Divide and Congruence lll: Stability & Divergence

Wan Fokkink!, Rob van Glabbeek?, and Bas Luttik®

1 Vrije Universiteit Amsterdam, The Netherlands
2 Data61, CSIRO, Sydney, Australia and
University of New South Wales, Sydney, Australia
3 Eindhoven University of Technology, The Netherlands

—— Abstract

In two earlier papers we derived congruence formats for weak semantics on the basis of a de-
composition method for modal formulas. The idea is that a congruence format for a semantics
must ensure that the formulas in the modal characterisation of this semantics are always decom-
posed into formulas that are again in this modal characterisation. Here this work is extended
with important stability and divergence requirements. Stability refers to the absence of a 7-
transition. We show, using the decomposition method, how congruence formats can be relaxed
for weak semantics that are stability-respecting. Divergence, which refers to the presence of an
infinite sequence of 7T-transitions, escapes the inductive decomposition method. We circumvent
this problem by proving that a congruence format for a stability-respecting weak semantics is
also a congruence format for its divergence-preserving counterpart.

1998 ACM Subject Classification F.3.2 Operational Semantics, F.4.1 Modal Logic
Keywords and phrases Structural Operational Semantics, Weak Semantics, Modal Logic

Digital Object Identifier 10.4230/LIPIcs. CONCUR.2017.15

1 Introduction

Structural operational semantics generates a labelled transition system, in which states are
the closed terms over a signature, and transitions between states carry labels. Transitions
are obtained from a transition system specification (TSS), consisting of proof rules called
transition rules. States in labelled transition systems can be identified by a wide range of
behavioural equivalences, based on e.g. branching structure or decorated versions of execution
sequences. Weak semantics, which take into account the internal action 7, are classified in
[11]. A significant number of the weak semantics based on a bisimulation relation carry a
stability or divergence requirement. Stability refers to the absence of a 7-transition and
divergence to the presence of an infinite sequence of 7-transitions.

In general a behavioural equivalence induced by a TSS is not guaranteed to be a congruence,
i.e. the equivalence class of a term f(p1,...,p,) need not be determined by f and the
equivalence classes of its arguments p1, ..., p,. Being a congruence is an important property,
for instance in order to fit the equivalence into an axiomatic framework. Respecting stability
or preserving divergence sometimes needs to be imposed in order to obtain a congruence
relation, for example in case of the priority operator [1].

Modal logic captures observations an experimenter can make during a session with a
process. A modal characterisation of an equivalence on processes consists of a class C of
modal formulas such that two processes are equivalent if and only if they satisfy the same
formulas in C. For instance, Hennessy-Milner logic [17] constitutes a modal characterisation
of (strong) bisimilarity. A cornerstone for the current paper is the work in [3] to decompose
formulas from Hennessy-Milner logic with respect to a structural operational semantics in

© Wan Fokkink, Rob van Glabbeek, and Bas Luttik;

licensed under Creative Commons License CC-BY
28th International Conference on Concurrency Theory (CONCUR 2017).
Editors: Roland Meyer and Uwe Nestmann; Article No. 15; pp. 15:1-15:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2017.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

15:2

Divide and Congruence lll: Stability & Divergence

the ntyft format [16] without lookahead. Here the decomposition of a modal formula ¢ w.r.t.
a term t = f(p1,...,pn) is a selection of n-tuples of modal formulas, one of which needs to
be satisfied by the processes p; in order for ¢ to satisfy . Based on this method, formats for
behavioural equivalences can be generated from their modal characterisation, ensuring that
they are congruences. Such formats help to avoid repetitive congruence proofs and obtain
insight into the congruence property. Key idea is that congruence is ensured if formulas from
the modal characterisation C of an equivalence are always decomposed into formulas that
are again in C. This approach was extended to weak semantics in [10, 7].

Here we expand the latter work to weak semantics that respect stability or preserve
divergence. We focus on branching bisimilarity and rooted branching bisimilarity [15] and
consider for each a stability-respecting and two divergence-preserving variants. Divergence-
preserving branching bisimilarity [15] is the coarsest congruence relation for the parallel
composition operator that only equates processes satisfying the same formulas from the
well-known temporal logic CTL* minus the next-time operator X [14]. With regard to
stability the expansion is relatively straightforward: we extend the modal characterisation of
the semantics with one clause to capture that a semantics is stability-respecting, and study
the decomposition of this additional clause. Next we show how the congruence formats for
branching bisimilarity and rooted branching bisimilarity from [10] can be relaxed, owing to
the extended modal characterisation for stability-respecting branching bisimilarity. Notably,
the transition rules for the priority operator are within the more relaxed formats.

The divergence preservation property escapes the inductive decomposition method, as
it concerns an infinite sequence of T-transitions. We overcome this problem by a general
framework for lifting congruence formats from a weak semantics ~ to a finer semantics ~.
We show four applications of this method. In two cases & is stability-respecting and in two
cases rooted stability-respecting branching bisimilarity, while in ~ stability is replaced by two
different forms of divergence. Hence the congruence format for stability-respecting branching
bisimilarity is also applicable to divergence-preserving as well as weakly divergence-preserving
branching bisimilarity; and likewise for their rooted counterparts.

2 Preliminaries

2.1 Stability-respecting / divergence-preserving branching bisimilarity

A labelled transition system (LTS) is a triple (P, Act,—), with P a set of processes, Act a
set of actions, and — C P x Act x P. We normally let Act = AU {7} where 7 is an internal
action and A some set of external or observable actions not containing 7. We write A, for
AU{r}. We use p, ¢ to denote processes, a, 3,7 for elements of A,, and a,b for elements
of A. We write p -~ ¢ for (p,a,q) € =, p— for g€ P: p - ¢, and p—~= for —(p—=).
Furthermore, = denotes the transitive-reflexive closure of ——.

» Definition 1. Let B C P x P be a symmetric relation.

B is a branching bisimulation if p B ¢ and p — p’ implies either o = 7 and p’ B ¢, or

g = ¢ = ¢ for some ¢’ and ¢ with p B¢ and p’ B ¢".

B is stability-respecting if p B ¢ and p—/~ implies ¢ == ¢/~ for some ¢’ with p B ¢'.

B is divergence-preserving if it satisfies the following condition:

(D) if p B ¢ and there is an infinite sequence of processes (px)ren with p = po,
Pr — pry1 and py, B ¢ for all k € N, then there exists an infinite sequence of processes
(q)een With ¢ = qo, g¢ — qe41 for all £ € N, and py, B g, for all k, £ € N.

The definition of a weakly divergence-preserving relation is obtained by omitting the

condition “and pi B ¢, for all k,/ € N.”

W. J. Fokkink, R. J. van Glabbeek, and B. Luttik

Processes p, g are branching bisimilar, denoted p £, g, if there exists a branching bisimulation
B with p B q. They are stability-respecting, divergence-preserving or weakly divergence-
preserving branching bisimilar, denoted p < ¢, p <:>bA qorp @bAT q, if moreover B is
stability-respecting, divergence-preserving or weakly divergence-preserving, respectively.

