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—— Abstract

This paper addresses the cornerstone family of local problems in distributed computing, and
investigates the curious gap between randomized and deterministic solutions under bandwidth
restrictions.

Our main contribution is in providing tools for derandomizing solutions to local problems,
when the n nodes can only send O(logn)-bit messages in each round of communication. We
combine bounded independence, which we show to be sufficient for some algorithms, with the
method of conditional expectations and with additional machinery, to obtain the following results.

First, we show that in the Congested Clique model, which allows all-to-all communication,
there is a deterministic maximal independent set (MIS) algorithm that runs in O(log® A) rounds,
where A is the maximum degree. When A = O(n!/?), the bound improves to O(log A).

Adapting the above to the CONGEST model gives an O(D log® n)-round deterministic MIS
algorithm, where D is the diameter of the graph. Apart from a previous unproven claim of a
O(D log® n)-round algorithm, the only known deterministic solutions for the CONGEST model
are a coloring-based O(A +log" n)-round algorithm, where A is the maximal degree in the graph,
and a 20(V1egnloglogn) round algorithm, which is super-polylogarithmic in n.

In addition, we deterministically construct a (2k — 1)-spanner with O(kn'*/klogn) edges
in O(klogn) rounds in the Congested Clique model. For comparison, in the more stringent
CONGEST model, where the communication graph is identical to the input graph, the best de-
terministic algorithm for constructing a (2k—1)-spanner with O(kn'*'/*) edges runs in O(n'=1/*)
rounds.

1998 ACM Subject Classification G.2.2 Graph Algorithms
Keywords and phrases Local problems, congested clique, derandomization

Digital Object Identifier 10.4230/LIPIcs.DISC.2017.11

1 Introduction

1.1 Motivation

A cornerstone family of problems in distributed computing are the so-called local problems.
These include finding a maximal independent set (MIS), a (A + 1)-coloring where A is the

* This research is partially supported by the Israel Science Foundation (grant 1696/14).
t A full version of the paper is available at https://arxiv.org/abs/1608.01689.

© Keren Censor-Hillel, Merav Parter, and Gregory Schwartzman;
37 licensed under Creative Commons License CC-BY

31st International Symposium on Distributed Computing (DISC 2017).

Editor: Andréa W. Richa; Article No. 11; pp.11:1-11:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


http://dx.doi.org/10.4230/LIPIcs.DISC.2017.11
https://arxiv.org/abs/1608.01689
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2

Derandomizing Local Distributed Algorithms

maximal degree in the network graph, finding a maximal matching, constructing multiplic-
ative spanners, and more. Intuitively, as opposed to global problems, local problems admit
solutions that do not require communication over the entire network graph.

One fundamental characteristic of distributed algorithms for local problems is whether
they are deterministic or randomized. Currently, there exists a curious gap between the
known complexities of randomized and deterministic solutions for local problems. Inter-
estingly, the main indistinguishability-based technique used for obtaining the relatively few
lower bounds that are known seems unsuitable for separating these cases. A beautiful recent
work of Chang et al. [14] sheds some light over this, by proving that the randomized complex-
ity of any local problem is at least its deterministic complexity on instances of size /log n.
In addition, building upon a new lower bound technique of Brandt et al. [10], they show an
exponential separation between the randomized and deterministic complexity of A-coloring
trees. These results hold in the LOCAL model, which allows unbounded messages.

In this paper, we address the tension between the deterministic and randomized com-
plexities of local problems in the congested clique model, where the communication graph is
complete but the size of messages is restricted to O(logn) bits. The processed graph is an
arbitrary input graph which, in contrast to the LOCAL model, is not necessarily the same
as the communication graph. In some sense, the congested clique model is orthogonal to
the LOCAL model, because the diameter of the communication graph is 1, but the size of
messages is restricted. By showing how to derandomize known algorithms for the LOCAL
model, we provide fast deterministic algorithms for constructing an MIS and multiplicative
spanners in the congested clique model.

The curious phenomenon that shows up here is that the derandomization toolbox that
was developed for sequential algorithms does not seem to lend itself for the LOCAL model,
but it can be used in the congested clique model. This allows us to obtain deterministic
algorithms for local problems in the congested clique model, whose complexities roughly
match the complexities of their randomized counterparts in the LOCAL model. This can be
contrasted with the exponential in A or near-exponential in n gaps between the deterministic
and randomized complexities of these problems in the LOCAL model alone.

