
Improved Oracles for Time-Dependent Road
Networks∗†

Spyros Kontogiannis1, Georgia Papastavrou2,
Andreas Paraskevopoulos3, Dorothea Wagner4, and
Christos Zaroliagis5

1 Department of Comp. Science & Engineering, University of Ioannina,
Ioannina, Greece; and
Computer Technology Institute and Press “Diophantus”, Patras, Greece
kontog@cse.uoi.gr

2 Department of Comp. Science & Engineering, University of Ioannina,
Ioannina, Greece; and
Computer Technology Institute and Press “Diophantus”, Patras, Greece
gioulycs@gmail.com

3 Department of Comp. Eng. & Informatics, University of Patras, Patras,
Greece; and
Computer Technology Institute and Press “Diophantus”, Patras, Greece
paraskevop@ceid.upatras.gr

4 Karlsruhe Institute of Technology, Karlsruhe, Germany
dorothea.wagner@kit.edu

5 Department of Comp. Eng. & Informatics, University of Patras, Patras,
Greece; and
Computer Technology Institute and Press “Diophantus”, Patras, Greece
zaro@ceid.upatras.gr

Abstract
A novel landmark-based oracle (CFLAT) is presented, which provides earliest-arrival-time route
plans in time-dependent road networks. To our knowledge, this is the first oracle that prepro-
cesses combinatorial structures (collections of time-stamped min-travel-time-path trees) rather
than travel-time functions. The preprocessed data structure is exploited by a new query algo-
rithm (CFCA) which also computes (and pays for it) the actual connecting path that preserves
the theoretical approximation guarantees. To make it practical and tackle the main burden of
landmark-based oracles (the large preprocessing requirements), CFLAT is extensively engineered.
A thorough experimental evaluation on two real-world benchmark instances shows that CFLAT
achieves a significant improvement on preprocessing, approximation guarantees and query-times,
in comparison to previous landmark-based oracles. It also achieves competitive query-time per-
formance compared to state-of-art speedup heuristics for time-dependent road networks, whose
query-times in most cases do not account for path construction.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Time-dependent shortest paths, FIFO property, Distance oracles

Digital Object Identifier 10.4230/OASIcs.ATMOS.2017.4

∗ A full version of the paper is available at https://arxiv.org/abs/1704.08445.
† Partially supported by EU FP7/2007-2013 under grant agreements no. 609026 (project MOVESMART),

no. 621133 (project HoPE), and by DFG grant WA 654/23-1 within FOR 2083.

© Spyros Kontogiannis, Georgia Papastavrou, Andreas Paraskevopoulos, Dorothea Wagner, and
Christos Zaroliagis;
licensed under Creative Commons License CC-BY

17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2017).
Editors: Gianlorenzo D’Angelo and Twan Dollevoet; Article No. 4; pp. 4:1–4:17

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2017.4
https://arxiv.org/abs/1704.08445
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

4:2 Improved Oracles for Time-Dependent Road Networks

1 Introduction

The surge for efficient solutions (min-cost paths) in networks with temporal characteristics is
a highly challenging research goal, due to both the large-scale and the time-varying nature of
the underlying arc-cost metric. Along this line, the development of practical algorithms for
providing earliest-arrival-time route plans in large-scale road networks accompanied with a
time-dependent arc-travel-time metric (known as Time-Dependent Route Planning – TDRP),
has received a lot of attention in the last decade. TDRP is a hard challenge, both theoretically
and in practice. For certain tractable cases, there is an analogue of Dijkstra’s algorithm
(called Time-Dependent Dijkstra – TDD) to solve the problem in quasi-linear time, which is
already too much for a route-planning application supporting real-time query responses in
large-scale road networks. Time-dependence is also by itself a quite important degree of
complexity, both in space and in query-time requirements. These two challenges have been
tackled in the past either by oracles, or by speedup heuristics. An oracle is a preprocessed
and succinctly stored data structure encoding min-cost path information for carefully selected
pairs of vertices. This data structure is accompanied with a query algorithm, which responds
to arbitrary queries in time provably better than the corresponding Dijkstra-time and, if
approximate solutions are also an option, with a provable approximation guarantee (stretch).
Analogously, a speedup heuristic preprocesses arc-cost metrics which are custom-tailored to
road networks, and then uses a query algorithm for responding to (exact or approximate)
min-cost path queries in time that is in practice several orders of magnitude faster than the
running time of Dijkstra’s algorithm.

Modeling Instances, Problem Statement & Related Work. We model road network
instances by directed graphs in which every arc a = uv depicts an uninterrupted portion
of a road segment and is accompanied by an arc-travel-time function D[a] determining the
time to traverse a, given the departure-time from its tail u. These functions are assumed
to be continuous, piecewise-linear (pwl), periodic with one-day period, and are succinctly
represented as sequences of consecutive breakpoints, i.e., (departure-time,arc-travel-time)
pairs. This model is typical in the literature when we seek for route plans for private cars (e.g.,
[8, 9, 5, 20, 6, 2, 11, 21, 18, 17, 14, 3, 15]). For an arbitrary pair (o, d) of origin-destination
points, there are two main algorithmic challenges:
(i) TDRP (o, d, to) concerns the computation of a minimum travel-time od-path for a given

departure-time to, i.e., the evaluation of the minimum-travel-time function D[o, d](to)
from o to d;

(ii) TDRP (o, d) concerns the construction and succinct representation of the entire function
D[o, d], for all possible departure-times (e.g., for future instantaneous evaluations).

A crucial property that makes TDRP (o, d, to) tractable is the FIFO property, according to
which delaying the departure-time from the tail of an arc cannot possibly cause an earlier
arrival at its head (i.e., the arcs behave as FIFO queues). For FIFO-abiding instances, a
time-dependent variant of Dijkstra’s algorithm (TDD) running in quasi-linear time is known
[10, 22]. Without the FIFO property the problem can become extremely hard, depending
on the adopted waiting policy at the vertices of the network [22]. As for TDRP (o, d),
this is known to be hard even when the FIFO property holds [11]. Fortunately, if (good)
upper-approximations ∆[o, d] of the minimum-travel-time functions D[o, d] are an option,
then there exist polynomial-time and space-efficient one-to-one [4, 11, 21], or one-to-all
[15, 17, 18] approximation algorithms.

S. Kontogiannis, G. Papastavrou, A. Paraskevopoulos, D. Wagner, and C. Zaroliagis 4:3

As a quality measure, independent of the query at hand, the relative error is typically
used, i.e., the maximum absolute error (MAE) divided by the optimal travel-time; the MAE
is the worst-case difference of an optimal travel-time from the proposed (path’s) travel-time.

Several speedup heuristics, with remarkable success in road networks possessing scalar
arc-cost metrics, have been extended to the case of TDRP. Some of them [6, 7, 20] are based
on (scalar) lower bounds of travel-time functions (e.g., free-flow travel-times) to orient the
search for a good route. TDCALT [6] yields reasonable query-response times for TDRP (o, d, to),
and TDSHARC [5] provides in reasonable time solutions to TDRP (o, d), even for continental-
size networks. TDCRP [3] is currently one of the most successful speedup heuristics, whose
main feature is customizability, i.e., almost real-time adaptation to changes in the arc-cost
metric. TCH [2] also achieves remarkable query times, both for TDRP (o, d, to) and for
TDRP (o, d), even for continental-size networks. All the above mentioned heuristics only
compute (estimations of) erarliest-arrival-times, excluding the overhead for constructing the
corresponding connecting path. The only heuristics that also account the path construction
in their query-times are provided in [23], with quite competitive performances.

