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——— Abstract

For the lambda-calculus with surjective pairing and terminal type, Curien and Di Cosmo, inspired
by Knuth-Bendix completion, introduced a confluent rewriting system of the naive rewriting
system. Their system is a confluent (CR) rewriting system stable under contexts. They left
the strong normalization (SN) of their rewriting system open. By Girard’s reducibility method
with restricting reducibility theorem, we prove SN of their rewriting, and SN of the extensions
by polymorphism and (terminal types caused by parametric polymorphism). We extend their
system by sum types and eta-like reductions, and prove the SN. We compare their system to
type-directed expansions.
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1 Introduction

We recall the equational theory A\@nm« from [9]. Types are built up from the distinguished
type constant T, and type variables by means of the product type ¢ x ¢ and the function
type ¢ — 1. Terms are built up from the distinguished term constant * ' and term variables
2%y, ..., 2%, y¥, ... by means of A-abstraction (Az¥.t¥)?~¥  term application (u¥~%v%)¥,
pairing (u®, v¥)¥*¥ left-projection (mt#*¥)?, right-projection (mot?>*¥)¥, where the super-
script represents the type. The superscript is often omitted. The set of free variables of a
term ¢ is denoted by FV(t). The equational theory ASnm* consists of the following axioms:

(B) (Az.u)v = ufz :=v].

(m1) m1{u, v) = u. (m2) molu, v) = .
(n) Ae.tz=t, (zeFV(t).)

(SP) (mu, Tou) = u.

(c) s =%,

By the last equality, the type T corresponds to the singleton. The singleton does to the
terminal object of a cartesian closed category. So T is called the terminal type.

A confluent (CR for short) and weakly normalizable (WN for short) reduction system
generating this equational theory ASnm+ is important in relation to the coherence problem
of cartesian closed categories [28, 29]. By orienting the axioms (53), (71), (72), (), (SP) left
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to right, we obtain rewriting rule schemata. Let (T') be a rewrite rule schema s’ — *T

(sT # *T). Here for terms ¢ and s, we write t = s, provided that by renaming bound variables,
t becomes identical to s. Let — be the closure of these rewriting rule schemata by contexts.
By abuse of notation, we write AGnm* for a so-obtained rewriting system. The reverse of —
is denoted by . = is the reflexive, transitive closure of —. The rewriting system \Anm+ is
not CR, as follows: In each line of the following, = and y are variables, and it is not the case
that there is a term to such that t; = to < to:

2T . (yx) T = Aax |

T <—<(7r1x)T, (wzx)—r> —— (*T, *T), (1)

e lyx Xy’ — oy 7%,

Y

(miz, *) <« {((m2z)?, (mox) ") — X7,

(x, mox) <—<(7r1x)T, (max)?) — x X%,

If we omit the rewrite rule schemata (7), then the resulting rewrite relation —gpxr, x,sp is
CR [31]. In the type-free setting, —gsp is not CR [23]. The decidability of the equational
theory A\@nm* follows from

Sarkar’s algorithm. For an extension of the well-known LF type theory with dependent
pair and unit types, Sarkar [32] provided an algorithm that decides type checking and
he proved the existence of canonical forms, by using standard techniques introduced by
Harper and Pfenning [16].

A translation that incorporates type-directed expansions by type-indexed functions on
terms. The translation reduces the decidability of the equational theory ASnm* to that of
the corresponding intensional equational theory, as in [14, 38]. This idea, however, does
not yield a decision procedure for the polymorphic equational theory.

1.1 Why do we insist on 7-reduction instead of type-directed
n-expansion?

For Unifying Theory of Dependent Types (UTT for short) (Luo [26]), Goguen [13] defined the
typed operational semantics (TOS for short). By employing the TOS, he investigated various
decidability properties of UTT. Here UTT is Martin-Lo6f’s Logical Framework extended by a
general mechanism for inductive types, a predicative universe and an impredicative universe
of propositions. Goguen’s TOS defines a reduction to normal form for terms which are
well-typed in UTT. “Since his approach is based on 7n-reduction instead of n-expansion, it is
not clear whether it scales to a unit type with extensional equality.” ([1]). The unit type is
exactly the terminal type, and is related to types for enumeration sets and types for proof
irrelevance [2].

The TOS is an intermediate induction principle for reducibility proofs. By using Curien-Di
Cosmo’s idea, we could hopefully formulate the reduction system for UTT+unit type, so
that the TOS for UTT+unit type can be defined, where all terms of unit type reduce to the
unique inhabitant, and then used to show termination.

We conjecture that for each term ¢, the minimum length of the normalization sequence
from t with respect to (ABnm*)’ is smaller than the minimum length of the normalization
sequence from t with respect to fmimeT-reduction union the type-directed 7.5 P-expansions.
If so0, a type-checker of dependent type theories perhaps run faster by using (ABnm*)" instead
of type-directed expansions, since a type-checker tests term equivalence.
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1.2 Curien and Di Cosmo’s rewriting system based on 7n-reduction

For the equational theory ASnm+, Curien and Di Cosmo, inspired by completion of TRS,
introduced a rewriting system (ABnm)" in [9]. First they inductively defined the types
“isomorphic to” the terminal type T and the canonical terms of such types.

» Definition 1 ((\An7+)").
T is “isomorphic to” T and the canonical term of T is *'.
Suppose ¢ is a type and 7 is a type “isomorphic to” T. Then the type ¢ — 7 is
“isomorphic to” T and the canonical term *#77 of p — 7 is Az¥. *".
If each type 7; is “isomorphic to” T (i = 1,2), then the type 71 X 75 is “isomorphic to” T
and the canonical term *™%7™2 of 71 X 75 is (x™1, x2).

The set of types “isomorphic to” T is denoted by Iso(T).

Whenever we write x#, we tacitly assume ¢ € Iso(T).

The rewrite relation — of the rewriting system (AGnm+) is defined by the rewrite rule
schemata obtained from the first five equational axioms (5), (71), (72), (), and (SP) of
ABnm* by orienting left to right, and the following four rewrite rule schemata:

(9) ul =T (u is not canonical.)
(Mtop) AxT T =t (x ¢ FV(t).)
(S5Piop1) (miu, *7) = u, (u has type ¢ x T.)
(5Piop2) (7, mou) — u, (u has type 7 x 9.

g stands “gentop.” In [9], Curien and Di Cosmo proved that the rewriting system (ASnm+)’
is CR and WN, by using an ingenuous lemma for abstract reduction system. ()\er*)'
is non-left-linear and has a rewrite rule schema with side conditions. We cannot apply
criteria for CR of left-linear (higher-order) term rewriting system based on closed condition
of (parallel) critical pairs (e.g., [35, 36]). [nnpT-reduction is the triangulation [37] of
BnT-reduction, and thus CR by [37, Corollary 2.6]. However, (ABnm+)" is not a triangulation
of the rewriting system AfSnm. As we see (1), g-rule schema rewrites the one-step reduct
uT*T of (myu, mou) to the two-step reduct of (mu, mou). This does not fit to the definition
of the triangulation.

