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—— Abstract

Quantum Markov chains are an extension of classical Markov chains which are labelled with
super-operators rather than probabilities. They allow to faithfully represent quantum programs
and quantum protocols. In this paper, we investigate model checking w-regular properties, a very
general class of properties (including, e.g., LTL properties) of interest, against this model.

For classical Markov chains, such properties are usually checked by building the product of
the model with a language automaton. Subsequent analysis is then performed on this product.
When doing so, one takes into account its graph structure, and for instance performs different
analyses per bottom strongly connected component (BSCC). Unfortunately, for quantum Markov
chains such an approach does not work directly, because super-operators behave differently from
probabilities. To overcome this problem, we transform the product quantum Markov chain into
a single super-operator, which induces a decomposition of the state space (the tensor product of
classical state space and the quantum one) into a family of BSCC subspaces. Interestingly, we
show that this BSCC decomposition provides a solution to the issue of model checking w-regular
properties for quantum Markov chains.
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1 Introduction

Since its introduction, quantum computing has been considered a really promising technology
for solving computationally complex tasks. Some of these tasks, such as factorisation and
discrete logarithm computation, are the building blocks of cryptographic protocols developed
to ensure security and privacy in communication. Quantum computing, by its own nature,
allows for an easy solution to such tasks, so the future construction of a working quantum
computer would compromise several important cryptography-based applications such as bank
transactions and private communication. This has given rise to a large amount of research
for providing a new class of communication protocols based on quantum mechanics so as
to get back the desired properties. For instance, protocols such as super-dense coding [7],
quantum coin-flipping protocol [6], and quantum key distribution protocols [6, 5] have been
proposed as new building blocks for quantum cryptography.

However, as quantum mechanics is counter-intuitive, quantum protocol designers are
more likely to make errors than their classical peers. This will become especially serious
when more and more complicated quantum protocols can be implemented by future physical
technology. Therefore, it is indispensable to develop methodologies and techniques for the
verification of quantum systems.

This paper explores the possibility of applying model checking [11, 3], one of the dominant
techniques for verification which has already a large number of successful industrial applica-
tions [8, 10, 21], to the verification of quantum protocols. In particular, we are interested
in model checking w-regular properties, a very general class of properties subsuming those
expressible by LTL formulae, against quantum Markov chains (QMCs), an extension of
classical Markov chains which allow to faithfully represent quantum programs and quantum
protocols. Similar to the classical case, we first take the product of the QMC and a parity
automaton representing the w-regular property of interest. The model checking problem then
boils down to calculating the value of the product parity quantum Markov chain (PQMC).
However, we show by a counterexample that the traditional BSCC decomposition analysis
used for classical model checking does not work in quantum case. To overcome this problem,
we transform the product PQMC into a single super-operator on an extended Hilbert space
including both the classical and quantum states. We show that due to the special structure of
such an extended super-operator, the notion of BSCC subspaces for super-operators defined
in [32] can be applied to tackle the problem.

1.1 Related works

The main obstacle of model checking quantum systems is that the set of all quantum states,
traditionally regarded as the underlying state space of the model to be checked, is a continuum.
Hence, the techniques of classical model checking, which normally work only for a finite state
space, cannot be applied directly. Gay et al. [17] considered a special scenario where the
initial state is a stabiliser state, and the quantum operations allowed all belong to the class of
Clifford group, so that all the quantum states produced in the evolution are finitely describable.
In this way, they proposed an efficient model checker [18] for certain quantum protocols,
employing purely classical algorithms. Based on the same simplification, Ardeshir-Larijani
et al. developed equivalence checkers for deterministic quantum protocols [1] as well as
concurrent quantum protocols that behave functionally [2]. However, this approach does not
work for general quantum systems. In contrast, the quantum Markov chain model adopted
in this paper, which is derived from [16], is capable of describing general quantum programs
and protocols, not only those in stabiliser formalism.
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The state space of our quantum Markov chain is taken classical and transitions between
classical states are labelled by trace-nonincreasing super-operators (thus the corresponding
quantum state space is émplicitly implied). In contrast, there is another notion of quantum
Markov chains, which is a pair (#H,£) with H being a finite dimensional Hilbert space and
£ a trace-preserving super-operator on H, investigated in the literature. Model checking
techniques for this notion of quantum Markov chains have been extensively investigated
in recent years [32, 31, 22]. These two notions of quantum Markov chains turn out to be
equivalent in expressive power [22]. However, they are useful in different scenarios. The model
in [32] corresponds naturally to generic quantum operations and quantum communication
channels, both being popular objects of study in quantum information theory. In contrast,
the quantum Markov chain model considered in this paper is more suitable for analysing
quantum programs and protocols where classical states such as program counters, program
variables, and measurement outcomes are naturally present.

