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Abstract
It is shown that in the simply typed λ-calculus the following decision problem of principal inhab-
itation is Pspace-complete: Given a simple type τ , is there a λ-term N in β-normal form such
that τ is the principal type of N?

While a Ben-Yelles style algorithm was presented by Broda and Damas in 1999 to count
normal principal inhabitants (thereby answering a question posed by Hindley), it does not induce
a polynomial space upper bound for principal inhabitation. Further, the standard construction of
the polynomial space lower bound for simple type inhabitation does not carry over immediately.

We present a polynomial space bounded decision procedure based on a characterization of
principal inhabitation using path derivation systems over subformulae of the input type, which
does not require candidate inhabitants to be constructed explicitly. The lower bound is shown
by reducing a restriction of simple type inhabitation to principal inhabitation.
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1 Introduction and Related Work

The inhabitation problem for simply typed λ-calculus [1] (given a type, is there a λ-term
having the type?) is known to be Pspace-complete by a well-known result of Statman [11].
Due to the subject reduction and normalization theorems for simple types, it is sufficient
to decide the existence of inhabitants in β-normal form. A natural related problem is the
problem of principal inhabitation: Given a type τ , is there a normal principal inhabitant of τ?
A normal principal inhabitant of τ is a λ-term in β-normal form having τ as its principal type
[8, Definition 8A11]. The principal inhabitation problem is different from the inhabitation
problem. For, whereas every inhabited type τ is also the principal type of some λ-term [8,
Lemma 7A2 (i)], this is not the case when we restrict attention to inhabitants in β-normal
form: Some inhabited types are not principally inhabited, because they are not the principal
types of any β-normal form. For example, τ = a→ a→ a is inhabited by K ≡ λx.λy.x, but
τ is not the principal type of K (its principal type is a→ b→ a). In fact, there is no β-normal
form having τ as its principal type (cf. [8, Remark 8A13 (iii)]), therefore τ is not principally
inhabited. Since normal principal inhabitants can be seen as natural implementations of a
given type specification in the context of type-based program synthesis [9, 6, 3], principal
inhabitation is not only of systematic but also of practical importance.
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15:2 The Complexity of Principal Inhabitation

In this paper we are concerned with the complexity of the principal inhabitation problem.
The only known results directly related to the upper bound for principal inhabitation are
the counting procedure by Broda and Damas [4] and its generalization by principal proof
trees in [5]. Broda and Damas present in [4] a Ben-Yelles style counting algorithm [2, 8] for
normal principal inhabitants, thereby solving a problem mentioned by Hindley in [8, Problem
8D10 (i)]. In [5], a more general technique (formula-tree proof method) is used to construct
so-called principal proof trees deciding principal inhabitation. However, these results do not
immediately imply a polynomial space upper bound for principal inhabitation. In particular,
the counting procedure of [4] operates by explicitly enumerating inhabitants and checking for
principality in each case. Although a depth-bound is provided on inhabitant terms, which is
polynomial in the size of the input type τ , inhabitants may be of exponential size. Therefore,
the upper bound for principal inhabitation induced by the procedure is exponential time.
Because principality is a global property of a derivation and is therefore sensitive to the exact
structure of inhabitants, it does not appear to be obvious how to obviate an exponential
time construction. Similarly to [4], principal proof trees in [5] can be of exponential size,
inducing a similar complexity as the previous approach. Further remarks comparing details
of our decision procedure with the approaches in [4, 5] can be found within the technical
development of the paper.

In comparison with the inhabitation problem for simple types, basic challenges for a
polynomial space upper bound for principal inhabitation include the following two com-
plications. For one, it is not possible to bound the size of the type environment during
inhabitant search by simply coalescing type variables having the same type. In the standard
approach [12], when searching for a long normal inhabitant1 of a function type σ → τ , an
assumption (x : σ) is added to the environment only if it does not already contain some
variable of type σ. This leads to a linear upper bound on environment size, because (as a
consequence of the subformula property for normal forms) only subformulae of the original
input need to be considered during inhabitant search. However, this approach leads to
an incomplete procedure for principal inhabitation. Consider as an example principally
inhabiting (a→ a→ a)→ a→ a→ a. The procedure would (implicitly) discover a λK-term
λf.λx.λy.f(fxx)(fxx) as inhabitant in which the fifth (second from right) occurrence of
a is implicitly associated with a variable y which is not used, because it is coalesced with
x (also of type a) in the body of the term. But this term is not a principal inhabitant,
whereas λf.λx.λy.f(fxy)(fyx) is. In essence, the solution to this problem for principal
inhabitation lies in only coalescing type assumptions associated with the same subformula
occurrence in the goal type. This approach is realized in our solution by keeping track of
such occurrences and relations between them using a calculus of paths (subformula calculus)
which distinguishes subformula occurrences.

