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Abstract
We propose a practical algorithm for Streett automata model checking of higher-order recursion
schemes (HORS), which checks whether the tree generated by a given HORS is accepted by a
given Streett automaton. The Streett automata model checking of HORS is useful in the context
of liveness verification of higher-order functional programs. The previous approach to Streett
automata model checking converted Streett automata to parity automata and then invoked a
parity tree automata model checker. We show through experiments that our direct approach
outperforms the previous approach. Besides being able to directly deal with Streett automata,
our algorithm is the first practical Streett or parity automata model checking algorithm that runs
in time polynomial in the size of HORS, assuming that the other parameters are fixed. Previous
practical fixed-parameter polynomial time algorithms for HORS could only deal with the class of
trivial tree automata. We have confirmed through experiments that (a parity automata version
of) our model checker outperforms previous parity automata model checkers for HORS.
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1 Introduction

Model checking of higher-order recursion schemes (HORS, for short) [13, 25] has been actively
studied and applied to automated verification of higher-order programs [17, 21, 24, 26, 34,
23, 41]. The model checking problem asks whether the tree generated by a given HORS is
accepted by a given tree automaton. Despite the extremely high complexity (k-EXPTIME
complete for order-k HORS), practical model checkers that work reasonably well for typical
inputs have been developed [14, 16, 3, 31, 29, 7, 28]. In particular, the state-of-the-art trivial
automata model checkers for HORS (i.e., model checkers which handle the restricted class of
automata called trivial tree automata [1]) [3, 18, 31] can handle thousands of lines of input
in a few seconds. The state-of-the-art model checkers for the full class of tree automata (that
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is equi-expressive to the modal µ-calculus and MSO) have, however, been much behind the
trivial automata model checkers. Indeed, whilst the state-of-the-art trivial automata model
checkers for HORS employ fixed-parameter polynomial time algorithms, existing parity tree
automata model checkers for HORS [7, 28] do not. Another limitation of the state-of-the-art
model checkers for HORS is that the class of automata is restricted to trivial or parity tree
automata. Whilst parity tree automata are equi-expressive to other classes of tree automata
like Streett, Rabin, and Muller automata, the translation from those automata to parity tree
automata significantly increases the number of states. Thus, it may be desirable for model
checkers to support other classes of automata directly.

To address the limitations above, we propose a practical Streett automata model checking
algorithm for HORS, which checks whether the tree generated by a given HORS is accepted
by a given Streett automaton. Compared with the previous model checking algorithms for
HORS that can deal with the full class of tree automata [7, 28], our new algorithm has the
following advantages: (i) It can directly deal with Streett automata, which naturally arise in
the context of liveness verification of higher-order programs [41]. (ii) More importantly, it
runs in time polynomial in the size of HORS, assuming that the other parameters (the size
of the automaton and the largest order and arity of non-terminals in HORS) are fixed. The
previous parity automata model checkers for HORS [7, 28] did not satisfy this property, and
suffered from hyper-exponential time complexity in the size of HORS.

We develop the algorithm in two steps. First, following Kobayashi and Ong’s type system
for parity automata model checking of HORS [19], we prepare a type system for Streett
automata model checking such that the tree generated by a HORS G is accepted by a
Streett automaton A if and only if G is typable in the type system parameterized by A.
We prove its correctness by showing that the type system can actually be viewed as an
instance of Tsukada and Ong’s type system [38]. Secondly, we develop a practical algorithm
for checking the typability. The algorithm has been inspired by Broadbent and Kobayashi’s
saturation-based algorithm [3] for trivial automata model checking; in fact, the algorithm
is a simple modification of their HorSatT algorithm. The proof of the correctness of our
algorithm is, however, non-trivial and much more involved than the correctness proof for
HorSatT. The correctness proof is one of the main contributions of the present paper.

We have implemented a new model checker HorSatS based on the proposed algorithm and
its variation, called HorSatP,1 for parity tree automata model checking, and experimentally
confirmed the two advantages above. For the advantage (i), we have confirmed that HorSatS
is often faster than the combination of a converter from Streett to parity tree automata, and
HorSatP. For (ii), we have confirmed that HorSatP often outperforms previous parity
automata model checkers [7, 28].

The rest of the paper is organized as follows. Section 2 reviews basic definitions. Section 3
provides a type-based characterization of Streett automata model checking of HORS and
proves its correctness. Section 4 develops a practical algorithm for Streett automata model
checking and proves its correctness. Section 5 reports experimental results. Section 6 discusses
related work and Section 7 concludes the paper. Proofs omitted in this paper are found in a
longer version of the paper [36].

1 Actually, HorSatP has been implemented in 2015 and used in Watanabe et al.’s work [41]. It has not
been properly formalized, however.
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2 Preliminaries

In this section we review the definitions of higher-order recursion schemes (HORS) [12, 25, 17]
and (alternating) Streett tree automata [35, 8] to define Streett automata model checking of
HORS. We write dom(f) for the domain of a map f , and x̃ for a sequence x1, x2, . . . , xm (for
some m). Given a set Σ of symbols (which we call terminals), a Σ-labeled (unranked) tree is
a partial map T from {1, . . . , N}∗ (for some fixed N ∈ N) to Σ such that if πi ∈ dom(T ),
then π ∈ dom(T ) and πj ∈ dom(T ) for all 1 ≤ j ≤ i. If Σ is a ranked alphabet (i.e., a map
from terminals to natural numbers), a Σ-labeled ranked tree T is a dom(Σ)-labeled tree such
that for each π ∈ dom(T ), {i | πi ∈ dom(T )} = {1, . . . , Σ(T (π))}.

2.1 Higher-Order Recursion Schemes
The set of sorts, ranged over by κ, is defined by κ ::= ◦ | κ1 → κ2. We sometimes abbreviate
κ→ · · ·κ︸ ︷︷ ︸

n

→ κ′ to κn → κ′. The sorts can be viewed as the types of the simply-typed λ-

calculus with the single base type ◦, which is the type of trees. We write TermsK,κ for the set
of simply-typed λ-terms that have the sort κ under the environment K. The order and arity of
each sort, denoted by ord(κ) and arity(κ), are defined inductively by: ord(◦) = arity(◦) = 0,
ord(κ1 → κ2) = max(ord(κ1) + 1, ord(κ2)), and arity(κ1 → κ2) = arity(κ2) + 1.

