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Abstract
We define two resource aware typing systems for the λµ-calculus based on non-idempotent in-
tersection and union types. The non-idempotent approach provides very simple combinatorial
arguments – based on decreasing measures of type derivations – to characterize head and strongly
normalizing terms. Moreover, typability provides upper bounds for the length of head-reduction
sequences and maximal reduction sequences.
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1 Introduction

A few years after Griffin [22] observed that Feilleisen’s C operator can be typed with the
double-negation elimination, Parigot [32] made a major step in extending the Curry-Howard
from intuitionistic to classical logic by proposing the λµ-calculus as a simple term notation
for classical natural deduction proofs. Other calculi were proposed since then, as for example
Curien-Herbelin’s λµµ̃-calculus [11] based on classical sequent calculus.

Simple types are known to be unable to type some normalizing term, for instance the
normal form ∆ = λx.xx. Intersection types, pioneered by Coppo and Dezani [9, 10], extend
simple types by resorting to a new constructor ∩ for types, allowing the assignment of a
type of the form ((σ ⇒ σ) ∩ σ)⇒ σ to the term ∆. The intuition behind a term t of type
τ1 ∩ τ2 is that t has both types τ1 and τ2. The intersection operator ∩ is to be understood as
idempotent (σ∩σ = σ), commutative (σ∩τ = τ ∩σ), and associative ((σ∩τ)∩δ = σ∩ (τ ∩δ))
laws. Among other applications, intersection types have been used as a behavioural tool to
reason about several operational and semantical properties of programming languages. For
example, a λ-term/program t is strongly normalizing/terminating if and only if t can be
assigned a type in an appropriate intersection type assignment system.

This technology turns out to be a powerful tool to reason about qualitative properties
of programs, but not about quantitative ones. Indeed, e.g. there is a type system assigning
a type to a term t if and only if t is head normalizing, but the type derivations give no
information about the number of head-reduction steps needed to head-normalize t, because
of idempotency. In constrast, after the pioneering works of Gardner [19] and Kfoury [27], D.
de Carvalho [14, 15] established a relation between the size of a typing derivation in a non-
idempotent intersection type system for the lambda-calculus and the head/weak-normalization
execution time of head/weak-normalizing lambda-terms, respectively. Non-idempotent types
have recently received a lot of attention in the domain of semantics of programming languages
from a quantitative perspective (see for example [6]), notably because they are closely related

© Delia Kesner and Pierre Vial;
licensed under Creative Commons License CC-BY

2nd International Conference on Formal Structures for Computation and Deduction (FSCD 2017).
Editor: Dale Miller; Article No. 24; pp. 24:1–24:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSCD.2017.24
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de
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to Girard’s translation of intuitionistic logic into linear logic (according to which A ⇒ B

becomes !A( B).

The case of the λµ-calculus: The non-idempotent intersection and union types for lambda-
mu-calculus that we present in this article can be seen as a quantitative refinement of Girard’s
translation of classical logic into linear logic. Different qualitative and/or quantitative models
for classical calculi were proposed in [34, 37, 39, 3], thus limiting the characterization of
operational properties to head-normalization. Intersection and union types were also studied
in the framework of classical logic [30, 36, 28, 17], but no work adresses the problem from
a quantitative perspective. Type-theoretical characterization of strong-normalization for
classical calculi were provided both for λµ [38] and λµµ̃-calculus [17], but the (idempotent)
typing systems do not allow to construct decreasing measures for reduction, thus a resource
aware semantics cannot be extracted from those interpretations. Combinatorial strong
normalization proofs for the λµ-calculus were proposed for example in [12], but they do not
provide any explicit decreasing measure, and their use of structural induction on simple
types does not work anymore with intersection types, which are more powerful than simple
types as they do not only ensure termination but also characterize it. Different small step
semantics for classical calculi were developed in the framework of neededness [4, 33], without
resorting to any resource aware semantical argument.

In this paper we define a resource aware type system for the λµ-calculus based on non-
idempotent intersection and union types. The non-idempotent approach provides very simple
combinatorial arguments, only based on a decreasing measure, to characterize head and
strongly normalizing terms by means of typability. In the well-known case of the λ-calculus,
the measure sz (Π) of a derivation Π is simply given by the number of its nodes. This
approach cannot be straightforwardly adapted to λµ, and we need now to take into account
the structure (multiplicity and size ) of certain types appearing in the types derivations.

By lack of space we cannot provide in this submission all the proofs of our results, but
we refer the interested reader to the extended detailed version available at [26].

2 The λµ-Calculus

This section gives the syntax (Sec. 2.1) and the operational semantics (Sec. 2.2) of the
λµ−calculus [32]. But before this we first introduce some preliminary general notions of
rewriting that will be used all along the paper, and that are applicable to any system R.
We denote by →R the (one-step) reduction relation associated to system R. We write →∗R
for the reflexive-transitive closure of →R, and →n

R for the composition of n-steps of →R,
thus t →n

R u denotes a finite R-reduction sequence of length n from t to u. A term t is
in R-normal form, written t ∈ R-nf, if there is no t′ s.t. t →R t′; and t has an R-normal
form iff there is t′ ∈ R-nf such that t→∗R t′. A term t is said to be strongly R-normalizing,
written t ∈ SN (R), iff there is no infinite R-sequence starting at t.

2.1 Syntax
We consider a countable infinite set of variables x, y, z, . . . (resp. continuation names
α, β, γ, . . .). The set of objects (Oλµ), terms (Tλµ) and commands (Cλµ) of the λµ-calculus
are given by the following grammars

(objects) o ::= t | c
(terms) t, u, v ::= x | λx.t | tu | µα.c
(commands) c ::= [α]t
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We write Tλ for the set of λ-terms. We abbreviate (. . . ((tu1)u2) . . . un) as tu1 . . . un or tu
when n is clear from the context. The grammar extends λ-terms with two new constructors:
commands [α]t and µ-abstractions µα.c. Free and bound variables of objects are defined
as expected, in particular fv(µα.c) := fv(c) and fv([α]t) := fv(t). Free names of objects
are defined as expected, in particular fn(µα.c) := fn(c) \ {α} and fn([α]t) := fn(t) ∪ {α}.
Bound names are defined accordingly.

