
Prize-Collecting TSP with a Budget Constraint
Alice Paul1, Daniel Freund2, Aaron Ferber3, David B. Shmoys4,
and David P. Williamson5

1 Operations Research and Information Engineering, Cornell University, Ithaca,
NY, USA
ajp336@cornell.edu

2 Center for Applied Mathematics, Cornell University, Ithaca, NY, USA
df365@cornell.edu

3 Operations Research and Information Engineering, Cornell University, Ithaca,
NY, USA
amf272@cornell.edu

4 Operations Research and Information Engineering, Cornell University, Ithaca,
NY, USA
dbs10@cornell.edu

5 Operations Research and Information Engineering, Cornell University, Ithaca,
NY, USA
dw36@cornell.edu

Abstract
We consider constrained versions of the prize-collecting traveling salesman and the minimum span-
ning tree problems. The goal is to maximize the number of vertices in the returned tour/tree
subject to a bound on the tour/tree cost. We present a 2-approximation algorithm for these
problems based on a primal-dual approach. The algorithm relies on finding a threshold value for
the dual variable corresponding to the budget constraint in the primal and then carefully con-
structing a tour/tree that is just within budget. Thereby, we improve the best-known guarantees
from 3 + ε and 2 + ε for the tree and the tour version, respectively. Our analysis extends to the
setting with weighted vertices, in which we want to maximize the total weight of vertices in the
tour/tree subject to the same budget constraint.

1998 ACM Subject Classification G.2.2 [Mathematics of Computing] Graph Theory

Keywords and phrases Approximation Algorithms, Traveling Salesman Problem

Digital Object Identifier 10.4230/LIPIcs.ESA.2017.62

1 Introduction

In the classical traveling salesman problem, we are given an undirected graph G = (V,E)
with edge costs ce ≥ 0 for all e ∈ E. The goal is to construct a tour visiting all vertices
in the graph while minimizing the cost of edges in the tour. If, however, we are given a
bound on the cost of the tour, then we may not be able to visit all vertices. In particular,
suppose that we are given a budget D ≥ 0. In the budgeted prize-collecting traveling
salesman problem, a valid tour is a multiset of edges F such that (a) F specifies a tour
on a subset S ⊆ V and (b) the cost of the edges in F is at most D. The goal is to find a
valid tour F that maximizes |S|, the number of vertices visited. Here, we do not require
the graph to be complete and allow a tour to visit nodes more than once. Similarly, in the
budgeted prize-collecting minimum spanning tree problem, a valid tree is a set of
edges T such that (a) T specifies a spanning tree on a subset S ⊆ V and (b) the cost of the
edges in T is at most D. Again, the goal is to find a valid tree T that maximizes |S|.

© Alice Paul, Daniel Freund, Aaron Ferber, David B. Shmoys, and David P. Williamson;
licensed under Creative Commons License CC-BY

25th Annual European Symposium on Algorithms (ESA 2017).
Editors: Kirk Pruhs and Christian Sohler; Article No. 62; pp. 62:1–62:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2017.62
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

62:2 Prize-Collecting TSP with a Budget Constraint

The budgeted version of the traveling salesman problem arises naturally in many routing
problems that have a distance or time constraint. For example, a bikeshare system has
bike stations located around a city that may need repair. Throughout the day, the system
operator wants to route a repairman over his work period while maximizing the number of
stations that receive maintenance (in fact, this precise question emerged from our ongoing
work with New York City Bikeshare [11]). We can represent this problem as a budgeted
prize-collecting traveling salesman problem. Further, we can also capture the setting where
stations have varying importance; we discuss in Section 6 how to extend our algorithm to
a setting in which vertices have weights and the goal is to maximize the weight of vertices
visited. In Section 7, we apply our algorithm to instances using Citi Bike data in New
York City. The budgeted version of the minimum spanning tree also arises in a range of
applications, including telecommunication network design problems where an infrastructure
budget is weighed against the number of customers served.

In this paper, we present a 2-approximation algorithm for both problems. Our algorithm
is based on a primal-dual subroutine which uses a linear programming relaxation of this
problem. First, we search for a “good” value for the dual variable corresponding to the
budget constraint in the primal. Having set this variable, we can then increase the other
dual variables and form a forest of edges whose corresponding dual constraint is tight. For
the tour problem, we then choose a tree in this forest and carefully prune it so that doubling
this tree forms a tour that will be just within budget. For the tree problem, we prune edges
such that the tree itself is just within budget. Lastly, we show that either our constructed
tour/tree is within a factor of 2 of optimal or we can identify a subgraph to recurse on.

Literature Review

There have been many prize-collecting variants of both the traveling salesman problem
(TSP) and the minimum spanning tree problem (MST) that seek to balance the number of
vertices in the tree or tour with the cost of edges used. Johnson, Minkoff, and Phillips [16]
characterize four main variants of prize-collecting MST problems: the Goemans-Williamson
Minimization problem that minimizes the cost of edges plus a penalty for vertices not in the
tree, the Net Worth Maximization problem that maximizes the weight of vertices in the tree
minus the cost of used edges, the Quota problem that minimizes the cost of a tree containing
at least Q vertices, and, finally, the Budget problem that maximizes the number of vertices
in the tree subject to the cost of the tree being at most D. All of the variants above can be
extended to a corresponding TSP version that constructs a tour rather than a tree.