I Definition 1 (higher-order recursion scheme). A higher-order recursion scheme (HORS)
is a quadruple G = (Σ,N ,R, S) where: (i) Σ is a ranked alphabet. (ii) N is a map from
symbols called non-terminals to sorts. (iii) R is a map from non-terminals to simply-typed
terms of the form λx̃.t, where t does not include λ-abstractions and has the sort ◦. It is
required that for each F ∈ dom(N ), λx̃.t ∈ TermsN∪{a:◦Σ(a)→◦|a∈dom(Σ)},N (F ).
S ∈ dom(N ) is a special non-terminal such that N (S) = ◦.

The rewriting relation −→G on terms of G is defined inductively by: (i) F s1 . . . sm −→G
[s1/x1, . . . , sm/xm]t ifR(F ) = λx1 . . . xm.t, (ii) s t −→G s′ t if s −→G s′, and (iii) s t −→G s t′
if t −→G t′. Here, [s1/x1, . . . , sm/xm]t is the term obtained from t by replacing each xi with
si. The tree JGK generated by G, called the value tree of G, is defined as the least upper
bound of {t⊥ | S −→∗G t} with respect to v where t⊥ is defined by (i) t⊥ = t if t is a terminal,
(ii) (t1 t2)⊥ = t⊥1 t⊥2 if t⊥1 6= ⊥, and (iii) t⊥ = ⊥ otherwise. Here, the partial order v is
defined by t1 v t2 if t2 is obtained by replacing some of ⊥’s in t1 with some trees. The value
tree JGK is a (Σ ∪ {⊥ 7→ 0})-labeled ranked tree.

I Example 2 (HORS). Let G1 = (Σ,N ,R, S) where Σ = {a 7→ 2, b 7→ 1, c 7→ 0},
N = {F 7→ ((◦ → ◦) → ◦), B 7→ ((◦ → ◦) → ◦ → ◦), I 7→ (◦ → ◦), S 7→ ◦}, and
R = {F 7→ (λf. f (a (f c) (F (B f)))), B 7→ (λfx. b (f x)), I 7→ (λx. x), S 7→ (F I)}.
From the start non-terminal S, the reduction proceeds as follows.

S −→G1 F I −→G1 I (a (I c) (F (B I))) −→∗G1
a c (F (B I))

−→∗G1
a c (b (a (b c) (F (B (B I))))) −→G1 . . .

The value tree JG1K has a finite path abab2 . . . abnabnc for each n ∈ N and also has an infinite
path abab2ab3 . . ..

2.2 Streett Tree Automata
Given a set X, the set B+(X) of positive boolean formulas over X, ranged over by ϕ, is
defined by ϕ ::= true | false | x | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 where x ranges over X. Given a subset
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Y of X, one can calculate the boolean value JϕKY of ϕ by assigning true to the elements of
Y and false to those of X \ Y . We say Y satisfies ϕ if JϕKY = true.

I Definition 3 (Streett tree automaton [35, 8]). A Streett tree automaton is a tuple A =
(Σ, Q, δ, q0, C) where Σ is a ranked alphabet, Q is a finite set of states, δ is a map from Q×
dom(Σ) to B+(N×Q) called a transition function such that δ(q, a) ∈ B+({1, . . . , Σ(a)} ×Q)
for each q and a, and q0 ∈ Q is a special state called the initial state, and C is a Streett
acceptance condition of the form C = {(E1, F1), . . . , (Ek, Fk)} where Ei, Fi ⊆ Q for each
i. Given a Σ-labeled ranked tree T , a run-tree of A over T is a (dom(T ) × Q)-labeled
(unranked) tree R such that (i) ε ∈ dom(R), (ii) R(ε) = (ε, q0), (iii) for every π ∈ dom(R)
with R(π) = (ξ, q) and j ∈ {j ∈ N | πj ∈ dom(R)}, there exist i ∈ N and q′ ∈ Q

such that R(πj) = (ξi, q′), and (iv) for every π ∈ dom(R) with R(π) = (ξ, q), {(i, q′) |
∃j. R(πj) = (ξi, q′)} satisfies δ(q, T (ξ)). Let Paths(R) be defined by Paths(R) = {π ∈
Nω | every (finite) prefix of π is in dom(R)} and InfR : Paths(R) → 2Q be defined by
InfR(π) = {q ∈ Q | the state label of R(πi) is q for infinitely many i} where πi is the prefix
of π of length i. A run-tree R is accepting if for every π ∈ Paths(R) and every (Ei, Fi) ∈ C,
(InfR(π) ∩ Ei 6= ∅ ⇒ InfR(π) ∩ Fi 6= ∅) holds. A Streett automaton A accepts a Σ-labeled
ranked tree T if there exists an accepting run-tree of A over T .

I Example 4 (Streett tree automaton). Let A1 = (Σ, Q, δ, q0, C) be a Streett tree automaton
where Σ = {a 7→ 2, b 7→ 1, c 7→ 0}, Q = {q0, qa, qb}, δ(q, a) = (1, qa) ∧ (2, qa) for each
q, δ(q, b) = (1, qb) for each q, and δ(q, c) = true for each q, and C = {(E1, F1)} where
E1 = {qa} and F1 = {qb}. This automaton accepts Σ-labeled ranked trees such that for each
infinite path, if a appears infinitely often in it, then b also appears infinitely often in it.

2.3 Streett Automata Model Checking Problem for HORS
We can now define the Streett automata model checking problem for HORS .

I Definition 5 (Streett automata model checking problem for HORS). The Streett model
checking problem for HORS is a decision problem to check whether JGK is accepted by A, for
a given HORS G and a Streett tree automaton A.

The need for Streett automata model checking of HORS naturally arises in the context
of verifying liveness properties of higher-order programs. A popular method for verification
of temporal properties of programs is to use Vardi’s reduction to fair termination [40],
the problem of checking whether all the fair execution sequences of a given program are
terminating [5, 2, 27, 41]. Here, a fairness constraint is of the form {(A1, B1), . . . , (An, Bn)},
which means that if the event Ai occurs infinitely often, so does Bi, for each i. For
proving/disproving fair termination of a higher-order functional program, a natural approach
is to convert the program to a HORS that generates a tree representing all the possible event
sequences, and then check whether the tree contains a fair but infinite event sequence. For
example, consider the program:

let rec f() = if ∗int < 0 then (event B; ()) else (event A; f())

where ∗int represents a non-deterministic integer. It can be converted to the following HORS,
whose value tree represents all the possible event sequences.