We work with the standard notion of α-conversion i.e. renaming of bound variables and
names, thus for example [δ](µα.[α](λx.x))z ≡ [δ](µβ.[β](λy.y))z. Substitutions are (finite)
functions from variables to terms specified by {x1/u1, . . . , xn/un} (n ≥ 0). Application
of the substitution σ to the object o, written oσ, may require α-conversion in order to
avoid capture of free variables/names, and it is defined as expected. Replacements are
(finite) functions from names to terms specified by {α1//u1, . . . , αn//un} (n ≥ 0). Intuitively,
the operation {α//u} passes the term u as an argument to any command of the form [α]t.
Formally, the application of the replacement Σ to the object o, written oΣ, may require
α-conversion in order to avoid the capture of free variables/names, and is defined as:

x{α//u} := x (λz.t){α//u} := λz.t{α//u}
([α]t){α//u} := [α](t{α//u})u (tv){α//u} := t{α//u}v{α//u}
([γ]t){α//u} := [γ]t{α//u} (µγ.c){α//u} := µγ.c{α//u}

For example, if I = λz.z, then (x(µα[α]y)(λz.zx)){x/I} = I(µα[α]y)(λz.zI), and
[α]x(µβ.[α]y){α//I} = [α](xµβ.[α]yI))I.

2.2 Operational Semantics
The λµ-calculus is given by the set of objects introduced in Sec. 2.1 and the reduction
relation →λµ , which is the closure by all contexts of the following rewriting rules

(λx.t)u 7→β t{x/u}
(µα.c)u 7→µ µα.c{α//u}

defined by means of the substitution and replacement application notions given in Sec. 2.1.
A redex is a term of the form (λx.t)u or (µα.c)u. We write t→λµ t

′ (or simply t→ t′) to
denote the closure by all contexts of the reduction relation generated by the previous set of
rewriting rules.

A head-context is a context defined by the following grammar:

HO ::= HT | HC
HT ::= 2t1 . . . tn (n > 0) | λx.HT | µα.HC
HC ::= [α]HT

A head-normal form is an object of the form HO[x], where x is any variable replacing the
constant 2. Thus for example µα.[β]λy.x(λz.z) is a head-normal form. An object o ∈ Oλµ is
said to be head-normalizing, written o ∈ HN (λµ), if o→∗λµ o

′, for some head-normal form
o′. Remark that o ∈ HN (λµ) does not imply o ∈ SN (λµ) while the converse necessarily
holds. We write HN (λ) and SN (λ) when t is restricted to be a λ-term and the reduction
system is restricted to the β-reduction rule.

A redex r in a term of the form t := HO[r] is called the head-redex of t. The reduction
step t →λµ t

′ contracting the head-redex of t is called head-reduction. The reduction
sequence composing head-reduction steps until head-normal form is called the head-strategy.

FSCD 2017
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If the head-strategy starting at o terminates, then o ∈ HN (λµ), while the converse will be
stated later (cf. Thm. 7).

A typical example of expressivity in the λµ-calculus is the control operator [22] call-cc
:= λy.µα.[α]y(λx.µβ.[α]x) which gives raise to the following reduction sequence:

call-cc t u1 . . . un →β (µα.[α]t(λx.µβ.[α]x))u1 . . . un
→µ (µα.[α]t(λx.µβ.[α]xu1)u1)u2 . . . un →∗µ µα.[α]t(λx.µβ.[α]xu1 . . . un)u1 . . . un

A reduction step o → o′ is said to be erasing iff o = (λx.u)v and x /∈ fv(u), or
o = (µα.c)u and α /∈ fn(c). Thus e.g. (λx.z)y → z and (µα.[β]x)I→µ µα.[β]x are erasing
steps. A reduction step o → o′ which is not erasing is called non-erasing. Reduction is
stable by substitution and replacement. More precisely, if o→ o′, then o{x/u} → o′{x/u}
and o{α//u}→o′{α//u}. These stability properties give the following corollary.

I Corollary 1. If o{x/u} ∈ SN (λµ) (resp. o{α//u} ∈ SN (λµ)) , then o ∈ SN (λµ).

3 Quantitative Type Systems for the λ-Calculus

As mentioned before, our results rely on typability of λµ-terms in suitable systems with
non-idempotent types. Since the λµ-calculus embeds the λ-calculus, we start by recalling
the well-known [19, 14, 7] quantitative type systems for λ-calculus, called here Hλ and Sλ.
We then reformulate them, using a different syntactical formulation, resulting in the typing
systems H′λ and S ′λ, that are the formalisms we adopt in Sec. 4 for λµ.

We start by fixing a countable set of base types a, b, c . . ., then we introduce two different
categories of types specified by the following grammars:

(Intersection Types) I ::= [σk]k∈K
(Types) σ, τ ::= a | I ⇒ σ

An intersection type [σk]k∈{1..n} is a multiset that can be understood as a type σ1 ∩ . . . ∩ σn,
where ∩ is associative and commutative, but non-idempotent. The non-deterministic choice
operation _∗ is defined on intersection types as follows:

[σk]∗k∈K :=
{

[τ ] if K = ∅ and τ is any arbitrary type
[σk]k∈K if K 6= ∅

Variable assignments (Γ) are functions from variables to intersection types. The
domain of Γ is given by dom(Γ) := {x | Γ(x) 6= [ ]}, where [ ] is the empty intersection type.
We write x1 : I1, . . . , xn : In for the assignment of domain {x1, . . . , xn} mapping each xi to
Ii. When x /∈ dom(Γ), then Γ(x) stands for [ ]. We write Γ ∧ Γ′ for x 7→ Γ(x) + Γ′(x), where
+ is multiset union, and dom(Γ ∧ Γ′) = dom(Γ) ∪ dom(Γ′). We write Γ \\x for the assignment
defined by (Γ \\x)(x) = [ ] and (Γ \\x)(y) = Γ(y) if y 6= x.

