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Abstract
In this paper, we optimize train stopping patterns during morning rush hour in Japan. Since
trains are extremely crowded, we need to determine stopping patterns based not only on travel
time but also on congestion rates of trains. We exploit a Wardrop equilibrium model to compute
passenger flows subject to congestion phenomena and present an efficient local search algorithm
to optimize stopping patterns which iteratively computes a Wardrop equilibrium. We apply our
algorithm to railway lines in Tokyo including Keio Line with six types of trains and succeed in
relaxing congestion with a small effect on travel time.
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1 Introduction

In Japan, about seven million people commute to office, school, or university by train every
morning. During morning rush hour, trains are very crowded especially in Tokyo. The
congestion rate exceeds 200% for the most crowded train (see Table 1 for congestion rates).

A straight approach to reduce congestion is to increase the number of trains. However,
most railway lines in Tokyo have over 25 services per hour during morning rush hour. Thus,
the number of services seems to reach a limit. Railway companies in Japan make an effort to
relax congestion by another approach: changing timetables and train stopping patterns [15].

During morning rush hour, passengers make a decision about whether to get on an
express train or a local train, based on travel time and congestion rates. Some passengers
get on a crowded express train, because an express train runs faster than a local train. Some
passengers get on a local train at the expense of travel time to avoid congestion. Others
leave home early to avoid the rush hour. We need to compute when and which type of train
each passenger gets on in view of congestion of trains.
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Table 1 Examples of trains with high congestion rate [9].

Congestion rate: 100% Passengers can take a seat or hold on to a strap.
Congestion rate: 150% Passengers can open up a newspaper and read it.
Congestion rate: 200% Passengers touch someone’s body.
Congestion rate: 250% Passengers cannot move at all even if trains are bumpy.

A Wardrop equilibrium model is commonly used to describe traffic patterns subject to
congestion phenomena in road networks [5]. We can compute the behavior of each passenger
on trains by finding a Wardrop equilibrium in the event-activity network, which represents
timetables of trains and behavior of passengers. As a cost function in a Wardrop equilibrium
model, we use the BPR function (Bureau of Public Roads [2]), because the travel cost is
determined not only by travel time but also by congestion rates.

In Japan, Taguchi [14] exploits a Wardrop equilibrium in the event-activity network (called
a time-space network in Japan), to analyze precisely commuter traffic flow in Tokyo Metro-
politan area. In modeling of passenger flows during morning rush hour in Japan, the validity
of the Wardrop equilibrium model with the BPR function is shown in [14] by comparing the
computational results to the census data for commuter traffic published by Ministry of Land,
Infrastructure, Transport and Tourism.

The aim of this paper is to optimize train stopping patterns during morning rush hour.
Given stopping patterns and timetables can be evaluated by a Wardrop equilibrium in the
event-activity network. In optimization of stopping patterns, however, it is preferable to
avoid computation on the event-activity network. One reason is that computing a Wardrop
equilibrium in the event-activity network requires much time, which means even evaluation of
stopping patterns is computationally expensive. Another reason is that if we change stopping
patterns, we have to construct an event-activity network by solving the timetabling problem.

In order to devise an efficient algorithm, we introduce a train type network, which simplifies
the event-activity network. We show that a Wardrop equilibrium in the train type network
approximates that in the event-activity network. By using the train type network, we can
compute a Wardrop equilibrium in only 0.36 seconds without constructing an event-activity
network. We present an efficient local search algorithm which iteratively computes a Wardrop
equilibrium in the train type network. Our algorithm is applied to railway lines in Tokyo
including Keio Line with six types of trains.

Finally, we compare previous work and our results. To determine train stopping patterns
is an important issue which is closely related to line planning and timetabling [7, 13]. Previous
work including [3, 8, 16, 17] tackles the problem of optimizing stopping patterns. A big
difference between the previous work and this paper is the level of congestion. Trains in Japan
are extremely crowded during morning rush hour. Thus, we need to determine stopping
patterns with careful consideration of congestion rates of trains. We exploit a Wardrop
equilibrium model to compute passenger flows subject to congestion phenomena.

2 Wardrop equilibrium

Wardrop’s first principle of route choice is the following [4]:

The journey times on all the routes actually used are equal, and less than which would
be experienced by a single vehicle on any unused route.

