
Flight Planning in Free Route Airspaces∗

Casper Kehlet Jensen1, Marco Chiarandini2, and Kim S. Larsen3

1 University of Southern Denmark, Odense, Denmark
casper@snemanden.com

2 University of Southern Denmark, Odense, Denmark
marco@imada.sdu.dk

3 University of Southern Denmark, Odense, Denmark
kslarsen@imada.sdu.dk

Abstract
We consider the problem of finding cheapest flight routes through free route airspaces in a 2D
setting. We subdivide the airspace into regions determined by a Voronoi subdivision around the
points from a weather forecast. This gives rise to a regular grid of rectangular regions (quads)
with every quad having an associated vector-weight that represents the wind magnitude and
direction. Finding a cheapest path in this setting corresponds to finding a piece-wise linear path
determined by points on the boundaries of the quads. In our solution approach, we discretize
such boundaries by introducing border points and only consider segments connecting border
points belonging to the same quad. While classic shortest path graph algorithms are available
and applicable to the graphs originating from these border points, we design an algorithm that
exploits the geometric structure of our scenario and show that this algorithm is more efficient in
practice than classic graph-based algorithms. In particular, it scales better with the number of
quads in the subdivision of the airspace, making it possible to find more accurate routes or to
solve larger problems.

1998 ACM Subject Classification F.2.2 [Nonnumerical Algorithms and Problems] Geometrical
Problems and Computations, G.2.2 [Graph Theory] Path and Circuit Problems

Keywords and phrases Flight planning, Geometric shortest path, Free route airspace, Vector
weighted paths, Vector weighted planar subdivisions

Digital Object Identifier 10.4230/OASIcs.ATMOS.2017.14

1 Introduction

In flight planning, users seek the cheapest flying route between departure and arrival airports.
The cost of a route is determined by a function of fuel consumed and flying time. These
measures are related as they depend on weather conditions, which are dynamic. The flight
routes are calculated through a network of waypoints and airways representing a discretization
of the 3D airspace. Additionally, different types of constraints are imposed on these routes
by a central control institution. For example, there are constraints with the purpose of
regulating traffic or avoiding specific airspaces. These constraints can be updated several
times a day. Therefore, flight routes are planned only few hours before the flight and efficient
algorithms are needed. The particular cost dependencies and constraints make the problem
more challenging than classic shortest path problems [3, 14, 13].

∗ The third author was supported in part by the Danish Council for Independent Research, Natural
Sciences, grants DFF-1323-00247 and DFF-7014-00041.

© Casper Kehlet Jensen and Marco Chiarandini, and Kim Skak Larsen;
licensed under Creative Commons License CC-BY

17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2017).
Editors: Gianlorenzo D’Angelo and Twan Dollevoet; Article No. 14; pp. 14:1–14:14

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2017.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

14:2 Flight Planning in Free Route Airspaces

A free route airspace (FRA) is a specified airspace within which users can freely plan a
route between a defined entry point and a defined exit point, with the possibility of routing
via intermediate (published or unpublished) waypoints. In this case, we face the problem of
finding a best path through a continuous airspace between two endpoints. However, because
of wind conditions, the best path is not in general a straight line and hence not trivially
determined – see for example [2], providing an example of a wind-optimal route from Jakarta
to Honolulu that is 11% longer than the direct great circle route, but 2% faster and uses 3%
less fuel. Usage of the jet stream for flights over the Atlantic is also a common example of
this (see e.g. [11]).

The motivation for introducing free route airspaces is to try to overcome some of the chal-
lenges in aviation, such as efficiency, capacity, and even environmental problems. According
to Eurocontrol, the European Organization for the Safety of Air Navigation [9], using FRAs
has the potential to reduce flying distances by approximately 7.5 million nautical miles per
year, representing a 45, 000 tons fuel save, or a reduction of emissions of 150, 000 tons. Also,
FRAs offer fewer conflicts in terms of aircraft collision avoidance, as aircrafts are more evenly
spread out across the airspace compared to the current fixed route network.

Currently, FRAs can arise as part of the more common airways network, but for the
reasons above, they are expected to become more widespread in the future. The planning
tools to deal with them do not exploit the full potential and rely on several heuristics. For
example, a common procedure is to introduce arbitrary intermediate airway points in the
FRA and to consider all possible airways between them and the entry/exit points. Beside
not finding real optimal paths, such an approach is also computationally demanding.

In this work, we investigate the problem of finding an optimal path through a free route
airspace between two entry/exit points, taking wind conditions into account. We propose
a data structure for discretizing the airspace into regions of constant wind and present a
geometric algorithm to solve the problem in this discretized environment. We show that our
algorithm is able to exploit wind conditions and find near-optimal solutions for the given
weather forecast. We perform an experimental study of the scaling of the running time with
respect to the number of regions that subdivide the airspace and show that our algorithm
scales more efficiently in comparison with more classic graph-based approaches that find the
same solutions. In an extension of this work, we design heuristics to join adjacent regions
with similar wind conditions and show that our algorithm exhibits better behavior than
classic approaches also with respect to the trade-off of accuracy vs. efficiency that these
heuristics allow to explore.

According to [4, 5], the problem of finding a geometric shortest path on the plane with
polygonal obstacles is solvable in O(n log(n)), where n is the total obstacle vertices. This
run time has been shown to be optimal. On the other hand, the same problem in the 3D
space with polyhedral obstacles is NP-hard and has attracted research for approximation
algorithms.