To present/discuss different typing systems, we consider the following derivability notions.
A type judgment is a triple Γ ` t : σ, where Γ is a variable assignment, t a term and σ
a type. A (type) derivation in system X is a tree obtained by applying the (inductive)
rules of the type system X . We write Φ .X Γ ` t : σ if Φ is a type derivation concluding with
the type judgment Γ ` t : σ, and just .X Γ ` t : σ if there exists Φ such that Φ .X Γ ` t : σ.
A term t is X -typable iff there is a derivation in X typing t, i.e. if there is Φ such that
Φ .X Γ ` t : σ. We may omit the index X if the name of the system is clear from the context.
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x : [τ ] ` x : τ
(ax)

Γ ` t : τ
Γ \\x ` λx.t : Γ(x) ⇒ τ

(⇒i)
Γ ` t : [σk]k∈K ⇒ τ (Γk ` u : σk)k∈K

Γ ∧k∈K Γk ` tu : τ
(⇒e)

Figure 1 System Hλ.

Rule (ax) Rule (⇒i)
(Γk ` t : σk)k∈K

∧k∈KΓk 
 t : [σk]k∈K
(∧)

Γ ` t : I ⇒ σ Γ′ 
 u : I
Γ ∧ Γ′ ` t u : σ

(⇒e)

Figure 2 System H′λ.

3.1 Characterizing Head β-Normalizing λ-Terms
We discuss in this section typing systems being able to characterize head β-normalizing
λ-terms. We first consider system Hλ in Fig. 1, first appearing in [19], then in [14].

Notice that K = ∅ in rule (⇒e) allows to type an application tu without necessarily
typing the subterm u. Thus for example, if Ω = (λx.xx)(λx.xx), then from the judgment
x : [σ] ` x : σ we can derive x : [σ] ` (λy.x)Ω : σ.

System Hλ characterizes head β-normalization:

I Lemma 2. Let t∈ Tλ. Then t is Hλ-typable iff t∈ HN (λ).

Moreover, the implication typability implies normalization can be shown by simple
arithmetical arguments provided by the quantitative flavour of the typing system Hλ, in
contrast to classical reducibility arguments usually invoked in other cases [20, 29]. Actually,
the arithmetical arguments give the following quantitative property:

I Lemma 3. If t is Hλ-typable with tree derivation Π, then the size (number of nodes) of Π
gives an upper bound to the length of the head-reduction strategy starting at t.

To reformulate system Hλ in a different way, we now distinguish two sorts of judgments:
regular judgments of the form Γ ` t : σ assign types to terms, and auxiliary judgments
of the form Γ 
 t : I assign intersection types to terms.

An equivalent formulation of system Hλ, called H′λ, is given in Fig. 2. There are two
inherited forms of type derivations: regular (resp. auxiliary) derivations are those that
conclude with regular (resp. auxiliary) judgments. Notice that I = ∅ in rule (∧) gives 
 u : [ ]
for any term u, e.g. 
 Ω : [ ], so that one can derive x : [τ ] ` (λy.x)Ω : τ in this system.
Notice also that systems Hλ and H′λ are relevant, i.e. they lack weakening. Equivalence
between Hλ and H′λ gives the following result:

I Corollary 4. Let t∈ Tλ. Then t is H′λ-typable iff t∈ HN (λ).

Auxiliary judgments turn out to substantially lighten the notations and to make the statements
(and their proofs) more readable.

3.2 Characterizing Strong β-Normalizing λ-Terms
We now discuss typing systems being able to characterize strong β-normalizing λ-terms. We
first consider system Sλ in Fig. 3, which appears in [8] (slight variants appear in [13, 6, 24]).

FSCD 2017
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x : [τ ] ` x : τ
(ax)

Γ ` t : τ
Γ \\x ` λx.t : Γ(x) ⇒ τ

(⇒i)
Γ ` t : [ ] ⇒ τ ∆ ` u : σ

Γ ∧ ∆ ` tu : τ
(⇒e1 )

Γ ` t : [σk]k∈K ⇒ τ (∆k ` u : σk)k∈K K 6= ∅
Γ ∧k∈K ∆k ` tu : τ

(⇒e2 )

Figure 3 System Sλ.

Rule (ax) Rule (⇒i)
(Γk ` t : σk)k∈K

∧k∈KΓk 
 t : [σk]k∈K
(∧)

Γ ` t : I ⇒ τ ∆ 
 u : I∗

Γ ∧ ∆ ` tu : τ
(⇒e)

Figure 4 System S ′λ.

Rule (⇒e1) forces the erasable arguments (the subterm u) to be typed, even if the type of u
(i.e. σ) is not being used in the conclusion of the judgment. Thus, in contrast to system Hλ,
every subterm of a typed term is now typed.

System Sλ characterizes strong β-normalization:

I Lemma 5. Let t ∈ Tλ. Then t is Sλ-typable iff t ∈ SN (λ).

As before, the implication typability implies normalization can be show by simple arith-
metical arguments provided by the quantitative flavour of the typing system Sλ.

An equivalent formulation of system Sλ, called S ′λ, is given in Fig. 4. As before, we use
regular as well as auxiliary judgments. Notice that I = ∅ in rule (∧) is still possible, but
derivations of the form 
 t : [ ], representing untyped terms, will never be used. The choice
operation _∗ (defined at the beginning of Sec. 3) in rule (⇒e) is used to impose an arbitrary
type for an erasable term, i.e. when t has type [ ] ⇒ τ , then u needs to be typed with an
arbitrary type [σ], thus the auxiliary judgment typing u on the right premise of (⇒e) cannot
assign [ ] to u. This should be understood as a sort of controlled weakening. Here is an
example of type derivation in system S ′λ:

x : [σ] ` x : σ
x : [σ] ` λy.x : [ ]⇒ σ

z : [τ ] ` z : τ
z : [τ ] 
 z : [τ ]

x : [σ], z : [τ ] ` (λy.x)z : σ

Since Sλ and S ′λ are equivalent, we also have:

I Corollary 6. Let t∈ Tλ. Then t is S ′λ-typable iff t∈ SN (λ).