The second complication in comparison with the standard procedure has to do with
certain kinds of cyclic situations. The alternating search procedure of [12] does not need to
inhabit a goal which has already appeared under the same assumptions on the current branch
of the search tree, but such a strategy would be incomplete for principal inhabitation. To
illustrate, consider the type τ ≡ (a→ a)→ a→ a. It is inhabited by every Church numeral,
but not principally so. Whereas the standard procedure would determine the inhabitant
c0 = λf.λx.x, only the Church numerals cn for n ≥ 2 are normal principal inhabitants
of τ . For example, c2 = λf.λx.f(fx) is a normal principal inhabitant of τ , because the
cyclic proof structure – proving inhabitation of a by (fx), although there is already an

1 By a long normal inhabitant is meant a λ-term in η-long β-normal form, see [8, Definition 8A7].
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inhabitant, x, of a in a subexpression (premise) – forces identification of the domain and
range types of f . This phenomenon can apparently get more complicated. For example, the
type (a→ a)→ (a→ a)→ a→ a is principally inhabited by the term λf.λg.λx.f(g(g(fx))),
but neither by λf.λg.λx.g(g(g(gx))) nor by λf.λg.λx.f(g(f(gx))). The complications arising
from this phenomenon are handled by path deduction systems characterizing exactly the
necessary and sufficient identifications among subformula occurrences of types without explicit
reference to inhabitant terms. An important instrument to this end is an adaptation of the
subformula filtration technique, which was introduced in [7] for the intersection type system.

To provide an upper bound, we present a polynomial space bounded decision procedure
based on a characterization of principal inhabitation using a calculus over subformulae of
the input type, which does not require candidate inhabitants to be constructed explicitly.

With regard to the lower bound, one cannot directly transfer the polynomial space lower
bound for the inhabitation problem [11, 12], because it turns out (as will be shown) that
the standard reduction (cf. [12]) from truth of quantified Boolean formulae uses types which
are not necessarily principally inhabited. However, we observe that the standard reduction
induces a Pspace-hard restriction of simple type inhabitation. Therefore, for the polynomial
space lower bound, we reduce this particular restriction to principal inhabitation.

The paper is organized as follows. After preliminary definitions (Section 2) we introduce
(Section 3) subformula filtration to obtain a necessary condition (Lemma 14) on the form
of type derivations for principal inhabitants, which will be of pervasive importance in the
paper. We then (Section 4) define the subformula calculus, which allows us to talk about
subformula occurrences and relations between them in type derivations to characterize
principal inhabitants (Theorem 32). In Section 5 we present the algorithm (INH) to decide
principal inhabitation and prove the polynomial space upper bound. The proof of the Pspace
lower bound is given in Section 6. We conclude the paper in Section 7 which also contains
remarks about future work.

2 Simply-Typed Lambda Calculus

In this section we briefly assemble the necessary prerequisites in order to discuss principal
inhabitation in the simply typed λ-calculus. We denote λ-terms (cf. Definition 1) by L,M,N

and simple types (cf. Definition 2) are denoted by σ, τ, ρ, where type atoms are denoted by
a, b, c and drawn from the denumerable set A. The rules (Ax), (→I) and (→E) of the simple
type system are given in Definition 3.

I Definition 1 (λ-Terms). L,M,N ::= x | (λx.M) | (M N) .

I Definition 2 (Simple Types). σ, τ, ρ ::= a | σ → τ where a ∈ A .

I Definition 3 (Simple Type System).

(Ax)Γ, x : σ ` x : σ
Γ, x : σ ` M : τ (→I)Γ ` λx.M : σ → τ

Γ ` M : σ → τ Γ ` N : σ (→E)Γ ` M N : τ

We write D . Γ ` M : τ , if the derivation D derives the judgement Γ ` M : τ , i.e. D is a
finite tree of judgements with root Γ `M : τ that respects the corresponding typing rules.

Type substitutions (cf. [8, Definition 3A1]) are denoted by S and are lifted from type
atoms to types. A principal type (cf. Definition 4) of a term is the most general type that can
be assigned to that term and is unique up to atom renaming. A normal principal inhabitant
(cf. Definition 5) is a closed β-normal form for which the given type is principal.

FSCD 2017
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I Definition 4 (Principal Type). We say that τ is a principal type of M , if `M : τ and for
all types σ such that `M : σ there exists a substitution S such that S(τ) = σ.

I Definition 5 (Normal Principal Inhabitant). We say that a λ-term M in β-normal form is a
normal principal inhabitant of τ , if τ is the principal type of M .

As usual, term application is left-associative. In accordance with [8], we define Long(τ)
as the set of all long normal inhabitants of τ .

I Definition 6 (Long(τ)). The set Long(τ) consists of all λ-terms M such that `M : τ is
derivable using only the rule (→I) and the following rule (→LE)

Γ, x : σ1 → . . .→ σn → a `Mi : σi for i = 1 . . . n (→LE)Γ, x : σ1 → . . .→ σn → a ` x M1 . . .Mn : a

Clearly, longness is not violated by generalization (cf. Lemma 7) and η-expansion does not
violate principality (cf. Lemma 8).

I Lemma 7. If M ∈ Long(S(τ)) and `M : τ , then M ∈ Long(τ).

I Lemma 8 ([8, 8A11.2]). If a β-normal form M has the principal type τ , then its unique
η-expansion M+ ∈ Long(τ) has the principal type τ .

Our main result is that the following principal inhabitation problem (cf. Problem 1) is
Pspace-complete.

I Problem 1 (Principal Inhabitation). Given a simple type τ , is there a λ-term M in β-normal
form such that τ is the principal type of M?

I Theorem 9. The principal inhabitation problem (cf. Problem 1) is Pspace-complete.

Proof. The upper bound is shown in Section 5 Lemma 38 and the lower bound is shown in
Section 6 Lemma 42. J

3 Subformula Filtration

The subformula filtration technique, which was developed for the intersection type system
in [7], eliminates unnecessary structure in type derivations. It can be used to show that if M
is typable, then there exists a type derivation D for M such that any subformula of any type
occurring in D also appears on the right-hand side of some judgement in D. This can be
seen as a generalization of the standard subformula property that only requires right-hand
sides of judgements in D to be subformulae of types appearing in the root judgement of D.
Transferring the technique to the simply typed λ-calculus we obtain a necessary condition
for principal inhabitation (cf. Lemma 14).

