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Abstract
An ε-approximate incidence between a point and some geometric object (line, circle, plane, sphere)
occurs when the point and the object lie at distance at most ε from each other. Given a set of
points and a set of objects, computing the approximate incidences between them is a major step
in many database and web-based applications in computer vision and graphics, including robust
model fitting, approximate point pattern matching, and estimating the fundamental matrix in
epipolar (stereo) geometry.

In a typical approximate incidence problem of this sort, we are given a set P of m points
in two or three dimensions, a set S of n objects (lines, circles, planes, spheres), and an error
parameter ε > 0, and our goal is to report all pairs (p, s) ∈ P × S that lie at distance at most
ε from one another. We present efficient output-sensitive approximation algorithms for quite a
few cases, including points and lines or circles in the plane, and points and planes, spheres, lines,
or circles in three dimensions. Several of these cases arise in the applications mentioned above.
Our algorithms report all pairs at distance ≤ ε, but may also report additional pairs, all of which
are guaranteed to be at distance at most αε, for some problem-dependent constant α > 1. Our
algorithms are based on simple primal and dual grid decompositions and are easy to implement.
We note that (a) the use of duality, which leads to significant improvements in the overhead cost
of the algorithms, appears to be novel for this kind of problems; (b) the correct choice of duality
in some of these problems is fairly intricate and requires some care; and (c) the correctness and
performance analysis of the algorithms (especially in the more advanced versions) is fairly non-
trivial. We analyze our algorithms and prove guaranteed upper bounds on their running time
and on the “distortion” parameter α.
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1 Introduction

Approximate incidences. Given a finite point set S1 and finite set S2 of geometric primitives
(e.g., lines, planes, circles, or spheres in R2 or R3), and some ε > 0, we define the set of
ε-incidences (also referred to as ε-approximate incidences, or just approximate incidences)
between S1 and S2 to be

Iε(S1, S2) = {(s1, s2) | s1 ∈ S1, s2 ∈ S2, dist(s1, s2) ≤ ε},

where dist(s1, s2) = inf{dist(s1, y) | y ∈ s2} is the Euclidean distance between s1 and s2.
We are interested in efficient algorithms for computing Iε(S1, S2), ideally in time linear in
|S1| + |S2| + |Iε(S1, S2)|. Most classical work in discrete and computational geometry is
focused on exact incidences (ε = 0). When S2 is a set of lines in the plane and ε = 0, detecting
whether I0(S1, S2) is empty or not is the well studied Hopcroft’s problem (see, e.g., [8]). In
contrast, the notion of approximate incidences, as we define here, probably received less
theoretical attention, but has many important applications which we review below. We
consider the problem of reporting all pairs in Iε(S1, S2). Our algorithms, though, can also
estimate |Iε(S1, S2)|, rather than report its members, and do it faster when |Iε(S1, S2)| is
small.

This problem can be viewed as a range searching problem. Specifically, we treat each
member s2 of S2 as the range s2(ε) = {p ∈ Rd | dist(p, s2) ≤ ε}, d = 2, 3, which is the
Minkowski sum of s2 with a disk (ball in R3) of radius ε (centered at the origin); thus points
become disks, lines become slabs (in R2) or cylinders (in R3), circles become annuli (in R2)
or tori (in R3), and so on. The goal now is to report all pairs (s1, s2) ∈ S1 × S2 such that
s1 ∈ s2(ε). As mentioned, the known algorithms for such tasks have a rather large overhead.
For example, when S1 is a set of m points and S2 is a set of n lines in the plane, i.e., the
ranges s2(ε) are fixed-width slabs, the best known algorithms for solving the problem have
an overhead close to m2/3n2/3, and there are matching lower bounds in certain models of
computation. The overhead is larger when the objects in S2 are of more complex shapes
(e.g., arbitrary circles) or when we move to three (or higher) dimensions; see [1]. In addition,
these algorithms, while interesting and sophisticated from a theoretical point of view, are a
nightmare to implement in practice.

Instead, with the goal of obtaining algorithms that are really simple to implement (and
therefore with good performance in practice), and that run in time linear in the input and
output sizes, we adopt the approach of using approximation schemes, in which we still
report all the pairs (s1, s2) that satisfy dist(s1, s2) ≤ ε, but are willing to report additional
pairs, provided that all pairs that we report satisfy dist(s1, s2) ≤ αε, for some constant
problem-dependent parameter α > 1. To be more precise, assuming that the test whether
dist(s1, s2) ≤ ε is cheap, we can filter the reported pairs by such a test, and actually report
only the pairs that pass it. The actual number of pairs that we have to inspect will typically
be larger than |Iε(S1, S2)|, but it will always be at most |Iαε(S1, S2)| (and in practice
considerably less than that), and the hope is that the number of inspected pairs will not
be much larger than those that we actually report. (We expect it to be larger by only a
constant factor, which depends on α and on the geometry of the setup under consideration.)

Our results. We present simple and efficient output-sensitive algorithms (in the above sense)
for approximate-incidence reporting problems between points and various simple geometric
shapes, in two and three dimensions.