Our algorithm is most similar to that of Garg [13], who presents a 2-approximation
algorithm for the Quota problem for MST, improving upon the previous results of Garg [12],
Arya and Ramesh [2], and Blum, Ravi, and Vempala [4]. Johnson et al. [16] observe that a
2-approximation algorithm to the Quota problem yields a (3 + ε)-approximation algorithm
to the corresponding Budget problem. To our knowledge this was the previously best-known
guarantee for the MST variant. Prior to this result, Levin [18] proved a (4+ ε)-approximation
algorithm. Our 2-approximation algorithm for the budgeted prize-collecting MST thus
improves upon the best known approximation ratio. While our algorithm is similar to that
of Garg [13], our analysis differs in how we find the threshold value for the dual variable;
further, our overall proof relies on more precise accounting.

For the Goemans-Williamson Minimization problem for MST, Archer et al. [1] obtain a
(2− ε)-approximation guarantee, improving upon the long-standing bound of 2 obtained by
Goemans and Williamson [14] in 1995. Further, Archer et al. [1] successfully applied this
algorithm to telecommunication network problems. Lastly, Feigenbaum et al. [9] show the
Net Worth Maximization problem for MST is NP-hard to approximate within any constant.

A. Paul, D. Freund, A. Ferber, D. B. Shmoys, and D. P. Williamson 62:3

To the best of our knowledge, the previous best approximation guarantee for the budgeted
prize-collecting TSP arises from a special case of a result by Chekuri, Korula, and Pál [6].
Their work provides a (2 + ε)-approximation algorithm for the more general orienteering
problem, where the goal is to find an s− t path, where s and t are given, with bounded cost
that maximizes the number of vertices visited on the path. By setting s = t and iterating over
all vertices, this yields a (2 + ε)-approximation algorithm for the budgeted prize-collecting
TSP. The orienteering problem itself has attracted much attention within the combinatorial
optimization community, with other variants studied by [21], [5], [8], [7], and [15].

There exist other adaptations of prize-collecting problems not discussed above. Specifically,
Ausiello, Demange, Laura, and Paschos [3] present a 2-approximation algorithm for an on-line
variant of the Quota problem for the TSP. Frederickson and Wittman [10] study the so-called
traveling repairmen problem, in which each vertex can only be visited within a specific time
window and the goal is to either maximize the number of vertices visited within a certain time
period or to minimize the time visiting all vertices; they give constant-factor approximation
algorithms for both variations of this problem. Lastly, Nagarajan and Ravi [19] study the
problem of minimizing the number of tours to cover all vertices subject to each tour having
bounded distance. They give a 2-approximation algorithm for tree metric distances.

The paper is structured as follows. In Section 2, we present the linear programming (LP)
relaxation for the budgeted prize-collecting traveling salesman problem. In Section 3, we use
this LP to present the primal-dual subroutine that will inform our decisions and develop
some intuition behind what types of tours will be near optimal. In Section 4, we show how
to set the dual variable corresponding to the budget constraint, and in Section 5, we show
how to construct our proposed tour. In Section 6, we prove that our overall algorithm is a
2-approximation algorithm and present computational experiments in Section 7. For ease of
presentation, we present only our result for the budgeted prize-collecting traveling salesman
problem but the analysis extends easily to the corresponding MST case.

2 Notation

For each S ⊆ V , let zS ∈ {0, 1} be a variable representing whether or not we choose to tour
the vertices in S, and for each edge e ∈ E, let xe ∈ Z+ be a variable representing how many
copies of e to include in the tour. Then, the following is a linear programming relaxation for
the budgeted prize-collecting traveling salesman problem.

maximize
∑
S⊆V

|S|zS

subject to
∑

e:e∈δ(S)

xe ≥ 2
∑

T :S⊂T
zT ∀S ⊂ V

∑
e∈E

cexe ≤ D∑
S⊆V

zS ≤ 1

zS , xe ≥ 0

The first constraint states that if we choose to tour a subset T such that S ⊂ T then we
must have at least two edges across the cut S. The dual of this linear program is given by

ESA 2017

62:4 Prize-Collecting TSP with a Budget Constraint

the following.

minimize Λ1D + Λ2

subject to (2
∑

T :T⊂S
yT) + Λ2 ≥ |S| ∀S ⊆ V∑

S:e∈δ(S)

yS ≤ Λ1ce ∀e ∈ E

Λ1,Λ2, yS ≥ 0

In order to construct a tour, we will rely on a primal-dual subroutine. We first note in
Theorem 2 that if we find Λ1 ≥ 0 and yS ≥ 0 that satisfy the dual constraint for every edge,
then we can always set Λ2 such that we have a full feasible dual solution. Suppose that we
first set the value of Λ1. The primal-dual subroutine will use this set value to construct a
full dual solution and corresponding potential tours. These tours may or may not be feasible
with respect to the budget constraint. Therefore, we will adjust Λ1 to find a feasible solution
with bounded approximation ratio.