1.3 Curien and Di Cosmo’s attempted to prove SN of their rewriting
system

All variations (e.g., Girard [12], Blanqui (computability closure [6])) of Tait’s reducibility
method require to show a key statement like “if v[z := u] is reducible for all reducible u,
then \z.v is reducible,” where we say a term ¢ of type ¢ — 1 is reducible if for all reducible
term wu of type ¢, tu is reducible. An auxiliary property which is available is that, a term
tu is reducible, as soon as s is reducible for all reducts s of tu, for example, in [12]. So the

proof of the key statement amounts to the proof that all reducts of (Ax.v)u are reducible.

Now, if v = (v'*) with ¢ FV(v’), then the rule schema (1) can rewrite (Az.v)u to (v'u)
which is not v[z := u] = v, and we do not know if (v'u) is reducible.

Curien and Di Cosmo proved SN of g-normal forms without the second-order S-rewrite
rule schema (/%) but with the second-order n-rewrite rule schema (?), and SN of all the
terms with both (%) and (n?) but without (ntop), (SPiop1) and (SPiep2). But these do not
lead to SN of all terms for the full reduction.

6:3
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1.4 Our SN proof of Curien-Di Cosmo’s reduction systems

To carry out Girard’s reducibility [12] for (ABnm+)’,
1. We prove

(CRO) “every canonical term is reducible,”

besides Girard’s three properties (CR1) (”the reducibility implies SN.”), (CR2) (”the
reducibility is closed under —.”), and (CR3).

2. In the reducibility method for (ABnm+)’, as a sufficient condition for Az.v to be reducible,
we consider the conjunction of (a) v[z := u] is reducible for all reducible u and (b) v’ is
reducible whenever v = v'x.

3. We will restrict the reducibility theorem “all terms substituted by reducible terms are
reducible” to x-free terms.

» Definition 2. Let t be a term of (ABnm*)’.

1. tis called *-free, if the term constant * ' does not occur in t.

2. Let  be a x-free term such that all the occurrences of * ' in t is replaced by variables z .
None of the problematic rewrite rule schemata (7;0p), (SPiop1), and (SPiop2) applies for a
x-free term. So we can prove the restricted reducibility theorem, as usual, by induction on ¢,
but we use

» Lemma 3. Let t be a term of (\Bnmx)'. If t is reducible, so is t.
Proof. By f 57 t and (CR2). <

From the restricted reducibility theorem, we derive the reducibility of all terms, again by
Lemma 3. The condition (CR1) establishes SN of (ABnm*)". Thus, we reduced SN of the
terms to SN of the same rewriting relation for the *-free terms. This kind of trick to restrict
terms is also found in the normalization by evaluation for a dependent type theory with
enumeration sets and types for proof irrelevance ([2]).

The rest of paper is organized as follows: In Section 2, we prove SN of (ABnm*)’. In
Section 3, we prove (1) SN of ()\2 ﬁmr*)/, the extension by the second-order S7-rewriting and
(2) SN of ()\zﬂmr*)”, the extension by the second-order frn-rewriting where we also consider
terminal types caused by parametric polymorphism [17]. In Section 4, we show the worst-
case derivational complexity of (/\ﬂnw*)/ is smaller than that of so-called type-direwected
expansions. For type-directed expansions, see [28, 29, 15, 3, 8, 10, 20, 25], to cite a few. In
the appendix, we prove SN of ()\T’ﬁx**)/, the extension of (ABnm+)" by sum types with
weak extensionality.

2 SN proof of (ABnmx)’, by restricted reducibility theorem

In our SN proofs, we will use a well-founded induction on a well-founded relation. A well-
founded relation is, by definition, A = (A, =) such that § # = C A x A and there is no
infinite chain a > o’ = @’ = ---. The well-founded induction on a well-founded relation
A = (A, >) is, by definition,

WFI(A): YVPC ANz e A(Ve' (z - 2" =2’ € P) = z€P) = Vazec Az € P)].

We call the subformula Vz' (x = 2’ = 2’ € P) the WF induction hypothesis. For n > 1 well-
founded relations A; = (4;, =;) (i =1,...,n), we define a binary relation A #--- #A, =
(A X - X Apy =1 # - F#=n)by: (z1,...,2n) (=1 #-# >n) (W1,---,Yn), if there exists
i such that x; >=; y; but x; =y; (j #4). Then A1#---#A,, is a well-founded relation.
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. . A .
If the redex of t — ¢ is A, we write t = t'. Below, “C” reads “is a subterm occurrence
of”

» Definition 4 (Neutral [12]). A term is called neutral if it is not of the form (u, v) or Az.v.

By an atomic type, we mean the distinguished type constant T or a type variable.

» Definition 5 (Reducibility [12]).

(a) A term of atomic type is reducible, if the term is SN.

(%) A term t¥*V is reducible, if so are (m1t)? and (mat)?.

(—) A term t?2Y is reducible, if for any reducible term u¥, (tu)¥ is reducible.

We state and prove four properties (CRO), (CR1), (CR2) and (CR3) of the reducibility,
where the last three are the same as those Girard proved [12] for Smma-reduction.

» Lemma 6. Let t¥ be a term.

(CRO) Ift is canonical, then t is reducible.

(CR1) Ift is reducible, then t is SN.

(CR2) ift is reducible and t — t', then t' is reducible.

(CR3) if t is neutral, and t’ is reducible whenever t — t', then t is reducible.
To prove Lemma 6, we first note the following:

» Lemma 7. By (CR0O) and (CR3), we have
(CR4) Ift is a variable, then t is reducible.

Proof. Let t — ¢'. Then t’ is canonical. By (CR0), ¢’ is reducible. By (CR3), ¢ is too. <«

Proof of Lemma 6. By induction on ¢.
( is atomic.
(CRO) t is * ", and SN. So t is reducible. (CR1) is clear. (CR2) As t is SN, so is every
reduct ¢’ of t. (CR3) If all reducts are SN, then it is SN.
Y =Y1 X P2.
(CRO) As *¥1%¢2 is a normal form (x%1, %2} the reduct of m;*?1%%2 is x¥i which is
reducible by induction hypothesis (CR0). By induction hypothesis (CR3) for ¢;, m;*¥1*#2
is reducible. Hence *%*¥2 is reducible.
(CR1) Suppose that ¢ is reducible. Then m;t is reducible. By induction hypothesis (CR1)
for ¢;, m;t is SN. So ¢ is SN.
(CR2) If t — t/, then m;t — m;t’. As t is reducible by hypothesis, so are 7;t. By induction
hypothesis (CR2) for ¢;, m;t’ is reducible, and so t’ is reducible.
(CR3) Let m;t 3 5. We have two cases.
1. A = m;t: Then p; € Iso(T) and s = *¥i because ¢ is neutral. By induction hypothesis
(CRO) for ¢;, s is reducible.
2. A # m;t: Then s = m;t’ for some ¢’ such that ¢ — ¢’. By the hypothesis, ¢’ is reducible.
So s is reducible. m;t is neutral, and all the terms s with m;t — s are reducible. By
induction hypothesis (CR3) for ;, m;t is reducible. Hence t is reducible.
P = P17 Pp2.
(CRO) Let u be a reducible term of type ¢1. By induction hypothesis (CR1) for ¢1, u is
SN. So we can use WFI (({u#! | u#* is reducible}, —)) where — is the rewrite relation.
We will verify that x#17%2q is reducible. Suppose *x#17%2y A 5. As 71792 is in normal
form, we have two cases.

