full version) in

S. L. Frank-Fischer, V. Guruswami, and M. Wootters 43:15

bijection with the set M̂i,j =
{
XaY b not good : a ≡s i, b+ a ≡t j

}
. Notice that the sum

of two monomials in M̂i,j meets the hypotheses of Corollary 16.
This observation is at the heart of the proof of Theorem 12. In slightly more detail,

we want to establish a lower bound on the dimension of polynomials which restrict nicely;
to do this we will exhibit a large linearly independent set of such polynomials. We will
start with all of the good monomials, and add to them a collection of binomials that satisfy
Corollary 16. We can do this as follows. First, from each M̂i,j , we fix one monomial, call it
Xa∗Y b∗ . Then, we include into our large linearly independent set all the binomails of the
form Xa∗Y b∗ +XaY b for XaY b ∈ M̂i,j \Xa∗Y b∗ . Doing this for all i, j results in a collection
of linearly independent binomials of size at least (ignoring some details about ±1 terms)

∑
|Ei,j 6=0

(|Ei,j − 1)− 1 =

 ∑
|Ei,j |6=0

|Ei,j | − 1

− e(s, t).
However, the first term, which is equal to

∑
i,j |Ei,j | − 1, is exactly the number of not-good

monomials. So our count of good monomials, plus these binomials that restrict nicely, is
precisely equal to the number of all monomials, minus e(s, t). This establishes Theorem 12;
we refer the reader to [9] for more details.

This theorem does give us a lower bound on the dimension of the code, but the expression
depends on e(s, t). We would like to know that e(s, t) is not too big. It is easy to see
that e(s, t) ≤ st, because there are only st choices for (i, j). Moreover, we know that
e(s, t) ≤ q2−g = 3`−1, the total number of not-good monomials. As we will see in Section 4,
this first bound e(s, t) ≤ st is nontrivial, and can in fact recover the result of N −K = s

√
N

of [8]. However, the point of all this work is that in fact we will be able to choose s and t so
that we can get a much tighter bound on e(s, t), establishing Theorem 9.

4 Instantiations

Finally, we choose t and s. One of the simplest choices we can make within our framework is to
set t = q−1, while s|q−1 is any divisor. That is, we consider all simple lines L(T) = (T, αT+β)
where β may vary over all of F∗q , and where α ∈ Gs lives in a multiplicative subgroup of
F∗q . One reason that this choice is convenient is that it is easy to understand the number of
disjoint repair groups: there are s− 1 lines of Ls,q−1 through any nonzero point.

Thus, Theorem 12, along with the observation of the previous section that e(s, q − 1) ≤
s(q − 1) trivially, immediately implies DRGP codes that match the results of [8], with
dimension K ≥ N −O(s

√
N). However, by choosing s carefully we can actually get a tighter

bound on e(s, t):

I Theorem 17. Let q = 2` be an even power of 2. Then

e(√q − 1, q − 1) = O
(

(5 +
√

5)`/2
)
.

Theorem 9 follows straightforwardly from Theorem 17 and Theorem 12. We omit the proof
of Theorem 17 here, and refer the reader to the full version [9] for details.

5 Conclusion

We have studied the s-DRGP for intermediate values of s. As s grows, the study of the
s-DRGP interpolates between the study of LRCs and LCCs, and our hope is that by

APPROX/RANDOM’17

43:16 Locality via Partially Lifted Codes

understanding intermediate s, we will improve our understanding on either end of this
spectrum. Using a new construction that we term a “partially lifted code," we showed
how to obtain codes of length N with the s-DRGP for s = Θ(N1/4), that have dimension
K ≥ N −N .714. This is an improvement over previous results of N −N3/4 in this parameter
regime. We stress that the main point of interest of this result is not the exponent 0.714,
which we do not believe is tight for Question 1; rather, we think that our results are interesting
because (a) they show that one can in fact beat N − O(s

√
N) for s = N1/4 �

√
N , and

(b) they highlight the class of partially lifted codes, which we hope will be of independent
interest.

Acknowledgements. We thank Alex Vardy and Eitan Yaakobi for helpful exchanges. We
also thank the anonymous reviewers for suggestions which improved the paper.

References

1 Hilal Asi and Eitan Yaakobi. Nearly optimal constructions of PIR and batch codes. CoRR,
abs/1701.07206, 2017. URL: http://arxiv.org/abs/1701.07206.

2 E.F. Assmus and J.D. Key. Polynomial codes and finite geometries. Handbook of coding
theory, 2(part 2):1269–1343, 1998.

3 Megasthenis Asteris and Alexandros G. Dimakis. Repairable fountain codes. IEEE Journal
on Selected Areas in Communications, 32(5):1037–1047, 2014.

4 Eli Ben-Sasson and Madhu Sudan. Limits on the rate of locally testable affine-invariant
codes. In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, pages 412–423. Springer, 2011.

5 Arnab Bhattacharyya and Sivakanth Gopi. Lower bounds for constant query affine-invariant
LCCs and LTCs. In Proceedings of the 31st Conference on Computational Complexity,
volume 50 of Leibniz International Proceedings in Informatics (LIPIcs), pages 12:1–12:17.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.CCC.2016.
12.

6 S. Blackburn and T. Etzion. PIR Array Codes with Optimal PIR Rate. CoRR,
abs/1607.00235, 2016. URL: http://arxiv.org/abs/1607.00235.

7 Alexandros G Dimakis, Anna Gál, Ankit Singh Rawat, and Zhao Song. Batch codes through
dense graphs without short cycles. arXiv preprint arXiv:1410.2920, 2014.

8 Arman Fazeli, Alexander Vardy, and Eitan Yaakobi. Codes for distributed PIR with low
storage overhead. In 2015 IEEE International Symposium on Information Theory (ISIT),
pages 2852–2856. IEEE, 2015.

9 S Luna Frank-Fischer, Venkatesan Guruswami, and Mary Wootters. Locality via partially
lifted codes. arXiv preprint arXiv:1704.08627, 2017.

10 Parikshit Gopalan, Cheng Huang, Huseyin Simitci, and Sergey Yekhanin. On the locality
of codeword symbols. IEEE Transactions on Information Theory, 58(11):6925–6934, 2012.

11 Alan Guo and Swastik Kopparty. List-decoding algorithms for lifted codes. CoRR,
abs/1412.0305, 2014. URL: http://arxiv.org/abs/1412.0305.

12 Alan Guo, Swastik Kopparty, and Madhu Sudan. New affine-invariant codes from lifting. In
Proceedings of the 4th conference on Innovations in Theoretical Computer Science, ITCS’13,
pages 529–540, New York, NY, USA, 2013. ACM. URL: http://arxiv.org/abs/1208.
5413, arXiv:1208.5413, doi:10.1145/2422436.2422494.

13 Brett Hemenway, Rafail Ostrovsky, and Mary Wootters. Local Correctability of Expander
Codes. In ICALP, LNCS. Springer, April 2013. arXiv:1304.8129.

http://arxiv.org/abs/1701.07206
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.12
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.12
http://arxiv.org/abs/1607.00235
http://arxiv.org/abs/1412.0305
http://arxiv.org/abs/1208.5413
http://arxiv.org/abs/1208.5413
http://arxiv.org/abs/1208.5413
http://dx.doi.org/10.1145/2422436.2422494
http://arxiv.org/abs/1304.8129

S. L. Frank-Fischer, V. Guruswami, and M. Wootters 43:17

14 Cheng Huang, Minghua Chen, and Jin Li. Pyramid codes: Flexible schemes to trade space
for access efficiency in reliable data storage systems. ACM Transactions on Storage (TOS),
9(1):3, 2013.

15 Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Batch codes and their
applications. In Proceedings of the thirty-sixth annual ACM symposium on Theory of com-
puting, pages 262–271. ACM, 2004.

16 Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for error-
correcting codes. In STOC’00: Proceedings of the 32nd Annual Symposium on the Theory
of Computing, pages 80–86, 2000.

17 S. Kopparty, S. Saraf, and S. Yekhanin. High-rate codes with sublinear-time decoding. In
Proceedings of the 43rd annual ACM symposium on Theory of computing, pages 167–176.
ACM, 2011.

18 Swastik Kopparty, Or Meir, Noga Ron-Zewi, and Shubhangi Saraf. High-rate locally-
correctable and locally-testable codes with sub-polynomial query complexity. In Proceed-
ings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, pages 202–215.
ACM, 2016.

19 Shu Lin and Daniel J Costello. Error control coding. Pearson Education India, 2004.
20 Sankeerth Rao and Alexander Vardy. Lower bound on the redundancy of PIR codes. CoRR,

abs/1605.01869, 2016. URL: http://arxiv.org/abs/1605.01869.
21 Ankit Singh Rawat, Dimitris S. Papailiopoulos, Alexandros G. Dimakis, and Sriram Vish-

wanath. Locality and availability in distributed storage. In 2014 IEEE International
Symposium on Information Theory, pages 681–685. IEEE, 2014.

22 I. Reed. A class of multiple-error-correcting codes and the decoding scheme. Information
Theory, Transactions of the IRE Professional Group on, 4(4):38–49, September 1954.

23 Maheswaran Sathiamoorthy, Megasthenis Asteris, Dimitris Papailiopoulos, Alexandros G
Dimakis, Ramkumar Vadali, Scott Chen, and Dhruba Borthakur. Xoring elephants: Novel
erasure codes for big data. In Proceedings of the VLDB Endowment, volume 6, pages
325–336. VLDB Endowment, 2013.

24 Vitaly Skachek. Batch and PIR codes and their connections to locally-repairable codes.
CoRR, abs/1611.09914, 2016. URL: http://arxiv.org/abs/1611.09914.

25 Itzhak Tamo and Alexander Barg. Bounds on locally recoverable codes with multiple
recovering sets. In 2014 IEEE International Symposium on Information Theory, pages
691–695. IEEE, 2014.

26 Itzhak Tamo and Alexander Barg. A family of optimal locally recoverable codes. IEEE
Transactions on Information Theory, 60(8):4661–4676, 2014.

27 Itzhak Tamo, Alexander Barg, and Alexey Frolov. Bounds on the parameters of locally
recoverable codes. IEEE Transactions on Information Theory, 62(6):3070–3083, 2016.

28 Anyu Wang and Zhifang Zhang. Repair locality with multiple erasure tolerance. IEEE
Transactions on Information Theory, 60(11):6979–6987, 2014.

29 David P. Woodruff. A Quadratic Lower Bound for Three-Query Linear Locally Decodable
Codes over Any Field, pages 766–779. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

30 Sergey Yekhanin. Locally Decodable Codes. Foundations and Trends in Theoretical Com-
puter Science, 2010.

APPROX/RANDOM’17

http://arxiv.org/abs/1605.01869
http://arxiv.org/abs/1611.09914

Testing Hereditary Properties of Sequences
Cody R. Freitag1, Eric Price2, and William J. Swartworth3

1 Department of Computer Science, UT Austin, Austin, TX, USA
cody@rdfriday.com

2 Department of Computer Science, UT Austin, Austin, TX, USA
ecprice@cs.utexas.edu

3 Department of Computer Science, UT Austin, Austin, TX, USA
wswartworth@gmail.com

Abstract
A hereditary property of a sequence is one that is preserved when restricting to subsequences.
We show that there exist hereditary properties of sequences that cannot be tested with sublinear
queries, resolving an open question posed by Newman et al. [20]. This proof relies crucially on
an infinite alphabet, however; for finite alphabets, we observe that any hereditary property can
be tested with a constant number of queries.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases Property Testing

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.44

1 Introduction

Property testing is the problem of distinguishing objects x that satisfy a given property P
from ones that are “far” from satisfying it in some distance measure [13], with constant (say,
2/3) success probability. The most basic questions in property testing are which properties
can be tested with constant queries; which properties cannot be tested without reading
almost the entire input x; and which properties lie in between.

This paper considers property testing of sequences under the edit distance. We say a
length n sequence x is ε-far from another (not necessarily length-n) sequence y if the edit
distance is at least εn. One of the key problems in property testing is testing if a sequence is
monotone; a long line of work (see [10, 5, 7, 8] and references therein) showed that Θ(1

ε logn)
queries are necessary and sufficient.

One can generalize monotonicity by considering properties defined by forbidden order
patterns. For instance, avoiding the (1, 3, 2) pattern would mean that x contains no length-3
subsequence with the first smaller than the third element and the third element smaller
than the second. Monotonicity would correspond to avoiding the (2, 1) sequence. Pattern
free sequences have a long history of study in combinatorics, such as the (now proven)
Stanley-Wilf conjecture [19, 12]. In property testing, Newman et al. recently showed (among
other results) that every length-k pattern can be tested with O(n1−1/k/ε1/k) nonadaptive
queries [20], and that Ω(n1−2/(k+1)) queries are necessary for testers that make non-adaptive
queries.

Properties defined by forbidden order patterns can be further generalized to hereditary
properties of sequences. We say a sequence property P is hereditary if, for any sequence
x satisfying P , any subsequence of x also satisfies P . Newman et al. [20] pose as an open
problem the question we consider in this work: can any hereditary property of sequences be
tested with sublinear query complexity?

© Cody R. Freitag, Eric Price, and William J. Swartwarth;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 44; pp. 44:1–44:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.44
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

44:2 Testing Hereditary Properties of Sequences

Hereditary properties have long been studied for graphs. It was shown by [2] that
hereditary properties of dense graphs are essentially precisely the ones that are testable
with a constant number of queries. Similar results have been shown for hypergraphs [3] and
certain sparse graphs [9].

Hereditary properties are also testable for permutations, under multiple notions of distance
measure [16, 4, 17]. Since hereditary properties on graphs and permutations are testable,
might they also be testable on sequences? For sequences the query complexity cannot be
independent of n, since (for example) monotonicity testing requires Ω(1

ε logn) queries, but
one could hope for something sublinear.

Our results. Our main result is to resolve the open question in the negative: there exist
hereditary properties of sequences that cannot be tested with sublinear queries. We show
how to reduce an arbitrary sequence property to a hereditary property over a larger alphabet.
Since there exist sequence properties that require Ω(n) queries for constant ε, the same must
hold true for hereditary properties:

I Theorem 1. Let ε ≤ 1/40. There exist hereditary properties of sequences for which no
ε-tester with two-sided error exists that uses o(n) queries.

Our reduction makes the sequence alphabet grow with n. While large alphabets often
makes sense for sequence testing problems – for instance, forbidden order patterns typically
expect all n sequence elements to be distinct – one may wonder if hereditary properties over
finite alphabets behave differently. They do. We show that every hereditary property of
sequences over a finite alphabet can be tested with a constant number of queries:

I Theorem 2. Every hereditary property over a finite alphabet is testable with query com-
plexity independent of n.

Related work. A recent concurrent work [1] studies hereditary properties of edge-colored
vertex-ordered graphs. They show that any hereditary property, for a fixed finite alphabet of
edge colors, is testable with a constant number of queries. This is analogous to our upper
bound for finite alphabets, but in the setting of ordered dense graphs rather than sequences.

Our Theorem 1 relies on finding a property that requires Ω(n) queries. The existence of
such a property was shown in [6] for quantum property testers under Hamming distance,
building on techniques in [14]. These techniques could be converted into our setting of
classical property testers under edit distance. Instead, we choose to give an explicit property
requiring Ω(n) queries for our setting, which may be of independent interest.

1.1 Overview of Techniques
This paper consists of three technical pieces: a reduction from arbitrary properties to
hereditary properties over a larger alphabet; a lower bound for arbitrary properties; and an
upper bound for hereditary properties over finite alphabets. We briefly outline each part in
turn.

The reduction. In Section 3, we give a reduction showing that given a blackbox tester for
hereditary properties using q(n, ε) queries, we can test arbitrary properties with q(n, ε/2)
queries. The key to this transformation is making new, disjoint alphabets for each sequence
length for the original property. Then, we can make that property hereditary by adding all
subsequences. Because all alphabets are disjoint, the fact that the new property is hereditary
doesn’t make the property much easier to test.

C. R. Freitag, E. Price, and W. J. Swartworth 44:3

Explicit hard properties. We construct an explicit property P of integer sequences which
requires linear queries to test. Our construction consists of sequences over Fp where p grows
linearly with the length of the sequence. We construct P such that a random sequence in P
of length n is indistinguishable (in the information-theoretic sense) from a uniformly random
sequence over Fp to any algorithm making fewer than n/2 queries. By making our property
small enough, we ensure that almost all sequences over Fp of length n are ε-far from P . Thus
we show that a correct tester would be able to distinguish a uniform sample from P from a
uniform sample over the total space with good probability. Since this requires n/2 queries,
we obtain a linear lower bound for testing P .

Finite-alphabet hereditary properties are easy. In Section 4, we show that testing for a
hereditary property over a finite alphabet is equivalent to testing for the avoidance of a
finite set of forbidden subsequences. If a sequence is ε-far from avoiding m subsequences
under edit distance, then it must be at least ε/m-far from avoiding one such subsequence.
This subsequence has some finite length k, which we show means that a uniform sample of
O(mε k

2 log k) indices finds this subsequence with constant probability.

2 Notation

A sequence of length n over an alphabet Σ is a function S : [n] → Σ, often written as
(S1, . . . , Sn). A property P is a set of sequences, and we say a particular sequence S has
property P if S is in P . We say that a sequence S of length n is ε-far from P if for all x ∈ P ,
d(S, x) > εn for some distance measure d. In this paper we consider edit distance, i.e., d(x, y)
is the minimum number of symbol deletions, insertions, or substitutions needed to transform
x into y.

A property P is hereditary if for all sequences S in P , every subsequence of S is also in P .
For every property P , there is a smallest hereditary property containing P , which consists
of all subsequences of elements in P . We call this property the hereditary closure of P and
denote it by P ∗.

An ε-tester for a property P is a randomized algorithm that on an input sequence S
queries a set of indices of S (possibly adaptively) and accepts with probability at least 2/3 if
S ∈ P and rejects with probability at least 2/3 if S is ε-far from P . Such a tester is said
to have two-sided error. If the tester is instead required to accept with probability 1 on all
inputs in P , we say that the tester has one-sided error. We say that a property P is testable
with q(n, ε) queries if for every ε > 0 there is an ε-tester for P using at most q(n, ε) queries
on sequences of length n with two-sided error.

3 Hereditary Properties over Arbitrary Alphabets

Our goal in this section is to prove Theorem 1:

I Theorem 1. Let ε ≤ 1/40. There exist hereditary properties of sequences for which no
ε-tester with two-sided error exists that uses o(n) queries.

We first give a reduction from arbitrary property testing on sequences to hereditary
property testing. The result then follows from the existence of sequence properties that
cannot be tested with sublinear queries.

APPROX/RANDOM’17

44:4 Testing Hereditary Properties of Sequences

3.1 Reduction from Testing Arbitrary Properties to Hereditary
Properties

I Lemma 3. Fix an arbitrary infinite alphabet Σ. If every hereditary property of sequences
over Σ is testable with q(n, ε) queries, then every property of sequences over Σ is testable
with q(n, ε/2) queries.

Proof. Let P be an arbitrary property over the alphabet Σ. Since Σ is infinite, there is a
countably infinite collection,{Σ1,Σ2, . . .}, of disjoint subsets of Σ where each Σm has the
same cardinality as Σ 1. For each m, let fm : Σ→ Σm be a fixed bijection from Σ to Σm.

We construct a property Q by converting every sequence in P of length m to the
corresponding alphabet Σm. More formally, let Qm = {fm(S) | S ∈ P, S is of length m} for
each m ∈ N, and let Q =

⋃
m∈NQm.

We claim that if S is in P , then fm(S) is in the hereditary closure Q∗ of Q, and if S is
ε-far from P , then fm(S) is ε/2-far from Q∗. It will follow from this that an ε/2 tester for
the hereditary property Q∗ suffices to test for P .

Suppose S is length n and has property P . Then fn(S) ∈ Q ⊆ Q∗, so fn(S) is in Q∗. Now
suppose that S is ε-far from P . Trivially fn(S) is ε-far from every subsequence of a sequence
in Q∗i with i 6= n since Σi and Σn are disjoint. Also, fn(S) is ε-far from every sequence in
Qn since fn is a bijection between Σ and Σn. If fn(S) were ε/2-close to a subsequence x′ of
some x ∈ Qn, then x′ must have length at least n− εn/2. This means x′ is ε/2-close to x
in edit distance. It then follows that fn(S) is ε-close to x ∈ Qn, which is a contradiction.
Therefore, fn(S) must be ε/2-far from Q∗. J

3.2 An Explicit Property Requiring Linear Queries
Related work uses a nonconstructive argument to show that there exists properties of binary
sequences which require linear queries to test with two-sided error [6]. Here we construct
an explicit class of sequences over Z which require linear queries. Specifically we show that
testing whether a vector in F2n

p lies in the space of codewords of a Reed-Solomon code
requires at least n queries.

For p ≥ k, let Reed-Solomonp(l, k) denote the space of codewords for the Reed-Solomon
code over Fp with message length l and codeword length k. Explicitly we define
Reed-Solomonp(l, k) to be the column span of the following matrix taken over Fp:

10 11 . . . 1l−1

20 21 . . . 2l−1

30 31 . . . 3l−1

...
...

. . .
...

k0 k1 . . . kl−1

 .

Our main result is that when k is larger than l by a constant factor, testing for membership
in Reed-Solomonp(l, k) requires linear queries.

I Lemma 4. Let P be the space of codewords for Reed-Solomonp(n, 2n), and set ε = 1/40.
An adaptive two sided tester (with 2/3 success probability), which ε-tests for P must make at
least n queries.

1 For arbitrary Σ, this result requires the axiom of choice. However in the case Σ = N we may be explicit
by setting Σm = {(m + i)2 + i|i ∈ N}.

C. R. Freitag, E. Price, and W. J. Swartworth 44:5

We require the following well-known property of the Reed-Solomon matrix M .

I Lemma 5. Let M be the 2n× n matrix with Mi,j = ij−1. Each n× n submatrix of M has
full rank.

Proof. Let v = [v0, . . . vn−1]T , and let Mi denote the ith row of M . Set

qv(x) = v0 + v1x
1 + . . .+ vn−1x

n−1,

and observe that that Miv = qv(i). If some n rows of M were dependent then for some
nonzero v we would have Miv = qv(i) = 0 for n different values of i. But this cannot happen
since qv is a nonzero polynomial of degree at most n− 1. J

Our main argument proceeds by showing that a tester for P would be able distinguish a
sequence drawn from the uniform distribution on P from a sequence drawn from the uniform
distribution on F2n

p with good probability. We will first argue this fact, and then show that
any algorithm which distinguishes these distribution with probability greater than 1/2 must
make at least n queries.

The first step amounts to bounding the size of an ε-ball in F2n
p .

I Lemma 6. The size of an ε-ball in Fnp under edit distance is at most (ep/ε)2εn.

Proof. Recall that under our definitions, edit distance allows for insertions, deletions, and
replacements. A replacement may be simulated with a deletion, followed by an insertion.
Therefore, if d(·, ·) is the analogue of edit distance allowing only insertions and deletions as
moves, it suffices to bound the size of a 2ε-ball under the metric d.

Fix x ∈ Fnp . Any element in Bd(2ε, x) may be constructed from x by the following
procedure. First we select a subset of εn indices of x to delete. Then we choose a multiset of
indices in {0, 1, . . . n− εn} of size εn corresponding to the locations in the resulting sequence
where we will perform our insertions. Finally we choose a sequence of length εn to insert
into those locations.

There are
(
n
εn

)
ways to choose the εn elements to delete. Then there are

((n−nε)+nε
nε

)
=
(
n
nε

)
ways to select the multiset of indices of size εn. Finally there are pεn ways to choose a
sequence of length εn. It follows that

|Bd(2ε, x)| ≤
(
n

nε

)
·
(
n

nε

)
· pεn

≤
(e
ε

)2εn
· pεn

≤
(ep
ε

)2εn
. J

I Lemma 7. Set ε = 1/40, and let T be an ε-tester for P . For x ∼ Uniform(F2n
p), T will

accept with probability strictly less than 1/2 (for large enough n).

Proof. The argument is that a uniformly random vector in F2n
p is ε-far from P (in edit

distance) with high probability. We first observe that an ε-neighborhood of P is small. In
particular we have

|{x ∈ F2n
p : x is ε-close to P}| ≤ |Bε| · |P |

≤
(ep
ε

)4εn
· p2n/2

≤ (60p)n/10 · pn

≤ p7n/10 · pn

≤ p1.7n,

where we used that p ≥ 2.

APPROX/RANDOM’17

44:6 Testing Hereditary Properties of Sequences

The probability that a vector drawn uniformly from F2n
p is ε-close to P is at most p1.7n/p2n

which in turn is at most 2−0.3n. Therefore for x ∼ Uniform(F2n
p), and n > 6, we have

Pr[T rejects on x] ≥ (2/3) · (1− 2−0.3n) > 1/2,

since T must reject, with probability 2/3, every point which is ε-far from P. J

The next step is to argue that any tester which makes fewer than n queries, cannot
distinguish the distributions Uniform(F2n

p) and Uniform(P). In fact we have the following:

I Lemma 8. Let x and y be random vectors draw from Uniform(F2n
p) and Uniform(P)

respectively. For any collection I ⊆ [2n] of indices with |I| ≤ n, the distributions on x|I and
y|I are both uniform over vectors of length |I|

Proof. It is immediately clear that x|I is uniform. That y|I is uniform follows from the
construction of the matrix A. To be precise, first recall that the restriction of A to any
collection n rows is an invertible matrix. It follows that for any m ≤ n, the restriction of A
to any m rows has rank m. The column span of a full-rank m× n matrix over Fp is exactly
Fmp . Therefore y|I is uniform over vectors of length |I|. J

Putting these facts together completes the proof of Theorem 4.

Proof. Let x be a vector in F2n
p sampled either from Uniform(F2n

p) or Uniform(P). Suppose
that our tester T makes at most n queries on x, possibly adaptively. By Lemma 8, the value
at each index in x after fewer than n queries is uniformly random over Fp and independent
of the values of all previous queries. Hence for either distribution we may simulate T ’s
behavior by returning uniformly random values for each of its queries. Therefore T must
have the same probability of acceptance on both of the two distributions for x. Lemma 7
shows that a correct T must accept on Uniform(F2n

p) with probability smaller than 1/2. But
by correctness, T must accept on Uniform(P) with at least 2/3 probability. It follows that a
T which makes fewer than n queries cannot be correct. J

4 Hereditary Properties over Finite Alphabets

We now show that the reduction of Section 3.1 relied heavily on the fact the the resulting
hereditary property was over an infinite alphabet. In fact, hereditary properties over a finite
alphabet can be tested with sublinear query complexity.

I Theorem 2. Every hereditary property over a finite alphabet is testable with query com-
plexity independent of n.

We begin with the following standard definition:

I Definition 9. A partial order (P,�) is said to be a well partial order if for every infinite
sequence p1, p2, . . . of elements in P , there exists i < j such that pi � pj .

As mentioned in [18], the following result is well-known. We present a proof here mostly
for completeness. A similar proof is presented in [15] but we provide a different exposition
which exploits some general structural properties of well partial orders.

I Lemma 10. Finite length sequences over a finite alphabet form a well partial order with
respect to the subsequence relation.

The proof of Lemma 10 relies on the following two lemmas.

C. R. Freitag, E. Price, and W. J. Swartworth 44:7

I Lemma 11. Let P be a well partially ordered set, and let X = x1, x2, . . . be a sequence of
elements from P . Then there is a subsequence Y = y1, y2, . . . of X, such that yi ≤ yj for all
i ≤ j.

Proof. First we argue that there exists an xi which is (weakly) dominated by infinitely many
elements of X. Suppose not. Then for each xi, let i′ be the largest integer satisfying xi ≤ xi′ .
Let S denote the sequence of X corresponding to the set {xi′ : i ∈ N}. Since S is necessarily
infinite, there exists elements si ≤ sj with i < j. But this contradicts the maximality of the
xi′ ’s.

To construct the sequence Y , we take y1 to be xi1 , where xi1 is dominated by infinitely
many elements in X. Set S1 = {xk : k > i1, xk ≥ xi1}. Since S1 is infinite, we may take
y2 to be xi2 where xi2 is dominated by infinitely many elements of S1. By iterating this
procedure we obtain our sequence Y . J

I Lemma 12. Let P1, . . . Pn be sets which are well partially ordered. Order the set P1×. . .×Pn
by termwise domination. That is we say that (p1, . . . , pn) ≤ (p′1, . . . p′n) if and only if pi ≤ p′i
for all i ∈ [n]. With this order, P1 × . . .× Pn is a well partial order.

Proof. By a straightforward induction, it suffices to prove the result when n = 2. Consider
a sequence S = {(ai, bi)} with ai ∈ P1 and bi ∈ P2. By Lemma 11 applied to P1, there is
an infinite subsequence of tuples S′ such the first entries in each element of S′ are (weakly)
increasing. Now since P2 is a well partial order, there exists elements s′i ≤ s′j in S′ with
i < j. Since S′ is a subsequence of S it follows that S is a well partial order. J

Now we present a proof of Lemma 10.

Proof. Let Ak = {a1, . . . , ak} be our finite alphabet of size k. Our proof is by induction on
k. When k = 1 the result follows from N being a well partial order.

Now fix an alphabet of size k+ 1. Consider an infinite sequence X = x1, x2, . . . consisting
of finite strings over the alphabet Ak+1. Given a finite string S = s1, . . . sn over the alphabet
Ak+1 we represent it as a tuple (u1, . . . , um) satisfying the following considerations:

ui is a finite sequence over the alphabet Ak+1 − {ai mod (k+1)}
S is the concatenation of the strings u1, . . . un.
each ui is as long as possible, i.e. the first character of ui+1 is ai mod (k+1).

Using the final property listed above, we observe that if this tuple has size at least
r(k + 1) + 1, then S contains the subsequence (a1, a2, . . . , ak+1)r, where the exponent means
that we repeat the string inside the parentheses r times.

Now represent each element of the sequence X as a tuple in this way. If x1 is contained
as a subsequence in some xi with i > 1 then we are finished. Otherwise, let x1 have length
l. Then x1 is contained as a substring in (a1a2 . . . ak+1)l. The tuple associated to each xi
with i > 1 must have length at most l(k + 1) + 1. Otherwise, by our previous observation,
xi would contain (a1a2 . . . ak+1)l as a substring, and hence also x1. We may represent each
xi with a tuple of length exactly l(k + 1) + 1 by padding xi’s tuple with empty strings as
necessary. By induction, the elements of these tuples are well partially ordered. But then
Lemma 12 implies that the tuples of length l(k + 1) + 1 also form a well partial order. Since
the ordering on strings respects the ordering on tuples, it follows that there exists i < j with
xi ≤ xj . Therefore X is well partially ordered. J

We are now ready to prove the following key fact.

APPROX/RANDOM’17

44:8 Testing Hereditary Properties of Sequences

I Lemma 13. Let P be a hereditary property of sequences over a finite alphabet Σ. Then
there exists a finite set S of sequences over Σ such that P consists exactly of the sequences
which do not contain any sequence in S as a subsequence.

Proof. First observe that since P is hereditary, P consists of all sequences which do not
contain any sequence in P , the complement of P , as a subsequence. Since P is countable, we
may enumerate it as P = {q1, q2, . . .}. We construct S inductively, by setting s1 = q1, and
setting si+1 = qj where j is the minimum value such that qj does not contain any of the
sequences s1, . . . si as a subsequence. Lemma 10 implies that this process must halt at some
point by the definition of a well partial order, so S will be finite. From the construction, it is
clear that each sequence in P contains a sequence in S as a subsequence. Therefore, P is
exactly the set of sequences that avoid sequences in S as a subsequence. J

With these results, we give a short proof of Theorem 2.

Proof. By Lemma 13 it suffices to construct a tester that tests whether an input x avoids
a finite collection of forbidden subsequences. In fact it is enough to construct a tester for
each such sequence individually. This is because if x is ε-far from avoiding a collection of m
sequences, then x must be ε/m-far from avoiding one of these subsequences. This relies on
the fact that we are using edit distance, so to avoid a particular subsequence, we can just
delete a subset of indices that contain that subsequence.

Suppose x were ε/m-close to avoiding m subsequences, y1, . . . , ym, individually. Let Si
be the smallest set of indices such that deleting Si from x causes x to avoid yi. Note that by
assumption of x being ε/m-close to avoiding yi, |Si| ≤ εn/m. Then deleting ∪mi=1Si from x

will cause x to avoid all m subsequences, but | ∪mi=1 Si| ≤ m · (εn/m) = εn. This contradicts
that x is ε-far from avoiding all of y1, . . . , ym. Therefore constructing an ε/m-tester for
avoiding a particular sequence suffices.

Let u be a forbidden subsequence of size k. If x is ε-far from avoiding u, x must have at
least εn/k disjoint copies of u as subsequences. It was noted in [20] that a uniform sample
of O(ε1/kn1−1/k) entries contains one of these subsequences with constant probability by a
second moment bound. However, we show in Lemma 14 that over a finite alphabet, this can
be improved to just a uniform sample of O(1

εk
2 log k) entries.

Then to test whether x has a hereditary property over a finite alphabet, we compute the
m forbidden subsequences, each of length say at most k. Then after sampling O(mε k

2 log k)
random indices, if x is ε-far from avoiding all forbidden subsequences, we will find the
subsequence that x is ε/m-far from avoiding with at least 2/3 probability. J

I Lemma 14. There exists an ε-tester with one-sided error for avoiding a fixed subsequence
s of length k using O(1

εk
2 log k) queries.

Proof. We first assume that k is a power of 2 and then reduce to the case of general k. We
also use the fact that if a sequence x is ε-far from avoiding s as a subsequence, then there
must be a set T consisting of εn/k disjoint copies of s in x [20].

Let i be minimal such that the restriction of x to T contains at least |T |/2 = εn/2k
disjoint instances of the subsequence s1, . . . sk/2 strictly to the left of i. By minimality of i it
follows that xi, xi+1, . . . , xn contains at least εn/2k − 1 disjoint copies of sk/2+1, . . . , sk. By
iterating this procedure, we divide x into k blocks X1, . . . Xk such that each Xi contains at
least εn/k2 − log k copies of si, which is Ω(εn/k2) as long as k = o(n1/2).

Our algorithm is to sample a uniform subset of x of size u. The probability any individual
sample will be an instance of si from the block Xi is at least Ω(ε/k2). Thus with constant

C. R. Freitag, E. Price, and W. J. Swartworth 44:9

probability, we will select a corresponding si from each of the blocks Xi after O(1
εk

2 log k)
samples.

We now reduce the case where the length of the subsequence is a power of 2 to general k.
Let s be of length k, and k′ be the smallest power of 2 larger than k. Let c be any character
not in the alphabet of the sequence. We will construct s′ of length k′ by adding k′− k copies
of c to the end of s. We also construct the sequence x′ by adding (k′ − k) · εn/k copies of c
to the end of x.

Note that x′ avoids s′ if and only if x avoids s since c is disjoint from the original alphabet.
Also k′ − k < k, so the length of x′ is at most 2n. This means x is ε-far from avoiding s if
and only if x′ is at least ε/2-far from avoiding s′. Also, we can simulate any property testing
algorithm on x′ since any query for an index greater than n must return c. Therefore we can
test x for s-avoidance by testing x′ for s′-avoidance using O(1

ε/2 (k′)2 log k′) = O(1
εk

2 log k)
queries. J

5 Conclusions and Open Problems

We showed that there exist hereditary properties that require linear query complexity.
However, we also show that when we restrict to hereditary properties over a finite alphabet,
there are testers using queries independent of n. What can we say about other natural
restrictions on hereditary properties? Sequences over an infinite alphabet don’t form a
well-partial order under the subsequence relation, as shown in [21], so we need different
techniques to see if other interesting restrictions over infinite alphabets can be tested using
sublinear queries.

One natural restriction is to order-based hereditary properties [11]. [20] considers testing
the avoidance of permutation patterns, which is a subclass of order-based hereditary properties.
A sequence S avoids a pattern π of length k if there is no set of indices i1 < i2 < . . . < ik
such that Six > Siy if and only if πx > πy. It is unknown whether testing the avoidance of
constant length patterns requires more than polylog(n) queries with adaptive algorithms.

References
1 Noga Alon, Omri Ben-Eliezer, and Eldar Fischer. Testing hereditary properties of ordered

graphs and matrices. arXiv preprint arXiv:1704.02367, 2017.
2 Noga Alon and Asaf Shapira. A characterization of the (natural) graph properties testable

with one-sided error. SIAM Journal on Computing, 37(6):1703–1727, 2008.
3 Tim Austin and Terence Tao. Testability and repair of hereditary hypergraph properties.

Random Structures & Algorithms, 36(4):373–463, 2010.
4 Antônio J.O. Bastos, Carlos Hoppen, Yoshiharu Kohayakawa, and Rudini M. Sampaio. Ev-

ery hereditary permutation property is testable. Electronic Notes in Discrete Mathematics,
38:123–128, 2011.

5 Arnab Bhattacharyya, Elena Grigorescu, Kyomin Jung, Sofya Raskhodnikova, and David P.
Woodruff. Transitive-closure spanners. SIAM Journal on Computing, 41(6):1380–1425,
2012.

6 Harry Buhrman, Lance Fortnow, Ilan Newman, and Hein Röhrig. Quantum property test-
ing. In Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms,
pages 480–488. Society for Industrial and Applied Mathematics, 2003.

7 Deeparnab Chakrabarty and C. Seshadhri. Optimal bounds for monotonicity and lipschitz
testing over hypercubes and hypergrids. In Proceedings of the forty-fifth annual ACM
symposium on Theory of computing, pages 419–428. ACM, 2013.

APPROX/RANDOM’17

44:10 Testing Hereditary Properties of Sequences

8 Deeparnab Chakrabarty and C. Seshadhri. An optimal lower bound for monotonicity test-
ing over hypergrids. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, pages 425–435. Springer, 2013.