1.2 Relevance of our work
Quantum Markov chains

The notion of quantum Markov chains studied in this paper was introduced in [16] (a similar
definition was given in [19] to generalise quantum walks), which has been shown to be
expressive enough to describe general quantum systems. The explicit modelling of a quantum
while program and well-known quantum protocols such as teleportation, superdense coding,
quantum key distribution protocol BB84, etc., can be found in [16, 15].

One of the distinct features of this model, for verification purpose, is that it provides a
way to check once for all in that once a property is checked to hold, it holds for all initial
quantum states. This is especially important for the verification of quantum programs. For
example, for the reachability problem we calculate the accumulated super-operator, say &,
along all valid paths. As a result, the reachability probability when the program is executed
on the initial quantum state p is simply the trace tr(E(p)) of E(p).

w-regular properties for QMCs

It has been shown in [16] how properties in quantum computation tree logic (QCTL), a
quantum variant of the probabilistic CTL (PCTL), can be verified. We then provided a
tool implementation [15] based on the probabilistic model checker IscAsMC [20]. The
applicability of this method so far was however hindered by the fact that the expressiveness
of QCTL is rather limited. As the logic PCTL by which it was motivated, QCTL basically

only allows to describe nested (single-step, bounded, and unbounded) reachability problems.

To overcome this issue, in this paper we describe how w-regular properties, and in particular
linear time logic (LTL) properties, can be checked on quantum Markov chains. This allows
to express and analyse a wide range of relevant properties, such as repeated reachability,

reachability in a restricted order, nested Until properties, or conjunctions of such properties.

Admittedly, up to now we still do not have any quantum communication protocols that
have desired properties only describable in w-regular languages (that is also why we could

not have a case study to test the effectiveness of our approach and algorithm in this paper).

However, with the rapid development of quantum communication technology, especially
quantum cryptographic systems, being able to check these kinds of properties for quantum
Markov chains will be necessary, as they allow for instance to verify that the processes in a
quantum communication protocol will repeatedly send messages, that messages are sent in
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the correct order, that the key is exchanged for sure, etc., all of which cannot be expressed
in QCTL.

2 Quantum Markov Chains

In this section, we recall the required notions of quantum Markov chains. For a more thorough
discussion, we refer the interested reader to [24, 16].

Given a finite dimensional Hilbert space H, let L(H) be the set of linear operators on it.
Let S(H) be the set of super-operators, that is, completely positive linear operators from £(H)
to L(H). In particular, we denote by Z3; and 0 the identity and null super-operators in S(H),
respectively. For simplicity, we abuse the notation slightly by denoting &€ = { E; | ¢ € I } if
{E;|i€ I} isaset of Kraus operators of £; that is, £(A) =, ; EiAEg for all A € L(H).
For any £, F € S(H), the composition of £ and F is defined by (£ o F)(A) = E(F(A)). We
sometimes omit the symbol o and write EF directly for £ o F. A (pre-)order is defined in
S(H) by setting & < F if for any p € D(H), tr(E(p)) < tr(F(p)). Here D(H) is the set
of partial density operators in £(H), i.e., positive semidefinite operators p with the trace
tr(p) being no larger than 1. Note that the trace of a partial density operator denotes the
probability that the corresponding (normalised) quantum state is reached [28]. Intuitively,
& < F means that the success probability of performing £ is always not greater than that of
performing F, whatever the initial state is. Let =~ be <N 2.

We denote by ST(#H) the set of trace-nonincreasing super-operators over H; that is,
ST(H) ={& € S(H) | 04 £ € < Ty }. Observe that £ € ST(H) if and only if for any
p € D(H), tr(E(p)) € [0,1]. Thus it is natural to regard the set ST(H) as the quantum
counterpart of [0, 1], the domain of traditional probabilities. This is exactly the key to the
notion of quantum Markov chains defined in [16], that we use as our basic model.

» Definition 1 (Quantum Markov Chain). A super-operator weighted Markov chain over a
Hilbert space H, also referred to as quantum Markov chain (QMC) for simplicity, is a tuple
(S,Q), where

1. S is a finite set of classical states;

2. Q: SxS — ST(H) is called the transition matriz where for each s € S, the super-operator

> ses Q(s, 8') is trace-preserving, that is ), .4 Q(s,s") =~ Zy.

Similar to classical Markov chains, the notions of paths and measures can be defined for
QMCs.

