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Abstract
To what extent does the structure of the players’ strategy space influence the efficiency of decent-
ralized solutions in congestion games? In this work, we investigate whether better performance
is possible when restricting to load balancing games in which players can only choose among
single resources. We consider three different solutions concepts, namely, approximate pure Nash
equilibria, approximate one-round walks generated by selfish players aiming at minimizing their
personal cost and approximate one-round walks generated by cooperative players aiming at min-
imizing the marginal increase in the sum of the players’ personal costs. The last two concepts
can also be interpreted as solutions of simple greedy online algorithms for the related resource
selection problem. Under fairly general latency functions on the resources, we show that, for
all three types of solutions, better bounds cannot be achieved if players are either weighted or
asymmetric. On the positive side, we prove that, under mild assumptions on the latency func-
tions, improvements on the performance of approximate pure Nash equilibria are possible for
load balancing games with weighted and symmetric players in the case of identical resources.
We also design lower bounds on the performance of one-round walks in load balancing games
with unweighted players and identical resources (in this case, solutions generated by selfish and
cooperative players coincide).
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1 Introduction

Congestion games [25] are non-cooperative games in which there is a set of selfish players
competing for a set of resources, and each resource incurs a certain latency, expressed by
a congestion-dependent function, to the players using it. Each player has a certain weight
and an available set of strategies, where each strategy is a non-empty subset of resources,
and aims at choosing a strategy minimizing her personal cost which is defined as the sum of
the latencies experienced on all the selected resources. We speak of weighted games/players
when players have arbitrary non-negative weights and of unweighted games/players when all
players have unitary weight.

Stable outcomes in this setting are the pure Nash equilibria [24]: strategy profiles in
which no player can lower her cost by unilaterally deviating to another strategy. However,
they are demanding solution concepts, as they might not always exist in weighted games
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[18] and, even when their existence is guaranteed, as, for instance, in unweighted games
[25] and in weighted games with affine latency functions [18, 21], their computation might
be an intractable problem [1, 16]. For such a reason, more relaxed solution concepts are
usually considered in the literature, as ε-approximate pure Nash equilibria or ε-approximate
one-round walks. An ε-approximate pure Nash equilibrium is the relaxation of the concept of
pure Nash equilibrium in which no player can lower her cost of a factor more than 1 + ε by
unilaterally deviating to another strategy, while an ε-approximate one-round walk is defined
as a myopic process in which players arrive in an arbitrary order and, upon arrival, each of
them has to make an irrevocably strategic choice aiming at approximatively minimizing a
certain cost function. In this work, we shall consider two variants of this process: in the first,
players choose a strategy approximatively minimizing, up to a factor of 1 + ε, their personal
cost (selfish players), while, in the second, players choose the strategy approximatively
minimizing, up to a factor of 1 + ε, the marginal increase in the social cost (cooperative
players) which is defined as the sum of the players’ personal costs (for the case of ε = 0,
we use the term exact one-round walk). In particular, approximate one-round walks can be
interpreted as simple greedy online algorithms for the equivalent resource selection problem
associated with a given congestion game, and, in most of the cases, these algorithms are
optimal in the context of online optimization of load balancing problems [9]. The worst-case
efficiency of these solution concepts with respect to the optimal social cost is termed as
the ε-approximate price of anarchy (for the case of pure Nash equilibria, the term price
of anarchy [22] is adopted) and as the competitive ratio of ε-approximate one-round walks,
respectively. Interesting special cases of congestion games are obtained by restricting the
combinatorics of the players’ strategy space. In symmetric congestion games, all players share
the same set of strategies; in network congestion games the players’ strategies are defined
as paths in a given network; in matroid congestion games [1, 2], the strategy set of every
player is given by the set of bases of a matroid defined over the set of available resources; in
k-uniform matroid congestion games [15], each player can select any subset of cardinality k
from a prescribed player-specific set of resources; finally, in load balancing games, players can
only choose single resources.

To what extent does the structure of the players’ strategy space influence the efficiency
of decentralized solutions in congestion games? In this work, we investigate whether better
performance is possible when restricting to load balancing games. Previous work established
that the price of anarchy does not improve when restricting to unweighted load balancing
games with polynomial latency functions [10, 20], while better bounds are possible in
unweighted symmetric load balancing games with fairly general latency functions [17].
Under the assumption of identical resources with affine latency functions, improvements
are also possible when restricting to both unweighted load balancing games [10, 27] and
weighted symmetric load balancing games [23]. Finally, [6] proves that the price of anarchy
does not improve when restricting to weighted symmetric load balancing games under
polynomial latency functions. For the competitive ratio of exact one-round walks generated
by cooperative players, no improvements are possible in unweighted load balancing games
with affine latency functions [10, 27], while improved performance can be obtained under
the additional assumption of identical resources [10] (we observe that, in this case, solutions
generated by both types of players coincide); however, for weighted players, no improvements
are possible even under the assumption of identical resources [9, 10]. For one-round walks
generated by selfish players, instead, no specialized limitations are currently known.

