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—— Abstract

We study the game-theoretic task of selecting mobile agents to deliver multiple items on a network.
An instance is given by m packages (physical objects) which have to be transported between
specified source-target pairs in an undirected graph, and k mobile heterogeneous agents, each
being able to transport one package at a time. Following a recent model [6], each agent i has a
different rate of energy consumption per unit distance traveled, i.e., its weight. We are interested
in optimizing or approximating the total energy consumption over all selected agents.

Unlike previous research, we assume the weights to be private values known only to the
respective agents. We present three different mechanisms which select, route and pay the agents
in a truthful way that guarantees voluntary participation of the agents, while approximating the
optimum energy consumption by a constant factor. To this end, we analyze a previous structural
result and an approximation algorithm given in [6]. Finally, we show that for some instances in
the case of a single package, the sum of the payments can be bounded in terms of the optimum.
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1 Introduction

We study the delivery of physical objects (henceforth called packages) by mobile agents.
Regardless of whether large volumes are transported by motor lorries or cargo airplanes, or
whether autonomous drones deliver your groceries, the fuel or battery consumption of the
transporting agent is a major cost factor. The main concern for algorithm-design thus focuses
on an energy-efficient operation of these agents. The primary energy expense is defined
by the movements of the agents; in this paper we consider the energy consumption to be
proportional to the distance traveled by an agent. We assume the agents to be heterogeneous
in the sense of the agents having different rates of energy consumption.

Recent progress in minimizing the total energy consumption in delivery problems has
been made assuming that the agents belong to the same entity which wants to deliver the
packages [6]. It has been shown that there is a polynomial-time constant-factor approximation
algorithm with the ratio depending on the energy consumption rates.
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Figure 1 Delivery of a single package on a path of length k; onsecutlve agents of weight w; = kiﬂ.
(left) Optimal solution using all agents; cost = Zk Zkzl = = Mo —Hp~In2 (k- 00).
(right) Any solution using a single agent 4 has cost w; - (( 1)+ k)= (k+i—1)/(k+i) = 1 (k — o0).
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In the following, however, we assume the agents to be independent selfish agents which
make a bid to transport packages. Think for instance of a cargo company that hires subcon-
tractors (like independent lorry drivers or individual couriers) to outsource the delivery of
packages to these agents. In this scenario, the rate of energy consumption is a private value
known only to the respective agent. Our goal is hence to design a mechanism for the cargo
company to select agents, plan the agents’ routes and reimburse them in a way such that:
1. the energy spent overall is as close to the optimum as possible,

2. each agent announces its true rate of energy consumption in its bid, and
3. each agent is reimbursed at least the cost of energy it needs to deliver all of its packages.

Our model. We are given a connected, undirected graph G = (V, E) on n := |V| nodes
with the length of each edge, together with m packages, each of which is given by a specified
source-target node pair (s;,t;). Furthermore there are k > 1 mobile agents initially located
at distinct nodes of the graph. Each agent i starts at position p; and can carry at most one
package at a time. An agent can pick up a package at some node v and drop the package
again at some other node v. In that sense it is also possible to hand over a package j between
agents if agent a drops it at a node where another agent b later picks up the same package,
in which case we say that the agents collaborate on package j. A scenario in which each
package j is delivered from its source s; to its target ¢; is called a feasible solution of the
delivery problem. Such a feasible solution x specifies the travel distance d;(x) that each agent
1 has to travel in this solution.

Each agent consumes energy proportional to the distance it travels in the graph, and we
are interested in optimizing the total energy consumption for the team of agents. Specifically,
we consider heterogeneous agents with different rates of energy consumption (weights w;),
and therefore the energy spent by agent 4 in solution x is w; - d;(x), while the total energy of a
solution is (see e.g., Figures 1,2): coOST(z,w) := Zle w; -d;(x), where w = (wy, ..., wg). We
denote by OPT a solution with minimum cost among all solutions, OPT € arg min,, COST(z, w).
It is natural to consider the scenario in which every agent is selfish and therefore cares only
about its own cost (energy) and not about the optimum social cost (total energy).

Mechanism design. We consider the scenario in which agents can cheat or speculate about
their costs: each w; is private piece of information known to agent ¢ who can report a possibly
different w]. For instance, an agent may find it convenient to report a very high cost, in
order to induce the underlying algorithm to assign a shorter travel distance to it (which may
not be globally optimal). To deal with such situations, we introduce suitable compensations
for the agents to incentivize them to truthfully report their costs. This combination of an
algorithm and a payment rule is called a mechanism, and we are interested in the following:
Optimality. The mechanism runs some (nearly) optimal algorithm such that, if agents
do not misreport, the computed solution has an optimal (or nearly optimal) social cost
COST(x,w) with respect to the true weights w.
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Truthfulness. For every agent, truth-telling is a dominant strategy, i.e., in no circumstance
it is beneficial for an agent to misreport its cost. Thus, independently of the other agents,
its utility (payment minus incurred cost) is maximized when reporting the true cost.
Frugality. The total payment to the agents should be nearly optimal, that is, comparable to
the total energy cost. Since agents should be payed at least their own cost when truthfully
reporting (voluntary participation), the mechanism must pay at least COST(z,w).
Intuitively speaking, we are paying the agents to make sure that they reveal their true costs,
and, in this way, we can find a (nearly) optimal solution (w.r.t. the sum of weighted travel
distances). At the same time, we want to minimize our total payments, i.e., we would like
not to spend much more than the actual cost (weighted travel distance) of the solution.