9 Artur Czumaj, Asaf Shapira, and Christian Sohler. Testing hereditary properties of non-
expanding bounded-degree graphs. SIAM Journal on Computing, 38(6):2499–2510, 2009.

10 Yevgeniy Dodis, Oded Goldreich, Eric Lehman, Sofya Raskhodnikova, Dana Ron, and
Alex Samorodnitsky. Improved testing algorithms for monotonicity. In Randomization,
Approximation, and Combinatorial Optimization. Algorithms and Techniques, pages 97–
108. Springer, 1999.

11 Eldar Fischer. On the strength of comparisons in property testing. Information and Com-
putation, 189(1):107–116, 2004.

12 Jacob Fox. Stanley-wilf limits are typically exponential. arXiv preprint arXiv:1310.8378,
2013.

13 Oded Goldreich. Combinatorial property testing (a survey). Randomization Methods in
Algorithm Design, 43:45–59, 1999.

14 Oded Goldreich, Shari Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. Journal of the ACM (JACM), 45(4):653–750, 1998.

15 Leonard H. Haines. On free monoids partially ordered by embedding. Journal of Combi-
natorial Theory, 6(1):94–98, 1969.

16 Carlos Hoppen, Yoshiharu Kohayakawa, Carlos Gustavo Moreira, and Rudini Menezes
Sampaio. Testing permutation properties through subpermutations. Theoretical Computer
Science, 412(29):3555–3567, 2011.

17 Tereza Klimošová and Daniel Král. Hereditary properties of permutations are strongly
testable. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1164–1173. Society for Industrial and Applied Mathematics, 2014.

18 Joseph B. Kruskal. The theory of well-quasi-ordering: A frequently discovered concept.
Journal of Combinatorial Theory, Series A, 13(3):297–305, 1972.

19 Adam Marcus and Gábor Tardos. Excluded permutation matrices and the stanley–wilf
conjecture. Journal of Combinatorial Theory, Series A, 107(1):153–160, 2004.

20 Ilan Newman, Yuri Rabinovich, Deepak Rajendraprasad, and Christian Sohler. Testing
for forbidden order patterns in an array. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1582–1597. SIAM, 2017.

21 Daniel A Spielman and Miklós Bóna. An infinite antichain of permutations. Electron. J.
Combin, 7:N2, 2000.

Traveling in Randomly Embedded Random Graphs
Alan Frieze1 and Wesley Pegden2

1 Department of Mathematical Sciences, Carnegie Mellon University,
Pittsburgh, PA, USA

2 Department of Mathematical Sciences, Carnegie Mellon University,
Pittsburgh, PA, USA
Abstract

We consider the problem of traveling among random points in Euclidean space, when only a
random fraction of the pairs are joined by traversable connections. In particular, we show a
threshold for a pair of points to be connected by a geodesic of length arbitrarily close to their
Euclidean distance, and analyze the minimum length Traveling Salesperson Tour, extending the
Beardwood-Halton-Hammersley theorem to this setting.

1998 ACM Subject Classification G.2.1 Combinatorics, G.3 Probability and Statistics

Keywords and phrases Traveling Salesman, Euclidean, Shortest Path

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.45

1 Introduction

The classical Beardwood-Halton-Hammersley theorem [1] (see also Steele [12] and Yukich
[13]) concerns the minimum cost Traveling Salesperson Tour through n random points in
Euclidean space. In particular, it guarantees the existence of an absolute (though still
unknown) constant βd such that if X1, X2 . . . , is a random sequence of points, uniformly
distributed in the d-dimensional cube [0, 1]d, the length T (Xn,1) of a minimum tour through
X1, . . . , Xn satisfies

T (Xn,1) ∼ βdn
d−1
d a.s. (1)

The present paper is concerned still with the problem of traveling among random points
in Euclidean space. In our case, however, we suppose that only a (random) subset of the
pairs of points are joined by traversable connections, independent of the geometry of the
point set.

In particular, we study random embeddings of the Erdős-Rényi-Gilbert random graph
Gn,p into the d-dimensional cube [0, 1]d. We let Xn denote a uniformly random set of points
X1, X2, . . . , Xn ∈ [0, 1]d, and we denote by Xn,p the random graph whose vertex set is Xn
and whose pairs of vertices are joined by edges each with independent probability p. Edges
are weighted by the Euclidean distance between their points, and we are interested in the
total edge-weight required to travel about the graph.

This model has received much less attention than the standard model of a random
geometric graph, defined as the intersection graph of unit balls with random centersXi, i ∈ [n],
see Penrose [9]. We are only aware of the papers by Mehrabian [7] and Mehrabian and
Wormald [8] who studied the stretch factor of Xn,p. In particular, let ||x − y|| denote the
Euclidean distance between vertices x, y, and dist(x, y) denote their distance in Xn,p. They
showed (considering the case d = 2) that unless p is close to 1, the stretch factor

sup
x,y∈Xn,p

dist(x, y)
||x− y||

tends to ∞ with n.
© Alan Frieze and Wesley Pegden;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 45; pp. 45:1–45:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.45
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

45:2 Traveling in Randomly Embedded Random Graphs

Figure 1 Paths in an instance of Xn,p for d = 2, n = 230, and p = 10
n

, 25
n

, 50
n

, and 200
n

, respectively.
In each case, the path drawn is the shortest route between the vertices x and y which are closest to
the SW and NE corners of the square. (See Q. 2, Section 5.)

As a counterpoint to this, our first result shows a very different phenomenon when we
pay attention to additive rather than multiplicative errors. In particular, for p� logd n

n , the
distance between a typical pair of vertices is arbitrarily close to their Euclidean distance,
while for p� logd n

n(log logn)2d , the distance between a typical pair of vertices in Xn is arbitrarily
large (Figure 1). (We write logk x for (log x)k.) In particular, this means that when
logd n
n � p < 1− ε, the supremum in the stretch factor theorem of Mehrabian and Wormald

is due just to pairs of vertices which are very close together.

I Theorem 1. Let ω = ω(n)→∞. We have for d ≥ 2:
(a) For p ≤ 1

ωd(log logn)2d
logd n
n and fixed u = X1, v = X2, say, we have

dist(u, v) ≥ ω

8ded a.a.s.1

(b) For p ≥ ω logd n
n , we have a.a.s. that uniformly for all pairs of vertices u, v ∈ Xn,

dist(u, v) = ||u− v||+ o(1).

Theorem 1 means that, even for p quite small, it is not that much more expensive to
travel from one vertex of Xn,p to another than it is to travel directly between them in the
plane. On the other hand, there is a dramatic dependence on p if the goal is to travel among
all points. Let T (Xn,p) denote the length of a minimum length tour in Xn,p hitting every
vertex exactly once, i.e. a Traveling Salesperson tour.

I Theorem 2. There exists a sufficiently large constant K > 0 such that for all p = p(n)
such that p ≥ K logn

n , d ≥ 2, we have that

T (Xn,p) = Θ
(
n
d−1
d

p1/d

)
a.a.s. (2)

(Recall that f(n) = Θ(g(n)) means that f(n) is bounded between positive constant multiples
of g(n) for sufficiently large n.) As the threshold for Gn,p to be Hamiltonian is at p =
logn+log logn+ω(n)

n (see e.g. Bollobás [2]), this theorem covers nearly the entire range of p for
which a TSP tour exists a.a.s.

Finally, we extend the asymptotically tight BHH theorem [1] to the case of Xn,p for
any constant p. To formulate an “almost surely” statement, we let XN ,p denote a random
graph on a random embedding of N = {1, 2, . . . , } into [0, 1]d, where each pair {i, j} is
independently present as an edge with probability p, and consider Xn,p as the restriction of
XN ,p to the first n vertices {1, . . . , n}.

A.M. Frieze and W. Pegden 45:3

I Theorem 3. If d ≥ 2 and p > 0 is constant, then there exists βd,p > 0 such that

T (Xn,p) ∼ βd,pn
d−1
d a.s.

Karp’s algorithm [6] for a finding an approximate tour through Xn extends to the case Xn,p,
p constant as well:

I Theorem 4. For fixed d ≥ 2 and p constant, then there is an algorithm that a.s. finds a
tour in Xn,p of value (1 + o(1))βd,pn(d−1)/d in polynomial time, for all n ∈ N .

2 Traveling between pairs

2.1 Proof of Theorem 1(a)
Outline of proof

This is straightforward. We show by the first moment method that any path between u and
v with “many” edges must contain a significant number of “long” edges and hence must be
as long as claimed. We then show that a.a.s. there are no paths between u and v without
many edges.

Proof proper

Let νd denote the volume of a d-dimensional unit ball; recall that νd is bounded (νd ≤ ν5 < 6
for all d).

Let an edge be long if its length is at least `1 = ω(log logn)2

4ed logn . Let ε = 1
log logn and let Ak

be the event that there exists a path with k edges, k ≥ k0 = logn
2d log logn from u to v that uses

at most εk long edges. Then

Pr (∃k : Ak) ≤
∑
k≥k0

(k − 1)!
(

n

k − 1

)
pk
(
k

εk

)(
νd

(
ω(log logn)2

4ed logn

)d)(1−ε)k

(3)

≤
∑
k≥k0

nk−1pk
(e
ε

)εk(
νd

(
ω(log logn)2

4ed logn

)d)(1−ε)k

(4)

≤ 1
n

∑
k≥k0

(
νd logdε n

(4ed)d(1−ε) ·
(e
ε

)ε)k
(5)

≤ 1
n

∑
k≥k0

(
6ed+o(1)

4ed2

)k
= o(1),

after using d ≥ 2 and logε n = e.

Explanation of (3): Choose the k − 1 interior vertices of the possible path and order them
in one of (k − 1)!

(
n
k−1
)
ways as (u1, u2, . . . , uk−1). Then pk is the probability that the edges

exist in Gn,p. Now choose the short edges ei = (ui−1, ui), i ∈ I in one of
(

k
(1−ε)k

)
=
(
k
εk

)
ways

and bound the probability that these edges are short by
(
νd

(
ω(log logn)2

4ed logn

)d)(1−ε)k
viz. the

probability that ui is mapped to the ball of radius `1, center ui−1 for i ∈ I.

APPROX/RANDOM’17

45:4 Traveling in Randomly Embedded Random Graphs

u b

vb

Fu,v

Fv,u

b
b bb

b b

b
b

Figure 2 Finding a short path.

Now a.a.s. the shortest path in Gn,p from u to v requires at least k0 edges: Indeed the
expected number of paths of length at most k0 from u to v can be bounded by

k0∑
k=1

(k − 1)!
(

n

k − 1

)
pk ≤ 1

n

k0∑
k=1

(
logd n

ωd(log logn)2d

)k
= o(1).

So a.a.s.

dist(u, v) ≥ εk0`1 = ε logn
2d log logn ·

ω(log logn)2

4ed logn = ω

8ded .

J

2.2 Proof of Theorem 1(b)
Outline of proof

We first consider two points u, v such that ||u− v|| ≥ γ = 1
log logn . We then consider a set

of 2β small disjoint balls with centers on the line joining u, v. We argue that a.a.s. (i) all
of these balls contain (relatively) giant components, (ii) there is an edge joining the large
components inside each ball, (iii) the diameter of each of these giant components is small
and (iv) there is an edge between u and one of the g giant components X closest to u and
an edge between v and one of the g giant components Y closest to v. This gives a path
consisting of an edge from u to the giant component X plus a walk inside X plus an edge to
the giant component Y plus an edge to v. Because the balls are small the length of this path
is close to ||u− v||. We reduce the case where ||u− v|| ≤ γ to the first case.

Proof proper

We begin by considering the case of vertices u, v at distance ||u− v|| ≥ γ. Letting δ = 1
logn ,

then, for sufficiently large n, we can find a set B of at least 2C
δ , C = γ

8 , disjoint balls of
radius δ centered on the line from u to v, such that C

δ of the balls are closer to u than v,
and C

δ balls are closer to v than u (Figure 2). Denote these two families of Cδ balls by Fu,v
and Fv,u. (The sets B, Fu,v and Fv,u are fixed for the rest of the argument.)

Given a ball B ∈ F{u,v} = Fu,v ∪ Fv,u, the induced subgraph GB on vertices of X lying
in B is a copy of GN,p, where N = N(B) is the (random) number of vertices lying in B. Let

SB be the event that N(B) ∈
[
N0

2d+1 , 2N0

]
where N0 = νdδ

dn.

(Dividing by 2d+1 accounts for points close to the boundary of [0, 1]d.)

A.M. Frieze and W. Pegden 45:5

Now N(B) is distributed as the binomial Bin(n, q) where q ∈ νdδd[2−d, 1]. The following
Chernoff bounds will thus be useful:

Pr(Bin(M,p) ≤ (1− ε)Mp) ≤ e−ε
2Mp/2 for 0 ≤ ε ≤ 1. (6)

Pr(Bin(M,p) ≥ (1 + ε)Mp) ≤ e−ε
2Mp/3 for 0 ≤ ε ≤ 1. (7)

The bounds (6) and (7) imply that for B ∈ F{u,v},

Pr (¬SB) ≤ e−Ω(nδd) = e−n
1−o(1)

.

This gives us that a.a.s. SB occurs for all pairs u, v ∈ X with ||u− v|| ≥ γ. We now argue
that for all B ∈ B:
(A) All subgraphs GB for B ∈ F{u,v} have a giant component XB, containing at least

N0/2d+2 vertices.
Indeed, the expected average degree in GB is Np = Ω(ω)→∞ (and with probability
1− e−n1−o(1) we have N = n1−o(1)) and at this value the giant component is almost all
of B a.a.s. In particular, since SB occurs, we have that

Pr(|XB | ≤ N0/2d+2 | SB) ≤ e−Ω(N0) ≤ e−Ω(δdn) = o(1). (8)

See [2] for the first inequality in (8). This can be inflated by n2 · (2C logn) to account
for pairs u, v and the choice of B ∈ F{u,v}.

(B) There is an edge between XB and XB′ for all B,B′ ∈ F{u,v}.
Indeed, the probability that there is no edge between XB , XB′ , given (A), is at most

(1− p)N
2
0 /2

2d+2
≤ e−Ω(δ2dn2p) ≤ e−n

1−o(1)
.

This can be inflated by n2 · (C logn)2 to account for all pairs u, v and all pairs B,B′.
(C) For each B ∈ F{u,v}, the graph diameter diam(XB) (the maximum number of edges in

any shortest path in XB) satisfies

Pr
(

diam(XB) > 100 logN0

log(N0p)

)
≤ n−3. (9)

This can be inflated by n2 · (2C logn) to account for pairs u, v and the choice of
B ∈ F{u,v}. Fernholz and Ramachandran [4] and Riordan and Wormald [11] gave tight
estimates for the diameter of the giant component, but we need this cruder estimate
with a lower probability of being exceeded. We prove this later in Lemma 5. It will
be convenient for the proof of Lemma 5 to assume that N0p = O(logN0). There is no
loss in generality because Theorem 1(b) holds a fortiori for larger p. This follows from
a standard coupling argument, involving adding random edges to increase the edge
probability.

Part (C) implies that with high probability, for any u, v at distance ≥ γ and all B ∈ F{u,v}
and vertices x, y ∈ XB ,

dist(x, y) ≤ 200δ × logN0

log(N0p)
≤ 200

logn ×
logn− d log logn+ log νd

logω + log νd
= o(1). (10)

As the giant components XB (B ∈ Fu,v) contain in total at least C
δ

N0
2d+2 = C

2d+2 νdnδ
d−1

vertices, the probability that u has no neighbor in these giant components is at most

(1− p)Cνdnδ
d−1/2d+2

≤ e−Cνdnpδ
d−1/2d+2

= n−ωCνd/2
d+2

.

APPROX/RANDOM’17

45:6 Traveling in Randomly Embedded Random Graphs

In particular, the probability is small after multiplication by n2, and thus a.a.s., for all pairs
x, y ∈ Xn,p, x has a neighbor in XB for some B ∈ Fu,v and y has a neighbor in XB′ for
some B′ ∈ Fv,u. Now by part (B) and equation (10), we can find a path

u,w0, w1, . . . , ws, zt, zt−1, . . . , z1, z0, v

from u to v where the wi’s are all in some XB for B ∈ Fu,v and the total Euclidean length of
the path w0, . . . , ws tends to zero with n, and the zi’s are all in some XB′ for some B′ ∈ Fv,u,
and the total Euclidean length of the path z0, . . . , wt tends to zero with n. Meanwhile, the
Euclidean segments corresponding to the three edges u,w0, ws, zt, and z0, v lie within δ of
disjoint segments of the line segment from u to v, and thus have total length ≤ ||u− v||+ 6δ,
giving

dist(u, v) ≤ ||u− v||+ 6δ + o(1) = ||u− v||+ o(1). (11)

We must also handle vertices u, v ∈ Xn,p with ||u − v|| < γ. Given such a pair, we let
Bu, Bv denote any choice of balls of radius γ such dist(Bu, Bv) ≥ γ, dist(Bu, u),dist(Bv, v) ≤
γ(
√
d+ 2). (These bounds are chosen to make such a choice trivially possible, even when u, v

are close to a corner.) Observe that we have: where Cu, Cv denote the giant components of
Bu, Bv,

Pr(∀u, v ∈ Xn,p,∃w ∈ Cu, z ∈ Cv such that u ∼ w, v ∼ z)→ 1 (12)

with n since a.a.s we have that Bu and Bv contain at least νdnγd/2d+2 points for all
u, v ∈ Xn,p and we have that 1− 2n2(1− p)n·νdγd/2d+2 → 1. In particular, we can a.a.s for all
pairs u, v ∈ Xn,p find w ∼ u within distance γ(

√
d+ 4) of u, z ∼ v within Euclidean distance

γ(
√
d+ 4) of v, such that

γ ≤ ||w − z|| ≤ (2
√
d+ 8)γ.

Now, we can use the previous case (11) to see that

dist(u, v) ≤ (2
√
d+ 9)γ + 6δ + o(1) = o(1). (13)

In particular, dist(u, v)− ||u− v|| = o(1). J

We complete the proof of Theorem 1 by proving

I Lemma 5. Suppose that Np = ω →∞, ω = O(logN) and let C1 denote the unique giant
component of size N − o(N) in GN,p, that q.s.2 exists. Then for L large,

Pr
(

diam(C1) ≥ L logN
logNp

)
≤ O(N−L/10).

Proof. See appendix. J

3 Traveling among all vertices

Our first aim is to prove Theorem 3; this will be accomplished in Section 3.2, below. In
fact, we will prove the following general statement, which will also be useful in the proof of
Theorem 2:

2 A sequence of events En occurs quite surely q.s. if Pr(¬En) = O(n−K) for all positive constants K.

A.M. Frieze and W. Pegden 45:7

I Theorem 6. Let Yd1 ⊂ [0, 1]d denote a set of points chosen from any fixed distribution,
such that the cardinality Y = |Yd1 | satisfies E(Y) = µ > 0 and Pr(Y ≥ k) ≤ Cρk for all k,
for some C > 0, ρ < 1. For t > 0 let Ydt denote a random set of points in [0, t]d obtained
from the union of td independent copies Yd1 + x (x ∈ {0, · · · , t− 1}d).

If p > 0 is constant, d ≥ 2, and Ydt,p denotes the random graph on Ydt with independent
edge probabilities p, then ∃β > 0 (depending on p and the process generating Yd1) such that
(i) T (Ydt,p) ≈ βtd a.a.s., and
(ii) T (Ydt,p) ≤ βtd + o(td) q.s.3

Note that as a probabilistic statement, Part (i) above asserts that there exists a choice
for o(1) (a function of t, say, tending to 0) such that (1− o(1))βtd ≤ T (Ydt,p) ≤ (1 + o(1))βtd
holds a.a.s. Similarly for Part (ii), the statement asserts the existence of a suitable fixed
choice of o(td) (a function of t, whose ratio to td tends to 0).

The restriction Pr
(
|Yd1 | ≥ k

)
≤ Cρk simply ensures that we have exponential tail bounds

on the number of points in a large number of independent copies of Yd1 :

I Observation 7. For the total number Tn of points in n independent copies of Yd1 , we have
for some absolute constant AC,ρ > 0,

Pr(|Tn − µn| > δµn) < e−AC,ρδ
2µ2n. (14)

Note that the conditions on the distribution of Ydt are satisfied for a Poisson cloud of intensity
1, and it is via this case that we will derive Theorem 3. Other examples for which these
conditions hold include the case where Ydt is simply a suitable grid of points, or is a random
subset of a suitable grid of points in [0, t]d, and we will make use of this latter case of
Theorem 6 in our proof of Theorem 2.

Outline of proof of Theorem 6

Our proof uses subadditivity, but some of the standard properties of the classical case (e.g.,
monotonicity) fail in our setting, requiring us to use induction on d to achieve the result.
For technical reasons (see also Question 4 of Section 5) Theorems 6 and 3 are given just for
d ≥ 2, and before beginning with the induction, we must carry out a separate argument to
bound the length of the tour in 1 dimension.

When d = 1 all we can prove is an O(n) bound on the length of the minimum tour. We
do this by examining a natural greedy algorithm for finding a tour. This is the content of
Lemma 8. After this we prove a sort of Lipschitz condition for the tour length, see Lemma 10.
This will substitute for monotonicity. After this we can push ahead using subadditivity.

3.1 Bounding the expected tour length in 1 dimension
I Lemma 8. Consider the random graph G = Gn,p on the vertex set [n] with constant p,
where each edge {i, j} ∈ E(G) is given length |i− j| ∈ N. Let Z denote the minimum length
of a Hamilton cycle in G starting at vertex 1, assuming one exists. If no such cycle exists let
Z = n2. Then there exists a constant Ap such that

E(Z) ≤ Apn and Z ≤ Apn, q.s.

3 In this context O(n−ω(1)) is replaced by O(t−ω(1)).

APPROX/RANDOM’17

45:8 Traveling in Randomly Embedded Random Graphs

We omit the proof due to space limitations.
Let us observe now that we get an upper bound E(T (Y1

t,p)) ≤ Apt on the length of a tour
in 1 dimension. We have

E(T (Y1
t,p)) =

∞∑
n=0

E
(
T (Y1

t,p)
∣∣|Y1

t,p| = n
)

Pr(|Y1
t,p| = n).

When conditioning on |Y1
t,p| = n, we let P1 < P2 < · · · < Pn ⊂ [0, t] be the points in Y1

t,p. We
choose k ∈ {0, n− 1} uniformly randomly and let ξi = ||Pk+i+1 − Pk+i||, where the indices
of the Pj are evaluated modulo n. We now have E(ξi) ≤ 2t

n for all i, and

E
(
T (Y1

t,p)
∣∣|Y1

t,p| = n
)
≤ Apn ·

2t
n
,

and thus

E
(
T (Y1

t,p)
)
≤ 2Apt. (15)

3.2 The asymptotic tour length
Our proof of Theorem 6 uses recursion, by dividing the [t]d cube into smaller parts. However,
since our divisions of the cube must not cross boundaries of the elemental regions Yd1 , we
cannot restrict ourselves to subdivisions into perfect cubes (in general, the integer t may not
have the divisors we like).

To this end, if L = T1 × T2 × · · · × Td where each Ti is either [0, t] or [0, t − 1], we say
L is a d-dimensional near-cube with sidelengths in {t− 1, t}. For 0 ≤ d′ ≤ d, we define the
canonical example Ld′d := [0, t]d′ × [0, t− 1]d−d′ for notational convenience, and let

Φd,d
′

p (t) = E
(
T (Ydt,p ∩ Ld

′

d)
)
.

so that

Φdp(t) := Φd,dp (t) = Φd,0p (t+ 1).

In the unlikely event that Ydt,p ∩ Ld
′

d is not Hamiltonian, we take T (Ydt,p ∩ Ld
′

d) = td+1
√
d,

for technical reasons.
Our first goal is an asymptotic formula for Φ:

I Lemma 9. There exists β > 0 such that

Φd,d
′

p (t) ∼ βtd.

The proof of this is deferred until after the proof of Corollary 12 below.
The proof is by induction on d ≥ 2. We prove the base case d = 2 along with the general

case. We begin with a technical lemma.

I Lemma 10. For every fixed p, d, there is a constant Fp,d > 0 such that

Φd,d
′

p (t) ≤ Φd,d
′−1

p (t) + Fp,dt
d−1 (16)

for all t sufficiently large. In particular, this implies that there is a constant Ap,d > 0 such
that

Φdp(t+ h) ≤ Φdp(t) +Ap,dht
d−1 (17)

for sufficiently large t and 1 ≤ h ≤ t.

Proof. See appendix. J

A.M. Frieze and W. Pegden 45:9

Our argument is an adaptation of that in Beardwood, Halton and Hammersley [1]
or Steele [12], with modifications to address difficulties introduced by the random set of
available edges. First we introduce the concept of a decomposition into near-cubes. (Allowing
near-cube decompositions is necessary for the end of the proof, beginning with Lemma 13).
Simplifications relying on Boundary Functionals as in Yukich [13] do not appear to be
available due to missing edges.

We say that a partition of Ld′d into md near-cubes Sα with sidelengths in {u, u + 1}
indexed by α ∈ [m]d is a decomposition if for each 1 ≤ b ≤ d, there is an integer Mb such
that, letting

fb(a) =
{
au if a < Mb

(a−Mb)(u+ 1) +Mbu if a ≥Mb.
.

we have that

Sα = [f1(α1 − 1), f1(α1)]× [f2(α2 − 1), f2(α2)]× · · · × [fd(αd − 1), fd(αd)].

Observe that so long as u � t, Ld′d always has a decomposition into near-cubes with
sidelengths in {u, u+ 1}. Indeed, if t = ru− s for 0 ≤ s < u then we can take Mb = s for
b ≤ d′ and Mb = s− 1 for b > d′, unless s = 0, in which case Mb = u− 1.

First we note that tours in not-too-small near-cubes of a decomposition can be pasted
together into a large tour at a reasonable cost:

I Lemma 11. Fix δ > 0, and suppose t = mu for u = tγ for δ < γ ≤ 1 (m,u ∈ Z), and
suppose Sα (α ∈ [m]d) is a decomposition of Ld′d . We let Yd,αt,p := Ydt,p ∩ Sα. We have

T (Ydt,p ∩ Ld
′

d) ≤
∑

α∈[m]d
T (Yd,αt,p) + 4mdu

√
d with probability at least 1− e−Ω(udp2).

Proof. See appendix. J

Linearity of expectation (and the upper bound td+1
√
d on T (Ydt,p) when there is no tour)

now gives a short-range recursive bound on Φdp(t) when t factors reasonably well:

I Corollary 12. For all large u and 1 ≤ m ≤ u10 (m,u ∈ N),

Φdp(mu) ≤ md(Φdp(u) +Bp,du)

for some constant Bd. J

Proof of Lemma 9. Note that here we are using a decomposition of [mu]d into md subcubes
with sidelength u; near-cubes are not required.

To get an asymptotic expression for Φdp(t) we now let

β = lim inf
t

Φdp(t)
td

.

Choose u0 large and such that

Φdp(u0)
ud0

≤ β + ε

APPROX/RANDOM’17

45:10 Traveling in Randomly Embedded Random Graphs

and then define the sequence uk, k ≥ −1 by u−1 = u0 and uk+1 = u10
k for k ≥ 0. Assume

inductively that for some i ≥ 0 that for Ap,d as in Lemma 10 and Bp,d as in Corollary 12,

Φdp(ui)
udi

≤ β + ε+
i−2∑
j=−1

(
Ap,d
uj

+ Bp,d

ud−1
j

)
. (18)

This is true for i = 0, and then for i ≥ 0 and 0 ≤ u ≤ ui and d ≤ m ∈ [ui−1, ui+1] we have

Φdp(mui + u)
(mui + u)d ≤

Φdp(mui) +Ap,du(mui)d−1

(mui)d
, from Lemma 10,

≤
md(Φdp(ui) +Bp,dui) +Ap,du(mui)d−1

(mui)d
, from Corollary 12, (19)

≤ β + ε+
i−2∑
j=−1

(
Ap,d
uj

+ Bp,d

ud−1
j

)
+ Bp,d

ud−1
i

+ Ap,d
m

, by induction,

≤ β + ε+
i−1∑
j=−1

(
Ap,d
uj

+ Bp,d

ud−1
j

)
. (20)

Putting m = ui+1/ui and u = 0 into (20) completes the induction. We deduce from (18) and
(20) that for i ≥ 0 we have

Φdp(t)
td
≤ β+ε+

∞∑
j=−1

(
Ap,d
uj

+ Bp,d

ud−1
j

)
≤ β+2ε for t ∈ Ji = [ui−1ui, ui(ui+1 +1)] (21)

Now
⋃∞
i=0 Ji = [u2

0,∞] and since ε is arbitrary, we deduce that

β = lim
t→∞

Φdp(t)
td

, (22)

We can conclude that

Φdp(t) ∼ βtd,

which, together with Lemma 10, completes the proof of Lemma 9, once we show that
β > 0 in (22). To this end, we let ρ denote Pr(|Yd1 | ≥ 1), so that E(|Ydt |) ≥ ρtd. We say
x ∈ {0, . . . , t − 1}d is occupied if there is a point in the copy Yd1 + x. Observing that a
unit cube [0, 1]d + x (x ∈ {0, . . . , t− 1}d) is at distance at least 1 from all but 3d − 1 other
cubes [0, 1]d + y, we certainly have that the minimum tour length through Ydt is at least
O

3d−1 , where where O is the number of occupied x. Linearity of expectation now gives that
β > ρ/(3d − 1), completing the proof of Lemma 9. J

Before continuing, we prove the following much cruder version of Part (ii) of Theorem 6:

I Lemma 13. For any fixed ε > 0, T (Ydt,p) ≤ td+ε q.s.

Proof. We let m = bt1−ε/2c, u = bt/mc, and let {Yd,ατ,p } be a decomposition of Ydt,p into md

near-cubes with sidelengths in {u, u+ 1}. We have that q.s. each Yd,ατ,p has (i) ≈ ud points,
and (ii) a Hamilton cycle Hα. We can therefore q.s. bound all T (Yd,ατ,p) by du · ud, and
Lemma 11 gives that q.s. T (Ydt,p) ≤ 4dutd + 4mdu

√
d. J

A.M. Frieze and W. Pegden 45:11

Proof of Theorem 6. We consider a decomposition {Sα} (α ∈ [m]d) of Ydt into md near-
cubes of side-lengths in {u, u+ 1}, for γ = 1− ε

2 , m = btγc, and u = bt/mc.
Lemma 9 gives that

ET (Yd,αt,p) ∼ βud ∼ βt(1−γ)d.

Let

Sγ(Ydt,p) =
∑

α∈[m]d
min

{
T (Yd,αt,p), 2dt(1−γ)(d+ε)

}
.

Note that Sγ(Ydt,p) is the sum of tγd identically distributed bounded random variables.
Now, since q.s. T (Yd,αt,p) ≤ 2dt(1−γ)(d+ε) for all α by Lemma 13, we have that q.s.

Sγ(Ydt,p) =
∑
α T (Yd,αt,p). Applying Hoeffding’s theorem we see that for any ξ > 0, we have

Pr(|Sγ(Ydt,p)−md E(T (Ydu,p))| ≥ ξ) ≤ 2 exp
(
− 2ξ2

4mdd2t2(1−γ)(d+ε)

)
.

Putting ξ = tdε for small ε, we see that

Sγ(Ydt,p) = βtd + o(td) q.s. (23)

Note next that Lemma 11 implies that

T (Ydt,p) ≤ Sγ(Ydt,p) + δ2 where δ2 = o(td) q.s. (24)

It follows from (23) and (24) and the fact that Pr(|Ydt | = td) = Ω(t−d/2) that

T (Ydt,p) ≤ βtd + o(td) q.s. (25)

which proves part (ii) of Theorem 6.
Of course, we have from Lemma 9 that

E(T (Ydt,p)) = βtd + δ1 where δ1 = o(td), (26)

and we show next that that this together with (24) implies part (i) of Theorem 6, that:

T = T (Ydt,p) = βtd + o(td) a.a.s. (27)

We choose 0 ≤ δ3 = o(td)) such that 0 ≤ δ2, |δ1| = o(δ3). Let I = [βtd − δ3, βtd + δ2].
Then we have

βtd + δ1 = E(T (Ydt,p) | T (Ydt,p) ≥ (βtd + δ2) Pr(T (Ydt,p) ≥ βtd + δ2)
+ E(T (Ydt,p) | T (Ydt,p) ∈ I) Pr(T (Ydt,p) ∈ I)+

E(T (Ydt,p) | T (Yd,αt,p) ≤ βtd − δ3) Pr(T (Ydt,p) ≤ βtd − δ3).

Now ε1 = E(T (Ydt,p) | T (Ydt,p) ≥ βtd + δ2) Pr(T (Ydt,p) ≥ βtd + δ2) = O(t−ω(1)) since
|Ydt,p| ≤ 2d1/2td and Pr(T (Ydt,p) ≥ βtd + δ2) = O(t−ω(1)), from (25).

So, if λ = Pr(T (Ydt,p) ∈ I) then we have

βtd + δ1 ≤ ε1 + (βtd + δ2)λ+ (βtd − δ3)(1− λ)

or

λ ≥ δ1 − ε1 + δ3
δ2 + δ3

= 1− o(1),

and this proves (27) completing the proof of Theorem 6. J

APPROX/RANDOM’17

45:12 Traveling in Randomly Embedded Random Graphs

Proof of Theorem 3. We now let Wd
t,p be the graph on the set of points in [0, t]d which

is the result of a Poisson process of intensity 1. Our first task is to bound the variance
V(t) of T (Wd

t,p). Here we follow Steele’s argument [12] with only small modifications. We
approximate T (Wd

2t,p) as the sum over 2d half-size cubes of T (Wd
t,p) and use this to show

that
∑∞
k=1

V(2kt)
(2kt)2d ≤ ∞. This deals with n of the form 2kt for some value of t and we then

have to fill in the gaps.
Let Et denote the event that

T (Wd
2t,p) ≤

∑
α∈[2]d

T (Wd,α
t,p) + 2d+2t

√
d. (28)

Observe that Lemma 11 implies that

Pr(¬Et) ≤ e−Ω(tdp). (29)

We define the random variable λ(t) = T (Wd
t,p) + 10t

√
d, and let λi denote independent

copies of λ(t). Conditioning on Et, we have from (28) that

λ(2t) ≤
2d∑
i=1

λi(t)− 4t
√
d ≤

2d∑
i=1

λi(t). (30)

In particular, (29) implies that letting Υ(t) = E(λ(t)) = Ω(td) (see (26)) and Ψ(t) = E(λ(t)2),
we have for sufficiently large t that

Ψ(2t) ≤ E

 ∑
α∈[2]d

T (Wd,α
t,p) + 2d+2t

√
d+ 21t

√
d

2

=
2d∑
i=1

E((λi(t)− 10t
√
d)2) +

2d∑
i 6=j

E(λi(t)− 10t
√
d) E(λj(t)− 10t

√
d)+

+ (2d+2 + 21)t
√
d

2d∑
i=1

E(λi(t)− 10t
√
d) + ((2d+2 + 21)t

√
d)2

= 2d E((λ(t)− 10t
√
d)2) + 2d(2d − 1) E(λ(t)− 10t

√
d)2+

+ 2d(2d+2 + 21)t
√
dE(λ(t)− 10t

√
d) + ((2d+2 + 21)t

√
d)2

= 2dΨ(t) + 2d(2d − 1)Υ(t)2 − Ω(tE(λ(t)) +O(t2))
≤ 2dΨ(t) + 2d(2d − 1)Υ(t)2.

For

V(t) := Var(T (Wd
t,p)) = Ψ(t)−Υ(t)2,

we have

V(2t)
(2t)2d −

1
2d
V(t)
t2d
≤ Υ(t)2

t2d
− Υ(2t)2

(2t)2d .

Now with t ≥ 1 arbitrary, summing over 2kt for k = 0, . . . ,M − 1 gives

M∑
k=1

V(2kt)
(2kt)2d −

1
2d

M−1∑
k=0

V(2kt)
(2kt)2d ≤

Υ(t)2

t2d
− Υ(2M t)2

(2M t)2d ≤
Υ(t)2

t2d

A.M. Frieze and W. Pegden 45:13

and so, solving for the first sum, we find
M∑
k=1

V(2kt)
(2kt)2d ≤

(
1− 1

2d

)−1(V(t)
t2d

+ Υ(t)2

t2d

)
<∞. (31)

Still following Steele, we let N(t) be the Poisson counting process on [0,∞). We fix a random
embedding U of N in [0, 1]d as u1, u2, . . . and a random graph Up where each edge is included
with independent probability p. We let Un,p denote the restriction of this graph to the first n
natural numbers. In particular, note that UN(td),p is equivalent to Wt,p, scaled from [0, t]d to
[0, 1]d. Thus, applying Chebychev’s inequality to (31) gives, in conjunction with Lemma 9,
that

∞∑
k=0

Pr
(∣∣∣∣∣ t2kT (UN((t2k)d),p)

(t2k)d − βp,d

∣∣∣∣∣ > ε

)
<∞ (32)

and so for t > 0 that

lim
k→∞

T (UN((t2k)d),p)
(t2k)d−1 = βp,d a.s. (33)

Now choosing some large integer `, we have that (33) holds simultaneously for all the (finitely
many) integers t ∈ SP = [2`, 2`+1); and for 2` ≤ r ∈ R, we have that

r ∈ [2kt, 2k(t+ 1)) for t ∈ S` and some k. (34)

(We simply choose k such that 2` ≤ 2−kr < 2`+1.)
J

Unlike the classical case p = 1, in our setting, we do not have monotonicity of T (Un,p).
Nevertheless, we show a kind of continuity of the tour length through T (Un,p):
I Lemma 14. For all ε > 0, ∃δ > 0 such that for all 0 ≤ k < δn, we have

T (Un+k,p) < T (Un,p) + εn
d−1
d , q.s. (35)

Proof. See appendix. J

Applying Lemma 14 with δ = (1+ 1
t)
d−1 = O(dt) so that we have (2kt)d ≤ rd ≤ (2kt)d(1+δ)

by (34), and using the fact that

(1− 2δ)N(rd) < N((1− δ)rd) < N((1 + δ)rd) < (1 + 2δ)N(rd) q.s. (with respect to r),

gives that for some ε` > 0 which can be made arbitrarily small by increasing `, we have q.s.

