Uniform Sampling for Networks of Automata*!

Nicolas Basset!, Jean Mairesse?, and Michele Soria3

1 Université libre de Bruxelles, Brussels, Belgium
nicolas.basset@Qulb.ac.be

2 Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6, 4 place Jussieu,
75252 Paris Cedex 05, France
jean.mairesse@lip6.fr

3 Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIPG6, 4 place Jussieu,
75252 Paris Cedex 05, France
michele.soria@lip6.fr

—— Abstract

We call network of automata a family of partially synchronised automata, i.e. a family of determin-
istic automata which are synchronised via shared letters, and evolve independently otherwise. We
address the problem of uniform random sampling of words recognised by a network of automata.
To that purpose, we define the reduced automaton of the model, which involves only the product
of the synchronised part of the component automata. We provide uniform sampling algorithms
which are polynomial with respect to the size of the reduced automaton, greatly improving on
the best known algorithms. Our sampling algorithms rely on combinatorial and probabilistic
methods and are of three different types: exact, Boltzmann and Parry sampling.

1998 ACM Subject Classification F.1.1 Models of Computation, F.1.2 Modes of Computation,
G.2.1 Combinatorics, G.3 Probability and Statistics

Keywords and phrases Partially synchronised automata, uniform sampling, recursive method,
Boltzmann sampling, Parry measure

Digital Object Identifier 10.4230/LIPIcs. CONCUR.2017.36

1 Introduction

Automata are ubiquitous in computer science in general, and in verification in particular, since
they provide a good abstraction of the behaviour of sequential systems. Networks of automata
are a meaningful model of concurrent systems where a family of component automata are
synchronised via shared letters, and otherwise evolve independently. They appear under
various names in the literature (see e.g. [3, 18] and references therein). An example of a
network of automata is depicted in Figure 1. A challenging task when dealing with such
concurrent model is to avoid the state space explosion due to an explicit construction of the
product model.

In the context of either performance evaluation or model-checking of concurrent systems,
it is often impossible to perform a formal or exhaustive analysis of the huge number of
possible trajectories (recognised words in the context of automata). To cope with the issue,
a possibility is to perform either simulation or Monte Carlo model checking, that is, to

* An extended version of this article is available in [4].

T This work was partially supported by the Fondation Simone et Cino Del Duca. N. Basset was partially
supported by the ARC project “Non-Zero Sum Game Graphs: Applications to Reactive Synthesis and
Beyond” funded by Fédération Wallonie-Bruxelles.

© Nicolas Basset, Jean Mairesse, and Michele Soria;

licensed under Creative Commons License CC-BY
28th International Conference on Concurrency Theory (CONCUR 2017).
Editors: Roland Meyer and Uwe Nestmann; Article No. 36; pp. 36:1-36:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2017.36
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

36:2

Uniform Sampling for Networks of Automata

&&

Figure 1 Top: A network of three DFAs with shared alphabet Synch = {«, 8,7}. The dotted
transitions labelled with v (top) have been added without changing the product, see Remark 2.
Bottom: the product. Unreachable states 113,123, 213,223, 312, 322 are not represented. The states
occurring just after a synchronisation are 112,311, 313, 323.

concentrate on a sample of the trajectories drawn at random (see [13, 20]). As noted in
[9, 20], the classical sampling methods applied in this context use a random walk evolving on
the product automaton, the most natural one being the isotropic random walk that chooses
the next transition uniformly at random among available transitions. For instance, for the
example of Figure 1, when the state 112 is visited by the random walk then each one of
the transitions «, a and b is chosen with probability 1/3. The isotropic sampling seems very
natural at first sight but, unfortunately, there are simple examples (exhibited in [9, 20]) for
which this sampling tends to concentrate most of the probability on a very small fraction
of the trajectories. Moreover, isotropic sampling is useless to answer quantitative question
such as: "With which confidence can we claim than more than 60 % of the trajectories of
length 1000 visit a target state?". To answer such questions, it is necessary to use a uniform
sampling that is to choose all equal length trajectories with the same probability. A thorough
argumentation why uniform sampling should be preferred to isotropic sampling is given in
[9, 20] for both Monte Carlo model checking and random model based testing. Despite these
pioneering works, designing efficient uniform samplers for network of automata remains a
challenge that we address in the present paper.

Before detailing our work, we need to distinguish between different notions of uniform
sampling. A fized length uniform sampler is a random algorithm taking as input a positive
integer n and returning as output a word of length n with uniform probability. A Boltzmann
sampler is a random algorithm returning a word of random length with the property that

N. Basset, J. Mairesse, and M. Soria

two words of the same length are equiprobable. A Parry sampler is a random method to
generate infinite words in a "uniform" way. It requires the rigorous definition of the notion
of "uniform probability measure" on infinite words. Both Boltzmann and Parry samplings
are relevant in Monte Carlo model checking. On the one hand, if some variability on the
length of the sampled word is allowed, then Botzmann sampling is useful and efficient, and
the expected length of the sampled word can be chosen by tuning a parameter. On the other
hand, if some variability with respect to uniformity is allowed, then Parry sampling is of
interest: with Parry, we obtain an exact uniform sampling for infinite words, but finite words
can also be sampled, with approximate uniformity and an additional important feature: the
sampling procedure is dynamic, that is, we can re-use a sampled word of length n as the
prefix of a sampled word of length n + k.

The straightforward method of building explicitly the product automaton (the automaton
defined as the direct product of the component automata), and apply to it a standard uniform
sampling algorithm for automata (e.g. [5, 19]), is not efficient since the product automaton
has a size which is exponential with respect to the size of the components. In fact, the
whole challenge is to avoid constructing explicitly the product automaton. To be efficient,
the approach has to be compositional: use uniform samplers for component automata and
combine them in a clever way.