According to Wardrop’s first principle, each passenger chooses his or her route to minimize
the route cost. Since Wardrop’s first principle describes the spreading of trips over alternative
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routes due to congestion, Wardrop equilibrium models have been used to predict route choices
of commuters [5].

Let G = (V,A) be a directed graph and C ⊆ V × V be a set of commodities represented
by OD pairs. Given an OD pair k ∈ C, we denote by Rk the set of routes in G which connect
the origin and the destination. The set of all routes is represented by R =

⋃
k∈CRk.

A route flow h = (hr)r∈R is called a Wardrop equilibrium if and only if it holds that∑
r∈Rk

hr = dk and
∑
a∈r

ta(fa) = min
q∈Rk

∑
a∈q

ta(fa) for all r ∈ Rk with hr > 0,

where dk is demand, ta(·) denotes a link cost function, and f = (fa)a∈A is an arc flow
determined by fa =

∑
r3a hr. The first equation says that a route flow meets the demand,

and the second one represents that each passenger travels along a path with the minimum
cost.

Beckmann et al. [1] proved that we can find a Wardrop equilibrium by solving the following
optimization problem, where Xf denotes the set of feasible arc flows:

min
{∑
a∈A

∫ fa

0
ta(z)dz

∣∣∣∣∣f ∈ Xf

}
. (1)

This problem can be solved by the Frank-Wolfe method [6].
As explained in Section 3, the event-activity network represents timetables of trains and

behavior of passengers. In order to compute the number of passengers in each train accurately,
it is significant to find a Wardrop equilibrium in the event-activity network instead of the
railway network.

Similar approach has been developed by Taguchi [14] in Japan, where he deals with
commuter traffic flows in Tokyo Metropolitan area. He focused on 1,815 stations and 7,486
trains (on 128 lines) and constructed an event-activity network with about 150,000 vertices
and about 480,000 arcs. About 7,000,000 passengers’ flows are simulated by finding a
Wardrop equilibrium in the event-activity network.

3 Event-activity network

Event-activity networks are widely used in the timetable design [11, 12]. Given a timetable
Π, we construct an event-activity network as follows. Let V be the set of stations and H
be the set of trains. We also denote by Vtran the set of stations shared by two lines, where
passengers can transfer from one line to another. We define

Earr = {(g, v, arr) | train g ∈ H arrives at station v ∈ V },
Edep = {(g, v, dep) | train g ∈ H departs from station v ∈ V }.

The sets Earr and Edep represent arrival events and departure events. Each i ∈ Earr ∪ Edep
has the arrival or departure time in the timetable Π, denoted by Πi. Next, we define arc sets

Adrive = {((g, v, dep), (g, u, arr)) | train g goes directly from v to u},
Await = {((g, v, arr), (g, v, dep)) ∈ Earr × Edep},
Atran = {((g, v, arr), (g′, v,dep)) | v ∈ Vtran,Π(g′,v,dep) is the earliest departure time

satisfying Π(g,v,arr) + Ltran ≤ Π(g′,v,dep)},

ATMOS 2017
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Figure 1 An event-activity network, where the solid lines denote arcs of Adrive and Await, the
dotted lines correspond to arcs of Anext, the bold lines represent arcs of Atran, and the dashed lines
indicate arcs of Achange. White and gray vertices represent arrival and departure events, respectively.

where Ltran denotes the time needed for transfer. The sets Adrive, Await, and Atran represent
driving activities, waiting activities, and transfer activities, respectively. We also define

Achange = {((g, v, arr), (g′, v,dep)) | Π(g,v,arr) < Π(g′,v,arr),Π(g′,v,dep) < Π(g,v,dep)},
Anext = {((g, v, dep), (g′, v,dep)) | g′ is the next train to g}.

The set Atran expresses transfers between different lines, while Achange deals with transfers
between different types of trains in the same line.

In the event-activity network, the set of vertices and the set of arcs are given by

E = Earr ∪ Edep, A = Adrive ∪ Await ∪ Atran ∪ Achange ∪ Anext.

