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—— Abstract

We study the problem of answering profile queries in public transportation networks that allow
unrestricted walking. That is, finding all Pareto-optimal journeys regarding travel time and
number of transfers in a given time interval. We introduce a novel algorithm that, unlike most
state-of-the-art algorithms, can compute profiles efficiently in a setting that allows arbitrary walk-
ing. Using our algorithm, we show in an extensive experimental study that allowing unrestricted
walking, significantly reduces travel times, compared to settings where walking is restricted. Bey-
ond that, we publish the transportation networks of Switzerland that we used in our study, in
order to encourage further research on this topic.
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1 Introduction

Research on efficient route planning algorithms has seen remarkable advances in recent
years, leading to speedup techniques for road networks that allow to compute optimal routes
within microseconds [2]. Unfortunately, techniques that perform well on road networks often
perform poor on public transit networks [5]. This lead to the development of specialized
techniques like RAPTOR, CSA, and Transfer Patterns, which enable efficient route planning
in public transit networks. However, these techniques are often only suitable in settings
where transferring is not possible between arbitrary stops.

A common restriction in public transit routing is the requirement that the footpaths
graph has to be transitively closed. One of the first techniques based on this restriction is
the RAPTOR algorithm [9], which applies a dynamic programming approach to efficiently
process timetable information. A transitively closed graph is also required for CSA [10],
which utilizes clever memory management in order to enable journey computation within a
single scan over the memory. The same holds true for the accelerated version of CSA [17].
Another technique depending on transitively closed footpaths is trip-based public transit
routing [18], which is based on a graph search algorithm similar to Dijkstra’s algorithm [14].

Other approaches to the public transit route planning problem do not state explicit
requirements on the footpaths graph. However, the problems arising from detailed footpath
graphs are often neglected. Either the used footpath graph is not specified, or the algorithms
are only evaluated on rather sparse and unconnected footpath graphs. In both cases it is
unknown how the techniques would perform on a public transit network in conjunction with
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a complete footpath graph. An example of a technique where no information about the
size of used footpath graph is known, was presented in [15]. Another technique where the
used footpath graph is not specified, is transfer patterns [1]. However, for the accelerated
version of this technique, called scalable transfer patterns [3], it was specified that stops
are connected by a footpath if their distance lies below 400 meters. This corresponds to a
walking time of 6 minutes or less (assuming a walking speed of 4km/h), which leads to a
rather sparse footpath graph. Similarly, frequency-based search for public transit [4] was
only evaluated using a limited number of footpaths. Here, two variants, one allowing up to
5 minutes walking, the other up to 15 minutes, were evaluated. Even fewer footpaths are
considered if the evaluation relies on the footpath specified in the source of the public transit
network. This is the case for public transit labeling (PTL) [8], SUBITO [6], or graph based
techniques presented in [16]. Finally there are algorithms, like delay robust routing using
MEAT, that omit footpaths altogether [12].

The utilization of a sparse footpaths graph is most often justified by arguing that walking
for more then a few minutes does not improve overall travel times in practice. However,
this claim has never been proven. Furthermore, it is questionable whether the decision that
walking is unnecessary should be part of the problem modeling. Preferably, the model does
not include artificial restrictions and an algorithm decides whether walking is reasonable or
not. Another argument against unrestricted walking is, that the users of public transportation
systems do not want to walk far. While this might be true for some users, it cannot be
generalized to all users. Furthermore, in order to make an informed decision, it is essential
that the user knows about alternative options. However, if walking is restricted, then some
alternatives cannot be found. If, for example, an algorithm with a walking limit of ten
minutes does not find any journey, then the user does not know if he would have to walk
for an hour, or if eleven minutes of walking suffice. The only techniques that can handle
unrestricted walking so far, are multimodal techniques, such as MCR [7] or UCCH [11]. These
techniques can handle several modes of transportation, and restricting them to the timetable
data as well as the footpath graph would solve the public transit problem. However, both
MCR and UCCH can only solve queries with a fix departure time, but not profile queries.