First, we adapt definitions from [7] to the simply typed λ-calculus, including that of the
set T (D) of types occurring on the right-hand sides of judgements in a given type derivation
D, and that of the notion of type filtration.

I Definition 10 (T (D)). Given a type derivation D we define the set T (D) = {τ | Γ `M :
τ is a judgement in D}.

I Definition 11 (Filtration Function FaX). Given a set X of types and a type atom a we
define the filtration function FaX as follows

FaX(b) = a FaX(σ → τ) =
{
FaX(σ)→ FaX(τ) if σ → τ ∈ X and τ ∈ X
a otherwise
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Intuitively, a filtration function FaX collapses all type atoms and unnecessary subformulae
wrt. X into a single type atom a. Let us tacitly lift filtration functions pointwise to type
environments by FaX(Γ) = {x : FaX(σ) | (x : σ) ∈ Γ}.

Next, we formulate the corresponding filtration lemma for the simply typed λ-calculus.

I Lemma 12. If D . Γ `M : τ and T (D) ⊆ X, then FaX(Γ) `M : FaX(τ), where a is fresh.

Proof. Routine induction on the derivation D.
Case (Ax): Clearly, FaX(Γ), x : FaX(σ) ` x : FaX(σ).

Case (→I): The last rule is Γ, x : σ′ ` N : τ ′ (→I)
Γ ` λx.M : σ′ → τ ′

.

We have τ ′ ∈ T (D) ⊆ X and σ′ → τ ′ ∈ T (D) ⊆ X, therefore FaX(σ′ → τ ′) = FaX(σ′)→
FaX(τ ′). By the induction hypothesis we have FaX(Γ), x : FaX(σ′) ` N : FaX(τ ′), which
using (→I) shows the claim.

Case (→E): The last rule is Γ ` N : σ′ → τ ′ Γ ` L : σ′ (→E)
Γ ` N L : τ ′ .

We have τ ′ ∈ T (D) ⊆ X and σ′ → τ ′ ∈ T (D) ⊆ X. Similarly to the previous case, the
claim follows using the definition of FaX , the induction hypothesis and the rule (→E). J

The above Lemma 12 is useful to eliminate unnecessary subformulae in derivations as
illustrated by the following Example 13.

I Example 13. Let σ = b → b and consider the derivation D =
(Ax)

x : σ ` x : σ (→I)` λx.x : σ → σ
.

We have b 6∈ T (D) = {σ, σ → σ}. Therefore, D contains unnecessary structure in order to type

λx.x. Applying FaT (D) we obtain
(Ax)

x : a ` x : a (→I)` λx.x : a→ a
, noting that FaT (D)(b → b) = a

because b 6∈ T (D).

Finally, we conclude this section with a necessary condition for type derivations of principal
types, which is connected to Property (?) in Section 4 and, specifically, Lemma 30.

I Lemma 14. If D . ∅ ` M : τ and τ contains a subformula σ′ → τ ′ such that τ ′ 6∈ T (D),
then τ is not the principal type of M .

Proof. By Lemma 12 we have ∅ ` M : FaT (D)(τ), where a is fresh. Since τ ′ 6∈ T (D), in
FaT (D)(τ) the corresponding subformula at the position of σ′ → τ ′ in τ is either undefined or
a. Therefore, there is no substitution S such that S(τ) = FaT (D)(τ). J

4 Subformula Calculus

To distinguish distinct subformula occurrences in a given type τ , we use paths π in the syntax
tree of τ , which are defined as follows

π ∈ {1, 2}∗ .

Since paths are character sequences, we use abbreviations such as π2n for the path π followed
by n twos. We access a subformula at path π in a given type τ by τ(π), defined as

τ(ε) = τ , (σ → τ)(1π) = σ(π) , (σ → τ)(2π) = τ(π) .

FSCD 2017
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The above definition implies that we use types as functions from the set of their paths to
their subformulae. In particular, dom(τ) is the set of paths in τ and ran(τ) is the set of
subformulae in τ .

Similarly to the simply typed system, we define path environments ∆ = {x1 : π1, . . . , xn :
πn}, where dom(∆) = {x1, . . . , xn}. For a relation R on paths, the calculus `R is given by
rules (→RI) and (→RE) in the following Definition 15.

I Definition 15 (Calculus `R).
∆, x : π1 `R M : π2 (→RI)∆ `R λx.M : π

π2n R π′ ∆, x : π `R Mi : π2i−11 for i = 1 . . . n (→RE)
∆, x : π `R xM1 . . .Mn : π′

We call conditions of the form π R π′ side conditions. The above calculus `R, similarly to
the calculus TApln in [4], captures as side conditions identities imposed by the typed term.
In contrast to TApln it does not contain or require actual type information. Additionally, for
any closed λ-term M in β-normal form there exists a relation R such that `R M : ε. Clearly,
`R is monotonous in the sense of the following Lemma 16.

I Lemma 16. If `R M : ε and R ⊆ R′, then `R′ M : ε.

As in the simply typed system, paths on the left-hand side (resp. right-hand side) of `R
are of negative (resp. positive) variance, which is formalized in the following Lemma 17.