T (UN(((t+1)2k)d),p)− ε`rd−1 < T (UN(rd),p) < T (UN((t2k)d),p) + ε`r
d−1,

and so dividing by rd−1 and using (33) and taking limits we find that a.s.

βp,d − 2ε` ≤ lim inf
r→∞

T (UN(rd))
rd−1 ≤ lim sup

r→∞

T (UN(rd))
rd−1 ≤ βp,d + 2ε`.

Since ` may be arbitrarily large, we find that

lim
r→∞

T (UN(rd))
rd−1 = βp,d.

Now the elementary renewal theorem guarantees that

N−1(n) ∼ n, a.s.

So we have a.s.

lim
r→∞

T (Un,p)
n
d−1
d

= lim
r→∞

T (UN(N−1(n)),p)
(N−1(n)) d−1

d

(N−1(n)) d−1
d

n
d−1
d

= βp,d · 1 = βp,d.

APPROX/RANDOM’17

45:14 Traveling in Randomly Embedded Random Graphs

4 The case p(n)→ 0

This is omitted due to space restrictions.

5 Further questions

Theorem 1 shows that there is a definite qualitative change in the diameter of Xn,p at around
p = logd n

n , but our methods leave a (log logn)2d size gap for the thresholds.

I Question 1. What is the precise threshold for there to be distances in Xn,p which tend to
∞? What is the precise threshold for distance in Xn,p to be arbitrarily close to Euclidean
distance? What is the behavior of the intermediate regime?

One could also analyze the geometry of the geodesics in Xn,p (Figure 1). For example:

I Question 2. Let ` be the length of a random edge on the geodesic between fixed points at
at constant distance in Xn,p. What is the distribution of `?

Improving Theorem 2 to give an asymptotic formula for T (Xn,p) is another obvious target.
It may seem unreasonable to claim such a formula for all (say, decreasing) functions p; in
particular, in this case, the constant in the asymptotic formula would necessarily be universal.
The following, however, seems reasonable:

I Conjecture 15. If p = 1
nα for some constant 0 < α < 1 then there exists a constant βα,d

such that a.a.s. T (Xn,p) ∼ βα,d n
d−1
d

p1/d .

We note that T (Xn,1) is known to be remarkably well-concentrated around its mean; see,
for example, the sharp deviation result of Rhee and Talagrand [10].

I Question 3. How concentrated is the random variable T (Xn,p)?

The case of where p = o(1) may be particularly interesting.

Even for the case p = 1 covered by the BHH theorem, the constant β1,d (d ≥ 2) from
Theorem 6 is not known. Unlike the case of p = 1, the 1-dimensional case is not trivial for
our model. In particular, we have proved Theorems 3 and 2 only for d ≥ 2. We have ignored
the case d = 1 not because we consider the technical problems insurmountable, but because
we hope that it may be possible to prove a stronger result for d = 1, at least for the case of
constant p.

I Question 4. Determine an explicit constant βp,1 as a function of (constant) p such that
for d = 1,

lim
n→∞

T (Xn,p) = βp,1.

Our basic motivation has been to understand the constraint imposed on travel among
random points by the restriction set of traversable edges which is chosen randomly independ-
ently of the geometry of the underlying point-set. While the Erdős-Rényi-Gilbert model
is the prototypical example of a random graph, other models such as the Barabási-Albert
preferential attachment graph have received wide attention in recent years, due to properties
(in particular, the distribution of degrees) they share with real-world networks.

I Question 5. If the preferential attachment graph is embedded randomly in the unit square
(hypercube), what is the expected diameter? What is the expected size of a minimum-length
spanning tree?

A.M. Frieze and W. Pegden 45:15

References
1 J. Beardwood, J.H. Halton, and J.M. Hammersley. The shortest path through many points.

Mathematical Proceedings of the Cambridge Philosophical Society, 55:299–327, 1959.
2 B. Bollobás. Random Graphs, Second Edition. Cambridge University Press, 2001.
3 B. Bollobás, T. Fenner, and A.M. Frieze. An algorithm for finding hamilton paths and

cycles in random graphs. Combinatorica, 7:327–341, 1987.
4 D. Fernholz and V. Ramachandran. The diameter of sparse random graphs. Random

Structures and Algorithms, 31:482–516, 2007.
5 Y. Gurevich and S. Shelah. Expected computation time for hamiltonian path problem.

SIAM Journal on Computing, 16:486–502, 1987.
6 R.M. Karp. Probabilistic analysis of partitioning algorithms for the traveling-salesman

problem in the plane. Mathematics of Operations Research, 2:209–244, 1977.
7 A. Mehrabian. A randomly embedded random graph is not a spanner. In Proceedings of

the 23rd Canadian Conference on Computational Geometry (CCCG 2011), pages 373–374,
2011.

8 A. Mehrabian and N. Wormald. On the stretch factor of randomly embedded random
graphs. Discrete & Computational geometry, 49:647–658, 2013.

9 P.M. Penrose. Random Geometric Graphs. Oxford University Press, 2003.
10 W. Rhee and M. Talagrand. A sharp deviation inequality for the stochastic traveling

salesman problem. The Annals of Probability, 17:1–8, 1989.
11 O. Riordan and N. Wormald. The diameter of sparse random graphs. Combinatorics,

Probability and Computing, 19:835–926, 2010.
12 J.M. Steele. Subadditive euclidean functionals and nonlinear growth in geometric probab-

ility. The Annals of Probability, 9:365–376, 1981.
13 J. Yukich. Probability Theory of Classical Euclidean Optimization Problems. Springer,

1991.

A Proof of Lemma 5

Let B(k) be the event that there exists a set S of k vertices in GN,p that induces a connected
subgraph and in which more than half of the vertices have less than ω/2 neighbors outside S.
Then for k = o(N) we have

Pr(B(k)) ≤
(
N

k

)
pk−1kk−22k Pr(Bin(N − k, p) ≤ ω/2)k/2 (36)

≤ ekωk

pk2 2k
(
e−((N−k)p−ω/2)2/(2(N−k)p)

)k/2
, from (6) with ε = 1− ω

2(N − k)p ,

(37)

≤ ekωk

pk2 2k
(
e−(.99ω−ω/2)2/2ω

)k/2
(38)

≤ p−1(2eωe−ω/20)k ≤ Ne−kω/21. (39)
(40)

Explanation of (36):
(
N
k

)
bounds the number of choices for S. We then choose a spanning

tree T for S in kk−2 ways. We multiply by pk−1, the probability that T exists. We then
choose half the vertices X of S in at most 2k ways and then multiply by the probability that
each x ∈ X has at most ω/2 neighbors in [N] \ S.

If κ = κ(L) = L logN
logNp then (39) implies that Pr(B(κ)) ≤ N1−L.

APPROX/RANDOM’17

45:16 Traveling in Randomly Embedded Random Graphs

Next let D(k) = DN (k) be the event that there exists a set S of size k for which the
number of edges e(S) contained in S satisfies e(S) ≥ 2k. Then,

Pr(D(k)) ≤
(
N

k

)((k
2
)

2k

)
p2k ≤

(
Ne

k
·
(
keω

2N

)2
)k

=
(
ke3ω2

4N

)k
.

Since ω = O(logn) we have that q.s.

6 ∃k ∈ [κ(1), N3/4] such that D(k) occurs. (41)

Now let B(k1, k2) =
⋃k2
k=k1

B(k) and D(k1, k2) =
⋃k2
k=k1

D(k), and suppose that

B(k1, k2) ∪ D(k1, k2) does not occur, (42)

where k1 = κ(L/4) and k2 = N3/4. Fix a pair of vertices v, w and define sets S0, S1, S2, . . .

where Si is the set of vertices at distance i from v. If there is no i ≤ k1 with w ∈ Si then we
must have Sk1 6= ∅ and |S≤k1 | ≥ k1 where S≤t =

⋃t
i=0 Si for t ≥ 0. This is because v, w ∈ C1

and C1 is connected and so |S≤i+1| ≥ |S≤i| + 1. We also see that k1 ≤ |S≤t| ≤ N3/4

implies that |St+1| ≥ ω|S≤t|/10. Indeed, if |St+1| < ω|S≤t|/10 then S≤t+1 has at most
(ω + 10)|S≤t|/10 vertices and more than ω|S≤t|/4 edges, contradiction.

Thus if L is large, then we find that there exists t ≤ k1 + κ(3/4) ≤ N3/4 such that
|S≤t| ≥ N3/4 and so also that |St| ≥ (1− o(1))N3/4. Now apply the same argument from
w to create sets T0, T1, . . . , Ts, where either we reach v or find that |Ts| ≥ N3/4 where
s ≤ k1 + κ(3/4). At this point the edges between St and Ts are unconditioned and the
probability there is no St : Ts edge is at most (1− p)N3/2 = O(e−Ω(N1/2)).

B Proof of Lemma 10

We let S denote the subgraph of Ydt,p ∩ Ld
′

d induced by the difference Ld′d \ L
d′−1
d .

By ignoring the d′th coordinate of S, we obtain the (d − 1) dimensional set π(S), for
which induction on d (or equation (15) if d = 2) implies an expected tour T (S) of length
Φd−1,d′−1
p (t) ≤ βd−1

p td−1, and so changing notation, we can write

Φd−1,d′−1
p (t) ≤ Dp,d−1t

d−1.

We have that

E(T (S)) ≤ E(T (π(S)) + d1/2 E(|π(S)|) ≤ Dp,d−1t
d−1 + d1/2td−1.

The first inequality stems from the fact that the points in Ld′d \L
d′−1
d have a d′ coordinate in

[t− 1, t].
Now if Ydt,p ∩ Ld

′−1
d and S are both Hamiltonian, then we have

T (Ydt,p ∩ Ld
′

d) ≤ T (Ydt,p ∩ Ld
′−1
d) + T (S) +Od(t) (43)

which gives us the Lemma, by linearity of expectation. We have (43) because we can patch
together the minimum cost Hamilton cycle H in Ydt,p ∩ Ld

′−1
d and the minimum cost path

P in S as follows: Let u1, v1 be the endpoints of P . If there is an edge u, v of H such that
(u1, u), (v1, v) is an edge in Ydt,p then we can create a cycle H1 through Ydt,p ∩ Ld

′−1
d ∪ P at

an extra cost of at most 2d1/2t. The probability there is no such edge is at most (1− p2)t/2,
which is negligible given the maximum value of T (Ydt,p ∩ Ld

′

d).

A.M. Frieze and W. Pegden 45:17

On the other hand, because p is a constant, the probability that either of Ydt,p ∩ Ld
′−1
d

or S is not Hamiltonian is exponentially small in t, (see for example [5]), which is again
negligible given the maximum value of T (Ydt,p ∩ Ld

′

d). This completes the proof of (16).
To obtain (17) we use (16) to write

Φd,dp (t+ h) ≤ Φd,0p (t+ h) + dFp,d(t+ h)d−1 = Φdp(t+ h− 1) + dFp,d(t+ h)d−1

≤ Φdp(t) + dFp,d

h∑
i=0

(t+ i)d−1.

C Proof of Lemma 11

Let B, C denote the events

B =
{
∃α : Yd,αt,p is not Hamiltonian

}
,

C =
{
∃α :

∣∣∣|Yd,αt,p | − ud∣∣∣ ≥ δud} ,
and let E = B ∪ C.

Now Pr(B) ≤ mde−Ω(udp) and, by Observation 7, Pr(C) ≤ mde−Ω(ud) and so Pr(E) ≤
e−Ω(udp). Assume therefore that ¬E occurs. Each subcube Sα will contain a minimum
length tour Hα. We now order the subcubes {Sα} as T1, . . . , Tmd , such that for Sα = Ti and
Sα′ = Ti+1, we always have that the Hamming distance between α and α′ is 1. Our goal is
to inductively assemble a tour through the subcubes T1, T2, . . . , Tj from the smaller tours
Hα with a small number of additions and deletions of edges.

Assume inductively that for some 1 ≤ j < md we have added and deleted edges and
found a single cycle Cj through the points in T1, . . . , Tj in such a way that (i) the added
edges have total length at most 4

√
dju and (ii) we delete one edge from τ(T1), τ(Tj) and two

edges from each τ(Ti), 2 ≤ i ≤ j − 1. To add the points of Tj+1 to create Cj+1 we delete one
edge (u, v) of τ(Tj) ∩ Cj and one edge (x, y) of τ(Tj+1) such that both edges {u, x}, {v, y}
are in the edge set of Ydt,p. Such a pair of edges will satisfy (i) and (ii) and the probability
we cannot find such a pair is at most (1 − p2)(ud/2−1)ud/2. Thus with probability at least
1− eΩ(udp2) we build the cycle Cmd with a total length of added edges ≤ 4

√
dmdu.

D Proof of Lemma 14

We consider cases according to the size of k.

Case 1: k ≤ n
1
3 . Note that we have T (Un+1,p) < T (Un,p) +

√
d q.s., since we can q.s. find

an edge in the minimum tour though Un,p whose endpoints are both adjacent to (n+ 1). n 1
3

applications of this inequality now give (35).

Case 2: k > n
1
3 . In this case the restriction R of Un+k,p to {n + 1, . . . , k} is q.s. (with

respect to n) Hamiltonian [3]. In particular, by Theorem 6, we can q.s. find a tour T though
R of length ≤ 2βdpk

d−1
d . Finally, there are q.s., edges {x, y} and {w, z} on the minimum

tours through Un,p and R, respectively, such that x ∼ w and y ∼ z in Un+k,p, giving a tour
of length

T (Un+k,p) ≤ T (Un,p) + 2βp,dk
d−1
d + 4

√
d.

APPROX/RANDOM’17

The Minrank of Random Graphs∗

Alexander Golovnev1, Oded Regev2, and Omri Weinstein3

1 Courant Institute of Mathematical Sciences, New York University, New York,
NY, USA
golovnev@cims.nyu.edu

2 Courant Institute of Mathematical Sciences, New York University, New York,
NY, USA
regev@cims.nyu.edu

3 Columbia University, New York, NY, USA
omri@cs.columbia.edu

Abstract
The minrank of a directed graph G is the minimum rank of a matrixM that can be obtained from
the adjacency matrix of G by switching some ones to zeros (i.e., deleting edges) and then setting
all diagonal entries to one. This quantity is closely related to the fundamental information-
theoretic problems of (linear) index coding (Bar-Yossef et al., FOCS’06), network coding and
distributed storage, and to Valiant’s approach for proving superlinear circuit lower bounds (Vali-
ant, Boolean Function Complexity ’92).

We prove tight bounds on the minrank of directed Erdős-Rényi random graphs G(n, p) for all
regimes of p ∈ [0, 1]. In particular, for any constant p, we show that minrk(G) = Θ(n/ logn) with
high probability, where G is chosen from G(n, p). This bound gives a near quadratic improvement
over the previous best lower bound of Ω(

√
n) (Haviv and Langberg, ISIT’12), and partially settles

an open problem raised by Lubetzky and Stav (FOCS ’07). Our lower bound matches the well-
known upper bound obtained by the “clique covering” solution, and settles the linear index coding
problem for random graphs.

Finally, our result suggests a new avenue of attack, via derandomization, on Valiant’s ap-
proach for proving superlinear lower bounds for logarithmic-depth semilinear circuits.

1998 ACM Subject Classification E.4 Coding and Information Theory

Keywords and phrases circuit complexity, index coding, information theory

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.46

1 Introduction

In information theory, the index coding problem [5, 4] is the following: A sender wishes
to broadcast over a noiseless channel an n-symbol string x ∈ Fn to a group of n receivers
R1, . . . , Rn, each equipped with some side information, namely, a subvector xKi of x indexed
by a subset Ki ⊆ {1, . . . , n}. The index coding problem asks what is the minimum length m
of a broadcast message that allows each receiver Ri to retrieve the ith symbol xi, given his
side-information xKi

and the broadcasted message. The side information of the receivers can
be modeled by a directed graph Kn, in which Ri observes the symbols Ki := {xj : (i, j) ∈

∗ This work was partially supported by the Simons Collaboration on Algorithms and Geometry and by
the National Science Foundation (NSF) under Grant No. CCF-1320188. The work was done when Omri
Weinstein was supported by a Simons Junior fellowship. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily reflect the
views of the NSF.

© Alexander Golovnev, Oded Regev, and Omri Weinstein;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 46; pp. 46:1–46:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.46
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

46:2 The Minrank of Random Graphs

E(Kn)}. Kn is sometimes called the knowledge graph. A canonical example is where Kn is
the complete graph (with no self-loops) on the vertex set [n], i.e., each receiver observes all
but his own symbol. In this simple case, broadcasting the sum

∑n
i=1 xi (in F) allows each

receiver to retrieve his own symbol, hence m = 1.
This problem is motivated by applications to distributed storage [3], on-demand video

streaming (ISCOD, [6]) and wireless networks (see, e.g., [27]), where a typical scenario
is that clients miss information during transmissions of the network, and the network is
interested in minimizing the retransmission length by exploiting the side information clients
already possess. In theoretical computer science, index coding is related to some important
communication models and problems in which players have overlapping information, such
as the one-way communication complexity of the index function [17] and the more general
problem of network coding [1, 10]. Index coding can also be viewed as an interesting special
case of nondeterministic computation in the (notoriously difficult to understand) multiparty
Number-On-Forehead model, which in turn is a promising approach for proving data structure
and circuit lower bounds [20, 21, 16]. The minimum length of an index code for a given
graph has well-known relations to other important graph parameters. For instance, it is
bounded from below by the size of the maximum independent set, and it is bounded from
above by the clique-cover number (χ(Ḡ)) since for every clique in G, it suffices to broadcast
a single symbol (recall the example above). The aforementioned connections also led to
algorithmic connections (via convex relaxations) between the computational complexity of
graph coloring and that of computing the minimum index code length of a graph [9].

In the context of circuit lower bounds, Riis [22] observed that a certain index coding
problem is equivalent to the so-called shift conjecture of Valiant [25] (see Subsection 1.1
below). If true, this conjecture would resolve a major open problem of proving superlinear
size lower bound for logarithmic-depth circuits.

When the encoding function of the index code is linear in x (as in the example above),
the corresponding scheme is called a linear index code. In their seminal paper, Bar-Yossef et
al. [4] showed that the minimum length m of a linear index code is characterized precisely by
a parameter of the knowledge graph Kn called the minrank (minrkF(Kn)), first introduced
by Haemers [12] in the context of Shannon capacity of graphs.1 Informally, minrkF(Kn) is
the minimum rank (over F) of an n× n matrix M that “represents” Kn in the sense that
M contains a zero in all entries corresponding to non-edges, and non-zero entries on the
diagonal. Entries corresponding to edges are arbitrary. (Over F2 this is equivalent to being
the adjacency matrix of a subgraph of Kn, with diagonal entries set to one.) Note that
without the “diagonal constraint”, the above minimum would trivially be 0, and indeed this
constraint is what makes the problem interesting and hard to analyze. While linear index
codes are in fact optimal for a large class of knowledge graphs (including directed acyclic
graphs, perfect graphs, odd “holes” and odd “anti-holes” [4]), there are examples where
non-linear codes outperform their linear counterparts [18]. In the same paper, Lubetzky and
Stav [18] posed the following question about typical knowledge graphs, namely,

What is the minimum length index code for a random knowledge graph Kn = Gn,p?

Here, Gn,p denotes a random Erdős-Rényi directed graph, i.e., a graph on n vertices in which
each arc is taken independently with probability p. In this paper, we partially answer this
open problem by determining the optimal length of linear index codes for such graphs. In

1 To be precise, this holds only for graphs without self-loops. We will ignore this minor issue in this paper
as it will not affect any of our results.

A. Golovnev, O. Regev, and O. Weinstein 46:3

other words, we prove a tight lower bound on the minrank of Gn,p for all values of p ∈ [0, 1].
In particular,

I Theorem 1 (Main theorem, informal). For any constant 0 < p < 1 and any field F of
cardinality |F| < nO(1), it holds with high probability that

minrkF(Gn,p) = Θ
(

n

logn

)
.

The formal quantitative statement of our result can be found in Corollary 11 below.
We note that our general result (see Theorem 10) extends beyond the constant regime to
subconstant values of p, and this feature of our lower bound is crucial for potential applications
of our result to circuit lower bounds (we elaborate on this in the next subsection). Theorem 1
gives a near quadratic improvement over the previously best lower bound of Ω(

√
n) [18, 14],

and settles the linear index coding problem for random knowledge graphs, as an Op(n/ logn)
linear index coding scheme is achievable via the clique-covering solution (see Section 1.2).

In the following subsection, we propose a concrete (yet admittedly still quite challenging)
approach for proving superlinear circuit lower bounds based on a potential “derandomization”
of Theorem 1.

1.1 Connections to circuit lower bounds for semilinear circuits

1.1.1 General log-depth circuits

In his seminal line of work, Valiant [23, 24, 25] proposed a path for proving superlinear
lower bounds on the size of circuits with logarithmic depth, one of the main open questions
in circuit complexity. Informally speaking, Valiant’s “depth reduction” method [23, 26]
allows one to reduce any circuit of size O(n) and depth O(logn) (with n inputs and n

outputs), to a new circuit with the same inputs and outputs, where now each output gate
is an (arbitrary) Boolean function of (i) at most nε inputs (for any constant ε) which are
“hard-wired” to this output gate, and (ii) an additional fixed set of m = Oε(n/ log logn)
“common bits” b1(x), . . . , bm(x) which in general may be arbitrary Boolean functions of the
input x = x1, . . . , xn. Therefore, if one could exhibit a function that cannot be computed in
this model using O(n/ log logn) common bits, this would imply a superlinear circuit lower
bound for logarithmic depth circuits.

Valiant [25] proposed a concrete candidate hard function for this new model, namely the
function whose input is an n-bit string x and a number i ∈ {0, . . . , n− 1} and whose output
is the ith cyclic shift of x. Valiant conjectured that no “pre-wired” circuit as above can
realize all n cyclic shifts using m = O(n/ log logn) common bits (in fact, Valiant postulated
that m = Ω(n) common bits are required, and this still seems plausible). This conjecture
is sometimes referred to as Valiant’s shift conjecture. As noted earlier in the introduction,
Riis [22] observed that a certain index coding problem is equivalent to this conjecture. Let
G = (V,A) be a directed graph, and i ∈ {0, . . . , n − 1}. We denote by Gi the graph with
vertex set V and arc set Ai = {(u, v + i(mod n)) : (u, v) ∈ A}. Riis [22] showed that the
following conjecture is equivalent to Valiant’s shift conjecture:

I Conjecture 2. There exists ε > 0 such that for all sufficiently large n and every graph G
on n vertices with max-out-degree at most nε, there exists a shift i such that the minimum
length of an index coding scheme for Gi (over F2) is ω(n/ log logn).

APPROX/RANDOM’17

46:4 The Minrank of Random Graphs

1.1.2 Semilinear log-depth circuits

Let us consider a function f(x, p) whose input is partitioned into two parts, x ∈ {0, 1}k and
p ∈ {0, 1}t. We say that the function f is semilinear if for every fixed value of p = p0, the
function f(x, p0) is a linear function (over F2) of x. The class of semilinear functions is quite
rich, and includes for instance bilinear functions in x and p (such as matrix multiplication)
and permutations πp(x) of x that may depend arbitrarily on p. A circuit G is called semilinear
if for every fixed value of p = p0, one can assign linear functions to the gates of G, so that G
computes f(x, p0). So it is only the circuit’s topology that is fixed, and the linear functions
computed by the gates may depend arbitrarily on p.

It is easy to see that a semilinear function with a one-bit output can always be computed
by a linear-size log-depth semilinear circuit (namely, the full binary tree). However, if we
consider semilinear functions with O(n) output bits, then the semilinear circuit complexity
of a random function is Ω(n2/ logn) with high probability. It is an open problem to prove a
superlinear lower bound against log-depth semilinear circuits [21]. This would follow from
the semilinear variant of Valiant’s shift conjecture, which is equivalent to the following slight
modification of Conjecture 2 [21, 22].

I Conjecture 3. There exists ε > 0 such that for all sufficiently large n and every graph G
on n vertices with max-out-degree at most nε, there exists a shift i such that the minimum
length of a linear index coding scheme for Gi (over F2) is ω(n/ log logn). Equivalently,

∀ G of out-degrees at most nε ∃ i ∈ [n] minrk2(Gi) = ω(n/ log logn) .

Theorem 1 (and the more precise concentration bound we prove in Theorem 10) asserts
that with high probability, a graph chosen from Gn,p (with p = nε−1 for the expected degree of
each vertex to be nε) has minrank Ω(n). Conjecture 3 would follow from a “derandomization”
of Theorem 1 in which we replace the distribution Gn,p with a random shift of an arbitrary
given graph of the right degree. In fact, for the purpose of circuit lower bounds, one could
replace cyclic shifts with any (efficiently computable) set of at most exp(O(n)) permutations.
(Since the permutation itself is part of the input, its description size must be linear in n.)

1.1.3 Semilinear series-parallel circuits

Finally, we mention one last circuit class for which the above “derandomization” approach
might be easier. Here we replace the depth restriction by another restriction on the topology
of the circuit. Namely, a circuit G = (V,A) is called Valiant series-parallel (VSP), if there is
a labeling of its vertices l : V → R, such that for every arc (u, v) ∈ A, l(u) < l(v), but there
is no pair of arcs (u, v), (u′, v′) ∈ A, such that l(u) < l(u′) < l(v) < l(v′). Most of the known
circuit constructions (i.e., circuit upper bounds) are VSP circuits. Thus, it is also a big open
question in circuit complexity to prove a superlinear lower bound on the size of semilinear
VSP circuits (of arbitrary depth).

Valiant [23], Calabro [8], and Riis [22] show that in order to prove a superlinear lower
bound for semilinear VSP circuits, it suffices to show that for a sufficiently large constant d,
for every graph G of max-out-degree at most d, the minrank of one of its shifts is at least
n/100. We note that Theorem 1 for this regime of p = d/n gives a lower bound of n/20.
Thus, derandomization of the theorem in this regime would imply a superlinear lower bound.
Note that in the case of p = O(n−1), the entropy of a random graph is only O(n logn) bits,
hence, information-theoretically it seems easier to derandomize than the case of p = nε−1.

A. Golovnev, O. Regev, and O. Weinstein 46:5

1.2 Proof overview of Theorem 1
In [18], Lubetzky and Stav showed that for any field F and a directed graph G,

minrkF(G) ·minrkF(Ḡ) ≥ n .

This inequality gives a lower bound of Ω(
√
n) on the expected value of the minrank of

Gn,1/2. (Indeed, the random variables Gn,1/2 and Ḡn,1/2 have identical distributions). Since
minrkF(Gn,p) is monotonically non-increasing in p, the same bound holds for any p ≤ 1/2.
Haviv and Langberg [14] improved this result by proving a lower bound of Ω(

√
n) for all

constant p (and not just p ≤ 1/2), and also by showing that the bound holds with high
probability.

We now outline the main ideas of our proof. For simplicity we assume that F = F2 and
p = 1/2. To prove that minrk2(Gn,p) ≥ k, we need to show that with high probability, Gn,p
has no representing matrix (in the sense of Definition 4) whose rank is less than k.

As a first attempt, we can show that any fixed matrix M with 1s on the diagonal of rank
less than k has very low probability of representing a random graph in Gn,p, and then apply
a union bound over all such matrices M . Notice that this probability is simply 2−s+n, where
s is the sparsity of M (i.e., the number of non-zero entries) and the n is to account for the
diagonal entries. Moreover, we observe that the sparsity s of any rank-k matrix with 1s on
its main diagonal must be2 at least ≈ n2/k. Finally, since the number of n× n matrices of
rank k is ≈ 22nk (as a rank-k matrix can be written as a product of n× k by k× n matrices,
which requires 2nk bits to specify), by a union bound, the probability that Gn,p contains a
subgraph of rank < k is bounded from above by (roughly) 22nk · (1/2)n2/k, which is � 1 for
k = O(

√
n). This recovers the previous Ω(

√
n) lower bound of [14] (for all constant p, albeit

with a much weaker concentration bound).
To see why this argument is “stuck” at

√
n, we observe that we are not overcounting and

indeed, there are 2n3/2 matrices of rank k ≈ n1/2 and sparsity s ≈ n3/2. For instance, we can
take the rank n1/2 matrix that consists of n1/2 diagonal n1/2 × n1/2 blocks of 1s (a disjoint
union of n1/2 equal-sized cliques), and replace the first n1/2 columns with arbitrary values.
Each such matrix has probability 2−n3/2 of representing Gn,p (because of its sparsity) and
there are 2n3/2 of them, so the union bound breaks for k = Ω(

√
n).

In order to go beyond
√
n, we need two main ideas. To illustrate the first idea, notice

that in the above example, even though individually each matrix has probability 2−n3/2

of representing Gn,p, these “bad events” are highly correlated. In particular, each of these
events implies that Gn,p must contain n1/2 − 1 disjoint cliques, an event that happens with
roughly the same probability 2−n3/2 . Therefore, we see that the probability that the union
of these bad events happens is only 2−n3/2 , greatly improving on the naive union bound
argument. (We remark that this idea of “bunching together related events” is reminiscent
of the chaining technique as used, e.g., in analyzing Gaussian processes.) More generally,
the first idea (and also centerpiece) of our proof is Lemma 9, which shows that every matrix
must contain a “nice” submatrix (in a sense to be defined below). The second and final idea,
described in the next paragraph, will be to bound the number of “nice” submatrices, from
which the proof would follow by a union bound over all such submatrices.

2 To see why, notice that any maximal linearly independent set of columns must “cover” all coordinates,
i.e., there must not be any coordinate that is zero in all vectors, as otherwise we could take the column
vector corresponding to that coordinate and it would be linearly independent of our set (due to the
nonzero diagonal) in contradiction to maximality. Assuming all columns have roughly the same number
of 1s, we obtain that each column has at least n/k 1s, leading to the claimed bound. See Lemma 8 for
the full proof.

APPROX/RANDOM’17

46:6 The Minrank of Random Graphs

Before defining what we mean by “nice”, we mention the following elementary yet crucial
fact in our proof: Every rank k matrix is uniquely determined by specifying some k linearly
independent rows, and some k linearly independent columns (i.e., a row basis and a column
basis) including the indices of these rows and columns (see Lemma 6). This lemma implies
that we can encode a matrix using only ≈ sbasis · logn bits, where sbasis is the minimal
sparsity of a pair of row and column bases that are guaranteed to exist. This in turn implies
that there are only ≈ 2sbasis logn such matrices. Now, since the average number of 1s in a row
or in a column of a matrix of sparsity s is s/n, one might hope that such a matrix contains
a pair of row and column bases of sparsity k · (s/n), and this is precisely our definition of
a “nice” matrix. (Obviously, not all matrices are nice, and as the previous example shows,
there are lots of “unbalanced” matrices where the nonzero entries are all concentrated on a
small number of columns, hence they have no sparse column basis even though the average
sparsity of a column is very low; this is exactly why we need to go to submatrices.)

To complete this overview, notice that using the bound on the number of “nice” matrices,
the union bound yields

2ks log(n)/n · (1/2)s,

so one could set the rank parameter k to be as large as Θ(n/ logn) and the above expression
would still be � 1. A similar bound holds for nice submatrices, completing the proof.

2 Preliminaries

For an integer n, we denote the set {1, . . . , n} by [n]. For an integer n and 0 ≤ p ≤ 1, we
denote by Gn,p the probability space over the directed graphs on n vertices where each arc is
taken independently with probability p.

For a directed graph G, we denote by χ(G) the chromatic number of the undirected
graph that has the same set of vertices as G, and an edge in place of every arc of G. By Ḡ
we mean a directed graph on the same set of vertices as G that contains an arc if and only if
G does not contain it.3

Let F be a finite field. For a vector v ∈ Fn, we denote by vj the jth entry of v, and
by v≤j ∈ Fj the vector v truncated to its first j coordinates. For a matrix M ∈ Fn×n and
indices i, j ∈ [n], let Mi,j be the entry in the ith row and jth column of M,Coli(M) be the
ith column of M , Rowi(M) be the ith row of M , and rk(M) be the rank of M over F.

By a principal submatrix we mean a submatrix whose set of row indices is the same as
the set of column indices. By the leading principal submatrix of size k we mean a principal
submatrix that contains the first k columns and rows.

For a matrix M ∈ Fn×n, the sparsity s(M) is the number of non-zero entries in M . We
say that a matrixM ∈ Fn×n of rank k contains an s-sparse column (row) basis, ifM contains
a column (row) basis (i.e., a set of k linearly independent columns (rows)) with a total of at
most s non-zero entries.

I Definition 4 (Minrank [4, 18]). 4 Let G = (V,A) be a graph on n = |V | vertices with the
set of directed arcs A. A matrix M ∈ Fn×n represents G if Mi,i 6= 0 for every i ∈ [n], and

3 Throughout the paper we assume that graphs under consideration do not contain self-loops. In particular,
neither G nor Ḡ has self-loops.

4 In this paper we consider the directed version of minrank. Since the minrank of a directed graph does
not exceed the minrank of its undirected counterpart, a lower bound for a directed random graph
implies the same lower bound for an undirected random graph. The bound is tight for both directed
and undirected random graphs (see Theorem 12).

A. Golovnev, O. Regev, and O. Weinstein 46:7

Mi,j = 0 whenever (i, j) /∈ A and i 6= j. The minrank of G over F is

minrkF(G) = min
M represents G

rk(M) .

We say that two graphs differ at only one vertex if they differ only in arcs leaving one
vertex. Following [13, 14], to amplify the probability in Theorem 10, we shall use the following
form of Azuma’s inequality for the vertex exposure martingale.

I Lemma 5 (Corollary 7.2.2 and Theorem 7.2.3 in [2]). Let f(·) be a function that maps
directed graphs to R. If f satisfies the inequality |f(H)− f(H ′)| ≤ 1 whenever the graphs H
and H ′ differ at only one vertex, then

Pr[|f(Gn,p)− E[f(Gn,p)]| > λ
√
n− 1] < 2e−λ

2/2 .

3 The Minrank of a Random Graph

The following elementary linear-algebraic lemma shows that a matrix M ∈ Fn×n of rank k is
fully specified by k linearly independent rows, k linearly independent columns, and their 2k
indices. In what follows, we denote byMn,k the set of matrices from Fn×n of rank k.

I Lemma 6 (Row and column bases encode the entire matrix). The mapping φ : Mn,k →
(F1×n)k × (Fn×1)k × [n]2k defined as

φ(M) = (R,C, i1, . . . , ik, j1, . . . , jk) ,

is a one-to-one mapping, where R = (Rowi1(M), . . . ,Rowik (M)) and C = (Colj1(M), . . . ,
Coljk

(M)) are, respectively, a row basis and a column basis of M ∈Mn,k.

Proof. We first claim that the intersection of R and C has full rank, i.e., that the submatrix
M ′ ∈ Fk×k obtained by taking rows i1, . . . , ik and columns j1, . . . , jk has rank k. This is
a standard fact, see, e.g., [15, p20, Section 0.7.6]. We include a proof for completeness.
Assume for convenience that (i1, . . . , ik) = (1, . . . , k) and (j1, . . . , jk) = (1, . . . , k). Next,
assume towards contradiction that rk(M ′) = rk({Col1(M ′), . . . ,Colk(M ′)}) = k′ < k. Since
C is a column basis of M , every column Coli(M) is a linear combination of vectors from
C, and in particular, every Coli(M ′) is a linear combination of {Col1(M ′), . . . ,Colk(M ′)}.
Therefore, the k×n submatrix M ′′ := (Col≤k1 (M), . . . ,Col≤kn (M)) has rank k′. On the other
hand, the k rows of M ′′ : Row1(M), . . . ,Rowk(M) were chosen to be linearly independent
by construction. Thus, rk(M ′′) = k > k′, which leads to a contradiction.

In order to show that φ is one-to-one, we show that R and C (together with their indices)
uniquely determine the remaining entries of M . We again assume for convenience that
(i1, . . . , ik) = (1, . . . , k) and (j1, . . . , jk) = (1, . . . , k). Consider any column vector Coli(M),
i ∈ [n] \ [k]. By definition, Coli(M) =

∑k
t=1 αi,t · Colt(M) for some coefficient vector

αi := (αi,1, . . . , αi,k) ∈ Fk×1. Thus, in order to completely specify all the entries of Coli(M),
it suffices to determine the coefficient vector αi. But M ′ has full rank, hence the equation

M ′αTi = Col≤ki (M)

has a unique solution. Therefore, the coefficient vector αi is fully determined by M ′ and
Col≤ki (M). Thus, the matrix M can be uniquely recovered from R,C and the indices
{i1, . . . , ik}, {j1, . . . , jk}. J

APPROX/RANDOM’17

46:8 The Minrank of Random Graphs

The following corollary gives us an upper bound on the number of low-rank matrices
that contain sparse column and row bases. In what follows, we denote by Mn,k,s the set
of matrices over Fn×n of rank k that contain an s-sparse row basis and an s-sparse column
basis.

I Corollary 7 (Efficient encoding of sparse-base matrices).

|Mn,k,s| ≤ (n · |F|)6s .

Proof. Throughout the proof, we assume without loss of generality that s ≥ k, as otherwise
|Mn,k,s| = 0 hence the inequality trivially holds. The function φ from Lemma 6 maps
matrices from Mn,k,s to (R,C, i1, . . . , ik, j1, . . . , jk), where R and C are s-sparse bases.
Therefore, the total number of matrices inMn,k,s is bounded from above by((

kn

s

)
· |F|s

)2
· n2k ≤

(
(n2)s · |F|s

)2 · n2k ≤ (n · |F|)6s ,

where the last inequality follows from k ≤ s. J

Now we show that a matrix of low rank with nonzero entries on the main diagonal must
contain many nonzero entries. To get some intuition on this, notice that a rank 1 matrix
with nonzero entries on the diagonal must be nonzero everywhere. Also notice that the
assumption on the diagonal is crucial – low rank matrices in general can be very sparse.