In this work, we reevaluate the common practice of restricting the footpaths graph. To
this end, we present a novel algorithm that can compute profiles for public transit networks
with unrestricted walking. Using this algorithm we can efficiently evaluate the travel times
between given source and target stops over the course of a whole day. Next, we prepare
and compare three variants of public transit networks: The first one uses a footpaths graph
that only contains transfers specified by the source of the public transit network. The
second variant uses additional footpaths, which are chosen such that the transitively closed
graph still has a practical size. The third variant uses an unrestricted footpaths graph. By
evaluating the same set of profile queries for all variants of the network, we show that travel
times are significantly improved by allowing unrestricted walking. To allow reproducibility of
our results, and because recent publications do not use standardized public transit networks,
we make our instances representing the network of Switzerland publicly available®.

Our paper is organized as follows: In Section 2 we formally define public transit networks
and introduce the basic notation used throughout the paper. Next, in Section 3 we present
our new profile algorithm for public transit networks with unrestricted walking. We continue,
in Section 4 with a detailed description of the public transit networks we will use in our
evaluation, and how we combined them with unrestricted footpath graphs. Finally, we
conduct an extensive experimental evaluation in Section 5, where we analyze the performance
of our algorithm as well as the impact of the unrestricted footpath graph.

! nttp://illwww.iti.kit.edu/PublicTransitData/Switzerland/
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2 Preliminaries

We define public transit networks using a format that is typical to the RAPTOR algorithm [9].
Here, a public transit network (S,7,R) consists of a finite set of stops S, a finite set of
trips T, and a finite set of routes R. Each stop in S represents a location within the
network, where passengers can enter or disembark from a vehicle (vehicles being buses,
trains, etc.). Associated with a stop u € S is its minimum change time 7c,(u), which
defines the minimum time required between disembarking one vehicle and entering another
vehicle at the stop u. A trip in 7 is a sequence of stops which are served consecutively
by a vehicle. The arrival time of the vehicle serving the trip T € T at the stop w in T
is denoted by 7an (T, u), the corresponding departure time is denoted by Tgep(T,w). The
quadruple (T, w, Tar (T, ), Taep (T w)) is called a stop event of trip T at stop w. Naturally,
the departure time 74ep(7, u) has to be greater or equal to the arrival time 7., (T, ) at the
same stop. The routes in R describe a partition of the trips. Two trips are part of the same
route, if they serve the same stops in the same order and do not overtake one another. A
trip T1 € T overtakes the trip Ty € T if two stops u,v € S exist, such that T} arrives or
departs from wu before Ty and T arrives or departs from v after T5.

The public transit network is complemented by a weighted footpath graph G = (V, €&, 1)
with § C V. The footpath graph describes the time needed to walk between different
locations. Each edge e = (u,v) in € C V x V represents a street from u to v that can be
traversed by walking. The walking time Ty (e) specifies the time required to traverse e.

The objective of a public transit route planning algorithm is to compute journeys between
a given pair of vertices. A journey is a sequence of stop events, sorted by time (departure
time and arrival time of the stop events). Additionally, if two consecutive stop events of
a journey are part of different trips, then transferring between them has to be possible
with respect to minimum change time and the footpath graph. Formally, transferring from
stop event (T7, u1, Tarr (Th, u1), Tdep (Th,u1)) to stop event (T, ua, Tare (T2, U2), Tdep (T2, u2)) is
possible if w1 = ug and Tar (11, u1) + Teh(v1) < Taep(To, u2) or if there exists a path P in
the footpath graph such that 7a., (1, u1) + Tw(P) < Tdep(T2;uz2). A journey has several
properties that can be used to measure the quality of the route. In this paper we consider
two properties: the travel time of the journey, as well as the number of transfers. The travel
time T, is the difference between the arrival time of the last stop event of the journey and the
departure time of the first stop event. The number of transfers of a journey is the number of
consecutive stop events with different trips.

An s-t-profile for the time interval I = [Tiin, Tmax| represents all optimal journeys
(regarding travel) from s to ¢t that have a departure time within /. In general the profile
can be represented as a piecewise linear function that maps departure time to travel time.
As such, the segments of a profile can only have a slope of —1 or 0. Each optimal journey
contributes one break point to the piecewise linear function (defined by the departure time
and travel time of the journey). For an arbitrary departure time 7qep, the value of the profile
function is defined as the travel time of the earliest journey departing after 74ep plus the
time that has to be waited until the journey actually departs. This results in segments
of the profile function with slope —1. A slope of 0 indicates a time independent part of
the profile, i.e. walking from the source to the target is optimal. In order to represent all
Pareto-optimal journeys (regarding travel time and number of transfers) within a certain
time interval, several profiles can be used, one for every number of transfers.