In parallel to speedup heuristics, there has been a recent trend to provide oracles for
TDRP, with provable theoretical performance and approximation guarantees [17, 18], which
have been experimentally evaluated on real-world instances [14, 15]. The most successful
one, FLAT [15, 17], demonstrated in practice noticeable query times and relative errors, much
better than the theoretical guarantees, thus being competitive to the aforementioned speedup
heuristics, justifying further research on providing even better oracles for TDRP, for the
additional reason that oracles also ensure scalability.

Contributions and Outline. We present, engineer and experimentally evaluate CFLAT (Sec-
tion 2), a novel landmark-based oracle for TDRP whose objective is to tackle the main
burden of such oracles, the large preprocessing requirements, without compromising either
the preprocessing scalability, the competitiveness of query-times, or the stretch. To our
knowledge, CFLAT is the first oracle for time-dependent networks that preprocesses only time-
evolving combinatorial structures: it maintains a carefully selected collection of time-stamped
min-cost-path trees which can assure good approximation guarantees while minimizing the
required space. Computing (and storing) less during preprocessing, unavoidably leads to
more demanding work per query in real-time. Nevertheless, our novel query algorithm (CFCA)
manages to achieve better query times and significantly improved practical performance
compared to previous oracles, despite the fact that it accounts also the path construction1.
Our specific contributions are threefold:
(i) We propose CTRAP (Section 2.2.1), a novel approximation method which stores only

min-cost-path trees for carefully selected landmark vertices and sampled departure-
times. Apart from the obvious economy of space due to omitting certain attributes
(travel-time values), the novelty of this approach is that it exploits the fact that there
are significantly fewer changes in the combinatorial structure, than in the functional
description of the optimal solution. Moreover, we avoid multiple copies of the same
preprocessed information, by organizing the destinations from a landmark into groups
of (roughly) equidistant vertices, for which the common departure-times sequence is
stored only once. We then proceed with the landmark selection policies (Section 3)

1 Most of the existing oracles and speedup techniques in the literature only account for the estimation of a
good upper bound on the minimum travel-time for the query at hand. Nevertheless, for time-dependent
instances the path construction is not negligible, as is the case for static instances.

ATMOS 2017

4:4 Improved Oracles for Time-Dependent Road Networks

considered by CFLAT. Apart from the most successful ones in [15], we also consider new
policies based on the betweeness-centrality measure. Due to the significant reduction in
space requirements, we are able to select much larger landmark sets, which allows us to
showcase the full scalability of CFLAT in trading smoothly preprocessing requirements
with query performance (response time and stretch).

(ii) We propose CFCA(N) (Section 2.2.2), a novel query algorithm that exploits the prepro-
cessed information of CFLAT: For a query (o, d, to), it starts by growing a TDD ball from
o at time to, until the N closest landmarks are settled. It then marks a small subset of
relevant arcs, using the N settled landmarks as “attractors” that orient the discovery
of certain paths from d back to o. This is reminiscent of the ARCFLAGS algorithm for
static metrics [12], but the choice of the relevant arcs is done “on the fly”, since this
information is also time-dependent. In the final step, it continues growing the initial
TDD ball, but only within the subgraph of marked arcs, until d is settled within this
subgraph. CFCA(N) achieves the same theoretical approximation guarantee with the
query algorithm FCA(N) of FLAT; the observed stretch though, is in practice much better
than the one of FCA(N).

(iii) We conduct a thorough experimental evaluation of CFLAT (Section 3), on two well
established real-world instances, the urban area of Berlin and the national road network
of Germany. Our findings are perceptible. For Berlin, the preprocessing requirements
are 3.14sec and 0.7MB per landmark. Thus, if space is our primary concern, we can
preprocess 250 random landmarks in about 13min, consuming 0.17GiB space, whereas
the query performance (average query time and relative error) varies from 0.486msec
and 0.02418 (for N = 1), to 2.758msec and 0.00136 (for N = 6). With 16K landmarks
the query performance varies from 0.064msec and 0.00227 (for N = 1), to 0.214msec and
0.00019 (for N = 6). As for Germany, the preprocessing requirements are 26.052sec and
8.466MiB per landmark. For 4K landmarks, we achieve a query performance varying
from 0.585msec and 0.0079 (for N = 1), to 3.434msec and 0.00047 (for N = 6).
Details omitted due to space limitations as well as further experiments can be found in

the full version [16].

2 The CFLAT Oracle

A landmark-based oracle selects a set L ⊆ V of landmarks and preprocesses travel-time
information (summaries) between them and all (or some) reachable destinations. A query
algorithm exploits these summaries for responding to earliest-arrival-time queries (o, d, to),
from an origin o and departure-time to to a destination d, in time that is provably efficient
(e.g., sublinear in the size of the instance). The oracle is also accompanied with a theoretically
proved approximation guarantee (a.k.a. stretch) for the quality of the recommended routes.

In Section 2.2 we present our novel oracle, CFLAT. Before doing that, we recap in
Section 2.1 FLAT, an oracle upon which CFLAT builds and achieves remarkable improvements.

2.1 Recap of FLAT
FLAT is, to date, the most successful oracle for TDRP in road networks, and was originally
presented and analyzed in [17]. A variant of FLAT was implemented and experimentally
evaluated in [15]. In this work, we consider (and refer to as FLAT) to that variant. Its
main building block is the TRAP approximation method: Given a landmark `, the period
[0, T) is split into intervals of an (arbitrarily chosen) length 3, 200sec. The endpoints of
these intervals are used as sampled departure-times. The corresponding min-cost-path trees

S. Kontogiannis, G. Papastavrou, A. Paraskevopoulos, D. Wagner, and C. Zaroliagis 4:5

m
in

im
um

 tr
av

el
 ti

m
e

at
 v

m
in

im
um

 tr
av

el
 ti

m
e

at
 v

departure time from landmark
ts tf

Slope: Λmax
Slope: -Λmin

Slope: Λmax
Slope: -Λmin

Max Abs Error

tm tm

D[l,v](tf)

D[l,v](ts)

Dm[l,v](ts,tf)

Dm[l,v](ts,tf)

Figure 1 Upper-approximation δk[`, v] (thick-orange) and lower-approximation δk[`, v] (thick-
green) of D[`, v] (blue), within [ts, tf).

rooted at ` are computed, producing travel-time values for all reachable destinations v. For
each interval [ts, tf), an upper-approximating function δ is considered, which is the lower-
envelope of a line of max slope (Λmax) passing via 〈ts, D[`, v](ts)〉 and a line of min slope
(−Λmin) passing via 〈tf , D[`, v](tf)〉 (cf. Figure 1). Observe that δ considers an intermediate
breakpoint 〈tm, Dm〉, the intersection of the two lines, which is not the outcome of an actual
sampling. This intermediate breakpoint is only stored when v becomes deactivated (i.e.,
within this interval there is no need for further sample points, see next paragraph). A similar
lower-approximating function δ is considered, which is the upper-envelope of a min-slope line
passing via 〈ts, D[`, v](ts)〉 and a max-slope line passing via 〈tf , D[`, v](tf)〉.

A closed-form expression of the worst-case error (maximum absolute error – MAE) is
used to determine whether δ is a sufficient upper-approximation of D[`, v] within [ts, tf),
given a required approximation guarantee ε > 0. If this is the case, v becomes deactivated
for this subinterval, meaning that no more sampled trees will be of interest for v within it.
TRAP continues by choosing finer sampling intervals, first of length 1, 600sec, then 800sec,
400sec, etc., computing min-cost-path trees only for the new departure-time samples in each
round, until eventually there is no active destination for any of subintervals of the currently
chosen length. The concatenation of all the upper-approximations for the smallest active
subintervals of v is considered by TRAP as the required (1 + ε)-upper-approximation ∆[`, v]
(called a travel-time summary) of D[`, v] within [0, T). ∆[`, v] is stored as a sequence of pairs
of breakpoints, i.e., (departure-time,travel-time) pairs, in increasing order w.r.t. departure-
times. During the preprocessing, FLAT calls TRAP to produce travel-time summaries, from a
carefully selected set of landmark vertices towards all reachable destinations.