Our Contribution. We obtain an almost precise picture of the cases in which improved per-
formance can be obtained in load balancing congestion games. This is done by either solving
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open problems or extending previously known results to both approximate solution concepts
and more general latency functions. Specifically, we provide the following characterizations.

Let C be a class of non-negative and non-decreasing functions such that, for each f ∈ C and
α ∈ R≥0, the function g such that g(x) = αf(x) belongs to C and let C′ ⊂ C be the subclass
of C such that, for each f ∈ C′ and α ∈ R≥0, the function h such that h(x) = f(αx) belongs
to C′. A function f is semi-convex if xf(x) is convex, it is unbounded if limx→∞ f(x) =∞.
We prove that:

for weighted players: under unbounded latency functions drawn from C′, the approximate
price of anarchy does not improve when restricting to symmetric load balancing games
(this solves an open problem raised in [6], where a similar limitation was shown only
with respect to pure Nash equilibria and polynomial latency functions). Under latency
functions drawn from C′, the competitive ratio of approximate one-round walks generated
by selfish players does not improve when restricting to load balancing games (this solves
an open problem raised in [8]). If all functions in C′ are semi-convex, then the same
limitation applies to the competitive ratio of approximate one-round walks generated by
cooperative players (this generalizes results in [5, 9, 10] which hold only with respect to
exact one-round walks for games with polynomial latency functions). We also provide a
parametric formula for the relative bounds which we use to obtain the exact values for
polynomial latency functions;
for unweighted players: under latency functions drawn from C, either the approximate
price of anarchy and the competitive ratio of approximate one-round walks generated by
both selfish and cooperative players do not improve when restricting to load balancing
games (these generalize a result in [10, 20] which holds only with respect to pure Nash
equilibria and polynomial latency functions, a result in [10, 27] which holds only with
respect to exact one-round walks generated by cooperative players in games with affine
latency functions, and solve an open problem raised in [8] for one-round walks generated
by selfish players). Also in this case we provide a parametric formula for the relative
bounds which we use to obtain the exact bounds for polynomial latency functions.

These negative results, together with the positive ones achieved by [10, 17], imply that
better bounds on the approximate price of anarchy are possible only when dealing with
unweighted symmetric load balancing games. However, under the additional hypothesis of
identical resources, better performance is still possible. Let f be an increasing, continuous
and semi-convex function. We prove that the approximate price of anarchy of weighted
symmetric load balancing games with identical resources whose latency functions coincide
with f is equal to supx∈R>0 supλ∈(0,1)

{
λxf(x)+(1−λ)inv(x)f(inv(x))

opt(x)f(opt(x))

}
, where inv(x) := inf{t ≥

0 : f(x) ≤ (1 + ε)f(x/2 + t)} and opt(x) := λx + (1 − λ)inv(x). This generalizes a result
by [23] which holds only with respect to the price of anarchy under affine latency functions.
Furthermore, by using the previous formula, we compute the exact price of anarchy of
weighted symmetric load balancing games with identical resources and polynomial latency
functions.

Finally, still for the case of identical resources, we design lower bounds on the performance
of exact one-round walks in load balancing games with unweighted players (this improves
and generalizes a result in [10] which holds only for affine latency functions).

Related Work. The price of anarchy in congestion games was first considered in [4] and
[11] where it was independently shown that the price of anarchy is 5/2 and (3 +

√
5)/2 for,

respectively, unweighted and weighted congestion games with affine latency functions. In [11],
it is also proved that no improved bounds are possible both in symmetric unweighted games
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and in unweighted network games; these results were improved by [14] which shows that the
price of anarchy stays the same even in symmetric unweighted network games. In [10], it is
shown that the previous bounds are tight also for load balancing games. For the special case
of load balancing games on identical resources, the works of [27] and [10] show that the price
of anarchy is 2.012067 for unweighted games and at least 5/2 for weighted ones. In [23], it is
proved that, for symmetric load balancing games, the price of anarchy drops to 4/3 if the
games are unweighted, and to 9/8 if the games are weighted with identical resources. For
symmetric unweighted k-uniform matroid congestion games with affine latency functions,
[15] proves that the price of anarchy is at most 28/13 and at least 1.343 for a sufficiently
large value of k (for k = 5, it is roughly 1.3428). Tight bounds on the price of anarchy of
either weighted and unweighted congestion games with polynomial latency functions have
been given by [3]. Under fairly general latency functions, [17] shows that the price of anarchy
of unweighted symmetric load balancing games coincides with that of non-atomic congestion
games (thus generalizing a first result by [19] which proves an upper bound of

∑
i∈[d] Bi,

where Bi is the ith Bell number for the case of polynomial latency functions of maximum
degree equal to d), while [6] proves that assuming symmetric strategies does not lead to
improved bounds in unweighted games and gives exact bounds for the case of weighted
players. It also shows that, for the case of weighted players, no improvements are possible
even in symmetric load balancing games with polynomial latency functions. Finally, [12] and
[7] characterize the approximate price of anarchy, respectively, in unweighted and weighted
games under affine latency functions.