FSCD 2017
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1. A = x¥17%2y: Then s = %2 is reducible by induction hypothesis (CRO) for ¢s.

2. Otherwise, s = *¥17%2¢/ with u — u/. Then v’ is reducible by induction hypothesis
(CR2) for ;. So, by the WF induction hypothesis, s = %#1 %24/ is reducible.

In any case, the neutral term *%17%2qy rewrites to reducible terms only. By induction

hypothesis (CR3) for pq, *#1 %24 is reducible. So ##17%2 is reducible.

(CR1) By induction hypothesis (CR4), a variable z#* is reducible. So tz is reducible.

Hence ¢ is SN.

(CR2) Let u be a reducible term of type ¢1. Then tu is reducible and tu — t'u. By the

induction hypothesis (CR2) for ¢q, t'u is reducible. So t’ is reducible.

(CR3) Assume ¢ be neutral and suppose all the ¢ with ¢ — ¢ are reducible. Let u be

a reducible term of type ;. By induction hypothesis (CR1) for ¢, u is SN. So by

WFI (({u®* | u®t is reducible}, —)), we will verify that tu is reducible.

Suppose tu A 5. We will show that s is reducible. As # is neutral, we have three cases.

1. A = tu: Then, s = x#2 is reducible, by induction hypothesis (CRO) for s.

2. A Ct: Then, s = t'u with t — ¢. t'u is reducible, because t’ is by the assumption,

3. Otherwise, s = tu’ with u — «’. Then, «’ is reducible by induction hypothesis (CR2)
for 1. So, by the WF induction hypothesis, tu’ is reducible.

In any case, the neutral term tu rewrites to reducible terms only. By induction hypothesis

(CR3) for g, tu is reducible. So t is reducible. This completes the proof of Lemma 6. <

For pairings and A-abstractions to be reducible, we consider a sufficient condition stronger

than that used in standard reducibility methods (e.g., [12]). In view of the rules (SPiop1),
(SPiop2), and (n4op), we newly consider (1(b)), (1(c)) and (2(b)).

» Lemma 8.

1.

Let u¥,v¥ be any terms. (u®, v¥) is reducible, provided that
(a) u and v are both reducible;

(b) if u=mw and v = *¥, then w is reducible; and

(c) if v=mow and u = x%, then w is reducible.

. Let v¥ be any term. \x?.v¥ is reducible, provided that

(a) v¥[x¥ = u¥] is reducible for every reducible, possibly non-x-free term u?; and
(b) if v=w?7¥%% and x¥ ¢ FV(w?™Y), then w?™Y is reducible.

Proof. (1) By the premise and (CR1), u and v are both SN. We can use

WFI (({u? | u? is reducible}, —)# ({vd’ | v¥ is reducible}, —)) (2)

where — is the rewrite relation. We will verify that 7 (u, v) is reducible. Let m (u, v) 3.
We will prove that s is reducible, by case analysis. We will exhaust the positions of the

redexes A in 7 {u, v) from left to right, and the rewrite rule schemata of A We have eight

cases.

1. A =m{u, v) is a redex of the rewrite rule (g) and s = %%: Then s is reducible by (CRO).

2. A =m(u, v) is a redex of the rewrite rule (m) and s = u: Then s is reducible by the
hypothesis (1(a)).

3. A = (u, v) is a redex of (g) and s = 7, (*?*¥): Then x¥*¥ is reducible by (CR0). By
the definition of the reducibility for the product type, s = 7 (*?*¥) is reducible.

4. A = (u,v) is a redex of (SP) and s = myw: Then u = mw and v = Mw. s = mMw is
reducible by the hypothesis (1(a)).

5. A = (u, v) is a redex of (SP;yp1) and s = myw: Then u = mw and v = x¥. s = mw is

reducible by the hypothesis (1(b)).
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6. A = (u,v) is aredex of (SPip2) and s = myw: Then v = mow and u = x¥. s = mw is
reducible by the hypothesis (1(c)).

7. A Cwu: Then s =7 (v, v) with u — «'. v is reducible by (1(a)) and (CR2). By the WF
induction hypothesis, s = m1 (v, v) is reducible.

8. A Cwv: Then s = m(u, v') with v — v’. v’ is reducible by (1(a)) and (CR2). By the WF
induction hypothesis, s = 7 (u, v') is reducible.

In every case, the neutral term m (u, v) rewrites to reducible terms only, and by (CR3),

71 {u, v) is reducible. We can similarly prove that 7 (u, v} is reducible. So (u, v) is reducible.

(2) By (CR4), z¥ is reducible. So v¥ is, by the premise. Let u¥ be a reducible, possibly
non-+-free term. By (CR1), both of u,v are SN. By (2), we will verify that (Az.v)u is

reducible. Assume (Az.v)u 3 5. We will exhaust the positions of the redex A in (Az.v)u

from left to right, and the rewrite rule schemata of A Then we have seven cases:

A = (Az.v)u is a redex of (g) and s = *¥: Then s is reducible by (CRO).

A = (Az.v)u is a redex of () and s = v[x := u]: Then s is reducible by hypothesis (2(a)).

A = Az.v is a redex of (g) and s = *¥*~%u: As ¥¥~¥ is reducible by (CR0), so is s.

A = Az.v is a redex of (1) and s = v[x := u]: Then, this case is case 2.

A = Az.v is a redex of (10p) and s = wu with v = w*? and « ¢ FV(w): Then, since w

is reducible by hypothesis (2(b)), s = wu is reducible.

6. A Cvands= (A\x.v)u with v — v": Then, by (CR2), v/ is reducible. By the WF
induction hypothesis, s = (Az.v)u is reducible.

7. A Cuand s = (Azx.v)u with u — u': Then, by (CR2), v is reducible. By the WF
induction hypothesis, s = (Az.v)u’ is reducible.

LA ol L\

In every case, the neutral term (Az.v)u reduces to reducible terms only. So, by (CR3),
(Az.v)u is reducible. Hence Az. v is reducible. <

In the following two theorems, we use Lemma 3. For a term ¢, a sequence & of dis-
tinct variables z{', ..., z¢", and a sequence @ of terms u{’,...,uf", let t[Z := u] be the
simultaneous substitution.