3 Primal-Dual Subroutine

The primal-dual subroutine for a fixed Λ1 is similar to the 2-approximation algorithm for
the prize-collecting traveling salesman problem without a budget constraint presented by
Goemans and Williamson [14]. Initially, we set all yS to be 0 and set our collection of active
sets to be all singleton nodes. Then, in each iteration, we increase yS corresponding to all
S ⊂ V in the collection of active sets until either a dual constraint for an edge between two
sets becomes tight, or a set becomes neutral.

I Definition 1. We say a subset S ⊆ V is neutral if 2
∑
T :T⊆S yT = |S|.

If an edge becomes tight between two subsets S1 and S2, we add the edge to our solution
and remove both S1 and S2 from the collection of active sets and add S1 ∪ S2 to it. If a set
becomes neutral, we mark the set as inactive and remove it from the collection of active sets.
Once the collection of active sets is empty, we prune inactive sets of degree 1 and return the
remaining edges in our solution (cf. Algorithm 1).

Algorithm 1 Primal-Dual Algorithm (PD(λ1))
1: procedure PD(λ1 ≥ 0)
2: yS ← 0, Λ1 ← λ1, T ← {}.
3: mark all i ∈ V as active.
4: while there exists an active subset do
5: raise yS uniformly for all active subsets S until either
6: if an active set S becomes neutral then
7: mark S as inactive.
8: else if the dual constraint for edge e between S1 and S2 becomes tight then
9: T ← T ∪ {e}.

10: mark S = S1 ∪ S2 as active, remove S1 and S2 from the active subsets.
11: T ′ ← T .
12: while there exists a set S marked inactive such that |δ(S) ∩ T ′| = 1 do
13: remove all edges with at least one endpoint in S from T ′.

return two of each edge in T ′.

A. Paul, D. Freund, A. Ferber, D. B. Shmoys, and D. P. Williamson 62:5

Properties of the algorithm PD(λ1) (by construction)

1. The algorithm terminates in polynomial time.
2. Throughout the algorithm, T is a forest, and by extension T ′ is a forest.
3. For all edges, the corresponding dual constraint is satisfied.
4. For all e ∈ T , the dual constraint for e is tight.

I Theorem 2. Given λ1 ≥ 0, let y be as created by the algorithm. Then, there exists a value
λ2 ≥ 0 such that (y, λ1, λ2) is a feasible dual solution.

Proof. Since all edge constraints are satisfied, we may set λ2 to the maximum of zero and

min
S⊆V

[
|S| − (2

∑
T :T⊂S

yT)
]
.

By construction, all dual constraints will be satisfied. J

3.1 Analysis
In this section, we assume that we have set Λ1 = λ1 in the primal-dual subroutine such that
we produced a feasible dual solution (y, λ1, λ2) (where we may not know the actual value of
λ2). We let S be the collection of sets that were active in some iteration of the algorithm
and let S+ = S ∪ {V }. Since any set in S is either a single node or the union of other sets in
S, this is a laminar collection.

I Lemma 3. For any S ⊆ V , (2
∑
T :T⊆S yT) ≤ |S|.

Proof. Any set S can be divided into maximal disjoint laminar sets S1, S2, . . . , Sc ∈ S.
Therefore,

2
∑

T :T⊆S
yT = 2

c∑
i=1

∑
T :T⊆Si

yT ≤
c∑
i=1
|Si| = |S|,

where the inequality comes from the fact that we make inactive any neutral subset. J

We first define a potential π(S) for each subset S ⊆ V . These values will help us find an
upper bound on the size of a feasible tour.

I Definition 4. For any subset S ⊆ V , we define the potential of S to be

π(S) := |S| − (2
∑

T :T⊂S
yT).

For a set S ∈ S, π(S) is exactly equal to twice the amount that we could have increased yS
until S went neutral. In particular, if S was formed by the union of S1 and S2, then

π(S) = π(S1) + π(S2)− 2yS1 − 2yS2 .

If S2 went inactive before merging with S1, then this simplifies to π(S) = π(S1)− 2yS1 .
Given these potentials and our constructed dual solution, we give a bound on the size of

an optimal solution.

I Theorem 5. Let O? be an optimal subset of vertices to tour and F ? be the edges in an
optimal tour on O?. Further, let O be the minimal set in S+ that contains O?. Since V ∈ S+,
such a set always exists. Then,

|O?| ≤ λ1D + π(O).

Proof. We provide the proof in the full version of the paper. J

ESA 2017

62:6 Prize-Collecting TSP with a Budget Constraint

Given the bound in Theorem 5, we argue that to construct a good tour we should try to
find a tree T̄ with cost close to 1

2D such that the set S̄ of spanned vertices has high potential.
Then, doubling this tree will give a feasible tour close to optimal. In order to find such a
tree, we first rely on finding a good value of Λ1.

4 Setting Λ1

Our goal is to set Λ1 so as to find a tree with cost very close to 1
2D. Note that Λ1 controls

the cost of the edges, and as Λ1 increases, edges become more expensive yielding smaller
connected components in the primal-dual subroutine. In particular, for Λ1 = 0 all edges
go tight immediately and for Λ1 > n/(2 mine:ce>0 ce) all vertices go neutral before a single
non-zero edge goes tight. When edges go tight and subsets go neutral at the same time,
we may assume that subset events are considered first. Further, we assume that we break
edge/subset ties using cost/size and then some known ordering (e.g. lexicographical).