» Definition 2 (Paths and measures). Consider a QMC M = (5,Q). A path o of M is
a finite or infinite sequence sgs; ... of states in S such that for each valid index i > 1,
Q(Si—1,8;) # 0y For a valid index i, we let ofi] def s;. We denote the set of finite paths as
Pathﬁfb and the set of infinite paths as Path™. We define the cylinder set of a finite path
0 = 5081 ...8, as Cyl(o) % {0’ € Path™ | Vi,0 <i < n. ofi] = o'[i] }. Let (Path™, %) be
a measurable space where ¥ is the o-algebra generated by all the cylinder sets Cyl(o) where
o€ Path]%. For any s € S, we define QM : Path% — S(H) as

O s # sg
QM (o) E Ty, s=s)An=0
Q(sn—1,5n)Q(Sn—2,5n-1) - Q(s0,51) s =350 An>0.
Then QM induces a (super-operator valued) measure on (Path™, ), denoted by QM as
well for simplicity, by setting QM (Cyl(o)) def QM (o).
From [16, Theorem 3.2], this measure is unique up to ~.
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3 Model checking w-regular properties for QMCs

LTL and w-regular properties have been studied extensively for classical Markov chains [13,
12, 9, 3]. To compute the probability P(¢) that a certain LTL property ¢ is satisfied in
a Markov chain M, the classical automaton-based approach works as follows. At first, ¢
is transformed into a nondeterministic Biichi automaton, which is then transformed into
a deterministic automaton A with a more complex acceptance condition, such as Rabin
or Parity acceptance. Such a determinisation step usually exploits a variant of Safra’s [26]
determinisation construction, such as the techniques presented in [25, 27]. Afterwards, the
product M ® A of M and A is constructed, which is a Markov chain equipped with an
acceptance condition. Finally, using algorithms operating on the graph structure of the
product Markov chain, the states of M ® A are categorised into those belonging to a bottom
strongly connected component (BSCC) and transient states. According to the acceptance
condition, each BSCC is then marked as accepting or rejecting. The probability that ¢ holds
in a transient state s can then be obtained by solving an equation system representing the
probability that from s an accepting BSCC is reached.

This section is devoted to extending this approach to quantum Markov chains. However,
the extension is not trivial: as will be shown by a counterexample in Section 3.2, while the
product construction itself does not lead to any problem, its decomposition into BSCCs
and transient states cannot be performed as in the classical case. Therefore, in Section 3.3,
we provide an alternative approach which does not directly rely on the graph structure
of the product. Specifically, we transform M ® A into a single super-operator, and show
that the BSCC decomposition of the classical-quantum Hilbert space (the tensor product of
classical state space and the quantum one) induced by this super-operator, instead of the
decomposition of the classical state space alone, provides a desired solution to the model
checking w-regular properties for quantum Markov chains.

3.1 Parity automata and parity quantum Markov chains

In order to define properties of QMCs, we consider an extension in which their states are
decorated by a labelling function.

» Definition 3 (Labelled Quantum Markov Chain). A labelled quantum Markov chain (LQMC)
is a tuple M = (5,Q, AP, L), where (5,Q) is a QMC and

1. AP is a finite set of atomic propositions; and

2. L:S — 247 is a labelling function.

The notions of paths, measures, etc. for LQMCs are as in Definitions 1 and 2. We extend
the labelling functions to paths by setting

L(s05182...) % L(s0)L(s1)L(s2).....

The properties we are interested in are the w-regular properties (which include properties
definable in LTL).

» Definition 4 (w-regular Properties). An w-regular language is a subset of (247)“ which can

be defined using an w-regular expression [29]. Consider an LQMC M = (S,Q, AP, L) and
def

an w-regular language W C (247)%. We define QM(W) = QM ({0 € Path™ | L(c) e W ).

We shortly restate a well-known mechanism to decide whether a word is included in a
given w-regular language. For this purpose, an additional definition is needed.
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» Definition 5 (Parity Automaton). A (deterministic) parity automaton (PA) is a tuple
A= (A,a, AP,t,pri), where

A is a finite set of automaton states, and @ € A is the initial state,

AP is a finite set of atomic propositions,

t: A x 24P 5 A s a transition function,

pri: A — N is a priority function. Here N denotes the set of natural numbers.

.

A path of A is an infinite sequence 0 = apLoa1 L ... € (A x 2AP)°J such that ag = @
and for all i« > 0, t(a;, L;) = a;+1. We extend the priority function to paths by setting
pri(o) 2 Jim inf; o0 pri(a;). We use Path™ to denote the set of all paths of A. The language
of A is defined as

L(A) Y {LoLy ... € (24F)% | 3o = agLoay Ly . .. € Path™. pri(o) is even }.

The following result is well known from the literature; see e.g. [23, 14].

» Lemma 6 (PAs represent the w-regular languages). A language W is w-regular if and only
if it is the language of a PA A, i.e., W = L(A).

In particular this means that all properties which can be expressed in LTL can be also
expressed as parity automata. Effective means to transform LTL formulas to parity automata
exist in, say, [26, 25, 27].

We also need to consider QMCs with parity conditions.