» Theorem 9 (Restricted Reducibility). Assume that
1. t is a *-free term;

2. a sequence of distinct variables x7*, ..., x¥" contains all free variables of t; and
3. ul" is reducible and x-free (i =1,...,n).
Then t[z{*, ... o8 =", ... uf"] is reducible.

Proof. We prove that ¢ [# := ] is reducible, by induction on t. As t is *-free, t Z *'. So,

we have five cases.

1. t=x; Then t[Z:=

2. t = muw (i = 1,2): Then by induction hypothesis, w[Z := @] is reducible. So each

mi(w [Z := @]) is reducible. This term is mw [Z := @] =t[Z = 4].

3. t = (u,v): Then t[Z:=u]| = (u[Z:=u], v[Z:=w]). By the induction hypotheses,
both u[Z := @] and v [Z := @] are x-free and reducible. By Lemma 8(1), ¢t [Z := @], that
is, (u[Z := 4], (v[Z:=@])), is reducible.

4. t = wuv: Then by induction hypotheses w [Z := @] and v [Z := @] are reducible, and so
(by definition) is w [# := @] (v [Z := @]); but this term is ¢ [Z := 4].

5. t = \y¥.w¥ with y not free in any #,4: Then t[Z := @] = \y. (w[¥ := i]). Let u¥ be
a reducible, possibly non-x-free term. w and @ are *-free. By induction hypothesis, a
s-free term w[@,y := 4, 4] = w [ & := 4] [y := 4], is reducible. The last term is ¥ where

@] = u;. Immediate.

6:7
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v =w|[Z:=u][y := u], because w, ¥ are x-free. By Lemma 3, v = w[Z := @] [y := u]
is reducible. w[Z := ] is *-free. So, by Lemma 8(2), t[Z := 4] = Ay. (w[Z := @]) is
reducible.

Hence we have established the restricted reducibility theorem. |

Again we use Lemma 3.
» Theorem 10. All terms of (\3nm*)" are reducible.

Proof. Let t be a term. The *-free term # is reducible, by (CR4) and by Theorem 9 with
u; := x;, the identity substitution. By Lemma 3, ¢ is reducible. |

» Corollary 11. (\Bnmx)" satisfies SN.
Proof. By (CR1) and Theorem 10, every term of (A3nm*)" is SN. <

» Remark. The ordinal number assignment of Howard [18] (Schiitte [34], resp.) to typed
A-terms (typed combinators, resp.) proves SN of typed S-reduction (typed combinatory
reduction, resp.). Beckmann used cut-elimination procedure [5] of a deduction system to
give an optimal upper bound of typed fn-reduction. But these two proofs seem not to
generalize for SN of the rewriting system ()\an*)/. In these two proofs, it is not the case
that (1) 7™ > r and (2) the LHS Az". ¢+ (z ¢ FV(t)) of the rewrite rule schema (1) is
greater than the RHS ¢.

One may suppose that the higher-order recursive path ordering (HORPO for short) [21]
or the General Schema [7], could be extended with surjective pairing and hence be used for
proving SN of ()\ﬁmr*)'. If there is a convenient translation of the rewrite rule schemata
(9), (Mtop), and (SP,,,) with type-abstraction to an infinite simply-typed system, such that
the translation can also put all the rules of ()\er*)' in the right kind of format, it is possible
that a HORPO-variant (with minimal symbol *) may handle (ABnms)’. However, we need
a new HORPO variant, since the conventional ones are troubled with the non-left-linear
(SP)-rule pair(p1(X), p2(X))->X. There is no type ordering that allows for the extraction
of X from terms of smaller type in general. The top rule (g): v — x (7 € Iso(T), u Z *7)
is also problematic for most HORPO-variants. It could be handled by using a variation of
HORPO with minimal symbols, such as the one used in WANDA [24]. Here, WANDA is one
of the most powerful automatic termination provers for higher-order rewriting.

3 SN proof of polymorphic extensions by restricted reducibility
theorem

In [9], Curien and Di Cosmo introduced the polymorphic extension A\?3nm* of the equational
theory ABnm*, and the polymorphic extension (Azﬂnw*)/ of the rewriting system (A,er*)’.
We introduce an extension (A\2fnmx)" of (ABnm+)" by polymorphism and terminal types
caused by parametric polymorphism [17].

» Definition 12 (()\QBnTr*)/). We will first recall the equational theory A\2Anm+ of the poly-
morphic terms. The types are generated from type variables X,Y, ... and the distinguished
type constant T by means of the product type ¢ x ¥, the function type ¢ — v, and the
IIX.p. Terms are built up from the distinguished term constant *' and term variables
2%, y%, ..., 2%, y¥, ... by means of A\-abstraction (Az¥.t%¥)?~¥  term application (u¥~%v%)¥,
pairing (u?, v¥)?>*¥ left-projection (mt#*¥)%, right-projection (mat?*¥)¥,

universal abstraction: if v¥ is a term, then so is (AX. v“")nx"", whenever the variable X

is not free in the type of a free variable of v¥; and

universal application: if "% ¢ and 1) is a type, then so is (tHX' @w)w[X:qu].
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The superscript representing the type is often omitted. The axioms of the equational theory
A2Bnm+ are those of ABnm+ and the following two:

(B%) (AX.t)p =t[X :=¢]. (n*) AX.tX =t, (X does not occur free in t).

For the definition of Iso(T) for (Azﬂnw*)/, Curien and Di Cosmo added the following clause
to the inductive definition of Iso(T) for (ABnm+)":
(TII) If 7 is “isomorphic to” T, so is ILX.7. The canonical term *% 7 of ITIX. 7 is AX. 7.

The rewrite rule schemata of the rewriting system ()\2 er*)/ are those of the rewriting
system (ABnm*)" and those obtained from (£2) and (n?) by orienting left to right. This
completes the definition of (Azﬂnw*)/.

Taking the parametricity of the polymorphism [17] into account, we add the following
clause to the inductive definition of Iso(T):

(TPe™) For every n >0, if 74, ..., 7, are “isomorphic to” T, so is IIX. ((7y = -+ — 7, —
X) — X). The canonical term X (=2 =>X02X) of TTX (1 — -+ = 7, = X) —
X)is AX g7 7T X gy LT

As (g)-rule schema applies for more terms in ()\2ﬂn7r*)” than in ()\Qﬁnw*)/7 SN of ()\257777*)

implies SN of ()\Qﬁmr*)/. We will prove SN of ()\zﬁnﬂ*)”.