4 Quantitative Type Systems for the λµ-Calculus

We present in this section two quantitative systems for the λµ-calculus, systems Hλµ (Sec. 4.2)
and Sλµ (Sec. 4.3), characterizing, respectively, head and strong λµ-normalizing objects.
Since λ-calculus is embedded in the λµ-calculus, then the starting points to design Hλµ and
Sλµ are, respectively, H′λ and S ′λ, introduced in Sec. 3.
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4.1 Types
We consider a countable set of base types a, b, c . . . and the following categories of types:

(Object Types) A := C | U
(Command Type) C := #
(Union Types) U ,V ::= 〈σk〉k∈K
(Intersection Types) I ::= [Uk]k∈K
(Types) σ, τ ::= a | I ⇒ U

The constant # is used to type commands, union types to type terms and intersection types
to type variables (thus left-hand sides of arrows). Both [σk]k∈{1..n} and 〈σk〉k∈{1..n} can be
seen as multisets, representing, respectively, σ1 ∩ . . . ∩ σn and σ1 ∪ . . . ∪ σn, where ∩ and ∪
are both associative, commutative, but non-idempotent. We may omit the indices in the
simplest case: thus [U ] and 〈σ〉 denote singleton multisets. We define the operator ∧ (resp.
∨) on intersection (resp. union) multiset types by : [Uk]k∈K ∧ [V`]`∈L := [Uk]k∈K + [V`]`∈L
and 〈σk〉k∈K ∨ 〈τ`〉`∈L := 〈σk〉k∈K + 〈τ`〉`∈L, where + always means multiset union. The
non-deterministic choice operation _∗ is now defined on intersection and union types:

[Uk]∗k∈K :=
{

[U ] if K = ∅ and U is any arbitrary h-union type
[Uk]k∈K if K 6= ∅

〈σk〉∗k∈K :=
{
〈σ〉 if K = ∅ and σ is any arbitrary type
[σk]k∈K if K 6= ∅

where an h-union type is a union type which only contains empty intersection types on
the left-hand sides of arrows, i.e. if I ⇒ U occurs in the h-union type, then I = [ ]. The
choice operator for union type is defined so that (1) the empty union cannot be assigned
to µ-abstractions (see discussion on top of page 9) (2) subject reduction is guaranteed in
system Hλµ for erasing steps (µα.c)u→ µα.c (α /∈ fn(c)).

The arity of types and union multiset types is defined by induction: for types σ, if
σ = I ⇒ U , then ar(σ) := ar(U) + 1, otherwise, ar(σ) := 0; for union multiset types,
ar(〈σk〉k∈K) := Σk∈K ar(σk). The cardinality of multisets is defined by |[Uk]k∈K | =
|〈σk〉k∈K | := |K|.

Variable assignments (Γ), are, as before, functions from variables to intersection
multiset types. Similarly, name assignments (∆), are functions from names to union
multiset types. The domain of ∆ is given by dom(∆) := {α | ∆(x) 6= 〈 〉}, where 〈 〉 is
the empty union multiset. We may write ∅ to denote the name assignment that associates
the empty union type 〈 〉 to every name. When α /∈ dom(∆), then ∆(x) stands for 〈 〉. We
write ∆ ∨∆′ for α 7→ ∆(α) + ∆′(α), where dom(∆ ∨∆′) = dom(∆) ∪ dom(∆′). When dom(Γ)
and dom(Γ′) are disjoint we may write Γ; Γ′ instead of Γ ∧ Γ′. We write x : [Uk]k∈K ; Γ,
even when K = ∅, for the following variable assignment (x : [Uk]k∈K ; Γ)(x) = [Uk]k∈K and
(x : [Uk]k∈K ; Γ)(y) = Γ(y) if y 6= x. Similar concepts apply to name assignments, so that
α : 〈σk〉k∈K ; ∆ and ∆ \\α are defined as expected.

We now present our typing systems Hλµ and Sλµ , both having regular (resp. auxiliary)
judgments of the form Γ ` t : U | ∆ (resp. Γ 
 t : I | ∆), together with their respective
notions of regular and auxiliary derivations. An important syntactical property they enjoy is
that both are syntax directed, i.e. for each (regular/auxiliary) typing judgment j there
is a unique typing rule whose conclusion matches the judgment j. This makes our proofs
much simpler than those arising with idempotent types which are based on long generation
lemmas (e.g. [6, 36]).

FSCD 2017
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U 6= 〈 〉
x : [U ] ` x : U | ∅

(ax)
Γ ` t : U | ∆

Γ \\x ` λx.t : 〈Γ(x) ⇒ U〉 | ∆
(⇒i)

Γ ` t : U | ∆
Γ ` [α]t : # | ∆ ∨ {α : U}

(#i)

Γ ` c : # | ∆
Γ ` µα.c : ∆(α)∗ | ∆ \\α

(#e)
(Γk ` t : Uk | ∆k)k∈K

∧k∈KΓk 
 t : [Uk]k∈K | ∨k∈K∆k
(∧)

Γt ` t : 〈Ik ⇒ Uk〉k∈K | ∆t Γu 
 u : ∧k∈KIk | ∆u

Γt ∧ Γu ` t u : ∨k∈KUk | ∆t ∨ ∆u
(⇒e)

Figure 5 System Hλµ .

4.2 System Hλµ

In this section we present a quantitative typing system for λµ, called Hλµ , characterizing head
λµ-normalization. It can be seen as a first intuitive step to understand the typing system
Sλµ , introduced later in Sec. 4.3, and characterizing strong λµ-normalization. However, the
two systems will not be described and studied in the same way: by lack of space we choose to
discuss Hλµ in a more informal and compact way, while reserving more space and discussion
to system Sλµ .