We now review previous literature related to the problem. Consider first the case with
no shared letters, that is, no synchronisation between the component automata. In this
case, the language of the network of automata is simply the shuffle of the languages of the
component automata. The shuffle product has been widely studied from a formal language
theory viewpoint (see [21] and references therein). We are not aware of any paper dealing
explicitly with uniform sampling in this precise context. The most relevant article is [8] which
provides a Boltzmann sampler for extended linear expressions with shuffle. Applying this
algorithm in our context is not straightforward since we do not know a priori if there exists
a polynomial method to transform a family of automata into an extended linear expression
with shuffle. The direct method, which consists in shuffling the regular expressions obtained
by transforming each component automaton separately, is not efficient. Indeed, the passage
from automata to regular languages is known to increase the size of the description in an
exponential way in the worst case (see e.g. [2]). In [9] the authors identify (amongst other
contributions) the challenge of uniform sampling for network of DFAs. Our work is partly
inspired by ideas of this paper like using shuffle of languages between synchronisations.
However, there are several problems unsolved there that make their sampling useful only
under very stringent conditions:

(i) there must be at most one shared letter in the network of automata and if there is one,
it must appears exactly once in every component automaton;

(i) there must be very few synchronisation in the sampled word (the algorithm having
an exponential complexity wrt. the number of occurrences of the shared letter in the
sampled word);

(iii) the sampling algorithm for the shuffle of languages can only be used if the words that
are shuffled are long and belong to strongly connected automata.

In fact, we show that the third item is not a real problem. We provide exact uniform
samplers for the shuffle of languages that are built and that run in polynomial time without
any restriction on the length of the words shuffled nor on the topology of the component
automata. By contrast, when all the letters are synchronised, difficulties are unavoidable in
the worst-case. Indeed, the problem of uniform sampling is more difficult than checking the
language emptiness of the product of automata which is a PSPACE complete problem. An

36:3

CONCUR 2017

36:4

Uniform Sampling for Networks of Automata

option to address this issue would be to identify a subclass for which the problem would be
tractable in polynomial time like in the first item above. Here we avoid such a restriction by
adopting a fixed-parameter-tractable approach: our algorithms are designed for the whole
class of networks of automata but run in polynomial time when a well suited parameter is
fixed. This parameter controls the size of the "synchronised part" of the product automaton.
We thus take advantage of the fact that the synchronised part of the product may be small,
and decompose the network into pieces coming from the synchronised part and others coming
from the "shuffle" of non-synchronised parts, leading to efficient sampling algorithms that
use the product only when necessary. To that purpose, we introduce the notion of reduced
automaton. FEach component automaton of the network is transformed into a simplified
automaton involving only the shared letters, and a remaining part. The reduced automaton
is the product of the simplified automata, hence the exponential blow-up only concerns the
synchronised part of the automata, and the size of the reduced automaton is a parameter
that reflects the intrinsic synchronisation complexity of the problem. Our basic idea is
to decompose the language recognized by the network of automata in terms of union and
concatenation of shuffles of languages corresponding to the component automata. Relying
on this decomposition, we then use a compositional approach to derive uniform samplers.

We now sum up our results. We propose a fixed length uniform sampler for arbitrary
network of automata running in linear time in the length of the sampled word, and in
polynomial time in the size of the reduced automaton. In particular we provide solutions
to the problems of [9] listed above: there is no restriction on the number of shared letters;
the sampling is exactly uniform; the complexity is drastically improved wrt. the number
of occurrences of shared letters in the word. In the case of no shared letters, we design a
fixed length uniform sampler running in linear time wrt. the length of the sampled words
and in polynomial time wrt. the sum of the sizes of the component automata. This is a
key ingredient used in the case where synchronisations are present. In addition to this, we
provide the first Boltzmann and Parry samplers for networks of automata.

We conclude this introduction with few related works. Uniform sampling for related
but different models of concurrent systems are considered in [1, 7]. Approximate uniform
sampling of valuations of SAT-formulas are given in [16] (see also references therein).

2 Preliminaries: Monolithic Uniform Sampling for a DFA

In this section, we present the three types of uniform sampling for a single automaton. All
the algorithms are classical and run in polynomial time. They will be used as building blocks
in the compositional approach of the following sections.

Let us begin with some basics on automata. A finite state automaton (FSA) is a tuple
A=(Q,%,, F,A) where Q is the set of states, 3 is the alphabet of actions, ¢ is the initial
state, I is the set of final states and A C @ x X x Q is the set of transitions. A path of length
n € N from s to t labelled by w = ay ---a,, € X" is a sequence of transitions (s;, a;, ti)ie[n}
such that s = s, t,, = t, for i < n, t; = ;41 (where here and below, for k € N we let
[k] = {1,...,k}). We write s — t if there is a path from s to ¢ labelled by w. A word w is
recognised by the automaton A if there is a final state t € F such that ¢« = ¢t. The language
recognised by A, denoted by L, is the set of words recognised by A. We denote by L, the
language of words starting from s, that is recognised by the FSA (Q, X, s, F, A). The size
of A, denoted by |A|, is the number of states and transitions. When A is functional, that
isVs € Q,Va € X, |{t| (s,a,t) € A}| <1, the FSA is called a deterministic finite state
automaton (DFA). In automata theory, trimming is a standard operation which consists in

N. Basset, J. Mairesse, and M. Soria

deleting useless states of a FSA (a state is useful if it is accessible from ¢ and co-accessible
from a final state). We assume without loss of generality that all automata we consider are
trimmed.

For s €), the languages L can be characterised by the following language equations:

Li= |J aLe (Ufe}ifseP) (1)
(s,a,t)EA

In the remainder of the section, we consider a DFA A of language £. We are going to
present three methods to sample a word from L, the three being built on a common recursive
scheme based on Eq. (1): randomly choose the first transition (s, a,t), output the letter a
and then repeat recursively from ¢. These methods are sequential: letters are randomly
chosen one after the other in the order in which they appear in the output word.

