
Dispersion on Trees∗†

Paweł Gawrychowski1, Nadav Krasnopolsky2, Shay Mozes3, and
Oren Weimann4

1 University of Haifa, Israel
2 University of Haifa, Israel
3 IDC Herzliya, Israel
4 University of Haifa, Israel

Abstract
In the k-dispersion problem, we need to select k nodes of a given graph so as to maximize the
minimum distance between any two chosen nodes. This can be seen as a generalization of the
independent set problem, where the goal is to select nodes so that the minimum distance is larger
than 1. We design an optimal O(n) time algorithm for the dispersion problem on trees consisting
of n nodes, thus improving the previous O(n logn) time solution from 1997.

We also consider the weighted case, where the goal is to choose a set of nodes of total weight
at least W . We present an O(n log2 n) algorithm improving the previous O(n log4 n) solution.
Our solution builds on the search version (where we know the minimum distance λ between the
chosen nodes) for which we present tight Θ(n logn) upper and lower bounds.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases parametric search, dispersion, k-center, dynamic programming

Digital Object Identifier 10.4230/LIPIcs.ESA.2017.40

1 Introduction

Facility location is a family of problems dealing with the placement of facilities on a network
in order to optimize certain distances between the facilities, or between facilities and other
nodes of the network. Such problems are usually if not always NP-hard on general graphs.
There is a rich literature on approximation algorithms (see e.g. [14, 16] and references therein)
as well as exact algorithms for restricted inputs. In particular, many linear and near-linear
time algorithms were developed for facility location problems on edge-weighted trees.

In the most basic problem, called k-center, we are given an edge-weighted tree with n
nodes and wish to designate up to k nodes to be facilities, so as to minimize the maximum
distance of a node to its closest facility. This problem was studied in the early 80’s by
Megiddo et al. [12] who gave an O(n log2 n) time algorithm that was subsequently improved
to O(n logn) by Frederickson and Johnson [9]. In the early 90’s, an optimal O(n) time
solution was given by Frederickson [8, 6] using a seminal approach based on parametric search,
also for two other versions where points on edges can be designated as facilities or where we
minimize over points on edges. In yet another variant, called weighted k-center, every node
has a positive weight and we wish to minimize the maximum weighted distance of a node
to its closest facility. Megiddo et al. [12] solved this in O(n log2 n) time, and Megiddo and

∗ The research was supported in part by Israel Science Foundation grant 794/13.
† The full version of this paper, containing missing proofs and supplementary figures, is available at

http://arxiv.org/abs/1706.09185.

© Paweł Gawrychowski, Nadav Krasnopolsky, Shay Mozes, and Oren Weimann;
licensed under Creative Commons License CC-BY

25th Annual European Symposium on Algorithms (ESA 2017).
Editors: Kirk Pruhs and Christian Sohler; Article No. 40; pp. 40:1–40:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2017.40
http://arxiv.org/abs/1706.09185
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

40:2 Dispersion on Trees

Tamir [11] designed an O(n log2 n log logn) time algorithm when allowing points on edges
to be designated as facilities. The latter complexity can be further improved to O(n log2 n)
using a technique of Cole [5]. A related problem, also suggested in the early 80’s [1, 13], is
k-partitioning. In this problem the nodes have weight and we wish to delete k edges in the
tree so as to maximize the weight of the lightest resulting subtree. This problem was also
solved by Frederickson in O(n) time [7] using his parametric search framework.

The focus of this paper is the k-dispersion problem, where we wish to designate k nodes
as facilities so as to maximize the distances among the facilities. In other words, we wish
to select k nodes that are as spread-apart as possible. More formally, let d(u, v) denote the
distance between nodes u and v, and for a subset of nodes P let f(P) = minu,v∈P {d(u, v)}.

The Dispersion Optimization Problem. Given a tree with non-negative edge lengths, and
a number k, find a subset P of nodes of size k such that f(P) is maximized.

The dispersion problem can be seen as a generalization of the classical maximum independent
set problem (that can be solved by binary searching for the largest value of k for which the
minimum distance is at least 2). It can also be seen as a generalization of the diameter
problem (i.e., when k = 2).

It turns out that the dispersion and the k-partitioning problems are actually equivalent
in the one-dimensional case (i.e., when the tree is a path). The reduction simply creates a
new path whose edges correspond to nodes in the original path and whose nodes correspond
to edges in the original path. However, such equivalence does not apply to general trees, on
which k-dispersion seems more difficult than k-partitioning. In particular, until the present
work, no linear time solution for k-dispersion was known. The dispersion optimization
problem can be solved by repeatedly querying a feasibility test that solves the dispersion
search problem.

The Dispersion Search Problem (feasibility test). Given a tree with non-negative edge
lengths, a number k, and a number λ, find a subset P of nodes of size k such that
f(P) ≥ λ, or declare that no such subset exists.

Bhattacharya and Houle [2] presented a linear-time feasibility test, and used a result by
Frederickson [9] that enables binary searching over all possible values of λ (i.e., all pairwise
distances in the tree). That is, a feasibility test with a running time τ implies an O(n logn+
τ · logn) time algorithm for the dispersion optimization problem. Thus, the algorithm of
Bhattacharya and Houle for the dispersion optimization problem runs in O(n logn) time.
We present a linear time algorithm for the optimization problem. Our solution is based on a
simplified linear-time feasibility test, which we turn into a sublinear-time feasibility test in a
technically involved way closely inspired by Frederickson’s approach.