1.2 Qur Contribution

Maximal Independent Set (MIS): We begin by derandomizing the MIS algorithm of Ghaf-
fari [26], which runs in O(log A) + 20(Vloglogn) rounds, w.h.p!. In a nutshell, in this al-
gorithm, nodes choose to mark themselves with probabilities that evolve depending on the
previous probabilities of neighbors. In particular, if the sum of marking probabilities of a
vertex’s neighbors is large (resp., small) — the vertex reduces (resp. , increases) its own
marking probability in the next round. A marked node that does not have any marked
neighbors joins the MIS and all of its neighbors remove themselves from the graph. The
analysis shows that after O(log A) phases the graph consists of a convenient decomposition
into small clusters for which the problem can be solved fast. This is called the shattering
phenomena (see e.g., [7]).

We first show that a tighter analysis for the congested clique model of Ghaffari’s MIS
algorithm can improve its running time from O(log A + log* n) (which follows from combin-
ing [26] with the new connectivity result of [27]) to O(log A) rounds.

1 As standard, with high probability means with probability that is at least 1 — 1 /n¢ for a constant c.



K. Censor-Hillel, M. Parter, and G. Schwartzman

» Theorem 1. There is a randomized algorithm that computes MIS in the congested clique
model within O(log A) rounds with high probability.

For the derandomization, we use the method of conditional expectations (see e.g., [44,
Chapter 6.3]). In our context, this shows the existence of an assignment to the random
choices made by the nodes that attains the desired property of removing a sufficiently large
part of the graph in each iteration, where removal is due to a node already having an output
(whether the vertex is in the MIS or not). As in many uses of this method, we need to reduce
the number of random choices that are made in order to be able to efficiently compute the
above assignment.

However, we need to overcome several obstacles. First, we need to reduce the search
space of a good assignment to the random choices of the nodes, by showing that pairwise in-
dependence (see, e.g., [44, Chapter 13]) is sufficient for the algorithm to work. Unfortunately,
this does not hold directly in the original algorithm.

The first key ingredient is a slight modification of the constants used by Ghaffari’s al-
gorithm. Ghaffari’s analysis is based on a definition of golden nodes, which are nodes that
have a constant probability of being removed in the given phase. We show that this removal-
probability guarantee holds also with pairwise independence upon our slight adaptation of
the constants used by the algorithm.

Second, the shattering effect that occurs after O(log A) rounds of Ghaffari’s algorithm
with full independence, no longer holds under pairwise independence. Instead, we take
advantage of the fact that in the congested clique model, once the remaining graph has
a linear number of edges then the problem can be solved locally in constant many rounds
using Lenzen’s routing algorithm [38]. Thus, we modify the algorithm so that after O(log A)
rounds, the remaining graph (containing all undecided nodes) contains O(n) edges. The
crux in obtaining this is that during the first O(log A) phases, we favor the removal of
old nodes, which, roughly speaking, are nodes that had many rounds in which they had a
good probability of being removed. This prioritized (or biased) removal strategy allows us
to employ an amortized (or accounting) argument to claim that every node that survives
O(log A) rounds, can blame a distinct set of A nodes for not being removed earlier. Hence,
the total number of remaining nodes is bounded by O(n/A), implying a remaining number
of edges of O(n).

To simulate the O(log A) randomized rounds of Ghaffari’s algorithm, we enjoy the small
search space (due to pairwise independence) and employ the method of conditional expecta-
tions on a random seed of length O(logn). Note that once we start conditioning on random
variables in the seed, the random choices are no longer pairwise independent as they are
in the unconditioned setting. However, we do not use the pairwise independence in the
conditioning process. That is, the pairwise independence is important in showing that the
unconditional expectation is large, and from that point on the conditioning does not reduce
this value. As typical in MIS algorithms, the probability of a node being removed stems
from the random choices made in its 2-neighborhood. With a logarithmic bandwidth, col-
lecting this information is too costly. Instead, we use a pessimistic estimator to bound the
conditional probabilities rather than compute them.

Finally, to make the decision of the partial assignment and inform the nodes, we leverage
the power of the congested clique by having a leader that collects the relevant information
for coordinating the decision regarding the partial assignment. In fact, the algorithm works
in the more restricted Broadcast Congested Cliqgue model, in which a node must send the
same O(logn)-bit message to all other nodes in any single round. Carefully placing all the
pieces of the toolbox we develop, gives the following.
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» Theorem 2. There is a deterministic MIS algorithm for the broadcast congested clique
model that completes in O(log Alogn) rounds.

If the maximal degree satisfies A = O(nl/ 3) then we can improve the running time in
the congested clique model. The proof of the following is deferred to the full version [12].

» Theorem 3. If A = O(n'/3) then there is a deterministic MIS algorithm for the congested
clique model that completes in O(log A) rounds.