Upon a query (o, d, to) FLAT calls FCA(N)2, a query algorithm which grows a TDD ball from
o with departure-time to, until either d or the first N landmarks are settled. It then returns
either the exact route (when d is settled), or the best-of-N (w.r.t. the theoretical guarantees)
od-path passing via one of the N settled landmarks and being completed (from ` to d) by
exploiting the preprocessed summaries for d. Since FCA(N) does not need all summaries to

2 In [15] it was called FCA+, with a fixed number N = 6 of landmarks to settle.

ATMOS 2017

4:6 Improved Oracles for Time-Dependent Road Networks

be concurrently available in memory, the preprocessed data blocks representing travel-time
summaries of FLAT were compressed, and only summaries of the landmarks required per
query were decompressed on the fly. The zlib library was used for this purpose, leading to
a reduction of 10% in the required space. More details on FLAT are provided in [15, 17].

2.2 Description of CFLAT
We now present CFLAT, which can be considered as the combinatorial analogue of FLAT. At
a high level, CFLAT works as follows. In a preprocessing phase, it constructs and compactly
stores min-cost-path trees at carefully sampled departure-times, rooted at each landmark
` ∈ L. A query (o, d, to) is answered by first growing a TDD ball from o at time to, until either
d or a small number of landmarks are settled. In the latter case, starting from d, a suitably
small subgraph is constructed (consisting of certain paths going from d back to o, using the
settled landmarks as “attractors”), until a settled vertex of the initial TDD ball is reached.
Then, a continuation of growing the initial TDD ball on the resulted small subgraph returns
an od path that turns out to approximate very well the optimal od path.

2.2.1 The Approximation Method CTRAP and CFLAT Preprocessing
CTRAP computes and stores only min-cost-path trees at carefully sampled departure-times,
rather than actual breakpoints of the corresponding minimum-travel-time functions. The
algorithm’s pseudocode is provided in the full version of the paper [16]. We present here
only a sketch of the main steps as well as the key new insights, compared to TRAP. CFLAT
preprocessing consists simply in calling CTRAP(`, ε) for each landmark ` ∈ L.

procedure CTRAP(`, ε)
STEP 1: Keep sampling finer departure-times from [0, T), as in TRAP, until all destinations
achieve relative error less than ε and become inactive.
1.1: Store (pruned at inactive nodes) min-cost-path trees from `, for all departure-times.
1.2: Omit intermediate breakpoints.

STEP 2: Merge consecutive breakpoints with identical predecessors.

STEP 3: Avoid multiple copies of common departure-time sequences.

When executed from a landmark `, CTRAP works as follows: Step 1 resembles TRAP, the
only difference being that CTRAP keeps only the immediate predecessors (parents) per active
destination v in the sampled min-cost-path trees. In particular, a pair of sequences is created,
PRED[`, v] for predecessors and DEP [`, v] for the corresponding sampled departure-times,
per landmark-destination pair (`, v) ∈ L× V . Step 2 cleans up each pair of sequences, by
merging consecutive breakpoints for which the predecessor is the same. Step 3 organizes the
destinations from a landmark ` into groups with the same departure-times sequence, so that
multiple copies of the same sequence are avoided. In the rest of this section, we describe in
more detail the key new insights and algorithmic steps of CTRAP, compared to TRAP [15, 17].

Store min-cost-path trees. For each leg of ∆[`, v], we store pairs 〈t`, PRED[`, v](t`)〉 of
departure-times t` from ` and the predecessor of v in the corresponding min-cost-path tree
rooted at (`, t`), omitting the actual min-travel-time values D[`, v](t`). This modification
makes the oracle aware only of the min-cost-path-tree structures created during the repeated
sampling procedure. Additionally, rather than storing repeatedly the IDs of predecessors,

S. Kontogiannis, G. Papastavrou, A. Paraskevopoulos, D. Wagner, and C. Zaroliagis 4:7

which would be space consuming in networks with millions of vertices, we only store the
position of the corresponding arc in the list of incoming arcs to a vertex v. Since the maximum
in-degree in the road instances we have at our disposal is at most 7, we only need to consume
1 byte per storage for a predecessor. We could even consume 3 bits per predecessor, which
could then be packed into only two bytes containing also the corresponding departure-time
value (by an appropriate discretization of the departure-time values). We prefer not to
combine predecessors with departure-times in the same bit string, because we shall exploit
later the extensive repetition of identical sequences of departure-times, which nevertheless
would be lost for strings also containing the predecessors. It was observed in both benchmark
instances that about one half of all possible destinations per landmark ` appear to have a
unique predecessor throughout the entire period of departure-times, [0, T). For them we
store their unique predecessor only once. For the remaining destinations though, even with
only two possible predecessors, we have to store the entire sequence of predecessor-changes.

Omit intermediate breakpoints. TRAP computes, and explicitly stores, intermediate break-
points (tm, Dm) between consecutive sampled breakpoints of D[`, v], as the intersection
points of the two legs involved in the definition of δ[`, v](t) (cf. Figure 1), for each pair
(`, v) and those intervals where the MAE is sufficiently small and v becomes deactivated. In
CTRAP we choose not to keep these intermediate breakpoints and restrict the preprocessed
information only to the actual samples. We let the query algorithm deal with the missing
information, whenever needed. This way we avoid storing approximately 10M (for Berlin)
and 100M (for Germany) of intermediate breakpoints per landmark.

Merge sequences of breakpoints with identical predecessors. CTRAP’s next algorithmic
intervention is based on the observation that the vast majority of all destinations appear to
have on average 2 alternating predecessors throughout the entire period [0, T). To save space,
we choose to merge consecutive sampled breakpoints for v of the form 〈t`, x = PRED[`, v](t`)〉
and 〈t′`, x = PRED[`, v](t′`)〉, i.e., possessing the same predecessor. This leads to a reduction
in the number of breakpoints to store, but also has a negative influence on the similarities of
the departure-times sequences, and thus on the repetitions that we could avoid (see next
heuristic). However, there is still positive gain by applying both this heuristic and that for
avoiding multiple copies of departure-times sequences.