To calibrate the merits of our solutions, we first note that these approximate incidence
reporting problems can also be solved by naive grid-based algorithms, as follows. Consider,
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for example, the problem of reporting approximate incidences between a set S1 of m points
and a set S2 of n lines in the plane. We assume that all the incidences that we seek occur
in the unit disk (ball in R3). We partition the unit disk by a uniform grid, each of whose
cells is a square of side length ε. We store each point in S1 in a bucket corresponding to the
grid cell that contains it, and, for each line ` ∈ S2, we report all the pairs involving ` and
the points in the grid cells that ` crosses, and in their neighboring cells. The running time
is O(m+ n/ε+ k), where k is the number of reported approximate incidences. Clearly, all
pairs (p, `) ∈ S1 × S2 with dist(p, `) ≤ ε are reported, and each reported pair (p, `) satisfies
dist(p, `) ≤ 2

√
2ε, as is easily checked. If n is much larger than m, we can use duality (where

some care is needed to preserve point-line distances), to map the points to lines and the lines
to points, and thereby reduce the complexity to O(n+m+ min{m,n}/ε+ k). This method
can also be applied in three dimensions, and yields the same time bounds as in the preceding
primal-only approach (duality is much trickier in these situations), namely, O(m+ n/ε+ k),
when S2 consists of one-dimensional objects (e.g., lines or circles), but the running time
deteriorates to O(m+ n/ε2 + k) when S2 consists of surfaces (e.g., planes or spheres). In
these latter cases (involving planes or congruent spheres) duality can be applied, to improve
the time bound to O(n+m+ min{m,n}/ε2 + k).

While superficially these simple solutions might look ideal, as they are linear in m, n,
and k, their dependence on ε is too naive and weak, and when m and n are large and ε small
(as is typically the case in practice), the algorithms are rather slow in practice.

In this paper we address this issue, and develop a series of “primal-dual” grid-based
algorithms for several approximate incidence reporting problems, that are faster than this
naive scheme for suitable ranges of the parameters m, n, and ε (which cover most of the
practical instances of these problems). Specifically, we present the following results. In all of
them, S1 is a set of m points, contained in the unit ball in two or three dimensions.
(a) In the plane, for a set S2 of n lines, all k approximate incidences can be reported in

time O (m+ n+
√
mn/
√
ε+ k). (The dependency of the complexity on ε is improved

by a factor of
√
ε compared to the naive scheme when n and m are comparable.)

(b) In three dimensions, for a set S2 of n planes, all k approximate incidences can be reported
in time O (m+ n+

√
mn/ε+ k). (The dependency of the complexity on ε is improved

by a factor of ε compared to the naive scheme, when n and m are comparable.)
(c) In the plane, for a set S2 of n congruent circles, all k approximate incidences can be

reported in time O (m+ n+
√
mn/
√
ε+ k).

(d) In the plane, for a set S2 of n arbitrary circles, all k approximate incidences can be
reported in time O

(
m+ n+m1/3n2/3/ε2/3 + k

)
.

(e) In three dimensions, for a set S2 of n congruent spheres, all k approximate incidences
can be reported in time O ((m+ n)/ε+ k).

(f) In three dimensions, for a set S2 of n lines, all k approximate incidences can be reported
in time O

(
m+ n+m1/3n2/3/ε2/3 + k

)
.

(g) In three dimensions, for a set S2 of n congruent circles, all k approximate incidences
can be reported in time O

(
(m+ n)/ε1/2 +m1/3n2/3/ε7/6 + k

)
.

In Section 4, we use the algorithms in (e) and (g), to obtain an efficient algorithm to find
nearly congruent triangles which is the first step in solving the approximate point pattern
matching problem in R3.

A comparison with the naive solutions sketched above clearly shows the superiority of
our technique. For example, for lines or congruent circles in the plane, assuming that n ≤ m,
our algorithms (in (a) and (c), respectively) are asymptotically faster than the naive method
when

√
mn/ε ≤ n/ε, that is, when ε ≤ n/m, an assumption that holds in most practical

applications.
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To recap, we show that, by allowing to report some additional approximate incidences
between pairs that are at most αε apart, one can obtain substantially better bounds than the
naive ones. Our methods are based on grids and on duality – they construct much coarser
primal grids, and pass each subproblem, consisting of the points in a grid cell and of the
objects that pass through or near that cell, to a secondary dual stage, in which another
coarse grid is constructed in a suitably defined dual space. The output pairs are obtained
from the cells of these secondary grids, and the gain is in the overhead, as each primal or dual
object crosses much fewer grid cells than in the naive solutions. Although this primal-dual
paradigm is fairly standard, its power in the approximate incidences context, as considered
here, has not been demonstrated before (to the best of our knowledge). The analysis (and
the particular duality one has to use) for some of the three-dimensional variants is fairly
challenging, but the algorithms all remain simple to describe and to implement.

Motivation and applications. Approximate incidence reporting and counting problems
arise in several basic practical applications, in computer vision, pattern recognition, and
related areas. Three major applications of this sort are robust model fitting, approximate point
pattern matching under rigid motions, and estimating the fundamental matrix in (stereo)
epipolar geometry. All three problems share a common paradigm, which we first explain
for model fitting. In this problem, we are given a set P of n points, say in R3 (typically,
these are so-called interest points, extracted from some image or 3D sensors), and we want
to fit objects (called models) from some given family, such as lines, circles, planes, or spheres,
so that each model passes near (i.e., is approximately incident to) many points of P ; the
quality of the model is measured in terms of the number of approximately incident points.
The standard approach is to construct (usually, by repeated random sampling) a sufficiently
rich collection of candidate models. (For example, for line models, one can simply sample
pairs of points of P , and for each pair construct the line passing through its points.) One
then counts, for each candidate line, the number of approximately incident points (for some
specified error parameter ε > 0), and reports the models that have sufficiently many such
points.