S → F F → br (evB end) (evA F ).

Then, the problem of checking that the original program is not terminating with respect
to the fairness constraint {(A,B)} is reduced to the problem of checking that the tree
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generated by the HORS has a fair infinite path (i.e., an infinite path such that if evA occurs
infinitely often, so does evB). In the case of the HORS above, there is no infinite path in
which evB occurs infinitely often, from which we can conclude that the original program
is fair terminating. Indeed, Watanabe et al. [41] took such an approach for disproving fair
termination of functional programs.2 The resulting decision problem for HORS can naturally
be expressed as a Streett model checking problem; in the above case, we can use the Streett
automaton A = ({br 7→ 2, evA 7→ 1, evB 7→ 1, end 7→ 0}, {q0, qA, qB}, δ, q0, {({qA}, {qB})})
where δ(q, evA) = (1, qA), δ(q, evB) = (1, qB), δ(q, br) = (1, q0)∧(2, q0), and δ(q, end) = true
for every q ∈ {q0, qA, qB}.

As usual [25, 19], we assume that the value tree JGK of a HORS G does not contain ⊥ in
the rest of the paper. Note that this is not a limitation, because any instance of the model
checking problem for a HORS G and a Streett automaton A can be reduced to an equivalent
one for G′ and A′ such that JG′K does not contain ⊥.

3 A Type System for Streett Automata Model Checking

This section presents an intersection type system (parameterized by a Streett automaton
A) for Streett automata model checking of HORS, such that a HORS G is typable in the
type system if and only if JGK is accepted by A. The type system is obtained by modifying
the Kobayashi-Ong type system [19] for parity automata model checking. We prove the
correctness of our type system by showing that it is actually an instance of Tsukada and
Ong’s type system for model checking Böhm trees [38].

Let A = (Σ, Q, δ, q0, C) be a Streett automaton with C = {(E1, F1), . . . , (Ek, Fk)}. We
define the set of effects by E = 2{E1,...,Ek,F1,...,Fk}.3 Here, E1, . . . , Ek, F1, . . . , Fk in effects
should be considered just symbols (so that they are different from each other, even if Ei and
Fj in C happen to be the same set of states) although they intuitively represent the sets used
in C. The set of prime types, ranged over by θ, and the set of intersection types, ranged over
by τ , are defined by:

θ (prime types) ::= q | τ → θ′ τ (intersection types) ::= {(θi, ei)}i∈I

where q ∈ Q, ei ∈ E and I is a finite index set. Note that {(θi, ei)}i∈I is a shorthand for
{(θi, ei) | i ∈ I}. We sometimes write (θ1, e1) ∧ · · · ∧ (θk, ek) for {(θ1, e1), . . . , (θk, ek)}, and
> for the empty intersection type ∅.

Intuitively, q is the type of trees accepted from q by A (i.e., by Aq = (Σ, Q, δ, q, C)), and
{(θi, ei)}i∈I → θ′ is the type of functions which take an argument that has type θi for every
i ∈ I, and return a value of type θ′. Here, ei describes what states may/must be visited before
the argument is used as a value of type θi. For example, the type (q1, {E1})∧ (q2, {F1})→ q

describes the type of functions that take a tree that can be accepted from both q1 and q2 as
an argument, and return a tree of type q. Furthermore, the effect parts ({E1} and {F1})
describe that in an accepting run of Aq over the returned tree, the argument can be used as
a value of type q1 (i.e., visited with state q1) only after visiting states in E1, and also used
as a value of type q2 only after visiting states in F1.

2 The actual method in [41] is more complicated due to a combination with predicate abstraction.
3 One can use E = 2{E1,...,Ek,F1,...,Fk}/∼ instead, where ∼ is an equivalence relation defined in the proof

of Theorem 8. This improves the time complexity of our algorithm. We use E = 2{E1,...,Ek,F1,...,Fk}

here for understandability, however.
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{x : (θ, eid)} À x : θ
(Var)

q ∈ Q a ∈ Σ n = Σ(a)
{(i, qij) | i ∈ {1, . . . , n}, j ∈ Ji} satisfies δ(q, a) eij = Eff (qij)

∅ À a : {(q1j , e1j)}j∈J1 → · · · → {(qnj , enj)}j∈Jn
→ q

(Const)

Γ0 À t0 : {(θi, ei)}i∈I → θ Γi À t1 : θi for each i ∈ I
Γ0 ∪

⋃
i∈I(Γi ⇑ ei) À t0 t1 : θ

(App)

Γ ∪ {x : (θi, ei) | i ∈ I} À t : θ Γ has no bindings for x I ⊆ J
Γ À λx.t : {(θi, ei)}i∈J → θ

(Abs)

Figure 1 Typing Rules.

We say that a prime type θ is a refinement of a sort κ, written θ :: κ, when it is derivable
from the following rules: (i) For each q ∈ Q, q :: ◦, and (ii) ({(θi, ei)}i∈I → θ) :: (κ0 → κ1) if
θi :: κ0 for all i ∈ I and θ :: κ1. We say a prime type θ is well-formed if θ :: κ for some κ.
We consider only well-formed prime types below.

A type environment is a set of type bindings of the form x : (θ, e) where x is a variable or
a non-terminal, θ is a prime type, and e is an effect. The part e represents when x may be
used as a value of type θ. Note that a type environment may contain multiple bindings for
each variable.

The type judgement relation À among type environments, terms and prime types are
defined inductively by the typing rules in Figure 1. The operations used in the rules are
defined by: eid = ∅, Eff (q) = {E ∈ {E1, . . . , Ek, F1, . . . , Fk} | q ∈ E}, and Γ ⇑ e = {x :
(θ, e ◦ e′) | (x : (θ, e′)) ∈ Γ} where e ◦ e′ = e ∪ e′.