The (syntax directed) rules of the typing system Hλµ appear in Fig. 5.
Rule (⇒e) is to be understood as a logical admissible rule: if union (resp. intersection) is

interpreted as the OR (resp. AND) logical connective, then ORk∈K (Ik ⇒ Uk) and (ANDk∈K Ik)
implies (ORk∈K Uk). As in the simply typed λµ-calculus [32], the (#i) rule saves a type U
for the name α, however, in our system, the corresponding name assignment ∆ ∨ {α : U},
specified by means of ∨, collects all the types that α has been assigned during the derivation.
Notice that the (#e) rule is not deterministic since ∆(α)∗ denotes an arbitrary union type, a
choice that is now discussed.

In simply typed λµ, call-cc = λy.µα.[α]y(λx.µβ.[α]x) would be typed with ((a⇒ b)⇒
a) ⇒ a (Peirce’s Law), so that the fact that α is used twice in the type derivation would
not be explicitely materialized (same comment applies to idempotent intersection/union
types). This makes a strong contrast with the derivation in Fig. 6, where Ua := 〈a〉, Ub := 〈b〉,
Uy := 〈[〈[Ua]⇒ Ub〉]⇒ Ua〉 and Φy . y : [Uy] ` y : Uy | .

Indeed, we can distinguish two different uses of names :
The name α is saved twice by a (#i) rule : once for x and once for y(λx.µβ.[α]x), both
times with type Ua. After that, the abstraction µα.[α]y(λx.µβ.[α]x) restores the types
that were previoulsy stored by α. A similar phenomenon occurs with λ-abstractions,
which restore the types of the free ocurrences of variables in the body of the functions.
The name β is not free in [α]x, so that a new union type Ub is introduced to type the
abstraction µβ.[α]x. From a logical point of view this corresponds to a weakening on
the right handside of the sequent. Consequently, λ and µ-abstractions are not treated
symmetrically: when x is not free in t, then λx.t will be typed with [ ]⇒ σ (where σ is
the type of t), and no new intersection type is introduced for the abstracted variable x.

Thus, µ-abstractions have two uses: to restore saved types and to create new types, which
explains the fact that empty union types are banned. Indeed, if .Γ ` t : U | ∆, then U 6= 〈 〉.

Why union types cannot be empty? Let us suppose that empty union types may be
introduced by the (#e) rule, at least when α /∈ fn(c), so that for example t = µβ.[α]x would
be typed with 〈 〉 (this can be obtained by simply changing ∆(α)∗ to ∆(α) in the (#e)-rule).
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Φy

x : [Ua] ` x : Ua |
x : [Ua] ` [α]x : # | α : Ua

x : [Ua] ` µβ.[α]x : Ub | α : Ua
` λx.µβ.[α]x : 〈[Ua]⇒ Ub〉 | α : Ua

 λx.µβ.[α]x : [〈[Ua]⇒ Ub〉] | α : Ua

y : [Uy] ` y(λx.µβ.[α]x) : Ua | α : Ua
y : [Uy] ` [α]y(λx.µβ.[α]x) : # | α : 〈Ua,Ua〉
y : [Uy] ` µα.[α]y(λx.µβ.[α]x) : 〈Ua,Ua〉 |
` λy.µα.[α]y(λx.µβ.[α]x) : 〈[Uy]⇒ 〈Ua,Ua〉〉 |

Figure 6 Typing call-cc.

Suppose also an object o containing 2 occurrences of the subterm [γ]t, so that γ receives the
union type 〈 〉 twice in the corresponding name assignment. Then, the term µγ.o will be
typed with 〈 〉 = 〈 〉 ∨ 〈 〉, which does not reflect the fact that γ is used twice, thus loosing the
quantitative flavour of the system (see also a formal argument just after Lem. 9).

We define now the notion of size derivation, which is a natural number representing the
amount of information in a tree derivation. For any type derivation Φ, sz (Φ) is inductively
defined by the following rules, where we use an abbreviated notation for the premises.

sz

(
x : [U ] ` x : U | ∅

(ax)
)

:= 1

sz

(
Φt � t

Γ \\x ` λx.t : 〈Γ(x) ⇒ U〉 | ∆
(⇒i)

)
:= sz (Φt) + 1

sz

(
Φt � t

Γ ` [α]t : # | ∆ ∨ {α : U}
(#i)

)
:= sz (Φt) + ar(U)

sz

(
Φc � c

Γ ` µα.c : ∆(α)∗ | ∆ \\α
(#e)

)
:= sz (Φc) + 1

sz

(
(Φk � t)k∈K

∧k∈KΓk 
 t : [Uk]k∈K | ∨k∈K∆k

(∧)
)

:= Σk∈K sz (Φk)

sz

(
Φt � t Φu � u

Γ ` t u : ∨k∈KVk | ∆
(⇒e)

)
:= sz (Φt) + sz (Φu) + |K|

System Hλµ behaves as expected, in particular, typing is stable by reduction (Subject
Reduction) and anti-reduction (Subject Expansion). Moreover,

I Theorem 7. Let o ∈ Oλµ . Then o is Hλµ-typable iff o ∈ HN (λµ) iff the head-strategy
terminates on o. Moreover, if o is Hλµ-typable with tree derivation Π, then sz (Π) gives an
upper bound to the length of the head-reduction strategy starting at o.

We do not provide the proof of this theorem, because it uses special cases of the more general
technology that we are going to develop later to deal with strong normalization. Notice that
Thm. 7 ensures that the head-strategy is complete for head-normalization in λµ.