» Definition 7 (Parity Quantum Markov Chain). A parity quantum Markov chain (PQMC)
is a tuple M = (S, Q, pri), where (5, Q) is a QMC and pri: S — N is a priority function for
the classical states. We define the value of M in s € S as

valM & QM({ o € Path™ | pri(0) is even}).

Here again, we set pri(o) 2 Jim inf;_, oo pri(s;) provided that o = sps152 .. ..

3.2 Product construction

In the following, we describe how to combine an LQMC under consideration with a PA
representing the property we are concerned with.

» Definition 8 (LQMC-PA Product). The product of an LQMC M = (S5,Q, AP, L) and a
PA A= (A,a, AP,t,pri) with the same set of atomic propositions is a PQMC M & A o
(S”,Q’, pri’) where

1. &% 5 x4,

2. Q'((s,a),(s,d")) &f Q(s, s') if t(a, L(s)) = d’, and 0y otherwise,

3. pri'((s,a)) o pri(a).

The following lemma shows that the value of this product is trace equivalent to the
super-operator corresponding to the property under consideration in the original model.

» Lemma 9. Consider the product M’ Y MeoA= (S,Q,pri") of an LQMC M =

(S,Q,AP,L) and a PA A= (A,a, AP,t,pri). We have that for any s € S,
QM(L(A)) = val{l's.

Proof. The proof is standard. <



Y. Feng, E. M. Hahn, A. Turrini, and S. Ying

1—p 1—p 1—p & & &
&
P p & 0

50 51 p S2 50 51 &o S9

Figure 1 Example showing that BSCC decomposition for the underlying graph does not work
for model checking PQMCs.

Up to now, the model checking method works as for classical Markov chains. What would
fail is the subsequent part which consists of the evaluation of the PQMC.

The idea for model checking of classical parity Markov chains is quite simple: a path
of a PMC is accepted if the lowest priority occurring infinitely often is even. A strongly
connected component (SCC) of a classical Markov chain is a maximal set of states B such
that any two states in B can reach each other with nonzero probability. A bottom SCC
(BSCC) is an SCC B in which no state in B can reach any state outside B with nonzero
probability. BSCCs can be computed using only the graph structure of the Markov chain.
That is, concrete probabilities are irrelevant; only the information whether the probability of
going from one state to another is nonzero matters. In a classical Markov chain, starting
from s, the probability that s’ is visited infinitely often is 1 if s and s’ are in the same BSCC.
The probability that a state which is not contained in any BSCC (a transient state) will be
visited infinitely often is 0. Thus, model checking for PMCs can be performed as follows:
1. Identify the set of BSCCs using a graph-based algorithm, and let ACC = §.

2. For each BSCC B, check whether the lowest priority occurring on a state of B is even. If
yes, add B to ACC, ACC + ACCUB.

3. For any state s, if s € ACC, then val?/l = 1. Otherwise, val?/l is the probability that s
reaches any state in ACC. That is, if s is a state of a BSCC B € ACC, then Valgw =0
and values of transient states can be computed by solving a linear equation system.

Note that a PQMC also has a set of classical states, and the transition super-operators
also induce an underlying graph over these states. Thus a natural question is: can we define
the notion of BSCCs in terms of the underlying graph structure for a PQMC, just as in
the classical case, and employ the above technique to calculate its value? Unfortunately,
this idea does not work, as the following example shows. A similar example illustrating this
difficulty was also given in [22].

» Example 10. Consider the two parity Markov models in Figure 1. On the left is a classical

one with 0 < p < 1, while the right is a quantum one with &y, &1 # 0y and & + &1 ~ Ty.

Obviously, both models have the same classical state space, and have exactly the same
underlying graph. Thus they have the same set of BSCCs, if we would define BSCCs for
PQMCs according to the underlying graphs. However, we will see that this BSCC technique
does not help in the evaluation of PQMCs.

In the classical model, sg is a transient state which will eventually reach the only BSCC
{51, 82}. Thus, the priority with which sq is labelled is irrelevant. From any state of the
BSCC, the probability that both states are visited infinitely often is 1. Thus, the probability
that from either state the lowest priority 0 is reached infinitely often is 1, and thus the value
of the parity Markov chain is also 1.

In contrast, in the quantum model, we assume £, < {]0)(0]} and &; dof {|1)(1]}. Note that
for i € {0,1} it holds &;&; = &; and &;E1—; = 0y. It is easy to check that if we start from so,
the infinite path (s¢)*, with the corresponding nonzero super-operator lim,,_, ., £ = {|1)(1]},
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never leaves to the set {s1,s2}. Thus sy should not be considered as a transient state at
all. Furthermore, as the priority of (sg)“ is 0, this path also contributes to the value of
PQMC. On the other hand, if we start from s;, there are two infinite paths with nonzero
super-operator, namely (s1)* with the corresponding super-operator {|1)(1|} and priority
0, and (s182)* with the corresponding super-operator {|0)(0|} and priority 0. Thus, the
value of the PQMC in state sy is {|0)(0|} + {|1)(1|} = Z3. However, if we start from sy we
have (s2) with the corresponding super-operator {|1)(1|} and priority 1, and (s2$1)¥ with
the corresponding super-operator {|0)(0|} and priority 0. Thus, the value in s5 is {|0)(0|},
different from the one in s;.