A few versions of the problem of finding shortest path queries in a continuous environment
with weighted regions have been studied. For example, in [12], a particular case is investigated
in which the cost of a continuous path is determined by a cost-weighting function that depends
on the position and the direction of motion. The authors approach the problem by only
considering paths formed by concatenating straight-line segments for a suitable discretization
of the environment. This work is aimed at unmanned air vehicles (for military purposes) for
finding best low-risk paths in an environment with hostile ground defenses that should be
avoided.

Another work [15] considers shortest path problems on the plane with a weighted polygonal
subdivision. This algorithm applies the “continuous Dijkstra” paradigm and exploits a

C.K. Jensen, M. Chiarandini, and K. S. Larsen 14:3

physical property of such paths (that they obey Snell’s law of refraction). However, the
complexity of the algorithm does not seem promising since the best bound given is O(n8L),
where n is the number of vertices of the subdivision and L some parameter that specifies the
precision of the problem instance and linked to the desired approximation margin.

An improvement of [15] is given in [1]; these authors present an approximation scheme
(computing paths whose costs are within a factor of 1 + ε of the shortest paths costs, for
arbitrary ε > 0) for the problem of finding shortest paths on a polyhedron consisting of n
convex faces and each face with a positive non-zero real valued weight. Their algorithm runs
in O

(
n
ε log(1

ε)(1√
ε

+ log(n))
)
.

We found inspiration for our work in the approach described in [6] and [16]. In these
works, the authors represent the environment using quad-trees (for 2D) and oct-trees (for
3D), that is, tree based data structures whose leaves represent regions of constant weight.
Each region at the leaves of the tree is framed with smaller square cells that determine
the granularity of the search space. Further, the authors propose an efficient geometric
algorithm for finding a shortest path between the smaller cells on the frame of the quad-tree
leaves, running in O (P log(P)) +O(Tneighbor), where P is the total number of cells in the
discretization and Tneighbor is the time to update neighbor pointers in the quad-tree data
structure. They provide a (somewhat natural) extension to 3D, in which they propose an
algorithm that runs in O

(
n2 log(m)

)
, where n is the number of cells on a side in a region

(if the region was filled, it would contain n3 cells) and m ≤ P the size of the heap. These
algorithms are a factor n better than previous grid based approaches. However, the 3D
algorithm is only able to compute paths w.r.t. metrics L1 and L∞ (that is, not L2). In this
paper, we reconsider those approaches by introducing border points rather than border cells,
which we believe should make the algorithm simpler. Moreover, all the methods mentioned
assume real number weights on the regions while in our case we need to consider vector
weights, since the wind has both a magnitude and a direction. A main contribution here is
the generalization of the geometric arguments from [6] to vector weights, resulting in a more
efficient search space examination.

Due to space constraints, many details are omitted in this conference version. Proofs
of all results, claims and theorems have been established and these will be given in a full
version of the paper.

2 Preliminaries

A FRA is in general a subset of the atmosphere of Earth. Here we assume that a FRA is
the 3D space between a top and bottom face, both defined by a single 2D polygon. Such
a polygon, denoted by F , can be described by the set of its vertices, F = {~p1, ~p2, . . . , ~pk},
where ~pi = (φ, ψ), i = 1, . . . , k, φ being the latitude and ψ being the longitude. On the
border of a FRA, there are special waypoints that we call entry/exit points.

We restrict ourselves to FRAs at a fixed altitude and thus consider FRAs that are 2D
polygons. Neglecting the third dimension simplifies our approach but keeps our solutions
relevant in practical terms. Indeed, a typical way of looking at flight routes is by decomposing
them into their 2D projections on the surface of the Earth and their vertical profiles [14, 3].
The vertical profile is commonly decomposed into three phases: climbing, cruising, and
descending.1 The cruising phase is the dominant, and takes place at an altitude that is

1 See http://flightaware.com/ or http://flightradar24.com, for example.

ATMOS 2017

http://flightaware.com/
http://flightradar24.com

14:4 Flight Planning in Free Route Airspaces

favorable for the performance of the aircraft. Therefore, in most situations, the flight has to
cross FRAs in the cruising phase, where the airplane has reached its desired altitude and a
2D solution is sufficient. Alternatively, in situations where one of the end points of a route
lies inside an FRA, the best 2D path through it may still be used to plan a 3D path.

The weather forecast service may be provided by the World Area Forecast System
(WAFS) [17]. Wind data on Earth is available for each 1.25th degree of latitude and 1.25th
degree of longitude and for several altitudes, yielding a 3D grid of geodesic points. For each
such point, wind barbs are available, providing a visual description of the wind speed and
direction. In mathematical terms, they define wind vectors. This weather data is updated
at regular intervals of 6 hours, with a resolution of 3 hours. In our 2D simplification, we
consider a 2D grid of points, W , corresponding to one single level of the 3D grid given by a
desired altitude.2

Locations of points in a three dimensional spherical space can be described by means of
Cartesian coordinates on the plane by applying a Mercator projection. In such a projection
of the world map, lines of constant latitude and longitude become straight horizontal and
vertical lines, respectively. Hence, once projected to the Cartesian plane, the 2D weather
grid becomes a regular, rectangular grid.

Wind conditions in other locations than those provided by the grid W can be inferred by
interpolation; by linear regression, for example. Here, we prefer another approach and assume
that every point in the Cartesian plane has the same wind vector as the grid point of W at
the smallest Euclidean distance. Denoting by ~pi,j the location of the point (i, j) ∈W and by
~wi,j the associated wind vector, we can determine the regions Ri,j ⊆ R2 with constant wind
vector ~wi,j as follows: Ri,j = {~p ∈ R2 | ∀ (r, s) ∈ W, (r, s) 6= (i, j) : ‖~p− ~pi,j‖ ≤ ‖~p− ~pr,s‖}.
This yields a Voronoi tessellation (partitioning) of the plane (see e.g. [8]), which preserves
the regular, rectangular structure of W .

