Towards Employing Informal Sketches and
Diagrams in Software Development®

Milan Jancéar' and Jaroslav Porubin?

1 Department of Computers and Informatics, Technical University of Kosice,
Kosice, Slovakia
milan. jancar@tuke.sk

2 Department of Computers and Informatics, Technical University of Kosice,
Kosice, Slovakia
jaroslav.poruban@tuke.sk

—— Abstract

Programmers write notes and draw informal sketches and diagrams. We hypothesize about
understandability and helpfulness of these sketches and their deeper inclusion into software de-
velopment process. We are leveraging the fact that we have a collection of such sketches affiliated
to a commercial software system. We have the opportunity to study sketches that were created
naturally, not intentionally for research purposes. The oldest sketch was created a year and a
half ago and the most recent one a half a year ago. Our initial experiment shows that these
sketches are pretty understandable even after some time — even for another person.

1998 ACM Subject Classification D.2.2 Design Tools and Techniques, D.2.7 [Distribution, Main-
tenance, and Enhancement] Documentation

Keywords and phrases sketches, diagrams, design, maintenance, comprehension

Digital Object Identifier 10.4230/0ASIcs.SLATE.2017.4

1 Introduction

Many developers spontaneously write or create notes, lists, tables, ER/class diagrams,
drawings etc. [4] For the sake of brevity, let us refer to all kinds of these informal artifacts
simply as a sketch. There are various reasons why these sketches may come into being, mainly
“to understand, to design and to communicate” [3]. Many important design decisions are
made on whiteboards [3]. These sketches may resemble UML but do not strictly adhere to
it [4], they are spontaneous, ad-hoc and informal. We believe this spontaneity and informality
is great to capture immediate thoughts. These sketches can be later changed, refined, even
formalized (if necessary) — usually such sketches also have a longer lifespan and are more
likely to be archived [1]. An interesting fact is what medium developers use for sketching;:
almost two thirds are on some analog medium (mainly paper and whiteboards), whereas
modern means such as interactive whiteboards, tablets and smartphones are almost never
used [1].

It is not sufficient to just archive those sketches — some organization must be brought in.
Not to forget about the time dimension — as mentioned, the sketches evolve and we need
means for handling this. Baltes et al. [2] created a tool for managing these sketches, especially
for linking them to relevant parts of source code. There is still room for improvement and

* This work was supported by the project KEGA No. 047TUKE-4/2016: “Integrating software processes
into the teaching of programming”.

© Milan Jancéar and Jaroslav Porubén;
37 licensed under Creative Commons License CC-BY
6th Symposium on Languages, Applications and Technologies (SLATE 2017).
Editors: R. Queirés, M. Pinto, A. Simdes, J. P. Leal, and M. J. Varanda; Article No. 4; pp.4:1-4:10

\\v Open Access Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2017.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

4:2

Towards Employing Informal Sketches and Diagrams in Software Development

for studying usability and influence of sketches on program comprehension when embedded
to corresponding code fragment.

We believe the potential of these sketches is yet to be fully utilized and we have a
direct experience with these sketches, which in fact inspired this kind of research. It must
be emphasized that we are only in the early stage of the research and the paper presents
preliminary results obtained by observing and analyzing the sketches of one programmer.
The aim was to better understand this field of study. Future work will focus on more rigorous
experiments involving more programmers. The ultimate objective of our future work is to
validate a deeper inclusion of sketches into software development process and to propose new
approaches and recommendations for developers and for creators of those sketches to better
utilize their potential.

We collected sketches capturing internals of a commercially developed system we parti-
cipate on. The added value of our initial experiments lies in the fact that those sketches are
quite old — their origin is in range from a year and a half ago to a half a year ago (October
2015 — October 2016).

The contribution of the paper lies in the analysis and evaluation of understandability and
(perceived) helpfulness of sketches after a relatively long time period since their origin. In
summary, the following aspects are regarded:

the nature of the sketches — type of elements, notations, etc.,

perceived and objective understandability,

perceived helpfulness,

perception of the sketches by a non-author.