In [9], to show SN of the rewriting system ()\2 Bnﬂ'*)/, Curien and Di Cosmo tried to prove

"

that every term of (A28nm+)’ in the g-normal form is SN. But they observed that the set
of g-normal form is not closed under 32-reduction; (AX. AzX. \yX =Y
form, but its reduct u = Az T. Ay 7Y

.yxz)T is in g-normal

.yx is not, as u —g Az Ay 7Y yx

» Definition 13 (Neutral). A term is neutral if it is not of the form (u, v), Az.v, or AX. u.
As in (A\Bnmx)’, we consider (CRO) to define a reducibility candidate [12].

» Definition 14. A reducibility candidate (RC for short) of type ¢ is a set R of terms of
type ¢ such that:

(CRO) If ¢ € Iso(T), then *¥ € R.

(CR1) If t¥ € R, then t¥ is SN.

(CR2) If t¥ € R and t¥ — ¢/, then t' € R.

(CR3) If t¥ is neutral, and any reduct of ¢¥ is in R, then t¥ € R.

» Lemma 15. (CR0O) and (CR3) implies
(CR4) Ift¥ is a variable, then t is in R.

» Definition 16.
1. Let SNY be the set of SN terms of type 1.
2. For an RC R of type ¢ and an RC S of type v, define

RxS={t">Y|mteR, mteS}, and R =S ={t*"Y |Vuluc R = tucS)}.

» Lemma 17.
1. For any type ¥, SN is an RC.
2. If R,S are RCs of type p,1, then R x S, R — S are RCs of type ¢ X 1, — .

Proof. (1) (CRO): *¥ € SNV is SN, if ¢ € Iso(T). (CR1): By the definition of SN'¥. (CR2):
If t € SNV and t — t/, then t' € SNY. (CR3): Let t be a neutral term of type 1 such that
any reduct ¢’ of ¢ is in SN¥. Then ¢ is in SN'Y. (2) By the proof of Lemma 6 for ¢ x 1 and

© = . <
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For a type ¢, a sequence X of distinct type variables Xi,..., X,,, and a sequence 1; of
types 1, ..., Um, let p[X := 1] be the simultaneous substitution.

» Definition 18 (parametric reducibility). Suppose

1. ¢ is a type;

2. a sequence X of distinct type variables X7, ..., X, contains all free type variables of ;

3. 15 is a sequence of types ¥1,...,%,; and

4. R is a sequence of RCs Ry, ..., R of corresponding types 1/7

Define a set RED@[X .= R] of terms of type p[X := 9] as follows:

1. If o= T, RED,[X := R] = SN'';

2. 1 = X;, RED,[X := R] = Ry;

3. 1f o = ¢/#¢", RED,[X := R] = RED,/[X := R] # RED v [X == R] (# =—, x);

4. If ¢ = IIY. ¢/, Y not free in ¢ and Y # X; (i = 1,...,m), then RED o[ X = R]
is the set of terms ¢"Y-#'IX=¥] such that for any type ¢ and any RC S of type Y,
(ty)?' XY =V4] ¢ RED, [X,Y := R, S].

—

» Lemma 19. Under the conditions of Definition 18, REDSO[)_(a := R] is an RC of type
p[X =],

Proof. By induction on ¢. First consider the case ¢ = IIY. ¢’. Let S be an RC S of type
¢©”. By induction hypothesis,

T := RED/[X,Y := R, 8], is an RC. (3)

(CRO) Let Y- ¢ 1Xi=9] @ — s. We will verify s € T. We have two cases. The first case
corresponds to clause (TII) and the second case to clause (T?") in Definition 12.
1. s = «#'[XY:=0¢"] By (3),seT.
2.s = Ay.yx™ ---x™: Then ¢ = (11 = -+ > 7, = Y) = Y. We will verify
s € RED/[X,Y := R,S] = (RED,,[X,Y := R,S] = --- — RED,, [X,Y := R,S] —
S) — S. Take a term

o me" e RED, (X, Y =R, 8] = - — RED, [X,V :=R,8] = 8. (4)
By induction hypothesis for 7;,
RED,,[X,Y := R,S] is an RC. (5)

By Lemma 17 (2), RED,,[X,Y := R,S] = --- — RED, [X,Y := R, 8] — S is an RC.
By (CR1) of this RC, u is SN. So we can use WFI (({uﬁ_’”'_"”_wﬂ | (4) holds} , —>))
where — is the rewrite relation. We will prove su = (Ay.y *™ ---+™)u € S. Let

"

(su)?® 3 4. Then we have four subcases:

a. A = suis a redex of (g): Then v is *?" . As S is an RC, v € § by (CRO) of S.

b. A = su is not a redex of (g): Then v = u %™ ---x™. By (5) and the (CRO0),

7 € RED,,[X,Y := R, S]. Sov e S by (4).

c. A Cs: Then v = Ay. %7 ¥™—i+1 ... %™ for some 7 and nonnegative i < n with the
rewrite rule schema is (g). We see that the normal form of s is canonical. This
canonical term is in 7 by (3) and (CRO0) of 7. By repeated applications of induction
hypothesis (CR3), s € T. Hence v € S.

d. Otherwise, A C u. By the WF induction hypothesis, v € S.

So, v € S. By (CR3) for S, (A\y.y«™ ---x™)u € S. So, s € T.
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Thus #1Y- ¢/ [X:=7] ¢" € T. Hence Y- 1X:=V] ¢ REDypy. ~X =R]

(CR1) Let t € RED,[X = R]. Then to” € T by Definition 18. By (3) and (CR1) of T, t¢”
is SN. So ¢ is SN.

(CR2) Let t € RED,[X := R]. Then t¢” € T by Definition 18. Assume ¢ — . Then
" — t'¢". By (3) and (CR2) of T, t'¢” € T. So t' € RED,[X := R].

(CR3) Suppose that t is neutral and that t’ € REDw[X := R] whenever ¢t — t'. Let to” 3.
Astis neutral we have two cases:
1. A = t¢”: Then s is canonical of type ¢/[X := 1], because t is neutral. By (3) and

(CRO) of T,seT.

2. Otherwise, s = t'¢” with ¢ Bt . seT by t' € RED,[X := R].
By (3) and (CR3) of T, t¢” € T. So t € RED,[X := R].

The cases where ¢ is other than IIY. ¢’ are by induction hypotheses on ¢ and Lemma 17. <

» Lemma 20. Suppose that
1. o, are types, Y is a type variable;

2. a sequence X of distinct type variables X1, ..., X,y contains all free type variables of
elY ==1];

3.X7EY(2':1 m); and

4. R isa sequence of RCs Ri,...,Rm.

Then

REDy.—y[X := R] = RED,[X,Y := R,REDy[X := R]].
Proof. By induction on ¢. |

» Lemma 21 (Universal abstraction). Suppose that

1. ¢ is a type;

2. a sequence X of distinct type variables X1, ..., X, contains all free type variables of
IIY. ¢;

3. X, £Y (i=1,...,m), 1/7 s a sequence of types Y1, ..., Vm;

4. R isa sequence of RCs Ry, ..., Ry of types 1;;

5. Y does not occur free in 15; and

6. w?X:=Y is q term.