In what follows for a polygon F representing a FRA, we assume that we also have a
rectangular tessellation Q of F consisting of rectangular regions (quads) Qi, i = 1, . . . ,K
and Q = Q1 ∪Q2 ∪ . . . ∪QK such that all points of a region have the same wind vector ~wi.
It is easy to think of this rectangular tessellation as the same Voronoi tessellation derived
from the wind grid. However, it can also be a more general rectangular tessellation, in which
several regions of similar wind conditions are joined together; see Fig. 1.

Wind-dependent travel time function. Consider two points ~p, ~q ∈ R2 of a region of constant
wind ~w, and let ~p be the position of the aircraft and ~q its desired destination. With respect
to the ground, the aircraft travels along the direction −→pq = ~q − ~p, where ‖−→pq‖ is the ground
distance between ~p and ~q. When the aircraft flies through the air, it is affected by the wind;
see Fig. 2. To hit the goal ~q, it has to head in a proper direction, possibly different from −→pq.
This direction, relative to the atmosphere and hence called air velocity, is denoted by ~vA
and ‖~vA‖ = h is the true airspeed. The ground velocity ~vG in the direction −→pq is given by:
~vG = ~vA + ~w.

Expressing the wind vector in polar coordinates ~w = (ω, θ), where ω is the wind magnitude
and θ the angle between ~w and −→pq, and using the laws of trigonometry, we can derive the

2 Latitude degrees are defined from 90 deg north to 90 deg south and longitude degrees from 180 deg
west to 180 deg east. Thus, real-life 2D weather data is given for a 2D grid of 144 × 288 points, i.e.,
W = {(i, j) | i = 0, 1, ..., 143 and j = 0, 1, ..., 287}.

C.K. Jensen, M. Chiarandini, and K. S. Larsen 14:5

p1

p2

p3

p4

p5

p6

p7

p8
p9

p10

p11

p12

g

s

1 2

4

3

5

7

6

8

s

g

a
b

c

d

e

Figure 1 Left: a polygon defined by points pi, i = 1, ..., 12, representing a (fictional) free route
airspace. Our problem is to find the best path between a source s and a goal g in terms of travel
time, which depends on the wind conditions, represented by wind vectors indicating direction and
magnitude at evenly spaced locations. Right: A path from s to g in a tessellation of a flying area
(different from the left one). Border points are emphasized by circles.

travel time for the aircraft to go from ~p to ~q. That is,

t~p,~q(~w) = ‖
−→pq‖
‖~vG‖

= ‖−→pq‖
ω cos θ +

√
h2 − ω2 sin2 θ

. (1)

Under the reasonable assumption that the true airspeed h is larger than the wind speed ω,
then h2 − ω2 sin2 θ > 0 and Eq. (1) gives a valid value.

3 Algorithms for Cheapest Path through Vector-Weighted Regions

We discretize the flight route problem to obtain a graph representation. This makes it
possible to apply classic Dijkstra and A? algorithms directly. Then, we define our new
algorithm, which uses the same search graph, but exploits geometric properties of the
environment it models to reduce the run-time. The algorithms we present are optimal up to
the approximation due to the discretization. Intuitively, we then approach the continuous
optimal route when the number of border points increase.

We assume that we have a 2D polygon F representing a FRA at a specific flight level,
and two additional points, s and g, representing a source and a goal, respectively. Further,
we assume that we have a tessellation (partition) Q of the polygon F in rectangular regions
(quads) Q1, . . . , QK , and vector weights ~w1, . . . , ~wK associated with each quad, representing
the direction and intensity of the wind. The situation described is sketched in Fig. 1, left.

A continuous curve in F is a path P and its cost is cP =
∑n
i=1 tPi(~wi), where tPi(~wi)

denotes the travel time of the intersection of P with the quad Qi, that is, Pi = P ∩ Qi.
Given two distinct points s and g in P , a minimum cost (s, g)-path joining s and g is called a
geometric shortest path. With constant vector weights associated with each quad, geometric
shortest paths are simple (non-self-intersecting) and consist of a sequence of linear segments.
We define linear paths to be simple paths consisting of quad-crossings exclusively. A linear
path P is made by a sequence of segments or, equivalently, as a sequence of the endpoints
a0, . . . , a` of these segments.

In order to search for such paths, we discretize the borders of quads into a set of border
points. For a quad Q ∈ Q, we refer to its four sides from the perspective of an entering path

ATMOS 2017

14:6 Flight Planning in Free Route Airspaces

#—pq

#—v G

#—w
#—v AwT

wC

#—p

#—q

Ø (0, 0)

T (top)

B (bottom)

R (right)L (left)

Q

λL

λT

Figure 2 Left: an aircraft traveling along −→pq with ground velocity ~vG affected by wind vector ~w
travels with true air velocity ~vA. The individual components of the wind vector, wC = ω · sin θ and
wT = ω · cos θ denote the crosswind and tailwind components, respectively. The ground speed ‖~vG‖
is given by wT +

√
‖~vA‖2 − w2

C . Right: a quad Q with border points (i, S), S ∈ {B, T, L,R} and
the local coordinate system.