I Lemma 17. If D . ∅ `R M : ε, then each judgement ∆ `R N : π in D satisfies
(i) The number of 1s in π is even.
(ii) For each (x : π′) ∈ ∆ the number of 1s in π′ is odd.

Proof. Induction on depth of derivation for the more general claim: if ∆ `R M : π is derived
by D and satisfies (i) and (ii), then each judgement in D satisfies (i) and (ii). Clearly, if the
concluding judgement satisfies (i) and (ii), then all premise judgements satisfy (i) and (ii) in
both (→RI) and (→RE). J

The above observation restricts paths in side conditions as follows.

I Corollary 18. If D . ∅ `R M : ε, then D contains no side condition of the form π R π.

Intuitively, a derivation in `R contains (as side conditions) necessary equality constraints
on atomic subformulae that are required for typing a given term M . Therefore, we are
interested in the minimal relation R such that `R M : ε.

Given a relation R let us denote the reflexive, symmetric, transitive closure of R by R≡.
Clearly, if `R M : ε, then `R≡ M : ε.

I Definition 19 (RM ). Given a λ-term M in β-normal form, let RM be the minimal (wrt.
inclusion) equivalence relation such that `RM M : ε.

Derivations in `R are uniquely defined by the concluding judgement, therefore, the min-
imal relation R of necessary side conditions is uniquely defined as well. By monotonicity
(cf. Lemma 16) we can take RM = R≡.

I Example 20. We have Rλx.λy.x = {(1, 22)}≡ and Rλx.λy.y = {(21, 22)}≡. Note that the
domain of Rλx.λy.x (resp. Rλx.λy.y) does not contain the path 21 (resp. 1) which would
correspond to the type of y (resp. x).

Similar to the simply typed system, we can identify term variables in the path environment
that are bound to same paths.
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I Lemma 21. ∆, x : π, y : π `R M : π′ iff ∆, x : π `R M [y := x] : π′.

Proof. Induction on the derivation. The structure of both derivations is identical. J

The above Lemma 21 has a subtle implication regarding interchangeability of abstracted
variables in a given term M referring to same paths without changing the corresponding
relation RM . This property will be crucial in the upper bound construction in Section 5 and
is illustrated in the following Example 22.

I Example 22. Consider M = λf.f (λx.f (λy.y)) and M ′ = λf.f (λx.f (λy.x)). Both
M and M ′ are normal principal inhabitants of ((a → a) → a) → a. Let ∆ = {f : 1, x :
111, y : 111}. The only difference between the derivation of `RM M : ε and a derivation of
`RM′ M

′ : ε is the leaf judgement. For the former it is ∆ `RM y : 112 and for the latter
∆ `RM′ x : 112. By Lemma 21 we have ∆ `RM′ y : 112 and ∆ `RM x : 112. Since the rest of
the derivations is identical, we have RM = RM ′ .

The equivalence relation RM intuitively captures equality constraints on atomic subfor-
mulae imposed by a given term M . Complementarily, given a type τ , we are interested in
equality constraints on atomic subformulae satisfied by τ . To capture such constraints we
define the equivalence relation Rτ in the following Definition 23.

I Definition 23 (Rτ ). Given a type τ we define the equivalence relation Rτ on paths in
dom(τ) as Rτ = {(π, π′) | π 6= π′ ∧ τ(π) = τ(π′) ∈ A}≡.

Observe that the condition π 6= π′ in the definition of Rτ excludes singular occurrences
of type atoms in τ from the domain of Rτ while the subsequent equivalence closure ensures
reflexivity. This is illustrated in the following Example 24.

I Example 24. We have Ra→b→a = {(1, 22)}≡ and Ra→b→b = {(21, 22)}≡. Similarly to
Example 20 the domain of Ra→b→a (resp. Ra→b→b) does not contain the path 21 (resp. 1).

Due to structural similarity between the rules (→LE) and (→RE) we obtain a simple
characterization of long normal inhabitants of a given type in the following Lemma 25.

I Lemma 25. Given a λ-term M in β-normal form, the following conditions are equival-
ent
(i) M ∈ Long(τ) ,
(ii) `Rτ M : ε ,
(iii) RM ⊆ Rτ .

Proof.

(i) =⇒ (ii): Assume D .∅ `M : τ using only the rules (→I) and (→LE) (cf. Definition 6).
By routine induction on D′ . ∅ `RM M : ε we have that for each judgement ∆ `RM N : π
in D′ there is a judgment {x : τ(π′) | (x : π′) ∈ ∆} ` N : τ(π) in D. Therefore, if
∆, x : π `RM x M1 . . .Mn : π′ is a judgement in D′, then τ(π2n) = τ(π′) ∈ A. By
Corollary 18 we additionally have π2n 6= π′, and ultimately (π2n, π′) ∈ Rτ . Therefore,
`Rτ M : ε.

(ii) =⇒ (iii): If `Rτ M : ε but RM 6⊆ Rτ , then RM is not minimal, which contradicts
the definition of RM .

FSCD 2017
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(iii) =⇒ (i): Assume RM ⊆ Rτ . We directly translate the derivation of `RM M : ε to
a derivation using rules (→I) and (→LE) (cf. Definition 6). The side condition π2n RM π′

in (→RME) implies τ(π2n) = τ(π′) ∈ A. Additionally, in case of (→RM I) we have that
π1 ∈ dom(τ) iff π2 ∈ dom(τ). J

Since RM contains atomic equality constraints imposed by M , we are free to rename
some atomic subformulae in a given type τ without violating type derivations wrt. M .