If for any type ¥ and any RC' S of type ¢, (w[Y = w])‘f’[f’Y::i*w] € REDw[)Z,Y =R, S,
then AY.w € REDpy. sa[X R]

Proof. SN'Y is an RC, by Lemma 17 (1). By assumption, w € REDv[)?,Y =R,SNY]. B
(CR1) of this RC, w is SN. By Definition 18 (4), we have only to verify:

(AY.w)y € REDW[)?,Y = ﬁ,S},for every type 1 and RC S of type . (6)

The proof is by WFI(({ #X=i1 | 1 € RED,[X,Y = R, SNY]} )) where — is the

rewrite relation. Let (AY. w)v 3 5. We have five cases. We verify s € T := REDW[)?, Y =
R,S].
1. A= (AY.w)y is a redex of (g): Then s = +#[XYV:=v:%] By (CRO) of T.

2. A= (AY.w)1p is a redex of (52): Then s = w[Y := ¢]. By assumption.

3. A= (AY.w)is aredex of (g): Then s = ALY p[Xi=ily, By Y- o[ X=d] ¢ REDHYW[X) =
R], s € T by Definition 18.

4. A = (AY.w) is a redex of (n?): Then this case coincides with the second case.
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5. Otherwise, for some w’, s = (AY. w’')y and w — w’. By the WF induction hypothesis.
Thus s € T. So (6) follows from (CR3) of 7. <

» Lemma 22 (Universal application). Suppose that

1. o, 9 are types, Y is a type variable;

2. a sequence X of distinct type variables X1, ..., X, contains all free type variables of
elY ==1]; .

3. X, £Y (i=1,...,m), ¥ is a sequence of types ¥1,...,Ym; and

4. R isa sequence of RCs Rq,..., Ry of types 1;

Thent

—

w € REDy. »[X 1= R] = w (WZ’ = zﬁ]) € REDjy .y [X = R].
Proof. By Lemma 19, RED,[X := R] is an RC of type ¢[X = ¢].
Definition 18 (4), w (w[f = 1/7]) € RED,[X,Y := R,RED,[X := R]]. So Lemma 20 implies

the conclusion. <

By the premise and

By the condition (TP"), a canonical term *™ (7 € Iso(T)) does not necessarily contain
the term constant . We generalize the definition of *-free and ¢ (Definition 2.)

» Definition 23.

1. We say a term of ()\2ﬂn7r*)” is *-free , if it has no canonical subterm of a type of Iso(T).

2. For any term t of ()\Qﬁmr*)”, let £ be a *-free term obtained from ¢ by replacing all
occurrences of *™ with variables ™ where 7 is any type of Iso(T).

Similarly as Lemma 3, we can prove:

» Lemma 24. Let ¢ be a type, R be an RC of ¢, and t be a term of ()\Q/an*)n of p. If
teR, teR.

» Lemma 25. In ()\25777r>«<)”, for every x-free term t,

1. t[Xy, ..., X i =1, ..., U] is x-free for all distinct type variables Xy, ..., Xy, and for
all types Y1, ..., U0m; and

2.tz xgm =t L ufn] s x-free for all distinct variables x¥, ... x¢" and for all
x-free terms uf', ..., ufn.

Proof. By induction on ¢t. Let © be [X1,..., X, :=¢1,...,%y] and 0 be [2]*,... 28" :=

uf",...,uf"]. The proof proceeds by cases according to the form of t. By Definition 12, ¢ is

not a term constant, because otherwise ¢ is ' .

1. tis a variable: Then (1) holds because no canonical term has a free variable. (2) is clear.

2. tis an abstraction, or an application: Obvious.

3. t=AY.wsuch that X; Z Y and Y does not occur free in any v;: By induction hypothesis,
wO and wl are x-free. (1) We have only to verify that t© = AY. w® is not a canonical

term:
AY Ag™ 7Y ™ kT where Ty, € Iso(T) (K= 1,...,1). (7)
Let 7; be an instance of some type o by the substitution © such that ¢ # 7. Then

o ¢ Iso(T) because any type of Iso(T) has no free type variable. So, *™ is an instance

! 112, Lemma 14.2.3] corresponding to this lemma has a typo: “tV” should be “t(V[U/X])”
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of a non-canonical subterm of ¢ by the substitution ©. This contradicts against the

induction hypothesis. Hence, t© is = t, which is *-free by the premise.

(2) Assume t0 = AY. w6 is (7). By the premise, no u; contains *™. We have two subcases.

a.l=0: Thentd =t ort=AY. x}lﬁy. In the former case, t0 is *-free. The latter case
is impossible because of the proviso of universal abstraction in Definition 12.

b. [ > 0: Then, for each k, there is a *-free subterm wy, of t such that w6 = x"*. This is
impossible by induction hypothesis for wy.

Hence t6 is x-free.

4. t = wy: Then, by induction hypothesis, w® and w are *-free. Hence, none of t©

Al

wO(¥O) and td = (wh)y is canonical.
In the following two theorems, we use Lemma 24.

» Theorem 26 (Restricted Reducibility). Suppose

1. t% is a x-free term;

2. a sequence of distinct variables x{*, ..., xf" contains all free variables of t#;

3. a sequence X of distinct type variables X1, ..., X,, contains all free type variables of types
@ P15 Py

4. R isﬂa sequence of RCs Rq,...,Rm of types 1/_; =YP1,...,Pm; and
5. u:_oi[X::w] is in RED,, [X :=R] and is *-free (i=1,...,n).

6. t[X := |[Z := @] is the term obtained from t[X := 1| by simultaneously substitution of
ufl[X::w], . ,uﬁ"[X::w] into xfl[X::w], . onl[X:=9]

Then t[X := [ := ] is in RED,[X = R].

CT

Proof. By induction on ¢t. The proof proceeds by cases according to the form of ¢.

1. t is a pairing or a A-abstraction: We can prove this case, similarly as in the proof of
Theorem 9, but we use Lemma 25 to verify the x-free condition of Lemma 8.

2. t= (AY.w)™Y¢ where X; # Y and Y does not occur free in any ¢;[X := ¢]: Then by
the induction hypothesis, for any type 1 and any RC S of 1, w[)?, Y =1, Y|[@ =] is
in RED,[X,Y := R,S]. Since Y occurs in no @, we have w[X := ¢][& := @][Y := ] €
RED,[X,Y := R,S]. By Lemma 21, (AY. w)[X := ¢|[Z := @] is in REDy, ,[X := R

3. ¢ = w™¥4: Then by the induction hypothesis, w[X := ][# := @] is in REDyy. w[i =R

By Lemma 22, w[X := ][ := ] (1&[)_(' = 15]) € RED[y.—y) [X := R]. This term is just
(wy)[X = 9))[7 == .