Our results. After some preliminaries on mechanism design and on energy-efficient delivery
in Section 2, we first investigate in Section 3.1 the constant-factor (4 - max %)-approximation
algorithm presented in [6]. We reason why this algorithm cannot be turned into a mechanism
that is both truthful and guarantees voluntary participation. However, using the algorithm as
a black box for a new algorithm A* and applying Clarke’s pivot rule for the payments to the
agents, we give a truthful mechanism based on A* which guarantees voluntary participation

w;
LUJ
In Section 3.2, we consider instances where either the number of packages m is constant or

and incurs a total energy of at most (4 - max

the number of agents k is constant. For both cases we provide constant-factor approximation
algorithms with approximation factors that are independent of the agents’ weights. Both
of these approximation algorithms satisfy sufficient conditions to be turned into truthful
mechanisms with voluntary participation. The running time of the former algorithm can
be improved to yield a FPT-approximation mechanism, parametrized by the number of
packages; the latter runs in exponential time with k as the base of the exponential term.
Finally, in Section 4, we discuss the frugality of mechanisms for the case of a single
package. In particular, we consider two truthful mechanisms, namely, the optimal one (which
possibly uses several agents), and the one which always uses a single agent only. Although
the latter results in a higher energy cost, it might need a smaller sum of payments. However,
under some assumptions on the input, the payments of both mechanisms are only a small
multiplicative factor larger than the minimum necessary (the cost of the optimum).

Related work. FEnergy-efficient delivery has not been studied until recently. Most previous
results are based on a model where the agents have uniform rates of energy-consumption but
limited battery [8]. This restricts the possible movements of the agents — one gets the decision
problem of whether the given packages can be delivered without exceeding the available
battery levels. This turns out to be NP-hard even for a single package [9, 4] and even if
energy can be exchanged between the agents [11]. The model of unbounded battery but
heterogeneous weights has been introduced recently [6] (for the full version see [5]). Besides
the mentioned approximation algorithm, it was shown that a restricted solution in which each
package is delivered by a single agent approximates an optimum delivery (in which agents
can handover a package to another agent) by a factor of at most 2. This result has been
named the Benefit of Collaboration. Furthermore, the problem is NP-hard to approximate
to within a small constant, even for a single agent.

Approximating the mazimum travel distance of k agents has been studied for other tasks
such as visiting a set of given arcs [17], or visiting all nodes of a tree [16]. Furthermore
Demaine et al. [12] studied fixed-parameter tractability for minimizing both the sum of as
well as the mazimum travel distance of agents for several tasks such as pattern formation,
parametrized by the number of agents k. These models consider only unweighted agents.

) times the energy cost of an optimal delivery.
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The problem of performing some collaborative task using selfish agents is well studied in
algorithmic game theory and, in particular, in algorithmic mechanism design [21] where the
system pays the agents in order to make sure that they report their costs truthfully. The
existence of computationally feasible truthful mechanisms is one of the central questions, as
truthfulness is often obtained by running an exact algorithm [22]. In addition, even for simple
problems, like shortest path, the mechanism may have to pay a lot to the agents [14, 3.
Network flow problems have been studied for the case when selfish agents own edges of the
network and the mechanism pays them in order to deliver packages [1, 19]. A setting where
the transported packages are selfish entities which choose from fixed-route transportation
providers was recently studied in [15]. In a sense, this is the reverse setting of our problem.

2 Preliminaries

Mechanisms. A mechanism is a pair (A, P) where A is an algorithm and P a payment
scheme which, for a given vector w’ = (wf,...,w}) of costs reported by the agents, computes
a solution A(w’) and a payment P;(w’) for each agent i.

» Definition 1 (Truthful mechanism). A mechanism (A, P) is truthful if truth-telling is
a dominant strategy (utility maximizing) for all agents. That is, for any vector w’ =

(w,...,w),) of costs reported by the agents, for any ¢, and for any true cost w; of agent 1,
Pi(w') —w; - di(A(w')) < Pi(wg,w' ;) — w; - di(A(w;, w'_,)), where d;(z) is the travel distance
of agent i in solution z, and where w’_; := (wi,...,wj_,wj ,,...,w}) and (w;,w’;) :=
(WY, W, Wi, Wi g, - W),

Truthfulness can be achieved through a construction known as VCG mechanisms [27, 10,
18], which requires that the underlying algorithm satisfies certain ‘optimality’ conditions:

» Definition 2 (VCG-based mechanism). A VCG-based mechanism is a pair (A, P) of the
following form: For any vector w’ = (w}, ..., wj) of costs reported by the agents, and for
each agent ¢, there is a function Q;() independent of w} such that 4 is payed an amount of

Pi(w) = Qulw’ ) = (3w} dy(A@)). (1)

Intuitively speaking, these mechanisms turn out to be truthful, whenever the underlying
algorithm minimizes the social cost with respect to a fixed subset of solutions (in particular,
an optimal algorithm always yields a truthful mechanism):

» Theorem 3 (Proposition 3.1 in [22]). A VCG-based mechanism (A, P) is truthful if algorithm
A minimizes the social cost over a fized subset R of solutions. That is, there exists Ra
such that, for every w', A(w') € argmin,cp, {COST(z,w")}.

The above result is a simple rewriting of the one in [22] which is originally stated for a
more general setting, in which agent 7 valuates a solution = by an amount v;(x), and v;()
is the private information. Our setting is the special case in which these valuations are all
of the form v;(x) = —w; - d;(z) and w; is the private information (this setting is also called
one-parameter [2]).