I Lemma 26. Given a λ-term M ∈ Long(τ) and π ∈ dom(τ) such that τ(π) = a. Let b be
a fresh atom. Define τ ′ by τ replacing for each π′ ∈ dom(τ) such that π = π′ or π RM π′

the subformula a at π′ by b. Then M ∈ Long(τ ′).

Proof. M ∈ Long(τ) by Lemma 25 implies RM ⊆ Rτ . Renaming subformulae a in τ at
path π and at all paths π′ with π RM π′ to b preserves RM ⊆ Rτ ′ . By Lemma 25 we obtain
M ∈ Long(τ ′). J

Next, we formulate a necessary condition (cf. Lemma 27) for principal inhabitation.

I Lemma 27. Given a type τ let M ∈ Long(τ). If τ is the principal type of M , then
Rτ = RM .

Proof. Since M ∈ Long(τ), by Lemma 25 we have RM ⊆ Rτ . Assume there exists (π, π′) ∈
Rτ such that (π, π′) 6∈ RM . Let a be a fresh atom. Define τ ′ by renaming each subformula of
τ in {π′′ | π′′ = π or π′′ RM π} to a. Since τ(π) ∈ A, by Lemma 26 we have M ∈ Long(τ ′).
However, τ ′ is strictly more general than τ . J

Unfortunately, the converse of the above Lemma 27 is not true as illustrated in the following
Example 28.

I Example 28. Consider M = λx.λy.x and τ = a → (b → c) → a. We have RM =
{(1, 22)}≡ = Rτ . However, τ has no normal principal inhabitant.

One could follow the approach of [4] of marking necessary arrows in derivations (requiring
further interplay between terms, derivations and types) to close the gap exposed in the
above Example 28. At first sight, taking arrow subformulae in derivations into account
appears inevitable. Surprisingly, this is not the case. As stated by Lemma 14 in Section 3,
certain types (such as a→ (b→ c)→ a) have no normal principal inhabitants. Strikingly,
formulated as a necessary (and easy to verify) condition (?) in the following Definition 29 we
are able to close the mentioned gap without additional constraints on terms or derivations.

I Definition 29 ((?)). We say τ satisfies (?), if ∀π ∈ dom(τ).(τ(π2) ∈ A⇒ (π2, π2) ∈ Rτ ).

Intuitively, a given type τ satisfies (?), if τ has no subformula σ → a, where a occurs exactly
once as a subformula of τ . This coincides with the first property in [5, Proposition 4.3] and
is a necessary condition for principal inhabitation, as shown by the following Lemma 30.

I Lemma 30. If τ does not satisfy (?), then τ has no normal principal inhabitant.

Proof. If τ does not satisfy (?), then there exists a path π ∈ dom(τ) such that τ(π2) ∈ A
and (π2, π2) 6∈ Rτ . Assume τ has a normal principal inhabitant M ∈ Long(τ) (cf. Lemma 8).
By Lemma 25 there exists a derivation D . ∅ `Rτ M : ε. Since (π2, π2) 6∈ Rτ the derivation
D contains no judgement of the shape ∆ `Rτ L : π2 for some path environment ∆ and term
L. Therefore, replacing paths by corresponding subformulae in τ , there exists a derivation
D′ . ∅ `M : τ such that a 6∈ T (D′), where τ(π) = σ → a for some type σ. By Lemma 14 the
type τ is not the principal type of M , which is a contradiction. J
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Finally, we formulate a sufficient condition (cf. Lemma 31) for principal inhabitation.

I Lemma 31. Given a type τ satisfying (?) let M ∈ Long(τ). If Rτ = RM , then τ is the
principal type of M .

Proof. Assume M has a strictly more general principal type τ ′. Fix the substitution S such
that S(τ ′) = τ . By Lemma 7 we have M ∈ Long(τ ′). Therefore, by Lemma 27 we have
RM = Rτ ′ . We show that Rτ 6= Rτ ′ .
Case S : A → A: There exist π, π′ such that τ(π) = τ(π′) ∈ A and τ ′(π) 6= τ ′(π′). Therefore,

(π, π′) ∈ Rτ but (π, π′) 6∈ Rτ ′ = RM .
Case S(a) = σ1 → . . . → σn → b for some n > 0 and a ∈ ran(τ ′) ∩ A: Fix any path

π ∈ dom(τ ′) such that τ ′(π) = a. Since τ(π2n) = b and n > 0, due to (?) we have
(π2n, π2n) ∈ Rτ . However, τ ′(π2n) is undefined, therefore (π2n, π2n) 6∈ Rτ ′ = RM . J

In sum, the equality RM = Rτ characterizes principality in the sense of the following
Theorem 32.

I Theorem 32. Given a type τ satisfying (?) and a λ-term M ∈ Long(τ) we have that τ is
the principal type of M iff RM = Rτ .

Proof. ‘=⇒’‘=⇒’‘=⇒’ by Lemma 27. ‘⇐=’‘⇐=’‘⇐=’ by Lemma 31. J

Bearing resemblance to the characterization in [4, Proposition 17], the above characterization
in Theorem 32 has two benefits. First, it does not require marking of arrows in derivations.
Second, it is factored into RM (uniquely defined by M) and Rτ (uniquely defined by τ).
Since by Lemma 25 any long normal inhabitant M of τ satisfies RM ⊆ Rτ and the size of Rτ
is polynomial in the size of τ , we will only require polynomial space for principal inhabitation
in the following Section 5.