2 Background

A little context is given — an explanation of the origin of the sketches and a brief description
of a software project they are related to.

2.1 Software System

The software system documented by the mentioned sketches has a following nature. The
system is a company internal system for managing their customers (people applying for a
job). Tt is a web application consisting of a server side created in Grails (a Groovy-based
framework for the Java Virtual Machine) and a client side created in AngularJS (a JavaScript
framework). Source files have ca. 150 KLOC! and following programming languages are
used?: Groovy (48%), JavaScript (28%), HTML (14%), Java (7%) and some others.

2.2 Origin of Sketches

The sketches are private notes taken by one of the authors of the paper. It is important to
note that they were not intended for such a research. Their studying is purely incidental.
Knowing about the consecutive research beforehand might have invalidated obtained results
because the sketches might have been (subconsciously) adjusted or a greater effort might
have been put into creating them (cf. Hawthorne effect).

! Kilo Lines of Code (no blank or comment lines), based on the output of cloc tool applied to files stored
in a Git repository (git ls-files).
2 As reported by GitLab in Graphs-Languages section.

M. Jandar and J. Porubin

2015 2016
I oct | Dov dec | jan | feb | mar , apr | may jun | jul | aug | sep , oct |
1] [ITTTITTTIE T 11 Il [| 1
LI-1 DOCs LI-CL CAL LI-Q _DLG GRM cce PX PT, LI-F PT,
ET WF CCP
1 2 7 12 13 18 25) | @22 28 29
. 33 34 35 .
. 5 6 9 15 16 17 26 23 31

10 19 . 21 32

Figure 1 Time frame of sketches, the dark ones were selected for closer studying.

3 Data Collection

We are taking a collection of 37 sketches and are trying to get as much useful information as
possible from it.

First, we assigned identifiers to all of the found sketches in the exact order as they have
been found filed, starting with the paper on the bottom given the ID 1.

Then, from 37 sketches, 7 were discarded (namely # 3, 8, 11, 24, 27, 30, and 37) because
they were archived either by mistake or because they were remains of to-do lists (crossed
out to large extent) with very little information value. So we have 30 sketches for further
analysis.

The next important thing, since we are focusing on the fact that the value of sketches
lies in their age, was to define a time frame in which the sketches originated. That turned
out nontrivial since the sketches were not timestamped. So we chose the following approach:
1. Utilizing a Git repository of the affiliated software project, we listed all commits by the

author of the sketches and skimmed over them to get a list of tasks being done on the

project plus their time range. By a task we mean some self-contained functionality, a

feature addition/improvement, we might say a user story (although we do not want to

imply any development methodology) which is sufficiently significant (lasting at least five
days).
2. We analyzed sketches to assign a task from the list obtained in the step 1 to each sketch.
3. Based on the assignment sketch—task (step 2) and task—time (step 1) we can approx-
imately define a time of origin of respective sketches. See Fig. 1 for the resultant time
frame. (Tasks are assigned IDs such as LI-1, DOCS, but their meaning is internal and not
important for this study.)

4 Nature of the Sketches

Technically, all but two sketches were created by hand on a piece of (scrap) paper, those
two were drawn on a computer (by another person). The most of them (ca. 80%) were on a
single page A4 paper.

We analyzed types of elements and notations used in sketches. When appropriate, well
known standard notation elements were used such as those for entity /relation diagrams, class
diagrams, state transition diagrams etc. However, they were not used precisely, rather freely
with additional useful ad-hoc symbols.

A summary of observed recurring patterns found in sketches is in Table 1. Number of
sketches having a particular type is stated. The sum does not yield 30 (100%) because one
sketch may contain elements of more than just one type.

4:3

SLATE 2017

4:4

Towards Employing Informal Sketches and Diagrams in Software Development

Table 1 Types of sketches.