If a minimum spanning tree on the graph has cost ≤ 1
2D, then we double this tree to get

a feasible and optimal tour. Otherwise, suppose that we have found values l and r (l < r)
such that when we run PD(l+) the largest component in T ′ has cost ≥ 1

2D and when we
run PD(r−) the largest component in T ′ has cost < 1

2D. Here, x− = x− ε and x+ = x+ ε

where ε is infinitesimally small.

I Lemma 6. In polynomial time, we can find a threshold value λ1 such that when we run
PD(λ−1) the largest component in T ′ has cost ≥ 1

2D and when we run PD(λ+
1) the largest

component in T ′ has cost < 1
2D.

Proof. We refer to an edge going tight during the primal-dual subroutine as an edge event
and we refer to a subset going neutral as a subset event. Assume we have values l and r
such that the first k events are the same when running the subroutine for any Λ1 between l+
and r−. Further, assume that for each subset S we can find values αS and βS such that at
the end of the first k events y(S) = Λ1αS + βS for any Λ1 between l+ and r−. Note that
this is trivially true for the base case with l and r defined above and k = 0 since all y values
will be zero.

To find the next event to occur, we need to find the time after the kth event that each
subset will go neutral and each edge will go tight. Observe that an active set S will go
neutral at time

1
2 |S| −

∑
T⊆S

yT = 1
2 |S| −

∑
T⊆S

[Λ1αT + βT],

an edge with exactly one endpoint in an active component will go tight at time

Λ1ce −
∑

T :e∈δ(T)

yT = Λ1ce −
∑

T :e∈δ(T)

[Λ1αT + βT],

and an edge with both endpoints in different active components will go tight at time 1
2 the

above amount. The minimum of these values will determine the next event to occur. Since
all these times are affine in Λ1, we can divide the interval between l+ and r− into smaller
subintervals such that the first k + 1 events will be identical on these subintervals. See
Figure 1.

By looking at these subintervals, either we identify a threshold point λ1 or there exists a
subinterval between l+new and r−new such that when we run PD(l+new) the largest component
in T ′ has cost ≥ 1

2D and when we run PD(r−new) the largest component in T ′ has cost < 1
2D.

A. Paul, D. Freund, A. Ferber, D. B. Shmoys, and D. P. Williamson 62:7

l r Λ1

T
im

e
ev
en
t
oc
cu
rs

subintervals

Figure 1 Finding the subintervals between l and r where the time of the next event is in bold.

Further, since the time of the (k + 1)th event is an affine function in Λ1, we can add this
function to the affine function y(S) for each active set S to get the new affine function for
this y value, updating the α’s and β’s accordingly. Thus, the inductive hypothesis holds and
eventually we can find a threshold point λ1. J

We use this threshold point λ1 to understand the subroutine for PD(λ1). Consider
running the subroutine for λ+

1 and λ−1 and comparing event by event. We let y+ correspond
to the y variables when running PD(λ+

1) and y− to the y variables when running PD(λ−1).

I Lemma 7. Throughout the two subroutines, the following two properties hold:
All active components in (V, T) are the same.
For all S ⊆ V , the difference between y+

S and y−S is infinitesimally small.

Proof. At the start of the subroutines this is true since all y+ and y− variables are zero.
Now assume that this is true at some time t into the subroutines. As argued above, the next
event to occur depends on the minimum of functions linear in Λ1. Further, since the current
active components are the same, the possible subset and edge events are the same.

In particular, the time for each subset to go neutral in PD(λ+
1) is 1

2 |S| −
∑
T⊆S y

+
T , and

is infinitesimally different from the time for that subset to go neutral in PD(λ−1). Similarly,
the time for each edge to go tight is infinitesimally different between the two subroutines.
Therefore, the next event to occur is only different between the two subroutines if two events
occur at the same time for PD(λ1).

If the next event is the same for the two subroutines, then the active components will
remain the same and we raise all active components by an infinitesimally different amount.
Therefore, the inductive properties will continue to hold. Otherwise, suppose the next event
is different. We consider four cases:
1. Subset X goes neutral for PD(λ−1) and subset Y goes neutral for PD(λ+

1).
2. Edge e goes tight for PD(λ−1) and edge f goes tight for PD(λ+

1).
3. Edge e goes tight for PD(λ−1) and subset X goes neutral for PD(λ+

1).
4. Subset X goes neutral for PD(λ−1) and edge e goes tight for PD(λ+

1).

In the first case, the times for both X and Y to go neutral must be infinitesimally different
and the other subset will go neutral immediately after the first. Therefore, after both X and
Y go neutral, the amount that we have raised all y variables will be infinitesimally different
and the current active components will be the same. Thus, the two inductive properties will
continue to hold.

Similarly for the second case, if e and f are not between the same two components, the
other edge will go tight immediately after, and the inductive properties will continue to hold.
Otherwise, e and f are between the same components. Thus, when e goes tight, f is no

ESA 2017

62:8 Prize-Collecting TSP with a Budget Constraint

longer eligible to go tight but the newly merged active component will be the same for both
subroutines. Again, the inductive properties will continue to hold.