Combining Theorems 2 and 3 directly gives that the complexity is either O(log A) rounds
in case A = O(n'/3), and otherwise it is O(log2 A) since logn is then asymptotically equal
to log A. We conclude that there is a deterministic MIS algorithm for the congested clique
model that completes in O(log* A) rounds.

Our techniques immediately extend to the CONGEST model. The state of the art for
that setting is O(2V!°8nlosloen) round algorithm, using the network decomposition of [5]
(see Cor. 5.4 there). Wes then show that MIS can be computed in O(D-log? n) rounds where
D is the diameter of the graph. Here, we simulate O(logn) rounds of Ghaffari’s algorithm
rather than O(log A) rounds as before. Each such randomized round is simulated by using
O(D -logn) deterministic rounds in which the nodes compute an O(logn) seed. Computing
each bit of the seed, requires aggregation of the statistics to a leader which can be done in
O(D) rounds, and since the seed is of length O(logn), we have the following:

» Theorem 4. There is a deterministic MIS algorithm for the CONGEST model that com-
pletes in min{O(D log® n), O(2VIesn1oglogn )1 roynds.

The significance of the latter is that it is the first deterministic MIS algorithm in CON-
GEST to have only a polylogarithmic gap compared to its randomized counterpart when
D is polylogarithmic. Notice that this logarithmic complexity is the best that is known
even in the LOCAL model. In [49] it is shown that an MIS can be computed determin-
istically in 90(/1981) 1ounds via network decomposition, which is super-polylogarithmic in
n. Moreover, the algorithm requires large messages and hence is unsuitable for CONGEST.
Focusing on deterministic algorithms in CONGEST, the only known non-trivial solution is
to use any (A + 1)-coloring algorithm running in O(A + log* n) rounds (for example [3, 6])
to obtain the same complexity for deterministic MIS in CONGEST (notice that there are
faster coloring algorithms, e.g., [7], but the reduction has to pay for the number of colors
anyhow). Our O(D log? n)-round MIS algorithm is therefore unique in its parameters.

Multiplicative Spanners: We further exemplify our techniques in order to derandomize
the Baswana-Sen algorithm for constructing a multiplicative spanner. For an integer k, a
k-spanner S of G = (V, E) is a subgraph (V, Eg) such that for every two neighbors v, u in
G, their distance in S is at most k. This implies that also the distance for every other pair
of nodes is stretched in S by no more than a multiplicative factor of k. The Baswana-Sen
algorithm runs in O(k?) rounds and produces a (2k — 1)-spanner with O(kn'*t1/*) edges.
In a nutshell, the algorithm starts with a clustering defined by all singletons and proceeds
with k iterations, in each of which the clusters get sampled with probability n—'/*
node joins a neighboring sampled cluster or adds edges to unsampled clusters.
We need to make several technical modifications of our tools for this to work. The key

and each

technical difficulty is that we cannot have a single target function. This arises from the very
nature of spanners, in that a small-stretch spanner always exists, but the delicate part is to
balance between the stretch and the number of edges. This means that a single function
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which takes care of having a good stretch alone will simply result in taking all the edges
into the spanner, as this gives the smallest stretch. We overcome this challenge by defining
two types of bad events which the algorithm tries to avoid simultaneously. One is that too
many clusters get sampled, and the other is that too many nodes add too many edges to the
spanner in this iteration. The careful balance between the two promises that we can indeed
get the desired stretch and almost the same bound on the number of edges.

Additional changes we handle are that when we reduce the independence, we cannot
go all the way down to pairwise independence and we need settle for d-wise independence,
where d = ©(logn). Further, we can improve the iterative procedure to handle chunks
of logn random bits, and evaluate them in parallel by assigning a different leader to each
possible assignment for them. A careful analysis gives a logarithmic overhead compared to
the original Baswana-Sen algorithm, but we also save a factor of k since the congested clique
allows us to save the k rounds needed in an iteration of Baswana-Sen for communicating
with the center of the cluster. This gives the following.

» Theorem 5. There is a deterministic algorithm for the congested cligue model that com-
pletes in O(klogn) rounds and produces a (2k — 1)-spanner with O(kn'*t'/*logn) edges.

As in the MIS algorithm, the above algorithm works also in the broadcast congested
clique model, albeit here we lose the ability to parallelize over many leaders and thus we pay
another logarithmic factor in the number of rounds, resulting in O(klog®n) rounds. The
entire spanner construction is deferred to the full version [12].