Similar reductions arise in the other problems. In approximate point pattern matching,
we are given two sets A, B of points, and want to find rigid motions that map sufficiently
large subsets of A to sets whose (unidirectional) Hausdorff distance to B is at most ε. Here
too we construct candidate rigid motions, and test the quality of each of them. For example,
in the plane, we sample pairs of points from A, and find, for each sampled pair, the pairs of
points of B that are nearly at the same distance. For each such pair of pairs we construct a
rigid motion that maps the first pair to near the other pair, and then test the quality of each
of these motions, namely, the number of points of A that lie, after the motion, near points of
B. The first step can be reduced to approximate incidence counting involving circles (whose
radii correspond to the distances between the sampled points of A, and which are centered
at the points of B) and the points of B. In three dimensions, we need to sample triples of
points of A, and for each triple a, b, c, we need to find those triples of B that span triangles
that are nearly congruent to ∆abc (because to determine a rigid motion in R3 we need to
specify how it maps three (noncollinear) source points to three respective image points).
This step is described in detail in Section 4.

In epipolar geometry, we have two stereo images A, B of the same scene, and we want
to estimate the fundamental matrix F that best matches A to B, where a point p ∈ A

is (exactly) matched to a point q ∈ B if pTFq = 0. We construct a sample of candidate
matrices, by repeatedly sampling O(1) interest points from both images, and test the quality
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of each matrix. To do so for a candidate matrix F , we left-multiply each point p ∈ A by F ,
interpret the resulting vectors pTF , for p ∈ A, as lines, and count the approximate incidences
of each line with the points of B. If sufficiently many lines have sufficiently high counts, we
regard F as a good fit and output it.

To recap, in each of these applications, and in other applications of a similar nature, we
generate a random sample of candidate models, motions, or matrices, and need to test the
quality of each candidate. Approximate incidence reporting and counting arises either in the
generation step, or in the quality testing step, or in both. Improving the efficiency of these
steps is therefore a crucial ingredient of successful solutions for these problems. The standard
approach, used “all over” in computer vision in practice, is the RANSAC technique [6, 9],
which checks in brute force each model against each point. Replacing it by efficient methods
for approximate incidence counting, which is our focus here, can drastically improve the
running time of these applications.

To support the claim that this is indeed the case in practice, we have conducted preliminary
experiments (not reported here) with some of our algorithms, tested them on real and random
data, and compared them with other existing methods. Roughly, they demonstrate that our
approach is significantly faster than the other approaches. Our experiments also support
our feeling that the cost of reporting more pairs than really needed (pairs that might be at
most αε apart, rather than just ε), is negligible compared to the cost of the other steps (in
themselves much more efficient than the competing techniques). We leave the project of
conducting a through experimental study for future work, and focus this paper on developing
the algorithms and establishing their worst-case guarantees.

Related work. Model fitting and point pattern matching have been the focus of many
studies, both theoretical and practical; see for example [2, 3, 4, 5, 7, 10, 11, 12, 14].

We first note that many of the common approaches used in practice (e.g., RANSAC
for model fitting [6, 9]), reporting or counting approximate incidences between models and
points is done using brute force, examining every pair of a model and a point. Some heuristic
improvements have also been proposed (see, e.g., [5] and the references therein). A similar
brute-force technique is commonly used for approximate point pattern matching too (e.g., in
the Alignment method [12] and its many variants).

The use of (exact) geometric incidences in algorithms for exact point pattern matching is
well established; see, e.g., Brass [4] for details. Similar connections have also been used for
the more practical problem of approximate point pattern matching. Gavrilov et al. [10] gave
efficient algorithms for approximate pattern matching in two and three dimensions (where
the entire sets A and B are to be matched), that use algorithms for reporting approximate
incidences. One of the main results in [10] is that in the plane, all pairs of points at distance
in [(1− ε)r, (1 + ε)r] can be reported in O(n

√
r/ε) time, using a grid-based search. (In a

way, part of the study in this paper formalizes, extends, and improves this method.)
Aiger et al. [3] proposed a method for point pattern matching in R3, called 4PCS (4-Points

Congruent Sets), which iterates over all coplanar pairs of quadruples of points, one from
A and one from B, that can be matched via an affine transformation, and then tests the
quality of each pair, focusing on pairs where the transformation is rigid. This algorithm does
not use approximate incidences, and assumes the existence of coplanar tuples.

In a more recent work, Aiger and Kedem [2] describe another algorithm for computing
approximate incidences of points and circles, following a similar approach by Fonseca and
Mount [7] for points and lines, which is better than the one of [10] for n = Ω(1/ε3/2), and
use this for approximate point pattern matching. This algorithm has been used in Mellado

ESA 2017



5:6 Output Sensitive Algorithms for Approximate Incidences and Their Applications

et al. [14], to reduce the running time of the 4PCS algorithm in [3] to be asymptotically
linear in n and in the output size.