5 PSPACE Upper Bound

In this section we develop a polynomial space algorithm to decide principal inhabitation. As
mentioned in the introduction, there are three hurdles to overcome to get a polynomial space
upper bound.

First, if Γ ` M : τ is derivable in the simple type system, then there is a derivation of
that judgement which does not contain any judgement Γ `M ′ : τ such that M 6= M ′. For
principal inhabitation this does not hold as shown in the following Example 33. This issue is
solved by taking into account the impact on RM by corresponding judgements.

I Example 33. Let τ = (a→ a)→ a→ a. The normal principal inhabitants of τ are exactly
the Church numerals greater equal to two, i.e. λf.λx.f (f x), λf.λx.f (f (f x)), . . . The
corresponding type derivations necessarily assign the type a to the terms x, f x and f (f x)
in identical type environments.

Second, term variables with identical types are interchangeable in the simple type system.
However, this may violate principality as shown in the following Example 34. This issue is
solved using Lemma 21, due to which an identification of x and y is allowed, if x and y are
both bound to the same subformula occurrence, i.e. the same path.

I Example 34. Let τ = (a → a → a) → a → a → a, M = λf.λx.λy.f (f x y) (f y x),
Mx = λf.λx.λy.f (f x x) (f x x) and My = λf.λx.λy.f (f y y) (f y y). Each M , Mx and
My is an inhabitant of τ . However, only M of the three is a normal principal inhabitant of τ .
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Algorithm 1 Algorithm INH deciding existence of normal principal inhabitants
1: Input: simple type τ
2: Output: accept iff there exists a normal principal inhabitant of τ
3: if ¬

(
∀π ∈ dom(τ).(τ(π2) ∈ A⇒ (π2, π2) ∈ Rτ )

)
then

4: fail
5: end if
6: R := AUX(τ, ∅, ε, ∅)
7: if R = Rτ then
8: accept
9: else

10: fail
11: end if

Algorithm 2 Non-deterministic Algorithm AUX
1: Input: simple type τ , set of paths P , path π, relation on paths R
2: Output: updated relation on paths R
3: if τ(π) = σ → τ then
4: return AUX(τ, P ∪ {π1}, π2, R)
5: else if τ(π) = a for some a then
6: choose π′ ∈ P such that τ(π′2n) = a for some n ≥ 0
7: R := (R ∪ {(π′2n, π)})≡
8: for i = 1 to n do
9: R := AUX(τ, P, π′2i−11, R)

10: end for
11: end if
12: return R

Third, a normal principal inhabitant M of a given type τ may be of exponential size.
Therefore, we cannot in polynomial space construct an inhabitant explicitly and then check
for principality as in [4, 5]. This issue is solved using the characterization in Theorem 32.
Particularly, instead of M it suffices to construct RM of size at most the size of Rτ , which is
polynomial in the size of τ . This key observation allows us to stay in polynomial space.

Given a type τ , the idea behind the following Algorithm 1 to decide principal inhabitation
(cf. Problem 1) is as follows. Start by verifying that τ satisfies (?). Continue with the
auxiliary Algorithm AUX to construct a relation R corresponding to RM for some long
normal inhabitant M (which is not constructed explicitly). Last, verify RM = Rτ .

I Example 35. Let τ = ((a→ a)→ a)→ a and consider INH(τ). Since τ satisfies (?), the
condition in line 3 does not trigger a failure.

Proceed with AUX(τ, ∅, ε, ∅), which corresponds to inhabitant search of τ(ε) = τ .
Since τ(ε) is an arrow type, take the first branch (line 4). This induces a potential
inhabitant to be of the shape λf.N for a fresh f and some λ-term N . Proceed with
AUX(τ, {1}, 2, ∅), which corresponds to the search for N of type τ(2) = a in the type
environment {f : τ(1) = (a→ a)→ a}.
Since τ(2) = a = τ(12), take the second branch (lines 6–10) choosing the path 1 ∈ P .
This induces N = f L for some λ-term L. Proceed with AUX(τ, {1}, 11, {(12, 2)}≡),
searching for L of type τ(11) = a→ a in the type environment {f : τ(1) = (a→ a)→ a}.
Since τ(11) = a→ a is an arrow type, take the first branch, i.e. L = λx.L′ for a fresh x
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and some λ-term L′. Proceed with AUX(τ, {1, 111}, 112, {(12, 2)}≡), searching for L′ of
type τ(112) = a in the type environment {f : τ(1) = (a→ a)→ a, x : τ(111) = a}.
Since τ(112) = a, take the second branch. There are two options. The first option is to
choose the path 111, since τ(112) = τ(111). In this case, AUX would return control to
INH with the result R = {(12, 2), (111, 112)}≡ and INH would fail. The corresponding
run of INH would induce the inhabitant λf.f (λx.x), which is not a normal principal
inhabitant of τ . The second option is to choose the path 1 since τ(112) = τ(12) and
proceed with AUX(τ, {1, 111}, 11, {(12, 2), (12, 112)}≡). Choose the second option.
Again, τ(11) = a → a is an arrow type, take the first branch and proceed with
AUX(τ, {1, 111}, 112, {(12, 2), (12, 112)}≡).
Again, τ(112) = a, take the second branch, choosing the path 111. After AUX returns
R = {(12, 2), (12, 112), (111, 112)}≡ to INH, INH accepts. The corresponding run of INH
induces the normal principal inhabitant λf.f (λx.f (λy.x)) (cf. Example 22) of τ .