We have &, D ©f D> ©AT O ©f. The relations ¢,, €, €2 and 2T are
equivalences [2, 11, 13]. However, they are not congruences with respect to most process
algebras from the literature, meaning that the equivalence class of a process f(p1,-..,pPn),
with f an n-ary function symbol, is not always determined by the equivalence classes of
its arguments, i.e. the processes p1,...,p,. Therefore an additional rootedness condition is
imposed.

» Definition 2. Rooted branching bisimilarity, <, is the largest symmetric relation on P
withp <, gand p = p’ implies ¢ —— ¢’ for some ¢’ with p’ 2, ¢'. Likewise, rooted stability-
respecting, divergence-preserving or weakly divergence-preserving branching bisimilarity,
denoted by p &5 ¢, p @7% qgorp <:>TAb—r q, is the largest symmetric relation R on P with
pR qand p -= p’ implies ¢ — ¢ for some ¢’ with p' < ¢/, p' €2 ¢ or p' @27 ¢

The various notions of bisimilarity defined above are examples of so-called behavioural
equivalences. For a general formulation of the results in Section 4, it is convenient to
formally define a notion of behavioural equivalence that includes at least the examples
above. Note that a common feature of their definitions is that they associate with every
LTS G = (Pg, Actg, —c) a binary relation ~g. (For instance, in the case of branching
bisimilarity, the relation ~q associated with G is defined as the binary relation £, C Pg xP¢
such that p ©, ¢ if (and only if) there exists a branching bisimulation B C Pg x Pg with
p B q.) One may, thus, think of a behavioural equivalence as a family of binary relations
indexed by LTSs. It turns out that we need to impose just one extra condition on such
families to arrive at a suitable formalisation of the notion of behavioural equivalence. The
condition states that the relation associated with the disjoint union of two LTSs restricted to
one of the components coincides with the relation associated with that component.

Two LTSs G = (Pg, Acte, —¢) and H = (Py, Act g, — i) are called disjoint if P NPy =
(). In that case G & H denotes their union (Pg UPy, Actg U Acty, —g U —u).

A behavioural equivalence ~ on LTSs is a family of equivalence relations ~¢, one for
every LTS G, such that for each pair of disjoint LTSs G = (Pqg, Actg, —¢) and H we have
g~g g & g~guwn g for any g,g’ € Pq. The notions of bisimilarity defined above clearly
qualify as behavioural equivalences. We write ~ C ~ iff ~g C ~q for each LTS G.

2.2 Modal logic

Modal logic formulas express behavioural properties of processes. Following [11], we extend
Hennessy-Milner logic [17] with connectives ()¢ and (7)p, expressing that a process can
perform zero or more, respectively zero or one, T-transitions to a process where ¢ holds.

» Definition 3. The class O of modal formulas is defined as follows, where I ranges over all
index sets and v over A;: ¢ == A,c; 00 | — | ()¢ | (e)¢ | (T)p. We write T for the
empty conjunction, 1 A g for /\ie{1,2} i, ela)p’ for o A {a)y’, and o(F)¢’ for @ A (7).

p = ¢ denotes that process p satisfies formula ¢. The first two operators represent the
standard Boolean operators conjunction and negation. By definition, p = (o) if p = p/
for some p’ with p’ |= ¢, p = () if p == p’ for some p’ with p’ = ¢, and p |= ()¢ if either
p = or p— p' for some p’ with p’ = .

15:3

CONCUR 2017

15:4

Divide and Congruence lll: Stability & Divergence

For each L C O, we write p ~, ¢ if p and ¢ satisfy the same formulas in L. We say that
L is a modal characterisation of some behavioural equivalence ~ if ~ coincides with ~. We
write ¢ = ¢’ if p E ¢ & p = ¢ for all processes p. The class L= denotes the closure of
L C O under =. Trivially, p ~p ¢ & p ~r=q.

» Definition 4 ([11]). The subclasses Oy, and O, of O are defined as follows, where a ranges
over A and « over A :

Oy o = N i | o | (o)) | (e(pla)p)
Oy P o= Ner @ | 2 [(o) | ¢ (pely)

Oy and O, are modal characterisations of <, and <, respectively (see [10]).

The idea behind stability is: (I) if p £ ¢ and p == p/—/> with p < p/, then g = ¢
with ¢ 7 ¢’. In the definition of < this was formulated more weakly: (II) if p &7 ¢
and p—%, then ¢ = ¢~/ with ¢ < ¢'. It is easy to see that formulations (I) and (II)
are equivalent. The additional clause in the following modal characterisation of stability-
respecting branching bisimilarity is based on (I).

» Definition 5 ([11]). The subclasses Q7 and O, of O are defined as follows:
0F ¢ == Ner ei | 7o [(0(0(D)e) | {(pla)e) [((NT AP (@e0f)
O ® = Ner ?i | 2l {a)e e (pe0p)
The additional clause (€)(—(7)T A) in @ expresses stability. The first part (¢)(—=(r)T ...)
captures p = p/—/, while the second part ... A @ captures the stability-respecting branching

bisimulation class of p’. Since p’—/+, unrooted and rooted stability-respecting branching
bisimilarity coincide for p’, which allows us to take the second part from OF,.

» Theorem 6. p &/ g < p ~0; ¢ andp €35 q&p ~os, 4, for allp,q € P.

All proofs omitted from the paper can be found in [8].

2.3 Structural operational semantics

A signature is a set ¥ of function symbols f with arity ar(f). A function symbol of arity 0 is
called a constant. Let V be an infinite set of variables; we assume ||, |A| < |V]. A syntactic
object is closed if it does not contain any variables. The sets T(X) and T(X) of terms over X
and V and closed terms over X, respectively, are defined as usual; ¢, u, v, w denote terms, p, q
denote closed terms, and wvar(t) is the set of variables that occur in term ¢. A substitution o
is a partial function from V to T(X). A closed substitution is a total function from V' to
closed terms. The domain of substitutions is extended to T(X) as usual.

Structural operational semantics generates an LTS in which the processes are the closed
terms. The labelled transitions between processes are obtained from a transition system
specification, which consists of a set of proof rules called transition rules.

A (positive or negative) literal is an expression t —— u or t-+. A (transition) rule is of

the form % with H a set of literals called the premises, and A a literal called the conclusion;

the terms at the left- and right-hand side of A\ are called the source and target. A rule %
is also written A. A rule is standard if it has a positive conclusion. A transition system
specification (TSS), written (X, Act, R), consists of a signature X, a set of actions Act, and a
set R of transition rules over 3. A TSS is standard if all its rules are.

A TSS specifies an LTS in which the transitions are the closed positive literals that can
be proved using the rules of the TSS. Since rules may have negative premises, consistency

is a concern. Literals t — u and t—/+ are said to deny each other; a notion of provability

W. J. Fokkink, R. J. van Glabbeek, and B. Luttik

associated with T'SSs is consistent if it is not possible to prove two literals that deny each
other. To arrive at a consistent notion of provability, we proceed in two steps: first we define
the notion of an irredundant proof, which on a standard TSS does not allow the derivation of
negative literals at all, and then arrive at a notion of well-supported proof that allows the

derivation of negative literals whose denials are manifestly underivable by irredundant proofs.

