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Abstract
Linearisability is a central notion for verifying concurrent libraries: a library is proven correct if
its operational history can be rearranged into a sequential one that satisfies a given specification.
Until now, linearisability has been examined for libraries in which method arguments and method
results were of ground type. In this paper we extend linearisability to the general higher-order
setting, where methods of arbitrary type can be passed as arguments and returned as values, and
establish its soundness.
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1 Introduction

Software libraries provide implementations of routines, often of specialised nature, to facilitate
code reuse and modularity. To support the latter, they should follow specifications that
describe the range of acceptable behaviours for correct and safe deployment. Adherence
to specifications can be formalised using the classic notion of contextual approximation
(refinement), which scrutinises the behaviour of code in any possible context. Unfortunately,
the quantification makes it difficult to prove contextual approximations directly, which
motivates research into sound techniques for establishing it.

In the concurrent setting, a notion that has been particularly influential is that of
linearisability [12]. Linearisability requires that, for each history generated by a library, one
should be able to find another history from the specification (a linearisation), which matches
the former up to certain rearrangements of events. In the original formulation by Herlihy
and Wing [12], these permutations were not allowed to disturb the order between library
returns and client calls. Moreover, linearisations were required to be sequential traces, that
is, sequences of method calls immediately followed by their returns.

In this paper we shall work with open higher-order libraries, which provide implement-
ations of public methods and may themselves depend on abstract ones, to be supplied by
parameter libraries. The classic notion of linearisability only applies to closed libraries
(without abstract methods). Additionally, both method arguments and results had to be
of ground type. The closedness limitation was recently lifted in [13, 3], which distinguished
between public (or implemented) and abstract methods (callable). Although [13] did not in
principle exclude higher-order functions, those works focussed on linearisability for the case
where the allowable methods were restricted to first-order functions (int→ int). Herein, we
give a systematic exposition of linearisability for general higher-order concurrent libraries,
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Figure 1 A library L ∶ Θ→ Θ′ in environment comprising a parameter library L′ ∶ ∅ → Θ,Θ′′ and
a client K of the form Θ′,Θ′′

⊢M1∥⋯∥MN .

where methods can be of arbitrary higher-order types. In doing so, we also propose a
corresponding notion of sequential history for higher-order library interactions.

We examine libraries L that can interact with their environments by means of public
and abstract methods: a library L with abstract methods of types Θ = θ1,⋯, θn and public
methods Θ′ = θ′1,⋯, θ′n′ is written as L ∶ Θ→ Θ′. We shall work with arbitrary higher-order
types generated from the ground types unit and int. Types in Θ,Θ′ must always be function
types, i.e. their order is at least 1.

A library L may be used in computations by placing it in a context that will keep on
calling its public methods (via a client K) as well as providing implementations for the
abstract ones (via a parameter library L′). The setting is depicted in Figure 1. Note that,
as the library L interacts with K and L′, they exchange functions between each other.
Consequently, in addition to K making calls to public methods of L and L making calls to
its abstract methods, K and L′ may also issue calls to functions that were passed to them as
arguments during higher-order interactions. Analogously, L may call functions that were
communicated to it via library calls.

Our framework is operational in flavour and draws upon concurrent [15, 7] and operational
game semantics [14, 16, 8]. We shall model library use as a game between two participants:
Player (P), corresponding to the library L, and Opponent (O), representing the environment
(L′,K) in which the library was deployed. Each call will be of the form callm(v) with the
corresponding return of the shape retm(v), where v is a value. As we work in a higher-order
framework, v may contain functions, which can participate in subsequent calls and returns.
Histories will be sequences of moves, which are calls and returns paired with thread identifiers.
A history is sequential just if every move produced by O is immediately followed by a move
by P in the same thread. In other words, the library immediately responds to each call or
return delivered by the environment. In contrast to classic linearisability, the move by O
and its response by P need not be a call/return pair, as the higher-order setting provides
more possibilities (in particular, the P response may well be a call). Accordingly, linearisable
higher-order histories can be seen as sequences of atomic segments (linearisation points),
starting at environment moves and ending with corresponding library moves.

In the spirit of [3], we are going to consider two scenarios: one in which K and L′ share
an explicit communication channel (the general case) as well as a situation in which they
can only communicate through the library (the encapsulated case). Further, we also handle
the case in which extra closure assumptions can be made about the parameter library (the
relational case), which can be useful for dealing with a variety of assumptions on the use of
parameter libraries that may arise in practice. In each case, we present a candidate definition
of linearisability and illustrate it with tailored examples. The suitability of each kind of
linearisability is demonstrated by showing that it implies the relevant form of contextual
approximation (refinement). We also examine compositionality of the proposed concepts.
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One of our examples will discuss the implementation of the flat-combining approach [11, 3],
adapted to higher-order types.

1.1 Example: a higher-order multiset library
Higher-order libraries are common in languages like ML, Java, Python, etc. As an illustrative
example, we consider a library written in ML-like syntax which implements a multiset data
structure with integer elements. For simplicity, we assume that its signature contains just
two methods:

count ∶ int→ int, update ∶ (int × (int→ int)) → int .

The former method returns for each integer its multiplicity in the multiset – this is 0 if the
integer is not a member of the multiset. On the other hand, update takes as an argument
an integer i and a function f , and updates the multiplicity of i in the multiset to ∣f(i)∣
(we use the absolute value of f(i) in order to meet the multiset requirement that element
multiplicities not be negative; alternatively, we could have used exceptions to quarantine such
client method behaviour). Methods with the same functionalities can be found e.g. in the
multiset module of the ocaml-containers library [1]. While our example is simple, the same
kind of analysis as below can be applied to more intricate examples such as map methods for
integer-valued arrays, maps or multisets.

I Example 1 ( Multiset). Consider the concurrent multiset library Lmset in Figure 2. It uses
a private reference for storing the multiset’s characteristic function and reads optimistically,
without locking (cf. [10, 19]). The update method in particular reads the current multiplicity
of the given element i (via count) and computes its new multiplicity without acquiring a lock
on the characteristic function. It only acquires a lock when it is ready to write the new value
(line 10) in the hope that the value at i will still be the same and the update can proceed; if
not, another attempt to update the value is made.

Let us look at some example executions of the library via their resulting histories, i.e.
sequences of method calls and returns between the library and a client. In the topmost
block (a) of history diagrams of Figure 2, we see three such executions. Note that we do not
record internal calls to count or aux, and use m and variants for method identifiers (names).
We use the abbreviation cnt for count, and upd for update, and initially ignore the circled
events for cnt. Each execution involves 2 threads.

In the first execution, the client calls update(i,m) in the second thread, and subsequently
calls count(i) in the first thread. The code for update stipulates that first count(i) be called
internally, returning some multiplicity j for i, and then m(j) should be called. As soon m
returns a value j′, update sets the multiplicity of i to j′ and itself returns j′. The last event
in this history is a return of count in the first thread with the old value j. According to our
proposed definition, this history will be linearisable to another, intuitively correct one: the
last return can be moved to the circled position. At this point the notion of linearisability is
used informally, but it will be made precise in the following sections. In the second execution,
the last return of count in the first thread returns the updated value. In this case, we will be
able to move call cnt(i) to the circled position to obtain a linearisation, which is obviously
correct. Finally, in the third execution we have a history that will turn out non-linearisable
to an intuitively correct history. Indeed, we should not be able to return the updated value
in the first thread before m has returned it in the second one.