In the rule (Var), the effect eid indicates that no state has been visited before the use
of x. The rule (Const) is for terminals (i.e., tree constructors); the premise “{(i, qij) | i ∈
{1, . . . , n}, j ∈ Ji} satisfies δ(q, a)” implies that a tree a T1 · · · Tn is accepted from q if Ti is
accepted from qij for each j ∈ Ji, hence the type of a in the conclusion. In addition, the effect
eij = Eff (qij) reflects the fact that the state qij has been visited. In the rule (App), each
type environment Γi is “lifted” by ei, to reflect the condition (as indicated by the argument
type of t0) that the argument t1 is used as a value of type θi only after the effect ei occurs.
In the rule (Abs) for λ-abstractions, we allow weakening on the types of x.

I Example 6 (type judgement). Let A1 = (Σ, Q, δ, q0, C) where Σ = {a 7→ 2, b 7→ 1},
Q = {q0, qa, qb}, C = {(E1, F1)} with E1 = {qa} and F1 = {qb}, and δ(q, a) = (1, qa) ∧
(2, qa) for each q and δ(q, b) = (1, qb) for each q. Types of the terminals can be determined
by the (Const) rule; for example, one can derive ∅ À a : (qa, {E1})→ (qa, {E1})→ q0. By
using the typing rules, one can derive a type judgement: {x : (qa, {E1}), x : (qb, {F1})} À
a (b x) x : q0.

I Remark. The difference from the Kobayashi-Ong type system [19, 20] is condensed into the
definitions of E, eid, Eff and ◦. Indeed, a variant of the Kobayashi-Ong type system for a
parity automaton (Σ, Q, δ, q0,Ω) is produced by the following definitions: E = {0, 1, . . . ,M}
where M = max{Ω(q) | q ∈ Q}, eid = 0, Eff (q) = Ω(q), and e ◦ e′ = max{e, e′}. This variant
actually deviates from Kobayashi and Ong’s type system [20] in the way the priorities of
visited states are counted in the rules (Var) and (Const). The variant is an instance of
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Tsukada and Ong’s type system [38], and is also close to the type system of Grellois and
Melliès [10, 9].

The typability of a HORS is defined using Streett games.

I Definition 7 (Streett game). A Streett game is a quadruple G = (V∃, V∀, E, C) where V∃
and V∀ are disjoint sets of vertices (we write V = V∃ ∪V∀), E ⊆ V ×V is a set of edges and C
is a Streett acceptance condition on vertices. A play on G from v0 ∈ V∃ is a finite or infinite
path from v0 of the directed graph (V,E). A play is maximal if it is infinite, or if it is a
finite play v0 . . . vn and there is no vn+1 ∈ V such that (vn, vn+1) ∈ E. A (maximal) play is
winning either if it is finite and the last vertex of it is in V∀, or if it is infinite and it satisfies
the acceptance condition C, i.e., for each (Ei, Fi) ∈ C, a vertex in Fi occurs infinitely often
whenever a vertex in Ei occurs infinitely often. A strategy W is a partial map from V ∗V∃ to
V that is edge-respecting, i.e., for every ṽ = v0 . . . vn ∈ dom(W), (vn,W(ṽ)) ∈ E. A play
ṽ = v0v1 . . . follows a strategy W if for every i, vi ∈ V∃ and |ṽ| > i imply W(v0 . . . vi) = vi+1.
A strategy W is a winning strategy from v0 ∈ V∃ if every play that follows W does not get
stuck (i.e., if ṽ ∈ V ∗V∃ follows W , then ṽ ∈ dom(W)), and every maximal play from v0 that
follows W is winning.

For a HORS G = (Σ,N ,R, S), we define the typability game GG,A as the Streett game
(V∃, V∀, E∃ ∪ E∀, C↑) where:

V∃ = {(F, θ, e) | F ∈ dom(N ), θ :: N (F ), and e ∈ E}
V∀ = {Γ | ∀(F : (θ, e)) ∈ Γ. F ∈ dom(N ), θ :: N (F ), and e ∈ E}
E∃ = {((F, θ, e),Γ) ∈ V∃ × V∀ | Γ À R(F ) : θ}
E∀ = {(Γ, (F, θ, e)) ∈ V∀ × V∃ | (F : (θ, e)) ∈ Γ}
C↑ = {(E↑1 , F

↑
1 ), . . . , (E↑k , F

↑
k )} where E↑ = {(F, θ, e) ∈ V∃ | E ∈ e}

Intuitively, in a position (F, θ, e), Player tries to show why F has type θ by giving a type
environment Γ such that Γ À R(F ) : θ; in a position Γ, Opponent tries to challenge Player
by picking a type binding from Γ, and asking why that assumption is valid. A HORS G is
well-typed, denoted by À G, when GG,A has a winning strategy from (S, q0, eid).

I Theorem 8 (Correctness). Given a HORS G and a Streett automaton A, the value tree of
G is accepted by A if and only if À G.

We sketch a proof below;4 See the longer version [36] for more details.

Proof. We are to define a winning condition that instantiates Tsukada and Ong’s type
system for model checking Böhm trees [38] so that the resulting type system is equivalent
to our type system and the correctness of our type system follows from the correctness of
Tsukada and Ong’s type system. A winning condition is a structure (E,F,Ω) where E and
F are partially ordered sets (we denote both the orders by �) and Ω is a downward-closed
subset of F, equipped with four operations ◦ : E× E→ E, ~ : E× F→ F, π : Eω → F, and
\ : E× E→ E that satisfy additional requirements.

Let E be defined by E = 2{E1,...,Ek,F1,...,Fk}. Let Si : E → {−1, 0, 1} for each i ∈
{1, . . . , k} be defined by: (i) Si(e) = −1 if Fi ∈ e, (ii) Si(e) = 0 if Ei /∈ e and Fi /∈ e, and
(iii) Si(e) = 1 otherwise. A preorder � on E is defined by e � e′ def⇔ Si(e) ≤ Si(e′) for every
i. It induces an equivalence relation ∼ on E and a partial order � on E/∼. We define a

4 Here we assume some familiarity with Tsukada and Ong’s type system [38].
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winning condition (E,F,Ω) that represents a Streett condition C = {(E1, F1), . . . , (Ek, Fk)}
as follows: E = E/∼, F = {e,o} with e � o, and Ω = {e}. The required operations
are defined by e ◦ e′ = e ∪ e′, e ~ f = f , π(ẽ) = e if and only if ẽ satisfies the Streett
acceptance condition, and e\e′ =

∨
{d′ | e ◦ d′ � e′} where

∨
{d1, . . . , dn} = d1 ∨ · · · ∨ dn

with e ∨ e′ = ((nf (e))(E) ∪ (nf (e′))(E)) ∪ (e(F ) ∩ e′(F )). Here, nf (e) is a minimal set such
that e ∼ nf (e), e(E) = e ∩ {E1, . . . , Ek}, and e(F ) = e ∩ {F1, . . . , Fk}.