Figure 1 depicts an example of an event-activity network.
We explain the usefulness of Anext and Achange in Figure 1. Suppose that a passenger

waits for train g at v. If train g is very crowded, he or she has choices to get on g′ or g′′

instead of g. The corresponding route is expressed by a path with arcs of Anext.
Next, let g′ be an express train and g′′ be a local train. Suppose that g′ arrives at v after

g′′ arrives and departs from v before g′′ departs. In this situation, we have four kinds of
passengers moving along

((g′, v, arr), (g′, v,dep)) ∈ Await : Passengers use only express train g′.
((g′′, v, arr), (g′′, v,dep)) ∈ Await : Passengers use only local train g′′.
((g′′, v, arr), (g′, v,dep)) ∈ Achange : Passengers transfer from g′′ to g′.
((g′, v, arr), (g′, v,dep)) ∈ Await and ((g′, v,dep), (g′′, v,dep)) ∈ Anext : Passengers trans-
fer from g′ to g′′.

The combination of Achange and Anext enables to express them faithfully. In a Wardrop
equilibrium, some passengers do not select the shortest route to avoid crowded trains. We
can express all kinds of passengers by using the event-activity network defined above.

4 Analysis of congestion rate in event-activity network

We focus on five railway lines in Tokyo: Keio Line, Keio Takao Line, Keio Sagamihara Line,
Keio Inokashira Line, and Toei Shinjuku Line1. We collectively call these five lines Keio
Railway Lines. Figure 2 shows the railway map of Keio Railway Lines.

1 The first four lines are operated by the private railway operator Keio Corporation, and the last line is
operated by Bureau of Transportation, Tokyo Metropolitan Government.
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Figure 2 Keio Railway Map, where the red line denotes Keio Line (Keio-hachioji—Shinjuku) and
the blue lines represent Keio Takao Line, Keio Sagamihara Line, Keio Inokashira Line, and Toei
Shinjuku Line.

Figure 3 Tokyo Railway network with 2128
nodes and 3041 edges, where red edges represent
Keio Railway Lines.

Figure 4 BPR function with α = 0.15 and
β = 4.

We compute congestion rates of each train during morning rush hour from 4:30 to 9:30
for 2016 timetable. In order to find a Wardrop equilibrium, we need to estimate OD pairs
with available data. We first construct a railway network in the Tokyo metropolitan area,
which is given in Figure 3. Next we compute the optimal route for each pair of stations with
respect to distance and the number of transfers, and then extract routes which use Keio
Railway Lines from them. The number of obtained OD pairs is 418,394, which are divided
into four types:

use only Keio Railway Lines.
first use another line and then transfer to Keio Railway Lines.
first use Keio Railway Lines and then transfer to another line.
use another line, transfer to Keio Railway Lines, and transfer to another line again.

We now combine the extracted routes with commuter passengers’ data in the report [10]
published by Ministry of Land, Infrastructure, Transport and Tourism. This report lists
83,838 OD pairs, and each OD pair has the following information: origin station, destination
station, and the number of passengers. Note that each OD pair does not have information
about departure time. By deleting OD pairs which are not listed in the passengers’ data
from the extracted 418,394 OD pairs, we obtain 9,712 OD pairs and 805,053 passengers who
get on Keio Railway Lines.

Let us summarize the obtained data. For each OD pair, we know the origin/destination
station (not necessarily in Keio Railway Lines), the first/last station in Keio Railway Lines,
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4:30

9:30

Time

Figure 5 Computational results for a Wardrop equilibrium in the event-activity network of 2016
timetable. Red, green, and blue arcs represent trains with congestion rate more than 200%, around
150%, and less than 100%, respectively.

and the number of passengers. Based on these data, we determine when and which train
each passenger boards by finding a Wardrop equilibrium in the event-activity network.

In order to assign passengers to the event-activity network, we add the following vertices
and arcs. Let C be the set of 9,712 OD pairs. For an OD pair k ∈ C, we denote by vorg(k)
the first station in Keio Railway Lines along the route. Let us define

Eorg = {k | k ∈ C}, Aorg = {(k, (g, vorg(k),dep)) | t0k ≤ Π(g,vorg(k),dep) ≤ t1k},

where t0k and t1k are determined by distance between vorg(k) and the final destination station.
In computation of a Wardrop equilibrium in the event-activity network (E ,A), we use

the BPR function (Bureau of Public Roads [2]) as a cost function:

ta(fa) = La

(
1 + α

(
fa
Ca

)β)
(a ∈ Adrive ∪ Await), (2)

ta(fa) = La (a ∈ A \ (Adrive ∪ Await)), (3)

where fa denotes a flow on arc a ∈ A, La is travel time for a ∈ A, and Ca is the capacity of
a train. The term fa/Ca represents congestion rate. We set parameters α and β by α = 0.15
and β = 4.