The competitive ratio of exact one-round walks generated by cooperative players in load
balancing games with polynomial latency functions has been first considered in [5], where,
for the special case of affine functions, an upper bound of 3 + 2

√
2 is provided for weighted

players. For unweighted players, this result has been improved to 17/3 in [27], where it
is also shown that, for identical resources, the upper bound drops to 2 +

√
5 in spite of a

lower bound of 3.0833. Finally, [10] shows matching lower bounds of 3 + 2
√

2 and 17/3 for,
respectively, weighted and unweighted players. For weighted games with polynomial latency
functions, tight bounds have been given in [9]; the lower bounds, in particular, hold even
for identical resources, thus improving previous results from [5]. In [10] it is also shown
that, for unweighted players and identical resources, the competitive ratio lies between 4 and
2
3
√

21 + 1. For the case of selfish players and still under affine latency functions, [8, 13] show
that the competitive ratio is 2 +

√
5 for unweighted congestion games, while, for weighted

players, [13] gives an upper bound of 4 + 2
√

3. In this setting, no specialized results are
known for restrictions to load balancing games.

2 Definitions and Notation

For two integers 0 ≤ k1 ≤ k2, let [k1, k2] := {k1, k1 + 1, . . . , k2 − 1, k2} and [k1] := [1, k1].
A congestion game is a tuple CG = (N,E, (`e)e∈E , (wi)i∈N , (Σi)i∈N ), where N is a set

of n ≥ 2 players, E is a set of resources, `e : R≥0 → R≥0 is the latency function of resource
e ∈ R, and, for each i ∈ N , wi ≥ 0 is the weight of player i and Σi ⊆ 2R \ ∅ is her set of
strategies. We speak of weighted games/players when players have arbitrary weights and of
unweighted games/players when wi = 1 for each i ∈ N . A congestion game is symmetric if
Σi = Σ for each i ∈ N , i.e., if all players share the same strategy space. A load balancing
game is a congestion game in which for each i ∈ N and S ∈ Σi, |S| = 1, that is, all players’
strategies are singleton sets. Given a class C of latency functions, let W(C) be the class of
weighted congestion games, U(C) be the class of unweighted congestion games, ULB(C) be the
class of unweighted load balancing games, WLB(C) be the class of weighted load balancing
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games, and WSLB(C) be the class of weighted symmetric load balancing games, all having
latency functions in the class C.

A strategy profile is an n-tuple of strategies σ = (σ1, . . . , σn), that is, a state of the game
in which each player i ∈ N is adopting strategy σi ∈ Σi, so that Σ := ×i∈NΣi denotes the set
of strategy profiles which can be realized in CG. For a strategy profile σ, the congestion of
resource e ∈ E in σ, denoted as ke(σ) :=

∑
i∈N :e∈σi wi, is the total weight of the players using

resource e in σ, (observe that, in unweighted games, ke(σ) coincides with the number of users
of resource e in σ). The personal cost of player i in σ is defined as costi(σ) =

∑
e∈σi `e(ke(σ))

and each player aims at minimizing it. For the sake of conciseness, when the strategy profile
σ is clear from the context, we write ke in place of ke(σ). Fix a strategy profile σ and
a player i ∈ N . We denote with σ−i the restriction of σ to all the players other than i;
moreover, for a strategy S ∈ Σi, we denote with (σ−i, S) the strategy profile obtained from σ

when player i changes her strategy from σi to S, while the strategies of all the other players
are kept fixed. The quality of a strategy profile in congestion games is measured by using
the social function SUM(σ) =

∑
i∈N wicosti(σ) =

∑
e∈E ke(σ)`e(ke(σ)), that is, the sum

of the players’ personal costs. A social optimum is a strategy profile σ∗ minimizing SUM.
For the sake of conciseness, once a particular social optimum has been fixed, we write oe to
denote the value ke(σ∗).

For any ε ≥ 0, an ε-approximate pure Nash equilibrium is a strategy profile σ such that,
for any player i ∈ N and strategy S ∈ Σi, costi(σ) ≤ (1 + ε)costi(σ−i, S). We denote
by NEε(CG) the set of ε-approximate pure Nash equilibria of a congestion game CG. For
any ε ≥ 0, an ε-approximate one-round walk is an online process in which players appear
sequentially according to an arbitrary order and, upon arrival, each player irrevocably chooses
a strategy approximatively minimizing a certain cost function. Let σi denote the strategy
profile obtained when the first i players have performed their strategic choice, while the
remaining ones have not entered the game yet (so, it may be assumed that each of them
is playing the empty strategy). The i-th selfish player aims at minimizing her personal
cost, so that costi(σi) ≤ (1 + ε) minS∈Σi costi(σi−1, S); the i-th cooperative player aims at
minimizing the marginal increase in the social function SUM, so that SUM(σi)−SUM(σi−1) ≤
(1 + ε) minS∈Σi(SUM(σi−1, S) − SUM(σi−1)). For ε = 0, we speak of an exact one-round
walk. We denote by ORWs

ε(CG) (resp. ORWc
ε(CG)) the set of strategy profiles which can be

constructed by an ε-approximate one-round walk involving selfish (resp. cooperative) players
in a congestion game CG.