I Lemma 8 (Sparsity vs. Rank for matrices with non-zero diagonal). For any matrix M ∈ Fn×n
with non-zero entries on the main diagonal (i.e., Mi,i 6= 0 for all i ∈ [n]), it holds that

s(M) ≥ n2

4rk(M) .

Proof. Let s denote s(M). The average number of nonzero entries in a column of M is s/n.
Therefore, Markov’s inequality implies that there are at least n/2 columns in M each of
which has sparsity at most 2s/n. Assume without loss of generality that these are the first
n/2 columns of M . Now pick a maximal set of linearly independent columns among these
columns. We claim that the cardinality of this set is at least n2/(4s). Indeed, in any set of
less than n2/(4s) columns, the number of coordinates that are nonzero in at least one of
those columns is less than

n2

4s ·
2s
n

= n

2

and therefore there exists a coordinate i ∈ {1, . . . , n/2} that is zero in all those columns. As
a result, the ith column, which by assumption has a nonzero ith coordinate, must be linearly
independent of all those columns, in contradiction to the maximality of the set. We therefore
get that

rk(M) ≥ n2/(4s) ,

as desired. J

The last lemma we need is also the least trivial. In order to use Corollary 7, we would
like to show that any n × n matrix of rank k has sparse row and column bases, where by
sparse we mean that their sparsity is roughly k/n times that of the entire matrix. If the
number of nonzero entries in each row and column was roughly the same, then this would be

A. Golovnev, O. Regev, and O. Weinstein 46:9

trivial, as we can take any maximal set of linearly independent columns or rows. However,
in general, this might be impossible to achieve. E.g., consider the n× n matrix whose first
k columns are chosen uniformly and the remaining n − k columns are all zero. Then any
column basis would have to contain all first k columns (since they are linearly independent
with high probability) and hence its sparsity is equal to that of the entire matrix. Instead,
what the lemma shows is that one can always choose a principal submatrix with the desired
property, i.e., that it contains sparse row and column bases, while at the same time having
relative rank that is at most that of the original matrix.

I Lemma 9 (Every matrix contains a principal submatrix of low relative-rank and sparse bases).
Let M ∈Mn,k be a matrix. There exists a principal submatrix M ′ ∈Mn′,k′ of M , such that
k′/n′ ≤ k/n, and M ′ contains a column basis and a row basis of sparsity at most

s(M ′) · 2k′

n′
.

Note that if M contains a zero entry on the main diagonal, the lemma becomes trivial.
Indeed, we can take M ′ to be a 1× 1 principal submatrix formed by this zero entry. Thus,
the lemma is only interesting for matrices M without zero elements on the main diagonal
(i.e., when every principal submatrix has rank greater than 0).

Proof. We prove the statement of the lemma by induction on n. The base case n = 1 holds
trivially.

Now let n > 1, and assume that the statement of the lemma is proven for every m×m
matrix for 1 ≤ m < n. Let s(i) be the number of nonzero entries in the ith column plus
the number of non-zero entries in the ith row (note that a nonzero entry on the diagonal
is counted twice). Let also smax = maxi s(i). By applying the same permutation to the
columns and rows of M we can assume that s(1) ≤ s(2) ≤ · · · ≤ s(n) holds.

If for some 1 ≤ n′ < n, the leading principal submatrix M ′ of dimensions n′ × n′ has
rank at most k′ ≤ n′k/n, then we use the induction hypothesis for M ′. This gives us
a principal submatrix M ′′ of dimensions n′′ × n′′ and rank k′′, such that M ′′ contains a
column basis and a row basis of sparsity at most s(M ′′) · 2k′′

n′′ . Also, by induction hypothesis
k′′/n′′ ≤ k′/n′ ≤ k/n, which proves the lemma statement in this case.

Now we assume that for all n′ < n, the rank of the leading principal submatrix of
dimension n′ × n′ is greater than n′k/n. We prove that the lemma statement holds for
M ′ = M for a column basis, and an analogous proof gives the same result for a row basis.

For every 0 ≤ i ≤ smax, let ai = |{j : s(j) = i}|. Note that

smax∑
i=0

ai = n . (1)

Let us select a column basis of cardinality k by greedily adding linearly independent vectors
to the basis in non-decreasing order of s(i). Let ki be the number of selected vectors j with
s(j) = i. Then

smax∑
i=0

ki = k. (2)

Next, for any 0 ≤ t < smax, consider the leading principal submatrix given by indices i with
s(i) ≤ t. The rank of this matrix is at most k′ =

∑t
i=0 ki, and its dimensions are n′ × n′,

APPROX/RANDOM’17

46:10 The Minrank of Random Graphs

where n′ =
∑t
i=0 ai < n. Thus by our assumption k′/n′ ≥ k/n, or equivalently,

t∑
i=0

ki ≥
k

n
·

t∑
i=0

ai . (3)

From (1) and (2),
smax∑
i=0

ki = k

n
·
smax∑
i=0

ai . (4)

Now, (3) and (4) imply that for all 0 ≤ t ≤ smax:
smax∑
i=t

ki ≤
k

n
·
smax∑
i=t

ai . (5)

To finish the proof, notice that the sparsity of the constructed basis of M is at most
smax∑
i=1

i · ki =
smax∑
t=1

smax∑
i=t

ki
(5)
≤ k

n
·
smax∑
t=1

smax∑
i=t

ai = k

n
·
smax∑
i=1

i · ai = s(M) · 2k
n
. J

Now we are ready to prove our main result – a lower bound on the minrank of a random
graph.

I Theorem 10.

Pr
[

minrkF(Gn,p) ≥ Ω
(
n log(1/p)

log (n|F|/p)

)]
≥ 1− e

−Ω
(

n log2 (1/p)
log2 (n|F|/p)

)
.

Proof. Let us bound from above probability that a random graph Gn,p has minrank at most

k := n log(1/p)
C log (n|F|/p) ,

for some constant C to be chosen below.
Recall that by Lemma 9, every matrix of rank at most k contains a principal submatrix

M ′ ∈Mn′,k′ of sparsity s′ = s(M ′) with column and row bases of sparsity at most

s′ · 2k
n
,

where k′/n′ ≤ k/n. By Corollary 7, there are at most (n′ · |F|)6(2s′k/n) such matrices M ′,
and (for any s′) there are

(
n
n′

)
ways to choose a principal submatrix of size n′ in a matrix of

size n× n. Furthermore, recall that Lemma 8 asserts that for every n′, k′,

s′ ≥ n′2

4k′ . (6)

Finally, since M ′ contains at least s′ − n′ off-diagonal non-zero entries, Gn,p contains it with
probability at most ps′−n′ . We therefore have

Pr [minrkF(Gn,p) ≤ k]

≤
∑

k′,n′,s′

Pr
[
Gn,p contains M ′ ∈Mn′,k′ , s(M ′) = s′, s(bases of M ′) ≤ s′ · 2k

n

]

≤
∑

k′,n′,s′

(
n

n′

)
· ps

′−n′
· (n′ · |F|)12s′k/n

≤
∑

k′,n′,s′

2n
′ logn−s′ log(1/p)+n′ log(1/p)+(12s′k/n) log (n′|F|) , (7)

A. Golovnev, O. Regev, and O. Weinstein 46:11

where all the summations are taken over n′, k′, s.t. k′/n′ ≤ k/n and s′ ≥ n′2

4k′ , and the first
inequality is again by Lemma 9. We now argue that for sufficiently large constant C, all
positive terms in the exponent of (7) are dominated by the magnitude of the negative term
(s′ log(1/p)). Indeed:

n′ logn+ n′ log(1/p) + (12s′k/n) log (n′|F|) = n′ log (n/p) + (12s′k/n) log (n′|F|)
≤ (4s′k′/n′) log (n/p) + (12s′k/n) log (n|F|) ≤ (16s′k/n) log (n|F|/p)

= (16s′/C) log (1/p) ,

where the first inequality follows from (6), and the second one follows from k′/n′ ≤ k/n.
Thus, for C > 16,

Pr
[
minrkF(Gn,p) ≤

n log(1/p)
C log (n|F|/p)

]
≤ n4 · 2−Ω(s′ log(1/p)) ≤ 2−Ω(log(n)),

where the last inequality follows from:

s′ log(1/p) ≥ n′2 log(1/p)
4k′ ≥ n log(1/p)

4k = n log(1/p)C log (n|F|/p)
4n log(1/p) ≥ C logn

4 .

In particular, E [minrkF(Gn,p)] ≥ n log(1/p)
2C log (n|F|/p) . Furthermore, note that changing a single row

(or column) of a matrix can change its minrank by at most 1, hence the minrank of two
graphs that differ in one vertex differs by at most 1. We may thus apply Lemma 5 with
λ = Θ

(√
n log(1/p)

log (n|F|/p)

)
to obtain

Pr
[

minrkF(Gn,p) ≥ Ω
(
n log(1/p)

log (n|F|/p)

)]
≥ 1− e

−Ω
(

n log2 (1/p)
log2 (n|F|/p)

)
.

as desired. J

I Corollary 11. For a constant 0 < p < 1 and a field F of size |F| < nO(1),

Pr [minrkF(Gn,p) ≥ Ω(n/ logn)] ≥ 1− e−Ω(n/ log2 n) .

3.1 Tightness of Theorem 10
In this section, we show that Theorem 10 provides a tight bound for all values of p bounded
away from 1 (i.e., p ≤ 1− Ω(1)). (See also the end of the section for the regime of p close to
1.)

I Theorem 12. For any p bounded away from 1,

Pr
[

minrkF(Gn,p) = O

(
n log(1/p)

logn+ log(1/p)

)]
≥ 1− e−Ω(n) .

Proof. We can assume that p > n−1/8 as otherwise the statement is trivial.
As we saw in the introduction, in the case of a clique (a graph with an arc between every

pair of distinct vertices) it is enough to broadcast only one bit. This simple observation leads
to the “clique-covering” upper bound: If a directed graph G can be covered by m cliques,
then minrkF(G) ≤ m [11, 4, 14]. Note that the minimal number of cliques needed to cover G
is exactly χ(Ḡ). Thus, we have the following upper bound: For any field F and any directed
graph G,

minrkF(G) ≤ χ(Ḡ) . (8)

APPROX/RANDOM’17

46:12 The Minrank of Random Graphs

Since the complement of Gn,p is Gn,1−p, it follows from (8) that an upper bound on χ(Gn,1−p)
implies an upper bound on minrkF(Gn,p).

Let G−n,p denote a random Erdős-Rényi undirected graph on n vertices, where each edge
is drawn independently with probability p. For constant p, the classical result of Bollobás [7]
asserts that the chromatic number of an undirected random graph satisfies

Pr
[
χ(G−n,1−p) ≤

n log (1/p)
2 logn (1 + o(1))

]
> 1− e−Ω(n) . (9)

In fact, Pudlák, Rödl, and Sgall [21] showed that (9) holds for any p > n−1/4.
Since we define the chromatic number of a directed graph to be the chromatic number

of its undirected counterpart, χ(Gn,1−p) = χ(G−n,1−p2). The bound (9) depends on p only
logarithmically (log (1/p)), thus, asymptotically the same bounds hold for the chromatic
number of a random directed graph. J

The lower bound of Theorem 10 is also almost tight for the other extreme regime of
p = 1− ε, where ε = o(1). Łuczak [19] proved that for p = 1− Ω(1/n),

Pr
[
χ(G−n,1−p) ≤

n(1− p)
2 logn(1− p) (1 + o(1))

]
> 1− (n(1− p))−Ω(1)

. (10)

When p = 1 − ε, the upper bound (10) matches the lower bound of Theorem 10 for
ε ≥ n−1+Ω(1). For ε = O(n−1), (10) gives an asymptotically tight upper bound of O(1).
Thus, we only have a gap between the lower bound of Theorem 10 and known upper bounds
when p = 1− ε and ω(1) ≤ nε ≤ no(1).

Acknowledgements. We would like to thank Ishay Haviv for his valuable comments.

References
1 Rudolf Ahlswede, Ning Cai, Shuo-Yen Robert Li, and Raymond W. Yeung. Network in-

formation flow. IEEE Trans. Inf. Theory, 46(4):1204–1216, 2000.
2 Noga Alon and Joel H. Spencer. The Probabilistic Method. Wiley Series in Discrete Math-

ematics and Optimization. Wiley, 2016.
3 Fatemeh Arbabjolfaei and Young-Han Kim. Three stories on a two-sided coin: Index coding,

locally recoverable distributed storage, and guessing games on graphs. In Allerton Conf.
Control, Communication and Computing 2015, pages 843–850. IEEE, 2015.

4 Ziv Bar-Yossef, Yitzhak Birk, T. S. Jayram, and Tomer Kol. Index coding with side inform-
ation. In FOCS 2006, pages 197–206. IEEE, 2006.

5 Yitzhak Birk and Tomer Kol. Informed-source coding-on-demand (ISCOD) over broadcast
channels. In INFOCOM 1998, pages 1257–1264, 1998.

6 Yitzhak Birk and Tomer Kol. Coding on demand by an informed source (ISCOD) for effi-
cient broadcast of different supplemental data to caching clients. IEEE Trans. Information
Theory, 52(6):2825–2830, 2006. doi:10.1109/TIT.2006.874540.

7 Béla Bollobás. The chromatic number of random graphs. Combinatorica, 8(1):49–55, 1988.
8 Chris Calabro. A lower bound on the size of series-parallel graphs dense in long paths, 2008.

ECCC, TR08-110.
9 Eden Chlamtac and Ishay Haviv. Linear index coding via semidefinite program-

ming. Combinatorics, Probability & Computing, 23(2):223–247, 2014. doi:10.1017/
S0963548313000564.

http://dx.doi.org/10.1109/TIT.2006.874540
http://dx.doi.org/10.1017/S0963548313000564
http://dx.doi.org/10.1017/S0963548313000564

A. Golovnev, O. Regev, and O. Weinstein 46:13

10 Michelle Effros, Salim Y. El Rouayheb, and Michael Langberg. An equivalence between
network coding and index coding. IEEE Trans. Information Theory, 61(5):2478–2487, 2015.
doi:10.1109/TIT.2015.2414926.

11 Willem Haemers. An upper bound for the Shannon capacity of a graph. In Colloq. Math.
Soc. János Bolyai, volume 25, pages 267–272, 1978.

12 Willem Haemers. On some problems of Lovász concerning the Shannon capacity of a graph.
IEEE Trans. Inf. Theory, 25(2):231–232, 1979.

13 H. Tracy Hall, Leslie Hogben, Ryan Martin, and Bryan Shader. Expected values of para-
meters associated with the minimum rank of a graph. Linear Algebra and its Applications,
433(1):101–117, 2010.

14 Ishay Haviv and Michael Langberg. On linear index coding for random graphs. In ISIT
2012, pages 2231–2235. IEEE, 2012.

15 Roger A. Horn and Charles R. Johnson. Matrix analysis. Cambridge University Press,
Cambridge, second edition, 2013.

16 Stasys Jukna and Georg Schnitger. Min-rank conjecture for log-depth circuits. J. Comput.
Syst. Sci., 77(6):1023–1038, 2011. doi:10.1016/j.jcss.2009.09.003.

17 Ilan Kremer, Noam Nisan, and Dana Ron. On randomized one-round communication
complexity. In STOC 1995, pages 596–605, New York, NY, USA, 1995. ACM. doi:10.
1145/225058.225277.

18 Eyal Lubetzky and Uri Stav. Non-linear index coding outperforming the linear optimum.
In FOCS 2007, pages 161–168. IEEE, 2007.

19 Tomasz Łuczak. The chromatic number of random graphs. Combinatorica, 11(1):45–54,
1991.

20 Mihai Patrascu. Towards polynomial lower bounds for dynamic problems. In STOC 2010,
pages 603–610, 2010. doi:10.1145/1806689.1806772.

21 Pavel Pudlák, Vojtech Rödl, and Jirí Sgall. Boolean circuits, tensor ranks, and communic-
ation complexity. SIAM J. Comput., 26(3):605–633, 1997.

22 Søren Riis. Information flows, graphs and their guessing numbers. Electr. J. Comb., 14(1),
2007. URL: http://www.combinatorics.org/Volume_14/Abstracts/v14i1r44.html.

23 Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In MFCS 1977, pages
162–176, 1977.

24 Leslie G. Valiant. Exponential lower bounds for restricted monotone circuits. In STOC
1983, pages 110–117. ACM, 1983.

25 Leslie G. Valiant. Why is Boolean complexity theory difficult. Boolean Function Complexity,
169:84–94, 1992.

26 Emanuele Viola. On the power of small-depth computation. Foundations and Trends in
Theoretical Computer Science, 5(1):1–72, 2009.

27 Raymond W. Yeung and Zhen Zhang. Distributed source coding for satellite communica-
tions. IEEE Trans. Inf. Theory, 45(4):1111–1120, 1999. doi:10.1109/18.761254.

APPROX/RANDOM’17

http://dx.doi.org/10.1109/TIT.2015.2414926
http://dx.doi.org/10.1016/j.jcss.2009.09.003
http://dx.doi.org/10.1145/225058.225277
http://dx.doi.org/10.1145/225058.225277
http://dx.doi.org/10.1145/1806689.1806772
http://www.combinatorics.org/Volume_14/Abstracts/v14i1r44.html
http://dx.doi.org/10.1109/18.761254

Efficiently Decodable Codes for the Binary
Deletion Channel∗

Venkatesan Guruswami1 and Ray Li2

1 Carnegie Mellon University, Pittsburgh, PA
venkatg@cs.cmu.edu

2 Carnegie Mellon University, Pittsburgh, PA
ryli@andrew.cmu.edu

Abstract
In the random deletion channel, each bit is deleted independently with probability p. For the
random deletion channel, the existence of codes of rate (1− p)/9, and thus bounded away from 0
for any p < 1, has been known. We give an explicit construction with polynomial time encoding
and deletion correction algorithms with rate c0(1− p) for an absolute constant c0 > 0.

1998 ACM Subject Classification E.4 Coding and Information Theory

Keywords and phrases Coding theory, Combinatorics, Synchronization errors, Channel capacity

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.47

1 Introduction

We consider the problem of designing error-correcting codes for reliable and efficient com-
munication on the binary deletion channel. The binary deletion channel (BDC) deletes
each transmitted bit independently with probability p, for some p ∈ (0, 1) which we call the
deletion probability. Crucially, the location of the deleted bits are not known at the decoder,
who receives a subsequence of the original transmitted sequence. The loss of synchronization
in symbol locations makes the noise model of deletions challenging to cope with. As one
indication of this, we still do not know the channel capacity of the binary deletion channel.
Quoting from the first page of Mitzenmacher’s survey [17]: “Currently, we have no closed-form
expression for the capacity, nor do we have an efficient algorithmic means to numerically
compute this capacity.” This is in sharp contrast with the noise model of bit erasures, where
each bit is independently replaced by a ’?’ with probability p (the binary erasure channel
(BEC)), or of bit errors, where each bit is flipped independently with probability p (the
binary symmetric channel (BSC)). The capacity of the BEC and BSC equal 1−p and 1−h(p)
respectively, and we know codes of polynomial complexity with rate approaching the capacity
in each case.

The capacity of the binary deletion channel is clearly at most 1− p, the capacity of the
simpler binary erasure channel. Diggavi and Grossglauser [3] establish that the capacity of
the deletion channel for p ≤ 1

2 is at least 1 − h(p). Kalai, Mitzenmacher, and Sudan [11]
proved this lower bound is tight as p → 0, and Kanoria and Montanari [12] determined a
series expansion that can be used to determine the capacity exactly. Turning to large p,
Rahmati and Duman [18] prove that the capacity is at most 0.4143(1 − p) for p ≥ 0.65.
Drinea and Mitzenmacher [4, 5] proved that the capacity of the BDC is at least (1− p)/9,

∗ Research supported in part by NSF grant CCF-1422045.

© Venkatesan Guruswami and Ray Li;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 47; pp. 47:1–47:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.47
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

47:2 Efficiently Decodable Codes for the Binary Deletion Channel

which is within a constant factor of the upper bound. In particular, the capacity is positive
for every p < 1, which is perhaps surprising. The asymptotic behavior of the capacity of the
BDC at both extremes of p→ 0 and p→ 1 is thus known.

This work is concerned with constructive results for coding for the binary deletion channel.
That is, we seek codes that can be constructed, encoded, and decoded from deletions caused
by the BDC, in polynomial time. Recently, there has been good progress on codes for
adversarial deletions, including constructive results. Here the model is that the channel can
delete an arbitrary subset of pn bits in the n-bit codeword. A code capable of correcting
pn worst-case deletions can clearly also correct deletions caused by a BDC with deletion
probability (p − ε) with high probability, so one can infer results for the BDC from some
results for worst-case deletions. For small p, Guruswami and Wang [9] constructed binary
codes of rate 1−O(√p) to efficiently correct a p fraction worst-case deletions. So this also
gives codes of rate approaching 1 for the BDC when p→ 0. For larger p, Kash et al. [13]
proved that randomly chosen codes of small enough rate R > 0 can correctly decode against
pn adversarial deletions when p ≤ 0.17. Even non-constructively, this remained the best
achievability result in terms of correctable deletion fraction until the recent work of Bukh,
Guruswami, and Håstad [2] who constructed codes of positive rate efficiently decodable
against pn adversarial deletions for any p <

√
2− 1. For adversarial deletions, it is impossible

to correct a deletion fraction of 1/2, whereas the capacity of the BDC is positive for all p < 1.
So solving the problem for the much harder worst-case deletions is not a viable approach to
construct positive rate codes for the BDC for p > 1/2.

To the best of our knowledge, explicit efficiently decodable code constructions were not
available for the binary deletion channel for arbitrary p < 1. We present such a construction
in this work. Our rate is worse than the (1 − p)/9 achieved non-constructively, but has
asymptotically the same dependence on p for p→ 1.

I Theorem 1. Let p ∈ (0, 1). There is an explicit a family of binary codes that (1) has rate
(1− p)/110, (2) is constructible in polynomial time, (3) encodable in time O(N), and (3)
decodable with high probability on the binary deletion channel with deletion probability p in
time O(N2). (Here N is the block length of the code)

1.1 Some other related work
One work that considers efficient recovery against random deletions is by Yazdi and Dolecek
[20]. In their setting, two parties Alice and Bob are connected by a two-way communication
channel. Alice has a string X, Bob has string Y obtained by passing X through a binary
deletion channel with deletion probability p� 1, and Bob must recover X. They produce a
polynomial-time synchronization scheme that transmits a total of O(pn log(1/p)) bits and
allows Bob to recover X with probability exponentially approaching 1.

For other models of random synchronization errors, Kirsch and Drinea [14] prove inform-
ation capacity lower bounds for channels with i.i.d deletions and duplications. Fertonani
et al. [6] prove capacity bounds for binary channels with i.i.d insertions, deletions, and
substitutions.

For deletion channels over non-binary alphabets, Rahmati and Duman [18] prove a
capacity upper bound of C2(p) + (1− p) log(|Σ|/2), where C2(p) denotes the capacity of the
binary deletion channel with deletion probability p, when the alphabet size |Σ| is even. In
particular, using the best known bound for C2(p) of C2(p) ≤ 0.4143(1− p), the upper bound
is (1− p)(log |Σ| − 0.5857).

In [8], the authors of this paper consider the model of oblivious deletions, which is in
between the BDC and adversarial deletions in power. Here, the channel can delete any pn

Venkatesan Guruswami and Ray Li 47:3

bits of the codeword, but must do so without knowledge of the codeword. In this model, they
prove the existence of codes of positive rate for correcting any fraction p < 1 of oblivious
deletions.

1.2 Our construction approach
Our construction concatenates a high rate outer code over a large alphabet that is efficiently
decodable against a small fraction of adversarial insertions and deletions, with a good inner
binary code. For the outer code, we can use the recent construction of [10]. To construct the
inner code, we first choose a binary code correcting a small fraction of adversarial deletions.
By concentration bounds, duplicating bits of a codeword in a disciplined manner is effective
against the random deletion channel, so we, for some constant B, duplicate every bit of
the binary code B/(1− p) times. We further ensure our initial binary code has only runs
of length 1 and 2 to maximize the effectiveness of duplication. We add small buffers of 0s
between inner codewords to facilitate decoding.

One might wonder whether it would be possible to use Drinea and Mitzenmacher’s
existential result [4, 5] of a (1 − p)/9 capacity lower bound as a black box inner code to
achieve a better rate together with efficient decodability. We discuss this approach in §3.2
and elaborate on what makes such a construction difficult to implement.

2 Preliminaries

General Notation. Throughout the paper, log x refers to the base-2 logarithm. We use
interval notation [a, b] = {a, a+ 1, . . . , b} to denote intervals of integers, and we use [a] =
[1, a] = {1, 2, . . . , a}. Let Binomial(n, p) denote the Binomial distribution.

Words. A word is a sequence of symbols from some alphabet. We denote explicit words
using angle brackets, like 〈01011〉. We denote string concatenation of two words w and w′
with ww′. We denote wk = ww · · ·w where there are k concatenated copies of w.

A subsequence of a word w is a word obtained by removing some (possibly none) of the
symbols in w.

Let ∆i/d(w1, w2) denote the insertion/deletion distance between w1 and w2, i.e. the
minimum number of insertions and deletions needed to transform w1 into w2. By a lemma
due to Levenshtein [15], this is equal to |w1|+ |w2| − 2 LCS(w1, w2), where LCS denotes the
length of the longest common subsequence.

Define a run of a word w to be a maximal single-symbol subword. That is, a subword w′
in w consisting of a single symbol such that any longer subword containing w′ has at least
two different symbols. Note the runs of a word partition the word. For example, 110001 has
3 runs: one run of 0s and two runs of 1s.

We say that c ∈ {0, 1}m and c′ ∈ {0, 1}m are confusable under δm deletions if it is
possible to apply δm deletions to c and c′ and obtain the same result. If δ is understood, we
simply say c and c′ are confusable.

Concentration Bounds. We use the following forms of Chernoff bound.

I Lemma 2 (Chernoff). Let A1, . . . , An be i.i.d random variables taking values in [0, 1]. Let
A =

∑n
i=1Ai and δ ∈ [0, 1]. Then

Pr[A ≤ (1− δ)E[A]] ≤ exp
(
−δ2 E[A]/2

)
(1)

APPROX/RANDOM’17

47:4 Efficiently Decodable Codes for the Binary Deletion Channel

Furthermore,

Pr[A ≥ (1 + δ)E[A]] ≤
(

eδ

(1 + δ)1+δ

)E[A]

. (2)

We also have the following corollary, whose proof is in Appendix A.

I Lemma 3. Let 0 < α < β. Let A1, . . . , An be independent random variables taking values
in [0, β] such that, for all i, E[Ai] ≤ α. For γ ∈ [α, 2α], we have

Pr
[

n∑
i=1

Ai ≥ nγ

]
≤ exp

(
− (γ − α)2n

3αβ

)
. (3)

3 Efficiently decodable codes for random deletions with p
approaching 1

3.1 Construction
We present a family of constant rate codes that decodes with high probability on a binary
deletion channel with deletion fraction p (BDCp). These codes have rate c0(1 − p) for an
absolute positive constant c0, which is within a constant of the upper bound (1− p), which
even holds for the erasure channel. By Drinea and Mitzenmacher [4] the maximum known
rate of a non-efficiently correctable binary deletion channel code is (1− p)/9.

The construction is based on the intuition that deterministic codes are better than random
codes for the deletion channel. Indeed, for adversarial deletions, length n random codes
correct at most 0.22n deletions [13], while explicitly constructed codes can correct close to
(
√

2− 1)n deletions [2].
We begin by borrowing a result from [9].

I Lemma 4 (Corollary of Lemma 2.3 of [9]). Let 0 < δ < 1
2 . For every binary string

c ∈ {0, 1}m, there are at most δm
(

m
(1−δ)m

)2 strings c′ ∈ {0, 1}m such that c and c′ are
confusable under δm deletions.

The next lemma gives codes against a small fraction of adversarial deletions with an additional
run-length constraint on the codewords.

I Lemma 5. Let δ > 0. There exists a length m binary code of rate R = 0.6942− 2h(δ)−
O(log(δm)/m) correcting a δ fraction of adversarial insertions and deletions such that each
codeword contains only runs of size 1 and 2. Furthermore this code is constructible in time
Õ(2(0.6942+R)m).

Proof. It is easy to show that the number of codewords with only runs of 1 and 2 is Fm,
the mth Fibonacci number, and it is well known that Fm = ϕm + o(1) ≈ 20.6942m where ϕ
is the golden ratio. Now we construct the code by choosing it greedily. Each codeword is
confusable with at most δm

(
m

(1−δ)m
)2 other codewords, so the number of codewords we can

choose is at least

20.6942m

δm
(

m
(1−δ)m

)2 = 2m(0.6942−2h(δ)−O(log(δm)/m)). (4)

We can find all words of length m whose run lengths are only 1 and 2 by recursion in time
O(Fm) = O(20.6942m). Running the greedy algorithm, we need to, for at most Fm · 2Rm pairs

Venkatesan Guruswami and Ray Li 47:5

of such words, determine whether the pair is confusable (we only need to check confusability
of a candidate word with words already added to the code). Checking confusability of
two words under adversarial deletions reduces to checking whether the longest common
subsequence is at least (1− δ)m, which can be done in time O(m2). This gives an overall
runtime of O(m2 · Fm · 2Rm) = Õ(2(0.6942+R)m). J

I Corollary 6. There exists a constant m∗0 such that for all m ≥ m∗0, there exists a length m
binary code of rate Rin = 0.555 correcting a δin = 0.0083 fraction of adversarial insertions
and deletions such that each codeword contains runs of size 1 and 2 only and each codeword
starts and ends with a 1. Furthermore this code is constructible in time O(21.25m).

Our construction utilizes the following result as a black box for efficiently coding against
an arbitrary fraction of insertions and deletions with rate approaching capacity.

I Theorem 7 (Theorem 1.1 of [10]). For any 0 ≤ δ < 1 and ε > 0, there exists a code C
over alphabet Σ, with |Σ| = poly(1/ε), with block length n, rate 1− δ − ε, and is efficiently
decodable from δn insertions and deletions. The code can be constructed in time poly(n),
encoded in time O(n), and decoded in time O(n2).

We apply Theorem 7 for small δ, so we also could use the high rate binary code construction
of [7] as an outer code.

We now turn to our code construction for Theorem 1.

The code. Let B = 60, B∗ = 1.43̄B = 86, η = 1
1000 , δout = 1

1000 . Let

m0 = max(α log(1/δout)/η,m∗0) ,

where α is a sufficiently large constant and where m∗0 is given by Corollary 6. Let εout > 0
be small enough such that the alphabet Σ, given by Theorem 7 with ε = εout and δ = δout,
satisfies |Σ| ≥ m0, and let Cout be the corresponding code.

Let Cin : |Σ| → {0, 1}m be the code given by Corollary 6, and let Rin = 0.555, δin =
0.0083, and m = 1

Rin
log |Σ| = O(log(1/ε)) be the rate, tolerable deletion fraction, and block

length of the code, respectively (Rin and δin are given by Corollary 6). Each codeword of
Cin has runs of length 1 and 2 only, and each codeword starts and ends with a 1. This code
is constructed greedily.

Our code is a modified concatenated code. We encode our message as follows.
Outer Code. First, encode the message into the outer code, Cout, to obtain a word
c(out) = σ1 . . . σn.
Concatenation with Inner Code. Encode each outer codeword symbol σi ∈ Σ by the inner
code Cin.
Buffer. Insert a buffer of ηm 0s between adjacent inner codewords. Let the resulting
word be c(cat). Let c(in)

i = Cin(σi) denote the encoded inner codewords of c(cat).
Duplication. After concatenating the codes and inserting the buffers, replace each
character (including characters in the buffers) with dB/(1− p)e copies of itself to obtain
a word of length N := Bnm/(1− p). Let the resulting word be c, and the corresponding
inner codewords be {c(dup)i }.

Rate. The rate of the outer code is 1− δout − εout, the rate of the inner code is Rin, the
buffer and duplications multiply the rate by 1

1+η and (1− p)/B respectively. This gives a
total rate that is slightly greater than (1− p)/110.

APPROX/RANDOM’17

47:6 Efficiently Decodable Codes for the Binary Deletion Channel

Notation. Let s denote the received word after the codeword c is passed through the
deletion channel. Note that (i) every bit of c can be identified with a bit in c(cat), and (ii)
each bit in the received word s can be identified with a bit in c. Thus, we can define relations
f (dup) : c(cat) → c, and f (del) : c→ s (that is, relations on the indices of the strings). These
are not functions because some bits may be mapped to multiple (for f (dup)) or zero (for
f (del)) bits. Specifically, f (del) and f (dup) are the inverses of total functions. In this way,
composing these relations (i.e. composing their inverse functions) if necessary, we can speak
about the image and pre-image of bits or subwords of one of c(cat), c, and s under these
relations. For example, during the Duplication step of encoding, a bit 〈bj〉 of c(cat) is replaced
with B/(1− p) copies of itself, so the corresponding string 〈bj〉B/(1−p) in c forms the image
of 〈bj〉 under f (dup), and conversely the pre-image of the duplicated string 〈bj〉B/(1−p) is that
bit 〈bj〉.

Decoding algorithm

Decoding Buffer. First identify all runs of 0s in the received word with length at least
Bηm/2. These are our decoding buffers that divide the word into decoding windows,
which we identify with subwords of s.
Deduplication. Divide each decoding window into runs. For each run, if it has strictly
more than B∗ copies of a bit, replace it with as two copies of that bit, otherwise replace
it with one copy. For example, 〈0〉2B gets replaced with 〈00〉 while 〈0〉B gets replaced
with 〈0〉. For each decoding window, concatenate these runs of length 1 and 2 in their
original order in the decoding window to produce a deduplicated decoding window.
Inner Decoding. For each deduplicated decoding window, decode an outer symbol σ ∈ Σout
from each decoding window by running the brute force deletion correction algorithm for
Cin. That is, for each deduplicated decoding window s

(in)
∗ , find by brute force a codeword

c
(in)
∗ in Cin that such that ∆i/d(c

(in)
∗ , s

(in)
∗) ≤ δinm. If c(in)

∗ is not unique or does not
exist, do not decode an outer symbol σ from this decoding window. Concatenate the
decoded symbols σ in the order in which their corresponding decoding windows appear
in the received word s to obtain a word s(out).
Outer Decoding. Decode the message m from s(out) using the decoding algorithm of Cout
in Theorem 7.

For purposes of analysis, label as s(dup)
i the decoding window whose pre-image under f (del)

contains indices in c(dup)i . If this decoding window is not unique (that is, the image of c(dup)i

contains bits in multiple decoding windows), then assign s(dup)
i arbitrarily. Note this labeling

may mean some decoding windows are unlabeled, and also that some decoding windows may
have multiple labels. In our analysis, we show both occurrences are rare. For a decoding
window s

(dup)
i , denote the result of s(dup)

i after Deduplication to be s(in)
i .

The following diagram depicts the encoding and decoding steps.
The pair ({c(in)

i }i, c(cat)) indicates that, at that step of encoding, we have produced the
word c(cat), and the sequence {c(in)

i }i are the “inner codewords” of c(cat) (that is, the words in
between what would be identified by the decoder as decoding buffers). The pair ({c(dup)i }i, c)
is used similarly.

m
Cout−−−→ c(out)

Cin,Buf−−−−−−→
({
c
(in)
i

}
i
, c(cat)

)
Dup−−−→

({
c
(dup)
i

}
i
, c
)

s
DeBuf−−−−−→

{
s

(dup)
i

}
i

DeDup−−−−−→
{
s

(in)
i

}
i

Decin−−−−→ s(out) Decout−−−−→ m

BDC

Venkatesan Guruswami and Ray Li 47:7

Runtime. The outer code is constructible in poly(n) time and the inner code is constructible
in time O(21.25m) = poly(1/ε), which is a constant, so the total construction time is poly(N).

Encoding in the outer code is linear time, each of the n inner encodings is constant time,
and adding the buffers and applying duplications each can be done in linear time. The overall
encoding time is thus O(N).

The Buffer step of the decoding takes linear time. The Deduplication step of each inner
codeword takes constant time, so the entire step takes linear time. For each inner codeword,
Inner Decoding takes time O(m22m) = poly(1/ε) by brute force search over the 2m possible
codewords: checking each of the 2m codewords is a longest common subsequence computation
and thus takes time O(m2), giving a total decoding time of O(m22m) for each inner codeword.
We need to run this inner decoding O(n) times, so the entire Inner Decoding step takes linear
time. The Outer Decoding step takes O(n2) time by Theorem 7. Thus the total decoding
time is O(N2).

Correctness. Note that, if an inner codeword is decoded incorrectly, then one of the following
holds.
1. Spurious Buffer. A spurious decoding buffer is identified in the corrupted codeword

during the Buffer step.
2. Deleted Buffer. A decoding buffer neighboring the codeword is deleted.
3. Inner Decoding Failure. Running the Deduplication and Inner Decoding steps on s(dup)

i

computes the inner codeword incorrectly.
We show that, with high probability, the number of occurrences of each of these events is
small.

The last case is the most nontrivial, so we deal with it first, assuming the codeword
contains no spurious decoding buffers and the neighboring decoding buffers are not deleted.
In particular, we consider an i such that our decoding window s

(dup)
i whose pre-image under

f (del) only contains bits in c(dup)i (because no deleted buffer) and no bits in the image of
c
(dup)
i appear in any other decoding window (because no spurious buffer).

Recall that the inner code Cin can correct against δin = 0.0083 fraction of adversarial
insertions and deletions. Suppose an inner codeword c(in)

i = r1 . . . rk ∈ Cin has k runs rj
each of length 1 or 2, so that m/2 ≤ k ≤ m.