Avoid multiple copies of common departure-time sequences. CTRAP’s next key insight
is based on the fact that it is a repeated-sampling method which probes (at common
departure-times for all destinations) min-cost-path trees from a landmark `, starting from a
coarse-grained sampling towards more fine-grained samples of the entire period [0, T), until
the MAE guarantee is satisfied for all reachable destinations from `. A destination v may not
care for all these departure-times, because the value of MAE may be satisfied at an early stage
for it. This indeed depends on the actual minimum travel-time min{D[`, v](ts), D[`, v](tf)}
at the endpoints of each given subinterval [ts, tf). For each landmark-destination pair
(`, v), we store the sequences DEP [`, v] of necessary departure-times and PRED[`, v] of
the corresponding predecessors. The crucial observation is that destinations which are
(roughly) at the same distance from ` are anticipated to have the same sequence of sampled
departure-times, possibly differing only in their sequences of predecessors. It is clearly a
waste of space to store two identical sequences DEP [`, v] = DEP [`, u] more than once, even
if the corresponding sequences of predecessors differ. Thus, we store each departure-times
sequence as soon as it first appears for some destination v, and consider v as the representative

ATMOS 2017

4:8 Improved Oracles for Time-Dependent Road Networks

of all other destinations u for which DEP [`, u] = DEP [`, v]. For each non-representative
destination u, we store PRED[`, u] and the corresponding representative v. Our next
challenge is to efficiently compare departure-times sequences. To avoid a potential blow-up
of the preprocessing time, we do not compare them point-by-point. Instead, we assign to
every sampled departure-time t` two iuar3 chosen floating-point numbers w1(t`), w2(t`) from
the interval [1.0, 100.0]. Each destination u adds the two values w1(t`) · t` and w2(t`) · t`
to its own hash keys, i.e., H1[u] = H1[u] + w1(t`) · t` and H2[u] = H2[u] + w2(t`) · t`, only
when t` is indeed a necessary sample for u. Otherwise, the hash keys of u remain intact. At
the end of the sampling process, we sort lexicographically the hash pairs of all destinations,
in order to discover families of common departure-times sequences. We deduce that two
destinations possess the same sequence when both their hash pairs match, in which case
we verify this allegation by comparing them point by point. We observed that, for both
benchmark instances, 80% of all destinations with at least two predecessors can be represented
w.r.t departure-times by the remaining 20% of (representative) destinations.

Indexing preprocessed information. For retrieving efficiently the summaries from a land-
mark ` to each destination v, we maintain a vector of pointers per landmark, one pointer
per destination, providing the address for the starting location of the summary for v. The
pointers are in ascending order of vertex ID. The lookup time is O(1) and the required space
for this indexing scheme is O(n · |L|) additional bytes, where L is the chosen landmark set.

Speeding up preprocessing time. Handling only min-cost-path trees also has a collateral
effect of speeding up the required preprocessing time. The reason for this is that we do
not compute explicitly, each and every time that we sample travel-time values from `, the
exact shapes of the corresponding minimum-travel-time functions per destination. The
travel-time summaries provided by FLAT were created based on this explicit computation of
all the earliest-arrival functions per destination v, from each landmark `. In contrast, the
min-cost-path summaries of CFLAT are created without having to compute earliest-arrival
functions. This leads to a reduction in the preprocessing time of more than 60%.

2.2.2 The Query Algorithm CFCA(N)
CFCA(N) is based on FCA(N) [15], but is fundamentally different from it in the sense that it
exploits min-cost-path trees, and also considers the od-path construction as part of it, which
was not the case for FCA(N), and indeed for most of the query algorithms in the literature.
N indicates the number of landmarks to be settled by CFCA(N) around the origin o. The
pseudocode of the algorithm is presented in the next paragraph. CFCA(N) works as follows.
In case that the destination d is already settled in Step 1, the resulting (exact) od-path can
be computed by backtracking towards the origin, following the pointers to all predecessors.
Otherwise, we proceed as follows. For each settled landmark `, we have an optimal o`-path
guaranteeing arrival-time t` = to + D[o, `](to) at `. Since we do not have at our disposal
travel-time values from ` towards d, or any other vertex, we are not able to compare `v-paths
based on their (approximate) lengths. On the other hand, for the given departure-times t`
and any vertex v, we can tell the predecessor(s) of v in the (at most two per landmark) most
relevant min-cost-path trees, the ones at the consecutive sampled departure-times t−` and t+`
of each DEP [`, v] for which it holds that t` ∈ [t−` , t

+
`).

3 iuar = independently and uniformly at random, without repetitions.

S. Kontogiannis, G. Papastavrou, A. Paraskevopoulos, D. Wagner, and C. Zaroliagis 4:9

procedure CFCA(N)
STEP 1: A TDD ball is grown from (o, to), until N landmarks are settled.
1.1: if d is already settled then return optimal solution.
1.2: For each settled landmark `, t` = to +D[o, `](to).

STEP 2: An appropriate subgraph is recursively created from d.
2.1: Q = { d } /∗ Q is a FIFO queue ∗/
2.2: while ¬Q.Empty() do :
2.3: if v = Q.Pop() is not explored from STEP 1’s TDD ball then :
2.4: for each settled landmark ` of STEP 1 do :
2.5: Mark the arcs 〈PRED[`, v](t−`), v〉 and 〈PRED[`, v](t+`), v〉 leading

to v, where [t−` , t
+
`) is the unique interval in DEP [`, v] containing t`.

2.6: Q.Push(PRED[`, v](t−`)); Q.Push(PRED[`, v](t+`))
2.7: end for
2.8: end while

STEP 3: return optimal od-path in the induced subgraph by (TDD ball of) STEP 1 and
STEP 2.

CFCA(N) marks (per settled landmark `) the connecting arcs from these most relevant prede-
cessor(s) PRED[`, v](−`) and PRED[`, v](+

`), towards v. All these discovered predecessors
w.r.t. the N settled landmarks are inserted (if not already there) in a FIFO queue, which was
initialized with d, so that, upon their extraction from the queue, they can provide in turn
their own predecessors, etc. The recursive search for predecessors stops as soon as a vertex
x in the explored area of the initial TDD ball of Step 1 is reached. CFCA marks then also
the arcs of the corresponding short (not necessarily the shortest though, since x is explored
but not necessarily settled) ox-path. This way we are guaranteed that in the subgraph of
marked arcs there is already an od-path which has been oriented by (`, t`) and passes via
x. Step 2 of CFCA(N) terminates when the FIFO queue becomes empty, i.e., we no longer
have to process intermediate vertices which are unexplored by Step 1. The actual path
construction takes place in Step 3, which considers the subgraph induced by the marked arcs
and continues growing the TDD ball from (o, to) within this subgraph. This path construction
indeed leads to significantly smaller relative errors, since the resulting od-path is not only
the best prediction among a given set of N paths induced by the N settled landmarks (as in
FLAT), but actually the optimal od-path within the induced sugbgraph.

The worst-case approximation guarantee of CFCA(1) is (1 + ε+ψ) (identical to that of FCA
[17]), where ε is CTRAP’s approximation guarantee and ψ is a constant depending on ε and
the travel-time metric (but not on the size) of the network. Note that we could theoretically
improve the stretch of CFCA(N) to (1 + σ), for any constant σ > ε, and get a PTAS, by using
in Step 1 the RQA algorithm [17]. We choose not to do so, because our previous experimental
evaluation with FLAT [15] has shown that FCA(N) in practice dominates RQA.

3 Experimental Evaluation

Experimental Setup and Goal. Our algorithms were implemented in C++ (GNU GCC
version 5.4.0) and Ubuntu Linux (16.04 LTS). All the experiments were conducted on a
6-core Intel(R) Xeon(R) CPU E5-2643v3 3.40GHz machine, with 128GB of RAM. We used
12 threads for the parallelization of the preprocessing phase. CFCA was always executed on
a single thread. For the sake of comparison, we used the same set of 50, 000 queries, iuar
chosen from V × V × [0, T) in each instance, for all possible landmark sets. The PGL library

ATMOS 2017

4:10 Improved Oracles for Time-Dependent Road Networks

[19] was used for graph representation and operations. Two benchmark instances were used,
the first concerning the city of Berlin, and the second the national road network of Germany.

The main goal of our experimental evaluation was to investigate the scalability of CFLAT:
how smoothly does it trade higher preprocessing requirements for better approximation
guarantees and query-times. To demonstrate this, we aim at showcasing the performance of
CFCA(N) for several types and sizes of landmark sets. We have also increased the typical size
of the used landmark sets in our comparison of different landmark selection policies.

