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—— Abstract

In this paper we deal with three consecutive planning stages in public transportation: Line
planning (including line pool generation), timetabling, and vehicle scheduling. These three steps
are traditionally performed one after another in a sequential way often leading to high costs in
the (last) vehicle scheduling stage. In this paper we propose three different ways to “look ahead”,
i.e., to include aspects of vehicle scheduling already earlier in the sequential process: an adapted
line pool generation algorithm, a new cost structure for line planning, and a reordering of the
sequential planning stages. We analyze these enhancements experimentally and show that they
can be used to decrease the costs significantly.
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1  Sequential versus integrated planning

Planning a public transport supply can have many goals. Two major goals are usually
minimizing the perceived travel times of passengers as well as the costs that incur to the
public transportation company. Motivated by this we consider a bi-objective model for
railway or bus planning with these two objectives.

Traditionally, public transportation planning is done in sequential stages. The first
stage after the design of a network, that is spanned by stops (or stations) and their direct
connections (edges or tracks), is line planning. In this stage, first a set of possible lines,
the line pool, has to be generated on the network. Research towards the effect of line pool
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generation, and an algorithm to find suitable line pools is presented in [7]. In the line planning
problem one then chooses a feasible subset of lines from the line pool, i.e., a set of lines such
that all passengers can be transported. See [21] for an overview. With a given line plan one
can create an event-activity network which constitutes the input for the timetabling stage.
Periodic timetabling consists of deciding when and how fast vehicles (trains or buses) should
drive along the edges and how long they should wait at stops (or stations). The problem is
modeled as a periodic event scheduling problem (PESP), see [23]. Other timetabling models
can be found in [10]. After a timetable is chosen, vehicle schedules are planned, determining
which vehicle should drive which route such that all lines are operated according to their
timetables. A survey on wvehicle scheduling is given in [4]. Finally, crew scheduling and
rostering are planning stages to be performed after the vehicle schedules are found.

Obviously, proceeding sequentially does not need to lead to an optimal solution as there
are dependencies between the different subproblems. It would hence be beneficial to solve the
entire problem in an integrated system. Since this is computationally too complex, heuristic
approaches have been proposed as in [22].

Our contribution. We consider line planning, timetabling and vehicle scheduling in con-
junction with each other. To this end we formally define what an integrated transport
supply (LTS-plan), consisting of a line plan, a timetable, and a vehicle schedule, is and
how it can be evaluated. We propose three enhancements of the traditional approach which
consider the vehicle scheduling costs already in the line planning stage. Finally, we evaluate
them experimentally and show that our proposed enhancements lead to LTS-plans with
significantly smaller costs than the traditional sequential approach.

2 A bi-objective model for integrated planning in public
transportation

In this section we formally describe what a feasible transport supply (LTS-plan), consisting
of a line plan (L), a timetable (T), and a vehicle schedule (S), is and how its quality can
be evaluated. Note that for the single stages, i.e., for a line plan, for a timetable, and for a
vehicle schedule, this has been extensively discussed in the literature. However, it is in the
literature usually assumed that an event-activity network is already known for timetabling
and a set of trips is already given for vehicle scheduling. Since we plan from scratch, we also
have to describe the intermediate steps, i.e., how to build the event-activity network and how
to build the set of trips. In order to keep the timetabling step tractable, we restrict ourselves
in this paper to periodic LT'S-plans for which all lines are operated with the same frequency.
As input for the bi-objective model we are given:
A public transport network PTN= (V, E) counsisting of a set of stops V and direct
connections E between them.
For every node v € V:
lower and upper bounds LY < U»% for the time vehicles wait at stop v,
lower and upper bounds L{e"s < Ulrans for the time passengers need to transfer
between two vehicles at the same stop v.
We furthermore need for every pair v,u € V' the time(v, u) a vehicle needs if it drives
directly from stop v to stop wu.
For every edge e = (v1,v2) € E:
a length (in kilometers) length,,
lower and upper edge frequency bounds fmin < fmax,
lower and upper bounds on the travel times along the edge, i.e., Ldrve < ydrive,
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An OD-matrix W with entries Wy, for each pair of stops u,v € V. The OD-matrix is
assumed to be consistent with the lower edge frequencies, i.e., there exist paths P, for
every OD-pair (u,v) through the PTN such that for every edge e we have:

Z Wu’uécap'fénin

u,VEV : e€E Py,

for Cap being the capacity of the (identical) vehicles, i.e., each passenger can be trans-
ported,
a period length T, and the number of periods p to be considered for planning
a penalty pen for transfers,
a minimal turnaround time for vehicles Ly,
cost parameters
c1 costs per minute for a vehicle driving with passengers,
co costs per kilometer for a vehicle driving with passengers,
c3 costs per vehicle for the whole planning horizon (p periods),
¢4 costs per minute for a vehicle driving empty (i.e., without passengers),
¢5 costs per kilometer for a vehicle driving empty (i.e., without passengers).

We then look for an LTS-plan, which consists of a line plan (L), a periodic timetable (T)
and a vehicle schedule (S) which are together feasible. These objects are defined as follows:

Line plan L
A line is a path through the PTN. A line plan is a set of lines £, which is feasible if
frm<leLreel}| < fo, (1)

i.e., if each edge of the PTN is covered by the required number of lines. We assume that
lines are symmetric, i.e., they are operated in both directions. In our setting all lines are
operated with a frequency of 1.

Timetable T

Given a set of lines, a timetable assigns a time to every departure and arrival of every line at
its stops. These times are then repeated periodically. In order to model a timetable usually
event-activity networks A" = (€, .A) are used (see, e.g., [11, 12, 14, 17, 18]). The set of events
& consists of all departures and all arrivals of all lines at all stops, and the set A connects
these events by driving, waiting and transfer activities. For each activity, the number of
passengers using this activity is usually given as input for timetabling. (It is subject of
ongoing research how this can be relaxed, see [3, 6, 19, 20]). The lower and upper bounds
L, and U, are set as

Ldrive and Udrive if q is a driving activity on edge e € E,

LY and UY4 if g is a waiting activity in stop v € V, and as

Lirans and ULTe™s if q is a transfer activity in stop v € V.
A timetable 7 is an assignment of times m; € Z to every event j € £. It is feasible if it
respects the lower and upper bounds for all its activities, i.e., if

(mj —mi —L,) modT €[0,U, — L,] for all a = (4, j) € A. (2)

The objective function in timetabling minimizes the total slack times. If all passengers use
the paths they have been assigned to in the event-activity network this is equivalent to
minimizing the sum of passengers’ travel times.
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Vehicle schedule S

Given a set of lines and a timetable, a vehicle schedule determines the number of vehicles
and the exact routes of the vehicles for operating the timetable. To this end, we use the line
plan and the timetable to construct a set of trips 7 where each trip

o start _.end ~start ~end
t= (I, vy yUp 5 Ty ) EeT

is specified by a line I; together with its first and last stop v§**"* and v§™? and its corresponding
start time 7519 and end time 7§"¢. These times can be taken from the periodic timetable,
but we have to consider the real time (e.g. in minutes after midnight) by adding the correct
multiple of the period length. The end time 7{"? of a line at its final stop is the arrival
time at this stop plus some minutes allowing passengers to deboard. Analogously, the start
time 779" of a line at a stop is the time when it arrives at this stop, i.e., a bit earlier than
its departure time there. For every line [ we receive two trips starting per period, namely
one forward and one backward trip. A route of a vehicle is given by its sequence of trips

r = (t1,...,t;) such that

~start ~end . end , start L
(Feyt — ) > time(vg", vft") forall i =1,... .k — 1.

A set of vehicle routes R is feasible if all its routes are feasible and if each trip is contained
in exactly one route.