The Round-bAsed Public Transit Optimized Router (RAPTOR) [9] and variations
thereof [7] are algorithms that enables efficient journey computation in public transit networks.
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The multimodal multicriteria RAPTOR starts with Dijkstra’s algorithm on the footpath
graph, in order to determine all stops that can be reached from the source by walking.
Afterwards, the algorithm operates in rounds, where each round extends partial journeys
by one trip. Each round consists of two phases: the first round explores the routes of the
public transit network, while the second phase explores the footpath graph. In the first phase
of each round all routes are scanned that contain a stop that was reached in the previous
round (or by the initial Dijkstra in the first round). Afterwards, a multi source Dijkstra is
used in order to find all stops that can be reached by walking from stops that were scanned
during the first phase. The algorithm terminates, if during one round no new stops were
reached or updated. A profile search algorithm based on this technique is called rRAPTOR.
This algorithm is based on the observation that a profile cannot contain more journeys then
the number of trips departing from the source (each departing trip is part of at most one
journey). Thus, the algorithm simply collects all possible departure times at the source stop,
followed by one execution of RAPTOR for each departure time in decreasing order. During
the repeated executions of RAPTOR, labels do not need to be cleared. Since queries are
performed in decreasing order regarding departure time, labels of the previous RAPTOR
search can be used to prune the current search, this process is called self pruning. However,
rRAPTOR loses its efficiency in networks that allow unrestricted walking. In such networks
every stop can be reached by walking, therefore rRAPTOR would perform one RAPTOR
query for every departure in the entire network.

Another efficient algorithm for public transit routing is the Connection Scan Algorithm
(CSA) [10]. Using CSA requires a slightly different representation of the public transit
network, which is based on connections. A connection represents a vehicle driving from
one stop to another without intermediate stops. As such, a connection can be constructed
from two consecutive stop events of the same trip. The number of connections needed to
represent the network is equal to the number of stop events minus the number of trips (since
a trip with n stop events contains n — 1 consecutive pairs of stop events). The connection
scan algorithm computes journeys as well as profile while performing a single scan over the
sorted array of all connections. However, the algorithm requires that the footpath graph is
transitively closed, and is therefore not applicable in scenarios with unrestricted walking.

3 Profile Algorithm

We now introduce our new profile algorithm for public transit networks with unrestricted
walking, which is based on the multimodal multicriteria RAPTOR (MCR) [7]. As mentioned
before, we cannot use rRAPTOR since every trip in the network could potentially be the
first trip of an optimal journey. However, we can still use repeated executions of the basic
MCR algorithm in order to compute a complete profile.

In what follows, we assume that source and target vertices s,t € V, as well as a time
interval I = [Tiin, Tmax] are given. In order to compute the s-t-profile for the interval I we
start with one execution of MCR, with 7,3, as departure time. As result of this query we
obtain a journey with minimal possible arrival time 7., at ¢t. However, we do not know
the travel time of this journey, since we do not know the latest departure time from s that
still allows to reach t at 7,,,. We determine the latest possible departure time from s by
performing a backward MCR, query from ¢, starting with the arrival time 7,,,. As result of
these two queries we know one pair of departure time 740, and arrival time 7y, such that 7,
is the earliest possible arrival time at t if departing from s at Tmin and 74ep is the latest
possible departure time at s that allows to reach ¢ at 7,,,. Therefore, the pair (Tgep, Tarr)
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is the first entry of the profile function from s to ¢. Furthermore, the s-t-profile is already
complete for the interval I’ = [Tynin, Tdep]. This means that we now only need to compute
the profile for the interval I= [Tdep + &; Tmax], Where the departure time 74ep + € indicates
that the passenger just missed the journey that departs at 74cp. The remaining profile for I
can now be computed using the same approach as for the original interval I. We repeat this
process, until we are left with an empty interval. In particular, this means that the backward
search results in a departure time 74.p, that is greater or equal to the maximum departure
time Tax of the interval.