Landmark Selection Policies. Although the preprocessing requirements are proportional
to |L| (number of landmarks), they are essentially invariant of the landmark selection policy.
However, as previous experimental evaluation indicated [15], the performance of the query
algorithms has a strong dependence on the type of the landmarks. A key observation
was that the sparsity of landmarks (not being too close to each other) as well as their
importance, are crucial parameters. Therefore, in this work we insist in almost all cases
(except for the random landmark sets which are used as baseline) on selecting the landmarks
sparsely throughout the network. As for their importance, when such information is available,
we also consider the selection of landmarks at junctions of an important road segment
(as in [15]). Finally, we consider a new measure of vertex significance, the (approximate)
betweeness-centrality measure. In particular, we consider the following landmark selection
policies:
� random (R): iuar choice of landmarks.
� sparse-random (SR): Incremental iuar choice of landmarks, where each chosen landmark

excludes a free-flow neighborhood of vertices around it from future landmark selections.
� important-random (IR): A variant of R which moves each random landmark to its

nearest important vertex within a free-flow neighborhood of size 100. This policy is only
applicable for the instance of Berlin which provides road-segment importance information.

� sparse-kahip (SK): We use the KaFFPa algorithm of the kahip partitioning software
(v1.00) [13], setting the parameters so that there are many more boundary vertices than
the required number of landmarks. The landmarks are incrementally and iuar chosen
among the boundary vertices. Each landmark excludes a free-flow neighborhood from
future selections.

� kahip-cells (KC). Starting with a kahip partition, one landmark per cell is incrementally
and iuar chosen, excluding a free-flow neighborhood from future selections.

� betweeness-centrality (BC): Vertices are ordered in non-increasing approximate
betweeness-centrality (ABC) values [1]. Landmarks are selected incrementally according
to ABC values, excluding a free-flow neighborhood from future selections.

� kahip-betweeness (KB): For a kahip partition, incrementally choose as landmark
the vertex with the highest ABC value in a cell, excluding a neighborhood from future
selections.

We finally consider the following systematic naming of the landmark sets. Each set is
encoded as XY , where X ∈ {R,SR, IR, SK,KC,BC,KB} determines the type of landmark
set, and Y ∈ {250, 500, 1K, 2K, 3K, 4K, 8K, 16K, 32K} determines its size.

3.1 Evaluation of CFLAT @ Berlin
For Berlin we have considered all types of landmarks. For each of them, we have used as
baseline the size Y = 4K. {R,SR, IR, SK} were considered also in [15] (but for smaller
sizes), whereas {KC,BC,KB} are new types. Especially for R we tried all possible values

S. Kontogiannis, G. Papastavrou, A. Paraskevopoulos, D. Wagner, and C. Zaroliagis 4:11

1,000

1,500

2,000

2,500

3,000

Av
g

Q
ue

ry
 T

im
e

(m
se

c)
Query Time Scalability @ BERLIN

R250 R500 R1K R2K R4K R8K R16K R32K

CFCA(1) 0,486 0,299 0,176 0,116 0,091 0,070 0,067 0,065

CFCA(2) 0,958 0,540 0,311 0,202 0,144 0,104 0,095 0,090

CFCA(4) 1,859 1,105 0,593 0,367 0,250 0,174 0,154 0,141

CFCA(6) 2,758 1,605 0,873 0,523 0,356 0,237 0,209 0,191

0,000

0,500

1,000

Av
g

Q
ue

ry
 T

im
e

(m
se

c)

1,000

1,500

2,000

2,500

Av
g

Re
la

tiv
e

Er
ro

r *
 1

00

Relative Error Scalability @ BERLIN

R250 R500 R1K R2K R4K R8K R16K R32K

CFCA(1) 2,418 1,915 1,383 0,967 0,668 0,438 0,282 0,180

CFCA(2) 0,880 0,760 0,570 0,385 0,287 0,193 0,136 0,098

CFCA(4) 0,276 0,234 0,196 0,127 0,108 0,082 0,059 0,050

CFCA(6) 0,136 0,102 0,100 0,064 0,060 0,047 0,038 0,032

0,000

0,500

Av
g

Re
la

tiv
e

Er
ro

r

Figure 2 Performance of CFCA(N) in Berlin, for random landmarks and 50, 000 random queries.
In the graph of relative errors, all values are multiplied by 100.

0,100

0,150

0,200

0,250

0,300

Av
g

Q
ue

ry
 T

im
e

(m
se

c)

Query Time : Mix BC with R @ BERLIN

N=1 N=2 N=4 N=6

BC16K 0,064 0,096 0,158 0,214

BC8K + R8K 0,084 0,117 0,185 0,256

BC4K + R12K 0,068 0,102 0,172 0,230

R16K 0,067 0,095 0,154 0,209

0,050

0,100

Av
g

Q
ue

ry
 T

im
e

(m
se

c)

0,100

0,150

0,200

0,250

0,300

Av
g

Re
la

tiv
e

Er
ro

r*
 1

00

Rel. Error : Mix BC With R @ BERLIN

N=1 N=2 N=4 N=6

BC16K 0,227 0,052 0,022 0,019

BC8K + R8K 0,192 0,068 0,027 0,022

BC4K + R12K 0,269 0,123 0,051 0,031

R16K 0,282 0,136 0,059 0,038

0,000

0,050A
vg

 R
el

at
iv

e
Er

ro
r

Figure 3 Performance of CFCA for mixtures (BC- and R-landmark types) of 16K landmarks in
Berlin, and a query set of 50, 000 random queries. All relative errors are multiplied by 100.

for Y , in order to showcase the scalability of CFLAT and its smooth trade-off of preprocessing
requirements, query-times and stretch factors. Concerning vertex-importance (only available
in Berlin), we considered as important those vertices which are incident to roads of category
at most 3. As for sparsity, we set the sizes of the excluded free-flow ball per selected landmark
to 150 vertices for SR, 100 for IR, 50 for SK, 20 for KC, 150 for BC, and 20 for KB. For
kahip based landmark sets (SK, KC and KB) we used the following parameters: The
number of cells to partition the graph was set to 4, 000, having 13, 256 boundary vertices in
total. For SK we chose randomly 4, 000 boundary vertices as landmarks. For KC and KB
we chose one landmark per cell.

We first conducted an experiment to test the scalability of CFCA’s performance as a
function of N and the number of landmarks, always for R-type landmarks. As is evident from
Figure 2, the average errors decrease linearly and the query-times decrease quadratically, as
we double the number of landmarks. Additionally, notable “quick-and-dirty” answers are
possible with only 250 landmarks, which require space 0.17GiB; cf. [16]. In particular, the
query performance (average query time and relative error) varies from 0.486msec and 0.02418
(N = 1), to 2.758msec and 0.00136 (N = 6). If query time is the main goal then, for R32K,
the query performance of CFCA varies from 0.065msec and 0.0018 (N = 1), to 0.191msec and
0.00032 (N = 6). The best performance (cf. Figure 3) is achieved by BC16K, varying from
0.064msec and 0.00227 (for N = 1), to 0.214msec and 0.00019 (for N = 6). Since the average

ATMOS 2017

4:12 Improved Oracles for Time-Dependent Road Networks

N=1 N=2 N=4 N=6
0,000
0,050
0,100
0,150
0,200
0,250
0,300
0,350
0,400

Av
g

Q
ue

ry
 T

im
e

(m
se

c)