as bottom (B), opposite (or top) (T), left (L) and right (R). The definition is relative to
a point on the side of Q that is denoted as B. We also define a local coordinate system
with its origin (0, 0)Q at the bottom (B) left (L) corner of the quad. We decorate the sides
S ∈ {B, T, L,R} with a set of equi-distant vertex points. Let kS be the number of points on
side S and let kS = m if S = {L,R} and kS = n if S = {B, T}. Let also λS be the length
of a side S ∈ {B, T, L,R}, with λL = λR and λT = λB. The border points are placed at a
distance εS = λS/kS apart. For example, the coordinates with respect to the local system of
the points on the side L are (εS/2, 0)Q, (εS(1/2 + 1), 0)Q, . . . , (εS(1/2 + kS − 1), 0)Q. There
are no border points at the corners of the quads. We represent a border point p ∈ Q by the
tuple (i, S)Q, where i ∈ {0, 1, ..., kS} is the index of the point on side S ∈ {B, T, L,R}; see
Figure 2.3

For each quad Q ∈ Q, we let an adjacent quad be any quad that shares (part of) a border
with Q. Thus, Q is essentially implemented as a planar graph with an adjacency list for
each quad. Hence, the amount of memory required to store the tessellation and the border
points is O(Kn), where we assume n = m. If the tessellation is derived from the original
weather grid, then it is a regular grid, where each quad can be identified by two indices (i, j),
and neighboring quads can be derived by incrementing or decrementing the indices, and
adjacency lists are not needed.

We indicate by AQ the set of border points on the four sides of Q ∈ Q and by ASQ the
border points on each single side S ∈ {B, T, L,R} of Q. Border points on a common side
of two quads Q,Q′ ∈ Q belong to both AQ and AQ′ . Let Qs and Qg denote the quads
containing s and g, respectively. We limit the reachability of border points of a side of a
quad to points on one of the other three sides and the two closest points to the left and
right on their own side. As a special case, a most extreme border point on a side can
also reach the neighboring point on the side which is a continuation of its own side (in
the neighboring quad). Thus, the set of reachable points R(p) from p = (i, 0)Q ∈ Q is
R(p) =

⋃
S∈{T,L,R}A

S
Q ∪ ({(i− 1, 0)Q, (i+ 1, 0)Q} ∩ABQ).

For the tessellation Q, we define the graph Gsg = (V,E), where vertices in V represent
border points and edges in E represent links between reachable border points. Formally,

3 Sometimes we represent a border point p also by means of the local coordinates of the quad to which it
belongs; although, in this case, it would be more appropriate to denote p as a vector we continue to
denote the point simply by p.

C.K. Jensen, M. Chiarandini, and K. S. Larsen 14:7

V =
⋃
Q∈QAQ and E = {uv | v ∈ R(u), u ∈ AQ, Q ∈ Q\ {Qs, Qg}} ∪ {sv | v ∈ AQs} ∪ {ug |

u ∈ AQg}; see Figure 3, showing a tessellation Q with four quads and the corresponding
graph Gsg. The cost cuv associated with an edge uv ∈ E is the travel time between the
corresponding border points pu, pv ∈ AQ, that is, tpu,pv (~wQ).4

For a border point p, let φ(p) = (s = a0, a1, a2, . . . , ak−1, ak = p) be the cheapest path
from s to p, across k border points ai ∈ Qi ∈ Q for i = 2, . . . , k and a1 ∈ Qs as the first
border point on the path from s to p. To each border point p ∈ Q, we associate the following
data: the travel time tp from s to p along path φ(p) defined by cp =

∑k−1
i=0 caiai+1 and a

pointer αp to p’s predecessor in φ(p), hence αp = ak−1.
Initially, each border point is assigned a large value to tp and a null pointer to αp. We

say that a border point u ∈ Q covers another border point v ∈ Q when a path ending at u is
extended to v and the values tv and αv are, consequently, updated. Once the initial values
tp and αp of a border point p have been updated, we say that the border point p is covered.
A border point p ∈ AQ that has been covered by a point u not in Q is said to be an entry
point for Q. Points covered by points on the same side are not categorized as entry points.

Graph-based approaches. We can find shortest paths in G by applying classic Dijkstra [7]
and A? algorithms. These algorithms expand records of vertices from an open list H until a
path from source to goal is proven optimal. The expansion of a vertex v amounts to inserting
all vertices reachable from v into the heap H, or updating their keys if they are already in H.
When extracting a vertex v ∈ V from the open list, priority is given to the one of smallest
cost (best-first) or smallest sum of the cost of the path to v and a heuristic estimate h(v) of
the cost from the corresponding node to the goal (in case of A?). The algorithm terminates
when the goal g has been reached and the incumbent best path to g is cheaper than the
cheapest record in H. Using best-first, the solution returned is optimal. For A?, the solution
returned is optimal if the heuristic is admissible (it never overestimates the cost from v to
the goal). If the heuristic is also consistent (for each edge uv ∈ E, h(u) ≤ cuv + h(v)), then
we only need to expand a node once.

For any vertex v ∈ V corresponding to a border point pv, we define the heuristic
value h(pv) to be the travel time needed to traverse the straight line distance with a tail
wind of intensity equal to the largest in the FRAs. Formally, h(pv) := tpvg(~w′pvg), where
~w′pvg :=

−−→pvg
‖−−→pvg‖ωmax and ωmax = maxQ∈Q ‖~wQ‖. This heuristic is admissible and consistent.