In the weighted dispersion problem, nodes have non-negative weights. Instead of k we are
given W , and the goal is then to find a subset P of nodes of total weight at least W s.t. f(P)
is maximized. Bhattacharya and Houle considered this generalization in [3]. They presented
an O(n log3 n) feasibility test for this generalization, that by the same reasoning above solves
the weighted optimization problem in O(n log4 n) time. We give an O(n logn)-time feasibility
test, and a matching lower bound. Thus, our algorithm for the weighted optimization
problem runs in O(n log2 n) time. Our solution uses novel ideas, and differs substantially
from Frederickson’s approach.

Our technique for the unweighted dispersion problem. Our solution to the k-dispersion
problem can be seen as a modern adaptation of Frederickson’s approach based on a hierarchy
of micro-macro decompositions. While achieving this adaptation is technically involved, we

P. Gawrychowski, N. Krasnopolsky, S. Mozes, and O. Weimann 40:3

believe this modern view might be of independent interest. As in Frederickson’s approach for k-
partitioning and k-center, we develop a feasibility test that requires linear time preprocessing
and can then be queried in sublinear time. Equipped with this sublinear feasibility test, it is
still not clear how to solve the whole problem in O(n) time, as in such complexity it is not
trivial to represent all the pairwise distances in the tree in a structure that enables binary
searching. To cope with this, we maintain only a subset of candidate distances and represent
them using matrices where both rows and columns are sorted. Running feasibility tests on
only a few candidate entries from such matrices allows us to eliminate many other candidates,
and prune the tree accordingly. We then repeat the process with the new smaller tree. This
is similar to Frederickson’s approach, but our algorithm (highlighted below) differs in how
we construct these matrices, in how we partition the input tree, and in how we prune it.

Our algorithm begins by partitioning the input tree T into O(n/b) fragments, each with
O(b) nodes and at most two boundary nodes incident to nodes in other fragments: the root of
the fragment and, possibly, another boundary node called the hole. We use this to simulate
a bottom-up feasibility test by jumping over entire fragments, i.e., knowing λ, we wish to
extend in O(log b) time a solution for a subtree of T rooted at the fragment’s hole to a subtree
of T rooted at the fragment’s root. This is achieved by efficient preprocessing: The first step
of the preprocessing computes values λ1 and λ2 such that (1) there is no solution to the
search problem on T for any λ ≥ λ2, (2) there is a solution to the search problem on T for
any λ ≤ λ1, and (3) for most of the fragments, the distance between any two nodes is either
smaller or equal to λ1 or larger or equal to λ2. This is achieved by applying Frederickson’s
parametric search on sorted matrices capturing the pairwise distances between nodes in the
same fragment. The (few) fragments that do not satisfy property (3) are handled naively
in O(b) time during query time. The fragments that do satisfy property (3) are further
preprocessed. We look at the path from the hole to the root of the fragment and run the
linear-time feasibility test for all subtrees hanging off from it. Because of property (3), this
can be done in advance without knowing the actual exact value of λ ∈ (λ1, λ2), which will
only be determined at query time. Let P be a solution produced by the feasibility test to a
subtree rooted at a node u. It turns out that the interaction between P and the solution
to the entire tree depends only on two nodes of P , which we call the certain node and the
candidate node. We can therefore conceptually replace each hanging subtree by two leafs,
and think of the fragment as a caterpillar connecting the root and the hole. After some
additional pruning, we can precompute information that will be used to accelerate queries to
the feasibility test. During a query we will be able to jump over each fragment of size O(b)
in just O(log b) time, so the test takes O(nb log b) time.

The above sublinear-time feasibility test is presented in Section 3, with an overall
preprocessing time of O(n log logn). The test is then used to solve the optimization problem
within the same time. This is done, again, by maintaining an interval [λ1, λ2) and applying
Frederickson’s parametric search, but now we apply a heavy path decomposition to construct
the sorted matrices. To accelerate the O(n log logn) time algorithm, we construct a hierarchy
of feasibility tests by partitioning the input tree into larger and larger fragments. In each
iteration we construct a feasibility test with better running time, until finally, after log∗ n
iterations we obtain a feasibility test with O(n

log4 n
· log logn) query-time, which we use to

solve the dispersion optimization problem in linear time. It is relatively straightforward to
implement the precomputation done in a single iteration in O(n) time. However, achieving
total O(n) time over all the iterations, requires reusing the results of the precomputation
across iterations as well as an intricate global analysis of the overall complexity. Thus, the
details of the linear-time algorithm are technically involved and appear in the full version.

ESA 2017

40:4 Dispersion on Trees

Our technique for the weighted dispersion problem. Our solution for the weighted case
differs substantially from Frederickson’s approach. In contrast to the unweighted case, where
it suffices to consider a single candidate node, in the weighted case each subtree might have
a large number of candidate nodes. To overcome this, we represent the candidates of a
subtree with a monotonically decreasing polyline: for every possible distance d, we store the
maximum weight W (P) of a subset of nodes P such that the distance of every node of P to
the root of the subtree is at least d. This can be conveniently represented by a sorted list
of breakpoints, and the number of breakpoints is at most the size of the subtree. We then
show that the polyline of a node can be efficiently computed by merging the polylines of its
children. If the polylines are stored in augmented balanced search trees, then two polylines of
size x and y can be merged in time O(min(x, y) log max(x, y)), and by standard calculation
we obtain an O(n log2 n) time feasibility test. To improve on that and obtain an optimal
O(n logn) feasibility test, we need to be able to merge polylines in O(min(x, y) log max(x,y)

min(x,y))
time. An old result of Brown and Tarjan [4] is that, in exactly such time we can merge two
2-3 trees representing two sorted lists of length x and y (and also delete x nodes in a tree
of size y). This was later generalized by Huddleston and Mehlhorn [10] to any sequence of
operations that exhibits a certain locality of reference. However, in our specific application
we need various non-standard batch operations on the lists. any balanced search tree with
split and join capabilities. Our data structure both simplifies and extends that of Brown and
Tarjan [4], and might be of independent interest.