The two histories in block (b) in the same figure demonstrate the mechanism for updates.
The first history will be linearisable to the second one. In the second history we see that both
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1 public count, update;
2 Lock lock;
3 F := λx.0;
4

5 count = λi. (!F)i
6 update = λ(i, g). aux(i ,g,count i)
7

8 aux = λ(i, g, j ).
9 let y = |g j | in

10 lock .acquire ();
11 let f = !F in
12 if ( j == (f i)) then {
13 F := λx. if (x == i) then y
14 else ( f x) ;
15 lock . release ();
16 y }
17 else {
18 lock . release ();
19 aux(i ,g, f i) }

call.cnt(i) ret.cnt(j)

call.upd(i,m) call.m(j) ret.m(j') ret.upd(j')

ret.cnt(j)

call.cnt(i)

call.upd(i,m) call.m(j) ret.m(j') ret.upd(j')

ret.cnt(j')call.cnt(i)

call.cnt(i) ret.cnt(j')

call.upd(i,m) call.m(j) ret.m(j') ret.upd(j')

(a)

call.upd(i,m) call.m(j) ret.m(j') ret.upd(k')

call.upd(i,m') call.m'(j) ret.m'(k) ret.upd(k)

 

call.m(k) ret.m(k')

call.upd(i,m) call.m(j) ret.m(j') ret.upd(k')

call.upd(i,m') call.m'(j) ret.m'(k) ret.upd(k)

call.m(k) ret.m(k')

(b)

Figure 2 Multiset library Lmset with public methods count ∶ int → int and update ∶ int × (int →
int) → int.

threads try to update the same element i, but the first one succeeds in it first and returns k
on update. Then, the second thread realises that the value of i has been updated to k and
calls m again, this time with argument k. An important feature of the second history is that
it is sequential: each client event (call or return) is immediately followed by a library event.

Observe that the rearrangements discussed above involve either advancing a library action
or postponing an environment action and that each action could be a call or a return.
Definition 6 will capture this formally. For now, we note that this generalises the classic
setting [12], where library method returns could be advanced and environment method calls
deferred.

2 Higher-order linearisability

We examine higher-order libraries interacting with their context by means of abstract and
public methods. In particular, we shall rely on types given by the grammar on the left below.
We let Meths stand for the set of method names and assume Meths = ⊎θ,θ′ Methsθ,θ′ , where
each set Methsθ,θ′ contains names for methods of type θ → θ′. Methods are ranged over by
m (and variants). We let v range over computational values, which include a unit value,
integers, methods and pairs of values.

θ ∶∶= unit ∣ int ∣ θ × θ ∣ θ → θ v ∶∶= () ∣ i ∣m ∣ (v, v)

The framework of a higher-order library and its environment is depicted in Figure 1. Given
Θ,Θ′ ⊆ Meths, a library L is said to have type Θ → Θ′ if it defines public methods with
names (and types) as in Θ′, using abstract methods Θ. The environment of L consists of a
client K (which invokes public methods of Θ′), and a parameter library L′ (which provides
code for the abstract methods Θ). In general, K and L′ may interact via a disjoint set of
methods Θ′′ ⊆ Meths, to which L has no access.
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In the rest of this paper, we shall implicitly assume that we work with a library L

operating in an environment presented in Figure 1. The client K will consist of a fixed
number N of concurrent threads. Next we introduce a notion of history tailored to the
setting and define how histories can be linearised. In Section 3 we present the syntax for
libraries and clients, and in Section 4 we define their semantics in terms of histories and
co-histories respectively.

2.1 Higher-order histories
The operational semantics of libraries will be given in terms of histories, which are sequences
of method calls and returns, each decorated with a thread identifier t and a polarity index
XY , where X ∈ {O,P} and Y ∈ {L,K}, as shown below.

(t, callm(v))XY (t, retm(v))XY

We shall refer such decorated calls and returns as moves. Here, m is a method name and v
is a value of a matching type. The index XY specifies which of the three entities (L,L′,K)
produces the move, and towards whom it is addressed.

If XY = PL then the move is issued by L, and is addressed to L′.
If XY = PK then the move is issued by L, and is addressed to K.
If XY = OL then the move is issued by L′, and is addressed to L.
If XY = OK then the move is issued by K, and is addressed to L.

The choice of indices is motivated by the fact that the moves can be seen as defining a
2-player game between the library (L), which represents the Proponent player in the game
(P ), and its environment (L′,K) that represents the Opponent (O). Moves played between
L and L′ are moreover decorated with L, whereas those between L and K have K instead.
Note that any potential interaction between L′ and K is invisible to L and is therefore not
accounted for in the game (but we will later see how it can affect it). We use O to refer to
either OK or OL, and P to refer to either PK or PL. Finally, we let the dual polarity of
XY to be X ′Y , where X /=X ′. For example, the dual of PL is OL.

Next we proceed to define histories. Their definition will rely on a more primitive concept
of prehistories, which are sequences of method calls and returns that respect a stack discipline.

I Definition 2. Prehistories are sequences generated by one of the grammars:

PreHO ∶∶= ε ∣ callm(v)OY PreHP retm(v′)PY PreHO
PreHP ∶∶= ε ∣ callm(v)PY PreHO retm(v′)OY PreHP

where, in each line, the two occurrences of Y ∈ {K,L} and m ∈ Meths must each match.
Moreover, if m ∈ Methsθ,θ′ , the types of v, v′ must match θ, θ′ respectively. We let PreH =
PreHO ∪ PreHP .

Thus, prehistories from PreHO start with an O-move, while those in PreHP start with a
P -move. In each case, the polarities inside a prehistory alternate between O and P , and the
polarities of calls and matching returns are always dual (returns dual to calls). For example,
a call made by L to L′ (tagged PL) must be matched by a return from L′ to L (tagged OL).

Histories will be interleavings of prehistories tagged with thread identifiers (natural
numbers), subject to a set of well-formedness constrains. In particular, a history h for library
L ∶ Θ → Θ′ will have to begin with an O-move and satisfy the following conditions, to be
formalised in Definition 3.
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1. The name of any method called in h must come from Θ or Θ′, or be introduced earlier in
h as a higher-order argument or result (no methods out of thin air). In addition:

if the method is from Θ′, the call must be tagged with OK (i.e. issued by K);
if the method is from Θ, the call must be tagged with PL (i.e. issued by L towards
L′);
for a call of method m ∉ Θ ∪Θ′ to be valid, m must be introduced in an earlier move
of dual polarity (calls dual to introductions).

2. Any method name appearing inside a call or return argument in h must be fresh, i.e. not
used earlier. This reflects the assumption that methods can be called and returned, but
not compared for identity (introductions always fresh).