» Definition 4 (Voluntary participation). A mechanism (A, P) satisfies the voluntary partici-

pation condition if truth-telling agents have always a nonnegative utility. That is, for every

w' = (wi,...,w}), and for every agent i, P;(w') — wj - d;(A(w’)) > 0.



A. Bartschi, D. Graf, and P. Penna

We assume there are at least two agents (otherwise the problem is trivial and there is no
point in doing mechanism design; also one can easily show that voluntary participation and
truthfulness cannot be achieved in this case). Voluntary participation can be obtained by
the standard Clarke pivot rule, setting in the payments (1) the functions Q;() as follows:

Qi(w ;) = cosT(A(L, w’;),w’ ;) (2)

—1

where (L, w’ ;) is the instance in which agent i is not present. Note that, if algorithm A runs
in polynomial time, then the payments can also be computed in polynomial time: we only
need to recompute k solutions using A and their costs. The next is a well-known result:

» Fact 5. The VCG-based mechanism (A, P) with the payments in (2) satisfies voluntary
participation if the algorithm satisfies the following condition: For any vector w' and for any
agent i, COST(A(L,w’,),w") > cosT(A(w'),w’).

Proof. Observe that the utility of agent 7 is

QL) = (Dw) - di(A@W) ) = wi - di(A(w) = Qi(wl;) — cOST(A(W), (wi, )
s — cosT(A(L,w',),w';) — cosT(A(W'), (ws, w',)).
When i is truth-telling we have w} = w;, and w’ = (w;,w’ ;). Also, COST(A(L,w’ ), w’" ;) =
cOST(A(L,w" ;),w") because i is not present in solution A(L,w’ ;). Hence the utility of 7 is
coST(A(L,w";),w") — cosT(A(w'),w"), which is non-negative by assumption. <

» Definition 6 (Approximation mechanism). A mechanism (A, P) is a c—approximation mech-
anism, if for every input vector of bids w’ its algorithm A computes a solution A(w’) which is
a c—approximation of a best solution OpPT(w’), i.e., cOST(A(w’),w’) < ¢-cosT(OPT(w'), w’).

Collaboration of agents. To describe a solution for an instance of the delivery problem, we
can (among other characteristics) elaborate on the following properties of the solution: How
do agents work together on each package (collaboration), how are agents assigned to packages
(coordination) and which route does each agent take (planning). Most of the mechanisms in
this paper are based on the characterizations of the benefit of collaboration:

» Definition 7 (Benefit of collaboration). Define R,,c as the set of solutions x in which there
is no collaboration of the agents, meaning that each package is delivered by a single agent
only. Define R}~ C Rnoc as the subset of solutions € R,oc in which

(i) every package is transported directly from source to target without intermediate dropoffs,

and
(ii) every agent returns to its respective starting location.
The ratios BoC := II}I%D % and BoC™* := H}l%in %ﬁ’;’?ﬂ) are called benefit of
. E€Rnoc ’ ERY ’
collaboration. Rl £ oo

» Theorem 8 (Theorems 5, 6 & 7 in [6]). For the the benefit of collaboration we have
BoC < 1/1n2 for a single package (m =1, for a tight lower bound example see Fig. 1), and
BoC < BoC* <2 in general (m > 1, see for example Fig. 2).

3  Truthful Approximation Mechanisms

In this section, we present two polynomial-time truthful mechanisms. Note that energy-
efficient delivery is NP-hard to approximate to within any constant approximation ratio less
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w1 =2

Figure 2 (left) Optimal solution of cost 2-17+ 3 -4 = 46 with collaboration on packages 1 and 3.
(middle) Optimal solution among all non-collaborative solutions with energy cost 2- 16 + 3 - 5 = 47.
(right) Optimal non-collaborative solution with direct delivery and return; total energy 2-2-18 = 72.

than 367/366 [6, Theorem 9]. Hence, even in the best case, our goal can only be to guarantee
a constant-factor approximation of the optimum in a truthful way.

In the first part we present a polynomial-time truthful approximation mechanism with
a constant-factor approximation guarantee depending on the weights of the agents. In the
second part we turn to absolute constant-factor approximation, for which we require the
number of packages m to be constant in order to get a polynomial-time mechanism. Similar
techniques yield a mechanism running in exponential time for a constant number of agents k.

Main algorithmic issue. The two truthful polynomial-time approximation mechanisms we

obtain are based on the following scheme (and the third approximation mechanism follows

the same scheme but takes exponential time):

1. Precompute a feasible subset R of solutions independently of the input weights w'. This
set may depend on the name/index and on the position of the agents.

2. Among all precomputed solutions in R, return the best solution with respect to the input
weights w’, that is, a solution z* € argmin, p{CcosT(z, w’)}.

Truthfulness then follows directly by Theorem 3. Note that, since we want polynomial

running time, the first step selects a polynomial number of solutions (thus the second step is

also polynomial). The main crux here is to make sure that, for all possible input weights w’,

the set R contains at least one good approxzimation (a solution z € R whose cost for w’ is at

most a constant factor above the optimum for w’).

3.1 A polynomial-time approximation mechanism

We start with the general setting of arbitrarily many packages m and arbitrarily many agents
k. Our construction of a truthful approximation mechanism (A*, P) for this setting relies on
Theorem 3. To this end, we define a fixed subset of solutions R4~ and a polynomial-time
algorithm A*, such that for every vector of reported weights w’, the algorithm A* computes
a solution S of optimum cost among all solutions in Ra-, S € argmin,cp . COST(z,w’).

In a next step, we show that whenever the agents report truthfully (w’ = w), the computed
solution x € R4+ has an energy cost that approximates the overall optimum energy cost by
a constant factor of at most 4 - ¥mex  where wpax 1= max; w; and Wy, (= ming; w;.