Type Abs. no. Rel. no.

entity /relation (ER) diag. 9 30% ——
domain entities and relations between them

algorithm 7 23% ———

important steps, strategies, if-then cases

user interface sketch 5 17% ——

a graphical user interface (GUI) design

state transition diag. 4 13% —

a diagram of states and transitions between them

table/matrix 4 13% —

arbitrary information captured in a table/matrix manner

Q/A list 4 13% —

a list of questions and answers which are obtained from a more experienced fellow developer
modules overview 2 ™% m—

a high-level view on modules structure and their dependencies

generic notes 18 60% [

notes, prevalently in form of a list, not matching any above-mentioned characteristic

all 30 100% L]

5 Initial Experiment

We ask these questions: Are sketches, after a time has passed, understandable for their
author and/or for other people? And if the answers is yes: Are those sketches still helpful,
for instance, in maintenance tasks?

From the author perspective, sketches are still very well understandable, almost all
notation symbols and abbreviations are familiar.

Nonetheless, to evaluate a hypothetical understandability and (perceived) helpfulness of
the personal sketches by someone else, we performed a quick exploratory experiment testing a
rather vague hypothesis that personal sketches related to a software project, even after some
time, may be understandable and helpful for other developers participating on that project.

We chose a questionnaire approach. A respondent is our colleague who also works on the
mentioned software project. Thus he has some general domain knowledge. However, he has
not worked on the tasks the sketches were about. He could have some marginal knowledge
about them, though.

There are probably two main factors impairing understanding for him: a time factor
(sketches may be outdated) and “created by someone else” factor. On the other hand, there
is one thing that probably has a positive effect on understanding — the mentioned fact that
the respondent has an experience with the related system.

5.1 Method

The questionnaire was comprised from the following 5 questions.
Q1: Which project artifacts (on a file level) are related to a given sketch? To what extent
— on the scale: marginally (less than 1/3 of a file content), partially (more than 1/3 of a
file content but less than 2/3), largely (more than 2/3 of a file content)? [Time to solve:
10 minutes max. per a sketch]

M. Jandar and J. Porubin

Q2: The given sketch involves various texts, pictograms, abbreviations, symbols, notations,
diagram elements etc. Subjectively, to what extent do you think you understand the
sketch? The scale: 0-20%, 20-40%, 40-60%, 60-80%, 80-100%.

Q3: What hinders you the most in understanding the given sketch? (Open question)
Q4: With the statement “The given sketch will help me in the future solve related
maintenance tasks (adding or modifying a feature, bug fixing)”, I: a) strongly agree, b)
agree, ¢) do not know to take a stand (neutral), d) disagree, e) strongly disagree.

Q5: Briefly summarize what you have grasped from the given sketch. If you caught some
interesting details, include them. (Open question)

The 1st and 5th questions examine indirectly the respondent’s objective level of under-
standing (when compared to the reality). The 2nd question targets the perceived level of
understanding and the 4th question the perceived level of helpfulness.

For the sake of simplicity, only four sketches were selected for this initial experiment.
They were selected in such a way that the following qualities were covered in the widest
possible spectrum: age, neatness, notation types. Their ordering reflects our assumptions
about their difficulty to be understood by a stranger (starting with the presumably easiest
one). They have the following characteristics (for their age, see Fig. 1):

1. ID 20: a neat diagram, adhering (although not strictly) to well-known UML class diagram
notation, it contains 7 classes (domain entities); we consider it easy to understand, it is
basically a “control” sketch,

2. ID 14: basically a state transition diagram; contains some unexplained symbols and
notations which makes it nontrivial to understand; a context (states and transitions of
what) is not explicitly given,

3. ID 36: an intricate diagram drawn with no standard notation in mind; captures re-
lationships among controllers and services with some additional notes; contains many
unexplained abbreviations what makes it even harder to understand,

4. ID 4: has a form of a table; contains notes describing a strategy (algorithm); contains
many unexplained abbreviations and also notations such as circles, arrows and wavy lines.

To create an image of what the sketches used in the questionnaire look like, photos have
been taken, see Figures 2, 3 and 4.