The method of [2, 7] provides an alternative approach to approximate incidence reporting,
for the cases of points and lines or congruent circles (the analysis in [2] is rather sketchy,
though). This technique runs in O(m+ n+ log(1/ε)/ε2 + k) time. For the case of lines in
the plane, the scheme exploits the fact that we can approximate (up to an error of O(ε))
all lines in the plane that cross the unit disk, by O(1/ε2) representative lines, such that if a
point in the unit disk is close to a representative line `, then it is also close to all the lines in
the input that ` represents (and vice versa). Assuming, for example, that m is constant, this
alternative scheme is better than our new algorithm (for these restricted scenarios) when√
n/
√
ε ≥ 1/ε2, that is, when n ≥ 1/ε3 (we ignore the factor log(1/ε) in this calculation).

(This technique seems to be extendible to three dimensions, and to surfaces, but the formal
details have not yet been worked out, as far as we know.)

Paper organization. The full version of the paper presents seven algorithms for various
instances of approximate incidence reporting, as listed in (a)–(g) above. Although the
high-level structure of the algorithms is fairly uniform, the specific details are rather different,
and each case requires careful analysis to ensure its correctness and efficiency. Working out
the details, including the appropriate form of duality (which, in some cases, is rather intricate
and requires extra care), the choice of the various parameters, and the analysis that makes
everything work, turned out to be fairly demanding and nontrivial. Due to lack of space,
this version contains full details of only the first algorithm (for points and lines in the plane),
and of the last one (finding all nearly congruent triangles in R3), and then describes, briefly
and informally, the main features of the rest.

2 Approximate incidences in point-line configurations

We consider the approximate incidences problem between a set P of m points in the unit disk
B in R2, and a set L of n lines that cross B, with a given accuracy parameter 0 < ε ≤ 1/2.

We approximate the distance dist(p, `) by the vertical distance between p ∈ P and ` ∈ L,
which we denote by distv(p, `). For this approximation to be good, the angle between ` and
the x-direction should not be too large. To ensure this, we partition L into two subfamilies,
one consisting of the lines with positive slopes, and one of the lines with negative slopes. We
fix one subfamily, rotate the plane by 45◦, and get the desired property.

Without loss of generality, we replace the unit disk B by the unit square S = [0, 1]2, and
apply the following two-stage partitioning procedure. First we partition S into 1/δ2

1 pairwise
openly disjoint smaller squares, each of side length δ1, where δ1 is a parameter whose exact
value will be set later. See Figure 1.

Enumerate these squares as S1, S2, . . . , S1/δ2
1
. For i = 1, . . . , 1/δ2

1 , let Pi denote the set
of all points of P that lie either in Si or in one of the two squares that are directly above
and below Si (if they exist), and let Li be the set of all the lines of L that cross Si. Put
mi := |Pi| and ni := |Li|. We have

∑
imi ≤ 3m and

∑
i ni ≤ 2n/δ1, because each line of L

crosses at most 2/δ1 squares Si.
We now apply a duality transformation to each small square Si separately. For nota-

tional simplicity, and without loss of generality, we may assume that Si = [−δ1/2, δ1/2]2.
(Technically, this means that we shift the cells by δ1/2 in both coordinate directions, so
that the grid vertices now represent the centers of the cells.) We map each point p = (ξ, η)
in Pi to the line p∗ : y = ξx − η, and each line ` : y = cx + d in Li to the point
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𝛿1

𝛿1

Figure 1 The partition of S into sub-
squares, and the subproblem associated with
the middle highlighted subsquare.
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Figure 2 The reference triangle ∆abc

aligned with ∆pqo. The shaded region is
K. The circle is the a cross section of Tp,q.

`∗ = (c,−d). This duality preserves the vertical distance distv between a point p and
a line `; that is, distv(p, `) = distv(`∗, p∗). Note that the slope condition ensures that
dist(p, `) ≤ distv(p, `) ≤

√
2dist(p, `).

Let ` : y = cx+ d be a line in Li, that is, ` crosses Si. By the slope condition we have
−1 ≤ c ≤ 1 and −δ1 ≤ d ≤ δ1, so the dual point `∗ lies in the rectangle R := [−1, 1]×[−δ1, δ1].
Each point p = (ξ, η) ∈ Pi satisfies −δ1/2 ≤ ξ ≤ δ1/2 and −3δ1/2 ≤ η ≤ 3δ1/2 so the
coefficients of the dual line p∗ : y = ξx− η satisfy these inequalities.

We now partition R into 1/δ2
2 small rectangles, each of width 2δ2 and height 2δ1δ2, where

δ2 is another parameter that we will shortly specify. Each dual line p∗ crosses at most 2/δ2
small rectangles. To facilitate the following analysis, we choose δ1, δ2 so that they satisfy
δ1δ2 = ε; we still have one degree of freedom in choosing them, which we will exploit later.

I Lemma 1. For each small rectangle R′, if `∗ is a dual point in R′ and p∗ is a dual line that
crosses either R′ or one of the small rectangles directly above or below R′ (in the y-direction,
if they exist), then the vertical distance distv(`∗, p∗) (which is the same as distv(p, `)) is at
most 5δ1δ2 = 5ε.

Proof. Indeed, if p∗ crosses a small rectangle R′′, which is either R′ or one of the two adjacent
rectangles, as above, then, since the slope of p∗ is in [−δ1/2, δ1/2], its maximum vertical
deviation from R′′ is at most 2δ2 · (δ1/2) = δ1δ2. Adding the heights 2δ1δ2 of R′′, and of R′
when R′′ 6= R′, the claim follows. J

I Lemma 2.
(a) Let (p, `) ∈ P ×L be such that dist(p, `) ≤ ε. Let Si be the small square containing p. If

δ1 ≥ ε
√

2, then ` must cross either Si or one of the two squares directly above and below
Si. In other words, there exists a j such that (p, `) ∈ Pj × Lj.