2 A Linear Time Feasibility Test

Given a tree T with non-negative lengths and a number λ, the feasibility test finds a subset
of nodes P such that f(P) ≥ λ and |P | is maximized, and then checks if |P | ≥ k. To this end,
the tree is processed bottom-up while computing, for every subtree Tr rooted at a node r, a
subset of nodes P such that f(P) ≥ λ, |P | is maximized, and in case of a tie minu∈P d(r, u)
is additionally maximized. We call the node u ∈ P , s.t. d(r, u) < λ

2 , the candidate node of
the subtree (or a candidate with respect to r). There is at most one such candidate node.
The remaining nodes in P are called certain (with respect to r) and the one that is nearest
to the root is called the certain node. When clear from the context, we will not explicitly
say which subtree we are referring to.

In each step we are given a node r, its children nodes r1, r2, . . . , r` and, for each child ri,
a maximal valid solution Pi for the feasibility test on Tri together with the candidate and the
certain node. We obtain a maximal valid solution P for the feasibility test on Tr as follows:

1. Take all nodes in P1, . . . , P`, except for the candidate nodes.

2. Take all candidate nodes u s.t. d(u, r) ≥ λ
2 (i.e., they are certain w.r.t. r).

3. If it exists, take u′, the candidate node farthest from r s.t. d(u′, r) < λ
2 and d(u′, x) ≥ λ,

where x is the closest node to u′ we have taken so far.

4. If the distance from r to the closest vertex in P is at least λ, add r to P .
Iterating over the input tree bottom-up as described results in a valid solution P for the
whole tree. Finally, we check if |P | ≥ k.

I Lemma 1. The above feasibility test works in linear time and finds P such that f(P) ≥ λ
and |P | is maximized.

P. Gawrychowski, N. Krasnopolsky, S. Mozes, and O. Weimann 40:5

3 An O(n log log n) Time Algorithm for the Dispersion Problem

To accelerate the linear-time feasibility test described in Section 2, we will partition the tree
into O(n/b) fragments, each of size at most b. We will preprocess each fragment to implement
the bottom-up feasibility test in sublinear time by “jumping” over fragments in O(log b) time
instead of O(b). The preprocessing takes O(n log b) time (Section 3.1), and each feasibility
test can then be implemented in sublinear O(nb · log b) time (Section 3.2). Using heavy-path
decomposition, we design an algorithm for the unweighted dispersion optimization problem
whose running time is dominated by O(log2 n) calls it makes to the sublinear feasibility test
(Section 3.3). By setting b = log2 n we obtain an O(n log logn) time algorithm.

Each fragment is defined by one or two boundary nodes: a node u, and possibly a
descendant v of u. The fragment whose boundary nodes are u and v consists of the subtree
of u without the subtree of v (v does not belong to the fragment). Thus, each fragment is
connected to the rest of the tree only through its boundary nodes. We call the path from u

to v the fragment’s spine, and v’s subtree its hole. If the fragment has only one boundary
node, i.e., the fragment consists of a node and all its descendants, we say that there is no
hole. A partition of a tree into O(n/b) such fragments, each of size at most b, is called a
good partition. Note that we can assume that the input tree is binary: given a non-binary
tree, we can replace every degree d ≥ 3 node with a binary tree on d leaves. The edges of
the binary tree are all of length zero, so at most one node in the tree can be taken.

I Lemma 2. For any binary tree on n nodes and a parameter b, a good partition of the tree
can be found in O(n) time.

3.1 The preprocessing
Recall that the goal in the optimization problem is to find the largest feasible λ∗. Such λ∗ is
a distance between an unknown pair of vertices in the tree. The first goal of the preprocessing
step is to eliminate many possible pairwise distances, so that we can identify a small interval
[λ1, λ2) that contains λ∗. We want this interval to be sufficiently small so that for (almost)
every fragment F , handling F during the bottom up feasibility test for any value λ in [λ1, λ2)
is the same. Observe that the feasibility test in Section 2 for value λ only compares distances
to λ and to λ/2. We therefore call a fragment F inactive if for any two nodes u1, u2 ∈ F the
following two conditions hold: (1) d(u1, u2) ≤ λ1 or d(u1, u2) ≥ λ2, and (2) d(u1, u2) ≤ λ1

2 or
d(u1, u2) ≥ λ2

2 . For an inactive fragment F , all the comparisons performed by the feasibility
test for any λ ∈ [λ1, λ2) only depend on the interval [λ1, λ2), but not on the particular value
of λ. Therefore, once we find an interval [λ1, λ2) for which (almost) all fragments are inactive,
we can precompute, for each inactive fragment F , information that will enable us to process
F in O(log b) time during any subsequent feasibility test with λ ∈ (λ1, λ2).

The first goal of the preprocessing step is therefore to find a small enough interval [λ1, λ2).
For each fragment F , we construct an implicit representation of O(b) sorted matrices of total
side length O(b log b), s.t. for every two nodes u1, u2 in F , d(u1, u2) (and also 2d(u1, u2))
is an entry in some matrix. This is done using the standard centroid decomposition, in
O(nb · b log b) = O(n log b) total time using the following lemma.

I Lemma 3. Given a tree T on b nodes, we can construct in O(b log b) time an implicit
representation of O(b) sorted matrices of total side length O(b log b) such that, for any
u, v ∈ T , d(u, v) is an entry in some matrix.