The ε-approximate price of anarchy of a congestion game CG is defined as PoAε(CG) =
maxσ∈NEε(CG){SUM(σ)/SUM(σ∗)}, where σ∗ is a social optimum for CG. Similarly, the
competitive ratio of ε-approximate one-round walks generated by selfish (resp. cooperative)
players, is defined as CRsε(CG) = maxσ∈ORWs

ε(CG){SUM(σ)/SUM(σ∗)} (resp. CRcε(CG) =
maxσ∈ORWc

ε(CG){SUM(σ)/SUM(σ∗)}). Given a class of congestion games G, the ε-approximate
price of anarchy of G is defined as PoAε(G) = supCG∈GPoAε(CG). For the case of ε = 0, we
refer to this metric simply as to the price of anarchy. The competitive ratio of ε-approximate
one-round walks of G generated by both selfish and cooperative players is defined accordingly.
Throughout the paper, we shall assume that, in any considered class of latency functions,
there always exists a non-constant function, otherwise the inefficiency of all the ε-approximate
solution concepts we consider is always equal to 1 + ε.

3 Weighted Load Balancing Games

In this section, we first show that the approximate price of anarchy of weighted congestion
games cannot improve even when restricting the players’ strategy space to the simplest
possible combinatorial structure, i.e., to the case of symmetric load balancing games.

ESA 2017
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I Theorem 1. Let C = {f : R≥0 → R≥0} be a class of non-decreasing latency functions
whose members, except for the constant ones, are unbounded and such that, for any f ∈ C
and α ≥ 0, the functions g, h : R≥0 → R≥0 such that g(x) = αf(x) and h(x) = g(αx) for
each x ∈ R≥0 belong to C. Then, PoAε(W(C)) = PoAε(WSLB(C)).

Proof Sketch. We make use of a multi-graph representation of a pair of strategy profiles
for a (symmetric) load balancing game, denoted as load balancing graph, defined as follows:
nodes are all the resources in E, and each player is associated to a weighted edge (e1, e2, w),
where {e1} is denoted as her first strategy, {e2} is her second strategy, and w is her weight.

Let k1 > 0 and k2 ≥ 0 be two real numbers, n be a positive integer, and f1, f2 be two
non-constant (and so, unbounded) functions belonging to C. Consider a load balancing
graph LB(k1, k2) yielded by a directed n-ary tree, organized in 2s levels, numbered from
1 to 2s, and whose edges are oriented from the root to the leaves, with the addition of n
self-loops on the nodes of level 2s. The weight of a player associated to an edge outgoing
from a node at level i ∈ [s] (resp. i ∈ [s+ 1, 2s]) is equal to (k1/n)i (resp. (k1/n)s(k2/n)i−s).
For i, j ∈ [2], define θi,j = fi(ki)

(1+ε)fj(kj+1) and θi = θi,i. Each resource at level i has latency

gi(x) = θi−1
1 f1

((
n
k1

)i−1
x

)
if i ∈ [1, s] and gi(x) = θs−1

1 θ1,2θ
i−s−1
2 f2

((
n
k1

)s (
n
k2

)i−s−1
x

)
,

otherwise.
For a sufficiently large n, the strategy profile σ in which all players select their first

strategy is an ε-approximate pure Nash equilibrium. Towards this end, consider a player
whose first strategy is a resource from level i. Since the game is symmetric, we have to
consider the following cases: (1) if i ∈ [1, 2s− 1] and the player deviates to a resource from
level i + 1, her cost decreases exactly of a factor of 1 + ε; (2) if i ∈ [2, 2s] and the player
deviates to a resource from level j ≤ i, her cost does not decrease; if i ∈ [1, 2s− 2] and the
player deviates to a resource from level j > i + 1, for a sufficiently large n, her cost does
not decrease. Let σ∗ be the strategy profile in which each player plays her second strategy.
We can show that, for each M < PoAε(W(C)), there exist k1 > 0 and k2 ≥ 0 such that
lims→∞

SUM(σ)
SUM(σ∗) > M , thus proving the thesis. This technical claim, together with the full

proof of the theorem, resembles a similar result used in [6, 26]. J

Then, we prove that no improvements are possible for approximate one-round walks when
restricting to load balancing games.

I Theorem 2. Let C = {f : R≥0 → R≥0} be a class of non-decreasing latency functions
such that, for any f ∈ C and α ≥ 0, the functions g, h : R≥0 → R≥0 such that g(x) = αf(x)
and h(x) = g(αx) for each x ∈ R≥0 belong to C. Then CRsε(W(C)) = CRsε(WLB(C)). If all
functions in C are semi-convex, we have that CRcε(W(C)) = CRcε(WLB(C)).