Figure 4 depicts a BPR function with La = 1, α = 0.15, and β = 4. In a case with
fa/Ca ≤ 1, ta(fa) is almost the same as La. The value of ta(fa) suddenly increases with
fa/Ca = 1.5 and reaches into 6.8La when fa/Ca = 2.5. This function describes that
passengers do not care for congestion if the congestion rate fa/Ca is small but congestion
effects have a bigger impact on passengers’ behavior in trains with higher congestion rate.

We solve (1) by the Frank-Wolfe method to find a Wardrop equilibrium. Figure 2 depicts
the railway network which we focus on in this paper. Figure 5 shows computational results
for a Wardrop equilibrium in the event-activity network of 2016 timetable. We can see that
trains between 7:00 and 8:30 have especially high congestion rates in the section between
Chofu and Shinjuku, which matches the real situation in Keio Railway Lines. Table 2
describes trains with congestion rate more than 220%.

5 Approximation model for passenger flows in event-activity network

Given stopping patterns and timetables, we can evaluate them with computational results
for a Wardrop equilibrium in the event-activity network. A basic idea to find optimal
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Table 2 Computational results for trains with congestion rates more than 220%.

Train type Successive stations Time Congestion rate
Semi-Express Chitose-kayasuyama → Sakurajosui 7:10 234.98%

Local Shimo-takaido → Meidaimae 8:24 223.49%
Local Sasazuka → Shinjuku 7:09 221.18%
Local Shimo-takaido → Meidaimae 8:06 221.16%
Local Daitabashi → Sasazuka 8:22 221.09%

Express Sakurajosui → Meidaimae 8:25 220.13%

Table 3 Comparison of the event-activity network and the train type network.

#nodes #arcs #passengers Computational time for
a Wardrop equilibrium

Event-activity network (4:30–9:30) 15,667 24,482 805,053 2026 [sec.]
Train type network (7:00–8:30) 1,552 1,952 627,406 0.357 [sec.]

stopping patterns is to update stopping patterns iteratively based on the obtained Wardrop
equilibrium. In this approach, however, we need to find a Wardrop equilibrium many times.
As shown in Table 3, computing a Wardrop equilibrium in the event-activity network takes
about 34 minutes. In order to reduce computational time, we introduce a small network
model such that a Wardrop equilibrium in this network approximates a Wardrop equilibrium
in the event-activity network.

We now introduce a train type network. Remember that V denotes the set of stations.
Let T = {0, 1, 2, 3, 4, 5} be the set of train types, where each element corresponds to a train
type as follows:

0: Local, 1: Rapid, 2: Semi-Express, 3: Express, 4: Semi-Special Express, 5: Special Express.

We denote stopping patterns S by the set of pairs of a train type and a station where the
train makes stops:

S = {(v, t) | train type t ∈ T stops at station v ∈ V }. (4)

Given stopping patterns S, we define

Ādrive = {((v, t), (u, t)) ∈ S × S | t goes directly from v to u},
Āchange = {((v, t), v) ∈ S × V } ∪ {(v, (v, t)) ∈ V × S}.

Arcs of Āchange are used when passengers transfer to a different type of train. Here, we
distinguish two lines traveling in opposite directions along the same route. Figure 6 shows
an example of the train type network G(S) = (S ∪ V, Ādrive ∪ Āchange).

We focus on morning rush hour between 7:00 and 8:30 and compute passenger flows with
S determined from 2016 timetable. A cost function in the train type network is defined by

t̄a(fa) = La

(
1 + α

(
fa

NaCa

)β)
(a ∈ Ādrive), (5)

where Na is introduced as the number of trains of the same type driving in the target period.
Travel time La is set to be longer than that for a superior train on the basis of the timetable.

ATMOS 2017
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Figure 6 An example of a train type network G(S), where the dotted lines represent arcs in both
directions.

Figure 7 The number of passengers in trains
bound for Shinjuku at Chofu.

Figure 8 The number of passengers in trains
bound for Shinjuku at Hashimoto.

We remark that this function is obtained by adding Na in the denominator to (2). For
a ∈ Āchange, we set t̄a(fa) based on the time needed for transfer.

We make use of OD pairs between 7:00 and 8:30 obtained from the computational results
in Section 4. Table 3 compares the train type network and the event-activity network. We
can compute a Wardrop equilibrium in the train type network much faster than in the
event-activity network.