Then, we repeatedly choose an entry of a matrix and run a feasibility test with its value.
Depending on the outcome, we then appropriately shrink the current interval [λ1, λ2) and

ESA 2017

40:6 Dispersion on Trees

discard this entry. Because the matrices are sorted, running a single feasibility test can
actually allow us to discard multiple entries in the same matrix (and, possibly, also entries in
some other matrices). The following theorem by Frederickson shows how to exploit this to
discard most of the entries with very few feasibility tests.
I Theorem 4 ([7]). Let M1,M2, ...,MN be a collection of sorted matrices in which mat-
rix Mj is of dimension mj × nj, mj ≤ nj, and

∑N
j=1 mj = m. Let p be nonnegative.

The number of feasibility tests needed to discard all but at most p of the elements is
O(max{log(maxj{nj}), log(m

p+1)}), and the total running time exclusive of the feasibility
tests is O(

∑N
j=1 mj · log(2nj/mj)).

Setting m = b log b · nb = n log b and p = n/b2, the theorem implies that we can use
O(log b) calls to the linear time feasibility test and discard all but n/b2 elements of the
matrices. Therefore, all but at most n/b2 fragments are inactive.

The second goal of the preprocessing step is to compute information for each inactive
fragment that will allow us to later “jump” over it in O(log b) time when running the feasibility
test. We next describe this computation. We choose λ arbitrarily in (λ1, λ2). This is done
just so that we have a concrete value of λ to work with.
1. Reduce the fragment to a caterpillar: a fragment consists of the spine and the subtrees

hanging off the spine. We run our linear-time feasibility test on the subtrees hanging off
the spine, and obtain the candidate and the certain node for each of them. The fragment
can now be reduced to a caterpillar with at most two leaves attached to each spine node:
a candidate node and a certain node.

2. Find candidate nodes that cannot be taken into the solution: for each candidate node
we find its nearest certain node. Then, we compare their distance to λ and remove the
candidate node if it cannot be taken. To find the nearest certain node, we first scan all
nodes bottom-up (according to the natural order on the spine nodes they are attached
to) and compute for each of them the nearest certain node below it. Then, we repeat
the scan in the other direction to compute the nearest certain node above. This gives
us, for every candidate node, the nearest certain node above and below. We delete all
candidate nodes for which one of these distances is smaller than λ. We store the certain
node nearest to the root, the certain node nearest to the hole and the total number of
certain nodes, and from now on ignore certain nodes and consider only the remaining
candidate nodes.

3. Prune leaves to make their distances to the root non-decreasing: let the i-th leaf, ui,
be connected with an edge of length yi to a spine node at distance xi from the root, and
order the leaves so that x1 < x2 < . . . < xs. Note that yi < λ

2 , as otherwise ui would be a
certain node. Suppose that ui−1 is farther from the root than ui (i.e., xi−1+yi−1 > xi+yi),
then: d(ui, ui−1) = xi−xi−1 +yi+yi−1 = xi+yi−xi−1 +yi−1 < 2yi−1 < λ. Therefore an
optimal solution cannot contain both ui and ui−1. We claim that if the solution contains
ui then it can be replaced with ui−1. To prove this, it is enough to argue that ui−1 is
farther away from any node above it than ui, and ui is closer to any node below it than
ui−1. Consider a node uj that is above ui−1 (so j < i−1), then: d(uj , ui−1)−d(uj , ui) =
yi−1− (xi−xi−1)−yi = xi−1 +yi−1− (xi+yi) > 0. Now consider a node uj that is below
ui (so j > i), then: d(uj , ui−1)−d(uj , ui) = yi−1 +(xi−xi−1)−yi > 2(xi−xi−1) > 0. So
in fact, we can remove the i-th leaf from the caterpillar if xi−1 + yi−1 > xi + yi. To check
this condition efficiently, we scan the caterpillar from top to bottom while maintaining
the most recently processed non-removed leaf. This takes linear time in the number of
candidate nodes and ensures that the distances of the remaining leaves from the root are
non-decreasing.

P. Gawrychowski, N. Krasnopolsky, S. Mozes, and O. Weimann 40:7

4. Prune leaves to make their distances to the hole non-increasing: this is done as in
the previous step, except we scan in the other direction.

5. Preprocess for any candidate and certain node with respect to the hole: we call
u1, u2, . . . , ui a prefix of the caterpillar and, similarly, ui+1, ui+2, . . . , us a suffix. For
every possible prefix, we would like to precompute the result of running the linear-time
feasibility test on that prefix. In Section 3.2 we will show that, in fact, this is enough
to efficiently simulate running the feasibility test on the whole subtree rooted at r if we
know the candidate and the certain node w.r.t. the hole. Consider running the feasibility
test on u1, u2, . . . , ui. Recall that its goal is to choose as many nodes as possible, and in
case of a tie to maximize the distance of the nearest chosen node to r. Due to distances
of the leaves to r being non-decreasing, it is clear that ui should be chosen. Then,
consider the largest i′ < i such that d(ui′ , ui) ≥ λ. Due to distances of the leaves to the
hole being non-decreasing, nodes ui′+1, ui′+2, . . . , ui−1 cannot be chosen and furthermore
d(uj , ui) ≥ λ for any j = 1, 2, . . . , i′. Therefore, to continue the simulation we should
repeat the reasoning for u1, u2, . . . , ui′ . This suggests the following implementation: scan
the caterpillar from top to bottom and store, for every prefix u1, u2, . . . , ui, the number
of chosen nodes, the certain node and the candidate node. While scanning we maintain
i′ in amortized constant time. After increasing i, we only have to keep increasing i′ as
long as d(ui, ui′) ≥ λ. To store the information for the current prefix, copy the computed
information for u1, u2, . . . , ui′ and increase the number of chosen nodes by one. Then,
if the certain node is set to NULL, we set it to be ui. If there is no ui′ , and ui is the
top-most chosen candidate, we need to set it to be the candidate (if d(r, ui) < λ

2) or the
certain node otherwise.