5.2 Results

The answers to the questions Q2-Q4 from the filled out questionnaire are in Table 2. For
the Q1, we decided which artifacts should be considered related, hence “correct”, as we have
a deep understanding of the system and also sketches. Based on this, we computed recall
and precision of artifacts included in the obtained answer for this question.

A little elaboration is needed to clarify how we computed recall and precision. Let us
have two sets: a set of “correct” (relevant) elements and a set of “selected” elements. It is
well known that we compute recall r and precision p as follows:

_|correct N selected| _|correct N selected|

|correct| N |selected|

In our case, source artifacts (files) are those elements. However, our respondent was asked
to not only select related artifacts but also to state an extent (marginal, partial, large) to
which they were related. To regard extents of artifacts, we assigned weights (1-marginal,
2-partial or 3-large) to the artifacts in both sets (of selected and correct artifacts), effectively
creating two (so-called) weighted sets or multisets. Above-mentioned formulas still hold but

4:5

SLATE 2017

4:6

Towards Employing Informal Sketches and Diagrams in Software Development

! Figure 2 Sketch #4.

correct and selected are now multisets, and thus special rules, e.g. for intersection, apply.
For instance, let correct multiset be {a,a,a,b} (meaning an artifact a to a large extent and
an artifact b to a marginal extent) and selected be {a,a,c}. Then, their intersection is {a,a}
— meaning “the artifact a to a partial extent”.

Answers to the question Qb5 and a high rate of confidence expressed in the Q2 aroused our
interest. We extended the given textual questionnaire by interview questions asking about
concrete facts captured in a sketch in order to find out if the respondent really understood
them (or just thought he understood them).

Conclusions drawn from the Q5 combined with the interview are in Table 3.

M. Jandar and J. Poruban 4:7

" Figure 3 Sketch #14.

" Figure 4 Sketches #20 and #36 (top-down, blank space overlapped).

4:8 Towards Employing Informal Sketches and Diagrams in Software Development

Table 2 Obtained results from questionnaire.

Sketch Q1 (artif.) Q2 (perceiv. und.) Q3 (hindrance) Q4 (perceiv. help.)
r = 84.6% illegible handwriting, notation
2 —1 ’
#20 p=064.7% 80-100% (numbers) agree
r=37.5% illegible handwriting, notation
14 — ’ tral
p=25.0% 60-80% (a math sign) neutra
= 0.0% illegible handwriting, abbrevs.,
#36 B 0'0(70 0-20% small text, notation (rectangle, disagree
p=UE arrows)
#4 ’"p: 122'%) 80-100% illegible handwriting agree
= . 0

Table 3 Question Q5 and the interview.

Sketch ~ Report on the answer to Q5 and additional interview questions

#20 understood well, no more interview questions asked

understood pretty well, although 1 fact was misunderstood and 2 symbols (*, x) not
#14 understood

completely not understood/misunderstood; misunderstood abbreviations and illegible
#36 handwriting caused that the respondent saw totally unrelated elements

understood well, all additional questions (except for one) answered correctly or
satisfactorily

#4

5.3 Discussion

Evaluating the question Q1 turned out to be very difficult. There are significantly different
views on what it means for an artifact to be related to a sketch. That caused relatively low
values of recall and precision even for the sketch #20 where we thought the artifacts are
obvious. Differences were also caused by various opinions on “covered extent” of artifact.

The perceived understanding (Q2) nicely correlate with the perceived helpfulness (Q4) so
the respondent thinks that if he can understand a sketch, it will also help him.

A high level of confidence (Q2) was suspicious but based on Q5 and the additional
interview questions, it seems that the respondent really understands what he claims. It is
most surprising at the sketch #4, which we considered to be hardly understandable but
the respondent understood it pretty well. The respondent admitted working on a task
similar to the one described by this sketch. But still, he had to infer the meaning of obscure
abbreviations and unexplained notation (arrows, circles, lines) and that was nontrivial.