I Definition 8. A subword of α identical bits in the received word s is
type-0 if α = 0,
type-1 if α ∈ [1, B∗],
type-2 if α ∈ [B∗ + 1,∞).

By abuse of notation, we say that a length 1 or 2 run rj of the inner codeword c(in)
i has

type-tj if the image of rj in s under f (del) ◦ f (dup) forms a type-tj subword.

Let t1, . . . , tk be the types of the runs r1, . . . , rk, respectively. The image of a run rj
under f (del) ◦ f (dup) has length distributed as Binomial(B|rj |/(1− p), 1− p). Let δ = 0.43̄
be such that B∗ = (1 + δ)B. By the Chernoff bounds in Lemma 2, the probability that a
run rj of length 1 is type-2 is

Pr
Z∼Binomial(B/(1−p),1−p)

[Z > B∗] <
(
eδ/(1 + δ)1+δ)B < 0.0071. (5)

Similarly, the probability that a run rj of length-2 is type-1 is at most

Pr
Z∼Binomial(2B/(1−p),1−p)

[Z ≤ B∗] < e−((1−δ)/2)2B < 0.0081. (6)

The probability any run is type-0 is at most PrZ∼Binomial(B/(1−p),1−p)[Z = 0] < e−B < 10−10.

APPROX/RANDOM’17

47:8 Efficiently Decodable Codes for the Binary Deletion Channel

We now have established that, for runs rj in c(in)
i , the probability that the number of

bits in the image of rj in s under f (del) ◦ f (dup) is “incorrect” (between 1 and B∗ for length 2
runs, and greater than B∗ for length 1 runs), is at most 0.0081, which is less than δin. If the
only kinds of errors in the Local Decoding step were runs of c of length 1 becoming runs of
length 2 and runs of length 2 become runs of length 1, then we have that, by concentration
bounds, with probability 1− 2−Ω(m), the number of insertions deletions needed to transform
s

(in)
i back into c(in)

i is at most δinm, in which case s(in)
i gets decoded to the correct outer

symbol using Cin.
However, we must also account for the fact that some runs rj of c(in)

i may become deleted
completely after duplication and passing through the deletion channel. That is, the image
of rj in s under f (del) ◦ f (dup) is empty, or, in other words, rj is type-0. In this case the
two neighboring runs rj−1 and rj+1 appear merged together in the Deduplication step of
decoding. For example, if a run of 1s was deleted completely after duplication and deletion,
its neighboring runs of 0s would be interpreted by the decoder as a single run. Fortunately,
as we saw, the probability that a run is type-0 is extremely small (< 10−10), and we show
each type-0 run only increases ∆i/d(c

(in)
i , s

(in)
i) by a constant. We show this constant is at

most 6.
To be precise, let Yj be a random variable that is 0 if |rj | = tj , 1 if {|rj |, tj} = {1, 2},

and 6 if tj = 0. We claim
∑k
j=1 Yj is an upper bound on ∆i/d(c

(in)
i , s

(in)
i). To see this, first

note that if tj 6= 0 for all i, then the number of runs of c(in)
i and s(in)

i are equal, so we can
transform c

(in)
i into s(in)

i by adding a bit to each length-1 type-2 run of c(in)
i and deleting a

bit from each length-2 type-1 run of s(in)
i .

Now, if some number, `, of the tj are 0, then at most 2` of the runs in c
(in)
i become

merged with some other run (or a neighboring decoding buffer) after duplication and
deletion. Each set of consecutive runs rj , rj+2, . . . , rj+2j′ that are merged after duplication
and deletion gets replaced with 1 or 2 copies of the corresponding bit. For example, if
r1 = 〈11〉, r2 = 〈0〉, r3 = 〈11〉, and if after duplication and deletion, 2B bits remain in the
image of each of r1 and r3, and r2 is type-0, then the image of r1r2r3 under f (del) ◦ f (dup)

is 〈1〉4B , which gets decoded as 〈11〉 in the Deduplication step because 〈1〉4B is type-2. To
account for the type-0 runs in transforming c(in)

i into s(in)
i , we (i) delete at most two bits

from each of the ` type-0 runs in c(in)
i and (ii) delete at most two bits for each of at most 2`

merged runs in c(in)
i . The total number of additional insertions and deletions required to

account for type-0 runs of c is thus at most 6`, so we need at most 6 insertions and deletions
to account for each type-0 run.

Our analysis covers the case when some bits in the image of c(in)
i under f (del) ◦ f (dup) are

interpreted as part of a decoding buffer. Recall that inner codewords start and end with
a 1, so that r1 ∈ {〈1〉, 〈11〉} for every inner codeword. If, for example, t1 = 0, that is, the
image under f (del) ◦ f (dup) of the first run of 1s, r1, is the empty string, then the bits of r2
are interpreted as part of the decoding buffer. In this case too, our analysis tells us that the
type-0 run r1 increases ∆i/d(c

(in)
i , s

(in)
i) by at most 6.

We conclude
∑k
j=1 Yj is an upper bound for ∆i/d(c

(in)
i , s

(in)
i).

Note that if rj has length 1, then by (5) we have

E[Yj] = 1 ·Pr[rj is type-2] + 6 ·Pr[rj is type-0] < 1 · 0.0071 + 6 · 10−9 < 0.0082. (7)

Similarly, if rj has length 2, then by (6) we have

E[Yj] = 1 ·Pr[rj is type-1] + 6 ·Pr[rj is type-0] < 1 · 0.0081 + 6 · 10−9 < 0.0082. (8)

Venkatesan Guruswami and Ray Li 47:9

Thus E[Yj] < 0.0082 for all i. We know the word s
(in)
i is decoded incorrectly (i.e. is not

decoded as σi) in the Inner Decoding step only if ∆i/d(c
(in)
i , s

(in)
i) > δinm. The Yj are

independent, so Lemma 3 gives

Pr[s(in)
i decoded incorrectly] ≤ Pr[Y1 + Y2 + · · ·+ Yk ≥ δinm]

≤ Pr[Y1 + Y2 + · · ·+ Yk ≥ δink]

≤ exp
(
− (δin − 0.0082)2k

3 · 6 · δin

)
≤ exp (−Ω(m)) (9)

where the last inequality is given by k ≥ m/2. Since our m ≥ Ω(log(1/δout)) is sufficiently
large, we have the probability s(in)

i is decoded incorrectly is at most δout/10. If we let Y (i)
j

denote the Yj corresponding to inner codeword c(in)
i , the events Ei given by

∑
j Y

(i)
j ≥ δinm

are independent. By concentration bounds on the events Ei, we conclude the probability
that there are at least δoutn/9 incorrectly decoded inner codewords that are not already
affected by spurious buffers and neighboring deleted buffers is 2−Ω(n).

Our aim is to show that the number of spurious buffers, deleted buffers, and inner decoding
failures is small with high probability. So far, we have shown that, with high probability,
assuming a codeword is not already affected by spurious buffers and neighboring deleted
buffers, the number of inner decoding failures is small. We now turn to showing the number
of spurious buffers is likely to be small.

A spurious buffer appears inside an inner codeword if many consecutive runs of 1s are
type-0. A spurious buffer requires at least one of the following: (i) a codeword contains a
sequence of at least ηm/5 consecutive type-0 runs of 1s, (ii) a codeword contains a sequence
of ` ≤ ηm/5 consecutive type-0 runs of 1s, such that, for the ` + 1 consecutive runs of 0s
neighboring these type-0 runs of 1s, their image under f (del) ◦ f (dup) has at least 0.5ηm 0s.
We show both happen with low probability within a codeword.

A set of ` consecutive type-0 runs of 1s occurs with probability at most 10−10`. Thus the
probability an inner codeword has a sequence of ηm/5 consecutive type-0 runs of 1s is at
most m2 · 10−10ηm/5 = exp(−Ω(ηm)). Now assume that in an inner codeword, each set of
consecutive type-0 runs of 1s has size at most ηm/5. Each set of ` consecutive type-0 runs
of 1s merges ` + 1 consecutive runs of 0s in c, so that they appear as a single longer run
in s. The sum of the lengths of these `+ 1 runs is some number `∗ that is at most 2`+ 2.
The number of bits in the image of these runs of c(in)

i under f (del) ◦ f (dup) is distributed as
Binomial(`∗B/(1 − p), 1 − p). This has expectation `∗B ≤ 0.41Bηm, so by concentration
bounds, the probability this run of s has length at least 0.5Bηm, i.e. is interpreted as a
decoding buffer, is at most exp(−Ω(ηm)). Hence, conditioned on each set of consecutive type-0
runs of 1s having size at most ηm/5, the probability of having no spurious buffers in a codeword
is at least 1 − exp(−Ω(ηm)). Thus the overall probability there are no spurious buffers a
given inner codeword is at least (1− exp(−Ω(ηm))(1− exp(−Ω(ηm))) = 1− exp(−Ω(ηm)).
Since each inner codeword contains at most m candidate spurious buffers (one for each
type-0 run of 1s), the expected number of spurious buffers in an inner codeword is thus
at most m · exp(−Ω(ηm)). By our choice of m ≥ Ω(log(1/δout)/η), this is at most δout/10.
The occurrence of conditions (i) and (ii) above are independent between buffers. The total
number of spurious buffers thus is bounded by the sum of n independent random variables
each with expectation at most δout/10. By concentration bounds, the probability that there
are at least δoutn/9 spurious buffers is 2−Ω(n).

APPROX/RANDOM’17

47:10 Efficiently Decodable Codes for the Binary Deletion Channel

A deleted buffer occurs only when the image of the ηm 0s in a buffer under f (del) ◦ f (dup)

is at most Bηm/2. The number of such bits is distributed as Binomial(Bηm/(1− p), 1− p).
Thus, each buffer is deleted with probability exp(−Bηm) < δout/10 by our choice of m ≥
Ω(log(1/δout)/η). The events of a buffer receiving too many deletions are independent across
buffers. By concentration bounds, the probability that there are at least δoutn/9 deleted
buffers is thus 2−Ω(n).

Each inner decoding failure, spurious buffer, and deleted buffer increases the distance
∆i/d(c

(out)
i , s

(out)
i) by at most 3: each inner decoding failure causes up to 1 insertion and

1 deletion; each spurious buffer causes up to 1 deletion and 2 insertions; and each de-
leted buffer causes up to 2 deletions and 1 insertion. Our message is decoded incorrect if
∆i/d(c

(out)
i , s

(out)
i) > δoutn. Thus, there is a decoding error in the outer code only if at least

one of (i) the number of incorrectly decoded inner codewords without spurious buffers or
neighboring deleted buffers, (ii) the number of spurious buffers, or (iii) the number of deleted
buffers is at least δoutn/9. However, by the above arguments, each is greater than δoutn/9
with probability 2−Ω(n), so there is a decoding error with probability 2−Ω(n). This concludes
the proof of Theorem 1.

3.2 Possible Alternative Constructions
As mentioned in the introduction, Drinea and Mitzenmacher [4, 5] proved that the capacity
of the BDCp is at least (1− p)/9. However, their proof is nonconstructive and they do not
provide an efficient decoding algorithm.

One might think it is possible to use Drinea and Mitzenmacher’s construction as a black
box. We could follow the approach in this paper, concatenating an outer code given by [10]
with the rate (1 − p)/9 random-deletion-correcting code as a black box inner code. The
complexity of the Drinea and Mitzenmacher’s so-called jigsaw decoding is not apparent from
[5]. However, the inner code has constant length, so construction, encoding, and decoding
would be constant time. Thus, the efficiency of the inner code would not affect the asymptotic
runtime.

The main issue with this approach is that, while the inner code can tolerate random
deletions with probability p, inner codeword bits are not deleted in the concatenated
construction according to a BDCp; the 0 bits closer to the buffers between the inner
codewords are deleted with higher probability because they might be “merged” with a buffer.
For example, if an inner codeword is 〈101111〉, then because the codeword is surrounded by
buffers of 0s, deleting the leftmost 1 effectively deletes two bits because the 0 is interpreted
as part of the buffer. While this may not be a significant issue because the distributions
of deletions in this deletion process and BDCp are quite similar, much more care would be
needed to prove correctness.

Our construction does not run into this issue, because our transmitted codewords tend
to have many 1s on the ends of the inner codewords. In particular, each inner codeword of
Cin has 1s on the ends, so after the Duplication step each inner codeword has B/(1 − p)
or 2B/(1 − p) 1s on the ends. The 1s on the boundary of the inner codeword will all be
deleted with probability ≈ exp(−B), which is small. Thus, in our construction, it is far more
unlikely that bits are merged with the neighboring decoding buffer, than if we were to use
a general inner code construction. Furthermore, we believe our construction based on bit
duplication of a worst-case deletion correcting code is conceptually simpler than appealing
to an existential code.

As a remark, we presented a construction with rate (1− p)/110, but using a randomized
encoding we can improve the constant from 1/110 to 1/60. We can modify our construction

Venkatesan Guruswami and Ray Li 47:11

so that, during the Duplication step of decoding, instead of replacing each bit of c(cat) with
a fix number B/(1 − p) copies of itself, we instead replaced each bit independently with
Poisson(B/(1−p)) copies of itself. Then the image of a run rj under duplication and deletion
is distributed as Poisson(B), which is independent of p. Because we don’t have a dependence
on p, we can tighten our bounding in (5) and (6). To obtain (1−p)/60, we can take B = 28.12
and set B∗ = 40, where B∗ is the threshold after which runs are decoded as two bits instead
of one bit in the Deduplication step. The disadvantage of this approach is that we require
our encoding to be randomized, whereas the construction presented above uses deterministic
encoding.

4 Future work and open questions

A lemma due to Levenshtein [15] states that a code C can decode against pn adversarial
deletions if and only if it can decode against pn adversarial insertions and deletions. While
this does not automatically preserve the efficiency of the decoding algorithms, all the recent
efficient constructions of codes for worst-case deletions also extend to efficient constructions
with similar parameters for recovering from insertions and deletions [1, 7].

In the random error model, decoding deletions, insertions, and insertions and deletions
are not the same. Indeed, it is not even clear how to define random insertions. One could
define insertions and deletions via the Poisson repeat channel where each bit is replaced with
a Poisson many copies of itself (see [4, 17]). However, random insertions do not seem to
share the similarity to random deletions that adversarial deletions share with adversarial
insertions; we can decode against arbitrarily large Poisson duplication rates, whereas for
codes of block length n we can decode against a maximum of n adversarial insertions or
deletions [5]. Alternatively one can consider a model of random insertions and deletions
where, for every bit, the bit is deleted with a fixed probability p1, a bit is inserted after
it with a fixed probability p2, or it is transmitted unmodified with probability 1− p1 − p2
[19]. One could also investigate settings involving memoryless insertions, deletions, and
substitutions [16].

There remain a number of open questions even concerning codes for deletions only. Here
are a few highlighted by this work.
1. Can we close the gap between

√
2 − 1 and 1

2 on the maximum correctable fraction of
adversarial deletions?

2. Can we construct efficiently decodable codes for the binary deletion channel with better
rate, perhaps reaching or beating the best known existential capacity lower bound of
(1− p)/9?

3. Can we construct efficient codes for the binary deletion channel with rate 1−O(h(p)) for
p→ 0?

References
1 Joshua Brakensiek, Venkatesan Guruswami, and Samuel Zbarsky. Efficient low-redundancy

codes for correcting multiple deletions. In Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 1884–1892, 2016.

2 Boris Bukh, Venkatesan Guruswami, and Johan Håstad. An improved bound on the frac-
tion of correctable deletions. IEEE Trans. Information Theory, 63(1):93–103, 2017.

3 Suhas Diggavi and Matthias Grossglauser. On transmission over deletion channels. In Pro-
ceedings of the 39th Annual Allerton Conference on Communication, Control, and Com-
puting, pages 573–582, 2001.

APPROX/RANDOM’17

47:12 Efficiently Decodable Codes for the Binary Deletion Channel

4 Eleni Drinea and Michael Mitzenmacher. On lower bounds for the capacity of deletion
channels. IEEE Transactions on Information Theory, 52(10):4648–4657, 2006.

5 Eleni Drinea and Michael Mitzenmacher. Improved lower bounds for the capacity of i.i.d.
deletion and duplication channels. IEEE Trans. Information Theory, 53(8):2693–2714,
2007.

6 Dario Fertonani, Tolga M. Duman, and M. Fatih Erden. Bounds on the capacity of channels
with insertions, deletions and substitutions. IEEE Trans. Communications, 59(1):2–6, 2011.
doi:10.1109/TCOMM.2010.110310.090039.

7 Venkatesan Guruswami and Ray Li. Efficiently decodable insertion/deletion codes for high-
noise and high-rate regimes. In IEEE International Symposium on Information Theory,
ISIT 2016, Barcelona, Spain, July 10-15, 2016, pages 620–624, 2016. doi:10.1109/ISIT.
2016.7541373.

8 Venkatesan Guruswami and Ray Li. Coding against deletions in oblivious and online
models, 2017. Manuscript; arXiv abs/1612.06335. URL: http://arxiv.org/abs/1612.
06335.

9 Venkatesan Guruswami and Carol Wang. Deletion codes in the high-noise and high-rate
regimes. IEEE Trans. Information Theory, 63(4):1961–1970, 2017. doi:10.1109/TIT.
2017.2659765.

10 Bernhard Haeupler and Amirbehshad Shahrasbi. Synchronization strings i: Codes
for insertions and deletions approaching the singleton bound. To appear in STOC’17.
http://arxiv.org/abs/1704.00807.

11 Adam Kalai, Michael Mitzenmacher, and Madhu Sudan. Tight asymptotic bounds for the
deletion channel with small deletion probabilities. In IEEE International Symposium on
Information Theory, ISIT 2010, June 13-18, 2010, Austin, Texas, USA, Proceedings, pages
997–1001, 2010. doi:10.1109/ISIT.2010.5513746.

12 Yashodhan Kanoria and Andrea Montanari. Optimal coding for the binary deletion channel
with small deletion probability. IEEE Trans. Information Theory, 59(10):6192–6219, 2013.
doi:10.1109/TIT.2013.2262020.

13 Ian Kash, Michael Mitzenmacher, Justin Thaler, and John Ullman. On the zero-error
capacity threshold for deletion channels. In Information Theory and Applications Workshop
(ITA), pages 1–5, January 2011.

14 Adam Kirsch and Eleni Drinea. Directly lower bounding the information capacity for
channels with i.i.d.deletions and duplications. IEEE Trans. Information Theory, 56(1):86–
102, 2010. doi:10.1109/TIT.2009.2034883.

15 Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. Dokl. Akad. Nauk, 163(4):845–848, 1965 (Russian). English translation in Soviet
Physics Doklady, 10(8):707-710, 1966.

16 Hugues Mercier, Vahid Tarokh, and Fabrice Labeau. Bounds on the capacity of discrete
memoryless channels corrupted by synchronization and substitution errors. IEEE Trans.
Information Theory, 58(7):4306–4330, 2012. doi:10.1109/TIT.2012.2191682.

17 Michael Mitzenmacher. A survey of results for deletion channels and related synchronization
channels. Probability Surveys, 6:1–33, 2009.

18 Mojtaba Rahmati and Tolga M. Duman. Upper bounds on the capacity of deletion channels
using channel fragmentation. IEEE Trans. Information Theory, 61(1):146–156, 2015. doi:
10.1109/TIT.2014.2368553.

19 Ramji Venkataramanan, Sekhar Tatikonda, and Kannan Ramchandran. Achievable rates
for channels with deletions and insertions. IEEE Trans. Information Theory, 59(11):6990–
7013, 2013. doi:10.1109/TIT.2013.2278181.

http://dx.doi.org/10.1109/TCOMM.2010.110310.090039
http://dx.doi.org/10.1109/ISIT.2016.7541373
http://dx.doi.org/10.1109/ISIT.2016.7541373
http://arxiv.org/abs/1612.06335
http://arxiv.org/abs/1612.06335
http://dx.doi.org/10.1109/TIT.2017.2659765
http://dx.doi.org/10.1109/TIT.2017.2659765
http://dx.doi.org/10.1109/ISIT.2010.5513746
http://dx.doi.org/10.1109/TIT.2013.2262020
http://dx.doi.org/10.1109/TIT.2009.2034883
http://dx.doi.org/10.1109/TIT.2012.2191682
http://dx.doi.org/10.1109/TIT.2014.2368553
http://dx.doi.org/10.1109/TIT.2014.2368553
http://dx.doi.org/10.1109/TIT.2013.2278181

Venkatesan Guruswami and Ray Li 47:13

20 S.M. Sadegh Tabatabaei Yazdi and Lara Dolecek. A deterministic polynomial-time protocol
for synchronizing from deletions. IEEE Trans. Information Theory, 60(1):397–409, 2014.
doi:10.1109/TIT.2013.2279674.

A Proof of Lemma 3

Proof. For each i, we can find a random variable Bi such that Bi ≥ Ai always, Bi takes
values in [0, β], and E[Bi] = α. Applying Lemma 2 gives

Pr
[
n∑
i=1

Ai ≥ nγ

]
≤ Pr

[
n∑
i=1

Bi ≥ nγ

]

≤ Pr
[

n∑
i=1

Bi
β
≥
(

1 +
(
γ − α
α

))
nα

β

]

≤ exp

−(γ−αα)2 · nαβ
3

= exp

(
− (γ − α)2n

3αβ

)
. J

APPROX/RANDOM’17

http://dx.doi.org/10.1109/TIT.2013.2279674

On Some Computations on Sparse Polynomials
Ilya Volkovich

Department of EECS, University of Michigan, Ann Arbor, MI, USA
ilyavol@umich.edu

Abstract
In arithmetic circuit complexity the standard operations are {+,×}. Yet, in some scenarios
exponentiation gates are considered as well (see e.g. [6, 1, 28, 30]). In this paper we study
the question of efficiently evaluating a polynomial given an oracle access to its power. Among
applications, we show that:

A reconstruction algorithm for a circuit class C can be extended to handle fe for f ∈ C.
There exists an efficient deterministic algorithm for factoring sparse multiquadratic1 polyno-
mials.
There is a deterministic algorithm for testing a factorization of sparse polynomials, with
constant individual degrees, into sparse irreducible factors. That is, testing if f = g1 · . . . · gm
when f has constant individual degrees and gi-s are irreducible.
There is a deterministic reconstruction algorithm for multilinear2 depth-4 circuits with two
multiplication gates.
There exists an efficient deterministic algorithm for testing whether two powers of sparse
polynomials are equal. That is, fd ≡ ge when f and g are sparse.

1998 ACM Subject Classification F.2.0 Analysis of Algorithms and Problem Complexity

Keywords and phrases Derandomization, Arithmetic Circuits, Reconstruction

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.48

1 Introduction

Let f(x̄) ∈ F[x1, x2, . . . , xn] be a polynomial over the field F. In this paper we study the
following question: given e ∈ N and an oracle access to fe ∈ F[x1, x2, . . . , xn] can we efficiently
implement an oracle access to f? That is, we wish to evaluate f on a set of points ā, b̄, . . .
(which might be unknown upfront) given an oracle access to fe. An efficient randomized
algorithm for this problem was given in [23]. Where, in fact, a randomized polynomial
factorization algorithm was given. In addition, in terms of circuit complexity, it was shown
in [43, 20] that if fe has a small circuit then so does f , when the characteristic of F is zero
or coprime with e.

For our applications, we only need to solve the problem in the oracle model, yet deter-
ministically. Although, it is conceivable that the techniques of [43, 20] could work in oracle
model, they will still be subject to the co-primality condition. In this paper we solve the
problem for any e.

It is clear that as the first step, we should be able to extract e-th roots of field elements.
For instance, if f is constant. We refer to such an algorithm as an e-th root oracle Re.
However, having root oracles is not enough for our task as demonstrated by the following
example.

1 A polynomial is multiquadratic if the degree of each variable is at most 2.
2 A polynomial is multilinear if the degree of each variable is at most 1.

© Ilya Volkovich;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 48; pp. 48:1–48:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.48
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

48:2 On Some Computations on Sparse Polynomials

Let h(x) = 3x− 4 and f = h2. Suppose that we wish to evaluate h(x) at x = 1, 2 given
an oracle access to f(x) and using a square-root oracle R2. As f(1) = 1, f(2) = 4 the oracle
might return h(1) = R2(1) = 1 and h(2) = R2(4) = 2 (for example, returning the positive
root). Note, however, that these evaluations are inconsistent with either ±h! More generally,
there could be e different h1, . . . he polynomials resulting in the same polynomial when raised
the e-th power (i.e. ∀i ∈ [n] : hei = f). Therefore, in order to prevent the aforementioned
situation our algorithm should output an oracle access to exactly one of them. We prove the
following theorem.

I Theorem 1 (Technical Contribution). There exists a deterministic algorithm that given
e ∈ N, an e-th root oracle Re and an oracle access to a polynomial fe ∈ F[x1, x2, . . . , xn] of
degree at most d uses poly(n, d, e, log |F|) field operations and oracle calls to Re, and outputs
an oracle access to ω · f , where ω ∈ F is such that ωe = 1.

We note that similar ideas appeared previously in the literature, although partially and
implicitly. The problem can seen as a version of list-decoding of Reed-Muller codes. Indeed,
mirroring the list-decoding algorithm of [42] and the factorization algorithm of [23], the
proposed algorithm uses an anchor point and draws a line to that point in order to choose
the correct answer from a small list of possible answers. We now discuss related problems
and applications.

1.1 Multivariate Polynomial Factorization

One of the fundamental problems in algebraic complexity is the problem of polynomial
factorization: given a polynomial f ∈ F[x1, x2, . . . , xn] over a field F, find its irreducible
factors. Other than being natural, the problem has many applications such as list decoding
[41, 17] and derandomization [19]. A large amount of research has been devoted to finding
efficient algorithms for this problem (see e.g. [48]) and numerous randomized algorithms
were designed [49, 20, 21, 23, 48, 22, 47]. However, the question of whether there exist
deterministic algorithms for this problem remains an interesting open question (see [48, 27]).

Perhaps the simplest factorization algorithm is a root oracle. We note that the best known
deterministic root extraction algorithms over the finite fields have polynomial dependence
on the field characteristic p (see e.g. [36, 48, 14, 27]). While in the randomized setting, this
dependence is polynomial in log p. In particular, there is no known efficient deterministic
root extraction algorithm when p is large. Over fields with characteristic 0 (e.g. Q) both the
deterministic and the randomized complexities are polynomial in the bit-complexity of the
coefficients (see [31]). Therefore, we can say that root extraction is, perhaps, the simplest
hard problem in polynomial factorization. For sake of uniformity we formulate all our results
in terms of root oracles and log |F| which stands for the bit-complexity of the coefficients in
the underlying polynomials.

1.2 Polynomial Reconstruction

Let F be a field and C a class of circuits. The reconstruction problem for the class C is
defined as follows. Given an oracle access to a polynomial f ∈ F[x1, x2, . . . , xn], computable
by a circuit from C, output a circuit C ∈ C that computes f . A reconstruction algorithm is
efficient if the number of queries it makes to f and its running time are polynomial in the
size of the representation of f in the class C. The reconstruction problem can be seen as the
algebraic analog of the learning problem.

I. Volkovich 48:3

An immediate application of our main theorem is reconstruction beyond an exponentiation
gate. More formally, we can efficiently extend a reconstruction algorithm for a circuit class C
to handle polynomials of the form fe when f is computable by a circuit C ∈ C. Note that in
general fe might not be computable by a circuit in C.

I Theorem 2. Let A be a deterministic (randomized) reconstruction algorithm for a circuit
class C, let f ∈ C and let T (f) denote the number of operations A uses to reconstruct f .
Then there exists a deterministic (randomized) algorithm that given e ∈ N, an e-th root oracle
Re and an oracle access to the polynomial fe ∈ F[x1, x2, . . . , xn] of degree at most d, uses
poly(n, d, log |F| , T (f)) field operations and oracles calls to Re and A, and outputs a circuit
for ω · f , where ω ∈ F is such that ωe = 1.

As a corollary we get to extend reconstruction algorithms for specific classes of circuits.
An s-sparse polynomial is polynomial with at most s (non-zero) monomials. Sparse poly-
nomials were deeply studied (see e.g. [5, 29, 32]) and, in fact, several efficient deterministic
reconstruction algorithms were given. Our next result extends the reconstruction algorithm
of [29] to powers of sparse polynomials.

I Theorem 3. Let n, s, d, e ∈ N and let f(x̄) ∈ F[x1, x2, . . . , xn] be an s-sparse polynomial of
degree at most d. Then there exists a deterministic algorithm that given e ∈ N, an oracle access
to the polynomial fe ∈ F[x1, x2, . . . , xn] and an e-th root oracle Re uses poly(n, d, e, s, log |F|)
field operations and oracles calls, and outputs ω · f , where ω ∈ F is such that ωe = 1.

Read-once formulas are formulas in which each variable appears at most once. A read-once
polynomial is a polynomial computable by a read-once formula. Those are the smallest possible
polynomials that depend on all of their variables. Although they form a very restricted model
of computation, read-once formulas received a lot of attention [18, 25, 3, 8, 6, 7, 38, 39, 33, 45].
In [38] a nO(logn)-time reconstruction algorithm for read-once formulas was given. In [33], the
runtime of the algorithm was improved to poly(n). Our next result extends the reconstruction
algorithm further to powers of read-once polynomials. We note that the reconstruction
algorithm of [6] actually deals with a richer model of read-once formulas with exponentiation
gates. Yet, that algorithm is randomized.

I Theorem 4. Let n, e ∈ N and let f(x̄) ∈ F[x1, x2, . . . , xn] be a read-once polynomial.
Then there exists a deterministic algorithm that given an oracle access to the polynomial
f ∈ F[x1, x2, . . . , xn] and an e-th root oracle Re uses poly(n) · poly(e, log |F|) field operations
and oracles calls, and outputs a read-once formula Ψ that computes ω · f , where ω ∈ F is
such that ωe = 1.

A depth-4 ΣΠΣΠ(k) circuit has 4 layers of alternating (+,×) gates and it computes a
polynomial of the form C(x1, x2, · · · , xn) =

∑k
i=1 Fi =

∑k
i=1
∏di

j=1 Pij where k is the fan-in
of the top Σ gate and di are the fan-ins of the Π gates at the second level. These circuits
were previously studied in [2, 16, 26, 35]. In particular, in [16] a randomized reconstruction
algorithm was given for multilinear depth-4 circuits with k = 2 (i.e. ΣΠΣΠ(2) circuits). As
an application, we derandomize their algorithm using a square root oracle. We note that our
result achieves an optimal derandomization since in [46] it was shown that any reconstruction
algorithm for this circuit class must compute square roots.

I Theorem 5. Let n, s ∈ N and suppose char(F) 6= 2. Then there exists a deterministic
algorithm that given an oracle access to the polynomial f ∈ F[x1, x2, . . . , xn] computable by
a multilinear ΣΠΣΠ(2) circuit of size s and a square root oracle R2 uses poly(n, s, log |F|)
field operations and oracles calls, and outputs a ΣΠΣΠ(2) circuit that computes f .

APPROX/RANDOM’17

48:4 On Some Computations on Sparse Polynomials

1.3 Sparse Polynomial Factorization
Coming up with an efficient deterministic factorization algorithm for sparse polynomials
(given as a list of monomials) is a classical open question posed by von zur Gathen and
Kaltofen in [49]. An inherent difficulty in tackling the problem lies within the fact that a
factor of a sparse polynomial need not be sparse. Example 5.1 in [49] demonstrates that a
blow-up in the sparsity of a factor can be super-polynomial over any field. Consequently, just
writing down the irreducible factors as lists of monomials can take super-polynomial time. In
fact, the randomized algorithm of [49] assumes that the upper bound on the sparsity of the
factors is known. In light of this difficulty, a simpler problem was posed in that same paper:
Given m+ 1 sparse polynomials f, g1, g2, . . . gm test if f = g1 · g2 · . . . · gm. This problem is
referred to as “testing sparse factorization”.

Our main result gives a deterministic factorization algorithm for sparse multiquadratic
polynomials.

I Theorem 6. Let n, s ∈ N and suppose char(F) 6= 2. There exists a deterministic algorithm
that given an s-sparse multiquadratic polynomial f(x̄) ∈ F[x1, x2, . . . , xn] and a square root
oracle R2 uses poly(n, s, log |F|) field operations and oracle calls to R2 and outputs the
irreducible factors of f(x̄). That is, a list h1, . . . , hk of irreducible polynomials such that
f = h1 · . . . · hk.

We also show how to test sparse factorization for a special case of polynomials with
constant individual degrees.

I Theorem 7. Let f, g1, . . . gm ∈ F[x1, x2, . . . , xn] be s-sparse polynomials a let d be a bound
on the individual degrees of f . Then given f, g1, . . . gm, there exists a deterministic algorithm
that tests if f = g1 · g2 · . . . · gm using poly(n, sd, log |F|) field operations.

Using techniques from Differential Field Theory we show that some identity testing
algorithms could be extended to work beyond an exponentiation gate. In particular, we
prove the following theorem which can be seen as testing symmetric sparse factorization.
We note that setting e = 1 instantiates to testing sparse factorization in the case when
f1 = f2 = . . . = fm.

I Theorem 8. Let n, s, d, e, δ ∈ N and let f(x̄), g(x̄) ∈ F[x1, x2, . . . , xn] be two s-sparse
polynomials of degree at most δ. Furthermore, suppose that char(F) = 0 or char(F) >
δ · min(e, d). Then there exists a deterministic algorithm that given f , g, d and e uses
poly(n, s, d, e, δ, log |F|) field operations and tests whether fd = ge.

We note that similar results to Theorems 7 and 8 follow from the works of [1, 4]. For the
result of Theorem 8 we give a more direct and simple algorithm.

1.4 Techniques
Our main technique is to convert an oracle access to a power of a polynomial fe into an
oracle access to the polynomial itself f . As was discussed in the first part of the Introduction,
a necessarily condition is having an efficient root extraction algorithm for field elements,
referred to as a “root oracle”. Yet, as was demonstrated further, applying root oracles naivly
can result in inconsistency. More specifically, as there could be e roots of a polynomial,
differing only by a multiplicative factor of a root of unity of order e, a root oracle can
mismatch the answers to different oracle queries. We solve this problem by introducing an
anchor and matching all the queries to that anchor. More specifically, we fix a non-zero

I. Volkovich 48:5

assignment ā of f . For query point b̄ we compute the root along the line `ā,b̄(t) that passes
through ā and b̄. Thus, we reduce the problem from n variables to 1. Finally, we show how
to use a root oracle to compute a root of a univariate polynomial. The latter is carried out
via Squarefree decomposition. See Sections 2.5 and 4.1 for more details.

In order to deal with sparse multiquadratic polynomials, we first show that a factor
of such a polynomial is also sparse. Next, we apply the quadratic formula to get explicit
expressions for the factors. Yet, these expression involve square roots. Computing a square
root of a polynomial h can be seen as computing ±f given h = f2. To this end, we first apply
our main technique to get an oracle access for f and then use a reconstruction algorithm for
sparse polynomials to compute the polynomial. See Section 4.3 for more details.

Another tool that we use is Resultants and Subresultants. These objects have seen
various applications in algebraic complexity, computer algebra, elimination theory and other
areas (see e.g. [15, 48, 10]). In particular, these are used to test coprimality of polynomials.
We show how to efficiently employ them with sparse polynomial of constant degree. The
main observation is that a resultant of two sparse polynomials of constant degrees is also a
somewhat sparse polynomial of a “small” degree. For more details see Sections A and 2.4.

1.5 Previous Results

Over the last three decades the question of derandomizing sparse polynomial factorization
has seen only a very partial progress. In [37], Shpilka & Volkovich gave efficient deterministic
factorization algorithms for sparse multilinear polynomials. This result was extended in [44]
to the model of sparse polynomials that split into multilinear factors. For the testing version
of the problem, Saha et al. [34] presented an efficient deterministic algorithm for the special
case when the sparse polynomials are sums of univariate polynomials.

1.6 Organization

We begin by some basic definitions and notation in Section 2 when in Section 2.5 we show
how to compute a root of a univariate polynomial. In Section 3 we discuss sparse polynomials,
their properties and some related efficient algorithms which leverage these properties. In
particular, in Section 3.1 we prove that a factor of a sparse multiquadratic polynomial is also
sparse. In Section 4 we give all our results showing how to perform certain computations
on polynomials given an oracle access to their powers. We begin (Section 4.1) by showing
how convert an oracle access to fe into an oracle access to f using an e-th root oracle,
thus proving Theorem (Theorem 1) which is our main technical contribution. The first
application is given in Section 4.2 where we show how to extend a reconstruction algorithm
for a circuit class C to handle powers of polynomials from C (Theorem 2). As a corollary, we
obtain an efficient reconstruction algorithm for powers of sparse (Theorem 3) and read-once
(Theorem 4) polynomials. Our main application is given in Section 4.3 where we present
the first efficient factorization algorithm for sparse multiquadratic polynomials, thus proving
theorem Theorem 6. In Section C, using different techniques but following the general line,
we show how certain polynomial identity testing algorithms can be extended to handle powers
of polynomials. We conclude the paper with discussion and open questions in Section 5.

2 Preliminaries

Let F denote a field, finite or otherwise, and let F denote its algebraic closure.

APPROX/RANDOM’17

48:6 On Some Computations on Sparse Polynomials

2.1 Polynomials
A polynomial f ∈ F[x1, x2, . . . , xn] depends on a variable xi if there are two inputs ᾱ, β̄ ∈ F
differing only in the ith coordinate for which f(ᾱ) 6= f(β̄). We denote by var(f) the set of
variables that f depends on. We say that f is g are similar and denote by it f ∼ g if f = αg

for some α 6= 0 ∈ F. For a polynomial f(x1, . . . , xn), a variable xi and a field element α, we
denote with f |xi=α the polynomial resulting from substituting α to xi. Similarly given a
subset I ⊆ [n] and an assignment ā ∈ Fn, we define f |x̄I=āI

to be the polynomial resulting
from substituting ai to xi for every i ∈ I.