Query Time of CFCA(N) @ BERLIN

N=1 N=2 N=4 N=6

R4K 0,091 0,144 0,250 0,356

SR4K 0,085 0,150 0,271 0,377

IR4K 0,079 0,123 0,212 0,302

SK4K 0,071 0,116 0,205 0,293

KC4K 0,079 0,128 0,227 0,324

BC4K 0,075 0,134 0,236 0,338

KB4K 0,074 0,127 0,226 0,322

N=1 N=2 N=4 N=6
0,000
0,100
0,200
0,300
0,400
0,500
0,600
0,700
0,800

Av
g

Re
la

tiv
e

Er
ro

r*
 1

00

Relative Error of CFCA(N) @ BERLIN

N=1 N=2 N=4 N=6

R4K 0,668 0,287 0,108 0,060

SR4K 0,546 0,121 0,033 0,019

IR4K 0,653 0,329 0,140 0,078

SK4K 0,557 0,166 0,055 0,033

KC4K 0,544 0,181 0,060 0,033

BC4K 0,521 0,121 0,036 0,021

KB4K 0,534 0,184 0,058 0,031

Figure 4 Performance of CFCA(N) in Berlin, for 4K landmarks and 50, 000 random queries. In
the graph of relative errors, all values are multiplied by 100.

query-time for TDD is 110.02msec4, the speedup of CFCA(1) with BC16K is 1, 719.
Our next experiment compares landmark types of size 4K each (cf. Figure 4). Concerning

query-times, the best curve is that of SK4K. As for relative errors, SR4K and BC4K are
clear winners. Further experiments are reported in [16]. In comparison with FLAT, the
query-performance of CFCA(1) for BC4K (0.075msec and 0.00521) dominates that of FCA(1)
(0.081msec and 0.00771, cf. [15]). It is worth mentioning that, with only one fourth of the
required space (e.g. using SR4K) we can achieve the best observable average error (0.00019)
for Berlin. Of course, the query time deteriorates from 0.214msec (for BC16K) to 0.377msec.
It is also observed that mixing BC-landmarks with R-landmarks is not indeed a good idea.
For example, the pure BC16K and R16K landmark sets dominate all the mixed landmark
sets we have tried, both w.r.t. the error and the query time (cf. Figure 3).

3.2 Evaluation of CFLAT @ Germany
We considered R-landmark sets of sizes from 1K to 4K. The rest of the landmark sets were of
size 3K, with excluded neighborhood size 1, 200 vertices for SR3K, 350 for SK3K, and 1, 000
for BC3K. We started again with a demonstration of the scalability of CFCA on R-landmark
sets, as a function of the number of landmarks (cf. Figure 5). The relative errors decrease
linearly and the running times decrease quadratically, as we increase the number of landmarks.
Relative errors of 0.00065 are achieved for CFCA(6) even with 1K landmarks which require
8.3GiB space, with query-time 9.151msec. Moreover, a “quick-and-dirty” answer of error at
most 0.01615 is returned in only 1.631msec. As for the query performance of R4K, CFCA(1)
achieves 0.685msec and 0.00909, and CFCA(6) has 3.434msec and 0.00047.

We proceeded next with a comparison of various landmark types of size 3K each (cf. Fig-
ure 6). For Germany we have a clear winner, SR3K, w.r.t. relative errors. As for query times,
BC3K is preferable for N ≥ 4 and SR3K is better for N ≤ 2.

The best query performance for CFCA (see Table 1) is achieved for SR4K, and varies from
0.585msec and 0.007913 (for N = 1), to 3.572msec and 0.000177 (for N = 6). Thus, the
best achieved speedup over TDD (whose average running time is 1, 1190.873msec) is more
than 2035 in this case. As for Berlin, mixing BC-landmarks with R-landmarks does not

4 TDD is executed here on the original instance, even before the vertex contraction. In [15] it was executed
on the contracted graph, hence the slightly smaller execution times of TDD in that work. Nevertheless,
we believe that this is the appropriate measurement to make for TDD, for sake of comparison with other
works, and also since the contraction of degree-2 vertices is part of the preprocessing phase.

S. Kontogiannis, G. Papastavrou, A. Paraskevopoulos, D. Wagner, and C. Zaroliagis 4:13

3,000
4,000
5,000
6,000
7,000
8,000
9,000

10,000
Av

g
Q

ue
ry

 T
im

e
(m

se
c)

Query Time Scalability @ GERMANY

R1K R2K R3K R4K

CFCA(1) 1,631 1,054 0,772 0,685

CFCA(2) 3,156 2,004 1,452 1,254

CFCA(4) 6,161 3,860 2,788 2,349

CFCA(6) 9,151 5,718 4,134 3,434

0,000
1,000
2,000
3,000

Av
g

Q
ue

ry
 T

im
e

(m
se

c)

0,600
0,800
1,000
1,200
1,400
1,600
1,800

Av
g

Re
la

tiv
e

Er
ro

r*
 1

00

Relative Error Scalability @ GERMANY

R1K R2K R3K R4K

CFCA(1) 1,615 1,225 1,045 0,909

CFCA(2) 0,559 0,434 0,381 0,343

CFCA(4) 0,158 0,119 0,112 0,102

CFCA(6) 0,065 0,050 0,050 0,047

0,000
0,200
0,400
0,600

Av
g

Re
la

tiv
e

Er
ro

r

Figure 5 Performance of CFCA(N) in Germany, for random landmarks and 50, 000 random queries.
In the graph of relative errors, all values are multiplied by 100.

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

Av
g

Q
ue

ry
 T

im
e

(m
se

c)

Query Time of CFCA(N) @ GERMANY

N=1 N=2 N=4 N=6

R3K 0,772 1,452 2,788 4,134

SR3K 0,606 1,268 2,540 3,976

SK3K 0,725 1,400 2,755 4,106

BC3K 0,668 1,296 2,520 3,757

0,000

0,500

1,000

Av
g

Q
ue

ry
 T

im
e

(m
se

c)

0,400

0,600

0,800

1,000

1,200

Av
g

Re
la

tiv
e

Er
ro

r*
 1

00

Relative Error of CFCA(N) @ GERMANY

N=1 N=2 N=4 N=6

R3K 1,045 0,381 0,112 0,050

SR3K 0,950 0,255 0,061 0,026

SK3K 1,073 0,352 0,100 0,043

BC3K 1,013 0,353 0,111 0,052

0,000

0,200Av
g

Re
la

tiv
e

Er
ro

r

Figure 6 Performance of CFCA(N) in Germany, for 3K landmarks and 50, 000 random queries. In
the graph of relative errors, all values are multiplied by 100.

really make a difference in the Germany instance. This and further experiments are reported
in [16].

3.3 Exploring Outliers in Relative Errors
The purpose of our next experiment was to delve into the details of the relative error of
CFCA(N). We study the quantiles of the relative error for serving 50, 000 random queries,
for BC16K at Berlin, and for SR4K at Germany. Figure 7 presents the results of this
experimentation.

It is worth mentioning for Berlin that, with the BC16K-landmark set, we had 99.47% of
queries (i.e., only 265 out of the 50K queries exceeded it) with error less than 0.01. Moreover,
97.81% of queries have error less than 0.001. The maximum observed error for SR4K at
Berlin was 0.1728.

The picture is analogous also for Germany: With the SR4K-landmark set we can have
99.5% of the queries answered with an error less than 0.01, i.e., only 250 of the 50K queries
exceeded it. Moreover, 97.57% of them with error less than 0.001. The maximum observed
error for SR4K at Germany was 0.079821.

3.4 Comparison with State-of-Art
Table 1 provides a comparison of CFLAT with the most prominent oracles and speedup
techniques for the two benchmark instances. In particular, we compare the performances of
the following algorithms, on the instances of Berlin and Germany:

ATMOS 2017

4:14 Improved Oracles for Time-Dependent Road Networks

Table 1 Comparison with State-of-Art; [?]: evaluated in this work on exactly the same benchmark
instances and for the same sets of 50K iuar chosen queries.