Thus, algorithms based on BSCC decomposition of the underlying graph do not work for
PQMCs: neither are BSCCs reached with certainty, nor do all states of a BSCC have the
same value. In addition, the value of a BSCC state might be equivalent to neither 03 nor
Ty.

3.3 Computing PQMC values

We have seen from Example 10 that the notion of BSCC defined for the underlying graph
over classical states does not help in evaluation of PQMCs. In this subsection, we show that,
rather surprisingly, by encoding the behavior of M into a single super-operator acting on
the extended Hilbert space which is the tensor product of the classical state space and the
quantum one, the notion of BSCC subspaces for super-operators! defined in [32] can be used
to compute PQMC values.

We first recall some definitions from [32]. For any p € D(H), the support supp(p) is
defined to be the space spanned by the eigenvectors of p with non-zero eigenvalues. Let
{Xi} be a family of subspaces of H. The join of {X}} is defined as \/,, X = span(|J, Xx).
Let £ be a super-operator acting on H with dim(#) = d. A subspace X of H is said to be
invariant for £ if £(X) C X, and it is a BSCC of € if R(|¢)(¢¥|) = X for any pure state
|v) € X, where for any p € D(H),

R(p) = \/ supp(£(p))

=0

is the reachable subspace of £ starting in p. Apparently, a BSCC is also an invariant subspace.
Finally, X is called transient if limy_, o tr(PxE*(p)) = 0 for any p € D(H), where Px is the
projection onto X.

Let M = (S, Q, pri) be a PQMC on H with Q(s,t) = { E"' | i € I*!}. Following [22],
we define a super-operator

EmE {It)(s| @ B} | s,teSiel™) (1)

acting on the Hilbert space H,. ® H, where H. is a |S|-dimensional Hilbert space with an
orthonormal basis {|s) | s € S'}. To see how Exq encodes the behavior of M, let for each

L We choose not to use the terminology quantum Markov chain as in [32], to avoid confusion with the
notion of quantum Markov chain defined in this paper. Interestingly, although it has been observed
that these two notions of quantum Markov chains have the same expressiveness power [22], this is the
first time techniques from one model find applications in the other.
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s €S that 0° < {(t,i) |t € S,i e I}, and M < { B>

p € D(H),

(t,7) € O*® }. Note that for any

wl S EMpEY | =u (ZQ<s,t><p>>—tr<p>

(t,i)€0= tes

where the second equality comes from the fact that ), o Q(s,t) =~ Zy (see Definition 1).
That is, M* is actually a quantum measurement with the outcome set O°. Furthermore, for
any o € D(H,.) and p € D(H), we calculate that

Yo D Islals) (il @ B p(BS)

s, teS icIs:t

Y (slols) D> It @ B p(EN).

s€ES (t,i)€0s

Em(o @ p)

Thus the behavior of Ex4 can be described as the following steps, which exactly captures the
intended meaning of M:

1. a projective measurement M e {|s){s| : s € S} is performed on the classical system .
to determine the current classical state;

2. if the measurement outcome of M is s, then the quantum measurement M? is performed
on the quantum system H;

3. the classical state is set to be |t)(¢] if (¢,4), for any 4, is observed in M?®.

The following lemma shows that for super-operators derived from PQMCs, the classical
and quantum systems will remain separable (disentangled) during the evolution, provided
that the initial state is in a product form.

» Lemma 11. Let M = (S,Q, pri) be a PQMC on H, s € S, k € N, and p € D(H).
1. For anyn >0, EX(|s)(s| ® p) is block diagonal according to the classical states. Specific-
ally,

Enlls)(sl @ p) = 1)t © Q" (s,1)(p)-

tes

2. Let R* = QM({ o € Path™ | pri(c) = k}). Then for any n > 0,
tr(RE(p)) = Y tr(RE(Q™ (s, )(p)))-
tes

Proof. Statement 1 is easy by induction. For Statement 2, note that for any n > 0,
RE = QM ({0 € Path™(s) | lim inf pri(o[i]) = k})

= ZRf o Q" (s,t).

tes

Then the result follows. <

Similar to Lemma 11, it is easy to show that for any fixed point state o of Erq, i.e.