I Definition 9 (Line). Given ā, b̄ ∈ Fn we define a line passing through ā and b̄ as `ā,b̄ : F→
Fn, `ā,b̄(t)

∆= (1− t) · ā+ t · b̄. In particular, `ā,b̄(0) = ā and `ā,b̄(1) = b̄.

I Definition 10 (Degrees, Leading Monomials, Leading Coefficients). The leading monomial of
a polynomial f , lm(f) is defined as the largest non-zero monomial of f (with its coefficient)
with respect to the lexicographical order of the monomials. The total degree of f is the
largest total degree of a monomial in f . Let xi ∈ var(f). We can write: f =

∑d
j=0 fj · x

j
i

such that ∀j, xi 6∈ var(fj) and fd 6≡ 0. The leading coefficient of f w.r.t to xi is defined as
lcxi(f) ∆= fd. The individual degree of xi in f is defined as degxi

(f) ∆= d.

It easy to see that for every f, g ∈ F[x1, x2, . . . , xn] and i ∈ [n] we have that: lm(f · g) =
lm(f) · lm(g) and lcxi(f · g) = lcxi(f) · lcxi(g).

2.2 Partial Derivatives
The concept of a partial derivative of a multivariate function and its properties are well-known
and well-studied for continuous domains (such as, R, C etc.). This concept can be extended
to polynomials and rational functions over arbitrary fields from a purely algebraic point of
view. For more details we refer to reader to [24].

I Definition 11. For a monomial M = α · xe11 · · ·x
ei
i · · ·xen

n ∈ F[x1, x2, . . . , xn] and a
variable xi we define the partial derivative of M with respect to xi, as ∂M

∂xi

∆= αei ·
xe11 · · ·x

ei−1
i · · ·xen

n . The definition can be extended to F[x1, x2, . . . , xn] by imposing lin-
earity and to F(x1, x2, . . . , xn) via the quotient rule.

Observe that the sum, product, quotient and chain rules carry over. In addition, when
F = R or F = C the definition coincides with the analytical one. The following set of rational
function plays an important role.

I Definition 12 (Field of Constants). The Field of Constants of F(x1, x2, . . . , xn) is defined
as C(F(x1, x2, . . . , xn)) ∆=

{
f ∈ F(x1, x2, . . . , xn)

∣∣∣ ∀i ∈ [n], ∂f∂xi
≡ 0

}
.

It is easy to see that the field of constants is, indeed, a field and in particular F ⊆
C(F(x1, x2, . . . , xn)). Furthermore, this containment is proper for fields with positive charac-
teristics and equality holds only for fields with characteristic 0. The following Lemma gives
a precise characterization of C(F(x1, x2, . . . , xn)).

I Lemma 13. Let F be a field of characteristic p. Then for every n ∈ N:
1. C(F(x1, x2, . . . , xn)) = F when p = 0.
2. C(F(x1, x2, . . . , xn)) = F(xp1, x

p
2, . . . , x

p
n) when p is positive.

I. Volkovich 48:7

2.3 Factors and Perfect Powers
Let f, g ∈ F[x1, x2, . . . , xn] be polynomials. We say that g divides f , or equivalently g is a
factor of f , and denote it by g | f if there exists a polynomial h ∈ F[x1, x2, . . . , xn] such
that f = g · h. We say that f is irreducible if f is non-constant and cannot be written as a
product of two non-constant polynomials. For e ∈ N, we say that f is a perfect e-th power if
there exists a polynomial h ∈ F[x1, x2, . . . , xn] such that f = he. Equivalently, we say that h
is f ’s e-th root. Given the notion of divisibility we define the gcd of a set of polynomials in
the natural way. Given the notion of irreducibility we can state the important property of
the uniqueness of factorization,

I Lemma 14 (Uniqueness of Factorization). Let he11 ·. . .·h
ek

k = g
e′1
1 ·. . .·g

e′
k′
k′ be two factorizations

of the same non-zero polynomial into irreducible, pairwise comprise factors. Then k = k′

and there exists a permutation σ : [k]→ [k] such that hi ∼ gσ(i) and ei = e′σ(i) for i ∈ [k].

By definition, the ratio α/β of two e-th of roots a field element (i.e. αe = βe 6= 0) is
a root of unity of order e. We show that the same holds for perfect roots of polynomials.
More precisely, two e-th roots of the same polynomial differ only by a multiplicative factor ω
satisfying ωe = 1.

I Lemma 15. Let f(x̄), h(x̄), g(x̄) ∈ F[x1, x2, . . . , xn] be polynomials such that f(x̄) =
h(x̄)e = g(x̄)e for some e ∈ N. In addition, let α ∈ F, ā ∈ Fn such that αe = f(ā) 6= 0.
Then
1. There exists ω ∈ F such that ωe = 1 and h(x̄) = ω · g(x̄).
2. There exists a unique polynomial u(x̄) ∈ F[x1, x2, . . . , xn] s.t. f(x̄) = u(x̄)e and u(ā) = α.

The proof can be found in Section D.

2.4 GCD and Subresultants
As was mentioned earlier, the notion of divisibility gives rise to the notion of a gcd of a set of
polynomials in the natural way. Furthermore, the uniqueness of factorization property of the
rings of polynomials F[x1, x2, . . . , xn] ensures that a gcd is defined up to a multiplication by
a field element. We can also consider versions of gcd when we concentrate on a single variable
and treat the remaining variables as field elements. That is, given f1, . . . , fm consider
gcdxi

(f1, . . . , fm). Naturally, such gcd’s is defined up to a multiplication by a rational
function depending on the remaining variables. Yet, in all such gcd’s the variable xi has the
same degree.

I Example 16. Let f = x2
1x

2
2 + x2

1x2 + x1x
2
2 + x1x2 and g = x2

1x
2
2. gcd(f, g) = x1x2 while

gcdx1(f, g) = x1. Yet, degxi
(gcdxi

(f, g)) = degxi
(gcd(f, g)) = 1.

I Lemma 17. Let f, g 6≡ 0 ∈ F[x1, x2, . . . , xn] and let ei denote the individual degree of xi
in g. Then g | f iff ∀i with ei > 0 : degxi

(gcdxi
(f, g)) = ei.

Proof. If g | f then the statement is clear. Suppose g 6 | f . Let g =
∏
g
dj

j be a factorization
of g into irreducible, pairwise comprise factors. By definition, there exists j such that gdj

j 6 | f .
Let xi ∈ var(gj). As such, degxi

(gcdxi
(f, g)) ≤ ei − degxi

(gj) < ei. J

I Definition 18 (Subresultant - Definition 7.3 from [15]). Let f, g ∈ F[x1, x2, . . . , xn] be
polynomials. Fix i ∈ [n] and let d and e denote the degree of the variable xi in f and g,
respectively. We can write: f =

∑d
j=0 fj · x

j
i such that ∀j, xi 6∈ var(fj) and g =

∑e
k=0 gk · xki

APPROX/RANDOM’17

48:8 On Some Computations on Sparse Polynomials

such that ∀k, xi 6∈ var(gk). For 0 ≤ j ≤ min{e, d} the j-th Subresultant of f and g w.r.t xi,
Sxi

(j, f, g) is defined as a determinant of the (d+ e− 2j)× (d+ e− 2j) minor of the Sylvester
Matrix of f and g. That is, the entities of the matrix are fj-s and gk-s.

Below is the crucial property of subresultants:

I Lemma 19 (Lemma 7.1 and Theorem 7.3 from [15]). For every variable xi, the degree
of xi in gcdxi

(f, g) equals to smallest j such that Sxi
(j, f, g) 6≡ 0. In addition, if u, v ∈

F[x1, x2, . . . , xn] such that xi 6∈ var(u) ∪ var(v) then ∀i, j: Sxi
(j, uf, vg) = Sxi

(j, f, g) ·
udegxi

(g) · vdegxi
(f).

Combining Lemmas 17 and 19 gives the following:

I Corollary 20. Let f, g 6≡ 0 ∈ F[x1, x2, . . . , xn] and let ei denote the individual degree of xi
in g. Then g | f iff ∀i with ei > 0 : Sxi

(ei − 1, f, g) ≡ 0.

Proof. If g | f and ei > 0, then degxi
(gcdxi

(f, g)) = ei and thus Sxi(ei, f, g) 6≡ 0 while
Sxi

(ei − 1, f, g) ≡ 0. On the other hand, if Sxi
(ei − 1, f, g) ≡ 0 it must be the case that

Sxi(ei, f, g) 6≡ 0 since degxi
(gcdxi

(f, g)) ≤ ei. J

2.5 Univariate Polynomials: Squarefree Decomposition and Root
Computation

In this section we show how to compute the e-th roots of univariate polynomials using root
oracles. We begin by discussing a Squarefree Decomposition of a polynomial. This is one of
the steps in the majority of the polynomial factorization algorithms.

I Definition 21 (Squarefree polynomials). We say that a polynomial f(y) ∈ F[y] is squarefree
if g(y)2 6 | f(y) for every g(y) ∈ F[y].

I Definition 22 (Squarefree Decomposition). Let f(y) ∈ F[y] be polynomial of degree at
most d. The squarefree decomposition of f(y) is a sequence of pairwise coprime, squarefree
polynomials (g1, . . . , gd) such that f = g1 · g2

2 · . . . · gdd .

The next lemma shows that for monic polynomials the squarefree decomposition is unique.
Moreover, this decomposition can be computed efficiently.

I Lemma 23 (Theorem 14.23 of [48] and extensions). Let f(y) ∈ F[y] be a non-constant,
monic polynomial of degree at most d. Then there exists a unique squarefree decomposition
into a sequence of monic polynomials. Moreover, there exists a deterministic algorithm that
given the polynomial f(y) uses poly(d, log |F|) field operations and computes its squarefree
decomposition.

The squarefree decomposition gives rise to a simple e-th root computation algorithm for
univariate polynomials. In addition, this algorithm can be used to test whether a univariate
polynomial is indeed a perfect power.

I Lemma 24. Let g(y) ∈ F[y] be a non-constant, monic polynomial of degree at most d
an let (g1, . . . , gd) be its squarefree decomposition. Then g(y) = h(y)e for some e ∈ N and
h(y) ∈ F[y] iff gi = 1 when e 6 | i.

The proof can be found in Section D. The following is immediate given the previous
lemmas.

I. Volkovich 48:9

I Corollary 25. There exists a deterministic algorithm that given a non-constant, monic
polynomial f(y) ∈ F[y] of degree at most d outputs a polynomial h(y) ∈ F[y] such that
f(y) = h(y)e if one exists using poly(d, log |F|) field operations.

We can extend the algorithm to handle arbitrary univariate polynomials by making a
call to a root oracle.

I Lemma 26. There exists a deterministic algorithm that given e ∈ N, an e-th root oracle
Re and a polynomial f(y) ∈ F[y] of degree at most d uses poly(d, log |F|) field operations and
one oracle call to Re and computes an e-th root of f(y). That is, the algorithm outputs a
polynomial h(y) ∈ F[y] such that f(y) = h(y)e if one exists. Otherwise, the algorithm rejects.

Proof. If f(y) = α ∈ F is a field element (i.e. a constant polynomial), output Re(α).
Otherwise, consider f̂(y) ∆= f(y)/lc(f). As f̂(y) is a non-constant, monic polynomial we
can apply Corollary 25 to compute ĥ(y) ∈ F[y] such that f̂(y) = ĥ(y)e. In addition, let
α = Re(lc(f)). Output α · ĥ(y). Observing that (α · ĥ(y))e = f(y) completes the proof. J

3 Sparse Polynomials

In this section we discuss sparse polynomials, their properties and some related efficient
algorithms which leverage these properties.

An s-sparse polynomial is polynomial with at most s (non-zero) monomials. We denote
by ‖f‖ the sparsity of f . In this section we list several results related to sparse polynomials.
We begin with a corollary from [37] that shows that a sparse multilinear polynomial can be
factored efficiently. Moreover, all its factors are sparse.

I Lemma 27 ([37]). Given a multilinear polynomial f ∈ F[x1, x2, . . . , xn], there is a
poly(n, ‖f‖) time deterministic algorithm that outputs the irreducible factors, h1, . . . , hk of
f . Furthermore, ‖h1‖ · ‖h2‖ · . . . · ‖hk‖ = ‖f‖.

The following result gives an efficient reconstruction algorithm for sparse polynomials.

I Lemma 28 ([29]). Let n, s, d ∈ N. There exists a deterministic algorithm that given an ora-
cle access to an s-sparse polynomial f ∈ F[x1, x2, . . . , xn] of degree d uses poly(n, s, d, log |F|)
field operations and outputs f .

As a corollary we obtain an efficient algorithm for testing identity and, more generally,
similarity between sparse polynomials. We leave the proof of the corollary as an easy exercise
for the reader.

I Corollary 29. Let f, g ∈ F[x1, x2, . . . , xn] be s-sparse polynomials of degree at most d.
Then there exists an algorithm that given f, g uses poly(n, d, s, log |F|) field operations and
tests if f ∼ g. If yes, the algorithm also outputs α ∈ F such that f = αg.

Additionally, we obtain an efficient algorithm for sparse polynomial division given an
upper bound on the sparsity of the quotient polynomial. The main idea is to reconstruct
to the quotient polynomial as a sparse polynomial, using the original polynomials as oracle
access. Given a candidate sparse polynomial we then can verify whether it is indeed the
quotient polynomial.

I Lemma 30 ([29, 11]). Let n, s, d, t ∈ N. Let f, g ∈ F[x1, x2, . . . , xn] be s-sparse polynomials
of degree at most d. Then there exists an algorithm that given f, g uses poly(n, d, s, t, log |F|)
field operations and computes the quotient polynomial of f and g if it a t-sparse polynomial.
That is, if f = gh for some h ∈ F[x1, x2, . . . , xn], ‖h‖ ≤ t then the algorithm outputs h.
Otherwise, the algorithm rejects.

APPROX/RANDOM’17

48:10 On Some Computations on Sparse Polynomials

Corollary 29 can be also extended to handle products of sparse polynomials.

I Lemma 31 ([35]). Let n, s, d ∈ N. There exists a deterministic algorithm that given an
oracle access to a product of s-sparse polynomials f ∈ F[x1, x2, . . . , xn] when f =

∏
gi of

degree d uses poly(n, s, d, log |F|) field operations and tests if f ≡ 0.

3.1 Sparse Multiquadratic Polynomials
In this section we prepare the ground for our main application - efficient factorization
algorithm for sparse multiquadratic polynomials. We begin by showing that a factor of a
sparse multiquadratic polynomials is also sparse. Recall that in general a sparse polynomial
can have a dense factor.

I Lemma 32. Let 0 6≡ f, g ∈ F[x1, x2, . . . , xn] be polynomials such that g is multiquadratic.
Then f | g =⇒ ‖f‖ ≤ ‖g‖.

Proof. The proof is by induction on the number of variables. The base case is when
n = 0. That is, f, g ∈ F. Clearly, in this case ‖f‖ = ‖g‖ = 1 and the claim holds. Now
suppose that n ≥ 1. By definition, f · h = g for some h ∈ F[x1, x2, . . . , xn]. We have two
cases to consider: Suppose var(f) ∩ var(h) = ∅. In this case ‖f‖ · ‖h‖ = ‖g‖ and hence
‖f‖ ≤ ‖g‖. Otherwise, pick xi ∈ var(f) ∩ var(h). Since g is multiquadratic we can write
f = fixi + f0 and h = hixi + h0 such that fi, hi, f0 and h0 do not depend on xi. Therefore:
‖g‖ = ‖(fixi + f0) · (hixi + h0)‖ = ‖fihix2

i + (f0hi + fih0)xi + f0h0‖ ≥ ‖fihi‖ + ‖f0h0‖.
By the induction hypothesis ‖fihi‖ ≥ ‖fi‖ and ‖f0h0‖ ≥ ‖f0‖. Consequently, ‖g‖ ≥
‖fihi‖+ ‖f0h0‖ ≥ ‖fi‖+ ‖f0‖ = ‖f‖ implying the claim of the lemma. J

It is easy to see that this bound is tight. The following corollary is immediate by combining
the bound with Lemma 30.

I Corollary 33. Let n, s, d ∈ N. There exists an algorithm that given s-sparse multiquadratic
polynomials f, g ∈ F[x1, x2, . . . , xn] uses poly(n, s, d, log |F|) field operations and computes
the quotient polynomial of f and g. That is, if f = gh for some h ∈ F[x1, x2, . . . , xn] then
the algorithm outputs h. Otherwise, the algorithm rejects.

We can extend the result to the case when a polynomial is a factor of a product of
sparse multiquadratic polynomials. Note that such a product need not be either sparse or
multiquadratic.

I Corollary 34. Let 0 6≡ f, g1, . . . , gk ∈ F[x1, x2, . . . , xn] be polynomials such that for all
i ∈ [k], gi is multiquadratic. Then f | g1 · . . . · gk =⇒ ‖f‖ ≤ ‖g1‖ · . . . · ‖gk‖.

Proof. Since f | g1 · . . . · gk, we can write f = f1 · . . . · fk such that fi | gi. By the Lemma:
‖fi‖ ≤ ‖gi‖. Therefore: ‖f‖ ≤ ‖f1‖ · . . . · ‖fk‖ ≤ ‖g1‖ · . . . · ‖gk‖. J

The following lemma shows that if a sparse multiquadratic polynomial over a field with
an odd characteristic factors in a certain way, then the corresponding discriminant is a
polynomial and, in fact, a sparse polynomial.

I Lemma 35. Suppose char(F) 6= 2. Let f = ax2
i + bxi + c ∈ F[x1, x2, . . . , xn] be a

multiquadratic polynomial that can be factored as f = g · h when both g and h depend on xi.
Then there exists a multiquadratic polynomial ∆ ∈ F[x1, x2, . . . , xn] such that ∆2 = b2 − 4ac.
Moreover, ‖∆‖ ≤ ‖f‖2.

I. Volkovich 48:11

Proof. Let g = gixi + g0 and h = hixi + h0. By comparing the coefficients of xi on
both sides of the equation we get that a = gihi , b = gih0 + g0hi and c = g0h0. Therefore,
b2−4ac = (gih0+g0hi)2−4gihig0h0 = (gih0−g0hi)2. Consequently, selecting ∆ ∆= gih0−g0hi
takes care of the first claim. The claim regarding the degree follows from the fact that the
degree of every variable in b2−4ac is at most 4. Finally, as (b+∆)(b−∆) = 4ac, by Corollary 34:
‖b+ ∆‖ ≤ ‖a‖ · ‖c‖, implying that ‖∆‖ ≤ ‖a‖ · ‖c‖+ ‖b‖ ≤ (‖a‖+ ‖b‖+ ‖c‖)2 = ‖f‖2. J

4 Computations beyond an Exponentiation Gate and Application

In this section we give all our results showing how perform certain computations on polyno-
mials given an oracle access to their powers.

4.1 Evaluation beyond an Exponentiation Gate
The most basic task for polynomial manipulation is evaluating a polynomial given via an
oracle access. In this section we show how to transform an oracle access to the polynomial
fe into an oracle access to f itself. This can be thought of having an oracle equipped with a
clever root extraction algorithm. Our main result is given in the following algorithm.

Input: Oracle access to a polynomial f = ge ∈ F[x1, x2, . . . , xn]; ā ∈ Fn s.t.
f(ā) 6= 0;

e ∈ N, e-th root oracle Re.
Evaluation points b̄1, b̄2, . . . ∈ F[x1, x2, . . . , xn]
Output: h(b̄1), h(b̄2), . . . when h(x̄) ∈ F[x1, x2, . . . , xn] is a polynomial s.t. he = f .

1 α← Re(f(ā)) /* Computed only once. */
2 Compute hb̄(t) such that hb̄(t)e = f(`ā,b̄(t)) /* Invoking Lemma 26 */
3 β ← hb̄(0) ;
4 return hb̄(1) · α/β

Algorithm 1: Polynomial Oracle Transformation.

I Lemma 36. Let h(x̄) ∈ F[x1, x2, . . . , xn] be such that f(x̄) = h(x̄)e and h(ā) = α. Then
for every b̄ ∈ F[x1, x2, . . . , xn] Algorithm 1 outputs h(b̄).

Proof. First, by Lemma 15 such a polynomial h(x̄) exists and is unique. In addition, β 6= 0
since βe = hb̄(0)e = f(`ā,b̄(0)) = f(ā) 6= 0. Therefore, the output of algorithm is well-defined.
Next, we have that hb̄(t)e = f(`ā,b̄(t)) = h(`ā,b̄(t))e. By Lemma 15, hb̄(t) = ω · h(`ā,b̄(t)) for
some ω ∈ F. Therefore: hb̄(1)·α

β = ω·h(`ā,b̄(1))·α
hb̄(0) = ω·h(b̄)·α

ω·h(ā) = h(b̄). J

Note that Algorithm 1 requires a non-zero point of f(x̄) as an additional input. Generally
speaking, finding such a point is the well-known problem of Polynomial Identity Testing
(PIT) which is not known to have an efficient deterministic algorithm. We now argue that
for our purposes we do not need a PIT algorithm.

Recall that we are in the setting where the root of f(x̄) is evaluated on a sequence of
points. Given each new query point b̄ ∈ Fn we can first evaluate f(x̄) on b̄. If f(b̄) 6= 0, we
can set ā = b̄ and use this ā as the non-zero input onwards. Observe that Algorithm 1 works
for the case ā = b̄ as well. However, one may ask what happens with the previous query
points? Or, what if for all the query points b̄ are zeros of f? Observe that if f(b̄) = 0 then

APPROX/RANDOM’17

48:12 On Some Computations on Sparse Polynomials

h(b̄) = 0 for any h(x̄) ∈ F[x1, x2, . . . , xn] such that h(x̄)e = f(x̄). Therefore, there is no issue
of inconsistency here and the oracle just needs to output 0. Consequently, we can patch
Algorithm 1 by using the first non-zero query point as ā (if one exists). Theorem 1 follows
as a corollary of Lemma 36 and the above discussion.

4.2 Reconstruction beyond an Exponentiation Gate
An immediate application of the polynomial evaluation algorithm is reconstruction beyond
an exponentiation gate. More formally, let A be a reconstruction algorithm for a circuit class
C. By definition, A requires an oracle access to f ∈ C to reconstruct it. We can extend the
algorithm to reconstruct f(x̄) given an oracle access to f(x̄)e and an e-th root oracle Re, by
simulating each query of A. However, in the spirit of Lemma 15 the reconstruction algorithm
might end up outputting ω · f(x̄) depending on the root oracle Re at hand. This reasoning
is summarized in Theorem 2. As a corollary we get the following:

Proof of Theorem 3. Apply Theorem 2 with Lemma 28. J

Theorem 4 also follows as a corollary given the following result:

I Lemma 37 ([33]). Let n ∈ N. There exists a deterministic algorithm that given an
oracle access to a read-once polynomial f ∈ F[x1, x2, . . . , xn] uses poly(n) · poly(log |F|) field
operations and outputs a read-once formula Ψ that computes f .

4.3 Deterministic Factorization of Sparse Multiquadratic Polynomials
For the case of sparse multiquadratic polynomials we can actually push those techniques
further to obtain complete factorization thus proving Theorem 6. We now give the overview
of the algorithm. Suppose char(F) 6= 2. Let f ∈ F[x1, x2, . . . , xn] be a multiquadratic
polynomial and let xi be a variable such that f factors as f = g · h when both g and h

depend on xi. We can view f as f = ax2
i + bxi + c when a(x̄), b(x̄) are c(x̄) polynomials that

do not depend on xi. Given this view, we can express g and h in terms of a, b and c using the
quadratic formula. That is, we can write a · f = (axi + b/2 + ∆/2) · (axi + b/2−∆/2) when
∆ is a polynomial satisfying ∆2 = b2− 4ac. By Lemma 32, both factors are ‖f‖-sparse so we
could continue this process recursively. However, there are some issues with this approach.
First, it is not clear that ∆ is a polynomial since the expression b2 − 4ac might not be a
perfect square. Next, suppose that ∆ were a polynomial. Is it sparse? Answers to these
question were given in Lemma 35. Finally, how do we compute ∆? For that purpose we
apply Theorem 3 that allows us reconstruct a sparse polynomial f given an oracle access to
its power fe. Formally, an instantiation of Theorem 3 with e = 2, d = 4n, s = ‖f‖2 together
with Lemma 35 give rise to the following corollary.

I Corollary 38. Suppose char(F) 6= 2. Let f = ax2
i + bxi + c ∈ F[x1, x2, . . . , xn] be a

multiquadratic polynomial that can be factored as f = g · h when both g and h depend on xi.
Then there exists a deterministic algorithm that given i ∈ [n], the polynomial f(x̄) and a
square root oracle R2 uses poly(n, ‖f‖, log |F|) field operations and oracles calls, and outputs
a multiquadratic polynomial ∆ ∈ F[x1, x2, . . . , xn] such that ∆2 = b2 − 4ac and ‖∆‖ ≤ ‖f‖2.

However, this still does not solve the problem entirely, as we obtain a factorization of a · f
instead of f , while a need not be constant. Another issue is that f could factor differently:
f = (a′x2

i + b′xi + c′)h and in particular the polynomial a = a′ · h could be reducible. We
solve both problems by changing the way we apply recursion: we first recursively factorize

I. Volkovich 48:13

a(x) and then iteratively use Corollary 33 to write f as f = gcd(f, a) · f ′. To finish the
algorithm we need to observe that f ′ is either irreducible or factors as above. We now move
the proof of Theorem 6.

Input: A multiquadratic polynomial f(x̄) ∈ F[x1, x2, . . . , xn]; A square root oracle
R2

Output: A list h1, . . . , hk of the irreducible factors of f . That is, f = h1 · . . . · hk.

1 f̂ ← lcxn
(f) ;

2 if f̂ is a constant then S ← ∅ else S ← Factor(f̂);
3 u← f ; T ← ∅;
4 foreach h ∈ S do
5 v ← u/h; /* using the algorithm in Corollary 33. */
6 if v 6=⊥ then u← v else S ← S \ {h}; T ← T ∪ {h};
7 end
8 if degxn

(u) = 1 then
9 return S ∪ {u}

10 else
11 Write u = ax2

n + bxn + c ;
12 Compute ∆←

√
b2 − 4ac; /* using the algorithm in Corollary 38. */

13 η+ ← axn + b/2 + ∆/2; η− ← axn + b/2−∆/2;
14 foreach h ∈ T do
15 v ← η+/h; /* using the algorithm in Corollary 33. */
16 if v 6=⊥ then η+ ← v; else η− ← η−/h;
17 end
18 γ ← lm(u)/lm(η+ · η−);
19 if u = γη+ · η− then return S ∪ {γη+, η−} else return S ∪ {u};
20 end

Algorithm 2: Factoring Sparse Multiquadratic Polynomials when char(F) 6= 2.

Proof of Theorem 6. The outline of the algorithm is given in Algorithm 2. First of all, as
f(x̄) is given to us as a list of monomials, we can assume wlog that var(f) = [n] by renaming
the variables. The proof is by induction on m(f) ∆= |var(lcxn(f))|.

Running time: Observe that throughout the execution of the algorithm ‖u‖, ‖v‖ ≤ ‖f‖
and ‖η+‖, ‖η−‖ ≤ ‖f‖2. Initially, the bound holds by the definition of the polynomials. As
each update results from a division, the claim regarding the sparsity follows from Lemma 32.
Therefore, by Corollaries 33 and 38 we get that the total number of field operations and
oracle calls to R2 satisfies the following recurrent expression: t(m, ‖f‖) ≤ t(m − 1, ‖f‖) +
poly(m, ‖f‖, log |F|) resulting in t(m, ‖f‖) = poly(m, ‖f‖, log |F|). As m ≤ n− 1, the claim
regarding the running time follows.

Analysis: Suppose that m(f) ≥ 1. We need to fix some notations. Let f = h1 · . . . · hk
be a factorization of f into irreducible factors. Let g denote the product of those hi-s
that depend on xn. Note that there can be at most two such factors. Therefore, we
can write: f = h1 · . . . · hk′ · g. Finally, let ĝ = lcxn(g) and let ĝ = ĝ1 · . . . · ĝ` be a
factorization of ĝ into irreducible factors. Note that gcd(g, ĝ) = 1 since xn 6∈ var(ĝ) and

APPROX/RANDOM’17

48:14 On Some Computations on Sparse Polynomials

g contains only the factors the depend on xn. Moreover, given the above we get that:
f̂ = h1 · . . . ·hk′ · ĝ = h1 · . . . ·hk′ · ĝ1 · . . . · ĝ` is a factorization of f̂ into irreducible factors. As
m(f̂) < m(f), by the induction hypothesis the set S will contain the irreducible factors of f̂ .
By the uniqueness of factorization, S will contain exactly the polynomials α1h1, . . . , αk′hk′

and β1ĝ1, . . . , β`ĝ` for some {αi}, {βj} ⊆ F\{0}. Consequently, the ‘for each’ loop separates
the hi-s from ĝj-s by gradually dividing f by the containment of S. Observe, that at the
end of the loop we get that: S = {α1h1, . . . , αk′hk′}, T = {β1ĝ1, . . . , β`ĝ`}. Moreover, as
u = f = h1 · . . . · hk′ · g at the beginning of the loop and gcd(g, ĝj) = 1 for every j, we get
that u = f

α1h1·...·αk′hk′
= g

γ for some γ ∈ F. Therefore, to complete the algorithm we need to
compute the irreducible factors of u and concatenate them with S. Recall that by definition
g (and hence u) is a product of at most two irreducible polynomials, both depending on xn.

If degxn
(u) = degxn

(g) = 1 then u must be a single irreducible factor and thus f =
α1h1 · . . . · αk′hk′ · u is a factorization of f into irreducible factors. Otherwise, degxn

(u) =
degxn

(g) = 2 and there can be two cases. If u is irreducible, then again f = α1h1 ·. . .·αk′hk′ ·u
is a factorization of f into irreducible factors and the algorithm will return this factorization
since for every η− and η+ the identity test u =? γη+ · η− will fail. Otherwise, we can write
u as a product of two irreducible polynomials, both depending on xn. By Corollary 38
the discriminant polynomial ∆ in Line 12 is computed successfully. As γu = g we have
that ĝ = γa. Consequently, we can write u · ĝ1 · . . . · ĝ` = u · ĝ = u · γa = γη+ · η−. As
each ĝi is an irreducible polynomial, it must be the case that either ĝi | η+ or ĝi | η−.
Thus, at Line 17 we have that u = γη+ · η−. We can easily compute γ by noting that
lm(u) = lm(γη+ · η−) = γlm(η+ · η−). In conclusion, f = α1h1 · . . . · αk′hk′ · γη+ · η− is a
factorization of f into irreducible factors and the algorithm will return this factorization
passing the identity test u =? γη+ · η−.

The analysis of the base case m(f) = 0 is similar. First, note that if u = f is irreducible
then the algorithm will return {u}. Otherwise, we can write u as a product of two irreducible
polynomials, both depending on xn. By definition, a · u = η+ · η−. As a 6= 0 ∈ F,
γ = lm(u)

lm(η+·η−) = lm(u)
lm(a·u) = 1

a and hence u = 1
aη+ · η− = γη+ · η−. In conclusion we get that in

the base case, f = γη+ · η− is a factorization of f into irreducible factors and the algorithm
will return this factorization passing the identity test u =? γη+ · η−. This completes the
proof. J

5 Discussion & Open Questions

In this paper we study computations beyond a (single) exponentiation gate and present
some applications, with the main one being the first efficient deterministic factorization
algorithm for sparse multiquadratic polynomials over odd characteristics. Can we devise
such algorithms for multicubic polynomials? Or more generally, when the individual degree
of each variable is constant? One of the milestones on the route to this goal has to do with
estimating the sparsity of the factors of such polynomials. To this end, we propose the
following conjecture:

I Conjecture 39. There exists a function ν : N→ N such that if f ∈ F[x1, x2, . . . , xn] is a
polynomial with individual degrees at most d then g | f =⇒ ‖g‖ ≤ ‖f‖ν(d).

Our results show that ν(1) = ν(2) = 1. As we noted before, the value of ν(3) is unknown.
We also note that the conjecture gives rise to an efficient deterministic algorithm for testing
sparse factorization into polynomials with constant individual degrees.

In addition, combined with the randomized factorization algorithm of [49], we can obtain
an efficient factorization algorithm for such polynomial. Using Theorem 7 we can this
algorithm zero-error, Las Vegas algorithm (i.e. ZPP-type).

I. Volkovich 48:15

Another milestone in sparse polynomial factorization is computing a root of a sparse
polynomial. Theorem 8 allows us to test whether the polynomial f is an e-th root of the
polynomial g. But can we actually compute f given g? Once again, an upper bound on
the corresponding sparsity could be useful. We can get the desired result by combining this
bound with Theorem 3. We propose the following conjecture:

I Conjecture 40. Suppose char(F) = 0 or “large enough”. There exists a function µ : N→ N
such that for for every f ∈ F[x1, x2, . . . , xn] and e ∈ N: ‖f‖ ≤ ‖fe‖µ(e).

Note even when n = 1, there exist sparse-square polynomials. That is, polynomials f such
that ‖f2‖ < ‖f‖, implying that µ(2) > 1. For more details see [13, 9] and references within.

In addition, Example 6.1 in [44] shows that when the field characteristic is close to
the degree of the polynomial in question, even a square root of sparse polynomial could
be very dense. Therefore, the bound could only hold for “large enough” (in terms of n, d
etc..) characterstic. Finally, can we extend Theorem 8 to fields with “small” characteristics?
Perhaps, by extending Lemma 48?

Acknowledgments. The author would like to thank the anonymous referees for useful
comments.

References
1 M. Agrawal, C. Saha, R. Saptharishi, and N. Saxena. Jacobian hits circuits: Hitting-sets,

lower bounds for depth-d occur-k formulas & depth-3 transcendence degree-k circuits. In
Proceedings of the 44th Annual ACM Symposium on Theory of Computing (STOC), pages
599–614, 2012.

2 M. Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four. In Proceedings
of the 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
67–75, 2008.

3 D. Angluin, L. Hellerstein, and M. Karpinski. Learning read-once formulas with queries. J.
ACM, 40(1):185–210, 1993.

4 M. Beecken, J. Mittmann, and N. Saxena. Algebraic independence and blackbox identity
testing. Information & Computation, 222:2–19, 2013. doi:10.1016/j.ic.2012.10.004.

5 M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse multivariate polynominal
interpolation. In Proceedings of the 20th Annual ACM Symposium on Theory of Computing
(STOC), pages 301–309, 1988.

6 D. Bshouty and N.H. Bshouty. On interpolating arithmetic read-once formulas with expo-
nentiation. JCSS, 56(1):112–124, 1998.

7 N.H. Bshouty and R. Cleve. Interpolating arithmetic read-once formulas in parallel. SIAM
J. on Computing, 27(2):401–413, 1998.

8 N.H. Bshouty, T.R. Hancock, and L. Hellerstein. Learning boolean read-once formulas
with arbitrary symmetric and constant fan-in gates. JCSS, 50:521–542, 1995.

9 D. Coppersmith and J. Davenport. Polynomials whose powers are sparse. Acta Arith.,
58:79–87, 1991.

10 D.A. Cox, J. Little, and D. O’Shea. Ideals, varieties, and algorithms – an introduction to
computational algebraic geometry and commutative algebra (4. ed.). Undergraduate texts
in mathematics. Springer, 2015.

11 Z. Dvir and R. Mendes de Oliveira. Factors of sparse polynomials are sparse. CoRR,
abs/1404.4834, 2014.

12 Z. Dvir, A. Shpilka, and A. Yehudayoff. Hardness-randomness tradeoffs for bounded depth
arithmetic circuits. SIAM J. on Computing, 39(4):1279–1293, 2009.

APPROX/RANDOM’17

http://dx.doi.org/10.1016/j.ic.2012.10.004

48:16 On Some Computations on Sparse Polynomials

13 P. Erdös. On the number of terms of the square of a polynomial. Nieuw Arch. Wisk,
23:63–65, 1949.

14 S. Gao, E. Kaltofen, and A.G.B. Lauder. Deterministic distinct-degree factorization of
polynomials over finite fields. J. Symb. Comput., 38(6):1461–1470, 2004.

15 K.O. Geddes, S. R. Czapor, and G. Labahn. Algorithms for computer algebra. Kluwer,
1992.

16 A. Gupta, N. Kayal, and S.V. Lokam. Reconstruction of depth-4 multilinear circuits with
top fanin 2. In Proceedings of the 44th Annual ACM Symposium on Theory of Computing
(STOC), pages 625–642, 2012. Full version at http://eccc.hpi-web.de/report/2011/153.

17 V. Guruswami and M. Sudan. Improved decoding of reed-solomon codes and algebraic-
geometry codes. IEEE Transactions on Information Theory, 45(6):1757–1767, 1999.

18 T.R. Hancock and L. Hellerstein. Learning read-once formulas over fields and extended
bases. In Proceedings of the 4th Annual Workshop on Computational Learning Theory
(COLT), pages 326–336, 1991.

19 V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means proving
circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004.

20 E. Kaltofen. Single-factor hensel lifting and its application to the straight-line complexity
of certain polynomials. In Proceedings of the 19th Annual ACM Symposium on Theory of
Computing (STOC), pages 443–452, 1987. doi:10.1145/28395.28443.

21 E. Kaltofen. Factorization of polynomials given by straight-line programs. In S. Micali,
editor, Randomness in Computation, volume 5 of Advances in Computing Research, pages
375–412. JAI Press Inc., Greenwhich, Connecticut, 1989.

22 E. Kaltofen. Polynomial factorization: a success story. In ISSAC, pages 3–4, 2003.
23 E. Kaltofen and B.M. Trager. Computing with polynomials given by black boxes for

their evaluations: Greatest common divisors, factorization, separation of numerators and
denominators. J. of Symbolic Computation, 9(3):301–320, 1990.