3.1 Direct Walking

The profile algorithm we described so far will perform exactly one forward and backward
query for every entry of the profile. However, the approach fails if an optimal s-t-journey
contains no trips at all, i.e. the optimal journey corresponds to direct walking from s to ¢. In
this case the forward search started for a departure time of Tqep Will result in an arrival time
of Tapy. Afterwards a backward search is performed starting with the arrival time 7. This
backward search will then result with the latest possible departure time being 74ep. This
means the size of the interval did not decrease, except by an ¢. Even worse repeating the
procedure for a departure time of 74cp, + € will have the same result. In order to solve this

issue we use a slightly modified version of the basic query algorithm (in our case MCR).

We demand that the query algorithm only returns journeys that contain at least one trip,
i.e. direct walking from s to t is prohibited. This can easily be achieved by pruning the
initial exploration of the footpaths graph (within MCR) if it reaches ¢. Apart from this, the
profile algorithm remains for the most part unchanged. As before we perform alternating
forward and backward searches in order to determine one profile entry at a time. However,
the resulting profile might contain entries that are dominated by a pure walking journey. We
remove these entries in a simple postprocessing step. For this we compute the walking time
from s to t using Dijkstra’s algorithm. Afterwards we remove all entries with a travel time
that exceeds the walking time from the profile.

3.2 Incorporating Transfers

So far we have shown how a minimum travel time profile can be computed. However, besides
travel time, the number of transfers is another important property of a journey. Thus, a
profile that does not only contain all journeys with minimal travel time, but all journeys

that are Pareto-optimal with respect to travel time and number of transfers is often desired.

RAPTOR as well as MCR both naturally support queries that compute all Pareto-optimal
journeys (regarding travel time and number of transfers) for given source vertex, target
vertex, and departure time. Thus, we only have to adapt our profile algorithm so that it can
take into account all Pareto-optimal journeys found by MCR. As before, when computing a
profile for the interval I = [Tiin, Tmax], the algorithm starts with a forward search from s
for the departure time 7,i,. The result of this forward query is a set of Pareto-optimal
journeys, up to one for every possible number of transfers. Each of these journeys has a
different arrival time, and eventually we will perform one backward query for each of these
arrival times. We use a priority queue to organize all arrival times for which we still have to
perform a backward search. As long as this queue is not empty, our algorithm extracts the
minimum arrival time 7,,, and performs a backward search starting from the target with 7,
as arrival time. As before, the result of the backward search is a departure time 74ep which
defines together with 7,,, an entry of the profile. Right after the backward search we perform
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Table 1 Size figures of our instances. The footpaths graph of the ‘original’ and ‘partial’ instances
are transitively closed, resulting in a high maximum vertex degree for the ‘partial’ instance. Note
that the ‘original’ instances contain only very few footpath edges, even though they are transitively
closed. All instances comprise a time period of two days.

PT network Footpaths Stops Vertices Edges Connections Max. degree

Switzerland original 25427 25427 5604 4373268 25
partial 25427 25427 3104974 4373268 1246
complete 25427 604 230 1844 286 4373268 25

Germany original 244 245 244245 95 036 46119 896 18
partial 244 245 244245 26193136 46 119 896 2622
complete 244245 6876758 21382408 46 119 896 21

a forward search with departure time 7qep + €, which possibly adds new arrival times to
the queue. The advantage of this procedure is, that one backward search can potentially
generate several profile entries. If several Pareto-optimal journeys differ only in their number
of transfers, but have the same arrival time, then all these journeys will be found by one
backward search.

In our implementation of the profile algorithm we use MCR for the forward and backward
queries. However, the general approach of our algorithm can be used together with any
algorithm that computes optimal s-t-journeys for a fixed departure time. The performance of
our algorithm depends on the number of entries in the computed profile and the performance
of the underlying query algorithm. More precisely, the underlying query algorithm will be
invoked at most twice for every entry added to the profile.

4 Public Transit Networks

In order to evaluate the difference between public transit networks with and without unres-
tricted walking, we carefully prepared several real world networks. As basis we use the public
transit networks of Germany and Switzerland. For the Germany network we use data from
bahn.de from winter 2011/2012. This dataset was used before in [17] and comprises two
successive identical days. The Switzerland instance is based on a publicly available GTFS
feed?. Here we extracted two successive business days (30th and 31st of May 2017). Both
networks contained some connections and stops beyond the borders of the country they
represent. However, these stops are rather scattered and only used by very few connections,
since most public transit services outside the country are not part of the dataset. In order
to avoid unwanted effect from these sparse parts of the network on our experiments, we
removed stops and connections outside the border of the countries. The resulting networks
are listed under original footpaths in Table 1.