2.1 Cardinalities and fixed length uniform sampling

Recall that a fized length uniform sampler is a random algorithm that takes as input a
positive integer n and outputs a word of L of length n such that every word has the same
probability to be output.

The general recursive method for uniform sampling of [12] applies in this context. The
idea is to transfer recursive equations on cardinalities into recursive samplers. The equations
on cardinalities are obtained directly from Eq. (1). Denoting by Is ,, the number of words of
length n in L, we have

ln= Y. lna ifn>0andlo=ler (2)
(s,a,t)EA

A fixed length uniform sampler is then obtained as follows: choose the first transition (s, a,t)
with probability {; ,—1/ls n, output a and recursively repeat for the n — 1 remaining letters,
starting in state t.

Note that a |Q| x n table with the coefficients (I x)seq kefn] can be computed in time!
O(n|A|) using Eq. (2). Cardinalities can also be expressed in terms of the power of the
adjacency matrix of A, that is, the matrix A = (As)seq with Ay = [{a | (s,a,t) € A}l
Indeed, for all s € Q,n € N, we have: [, =, p AY,.

The drawback of the above method is that the transition probabilities (I;,,—1/ls,n) depend
on n so that the cardinalities should be computed and stored up to the length of the word
to be generated. In the next two sampling methods on the other hand, the transition
probabilities do not depend on n.

2.2 Generating functions and Boltzmann sampling

The general Boltzmann sampling of [10] applies in this context. Whereas the fixed length
sampler was based on recursive equations on cardinalities, the Boltzmann sampler is based
on recursive equations on generating functions.

Let us recall some basics on generating functions associated to languages. The ordinary
generating function (OGF) of a language L is L(z) = Y cnlm2™
of words of length m in tne language, and the exponential generating function (EGF) is
L(z) = Y men Im2™/m!. Generating functions can be seen either as formal power series

1, 2™, where [, is the number

! Here and in the rest of the paper, the complexity is given in terms of arithmetic complexity.

36:5

CONCUR 2017

36:6

Uniform Sampling for Networks of Automata

or as functions of the complex variable z. The convergence radius of L(z) is v(L) =
inf{|z|; L(z) is not defined}.
The equations on languages (1) transfer to equations on generating functions:

Ly(z)=2 Y Li(2)+ Leer (3)

(s,a,t)EA

Define the column vector L(z) = (Ls(2))scq where Lg(2) is the OGF of L. Recall that A is
the adjacency matrix. For z < v(L), we have: L(z) = (I — zA)lep, where ef is the column
vector defined by (ep)s =1 if s € F and (ep)s = 0 otherwise. The convergence radius t(L)
is characterised by? v(L) = inf{|z|; (I — 2A4)~! is defined}.

An (ordinary) Boltzmann sampler draws a word w with probability distribution z1*!/L(z)
(2 < t(L) being a parameter to be chosen), hence the size is not fixed but the distribution is
uniform when conditioned on a given size. Based on Eq. (3), a Boltzmann sampler for £ of
parameter z can be recursively defined: with probability 15¢r/Ls(2), no transition is chosen
and the random generation stops; otherwise the transition (s, a,t) is chosen with probability
zL4(2)/Ls(2), the letter a is output, and the sampler is called recursively from ¢ to output
the remainder of the word.

Similarly, an exponential Boltzmann sampler draws words with probability distribution
2%l /(lw|!L(z)). We give in [4] the construction of such an exponential Boltzmann sampler.

2.3 Perron-Frobenius Theorem and Parry sampling

In this section, we need to assume that the DFA under consideration is strongly connected?.

Parry sampling is intuitively the limit case of Boltzmann sampling where z = (L) so
that the probability to stop the generation is null and the output word is infinite. The
formal definition is based on the Perron-Frobenius Theorem. This theorem gives fundamental
properties on the spectral theory of non-negative matrices. We state it in the context of
strongly connected automata. We refer the reader to [15].

» Theorem 1 (Perron-Frobenius stated for automata). Consider a strongly connected DFA

and its adjacency matriz A. The following holds:

(i) The spectral radius p(A), that is, the mazimal modulus of all eigenvalues of A, is itself
an eigenvalue. It satisfies p(A) = 1/¢(L) .

(ii) The eigenvalue p(A) is simple, its unique (up to a multiplicative constant) eigenvector v
has positive coefficients, it is called the Perron vector. There is no other eigenvector
with only non-negative coefficients.

(iii) If 0 < A’ < A then p(A’) < p(A), and p(A") = p(A) only if A’ = A.

A Parry sampler for L is an algorithm that produces an infinite random word w such
that for any finite word u such that s = ¢, the probability that w begins by u is v /(p"vs),
where v is the Perron vector. A Parry sampler can be recursively defined by choosing the
first transition (s, a,t) with probability v;/(pvs) and repeating recursively from ¢.

A Parry sampler does not give exact uniform sampling on words of length n. However
it gets closer and closer to being uniform as n gets larger. Hence it can be used as an
approximate uniform sampler for large words of a given length.

2 Here, we use the assumption that the DFA is trimmed, otherwise one can construct examples where a part
of the DFA is useless for the language definition, but decreases the value of inf{|z|; (I—zA)~! is defined}
which is in that case strictly smaller than t(L).

3 There is a path between each couple of states in the automaton

N. Basset, J. Mairesse, and M. Soria

3 Network of automata and the reduced automaton

A network of automata is composed of a family of DFA that are synchronised on shared
letters and evolve independently otherwise. The associated reduced automaton is a product
automaton taking into account only the synchronised part of the components. In this section,
we formally define these notions and provide equations on languages associated to states and
transitions of the reduced automaton, together with a system of equations satisfied by their
generating functions.