Algorithm Preprocessing Performance Query Performance
Name [ref.] Param. Time Work Space Path Time Relative Error

h:m (#cores) h:m B/node N/Y msec avg max

G
ER

(4
,6
92
,0
91

n
o
d
es
;
10
,8
05
,4
29

ar
cs
)

TDD [?] – – – – • 1,190.873 0 0

inex.TCH [2]

(0.1)

06:18 (8) 50:24

286

◦

0.70 0.02 0.10
inex.TCH (1.0) 214 0.69 0.27 1.01
inex.TCH (2.5) 172 0.72 0.79 2.44
inex.TCH (10.0) 113 1.06 3.84 9.75
KaTCH [?] – 00:05 (6) 00:26 881 ◦ 0.84 0 0
TDCRP [3] (1.0) 00:13 (16) 03:28 77 ◦ 1.17 0.68 3.60

FreeFlow [23]
–

< 00:02 (16) 00:24
n/r •

0.12 0.14 12.4
TD-S+4 [23] < 00:06 (16) 01:34 0.97 0.002 2
TD-S+9 [23] < 00:17 (16) 04:23 2.09 0.001 2
DijFF [?] – – – – • 905.31 0.134 11.7

FLAT [15]

SR2K,
N=1 42:42 (6) 256:12

11,625 ◦

1.275 0.01444

n/r
FLAT SR2K,

N=6
9.952 0.00662

SK2K,
N=1 44:06 (6) 264:36

1.269 0.01534

FLAT SK2K,
N=6

9.689 0.00676

CFLAT [?] SR4K,
N=1 28:57 (6) 173:42 7,387 •

0.585 0.0079 0.918

CFLAT SR4K,
N=6

3.572 0.000177 0.079821

B
ER

(4
78
,9
89

n
o
d
es

–
1,
12
6,
46
8
ar
cs
)

TDD [?] – – – – • 110.02 0 0
KaTCH [?] – < 00:01 (6) < 00:04 851 ◦ 0.339 0 0
TDCRP [3] (1.0) 00:02 (16) 00:28 67 ◦ 0.28 1.47 2.69

FreeFlow [23]
– < 00:01 (16) 00:07 n/r •

0.09 0.0012539 15.574
TD-S [23] 0.23 0.0000153 1.851

TD-S+A [23] 3.01 0.00000584 1.029
DijFF [?] – – – – • 80.32 0.365 21.67

FLAT [15]

SR2K,
N=1 05:12 (6) 31:12

61,198 ◦

0.081 0.00771

n/r
SR2K,
N=6

0.586 0.00317

SK2K,
N=1 05:42 (6) 33:12 0.083 0.00781

SK2K,
N=6

0.616 0.00227

CFLAT [?]

BC4K,
N=1 03:44 (6) 22:23 6,353

•

0.075 0.00521 0.4115

BC4K,
N=6

0.338 0.0002 0.3148

BC16K,
N=1

14:42 (6) 88:12 26,900

0.064 0.0023 0.3855

BC16K,
N=6

0.214 0.00019 0.1728

S. Kontogiannis, G. Papastavrou, A. Paraskevopoulos, D. Wagner, and C. Zaroliagis 4:15

60,00
65,00
70,00
75,00
80,00
85,00
90,00
95,00

100,00

Pe
rc

en
ta

ge
 o

f Q
ue

rie
s

BER / BC16K : Queries Not Exceeding A Given Error

< 0.1 < 0.01 < 0.001 < 0.0001 < 0.000001

N=1 99,43 86,49 74,35 71,75 71,20

N=2 99,91 96,49 91,25 89,65 89,12

N=4 99,98 99,04 96,50 95,47 95,06

N=6 99,99 99,47 97,81 96,90 96,55

50,00
55,00
60,00

Pe
rc

en
ta

ge
 o

f Q
ue

rie
s

60,00
65,00
70,00
75,00
80,00
85,00
90,00
95,00

100,00

Pe
rc

en
ta

ge
 o

f Q
ue

rie
s

GER / SR4K : Queries Not Exceeding A Given Error

< 0.1 < 0.01 < 0.001 < 0.0001 < 0.00001

N=1 99,26 77,72 60,36 57,80 57,29

N=2 99,83 91,45 80,60 78,72 78,31

N=4 99,99 98,65 94,96 94,07 93,74

N=6 100,00 99,50 97,57 96,97 96,70

50,00
55,00
60,00

Pe
rc

en
ta

ge
 o

f Q
ue

rie
s

Figure 7 Tails of the error percentages of CFCA(N), for 50, 000 randomly chosen queries in the
instance of Berlin with the BC16K landmark set, and for the instance of Germany with the SR4K
landmark set.

(1) TDCRP, tested on a 16-core Intel Xeon E5-2670 clocked at 2.6 GHz, with 64GB of DDR3-
1600 RAM, 20 MB of L3 and 256 KB of L2 cache. The reported numbers are from
[3];

(2) FreeFlow, TD-S and TD-S+A, tested on a 16-core Intel Xeon E5-1630 v3 clocked at
3.70GHz with 128GB of 2133GHz DDR4 RAM. The reported numbers are from [23];

(3) inex.TCH, tested on an 8-Core Intel i7, clocked at 2.67 GHz, with 64 GB DDR4 RAM.
The reported numbers are from [3];

(4) an open-source version of TCH (KaTCH5), tested (with compilation parameters -O3 and
-DNDEBUG, and its default values) on our machine;

(5) our own implementation of the FreeFlow heuristic (called DijFF), tested on our machine
(it is a static-Dijkstra execution on the Free Flow instance, with no exploitation of any
speedup heuristic, and then computation of the time-dependent travel-time along the
chosen path); and

(6) FLAT and CFLAT, which were tested on our machine. The reported numbers for FLAT are
from [15].

All the reported times are unscaled (i.e., as they have been reported) and include both
metric-independent and metric-dependent preprocessing of the instances. Work is measured
as the product of the running time with the number of cores. The “path” column indicates
whether the explicit construction of a connecting path is accounted for in the reported query
times: ◦ is a NO-answer, • means YES. It is worth noting at this point that, despite the fact
that path construction takes a negligible fraction of the execution time in the static case, this
is not true for time-dependent instances. This is due to the fact that, as we move backwards
from the destination towards the origin, we have to deal with evaluations of functions (rather
than just labels). An additional complication is that time is continuous, therefore it is not
always clear which is the most appropriate parent to consider. In certain cases one needs
to choose more than one parents, in order to avoid cycling. Thus, the path construction is
not a negligible fraction of the overall effort of a query algorithm. For example, in our case
this task (consisting of Steps 2 and 3 in our query algorithm) consumes more than 30% of
the overall computational effort (cf. [16]). “n/r” means that a particular value has not been
reported.

5 https://github.com/GVeitBatz/KaTCH, with checksum 70b18ad0791a687c554fbfe9039edf79bc3a8ff3.