3.2 The feasibility test

The sublinear feasibility test for a value λ ∈ (λ1, λ2) processes the tree bottom-up. For every
fragment with root r, we would like to simulate running the linear-time feasibility test on
the subtree rooted at r to compute: the number of chosen nodes, the candidate node, and
the certain node. We assume that we already have such information for the fragment rooted
at the hole of the current fragment. If the current fragment is active, we process it naively in
O(b) time using the linear-time feasibility test. If it is inactive, we process it (jump over it)
in O(log b) time. This can be seen as, roughly speaking, attaching the hole as another spine
node to the corresponding caterpillar and executing steps (2)-(5).

We start by considering the case where there is no candidate node w.r.t. the hole. Let
v be the certain node w.r.t. the hole. Because distances of the leaves from the hole are
non-increasing, we can compute the prefix of the caterpillar consisting of leaves that can be
chosen, by binary searching for the largest i such that d(v, ui) ≥ λ. Then, we retrieve and
return the result stored for u1, u2, . . . , ui (after increasing the number of chosen nodes and,
if the certain node is set to NULL, updating it to v).

Now consider the case where there is a candidate node u w.r.t. the hole. We start with
binary searching for i as explained above. Then, we check if the distance between u and
the certain node nearest to the hole is smaller than λ or d(ui, r) > d(u, r), and if so return
the result stored for u1, u2, . . . , ui. Then, again because distances of the leaves to the hole
are non-increasing, we can binary search for the largest i′ ≤ i such that d(ui′ , u) ≥ λ (note
that this also takes care of pruning leaves uk that are closer to the hole than u). Finally, we
retrieve and return the result stored for u1, u2, . . . , ui′ (after increasing the number of chosen
nodes and possibly updating the candidate and the certain node).

ESA 2017

40:8 Dispersion on Trees

We process every inactive fragment in O(log b) time and every active fragment in O(b)
time, so the total time is O(nb · log b) +O(nb2 · b) = O(nb · log b).

3.3 The algorithm for the optimization problem
The general idea is to use a heavy path decomposition to solve the optimization problem with
O(log2 n) feasibility tests. The heavy edge of a non-leaf node of the tree is the edge leading
to the child with the largest number of descendants. The heavy edges define a decomposition
of the nodes into heavy paths. A heavy path p starts with a head head(p) and ends with a
tail tail(p) such that tail(p) is a descendant of head(p), and its depth is the number of heavy
paths p′ s.t. head(p′) is an ancestor of head(p). The depth is always O(logn) [15].

We process all heavy paths at the same depth together while maintaining an interval
[λ1, λ2) such that λ1 is feasible while λ2 is not, that is, the sought λ∗ belongs to the interval.
The goal of processing the heavy paths at depth d is to further shrink the interval so that,
for any heavy path p at depth d, the result of running the feasibility test on any subtree
rooted at head(p) is the same for any λ ∈ [λ1, λ2) and therefore can be already determined.
We start with the heavy paths of maximal depth and terminate with λ∗ = λ1 after having
determined the result of running the feasibility test on the whole tree.

Let nd denote the total size of all heavy paths at depth d. For every such heavy path
we construct a caterpillar by replacing any subtree that hangs off by the certain and the
candidate node (this is possible, because we have already determined the result of running
the feasibility test on that subtree). To account for the possibility of including a node of the
heavy path in the solution, we attach an artificial leaf connected with a zero-length edge to
every such node. The caterpillar is then pruned similarly to steps (2)-(4) from Section 3.1,
except that after having found the nearest certain node for every candidate node we cannot
simply compare their distance to λ. Instead, we create an 1× 1 matrix storing the relevant
distance for every candidate node. Then, we apply Theorem 4 with p = 0 to the obtained
set of O(nd) matrices of dimension 1× 1. This allows us to determine, using only O(logn)
feasibility tests and O(nd) time exclusive of the feasibility tests, which distances are larger
than λ∗, so that we can prune the caterpillars and work only with the remaining candidate
nodes. Then, for every caterpillar we create a row- and column-sorted matrix storing pairwise
distance between its leaves. By applying Theorem 4 with p = 0 on the obtained set of square
matrices of total side length O(nd) we can determine, with O(logn) feasibility tests and
O(nd) time exclusive of the feasibility tests, which distances are larger than λ∗. This allows
us to run the bottom-up procedure described in Section 2 to produce the candidate and the
certain node for every subtree rooted at head(p), where p is a heavy path at depth d.

All in all, for every d we spend O(nd) time and execute O(logn) feasibility tests. Summing
over all depths d, this is O(n) plus O(log2 n) calls to the feasibility test. Setting b = log2 n,
the total time is thus O(n+ n log logn+ n

log2 n
· log logn · log2 n) = O(n log logn).

4 The Weighted Dispersion Problem

In this section we present an O(n logn) time algorithm for the weighted search problem (a
matching lower bound is shown in the full version). As explained in the introduction, this
then implies an O(n log2 n) time solution for the optimization problem. Similarly to the
unweighted case, we compute for each node of the tree, the subset of nodes P in its subtree
s.t. f(P) ≥ λ and the total weight of P is maximized. We compute this by going over the
nodes of the tree bottom-up. Previously, the situation was simpler, as for any subtree we
had just one candidate node (i.e., a node that may or may not be in the optimal solution

P. Gawrychowski, N. Krasnopolsky, S. Mozes, and O. Weimann 40:9

for the entire input tree). This was true because nodes had uniform weights. Now however,
there could be many candidates in a subtree, as the certain nodes are only the ones that are
at distance at least λ from the root (and not λ