Given h ∈ PreH and t ∈ N, we write t × h for h in which each call or return is decorated with
t. We refer to such moves with (t, callm(v))XY or (t, retm(v))XY respectively. If we only
want to stress the X or Y membership, we shall drop Y or X respectively. Moreover, when
no confusion arises, we may sometimes drop a move’s polarity altogether. We say that a
move x introduces a name m ∈ Meths when x ∈ {callm′(v), retm′(v)} for some m′, v such
that v contains m.

I Definition 3. Given Θ,Θ′, the set of histories over Θ→ Θ′, written HΘ,Θ′ , is defined by

HΘ,Θ′ = ⋃N>0 ⋃h1,⋯,hN ∈PreHO
(1 × h1) ∣ ⋯ ∣ (N × hN)

where (1× h1) ∣ ⋯ ∣ (N × hN) is the set of all interleavings of (1× h1),⋯, (N × hN) satisfying:
1. For any s1(t, callm(v))XY s2 ∈ HΘ,Θ′ , either m ∈ Θ′ and XY = OK, or m ∈ Θ and

XY = PL, or there is a move (t′, x)X′Y in s1 such that X ≠X ′ and x introduces m.
2. For any s1(t, x)XY s2 ∈ HΘ,Θ′ and any m, if m is introduced by x then m must not occur

in s1.
A history h ∈ HΘ,Θ′ is called sequential if it is of the form

h = (t1, x1)OY1(t1, x′1)PY ′1 ⋯(tk, xk)OYk
(tk, x′k)PY ′k

for some ti, xi, x′i, Yi, Y ′
i . We write Hseq

Θ,Θ′ for the set of all sequential histories from HΘ,Θ′ .

We shall range over HΘ,Θ′ using h, s (and variants). The subscripts Θ,Θ′ will often be
omitted. Given a history h, we shall write h for the sequence of moves obtained from h

by dualising all move polarities inside it. The set of co-histories over Θ → Θ′ will be
HcoΘ,Θ′ = {h ∣ h ∈ HΘ,Θ′}.

While in this section histories will be extracted from example libraries informally, in
Section 4 we give the formal semantics JLK of libraries. For each L ∶ Θ→ Θ′, we shall have
JLK ⊆ HΘ,Θ′ .
I Remark 4. The notion of history introduced above extends the classic notion from [12]
to higher-order types. It also extends the notion presented in [3]. The intuition behind
the definition is that a history is a sequence of (well-bracketed) method calls and returns,
called moves, each tagged with a thread identifier and a polarity, where polarities track
the originators and recipients of moves. Moves may be calls or returns related to methods
given in the library interface (Θ→ Θ′), or dynamically created methods that appear earlier
inside the histories – recall that, in a higher-order setting, methods can be passed around
as arguments to calls or be returned as results by other methods. On the other hand, a
sequential history is one in which the operations performed by the library can be perceived
as atomic, that is, each move produced by O is to be immediately followed by the library’s
response, which is a P move in the same thread.
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I Example 5 (Multiset spec). We now revisit our first example and provide a specification
for it. Recall the multiset library Lmset from Figure 2. Our verification goal will be to prove
linearisability of Lmset to a specification Amset ⊆ Hseq

∅,Θ, where Θ = {count,update}, which we
define below. Amset will certify that Lmset correctly implements some integer multiset I whose
elements change over time according to the moves in h. For a multiset I and natural numbers
i, j, we write I(i) for the multiplicity of i in I, and I[i↦ j] for I with its multiplicity of i set
to j. We shall stipulate that moves inside histories h ∈ Amset be annotatable with multisets I
in such a way that the multiset is empty at the start of h (i.e. I(i) = 0 for all i) and:

If I is changed between two consecutive moves in h then the second move is a P -move.
In other words, the client cannot directly update the elements of I.
Each call to count on argument i must be immediately followed by a return with value
I(i), and with I remaining unchanged.
Each call to update on (i,m) must be followed by a call to m on I(i), with I unchanged.
Moreover, m must later return with some value j. Assuming at that point the multiset
will have value J, if I(i) = J(i) then the next move is a return of the original update call,
with value j; otherwise, a new call to m on J(i) is produced, and so on.

We formally define the specification next.
Let H○

∅,Θ contain sequences of moves from ∅ → Θ accompanied by a multiset (i.e. the
sequences consist of elements of the form (t, x, I)XY ). For each s ∈ H○

∅,Θ, we let π1(s) be the
history extracted by projection, i.e. π1(s) ∈ H∅,Θ. For each t, we let s ↾ t be the subsequence
of s of elements with first component t. Writing ⊑pre for the prefix relation, and dropping
the Y index from moves (Y is always K here), we define Amset = {π1(s) ∣ s ∈ A○

mset} where:

A○
mset = { s ∈ H○

∅,Θ ∣ π1(s) ∈ Hseq
∅,Θ ∧ ∀t. s ↾ t ∈ S ∧ ∀s′(_ , I)P (_ , J)O ⊑pre s. I = J }

and, for each t, the set of t-indexed annotated histories S is given by the following grammar:

S → ε ∣ (t, call cnt(i), I)O (t, ret cnt(I(i)), I)P S
∣ (t, call upd(i,m), I)OMi,j

I,J (t, ret upd(∣j∣), J[i↦ ∣j∣])P S

Mi,j
I,J → (t, callm(I(i)), I)P S (t, retm(j), J)O provided J(i) = I(i)

Mi,j
I,J → (t, callm(I(i)), I)P S (t, retm(j′), J′)OMi,j

J′,J provided J′(i) ≠ I(i)

By definition, all histories in Amset are sequential. The elements of A○
mset carry along the

multiset I that is being represented. The conditions on A○
mset stipulate that O cannot change

the value of I, while the rest of the conditions above are imposed by the grammar for S.
With the notion of linearisability to be introduced next, we will be able to show that JLmsetK
is indeed linearisable to Amset.

2.2 Three notions of linearisability
We present three notions of linearisability. First introduce a general notion that generalises
classic linearisability [12] and parameterised linearisability [3]. We then develop two more
specialised variants: a notion of encapsulated linearisability, following [3], that captures
scenarios where the parameter library and the client cannot directly interact; and a relational
notion whereby context behaviour (client and parameter library) is known to be relationally
invariant.

We begin by introducing a class of reorderings on histories. Suppose X,X ′ ∈ {O,P} and
X ≠X ′. We let ◁XX′ ⊆ HΘ,Θ′ ×HΘ,Θ′ be the smallest binary relation over HΘ,Θ′ satisfying,
for any t /= t′:

s1(t′, x′)Z′(t, x)Z s2 ◁XX′ s1(t, x)Z(t′, x′)Z′s2

CONCUR 2017
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whenever Z =X or Z ′ =X ′. Intuitively, two histories h1, h2 are related by ◁XX′ if the latter
can be obtained from the former by swapping two adjacent moves from different threads in
such a way that, after the swap, an X-move will occur earlier or an X ′-move will occur later.
Note that, because of X ≠ X ′, the relation always applies to adjacent moves of the same
polarity. On the other hand, we cannot have s1(t, x)X(t′, x′)X′s2 ◁XX′ s1(t′, x′)X′(t, x)Xs2.