I Lemma 36 (Soundness of INH). Given a type τ , if Algorithm 1 accepts, then there exists
a normal principal inhabitant of τ .

Proof. A successful run of Algorithm 1 induces a type derivation D . ∅ `RM M : ε for
some M . In particular, line 4 in Algorithm AUX induces a λ-abstraction and lines 6–10 in
Algorithm AUX induce an application with head variable of type τ(π′) and n arguments.
By Lemma 21 it suffices to take the variable that is bound to π′ and in M is abstracted
outermost. Line 3 in in Algorithm INH ensures that τ satisfies (?) and line 7 ensures that
RM = Rτ . By Theorem 32 the term M is a normal principal inhabitant of τ . J

I Lemma 37 (Completeness of INH). Given a type τ , if there exists a normal principal
inhabitant of τ , then there exists an accepting run of Algorithm 1 requiring at most polynomial
space in the size of τ .

Proof. Assume that τ has a normal principal inhabitant M . By Theorem 32 we have that
τ satisfies Property (?) and there exists a normal principal inhabitant M ′ ∈ Long(τ) such
that D . ∅ `RM′ M

′ : ε and RM ′ = Rτ . By induction on D there exists an accepting run
R of Algorithm INH such that for each judgement ∆ `RM′ L : π in D the run R invokes
AUX(τ, ran(∆), π,R) where R ⊆ RM ′ . Therefore, for each side condition π′ RM ′ π′′ in D the
corresponding invocation of AUX in line 7 ensures π′ R π′′. Overall, by Theorem 32 we have
Rτ = RM ′ = R and INH accepts.

Space requirements: The parameters τ , P ⊆ dom(τ), π ∈ dom(τ) and R ⊆ dom(τ)2 are
polynomial in the size of τ . Since the above run R is accepting and there are no side-effects,
there exists an accepting run R′ that has no invocations with identical parameters along the
recursion branches of AUX. Since P and R are non-decreasing along the recursion branches
of AUX, the invocation stack of AUX in R′ is of polynomial depth in size of τ . J

I Lemma 38. Problem 1 is in Pspace.

Proof. By Lemma 36, Lemma 37 and the identity Pspace=NPspace. J

6 PSPACE Lower Bound

In this section we establish a Pspace lower bound for principal inhabitation. Unfortunately,
the standard reduction (cf. [12]) from quantified Boolean formulae to inhabitation in the
simply typed λ-calculus does not carry over immediately as illustrated by the following
Example 39.
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I Example 39. Consider the formula ϕ = ∃p.ψ, where ψ = p ∨ ¬p. By the construction
in [12] ϕ is true iff the type σ = ((ap → aψ) → aϕ) → ((a¬p → aψ) → aϕ) → (ap →
aψ)→ (a¬p → aψ)→ aϕ is inhabited in the simply typed λ-calculus. The only long normal
inhabitants of σ are λx1.λx2.λy1.λy2.x1 (λz.y1 z) and λx1.λx2.λy1.λy2.x2 (λz.y2 z) for both
of which σ is not principal. Although ϕ is true, there is no normal principal inhabitant of σ.

The inherent issue with the standard approach is that existential quantifiers and disjunctions
may introduce unnecessary (or even unusable) subformulae. We solve this issue by introducing
additional subformulae not affecting inhabitability to secure principal inhabitability.

The construction in [12] shows that the following Problem 2, which is a restriction of
inhabitation in the simply typed λ-calculus, is Pspace-hard.

I Problem 2. Given a type τ = σ1 → . . . → σn → a such that σi = (b1
i → c1

i ) → (b2
i →

c2
i )→ di for some b1

i , c
1
i , b

2
i , c

2
i , di ∈ A for i = 1 . . . n, is there a λ-term M such that `M : τ?

Note that the exact construction in [12] also uses types of the shape a→ b which can be
represented by (c→ a)→ (c→ a)→ b where c is fresh.

In the remainder of this section we fix a simple type τ according to Problem 2 with
corresponding subformulae σ1, . . . , σn and a. Our goal is to construct a type τ∗ such that τ
is inhabited iff τ∗ is principally inhabited. Let {a1, . . . , al} be the set of type atoms in τ and
fix k such that a = ak. We construct τ∗ (of size polynomial in the size of τ) as follows

τ∗ =((a1 → . . .→ al → a)→ a→ a)→ (a1 → a1 → a1)→ . . .→ (a1 → al → al)
→ (a2 → a1 → a1)→ . . .→ (a2 → al → al)
→ . . .→ (al → a1 → a1)→ . . .→ (al → al → al)
→ (a→ a)→ σ1 → . . .→ σn → a

Since all additional arguments in τ∗ are intuitionistically valid formulae, an inhabitant of τ∗
induces an inhabitant of τ .

I Lemma 40. If `M : τ∗, then `M K∗ . . .K∗︸ ︷︷ ︸
1+l2 times

I : τ , where I = λx.x and K∗ = λx.λy.y.

It remains to show that if τ is inhabited, then τ∗ is principally inhabited.

I Lemma 41. If τ has an inhabitant, then τ∗ has a normal principal inhabitant.