By finding a Wardrop equilibrium in the train type network, we obtain the number of
passengers who get on trains of type t ∈ T for each pair of successive stations. We now
check the validity of passenger flows in the train type network. Figures 7–8 compare the
number of passengers in trains with each type between 7:00 and 8:30 obtained with the train
type network to that obtained with the event-activity network. Keio Line has three types
of trains bound for Shinjuku (Local, Semi-Express, Express) in the target period. We can
see that flows in the train-type network succeed in approximating passenger flows in the
event-activity network. This is attributed to the fact that the congestion rate of each train is
very high during morning rush hour.

6 Local search algorithm to optimize stopping patterns

If we are given stopping patterns S, we evaluate S by using a Wardrop equilibrium in the
train type network G(S) as follows. Let fa be a passenger flow obtained by computing a
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Wardrop equilibrium in G(S). A function to evaluate S is defined by

eval(S) =
∑

a∈Ādrive∪Āchange

fa · t̄a(fa) +
∑
v∈V

cv(S), (6)

where cv(S) denotes the number of train types except Local which make a stop at v.
The first term is determined by congestion rates and travel time. Consider the train type

network G(S) in Figure 6 as an example. The second term cv(S) is given by
∑
v∈V cv(S) = 16,

because we have cv1(S) = 5, cv2(S) = 1, cv3(S) = 2, cv4(S) = 3, cv5(S) = 5.
Since the value of the first term is much larger than that of the second term, eval(S) is

affected by the first term in most cases. The second term is useful when there exist stopping
patterns S and S ′ such that the values of the first term in eval(S) and eval(S ′) are exactly
equal. In this case, we select the stopping patterns with smaller value of the second term,
because superior trains are desirable to stop at fewer stations.

For example, consider the train type network in Figure 6 again. Let S be the stopping
patterns given in Figure 6. Assume that we have stopping patterns S1 = S ∪ {(v3, 3)}
and S2 = S ∪ {(v3, 3), (v3, 4)} such that the values of the first term are equal. Then
eval(S1) < eval(S2) holds. In the stopping patterns S1, Express makes a stop at v3 but
Semi-Special Express does not, while both Express and Semi-Special Express make a stop at
v3 in S2. The inequality eval(S1) < eval(S2) with the same values of the first term means
that adding only (v3, 3) is enough to reduce the first term and Semi-Special Express does
not need to stop at v3.

Our problem is to find S which minimizes eval(S). We find S by the following local search
algorithm. Let S be the current solution. We repeat replacing S with a better solution in its
neighborhood. If we cannot find a better solution, the algorithm outputs S and terminates.

In designing local search algorithms, an initial solution, a function to evaluate solutions, a
move strategy, and a neighborhood are important ingredients. An initial solution S0 is given
by S0 = {(v, t) | v ∈ Vleaf , t ∈ T} ∪ {(v, 0) | v ∈ V }, where Vleaf is the set of Shinjuku and
stations corresponding to leaves (vertices with degree one) of the network given in Figure 2.
The set S0 means that every train stops at stations in Vleaf and local trains (t = 0) stop at
all stations. We use (6) as an evaluation function. In addition, we adopt the first admissible
move strategy, i.e., when we find a better solution in its neighborhood, we move to the
solution immediately. A more sophisticated move strategy is presented at the end of this
section.

For the current solution S, we use the following two kinds of neighborhoods, called Nop(S)
and Ncl(S). Let (v, t′) /∈ S. An opening operation is an operation which adds {(v, t) | t ≤ t′}
to S. The neighborhood Nop(S) is defined as the set of all solutions which can be obtained
from S by an opening operation. For (v, t′) ∈ S \ S0, we use a closing operation, which
deletes {(v, t) | t ≥ t′} from S. The neighborhood Ncl(S) is defined as the set obtained by a
closing operation. We remark that these operations are defined so that if a train of type t
stops at v, then trains of inferior types also stop at v.

Since S0 is set to be an initial solution, we design an algorithm which emphasizes an
opening operation over a closing operation. If we cannot find a better solution in Nop(S), we
exploit a closing operation. The outline of our algorithm is as follows. In the algorithm, c
denotes the number of fails to find a better solution than the current solution S. We set a
parameter γ by γ = 50.

ATMOS 2017
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Table 4 Comparison of four move strategies.