Proof Sketch. Let us start with the case of selfish players. We extend the load balancing
graph LB(k1, k2) used in the proof of Theorem 1 as follows. Denote as i(v) the level of
resource v. For each node u in the load balancing graph, consider an arbitrary enumeration
of all the n outgoing edges of u. Since each node has a unique incoming edge, we denote by
h(v) ∈ [n] the position associated to the unique edge entering v in the given ordering.

Consider the ε-approximate one-round walk in which players enter the game in non-
increasing order of level (with respect to their first strategy) and, within the same level,
players are processed in non-decreasing order of position.

For i, j ∈ [2] and h ∈ [n], define θi,j(h) =
fi
(
hki
n

)
(1+ε)fj(kj+1) and θi(h) = θi,i(h). Resource

v has latency function gv(x) = f1(x) if i(v) = 1, gv(x) = θ1(h(v))Au︸ ︷︷ ︸
Av

f1

((
n
k1

)i(v)−1
x

)
if
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d Selfish Players Coordinated Players d Selfish Players Coordinated Players
1 7.464 5.828 6 27,089,557 7,553,550
2 90.3 56.94 7 974,588,649 222,082,591
3 1,521 780.2 8 39,729,739,895 7,400,694,480
4 32,896 13,755 9 1,809,913,575,767 275,651,917,450
5 868,567 296,476 ∞ (Θ(d))d+1 (Θ(d))d+1

Figure 1 The competitive ratio of exact one-round walks generated by either selfish or cooperative
players in weighted load balancing games with polynomial latency functions of maximum degree d.

i(v) ∈ [2, s], gv(x) = θ1,2(h(v))Au︸ ︷︷ ︸
Av

f2

((
n
k1

)s
x
)
if i(v) = s+ 1, while, in all the other cases,

gv(x) = θ2(h(v))Au︸ ︷︷ ︸
Av

f2

((
n
k1

)s (
n
k2

)i(v)−s−1
x

)
, where (u, v) denotes the unique incoming

edge of v and Av is recursively defined on the basis of Au by setting Av = 1 for i(v) = 1, i.e.,
for v being the root of the tree.

The strategy profile σ in which all players select their first strategy is a possible outcome
of an ε-approximate one-round walk generated by selfish players. Let σ∗ be the strategy
profile in which all players select their second strategy. As the game is not symmetric, we can
assume that all players can choose among these two strategies only. We can show that, for
each M < CRsε(W(C)), there exist k1 > 0 and k2 ≥ 0 such that lims→∞ limn→∞

SUM(σ)
SUM(σ∗) >

M , thus proving the thesis. Again, this technical claim, together with the full proof
of the theorem, resembles a similar result used in [6, 26]. For the case of cooperative
players, it suffices considering the same load balancing graph, with n = 1 and θi,j(1) =

kifi(ki)
(1+ε)((kj+1)fi(kj+1)−kjfj(kj)) . J

3.1 Polynomial Latency Functions
Consider the class P(d) of polynomials with non-negative coefficients and maximum degree d.
Observe that this class of latency functions satisfies the hypothesis required by Theorems 1
and 2. By applying similar arguments to those used in [3], we get CRsε(P(d)) = (ϕε,d+1)d+1

and CRcε(P(d)) =
(
ϕ′ε,d+1

)d+1
, where ϕε,d+1 and ϕ′ε,d+1 are the unique solutions of the

equations xd+1

d+1 − (1 + ε)(x+ 1)d = 0 and (2 + ε)xd+1 − (1 + ε)(x+ 1)d+1 = 0, respectively.
Observe that ϕ′ε,d+1 = 1

d+1
√

2+ε
1+ε−1

which generalizes the bounds given in [9] for the case

ε = 0. Some values for the case of ε = 0 are reported in Figure 1.

4 Unweighted Load Balancing Games

In this section, we first show that the ε-approximate price of anarchy of unweighted congestion
games cannot improve when restricting to load balancing games.

I Theorem 3. Let C be a class of non-decreasing latency functions such that f ∈ C, α ≥
0⇒ αf ∈ C. Then PoAε(ULB(C)) = PoAε(U(C)).

Proof Sketch. Let k1, o1, o2 > 0 and k2 ≥ 0 be non-negative integers. Consider a load
balancing game defined by a multi-partite directed graph LB(k1, k2, o1, o2) organized in 2s
levels, numbered from 1 to 2s, and defined as follows. For each i ∈ [s] (resp. i ∈ [s+ 1, 2s])
there are os−i1 ki−1

1 os2 (resp. o2s−i
2 ki−s−1

2 ks1) nodes/resources. Edges can only connect nodes
of consecutive levels, except for nodes at level 2s, each of which has k2 self-loops. The

ESA 2017
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out-degree of each node at level i ∈ [s] (resp. i ∈ [s + 1, 2s]) is k1 (resp. k2), and the
in-degree of each node at level i ∈ [2, s] (resp. i ∈ [s+ 1, 2s] without considering self-loops)
is o1 (resp. o2); observe that this configuration can be realized since the total number of
nodes at level i ∈ [s − 1] (resp. i = s, resp. i ∈ [s + 1, 2s − 1]) multiplied by k1 (resp. k1,
resp. k2) is equal to the number of nodes at level i+ 1 multiplied by o1 (resp. o2, resp. o2).
For i, j ∈ [2], define θi,j = fi(ki)

(1+ε)fj(kj+1) and θi = θi,i. Each resource at level i has latency
function gi(x) = θi−1

1 f1 (x) if i ∈ [s], and gi(x) = θs−1
1 θ1,2θ

i−s−1
2 f2 (x) otherwise.