In [12] it was shown that the notion of well-supported provability is consistent.

» Definition 7 ([3]). Let P = (3, Act, R) be a TSS. An irredundant proof from P of a rule
% is a well-founded tree with the nodes labelled by literals and some of the leaves marked
“hypothesis”, such that the root has label A\, H is the set of labels of the hypotheses, and if
w1 is the label of a node that is not a hypothesis and K is the set of labels of the children
of this node then % is a substitution instance of a rule in R. The rule % is irredundantly

provable from P, notation P k.. %, if such a proof exists.

» Definition 8 ([12]). Let P = (¥, Act, R) be a standard TSS. A well-supported proof from

P of a closed literal X is a well-founded tree with the nodes labelled by closed literals, such

that the root is labelled by A, and if u is the label of a node and K is the set of labels of the

children of this node, then:

1. either p is positive and % is a closed substitution instance of a rule in R;

2. or p is negative and for each set N of closed negative literals with % irredundantly
provable from P and v a closed positive literal denying u, a literal in K denies one in N.

P ks X\ denotes that a well-supported proof from P of A exists. A standard TSS P is

complete if for each p and «, either P b p—++ or P s p — ¢ for some closed term gq.

If P = (%, Act, R) is a complete TSS, then the LTS associated with P is (T(X), Act, —) with
— ={(p,,q) | PFuws p—>+q}. We do not associate an LTS with an incomplete TSS.

2.4 Congruence formats

Let P = (X, Act, R) be a transition system specification, and let ~p be an equivalence
relation defined on the set of closed terms T(X). Then ~p is a congruence for P if, for each
[€ X, we have that p; ~p ¢; implies f(p1,...,Par()) ~pP f(q1,- .., qar(s)). Note that this is
the case if for each open term ¢t € T(X) and each pair of closed substitutions p, p’ : V' — T(X)
we have (Vo € var(t). p(z) ~p p'(z)) = p(t) ~p p'(t).

Every complete TSS generates an LTS of which the states are the closed terms of the
TSS. Thus each behavioural equivalence ~ associates with every TSS P an equivalence ~p
on its set of closed terms. By a congruence format for ~ we mean a class of T'SSs such that
for every TSS P in the class the equivalence ~p is a congruence. Usually, a congruence
format is defined by means of a list of syntactic restrictions on the rules of TSSs.

In an ntytt rule, right-hand sides of positive premises are distinct variables that do not
occur in the source. An ntytt rule is an ntyxt rule if its source is a variable, an ntyft rule if
its source contains exactly one function symbol and no multiple occurrences of variables, and
an nzxytt rule if the left-hand sides of its premises are variables. A variable in a rule is free
if it occurs neither in the source nor in right-hand sides of premises. A rule has lookahead
if some variable occurs in the right-hand side of a premise and in the left-hand side of a
premise. A rule is decent if it has no lookahead and does not contain free variables. Each
combination of syntactic restrictions on rules induces a format for TSSs of the same name.
For instance, a TSS is in decent ntyft format if it contains decent ntyft rules only. A TSS is
in ready simulation format if it consists of ntyft and ntyxt rules that have no lookahead.

15:5

CONCUR 2017

15:6

Divide and Congruence lll: Stability & Divergence

In congruence formats for weak semantics, lookahead must be forbidden. To see this,

consider CCS [18] extended with an operator f defined by ﬁ Then ab0 <, atb0,
whereas f(ab0) ¥, f(arb0). Therefore congruence formats for weak semantics are generally

obtained by imposing additional restrictions on the ready simulation format.

2.5 Decomposition of modal formulas

The decomposition method from [10] gives a special treatment to arguments of function
symbols that are deemed patient; a predicate marks these arguments. Let I' be a predicate
on arguments of function symbols. A standard ntyft rule is a T'-patience rule [6] if it

is of the form —r with T'(f,4). A TSS is I'-patient if
T1yesTap(f)) = f (L1 1, YT i 15 T ar(f))
it contains all I'-patience rules. A standard ntytt rule is I'-patient if it is irredundantly

provable from the I'-patience rules; else it is called I'-impatient. Let ' be a predicate on
{(f,) |1 <i<ar(f), feX}. UT(f, i), then argument i of f is I'-liquid; otherwise it is
I'-frozen [3]. An occurrence of x in ¢ is I'-liquid if either t = =, or t = f(t1,...,t4-(5)) and the
occurrence is I'-liquid in ¢; for a liquid argument ¢ of f; otherwise the occurrence is I'-frozen.

To each term ¢ and formula ¢ we assign a set ! () of decomposition mappings) : V — Q,
such that p(t) = ¢ iff there is a 1 € t71(p) with p(z) | ¥(x) for all € var(t). To define
t=1(), we use a result from [3], where for each standard TSS P in ready simulation format
a collection of decent nxytt rules, called P-ruloids, is constructed. First, P is converted into
a non-standard TSS P with the property that, for all closed literals u, we have P b p if
and only if y is irredundantly provable from P*. The P-ruloids are the decent nxytt rules
irredundantly provable from PT. In [3] is was proved that there is a well-supported proof
from P of a transition p(t) — g, with p a closed substitution, if and only if there is a proof
of this transition that uses at the root a P-ruloid with source t¢.

» Definition 9 ([10]). Let P = (X, A, R) be a I'-patient standard TSS in ready simulation
format. We define - =1 : T(X) x O — P(V — Q) as the function that for each t € T(X) and
¢ € O returns the smallest set t~*(¢) € P(V — Q) of decomposition mappings ¢ : V — O
satisfying the following six conditions. Let ¢ denote a univariate term, i.e. without multiple
occurrences of the same variable. (Cases 1-5 associate with every univariate term ¢ a set
t~1(¢). In Case 6, the definition is generalised to terms that are not univariate, using that
every term can be obtained by applying a non-injective substitution to a univariate term.)

1. ¢ e t71(\,c; i) iff there are ¢; € t71(p;) for i € I with ¢(z) = \;c; ¥i(x) for z € V;

2. ¢ € t=Y(—yp) iff there is a function h : t=1(¢) — var(t) such that ¢(z) = Ayen-1(2) "X (@)
if x € var(t), and ¥(x) = T otherwise;

3. ¢ € t71({a)y) iff there is a P-ruloid and a x € u~1(¢p) such that ¥(z) = x(z) A

/\wi)yeH<ﬂ> x(y) A /\sz>6H ()T 1fa; € var(), and ¥ (z) = T otherwise;
4. 1 € t71({e)y) iff one of the following holds:
a. either there is a y € t~!(¢p) such that ¢(z) = (e)x(z) if x occurs I-liquid in ¢, and
P(x) = x(z) otherwise;

b. or there is a T-impatient P-ruloid = and a x € u~!((e)y) such that o(z) = T if

x ¢ var(t), Y(x) = (e >< (x)/\/\ <ﬁ>x(y)/\/\x%eH —|<'y>'l'> if occurs I'-liquid
in ¢, and ¥(r) = x(x) AN\ & oLy €H<) (y) A /\x%eH —(7)T otherwise;
5. ¢ € t71((#)yp) iff one of the following holds:
a. either v € t71(p);

W. J. Fokkink, R. J. van Glabbeek, and B. Luttik

b. or there is an zg that occurs I-liquid in ¢, and a x € t~1(¢) such that ¥(z) = (#)x(z)
if x = 29, and ¥(z) = x(z) otherwise;
c. or there is a I'-impatient P-ruloid tiu and a x € u~*(y) such that ¥ (z) = x(z) A
/\mi)yeHx(y) A /\m%eH —(y)T if « € var(t), and (x) = T otherwise;
6. ¢ € o(t)"(y) for a non-injective substitution o : var(t) — V iff there is a x € t71(¢)
such that ¢(z) = A c,-1(,) X(2) for all z € V.