The original networks already contain a few footpaths. In order to obtain a comparat-
ively dense footpath graph we complement the footpaths of our networks using data from
OpenStreetMap?. To this end we extracted the road networks of Germany and Switzerland
from the OpenStreetMap data including pedestrian zones and stairs. Since OpenStreetMap
data is primarily intended for map rendering, it contains many degree one and degree two

2 http://gtfs.geops.ch/
3 http://download.geofabrik.de/
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vertices. These vertices improve the quality of a rendered map, but they are irrelevant for
routing applications, except that reduce the performance of the algorithms [13]. Therefore
we replaced all degree one and two vertices with shortcuts, such that the distances in the
resulting graph remain unchanged. Vertices that coincide with stops of the public transit
network, were exempt from this procedure. Finally, we combine the prepared footpaths
graphs with our public transit networks by identifying stops of the network with the nearest
vertex of the graphs if their distance is below 5 meters. If the distance from a stop to its
nearest vertex is between 5 and 100 meters, we create a new vertex positioned at the stops
location and a new edge connecting the vertex to the rest of the graph. In order to compute
the travel times for the edges in the footpath graph, we assume a walking speed of 4.5 km /h.
Table 1 shows the sizes of the complete footpath graphs we created this way.

The complete footpaths graph cannot be used with algorithms that require a transitively
closed graph, since the transitive closure would be to large. Because of this we created a
third variant of the network that uses only a part of the complete footpath graph, such that
the transitive closure has a reasonable size. We did this by connecting two stops with a direct
edge if their distance lies below a certain threshold, and discard all other edges. Figure 1
shows the size of the resulting partial footpath graph depending on the used threshold. The
figure shows that the number of edges needed for the transitive closure increases drastically
with the allowed maximum walking time between stops. Therefore, approaches that require
a transitively closed footpath graph are only practical if the maximum walking distance
is substantially limited. For our experiments we choose an average vertex degree of about
100 as upper limit for a practical graph size, which is already much higher than average
vertex degree of typical graphs used in route planning applications. This procedure, results
in a partial graph for the Germany network that preserves all paths between stops that
take 8 minutes or less. For the Switzerland network all paths of up to 15 minutes between
neighboring stops are preserved.

Unfortunately, it is often complicated to reproduce the steps required to obtain a reason-
able public transit network and footpaths graph. Reasons for this are GTFS feeds that do
not comply with the specification, changing OpenStreetMap data sets, or other discrepancies
preparation of the data. Because of this, almost all publications on public transit routing are
evaluated on different instances. In order to counteract this trend and to enable comparability
of our and future results, we make the three networks of Switzerland, that we used for our
experiments publicly available?.

5 Experiments

We implemented our algorithm in C++ compiled with GCC version 5.3.1 and optimization
flag -O3. Experiments were conducted on a quad core Intel Xeon E5-1630v3 clocked at 3.7
GHz, with 128 GiB of DDR4-2133 RAM, 10 MiB of L3 cache, and 256 KiB of L2 cache.
Before we continue with the performance analysis of our algorithm, we provide a detailed
description of the queries we used in our experiments. Afterwards, we conduct an extensive
comparisons of the profiles computed for the three variants of our networks, showing that
walking should not be restricted.

4 http://illwww.iti.kit.edu/PublicTransitData/
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Figure 1 Size of the resulting partial network, if walking times are limited. Stops are connected
by a direct edge if the distance between them in the complete graph is less or equal to the maximum
walking time. Afterwards the transitive closure of these edges is computed. The plots show that the
number of connected components (blue) remains high, even if the threshold for walking is rather
high. Many stops are not connected to any other stops (green) and even the largest connected
component remains comparatively small (yellow). However, the number of edges required for the
transitive closure (red, plotted using the right y-axis) increases drastically with the allowed walking
time.

5.1 Queries and Experimental Setup

We want to analyze how the results of realistic queries change with respect to the three
variants of our networks. A query can of course only be evaluated for all three network
variants if the source and target of the query are part of all three network variants. Thus,
we only consider queries, where the source and target vertices are actual stops, as additional
footpath vertices are not contained in the ‘original’ and ‘partial’ instances. Our algorithm
can of course handle arbitrary source and target vertices.