2 as in the unweighted case).
Let P be a subset of the nodes in the subtree rooted at v, and h be the node in P

minimizing d(h, v). We call h the closest chosen node in v’s subtree. In our feasibility test, v
stores an optimal solution P for each possible value of d(h, v) (up to λ, otherwise the closest
chosen node does not affect nodes outside the subtree). That is, a subset of nodes P in v’s
subtree, of maximal weight, s.t. the closest chosen node is at distance at least d(h, v) from
v, f(P) ≥ λ. This can be viewed as a monotone polyline, since the weight of P (denoted
W (P)) only decreases as the distance of the closest chosen node increases (from 0 to λ).
W (P) changes only at certain points called breakpoints of the polyline. Each point of the
polyline is a key-value pair, where the key is d(h, v) and the value is W (P). We store with
each breakpoint the value of the polyline between it and the next breakpoint, i.e., for a pair
of consecutive breakpoints with keys a and a+ b, the polyline value of the interval (a, a+ b]
is associated with the former. The representation of a polyline consists of its breakpoints,
and the value of the polyline at key 0.

The algorithm computes such a polyline for the subtrees rooted at every node v of the
tree by merging the polylines computed for the subtrees rooted at v’s children. We assume
w.l.o.g. that the input tree is binary (for the same reasoning as in the unweighted case), and
show how to implement this step in time O(x log(2y

x)), where x is the number of breakpoints
in the polyline with fewer breakpoints, and y is the number of breakpoints in the other.

Constructing a polyline. We now present a single step of the algorithm. We postpone
the discussion of the data structure used to store the polylines for now, and first describe
how to obtain the polyline of v from the polylines of its children. Then, we state the exact
interface of the data structure that allows executing such a procedure efficiently, show how to
implement such an interface, and finally analyze the complexity of the resulting algorithm.

If v has only one child, u, we build v’s polyline by querying u’s polyline for the case that
v is in the solution (i.e., query u’s polyline with distance of the closest chosen node being
λ− d(v, u)), and add to this value the weight of v itself. We then construct the polyline by
taking the obtained value for d(h, v) = 0 and merging it with the polyline computed for u,
shifted to the right by d(v, u) (since we now measure the weight of the solution as a function
of the distance of the closest chosen node to v, not to u). The value between zero and d(v, u)
will be the same as the value of the first interval in the polyline constructed for u, so the
shift is actually done by increasing the keys of all but the first breakpoint by d(v, u).

If v has a left child u1 and a right child u2, we have two polylines p1 and p2 (that represent
the solutions inside the subtrees rooted at u1 and u2), and we want to create the polyline p
for the subtree rooted at v. Denote the number of breakpoints in p1 by x and the number of
breakpoints in p2 by y. Assume w.l.o.g. that x ≤ y. We begin with computing the value
of p for key zero (i.e. v is in the solution). In this case we query p1 and p2 for their values
with keys λ− d(v, u1) and λ− d(v, u2) respectively (if one of these is negative, we take zero
instead), and add them together with the weight of v. Note that it is possible for the optimal
solution in v’s subtree not to include v. Therefore we need to check, after constructing the
rest of the polyline, whether the value stored at the first breakpoint (which is the weight of
the optimal solution where v is not included) is greater than the value we computed for the
case v is chosen. If so, we store the value of the first breakpoint also as the value for key zero.

It remains to construct the rest of the polyline p. Notice that we need to maintain that
d(h1, h2) ≥ λ (where h1 is the closest chosen node in u1’s subtree and h2 is the closest chosen

ESA 2017

40:10 Dispersion on Trees

node in u2’s subtree). We start by shifting p1 and p2 to the right by d(v, u1) and d(v, u2)
respectively, because now we measure the distance of h from v, not from u1 or u2. We then
proceed in two steps, each computing half of the polyline p.

4.1 Constructing the second half of the polyline.
We start by constructing the second half of the polyline, where d(h, v) ≥ λ

2 . In this case we
query both polylines with the same key, since d(h1, v) ≥ λ

2 and d(h2, v) ≥ λ
2 implies that

d(h1, h2) ≥ λ. The naive way to proceed would be to iterate over the second half of both
polylines in parallel, and at every point sum the values of the two polylines. This would not
be efficient enough, and so we only iterate over the breakpoints in the second half of p1 (the
smaller polyline). These breakpoints induce intervals of p2. For each of these intervals we
increase the value of p2 by the value in the interval in p1. This might require inserting some
of the breakpoints from p1, where there is no such breakpoint already in p2. Thus, we obtain
the second half of p by modifying the second half of p2.

4.2 Constructing the first half of the polyline.
We need to consider two possible cases: either d(h1, v) < d(h2, v) (i.e. the closest chosen
node in v’s subtree is inside u1’s subtree), or d(h1, v) > d(h2, v) (h is in u2’s subtree). Note
that in this half of the polyline d(h, v) < λ

2 , and therefore d(h1, v) 6= d(h2, v). For each of the
two cases we will construct the first half of the polyline, and then we take the maximum of
the two resulting polylines at every point, in order to have the optimal solution for each key.

Case I: d(h1, v) < d(h2, v). Since we are only interested in the first half of the polyline,
we know that d(h1, v) < λ

2 . Since d(h2, v) + d(h1, v) ≥ λ we have that d(h2, v) > λ
2 . Again,

we cannot afford to iterate over the breakpoints of p2, so we need to be more subtle.
We start by splitting p1 at λ

2 and taking the first half (denoted by p′1). We then split p2
at λ

2 and take the second half (denoted by p′2). Consider two consecutive breakpoints of p′1
with keys x and x+ y. We would like to increase the value of p′1 in the interval (x, x+ y] s.t.
the new value is the maximal weight of a valid subset of nodes from both subtrees rooted at
u1 and u2, s.t. x < d(h1, v) ≤ x + y. Therefore d(h2, v) ≥ λ − x − y. p′2 is monotonically
decreasing, and so we query it at λ− x− y, and increase by the resulting value.