We have implemented the open listH as a min-heap. For a vertex v ∈ V , the corresponding
point pv = (i, S), S ∈ {B, T, L,R}, i = 1, . . . , kS , and αpv are stored with the key tp. Smaller
keys indicate higher priority in the list and the heap supports all the usual operations needed
for the implementation of Dijkstra’s algorithm. The use of H thus defined leads to an
asymptotic running time for Dijkstra of O((V +E) log(V)) or, in other terms, since each of
the K AQ contains O(n) points and O(n2) edges, O(Kn2 log(Kn)).5

Geometric algorithm. The main idea is to speed up node expansion by avoiding to expand
to border points that can be reached more conveniently from other nodes already in the

4 Note that the definition of cost for edges between vertices representing points on the same side is
ambiguous because we defined border points to belong to both quads Q and Q′ sharing the side. We
break this ambiguity in the search algorithms by always considering the wind vector of the quad Q
in which u is an entry point. An alternative choice would have been to consider on that segment the
average of the wind vectors in the two adjacent quads. However, this choice would break the triangular
inequality and require more computation.

5 Using Fibonacci heaps [10], this could be brought down to O(Kn log(Kn) +Kn2).

ATMOS 2017

14:8 Flight Planning in Free Route Airspaces

1 Function GeomBestFirst(Q, s, g)
2 foreach quad Q ∈ Q do
3 foreach point p ∈ AQ do
4 tp ←∞, αp ← NIL

5 H = new empty priority queue
6 Find quad Qs ∈ Q that contains s and Qg ∈ Q that contains g
7 Ds = AQs
8 βs = arg min{csp | p ∈ Ds}
9 H.Insert(cβs,s, s)

10 while not H.IsEmpty() and not all points in AQg are covered do
11 γr, r = H.ExtractMin() . Smallest key and associated point
12 tβr = γr; αβr = r . Cover βr
13 foreach S ∈ {B, T, L,R} do
14 DS

βr
, pS = CompeteOnSide(βr, S)

15 ββr = arg min{tβr + cβr,pS | S ∈ {B, T, L,R}}
16 H.Insert(tβr + cβr,ββr , βr) . Smallest new key and associated point
17 if Dr is not empty then
18 βr = arg min{tr + cr,p | p ∈ Dr}
19 H.Insert(tr + cr,βr , r)

20 return φ(g)
Algorithm 1: Main path finding algorithm.

open list. This can be achieved by exploiting the geometry of the environment and the
vector weights. An overview of the algorithm is given in Alg. 1; many of the ingredients are
described below. Differently from the previous Dijkstra and A? algorithms, the key of an
element v ∈ V stored in the open list H is not the cost of the path from source to v, but the
cost of the path from the source, through v, to v’s cheapest reachable successor node.

To every border point u ∈ AQ, Q ∈ Q, we associate a domain set Du, which is a subset
of uncovered border points in AQ that the point may try to cover in the future. DS

u ⊆ Du is
the domain set restricted to points on side S. The set DS

u is a connected interval of points,
which can be represented as DS

u = [iu, iu]. The first entry point p that enters a side B of Q
will initially have all other border cells in Q as its domain. However, if another entry point of
Q on the same side B, q, is extracted from H, then p and q compete for their domains. Thus,
the border points of Q are partitioned into two subsets such that the domain of q becomes
the border points that are less costly to reach from q than from p, and vice versa. We say
that an entry point is active as long as its domain is not empty. When an entry point is no
longer active, we say that it is blocked.

For this algorithm, we extend the information maintained at a border point p to contain,
in addition to tp and αp, the domain of the point and the cheapest reachable node in the
same quad, βp. Note that this is again a point, so the notation ββp is meaningful.

After the initialization of the data associated with border points (lines 2–4), all nodes
v ∈ V representing border points of Qs are assigned to the domain of s and s is inserted
into H with the cost to the cheapest reachable point in AQs as its key (lines 6–9). For each
iteration of the main loop (lines 10–19), a border point r is extracted from the open list and
border points from the same quad considered for coverage. The extracted point indicates the
cheapest point βr it can reach. If βr is already covered, then it is ignored because another

C.K. Jensen, M. Chiarandini, and K. S. Larsen 14:9

vertex already covered it with a cheaper path. If βr is not yet covered, then it is covered by
r. Once covered, βr triggers a domain competition to determine its domain Dβr in Q. As a
consequence, the domain of other entry points on the same side may be updated. The details
of these operations depend on the side of the quad. Next, we determine ββr = p∗, i.e., the
cheapest reachable point from Dβr and insert βr into the queue with the cost to p∗ as key.
When the quad containing the target point is completely covered, the algorithm terminates
and a fastest path from s to g can be constructed by backtracking the predecessor pointers
from g to the starting point s, or more precisely, the fastest path from s to g is simply φ(g).

The function CompeteOnSide varies depending on sides. Before we describe it, we need
to introduce some further elements.

Let ESQ be the set of entry points on side S ∈ {B, T, L,R} in quad Q currently in H and
let ES-S′Q ⊆ ESQ be the subset of entry points on side S still active towards side S′. In order
to retrieve entry points to the left and to the right of a point p ∈ S efficiently, we maintain
each ES-S′Q in the form of a balanced binary search tree (a red-black tree).

Let p ∈ ASQ be a border point on some side S ∈ {B, T, L,R} in a quad Q ∈ Q. For
two entry points a, b ∈ EBQ , we say that a dominates b over p and we write a �p b, if
ta + tap ≤ tb + tbp (ties may be broken arbitrarily). Likewise, if for all border points p ∈ ASQ
on a side S ∈ {B, T, L,R}, we have that a �p b, we say that a completely dominates b on
side S and write a �S b. Alternatively, if there exists a border point p on side S for which
a �p b we say that a partially dominates b on side S.