(b) Continue to assume that dist(p, `) ≤ ε, let i be such that (p, `) ∈ Pi × Li, and let R′ be
the dual small rectangle (that arises in the dual processing of Si) that contains `∗. Then
the dual line p∗ must cross either R′ or one of the two small rectangles lying directly
above and below R′ (in the y-direction, if they exist).

Proof. Both claims are obvious; in (a) we use the fact that distv(p, `) ≤ ε
√

2, and the
assumption that ε

√
2 ≤ δ1; see below how this is enforced. In (b) we use the fact that

distv(p, `) = distv(`∗, p∗) and that the height of a small rectangle is 2δ1δ2 = 2ε > ε
√

2. J

ESA 2017
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The algorithm. We first compute, for each point p ∈ P , the square Si it belongs to; this
can be done in O(1) time, assuming a model of computation in which we can compute the
floor function in constant time. Similarly, we find, for each line ` ∈ L the squares that it
crosses, in O(1/δ1) time. This gives us all the sets Pi, Li, in overall O(m+ n/δ1) time.

We then iterate over the small squares in the partition of S. For each such square Si, we
construct the dual partitioning of the resulting dual rectangle R into the smaller rectangles
R′. As above, we find, for each dual point `∗, for ` ∈ Li, the small rectangle that contains
it, and, for each dual line p∗, for p ∈ Pi, the small rectangles that it crosses. This takes
O(ni +mi/δ2) time.

We now report, for each small rectangle R′, all the pairs (p, `) ∈ Pi × Li for which `∗ lies
in R′ and p∗ crosses either R′ or one of the small rectangles lying directly above or below R′

(if they exist). We repeat this over all small squares Si and all respective small rectangles R′.
Note that a pair (p, `) may be reported more than once in this procedure, but its multiplicity
is at most some small absolute constant. The running time of this algorithm is

O

m+ n

δ1
+

1/δ2
1∑

i=1

(
ni + mi

δ2

)
+ k

 = O

(
n

δ1
+ m

δ2
+ k

)
,

where k is the number of pairs that we report. Lemma 1 guarantees that each reported pair
is at distance ≤ 5ε and Lemma 2 guarantees that every pair (p, `) at distance at most ε is
reported.

We optimize the running time by choosing δ1, δ2 to satisfy m/δ2 = n/δ1 and δ1δ2 = ε.
That is, we want to choose δ1 =

√
nε/m and δ2 =

√
mε/n. These choices are effective,

provided that both δ1, δ2 are at most 1, for otherwise the primal partition or the dual
partitions does not exist. If δ2 > 1, that is, if n < mε, we simply choose δ1 = ε, and run
only the primal part of the algorithm, outputting all the pairs in

⋃
i Pi ×Li. The cost is now

O(m+ n/ε+ k) = O(m+ k). (This is the naive implementation, which is now efficient since
n is so small.) If δ1 > 1, we pass directly to the dual plane, flip the roles of P and L, and
solve the problem in the naive manner just described, at the cost of O(n+ k). Otherwise
(when both δ1 and δ2 are ≤ 1), the cost is O (

√
mn/
√
ε+ k). The cost of the algorithm is

therefore always bounded by O (n+m+
√
mn/
√
ε+ k).

Recall also that in the proof of Lemma 2 we needed the inequality ε
√

2 ≤ δ1. This will
hold when m ≤ n (and ε ≤ 1/2, as we assume). In the complementary case m > n, we
simply flip the roles of points and lines (that is, we start the analysis in the dual plane).

In conclusion, we have obtained the following main result of this section.

I Theorem 3. Let P be a set of m points in the unit disk B in the plane, let L be a set of n
lines that cross B, and let 0 < ε ≤ 1/2 be a prescribed parameter. We can report all pairs
(p, `) ∈ P × L, for which dist(p, `) ≤ ε, in time O

(
n+m+

√
mn/
√
ε+ k

)
, where k is the

actual number of pairs that we report; all pairs at distance at most ε are reported, and every
reported pair lies at distance at most 5ε.

3 Review of the other algorithms

Near neighbors in point-plane configurations. Here we are given a set P of m points in
the unit ball B in R3, a set Π of n planes crossing B, and a prescribed error parameter
0 < ε ≤ 1/2, We solve the approximate incidences problem for P and Π with accuracy ε.
As in the planar case, we approximate the point-plane distance dist(p, π) by the z-vertical
distance distv(p, π). We partition Π into O(1) subfamilies, according to the directions of the
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normals, and treat each family separately, assuming that all the normal directions in this
family are close to the z-direction, making the distance approximation behave well.

We assume that P ⊂ S = [0, 1]3, and apply a two-stage partitioning, one in the primal
space and one in the dual space, with a suitable choices for the corresponding parameters δ1,
δ2, similar to the way it was done in the plane. We obtain an approximate incidence reporting
algorithm that runs in O

(
n+m+

√
mn/ε+ k

)
time, where k is the actual number of pairs

that we report.