Em(o) = o, it also has the form o =} ¢ s)(s| ® o,. Therefore, by [32], any BSCC of Erq
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can be spanned by pure states of the form |s)|¢)) where s € S and |[¢)) € H. For a BSCC B
of Epq, let

C(B) % {se€S]|s)|v) € B for some [1)) € H }

be the set of classical states supported in B.

Exploiting the classical-quantum separation (Lemma 11) of super-operators derived from
PQMCs, we are going to show some nice properties of their BSCC decomposition, which are
key to our discussion in this paper. First, we prove that two BSCCs X and Y are orthogonal,
denoted X 1 Y, unless they have the same set of support classical states.

» Lemma 12. Let M be a PQMC. For any two BSCCs X andY of Epq, if C(X) # C(Y)
then X LY.

Proof. Suppose C(X) # C(Y), and, without loss of generality, let s € C(Y)\C(X). Let px
and py be the fixed point states corresponding to X and Y, respectively. Since Eaq(px+py) =
px +py, we know that (px + py)/2 is a fixed point state corresponding to Z ©C X VY. Thus
Z can be decomposed into the direct sum of some orthogonal BSCCs: Z=X®Z1®--- D Z,.

We claim that n = 1. Otherwise, for any 4, dim(Z;) < dim(Y’) (because )", dim(Z;) +
dim(X) = dim(Z) < dim(X) + dim(Y")), and thus Y L Z; by [32, Lemma 2]|. This means
Y = X, a contradiction. Now let |s)|¢)) € Y. Since s € C(X), we have |s)|¢)) L X, and thus
|s)|t) € Z1. On the other hand, since both Y and Z; are BSCCs, Y = Z; = R(|s)(s|®]¥) (¢]).
Thus X LY. <

Given k € N, let BSCCy; be the span of all BSCCs of €4 with the minimal priority being
k; that is,

BSCCy, = \/{ B is a BSCC of Ep : min{ pri(s) [ s € C(B) } = k}.

Similarly, let BSCCj- and BSCCr+ be the spans of all BSCCs with the minimal priority
being less than and larger than k, respectively. Then by Lemma 12, BSCCy, BSCC,.-, and
BSCCy+ are pairwise orthogonal. From [32], the state space H. ® H can be decomposed
uniquely into

H=T&BSCCy, & BSCCy- & BSCCy+,

where T is the maximum transient subspace of Exq. In the following, we denote by Pr,
Py, P,,- and Py+ the projections onto T, BSCCy, BSCCj,- and BSCCy+, respectively. Then
Pr + Py + Py- + Pi+ = Iy gn, the identity operator on H. ® H.

The following lemma is crucial for our purpose. Note that tr(RF(p)) denotes the probability
that k is the lowest priority infinitely often reachable from the initial state |t){t| ® p. This
lemma essentially says that such a probability will be 1 if starting from BSCC}, (provided that
tr(p) = 1; otherwise, the probability is tr(p)), and it will be 0 if starting from either BSCCy,-
or BSCCy+. Thus BSCCy, for each k acts like the standard BSCCs in classical Markov chains.

» Lemma 13. For anyt € S and p € D(H),

1. if supp(|t)(t| ® p) € BSCCy, then tr(RE(p)) = tr(p);
2. if supp(|t){t| ® p) C BSCC,,—, then tr(RF(p)) = 0; and
3. if supp(|t){t| ® p) C BSCCy+, then tr(RF(p)) = 0.

With the above lemmas, we are now ready to prove the main theorem of this section.
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» Theorem 14. Given a PQMC M = (S,Q, pri) and k € N, for any s € S and p € D(H),
tr(RY (p)) = tr(PRERy(|s)(s| @ p))
where £33 = limy_, 00 % 25:1 Exy.

Proof. First we lift the set of super-operators R¥ on H to H.®H by defining Re Y eg&t®
R where & = {|t)(|}. Then Lemma 11 says that for any n > 0, tr(R¥(p)) = tr(ék(E}f/‘(ps)))
where pg &f |s)(s| ® p. Thus we have

N
tr(R{(p)) = tr (E’“ (}V 2 é’b(ﬂs)))

for any N > 1, and so tr(R¥(p)) = tr(R*E€35(ps)) by letting N tend to infinity.

On the other side, note that p° et EX(ps) is a fixed point state of Exq. Then by
Lemma 12 and [4, Theorem 6], Prp®Pr = 0, and pS° is block diagonal with respect to
BSCCy, BSCCy-, and BSCCy+; that is, p2° = Prp® Py + Pi—p° Pr— + P+ pS°Py+. Thus

from Lemma 13,

tr(RE(p)) = tr(RF (Pepl® P)) + tr(RF (P p3° Py ) + tr(R¥(Per p3° Pyt )
= tr(Pep”). <

The following corollary, which is direct from Theorem 14, provides us a neat way to
represent the value of a PQMC at a given state using certain super-operators without
resorting to quantum states.