It is known that for a HORS G, there is a λY-calculus term TG whose Böhm tree is identical
to the value tree JGK of G [33]. By comparing the two type systems, it can be checked that
À G ⇔ ΓA T̀O TG : q0, where T̀O is the type judgement of λY-term by Tsukada and Ong
and ΓA is the set of all type bindings (for terminals) that can be obtained by our (Const)
rule. By the transfer theorem (Theorem 18 in [38]) by Tsukada and Ong, this judgement is
equivalent to a type-checking game over a Böhm tree (written ΓA |= BM(TG) : q0) in that
ΓA T̀O TG : q0 if and only if this game is winning. Moreover, this game is winning if and
only if JGK is accepted by A, which concludes the theorem. J

By a discussion similar to [19], the number of the edges of the typability game GG,A
is bounded by |N | · expN (O(A|E||Q|)) for N ≥ 2 and |N | · 2O((A|E||Q|)2) for N = 1,5
where N = max{ord(N (F )) | F ∈ dom(N )} and A = max{arity(N (F )) | F ∈ dom(N )},
and expn is defined by exp0(x) = x and expn+1(x) = 2expn(x). By means of Piterman
and Pneuli’s algorithm [30] for Streett game solving, the game can be solved in time
O(|N |k+2expN (O(A|E||Q|))kk!) where k = |C|. Therefore, the typability game can be solved
in time N -fold exponential in A and |Q|, and (N + 1)-fold exponential in k, as |E| = 4k. If we
use E = 2{E1,...,Ek,F1,...,Fk}/∼ instead of E = 2{E1,...,Ek,F1,...,Fk}, where ∼ is the equivalence
relation defined in the proof of Theorem 8, |E| is reduced to 3k.

4 Practical Algorithms for Streett and Parity Automata Model
Checking

This section proposes HorSatS and HorSatP, new practical algorithms for Streett and
parity automata model checking of HORS, respectively.

The type-based characterization in the previous section actually yields a straightforward
model checking algorithm, which first constructs the typability game GG,A and solves it, as
discussed at the end of the previous section. It is, however, impractical since the size of
the typability game is huge: N -fold exponential for an order-N HORS. This is because the
number of intersection types for order-N functions is N -fold exponential.

Following previous algorithms for trivial automata model checking [14, 16, 3] and parity
automata model checking [7, 28], our algorithm for Streett automata model checking first
computes a set of types relevant for deciding the model checking problem, constructs a
subgame (i.e., a subgraph when viewed as a graph) of GG,A constructed from those types,
and then solves it. If the set of relevant types is sufficiently small for typical instances, the
algorithm can be expected to terminate quickly, although in the worst case it still suffers
from the N -fold exponential time complexity.

The overall structure of the algorithm HorSatS is shown in Figure 2. An effectless type
environment, denoted by Θ, is a set of type bindings F : θ where F is a non-terminal and θ
is a prime type. The algorithm starts with a certain initial effectless type environment Θ0

5 We use the notation f(x) = g(O(h(x))) to mean that f(x) is bounded by g(h′(x)) for some h′(x) with
h′(x) = O(h(x)).



R. Suzuki, K. Fujima, N. Kobayashi, and T. Tsukada 32:9

Θ := Θ0

while (F(Θ) 6= Θ){
Θ := F(Θ)

}
return whether ConstructGame(Θ) has a winning strategy

Figure 2 The proposed algorithm HorSatS.

(which will be defined below), and then expands it by repeatedly applying F , until it reaches
a fixpoint Θfix. The algorithm then constructs a subgame of GG,A consisting of only types
occurring in Θfix and solves it. The algorithm HorSatP also has exactly the same structure;
we just need to adapt F and ConstructGame for parity games.

We describe the construction of Θ0 and the expansion function F below; it has been
inspired by Broadbent and Kobayashi’s HorSatT algorithm for trivial automata model
checking [3]. Let an input HORS be G = (Σ,N ,R, S) and an input Streett automaton be
A = (Σ, Q, δ, q0, C). The initial effectless type environment Θ0 is defined by:

Θ0 = {F :
m︷ ︸︸ ︷

> → · · · → > → q | F ∈ dom(N ), m = arity(N (F )), q ∈ Q}.

The expansion function F is defined by:

F(Θ) =Θ ∪ {F : τ1 → · · · → τm → q | R(F ) = λx1. . . . xm. t,

(τ1 → · · · → τm → q) :: N (F ),
τi ⊆ TypesΘ(Flow(xi)) for each i ∈ {1, . . . ,m},
Γ ∪ {x1 : τ1, . . . , xm : τm} À t : q
for some Γ such that ∀(G : (θ, e)) ∈ Γ. (G : θ) ∈ Θ}.

Here, Flow(x) is an overapproximation of the (possibly infinite) set of terms to which x may
be bound in a reduction sequence from S; it can be obtained by a flow analysis algorithm like
0CFA. For a set U of terms, TypesΘ(U) is defined as {θ | Γ À u : θ, u ∈ U, ∀(F : (θ, e)) ∈
Γ. (F : θ) ∈ Θ}. The notation {x1 : τ1, . . . , xm : τm} represents the type environment
{xi : (θi,j , ei,j) | i ∈ {1, . . . ,m}, (θi,j , ei,j) ∈ τi}.

Finally, ConstructGame(Θ) returns a subgame GG,A,Θ of GG,A, obtained by restricting
E∃ to the following subset:

E′∃ = {((F, θ, e),Γ) ∈ V∃ × V∀ | Γ À R(F ) : θ and ∀(G : (θ, e)) ∈ Γ. (G : θ) ∈ Θ}.

The algorithm HorSatP is obtained by (i) replacing the type judgment relation used
in the expansion function with that of the Kobayashi-Ong type system, and (ii) modifying
ConstructGame(Θ) to produce a subgame of the typability game for the Kobayashi-Ong type
system. See the longer version [36] for more details.