Nearly congruent pairs in the plane. We are given two point sets P , Q, of respective sizes
m and n, and parameters r, ε, and present an algorithm that reports all pairs (p, q) ∈ P ×Q
in the unit disk B, such that |pq| ∈ [r− ε, r + ε], and each pair that it reports lie at distance
in [r − αε, r + αε], for some constant α > 1. The problem is equivalent to an approximate
incidences problem between P and the set of congruent circles C := {cq | q ∈ Q} where cq is
the circle of radius r centered at a point q. We assume that r is bounded away from 0 and
that ε� r ≤ 1/2.

We present two different solutions. The first one, inspired by an idea of Indyk et al. [13],
does not use duality, so it is insensitive to cases where m and n differ significantly. The
second solution does use duality, and is sensitive to such differences; it is more similar to the
preceding solutions for the point-line and point-plane approximate incidences problems. We
review here only the first solution.

We take the circle co of radius r centered at the origin o, and partition it into 2π/
√
ε

equal canonical arcs, each with a central angle
√
ε. We replace each arc γ by a sector of

an annulus Aγ of radii r ± ε that has γ as its ‘midline’, and enclose Aγ by a rectangle Rγ .
Simple calculations show that the sides of Rγ are at most

√
ε× 3ε.

We fix γ, and for each q ∈ Q we translate Rγ to Rγ(q) := q + Rγ . We get a collection
of n isothetic rectangles, and the m points of P . We tile up the unit disk by a grid whose
cells are isothetic to Rγ , partition the points of P among the grid cells, and, for each Rγ(q),
report all pairs (p, q) such that p lies in one of the at most four cells that Rγ(q) overlaps.
We repeat this for each of the O(1/

√
ε) canonical arcs. The resulting algorithm runs in

time O
(
(m+ n)/

√
ε+ k

)
, where k is the actual number of pairs that we report. Our second

approach, which uses duality, yields runs in O
(
m+ n+

√
mn/
√
ε+ k

)
time, which is an

improvement when m and n differ significantly.

Near-neighbor point-circle configurations. The duality-based approach can be extended
to handle the approximate incidence reporting problem for points and arbitrary (rather than
congruent) circles in the plane. The main difference is that general circles can be dualized
into points in three dimensions, so our algorithm uses a standard grid decomposition in the
primal plane, as in the cases of lines and congruent circles, but the dual partitionings take
place in three dimensions, as in the case of planes.

To facilitate the second dual decomposition step, we replace the standard distance
between points and circles by the power of a point with respect to a disk. We show that
the distortion caused by this change is small, and our gain is that in the dual setup the
points of P become planes (and the circles become points), so the machinery used for points
and planes can be easily adapted to handle this case too. The algorithm runs in time
O
(
m+ n+m1/3n2/3/ε2/3 + k

)
, where k is the actual number of pairs that we report.

Reporting all nearly congruent pairs in three dimensions. Here we consider the three-
dimensional version of the problem of nearly congruent pairs, where we are given sets P and
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Q of m and n points, respectively, in the unit ball B in R3, and parameters 0 < ε� r ≤ 1/2,
and wish to report all pairs (p, q) ∈ P ×Q such that dist(p, q) ∈ [r − ε, r + ε], ensuring that
each pair (p, q) that we report satisfies dist(p, q) ∈ [r−αε, r+αε], for some absolute constant
α > 1. This is an approximate incidence reporting problem between P and spheres of radius
r centered at the points of Q.

As before, we have two alternative solutions, one using the technique of Indyk et al. [13],
and one using duality. Both extensions are reasonably routine, although some nontrivial
technical issues have to be faced when extending the techniques to three dimensions. The
first approach, runs in time O ((m+ n)/ε+ k). By using duality one can get a better bound
(replacing (m+ n)/ε by

√
mn/ε) when the sizes of P and Q differ substantially.

Reporting all point-line neighbors in three dimensions. Let P be a set of m points in the
unit ball B in three dimensions, let L be a set of n lines that cross B, and let ε > 0 be a
given error parameter. We present an algorithm for the approximate incidence reporting
problem involving P and L.

We represent each line in R3 by the pair of equations y = ax+ b, z = cx+ d. Let ` be
the line y = ax + b, z = cx + d, and let p = (ξ, η, ζ) ∈ R3. We approximate dist(p, `) by
slicing space by the plane πp : x = ξ, and by computing the distance between the points
p and `p := ` ∩ πp = (ξ, aξ + b, cξ + d). As before, for this approximation to be good, the
angle between ` and the x-direction should not be too large, say at most π/4, and we ensure
this by partitioning L into O(1) subfamilies, such that each subfamily has this property with
respect to some direction u′. We focus on a single family, keep calling it L, and assume that
u′ is the x-axis. We show that dist(p, `p) ≤

√
2dist(p, `) for all p ∈ P and ` ∈ L.

We assume that P is contained in the unit cube S = [0, 1]3, and apply the following
two-stage partitioning procedure. For a pair of parameters δ1, δ2, whose values will be set
later we partition S into 1/δ3

1 pairwise openly disjoint smaller cubes, each of side length
δ1. For each small cube Si, let Pi denote the set of all points of P that lie in Si or in one
of the (at most) eight cubes that surround Si and have the same x-projection as Si, and
let Li denote the set of all the lines of L that cross Si. For each such small cube Si, we
pass to a parametric dual four-dimensional space, in which we represent each line ` ∈ Li,
given by y = ax + b, z = cx + d, by the point `∗ = (a, b, c, d), and represent each point
p = (ξ, η, ζ) ∈ Pi by the 2-plane (in R4) p∗ = {(a, b, c, d) | aξ + b = η, cξ + d = ζ}; p∗ is the
locus of all points dual to lines that pass through p.