I Definition 6 (General Linearisability). Given h1, h2 ∈ HΘ,Θ′ , we say that h1 is linearised
by h2, written h1 ⊑ h2, if h1 ◁∗

PO h2. Given libraries L,L′ ∶ Θ → Θ′ and a set of sequential
histories A ⊆ Hseq

Θ,Θ′ we write L ⊑ A, and say that L can be linearised to A, if for any h ∈ JLK
there exists h′ ∈ A such that h ⊑ h′. Moreover, we write L ⊑ L′ if L ⊑ JL′K∩Hseq

Θ,Θ′ (i.e. for all
h ∈ JLK there is sequential h′ ∈ JL′K such that h ⊑ h′).

I Remark 7. The classic notion of linearisability from [12] states that h linearises to h′ just
if the return/call order of h is preserved in h′ (and h′ is sequential), i.e. if a return move
precedes a call move in h then so is the case in h′. Observing that, in [12], return and call
moves coincide with P - and O-moves respectively, we can see that our higher-order notion of
linearisability is a generalisation of the classic notion.

We next show that a more permissive notion of linearisability applies if the parameter
library L′ of Figure 1 is encapsulated, that is, the client K can have no direct access to it
(i.e. Θ′′ = ∅). To capture the more restrictive nature of interaction, we introduce a more
constrained notion of a history. Specifically, in addition to sequentiality in every thread, we
shall insist that a move made by the library in the L or K component must be followed by
an O move from the same component.

I Definition 8. We call a history h ∈ HΘ,Θ′ encapsulated if, for each thread t, we have that
if h = s1 (t, x)PY s2 (t, x′)OY ′ s3 and moves from t are absent from s2 then Y = Y ′. Moreover,
we set Henc

Θ,Θ′ = {h ∈ HΘ,Θ′ ∣ h encapsulated} and JLKenc = JLK ∩Henc
Θ,Θ′ (if L ∶ Θ→ Θ′).

We define the corresponding linearisability notion as follows. First, let ◇ ⊆ HΘ,Θ′ ×HΘ,Θ′

be the smallest binary relation on HΘ,Θ′ such that, for any Y,Y ′ ∈ {K,L} with Y ≠ Y ′ and
t ≠ t′:

s1(t,m)Y (t′,m′)Y ′s2 ◇ s1(t′,m′)Y ′(t,m)Y s2

I Definition 9 (Encapsulated linearisability). Given h1, h2 ∈ Henc
Θ,Θ′ , we say that h1 is enc-

linearised by h2, and write h1 ⊑enc h2, if h1(◁PO ∪ ◇)∗h2 and h2 is sequential. A library
L ∶ Θ → Θ′ can be enc-linearised to A, written L ⊑enc A, if A ⊆ Hseq

Θ,Θ′ ∩H
enc
Θ,Θ′ and for any

h ∈ JLKenc there exists h′ ∈ A such that h ⊑enc h′. We write L ⊑enc L′ if L ⊑enc JL′Kenc ∩Hseq
Θ,Θ′ .

I Remark 10. Suppose Θ = {m ∶ int → int} and Θ′ = {m′ ∶ int → int}. Histories from HΘ,Θ′

may contain the following actions only: callm′(i)OK, retm(i)OL, callm(i)PL, retm′(i)PK.
Then (◁PO ∪ ◇)∗ preserves the order between callm(i)PL and retm(i)OL as well as that
between retm′(i)PK and callm′(i)OK, i.e. it coincides with Definition 3 of [3].

I Example 11 (Parameterised multiset). We revisit the multiset library of Example 1 and
extend it with a public method reset, which performs multiplicity resets to default values
using an abstract method default as the default-value function (again, we use absolute values
to avoid negative multiplicities). The extended library is shown in Figure 3 and written
Lmset2 ∶ {default} → Θ′, with Θ′ = {count, update, reset}. In contrast to the update method
of Lmset, reset is not optimistic: it retrieves the lock upon its call, and only releases it before
return. In particular, the method calls default while it retains the lock.
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1 public count, update, reset;
2 abstract default;
3 Lock lock;
4 F := λx.0;
5 ...

20 reset = λi.
21 lock .acquire ();
22 let y = |default i | in
23 let f = !F in
24 F := λx. if (x == i) then y
25 else ( f x);
26 lock . release ();
27 y

1 public run; . . . ;
2 Lock lock;
3 struct {fun, arg , wait, retv} requests [N];
4

5 run = λ (f,x).
6 requests [tid].fun := f;
7 requests [tid].arg := x;
8 requests [tid].wait := 1;
9 while ( requests [tid].wait)

10 if ( lock . tryacquire ()) {
11 for (t=0; t<N; t++)
12 if ( requests [ t ].wait) {
13 requests [ t ]. retv :=
14 requests [ t ]. fun ( requests [ t ]. arg );
15 requests [ t ].wait := 0;
16 }; lock . release () };
17 requests [tid].retv;

Figure 3 Left: Parameterised multiset library Lmset2 (lines 5-19 as in Fig. 2) with public methods
count, reset : int→ int, update∶ int×(int→ int) → int; abstract method default ∶ int→ int. Right: Flat
combination library Lfc.

Observe that, were default able to externally call update, we would reach a deadlock:
default would be keeping the lock while waiting for the return of a method that requires
the lock. On the other hand, if the library is encapsulated then the latter scenario is not
possible. In such a case, Lmset2 linearises to the specification Amset2, defined next. Let
Amset2 = {π1(s) ∣ s ∈ A○

mset2} where:

A○
mset2 = { s ∈ H○

∅,Θ′ ∣ π1(s) ∈ Hseq
∅,Θ′ ∧ ∀t. s ↾ t ∈ S ∧ ∀s′(_ , I)P (_ , J)O ⊑pre s. I = J }

and the set S is now given by the grammar of Example 5 extended with the rule:

S → (t, call reset(i), I)OK (t, call default(i), I)PL (t, ret default(j), I)OL (t, ret reset(∣j∣), I ′)PK S

with I ′ = I[i↦ ∣j∣]. Our framework makes it possible to confirm that Lmset2 enc-linearises
to Amset2.

We finally extend general linearisability to cater for situations where the client and the
parameter library adhere to closure constraints expressed by relations R on histories. Let
Θ,Θ′ be sets of abstract and public methods respectively. The closure relations we consider
are closed under permutations of methods outside Θ∪Θ′: if hRh′ and π is a (type-preserving)
permutation on Meths ∖ (Θ ∪Θ′) then π(h)Rπ(h′). The requirement represents the fact
that, apart from the method names from a library interface, the other method names are
arbitrary and can be freely permuted without any observable effect. Thus, R should not be
distinguishing between such names.

I Definition 12 (Relational linearisability). Let R ⊆ HΘ,Θ′ ×HΘ,Θ′ be closed under permuta-
tions of names in Meths∖ (Θ∪Θ′). Given h1, h2 ∈ HΘ,Θ′ , we say that h1 is R-linearised by
h2, and write h1 ⊑R h2, if h1(◁PO ∪R)∗h2 and h2 is sequential. A library L ∶ Θ→ Θ′ can
be R-linearised to A, written L ⊑R A, if A ⊆ Hseq

Θ,Θ′ and for any h ∈ JLK there exists h′ ∈ A
such that h ⊑R h′. We write L ⊑R L′ if L ⊑R JL′K ∩Hseq

Θ,Θ′ .