Wmin

A first approach. We first analyze an existing approximation algorithm A,,s presented
in [6], which computes a solution depending only on the position of the agents, but not on
their reported costs. Roughly speaking, A,,s connects the agent positions and the package
sources and targets by a minimum spanning forest, subject to the following: In each tree,
there is

(i) an edge between the corresponding source/target nodes s;,t; and

(ii) exactly one agent position p;.
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Algorithm A*

Input:  Connected graph G, k agents, m packages, black box algorithm A,,s (Thm. 9).
Output: A solution S with cost at most the cost of A,,s.
1: Compute the following k + 1 solutions using A,,s as a black box subroutine:

T = Apos(w’), and Vi = 1,... k: _; := Apos(L,w’,).

All solutions in the set R« := {xg,2_1,...,2_p} are feasible by connectivity of G.
2: Define algorithm A* as taking the best among all these solutions with respect to the
input weights w’:

A*(w') := argmin{cosT(z,w’)} .
TER A=

All edge lengths correspond to the distances in the original instance. Agent ¢ then traverses
its tree in a DFS-like fashion, crossing each edge twice and thus delivering all packages in
the tree. For an example of such a solution, see Figure 3 (left).

» Theorem 9 (Theorem 13 in [6]). For any number of packages m and agents k, there exists
a polynomial-time algorithm Ayes which computes a (4 - i‘}j‘fl‘—f“)-appmximation. The computed

solution does not depend on the input weights w, only on the position of the agents.

However, there is no mechanism (4,5, P) which is both truthful and guarantees voluntary
participation: Assume for the sake of contradiction there is such a mechanism. To guarantee
voluntary participation we need the payments to satisfy P;(w') —w;-d;(Apes(w')) > 0 for each
agent i. Consider any agent ¢ which is used in the solution, i.e., d;(Apos(w;, w’_;)) > 0. Note
that Ap,s selected 7 independent of its weight w;, hence d; remains the same for all reported
weights wy, i.e., we have d; := d;(Apos(wi, w';)) = di(Apos(w}, w’ ;). Let P;(w;, w’ ;) denote
the payment to agent ¢ when she reports her true weight w;. Now consider a situation where
agent ¢ reports a different value w} > P;(w;,w’ ;)/d; instead: For voluntary participation
of agent i, the payment P;(w’) needs to satisfy P;(w') —w}-d; > 0 & Pi(w') > w} - d;,
but w; - d; > P;i(w;,w’;), contradicting the truthfulness of the mechanism (in other words:
reporting an arbitrary high weight results in an arbitrary high payment).

Refining the approach. In order to obtain a truthful mechanism with voluntary participation
we consider the algorithm A* obtained from A,,s and a repeated application of algorithm

Apos on all subsets of (k—1) agents (for feasibility recall that G is connected and that k£ > 1).

» Theorem 10. There exists a polynomial-time truthful VCG mechanism (A*, P) satisfying
voluntary participation with approximation ratio of at most the approximation ratio of Apes.

Proof. We use VCG payments (1) with (2) as Q;(w’;) := COST(Apos(L,w’;),w’ ;) =
CcosT(xz_;,w’ ;). Since in Step 1 every solution is computed independently of the input
weights, algorithm A* satisfies the conditions of Theorem 3, which implies truthfulness. We

show voluntary participation along the lines of Fact 5: First note that by Step 2 in A*:

cosT(A* (w'),w") < cosT(Apos(L,w’;),w") , (3)

2:7
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Figure 3 (from left to right) Original solution zo = Apos with energy cost COST(zo,w) = 46,
solutions z_1, x_2, x—3 with energy cosT(z_1,w) = 46, COST(z—2,w) = 10 and COsT(x_3,w) = 160.

since the solution z_; = A,0s(L,w’ ;) is a feasible solution that A* considers on input w’.
By the same argument, the approximation ratio of A* is at most the approximation ratio of
Apos(w). For voluntary participation, note that for w} = w;, i’s utility is

= Qi(w!_,) — CORT(A* (), (wr, w'_,))

(3)
COST(Apos (L, w' ), w" ;) — cosT(A*(w'), (w],w’;)) > 0. <

—1

For an illustration of the computed set R4+, see Figure 3: The mechanism (A*, P) will
pick solution x_5 and award payments P, = 46 — 10 = 36, P, = 0, P; = 160 — 10 = 150.

3.2 Absolute constant-factor approximation mechanisms

We now turn to developing truthful mechanisms where the approximation guarantee will
be an absolute constant, therefore independent of the weights (cf. Theorems 9 and 10). To
this end, we provide a polynomial-time truthful approximation mechanism if the number
of packages m is constant. We also show that by slightly deviating from the 2-step scheme
given in the beginning of this section, the running time of the algorithm can be improved to
f(m) - (kn)°® | where f depends only on m. Hence we get a truthful FPT-approximation
mechanism, parametrized by the number of packages. To the best of our knowledge, the
underlying algorithm is also the first absolute constant-factor approximation for the delivery
problem. For the case of only constantly many agents k, we provide an exponential-time
algorithm, where k is the base of the exponential term.