3.1 Network of automata

Consider a family of K DFAs A® = (Q®W,x® &) F@ A®) for i € [K]. The alphabets
Y are not assumed to be disjoint. The associated product automaton is the DFA defined
by AD x ... x AK) = (Q,%,1,F,A) with Q = QM) x .- x Q); ¥ =M y...uxnE),

t= (W,), F=FD x ... x FE) and (s,a,t) € A if and only if: Vi € [K] s.t.

acX® (s a,tD)c AW; and Vi € [K] s.t. a ¢ 2O, 500 =),

An example is given in Figure 1. We call network of automata a family of DFAs evolving
together according to the above rules of the product automaton.

Denote by Synch the set of letters shared by several automata of the network (we use
Greek letters for the elements of Synch).

» Remark 2. Given (A(i))ie[K], we define for every i € K|, the FSA BY obtained from
AW by adding in every state a self-loop labelled by every a € Synch \ ¥, Observe that we
have: AD x - x AU = B x ... x BE) | See an example in Figure 1.

Accordingly, in the following, we assume without loss of generality that every letter in
Synch belongs to every alphabet.

The special case where Synch =) will be of crucial importance. It involves the shuffle
of languages defined just below. The shuffle product of two words w» and w(® on disjoint
alphabets is the finite language, denoted by w 1w | containing all the possible interleavings
of w® and w®, e.g. ablcd = {abcd, acbd, acdb, cabd, cadb, cdab}. The shuffle product of
two languages £(1) and £ on disjoint alphabets is

£ @ — U w® W w®.
(w® w@)eLm) x £

The shuffle product is associative and we denote by £(1) - - 1w £ the shuffle product of
K languages LM, ..., L5 The language associated to a network of automata such that
Synch = (is the shuffle of the component languages:

LIAD x o Ay = £(ADY - £(AT), (4)

In the dual special case where Synch = ¥, the language associated to the network of
automata is the intersection of the component languages:

LAY x o x AT = £(ADY N o0 (AT, (5)

3.2 Reduced automaton

We now introduce the reduced automaton of a network of automata, a product automaton
which only involves the synchronised letters. All the algorithms presented in this paper will
require to compute A;eq, whereas the product automaton A is never explicitly computed.

36:7

CONCUR 2017

36:8

Uniform Sampling for Networks of Automata

« aaﬂa’y B (0%
gl B,y
O=5

Figure 2 The reduced automata of the automata of Figure 1.

«

o v

@?

We define the reduced automaton of a DFA A = (Q,X,t, F,A) as the FSA Ayeq =
(Qreds Yred, tred, Qreds Area) such that ¥,.cq = Synch and Qreq C @ is the set of states reached
from the initial state tzeq = ¢ through the transition relation Areq C Qreq X Srea X Qred
defined by § = (s, a,t) € Ayeq if and only if there exists a word u € (X \ Synch)* such that
s =% t. The set of final states Freq = Qrea is not relevant since we are only interested in the
states and transitions of A,eq, and not in its language. See Figure 2 for an example.

» Proposition 3. Given a DFA A, the FSA A,.q can be computed by replacing every label
not in Synch by € and doing an e-transitions removal.

The removal of e-transitions can be achieved in time O(|Q|* + |Q|.|A|), as shown for
instance in [17].

The next proposition enables us to construct compositionally the reduced automaton
associated to a network of automata, based on the reduced automata of each of the component
automata computed monolithically as in Proposition 3.

» Proposition 4. Consider a network of automata (A(i))ie[K] and A= AN x ... x A
its associated product. It holds that Apeq = A(T?d x - x AK)

red *

The problem of uniform random generation of words in the language of a product automaton
requires first to check its emptiness which is PSPACE-complete in the sum of the size of the
component automata [14] already for the special case with all letters synchronised (see (5)).

Our sampling algorithm described in Section 4.2 below relies on pre-computations that
are polynomial in the size |Ared| = |Qrea| + |Area| of the reduced automaton Ayeq. More
precisely these problems are fixed parameter tractable when the size | Ayeq| is considered a
parameter, namely their complexity is of the form O(|Azed| - p(n, Zfil |A®)) where p is
a polynomial, n is the length of words to be generated and Zfil |A®)]| is the size of the
network. Note that when there are only shared letters the reduced automaton has exactly
the same states and transitions as the product automaton and hence can be of an exponential
size. However, in the general case, when a fair proportion of letters are not shared we expect
the reduced automaton to be of far smaller size than the product automaton. We give in
Proposition 5 below upper-bounds on | Ayeq| that involve parameters easier to compute (in
polynomial time wrt. |A]) that we define now.

Given a letter o € Synch and an automaton 4, we denote by d(«,.A) the cardinalities of
the set of states of A that are destinations of edges labelled by «, formally d(«a,.A) = |{q |
Jp € Q, (p, v, q) € A}|. Further, let d(A) = max,, d(c, . A). The size of the reduced automata,
which is an important parameter in the complexity of our algorithms, can be bounded:

N. Basset, J. Mairesse, and M. Soria

» Proposition 5. Given a network of automata (A(i))ie[K], the size of the reduced automaton
Ared satisﬁes ‘Qred| S d(A'red) : \SynCh| +1 and ‘Ared| S |Q7‘ed‘ : d(Ared) : |SynCh| with

K K

d(Areqs) < max d(a,A(fe)d) < (max max d(oz,.A(i))> .
aGSynchi:l a <K

» Remark 6. If every transition labelled by the same action goes to a dedicated state, then the

proposition above gives d(Areq) < 1, thus |Qred| < |Synch| + 1 and |Ares] < |Qred| - |Synch].

The particular case assumed in [9] where for each synchronised action « there is only one

occurrence of a per component automaton yields further |Apeq| = |Synch|.