Proof. Assume that τ has an inhabitant, then there exists a λ-term N such that {w1 :
σ1, . . . , wn : σn} ` N : a and N is in long β-normal form. Define the λ-term M∗ as follows

M∗ = λz.λx1
1 . . . λx

l
1.λx

1
2 . . . λx

l
2 . . . λx

1
l . . . λx

l
l.λx.λw1 . . . λwn.x (z F (x N))

F = λy1 . . . λyl.x
k
1 G

1
1 (x (x yk))

Gji = xjj+1 G
j+1
i (xji yi (xji yi yj)) for i = 1 . . . l, j = 1 . . . l − 1

Gli = xl1 G
1
i+1 (xli yi (xli yi yl)) for i = 1 . . . l − 1

Gll = xl1 H1 (xll yi (xll yl yl)) for i = 1 . . . l − 1
Hi = xij (wi Li2i1 L

i4
i3

) (xii+1 Hi+1 yi) for i = 1 . . . l − 1
where σi = (ai1 → ai2)→ (ai3 → ai4)→ aj

Hl = xlj (wl Li2i1 L
i4
i3

) yl where σl = (ai1 → ai2)→ (ai3 → ai4)→ aj

Lji = λt.xji t yj for i = 1 . . . l, j = 1 . . . l
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We have M∗ ∈ Long(τ∗). Types of key subterms are outlined in the following overview.

x : ak → ak xji : ai → aj → aj for i = 1 . . . l, j = 1 . . . l
yi : ai for i = 1 . . . l z : (a1 → . . .→ al → ak)→ ak → ak
wi : σi for i = 1 . . . n
F : a1 → . . .→ al → a Gji : aj for i = 1 . . . l, j = 1 . . . l
Hi : ai for i = 1 . . . l Lji : ai → aj

We use Theorem 32 to show that τ∗ is the principal type of M∗ by showing RM∗ = Rτ∗ .
Since M∗ ∈ Long(τ∗), by Lemma 25 we have RM∗ ⊆ Rτ∗ . To obtain RM∗ ⊇ Rτ∗ , we
show that for each path π ∈ dom(τ∗) if τ∗(π) = ai, then (π, 112i−11) ∈ RM∗ . Therefore, if
(π, π′) ∈ Rτ∗ , then π RM∗ 112i−11 RM∗ π′ and (π, π′) ∈ RM∗ by transitivity. Let D be the
derivation of `RM∗ RM∗ : ε.

Let πji = 22l·(i−1)+(j−1)1 for i, j = 1 . . . l. We have τ∗(πji ) = ai → aj → aj . Let
π̄i = 112i−11 for i = 1 . . . l. We have τ∗(π̄i) = ai. Let π̂i = 21+l2+i1 for i = 1 . . . n. We have
τ∗(π̂i) = σi. In D the paths πji are assigned to xji , the paths π̄i are assigned to yi and the
paths π̂i are assigned to wi.

For each i, j = 1 . . . l the term M∗ contains the subterm Gji . Leaving out some details
by [. . .], D contains the judgement [. . .], xji : πji , yi : π̄i, yj : π̄j `RM∗ x

j
i yi (xji yi yj) : [. . .].

The corresponding subderivation therefore entails (πji 1, π̄i) ∈ RM∗ , (πji 21, πji 22) ∈ RM∗ and
(πji 21, π̄j) ∈ RM∗ .

We proceed similarly with the remaining subformulae of τ∗. The most crucial subformulae
are at paths π̂i that correspond to σi for i = 1 . . . n. For each i = 1 . . . n the term M∗

contains the subterm Hi. Consider σi = (ai1 → ai2)→ (ai3 → ai4)→ aj . Due to the subterm
xij (wi Li2i1 L

i4
i3

) [. . .] the corresponding subderivation entails (πij1, π̂i22) ∈ RM∗ , therefore
(π̄j , π̂i22) ∈ RM∗ . Due to the subterm wi L

i2
i1
Li4i3 the corresponding subderivation entails

(π̂i12, πi2i1 22) ∈ RM∗ , (π̂i11, πi2i1 1) ∈ RM∗ , (π̂i212, πi4i3 22) ∈ RM∗ and (π̂i211, πi4i3 1) ∈ RM∗ . J

I Lemma 42. Problem 1 is Pspace-hard.

Proof. By reduction from Problem 2 using Lemma 41 and Lemma 40. J

Finally, we conjecture that the construction in the proof of Lemma 41 can be generalized
to arbitrary simple types (not restricted to the shape in Problem 2). The main idea is,
instead of using the subformula (a1 → . . . → al → a) → a → a, to use the subformula
(ρ1 → . . . ρm → a)→ a→ a, where {ρ1, . . . , ρm} is the set of subformulae in the given type.
Although the conjectured generalization is not necessary for the lower bound proof, it may
be of systematic interest as a ‘principal closure’ of simple types.

7 Conclusion and Future Work

We have studied the problem of principal inhabitation in the simply typed λ-calculus,
showing that the problem is Pspace-complete. We believe that the techniques employed
here (including filtration and path relations) condense the algorithmic essence of the problem.
The presented polynomial space bounded algorithm should be a good starting point for
further algorithm engineering for efficiency, relying on the subformula calculus and the logic
of path relations it gives rise to.

In future work we intend to apply the algorithm in the context of type-based and com-
binatory logic synthesis [9, 6, 3]. In this context, we plan to add a facility for synthesizing
normal principal inhabitants as combinators of general applicability in component reposit-
ories. Further, when types and corresponding terms are inductively defined, the provided
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characterization of normal principal inhabitants may prove useful in mechanized certific-
ation of principality by proof assistants. Finally, the presented approach could be useful
to inspect principal inhabitation in the simply typed λI-calculus for which inhabitation is
2-Exptime-complete [10].
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