No collaboration. In the following, we consider only solutions x € R} ~ where agents do not
collaborate and follow the two properties given in Theorem 8. We are therefore left with the
tasks of coordinating which agent gets assigned to which packages and planning in which order
she delivers the assigned packages. In other words, in every such solution z € R} ., each
agent 7 is assigned a (possibly empty) block of packages M;(x) = {i1,42,...,%|as(2)|}- These
package blocks are disjoint and form a partition of all m packages {1,...,m}. Furthermore,
agent 7 delivers each of its packages directly after picking it up at its source. These packages
are processed in some order 7, (i1), 7x(i2), . .., T (i|r,(2)]), Where m, is a permutation of
{1,...,m}. Finally, i returns to its starting location p;. Therefore, denoting the distance
between u and v in G by dist(u,v), the travel distance d;(x) of agent i can be written as

[ M|
di(z) = dist (pis $x, (i) + 2 dist (Sr,(i)s tro (i) +
M1 =1
2 st (fr, i), S (i) + dist (b (i, )2 P) - (4)
J:

» Remark. In the dist(u,v) terms in (4) we are not interested in the actual route agent 4
takes, as long as it uses a shortest path between u and v.
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Algorithm A™ (for a constant number m of packages)

Input:  Connected graph G, k agents, m packages.

Output: An optimal solution S € R} .

1: Brute-force enumeration over all lists of exactly k possibly empty lists of the packages.
foreach list of k lists do

Add the corresponding solution (Fact 11) to the set of solutions R am.

end foreach

2: Define algorithm A™ as taking the best among all solutions in R4m with respect to the
input weights w’:

A™(w') := argmin{cosT(z,w)} .
TER Am

Sets and lists. To clarify the use of package blocks and package orders, we use the standard
notion of sets and lists regarding partitions (see e.g., [7]): If we look at a partition of
{1,...,m} into non-empty disjoint blocks, we can take into account the order of the elements
within blocks, the order of the blocks, or both. We get four cases: sets of sets, sets of lists,
lists of sets and lists of lists ([23, 24, 25, 26]). However, in the delivery setting we can also
have agents which are not used at all and therefore not assigned to any packages — a complete
description (coordination + planning) of a solution x € R . is therefore given by a list of
exactly k (possibly empty) lists, M = (M, ..., My), where list M; represents the sequence of
the packages that agent ¢ has to deliver in the order specified by M;. Hence, we immediately
get a bijection from all lists of exactly k possibly empty lists to R} (modulo the equivalence
between shortest paths — see Remark 3.2).

» Fact 11. For every such list of lists M, there is a solution xp € R} o in which each
agent 1 delivers the packages in M; in the order specified by this list and in which the cost is
minimized. Given M, such a solution can be computed in time poly(n,m, k).

Constant number of packages m

We now look at the case of a constant number m of packages. By Theorem 8, the solution
S = arg minzeR;oC CcoST(z,w) is a 2—approximation of the optimum. First, we present an
algorithm A™ which basically enumerates over all lists of exactly k (possibly empty) lists and
adds the corresponding solution to a set Ram (where we get Ram = R ), as described in
the first step of our scheme. Then, given an input vector of weights w’, A™ chooses the best
solution A™(w') € argminger:  {COST(z,w'}.

» Theorem 12. Algorithm A™ finds a best solution S € argmin COST(z,w) and can be

implemented to run in time O (m!(k +m)™ - poly(n,m, k)). “Faec

Proof. Step 1 of A™ produces O(m! - (mkﬂc; 1)) many solutions and can be implemented in
time O (m!(k + m)™ - poly(m, k)) as follows: Since we look at a list of lists we have a total
order on the packages. Hence we first enumerate in an outer loop over all m! permutations,
which can be done in time O(m!). Each such permutation also needs to be subdivided into
exactly k possibly empty lists. There are (m,‘:_k; 1) < (k+ m)™ many ways to do this (by
placing k& — 1 delimiters at m + k — 1 potential positions in time O (poly(m, k))). Step 2 of

A™ consists of computing the cost of each solution z € R} . in time O (poly(n,m,k)). <

2:9
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Algorithm A™ (improved version)

Input:  Connected graph G, k agents, m packages.
Output: An optimal solution S € R} .
Enumerate over all sets of (non-empty) lists of the packages 1,...,m.
foreach set of < k lists do
foreach pair (agent 4, list M;) do
la: Assume agent 7 delivers the packages in M; in their order.
1b: Compute the cost d;(M;) of doing so.
end foreach
2a: Build a complete bipartite graph Agents—Lists
with edge costs w; - d;(M;) for each edge {3, M;}.
2b: Find the best assignment Agents — Lists
(by computing a maximum weighted bipartite matching).
foreach subset of £ — 1 agents do
3: Repeat 2a, 2b for the subset of k — 1 agents.
end foreach
4: Keep track of the best solution(s) found so far.
end foreach

» Theorem 13. For a constant number of packages m, there exists a polynomial-time truthful
VCG mechanism (A™, P), satisfying voluntary participation, with approximation ratio < 2.

Proof. Theorem 12 says that the algorithm satisfies the conditions in Theorem 3, and thus
truthfulness holds. Theorem 12 also implies the running time. The approximation is due
to Theorem 8 and the definition of the benefit of collaboration BoC*. We next argue that
the algorithm satisfies the condition in Fact 5, cosT(A™ (w’),w") < cosT(A™(L,w’,),w’).
Indeed, every solution A™(L,w’ ;) is also considered by the algorithm when all agents are
present (input w’), since this solution corresponds to some list of & lists M in which agent i is
not given any package (i.e. M; = 00). Thus the solution A™(L,w’ ;) is contained in R’ . <

We now show that the running time of the mechanism (A™, P) can be improved. The
main idea is to enumerate in A" over all sets of lists instead of list of lists — i.e. during the
enumeration we do not fix yet which agent gets which list of packages. Rather for each set of
lists, we aim to directly compute an optimal assignment between the agents and the lists,
thus deciding for every fixed set of lists in a parallel way the assigned list for every agent
(instead of enumerating over all possible assignments as well).