I Example 13. We consider a higher-order variant of an example from [3] that motivates
relational linearisability. Flat combining [11] is a synchronisation paradigm that advocates
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the use of a single thread holding a global lock to process requests of all other threads. To
facilitate this, threads share an array to which they write the details of their requests and
wait either until they acquire a lock or their request has been processed by another thread.
Once a thread acquires a lock, it executes all requests stored in the array and the outcomes
are written to the array for access by the requesting threads.

Let Θ′ = {run ∈ Meths(θ→θ′)×θ,θ′}. The library Lfc ∶ ∅ → Θ′ (Figure 3, right) is built
following the flat combining approach and, on acquisition of the global lock, the winning
thread acts as a combiner of all registered requests. Note that the requests will be attended
to one after another (thus guaranteeing mutual exclusion) and only one lock acquisition will
suffice to process one array of requests. Using our framework, one can show that Lfc can be
R-linearised to the specification given by the library Lspec defined by

run = λ (f,x). ( lock .acquire (); let result = f(x) in lock . release (); result )

where each function call in Lspec is protected by a lock. Observe that we cannot hope for
Lfc ⊑ Lspec, because clients may call library methods with functional arguments that recognise
thread identity. Consequently, we can relate the two libraries only if context behaviour is
guaranteed to be independent of thread identifiers. This can be expressed through ⊑R, where
R ⊆ H∅,Θ′ ×H∅,Θ′ is a relation capturing thread-blind client behaviour.

3 Library syntax

We now look at the concrete syntax of libraries and clients. Libraries comprise collections of
typed methods whose argument and result types adhere to the grammar: θ ∶∶= unit ∣ int ∣ θ →
θ ∣ θ × θ.

We shall use three disjoint enumerable sets of names, referred to as Vars, Meths and Refs,
to name respectively variables, methods and references. x, f (and their decorated variants)
will be used to range over Vars; m will range over Meths; and r over Refs. Methods and
references are implicitly typed, i.e. Meths = ⊎θ,θ′ Methsθ,θ′ and Refs = Refsint ⊎⊎θ,θ′ Refsθ,θ′ ,
where Methsθ,θ′ contains names for methods of type θ → θ′, Refsint contains names of integer
references and Refsθ,θ′ contains names for references to methods of type θ → θ′. We write ⊎
for disjoint set union.

The syntax for libraries and clients is given in Figure 4. Each library L begins with a
series of method declarations (public or abstract) followed by a block B containing method
implementations (m = λx.M) and reference initialisations (r ∶= i or r ∶= λx.M). The typing
rules ensure that each public method is implemented within the block, in contrast to abstract
methods. Clients are parallel compositions of closed terms.

Terms M specify the shape of allowable method bodies. () is the skip command, i
ranges over integers, tid is the current thread identifier and ⊕ represents standard arithmetic
operations. Thanks to higher-order references, we can simulate divergence by (!r)(), where
r ∈ Refsunit,unit is initialised with λxunit.(!r)(). Similarly, while M N can be simulated by
(!r)() after r ∶= λxunit.let y =M in (if y then (N ; (!r)()) else ()). We also use the standard
derived syntax for sequential composition, i.e. M ;N stands for let x = M in N , where x
does not occur in N . For each term M , we write Meths(M) for the set of method names
occurring in M . We use the same notation for method names in blocks and libraries.

I Remark 14. In Section 2 we used lock-related operations in our example libraries (acquire,
tryacquire, release), on the understanding that they can be coded using shared memory.
Similarly, the array of Example 13 in the sequel can be constructed using references.
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Libraries L ∶∶= B ∣ abstract m; L ∣ public m; L Clients K ∶∶= M ∥⋯∥M

Blocks B ∶∶= ε ∣m = λx.M ; B ∣ r ∶= λx.M ; B ∣ r ∶= i; B Values v ∶∶= () ∣ i ∣m ∣ ⟨v, v⟩

Terms M ∶∶= () ∣ i ∣ tid ∣ x ∣m ∣M ⊕M ∣ ⟨M,M⟩ ∣ π1M ∣ π2M ∣ if M then M else M
∣ λxθ.M ∣ xM ∣mM ∣ let x =M in M ∣ r ∶=M ∣ !r

Γ ⊢() ∶ unit Γ ⊢ i ∶ int Γ ⊢ tid ∶ int
Γ(x) = θ

Γ ⊢ x ∶ θ
m ∈ Methsθ,θ′
Γ ⊢m ∶ θ → θ′

Γ ⊢M ∶ int Γ ⊢M0,M1 ∶ θ

Γ ⊢ if M then M1 else M0 ∶ θ

Γ ⊢M ∶ θ1 × θ2

Γ ⊢ πiM ∶ θi (i = 1,2)
Γ ⊢Mi ∶ θi (i = 1,2)
Γ ⊢ ⟨M1,M2⟩ ∶ θ1× θ2

Γ ⊢M1,M2 ∶ int
Γ ⊢M1 ⊕M2 ∶ int

Γ, x ∶ θ ⊢M ∶ θ′

Γ⊢ λxθ.M ∶ θ → θ′

Γ(x) = θ → θ′ Γ ⊢M ∶ θ

Γ ⊢ xM ∶ θ′
m ∈ Methsθ,θ′ Γ ⊢M ∶ θ

Γ ⊢mM ∶ θ′
Γ ⊢M ∶ θ Γ, x ∶ θ ⊢ N ∶ θ′

Γ ⊢ let x =M in N ∶ θ′

r ∈ Refsint Γ ⊢M ∶ int
Γ ⊢ r ∶=M ∶ unit

r ∈ Refsθ,θ′ Γ ⊢M ∶ θ → θ′

Γ ⊢ r ∶=M ∶ unit
r ∈ Refsint

Γ ⊢ !r ∶ int
r ∈ Refsθ,θ′

Γ ⊢ !r ∶ θ → θ′

⊢B ε ∶ ∅

m ∈ Methsθ,θ′ x ∶ θ ⊢M ∶ θ′ ⊢B B ∶ Θ
⊢B m = λx.M ; B ∶ Θ ⊎ {m}

r ∈ Refsθ,θ′ x ∶ θ ⊢M ∶ θ′ ⊢B B ∶ Θ
⊢B r ∶= λx.M ; B ∶ Θ

r ∈ Refsint ⊢B B ∶ Θ
⊢B r ∶= i; B ∶ Θ

⊢B B ∶ Θ
Meths(B) ⊢L B ∶ ∅ → Θ

Θ ⊎ {m} ⊢L L ∶ Θ′
→ Θ′′ m ∈ Θ′′

Θ ⊢L public m;L ∶ Θ′
→ Θ′′

Θ ⊎ {m} ⊢L L ∶ Θ′
→ Θ′′ m ∉ Θ′′

Θ ⊢L abstract m;L ∶ Θ′
⊎ {m} → Θ′′

⊢Mj ∶ unit (j = 1,⋯,N)

Θ ⊢K M1∥⋯∥MN ∶ unit
∀j.Meths(Mj) ⊆ Θ

Figure 4 Library syntax, and typing rules for terms (⊢), blocks (⊢B), libraries (⊢L), clients (⊢K).