A last comment of this section concerns the restriction of system Hλµ to the pure λ-
calculus: union types, name assignments and rules (#e) and (#i) are no more necessary, so
that every union multiset takes the single form 〈τ〉, which can be simply identified with τ .
Thus, the restricted typing system Hλµ becomes the one in Fig. 2.
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U 6= 〈 〉
x : [U ] ` x : U | ∅

(ax)
Γ ` t : U | ∆

Γ \\x ` λx.t : 〈Γ(x) ⇒ U〉 | ∆
(⇒i)

Γ ` t : U | ∆
Γ ` [α]t : # | ∆ ∨ {α : U}

(#i)

Γ ` c : # | ∆
Γ ` µα.c : ∆(α)∗ | ∆ \\α

(#e)
(Γk ` t : Uk | ∆k)k∈K

∧k∈KΓk 
 t : [Uk]k∈K | ∨k∈K∆k
(∧)

Γt ` t : 〈Ik ⇒ Uk〉k∈K | ∆t Γu 
 u : ∧k∈K (I∗k) | ∆u

Γt ∧ Γu ` t u : ∨k∈KUk | ∆t ∨ ∆u
(⇒e)

Figure 7 System Sλµ .

4.3 System Sλµ

This section presents a quantitative typing system characterizing strongly β-normalizing
λµ-terms. The (syntax directed) typing rules of the typing system Sλµ appear in Fig. 7.

As in system S ′λ, the operation _∗ is used to choose arbitrary types for erasable terms, so
that no subterm is untyped, thus ensuring strong λµ-normalization. While the use of _∗ in
the (#e)-rule can be seen as a weakening on the right hand-sides of sequents, its use in rule
(⇒e) corresponds to a form of controlled weakening on the left hand-sides. We still consider
the definition of size given before, as the choice operator does not play any particular role.

As in system Hλµ , a term is typed with a non-empty union type:

I Lemma 8. If .Γ ` t : U | ∆, then U 6= 〈 〉.

As well as in the case of Hλµ , system Sλµ can be restricted to the pure λ-calculus. Using
the same observations at the end of Sec. 4.2 we obtain the typing system S ′λ in Fig. 4 that
characterizes β-strong normalization.

A key property of system Sλµ is known as relevance:

I Lemma 9 (Relevance). If Φ . Γ ` o : A | ∆, then dom(Γ) = fv(o) and dom(∆) = fn(o).

Relevance holds thanks to the choice operator _∗: indeed, if ∆(α)∗ is replaced by ∆(α)
in the (#e)-rule, then the following derivations gives a counter-example to the relevance
property, where α ∈ fn([α]µβ.[γ]x) but α /∈ dom(γ : 〈a〉).

x : [〈a〉] ` x : 〈a〉 |
x : [〈a〉] ` [γ]x : # | γ : 〈a〉

x : [〈a〉] ` µβ.[γ]x : 〈 〉 | γ : 〈a〉
x : [〈a〉] ` [α]µβ.[γ]x : # | γ : 〈a〉

Indeed, the size of derivations typing commands takes into account the arity of their
corresponding type; and this is essential to materialize a decreasing measure for µ-reduction
(see Sec. 5). Notice that sz (Φ) ≥ 1 holds for any regular derivation Φ, whereas, by definition,
the derivation of the empty auxiliary judgment 
 t : [ ] | has size 0.

5 Typing Properties

This section shows two fundamental properties of reduction (i.e. forward) and anti-reduction
(i.e. backward) of system Sλµ . In Sec. 5.1 we analyse the subject reduction (SR) property, and
we prove that reduction preserves typing and decreases the size of type derivations (that is why
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we call it weighted SR). The proof of this property makes use of two fundamental properties
(Lem. 11 and 12) guaranteeing well-typedness of the meta-operations of substitution and
replacement. Sec. 5.2 is devoted to subject expansion (SE), which states that non-erasing
anti-reduction preserves types. The proof uses the fact that reverse substitution (Lem. 13)
and reverse replacement (Lem. 14) preserve types.

We start by stating an interesting property, to be used in our forthcoming lemmas, that
allows us to split and merge auxilary derivations:

I Lemma 10. Let I = ∧k∈KIk. Then Φ.Γ 
 t : I | ∆ iff ∃(Γk)k∈K ,∃(∆k)k∈K s.t. (Φk.Γk 

t : Ik | ∆k)k∈K , Γ = ∧k∈KΓk and ∆ = ∨k∈K∆k. Moreover, sz (Φ) = Σk∈Ksz (Φk).

5.1 Forward Properties
We first state the substitution lemma, which guarantees that typing is stable by substitution.
The lemma also establishes the size of the derivation tree of a substituted object from the
sizes of the derivations trees of its components.

I Lemma 11 (Substitution). Let Θu .Γu 
 u : I | ∆u. If Φo .Γ;x : I ` o : A | ∆, then there
is Φo{x/u} such that

Φo{x/u} � Γ ∧ Γu ` o{x/u} : A | ∆ ∨∆u.
sz

(
Φo{x/u}

)
= sz (Φo) + sz (Θu)− |I|.

Proof. By induction on Φo using Lem. 9 and 10. J

Typing is also stable by replacement. Moreover, we can specify the exact size of the
derivation tree of the replaced object from the sizes of its components.

I Lemma 12 (Replacement). Let Θu . Γu 
 u : ∧k∈K (I∗k) | ∆u where α /∈ fn(u). If
Φo . Γ ` o : A | α : 〈Ik ⇒ Vk〉k∈K ; ∆, then there is Φo{α//u} such that :

Φo{α//u} . Γ ∧ Γu ` o{α//u} : A | α : ∨k∈KVk; ∆ ∨∆u.
sz

(
Φo{α//u}

)
= sz (Φo) + sz (Θu).

Proof. By induction on Φ using Lem. 9 and 10. J

Notice that the type of α in the conclusion of the derivation Φo{α//u} (which is ∨k∈KVk)
is strictly smaller than that of the conclusion of the derivation Φo (which is 〈Ik ⇒ Vk〉k∈K)
if and only if K 6= ∅.

Lemmas 11 and 12 are used in the proof of the following key property.