The following theorem will be the key to the forthcoming congruence results.

» Theorem 10 ([10]). Let P = (3, A, R) be a I'-patient complete standard TSS in ready
simulation format. For each term t € T(X), closed substitution p, and ¢ € O:

P Ee & et (p) Voevar(t): pl) ().

3 Stability-respecting branching bisimilarity as a congruence

We proceed to apply the decomposition method from the previous section to derive congruence
formats for stability-respecting branching bisimilarity and rooted stability-respecting branch-
ing bisimilarity. The idea behind the construction of these congruence formats is that the
format must guarantee that a formula from the characterising logic of the equivalence under
consideration is always decomposed into formulas from this same logic (see Proposition 14).
This implies the desired congruence results (see Theorem 15 and Theorem 16).

The definitions of the congruence formats for (rooted) stability-respecting branching
bisimilarity, below, presuppose two predicates A and X on the arguments of the function
symbols of a TSS: A marks arguments that contain processes that have started executing,
while X marks arguments that contain processes that can execute immediately. For example,
in process algebra, A and R typically hold for the arguments of the merge t;||t2, and for
the first argument of sequential composition t;-t2, and do not hold for the second argument
of sequential composition. A does not hold and X holds for the arguments of alternative
composition t1 + to. We will instantiate T' (from Section 2.5) with RNA.

We define when a standard ntytt rule is rooted stability-respecting branching bisimulation
safe, and base the rooted stability-respecting branching bisimulation format on that notion.
The stability-respecting branching bisimulation format is defined by adding one additional
restriction to its rooted counterpart: A holds for all arguments.

» Definition 11. A standard ntytt rule r = ; H_ s rooted stability-respecting branching

bisimulation safe w.r.t. predicates N and A if it ;{tuisﬁes the following conditions.

1. Right-hand sides of positive premises occur only A-liquid in .

2. If x € var(t) occurs only A-liquid in ¢, then x occurs only A-liquid in 7.

3. If x € var(t) occurs only R-frozen in ¢, then x occurs only N-frozen in H.

4. Suppose z has exactly one R-liquid occurrence in ¢, and this occurrence is also A-liquid.

a. If x has an N-liquid occurrence in a negative premise in H or more than one N-liquid

occurrence in the positive premises in H, then there is a premise v— in H such that
x occurs N-liquid in v.

b. If there is a premise w — y in H and 2 occurs R-liquid in w, then r is RNA-patient.
Conditions 1-3 were copied from the definition of rooted branching bisimulation safeness
from [10], and condition 4b is part of condition 4 in that definition. Condition 4a, however,
establishes a relaxation of condition 4 from the definition in [10], where it is required that x
has at most one R-liquid occurrence in H, which must be in a positive premise. Here, owing
to stability, we can be more tolerant, as long as z—/+ can be derived. As a consequence

15:7

CONCUR 2017

15:8

Divide and Congruence lll: Stability & Divergence

of this relaxation the rule for the priority operator is rooted stability-respecting branching
bisimulation safe, while it is not rooted branching bisimulation safe.

» Definition 12. A standard TSS is in rooted stability-respecting branching bisimulation
format if it is in ready simulation format and, for some N and A, it is RNA-patient and its
rules are all rooted stability-respecting branching bisimulation safe w.r.t. X and A. This TSS
is in stability-respecting branching bisimulation format if moreover A is universal.

Since the definition of modal decomposition is based on the P-ruloids, we must verify
that if P is in rooted stability-respecting branching bisimulation format, then P-ruloids are
rooted stability-respecting branching bisimulation safe.

» Proposition 13. Let P be an RNA-patient TSS in ready simulation format, in which each
rule is rooted stability-respecting branching bisimulation safe w.r.t. X and A. Then each
P-ruloid is rooted stability-respecting branching bisimulation safe w.r.t. X and A.

Consider a standard TSS in rooted stability-respecting branching bisimulation format,
w.r.t. some X and A. Definition 9 yields decomposition mappings ¥ € t71(¢p), with T" := RNA.
We now prove that if ¢ € O, then ¢(z) € OF = if x occurs only A-liquid in ¢. (That is why
in the stability-respecting branching bisimulation format, A must be universal.) Furthermore,
we prove that if ¢ € OF,, then ¢(z) € OF;- for all z.

» Proposition 14. Let P be an XNA-patient standard TSS in ready simulation format, in
which each rule is rooted stability-respecting branching bisimulation safe w.r.t. X and A.

1. For each term t and x that occurs only A-liquid in t: ¢ € Qf = Vi € t71 () :p(x) € OF=.
2. For each term t and variable x: @ € Q% = Vi € t71(p) : p(x) € Q5=

Now the promised congruence results for < and £ 3 can be proved in the same way as
their counterparts for <, and ¢, in [10].

» Theorem 15. Let P be a complete standard TSS in stability-respecting branching bisimu-
lation format. Then < is a congruence for P.

» Theorem 16. Let P be a complete standard TSS in rooted stability-respecting branching
bisimulation format. Then © % is a congruence for P.

The priority operator [1] is a unary function the definition of which is based on an
ordering < on atomic actions. The term O(p) executes the transitions of the term p, with
the restriction that a transition p — ¢ only gives rise to a transition O(p) = O(q) if there
does not exist a transition p LN ¢ with b > a. This intuition is captured by the rule
Ty ZﬁbL) for all b>a

O(z)-=0(y) '
In view of the target ©(y), by condition 1 of Definition 11, the argument of © must

be chosen A-liquid. And in view of condition 3 of Definition 11, the argument of ® must
be N-liquid. The rule above is rooted stability-respecting branching bisimulation safe, if
the following condition on the ordering on atomic actions is satisfied: if b > a, then 7 > a.
Namely, this guarantees condition 4a of Definition 11: if there is a premise x%, then there
is also a premise x—~.

» Corollary 17. < and <% are congruences for the priority operator.

The priority operator © does not preserve <, (cf. [22, pp. 130-132]). So inevitably, as
observed in [10], the rule for © is not in the rooted branching bisimulation format. Namely,
the RNA-liquid argument z in the source occurs XN-liquid in the negative premises, which
violates the more restrictive condition 4 of the rooted branching bisimulation format.