» Theorem 14. The running time of the truthful VCG mechanism (A™, P) can be improved
to a FPT, parametrized by the number of packages, of running time O(f(m) - poly(n, k)),
where f(m) € O <e2‘/m7mmm ‘poly(m)).

Proof. Consider first the running time of the improved algorithm A™, which iterates over all
sets of non-empty lists of the packages 1,...,m. The number of sets of lists is known to be
O(e2V™=™m™ /poly(m)) [24]. To this end we enumerate over all sets of lists while spending
only an additional O(poly(m))-factor (over the number of sets of lists) on the running time.
This can be done by enumerating over all sets of sets (by considering packages one-by-one
and deciding whether to put them in a previously created subset or whether to start a new
subset), followed by enumerating over all permutations of the packages inside each subset.
For each of the sets of at most k lists, we compute the best assignment of the k agents
to the lists (say | < k many) with a weighted bipartite matching as follows: On one side of
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the bipartite graph, we have k vertices, one for each agent. On the other side, we have one
vertex per list. We take the complete bipartite graph between the two sides. This graph
has at most k-1 < k-m edges. We compute the cost of an (agent, list)-edge as the energy
cost of delivering all packages in the bundle in that order with that agent. This requires
O(poly(n,m)) time per edge and O(poly(n,k,m)) time in total. A mazimum matching of
minimum cost in this graph gives the best assignment of agents to bundles and can be found
in polynomial time, e.g., by using the Hungarian method [20] or the successive shortest path
algorithm [13].

It remains to show that truthfulness and voluntary participation also hold for the
improved version of algorithm A™. Truthfulness follows immediately from the fact that A™
still considers all solutions x € R _, albeit always several of them in a parallel fashion. To
be able to apply Clarke’s pivot rule to define the payments via Q;(w’ ;) we make sure to also
consider all solutions on all k different subsets of k — 1 agents, see Step 3 of the improved
algorithm A™. <

Constant number of agents k

Next, we look at settings with a constant number of agents k but an arbitrary number of
packages m. In this case, even for £ = 1 and independent of whether or not we restrict
the packages to be transported from source to target without intermediate drop-offs, it is
NP-hard to approximate min, COST(z,w’) to within any constant approximation ratio less
than 367/366 [6, Theorem 9]. There, the bottleneck lies in finding the optimal permutation
mopr to minimize the travel distances, see Equation (4). For k > 1, we first have to partition
the packages into (possibly empty) subsets My, ..., M. Contrary to A* and A™, we will
need exponential time O(k™) to enumerate all partitions. Next, for every fixed partition of
the packages into subsets M;, we look for a package order 7, (i1), 7 (i2), - . ., T2 (i|ar,|) given

by a permutation 7, of {1,2,...,m} such that we get an approximation guarantee on d;(z).

Stacker-Crane problem. The latter can be modeled as the Stacker-Crane problem, which
asks for the following: Given a weighted graph Ggop with a set of directed arcs and a set of
undirected edges, find the minimum tour that uses each arc at least once. Since we restrict
ourselves to the two additional conditions (i) direct delivery of each package, (ii) return of
each agent 7 in the end, we can model the transport of package j along a shortest path by
a directed edge from s; to t;: Hence we choose the graph Gscp to consist of node p; and
all nodes s;,t;, j = i1,...,4,|, together with directed arcs (s;,t;) of weight dist(s;,t;)
(corresponding to the length of a shortest path between s; and ¢; in G) and undirected edges
{tj1, 852}, {pi,s;},{pi,t;} of weights corresponding to the original distances distg(t;1, S;2)
between t;1, sjo (respectively distg(p;, s;), dista(pi,t;)). For the Stacker-Crane problem, a
polynomial-time 1.8-approximation due to Frederickson et al. is known [16]. It remains to

iterate over all assignments of the packages to the k agents as in the presented Algorithm A*.

» Theorem 15. Algorithm A* runs in time O (poly(n, m, k) - k™) and finds an approzimate
solution S of cosT(S,w’) < 1.8 - mingep:  COST(z,w’).

Proof. Algorithm AF first enumerates over all lists of exactly k possibly empty sets of the
packages. This can be implemented to run in time O(k™) by choosing for each of the m
packages the subset of packages M; it belongs to. We know that for each list of exactly &
* o and vice versa (Fact 11). In

particular there exists a list M = (My, ..., My) of lists Mj, ..., My for each optimal solution

possibly empty lists there is a corresponding solution z € R

2:11
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Algorithm A* (for a constant number k of agents)

Input:  Connected graph G, k agents, m packages.
Output: A 1.8-approximate solution S € R} .
1: Brute-force enumeration over all lists of exactly k possibly empty sets of the packages.
foreach list of k sets (My,..., M) do
foreach agent ¢ do
a: Model the delivery of the packages M; (by agent i) as a Stacker-Crane problem.
b: Compute a solution x|y, such that d;(z) is a 1.8-approximation.
end foreach
¢: Add delivery problem solution z, combined from the k Stacker-Crane solutions x|az,,
to the set of solutions R 4.
end foreach
2: Define algorithm A* as taking the best among all solutions in R 4» with respect to the

input weights w’:

AF(w') := arg min{cosT(z,w’)} .
TER 4k

noC
exactly k possibly empty sets My, ..., M (where there is no prescribed order of the elements
in each of the M;, i = 1,...,k). Applying the Stacker-Crane approximation algorithm, A*
approximates each of the travelling distances d;(OPT(R},)) of the agents by a factor of at
most 1.8. Hence A* also considers a solution S’ € R*_ of cost

OPT(R},¢) € argmingeg:  {COST(z,w’)}. Algorithm AF at some point considers the list of

k k
cosT(S,w') = Zw; -d;(S8") < Zw; 1.8 d;(OPT(R}y)) = 1.8+ min coST(x,w').

i=1 i=1 TE€R]

Since this solution S’ is contained in the built set R4, we know that S := AF(w’) has
cosT(S,w') < cosT(S",w') < 1.8 - mingeg:  COST(z,w'). <

» Theorem 16. For a constant number of agents k, there exists an exponential-time truthful
VCG mechanism (AF, P), satisfying voluntary participation, with approzimation ratio < 3.6.