I Property 1 (Weighted Subject Reduction for λµ). Let Φ . Γ ` o : A | ∆. If o → o′ is a
non-erasing step, then there exists a derivation Φ′ . Γ ` o′ : A | ∆ such that sz (Φ) > sz (Φ′).

Proof. By induction on o→ o′ using Lem. 9, 11 and 12. J

Discussion. A first remark about the property above is that variable and name assignments
are not necessarily preserved by erasing reductions. Thus for example, consider t = (λy.x)z →
x = t′. The term t is typed with a variable assignment whose domain is {x, z}, while t′
can only be typed with an assignment whose domain is {x}. Concretely, starting from a
derivation of x : [〈a〉], z : [〈b〉] ` (λx.y)z : 〈a〉 (the simplified type derivation of this term in
the S ′λ system appears on page 24:6), we can only construct a derivation of x : [〈a〉] ` x : 〈a〉,
so that the type is preserved while the variable assignment is not. Actually, our restricted
form of subject reduction (i.e. for non-erasing steps only) is sufficient for our purpose (see
how we deal with the erasing steps in the proof of Lem. 16).
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A second remark is that the consideration of arities of names in the definition of the size
of derivations (third case (#i)) is crucial to guarantee that µ-reduction decreases sz (_).
This is perfectly reflected in Lem. 12, where the type of α in the conclusion of the derivation
Φo{α//u} is strictly smaller than that of the conclusion of the derivation Φo.

A third point is about the use of the choice operator in the typing rule (#e), which
does not allow for the type 〈 〉 to be assigned to α when α /∈ fn(c). More precisely,
assume, just temporarily, that the (#e) rule does not use the choice operator, so that
a µ-abstraction can be typed with 〈 〉. Set u := µβ.[γ]y and c := [α]µδ.[α]u so that u,
µδ.[α]u and µα.c are typed with 〈 〉. The resulting type derivation Φc . Γ ` c : # | ∆
contradicts the Relevance Lem. 9, simply because α /∈ fn(∆) but α has two free occurrences
in c. This has heavy consequences that can be illustrated by the reduction sequence
t = (µα.c)x→ µα.[α](µδ.[α](µβ.[γ]y)x)x→∗ µα.c = t′. Indeed, the type of µα.c, which is 〈 〉,
holds no information capturing the number of free occurrences of α in c, so that there is no
local way to know how many times the argument x should be typed in the whole derivation
of the term (µα.c)x. This prevents the reduction relation to decrease any reasonable measure
associated to type derivations.

5.2 Backward Properties
Subject expansion is based on two technical properties: the first one, called reverse sub-
stitution, allows us to extract type information for an object o and a term u from the
type derivation of o{x/u}; similarly, the second one, called reverse replacement, gives type
information for a command c and a term u from the type derivation of c{α//u}. Both of
them are proved by induction on derivations using Lem. 9 and 10. Formally,

I Lemma 13 (Reverse Substitution). Let Φ′.Γ′ ` o{x/u} : A | ∆′ Then ∃Γ,∃∆,∃I,∃Γu,∃∆u

such that: Γ′ = Γ ∧ Γu, ∆′ = ∆ ∨∆u, .Γ;x : I ` o : A | ∆ and .Γu 
 u : I | ∆u.

I Lemma 14 (Reverse Replacement). Let Φ′ � Γ′ ` o{α//u} : A | α : V ; ∆′, where α /∈ fn(u).
Then ∃Γ,∃∆,∃Γu,∃∆u,∃(Ik)k∈K ,∃(Vk)k∈K such that: Γ′ = Γ ∧ Γu, ∆′ = ∆ ∨ ∆u, V =
∨k∈KVk, .Γ ` o : A | α : 〈Ik → Vk〉k∈K ; ∆, and and .Γu 
 u : ∧k∈KI∗k | ∆u.

The following property will be used in Sec. 6 to show that normalization implies typability.

I Property 2 (Subject Expansion for λµ). Assume Φ′ � Γ′ ` o′ : A | ∆′. If o → o′ is a
non-erasing step, then there is Φ � Γ′ ` o : A | ∆′.

Proof. By induction on → using Lem. 9, 13 and 14. J

6 Strongly Normalizing λµ-Objects

In this section we show the characterization of strongly-normalizing terms of the λµ-calculus
by means of the typing system introduced in Sec. 4, i.e. we show that an object o is
strongly-normalizing iff t is typable.

The proof of our main result (Thm. 18) relies on the following two ingredients:
Every Sλµ -typable object is in SN (λµ) (Lem. 16).
Every object in SN (λµ) is Sλµ-typable (Lem. 17).

First, we inductively reformulate the set of strongly normalizing objects: the set I(λµ) is
defined as the smallest subset of Oλµ satisfying the following closure properties:
1. If t1, . . . , tn (n ≥ 0) ∈ I(λµ), then xt1 . . . tn ∈ I(λµ).
2. If t ∈ I(λµ), then λx.t ∈ I(λµ).
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3. If c ∈ I(λµ), then µα.c ∈ I(λµ).
4. If t ∈ I(λµ), then [α]t ∈ I(λµ).
5. If u, t{x/u}v (n ≥ 0) ∈ I(λµ), then (λx.t)uv ∈ I(λµ).
6. If u, (µα.c{α//u})v (n ≥ 0) ∈ I(λµ), then (µα.c)uv ∈ I(λµ).

The sets SN (λµ) and I(λµ) turn out to be equal, as expected:

I Lemma 15. SN (λµ) = I(λµ).

Proof. SN (λµ) ⊆ I(λµ) is proved by induction on the pair 〈η(o), |o|〉 endowed with the
lexicographic order, where η(o) denotes the maximal length of an λµ-reduction sequence
starting at o and |o| denotes the size of o. I(λµ) ⊆ SN (λµ) is proved by induction on I(λµ)
using Cor. 1. No reducibility argument is then needed in this proof. J

I Lemma 16. If o is Sλµ-typable, then o ∈ SN (λµ).