W. J. Fokkink, R. J. van Glabbeek, and B. Luttik

4 Divergence-preserving branching bisimilarity as a congruence

A modal characterisation of divergence-preserving branching bisimilarity is obtained by
adding a unary modality A to the modal logic for branching bisimilarity: p = Ay if there
is an infinite trace p = py — p1 — pa — --- such that p; = ¢ for all i € N. Modal
formulas Ay however elude the inductive decomposition method from Definition 9, because
they ask for the existence of an infinite sequence of 7-transitions, as shown by the following
example.

» Example 18. Let A = {a;,b; | i € N} U{c}. Parallel composition | is defined by the rules

@ a
T —Y T2 ——Y

- - , where o ranges over A. We extend its operational semantics
z1||z2 —>yllz2 z1||lze—z1|ly

ag b;
with asymmetric communication rules £1—¥ _¥2——¥2

for all i € N. We define p; — pij1

a p el
and p; — 0 and ¢; — g1 and ¢; — 0 for all i € N. Then pyl/go = A({e){c)T). There is
no obvious way to decompose this into modal properties of its arguments py and qq.

We circumvent this problem by introducing so-called abstraction-free TSSs that allow
only patience rules and rules without premises to carry a conclusion with the label 7, and by
introducing oracle transitions p — v/, where the transition label w reveals some pertinent
information on the behaviour of the process p, such as whether p can diverge. On abstraction-
free T'SSs with appropriate oracle transitions the equivalences <, and @Z)A coincide; so
there our congruence format for ¢ is also a congruence format for <>2. We extend
this observation to general TSSs by encoding any given TSS into an abstraction-free TSS
with oracle transitions, and conclude that on any TSS in the stability-respecting branching
bisimulation format <:>bA is a congruence. The same proof strategy shows that on any such
TSS also <:>bAT is a congruence, and it extends to the rooted case. In Section 4.1 we present
this method in more detail. We refrain from introducing the needed machinery, but state
exactly which properties of this machinery we require, and prove our main congruence result
based on these properties. Instead of dealing with specific equivalences <:>bA and €, we
work with parametric equivalences ~ and = where ~ is finer than =2; they will later be
instantiated with <:>bA and €. This allows a reuse of our work with <:>bAT and € in the
roles of ~ and ~, as well as with <:>TAbT and <:>TAb in the role of ~ and &5 in the role of ~.

4.1 A framework for lifting congruence formats to finer equivalences

Our general proof idea is illustrated below, where P is a T'SS in a congruence format for ~.
We show that also ~ is a congruence on P. Consider an operator f, for simplicity depicted
as unary. Given two closed terms p and ¢ in P with p ~ ¢, we show that f(p) ~ f(g). The
picture shows a roundabout trajectory from p to f(p). Imagine a similar trajectory from ¢
to f(q) — not depicted but hovering above the page.

- —— e — — — - —— e — — —

i v e i enc ;> °/ i
A B
| L def() 1 g, i
) @ S = @ = @ f() |
P K AFO(P)

15:9

CONCUR 2017

15:10

Divide and Congruence lll: Stability & Divergence

First we apply a transformation AFQO on P, yielding the abstraction-free TSS with oracle
transitions AFO(P), depicted on the right. For each closed term p of P we introduce a
constant p in AFO(P), in such away that p ~ ¢ implies p ~ . Each n-ary operator f
of P remains an n-ary operator f of AFO(P). Since ~ C &~ we have p ~ §. We argue
that if P is within our congruence format for ~, then the TSS AFO(P) is also within this
congruence format, and conclude from p = § that f(p) ~ f(§). An important result, deferred
to Section 4.3, is that on AFO(P) the equivalences ~ and =~ coincide. Hence f(p) ~ f(§).

Finally, we decode the processes f(p) and f(§), aiming to return to the LTS generated by
P, but actually ending up in another LTS K. Our decoding function dec exactly undoes the
effects of the encoding enc, that sent p to p, so that dec(f(p)) is strongly bisimilar with f(p).
A crucial property of the function dec, also deferred to Section 4.3, is that it is compositional
for ~, meaning that from f(p) ~ f(§) we may conclude dec(f(p)) ~ dec(f(§)). By imposing
the requirement that ~ contains strong bisimilarity (¢), this implies that f(p) ~ f(q).

We now formalise this proof idea. If P is a complete TSS and G is an LTS disjoint from
the LTS associated with P, then, in our formalisation, it will sometimes be convenient to
write P W G for the disjoint union of the LTSs associated with P and G.

» Theorem 19. Let ~ and ~ be behavioural equivalences on LTSs, with & C ~ C ~. Let
F be a congruence format for =, included in the decent ntyft format, and let AFO be an
operation on standard TSSs, where for each TSS P = (X, Act, R) the signature 3 of AFO(P)
contains ¥ enriched by a fresh constant p for each closed term p in T(X), such that, for each
complete standard TSS P in decent ntyft format:

1. also AFO(P) is a complete standard TSS,

2. if P is in §-format then so is AFO(P),

3.p~pq = P~arowr) ¢

4. ~arop) and = ro(p) coincide, and

there is an LTS K = (Pk, Actk, —k), disjoint from P, and a dec : T(f]) — Pk such
that:

5. p~arowpyq = dec(p) ~k dec(q), and

6. f(p1,....0n) ©puk dec(f(P1,...,Pn)) for any n-ary f € £ and p1,...,p, € T(X).
Then § is also a congruence format for ~.

Proof. Let P = (X, Act, R) be a complete standard TSS in §-format. We will show that ~p
is a congruence for P. So let f € ¥ be an n-ary function symbol, and let p;, ¢; € T(X) with
pi ~p q; for i =1,...,n. We need to show that f(p1,...,pn) ~p f(q1,---,qn)-

By requirements 1 and 2, AFO(P) is a complete standard TSS in §-format; hence
~aro(p) is a congruence for AFO(P). By requirement 3 p; ~4rop) Gi fori =1,...,n.
By requirement 4 also ~4ro(p) is a congruence for AFO(P). So f(p1,...,Pn) ~arop)
f(d1,-..,dn). Hence, by requirement 5, dec(f(p1,...,Pn)) ~x dec(f(G1,--.,Gn)). Therefore,
by two applications of requirement 6, and the definition of a behavioural equivalence,
fp1,-.ypn) ~puk f(q1,...,qn) and consequently f(p1,...,pn) ~p f(q1,---,qn)- |

4.2 Abstraction-freeness

In this section we introduce the machinery needed for Theorem 19, namely the conversion
AFO on TSSs and the function dec into the LTS K. We also establish requirements 1 and 6
of Theorem 19, leaving 2-5 to the applications of Theorem 19 in Section 4.3 for specific
instances of ~ and ~. We here take the set of actions Act used in Section 4.1 to be A,.
Again T denotes a predicate that marks arguments of function symbols. In [9] we called
a standard TSS abstraction-free w.r.t. I if only its I'-patience rules carry the label 7 in their

W. J. Fokkink, R. J. van Glabbeek, and B. Luttik

conclusion. Here we use a more liberal definition of abstraction-freeness that also allows rules
that have no premises, and a conclusion of the form ¢ — d for constants ¢ and d.