Proposed FA BA1 BA2
Best Average Best Average BA1 BA2

Eval. value 16,056,810 16,205,030 16,084,948 16,219,808 16,144,254 16,147,615
Time (sec.) 598 332 296 454 443 651
#iteration 88 55 64 75 15 21

Local search algorithm with first admissible move strategy

Step 0. Set S ← S0 and c← 0.
Step 1. Choose (v, t′) /∈ S randomly.
Step 2. Let S ′ denote the set obtained by an opening operation with (v, t′). If eval(S ′) <

eval(S), then set S ← S ′, c← 0 and return to Step 1.
Step 3. Set c← c+ 1. If c < γ, then return to Step 1. Otherwise set c← 0.
Step 4. Choose (v, t′) ∈ S \ S0 randomly.
Step 5. Let S ′ denote the set obtained by a closing operation with (v, t′). If eval(S ′) <

eval(S), then set S ← S ′, c← 0 and return to Step 1.
Step 6. Set c← c+ 1. If c < γ, then return to Step 4. Otherwise output S and stop.

We adopt Nop(S) as a neighborhood in Steps 1–2 and Ncl(S) in Steps 4–5. We try to
find a better solution by an opening operation while c < γ, but switch to a closing operation
if we fail γ times. The algorithm terminates if we fail γ times by an opening operation and
γ times by a closing operation. It should be noted that we need to compute a Wardrop
equilibrium in the train type network G(S ′) in Steps 2 and 5.

The first admissible move strategy has a drawback that it sometimes selects bad moves,
because we choose (v, t′) randomly in Steps 1 and 4. With an aim for a better performance
of the first admissible move strategy, we present a new strategy, where we find several better
solutions than the current solution and then move to the best solution among them.

Let d denote the number of better solutions which we find before moving to the next
solution. We set a parameter κ by κ = 5 (the digit in the tens place of γ). A detail of the
strategy in Steps 1–3 is described below:

Sophisticated move strategy

At the first of the algorithm, we set d← κ.
If d < κ and we execute Step 1 at most κ times to find d better solutions, update
d← d+ 1.
If we execute Step 1 more than κ times to find d better solutions, we decrease the value
of d. In the case study given in Section 7, we update d← d− q, where q is the digit in
the tens place of the number of executions of Step 1.

The number of solutions to be checked depends on iterations. If the neighborhood has a
lot of better solutions, we select where to move after checking several solutions. If it is not
easy to find a better solution, the strategy adopts the first admissible move strategy (d = 1).
A similar strategy is also used in Steps 4–6.
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Figure 9 Evaluation value eval(S) (top), value of the first term in eval(S) (middle), and value of
the second term in eval(S) (bottom), where • represents when we move to a better solution.

Figure 10 Value of d (solid line) and adopted operation in each iteration, where • and x represent
an opening operation and a closing operation, respectively. The height of • and x shows when we
find the corresponding solution in d trials.

7 Case study: Keio Railway Lines

We apply the local search algorithm described in Section 6 to Keio Railway Lines in the time
period from 7:00 to 8:30. Table 4 compares solutions obtained by the following four move
strategies: sophisticated move strategy (Proposed), first admissible move strategy (FA), best
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Figure 11 Stopping patterns on Keio Line obtained by the local search algorithm.

Figure 12 Stopping patterns on Keio Line in 2016.

Figure 13 Comparison of congestion rates
for Express (t = 3).

Figure 14 Comparison of congestion rates
for Semi-Express (t = 2).

Figure 15 Comparison of congestion rates
for Local (t = 0).

Figure 16 Comparison of travel time, where
a red line indicates that travel time is the same.
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Table 5 Top ten arcs of Ādrive for the obtained stopping patterns.

Train type Successive stations Congestion rate
Semi-Express Chitose-kayasuyama → Sasazuka 231.54%

Express Chitose-kayasuyama → Sasazuka 229.22%
Local Shimo-takaido → Meidaimae 217.76%
Local Sakurajosui → Shimo-takaido 203.23%
Local Kami-kitazawa → Sakurajosui 197.71%

Semi-Express Chofu → Chitose-kayasuyama 189.63%
Local Hachiman-yama → Kami-kitazawa 187.33%
Local Sengawa → Chitose-kayasuyama 184.79%

Express Chofu → Chitose-kayasuyama 184.44%
Semi-Express Sasazuka → Shinjuku 176.63%

Table 6 Top ten arcs of Ādrive for 2016 timetable.