24 I. Kaplansky. An Introduction to Differential Algebra. Hermann, Paris, 1957.
25 M. Karchmer, N. Linial, I. Newman, M.E. Saks, and A. Wigderson. Combinatorial char-

acterization of read-once formulae. Discrete Mathematics, 114(1-3):275–282, 1993.
26 Z. S. Karnin, P. Mukhopadhyay, A. Shpilka, and I. Volkovich. Deterministic identity testing

of depth 4 multilinear circuits with bounded top fan-in. SIAM J. on Computing, 42(6):2114–
2131, 2013.

27 N. Kayal. Derandomizing some number-theoretic and algebraic algorithms. PhD thesis,
Indian Institute of Technology, Kanpur, India, 2007.

28 N. Kayal. An exponential lower bound for the sum of powers of bounded degree polynomials.
Electronic Colloquium on Computational Complexity (ECCC), 19:81, 2012. URL: https:
//eccc.weizmann.ac.il/report/2012/081/.

29 A. Klivans and D. Spielman. Randomness efficient identity testing of multivariate poly-
nomials. In Proceedings of the 33rd Annual ACM Symposium on Theory of Computing
(STOC), pages 216–223, 2001.

30 S. Kopparty, S. Saraf, and A. Shpilka. Equivalence of polynomial identity testing and
deterministic multivariate polynomial factorization. In Proceedings of the 29th Annual
IEEE Conference on Computational Complexity (CCC), pages 169–180, 2014. doi:10.
1109/CCC.2014.25.

31 A.K. Lenstra, H.W. Lenstr, and L. Lovász. Factoring polynomials with rational coefficients.
Mathematische Annalen,, 261(4):515–534, 1982.

32 R. J. Lipton and N.K. Vishnoi. Deterministic identity testing for multivariate polynomials.
In Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 756–760, 2003.

http://dx.doi.org/10.1145/28395.28443
https://eccc.weizmann.ac.il/report/2012/081/
https://eccc.weizmann.ac.il/report/2012/081/
http://dx.doi.org/10.1109/CCC.2014.25
http://dx.doi.org/10.1109/CCC.2014.25

I. Volkovich 48:17

33 D. Minahan and I. Volkovich. Complete derandomization of identity testing and recon-
struction of read-once formulas. Manuscript, 2016. (submitted).

34 C. Saha, R. Saptharishi, and N. Saxena. A case of depth-3 identity testing, sparse fac-
torization and duality. Computational Complexity, 22(1):39–69, 2013. doi:10.1007/
s00037-012-0054-4.

35 S. Saraf and I. Volkovich. Blackbox identity testing for depth-4 multilinear circuits. Com-
binatorica, 2016. (accepted).

36 V. Shoup. A fast deterministic algorithm for factoring polynomials over finite fields of small
characteristic. In ISSAC, pages 14–21, 1991.

37 A. Shpilka and I. Volkovich. On the relation between polynomial identity testing and
finding variable disjoint factors. In Automata, Languages and Programming, 37th In-
ternational Colloquium (ICALP), pages 408–419, 2010. Full version at http://eccc.hpi-
web.de/report/2010/036.

38 A. Shpilka and I. Volkovich. On reconstruction and testing of read-once formulas. Theory
of Computing, 10:465–514, 2014.

39 A. Shpilka and I. Volkovich. Read-once polynomial identity testing. Computational Com-
plexity, 24(3):477–532, 2015.

40 A. Shpilka and A. Yehudayoff. Arithmetic circuits: A survey of recent results and open
questions. Foundations and Trends in Theoretical Computer Science, 5(3-4):207–388, 2010.

41 M. Sudan. Decoding of reed solomon codes beyond the error-correction bound. Journal of
Complexity, 13(1):180–193, 1997.

42 M. Sudan, L. Trevisan, and S. P. Vadhan. Pseudorandom generators without the XOR
lemma. J. Comput. Syst. Sci., 62(2):236–266, 2001. doi:10.1006/jcss.2000.1730.

43 L.G. Valiant. Negation can be exponentially powerful. Theoretical Computer Science,
12(3):303–314, 1980.

44 I. Volkovich. Deterministically factoring sparse polynomials into multilinear factors and
sums of univariate polynomials. In APPROX-RANDOM, pages 943–958, 2015.

45 I. Volkovich. Characterizing arithmetic read-once formulae. ACM Transactions on Com-
putation Theory (ToCT), 8(1):2, 2016. doi:10.1145/2858783.

46 I. Volkovich. A guide to learning arithmetic circuits. In Proceedings of the 29th Con-
ference on Learning Theory, (COLT), pages 1540–1561, 2016. URL: http://jmlr.org/
proceedings/papers/v49/volkovich16.html.

47 J. von zur Gathen. Who was who in polynomial factorization. In ISSAC, page 2, 2006.
48 J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge University Press,

1999.
49 J. von zur Gathen and E. Kaltofen. Factoring sparse multivariate polynomials. Jour-

nal of Computer and System Sciences, 31(2):265–287, 1985. doi:10.1016/0022-0000(85)
90044-3.

A Sparse Polynomials with Constant Individual Degrees

In this section we present an efficient factorization testing algorithm for sparse polynomials
with constant individual degrees. In particular, we prove Theorem 7. We begin by observing
that a Subresultant (Definition 18) of two sparse polynomials with constant degrees is a
(somewhat) sparse polynomial with a (slightly larger) constant degree.

I Observation 41. Let f, g ∈ F[x1, x2, . . . , xn] be s-sparse polynomials with individual degrees
at most d. Then for every i ∈ [n] and j ≤ d the polynomial Sxi(j, f, g) is an sO(d)-sparse
polynomial with individual degrees at most O(d2).

APPROX/RANDOM’17

http://dx.doi.org/10.1007/s00037-012-0054-4
http://dx.doi.org/10.1007/s00037-012-0054-4
http://dx.doi.org/10.1006/jcss.2000.1730
http://dx.doi.org/10.1145/2858783
http://jmlr.org/proceedings/papers/v49/volkovich16.html
http://jmlr.org/proceedings/papers/v49/volkovich16.html
http://dx.doi.org/10.1016/0022-0000(85)90044-3
http://dx.doi.org/10.1016/0022-0000(85)90044-3

48:18 On Some Computations on Sparse Polynomials

I Lemma 42. Let f, g ∈ F[x1, x2, . . . , xn] be s-sparse polynomials a let d be a bound on the
individual degrees of f . Then there exists an algorithm that given f and g tests if g | f using
poly(n, sd, log |F|) field operations.

Proof. For i ∈ [n], let di and ei denote the individual degrees of xi in f and g, respectively.
We can assume wlog that ∀i : ei ≤ di ≤ d. Otherwise, the answer is, clearly, “no”. The
algorithm will follow the procedure outlined in Corollary 20: Output “yes” iff ∀i with ei > 0:
Sxi

(ei − 1, f, g) ≡ 0.
The correctness follows immediately from Corollary 20. The running time follows from
Observation 41. J

The efficient division algorithm gives rise to an efficient procedure for computing GCD
given a list of sparse irreducible polynomials. Theorem 7 follows as a corollary of this result.

I Theorem 43. Let f, g1, . . . gm ∈ F[x1, x2, . . . , xn] be s-sparse polynomials a let d be a
bound on the individual degrees of f . More over, let g =

∏
gi and suppose that gi-s are

irreducible. Then given f, g1, . . . gm, Algorithm 3 computes gcd(f, g) using poly(n, sd, log |F|)
field operations.

Input: s-sparse polynomials f, g1, . . . gm ∈ F[x1, x2, . . . , xn]
Output: e1, . . . , em such that gcd(f, g) =

∏
gei
i

1 Use Corollary 29 to collect similar polynomials /* wlog g =
∏m′

i=1 g
e′i
i and e′i ≤ d,

where gi are irreducible, pairwise coprime factors */
2 For each i ∈ [m′] find the maximal ei, 0 ≤ ei ≤ e′i such that gei

i | f . /* Using
Lemma 42 */

Algorithm 3: Compute the GCD of sparse polynomials with constant individual
degrees.

Proof. The claim regarding the running time follows from Corollary 29 and Lemma 42. Since
gi’s are irreducible polynomials, there exist a subset S such that g ∼

∏
gi∈S g

e′i
i . Therefore,

gcd(f, g) will be of the form
∏
gi∈S g

ei
i for some ei ≤ e′i. As d is a bound on the individual

degrees of f , we get that ei ≤ d. J

B Deterministic Reconstruction Algorithm for Multilinear ΣΠΣΠ(2)
Circuits

In this section we prove Theorem 5. We build on the following result of Gupta et al. [16]:

I Lemma 44 (Implicit in [16]). Let n, s ∈ N. Let A be an algorithm that given an oracle
access to an s-sparse split polynomial f ∈ F[x1, x2, . . . , xn] output its irreducible factors using
T (n, s) operations. Then there exists a deterministic algorithm that given an oracle access
to the polynomial f ∈ F[x1, x2, . . . , xn] computable by a multilinear ΣΠΣΠ(2) circuit of size
s and uses poly(n, s, log |F| , T (n, s)) field operations and oracles calls to A, and outputs a
ΣΠΣΠ(2) circuit that computes f .

Originally, they invoke the randomized black-box factorization algorithm of Kaltofen &
Trager [23] along with Lemma 28 to obtain an efficient randomized reconstruction algorithm.
We are able to derandomize the reconstruction algorithm by extending Algorithm 2 to handle

I. Volkovich 48:19

s-sparse split polynomials. These are polynomials that can be written as products of s-sparse
(not necessarily irreducible) polynomials. Note that an s-sparse split polynomial need not be
sparse. To this end, we require the following Folklore results. (See e.g. [48], [12], [40] and
reference within).

I Lemma 45 (Folklore). Let f ∈ F[x1, x2, . . . , xn] be a polynomial of degree d and let i ∈ [n].
We can write: f =

∑d
j=0 fj · x

j
i such that ∀j, xi 6∈ var(fj). Then there exists a deterministic

algorithm that given i, j and an oracle access to f uses poly(n, d, log |F|) field operations and
outputs an oracle for fj.

To handle a division of s-sparse split polynomials we will need a s-sparse version of
Corollary 33. We give a somewhat stronger statement: a black-box version of Lemma 42.

I Lemma 46. Let n, s, d ∈ N. Let f ∈ F[x1, x2, . . . , xn] be an s-sparse split polynomial with
individual degrees at most d. There exists an algorithm that given an oracle access to f and
an irreducible s-sparse polynomial g ∈ F[x1, x2, . . . , xn] with individual degrees at most d
uses poly(n, sd2

, log |F|) field operations and computes the quotient polynomial of f and g.
That is, if f = gh for some h ∈ F[x1, x2, . . . , xn] then the algorithm outputs an oracle for h.
Otherwise, the algorithm rejects.

Proof. We can write f = f ′ · u where f ′ is the product of all the irreducible factors of f
that depend on xi. In addition, we can write f ′ =

∑d
j=0 f

′
j · x

j
i such that ∀j, xi 6∈ var(f ′j).

Clearly, f ′ is sd sparse and u is s-sparse split. Using Lemma 45, we can obtain oracles for
f ′j · u. For i ∈ [n], let di and ei denote the individual degrees of xi in f and g, respectively.
We can determine di using Lemma 31. Hence, we can assume wlog that ∀i : ei ≤ di ≤ d.
Otherwise, the answer is, clearly, “no”. The algorithm will follow the procedure outlined
in Corollary 20: Output “yes” iff ∀i with ei > 0: Sxi

(ei − 1, f, g) ≡ 0 using Lemma 45 to
perform the test. The correctness follows immediately from Corollary 20. For the running
time, by Lemma 19, Sxi

(ei−1, f, g) = Sxi
(ei−1, f ′, g) ·uei . Sxi

(ei−1, f ′, g) is a determinant
of a (di−ei+2)× (di−ei+2) matrix whose entries are sd-sparse polynomials with individual
degrees at most d resulting in an sO(d2)-sparse polynomial with individual degrees at most
O(d3). Therefore, we can compute the expression using Lemmas 31 and 45. J

Based on the above we can now prove the s-sparse split version of Theorem 6.

I Theorem 47. Let n, s ∈ N and suppose char(F) 6= 2. There exists a deterministic
algorithm that given an oracle access to an s-sparse split multiquadratic polynomial f(x̄) ∈
F[x1, x2, . . . , xn] and a square root oracle R2 uses poly(n, s, log |F|) field operations and oracle
calls to R2 and outputs the irreducible factors of f(x̄). That is, a list h1, . . . , hk of irreducible
polynomials such that f = h1 · . . . · hk.

Proof. By definition, f = h1 · . . . · hk. By Lemma 32, we can assume wlog that hi-s are
irreducible and are, in fact, the irreducible factors of f . Therefore, we can invoke Algorithm 2
with the following minor changes:

In Line 1, use Lemma 45 to compute f̂ .
In Line 5, use the algorithm of Lemma 46 with d = 2 instead of Corollary 33.
In Line 11, use Lemma 28 to reconstruct u as an s2-sparse polynomial.

The analysis of the algorithms essentially remains the same. Note that these change
introduces only a polynomial overhead to sparsities of the intermediate polynomials (and
thus to the algorithm). Yet, as was established above, the irreducible factors are s-sparse. J

Theorem 5 follows by applying Theorem 47 to Lemma 44.

APPROX/RANDOM’17

48:20 On Some Computations on Sparse Polynomials

C Polynomial Identity Testing beyond an Exponentiation Gate

Using techniques from Differential Field Theory we show how to transform an identity test
of powers of polynomials into an identity test that involves partial derivatives of those same
polynomials. This transformation can be applied for classes of polynomials that are closed
under partial derivatives such as sparse polynomials.

I Lemma 48. Let f(x̄), h(x̄) 6≡ 0 ∈ F(x1, x2, . . . , xn) and let e, d ∈ N. There exists c(x̄) ∈
F(x1, x2, . . . , xn) such that f(x̄)d = c(x̄) · h(x̄)e and ∂c

∂xi
≡ 0 iff d · h · ∂f∂xi

= e · f · ∂h∂xi
.

Proof.
(⇒) Suppose f(x̄)d = c(x̄) ·h(x̄)e. Then d ·h · ∂f∂xi

= h
fd−1 · ∂(fd)

∂xi
= h

fd−1 ·c(x̄) ·e · ∂h∂xi
·h(x̄)e−1 =

e · c(x̄) · h(x̄)e

fd−1 · ∂h∂xi
= ef · ∂h∂xi

.

(⇐) Consider c ∆= fd

he . By definition: ∂c
∂xi

= 1
h2e ·

(
d · ∂f∂xi

· fd−1 · he − e · ∂h∂xi
· he−1 · fd

)
=

fd−1

he+1 ·
(
d · ∂f∂xi

· h− e · ∂h∂xi
· f
)
≡ 0 and the claim follows. J

The following theorem provides an algorithm for an identity testing of powers of polyno-
mials over fields with zero or large enough characteristics.

I Theorem 49. Let f(x̄), h(x̄) 6≡ 0 ∈ F[x1, x2, . . . , xn] be polynomials of degree at most δ
and let e, d ∈ N. Furthermore, suppose that p ∆= char(F) = 0 or p > δ · min(e, d). Then
f(x̄)d = h(x̄)e iff lm(f)d = lm(h)e and for each i ∈ [n] we have that d · h · ∂f∂xi

= e · f · ∂h∂xi
.

Proof.
(⇒) Follows from Lemma 48 and the definition of lm.
(⇐) By iterative application of Lemma 48 we get that there exists c(x̄) ∈ C(F(x1, x2, . . . , xn))
such that f(x̄)d = c(x̄) · h(x̄)e. We claim that c(x̄) ∈ F. Assume the contrary. Then,
by Lemma 13 p > 0 and there exist u(x̄), v(x̄) ∈ F[xp1, x

p
2, . . . , x

p
n] such that gcd(u, v) = 1

and c(x̄) = u(x̄)
v(x̄) . Therefore, we can write: f(x̄)d · v(x̄) = h(x̄)e · u(x̄). By definition

lm(f)d·lm(v) = lm(h)e·lm(u), which implies that lm(v) = lm(u). In particular, v(x̄), u(x̄) 6∈ F
as c(x̄) 6∈ F and thus deg(u), deg(v) ≥ p. Assume wlog that d ≤ e. Then p > δd. As
gcd(u, v) = 1 we get that u | fd which implies that p ≤ δd thus leading to a contradiction.
Therefore, c(x̄) = α ∈ F. By definition lm(f)d = α · lm(h)e, which implies that α = 1 and we
are done. J

Theorem 8 follows an as easy corollary by noting that the preconditions of Theorem 49
can be efficiently checked given two sparse polynomials. It is also to be noted that similar
characterization could be obtained by considering the 2× 2 Wronskian of the polynomials fd
and he. However, we believe that our proof is cleaner and more direct.

D Missing Proofs

Proof of Lemma 15.
1. If h ≡ 0 then clearly g ≡ 0 and the claim follows. Otherwise, let h = he11 · . . . · h

ek

k

and g = g
e′1
1 · . . . · g

e′
k′
k′ be factorizations of h and g into irreducible, pairwise comprise

factors, respectively. We have that he1·e1 · . . . · hek·e
k = he = ge = g

e′1·e
1 · . . . · ge

′
k′ ·e
k′ are two

factorizations of the same non-zero polynomial. By Lemma 14, k = k′ and, wlog hi ∼ gi
and ei = e′i. Consequently, h = ω · g for some ω ∈ F. Finally, he = ωe · ge = ωe · he and
the claim follows.

I. Volkovich 48:21

2. First, note that h(ā)e = f(ā) 6= 0 and thus h(ā) 6= 0. Let us consider u(x̄) ∆= αh(x̄)
h(ā) .

By definition, u(ā) = αh(ā)
h(ā) = α and u(x̄)e = αeh(x̄)e

h(ā)e = f(ā)f(x̄)
f(ā) = f(x̄). Now, suppose

there exists a polynomial v(x̄) ∈ F[x1, x2, . . . , xn] satisfying the same properties. By
the first part of the Lemma we have that u = ω · v for some ω ∈ F. Therefore,
α = u(ā) = ω · v(ā) = ω · α implying that ω = 1. Consequently, u = v. J

Proof of Lemma 24. Let (g1, . . . , gd) be as above. Consider the polynomial h ∆=
∏
e | i

g
i/e
i .

We have that: he =
∏
e | i

gii =
∏
i

gii = g when the last equality follows from the property of gi

and we are done. For the other direction, let g = he and let (h1, . . . , hd) be the squarefree
decomposition of h(y). Consider the following sequence:

ĝi =
{

hi/e e | i

1 otherwise

We have that

∏
i

ĝii =
∏
e | i

hii/e =
∏
j

hj·ej =

∏
j

hjj

e

= he = g.

In addition, (ĝ1, . . . , ĝd) is a sequence of pairwise coprime, squarefree polynomials. By
uniqueness, the sequence (ĝ1, . . . , ĝd) is squarefree decomposition of g and the claim follows.

J

APPROX/RANDOM’17

Communication Complexity of Statistical
Distance∗†

Thomas Watson

University of Memphis, Memphis, TN, USA
Thomas.Watson@memphis.edu

Abstract
We prove nearly matching upper and lower bounds on the randomized communication complexity
of the following problem: Alice and Bob are each given a probability distribution over n elements,
and they wish to estimate within ±ε the statistical (total variation) distance between their
distributions. For some range of parameters, there is up to a logn factor gap between the upper
and lower bounds, and we identify a barrier to using information complexity techniques to improve
the lower bound in this case. We also prove a side result that we discovered along the way: the
randomized communication complexity of n-bit Majority composed with n-bit Greater-Than is
Θ(n logn).

1998 ACM Subject Classification F.1.2 Modes of Computation

Keywords and phrases Communication, complexity, statistical, distance

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.49

1 Introduction

Statistical (a.k.a. total variation) distance is a standard measure of the distance between two
probability distributions, and is ubiquitous in theoretical computer science. Expressing the
distributions (over a universe of n elements) as vectors of probabilities x = (x1, . . . , xn) and
y = (y1, . . . , yn), the statistical distance is defined as

∆(x, y) := 1
2
∑
i∈[n] |xi − yi| = maxS⊆[n]

∣∣∑
i∈S xi −

∑
i∈S yi

∣∣
= maxS⊆[n]

(∑
i∈S xi −

∑
i∈S yi

)
.

This measure has various interpretations, such as the minimum over all couplings of the
probability that the sample from x and the sample from y are unequal, or as twice the
maximum advantage an observer can achieve in guessing whether a random sample came
from x or from y (where x or y is used with probability 1/2 each).

Given its pervasiveness, it is natural to inquire about the computational complexity of
estimating the statistical distance between two distributions x and y that are given as input.
This topic has been studied before in several contexts:

[25] showed that when each of x and y is succinctly represented by an algorithm that takes
uniform random bits and produces a sample from that distribution (so our actual input
is the description of this pair of algorithms), then (a decision version of) the problem of
estimating ∆(x, y) is complete for the complexity class SZK (statistical zero knowledge).
(For results about the complexity of other problems where the inputs are succinctly
represented distributions, see [12, 13, 3, 14, 30, 29].)

∗ A full version of the paper is available at https://eccc.weizmann.ac.il/report/2016/170/.
† Supported by NSF grant CCF-1657377.

© Thomas Watson;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 49; pp. 49:1–49:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.49
https://eccc.weizmann.ac.il/report/2016/170/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

49:2 Communication Complexity of Statistical Distance

[2, 27, 9] studied the complexity of statistical distance estimation when an algorithm
is only given black-box access to oracles that produce samples from the distributions
specified by x and y. (For results about the complexity of other problems where the
inputs are black-box samples from distributions, see the surveys [14, 24, 7].)
[10, 11] studied the space complexity of (a generalization of) statistical distance estimation
when the vectors x and y are provided as data streams.

1.1 Communication Upper and Lower Bounds
We study the statistical distance estimation problem in the context of communication
complexity: Alice is given the vector x, Bob is given the vector y, and they wish to output
a value in the range

[
∆(x, y)− ε,∆(x, y) + ε

]
. We let Stat-Distn,ε denote this two-party

search problem. For any two-party search problem F , we let R(F) denote the minimum
worst-case communication cost of any randomized protocol (allowing both public and private
coins) such that for each input, the output is correct with probability at least 3/4. (For our
problem Stat-Distn,ε, the 3/4 can be replaced by any constant in the range (1/2, 1) since
we can amplify success probability by taking the median of multiple trials.) The following is
a clean summary of our bounds.

I Theorem 1.

R(Stat-Distn,ε) is

Θ(1/ε2) if 1 > ε ≥ 1/O(

√
n)

Ω(n) and O(n logn) if 1/ω(
√
n) ≥ ε ≥ 1/2o(n logn)

Θ(log(1/ε)) if 1/2Ω(n logn) ≥ ε > 0
.

We also go ahead and ascertain the deterministic communication complexity (denoted
with D instead of R) of this problem. We prove Theorem 1 and Theorem 2 in Section 2.

I Theorem 2. D(Stat-Distn,ε) = Θ(n log(1/ε)) provided ε is at most a sufficiently small
constant.

Closing the gap in Theorem 1 is a principal open problem. We get slightly better bounds
in certain narrow ranges of ε (see the proof), but e.g., it remains open to prove our conjecture
that R(Stat-Distn,1/2n) ≥ ω(n). A natural strategy is to use information complexity lower
bound techniques; however, in the full version we exhibit a barrier to accomplishing this.
Specifically, for a large class of inputs having a certain type of product structure (which
arises naturally from attempts to use the direct sum property of information complexity),
and for a wide range of ε, Stat-Distn,ε can be solved with O(n) information cost and 0
error probability. This suggests that to improve the Ω(n) bound, we may need to look at
inputs not having the aforementioned product structure, and we are at a loss for techniques
in this case.

1.2 Composing with Majority
We take this opportunity to prove other results that we discovered in the process of trying
to analyze Stat-Distn,ε. Recall the famous direct sum conjecture stating that computing k
independent copies of a two-party function should require Ω(k) times as much randomized
communication as computing 1 copy. A somewhat stronger version of the conjecture states
that even just computing the And of k independent copies should still require Ω(k) times as
much communication. [15] proved the query complexity analogue of this And-composition

T. Watson 49:3

conjecture, as well as a communication complexity version that is weaker than the full
conjecture in two senses: it is qualitatively weaker since instead of converting a protocol
for Andk composed with F into a plain randomized (BPP-type) protocol for F with factor
Ω(k) savings, the conversion results in a protocol in a slightly stronger model (which has
been variously called 2WAPP [16, 15], two-sided smooth rectangle bound [18], and relaxed
partition bound [19]); it is quantitatively weaker since besides the Ω(k) savings, the conversion
incurs a logarithmic additive loss due to the use of the “information odometer” of [5]. (We
provide the precise statement in Section 3.)

We prove that when composing with the k-bit Majority function Majk instead of Andk,
the above quantitative deficiency can be avoided: we get a perfect Ω(k) factor savings by
circumventing the need for the odometer (although we retain the qualitative deficiency).
For the applications in [15, 1], the logarithmic additive loss in the And-composition result
was immaterial albeit perhaps a slight nuisance. In some settings, however, that loss would
be damaging; one such setting is the following corollary (which holds by combining our
Maj-composition result with the lower bound of [6] for the Greater-Than function Gtn on
n-bit inputs).

I Theorem 3. R(Majn ◦Gtnn) = Θ(n logn).

Evaluating the function Majn ◦Gtnn can be described by a story: Alice and Bob have
taken some exams and know their own scores, and they wish to determine the victor of their
rivalry: who got a higher score on the most exams?

We prove the Maj-composition result and provide details about Theorem 3 in Section 3.
We make the stronger conjecture that Theorem 3 should hold even with Andn instead of
Majn; this would follow from an Ω(logn) information complexity lower bound for Gtn with
respect to a distribution only over 1-inputs (which is open but may be doable).

1.3 Preliminaries
We define Andn, Orn, Majn as the And, Or, and Majority functions on n bits, and Eqn,
Gtn, Disjn, Ghn as the Equality, Greater-Than, Set-Disjointness, and Gap-Hamming
two-party functions where Alice and Bob each get n bits. We use P for probability, E
for expectation, H for Shannon entropy, and I for mutual information. We generally use
upper-case letters for random variables and corresponding lower-case letters for particular
outcomes.

Randomized protocols by default have both public and private coins. We let CC (Π)
denote the worst-case communication cost of protocol Π. We let ICD(Π) := I(T ; X |Y,R) +
I(T ; Y |X,R) denote the (internal) information cost with respect to (X,Y) sampled from
the input distribution D, where the random variables T and R represent the communication
transcript and public coins of Π, respectively.

2 Communication Upper and Lower Bounds

We now prove Theorem 1 and Theorem 2. As a preliminary technicality, we note that for the
upper bounds, we may assume each of the probabilities xi and yi can be written exactly in
binary with log(n/ε) +O(1) bits. This is because if we truncate the binary representations
to that many bits and reassign the lost probability to an arbitrary element in both x and y,
this ensures at most ε/4 mass has been shifted within each distribution, so their statistical
distance changes by at most ε/2; then to obtain an ε-estimation for the original x and y, we
can run a protocol to get an (ε/2)-estimation for the new x and y.

APPROX/RANDOM’17

49:4 Communication Complexity of Statistical Distance

Proof of Theorem 1. In fact, we show that R(Stat-Distn,ε) is always
(i) O(1/ε2),
(ii) O(max(n logn, log(1/ε))),
(iii) Ω(min(1/ε2, n)),
(iv) Ω(log(1/ε)),
which gives a slightly more detailed picture than the statement of Theorem 1.

The proof of (i) is inspired by the “correlated sampling lemma” that has been used in the
context of parallel repetition [17, 22, 23] and earlier in the context of LP rounding [20]. As
noted above, we may assume each probability xi and yi is a multiple of 1/m for some integer
m := O(n/ε). We make use of an O(1)-communication equality testing protocol that accepts
with probability 1 when the inputs are equal and accepts with probability exactly 1/2 when
the inputs are unequal (e.g., by using the inputs to index into a uniformly random public
string and comparing the bits at those indices).

Here is the protocol witnessing (i). Alice and Bob repeat the following O(1/ε2) times:
Publicly sample a uniformly random ordering of [n]× [m].
Alice finds the first (iA, jA) in the ordering such that xiA ≥ jA/m.
Bob finds the first (iB, jB) in the ordering such that yiB ≥ jB/m.
Run the equality test on (iA, jA) and (iB, jB).

Then they output q/(1 − q) where q := min(1/2, fraction of iterations where equality test
rejected).

To analyze the correctness, let δ := ∆(x, y) and let p denote the probability the equality
test rejects in a single iteration of the loop. We claim that p = δ/(1 + δ) (and hence
δ = p/(1 − p)). To see this, define the following subsets of [n] × [m]: A :=

{
(i, j) : xi ≥

j/m and yi < j/m
}
, B :=

{
(i, j) : xi < j/m and yi ≥ j/m

}
, and C :=

{
(i, j) : xi ≥

j/m and yi ≥ j/m
}
. Then |A| = |B| = δm and |C| = (1 − δ)m. The first (i∗, j∗) in the

ordering to land in A ∪ B ∪ C is uniformly distributed in that set. Thus with probability
δ/(1+δ) we have (i∗, j∗) ∈ A, in which case (iA, jA) = (i∗, j∗) 6= (iB, jB), and with probability
δ/(1+δ) we have (i∗, j∗) ∈ B, in which case (iA, jA) 6= (i∗, j∗) = (iB, jB), and with probability
(1 − δ)/(1 + δ) we have (i∗, j∗) ∈ C, in which case (iA, jA) = (i∗, j∗) = (iB, jB). It follows
that the equality test rejects with probability δ

1+δ ·
1
2 + δ

1+δ ·
1
2 + 1−δ

1+δ · 0 = δ/(1 + δ).
By a Chernoff bound, the number of iterations guarantees that with probability at least

3/4, |q− p| ≤ ε/8. Since d
dp

[
p/(1− p)

]
= 1/(1− p)2 ∈ [1, 4] for all p ∈ [0, 1/2], it follows that

|output − δ| =
∣∣q/(1 − q) − p/(1 − p)∣∣ ≤ ε/2 whenever |q − p| ≤ ε/8 and q ∈ [0, 1/2]. This

proves (i).

To prove (ii), we exploit the fact that the Greater-Than function Gtk with k-bit inputs
can be computed with error probability γ > 0 and O(log(k/γ)) bits of communication (by
running the standard binary-search-based protocol [21, p. 170] for O(log(k/γ)) many steps).
As noted above, we may assume each probability xi and yi has log(n/ε) +O(1) bits.

Here is the protocol witnessing (ii). For each i ∈ [n], Alice and Bob compute Gt(xi, yi)
with error probability 1/(4n). Then Alice sends Bob the sum of xi over all i for which the
protocol for Gt(xi, yi) accepted, and Bob sends Alice the sum of yi over the same i’s. They
output Alice’s sum minus Bob’s sum. By a union bound, with probability at least 3/4 each of
the Gt tests returns the correct answer, in which case the final output is correct by definition.
The communication cost is O

(
n log(n log(n/ε)) + log(n/ε)

)
≤ O(max(n logn, log(1/ε))).

To prove (iii), we use a reduction from the Gap-Hamming partial function Ghn,ε, in which
the goal is to determine whether the relative Hamming distance between Alice’s and Bob’s
length-n bit strings is > 1/2 + ε or < 1/2− ε. It is known that R(Ghn,ε) ≥ Ω(min(1/ε2, n))

T. Watson 49:5

[8, 28, 26]. Here is the reduction: Alice transforms a ∈ {0, 1}n into a distribution x over
[2n] by letting x2i−ai

= 1/n for each i ∈ [n] (and letting all other entries of x be 0). Bob
transforms b into y in the same way. Then ∆(x, y) equals the relative Hamming distance
between a and b, so a protocol for Stat-Dist2n,ε can distinguish the two cases (by whether
the output is above or below 1/2).

To prove (iv), consider any correct randomized protocol for Stat-Distn,ε, and fix any set
of 1/(3ε) many pairs of distributions having statistical distances 0, 3ε, 6ε, 9ε, There must
exist some outcome of the randomness of the protocol such that the induced deterministic
protocol is correct on at least three fourths of those inputs. But then the same transcript
cannot occur for any two of these 1/(4ε) inputs since the statistical distances are more than
2ε apart. Thus at least 1/(4ε) transcripts are necessary, so the communication cost must be
at least log(1/ε)− 2. J

Proof of Theorem 2. For the upper bound, assuming each probability xi and yi is a multiple
of 1/m for some integer m := O(n/ε), we employ the trivial protocol where Alice sends a
specification of her distribution to Bob (who then responds with the (log(n/ε) +O(1))-bit an-
swer). We just need to count the number of such distributions:

(
m+n−1
n−1

)
≤
(e·(m+n−1)

n−1
)n−1 ≤(

O(1/ε)
)n. Hence only O(n log(1/ε)) bits are needed to specify a distribution.

The proof of the lower bound is basically a Gilbert–Varshamov argument for codes in the
Manhattan metric. Specifically, we claim that there is a set of 2Ω(n log(1/ε)) many distributions
over [n] that pairwise have statistical distance > 2ε. Then for any distinct distributions x
and x′ from this set, the inputs (x, x) and (x′, x′) cannot share the same transcript in any
correct protocol for Stat-Distn,ε, because if they did then (x, x′) would also share that
transcript, but (x, x) requires output ≤ ε while (x, x′) requires output > ε. Hence any correct
protocol has at least 2Ω(n log(1/ε)) transcripts and so has communication cost Ω(n log(1/ε)).

To see the claim, first note that the number of distributions whose probabilities are
multiples of 1/m is

(
Ω(1/ε)

)n, while the number of such distributions within statistical
distance ≤ 2ε of any fixed such distribution can be simply upper bounded by 2n ·

(4εm+n
n

)
≤(

O(1)
)n. Hence if we keep greedily adding to a set any distribution that has statistical

distance > 2ε from every distribution we picked so far, then the number of iterations
this process can continue is at least

(
Ω(1/ε)

)n/(
O(1)

)n ≥ (Ω(1/ε)
)n, which is 2Ω(n log(1/ε))

provided ε is at most a sufficiently small constant. J

3 Composing with Majority

In this section, we follow a convention that has become common in recent literature: For a
two-party (possibly partial) function F : {0, 1}n × {0, 1}n → {0, 1} and a complexity class
name C, we let C(F) denote the minimum worst-case cost of any protocol for F in the model
corresponding to C, and we also use C to denote the class of (families of) F ’s such that
C(F) ≤ polylog(n). In particular, BPP(F) is an alias for the plain randomized communication
complexity R(F) in the case of {0, 1}-valued F , but we use the complexity class notation
now for aesthetic consistency. We also need the following “2-sided WAPP” model.1

1 There are two ways to define this model, which are equivalent up to a factor of 2 in ε. Our way was
also used in [16] and is the same as the relaxed partition bound [19]. In [15], a “starred” notation was
used for this, while the notation 2WAPP was reserved for the other definition, which is the same as the
two-sided smooth rectangle bound [18].

APPROX/RANDOM’17

49:6 Communication Complexity of Statistical Distance

I Definition 4. 2WAPPε(F) := min
(
CC (Π) + log(1/α)

)
over all α > 0 and protocols Π

with output values {0, 1,⊥} such that for all (x, y), P[Π(x, y) 6= ⊥] ≤ α and P[Π(x, y) =
F (x, y)] ≥ (1− ε)α.

For all F and constants 0 < ε < 1/2, we have O(BPP(F)) ≥ 2WAPPε(F) ≥ Ω(PP(F)),
and thus BPP ⊆ 2WAPPε ⊆ PP. It is not necessary to recall the communication complexity
definition of PP, but we remark that 2WAPPε feels intuitively much closer to BPP, since
there are many interesting classes sandwiched between 2WAPPε and PP [16]. The following
is due to [16].

I Theorem 5 (And-composition). For all F , k, and constants 0 < ε < 1/2, we have

2WAPPε(F) ≤ O
(
BPP(Andk ◦ F k)/k + log BPP(Andk ◦ F k)

)
.

We prove that by using Majk instead of Andk, the logarithmic term can be avoided.

I Theorem 6 (Maj-composition). For all F , k, and constants 0 < ε < 1/2, we have

2WAPPε(F) ≤ O
(
BPP(Majk ◦ F k)/k + 1

)
.

Proof of Theorem 3. As noted in the proof of Theorem 1, Gtn has a protocol with error
probability 1/(4n) and communication cost O(logn). By running this on each of n coordinates,
with probability at least 3/4 all the outputs will be correct, so a protocol witnessing
BPP(Majn ◦ Gtnn) ≤ O(n logn) can be obtained by applying Majn to all these outputs.
The matching lower bound follows by combining Theorem 6 with the result that PP(Gtn) ≥
Ω(logn) [6]. J

Theorem 6 follows by stringing together the following three lemmas. For any input
distribution D (over the domain of F), we define the distributions Db := (D |F−1(b)) for
b ∈ {0, 1}. We say a protocol Π is δ-correct for F iff P[Π(x, y) = F (x, y)] ≥ 1 − δ for all
(x, y).

I Lemma 7. Fix any F , k, 0 < δ < 1/2, and input distribution D. For every δ-correct
protocol Π for Majk ◦ F k there exists a δ-correct protocol Π′ for F such that ICDb(Π′) ≤
O(CC (Π)/k) holds for both b ∈ {0, 1}.

I Lemma 8. Fix any F , input distribution D, and protocol Π (not necessarily correct). Then

ICD(Π)− 4 ≤
∑
b PD[F−1(b)] · ICDb(Π) ≤ ICD(Π).

I Lemma 9. Fix any F , constants 0 < δ < ε < 1/2, and value c. If for every in-
put distribution D there exists a δ-correct protocol Π for F such that ICD(Π) ≤ c, then
2WAPPε(F) ≤ O(c+ 1).

Only the first inequality in Lemma 8 is needed for Theorem 6. Lemma 9 is due to [19].
Before we commence with the proofs of Lemma 7 and Lemma 8, we recall the following
standard fact; see [4, §2.1] for a proof. (We apologize for overloading the D notation between
this fact and the above lemmas, but there should be no confusion.)