ATMOS 2017

https://github.com/GVeitBatz/KaTCH

4:16 Improved Oracles for Time-Dependent Road Networks

As is shown in the table, CFLAT dominates the performance of FLAT [15] for both instances.
We therefore focus on the comparison of CFLAT with state-of-art speedup heuristics. In
particular, we consider the speedup heuristics inex.TCH [2] (only for Germany), TDCRP [3],
KaTCH, FreeFlow [23], TD-S [23], and TD-S+A [23]. The algorithms TDD, KaTCH, DijFF and
CFLAT, marked in Table 1 with [?], were evaluated in the present work, on exactly the
same benchmark instances and for the same sets of 50K iuar chosen queries. For the
other algorithms we report (unscaled) the measurements of the original experimentation by
their authors. For the sake of comparison and a posteriori verification, we provide the two
random query sets that we have used in http://150.140.143.218:8000/public/. CFLAT is
certainly significantly more demanding in preprocessing requirements than the other state-of-
art techniques, which is typically anticipated by any landmark-based technique. Nevertheless,
it is noted that, if one considers dynamic updates of the instance, e.g. unforeseen road
blockages due to unforeseen incidents, CFLAT is remarkably fast in updating the preprocessed
information. For example, if one considers 15-minute road blockages, then the procedure for
updating the affected landmarks’ summaries requires less than 10sec on both instances [16].

Concerning the observed relative errors, first note that KaTCH is an exact heuristic
achieving essentially optimal solutions in all cases (although when it is used, it also reports
its relative error with TDD; using our implementation of TDD, the reported max relative errors
were indeed negligible: 1.4 · 10−6 for Germany and 2.4 · 10−5 for Berlin; these errors probably
have to do with numerical precision issues). The reported errors for TD-S are noticeable. The
average and worst-case errors of CFLAT are higher than those of KaTCH on both instances,
but are better (e.g., for SR4K, N=6), almost by an order of magnitude, than those of TD-S
for Germany. They are higher than those of TD-S for Berlin6. It is mentioned though that
the achieved errors of CFLAT are of the same order for both instances, which seems not to be
the case for TD-S.

Concerning the (unscaled) query times, CFLAT is the fastest technique for Berlin (e.g., for
BC16K and N = 1) and the second fastest technique for Germany (e.g., for SR4K and N=1).
Of course, absolute running times on different machines are hard to compare. Nevertheless,
since all the used machines are essentially of comparable computational capabilities, this
makes CFLAT a highly competitive route planning algorithm for time-dependent instances.

Finally, we note that we have also conducted preliminary experimentation on the time-
dependent synthetic instance of Central Europe that is typically used for experimentation
of the state-of-art techniques. Our findings are quite encouraging: Using only 800 random
landmarks, we observed average query times of 15.4msec and average relative error 0.01339.
More details about this experiment will appear in the journal version of this paper.

Acknowledgements. The authors wish to thank G. Veit Batz, Julian Dibbelt and Ben
Strasser for valuable and fruitful discussions.

References
1 D. Bader, S. Kintali, K. Madduri, and M. Mihail. Approximating betweenness centrality.

Algorithms and Models for the Web-Graph (WAW), pages 124–137, 2007.
2 G.V. Batz, R. Geisberger, P. Sanders, and C. Vetter. Minimum time-dependent travel

times with contraction hierarchies. ACM Journal of Experimental Algorithmics, 18(1.4):1–
43, 2013.

6 The numbers of TD-S for Berlin were taken from the ArXiv report of [23].

http://150.140.143.218:8000/public/

S. Kontogiannis, G. Papastavrou, A. Paraskevopoulos, D. Wagner, and C. Zaroliagis 4:17

3 M. Baum, J. Dibbelt, T. Pajor, and D. Wagner. Dynamic time-dependent route planning in
road networks with user preferences. Experimental Algorithms (SEA), LNCS(9685):33–49,
2016.

4 F. Dehne, M.T. Omran, and J.R. Sack. Shortest paths in time-dependent FIFO networks.
Algorithmica, 62(1–2):416–435, 2012.

5 D. Delling. Time-Dependent SHARC-Routing. Algorithmica, 60(1):60–94, 2011.
6 D. Delling and G. Nannicini. Core routing on dynamic time-dependent road networks.

INFORMS Journal on Computing, 24(2):187–201, 2012.
7 D. Delling and D. Wagner. Landmark-based routing in dynamic graphs. Experimental

Algorithms (WEA), LNCS(4525):52–65, 2007.
8 D. Delling and D. Wagner. Time-dependent route planning. Robust and Online Large-Scale

Optimization, LNCS(5868):207–230, 2009.
9 U. Demiryurek, F. Banaei-Kashani, and C. Shahabi. A case for time-dependent shortest

path computation in spatial networks. SIGSPATIAL Advances in Geographic Information
Systems (GIS), pages 474–477, 2010.

10 S. E. Dreyfus. An appraisal of some shortest-path algorithms. Operations Research,
17(3):395–412, 1969.

11 L. Foschini, J. Hershberger, and S. Suri. On the complexity of time-dependent shortest
paths. Algorithmica, 68(4):1075–1097, 2014.

12 M. Hilger, E. Köhler, R.H. Möhring, and H. Schilling. Fast point-to-point shortest path
computations with arc-flags. The Shortest Path Problem: Ninth DIMACS Implementation
Challenge, AMS 74:41–72, 2009.

13 KaHIP – Karlsruhe High Quality Partitioning, May 2014.
14 S. Kontogiannis, G. Michalopoulos, G. Papastavrou, A. Paraskevopoulos, D. Wagner, and

C. Zaroliagis. Analysis and experimental evaluation of time-dependent distance oracles.
Algorithm Engineering and Experiments (ALENEX), SIAM:147–158, 2015.

15 S. Kontogiannis, G. Michalopoulos, G. Papastavrou, A. Paraskevopoulos, D. Wagner, and
C. Zaroliagis. Engineering oracles for time-dependent road networks. Algorithm Engineering
and Experiments (ALENEX), SIAM:1–14, 2016.

16 S. Kontogiannis, G. Papastavrou, A. Paraskevopoulos, D. Wagner, and C. Zaro-
liagis. Improved oracles for time-dependent road networks. CoRR abs/1704.08445
(arxiv:1704.08445), 2017.

17 S. Kontogiannis, D. Wagner, and C. Zaroliagis. Hierarchical oracles for time-dependent
networks. Algorithms and Computation (ISAAC), LIPICS 64(47):1–13, 2016.

18 S. Kontogiannis and C. Zaroliagis. Distance oracles for time-dependent networks. Algorith-
mica, 74(4):1404–1434, 2016.

19 G. Mali, P. Michail, A. Paraskevopoulos, and C. Zaroliagis. A new dynamic graph
structure for large-scale transportation networks. Algorithms and Complexity (CIAC),
LNCS(7878):312–323, 2013.

20 G. Nannicini, D. Delling, L. Liberti, and D. Schultes. Bidirectional A* search on time-
dependent road networks. Networks, 59:240–251, 2012.

21 M. Omran and J.R. Sack. Improved approximation for time-dependent shortest paths.
Computing and Combinatorics (COCOON), LNCS(8591):453–464, 2014.

22 A. Orda and R. Rom. Shortest-path and minimum delay algorithms in networks with time-
dependent edge-length. Journal of the ACM, 37(3):607–625, 1990. doi:10.1145/79147.
214078.

23 B. Strasser. Intriguingly Simple and Efficient Time-Dependent Routing in Road Networks.
CoRR abs/1606.06636 (arxiv:1606.06636v2). URL: https://arxiv.org/abs/1606.06636.

ATMOS 2017

http://dx.doi.org/10.1145/79147.214078
http://dx.doi.org/10.1145/79147.214078
https://arxiv.org/abs/1606.06636

	Introduction
	The CFLAT Oracle
	Recap of FLAT
	Description of CFLAT
	The Approximation Method CTRAP and CFLAT Preprocessing
	The Query Algorithm CFCA(N)

	Experimental Evaluation
	Evaluation of CFLAT @ Berlin
	Evaluation of CFLAT @ Germany
	Exploring Outliers in Relative Errors
	Comparison with State-of-Art