Proof. The approximation follows from Theorem 8 and Theorem 15. The latter theorem
also implies the running time of the mechanism. Truthfulness and voluntary participation
can be proved essentially in the same way as for Theorem 13. Indeed, the set of solutions
R 4» is computed independently of the input weights w’, and thus the last step defining A*
satisfy the condition of Theorem 3 (implying truthfulness). As for voluntary participation,
we observe that when A* is run on input (L, w’ ;), the computed solution corresponds to
some list of k — 1 sets (agent ¢ is not present), and the same solution is considered on input
w’ as a list of k sets, where one set is empty. This implies that the algorithm satisfies
cosT(A*(w'),w') < cosT(A¥(L,w’ ), w’), i.e., Fact 5 and thus voluntary participation. <

3.3 Comparison of the algorithms

We conclude our results on truthful approximation mechanisms with a comparison of the
three given algorithms A* (general setting, polynomial time), A™ (FPT, parametrized by the
number of packages m) and A* (exponential time for a constant number of agents k), given
in Figure 4. Each of the three algorithms chooses an optimal solution from a respective set
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Solution space for delivery Ratios between the computed solutions:

Wmin

Rum = R:;n(' COST(A*( )) < 4 ¥max . COST(OPT w) (Algorithm Apos)
COST(A™(w')) < 2-COST(OPT,w')  (Benefit of Coltaboration)

cosT(A*(w')) < 1.8 - cosT(A™ (w'), w’) (Stacker-Grane)
<3.6- COST(OPT7 ’LU,) (Benefit of Collaboration)

Figure 4 Venn diagram of the subsets of solutions Rax, Ram, R considered by the given
algorithms. Depending on the actual instance, the intersection of Ra~ and R 4» might be empty.

Rax, Ram, R4x. To ensure voluntary participation, in each set we include solutions where
individual agents are not present — in this way, we can set the payments according to Clarke’s
pivot rule (2). All three algorithms make use of Theorem 8 which bounds the Benefit of
Collaboration BOC* by 2 (this can be seen directly in the definition of the algorithms A™, A
for algorithm A* this follows from the black box algorithm A,,s [6, Theorem 13]). In fact,
the first version of the algorithm A™ computes a set R = which consists of all the solutions
in R} - — the improved version of A™ discards solutions of high cost early on (while still
considering solutions where individual agents are not present), in order to limit the set Rm
to a small (FPT-) size, parametrized by the number of packages. Finally, we can compare
the approximation guarantees. For algorithm A* the approximation ratio of 4 - -mex follows
from the (same) approximation ratio of A,,s. Both A™ and A* have a factor of BOC* <2
with an additional factor of 1.8 for A since we need to approximate the planning of each
agent’s tour (which we model with stacker-crane).

4 Single Package and Frugality

For the case of a single package, we define two truthful VCG mechanisms. The optimal
mechanism which minimizes the social cost using any number of agents, and the lonely
mechanism which computes the solution of minimal cost under the constraint of using only
one single agent. In both mechanisms, we use the VCG payments (1) with Clarke pivot
rule (2) in order to satisfy voluntary participation.

» Theorem 17 (Theorem 2 in [6]). For m = 1, the optimal solution using a single agent, as
well as the optimal solution using any number of agents, can be computed in polynomial time.

» Fact 18. Both the exact and the lonely mechanisms are truthful since the algorithms are
optimal with respect to a fized subset of solutions, i.e., they satisfy the condition of Theorem 3.
Moreover, the mechanisms run in polynomial time by Theorem 17.

In the following, we bound the total payments of these mechanisms compared with the cost
of the optimal solution (for the given input). In other words, assuming the reported weights
are the true weights (w’ = w), we would like the mechanism to not pay much more than the
optimum for these weights w = w’. This property is usually termed frugality [14, 3].

We first observe that, if we care more about the total payment made to the agents than
about the optimality of the final solution, then in some instances it may pay off to run
the lonely mechanism instead of the optimal mechanism. However, in other instances, the
converse happens, meaning that neither mechanism is always better than the other.

ATMOS 2017
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Figure 5 Delivery examples and their optimal solution. (left) The optimal mechanism pays more
than the lonely mechanism. (right) The lonely mechanism pays more than the optimal mechanism.

In order to compare the optimal mechanism with the lonely mechanism, it is useful to
define the following shorthands:
OPT = cosT(App(w'),w') , OPT_; = coST(Appe(L,w’ ), w’;) ,

LOPT = cosT(Ajon(w),w’) , LOPT_; = cosT(Ajpn(L,w’;),w" ;) ,

where A,y is the optimal algorithm, and Ay, is the lonely algorithm, that is, the one
computing the optimal solution using a single agent. Then the VCG payments (1) with the
Clarke pivot rule in (2) can be rewritten as follows in the two cases:

P,L<U)I) = OPT_Z‘ — (OPT — w; . di(Aopt(w’) ) s (5)
Py(w') = LOPT_; — (LOPT — w} - d;(Ajon(w"))) . (6)

Below, we usually omit the agents’ weights w’ = w whenever they are clear from the context.