Proof. We proceed by induction on sz (Φ), where Φ . Γ ` o : A | ∆. When Φ does not end
with the rule (⇒e) the proof is straightforward, so we consider Φ ends with (⇒e), where
A = U and o = xt1 . . . tn or o = (µα.c)t1 . . . tn or o = (λx.u)t1 . . . tn, where n ≥ 1.
By construction there are subderivations (Φti)i∈{1...n} such that (sz (Φti) < sz (Φ))i∈{1...n}
so that the i.h. gives (ti ∈ I(λµ))i∈{1...n}. There are three different cases:
If o = xt1 . . . tn, then from ti ∈ I(λµ) (1 ≤ i ≤ n) we conclude directly xt1 . . . tn ∈ I(λµ).
If o = (µα.c)t1 . . . tn, there are two cases:

α ∈ fn(c). Using Prop. 1 we get Φ′.Γ ` (µα.c{α//t1})t2 . . . tn : U | ∆ and sz (Φ′) < sz (Φ).
Then the i.h. gives (µα.c{α//t1})t2 . . . tn ∈ I(λµ). This, together with t1 ∈ I(λµ) gives
o ∈ I(λµ).
α /∈ fn(c). Then it is easy to build a type derivation Φ′ . Γ′ ` (µα.c)t2 . . . tn : U | ∆′
verifying sz (Φ′) < sz (Φ), so that (µα.c)t2 . . . tn ∈ I(λµ) holds by the i.h. This, together
with with t1 ∈ I(λµ) gives o ∈ I(λµ).

If o = (λx.u)t1 . . . tn, we reason similarly to the previous one. J

Normalization also implies typability:

I Lemma 17. If o ∈ SN (λµ), then o is Sλµ-typable.

Proof. Thanks to Lem. 15 we can reason by induction on o ∈ I(λµ) = SN (λµ). The four
first cases are straightforward.

Let o = (λx.u)vt1 . . . tn ∈ I(λµ) coming from u{x/v}t1 . . . tn, v ∈ I(λµ). By the
i.h. u{x/v}t1 . . . tn and v are both typable. We consider two cases. If x ∈ fv(u), then
(λx.u)vt1 . . . tn is typable by Prop. 2. Otherwise, by construction, we get typing derivations
for u, t1 . . . , tn which can easily be used to build a typing derivation of (λx.u)vt1 . . . tn.

Let o = (µα.c)vt1 . . . tn ∈ I(λµ) coming from (µα.c{α//v})t1 . . . tn, v ∈ I(λµ). By the
i.h. (µα.c{α//v})t1 . . . tn and v are both typable. We consider two cases. If α ∈ fn(c), then
(µα.c)vt1 . . . tn is typable by Prop. 2. Otherwise, by construction, we get typing derivations
for c, t1 . . . , tn which can easily be used to build a typing derivation of (µα.c)vt1 . . . tn. J

Lem. 16 and 17 allow us to conclude with the main result of this paper which is the
equivalence between typability and strong-normalization for the λµ-calculus. Notice that no
reducibility argument was used in the whole proof.

I Theorem 18. Let o ∈ Oλµ . Then o is typable in system Sλµ iff o ∈ SN (λµ). Moreover,
if o is Sλµ-typable with tree derivation Π, then sz (Π) gives an upper bound to the maximal
length of a reduction sequence starting at o.
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To prove the second statement it is sufficient to endow the system with non-relevant
axioms for variables and names. This modification, which does not recover subject expansion,
is however sufficient to guarantee weighted subject reduction in all the cases (erasing and
non-erasing steps) without changing the original measure of the derivations in system Sλµ .

7 Conclusion

This paper provides two quantitative type assignment systems Hλµ and Sλµ for λµ, charac-
terizing, respectively, head and strongly normalizing terms. We have shown that whenever
o is typable in system Hλµ , then we can extract a measure from its type derivation which
provides an upper bounds to the length of the head-reduction strategy starting at o. The
same happens with system Sλµ with respect to the maximal length of a reduction sequence
starting at o: indeed, the system Sλµ endowed with weakening axioms enjoys full subject
reduction (on erasing and non-erasing steps), and Sλµ can be embedded in such a system by
preserving the size of derivations.

The construction of these typing systems suggests the definition of a resource aware
calculus, coming along with the corresponding extensions of the typing systems presented
here, and implementing a small step operational semantics for classical natural deduction.
Unfortunately we cannot provide here the details of such development due to lack of space,
but they can be found in [26]. Such a calculus can be seen as an extension of the substitution
at a distance paradigm [2, 1] to the classical case.

Quantitative types are a powerful tool to provide relational models for λ-calculus [14, 3].
The construction of such models for λµ should be investigated, particularly to understand in
the classical case the collapse relation between quantitative and qualitative models [18].

We expect to be able to transfer the ideas in this paper to a classical sequent calculus
system, as was already done for focused intuitionistic logic [25].

The fact that idempotent types were already used to show observationally equivalence
between call-by-name and call-by-need [23] in intuitionistic logic suggests that our typing
system Sλµr could be used in the future to understand from a semantical point of view the fact
that classical call-by-name and classical call-by-need are not observationally equivalent [33].

Moreover, it is possible to obtain exact bounds (as in [5]) for the lengths of the head-
reduction and the perpetual reduction sequences. For that, it is necessary to integrate some
additional typing rules being able to type the constructors appearing in the normal forms
of the terms. Although this concrete development remains as future work, the difficult and
conceptual part of the technique stays in finding the decreasing measure for reduction, which
is one of the contributions of this paper.

The inhabitation problem for λ-calculus is known to be undecidable for idempotent
intersection types [35], but decidable for the non-idempotent ones [7]. We may conjecture
that inhabitation is also decidable for Hλµ .

Acknowledgment. We would like to thank Vincent Guisse, who started a reflexion on
quantitative types for the λµ-calculus during his M1 stage in Univ. Paris-Diderot.
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