Let σ and σ∗ be the strategy profiles in which all players select their first and second
strategy, respectively. As the game is not symmetric, we can assume that all players can
choose among these two strategies only. Analogously to Theorem 1, it is possible to show
that, for any M < PoAε(U(C)), there exist suitable non-negative integers k1, k2, o1, o2 such
that σ is an ε-approximate pure Nash equilibrium and lims→∞

SUM(σ)
SUM(σ∗) > M . J

Then, we prove a similar limitation for approximate one-round walks.
I Theorem 4. Let C = {f : R≥0 → R≥0} be a class of non-decreasing latency functions
such that f ∈ C, α ≥ 0 ⇒ αf ∈ C. Then CRsε(U(C)) = CRsε(WLB(C)). If functions of C are
semi-convex, we have that CRcε(U(C)) = CRcε(WLB(C)).
Proof Sketch. Let us start with the case of selfish players. Define j(i) = 1 if i ∈ [s] and
j(i) = 2 otherwise. We extend the load balancing graph LB(k1, k2, o1, o2) used in the proof
of Theorem 3 according to the following recursive procedure.

Base Case: partition the resources of the first level (resp. second level) in oj(2) (resp.
kj(1)) groups of equal size, and add edges from the first level to the second one in such a
way that each resource in the first level has exactly kj(1) outgoing edges, each ending in a
different group of the second level, and each resource in the second level has exactly oj(2)
incoming edges, each coming from a different group of the first level; number the groups
of the second level from 1 to kj(1) and label each resource with the number associated to
the group it belongs to, for an illustrating example see figure 2 where resources belonging
to different groups at level 1 are represented with different colors, resources belonging
to different groups at level 2 belong to different squares and they are labeled with the
number of the square they belong to.
Inductive Case: as inductive hypothesis, suppose that resources at level i ∈ [2s− 1] have
been partitioned into m(i) groups of equal size and labeled with values from 1 to kj(i−1),
where each label is assigned to m(i)/kj(i−1) distinct groups, and that all the edges from
level i− 1 to level i have been added. Partition resources at level i+ 1 in a temporary
partition of m(i) groups of equal size, and consider a bijective correspondence between
groups at level i and groups at level i+ 1 (in Figure 2, groups at levels 2 and 3 which are
in bijective correspondence, have been depicted in the same dashed square). Partition
each group at level i into oj(i+1) subgroups of equal size, and the corresponding group at
level i+ 1 into kj(i) subgroups of equal size (this defines the final partitioning of nodes
at level i + 1 into m(i)kj(i) groups), and add edges from the first group to the second
one in the same way as described in the basic case, i.e. each resource in the first group
has exactly kj(i) outgoing edges, each ending in a different subgroup of the second group,
and each resource in the second group has exactly oj(i) incoming edges, each coming
from a different subgroup of the first group. For each group at level i+ 1, number its
subgroups with values from 1 to kj(i) and label each resource with the number associated
to subgroup it belongs to. For instance, in Figure 2, consider an arbitrary dashed square
including two groups at levels 2 and 3 which are in bijective correspondence. Analogously
to the base case, resources belonging to different subgroups of the first (resp. second)
group are represented with different colors (resp. belong to different squares and are
labeled with the number of the square they belong to).
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Let h(v) be the label of resource v. Consider the ε-approximate one-round walk in which
players enter the game in non-increasing order of level (with respect to their first strategy)
and, within the same level, players are processed in non-decreasing order of position defined
by labeling function h.

For i, j ∈ [2] and h ∈ ki, define θi,j(h) = fi(h)
(1+ε)fj(kj+1) and θi(h) = θi,i(h). Resource

v has latency function gv(x) = f1(x) if i(v) = 1, gv(x) = θ1(h(v))Au︸ ︷︷ ︸
Av

f1(x) if i(v) ∈ [2, s],

gv(x) = θ1,2(h(v))Au︸ ︷︷ ︸
Av

f2(x) if i(v) = s + 1, and gv(x) = θ2(h(v))Au︸ ︷︷ ︸
Av

f2(x) otherwise, where

(u, v) is an arbitrary incoming edge of v and Av is recursively defined on the basis of Au by
setting Av = 1 for i(v) = 1. By using the recursive structure of the load balancing graph,
one can prove, by induction on the level of each resource v, that Au = Au′ if (u, v) and (u′, v)
are both edges of the load balancing graph, so that the definition of gv is independent of the
particular incoming edge of v.