Train type Successive stations Congestion rate
Express Chitose-kayasuyama → Sakurajosui 232.18%
Express Sakurajosui → Meidaimae 232.04%

Semi-Express Sakurajosui → Meidaimae 228.60%
Semi-Express Chitose-kayasuyama → Sakurajosui 225.86%

Local Shimo-takaido → Meidaimae 221.34%
Semi-Express Meidaimae → Sasazuka 206.40%

Local Sakurajosui → Shimo-takaido 206.15%
Local Kami-kitazawa → Sakurajosui 202.46%

Express Meidaimae → Sasazuka 200.61%
Express Tsutsujigaoka → Chitose-kayasuyama 200.61%

admissible move strategy (BA1), and modified best admissible move strategy (BA2). For the
first two strategies, we run the algorithm 50 times. In BA1, we move to the best solution
among all the solution obtained by an opening operation and a closing operation, while BA2
adopts a closing operation only when we cannot obtain a better solution by using an opening
operation. We can see that all the evaluation values in Table 4 greatly improve 17, 565, 000,
which is the evaluation value for the stopping patterns of 2016 timetable.

BA2 uses smaller neighborhood than BA1, but leads to longer computational time. This
indicates that the number of iterations has a stronger effect on computational time than the
neighborhood size. The proposed strategy attains shorter computational time than BA1 and
BA2 on average and sometimes finds better solutions.

Next, we analyze the best solution obtained by the proposed strategy, which has the
minimum evaluation value in Table 4. Figure 9 depicts a behavior of the evaluation value
and Figure 10 shows which operation is adopted in each iteration. In most iterations of
the early stage, the algorithm adopts opening operations and d is large. In the latter stage,
the algorithm adopts both opening/closing operations and d = 1 (the first admissible move
strategy is selected) in many iterations.

We now focus on Keio Line and further analyze the best solution obtained by the
proposed strategy. Keio Line has three types of trains bound for Shinjuku (Local, Semi-
Express, Express) and six types of trains bound for Keio-hachioji between 7:00 and 8:30.
Figure 11 shows the obtained stopping patterns on Keio Line. Superior trains (Express, Semi-

ATMOS 2017



13:14 Optimizing Train Stopping Patterns for Congestion Management

Special Express, Special Express) have fewer stops than 2016 timetable given in Figure 12.
The obtained stopping patterns emphasize a difference between superior trains and the other
trains, while they have common stops with 2016 timetable.

Trains bound for Shinjuku are extremely crowded during morning rush hour. Let us
compare congestion rates in Figure 13–15. Figure 13 shows that in the obtained stopping
patterns, the maximum congestion rate is almost the same, while passengers who depart
from Keio-hachioji suffer less congestion than 2016 timetable. Thus, we conclude that we
can make full use of express trains even if we reduce stopping patterns of 2016 timetable. In
Figures 14–15, the congestion rate becomes large at stations indexed as 0–10 in Semi-Express
and 11–15 in Local. However, this causes no problem because the rate is less than 100%.
Moreover, the congestion rate of local trains at stations indexed as 16–20 and 23–27 is a bit
improved.

Figure 16 compares travel time for each OD pair in the train type network. We can see
that a lot of OD pairs whose travel time are more than 60 minutes have shorter travel time,
while some passengers with short distance have longer travel time.

Tables 5 and 6 show the top ten arcs of Ādrive in the train type network for the obtained
stopping patterns and 2016 timetable. We have only 4 arcs with congestion rate more than
200% in Table 5, while we have 10 arcs in Table 6. Although the maximum congestion rate is
almost the same, the obtained stopping patterns have fewer arcs with congestion rate more
than 200% than 2016 timetable.

8 Conclusion

We have presented a local search algorithm to optimize stopping patterns with the evaluation
function determined by a Wardrop equilibrium. First, we have computed time-dependent
passenger flows subject to congestion phenomena by finding a Wardrop equilibrium in the
event-activity network. Then, we have introduced a simple network such that a Wardrop
equilibrium in this network approximates a Wardrop equilibrium in the event-activity network,
which enables us to devise an efficient algorithm. In a case study for Keio Railway Lines in
Tokyo, we have succeeded in relaxing congestion with a small effect on travel time.

It is left for future work to design timetables for the obtained stopping patterns. Another
future work is applying the framework of our algorithm to optimize the number of train
types and the number of trains of each type, which are determined based on 2016 timetable
in this paper.
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