Another important problem regarding the evaluation of public transit routing algorithms
that we have not yet addressed, is the generation of representative queries. Commonly,
algorithms are evaluated using queries where source and target stops were picked uniformly
at random. However, this approach does not reflect query distributions that can be expected
in real applications. It can be expected that users of a real application will predominant
query journeys where the source and target stops are located within metropolitan areas. In
contrast, picking source and target stops uniformly at random will often result in queries
between rural locations. The choice of the queries can have significant influence on the
results of the evaluation. This is because stops in rural areas are typically served by far less
trips then stops in metropolitan areas. Therefore, queries are potentially simpler and can
be answered faster if the source and target stop are located in rural areas. Moreover, if a
stop is only infrequently served by trips, then walking is required more often. Thus, using
queries that were picked uniformly at random could lead to overestimating the importance
of walking.
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Figure 2 The running time of profile algorithms depending on the distance rank. We compare
the three different variants of the Switzerland network. The ‘original’ and ‘partial’ instance are
transitively closed, therefore a well-known technique, such as CSA can be applied. For the ‘complete’
instance we use our new algorithm. We evaluated 100 random queries per distance rank.

In order to avoid these problems, we do not pick the source and target stops for our test
queries uniformly at random. Instead, we argue that the number of trips that serve a stop
reflects the number of passengers that want to travel to or from this stop. Thus, we expect
that in a real application stops with a high number of trips will occur more often as source
or target stop of a query, than stops with only a few trips. We take this consideration into
account during the generation of random test queries. Instead of picking source and target
stops using a uniform distribution, we pick a stop w with a probability proportional to the
number of trips that contain w.

Another aspect that heavily influences the result of a query is the distance from the source
to the target of a query. We address this issue by partitioning the queries with respect to their
distance rank. The distance rank of a query, is the number of vertices where the distance
from the source to these vertices is smaller than the distance from the source to the target.
Distances are measured in the complete footpath graph. In order to obtain representative
queries for every distance rank, we first pick random source stops (the probability of a stop
is again proportional to the number of trips containing the stop). Afterwards we pick one
target for every distance rank 2" with » € N. The target stop for a query with distance
rank 2" is randomly picked from all stops with a distance rank between 2" and 2"~! (as
before the probability of a stop is proportional to the number of trips containing the stop).

5.2 Performance Experiments

Our first experiment is focused on the performance of profile algorithms. We compare the
time required to compute complete 24 hour profiles (containing all Pareto-optimal journeys
with respect to travel time and number of transfers) depending on the three variants of our
networks. For this we evaluated 100 random queries for every distance rank 2" with r € R.
The resulting running times on the Switzerland and Germany instances are shown in Figure 2
and 3, respectively. For the network variants that contain only the original footpaths we use
CSA [10]. It is clearly visible that the running time of CSA is independent of the distance
rank for the ‘original’ instances. The reason for this is, that the instances contain only very
few footpath edges, and therefore the running time is dominated by scanning the connections.

7:9
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Figure 3 The running time of profile algorithms depending on the distance rank. We compare the
three different variants of the Germany network. The ‘original’ and ‘partial’ instance are transitively
closed, therefore a well-known technique, such as CSA can be applied. For the ‘complete’ instance
we use our new algorithm. We evaluated 100 random queries per distance rank.

Since the algorithm always scans all connections, the running time is independent from the
distance rank of the query.

Computing profiles for the ‘partial’ instance can also be done using CSA, since the
footpath is transitively closed. The resulting running times, however, differ significantly from
the running times of the ‘original’ instance. For the highest distance rank, running times
are increased by an order of magnitude, resulting in query times of about 2 minutes for the
Germany network. The query time decreases with decreasing distance rank, as a result of
target pruning. For small distance ranks, the running time even falls below the running time
for the ‘original’ instance. The reason for this is most probably a high number of queries
where walking is the optimal solution. This decreases the complexity of the profile functions,
which leads to decreased running times.

Finally we examine the running time for the ‘complete’ variant of our networks. Since the
footpath graph of these instances is not transitively closed, we have to use our new algorithm.
Computing a profile using our algorithm takes about 6 minutes on average. Despite the fact
that our algorithm computes profiles for more complex networks with unrestricted walking,
running times are only a factor 2 to 4 slower than CSA on the ‘partial’ instance. Similar
to CSA, the running time of our algorithm decreases with decreasing distance rank. The
reason for this is the underlying search algorithm (in our case MCR), which is faster for local
queries due to target pruning.