Evaluating an LTS-plan

An LTS-plan is specified by a line plan, a corresponding timetable and a corresponding
vehicle schedule, i.e., it is specified by the tuple (£, 7, R). Given a feasible LT'S-plan we use
the two most common evaluation criteria: the sum of passengers’ travel times (including a
penalty for every transfer) and the costs. These objectives are formally defined below:

Costs. The costs of an LTS-plan depend mainly on the costs of the corresponding vehicle
schedule and thus on the distance which is driven, the total duration of driving and the
number of required vehicles. For the distance and the duration of the trips we distinguish if
the vehicle drives on a trip which can be used by passengers (here called full ride) or if the
vehicle drives empty between two consecutive trips ¢;,t;11 in the same vehicle route (here
called an empty ride) as the costs can be different for full and empty rides.

As the vehicle schedule in general is aperiodic, we consider the costs for a whole planning
horizon (e.g. a day) instead of a planning period by rolling out the periodic line plan and
timetable for a fixed time span which is given by the number of periods p it covers. Note that
we have to take special care at the beginning and the end of the roll-out period, regarding
lines traversing the period boundaries. For simplicity reasons we do not go into detail here
how this is handled explicitly.

Before defining the costs, we introduce the duration and the length of a line and an empty
ride. Let a line be defined as a sequence of nodes and edges.

The duration of a line can be determined after the timetable is known. We get

dur = Y (L& 4 (m - m — LI mod T))

a:(iaj)eAdrive:
a belongs to e€l

- > (LYt (= — LY mod T)),

a=(%,j)EAwait:
a belongs to vel
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i.e., all driving times along edges and waiting times at stops are added. When a heuristic
approach to timetabling is used where the duration of all driving and waiting activities is set
to their respective lower bounds, as done here, the duration of a line simplifies to

dur; = Z Lgri”e + Z Lwatt, (3)

e€l veEl

The length of a line is computed as sum over all edge lengths

length, = Z length,

e€l

and is independent from the timetable. The duration of an empty ride between two trips

_ start ,end ~start ~end _ start ,end ~start ~end
tr = (lg,, v vgr e, wgl ot wgte) and to = (Iy,, vil®™" vr®, wte™ 7gt¢) can be computed as
d __ ~start _ ~end
Uty o = Ty, Ty o

i.e., the time between the end of ¢; and the start of ¢o.
The length of the empty ride is defined as

length,, ,, = SP(Ufde pitart),

» Yo

i.e., we assume that a vehicle takes the shortest path from the last station vtel”d of trip 1 to
start

the first station vy;*"* of trip t,.

Now we can define the following cost components. Note that we have to count the full
duration and length of each line twice as two trips belong to every line (one in forward and
one in backward direction).

full duration, i.e., time it takes to cover all trips (full rides):

durfun = Z 2. durl P,
lel

full distance, i.e., distance driven along lines:

lengthe,;; = Z 2 -length, - p,
el

number of vehicles: veh = |R|,
empty duration, i.e., time of empty rides between trips:

kr—1

durempty = E E durg, 4.,

r=(t1,...,tp, )ER =1

empty distance, i.e., distance of empty rides between trips:

kyr—1
lengthe,, ¢, = Z Z length;, ;.. -
r=(t1,...,tk, )ER =1

In total we get

g (L, m, R) = c1 - durgn + ca - lengthgy; + ¢z - veh + ¢4 - dUTempty + €5 * length,,, - (4)
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Travel times. For determining the travel time we follow the traditional approach of fixing
the passengers’ routes when constructing the event-activity network, assuming that the
passengers use these assigned paths. In the event-activity network, passengers are routed on
a shortest path according to the lower bounds on the activities and assigned as weights ¢, to
the activities a € A. Additionally to the travel time, we consider a penalty pen for every
transfer. The total perceived travel time on these fixed paths can then be determined as

gtme(L,m,R) = Z Co Lo+ (mj—m — Ly modT))+ Z Cq - PeN. (5)
a=(i,j)€A a€Airans

Note that the travel time does not depend on the vehicle schedule.