3.3 Equations on languages and generating functions

Let A be a DFA and Ayeq its reduced automaton. For s € Qreq, let £, be the language
recognised by the DFA A, obtained from A by removing transitions labelled by actions in
Synch and by changing the initial state to s. For § = (s,,t) € Ageq, let L5 be the language
recognised by the DFA As obtained from A by removing transitions labelled by actions in
Synch and by changing the initial state to s and the final states to {q | (¢, a,t) € A}.

The following theorem constitutes the core of our study: it gives a decomposition of the
language recognised by a network of automata only in terms of union and concatenation of
shuffles of languages corresponding to the component automata. All our sampling algorithms
for networks of automata in Section 4.2 will rely on this decomposition.

» Theorem 7. Let (A(i))ie[]q be a network of automata and Areq its associated reduced
automaton. Using the above notations, for every s € Qreq, it holds that:
Lo=LU U Zgaﬁt, with L, = LJ_Ilelﬁiz(z) and Ls= Luililﬁg?i)
6=(sva7t)EATed

The language operations (product, union, shuffle) involved in this equation are unambiguous.*

The language operations translate into identities on cardinalities and generating functions:
union and concatenation of languages yield sum and product of OGF, and shuffle of languages
yield product of EGF (see e.g. [6, 22, 11]). To do such translations, it is crucial that the
language operations are unambiguous; that is why we consider only network of deterministic
automata. Denote by Ly(z), Ls(z), Ls(z) the OGF of languages Ly, Ly, Ls.

» Proposition 8. Let (A(i))ie[K] be a network of automata and Areq its associated reduced
automaton. For every s € Qreq, the following equation holds on OGF:

Li(z)=L(z)+2 > Ls(z)L(2).
0=(s,0,t) EApeq

And the EGF of L (resp. Ls) is the product of the EGF of Egz(% (resp. [:((;()1) .

Let M(z) be the Qreq X Qrea matrix such that [M(2)]s: = D 25_(s a.t)cAm, Ls(z). Then
Proposition 8 can be written in terms of vectors and matrices of OGF as follows: L(z) =
L(z) 4 zM(2)L(z). Based on this, we obtain the characterisation of t(L) and L(z) in the
next theorem. The important point is that it depends only on the matrix M of size |Qyreq]
and not on the exponentially big adjacency matrix of the product automaton.

Let v(L) = mingeq,., t(L,) and v*(M) = inf{|z|; (I — zM(2))~! is defined}.

4 Recall that a language operation is said to be unambiguous if every word of the resulting language can
be obtained in a unique way by composing different words from the operands.

36:9

CONCUR 2017

36:10

Uniform Sampling for Networks of Automata

» Proposition 9. The convergence radius tv(L) and the vector of generating function L(z)
for z < (L) are characterised as follows:

t(L) = min (t(f;),t*(M)) and L(z) = (I — zM(2)) 'L(2).

4 Uniform sampling for a network of automata

Consider a network of automata. Relying on the reduced automaton, we adapt the sampling
methods developed for a unique automaton, and recalled in Section 2, in order to design
sampling algorithms for the network of automata. The generic method is as follows:
choose whether a synchronisation will occur. In the case of no synchronisation, generate
a word in the shuffle £, = I_Llfilﬁi?i) . In the case of synchronisation:
choose a transition § = (s, a,t) € Aed, (this gives the next synchronisation),
o
write wa on the output tape, and repeat from ¢ to generate the rest of the word.

choose a word without synchronisation w € L5 = LI_IZ-K:1£~

This method is derived from the equations on languages in Theorem 7. It will be
consistently applied in all three methods of sampling. It first requires to be able to generate
words in the shuffle of languages, and second to compute the right probabilities in order to
make the choices. In all cases, we assume that we have algorithms dealing with a single
automaton, see Section 2 (we call them monolithic), and we adapt and combine them.

4.1 Pure Shuffle

We first study the case of no synchronisation between the component DFAs, that is Synch = ().
The language of the network of automata is the shuffle of the languages of the component
automata (see (4)). We present the three sampling methods. They share the common idea
of generating words for the component automata and then choosing a word in their shuffle.

4.1.1 Fixed length uniform sampler

For two languages, the cardinalities of the shuffle are easy to compute: if £ = £ L Lo, then

l, = Z:Ln:O (Z) 1,ml2,n—m. The generalisation to K languages is more complicated:

|

In = Z nM! x n x n(K)| lfi)l) o -lffﬁ) with) ... 40 =n.
This is not satisfactory since it involves exponentially many terms. The difficulty was already
noted in [9] where a solution was proposed under restricted assumptions (in particular the
strong connectivity of the DFA). Here we propose another way to bypass the difficulty which
is always valid.

The idea is to decompose the shuffle in a recursive manner. We define £(=9 = {£} and for
1<i<K,£E) =20 1020, Then £ wi- - £ = £(SK) and the corresponding
cardinalities are recursively computed efficiently in Algorithm 1.

Algorithm 1 uses the monolithic routine Mono-Cardinalities(A4,n), that outputs all
the cardinalities (I,,)o<m<n, i time O(n|.A|), using Eq. (2). The cardinalities associated to
L(A) corresponds to s = ¢, that is, 1, =, .

» Lemma 10. The cardinalities (l,(ngi))ogmgmogig(associated to the languages (L',(Si))ogig;(
can be computed with Algorithm 1 in time O(Knlogn + ”Zf; AD).

N. Basset, J. Mairesse, and M. Soria

Algorithm 1 Shuffle-Card((A®);c(x),n) (precomputation for Shuffle-Unif).

Require: K DFAs A® and a natural integer n € N.