The strategy profile σ all players select their first strategy is a possible outcome of an
ε-approximate one-round walk generated by selfish players. Let σ∗ be the strategy profile in
which all players select their second strategy. We can show that, for each M < CRsε(U(C)),
there exist suitable non-negative integers k1, k2, o1, o2 such that lims→∞ limn→∞

SUM(σ)
SUM(σ∗) >

M , thus proving the claim. For the case of cooperative players, it suffices considering the
same load balancing graph with θi,j(h) = hifi(hi)−(hi−1)fi(hi−1)

(1+ε)((kj+1)fi(kj+1)−kjfj(kj)) . J

4.1 Polynomial Latency Functions
Consider the class P(d) of polynomials with non-negative coefficients and maximum de-
gree d. For ε-approximate one-round walks generated by cooperative players, by using
similar arguments to those exploited in [3], one can prove that CRcε(ULB(P(d))) is equal to
CRcε(WLB(P(d))) if ϕ′d,ε is an integer (see Subsection 3.1), otherwise we get CRcε(ULB(P(d))) =
γd,ε

(⌊
ϕ′d,ε

⌋)
, where γd,ε(k) := kd+1 + xd,ε(k)

(
−kd+1 + (1 + ε) ·

(
(k + 1)d+1 − kd+1)), and

xd,ε(k) is such that γd,ε(k) = γd,ε(k + 1). Some values for the case of ε = 0 are reported
in Figure 3. For the case of selfish players, by using the approach in [7], we get that
CRs0(ULB(P(1))) = 2 +

√
5, CRs0(ULB(P(2))) = 3383

90 and CRs0(ULB(P(3))) = 17929
34 .

5 The Case of Identical Resources

In this section, we characterize the approximate price of anarchy of weighted symmetric load
balancing games with identical resources having semi-convex latency functions. We start by
showing the upper bound.

I Theorem 5 (Upper bound). Let f : R≥0 → R≥0 be a non-decreasing and semi-convex
latency function. Let WSILG(f) be the class of weighted symmetric load balancing games with
identical resources having latency function f . For any ε ≥ 0, let

inv(x) := inf{t ≥ 0 : f(x) ≤ (1 + ε)f(x/2 + t)},
opt(x, λ) := λx+ (1− λ)inv(x),

upp(x, λ) := λxf(x) + (1− λ)inv(x)f(inv(x))
opt(x, λ)f(opt(x, λ)) .

If inv(x) 6= 0 for each x ∈ R>0, then:

PoAε(WSILG(f)) ≤ sup
x∈R>0

max
λ∈(0,1)

upp(x, λ). (1)
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321

32111 2 2 33

level 1

level 2

level 3

level 4

level 5

level 6

level 4

Figure 2 The load balancing graph described in the proof of Theorems 3 and 4, with s = 3,
k1 = 3, o1 = 2, k2 = 4 and o2 = 1. We also describe the partitioning and labeling structures used in
the proof of Theorem 4.

d Competitive Ratio d Competitive Ratio d Competitive Ratio
1 5.66 4 13,170 7 220,349,064
2 55.46 5 289,648 8 7,022,463,077
3 755.2 6 7,174,495 ∞ (Θ(d))d+1

Figure 3 The competitive ratio of exact one-round walks generated by cooperative players in
unweighted load balancing games with polynomial latency functions of maximum degree d.

Proof Sketch. Let WSILG(f,W,m) ⊆ WSILG(f) be the subclass of load balancing games
having m resources and such that

∑
i∈N wi = W . First, we prove that the optimal social

cost of games in WSILG(f,W,m) is lower bounded by the cost of a strategy profile σ∗(W,m)
in which all resources have the same congestion, so that SUM(σ∗(W,m)) = Wf

(
W
m

)
.

Furthermore, we prove that the supremum of the social cost over all ε-approximate pure
Nash equilibria of games in WSILG(f,W,m) is upper bounded by the supremum of the social
cost over all strategy profiles σ(m,x, h) in which all the resources can have three possible
congestions, namely x, y, z, such that z = inv(x) ≤ y ≤ x, one resource has congestion y and
h ∈ [0,m − 1] resources have congestion equal to x, so that SUM(σ(m,x, h)) = hxf(x) +
yf(y)+(m−h−1)inv(x)f(inv(x)). Observe that it must beW = hx+y+(m−h−1)inv(x).
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One can show that that:

PoAε(WSILG(f)) (2)
= sup
W≥0,m∈N

PoAε(WSILG(f,W,m))

≤ sup
m∈N,h∈[0,m−1],x≥0,y:inv(x)≤y≤x

SUM(σ(m,x, h))/m
SUM(σ(hx+ y + (m− h− 1)inv(x)))/m

= sup
m∈N,h∈[0,m−1],x≥0,y:inv(x)≤y≤x

hxf(x)+yf(y)+(m−h−1)inv(x)f(inv(x))
m(

hx+y+(m−h−1)inv(x)
m

)
f
(
hx+y+(m−h−1)inv(x)

m

)
= lim
m→∞

sup
h∈[0,m−1],x≥0,y:inv(x)≤y≤x

hxf(x)+yf(y)+(m−h−1)inv(x)f(inv(x))
m(

hx+y+(m−h−1)inv(x)
n

)
f
(
hx+y+(m−h−1)inv(x)

m

) (3)