The two objective functions we have sketched here are common in the literature when
broken down to one single planning stage:

Nearly all papers dealing with vehicle scheduling minimize a combination of empty

kilometers and number of vehicles needed, i.e., veh + a - length This is equivalent to

empty *
g%t if the duration of full and empty rides are weighted equally ;)nyd a is chosen as a = 2—;
since the duration and the length of the lines are all known due to the timetable being fixed.
In timetabling, the goal is usually to minimize the sum of (perceived) travel times for
the passengers. Since it is computationally very difficult, most papers make the simplifying
assumption that the number of travelers on every activity in the event-activity network is
known and fixed, as it is done here.

Pareto optimal LTS-plans. We call a feasible LTS-plan (£, 7, R) Pareto optimal if there
does not exist another LTS-plan (L', 7', R’) which satisfies

gCOSt(£/77TI,R/) < gCOSt(ﬂ,W,R), gtime(ﬁl,ﬂ/,Rl) Sgtime(ﬁ,ﬂ',R)

with one of the two inequalities being strict.

3 Traditional sequential approach

The traditional approach is a combination of algorithms which have been described in the
literature. It goes through line planning, timetabling, and vehicle scheduling sequentially
and finds (close to) optimal solutions in each of the steps.

Step L: Line planning. There exists a variety of algorithms for line planning, see [21]. Some
of them assume a line pool to be given, others determine the lines during their execution
([2])- If a line pool is required, a line pool generation procedure can be used (see [7] and
references therein).

In our experiments: We use the cost model for a fixed line pool which is either given
(dataset Bahn) or generated by [7] (dataset Grid).

Step T: Timetabling. Solving the integer programming formulations is too time-consuming

for most instances, hence often heuristics ([9, 15, 16]) are used.
In our experiments: We use the fast MATCH heuristic [16].

Step S: Vehicle scheduling. There exists a variety of algorithms, see [4].

In our experiments: We use the flow-based model of [4].

We remark that even if all three steps are solved optimally, the resulting LTS-plan need
not be Pareto optimal. This is due to the sequential approach: the line plan is the basis
for the timetable and the vehicle schedule, but optimal lines cannot be determined without
knowing the optimal timetable and the optimal vehicle schedule.
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4 Look-ahead enhancements

As already mentioned, the vehicle schedules have a large impact on the costs of an LTS-plan.

Since the vehicle schedules are determined only in the last of the three considered planning
stages, the costs of an LTS-plan determined by the sequential approach are usually not
minimal. We propose three enhancements in order to receive LTS-plans with better costs
than in the sequential approach. We nevertheless also evaluate the perceived travel times for
the passengers.

4.1 Using new costs in the line planning step

When evaluating the costs of an LTS-plan, (4) shows that the costs are determined to a large
amount by the number of vehicles needed. Even if as few lines as possible are established it
is not clear how many vehicles are needed in the end and how many empty kilometers are
necessary.

In the traditional approach the costs of a line are usually assumed to be proportional to
its length with some fixed costs to be added, i.e.,

cost; = costax + ¢ - length, (6)

where costax € IRy and ¢ € IRy is a scaling factor.

Here, we now try to compute the costs of a line as closely as possible to the costs it may
have later in the evaluation of the LTS-plan. The idea is to approximate the costs per line
by distributing the costs specified in (4) to the lines and computing the costs per period, i.e.,
we want to get

get ~ E cost; - p.
lel

For full duration and distance this can be done straightforwardly, as we only need to know
the number of planning periods which are considered in total as the length and duration of a
line does not change between periods. Under our assumptions, we know the duration of a
line beforehand by (3). The number of vehicles needed, the empty distance and the empty
duration are in general more difficult to approximate as they can differ between the planning
periods due to an aperiodic vehicle schedule. As upper bound we use a very simple vehicle
schedule where all vehicles periodically cover only one line and its backwards direction. This
gives us that the empty distance is always zero and can be neglected. The empty duration of
a line can be computed as