Compete on arrival side. For an entry point p on side B, the domain on the same side
consists of the two closest points, one on the left and one on the right, including the first
border point on the continuation of the side into the neighboring quads, if they exists. If
both those points are themselves entry points or covered, then p is blocked on the arrival
side. The cheapest reachable point will be one of those (at most two) points in the domain.

Compete on the opposite side (T). In domain competition on the opposite side T , we
decide the entire domain DT

a for each a ∈ EB-T
Q when a new point b entering on the side B

of the quad Q. The point b is determined by the pointer βr of the point r extracted from
the open list and it becomes an entering point after it has been covered. When an entry
point a is the first entry point on side B of a new quad, its domain DT

a will be assigned ATQ.
However, when another entry point b arrives, the two entry points compete for their domains
on side T . This means that ATQ is partitioned into two subsets DT

a ⊆ ATQ and DT
b ⊆ ATQ.

Letting each entry point compete for its domain with every other entry point would lead
to a worst case time complexity of O(n2 log(Kn)) for competing on side T (O(log(Kn)) is
the extraction cost of an entry point from H). Instead, we do this in O(n log(Kn)) time
by extending an algorithm from [6] to the case of vector weights. In that article, costs are
determined by Euclidean distances. This allows to easily determine domination between
points and save competitions. For example, for a quad Q ∈ Q, an entry point a at (xa, 0)Q
dominates another entry point b at (xb, 0)Q, if xa < xb and ta < tb. This condition does not
hold trivially with vector weights. However, we can derive something similar with a bit more
work.

For a new entry point b arriving on B, we need to compete with the active entry points
in EB-T

Q to its left and right in order of increasing distance.
For a point a to the left (right) of b, the following cases may arise:

1. a completely dominates b on T : the examination on the left (right) can be prematurely
terminated since all further points in EB-T

Q on the left (right) of a would also dominate b.

ATMOS 2017

14:10 Flight Planning in Free Route Airspaces

2. b completely dominates a on T : a becomes blocked on side T and the examination
continues with the next point in EB-T

Q to the left (right) of a.
3. b partially dominates a on T : the domains of b and amust be updated, but the examination

to the left (right) can be prematurely terminated because no further points in EB-T
Q to the

left (right) of a will need to update its domain (since the domain of a will not be empty
and its influence on other points from EB-T

Q different from b was already determined).

When examining points from EB-T
Q , we update ib if moving to the left and ib if moving to

the right. The update occurs only in Cases 2 and 3. After this update, if b is not blocked on
T , it becomes part of EB-L

Q .

I Theorem 3.1 (Separation point). For two points a, b ∈ ABQ, Q ∈ Q, domination and
domain computation on side T can be carried out in constant time by determining the point
z = (xz, λL)Q that separates the domains. The value xz is found by solving

tb + tbz(~wQ) = ta + taz(~wQ). (2)

For points a to the left of b, if xz > ia, then we are in Case 1, while if xz < ia, then we are in
Case 2. Otherwise we are in Case 3 and xz is the new value of ia and ib. Similar derivations
can be made for points a to the right of b.

Although xz can be determined in constant time, the required retrieval and storage
involves searching and updating the heap. This can be done in time amortized O(log(Kn))
per point. Thus, the total cost for carrying out domination for one side of a quad is
O(n log(Kn)).

Once the domains are updated, we need to determine the cheapest reachable point from
DT
b .

I Theorem 3.2 (Cheapest reachable point). For an entry point p in ABQ, Q ∈ Q, the point
z∗ ∈ DT

p that minimizes the travel time can be found by solving the following optimization
problem:

z∗ = arg min{f(z) = tp,z(~wQ) | z = (xz, λT), xz ∈ R} .

The problem has the closed form solution xz∗ = w1λT
w2−h , where ~wQ = (w1, w2)Q.

Compete on the lateral sides (L and R). Competition on the two lateral sides is conducted
in a manner very similar to the opposite side. The general algorithm with the three cases
remains the same and separation points and cheapest points can be derived in constant time.
Consequently, also the overall running time of O(n log(Kn)) is preserved.

Note that a further small speed up is possible on the opposite and lateral sides. For a
first arriving entry point p at side B of a quad Q, let z∗ be the cheapest reachable point on
a side S ∈ {T, L,R} and let tmin be tpz∗(~wQ). Let also z0 and zkS−1 be the first and last
border point of side S, respectively, and tmax = max{tpz0(~wQ), tpzkS−1(~wQ)}. Then all later
arriving entry points q will be blocked if tq > tp + tmax − tmin.

This is because p will be able to cover all points on the side S before q could cover them.
This would already be discovered later by realizing that p completely dominates q (Case 1),
but the above observation could save some cumbersome calculations. With regard to the
runtime, the following holds:

I Theorem 3.3 (Overall Time and Space Complexity). A cheapest path in a vector-weighted
tessellation Q of size K of a polygon F with n border points on each side of the quads of Q
can be found in O(Kn log(Kn)) time using O(Kn) space.

C.K. Jensen, M. Chiarandini, and K. S. Larsen 14:11

s

g

Figure 3 Left: four quads with four border points on each side and the source s and goal g nodes
together with the corresponding graph Gsg with its vertices (circles) and edges (red segments). Right:
The execution of our geometric algorithm on a 4× 4 tessellation with source in the top-left quad and
goal in the bottom-right quad. The path in bold black represents the optimal path, which deviates
considerably from the straight line. The black lines represent the work done by our algorithm and
the gray lines the work done by Dijkstra.