In the third case, if edge e has an endpoint in an active component that is not X, then e
will go tight immediately after X goes neutral for PD(λ+

1) and the components will remain
the same, maintaining the inductive properties. Otherwise, one endpoint of e must be in
X and the other endpoint of e is in an inactive component, and right after e goes tight for
PD(λ−1), the newly merged subset will have infinitesimally small remaining potential and
will go inactive immediately. Again, this maintains the inductive properties.

Lastly, note that the time for a subset to go neutral has a negative slope in Λ1 and the
time for an edge to go tight has a positive slope in Λ1. Since λ+

1 > λ−1 and the y variables are
infinitesimally different, the fourth case cannot occur. In all cases, the inductive properties
continue to hold and the lemma holds. J

The proof of Lemma 7 exactly exhibits the differences between the two subroutines. First,
there may be subsets that are neutral and marked inactive in PD(λ+

1) but have infinitesimally
small potential in PD(λ−1). Second, there may be pairs of edges that went tight between
the same components. Lastly, there may be edges in PD(λ−1) that do not exist in PD(λ+

1).
However, these edges are between inactive components and components with infinitesimally
small potential. Therefore, these edges will be pruned in PD(λ−1) and will not contribute to
the component of size ≥ 1

2D.
Since we assume we break ties by considering subsets before edges and lower weight edges

first, PD(λ1) will behave the same as PD(λ+
1). Therefore, the largest component in T ′ when

running PD(λ1) has cost < 1
2D. However, we can think about reversing these ties one by

one. In particular, consider breaking the first i ties according to PD(λ−1) and then the rest
by PD(λ+

1). By the analysis in Lemma 7, reversing these ties will not change the y variables
or active components. The only difference will be going into the pruning phrase.

Thus, eventually we find the smallest k such that breaking the first k ties according to
PD(λ−1) yields a component of size ≥ 1

2D. In other words, we have either identified a neutral
subset S such that marking S active rather than inactive changes the largest component to
have size ≥ 1

2D or we have identified two edges e and f that tie such that adding e instead
of f changes the largest component to have size ≥ 1

2D. From here on, we assume that we
always run PD(λ1) according to these tie-breaking rules.

5 Constructing a Tour

Let y be all of the dual variables for PD(λ1), let T ′ be the set of edges after the pruning
phase, and let S be defined as before. Lastly, let π(S) be the potential of S ⊆ V given y.
By construction, the largest component returned by PD(λ1) has size ≥ 1

2D. Recall from
Section 4 that either
1. there exists a neutral subset X ∈ S such that if X is marked inactive then the largest

component in T ′ has cost < 1
2D or

2. there exist tight edges e ∈ T and f /∈ T such that if we swap e with f in T then the
largest component has size < 1

2D.
In the first case, whenX is marked inactive, then a path of neutral subsetsN1, N2, . . . , Nr = X

is pruned yielding a component S1 with cost < 1
2D. Similarly, in the second case, having the

edge e prevented some neutral subsets N1, N2, . . . , Nr from being pruned that had degree
> 1. However, by removing e and replacing it with f , these subsets are pruned and we are
left with component S1 with cost < 1

2D. See Figures 2a and 2b.

A. Paul, D. Freund, A. Ferber, D. B. Shmoys, and D. P. Williamson 62:9

S1

N1 N2 Nr = X
. . .

(a) Case 1: Marking X as inactive.

S1f

e
N1 N2 Nr

(b) Case 2: Replacing e with f .

Figure 2 Neutral subsets pruned in each case to yield component S1 with cost < 1
2 D.

For both cases, we will use this threshold event to produce a tree TA on a subset of
vertices SA of cost ≤ 1

2D. In doing so, we will also find another tree T̄ on a subset of vertices
S̄ of cost ≥ 1

2D such that |SA| ≥ |S̄| − 1. Then, doubling TA will yield a feasible tour FA
that visits almost as many vertices as in S̄. The tree T̄ will be helpful in obtaining a lower
bound for |SA|.

We start by setting TA to be the edges in T ′ that span S1. By construction, these edges
have cost < 1

2D. We will then try to grow TA as much as possible along the path from S1
to N1, N2, . . . , Nr. First, suppose that we can add this full path and the edges that span
each Ni to TA without going over cost 1

2D. Then, we set TA to be this expanded tree and
SA = S1 ∪ N1 ∪ . . . ∪ Nr. Further, we set T̄ to be the edges in T ′ in the corresponding
component at the end of PD(λ1). By construction, the cost of T̄ is ≥ 1

2D and |SA| ≥ |S̄|.

Otherwise, we continue to add N1, N2, . . . to our tree until we reach a component X̄ ∈
{N1, N2, . . . , Nr} such that adding the edges that span X̄ to TA implies that

∑
e∈TA

ce >
1
2D.