For simplicity, we do not include private methods, yet the same effect could be achieved by
storing them in higher-order references. As we explain in the next section, references present
in library definitions are de facto private to the library. Note also that, according to our
definition, sets of abstract and public methods are disjoint. However, given m,m′ ∈ Refsθ,θ′ ,
one can define a “public abstract” method with: public m; abstract m′; m = λxθ.m′x .

Terms are typed in environments Γ = {x1 ∶ θ1,⋯, xn ∶ θn}. Method blocks are typed through
judgements ⊢B B ∶ Θ, where Θ ⊆ Meths. The judgments collect the names of methods defined
in a block as well as making sure that the definitions respect types and are not duplicated.
Also, the initialisation statements must comply with types.

Finally, we type libraries using statements of the form Θ ⊢L L ∶ Θ′ → Θ′′, where
Θ,Θ′,Θ′′ ⊆ Meths and Θ′ ∩Θ′′ = ∅. The judgment ∅ ⊢L L ∶ Θ′ → Θ′′ guarantees that any
method occurring in L is present either in Θ′ or Θ′′, that all methods in Θ′ are declared as
abstract and unimplemented, while all methods in Θ′′ are declared as public and defined.
Thus, ∅ ⊢L L ∶ Θ → Θ′ is a library in which Θ,Θ′ are the abstract and public methods
respectively. In this case, we also write L ∶ Θ→ Θ′.

4 Semantics and soundness

The semantics of our system is given in several stages. First, we define an operational
semantics for sequential and concurrent terms that may draw methods from a repository. We
then adapt it to capture interactions of concurrent clients with closed libraries (no abstract
methods). This notion is then used to define contextual approximation for arbitrary libraries.
Finally, we introduce a trace semantics of arbitrary libraries, which generates the histories
on which our notions of linearisability are based.
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(L) Ð→lib (L,∅, Sinit) (r ∶= i;B,R, S) Ð→lib (B,R, S[r ↦ i])

(abstract m;L,R, S) Ð→lib (L,R, S) (m = λx.M ;B ,R, S) Ð→lib (B,R∗∗, S)

(public m;L,R, S) Ð→lib (L,R, S) (r ∶= λx.M ;B,R, S) Ð→lib (B,R∗∗, S[r ↦m])

(E[tid],R, S) Ð→t (E[t],R, S) (E[if i∗ then M1 else M0],R, S) Ð→t (E[Mj∗],R, S)

(E[i1 ⊕ i2],R, S) Ð→t (E[i∗∗],R, S) (E[πj⟨v1,v2⟩],R, S) Ð→t (E[vj],R, S)

(E[!r],R, S) Ð→t (E[S(r)],R, S) (E[let x = v in M],R, S) Ð→t (E[M{v/x}],R, S)

(E[λx.M],R, S) Ð→t (E[m],R∗∗, S) (E[mv],R∗, S) Ð→t (E[M{v/x}],R∗, S)

E ∶∶= ● ∣ E ⊕M ∣ i⊕E ∣ if E then M else M ∣ πj E ∣ ⟨E,M⟩ ∣ ⟨v,E⟩ ∣mE ∣ let x = E in M ∣ r ∶= E

(M,R, S) Ð→t (M
′,R′, S′)

(M1∥⋯∥Mt−1∥M∥Mt+1∥⋯∥MN ,R, S) ÔÔ⇒ (M1∥⋯∥Mt−1∥M
′
∥Mt+1∥⋯∥MN ,R

′, S′)
(KN)

Figure 5 Evaluation rules for libraries (Ð→lib), terms (Ð→t) and clients (ÔÔ⇒). In the rules above
we use the conditions/notation: R∗∗ = R⊎ (m↦ λx.M), i∗∗ = i1 ⊕ i2, R∗(m) = λx.M , and j∗ = 0 iff
i∗ = 0.

4.1 Library-client evaluation
Libraries, terms and clients are evaluated in environments comprising:

A method environment R, called own-method repository, which is a finite partial map on
Meths assigning to each m in its domain, with m ∈ Methsθ,θ′ , a term of the form λy.M

(we omit type-superscripts from bound variables for economy).
A finite partial map S ∶ Refs ⇀ (Z ∪Meths), called store, which assigns to each r in its
domain an integer (if r ∈ Refsint) or name from Methsθ,θ′ (if r ∈ Refsθ,θ′).

The evaluation rules are presented in Figure 5, where we also define evaluation contexts E.
I Remark 15. We shall assume that reference names used in libraries are library-private, i.e.
sets of reference names used in different libraries are assumed to be disjoint. Similarly, when
libraries are being used by client code, this is done on the understanding that the references
available to that code do not overlap with those used by libraries. Still, for simplicity, we
shall rely on a single set Refs of references in our operational rules.

First we evaluate the library to create an initial repository and store. This is achieved
by the first set of rules in Figure 5, where we assume that Sinit is empty. Thus, library
evaluation produces a tuple (ε,R0, S0) including a method repository and a store, which can
be used as the initial repository and store for evaluating M1∥⋯∥MN using the (KN ) rule.
We shall call the latter evaluation semantics for clients (denoted by ÔÔ⇒) the multi-threaded
operational semantics. The latter relies on closed-term reduction (Ð→t), whose rules are given
in the middle group, where t is the current thread index. Note that the rules for E[λx.M] in
the middle group, along with those for m = λx.M and r ∶= λx.M in the first group, involve
the creation of a fresh method name m, which is used to put the function in the repository
R. Name creation is non-deterministic: any fresh m of the appropriate type can be chosen.

We define termination for clients linked with libraries that have no abstract methods.
Recall our convention (Remark 15) that L and M1,⋯,MN must access disjoint parts of the
store. Terms M1,⋯,MN can share reference names, though.
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I Definition 16. Let L ∶ ∅ → Θ′ and Θ′ ⊢K M1∥⋯∥MN ∶ unit. We say that M1∥⋯∥MN

terminates with linked library L if (M1∥⋯∥MN ,R0, S0) ÔÔ⇒∗ (()∥⋯∥(),R, S), for some R, S,
where (L) Ð→∗

lib (ε,R0, S0). We then write link L in (M1∥⋯∥MN) ⇓.

We shall build a notion of contextual approximation of libraries on top of termination:
one library will be said to approximate another if, whenever the former terminates when
composed with any parameter library and client, so does the latter.