4 Experimental Analysis

For our experiments, we use rectangular polygons with tessellations consisting of 2i × 3i
square quads, i = 2, . . . , 10. We also consider different choices for the number of border
points n ∈ {9, 12, 18, 21, 25, 42} on each side of the quads. So we consider instances of the
problem with up to 51, 891 border points. For varying n, the inter-point distance is kept
as constant as possible. Thus, the polygon grows in size as n increases. The wind vectors
associated with each quad are generated independently at random as follows: Let ω be the
magnitude and θ be the angle of the vector. We set ~w = (ω, θ) = (r1 · 2/3 · h, r2 · 2π), where
r1, r2 are sampled independently and uniformly at random from [0, 1) and h = 50 is the
speed of the aircraft.6 In all instances, we consider a query for a path from a source s located
in the center of the top left quad to a goal g located in the center of the bottom right quad.

In Fig. 3 right, we give evidence that cheapest paths may deviate considerably from the
straight line path. The figure shows a screenshot of the execution of our geometric algorithm
in a tessellation Q. The circle in each quad has radius ĥ = 2/3 ·h and indicates the maximum
intensity of the wind, while the segment from the center indicates the actual wind vector.
The bold black path indicates the cheapest path. The black segments are part of the cheapest
tree from s to each border point in Q. As expected, quads with strong headwind are avoided
by cheapest paths. The gray segments belong to those paths that Dijkstra relaxed during its
search when a better path to a node is found and they represent, therefore, the work saved
by our geometric algorithm.

6 We omit the unit of measure which is irrelevant for synthetic data.

ATMOS 2017

14:12 Flight Planning in Free Route Airspaces

n = 9 n = 12 n = 18 n = 21 n = 25 n = 42

●●●●●● ●●● ●●● ●●● ●●●
●●●

●
●●

●
●●

●●●●●● ●●● ●●●
●●●

●
●●

●
●●

●
●●

●
●●

●●●●●●
●●●

●●●
●
●●

●
●●

●

●●

●

●●

●

●●

●●●●●●
●
●●

●
●●

●
●●

●

●●

●

●
●

●

●
●

●

●
●

●●●
●●●

●
●●

●
●●

●

●●

●

●●

●

●
●

●

●
●

●

●

●

●●●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0

2.5

5.0

7.5

10.0

0
20

0
40

0
60

0 0
20

0
40

0
60

0 0
20

0
40

0
60

0 0
20

0
40

0
60

0 0
20

0
40

0
60

0 0
20

0
40

0
60

0

Quads

C
om

pu
ta

tio
n

tim
e

in
 s

ec
Algorithms: ● ● ●Dijkstra (graph−based) A* (graph−based) Geometric VWRSP

Figure 4 Comparison of running time between our algorithm (geometric vector-weighted region
shortest path) and the two graph-based ones. The best run-times out of 5 runs are reported and a
local regression line is superimposed on the points. The number of border points n on a side of each
quad is increased in the panels from left to right.

Scaling. We study how the algorithms described (Dijkstra’s, A? search, and our geometric
algorithm) scale with respect to increasing: size of the (rectangular) tessellations and number
of border points. At each tessellation size and number of border points, we create three
instances as explained above. For each instance and algorithm, we perform 5 runs and record
the best running time.

Results are shown in Fig. 4. We see that for instances of the same number of quads,
the running time increases with n. Dijkstra’s algorithm consistently performs worst for any
number of border points. A? performs slightly better than our algorithm for n = 9, but as
we increase the number of border points, our algorithm performs better than A? search, with
a margin that increases with n.

In practical situations, where the size of the polygon is fixed, increasing the number
of border points allows us to decrease the inter-point distance among them and therefore
naturally we want as many border points as possible, as this increase the accuracy of solutions.
Thus, it is relevant to opt for our algorithm with the best running time performance.

Solution quality. We argued that the accuracy of the solutions increases when increasing
the number of border points. In Fig. 5, we show two cases where this statement becomes
evident. For an instance with 16 × 24 quads, we show the variation of solutions attained
by our algorithms when increasing the number of border points from 1 to 25 with intervals
of 1, while keeping the wind data constant. In particular, the solution represented in black
is attained with the highest resolution (n = 25) while the others are depicted in gray. We
observe that in these two cases, substantial differences in the paths arise. However, in general,
the differences among the final cost of the solutions were less impressive. We argue that
this behavior is due to the specific data that we used. That is, the instances were randomly
generated and the quantities were dimensionless. While the number of quads 16 × 24 is
realistic – for example, the case of FRA between Denmark and Sweden has 12× 20 quads –
the sizes of the quads and the inter-point distances were probably not. Hence, we believe that
our analysis does not provide conclusive answers in this regard. A more precise assessment of
the variation of solution quality with respect to resolution must necessarily include real-life
data and quantify the variations in monetary terms.

C.K. Jensen, M. Chiarandini, and K. S. Larsen 14:13

Figure 5 Visual comparison of solutions attained by our algorithm for increasing number of
border points. For an instance with 16× 24 quads, we increased the number of border points from 1
to 25 while keeping the wind data constant. In black, we show the solution attained with the highest
resolution (n = 25) while the others are shown in gray.

5 Conclusions and Future Work

We have proposed a geometric algorithm for finding a shortest path in a polygon with a
tessellation (partitioning) in vector-weighted regions. The algorithm has practical relevance
in the context of finding flight routes in free route airspaces. Our algorithm is able to
find routes that exploit wind forecast and because of this it is more effective than what is
currently used in practice. We have provided a theoretical analysis of the running time of our
algorithm, and experimentally, we have compared the running time of our algorithm with
other classic graph-based algorithms such as Dijkstra and A?. Thanks to our set-up, our
geometric algorithm is able to find the same routes as these algorithms, but its running time
grows much more slowly when the tessellation size and the number of border points increase.