I Example 9 (a sample run of the algorithm). Consider a HORS G2 = (Σ,N ,R, S) where
Σ = {a 7→ 2, b 7→ 1, c 7→ 0}, N = {F 7→ (◦ → ◦), S 7→ ◦} and R = {F 7→
(λx.a x (F (b x))), S 7→ (F c)}, and a Streett automaton A2 = (Σ, Q, δ, qa, C) with Q
= {qa, qb}, C = {(E1, ∅)} where E1 = {qa}, and δ is defined by δ(q, a) = (1, qa) ∧ (2, qa) for
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(S, qa, ∅) (F, θF , ∅)

(F, θ′F , ∅)

(F, θ′′F , ∅)

ΓF

Γ′F

Γ′′F

Figure 3 A Streett game generated by HorSatS for inputs G2 and A2. Only the part reachable
from (S, qa, ∅) is shown. A memoryless winning strategy is indicated by the bold arrows.

each q, δ(q, b) = (1, qb) for each q, and δ(q, c) = true for each q. The automaton A2 accepts
trees in which b occurs only finitely often in every path. The initial effectless type environ-
ment is Θ0 = {F : > → qa, F : > → qb, S : qa, S : qb}. Let Flow(x) = {bnc | n ≥ 0} (hence
TypesΘ(Flow(xi)) = {qa, qb} for any Θ). The fixpoint calculation proceeds as follows.

Θ1 = F(Θ0) = Θ0 ∪ {F : (qa, ∅)→ qa, F : (qb, {E1})→ qb}.
Θ2 = F(Θ1) = Θ1 ∪ {F : (qa, ∅) ∧ (qb, {E1})→ qa, F : (qa, ∅) ∧ (qb, {E1})→ qb}.
Θ3 = F(Θ2) = Θ2.

The game constructed by the algorithm is shown in Figure 3, where:

θF = (qa, ∅) ∧ (qb, {E1})→ qa. θ′F = (qa, ∅)→ qa. θ′′F = > → qa.

ΓF = {F : (θF , ∅)}. Γ′F = {F : (θ′F , ∅)}. Γ′′F = {F : (θ′′F , ∅)}.

As the game has a winning strategy, the algorithm returns “Yes.”

The proposed algorithm is sound and complete, as stated in the following theorems. The
soundness (Theorem 10) follows from the fact that ConstructGame(Θ) produces a subgame of
GG,A obtained by restricting only Player’s moves. The completeness is, however, non-trivial,
as to why the fixpoint Θfix is sufficiently large so that Player can win the subgame GG,A,Θfix

if she can win the whole game GG,A. Whilst the construction of Θ0 and F is essentially the
same as that of HorSatT algorithm, the completeness proof for HorSatS is much more
involved than that for HorSatT.

The proofs below apply to both HorSatS and HorSatP. We use the notations eid,Eff
and ◦ for this generalization.

I Theorem 10 (Soundness). If HorSatS (resp. HorSatP) returns “Yes” for an input
HORS G and a Streett (resp. parity) automaton A, then À G.

Proof. Suppose that the algorithm returns “Yes.” Then, the Streett game GG,A,Θfix has a
winning strategy W from (S, q0, eid). As GG,A,Θfix is a subgame of GG,A obtained by only
restricting edges in E∃, W is also a winning strategy for GG,A. Thus, we have À G. J

I Theorem 11 (Completeness). Given an input HORS G and a Streett (resp. parity) auto-
maton A, HorSatS (resp. HorSatP) returns “Yes” if À G.

Here we give only a proof sketch. See the longer version [36] for more details.
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Proof Sketch. Suppose À G. By the definition of À G, there exists a finite memory winning
strategy W of the typability game GG,A. By adding a rule for unfolding non-terminals
(i.e., a rule for deriving F : (θ, e) À F : θ from Γ À R(F )), the typability of HORS can
alternatively be described by the existence of a (possibly infinite) type derivation tree Π0 for
S : q0 such that every infinite path in it satisfies the Streett/parity condition derived from
that of A.6 Such a derivation tree Π0 can be constructed based on W.

We show that we can transform Π0 to another derivation tree Π′′0 which only uses the
types occurring in Θfix (where Θfix is the effectless type environment produced by the fixpoint
calculation in our algorithm). We first “cut” Π0 by stopping unfoldings of non-terminals
with a certain threshold for the depth of unfoldings, and replace the type of the non-terminal
at each “cut” node with > → · · · → > → q, treating Γ ` F : > → · · · → >︸ ︷︷ ︸

arity(F )

→ q as an

“axiom”. This axiom corresponds to the initial type environment Θ0 used in the algorithm.
By accordingly reassigning the types in the tree, we have a finite type derivation tree Π′0
that uses only the types in Θfix computed by the algorithm.

Unfortunately, Π′0 itself does not represent a winning strategy of GG,A,Θfix as it uses
the types of non-terminals in Θ0 as axioms. If we choose a sufficiently large number as
the threshold for the depth of unfoldings, however, by matching each node of Π′0 with a
corresponding node in Π0, we can reconstruct a valid (in the sense that every infinite path
satisfies the Streett/parity condition) infinite derivation tree Π′′0 , by replacing some edges
in Π′0 with “back edges”. Since Π′′0 has been obtained by only rearranging edges in Π′0, Π′′0
also contains only types in Θfix. By the correspondence between a valid infinite derivation
tree and a winning strategy of the typability game, we obtain a winning strategy W ′ for the
subgame GG,A,Θfix constructed by Constructgame(Θfix). Thus, the algorithm should return
“Yes”.