We will be considering the following notions for composing libraries. Let us denote a library
L as L =D;B, where D contains all the (public/abstract) method declarations of L, and B is
its method block. We write Refs(L) for the set of references in L. Let L1 ∶ Θ1 → Θ2 be of the
form D1;B1. Given L2 ∶ Θ′

1 → Θ′
2 (= D2;B2) such that Θ2 ∩Θ′

2 = Refs(L1) ∩ Refs(L2) = ∅,
Θ = {m1,⋯,mn} ⊆ Θ2 and L′ ∶ ∅ → Θ1,Θ′, we define the union of L1 and L2, the Θ-hiding
of L1, and the sequencing of L′ with L1 respectively as:

L1 ∪L2 ∶ (Θ1 ∪Θ′
1) ∖ (Θ2 ∪Θ′

2) → Θ2 ∪Θ′
2 = (D1;B1) ∪ (D2;B2) =D

′
1;D′

2;B1;B2

L1∖Θ ∶ Θ1 → (Θ2 ∖Θ) = (D1;B1) ∖Θ =D′′
1 ;B′

1{!r1/m1}⋯{!rn/mn}

L′;L1 ∶ ∅ → Θ2,Θ′
= (L′ ∪L1) ∖Θ1

where D′
1 is D1 with any abstractm declaration removed for m ∈ Θ′

2, dually for D′
2; and

where D′′
1 is D1 without public m declarations for m ∈ Θ and each ri is a fresh reference

matching the type of mi, and B′
1 is obtained from B1 by replacing each mi = λx.M by

ri ∶= λx.M . Thus, the union of L1 and L2 corresponds to merging their code and removing
any abstract declarations for methods that become defined. The hiding of a public method
simply renders it private via the use of references.

I Definition 17. Given L1, L2 ∶ Θ → Θ′, we say that L1 contextually approximates
L2, written L1 ⊏∼ L2, if for all L′ ∶ ∅ → Θ,Θ′′ and Θ′,Θ′′ ⊢K M1∥⋯∥MN ∶ unit, if link L′;
L1 in (M1∥⋯∥MN)⇓ then link L′;L2 in (M1∥⋯∥MN)⇓. In this case, we also say that L2
contextually refines L1.

Note that, according to this definition, the parameter library L′ may communicate directly
with the client terms through a common interface Θ′′. We shall refer to this case as the
general case. Later on, we shall also consider more restrictive testing scenarios in which this
possibility of explicit communication is removed. Moreover, from the disjointness conditions
in the definitions of sequencing and linking we have that Li, L′ and M1∥⋯∥MN access
pairwise disjoint parts of the store.

4.2 Trace semantics
Building on the earlier semantics, we next introduce a trace semantics of libraries in the
spirit of game semantics [2]. As mentioned in Section 2, the behaviour of a library will be
represented as an exchange of moves between two players called P and O, representing the
library and its corresponding context respectively. The context consists of the client of the
library as well as the parameter library, with an index on each move (K/L) specifying which
of them is involved in the move.

In contrast to the previous section, we handle scenarios in which called methods need not
be present in the repository R. Calls to such undefined methods are represented by labelled
transitions – calls to the context made on behalf of the library (P ). The calls can later be
responded to with labelled transitions corresponding to returns, made by the context (O).
On the other hand, O is able to invoke methods in R, which will also be represented through
suitable labels. Because we work in a higher-order setting, calls and returns made by both
players may involve methods as arguments or results. Such methods also become available
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(Int) (E ,M,R,P,A, S) Ð→t (E ,M ′,R′,P,A, S′), given that (M,R, S) Ð→t (M ′,R′, S′) and
dom(R

′
∖R) consists of names that do not occur in E ,A.

(PQy) (E ,E[mv],R,P,A, S)
callm(v′)P Y
ÐÐÐÐÐ→t (m ∶∶ E ∶∶ E ,−,R′,P ′,A, S), given m ∈ AY and (PC).

(OQy) (E ,−,R,P,A, S)
callm(v)OY
ÐÐÐÐÐÐ→t (m ∶∶ E ,M{v/x},R,P,A′, S), given m ∈ PY , R(m) = λx.M

and (OC).

(PAy) (m ∶∶ E , v,R,P,A, S)
retm(v′)P Y
ÐÐÐÐÐÐ→t (E ,−,R

′,P ′,A, S), given m ∈ PY and (PC).

(OAy) (m ∶∶ E ∶∶ E ,−,R,P,A, S)
retm(v)OY
ÐÐÐÐÐÐ→t (E ,E[v],R,P,A′, S), given m ∈ AY and (OC).

(PC) If v contains the names m1,⋯,mk then v′ = v{m′
i/mi ∣ 1 ≤ i ≤ k} with each m′

i being a fresh
name. Moreover, R′

= R ⊎ {m′
i ↦ λx.mix ∣ 1 ≤ i ≤ k} and P ′ = P ∪Y {m′

1,⋯,m
′
k}.

(OC) If v contains names m1,⋯,mk then mi ∈ φ(P,A), for each i, and A′ = A ∪Y {m1,⋯,mk}.

Figure 6 Trace semantics rules. The rule (Int) is for embedding internal rules. In the rule (PQy),
the library (P ) calls one of its abstract methods (either the original ones or those acquired via
interaction), while in (PAy) it returns from such a call. The rules (OQy) and (OAy) are dual and
represent actions of the context. In all of the rules, whenever we write m(v) or m(v′), we assume
that the type of v matches the argument type of m.

for future calls: function arguments/results supplied by P are added to the repository and
can later be invoked by O, while function arguments/results provided by O can be queried
in the same way as abstract methods.

The trace semantics utilises configurations that carry more components than the previous
semantics. We define two kinds of configurations:

O-configurations (E ,−,R,P,A, S) and P-configurations (E ,M,R,P,A, S)

where the component E is an evaluation stack, that is, a stack of the form [X1,X2,⋯,Xn]
with each Xi being either an evaluation context or a method name. On the other hand,
P = (PL,PK) with PL,PK ⊆ dom(R) being sets of public method names, and A = (AL,AK)
is a pair of sets of abstract method names. P will be used to record all the method names
produced by P and passed to O: those passed to OK are stored in PK, while those leaked
to OL are kept in PL. Inside A, the story is the opposite one: AK (AL) stores the method
names produced by OK (resp. OL) and passed to P . Consequently, the sets of names stored
in PL,Pk,AL,Ak will always be disjoint.

Given a pair P as above and a set Z ⊆ Meths, we write P∪KZ for the pair (PL,PK∪Z). We
define ∪L in a similar manner, and extend it to pairs A as well. Moreover, given P and A, we
let φ(P,A) be the set of fresh method names for P,A: φ(P,A) = Meths∖(PL∪PK∪AL∪AK).

We give the rules generating the trace semantics in Figure 6. Note that the rules are
parameterised by: P /O and Y , which together determine the polarity of the next move; Q/A,
which stands for the move being a call (Question) or a return (Answer) respectively. The
rules depict the intuition presented above. When in an O-configuration, the context may
issue a call to a public method m ∈ PY and pass control to the library (rule (OQy)). Note
that, when this occurs, the name m is added to the evaluation stack E and a P -configuration
is obtained. From there on, the library will compute internally using rule (Int), until: it
either needs to evaluate an abstract method (i.e. some m′ ∈ AY ), and hence issues a call
via rule (PQy); or it completes its computation and returns the call (rule (PAy)). Calls
to abstract methods, on the other hand, are met either by further calls to public methods
(via (OQy)), or by returns (via (OAy)).