When computation time is an issue, it is possible to approximate optimal paths by
joining adjacent regions of similar vector-weights. We have designed two heuristic algorithms
for joining regions and studied the impact of these operations on the quality and on the
computational cost of our algorithms. Although not reported here for reasons of space, this
further analysis has shown another favorable feature of our algorithm. While joining quads
and keeping the overall number of border points constant yields an increase in running time
for classic Dijkstra and A? because the number of edges increases, our algorithm is able
in fact to decrease its running time. This result indicates that our algorithm offers more
flexibility with respect to computation time than the other two.

We have used travel time as the cost to be minimized. In practice, the monetary cost
rather than travel time is used, which depends on fuel consumption as well. The viability of
our approach in that context has to be understood better. Further, we could not find an
easy way to extend our geometric considerations to A? search algorithms. Investigations in
this direction would be interesting for future research. Finally, the flight route optimization
problem is in fact a 3D problem that we have simplified to a 2D problem. Extensions of our
ideas to three dimensions would be interesting.

References
1 Lyudmil Aleksandrov, Anil Maheshwari, and Jörg-Rüdiger Sack. Approximation algorithms

for geometric shortest path problems. In 32nd Annual ACM Symposium on Theory of
Computing (STOC), pages 286–295, 2000.

ATMOS 2017

14:14 Flight Planning in Free Route Airspaces

2 Steve Altus. Effective flight plans can help airlines economize. AERO, 35, 2009.
3 Marco Blanco, Ralf Borndörfer, Nam-Dung Hoang, Anton Kaier, Adam Schienle, Thomas

Schlechte, and Swen Schlobach. Solving Time Dependent Shortest Path Problems on Air-
way Networks Using Super-Optimal Wind. In 16th Workshop on Algorithmic Approaches
for Transportation Modelling, Optimization, and Systems (ATMOS 2016), volume 54 of
OpenAccess Series in Informatics (OASIcs), pages 12:1–12:15. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2016. doi:10.4230/OASIcs.ATMOS.2016.12.

4 John Canny and John Reif. New lower bound techniques for robot motion planning prob-
lems. In 28th IEEE Annual Symposium on Foundations of Computer Science (FOCS),
pages 49–60, 1987.

5 Danny Z. Chen. Efficient algorithms for geometric shortest path query problems. In
Handbook of Combinatorial Optimization, pages 1125–1154. Springer, 2013.

6 Danny Z. Chen, Robert J. Szczerba, and John J. Uhran. A framed-quadtree approach
for determining Euclidean shortest paths in a 2-D environment. IEEE Transactions on
Robotics and Automation, 13(5):668–681, 1997.

7 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. MIT Press, 3rd edition, 2009.

8 Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
Geometry: Algorithms and Applications. Springer, 2008.

9 Eurocontrol. Free route airspace (FRA). http://www.eurocontrol.int/articles/
free-route-airspace. Accessed: 2017-03-28.

10 Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. Journal of the ACM, 34(3):596–615, 1987.

11 Andrew Freedman. Planes flew from New York to London at near-supersonic speeds due
to powerhouse jet stream. Mashable, 9 Jan 2015. http://mashable.com/2015/01/08/
jet-stream-new-york-london-flights/ Accessed: 2017-05-30.

12 Jongrae Kim and João Hespanha. Discrete approximations to continuous shortest-path:
Application to minimum-risk path planning for groups of UAVs. In 42nd IEEE Conference
on Decision and Control (CDC), pages 1734–1740, 2003.

13 Anders N. Knudsen, Marco Chiarandini, and Kim S. Larsen. Constraint handling in flight
planning. In 23nd International Conference on Principles and Practice of Constraint Pro-
gramming (CP), Lecture Notes in Computer Science. Springer, 2017. To appear.

14 Anders Nicolai Knudsen, Marco Chiarandini, and Kim S. Larsen. Vertical optimization
of resource dependent flight paths. In 22nd European Conference on Artificial Intelligence
(ECAI), pages 639–645, 2016. doi:10.3233/978-1-61499-672-9-639.

15 Joseph S. B. Mitchell and Christos H. Papadimitriou. The weighted region problem: Find-
ing shortest paths through a weighted planar subdivision. Journal of the ACM, 38(1):18–73,
1991.

16 Robert J. Szczerba, Danny Z. Chen, and John J. Uhran. Planning shortest paths among
2D and 3D weighted regions using framed-subspaces. The International Journal of Robotics
Research, 17(5):531–546, 1998.

17 WAFC Washington. The world area forecast system (WAFS) internet file service (WIFS)
users guide. https://www.aviationweather.gov/wifs/docs/WIFS_Users_Guide_v4.1.
pdf. Accessed: 2017-05-30.

http://dx.doi.org/10.4230/OASIcs.ATMOS.2016.12
http://www.eurocontrol.int/articles/free-route-airspace
http://www.eurocontrol.int/articles/free-route-airspace
http://mashable.com/2015/01/08/jet-stream-new-york-london-flights/
http://mashable.com/2015/01/08/jet-stream-new-york-london-flights/
http://dx.doi.org/10.3233/978-1-61499-672-9-639
https://www.aviationweather.gov/wifs/docs/WIFS_Users_Guide_v4.1.pdf
https://www.aviationweather.gov/wifs/docs/WIFS_Users_Guide_v4.1.pdf

	Introduction
	Preliminaries
	Algorithms for Cheapest Path through Vector-Weighted Regions
	Experimental Analysis
	Conclusions and Future Work