= sup
x∈R>0

max
λ∈(0,1)

λxf(x) + (1− λ)inv(x)f(inv(x))
opt(x, λ)f(opt(x, λ))

= sup
x∈R>0

max
λ∈(0,1)

upp(x, λ) (4)

thus proving the claim (in (3) we have replaced h/m with λ, (m− h− 1)/m with 1− λ and
y/m with 0). J

We show that, under mild assumptions, a tight lower bound can be obtained.

I Theorem 6 (Lower Bound). For any ε ≥ 0, let λ∗(x) := arg maxλ∈(0,1) upp(x, λ) for any
x ∈ R≥0. If λ∗(x) ≤ 1

2 and opt(x, λ∗(x))− x/2 ≥ 0, then

PoAε(WSILG(f)) = sup
x∈R>0

max
λ∈(0,1)

upp(x, λ). (5)

Proof Sketch. Givenm ∈ N, let h(m) ∈ [m]. We prove that, if h(m)/m approaches λ∗(x) for
m→∞, the strategy profiles σ∗ := σ∗(mx+y+(m−h−1)inv(x),m) and σ := σ(m,x, h(m))
defined in the proof of Theorem 5, can be enforced as an optimal strategy profile and an
ε-approximate pure Nash equilibrium for the relative game, respectively. Thus, by using
similar arguments to those exploited to obtain (4), we get

lim
m→∞

sup
x≥0,y:inv(x)≤y≤x

SUM(σ)
SUM(σ∗) = sup

x∈R>0

upp(x, λ∗(x)),

thus concluding the proof. J

5.1 Polynomial Latency Functions

By exploiting (5), we derive exact bounds on the price of anarchy of weighted symmetric
load balancing games with identical resources having polynomial latency functions. In Figure
4, we show a comparison between the cases of general and identical resources with respect to
the price of anarchy for games with polynomial latency functions.

I Theorem 7. Let P(d) be the class of polynomial latency functions of maximum degree d.
Then, PoA0(P(d)) = dd(2d+1−1)d+1

2d(d+1)d+1(2d−1)d ∈ Θ
(
(2 + o(1))d

)
.

ESA 2017
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d Identical Resources General Resources d Identical Resources General Resources
1 1.125 2.618 6 7.544 14,099
2 1.412 9.909 7 12.866 118,926
3 1.946 47.82 8 22.478 1,101,126
4 2.895 277 9 39.984 11,079,429
5 4.571 1,858 ∞ Θ

(
(2 + o(1))d

) (
Θ
(

d
log d

))d+1

Figure 4 The price of anarchy of weighted symmetric load balancing games with polynomial
latency functions of maximum degree d: a comparison between the cases of identical and general
resources.

5.2 Lower Bounds for Exact One-Round Walks
The following construction gives a class of lower bounding instances for exact one-round walks
generated by selfish/cooperative players in load balancing games with identical resources
having latency function f . Fix n ∈ N and a sequence of integers 1 = o1 ≤ o2 ≤ . . . ≤ on. Let
E = E0 ⊃ E1 ⊃ E2 ⊃ . . . ⊃ En ⊃ En+1 = ∅ be a sequence of sets of resources such that
(|Ei−1| − |Ei|)oi = |Ei| (observe that such a sequence exists). For any i ∈ [n], we have |Ei|
players of type i whose set of strategies is Ei−1. Suppose that players enter the game in
non-decreasing order with respect to their type. One can easily prove that the strategy profile
σ in which each player of type i selects a different resource e ∈ Ei is a possible outcome for
an exact one-round walk generated by selfish/cooperative players. Consider the strategy
profile in which, for any resource e ∈ Ei−1 \Ei, there are exactly oi players of type i selecting
e. We get:

CRs0({f}) ≥ SUM(σ)
SUM(σ∗) =

∑n
i=1(|Ei| − |Ei+1|)if(i)∑n
i=1(|Ei−1| − |Ei|)oif(oi)

. (6)

For linear latency functions, by using n = 1013 and oi =
⌊
i44411
100000 + 1 +

⌊√
i

7

⌋⌋
, by (6), we get

a lower bound of at least 4.0009 which improves the currently known lower bound of 4 given
in [10]. We conjecture that a tight class of lower bounding instances for linear and more
general polynomial latency functions is given by the union of all the instances described
above, over all values of n ∈ N and all sequences (oi)i∈[n].

6 Open Problems

Our work leaves two open problems. The first is to understand whether better performance
is possible for approximate one-round walks in weighted symmetric load balancing games (we
conjecture this is not the case), while the second is to give upper bounds on the performance
of one-round walks in weighted and unweighted load balancing games with identical resources.
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