The other cases are handled similarly as in the proof of Theorem 9, except that we use
Lemma 24 instead of Lemma 3. <

» Theorem 27. If a sequence of distinct type variables X1, ..., X,, contains the free type
variables of a type @, then any term t¥ is in RED,[X4,..., X, = SNXL . SNEm],

Proof. Let t be a term. The *free term # is reducible, by (CR4) and by Theorem 26 with
Pli=af ;=X and R, = SNXi. By Lemma 24, t is reducible. <

Us v 0 7]

» Corollary 28. (1) (\*Bnmx)" is SN. (2) (\*Bnmx)’ satisfies SN.

Proof. (1) By (CR1) and Theorem 27. (2) If w — v in (Azﬁnw*)/, then u — v in (/\26777r>k)//.

So (A?Bnm+)" satisfies SN by (1). <
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4 Derivational complexity of (ABnm#)’: comparison to type-directed
expansions

For the typed A-calculus, let a binary relation —4 (—35p) replace a neutral subterm occurrence
in a non-elimination context with the n (SP)-expansion [29]. Neither —7 nor —<5 is stable
under contexts. We call the relation —:=— P Mints’ reduction, as Mints introduced
it in [28, 29]. Mints’ reduction generates the equational theory ASnmx, and is SN+CR ([3, 20]
to cite a few). In [3], the author presented a divide-and-conquer lemma to infer SN+CR
property of a reduction system from that property of its subsystems. From this lemma,
SN+4-CR of the — follows. SN implies —7 = <, \ =g and —gp = <—sp \ =, \ ¢—x,. The
divide-and-conquer lemma suggests a large upper bound of the length of a —-reduction
sequence. Cubrié¢ proved CR of — by development argument of residuals [8] and WN.
Although —-z7 is not stable under contexts, Khasidashvili and van Oostrom [22] pointed
out that the finite development-like argument based on <—,sp proves CR of —.

In [10], Di Cosmo and Kesner proved CR+SN of a reduction system —3 U =5 U =1,
U —r, U —=gp U —r union the g-like reductions of sum types. By showing how substitution
and the reduction interact with the context-sensitive rules, they proved the WCR. They
simulated expansions without expansions, to reduce SN of the reduction to SN for the
underlying calculus without expansions, provable by the standard reducibility method.

The rewriting system (ABnm#)" of Curien and Di Cosmo is stable under contexts (i.e.,
t—>t = ---t--- = ---t'---) Mints’ reduction decides the equational theory \Bnmx.
Mints’ reduction is not stable under contexts.

Mints’ reduction fits with semantic treatments such as normalization by evaluation (e.g.,
[4]. See [1] in the context of type-checking of dependent type theories). However, because
of the complication of Mints’ reduction, in his book [30] on selected papers of proof theory,
Mints replaced his reduction with the Sn-reduction modulo equivalence relation on terms.
His purpose is to give a simple proof of difficult theorems of category theory with typed
A-calculus and proof theory by using the correspondence objects = types = propositions and
arrows = terms = proofs. Mac Lane is interested in his ambition [27].

In the worst case analysis, normalizing rewriting sequences of Curien and Di Cosmo’s
rewriting have smaller number of g7 moT-reduction steps than those of Mints’ reduction.

The derivational complexity of Mints’ reduction is higher than that of Curien-Di Cosmo’s
rewriting in the simply-typed regime. By the derivational complexity of a term ¢, we mean
the maximum number of S-reduction steps in a reduction sequence from ¢. We count only (-
reduction steps, because the S-rule is a common rule of Mints’ reduction and the Sn-calculus,
which is Curien-Di Cosmo’s rewriting in the simply-typed regime. The optimal bound for
the length of a fn-reduction sequence is given in [5] and is also the optimal bound for the
length of a S-reduction sequence.

» Theorem 29. For every simply-typed \-term, the derivational complexity of t of Mints’
reduction — gy s greater than or equal to that of the Bn-reduction.

Proof. A fBn-reduction sequence S is an alternating sequence of Eﬁ and (—, \ —g)". Here
(--+)T stands for the transitive closure. By [3], (1) =7 = <, \ <—5; (2) —5 is CR; and (3) If
t —3 s then the 7-normal form of ¢ goes to that of s in positive number of S-reduction steps.
Hence, the B-normal forms of terms in S forms an 7-normalization sequence followed by a
[B-reduction sequence such that the number of S-steps is not less than that of S. <

Consider the minimum length ¢, of the normalization sequences of variable 7 with
7 € Iso(T). £, = 1, in the rewriting system (A\Bnmx)’, although ¢, is arbitrary large as
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7 € Iso(T) gets complex in the Mints’ reduction. Indeed, " — * T,

A A € D VAN

TXT

T — ((mx)T, (ng)T> — <(71'1ﬂc)T

L L

We may be able to introduce SN+CR extensional A-calculus with surjective pairing,
terminal type and empty type, based on type isomorphism.

Lemma 3 and Lemma 24 are described in topological jargon. For any type ¢, the
reducibility predicate is an open condition, in the topological space of terms where a set of
terms is open if and only if the set is closed under reduction. For the set U of x-free terms,
the maximum open superset of U is the set V of all terms. But U is not dense in V.
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A SN proof for extension by weakly extensional sum types, by
restricted reducibility theorem

Recent study of type-directed n-expansion pay attention to sum types (with permutative
conversion) and empty types. See [4, 10, 19, 25, 33], to cite a few. For the first step, we
introduce Curien-Di Cosmo-style rewrite rule schemata for weak extensionality for sum types,
and then prove the SN.

» Definition 30 (()\T’H’X*)/). To the equational theory ASnm*, we add sum types v1 + 2,

the case distinctions d(t#rT22 917V 127N injections (in%, ., (u;“”‘))sal—w2 (i=1,2),

and the following two equational axioms:

d(in},, ., (w), t1, t2) = tyw, (i=1,2).

d(t, /\331-1113,1,@2(261), )\xg.inil,m(acg)) =t.
We write AT-7F for the resulting equational theory. We orient the last two axioms:

(+.8:) d(in,, o, (w), t1, t2) = tyw, (i=1,2).
(+.m) d(t, )\xl.inglolyw(xl), Axg.ini17¢2(x2)) — t.

The rewrite rule schemata (+.n) and (g) yields obstructions 2 to CR:

d(y, /\xl.ini,lﬁ (1), )\xg.inilﬁ (7)) +—4 d(y, Awl.in;177(m1), )\mg.inil)T(ch)) — 4 Y-
d(y, )\xl.in;% (7), )\acg.inz,sp2 (22)) <—¢ d(y, )\xl.ini’m (z1), )\svg.iniw2 (x2)) =40y

Here 7 € Iso(T). The set Iso(T) of “isomorphic to” T in AT+ is constructed exactly
as that of A\Gnm+ (Definition 1). Below, 7 ranges over Iso(T). The following rule schemata
rewrite the leftmost terms of the two obstructions of CR, to the corresponding rightmost
terms y.