1.3 Related Work

Distributed computation of MIS. The complexity of finding a maximal independent set
is a central problem in distributed computing and hence has been extensively studied. The
O(logn)-round randomized algorithms date back to 1986, and were given by Luby [42],
Alon et al. [1] and Israeli and Itai [35]. [7] showed a randomized MIS algorithm with
O(log® A) + 20Wleglogn) rounds. They also showed the bound of O(log A) + 20(VIeglogn)
rounds for Maximal Matching and (A + 1)-coloring. Following [7], a recent breakthrough
by Ghaffari [26] obtained a randomized algorithm in O(log A) 4+ 20(V1°818™) 1ounds.

The best deterministic algorithm is by Panconesi and Srinivasan [48], and completes in
20(V1081) 1ounds. On the lower bound side, Linial [40] gave an (log™ n) lower bounds for
3-coloring the ring, which also applies to finding an MIS. Kuhn et al. [37] gave lower bounds
of Q(y/logn/loglogn) and Q(4/log A/loglog A) for finding an MIS.

Barenboim and Elkin [4] provide a thorough tour on coloring algorithms (naturally,
excluding recent results). An excellent survey on local problems is given by Suomela [55].

Distributed constructions of spanners. The construction of spanners in the distribute
setting has been studied extensively both in the randomized and deterministic setting [8,
15, 16, 17, 18, 52]. We emphasize that the construction of [18] cannot be implemented in the
congested clique by simply applying Lenzen’s routing scheme because although each node
sends O(nlogn) bits of information, this information may need to be received by many
nodes, and is not split among receivers. A randomized spanner construction was given by
Baswana and Sen in [8]. They show that their well-known centralized algorithm can be
implemented in the distributed setting even with small messages. In particular, they show
that a (2k — 1) spanner with an expected number of O(n'*/¥) edges can be constructed
in O(k?) rounds in the CONGEST model (and for unweighted graphs, the algorithm takes
O(k) rounds, see [23]).
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Derandomization of similar randomized algorithms has been addressed mainly in the
centralized setting [53]. We emphasize that we need entirely different techniques to deran-
domize the Baswana-Sen algorithm compared with the centralized derandomization of [53].

The existing deterministic distributed algorithms for spanner are not based on deran-
domization of the randomized construction. They mostly use messages of unbounded size
and are mainly based on sparse partitions or network decomposition. The state of the art is
due to Derbel et al [17]. They provide a tight algorithm for constructing (2k — 1)-spanners
with optimal stretch, size and construction time of k£ rounds. This was complemented by a
matching lower bound, showing that any (even randomized) distributed algorithm requires
k rounds in expectation. Much less efficient deterministic algorithms are known for the
CONGEST model. [19] showed a construction of a (2k — 1)-spanner in O(n'~'/*) rounds.
Deterministic construction with an improved tradeoff was recently obtained by [5], they

#=1 p)-spanners with O(n'*1/*) edges in O(log"~* n) rounds.

showed a construction of O(log
Algorithms in the congested clique. The congested clique model was first addressed in
Lotker et al. [41], who raised the question of whether the global problem of constructing a
minimum spanning tree (MST) can be solved faster on a communication graph with diameter
1. Since then, the model gained much attention, with results about its computational power
given in [21], faster MST algorithms [27, 30], distance computation [33, 34, 46], subgraph
detection [20], algebraic computations [11, 25], and routing and sorting [38, 39, 51]. Local
problems were addressed in [32] who study ruling sets. Connections to the MapReduce
model is given in [31].

Derandomization in the parallel setting. Derandomization of local algorithms has attrac-
ted much attention in the parallel setting [1, 9, 13, 28, 29, 35, 36, 45, 50, 54]. Luby [43]
showed that his MIS algorithm (and more) can be derandomized in the PRAM model using
O(m) machines and O(log® nloglogn) time. In fact, this much simpler algorithm can also
be executed on the congested clique model, resulting in an O(log4 n) running time.

Similar variants of derandomization for MIS, maximal matching and (A+1)-coloring were
presented in [1, 35]. Berger and Rompel [9] developed a general framework for removing
randomness from RNC algorithms when polylogarithmic independence is sufficient. The
parallel setting bears some similarity to the all-to-all communication model but the barriers
in these two models are different mainly because the complexity measure in the parallel
setting is the computation time while in our setting local computation is for free. This raises
the possibility of obtaining much better results in the congested clique model compared to
what is known in the parallel setting.

Derandomization in the distributed setting. Naor and Stockmeyer [47] showed that
constant-round randomized algorithms for problems that are locally checkable can be deran-
domized without an asymptotic overhead, extended by [14, 24] for larger time complexities
and for a wider range of problems. Awerbuch et al. [2] claim to use the derandomized MIS
algorithm of Luby [43] to obtain a deterministic CONGEST MIS algorithm. This claim is,
however, not supported in their paper and is also late stated as open in [22].