The next conversion turns a I-patient standard TSS P = (X, A, R) into a I'-patient and
abstraction-free TSS AF O?’C(P). It is parameterised by the choice of a fresh set of actions
0,s0 ON A, =0, and a partial function ¢ : T(X) — O called an oracle. The choice of O
and (varies for different applications of Theorem 19. This choice will be made in Section 4.3
in such a way that requirements 3 and 4 of Theorem 19 are met, for specific instances of ~
and ~.

» Definition 20. Given a I'-patient standard TSS P = (X, A,, R). Let 3 be the signature X,

enriched with a fresh constant v/ and a fresh constant p for each closed term p € T(X). Pick

a fresh action ¢ ¢ A, UO. We define the TSS .A]:C’)lg’é(P) as (3,4, UO U {}, R') where

the rules in R’ are obtained from the rules in R as follows:

1. R; is obtained from R by adding for each rule r and each non-empty subset S of positive
T-premises of 7, a copy of r in which the labels 7 in the premises in S are replaced by ¢;

2. Ry is obtained from R; by replacing, in every rule that has a conclusion with the label 7
and is not a I'-patience rule, the 7-label in the conclusion by ¢;

3. Rj is obtained from Ry by adding the premise v—/ to each rule with a premise v—/;

4. R, is obtained from Rj3 by the addition of a rule without premises p — § for each
transition p —— ¢ ws-provable from P;

5. Rs is obtained from R4 by adding a rule p M y/ for each p € T(X) with ((p) defined;
6. R’ adds to Rs a rule % for each w € O, f € ¥ and argument k with T'(f, k).
y

Step 2 above makes the resulting TSS abstraction-free by renaming 7-labels in conclusions of
non-patience rules into ¢. To ensure that still the same transitions are derived, modulo the
conversion of some 7 into ¢-labels, step 1 above allows positive premises labelled ¢ to be used
instead of 7 in all rules, and step 3 achieves the same purpose for negative premises. These
three steps result in a I-patient and abstraction-free TSS that could be called AFp(P).
For convenience we consider an auxiliary LTS G = (Pg, A, —~¢) with Pg = {p | p €
T(2)} and p 3¢ § iff PFysp —— ¢, and an auxiliary LTS H = (Py, A, UO, —5) with

Py=PgU{y}and =5y :=—>cU{p ey V| ¢(p) defined}. The LTS G is simply a disjoint
copy of the LTS generated by P.

» Lemma 21. Ifp ~p q for some p,q € T(X), then p ~q §.

The LTS H adds oracle transitions to G. The idea is that ((p) is particular for the ~-
equivalence class of p € T(X), which on the one hand ensures that p ~y § iff p ~g ¢, and
on the other hand enforces that ~ and ~ coincide on H. Namely, if p ~y § then the oracle
action of p can be matched by ¢ (and vice versa), which implies p ~y §.

Steps 4 and 5 of Definition 20 incorporate the entire LTS H into AFr(P): each state
appears as a constant and each transition appears as rule without premises. The operators
from X can now be applied to arguments of the form p. Finally, step 6 lets any term
f(x1,...,x,) inherit the oracle transitions from its I'-liquid arguments. Steps 4, 5 and 6
preserve abstraction-freeness; for step 4 this uses the relaxed definition of abstraction-freeness
that allows to incorporate 7-transitions between constants as rules without premises.

» Example 22. Let P have the rules

T a T T T T,
T —y T1— Y1 T —— Y2 T3 — Y3 T2 —ry T3>

g(z1, 72, 73) — g(y, 72, 73) 9(w1, 32, 73) — T2 g(z1,22,23) —> y

15:11

CONCUR 2017

15:12

Divide and Congruence lll: Stability & Divergence

where I'(g,1). Then A]:OIQ’C(P) has the rules

1y Tl -y T —> Y2 T3 — Y3 T —sy T3> T3S
g(z1,z2,23) = 9(y, x2,x3) g(z1, z2,23) sz g(z1, z2, 23) 2y
T —y Tl —5 Yy T — Y2 T3 — Y3 To -5y x3—~ T3>
g(z1,z2,23) 5 g(y, z2, x3) g(z1, z2, 23) 5z g(z1, z2, 23) 2y
T — Y1 @ ;M&L T3 —> y3 1y @ LWJ?L T3 = ys xli}yw (we0)
g(z1,22,23) — T2 g(z1, 22, 23) —> T2 g(z1,22,23) — ¥

This illustrates steps 1,2,3,6 of Definition 20. Since there are no closed terms, steps 4,5
are void.

Clearly, for any I'-patient standard TSS P, the standard TSS AF O?’C(P) is I'-patient and
abstraction-free w.r.t. I'. We drop superscripts O and ¢, and AFO(P) denotes AFOr(P)
for the largest I' for which P is I-patient. The signature of AFO(P) contains the signature
of P enriched by a fresh constant p for each closed term p in P, as required in Theorem 19.

» Lemma 23. Let P be a complete standard TSS in ntyft format. If p ~ug § for some
p,q € T(X), then p ~aro(p) G-

As an immediate consequence of Lemmas 21 and 23 we have the following corollary.
» Corollary 24. Requirement 3 of Theorem 19 is met if p ~g § implies p ~y q. <

The inference p ~g § = p ~u ¢ depends on the choice of O and (; it is deferred to Section 4.3.

The oracle inheritance rules in AFOr(P) — introduced in step 6 of Definition 20 — ensure
that a closed term f(p1,...,p,) has an outgoing w-transition, for w € O, iff one of its I'-liquid
arguments pg has such a transition. Ultimately, all such oracle transitions stem from H.
Using that in AFOp(P) any term p € T(2) can uniquely be written as p(t) with ¢ € T(X)
and p : var(t) — Py, this fact can be phrased as follows. Let ¢t € T(X) and p : var(t) — Py;
then AFOr(P) Fus p(t)—+ iff t has a T-liquid occurrence of a variable z with p(2)—2 g.

Using this, we now verify requirement 1 of Theorem 19:

» Lemma 25. If a standard TSS P in decent ntyft format is complete, then so is AFO(P).

A

The LTS K = (P, A, UO U {¢}, —k) has as states Px = {dec(p) | p € T(X)}, and its

R dec(z)—>dec(y) dec(z)—>dec(y)
ranges over A.. The operator dec : T(X) — Pk erases all transitions with labels from O and
renames labels ¢ into 7. All other transitions are preserved.

transitions are the ones generated by the rules where «

We end this section by verifying requirement 6 of Theorem 19. Intuitively, the behaviour
of a process f(p1,...,pn) in P is the same as that of f(p1,...,pn) in AFO(P), except that
some T-transitions of the former are turned into ¢-transitions of the latter process, and some
oracle transitions may have been added in the latter. Since any rule in AFO(P) with a
conclusion labelled by A, U {c} has positive and negative premises with labels from A, U {¢}
only, these oracle transitions have no influence on the derivation of any transitions from
AFO(P) with labels in A, U{c}. The operator dec removes all oracle transitions and renames
¢ into 7, thereby returning the behaviour of f(p1,...,P,) to match that of f(p1,...,pn)
exactly.