T
empty duration after driving on line [ = 5 (dur; mod 5),

and for a given minimal turnaround time L,;, of a vehicle, the number of vehicles needed to
serve a line and its backwards direction can be approximated by

#vehicles needed for line [ and backwards direction = [2 - (dur; + Luin)/T] -

Summarizing, we can approximate the line costs as:

d Lin T T
cost; = 2'01'durl+2-02'1engthl+cf3- {2 . url—;" +2-c4- (2 —dur; mod 2) . (1)
p
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4.2 Line pool generation with look-ahead

The next idea is to take account of good vehicle schedules already in the very first step: we
construct the lines in the line pool in a way such that no empty kilometers are needed and
that the resulting lines are likely to be operated with a small number of vehicles.

To create a line pool which already considers the vehicle routing aspect, we modified the
line pool generation algorithm described in [7]. For a given minimal turnaround time Ly,
of a vehicle and a maximal allowed buffer time o we ensure that the duration dur; as defined
in (3) of a line { satisfies

T

— — Lpin — a < dur; mod

<
) =

— Luin. (8)

v N
oS

Here, the duration of a line is computed according to the minimal driving time on edges
and the minimal waiting time in stops. Equation (8) ensures that at the end of a trip, i.e.,
the driving of a line, the vehicle has enough time to start the trip belonging to the backwards
direction of the same line and has to wait no more than « minutes to do so. Thus, we
get that the round-trip of forward and backward direction together differs from an integer
multiple of the period length by at most 2 - «.

4.3 Vehicle scheduling first

In our last suggestion we propose to switch Step T and Step S in the sequential approach,
i.e., to find (preliminary) vehicle schedules directly after the line planning phase. This is
particularly interesting if the line plan contains lines which can be operated efficiently by
one vehicle, i.e., lines with small «, since it ensures that the timetable will not destroy this
property. This is done as follows:

Step L: This step is done as in the traditional approach.

S-first: For every line [ we introduce turnaround activities in the periodic event-activity
network between the last arrival event of the line in forward direction and the first
departure event of the line in backward direction, and vice versa. The lower bound for
these activities is set to Ly, and the upper bound to Ly + 2 - . These activities ensure
that the timetable to be constructed in the next step allows the vehicle schedule we want,
namely that only one vehicle operates the line.

Step T: We then proceed with timetabling as in the traditional approach but respecting
the turnaround activities such that the resulting timetable does not destroy the desired
vehicle schedule.

Step S: After timetabling we perform an additional vehicle scheduling step as in the classic
approach: We delete the turnaround activities and proceed with vehicle scheduling as
usual. Nevertheless, it is likely, that many of the vehicle routes already determined in
S-first will be found again.

Note that S-first can be performed very efficiently in the number of lines in the line
concept. We furthermore remark that for a line plan in which all lines have a buffer time
a = 0, the Step S can be omitted since having line-pure vehicle schedules is an optimal
solution in such a case. Even if not all lines have zero buffer times, fixing a timetable in Step
T with respecting the turnaround activities often already determines the optimal vehicle
schedule. This means that vehicle scheduling in Step S is often redundant, which was not
only observable in most cases of our experiments, but is also illustrated more precisely in
Example 1 of the appendix.
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5 Experiments

We compared the traditional approach for finding an LTS-plan against the enhancements

proposed using LinTim, a software framework for public transport optimization [1, 8]. We

use the following parameters to describe the different combinations of our enhancements.

1. Using the new costs (7) in line planning (Step L) as proposed in Section 4.1 is denoted
by new cost, whereas traditional costs are denoted as normal cost.

2. The second option, described in Section 4.2 is to construct a new pool (new pool), whereas
normal pool uses some given (standard) pool for line planning (Step L). Combining
both pools has been done in a third option (combined pool).