We define the distance in the dual space between a point `∗ = (a, b, c, d) and a plane p∗, for
a primal point p = (ξ, η, ζ), to be the distance between `∗ and the point (a, η − aξ, c, ζ − cξ),
which is the intersection of p∗ with the plane defined by x = a and z = c. It follows that the
distance between `∗ and p∗, as defined above, is equal to dist(p, `p) in the primal space.

Fix a small cube Si, and assume without loss of generality that Si = [0, δ1]3. Let ` be a
line in Li, given by y = ax+ b, z = cx+ d. One can show that `∗ lies in the box R given
by −1 ≤ a, c ≤ 1 and −δ1 ≤ b, d ≤ 2δ1. We now partition R into 1/δ4

2 smaller boxes, each
of which is a homothetic copy of R scaled down by δ2. Concretely, each smaller box R′ is
congruent to the box [0, 2δ2]× [0, 3δ1δ2]× [0, 2δ2]× [0, 3δ1δ2].

We then show that, for each small box R′, if `∗ = (a`, b`, c`, d`) is a dual point (of some
` ∈ Li) in R′ and p∗ is a dual plane (of some point p = (ξ, η, ζ) ∈ Pi) that crosses R′ or
one of its surrounding boxes of the same xz-range, then dist(p, `) ≤ 8

√
2δ1δ2. Conversely,

if dist(p, `) ≤ δ1δ2 then (p, `) belong to some subproblem Pj × Lj , and p∗ crosses the small
dual region R′ containing `∗ or one of its nearby regions.

The algorithm is now immediate: We compute the sets Pi, Li, for i = 1, . . . , 1/δ3
1 , in

overall O(m+ n/δ1) time. Then, for each small cube Si, we consider the partitioning of the
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resulting dual box R into the smaller boxes R′. As above, we find, for each ` ∈ Li, the small
region that contains the dual point `∗, and, for each p ∈ Pi, the small regions that the dual
plane p∗ crosses. We report, for each small region R′, all the pairs (p, `) ∈ Pi × Li for which
`∗ lies in R′ and p∗ crosses either R′ or one of the at most eight small regions that surround
R′ and have the same xz-range. We repeat this over all small cubes Si and all respective
small regions R′. With a suitable optimization of the values of δ1 and δ2, the running time
is O

(
m+ n+m1/3n2/3/ε2/3 + k

)
.

Reporting all point-circle neighbors in three dimensions. In preparation for the final
algorithm, that finds all nearly congruent copies of a given triangle in a set of n points in R3,
we first solve the following problem. Let P be a set of m points in the unit ball B in R3, let
C be a set of n congruent circles in R3 of radius r ≤ 1/2 that cross B, and let ε� r be a
prescribed error parameter. We present an efficient algorithm for the approximate incidence
reporting problem for P and C.

This is perhaps the most complex algorithm in our collection. We slice each circle into
canonical arcs, replace each arc by a sector of a torus of width ε around it, enclose each
torus sector by a suitable (bounded) cylinder, and reduce our problem to that of reporting
point-cylinder containments. We further reduce the problem by cutting space by parallel
slabs of width

√
ε in some suitable direction, say the x-direction, by partitioning the points

of P among the slabs, and by considering only those toric/cylindrical pieces that form
sufficiently small angle with the x-direction. For each such slab σ, we take the points in
σ, replace each cylinder that intersects σ, or a nearby slab, by the full line that supports
its axis, and run the approximate incidence reporting algorithm involving the points in the
slab and the lines associated with the slab, repeating this over all slabs and tori sectors.
The resulting algorithm runs in time O

(
(m+ n)/ε1/2 +m1/3n2/3/ε7/6 + k

)
, where k is the

number of (distinct) reported pairs.

4 Reporting all nearly congruent triangles

In this section we put to work the algorithms in (e) and (g) (see Section 1), to obtain an
efficient solution of the first step in solving the approximate point pattern matching problem
in R3 (see its review in the introduction), where we are given a sampled “reference” triangle
∆abc, for a triple of points a, b, c in the first set A, and a prescribed error parameter ε > 0.
Our goal is to report all triples p, q, o in the second set B that span a triangle “nearly
congruent” to ∆; that is, triples that satisfy∣∣|pq| − |ab|∣∣ ≤ ε, ∣∣|po| − |ac|∣∣ ≤ ε, and

∣∣|qo| − |bc|∣∣ ≤ ε. (1)

We allow to report triples that satisfy (1) with αε on the right-hand sides rather than ε, for
some fixed constant α. Let ab be the longest edge of ∆. We require that β ≤ |ab| ≤ 1/2 for
some fixed constant β. We also require that the height h of ∆ from c (perpendicular to ab) is
larger than some fixed constant s. We assume that β, s� ε. Our approximation guarantee
α increases as β and s decrease.