Appendix 8 shows an example of the construction of Π′′0 . J

The algorithm runs in time polynomial in the size of HORS if the other parameters (the
largest order and arity of terminals/non-terminals in HORS and the automaton) are fixed.
Here, we assume that, as in [37], the linear-time sub-transitive control flow analysis [11] is
used for computing the part TypesΓ(Flow(xi)) in F . We also assume that an input HORS is
normalized as in [19] so that for each F ∈ dom(N ),R(F ) is of the form λx̃. c (F1 x̃1) . . . (Fj x̃j)
where 0 ≤ j, F1, . . . , Fj are non-terminals, x̃1, . . . , x̃j are variables and c is a terminal, a
non-terminal or a variable. As an increase of the size of HORS caused by this normalization
is linear, it does not affect the time complexity result. Upon those assumptions, (i) The
size of a type environment is bounded by O(P ) where P is the size of an input HORS, and
thus the number of the iteration is bounded by O(P ). (ii) Calculation of F(Γ) is done in
O(P ) time. Thus, the fixpoint Θfix can be calculated in time quadratic in P .7 Since the
size of Θfix(F ) is bounded above by a constant (under the fixed-parameter assumption) for
each F , the size of (the relevant part of) the typability game is linear in P . Because we
have assumed that the automaton is fixed (which also implies that the index k of a Streett
automaton or the largest parity of a parity tree automaton is also fixed), the game can also
be solved in time polynomial in P . Thus, the whole algorithm runs in polynomial time under
the fixed-parameter assumption.

6 This alternative view of the typability follows easily from the definition of the typability game. Grellois
and Melliès [9, 10] have indeed chosen such a formalization for parity tree automata model checking.

7 Actually, using the technique of [32], Θfix can be calculated in linear time.
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Figure 4 Elapsed time (in seconds) of the model checkers.

5 Experiments

We have implemented HorSatS and HorSatP, Streett and parity automata model checkers
for HORS, respectively, based on the algorithm in Section 4. The implementations use a
parity game solver PGSolver [6] as a backend for solving the typability game. Although
the typability games solved by HorSatS are Streett games, they are actually converted
to parity games and passed to PGSolver; this is because we could not find a practical
implementation of a direct algorithm for Streett game solving.

We have conducted two kinds of experiments, as reported below. The first experiment
aims to confirm the effectiveness of the proposed fixed-parameter polynomial time algorithm.
To this end, we have compared HorSatP with the previous parity automata model checkers
APTRecS [7] and TravMC2 [28]. The second experiment aims to evaluate the effectiveness
of the direct approach to Streett automata model checking. To this end, we have compared
HorSatS with a combination of HorSatP and a conversion from Streett to parity tree
automata.

HorSatP vs APTRecS/TravMC2

We have used a benchmark consisting of 97 inputs of parity automata model checking problems,
which include all the inputs used in the evaluation of APTRecS and TravMC2 [7, 28], and
also new inputs derived from verification of tree processing programs [39, 22]. The experiment
was conducted on a laptop computer with an Intel Core i5-6200U CPU and 8GB of RAM.
To achieve the best performance of each model checker, we have used Ubuntu 16.04 LTS for
APTRecS and HorSatP, and Windows 10 for TravMC2. Figure 4 shows the results. The
horizontal axis is the size (the number of symbols in HORS) of an input, and the vertical
axis is the elapsed time of each model checker. The points at the upper edge are timed-out
runs (runs that took more than 50 seconds).

For 27 tiny inputs (of size less than 20) APTRecS tends to be the fastest. For the
remaining 70 inputs, APTRecS, TravMC2, and HorSatP won 6, 3, and 61 of them
respectively. The results indicate that HorSatP usually outperforms the existing model
checkers except for tiny inputs. In particular, HorSatP can handle a number of large inputs
for which APTRecS and TravMC2 timed-out.
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Figure 5 (left) Elapsed time (in seconds) of direct and indirect approaches for several inputs.
(right) Elapsed time (in seconds) of direct and indirect approaches for series of inputs with the same
structure but different values of k.

Direct vs Indirect Approaches to Streett Automata Model Checking of HORS

We have compared HorSatS with an indirect approach, which first converts an input
Streett automaton to a parity automaton by means of the IAR construction [4, 8] and then
performs parity automata model checking using HorSatP. The experiment was conducted
on a desktop computer with an Intel Core i7-2600 CPU and 8GB of RAM. The OS was
Ubuntu 16.04 LTS. We have used two benchmark sets. The first one has been prepared
by the authors, hand-made or program-generated. The second one has been taken from
Watanabe et al.’s fair non-termination verification tool for functional programs [41], with a
slight modification to increase k (the number of pairs in Streett conditions); Watanabe et al.’s
original tool supported only the case for k = 1. To evaluate the dependency on k, we have
tested some of the inputs for different values of k. The results are shown in Figure 5. The
left figure shows the elapsed time of both approaches for several inputs. The horizontal axis
is that of the direct approach, and the vertical axis is that of the indirect approach. (Thus,
plots above the line y = x indicate instances for which the direct approach outperformed the
indirect one.) The right figure shows the elapsed time for two series of inputs with the same
structure but different values of k. The horizontal axis is the value of k, and the vertical
axis is the elapsed time of each approach. The results suggest that the direct approach often
outperforms the indirect approach. In particular, the direct approach seems to be noticeably
more scalable with respect to k.

6 Related Work

As already mentioned, our type system for Streett automata model checking of HORS
presented in Section 3 is a variant of the Kobayashi-Ong type system [19] for parity tree
automata model checking, and may also be viewed as an instance of Tsukada and Ong’s
type system [38], an extension/generalization of the Kobayashi-Ong type system. Our main
contribution in this respect is the specific design of “effects” suitable for Streett automata
model checking. A naive approach would have been to use a set of states (rather than a set
consisting of Ei, Fi) as an effect; that would suffer from the (N + 1)-fold exponential time

FSCD 2017



32:14 Streett Automata Model Checking of Higher-Order Recursion Schemes

complexity in the size of the automaton, as opposed to N -fold exponential time complexity
obtained in the last paragraph of Section 3.

Our algorithms HorSatP and HorSatS are the first practical algorithms for Streett or
parity tree automata model checking of HORS which run in time polynomial in the size of
HORS (under the fixed-parameter assumption). The previous algorithms APTRecS [7] and
TravMC2 [28] for parity tree automata model checking did not satisfy that property. The
advantage of the new algorithms has been confirmed also through experiments. For trivial
automata model checking, several fixed-parameter polynomial time algorithms have been
known, including GTRecS [16], HorSat/HorSatT [3], and Preface [31]. Our algorithms
are closest and similar to HorSatT algorithm, although the correctness proof for our new
algorithms is much more involved.