In other words, we cannot add this whole subset to our tree without going over budget. Let
e = (u, v) be the edge that connects X̄ to TA in T ′. If adding e to TA already brings the
cost of TA strictly over 1

2D, then we stop growing TA and set T̄ = TA ∪ {e}. Otherwise, we
add e to TA and run a procedure pick(X̄, v, T̄) that will pick a subset of the edges spanning
X̄ including v.

Specifically, the procedure pick(X,w, TA) adds to TA a set of edges in T ′ that span a
subset of component X including w. We denote by X1, X2 ∈ S the two components that
merged to form X and by e′ = (u, v) the edge that connects X1 and X2 in T ′. Without loss
of generality, u ∈ X1, v ∈ X2. Further, let T ′1 and T ′2 be the edges in T ′ with both endpoints
in X1 and X2, respectively. See Figure 3.

If the total cost of edges in TA ∪ T ′1 is greater than 1
2D, then we know we should only

add edges in this subtree to TA and we recursively invoke pick(X1, w, TA). If instead the
total cost of edges in TA ∪ T ′1 ∪ {e′} is less than 1

2D, then we can feasibly add all edges in
T ′1 and e′ without going over budget. Thus, the procedure adds all these edges to TA and
recursively invokes pick(X2, v, TA) to pick the remaining edges in T ′2. Finally, if the cost of
edges in TA ∪ T ′1 is less than or equal to 1

2D, but greater than 1
2D − ce′ , then we cannot

quite make it to T ′2 without going over budget. In this case, the procedure adds all edges in
T ′1 to TA and sets T̄ = TA ∪ {e′}.

At the end of the procedure, we produce a tree TA of cost ≤ 1
2D that spans a subset SA

along with a tree T̄ of cost ≥ 1
2D that spans a subset S̄ where |S̄| ≤ |SA|+ 1. Further, if

|S̄| = |SA|+ 1, then T̄ has cost > 1
2D.

ESA 2017

62:10 Prize-Collecting TSP with a Budget Constraint

u v
w

T ′1 T ′2

X̄

Figure 3 Illustration of the pick procedure.

5.1 Properties of T̄
We have now constructed a tree TA of cost ≤ 1

2D that spans a subset SA along with a tree
T̄ of cost ≥ 1

2D that spans a subset S̄ containing at most one more vertex than SA. Further,
if |S̄| = |SA|+ 1, then T̄ has cost > 1

2D. We will use T̄ to prove a bound on |S̄|, which in
turn will give a bound on |SA|.

Let Q ∈ S be a subset containing S̄. Since S̄ is a subset of an active set, such a set will
always exist. Our goal will be to show that

|SA| ≥
1
2λ1D + π(Q)− 1.

Let v̄ = S̄ − SA (possibly equal to ∅). We first state the following useful lemma. Since the
proof closely resembles that of Goemans and Williamson [14] for the Prize-Collecting Steiner
Tree Problem, we defer the proof to the full version of the paper.

I Lemma 8.∑
e∈T̄

∑
S:e∈δ(S)

yS ≤ 2
∑

T :T ∩S̄ 6=∅
v̄ /∈T

yT . (1)

I Theorem 9. Let Q be any set in S containing S̄. Then,

|SA| >
1
2λ1D + π(Q)− 1.

Proof. Vertices in Q− S̄ are either in a neutral subset N (the combination of pruned subsets
and Ni not reached) or are in the set X̄ ∈ {N1, N2, . . . , Nr} that we started our pick routine
on. Let SN be all subsets in S that are subsets of N . By the definition of neutral subsets,

|N | = 2
∑

T :T∈SN

yT .

Similarly, let SX be all subsets in S that are subsets of X̄ and contain vertices in X̄ − S̄.
These are all the previously active subsets T such that yT > 0 and T contains vertices in
X̄ − S̄ before the set X̄ went neutral. Thus,

|X̄ − S̄| ≤ 2
∑

T :T∈SX

yT .

Any subset in S that contains vertices in S̄ and X̄ − S̄ must contain v. Therefore, the only
subsets of Q that are not in SN or SX are those that contain a subset of S̄ but do not

A. Paul, D. Freund, A. Ferber, D. B. Shmoys, and D. P. Williamson 62:11

contain v̄. In other words,

|Q| = 2
∑

T :T⊆Q
yT + π(Q)

≥ 2
∑

T :T ∩S̄ 6=∅
v̄ /∈T

yT + 2
∑
T∈SN

yT + 2
∑

T :T∈SX

yT + π(Q) ≥ 2
∑

T :T ∩S̄ 6=∅
v̄ /∈T

yT + |Q− S̄|+ π(Q)

Rearranging,

|S̄| ≥ 2
∑

T :T ∩S̄ 6=∅
v̄ /∈T

yT + π(Q) ≥
∑
e∈T̄

∑
S:e∈δ(S)

yS + π(Q) = λ1 ·
∑
e∈T̄

ce + π(Q).

The second inequality follows from Lemma 8 and the third from property 4 of the algorithm.
If |S̄| = |SA|, then we are done. Otherwise, suppose that |S̄| = |SA|+1. Then,

∑
e∈T̄ ce >

1
2D.