Ensure: compute and store (l%))ogmgn,lgjgk and (l,(ngj))ogmgn_,lgng.
1: for i =1 to K do
2: (lg,?)ogmgn < Mono-Cardinalities(A®), n);

3. compute 3" _ 1557 2m /m) = (Z:@:o lsngi_l)zm/mg (ZZ:O l%)zm/m!) mod 2"+

Algorithm 2 Uniform sampler Shuffle-Unif((A®);c(x,n).

Require: K DFAs A% n € N, and cardinalities (lg))ogmgnggjgl(, (lgngj))ogmgnvlgjgj(.
Ensure: return a word in £ wi - - w £ of length n uniformly at random.

1: N + n;

2: for i = K down to 1 do

3: choose n(¥ with probability n(? — (n%)lﬁvgj;(l}) ZS()i)/lg\,gi);

4: w < Mono-Unif (AW, n®); //(use e.g. algorithm of [5] or [19])
5 N« N —n(®;

6: return Shuffle-Words((w);c(x)- //(use e.g. algorithm of [9])

Algorithm 2 repeatedly chooses, according to the precomputed cardinalities, the length
of the words to be generated in each language £(?). It generates such words w; using a
monolithic sampling algorithm on DFA Mono-Unif (see [5] or [19]), and then returns a
random word in the shuffle language of the w; by using a function Shuffle-Words that
chooses uniformly at random a word in w® w - - - Www) in linear time (see [9]).

Sampling with Algorithm 2 is no more difficult than doing independently uniform sampling
for the component automata. In the theorem below, [Mono-Unif(A®*) n)| denotes the
complexity of a monolithic algorithm for the uniform sampling of words of length n in the
ith component automaton.

» Theorem 11. Algorithm 2 returns a word in £ Wi --- 1w L5 of length n uniformly at
random in time complezity O(X:Z.K:1 |Mono-Uni f(AW) n)|) after the precomputations explained
in Lem. 10.

4.1.2 Boltzmann sampler

The shuffle product of languages fits well with exponential generating functions (see The-
orem 7): the EGF of the shuffle product is the product of the EGF of the components. As
a consequence, the exponential Boltzmann sampler for the shuffle of languages is easy to
construct from the exponential Boltzmann samplers of the component languages. Below,
denote by Mono-Boltz-Expo a monolithic routine that realises an exponential Boltzmann
sampler for a single automaton, see [4].

The situation is not as simple for ordinary generating functions. We use a method from
[8] for obtaining an ordinary Boltzmann sampler by appropriately biasing an exponential
Boltzmann sampler. This is the methodology followed in Algorithm 4 below. The weight
functions u — e~ Hfil L (zu) should be computed numerically rather than symbolically.

» Theorem 12. Shuffle—BoLtz—Empo((A(i))ie[K],u) is an exponential Boltzmann sampler
of parameter u for £L= LD w---w L5 and Shuffle—Both((.A(i))ie[K], z) is an ordinary
Boltzmann sampler of parameter z for L.

36:11

CONCUR 2017

36:12

Uniform Sampling for Networks of Automata

Algorithm 3 Exponential Boltzmann sampler Shuffle-Boltz-Expo((A®M)c], u).

Require: K DFAs A with languages £®).

Ensure: realise an exponential Boltzmann sampler for £ - 1w £ of parameter u.
1: for i =1to K do
2. w® < Mono-Boltz-Expo(A® u)
3: return Shuffle-Words((w®);c(x)).

Algorithm 4 Ordinary Boltzmann sampler Shuf:fle—Boltz((A(j’))ie[K],)

Require: K DFAs A with languages £®).

Ensure: realise an ordinary Boltzmann sampler for £(1) wi-- - w £5) of parameter z.
1: Choose u according to the weight function: u +— e™ H1K:1 L (zu);
2: return Shuffle-Boltz-Expo((A®");c(x], zu).

4.1.3 Parry sampler

The following theorem ensures that a Parry sampler for the shuffle language is very easy to
construct given Parry samplers for the component automata.

The Parry sampler associated with a DFA is defined via the spectral attributes of its
adjacency matrix (Section 2.3). For the product automaton, spectral attributes admit
compact representations, thus avoiding the explicit construction of the exponentially big
adjacency matrix.

» Lemma 13. Let A = AD x ... x AK) be the product of K strongly connected DFAs
without synchronisation. Let p, v, (p(i))iE[K], (V(i))ie[K] be the spectral attributes defined as
in Theorem 1. Then p =31, p'¥) and vy = Hszl 1’22) for every s € Q.

This lemma enables us to design a Parry sampler compositionally.

» Theorem 14. Given K strongly connected automata (A(i))ie[K] without synchronised
action, Algorithm 5 is a Parry sampler for the shuffle of their languages.

4.2 General case with synchronisation

In the general case with synchronisation, we rely on the decomposition of Theorem 7, as
stated in the beginning of Section 4.

4.2.1 Fixed length uniform sampler

The idea of our recursive method, described in Algorithm 7 is as follows: either choose to
generate a word without synchronisation that leads to a final state, or choose to generate a
word without synchronisation that leads to a synchronised transition, take this transition
and repeat recursively from the current state. The weight we attribute to each choice
is proportional to the cardinality of the language corresponding to this choice. These
cardinalities are computed in Algorithm 6.

Denote by CompInvMat(m) the complexity of inverting a square matrix of size m x m.

» Lemma 15. Algorithm 6 runs in time O(nlogn(CompInuvMat(|Qred|) + K|Areql))-

» Theorem 16. Algorithm 7 is a uniform sampler that runs in linear time after precompu-
tations made in Algorithm 6.