» Fact 19. The lonely mechanism pays the selected agent i an amount LOPT_;, and the
other agents get no payment. This is because LOPT = w)} - d;(Ajon(w’)) when i is selected,
and for all non-selected agent j # i, LOPT = LOPT_; and d;(Ajonw)) = 0.

» Theorem 20. For a single package, there are instances where the optimal mechanism pays
a total amount of money larger than what the lonely mechanism does. Moreover, there are
instances in which the opposite happens, that is, the lonely mechanism pays more.

Proof. First we prove that there are instances, in which the optimal mechanism pays more.
The example in Figure 5 (left) shows an instance and its optimal solution. The optimum
for the instance in which agent 1 is not present has cost OPT_; = 40 (let agent 3 do the
whole work). More generally, one can check that OPT_1 = OPT_5 = 40 and OPT_3 = 45,
and obviously OPT = 9 + 12 4+ 16 = 37. Using these values for the payments (5), we get
PL=40—-(37-9) =12, P, =40 — (37— 12) = 15, P; =45 — (37 — 16) = 24, for a total
amount of 51 payed by this mechanism to the agents. The lonely mechanism will instead
select agent 3 and pay only this agent (see Fact 19) an amount LOPT_3 = 6-(2+2+4) = 48,
which is the lonely optimum for the instance where agent 3 is not present.

On the other hand, the example in Figure 5 (right) shows an instance in which the
lonely mechanism pays more. The optimal solution has cost is OPT = 18 + 10 + 10 = 38
and we get OPT_; = 40, OPT_5 = 46 and OPT_3 = 38, resulting in the payments
P, =40—- (38—18) =20, P, =46 — (38 — 10) = 18, P3 =38 — (38 — 10) = 10 for a total
amount of 48. The lonely mechanism will instead select agent 2 and pay LOPT_5 = 50. <«

We remark that the payments given by (1) and (2) guarantee voluntary participation, and
therefore the mechanism must pay a total amount of at least the optimum. We show that
both mechanisms pay only a small constant factor over the optimum, except when a single
agent can do the work for a much cheaper price than the others (as shown in Example 22):

» Definition 21 (monopoly-free). We say that an instance with a single package is monopoly-
free if there is an optimal solution which uses at least two agents.
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» Example 22. Both the exact and the lonely mechanism perform equally bad if, for instance,
there is only one very cheap agent and another very expensive one. Consider two agents of
weights w; = € small, and wo = L large, both agents sitting on the starting position s; of the
package. In this case the two mechanisms output the same solution and payment: Agent 1
does the whole work and gets an amount of money given by the best alternative solution. We
have P, = wq dist(s1,t;) = Ldist(s1,¢1), while the optimum is wq dist(s1,¢1) = edist(s1,t1).

» Theorem 23. In any single package monopoly-free instance, the optimal mechanism pays
a total amount of money which is at most twice the optimum.

Proof. The optimal solution selects a certain number £ > 2 of agents and assigns to each of
them some path. By renaming the agents, we can therefore assume that the optimum cost is
of the form OPT = wyd; +wads + - - - + wydy, where no agent appears twice and the weights
must satisfy w; > w;+1 and w; < 2w; 41, for otherwise agent ¢ can replace agent i 4+ 1 or vice
versa. We shall prove below that

Using VCG payments (1), we obtain from (7) that every agent is payed at most twice her cost,
P, < OPT +w;d; — (OPT — w;d;) = 2w;d;, which then implies the theorem. To complete the
proof, we show (7) by distinguishing two cases. For i < ¢, we can replace agent ¢ with agent
7+ 1 who then has to travel an additional distance of at most 2d; to reach 7 and come back
to its position. This gives an upper bound: OPT_; < OPT — w;d; + w;+12d; < OPT + w;d;,
where the last inequality is due to w;11 < w;. For i = £, we replace agent ¢ by agent £ —1 who
travels an extra amount dy, and obtain this upper bound: OPT_, < OPT — wedy +wye_1dy <
OPT + wydy, where the last inequality is due to wy_1 < 2wy. |

» Theorem 24. In any single package monopoly-free instance, the lonely mechanism pays at
most 2BoC' times the optimum, where BoC' = 1/1n2 = 1.44 (by Theorem 8).

Proof. Let i be the selected agent. A crude upper bound on the sum of the payments can be
obtained via Fact 19, where the second inequality requires the instance to be monopoly-free:

(M

5 Conclusion and open questions

This work initiates the study of truthful mechanisms for delivery in a natural setting where
mobile agents are selfish and can speculate about their own energy consumption rate.
We considered mechanisms which are truthful, run in polynomial-time, have a worst-case
approzimation guarantee and, possibly, do not pay the agents abnormal amounts (frugality).
We provide such polynomial-time truthful approximation mechanisms for two cases:

“’g is bounded

1. when the consumption rate of different agents are similar, i.e., the ratio max
(see Theorem 10) and

2. when the number of packages m is small (see Theorem 14).

For a single package, we also gave bounds on the frugality of two natural truthful mechanisms

w

which return the optimum or an approximation of the optimum.

The main open question is whether there exists a polynomial-time constant-factor ap-
proximation independent of the weights. This remains an intriguing open question even
for a constant number of agents k, for which we presented an exponential-time truthful
approximation mechanism.
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