This process might result in a polyline which is not monotonically decreasing, because as
we go over the intervals of p′1 from left to right we increase the values there more and more.
To complete the construction, we make the polyline monotonically decreasing by scanning it
from λ

2 to zero and deleting unnecessary breakpoints. We can afford to do this, since the
number of breakpoints in this polyline is no larger than the number of breakpoints in p1.
Note that we have assumed we have access to the original data structure representing p2,
but this structure has been modified to obtain the second half of p. However, we started
with computing the second half of p only to make the description simpler. We can simply
start with the first half.

Case II: d(h1, v) > d(h2, v). Symmetrically to the previous case, we increase the values in
the intervals of p2 induced by the breakpoints of p1 by the appropriate values of p1 (similarly
to what we do in Subsection 4.1). Again, the resulting polyline may be non-monotone, but
this time we cannot solve the problem by scanning the new polyline and deleting breakpoints,
since there are too many of them. Instead, we go over the breakpoints of the second half
of p1. For each such breakpoint with key k, we check if the new polyline has a breakpoint

P. Gawrychowski, N. Krasnopolsky, S. Mozes, and O. Weimann 40:11

with key λ− k. If so, denote its value by w, otherwise continue to the next breakpoint of
p1. These are the points where we might have increased the value of p2. We then query the
new polyline with a value predecessor query: this returns the breakpoint with the largest
key s.t. its key is smaller than λ − k and its value is at least w. If this breakpoint exists,
and it is not the predecessor of the breakpoint at λ− k, then the values of the new polyline
between its successor breakpoint and λ− k should all be w (i.e. we delete all breakpoints in
this interval and set the successor’s value to w). If it does not exist, then the values between
zero and λ− k should be w (i.e. we delete all the previous breakpoints). This ensures that
the resulting polyline is monotonically decreasing.

Merging cases I and II. We now need to build one polyline for the first half of the polyline,
taking into account both cases. Let pa and pb denote the polylines we have constructed in
cases I and II respectively (so the number of breakpoint in pa is at most x, the number of
breakpoints in pb is at most y, and x ≤ y).

We now need to take the maximum of the values of pa and pb, for each key. We do this
by finding the intersection points of the two polylines. Notice that since both polylines are
monotonically decreasing, these intersections can only occur at (i) the breakpoints of pa, and
(ii) at most one point between two consecutive breakpoints of pa.

We iterate over pa and for each breakpoint, we check if the value of pb for the same key
is between the values of this breakpoint and the predecessor breakpoint in pa. If so, this is
an intersection point. Then, we find the intersection points which are between breakpoints
of pa, by running a value predecessor query on pb for every breakpoint in pa except for the
first. After such computation, we know which polyline gives us the best solution for every
point between zero and λ

2 , and where are the intersection points where this changes. We
can now build the new polyline by doing insertions and deletions in pb according to the
intersection points: For every interval of pb defined by a pair of consecutive intersection
points, we check if the value of pa is larger than the value of pb in the interval, and if so,
delete all the breakpoints of pb in the interval, and insert the relevant breakpoints from pa.
The number of intersection points is linear in the number of breakpoints of pa, and so the
total number of interval deletions and insertions is O(x).

To conclude, the final polyline p is obtained by concatenating the value computed for key
zero, the polyline computed for the first half, and the polyline computed for the second half.

4.3 The polyline data structure
We now specify the data structure for storing the polylines. The required interface is:
1. Split the polyline at some key.
2. Merge two polylines (s.t. all keys in one polyline are smaller than all keys in the other).
3. Retrieve the value of the polyline for a certain key d(h, v).
4. Return a sorted list of the breakpoints of the polyline.
5. Batched interval increase – Given a list of disjoint intervals of the polyline, and a number

for each interval, increase the values of the polyline in each interval by the appropriate
number. Each interval is given by the keys of its endpoints.

6. Batched value predecessor – Given a list of key-value pairs, (ki, vi), find for each ki, the
maximal key k′i, s.t. k′i < ki and the value of the polyline at k′i is at least vi, assuming
that the intervals (k′i, ki) are disjoint.

7. Batched interval insertions – Given a list of pairs of consecutive breakpoints in the
polyline, insert between each pair a list of breakpoints.

ESA 2017

40:12 Dispersion on Trees

8. Batched interval deletions – Given a list of disjoint intervals of the polyline, delete all the
breakpoints inside the intervals.

We now describe the data structure implementing the above interface. We represent a
polyline by storing its breakpoints in an augmented 2-3 tree, where the data is stored in the
leaves. Each node stores a key-value pair, and we maintain the following property: the key
of each breakpoint is the sum of the keys of the corresponding leaf and of all its ancestors,
and similarly for the values. In addition, we store in each node the maximal sum of keys
and values on a path from that node to a leaf in its subtree. We also store in each node the
number of leaves in its subtree. Operations 1 and 2 use standard split and join procedures
for 2-3 trees in logarithmic time. Operation 3 runs a predecessor query and returns the value
at the returned breakpoint in logarithmic time. Operation 4 is done by an inorder traversal
of the tree (of p1 in O(x) time). Operations 1-4 are performed only a constant number of
times per step, and so their total cost is O(log x+ log y + x). The next four operations are
more costly, since they consists a batch of O(x) operations given in sorted order (by keys).