N. Basset, J. Mairesse, and M. Soria

Algorithm 5 Parrry sampler Shuffle-Parry((A®);c(x))

Require: K strongly connected DFAs A% with languages £, spectral radii p(, and, for
each A% a Parry sampler M®).
Ensure: realise a Parry sampler for £ 1. 1w £,
1: runs M@ for i € [K] in parallel to get K infinite random words (w®);c(x);
2: while true do
3: choose i with probability p(®/(p™M) + .. 4 pF));
4 remove from w'® its first letter and write it on the output tape;

Algorithm 6 Compo-Card((A");c(x],n) (precomputation of cardinalities for Compo-Unif).

Require: K DFAs A® and a natural integer n.
Ensure: compute and store every cardinalities used in Compo—Unif((A("’))ie[K], s,n).

1: for s € Qreq do
2 Shuffle—Card((fli?i))ie[K],n); (this implicitly defines L(z) mod z"*1)
3: for 0 € Areq do
4 Shuffle—Card((Agi()i))ie[K], n); (this implicitly defines M(z) mod z"*1)
5: Compute L(z) mod 2"*' by solving L(z) = L(z) + 2M(2)L(z) with all generating

functions and operations modulo 2”11,

4.2.2 Boltzmann sampler

Boltzmann sampling is obtained from the system of equations

Ly(z) = Ly(2) + = Z Ls(2)Ly(2)

0=(s,0,t)EArea

Boltzmann sampling also applies the generic method of random sampling depicted at the
beginning of this section. The procedure is described in Algorithm 8. If no synchronisation oc-
curs (probability L(z)/Ls(z)), we sample a word in the shuffle of the /If:())), using Boltzmann
sampling with parameter z. Otherwise we uniformly choose a transition ¢ = (s,a,t) € Areg,
ot >
and repeat from t to generate the rest of the word.

generate v in the shuffle of the A using Boltzmann sampling with parameter z, write ua

» Theorem 17. Algorithm 8 is an ordinary Boltzmann sampler.

4.2.3 Parry sampler

In this section, we consider a network of automata with synchronisations such that the
product automaton is strongly connected (the case without synchronisations was treated in
Section 4.1.3).

As before, we work with the matrix M (z) associated with the reduced automaton to
avoid constructing the adjacency matrix A of the product automaton. Proposition 18 is
a way of stating the Perron-Frobenius theorem with M (z) rather than A, enabling us to
describe the Parry measure wrt. the reduced automaton in Theorem 19.

» Proposition 18. Let v and v be the convergence radii and Perron vector associated to
the product automaton. Then v and the restriction Vie; of v to Qreq can be characterised
wrt. M(z) as follows: v = min{z > 0 | det(I — zM(2)) = 0}; Vyeq is the unique vector such
that Veeqa > 0 and tM(t)Vyeq = Viyeq-

36:13

CONCUR 2017

36:14

Uniform Sampling for Networks of Automata

Algorithm 7 Uniform sampler Compo-Unif ((A®);c(x), s, n).

Require: K DFAs A® a natural integer n and a state s € Qreq and cardinalities computed
by Compo-Card((A®);c(x),n).

Ensure: return a word in £ of length n uniformly at random.

with probability I, /ls., return Shuffle—Unif((Ai?i))ie[K],n);

choose m with weight 375 , yea.., lom—1ltn—m/ D D (5,001 € Avag Lm—1lt,n—ms

choose § = (s, @, t) € Areq with probability Ism—1ln—m/ ZJ:(s,a,t)eAred Is,m—1lt. n—m;

w ¢ Shuffle-Unif((A'))ic(x), m);

return w :: o :: Compo-Unif ((AW);c (k). t,n — m).

Algorithm 8 Ordinary Boltzmann sampler Compo—Boltz((A(i))ie[K], 8, 2).

Require: K DFAs A, a state s € Qreq and a parameter z.
Ensure: realises a ordinary Boltzmann sampler of parameter z for the language L.
1: With probability Ls(z)/Ls(z) return Shuffle—Boltz((Ag)i))ie[K],z);
2: Choose § = (s, a,t) € Areq with probability Ls(2)Li(2)/ X252 (s a,t)enn, Lo(2)Le(2);

3: return Shuffle—Boltz((A((;()i))ie[K], z) it a2 Compo-Boltz((AW);e(x, ¢, 2).

» Theorem 19. Aigorithm 9 is a Parry sampler of infinite words starting from the input
state s € Qped-

5 Conclusion and further work

In this paper, we propose several algorithms for uniformly sampling words recognised by
networks of automata. For the purely interleaved case, with no synchronisation, the sampling
algorithms are polynomial in the size of the component automata, while previous known
algorithms were exponential (since they were polynomial on the exponentially big product
automaton). For the general case where synchronisations occur on shared actions, our
methods are efficient with respect to the reduced automaton (the product automaton where
interleaved actions are removed).

We plan to implement the different algorithms presented here and apply them on bench-
marks. For instance, we could use the benchmarks of [9] and [19]. We would also like to
incorporate our uniform sampling into a Monte-Carlo model checker.

The recursive methods for words of a fixed length n that we presented here have a bit
complexity which is essentially n times bigger than their arithmetic complexity since the
cardinalities we compute grow exponentially with n and each one needs a linear amount of
bits to be stored. We think that this extra factor n can be avoided using a divide-and-conquer
paradigm akin to that of [5]. Further work to deal with interleaving and synchronisations
has to be done though.

In the context of Monte-Carlo model checking of Biichi properties [13, 20] the meaningful
objects to sample are accepting lassos (an accepting lasso is a path followed by an elementary
cycle that visits accepting states). We would like to design uniform sampling of accepting
lassos for networks of automata by building on top of the present work and on [20].

N. Basset, J. Mairesse, and M. Soria

Algorithm 9 Parry sampler Parry((A™¥);c(x], 5)

Require: K DFAs A and a state s € Qreq.

Ensure: realises a Parry sampler of infinite words from s.
1: choose § = (s,,t) € Areq with probability tLs (v) vt /vs;
2: return Shuffle-Boltz(Ls,t) = a i Parry((AM);c(xk),1).