» Corollary 15. Let M = (S, Q,pri) be a PQMC. Then for any s € S,
val?” ~ trc 0 Peyen 0 Exy 0 Es

where tr. is the partial trace super-operator such that tr.(|s)(t| ® p) = (t|s) - p, Peven =
D { kepri(S)|k is even} Pk where Py = { Py} is the projection super-operator onto BSCCy,, and
Es(p) = |s)(s| @ p-

Note that in the above corollary, we do not calculate the value valf/l directly. Instead,
only a super-operator which is trace equivalent to valgw is obtained. Note that from [16,
Theorem 3.2], the super-operator valued measure for a QMC (thus PQMC) is well-defined
only up to the trace equivalence <. In other words, it does not make sense to talk about the
exact super-operator associated with a measurable set of paths; only the equivalence class
determined by =< is meaningful. Fortunately, this is sufficient for our purpose, as in practice
we are interested in the probability of satisfying a certain w-property, starting from an initial
quantum state, which depends only on the equivalence class that the super-operator like
val?/l is in.

» Example 16 (Example 10 revisited). Let M be the PQMC depicted on the right of Fig. 1

where & {]0){(0|} and & e {|1)(1|}. Then the super-operator encoding M is

Em={ls1)(s0]} ® & + {[s0)(s0]} ® &1
+ {[s1) (511} @ &1 + {[s2)(s1]} @ &
+ {ls1)(s2[} ® & + {[s2)(s2|} ® &1,
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the maximal transient space of Exq is T % span{|sp)|0)}, and the BSCCs are

B1 = span{|so)[1)}, By = span{|s1)[1)},
Bs = span{|s1)[0), |52)[0)}, By = span{|s3)[1)}.

Thus BSCCy = V{Bl,Bg,Bg}, and Py = |80><80| ® |1><1| =+ |51><81| ® 1+ |52><32| ® |0><0|
Furthermore, we calculate that for any n > 1, 5/2\2_1 =Fo®& +F®E and E3F =
Fi®E +F @& where Fo © {|s1)(s0], [s2) (51, [s1) (s}, Fir = {]sa)(sol, |s1) (1], [s2) (s2]},
and F = {s0) (sol, |s1)(s1], |2) (s2]}. Thus €35 = 242 © £+ F @ &, and

. Fo+ F1

Poo &Ry = T®€o+(7>so+7331)®<€1.

Note that & = {|s) ® I'} and tr. = {(s;| ® I | i =0,1,2}. Tt follows that

Eot+ &1 ~TIy ifs=sVs=s

valsM ~treoPyoliiols =
0 ifSZSQ,

coinciding with the informal discussion given in Example 10.

4  The algorithm

In this section, we propose an algorithm to compute the values of a PQMC. First, we
introduce some notations. For a super-operator £ = { E; | i € I } acting on Hilbert space 7—2,
let Mg =3,.; E; ® E; be its matrix representation which is a linear operator on HH.
Here the complex conjugate E is taken according to an orthonormal basis of H. It is easy
to check that Mg is independent of the choices of orthonormal basis and Kraus operators E;
of £. Let Mg = KJK ! be the Jordan decomposition of Mg where J = D, I, and J, is
a Jordan block corresponding to the eigenvalue A\r. Define

I*= @ I (2)

{kAe=1}

and Mg = KJ>*K~!. Then from [30, Proposition 6.3], Mg is the matrix representation of
Eoo-

» Theorem 17. Given a PQMC M = (S, Q, pri) on H and a classical state s € S, Algorithm 1
computes the matriz representation of a super-operator which is trace equivalent to valé\/t mn

time O(n®d®), where n = |S| and d = dim(H).

Proof. Note that for any super-operators £ and F, the matrix representation of £ o F is
the product of matrix representations of £ and F; that is, Mgr = Mg X Mxz. Then the
correctness of Algorithm 1 follows from Corollary 15. The Procedure GetBSCC which, given
a super-operator £ and an invariant subspace of £, outputs a complete set of orthogonal
BSCCs in that subspace is a revised version of the procedure Decompose from [32].

Note that dim(H. ® H) = nd, and the matrix representation of Exq has size n?d? x n?d?.
The complexity of Algorithm 1 can be estimated as follows.

1. The time complexity of computing the matrix representation M of Exqis D, . mgd =

O(n?d%), where my ¢ def |T5:¢

2. Note that the time complexity of Jordan decomposition is O(m?) for an m x m matrix.
The computation of matrix representation M of £5; takes time O(n®d®).