Operation 5 – batched interval increase. Consider the following implementation for Op-
eration 5. We iterate over the intervals, and for each of them, we find its left endpoint,
and traverse the path from the left endpoint, through the LCA, to the right endpoint. The
traversal is guided by the maximal key stored in the current node (that are used to find the
maximal key of a breakpoint stored in its subtree by adding the sum of all keys from the
root to the current node, which is maintained in constant time after moving to a child or the
parent). While traversing the path from the left endpoint to the LCA (from the LCA to the
right endpoint), we increase the value of every node hanging to the right (left) of this path.
We also update the maximal value field in each node we reach (including the nodes on the
path from the LCA to the root). Notice that if one of the endpoints of the interval is not
in the structure, we need to insert it. We might also need to delete a breakpoint if it is a
starting point of some interval and its new value is now equal to the value of its predecessor.
This implementation would take time which is linear in the number of traversed nodes, plus
the cost of insertions and deletions (whose number is linear in the number of intervals).
Because the depth of a 2-3 tree of size O(y) is O(log y), this comes up to O(x log y). Such
time complexity for each step would imply O(n log2 n) total time for the feasibility test.

We improve the running time by performing the operations on smaller trees. The operation
therefore begins by splitting the tree into O(x) smaller trees, each with O(yx) leaves. This is
done by recursively splitting the tree, first into two trees with O(y2) leaves, then we split each
of these trees into two trees with O(y4) leaves, and so on, until we have trees of size O(yx).
We then increase the values in the relevant intervals using the small trees. For this, we scan
the roots of the small trees, searching for the left endpoint of the first interval (by using the
maximal key stored in the root of each tree). Once we have found the left endpoint of the
interval, we check if the right endpoint of the interval is in the same tree or not (again, using
the maximal key). In the first case, the interval is contained in a single tree, and can be
increased in this tree in time O(log(2y

x)) using the procedure we have previously described.
In the second case, the interval spans several trees, and so we need to do an interval increase
in the two trees containing the endpoints of the interval, and additionally increase the value
stored in the root of every tree that is entirely contained in the interval. We then continue
to the next interval, and proceed in the same manner. Since the intervals are disjoint and we
do at most two interval increases on small trees per interval, the total time for the increases
in the small trees is O(x · log(2y

x)). Scanning the roots of the small trees adds O(x) to the
complexity, leading to O(x · log(2y

x) +x) = O(x log(2y
x)) overall for processing the small trees.

P. Gawrychowski, N. Krasnopolsky, S. Mozes, and O. Weimann 40:13

Before the operation terminates, we need to join the small trees to form one large tree.
This is symmetric to splitting and analyzed with the same calculation.

I Lemma 5. The time to obtain the small trees is O(x log(2y
x)).

The cost of all joins required to patch the small trees together can be bounded by the
same calculation as the cost of the splits made to obtain them, and so the operation takes
O(x log(2y

x)) time in total. The rest of the batched operations are also done by splitting the
tree into small trees. There is an additional technical difficulty in Operation 6, as in our case
the intervals (ki′ , ki) might not be disjoint. We make them disjoint with some extra work. In
Operation 7, some of the small trees might become much larger due to the insertions. This
also requires some extra work, see the full version for a complete description.

I Theorem 6. The above implementation implies an O(n logn) weighted feasibility test.

References
1 R.I. Becker, S.R. Schach, and Y. Perl. A shifting algorithm for min-max tree partitioning.

J. ACM, 29(1):56–67, 1982.
2 B.K. Bhattacharya and M.E. Houle. Generalized maximum independent sets for trees. In

CATS, pages 17–25, 1997.
3 B.K. Bhattacharya and M.E. Houle. Generalized maximum independent sets for trees in

subquadratic time. In ISAAC, pages 435–445, 1999.
4 M.R. Brown and R.E. Tarjan. Design and analysis of a data structure for representing

sorted lists. SIAM Journal on Computing, 9(3):594–614, 1980.
5 Richard Cole. Slowing down sorting networks to obtain faster sorting algorithms. J. ACM,

34(1):200–208, 1987.
6 G.N. Frederickson. Optimal algorithms for partitioning trees and locating p-centers in trees.

Technical Report CSD-TR-1029, Purdue University, 1990.
7 G.N. Frederickson. Optimal algorithms for tree partitioning. In SODA, pages 168–177,

1991.
8 G.N. Frederickson. Parametric search and locating supply centers in trees. In WADS, pages

299–319, 1991.
9 G.N. Frederickson and D.B. Johnson. Finding k-th paths and p-centers by generating and

searching good data structures. J. Algorithms, 4(1):61–80, 1983.
10 Scott Huddleston and Kurt Mehlhorn. A new data structure for representing sorted lists.

Acta Inf., 17:157–184, 1982.
11 N. Megiddo and A. Tamir. New results on the complexity of p-center problems. SIAM J.

Computing, 12(3):751–758, 1983.
12 N. Megiddo, A. Tamir, E. Zemel, and R. Chandrasekaran. An O(n log2 n) algorithm for

the k-th longest path in a tree with applications to location problems. SIAM J. Computing,
10(2):328–337, 1981.

13 Y. Perl and S.R. Schach. Max-min tree partitioning. J. ACM, 28(1):5–15, 1981.
14 D.B. Shmoys, É. Tardos, and K. Aardal. Approximation algorithms for facility location

problems. In STOC, pages 265–274, 1997.
15 D.D. Sleator and R.E. Tarjan. A data structure for dynamic trees. Journal of Computer

and System Sciences, 26(3):362–391, 1983.
16 V.V. Vazirani. Approximation Algorithms. Springer, 2003.

ESA 2017

	Introduction
	A Linear Time Feasibility Test
	An O(nloglogn) Time Algorithm for the Dispersion Problem
	The preprocessing
	The feasibility test
	The algorithm for the optimization problem

	The Weighted Dispersion Problem
	Constructing the second half of the polyline.
	Constructing the first half of the polyline.
	The polyline data structure