» Proposition 26. Let P be a complete standard TSS in decent ntyft format.
Then f(p1,...,Pn) € pyx dec(f(P1,-..,Pn)) for any n-ary f € X and p1,...,p, € T(X).

W. J. Fokkink, R. J. van Glabbeek, and B. Luttik

4.3 Application of the framework to divergence-preserving semantics

We apply Theorem 19 to show that the stability-respecting branching bisimulation format
and its rooted variant are congruence formats for <27 and </, and for © 4T and < 4.

As congruence format in Theorem 19 we take the (rooted) stablhty—respectmg branching
bisimulation format intersected with the decent ntyft format. It is straightforward to
check that the conversion AFO on standard TSSs defined in Section 4.2 preserves the
(rooted) stability-respecting branching bisimulation format, and thus satisfies requirement 2
of Theorem 19. Here it is important that in step 6 of Definition 20 a term f(z1,...,z,)
inherits oracle transitions only from its I'-liquid arguments — else condition 3 of Definition 11
would be violated. Furthermore, condition 4a of Definition 11 is preserved because premises
v—£+ are kept in place in step 3 of Definition 20; and condition 4b of Definition 11 is preserved
because the transformation in Definition 20 does not introduce new positive 7-premises.

We first apply Theorem 19 with <:>bAT and £ in the roles of ~ and =~. Let us say that
a process p in an LTS is divergent if there exists an infinite sequence of processes (pg)reN
such that p, — pry1 for all k € N, i.e. if p|= AT. In the construction of the LTS H out of
G (cf. Section 4.2) we take O = {AT} and let ((g) = AT iff g is divergent. Thus in H all
divergent states of G have a fresh outgoing transition labelled AT.

With this definition of H, we have p ~y ¢ iff p ~q §: any weakly divergence-preserving
branching bisimulation B on G relates divergent states with divergent states only, and thus
is also a weakly divergence-preserving branching bisimulation on H (adding 1/ B 4/.) Hence,
by Corollary 24, requirement 3 of Theorem 19 is satisfied. Requirement 4 is also satisfied:

» Proposition 27. On AFO(P) the equivalences & AT and < coincide.

The next example shows that Proposition 27 would not hold if we had skipped step 6 of
Definition 20, inheriting oracle transitions for I'-liquid arguments, or had not used oracle
transitions at all.

» Example 28. Let p € T(X) have no outgoing transitions, while ¢ € T(X) has only a
T- transition to itself and a 7-transition to p. Then in the LTS G we have p &7, ¢ but
p % ¢ - After translation to H, the processes p and § are distinguished by means of oracle
tran51tlons so that we have p <4} ; ¢ and p % i G- Now let X feature a unary operator f

with as only rule ﬁ If oracle transitions would not be inherited in AFO(P), then

we would have f(p) & AFO(P) f(g) but f(p) %b AFO(P) f(‘j)

Also requirement 5 of Theorem 19 holds.
> Proposition 29. p &1 py q = dec(p) iy dec(q).

» Corollary 30. The stability-respecting branching bisimulation format intersected with the
decent ntyft format is a congruence format for ﬁbAT.

Each standard T'SS P in ready simulation format can be converted to a T'SS P’ in decent
ntyft format, preserving the set of ws-provable closed literals [3]. Moreover, if P is in
stability-respecting branching bisimulation format, then so is P’. Thus we obtain:

» Theorem 31. Let P be a complete standard TSS in stability-respecting branching bisimu-
lation format. Then <:>bAT is a congruence for P. O

In a similar fashion it can be proved that the stability-respecting branching bisimulation
format is a congruence format for ¢*, and that the rooted stability-respecting branching
bisimulation format is a congruence format for <47 as well as © 4.

15:13

CONCUR 2017

15:14

Divide and Congruence lll: Stability & Divergence

5 Related work

Ulidowski [19, 20, 21] proposed congruence formats, inside GSOS [4], for weak semantics that
take into account non-divergence, called convergence in [11]. In [19] he introduces the ISOS
format, and shows that the weak convergent refusal simulation preorder is a precongruence
for all T'SSs in the ISOS format. The GSOS format — in our terminology the decent nzyft
format — allows only decent ntyft rules with variables as the left-hand sides of premises. The
ISOS format is contained in the intersection of the GSOS format and our stability-preserving
branching bisimulation format. Its additional restriction is that no variable may occur
multiple times as the left-hand side of a positive premise, or both as the left-hand side of a
positive premise and in the conclusion of a rule. In [20, 21] he employs Ordered SOS (OSOS)
T'SSs [20]. An OSOS TSS allows no negative premises, but includes priorities between rules:
r < r’ means that r can only be applied if 7' cannot. An OSOS specification can be seen as,
or translated into, a GSOS specification with negative premises. Each rule r with exactly one
higher-priority rule ' > r is replaced by a number of rules, one for each (positive) premise of
r’; in the copy of r, this premise is negated. For a rule r with multiple higher-priority rules
r’, this replacement is carried out for each such r’.

The ebo and bbo formats from [20] target convergent delay and branching bisimulation
equivalence, respectively, whereas the rebo and rbbo formats from [21] target their rooted
counterparts. These rooted formats are more liberal than their unrooted counterparts, and
the (r)bbo format is more liberal than the (r)ebo format. If patience rules are not allowed
to have a lower priority than other rules, then the (r)bbo format, upon translation from
0OSOS to GSOS, can be seen as a subformat of our (rooted) stability-respecting branching
bisimulation format. Patience rules are in the (r)bbo format however, under strict conditions,
allowed to be dominated by other rules, which in our setting gives rise to patience rules with
negative premises. This is outside the realm of our rooted stability-respecting branching
bisimulation format. On the other hand, the TSSs of the process algebra BPA_s,, the binary
Kleene star and deadlock testing (see [7]), for which rooted convergent branching bisimulation
equivalence is a congruence, are outside rbbo but within the rooted stability-respecting
branching bisimulation format.

6 Conclusions

We showed how the method from [10] for deriving congruence formats through modal
decomposition can be applied to weak semantics that are stability-respecting. We used (rooted
and unrooted) stability-respecting branching bisimulation equivalence as a notable example.
Moreover, we developed a general method for lifting congruence formats from a weak semantics
to a finer semantics, and used it to show that congruence formats for £ 2 and < are also
congruence formats for their divergence-preserving counterparts. This research provides
a deeper insight into the link between modal logic and congruence formats, and strengthens
the framework from [10] for the derivation of congruence formats for weak semantics.

We build on a rich body of earlier work in the realm of structural operational semantics:
the notions of well-supported proofs and complete TSSs from [12]; the ntyft/ntyxt format
[16, 5]; the transformation to ruloids; and the work on modal decomposition and congruence
formats from [3]. In spite of these technicalities, the resulting framework for deriving
congruence formats for weak semantics is relatively straightforward. For this one only needs to:
(1) provide a modal characterisation of the weak semantics under consideration; (2) study
the class of modal formulas that result from decomposing this modal characterisation, and
formulate syntactic restrictions on T'SSs to bring this class of modal formulas within the

W. J. Fokkink, R. J. van Glabbeek, and B. Luttik

original modal characterisation; and (3) check that these syntactic restrictions are preserved
under the transformation to ruloids. Steps (2) and (3) are very similar in structure for
different weak semantics, as exemplified by the way we obtained a congruence format for
stability-respecting branching bisimulation equivalence. And the resulting congruence formats
tend to be more liberal and elegant than existing congruence formats in the literature.