5.3 Travel Time Comparison

Finally, we analyze how the travel time of optimal journeys changes, depending on the
footpath graph. For this we compare the results of the same 100 random queries per distance
rank that we used for the performance experiments. Our evaluation focuses on the minimum
travel time only, i.e. we ignore Pareto-optimal solutions with fewer transfers. This leads
to a conservative estimation for the importance of walking, since walking is even more
indispensable if the number of transfers is limited.

We examine the average travel time of all journeys with the same distance rank. Overall,
we find that differences in travel time between the three variants of our networks are consistent
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Figure 4 Comparison of the optimal travel times throughout the day for the three variants of the
Germany network. The upper plot compares the ‘original’ and ‘complete’ instances, the lower plot
compares the ‘partial’ and ‘complete’ instances. We evaluated 100 random queries with distance
rank 2'6, which correspond to an average travel time of 2 hours. The average of the travel time in
the ‘complete’ instance is depicted in green. The blue curve depicts the median of the travel time
difference between the two compared instances, the light blue shaded area depicts the interquartile
range (IQR). The dark red dotted curve (using the right y-axis) indicates the percentage of queries
where the ‘original’ respectively ‘partial’ travel time is suboptimal. The light red dotted curve (using
the right y-axis) indicates the percentage of queries where travel time difference is more than 1 hour.

over all distance ranks. In Figure 4 and 5 we present exemplary results for the distance

rank 2'6. This distance rank roughly corresponds to an average travel time of two hours.
In all plots, the green curve indicates the average travel time in the ‘complete’ network.

The yellow curve specifies the average travel time in the ‘original’ and ‘partial’ network,
respectively. The plots show that using only the ‘original’ footpath leads to travel times
that surpass optimal travel times by several hours. Travel times in the ‘partial’ network
are already closer to the optimum, at least during the day. However, in the evening and
during the night, unrestricted walking still improves the travel time significantly. The median
difference in travel time between the ‘original’ and ‘partial’ is up to two hours during the
night for the Germany network (as shown by the blue curve).

The importance of unrestricted walking becomes even more noticeable when looking
at the percentage of queries where restricted walking leads to increased travel times. The
dark red dotted curve depicts the percentage of queries that have an increased travel time
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Figure 5 Comparison of the optimal travel times throughout the day for the three variants of the
Switzerland network. The upper plot compares the ‘original’ and ‘complete’ instances, the lower plot
compares the ‘partial’ and ‘complete’ instances. We evaluated 100 random queries with distance
rank 2'6 which correspond to an average travel time of 2 hours. The average of the travel time in
the ‘complete’ instance is depicted in green. The blue curve depicts the median of the travel time
difference between the two compared instances, the light blue shaded area depicts the interquartile
range (IQR). The dark red dotted curve (using the right y-axis) indicates the percentage of queries
where the ‘original’ respectively ‘partial’ travel time is suboptimal. The light red dotted curve (using
the right y-axis) indicates the percentage of queries where travel time difference is more than 1 hour.

compared to the ‘optimal’ instance. Using only the ‘original’ footpath leads to more then 75%
of the queries having an increased travel time, even during the day. For the ‘partial’ instances,
still about 25% of the queries have an increased travel time. Our results show that there
exists even a significant percentage of queries, where the difference in travel time is more
then on hour. This percentage is depicted by the light red dotted curve. For the Germany
network, using ‘partial’ footpath leads to about one eighth of the queries having a travel
time that surpasses the optimal travel time by more than one hour. Overall, our results
demonstrate that unrestricted walking has a significant impact on the travel times.
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6 Conclusion

In this work we had an in-depth look into public transit routing. We started with the
observation that most public transit algorithms neglect problems arising from unrestricted
walking. Thus, we provide a novel profile algorithm that works on arbitrary footpath
graphs. Accompanying our algorithmic results we created and published a first benchmark
instance combining a public transit network with an unrestricted footpath graph. Finally,
we conducted an extensive experimental study. While being applicable to networks that
could not be handled before, our algorithm still achieves running times comparable to a
state-of-the-art technique. Furthermore, we demonstrated that walking has a significant
impact on travel times. Compared to conventional models, travel times are reduced by hours
when allowing unrestricted walking. Thus walking should always be considered in public
transit routing.
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