In either case, the theorem holds. J

6 Approximation Ratio

The previous sections show that we can produce a feasible tour FA on a subset SA such that
|SA| > 1

2λ1D + π(Q) − 1, where Q is the set in S of maximum potential that contains S̄.
Recall from Theorem 5, that for an optimal subset of vertices O?, |O?| ≤ λ1D+ π(O), where
O is the minimal subset in S+ that contains O?. Suppose that π(Q) ≥ π(O). In this case,

|SA|+ 1 > 1
2 [λ1D + π(O)] ≥ 1

2 |O
?|.

Without loss of generality, assume |O?| is even (we can always make a copy of each vertex
that has an edge of cost zero incident to the original). This implies that |SA| ≥ 1

2 |O
?|.

On the other hand, suppose that π(Q) < π(O). By the definition of Q, Q 6⊆ O since Q
was the set of maximum potential that contained S̄. Thus, either O is contained in a laminar
set that is a strict subset of Q (and does not contain all vertices in S̄) or O is disjoint from
Q. By looking at the maximal sets with potential higher than π(Q), we can recurse on each
disjoint subgraph and return the best solution found. Overall, this shows that we can find a
feasible tour FA on a subset SA such that |SA| ≥ 1

2 |O
?|.

I Theorem 10. The described algorithm is a 2-approximation for the budgeted prize-collecting
traveling salesman problem.

To see that this algorithm extends to the weighted version, imagine creating copies of
each vertex v with zero cost edges to v. Since all these edges will go tight instantaneously in
the primal-dual subroutine, we can actually just begin the algorithm with these weighted
“clusters” as our initial active sets with potential equal to the weight of v.

7 Computational Experiments

In this section, we complete computational experiments in order to better understand the
performance of our algorithm in practice. The primal-dual algorithm as detailed in this
paper was implemented in C++11 using binary search to find λ1. The experiments were
conducted on a Dell R620 with two Intel 2.70GHz 8-core processors and 96GB of RAM.

The first set of graphs we used for the experiments are the 37 symmetric TSP instances
with at most 400 nodes in the TSPLIB data set [20]. The second set of graphs are 37 weighted

ESA 2017

62:12 Prize-Collecting TSP with a Budget Constraint

Table 1 Graph statistics for each group of graphs averaged over all instances.

Instance Type |V | |E| Total Vertex Weight
TSPLIB 158.14 15658.43 158.14

Bike 319.54 4634.77 1302.51

Table 2 Computational results of the primal-dual algorithm for each group of graphs and budget
with results averaged over all instances.

Instance Type f Time (s) # Recursions % Opt. Gap % Weight % Budget
TSPLIB 0.25 74.16 0.59 46.67 33.06 77.38
TSPLIB 0.5 72.61 0.14 41.89 58.08 69.89
TSPLIB 0.75 71.24 0.22 18.62 81.38 68.80

Bike 0.25 25.15 0.28 45.74 43.37 66.90
Bike 0.5 33.21 0.28 25.89 74.01 67.13
Bike 0.75 30.46 0.05 8.29 91.68 67.37

instances constructed using the Citi Bike network of bikesharing stations in New York City.
Each instance corresponds to a week of usage data at these stations, and the weight of a
vertex corresponds to the number of broken docks at that station during that week. The
number of broken docks was estimated from the usage data using a similar probabilistic
method to that of Kaspi, Raviv, and Tzur [17]. Details about both types of constructed
instances are given in Table 1.

For each test graph G, we first found an upper bound on the cost of a tour by computing
2 times the cost of a minimum spanning tree in G. We then set the budget for our tour to
be f = 25%, 50%, or 75% of this upper bound. W denotes the total weight of the vertices,
for TSPLIB instances, the number of vertices. After finding our solution of weight A, we
compute an upper bound on the weight of visited vertices U = min(λ1D + maxS∈S π(S),W)
and record the percent optimality gap as 100 × (U − A)/U . Results are given in Table 2.
Column 6 gives the percentage of the total weight W captured by the constructed tour, and
Column 7 gives the percentage of the distance budget used after shortcutting the tree.

We report several interesting structural results. First, the average time seems to be
heavily influenced by the number of edges; the bike instances were quicker to complete even
though the average number of nodes was higher. However, the average time does not seem to
grow with the budget (and hence with the size of the outputted solution) since most of the
time is spent finding the value of Λ1. The average optimality gap, on the other hand, does
improve with the budget. This is likely due to the fact that for larger budgets the upper
bound is given by W . Also of interest is that maxS∈S π(S) contributed little to our upper
bound U . As a result, our optimality gaps depend mostly on the value of Λ1, rather than the
potentials, and may be far from tight. However, the fact that on average we only use around
2/3 of the distance budget implies that the solutions could be improved as well. To ensure
that we use a larger part of the budget, we ran further experiments on the Citi Bike instances;
in these, we ran binary search over possible virtual budgets in the input until finding one with
which the resulting tour uses at least 90% of the actual budget. This reduced our optimality
gaps from 45.74%, 25.89%, and 8.29% to 27.96%, 11.87%, and 0.17%, respectively. Lastly, it
is interesting that the algorithm rarely ever needs to recurse on a subgraph.