Finally, we extend the trace semantics to a concurrent setting where a fixed number
of N -many threads run in parallel. Each thread has separate evaluation stack and term
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components, which we write as C = (E ,X) (where X is a term or “−”). Thus, a configuration
now is of the following form:

N -configuration (C1∥⋯∥CN ,R,P,A, S)

where, for each i, Ci = (Ei,Xi) and (Ei,Xi,R,P,A, S) is a sequential configuration. We shall
abuse notation a little and write (Ci,R,P,A, S) for (Ei,Xi,R,P,A, S). Also, below we write
C⃗ for C1∥⋯∥CN and C⃗[i ↦ C′] = C1∥⋯∥Ci−1∥C′∥Ci+1∥⋯∥CN and, for economy, we use RPAS
to range over tuples (R,P,A, S). The concurrent traces are produced by the following two
rules

(Ci,RPAS) Ð→i (C′,RPAS′)

(C⃗,RPAS) ÔÔ⇒ (C⃗[i↦ C′],RPAS′)
(PInt)

(Ci,RPAS)
xXY
ÐÐ→i (C

′,RPAS′)

(C⃗,RPAS)
(i,x)XY
ÔÔÔÔ⇒ (C⃗[i↦ C′],RPAS′)

(PExt)

with the proviso that the names freshly produced internally in (PInt) are fresh for the
whole of C⃗.

We can now define the trace semantics of a library L. We call a configuration component
Ci final if it is in one of the following forms, for O- and P -configurations respectively:
Ci = ([],−) or Ci = ([], ()) . We call (C⃗,R,P,A, S) final just if C⃗ = C1∥⋯∥CN and each Ci is
final.

I Definition 18. For each L ∶ Θ→ Θ′, we define the N -trace semantics of L to be:

JLKN = { s ∣ (C⃗0,R0, (∅,Θ′), (Θ,∅), S0)
sÔÔ⇒∗ρ ∧ ρ final}

where C⃗0 = ([],−)∥⋯∥([],−) and (L) Ð→∗
lib (ε,R0, S0). We may write JLKN simply as JLK.

We are now able to revisit the linearisability claims anticipated in Examples 1, 11 and 13.

I Lemma 19 ( Linearisability examples).
1. Lmset ⊑ Amset,
2. Lmset2 ⊑enc Amset2,
3. Lfc ⊑R Lspec.

We conclude the presentation of the trace semantics by providing a semantics for library
contexts. Recall that in our setting (Figure 1) a library L ∶ Θ→ Θ′ is deployed in a context
consisting of a parameter library L′ ∶ ∅ → Θ,Θ′′ and a concurrent composition of client
threads Θ′,Θ′′ ⊢Mi ∶ unit (i = 1,⋯,N). We shall write link L′;− in (M1∥⋯∥MN), or simply
C, to refer to such contexts.

I Definition 20. Let Θ′,Θ′′ ⊢K M1∥⋯∥MN ∶ unit and L′ ∶ ∅ → Θ,Θ′′. We define:

Jlink L′;− in (M1∥⋯∥MN)K = { s ∣ (C⃗0,R0, (Θ,∅), (∅,Θ′), S0)
sÔÔ⇒∗ρ ∧ ρ final}

where (L′) Ð→∗
lib (ε,R0, S0) and C⃗0 = ([],M1)∥⋯∥([],MN).

I Lemma 21. For any L ∶ Θ→ Θ′, L′ ∶ ∅ → Θ,Θ′′ and Θ′,Θ′′ ⊢K M1∥⋯∥MN ∶ unit we have
JLKN ⊆ HΘ,Θ′ and Jlink L′;− in (M1∥⋯∥MN)K ⊆ HcoΘ,Θ′ .

4.3 Soundness
To conclude, we clarify in what sense all the notions of linearisability are sound. Recall
the general notion of contextual approximation (refinement) from Definition 17. In the
encapsulated case libraries are being tested by clients that do not communicate with the
parameter library explicitly. The corresponding definition of contextual approximation is
defined below.
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I Definition 22 (Encapsulated ⊏∼). Given libraries L1, L2 ∶ Θ → Θ′, we write L1 ⊏∼enc L2
when, for all L′ ∶ ∅ → Θ and Θ′ ⊢K M1∥⋯∥MN ∶ unit, if link L′ ;L1 in (M1∥⋯∥MN) ⇓ then
link L′ ;L2 in (M1∥⋯∥MN) ⇓.

For relational linearisability, we need yet another notion that will link R to contextual
testing.

I Definition 23. Let R ⊆ HΘ,Θ′ × HΘ,Θ′ be a set closed under permutation of names in
Meths ∖ (Θ ∪Θ′). We say that a context formed by L′ and M1,⋯,MN is R-closed if, for
any h ∈ Jlink L′;− in (M1∥⋯∥MN)K, hRh′ implies h′ ∈ Jlink L′;− in (M1∥⋯∥MN)K. Given
L1, L2 ∶ Θ→ Θ′, we write L1 ⊏∼R L2 if, for all R-closed contexts formed from L′,M1,⋯,MN ,
whenever link L′ ;L1 in (M1∥⋯∥MN) ⇓ then we also have link L′ ;L2 in (M1∥⋯∥MN) ⇓.

I Theorem 24 ( Correctness).

1. L1 ⊑ L2 implies L1 ⊏∼ L2.

2. L1 ⊑enc L2 implies L1 ⊏∼enc L2.

3. L1 ⊑R L2 implies L1 ⊏∼R L2.

Finally, linearisability is compatible with library composition. ⊑ is closed under union
with libraries that use disjoint stores, while ⊑enc is closed under a form of sequencing that
respects encapsulations.

5 Related and future work

Linearisability has been consistently used as a correctness criterion for concurrent algorithms
on a variety of data structures [18], and has inspired a variety of proof methods [5]. An
explicit connection between linearisability and refinement was made in [6], where it was
shown that, in base-type settings, linearisability and refinement coincide. Similar results
have been proved in [4, 9, 17, 3]. Our contributions are notions of linearisability that serve
as correctness criteria for libraries with methods of arbitrary order and have a similar
relationship to refinement. The next natural target is to investigate proof methods for
establishing linearisability of higher-order concurrent libraries. The examples proved herein
are only an initial step in that direction.

At the conceptual level, [6] proposed that the verification goal behind linearisability is
observational refinement. In this vein, [24] utilised logical relations as a direct method for
proving refinement in a higher-order concurrent setting, while [23] introduced a program
logic that builds on logical relations. On the other hand, proving conformance to a history
specification has been addressed in [20] by supplying history-aware interpretations to off-the-
shelf Hoare logics for concurrency. Other logic-based approaches for concurrent higher-order
libraries, which do not use linearisability, include Higher-Order and Impredicative Concurrent
Abstract Predicates [21, 22].

Acknowledgements. We thank the authors of [3] for bringing the higher-order linearisability
problem to our attention, Radha Jagadeesan and Kasper Svendsen for constructive comments,
and C. Tzevelekou for help with Figure 1.
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