< d? is the number of Kraus operators in Q(s, t).
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Algorithm 1: Compute the values of a PQMC
input :A PQMC M = (S,Q,pri) on H and a classical state s € S.
output : (Matrix representation of) a super-operator that is trace equivalent to Valgw.
begin
(* Compute the matrix representations of &, tre, and Ea*)
E; + |s) @ Iyy; My + Es ® EX;
M. + 0;
for t € S do
| E<« (t|®Iy; M, + M.+ E® E*;
end
M + 0;
for t,t' € S and i € I** do
| B« [#)#|® EY'y M + M + E® E*; (* Q(t,t') = { BV | i e It }¥)
end

(* Compute the matrix representation of £55 *)
(K, J) < Jordan decomposition of M; (*M=KJK~!%)
M>® «+ KJ*K™1; (* J* is defined in Eq.(2) *)

(* Compute the matrix representation of Peyen *)
Meven — O, Ic — EtES |t> <t|7
B+ GetBSCC(M, I, @ Iy);
EP « {pri(t) | t € S Apri(t) is even };
for k € EP do
P+ 0
for B € B with k = min{ pri(t) | t € C(B) } do
Py < Py + Pp where Pg is the projector onto B;
end
Meven = Meyen + P @ Py
end

return M, X Meyen, X M x Mg; (* x denotes normal matrix multiplication *)
end

3. For the Procedure GetBSCC(M, I;) where I, def H. ® H, the most time-consuming step
is to compute the null space of the matrix Iy ® I; — M. This can be done by Guassian
elimination with complexity being O((n%d?)3) = O(n%d%). Note that each recursive call
of the procedure decreases the dimension of the subspace by at least one. The complexity
of computing GetBSCC(M, 1) is O(n"d"). <

At the first glance, the time complexity O(n8d®) of Algorithm 1 looks very high. However,
note that a typical super-operator on a d-dimensional Hilbert space has up to d? Kraus
operators each of them is a d x d complex matrix. Thus the input size K of a PQMC
M = (5,Q,pri) is actually of order O(n?d?*) with n = |S|. Thus the time complexity of
Algorithm 1 is indeed O(K*).

Note that the decomposition of M (the matrix representation of E4¢) into Jordan blocks
in Algorithm 1 is quite expensive. Therefore, for a practical implementation, an approximate

approach might be preferable. From £% = limy_, % ZnN:1 &Ry (cf. Theorem 14) we can

. . . . . def N
derive its matrix representation M = limy_,oc My where My = % anl M™. We then

35:13
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Procedure GetBSCC(M, P)

input :The matrix representation M of a super-operator £ acting on H & He @ H,
and a projector P to some invariant subspace H’ C H of &.

output : A complete set of orthogonal BSCCs of £ in H'.
begin
{|;) | i € I'} « an orthonormal basis of H;
X < abasisof {|z) e H' @ H' | M|z) = |z) };
F « 0
for |z) € X do
X i (T @ () - 205l

(* The matrix X corresponds to |z) in that X =3, . 2

) =22 jer Tisl¥alvs) )
Xp+ (X +XN)/2; X;+ (X —XT)/2i 4
(* X1 denotes the transpose and complex conjugate of X *)

Pf?f + the projector onto eigenspace of X with positive eigenvalues;
PIJr + the projector onto eigenspace of X; with positive eigenvalues;
Xt =PrXpPr; X5 =X}t — Xg;
X =PrX,Pf; X; =X - Xp;
(* All of them are positive semidefinite, and X = X, — X +i(X; — X;) *)
for Y € {X}, Xz, X, X; }AY #0do

¥i) (s | iff

| F+ Fu{Y/tx(Y)}; (* Fixed point states of £ *)
end
end
if |[F| =1 then
| return {supp(Y)}; (*'Y is the only element of F *)
else

Y1,Ys < two arbitrary different elements of F;

P+ + the projector onto eigenspace of Y; — Y5 with positive eigenvalues;
P~ « PPt

M+« (Pt @ I;)M(I; ® PT);

M~ «+ (Pi ®I7:L)M(I7:L (%9 Pf);

return GetBSCC(M ™, P*) U GetBSCC(M —, P™);

end

end

compute My, My, My, ... until we have reached an N for which |My — My _1]||max < € for
a predefined precision ¢, so as to obtain an approximation of M*°. Note that My can be
computed using a dynamic programming approach by means of the equality

e (M N =1,
YT LN )My + MY) N> 1

In stochastic model checking, such value iteration based approaches are commonly used,
and in [15], we have successfully applied a similar method for model checking QCTL Until
formulas.
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5

Conclusion

In this paper, we have investigated model checking w-regular and in particular LTL properties
against super-operator weighted quantum Markov chains, which can be used to faithfully
model a practically relevant class of quantum processes. As future work, we would like to
implement our model checking algorithm in IsScAsMC [20] and apply it on case studies from
the area of quantum communication protocols and evaluate the actual performance of our
approach.
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