Our intention is to carve out congruence formats for all weak semantics in the spectrum
from [11] that have reasonable congruence properties. At first we expected that the current
third instalment would allow us to do so. However, it turns out that convergent weak semantics
as considered in for instance [20, 21, 23] still need extra work. The modal characterisations of
these semantics are three-valued [11], which requires an extension of the modal decomposition
technique to a three-valued setting.

—— References

1 J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Syntax and defining equations for an inter-
rupt mechanism in process algebra. Fundamenta Informaticae, 9(2):127-167, 1986.

2 T. Basten. Branching bisimulation is an equivalence indeed! Information Processing Letters,
58(3):141-147, 1996. doi:10.1016/0020-0190(96)00034-8.

3 B. Bloom, W.J. Fokkink, and R.J. van Glabbeek. Precongruence formats for decorated
trace semantics. Transactions on Computational Logic, 5(1):26-78, 2004. doi:10.1145/
963927.963929

4 B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can’t be traced. Journal of the ACM,
42(1):232-268, 1995. doi:10.1145/200836.200876

5 R. Bol and J.F. Groote. The meaning of negative premises in transition system specifica-
tions. Journal of the ACM, 43(5):863-914, 1996. doi:10.1145/234752.234756.

6 W.J. Fokkink. Rooted branching bisimulation as a congruence. Journal of Computer and
System Sciences, 60(1):13-37, 2000. doi:10.1006/jcss.1999.1663.

7 W.J. Fokkink and R.J. van Glabbeek. Divide and congruence II: Delay and weak bisim-

ilarity. In Proc. LICS 2016, pages 778-787. ACM/IEEE, 2016. doi:10.1145/2933575.

2933590.

8 W.J. Fokkink, R.J. van Glabbeek, and B. Luttik. Divide and congruence III: From de-
composition of modal formulas to preservation of stability and divergence. Full version.
http://theory.stanford.edu/~rvg/abstracts.html#125.

9 W.J. Fokkink, R.J. van Glabbeek, and P. de Wind. Divide and congruence: From decom-
position of modalities to preservation of branching bisimulation. In Proc. FMCO 2005,
volume 4111 of LNCS, pages 195-218, 2006. doi:10.1007/11804192_10.

10 W.J. Fokkink, R.J. van Glabbeek, and P. de Wind. Divide and congruence: From decom-
position of modal formulas to preservation of branching and n-bisimilarity. Information
and Computation, 214:59-85, 2012. doi:10.1016/j.1c.2011.10.011.

11 R.J.van Glabbeek. The linear time-branching time spectrum II: The semantics of sequential
systems with silent moves. In Proc. CONCUR 1993, volume 715 of LNCS, pages 66-81.
Springer, 1993. doi:10.1007/3-540-57208-2_6.

12 R.J. van Glabbeek. The meaning of negative premises in transition system specifications II.

Journal of Logic and Algebraic Programming, 60/61:229-258, 2004. doi:10.1016/j.jlap.

2004.03.007.

13 R.J. van Glabbeek, B. Luttik, and N. Tr¢ka. Branching bisimilarity with explicit divergence.
Fundamenta Informaticae, 93(4):371-392, 2009. doi:10.3233/FI-2009-109.

14 R.J. van Glabbeek, B. Luttik, and N. Tréka. Computation tree logic with deadlock detec-
tion. Logical Methods in Computer Science, 5(4), 2009.

15:15

CONCUR 2017

http://dx.doi.org/10.1016/0020-0190(96)00034-8
http://dx.doi.org/10.1145/963927.963929
http://dx.doi.org/10.1145/963927.963929
http://dx.doi.org/10.1145/200836.200876
http://dx.doi.org/10.1145/234752.234756
http://dx.doi.org/10.1006/jcss.1999.1663
http://dx.doi.org/10.1145/2933575.2933590
http://dx.doi.org/10.1145/2933575.2933590
http://theory.stanford.edu/~rvg/abstracts.html#125
http://dx.doi.org/10.1007/11804192_10
http://dx.doi.org/10.1016/j.ic.2011.10.011
http://dx.doi.org/10.1007/3-540-57208-2_6
http://dx.doi.org/10.1016/j.jlap.2004.03.007
http://dx.doi.org/10.1016/j.jlap.2004.03.007
http://dx.doi.org/10.3233/FI-2009-109

15:16

Divide and Congruence lll: Stability & Divergence

15

16

17

18
19

20

21

22

23

R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in bisimulation
semantics. Journal of the ACM, 43(3):555-600, 1996. doi:10.1145/233551.233556.

J.F. Groote. Transition system specifications with negative premises. Theoretical Computer
Science, 118(2):263-299, 1993. doi:10.1016/0304-3975(93)90111-6.

M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency. Journal
of the ACM, 32(1):137-161, 1985. doi:10.1145/2455.2460.

R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

I. Ulidowski. Equivalences on observable processes. In Proc. LICS 1992, pages 148-159.
IEEE, 1992. doi:10.1109/LICS.1992.185529.

I. Ulidowski and I. Phillips. Ordered SOS rules and process languages for branching and
eager bisimulations. Information and Computation, 178(1):180-213, 2002. doi:10.1006/
inco.2002.3161.

I. Ulidowski and S. Yuen. Process languages for rooted eager bisimulation. In Proc.
CONCUR 2000, volume 1877 of LNCS, pages 275-289. Springer, 2000. doi:10.1007/
3-540-44618-4_21.

F.W. Vaandrager. Algebraic Techniques for Concurrency and their Application. PhD thesis,
University of Amsterdam, 1990.

D. Walker. Bisimulation and divergence. Information and Computation, 85(2):202-241,
1990. doi:10.1016/0890-5401(90)90048-M.

http://dx.doi.org/10.1145/233551.233556
http://dx.doi.org/10.1016/0304-3975(93)90111-6
http://dx.doi.org/10.1145/2455.2460
http://dx.doi.org/10.1109/LICS.1992.185529
http://dx.doi.org/10.1006/inco.2002.3161
http://dx.doi.org/10.1006/inco.2002.3161
http://dx.doi.org/10.1007/3-540-44618-4_21
http://dx.doi.org/10.1007/3-540-44618-4_21
http://dx.doi.org/10.1016/0890-5401(90)90048-M

	Introduction
	Preliminaries
	Stability-respecting / divergence-preserving branching bisimilarity
	Modal logic
	Structural operational semantics
	Congruence formats
	Decomposition of modal formulas

	Stability-respecting branching bisimilarity as a congruence
	Divergence-preserving branching bisimilarity as a congruence
	A framework for lifting congruence formats to finer equivalences
	Abstraction-freeness
	Application of the framework to divergence-preserving semantics

	Related work
	Conclusions