We first report all pairs (p, q) ∈ B2 such that
∣∣|pq| − |ab|∣∣ ≤ ε, using the algorithm

specified in (e) (incidences between congruent spheres and points). This takes O(n/ε+N)
time, where N is the number of pairs that we report. Let Π denote the set of reported pairs.
We know that all the desired pairs are included in Π, and that every pair (p, q) in Π satisfies∣∣|pq| − |ab|∣∣ ≤ α′ε, for some absolute constant α′. We prune Π, leaving in it only pairs (p, q)
satisfying

∣∣|pq| − |ab|∣∣ ≤ ε. We continue to denote the resulting set as Π, and its size by N .
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Let (p, q) be a pair in Π. Any point o that satisfies
∣∣|po| − |ac|∣∣ ≤ ε and

∣∣|qo| − |bc|∣∣ ≤ ε
lies in the intersection K = Kp,q of two spherical shells, one centered at p with radii |ac| ± ε,
and one centered at q with radii |bc| ± ε. The following lemma allows us to replace K by a
torus that is congruent to a fixed torus that depends only on ∆. See Figure 2.

I Lemma 4. Assume that ∆ is sufficiently fat, in the sense that β ≤ |ab| ≤ 1/2 and h ≥ s,
for some absolute positive constants β, s that satisfy ε� β, s. Then there exists a circle γp,q
of radius h such that K is contained in the torus Tp,q that is the Minkowski sum of γp,q and
a ball of radius ε′ ≤ δε around the origin, where the constant δ depends on β and s.

Proof. Denote the lengths of the edges of the triangle ∆abc by u = |ab|, v = |ac| and
w = |bc|. Let g the point where h meets ab and let z = |ag|. We have z2 + h2 = v2 and
(u− z)2 + h2 = w2, from which we obtain that z = u2+v2−w2

2u , and we denote this expression
as z = z(u, v, w). Consider an alignment of ∆ within the plane of ∆pqo, such that a coincides
with p and ab overlaps pq. Let g now be a point on pq at distance z from p = a. Then c lies
on the circle γp,q of radius h, centered at g, and contained in the plane perpendicular to pq
through g. See Figure 2(b).

Fix some point o ∈ K. We claim that o must be at distance ≤ δε from γp,q, for some
fixed constant δ that depends on β and s. Indeed, since (p, q) ∈ Π and o ∈ K, we can write
|pq| = u+ ε1, |po| = v + ε2, and |qo| = w + ε3, where |εi| ≤ ε for i = 1, 2, 3.

Consider the alignment of ∆ with ∆pqo, as above, and imagine that we perturb the edges
ab, ac, and bc of ∆ by ε1, ε2, and ε3, respectively, so that ∆ is continuously deformed into
∆pqo. We claim that o cannot move too far as a result of this deformation so the distance
between o and c must be small.

To see this, let h′ be the height of ∆pqo from o, let g′ be the point at which h′ meets
pq, and let z′ = |pg′|. We claim that |z′ − z| ≤ δε and |h′ − h| ≤ δε for some absolute
constant δ. To see this, using the function z = z(u, v, w) defined above, we have z′ =
z(u+ ε1, v + ε2, w + ε3), and routine calculations show that, for ε sufficiently small, we have
|z′ − z| = O(|∇z(u, v, w) · (ε1, ε2, ε3)|) ≤ δ′ε, where δ′ depends on β.

Similarly, by Heron’s formula, we can think of h as a function h(u, v, w), given by

h(u, v, w) = 2Area(∆)
u

=
2
√
τ(τ − u)(τ − v)(τ − w)

u
,

where τ = 1
2 (u + v + w). Then h′ = h(u + ε1, v + ε2, w + ε3), and, by another routine

calculation, |h′ − h| = O(|∇h(u, v, w) · (ε1, ε2, ε3)|) ≤ δ′′ε, for another constant δ′′ that
depends on β and s. Take δ =

√
(δ′)2 + (δ′′)2, and the lemma follows. J

We have thus reached the following scenario. We have a set T of N congruent tori Tp,q, for
(p, q) ∈ Π, and a set B (the original one) of n points. By construction, each triple (p, q, o) that
defines a triangle for which (1) holds, satisfies o ∈ Tp,q. Using our algorithm for point-circle
near neighbors in R3, as reviewed in Section 3, we can report all the triples (p, q, o) such that
o ∈ Tp,q, in time O

(
n+N/ε1/2 + n1/3N2/3/ε7/6 + k

)
, where k is the number of (distinct)

triples that we report; each of the desired triples is reported, and each triple that we report
is such that the distance from o to γp,q is at most αε for some other fixed constant α > δ.
Therefore each triple which we report satisfies (1) with αε on the right-hand sides, rather
than ε. In summary, we have:

I Theorem 5. Let B be a set of n points in the unit ball in R3. Let ∆abc be a fixed reference
triangle and let ε an error parameter, so that ∆ and ε satisfy the constraints specified in
Lemma 4. We can then report all triples (p, q, o) ∈ B3 that span a triangle nearly congruent to
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∆, in the sense of (1), in time
(
n+N/ε1/2 + n1/3N2/3/ε7/6 + k

)
, where N is the number of

pairs reported by our algorithm for approximate congruent pairs in R3 (reviewed in Section 3),
applied to P with distance |ab|, the largest edge length of ∆, and k is the number of (distinct)
triples that the algorithm in this section reports; each of the desired triples is reported, and
each triple that we report satisfies (1) with αε replacing ε, where α is a suitable absolute
constant. Each pair is reported at most O(1) times.
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