I Fact 10. Let A,B,C,D be four random variables. Then
(i) I(A ; B |C) ≤ I(A ; B |C,D) if I(B ; D |C) = 0;
(ii) I(A ; B |C) ≥ I(A ; B |C,D) if I(B ; D |A,C) = 0.

T. Watson 49:7

Proof of Lemma 7. Assume k is odd for convenience. Consider a probability space with the
following random variables: Z ∈ {0, 1}k is a uniformly random string of Hamming weight
dk/2e, S := {i : Zi = 1}, (X,Y) is such that (Xi, Yi) ∼ DZi for each i ∈ [k] independently,
and T and R are the communication transcript and public coins (respectively) of Π on
input (X,Y). We use the subscript notation X<i and X>i for restrictions to coordinates
in {1, . . . , i − 1} and {i + 1, . . . , k}, and we use the superscript notation XS and X−S for
restrictions to coordinates in S and [k] r S, and we may combine these so e.g., X−S>i is the
restriction to coordinates in {i+ 1, . . . , k}rS. We use corresponding notation for restrictions
of Y . We have

2 · CC (Π)
≥ I
(
T ; XS

∣∣X−S , Y, R, S)+ I
(
T ; Y S

∣∣Y −S , X,R, S)
= Es∼S

[∑
i∈s I

(
T ; Xi

∣∣Xs
<i, X

−s, Y, R, s
)

+
∑
i∈s I

(
T ; Yi

∣∣Y s>i, Y −s, X,R, s)]
≥ Es∼S

[∑
i∈s I

(
T ; Xi

∣∣Yi, X<i, Y>i, R, s
)

+
∑
i∈s I

(
T ; Yi

∣∣Xi, Y>i, X<i, R, s
)]

= dk/2e · E
s∼S, i∼s, r∼R

x<i∼X<i, y>i∼Y>i

[
I
(
T ; Xi

∣∣Yi, x<i, y>i, r, s)+ I
(
T ; Yi

∣∣Xi, x<i, y>i, r, s
)]

where the second line is by the chain rule, the third line is by Fact 10.(i) since X−s>i , Y<i
is independent of Xi given Yi, X<i, Y>i, R, s and since Y −s<i , X>i is independent of Yi given
Xi, Y>i, X<i, R, s, and where i ∼ s on the fourth line means i is sampled uniformly at random
from the set s.

Note that sampling s ∼ S and i ∼ s is equivalent to sampling i ∼ [k] and a uniformly
random balanced bit string z−i ∼ Z−i indexed by [k] r {i} (and setting zi = 1). We let
q ∼ Q denote a sample of all the data (i, z−i, r, x<i, y>i). In summary, we have

Eq∼Q
[
I(T ; Xi |Yi, q) + I(T ; Yi |Xi, q)

]
≤ (2/dk/2e) · CC (Π)

so by Markov’s inequality, with probability > 1/2 over q ∼ Q we have

I(T ; Xi |Yi, q) + I(T ; Yi |Xi, q) ≤ (4/dk/2e) · CC (Π) (1)

where (Xi, Yi) ∼ D1. By symmetric reasoning (interchanging the roles of 0 and 1), with
probability > 1/2 over q ∼ Q, (1) also holds if we instead have (Xi, Yi) ∼ D0. Thus there
exists a q (which we fix henceforth) such that (1) holds both when (Xi, Yi) ∼ D1 and when
(Xi, Yi) ∼ D0 (and in either case, (Xj , Yj) ∼ Dzj for j 6= i).

Now consider the protocol Π′ where the input is interpreted as (xi, yi), Alice privately
samples x>i ∼ (X>i | y>i, z>i), Bob privately samples y<i ∼ (Y<i |x<i, z<i), and they run Π
on the combined input (x, y) with public coins r. The conclusion of the previous paragraph
is exactly that ICDb(Π′) ≤ (4/dk/2e) · CC (Π) ≤ O(CC (Π)/k) holds for both b ∈ {0, 1}.
Furthermore, Π′ is δ-correct since Π is δ-correct and F (xi, yi) = (Majk ◦ F k)(x, y) with
probability 1, for every (xi, yi) in F ’s domain. J

Proof of Lemma 8. Consider a probability space with the following random variables:
(X,Y) ∼ D, F := F (X,Y), and T and R are the communication transcript and public
coins (respectively) of Π on input (X,Y). Then we have

ICD(Π) = I(T ; X |Y,R) + I(T ; Y |X,R)∑
b PD[F−1(b)] · ICDb(Π) = I(T ; X |Y,R, F) + I(T ; Y |X,R, F)

APPROX/RANDOM’17

49:8 Communication Complexity of Statistical Distance

and so the second inequality of Lemma 8 holds by Fact 10.(ii) since conditioned on X,Y,R,
there is no remaining entropy in F and hence it is independent of T .

For the first inequality, we use the following result proven in [15].

I Lemma 11. There exist numbers cx,y, c′x,y ≥ 0 for each input (x, y) in the domain of F ,
such that

ICD(Π) = E[cX,Y],
ICDb(Π) = E[c′X,Y |F = b] for both b ∈ {0, 1},
for each (x, y) in the domain of F , letting b := F (x, y) we have

cx,y ≤ c′x,y + log
(
1/P[F = b | y]

)
+ log

(
1/P[F = b |x]

)
.

Hence, letting px,y := P[(X,Y) = (x, y)], we have

ICD(Π) =
∑

(x,y) px,y · cx,y
≤
∑
b

∑
(x,y)∈F−1(b) px,y ·

(
c′x,y + log

(
1/P[F = b | y]

)
+ log

(
1/P[F = b |x]

))
=
∑
b P[F = b] · ICDb(Π) +∑
b

∑
(x,y)∈F−1(b) px,y ·

(
log
(
1/P[F = b | y]

)
+ log

(
1/P[F = b |x]

))
.

We claim that for both b ∈ {0, 1} we have
∑

(x,y)∈F−1(b) px,y · log
(
1/P[F = b | y]

)
≤ 1

and
∑

(x,y)∈F−1(b) px,y · log
(
1/P[F = b |x]

)
≤ 1; it then follows that ICD(Π) ≤

∑
b P[F =

b] · ICDb(Π) + 4.
We just argue the claim for b = 1 and conditioning on y; the other three cases are com-

pletely analogous. For a ∈ {0, 1} define pay := P[F = a and Y = y] =
∑
x : (x,y)∈F−1(a) px,y.

Then we have∑
(x,y)∈F−1(1) px,y · log

(
1/P[F = 1 | y]

)
=
∑
y p

1
y · log

(
(p0
y + p1

y)/p1
y

)
≤
∑
y p

1
y ·
(
(p0
y + p1

y)/p1
y

)
= 1.

This finishes the proof. J

Acknowledgements. I thank Mika Göös for discussions and anonymous reviewers for
comments.

References
1 Anurag Anshu, Aleksandrs Belovs, Shalev Ben-David, Mika Göös, Rahul Jain, Robin

Kothari, Troy Lee, and Miklos Santha. Separations in communication complexity using
cheat sheets and information complexity. In Proceedings of the 57th Symposium on Found-
ations of Computer Science (FOCS), pages 555–564. IEEE, 2016. doi:10.1109/FOCS.2016.
66.

2 Tugkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren Smith, and Patrick White. Testing
closeness of discrete distributions. Journal of the ACM, 60(1):4, 2013. doi:10.1145/
2432622.2432626.

3 Andrej Bogdanov, Elchanan Mossel, and Salil Vadhan. The complexity of distinguish-
ing Markov random fields. In Proceedings of the 12th International Workshop on Ran-
domization and Computation (RANDOM), pages 331–342. Springer, 2008. doi:10.1007/
978-3-540-85363-3_27.

http://dx.doi.org/10.1109/FOCS.2016.66
http://dx.doi.org/10.1109/FOCS.2016.66
http://dx.doi.org/10.1145/2432622.2432626
http://dx.doi.org/10.1145/2432622.2432626
http://dx.doi.org/10.1007/978-3-540-85363-3_27
http://dx.doi.org/10.1007/978-3-540-85363-3_27

T. Watson 49:9

4 Mark Braverman. Interactive information complexity. SIAM Journal on Computing,
44(6):1698–1739, 2015. doi:10.1137/130938517.

5 Mark Braverman and Omri Weinstein. An interactive information odometer and applic-
ations. In Proceedings of the 47th Symposium on Theory of Computing (STOC), pages
341–350. ACM, 2015. doi:10.1145/2746539.2746548.

6 Mark Braverman and Omri Weinstein. A discrepancy lower bound for information com-
plexity. Algorithmica, 76(3):846–864, 2016. doi:10.1007/s00453-015-0093-8.

7 Clément Canonne. A survey on distribution testing: Your data is big. But is it blue?
Technical Report TR15-063, Electronic Colloquium on Computational Complexity (ECCC),
2015. URL: http://eccc.hpi-web.de/report/2015/063.

8 Amit Chakrabarti and Oded Regev. An optimal lower bound on the communication com-
plexity of Gap-Hamming-Distance. SIAM Journal on Computing, 41(5):1299–1317, 2012.
doi:10.1137/120861072.

9 Siu On Chan, Ilias Diakonikolas, Paul Valiant, and Gregory Valiant. Optimal algorithms for
testing closeness of discrete distributions. In Proceedings of the 25th Symposium on Discrete
Algorithms (SODA), pages 1193–1203. ACM-SIAM, 2014. doi:10.1137/1.9781611973402.
88.

10 Joan Feigenbaum, Sampath Kannan, Martin Strauss, and Mahesh Viswanathan. An ap-
proximate L1-difference algorithm for massive data streams. SIAM Journal on Computing,
32(1):131–151, 2002. doi:10.1137/S0097539799361701.

11 Jessica Fong and Martin Strauss. An approximate Lp-difference algorithm for massive data
streams. Discrete Mathematics & Theoretical Computer Science, 4(2):301–322, 2001.

12 Oded Goldreich, Amit Sahai, and Salil Vadhan. Can statistical zero knowledge be made
non-interactive? or On the relationship of SZK and NISZK. In Proceedings of the 19th
International Cryptology Conference (CRYPTO), pages 467–484. Springer, 1999. doi:10.
1007/3-540-48405-1_30.

13 Oded Goldreich and Salil Vadhan. Comparing entropies in statistical zero-knowledge with
applications to the structure of SZK. In Proceedings of the 14th Conference on Computa-
tional Complexity (CCC), pages 54–73. IEEE, 1999. doi:10.1109/CCC.1999.766262.

14 Oded Goldreich and Salil Vadhan. On the complexity of computational problems regarding
distributions. Studies in Complexity and Cryptography, pages 390–405, 2011. doi:10.1007/
978-3-642-22670-0_27.

15 Mika Göös, T. S. Jayram, Toniann Pitassi, and Thomas Watson. Randomized commu-
nication vs. partition number. In Proceedings of the 44th International Colloquium on
Automata, Languages, and Programming (ICALP). Schloss Dagstuhl, 2017. To appear.

16 Mika Göös, Shachar Lovett, Raghu Meka, Thomas Watson, and David Zuckerman. Rect-
angles are nonnegative juntas. SIAM Journal on Computing, 45(5):1835–1869, 2016.
doi:10.1137/15M103145X.

17 Thomas Holenstein. Parallel repetition: Simplification and the no-signaling case. Theory
of Computing, 5(1):141–172, 2009. doi:10.4086/toc.2009.v005a008.

18 Rahul Jain and Hartmut Klauck. The partition bound for classical communication com-
plexity and query complexity. In Proceedings of the 25th Conference on Computational
Complexity (CCC), pages 247–258. IEEE, 2010. doi:10.1109/CCC.2010.31.

19 Iordanis Kerenidis, Sophie Laplante, Virginie Lerays, Jérémie Roland, and David Xiao.
Lower bounds on information complexity via zero-communication protocols and applica-
tions. SIAM Journal on Computing, 44(5):1550–1572, 2015. doi:10.1137/130928273.

20 Jon Kleinberg and Éva Tardos. Approximation algorithms for classification problems with
pairwise relationships: metric labeling and Markov random fields. Journal of the ACM,
49(5):616–639, 2002. doi:10.1145/585265.585268.

APPROX/RANDOM’17

http://dx.doi.org/10.1137/130938517
http://dx.doi.org/10.1145/2746539.2746548
http://dx.doi.org/10.1007/s00453-015-0093-8
http://eccc.hpi-web.de/report/2015/063
http://dx.doi.org/10.1137/120861072
http://dx.doi.org/10.1137/1.9781611973402.88
http://dx.doi.org/10.1137/1.9781611973402.88
http://dx.doi.org/10.1137/S0097539799361701
http://dx.doi.org/10.1007/3-540-48405-1_30
http://dx.doi.org/10.1007/3-540-48405-1_30
http://dx.doi.org/10.1109/CCC.1999.766262
http://dx.doi.org/10.1007/978-3-642-22670-0_27
http://dx.doi.org/10.1007/978-3-642-22670-0_27
http://dx.doi.org/10.1137/15M103145X
http://dx.doi.org/10.4086/toc.2009.v005a008
http://dx.doi.org/10.1109/CCC.2010.31
http://dx.doi.org/10.1137/130928273
http://dx.doi.org/10.1145/585265.585268

49:10 Communication Complexity of Statistical Distance

21 Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University
Press, 1997.

22 Anup Rao. Parallel repetition in projection games and a concentration bound. SIAM
Journal on Computing, 40(6):1871–1891, 2011. doi:10.1137/080734042.

23 Ran Raz. A counterexample to strong parallel repetition. SIAM Journal on Computing,
40(3):771–777, 2011. doi:10.1137/090747270.

24 Ronitt Rubinfeld. Taming big probability distributions. ACM Crossroads, 19(1):24–28,
2012. doi:10.1145/2331042.2331052.

25 Amit Sahai and Salil Vadhan. A complete problem for statistical zero knowledge. Journal
of the ACM, 50(2):196–249, 2003. doi:10.1145/636865.636868.

26 Alexander Sherstov. The communication complexity of Gap Hamming Distance. Theory
of Computing, 8(1):197–208, 2012. doi:10.4086/toc.2012.v008a008.

27 Paul Valiant. Testing symmetric properties of distributions. SIAM Journal on Computing,
40(6):1927–1968, 2011. doi:10.1137/080734066.

28 Thomas Vidick. A concentration inequality for the overlap of a vector on a large set,
with application to the communication complexity of the Gap-Hamming-Distance problem.
Chicago Journal of Theoretical Computer Science, 2012(1):1–12, 2012. doi:10.4086/cjtcs.
2012.001.

29 Thomas Watson. The complexity of deciding statistical properties of samplable distribu-
tions. Theory of Computing, 11:1–34, 2015. doi:10.4086/toc.2015.v011a001.

30 Thomas Watson. The complexity of estimating min-entropy. Computational Complexity,
25(1):153–175, 2016. doi:10.1007/s00037-014-0091-2.

http://dx.doi.org/10.1137/080734042
http://dx.doi.org/10.1137/090747270
http://dx.doi.org/10.1145/2331042.2331052
http://dx.doi.org/10.1145/636865.636868
http://dx.doi.org/10.4086/toc.2012.v008a008
http://dx.doi.org/10.1137/080734066
http://dx.doi.org/10.4086/cjtcs.2012.001
http://dx.doi.org/10.4086/cjtcs.2012.001
http://dx.doi.org/10.4086/toc.2015.v011a001
http://dx.doi.org/10.1007/s00037-014-0091-2

	p00-frontmatter
	Preface

	p01-ashlagi
	Introduction
	Preliminaries
	The Lower Bounds
	The O(log n) Upper Bound for MBPMD: Overview
	A Randomized Algorithm for MBPMD on Trees
	A Deterministic Algorithm for MBPMD on Trees
	Concluding Remarks and Open Problems
	Proof Omitted from Section 4
	Proofs Omitted from Section 5
	Proofs Omitted from Section 6

	p02-berczi
	Introduction
	Additional Results on Sub-problems and Variants
	Related Work
	Preliminaries

	Overview of approximation for EdgeBiCut
	Overview of the results on hardness of approximation
	2 - epsilon-Inapproximability for {s,t}-NodeDoubleCut

	EdgeLin3Cut problems
	Approximation for NodeDoubleCut

	p03-borradaile
	Introduction
	Overview of the planar PTAS framework
	Reduction to vertex connectivity

	Vertex-connectivity basics
	Connectivity Separation
	The Tree Cycle Theorem implies the Connectivity Separation Theorem
	Proof of Tree Cycle Theorem

	Proof of the Structure Theorem

	p03-ZZZ-Blank
	p04-brakensiek
	Introduction
	Our contributions
	Proof overview
	Organization

	Preliminaries
	Probability distributions
	Influences
	Invariance principles

	V label cover
	Definition
	Compatibility
	Reduction from V label cover to P-CSP

	Perfect-completeness approximation resistance and Max-k-CSPq
	Proof of Lemma 4.4

	p05-friggstad
	Introduction
	Previous work
	Our results

	Approximation Algorithms for Stars
	Approximating stars with general processing times
	Refinements for the case of unit processing times

	Scheduling on Trees and General Networks
	Proof of Theorem 1
	Proof of Theorem 2
	General processing times
	Special case of unit processing times

	Proof of Theorem 4

	Conclusion
	Proof of Theorem 11

	p06-goemans
	Introduction
	Problems in this Framework
	Maximum matchings
	Polyhedral characterization for discrete convexity
	Maximum stable set in claw-free graphs
	Matroid intersection

	Quickest-To-Ultimate for Incremental Problems
	Bad instance for Quickest-to-Ultimate

	Analysis
	Local minima
	Quickest-To-Ultimate

	Upper bound for Quickest-Increment
	Lower bound for integrals of integer convex functions

	p07-gupta
	Introduction
	Our Results
	Our Techniques

	Related Work

	Additional Notation
	An LP Relaxation

	Single-Sink Stochastic Routing
	Confluent Flows
	Approximate Single-Sink Stochastic Routing using Confluent Flows

	sUFP on Directed Acyclic Graphs
	Routing Large Jobs
	Routing Small Jobs
	Randomized Rounding for Short Flow Paths
	Randomized Rounding for Long Flow Paths

	Safe Strategies
	The Case alpha <= 1/2
	The Case alpha >= 1/2

	Conclusions and Discussion
	Missing Proofs
	Combining Results for Small and Large Jobs
	Reducing Edge-Confluence to Node-Confluence

	p07-ZZZ-Blank
	p08-guruswami
	Introduction
	Context: Approximation resistance of CSPs
	Our results for Max 2CSP and Max DICUT
	Streaming complexity of Maximum Acylic Subgraph
	Open problems

	Preliminaries
	Single-Pass Streaming Complexity
	2/5 - gamma-Approximation of Max 2AND
	Hardness of 1/2 + epsilon-approximation and a complementary streaming algorithm for Max DICUT

	Maximum Acyclic Subgraph
	Approximating Max DICUT Using LP Rounding

	p08-ZZZ-Blank
	p09-haney
	Introduction
	Symmetric Interdiction: A General Framework
	Symmetric Matching Interdiction: A 3/2 Approximation
	Approximating the SMI problem with maximum matchings
	A 3/2-Approximation algorithm

	Symmetric Matching Interdiction: Hardness of Approximation
	Randomized Symmetric Matching Interdiction
	Other Problems: Acyclic Subgraph Interdiction
	Concluding Remarks
	Representation as a convex combination

	p09-ZZZ-Blank
	p10-harris
	Introduction
	The Lottery Model
	Our contributions and techniques
	Organization

	Preliminaries
	Matroid polytopes
	Filtering algorithm

	The k-center problems with outliers
	The robust k-center problem
	The fair robust k-center problem

	The Knapsack Center problems with outliers
	The robust knapsack center problem
	The fair robust knapsack center problem
	Basic algorithm
	An algorithm slightly violating the budget constraint
	An algorithm that satisfies the knapsack constraint exactly

	The Matroid Center problems with outliers
	The robust matroid center problem
	The fair robust matroid center problem
	A pseudo-approximation algorithm
	Analysis of PseudoFRMCenterRound
	An algorithm satisfying the matroid constraint exactly

	Details of the pseudo-approximation for FRMatCenter

	p10-ZZZ-Blank
	p11-huang
	Introduction
	Single-Pass (1/3 - epsilon)-Approximation Algorithm
	Thresholding Algorithm with Approximate Optimal Value
	Dynamic Updates

	Improved Single-Pass Algorithm for Small-Size Items
	Branching Framework with Approximate Optimal Value
	Algorithms with Guessing Large Items

	Single-Pass 4/11 - epsilon-Approximation Algorithm
	Multiple-Pass Streaming Algorithm

	p12-indyk
	Introduction
	Our Results
	Related work
	Our Techniques

	MWU Framework of the Streaming Algorithm for Fractional Set Cover
	Preliminaries of the MWU method for solving covering LPs
	Semi Streaming MWU-based algorithm for factional Set Cover
	First Attempt: Simple Oracle and Large Width

	Max Cover Problem and its Application to Width Reduction
	The Maximum Coverage Problem
	Sampling-Based Oracle for Fractional Max Coverage
	Final Step: Running Several MWU Rounds Together
	Extension to general covering LPs

	Omitted Proofs
	Proof of Lemma 3.2
	Proof of Lemma 3.5
	Proof of Lemma 3.6
	Proof of Lemma 3.8
	Proof of Theorem 3.9
	Proof of Lemma 3.10

	p13-jansen
	Introduction
	Related Work
	Technical Contribution
	Lower Bound
	Remainder of the Paper

	Container Packing
	Dynamic Rounding
	Invariant Properties
	Approximation Guarantee

	Shift Operation
	Shift Algorithm (simplified)
	Insertion Algorithm

	Migration Analysis
	Flat Items
	Narrow Items
	Shelf Packing
	Filling Gaps in the Container Packing

	p14-jindal
	Introduction
	Background
	Random Walks and Matrices
	Spectral Approximations of Graphs
	Graph Sparsification by Effective Resistances

	Random Walk Sparsification via Walk Sampling
	Faster Density Independent Sparsification of Graphs
	Omitted Proofs For Section 3
	Omitted Proofs For Section 4
	Proof Of Lemma 12
	Proof Of Corollary 13

	p14-ZZZ-Blank
	p15-kale
	Introduction
	Related Work
	Organization of the Paper

	Preliminaries
	Analyzing the Three Pass Algorithm for Bipartite Graphs
	A Simple Two Pass Algorithm for Triangle Free Graphs
	Improved Two Pass Algorithm
	Multi Pass Algorithm
	Three Pass Algorithm for Triangle Free Graphs
	Three Pass Algorithm for General Graphs
	Three Pass Algorithm for Bipartite Graphs: Suboptimal Analysis
	Improved Analysis Without Considering Longer Augmenting Paths

	A Note on the Analysis by Esfandiari et al.

	p15-ZZZ-Blank
	p16-kesselheim
	Introduction
	Our Contribution
	Related Work

	Submodular Secretary Problem
	Analysis Technique
	Proof of Theorem 1
	Improved Analysis for the Greedy Algorithm

	Submodular Matching
	Submodular Function subject to Linear Packing Constraints
	Missing Details in Section 2
	Continued Proof of Lemma 4
	Detailed Proof of Theorem 1
	Proof of Claim 7
	Proof of Claim 8

	Missing Details in Section 3: Submodular Matching
	Missing Details in the Proof of Theorem 10: Competitive Ratio for Submodular Matching

	p17-koenemann
	Introduction and Background
	The Integrality Gap for PCSF
	Lower Bound on the Integrality Gap
	The Integrality Gap is Tight for the Construction
	Lagrangian-Multiplier Preserving Approximation Algorithms for PCSF

	An Extreme Point for PCST with All Values at most 1/3
	Implications of an LMP Approximation Algorithm for PCSF

	p17-ZZZ-Blank
	p18-levi-alev
	Introduction
	Our Results
	Related Work
	Organization

	Low Diameter Graph Decompositions
	Minimum Uncut
	Linear Programming Relaxation
	Proof Overview
	Rounding Algorithm
	Main Lemma
	Proof of Corollary 3

	Max-2Lin-k
	Problem Formulation
	Linear Programming Relaxation
	Rounding Algorithm and Analysis

	General Unique Games
	Linear Programming Relaxation
	Proof Overview
	Rounding Algorithm
	Proof of Theorem 4

	Discussions and Open Problems

	p18-ZZZ-Blank
	p19-liberty
	Introduction
	Preliminaries and definitions
	General Greedy Extension Algorithms
	k-means Clustering
	Sparse Multiple Linear Regression
	Sparse Regression
	Column Subset Selection Problem
	Sparse Convex Function Minimization

	p19-ZZZ-Blank
	p20-obremski
	Introduction
	Renyi Entropy
	Estimation and Sample Complexity
	Our contribution
	Results
	Techniques

	Preliminaries
	Auxiliary Facts
	Upper Bounds
	Lower Bounds
	Conclusion
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 8
	Maximizing entropy gap within variational distance constraints

	p20-ZZZ-Blank
	p21-rabani
	Introduction
	Our Results
	Other related Work

	Notation
	Proof of Main Theorem
	Proof Outline
	The constant spread case
	The general case
	Application to Sparsest Cut

	Appendix
	Ruling out a worst-case distortion bound of O(ssr(X))
	Proof of Corollary 3.14

	p22-roughgarden
	Introduction
	Our Results
	Related Work and Organization

	Preliminaries
	Valuation Classes
	Welfare Maximization

	Two Cautionary Tales
	Close-to-additive vs. Close-to-linear Valuations
	Value Queries vs. Demand Queries

	Positive Results for Restricted Valuation Classes
	Marginal Closeness
	The Greedy Algorithm

	The Demand Oracle Model
	Rounding the Configuration LP
	Positive Results for Kelso-Crawford
	Biased Walrasian Equilibrium: Definition and Properties
	Convergence to Biased Walrasian Equilibrium

	Kelso-Crawford and Close-to-Linear Valuations

	Conclusion
	Standard Algorithms for Welfare-Maximization
	Missing Proofs from Sections 3 and 4
	Kelso-Crawford and Close-to-Transversal Valuations
	Proof of Claim 31

	Negative Results for Specific Algorithms
	Murota's Cycle Canceling Approach

	p22-ZZZ-Blank
	p23-acharyya
	Introduction
	Background
	Homogeneous Ferromagnetic Ising Model (with no external field)
	Glauber Dynamics
	Convergent Sequence of Dense Graphs
	Limit Object of Convergence: Graphon

	Main Results and Related Works
	Results for Mixing Time
	Results for Phase Diagram

	Organization
	Labeling Graphs in a Convergent Graph Sequence
	Phase Diagram
	Upper Bound for the Mixing Time
	Lower Bound for Mixing Time
	Counterexample at Critical Temperature
	Example of Fast Mixing at Critical Temperature
	Example of Slow Mixing at Critical Temperature
	Properties of Random Graph

	Appendix
	Proof of Theorem 6
	Preliminaries
	Proof of Lemma 11
	Remaining Proofs for Theorem 6.1
	Remaining Proofs for Theorem 6.2

	p24-agarwal
	Introduction
	Our Results

	Preliminaries
	No-expansion of Abelian Lifts
	Expansion of Random 2-lifts: Overview

	p24-ZZZ-Blank
	p25-alon
	Introduction
	Background and main results

	Related work
	Notation
	Folding and unfoldable matrices

	Proofs for the binary case
	Multi-dimensional matrices over arbitrary alphabets
	Lower bound

	Concluding remarks
	Proof of Theorem 16

	p26-angel
	Introduction
	Our results

	Proof of Theorem 3

	p26-ZZZ-Blank
	p27-avron
	Introduction
	Results
	Ridge Regression
	Ridge Low-rank Approximation
	Regularized Canonical Correlation Analysis
	General Regularization

	Basic Definitions and Notation

	Ridge Regression
	Large n
	Large d
	Multiple-response Ridge Regression

	Ridge Low-Rank Approximation
	Estimation of statistical dimension
	Regularized Canonical Correlation Analysis
	General Regularization: Multiple-response Regression
	General Regularization: Low-rank Approximation
	Via the SVD
	Reduction to a small problem via sketching

	Proof of Lemma 25

	p28-banks
	Introduction
	Colorings, Partitions, and the Lovász theta Function
	Background on sum-of-squares
	Colorings, partitions, and sum-of-squares
	The Lovász theta function
	Good partitions and a relaxed Lovász function
	Upper and lower bounds

	Constructing a Pseudoexpectation with Orthogonal Polynomials
	Proof of Theorems 3 and 4
	Proof of Lemma 11
	Proof of Lemma 9

	p29-ben-hamou
	Introduction
	The Hamming weight
	Proof of Theorem 1

	p30-bhattacharyya
	Introduction
	Discussion of Main Result
	Proof Overview

	Zero-error 2-query LCCs
	Proof of lower bound
	An information theoretic lemma
	Proof of Theorem 1
	Proof of Claim 7

	LDCs from LCCs
	Decomposition into expanding subgraphs

	p31-bhattiprolu
	Introduction
	Our Results
	Related Work
	Organization

	Notation and Preliminaries
	Matrices
	SoS Hierarchy

	Overview of our Methods
	Overview of Upper Bound Proofs
	Overview of Lower Bound Proofs

	Upper bounds for even degree tensors
	Proof of SoS Lower Bound in Theorem 1
	Wigner Moment Matrix

	Constructing the Moment Matrix Realizing the Lower Bound

	p32-blasiok
	Introduction
	Notation
	Preliminaries
	Overview of approach
	Analysis
	Weak tracking of |x|-p
	Strong tracking of |x|-p

	p32-ZZZ-Blank
	p33-brakensiek
	Introduction
	Vertex isoperimetry
	Independent set stability
	Related work
	Paper organization

	Vertex isoperimetric Inequalities
	Compressions
	Proof of Theorem 1.1
	A fine-tuned understanding of the isoperimetric profile

	Independent set stability results
	Black-box result for clique tensor powers
	Improved stability result for clique tensor powers

	Proofs of algebraic inequalities
	Optimality of exponent in Theorem 1.3

	p33-ZZZ-Blank
	p34-cannon
	Introduction
	Related work
	Proof ideas

	Background
	Dyadic Tilings
	Markov Chains

	The Edge-Flip Markov Chain M-k
	The Block Dynamics Markov Chain M-block-k

	A Polynomial upper bound on the mixing time of M-k
	Lower bound on the mixing time of M-n
	The spectral gap of the block dynamics
	Omitted Proofs

	p34-ZZZ-Blank
	p35-carmosino
	Introduction
	Our approach
	Our techniques
	Related work

	Preliminaries
	Learning algorithms
	Tolerant natural properties

	Agnostic learning from tolerant natural properties for AC02
	The CIKK framework
	Extension to the agnostic learning case
	Outline of the general method
	The case of AC02
	The case of AC0q for prime q

	Agnostic learning from tolerant natural properties
	Hardness of removing membership queries
	Open questions
	Tolerant natural property for AC02
	Tolerant natural property for AC0q for prime q

	p35-ZZZ-Blank
	p36-celis
	Introduction
	Our Framework and Results
	Other Related Work

	Counting with Budget Constraints
	Determinantal Point Processes
	Hardness Result
	Mixed Discriminants

	Mixed Discriminants and Mixed Characteristic Polynomials
	Budget-Constrained Sampling and Counting for Regular Matroids
	Hardness for Spanning Trees
	Equivalence Between Counting and Sampling
	Counting Implies Sampling
	Sampling Implies Counting

	p37-chen
	Introduction
	Our results
	Related work
	Our techniques
	One-sided lower bound

	Two-sided lower bound
	Structural result
	One-sided upper bound
	Two-sided upper bound

	Preliminaries and Notation
	Two-sided lower bound
	Proof Plan
	The Distributions
	Distributions E-yes and E-*-no are close

	One-sided lower bound
	Proof of Lemma 16

	Proof of Lemma 15

	p38-chen
	Introduction
	A very high-level overview of the algorithm
	A more detailed overview of the algorithm and why it works
	Relation to previous work
	Organization

	Background
	LTFs and weight-regularity
	Fourier analysis of Boolean functions and Fourier-regularity
	Restrictions
	Useful algorithmic tools from prior work
	Useful structural results from prior work

	New structural results about LTFs
	Algorithmic tools for LTFs
	Detailed description of the algorithm
	The algorithm
	Key properties of procedure Regularize-and-Balance
	Key properties of Main-Procedure
	Proof of Lemma 21

	Final analysis of the algorithm

	Proof of Lemma 19
	Proofs of Lemma 20, Lemma 22, and Lemma 23
	Proof of the Second Part of Lemma 20 using Lemma 21
	Proof of Lemma 22
	Proof of Lemma 23

	Proofs of the Final Analysis

	p38-ZZZ-Blank
	p39-chiesa
	Introduction
	Main results
	Bivariate low-degree testing in the low-agreement regime
	Improved robustness for the axis-parallel hyperplane test

	Techniques
	Theorem 2: bivariate testing in the low agreement regime
	Theorem 5: improved robustness for the hyperplane test

	Proof of Theorem 2
	Proof of Lemma 6
	Step 1
	Step 2
	Step 3
	Completing the proof

	Proof of Theorem 5
	Step 1: the case of a large independent set
	Step 2: the structure of G
	Step 3: relating the expected local distance to the vertex cover
	Putting things together

	Preliminaries for Theorem 2
	Low-degree polynomials
	The Kövári-Sós-Turán theorem

	Preliminaries for Theorem 5
	Linear codes
	Tensor product codes
	Locally testable codes and robust tests
	The axis-parallel hyperplane test

	Other Results

	p40-coja-oghlan
	Introduction
	The cavity method
	The Potts antiferromagnet
	The stochastic block model
	The diluted k-spin model

	Main results
	Definitions and assumptions
	Results

	Proof strategy
	Two moments do not suffice
	The condensation phase transition and the overlap
	The Kesten-Stigum bound
	Second moment redux
	Virtuous cycles

	p40-ZZZ-Blank
	p41-doron
	Introduction
	Preliminaries
	Basic facts from linear algebra
	The Perron-Frobenius theorem
	Jordan normal form
	Functions of matrices
	The generalized inverse
	Space-bounded probabilistic computation
	The model of computation
	Simulatable matrices

	Approximating exp((I-A),-1) by the Taylor series
	Computing the generalized inverse of the Laplacian
	The Algorithm
	Efficiency
	Correctness
	Peeling off the 1-eigenspace
	Approximating exp((I-A),-1)
	Putting everything together

	Some specific families of graphs
	Omitting the aperiodicity requirement using lazy walks
	Undirected graphs
	On the parameter kappa(V)
	Eulerian directed graphs
	Rapidly-mixing graphs

	p42-erguen
	Introduction
	Our Results
	Related Work

	Preliminaries
	The k-Mismatch Algorithm

	Our Approach
	Two-Pass Algorithm to Compute k-Periods
	Finding small k-periods
	Pass 1: Property 1
	Pass 1: Property 2
	Pass 1: Property 3
	Pass 2: Property 4
	Finding large k-periods

	One-Pass Algorithm to Compute k-Periods
	Finding small k-periods
	Finding large k-periods

	Lower Bounds
	Lower Bounds for General Periods
	Lower Bounds for Small Periods

	Structural Properties of k-Periodic Strings

	p42-ZZZ-Blank
	p43-frank-fischer
	Introduction
	Background and related work
	Lifted codes, and our construction
	Outline

	Technical Overview
	Notation and basic definitions
	Partially lifted codes
	Discussion and open questions

	Framework
	Basic Setup: Lucas' Theorem and Monomials
	Partially lifted codes
	Which binomials play nice with which lines?
	Dimension

	Instantiations
	Conclusion

	p43-ZZZ-Blank
	p44-freitag
	Introduction
	Overview of Techniques

	Notation
	Hereditary Properties over Arbitrary Alphabets
	Reduction from Testing Arbitrary Properties to Hereditary Properties
	An Explicit Property Requiring Linear Queries

	Hereditary Properties over Finite Alphabets
	Conclusions and Open Problems

	p45-frieze
	Introduction
	Traveling between pairs
	Proof of Theorem 1(a)
	Proof of Theorem 1(b)

	Traveling among all vertices
	Bounding the expected tour length in 1 dimension
	The asymptotic tour length

	The case p(n) -> 0
	Further questions
	Proof of Lemma 5
	Proof of Lemma 10
	Proof of Lemma 11
	Proof of Lemma 14

	p45-ZZZ-Blank
	p46-golovnev
	Introduction
	Connections to circuit lower bounds for semilinear circuits
	General log-depth circuits
	Semilinear log-depth circuits
	Semilinear series-parallel circuits

	Proof overview of Theorem 1

	Preliminaries
	The Minrank of a Random Graph
	Tightness of Theorem 10

	p46-ZZZ-Blank
	p47-guruswami
	Introduction
	Some other related work
	Our construction approach

	Preliminaries
	Efficiently decodable codes for random deletions with p approaching 1
	Construction
	Possible Alternative Constructions

	Future work and open questions
	Proof of Lemma 3

	p47-ZZZ-Blank
	p48-volkovich
	Introduction
	Multivariate Polynomial Factorization
	Polynomial Reconstruction
	Sparse Polynomial Factorization
	Techniques
	Previous Results
	Organization

	Preliminaries
	Polynomials
	Partial Derivatives
	Factors and Perfect Powers
	GCD and Subresultants
	Univariate Polynomials: Squarefree Decomposition and Root Computation

	Sparse Polynomials
	Sparse Multiquadratic Polynomials

	Computations beyond an Exponentiation Gate and Application
	Evaluation beyond an Exponentiation Gate
	Reconstruction beyond an Exponentiation Gate
	Deterministic Factorization of Sparse Multiquadratic Polynomials

	Discussion & Open Questions
	Sparse Polynomials with Constant Individual Degrees
	Deterministic Reconstruction Algorithm for Multilinear SPSP2 Circuits
	Polynomial Identity Testing beyond an Exponentiation Gate
	Missing Proofs

	p48-ZZZ-Blank
	p49-watson
	Introduction
	Communication Upper and Lower Bounds
	Composing with Majority
	Preliminaries

	Communication Upper and Lower Bounds
	Composing with Majority