(+-Mtop1) d(t, A\xq. ini,l)T (z1), Azo. inilﬁ (*7)) — ¢,
(+Ntop2) d(t, Axj. ini,w (*7), Axa. inf’@2 (z2)) — t.

Let (/\T"H*X’Jr)/ be the rewriting system consisting of (g), (8), (n), (m1), (2), (SP), (Niop),
(SPtOp1)7 (SPtop2)7 (+'Bl)a (+~52)7 ("‘-77)7 (+'77t0101)’ and (+'77t0p2)'

2 We avoid saying “critical pairs,” since the notion of critical pairs is not so clear in non-left-linear
higher-order rewriting systems.
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SN of Curien-Di Cosmo Rewriting System

» Definition 31 (Reducibility). The reducibility for terms of ()\T’_*’X"")/ is defined inductively
as in Definition 5 but also with the following clause:
(+) A term t*17%2 is reducible, if t is neutral and t' is reducible whenever ¢ — #'; or

t =iny, ., (u¥) for some i = 1,2 and some reducible u?#".

» Definition 32 (Neutral). A term is neutral if it is not of the form (u, v), Az.v, infpﬂb(w).

» Lemma 33. (CR0), (CR1), (CR2) and (CR3) hold for (AT->+)",

Proof. By induction on the type ¢ of a given term ¢. Consider case where p = v1 + ©s.

(CRO0) There is no canonical term of type 1 + ¢2.

(CR1) The set of reducible terms is the least set satisfying the three clauses (a), (x), (=) of
Definition 5 and the clause (4) of Definition 31. If we replace ‘reducible’ with ‘SN, the
four clauses hold. So, the set of reducible terms is a subset of the set of SN terms.

(CR2) Suppose t is reducible. If ¢ is neutral, then ¢’ is reducible by Definition 31. Otherwise
t=iny, , (u?), ¢ =ing, . (
induction hypothesis (CR2) for ;, u} is reducible. Hence t’ is reducible by Definition 31.

(CR3) Immediate from Definition 31.

The other cases are checked as Lemma 6 was proved. |

u/'%1), u¥i — u/'% for some ¢ and some terms u!’, u;”". By

7

We define *-free terms, exactly as in Definition 2. Then Lemma 3 holds for ()\TVH’X’*)/.
» Lemma 34 (Case). Ift, t1, and t2 are reducible. so is d(t, t1, t2) is reducible.

Proof. By induction on the type ¢ of d(t#1+¢2, ¢£17% t‘;l_"p).

1 is atomic. Let d(t, t1, ta) 3 s By (CR1), t,t1,to are SN. We will verify that s is
reducible, by WF induction on

({t#r+e2 | 21492 is reducible} , —) # ({t‘fl_”p | t977Y s reducible} , %)

# ({tgl_w | t£27Y is reducible} , —>) (8)

where — is the rewrite relation. If A # d(¢, ¢1, t2), s is reducible by the WF induction

hypothesis. Otherwise A = d(¢, t1, t2). We have three cases, as A is *-free.

1. s = #: Then s is reducible by (CRO).

2. s =t by (+.1), (+Nop1) o (+.Mop2): s is reducible by the premise.

3. Otherwise, s = t;w and t = ini,ma2 (w). w is reducible by Definition 31. By the premise,
s is reducible.

P = 1Py X P2 (Y1 — 2, resp.) We verify the reducibility of u := m;(d(¢, ¢1, t2)) (u:=
d(t, t1, tz)r for all reducible 7%1, resp.). As t is neutral, we use (CR3) for 1; (2, resp.).
Since t, t1, to (t, t1, to, r, resp.) are all reducible by the premise, they are all SN by
(CR1). When 9 = 1y X )2, we proceed by WF induction on the well-founded relation
(8). When ) = )1 — 12, we proceed by WFI ((8) # ({7”/’1 | r¥1is reducible} , —>)) Let

u 3 5. We have three cases.
1. A =u: Then s = *% (s = %2, resp.), which is reducible by (CRO).
2. A =d(¢, t1, t2), we have two subcases, as A is *-free.
a. s =mt (tr, resp.) by (+.7), (+-Mop1) Or (+.Mop2): Then s is reducible as ¢ is by
the hypothesis.
b. s = m(tjw) (tjwr, resp.) and t = in/, . (w): Then w is reducible by Definition 31,
and so s is reducible by the hypothesis.
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3. Otherwise, A Ct, A Ct1, A Cty or A Cr. So, s is reducible by the WF induction

hypothesis.
Therefore m;(d(t, t1, t2)) (d(¢, t1, t2)r, resp.) is reducible.
1P = 1 + @2 : Similarly as the case where 1 is atomic. <

The following two theorems are proved by exactly the same argument for (ABnm+)".
» Theorem 35 (Restricted Reducibility). The statement of Theorem 9 holds for (AT’”’X’JF)/.

Proof. The proof is exactly the same as that of Theorem 9, but the case for infahw2 (t) is

handled by Definition 31, and the case for d(¢, ti, t2) is by Lemma 34. <
» Theorem 36. All terms of ()\T’_”X"")/ are reducible.
» Corollary 37. (/\T*_*’X"")/ satisfies SN.

It is worth checking whether our approach can ease technicality of the following work
on strong sums. Consider an equational theory N where (1) the type is generated from
the unique type constant p, the unit type by means of + (“sum types”), x, and —; and
(2) the equational axioms are (8), (1), (71), (72), (SP), (¢), the usual equational axioms for
case-distinction for sum types and the general permutative conversion for sum types. In [11],
Dougherty and Subrahmanyam employed —55p tO prove “An equation is provable in N, if
and only if it is true in the set-theoretic model with the unique atomic type p interpreted
as an infinite set.” In [25], Lindley provided an SN reduction system based on —_.=5 and
proved the “CR modulo” in order to decide the equational theory A. A decision procedure
for the extensional typed A-calculus with function types, product types, strong sum types,
the terminal types and empty types is given by Scherer [33] based on focusing, and by
Balat-Di Cosmo-Fiore [4] based on normalization by evaluation with turning non-standard
permutative conversions into an equivalence relation.

6:19

FSCD 2017



	Introduction
	Why do we insist on eta-reduction instead of type-directed eta-expansion?
	Curien and Di Cosmo's rewriting system based on eta-reduction
	Curien and Di Cosmo's attempted to prove SN of their rewriting system
	Our SN proof of Curien-Di Cosmo's reduction systems

	SN proof of (lambda,beta-eta,pi,*)', by restricted reducibility theorem
	SN proof of polymorphic extensions by restricted reducibility theorem
	Derivational complexity of (lambda,beta-eta,pi,*)': comparison to type-directed expansions
	SN proof for extension by weakly extensional sum types, by restricted reducibility theorem