A. Paul, D. Freund, A. Ferber, D. B. Shmoys, and D. P. Williamson 62:13

8 Conclusion and Future Work

In this paper, we provide a 2-approximation algorithm for the budgeted prize-collecting
traveling salesman problem that has at its base a classic primal-dual approach. The key
insights are to use constructed potentials to evaluate potential subsets to tour and to identify
the structure of a good tour. In particular, we construct a tree that closely follows the
structure of the laminar collection of subsets with positive dual value. Further, we ensure
this tree is just within budget in that adding one extra edge will make doubling the tree an
infeasible tour. An obvious open question seeks to improve the approximation guarantee or
prove the current guarantee is the best possible. Specifically, it would be interesting to know
whether or not a (3/2)-approximation algorithm is possible given that that is the current best
guarantee for the unconstrained traveling salesman problem. Another interesting direction
would be to see if one can avoid recursing by inferring more from the potentials.

References
1 Aaron Archer, MohammadHossein Bateni, MohammadTaghi Hajiaghayi, and Howard Kar-

loff. Improved approximation algorithms for prize-collecting Steiner tree and TSP. SIAM
Journal on Computing, 40(2):309–332, 2011.

2 Sunil Arya and Hariharan Ramesh. A 2.5-factor approximation algorithm for the k-MST
problem. Information Processing Letters, 65(3):117–118, 1998.

3 G. Ausiello, M. Demange, L. Laura, and V. Paschos. Algorithms for the on-line quota
traveling salesman problem. Information Processing Letters, 92(2):89–94, 2004.

4 Avrim Blum, Ramamurthy Ravi, and Santosh Vempala. A constant-factor approximation
algorithm for the k-MST problem. In Proceedings of the Twenty-Eighth Annual ACM
Symposium on Theory of Computing (STOC), pages 442–448. ACM, 1996.

5 Chandra Chekuri and Nitish Korula. Approximation algorithms for orienteering with time
windows. arXiv preprint arXiv:0711.4825, 2007.

6 Chandra Chekuri, Nitish Korula, and Martin Pál. Improved algorithms for orienteering
and related problems. ACM Transactions on Algorithms (TALG), 8(3):23, 2012.

7 Chandra Chekuri and Martin Pal. A recursive greedy algorithm for walks in directed
graphs. In 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 245–253. IEEE, 2005.

8 Ke Chen and Sariel Har-Peled. The orienteering problem in the plane revisited. In Proceed-
ings of the Twenty-Second Annual Symposium on Computational Geometry, pages 247–254.
ACM, 2006.

9 Joan Feigenbaum, Christos H. Papadimitriou, and Scott Shenker. Sharing the cost of
multicast transmissions. Journal of Computer and System Sciences, 63(1):21–41, 2001.

10 Greg N. Frederickson and Barry Wittman. Approximation algorithms for the traveling
repairman and speeding deliveryman problems. Algorithmica, 62(3-4):1198–1221, 2012.

11 Daniel Freund, Ashkan Norouzi-Fard, Alice Paul, Shane G. Henderson, and David B.
Shmoys. Data-driven rebalancing methods for bike-share systems. Working Paper, 2017.

12 N. Garg. A 3-approximation for the minimum tree spanning k vertices. In Proceedings of
the 37th Annual Symposium on Foundations of Computer Science, FOCS’96, pages 302–,
Washington, DC, USA, 1996. IEEE Computer Society.

13 Naveen Garg. Saving an epsilon: a 2-approximation for the k-MST problem in graphs.
In Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing
(STOC), pages 396–402. ACM, 2005.

14 Michel X. Goemans and David P. Williamson. A general approximation technique for
constrained forest problems. SIAM Journal on Computing, 24(2):296–317, 1995.

ESA 2017

62:14 Prize-Collecting TSP with a Budget Constraint

15 Anupam Gupta, Ravishankar Krishnaswamy, Viswanath Nagarajan, and R. Ravi. Approx-
imation algorithms for stochastic orienteering. In Proceedings of the Twenty-Third Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1522–1538. SIAM, 2012.

16 David S. Johnson, Maria Minkoff, and Steven Phillips. The prize collecting Steiner tree
problem: theory and practice. In Proceedings of the Eleventh Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 760–769. Society for Industrial and Applied
Mathematics, 2000.

17 Mor Kaspi, Tal Raviv, and Michal Tzur. Detection of unusable bicycles in bike-sharing
systems. Omega, 65:10–16, 2016.

18 Asaf Levin. A better approximation algorithm for the budget prize collecting tree problem.
Operations Research Letters, 32(4):316–319, 2004.

19 Viswanath Nagarajan and R. Ravi. Approximation algorithms for distance constrained
vehicle routing problems. Networks, 59(2):209–214, 2012.

20 Gerhard Reinelt. TSPLIB – a traveling salesman problem library. ORSA Journal on
Computing, pages 376–384, 1991.

21 Shalabh Vidyarthi and Kaushal K. Shukla. Approximation algorithms for P2P orienteering
and stochastic vehicle routing problem. arXiv preprint arXiv:1501.06515, 2015.

	Introduction
	Notation
	Primal-Dual Subroutine
	Analysis

	Setting Lambda-1
	Constructing a Tour
	Properties of barT

	Approximation Ratio
	Computational Experiments
	Conclusion and Future Work