Model checking of HORS has been applied to automated verification of higher-order
programs [15, 21, 17, 26, 24, 23, 41]. In particular, parity/Streett automata model checking
has been applied to liveness verification [24, 7, 41]. Among others, Watanabe et al. [41]
reduced the problem of disproving fair termination of functional programs (which is obtained
from general liveness verification problems through Vardi’s reduction [40]) to Streett automata
model checking of HORS, and used an indirect approach to solving the latter by a further
reduction to parity automata model checking of HORS. As confirmed through experiments,
our direct approach to Streett automata model checking often outperforms their indirect
approach.

7 Conclusion

We have proposed a type system and an algorithm for Streett automata model checking
of HORS. The main contributions are twofold. First, ours is the first type system and
algorithm that can directly be applied to Streett automata model checking of HORS; we
have confirmed the advantage of the direct approach through experiments. Secondly, our
algorithm HorSatS and its variant HorSatP for parity automata model checking are
the first practical algorithms for Streett/parity automata model checking of HORS that
run in time polynomial in the size of HORS, under the fixed-parameter assumption. We
have also confirmed through experiments that HorSatP often outperforms the previous
parity automata model checkers for HORS. Future work includes further optimizations of
Streett/parity automata model checkers.
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8 Example of the Construction of Π′′
0 in the Proof of Theorem 11

We show an example of the construction of the derivation tree Π′′0 explained in the proof
sketch of Theorem 11 in Section 4. When showing derivation trees, we omit irrelevant or
repeated parts to save space. An application of the new rule for unfolding non-terminals is
indicated by (Unfold).

Let G2 and A2 be the HORS and the Streett automaton in Example 9 respectively.
Let W be the memoryless winning strategy of GG2,A2 defined by W((S, qa, ∅)) = Γ1 and
W((F, θ̂F , ∅)) = Γ1 where θ̂F = (qa, ∅) ∧ (qa, {E1}) ∧ (qb, {E1})→ qa and Γ1 = {F : (θ̂F , ∅)}.
We write F : θ instead of F : (θ, ∅) in type environments. A derivation tree Π0 that
corresponds to W is as follows:
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∅ `c : qa ∅ `c : qb

. . . `a x : (qa, ∅)→ qa

...
{F : θ̂F } `λx.a x (F (b x)) : θ̂F

{F : θ̂F } `F : θ̂F

(Unfold)

...
{F : θ̂F } `λx.a x (F (b x)) : θ̂F

{F : θ̂F } `F : θ̂F

(Unfold)

...
{F : θ̂F } `λx.a x (F (b x)) : θ̂F

{F : θ̂F } `F : θ̂F

(Unfold)
. . . `b x : qa . . . `b x : qb

{F : θ̂F , x : (qb, {E1})} `F (b x) : qa

{F : θ̂F , x : qa, x : (qb, {E1})} `a x (F (b x)) : qa

{F : θ̂F } `λx.a x (F (b x)) : θ̂F

{F : θ̂F } `F : θ̂F

(Unfold)

{F : θ̂F } `F c : qa

{S : qa} `S : qa
(Unfold)

We construct Π′0 by “cutting” the derivation tree at a certain threshold of depth, and then
reassigning the types in it. Here, we choose to “cut” at the uppermost unfolding shown in
the above tree. The resulting tree Π′0 looks like:

∅ `c : qa ∅ `c : qb

{x : qa} `a x : θa1

{x : (qb, {E1})} `b x : qa

{x : qa} `a x : θa1

{F : > → qa} `F : > → qa
(Axiom)

{F : > → qa} `F (b x) : qa

{F : > → qa, x : qa} `a x (F (b x)) : qa

{F : > → qa} `λx.a x (F (b x)) : (qa, ∅)→ qa

{F : (qa, ∅)→ qa} `F : (qa, ∅)→ qa
(Unfold)

{F : (qa, ∅)→ qa, x : (qb, {E1})} `F (b x) : qa {x : qa} `a x : θa1

{F : θF , x : qa, x : (qb, {E1})} `a x (F (b x)) : qa

{F : θF } `λx.a x (F (b x)) : θF

{F : θF } `F : θF

(Unfold)
{x : (qb, {E1})} `b x : qa

{F : θF , x : (qb, {E1})} `F (b x) : qa

{F : θF , x : qa, x : (qb, {E1})} `a x (F (b x)) : qa

{F : θF } `λx.a x (F (b x)) : θF

{F : θF } `F : θF

(Unfold)

{F : θF } `F c : qa

{S : qa} `S : qa
(Unfold)

Here, θF = (qa, ∅) ∧ (qb, {E1})→ qa and θa1 = (qa, ∅)→ qa.
The uppermost unfolding has been replaced by the axiom. At the next unfolding below

it, F is given the type (qa, ∅) → qa. In the body of this F , x should have type qa because
it is used as an argument of a, which has type (qa, ∅) → (qa, ∅) → qa. On the other hand,
x in b x need not have type qb, since b x is not typed in the derivation. Thus, the type
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(qa, ∅)→ qa is assigned to F . By repeating this kind of argument for other unfoldings of F ,
we update the type of the other occurrences of F to θF . Note that Π′0 assigns only the types
in Θfix to non-terminals. In fact, the types > → qa, (qa, ∅) → qa, and θF assigned to F at
the axiom, the first unfolding (counted from the top), and the second unfolding respectively
belong to Θ0, F(Θ0), and F2(Θ0).

Notice that, in Π′0, there are two unfolding nodes (the second and third unfolding nodes)
labeled by the same judgment {F : θF } `F : θF . (Note that this is not a coincidence; since
there are only finitely many different type judgments, if the threshold for the number of
unfoldings is sufficiently large, then there always exist such two nodes in each (sufficiently
long) path of Π′0.) By introducing a “back edge” between them, the following derivation tree
Π′′0 is obtained.

{x : qa} `a x : (qa, ∅)→ qa

{F : θF } `F : θF

(Unfold)
{x : (qb, {E1})} `b x : qa

{F : θF , x : (qb, {E1})} `F (b x) : qa

{F : θF , x : qa, x : (qb, {E1})} `a x (F (b x)) : qa

{F : θF } `λx.a x (F (b x)) : θF

{F : θF } `F : θF

(Unfold)

{F : θF } `F c : qa

{S : qa} `S : qa
(Unfold)

Note that Π′′0 uses only types that occur in Θfix. Furthermore, this tree is a valid infinite
derivation tree; indeed, it corresponds to the winning strategy of the subgame GG2,A2,Θfix

shown in Figure 3.
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