—— References

1

10

11

12

13

14

15

16

Samy Abbes and Jean Mairesse. Uniform generation in trace monoids. In G. Italiano,
G. Pighizzini, and D. Sannella, editors, Math. Found. Comput. Sc. 2015 (MFCS 2015),
part 1, volume 9234 of Lecture Notes in Comput. Sci., pages 63—75. Springer, 2015.

Alfred Aho, Rajeev Motwani, and Jeffrey Ullman. Introduction to Automata Theory, Lan-
guages, and Computation: 2nd edition. Addison Wesley, 2001.

Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.
Nicolas Basset, Michele Soria, and Jean Mairesse. Uniform sampling for networks of auto-
mata, 2017. URL: http://hal.upmc.fr/hal-01545936.

Olivier Bernardi and Omer Giménez. A linear algorithm for the random sampling from
regular languages. Algorithmica, 62(1-2):130-145, 2012.

Jean Berstel and Christophe Reutenauer. Noncommutative rational series with applications,
volume 137 of Enc. of Math. and Appl. Cambridge University Press, 2011.

Olivier Bodini, Antoine Genitrini, and Frédéric Peschanski. The combinatorics of non-
determinism. In Anil Seth and Nisheeth K. Vishnoi, editors, JARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2013,
December 12-14, 2013, Guwahati, India, volume 24 of LIPIcs, pages 425-436. Schloss Dag-
stuhl - Leibniz-Zentrum fuer Informatik, 2013. doi:10.4230/LIPIcs.FSTTCS.2013.425.
Alexis Darrasse, Konstantinos Panagiotou, Olivier Roussel, and Michele Soria. Biased
Boltzmann samplers and generation of extended linear languages with shuffle. DMTCS
Proceedings, 01:125-140, 2012.

Alain Denise, Marie-Claude Gaudel, Sandrine-Dominique Gouraud, Richard Lassaigne, Jo-
han Oudinet, and Sylvain Peyronnet. Coverage-biased random exploration of large models
and application to testing. STTT, 14(1):73-93, 2012. doi:10.1007/s10009-011-0190-1.
Philippe Duchon, Philippe Flajolet, Guy Louchard, and Gilles Schaeffer. Boltzmann
samplers for the random generation of combinatorial structures. Combinatorics, Probability
and Computing, 13(4-5):577-625, 2004.

Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University
Press, New York, NY, USA, 1 edition, 2009.

Philippe Flajolet, Paul Zimmerman, and Bernard Van Cutsem. A calculus for the random
generation of labelled combinatorial structures. Theoretical Computer Science, 132(1):1-35,
1994.

Radu Grosu and Scott A. Smolka. Monte carlo model checking. In TACAS’05, 2005.
Dexter Kozen. Lower bounds for natural proof systems. In FOCS, volume 77, pages 254—
266, 1977.

M. Lothaire. Applied Combinatorics on Words (Encyclopedia of Mathematics and its Ap-
plications). Cambridge University Press, New York, NY, USA, 2005.

Kuldeep S. Meel, Moshe Y. Vardi, Supratik Chakraborty, Daniel J. Fremont, Sanjit A.
Seshia, Dror Fried, Alexander Ivrii, and Sharad Malik. Constrained sampling and counting;:
Universal hashing meets SAT solving. In Adnan Darwiche, editor, Beyond NP, Papers from
the 2016 AAAI Workshop, Phoeniz, Arizona, USA, February 12, 2016., volume WS-16-05

36:15

CONCUR 2017

http://hal.upmc.fr/hal-01545936
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2013.425
http://dx.doi.org/10.1007/s10009-011-0190-1

36:16

Uniform Sampling for Networks of Automata

17

18

19

20

21

22

of AAAI Workshops. AAAI Press, 2016. URL: http://www.aaai.org/ocs/index.php/
WS/AAATW16/paper/view/12618.

Mehryar Mohri. Generic e-removal algorithm for weighted automata. In International
Conference on Implementation and Application of Automata, pages 230-242. Springer, 2000.
Madhavan Mukund. Automata on distributed alphabets. In Modern Applications of Auto-
mata Theory, pages 257-288. World Scientific, 2012. doi:10.1142/9789814271059_0009.
Johan Oudinet, Alain Denise, and Marie-Claude Gaudel. A new dichotomic algorithm
for the uniform random generation of words in regular languages. Theor. Comput. Sci.,
502:165-176, 2013. doi:10.1016/j.tcs.2012.07.025.

Johan Oudinet, Alain Denise, Marie-Claude Gaudel, Richard Lassaigne, and Sylvain
Peyronnet. Uniform monte-carlo model checking. In FASE 2011, pages 127-140, 2011.
Antonio Restivo. The shuffle product: New research directions. In International Conference
on Language and Automata Theory and Applications, pages 70-81. Springer, 2015.

A. Salomaa and M. Soittola. Automata-theoretic aspects of formal power series. Springer
Verlag, 1978.

http://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12618
http://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12618
http://dx.doi.org/10.1142/9789814271059_0009
http://dx.doi.org/10.1016/j.tcs.2012.07.025

	Introduction
	Preliminaries: Monolithic Uniform Sampling for a DFA
	Cardinalities and fixed length uniform sampling
	Generating functions and Boltzmann sampling
	Perron-Frobenius Theorem and Parry sampling

	Network of automata and the reduced automaton
	Network of automata
	Reduced automaton
	Equations on languages and generating functions

	Uniform sampling for a network of automata
	Pure Shuffle
	Fixed length uniform sampler
	 Boltzmann sampler
	Parry sampler

	General case with synchronisation
	Fixed length uniform sampler
	 Boltzmann sampler
	Parry sampler

	Conclusion and further work