What hinders understanding the most (Q3) is obvious and expected — mainly illegible
handwriting and unezplained notation; also abbreviations, but not that much, probably
because the respondent (a fellow developer) shares some domain knowledge and is able to
infer them.

Sketch #36 came as a surprise: not because it was not understood but because the
respondent was able to see something what was not there. It was caused mainly by ambiguous
abbreviations and notation.

M. Jandar and J. Porubin

6 Future Work

Our future work may focus on measuring the helpfulness of embedding (or linking) sketches

directly in (to) source code for program comprehension. “Program comprehension is an

internal cognitive process that inherently eludes measurement” [5]. Measuring program

comprehension (understanding) is hard and only indirect. Siegmund [5] enumerates the

following approaches for measuring:

1. software measures measuring the code itself: based on the assumptions that the more
complex code, the harder it is to comprehend — e.g. lines of code, cyclomatic complexity;

2. subjective rating of developer’s understanding;

3. performance of developers: based on the assumed correlation between ease of understand-
ing and speed of fulfilling a given task;

4. think-aloud protocols: allow observing a process of comprehending by verbalizing subject’s
thoughts.

Considering these standard approaches, software measures (1) are not applicable for obvious

reasons: our approach does not affect existing code. In (2) and (4), measurements would

be hardly comparable and obviously biased. The approach (3) — measuring performance of

developers — seems like the most appropriate choice.

We plan to conduct a controlled experiment, where participants (programmers) will be
given a task and source code of the relevant part of the project. A task may be oriented
on programming (altering a functionality) or deriving some knowledge from the code. Both
approaches require comprehending and can be measured — by measuring a time to fulfill the
task. Participants of the experimental group will also be given a relevant sketch, since we
are hypothesizing about their helpfulness.

7 Conclusion

Our small experiment showed that sketches, even after a long time, have a potential to be
understandable and helpful — even for other people.

We will conclude this paper with lessons learned from our initial experiment about
utilizing sketches in software development:

One should care about his or her handwriting and to explain abbreviations and especially

notations used.

Being consistent in abbreviations and notations across many sketches increases the chances
of their understandability.

From various reasons, it might be useful to timestamp all sketches.

It is also a good practice to label sketches with a related task — while a sketch is current,
its context is obvious, but later the context is lost. Also these labels may streamline
sorting out sketches or finding sketches related to a specific subject (task).

We observed the following three reasons why a sketch was created: (1) to help think/reason,
(2) as a medium to ask questions and capture answers (for instance from a fellow more
experienced programmer), (3) to capture important design decision for future reference.

As the biggest hindrance to fully employ sketches in the development process, we consider
the fact that those sketches are put away, archived, with no live connection to software source
artifacts. They simply do not automatically pop up when we need them and this also is the
area of our future interest.

4:9

SLATE 2017

4:10

Towards Employing Informal Sketches and Diagrams in Software Development

—— References

1

Sebastian Baltes and Stephan Diehl. Sketches and diagrams in practice. In 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering, pages 530—
541, 2014.

Sebastian Baltes, Peter Schmitz, and Stephan Diehl. Linking sketches and diagrams to
source code artifacts. In 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, pages 743-746, 2014.

Mauro Cherubini, Gina Venolia, Rob DeLine, and Andrew J. Ko. Let’s go to the whiteboard:
how and why software developers use drawings. In SIGCHI conference on Human factors
in computing systems, pages 557-566, 2007.

Nicolas Mangano, Thomas D. LaToza, Marian Petre, and André van der Hoek. How
software designers interact with sketches at the whiteboard. IEEE Transactions on Software
Engineering, 41(2):135-156, February 2015.

Janet Siegmund. Measuring program comprehension with fMRI. Softwaretechnik-Trends,
34(2), 2014.

	Introduction
	Background
	Software System
	Origin of Sketches

	Data Collection
	Nature of the Sketches
	Initial Experiment
	Method
	Results
	Discussion

	Future Work
	Conclusion