3. The decision of computing the timetable or the vehicle schedules first (so using Step
S-first from Section 4.3), is denoted by TT first and VS first respectively.

As test instances we used two significantly different datasets.

Dataset Grid: A grid graph of 5 by 5 nodes and 40 edges, which is a model for a bus network
constructed in [5]. In this example, we have T'= 20 and we used p = 24 periods. The
normal pool for this instance has been calculated with the tree based heuristic from [7].

Dataset Bahn: This is a close-to-real world instance which consists of 250 stations and 326
edges describing the German ICE network. The period length is T" = 60, we computed for
p = 32 periods in order to achieve a reasonable time horizon for vehicle scheduling. Note
that p is even larger in practical railway applications. As normal pool we used a pool
of Deutsche Bahn. For the computations we used a standard notebook with i3-2350M
processor and 4 GB of RAM. The computation time for one data point of the Grid dataset
did not exceed 3 min, while computing a solution for the Bahn dataset took up to 30
minutes.

5.1 Dataset Grid

Figure 1 shows 12 solutions, one for every combination of our parameters. These are graphed
according to travel times (x-axis) and their costs (y-axis). We computed the costs and the
travel times of the LTS-plans as described in (4) and in (5). We observe the following:

The solution of the traditional approach (circle with grey marker, left side filled) is

dominated by the solution obtained when replacing normal pool by combined pool.

Using new cost (black markers) instead of normal cost (grey markers) always decreases

the costs.

Using combined pool always has better costs than using new pool or normal pool. The

travel times sometimes decrease and sometimes increase.

The option TT first yields better travel times compared to VS first while VS first

always has lower costs than TT first.

There are five non-dominated solutions, four of them computed by using new cost.

Whenever new pool or combined pool was used together with new cost the resulting

solution was non-dominated.

The new pool to be generated depends on the parameter «. In Figure 1, a = 3 was used.
We also tested the parameters o = 2,3, ..., 10 for all combinations. The result is depicted in
Figure 2. Note that o > 10 implies no restrictions on the line lengths.

The basic findings described for o = 3 remain valid also for other line pools generated:
Solutions generated with new cost have lower costs while solutions generated with normal
cost have smaller travel times. The leftmost solutions correspond to TT first and bottom-
most solutions correspond to VS first. In fact, for every single LTS-plan that has been
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computed, VS first yielded a cheaper solution than TT first while the latter resulted in a
solution with smaller travel time than VS first. Finally, none of the solutions computed by
using normal pool is non-dominated; the Pareto front (i.e., the non-dominated solutions)
consists mostly of squares, i.e., solutions generated with combined pool. Nevertheless, we
see that the quality of the solution obtained depends significantly on the choice of the
parameter «. This is investigated in Figure 3.

First of all, we again see that for every fixed a new cost yields better solutions than
normal cost and that the combined pool always yields lower costs than new pool. If all
three look-ahead enhancements new cost, combined pool and VS first are applied, there
is a trend of increasing costs once « increases, corresponding to the conjecture that cheap
LTS-plans can be found by a small choice of a. For & = 0 and « = 1 the restrictions on the
line length implied by equation 8 is in this example of a grid graph so strict that no feasible
solution is possible.

5.2 Dataset Bahn

Applying the implemented enhancements to Bahn with the parameter choice « = 10 (Note
that o = 3 for T' = 20 in dataset Grid is similar to ov = 10 for 7' = 60 in dataset Bahn.)
yields the results depicted in Figure 4.

The remarkable thing observable in this scenario is that new and combined pool lead to
drastically vehicle cost reductions of more than 40%, whereas the travel time increases by up
to 20%. Next to the fact of combined pool leading to better costs also the behaviour of TT
first against VS first remains similar to the Grid instance. One can see that VS first
saves costs between 1 and 5% and TT first decreases the travel time by 1 to 3 %. Since
the size of the generated line pool had to be chosen small in comparison to the instance size
(because of runtime and memory limitations), also the number of feasible line concepts is
comparable small. Therefore, this example did not show any impact of using normal or new
cost to the vehicle scheduling costs.

6 Relation to the Eigenmodel

In [22], it is proposed to use different paths through the Eigenmodel (depicted in Figure 5
in the appendix) when optimizing an LTS-plan. In this model, the traditional approach
(normal cost, normal pool, TT first) has been depicted as the blue path starting with
line planning, then finding a timetable and finally a vehicle schedule. In this paper we
compared this traditional approach to two other paths:

The approach (normal cost, normal pool, VS first) corresponds to the red path in
which first a line planning step is performed, then vehicle schedules are determined and
finally a timetable. We have seen that this approach leads to significantly better costs
but to a higher travel time.

The approach (new cost, new pool, VS first) can be interpreted as the green path
in which we start with vehicle scheduling (by generating a line pool with small « only
containing lines with low vehicle scheduling costs), choose a line plan out of this pool and
finally determine a timetable which respects the preferred vehicle schedules. In Figure 1
we see that this approach generated the solution with lowest costs. Neglegting the tiny
difference between normal and new cost this also holds for the Bahn instance.
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7 Outlook and further research

Summarizing our experiments, all three look-ahead enhancements lead in the majority of
cases to a cheaper LTS-plan. Even choosing only one of the approaches will most likely
lead to this goal. It is remarkable that the implementation of the proposed algorithmic
ideas even performs very well on the Bahn dataset, that has the size and structure of a real
world instance. Since exact approaches are far away from solving data sets of this size, the
look-ahead heuristic proves itself useful for revealing the strength of considering integrated
public transportation optimization.

The presented look-ahead approaches are designed to find a cost-optimized LTS-plan.
One could also try to find heuristic approaches focussing on finding a passenger-convenient
LTS-plan. A possible step towards this direction would be to choose a different line planning
procedure, in order to optimize not with respect to the costs, but for example with respect
to the number of direct travelers in the network.

Further research could also be carried out regarding exact approaches of integrated public
transportation planning. It would be interesting to investigate different ways of decomposing
the integrated problem, in particular, if also routing decisions are included. First results are
under research, see [13].
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A Appendix
The following example shows that it is unlikely to find a better vehicle schedule in Step S.

» Example 1. Consider two lines [; and ls such that line /1 ends at the station that l5 starts
at as shown in Figure 6.

Let the duration of the lines be dur;, = Z+e¢ and dur;, = £ —e such that dur;, +dur,, = T
Then using S-first with Ly,;, = 0 we will need two vehicles vehicles to serve line [; and an
additional vehicle to serve line ls, as the following computation shows. The corresponding
vehicle schedule can be seen in Figure 7.

{2-(2%)} _ [T+T2-ﬂ ,

F.(%%W _ [T—Tz-ﬂ _,
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Figure 5 The paths investigated in the Eigenmodel.

Figure 6 Lines overlapping at station wu.

Figure 7 Vehicle schedule derived by S-first.
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Figure 8 Optimal vehicle schedule.

However, both lines could also be served consecutively by the same vehicle, leading to a
total of two instead of three vehicles as can be seen in Figure 8.

F.(§+e+§—ﬂ _ P'TW —9.

T T

Nevertheless, it is very unlikely that this vehicle schedule is possible after the timetabling
stage T. Consider an OD-pair from v to w. These passengers have to transfer at station u
with a minimal transfer time of ¢ > 0. Then, during the timetabling stage (Step T), the
lines will be synchronized such that the passengers can transfer at station u. Therefore, the
vehicle schedule shown in Figure 8 will also need three vehicles:

F'(§+e+§e+e’)w B PTH.GW .

T T

This shows that the vehicle schedule computed in Step S-first is already optimal as the
vehicle schedule shown in Figure 7 is still feasible.
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