2 Preliminaries and Notation

Our derandomization approach consists of first reducing the independence between the coin
flips of the nodes. Then, we find some target function we wish to maintain during each
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iteration of the derandomized algorithm. Finally, we find a pessimistic estimator for the
target function and apply the method of conditional expectations to get a deterministic
algorithm. Below we elaborate upon the above ingredients.

d-wise independent random variables. In the algorithms we derandomize in the paper, a
node v € V flips coins with probability p of being heads. As we show, it is enough to assume
only d-wise independence between the coin flips of nodes. We show how to use a randomness
seed of only t = d[max {logn,log 1/p}]| bits to generate a coin flip for each v € V, such that
the coin flips are d-wise independent. We first need the notion of d-wise independent hash
functions as presented in [56].

» Definition 6 ([56, Definition 3.31]). For N, M, d € N such that d < N, a family of functions
H = {h:[N] = [M]} is d-wise independent if for all distinct 1, xa, ..., 24 € [IN], the random
variables H(x1), ..., H(x4) are independent and uniformly distributed in [M] for a randomly
chosen H in H.

In [56] an explicit construction of H is presented, with parameters as stated next.

» Lemma 7 ([56, Corollary 3.34]). For every v,,d € N, there is a family of d-wise inde-
pendent functions H 3 = {h : {0,1}" — {0, 1}°} such that choosing a random function
from M g takes d - max {, B} random bits, and evaluating a function from H. g takes time

poly(v, 3, d).

Let us now consider some node v € V' which needs to flip a coin with probability p that
is d-wise independent with respect to the coin flips of other nodes. Using Lemma 7 with
parameters v = [logn] and 8 = [log1/p], we can construct H such that every function
h € H maps the ID of a node to the result of its coin flip. Using only ¢ = d - max {~, 5}
random bits we can flip d-wise independent biased coins with probability p for all nodes in
v. We define Y to be a vector of ¢t random coins. Note we can also look at Y as a vector
of length t/logn where each entry takes values in {1,...,[logn]|}. We use the latter when
dealing with Y. From Y each node v can generate its random coin toss by accessing the
corresponding h € H and checking whether A(ID(v)) = 0. From Definition 6 it holds that
Pr[h(ID(v)) = 0] = p, as needed.

The method of conditional expectations. Next, we consider the method of conditional
expectations. Let ¢ : A* — R, and let X = (X1, ..., X;) be a vector of random variables
taking values in A. If E[¢(X)] > « then there is an assignment of values Z = (z1, ..., 2¢)
such that ¢(Z) > a. We describe how to find the vector Z. We first note that from the
law of total expectation it holds that E[¢p(X)] = >, .4 E[¢(X) | X1 = a]Pr[X; = a], and
therefore for at least some a € A it holds that E[p(X) | X1 = a] > a. We set this value to
be z1. We then repeat this process for the rest of the values in X, which results in the vector
Z. In order for this method to work we need it to be possible to compute the conditional
expectation of ¢(X).

We now wish to use the method of conditional expectations after reducing the number
of random bits used by the algorithm. Let us denote by p the original vector of random
bits used by the algorithm. Taking Y as before to be the seed vector for p, we have that
p is a function of Y. We need to be able to compute E[¢(p(Y)) | y[1] = a1,...,y[i] = ai
for all possible values of ¢ and a;,7 < ¢. Computing the conditional expectations for ¢
might be expensive. For this reason we use a pessimistic estimator. A pessimistic estimator
of ¢ is a function ¢’ : A® — R such that for all values of i and a;,j < i it holds that
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El¢(p(Y)) | y1 =b1,...,us = b] > E[¢'(p(Y)) | y1 = b1,...,y; = b;]. If ¢ is a pessimistic
estimator of ¢ whose expected value is still bounded from above by «, then we can use the
method of conditional expectations on ¢’ and obtain z1, ..., z,, such that ¢(z1,...,2,) >

¢/(217...,Zn) Z Q.

Lenzen’s routing algorithm. We make heavy use of the deterministic routing algorithm of
Lenzen [38], which guarantees that if each node needs to send at most O(nlogn) bits and
receive at most O(nlogn) bits then O(1) rounds are sufficient.

3 Deterministic MIS

To prove Theorem 1, we consider the following modification of the randomized algorithm of
Ghaffari [26]. The algorithm of Ghaffari consists of two parts. The first part (shown to have
a good local complexity) consists of O(log A) phases, each with O(1) rounds. After this first
part, it is shown that sufficiently many nodes are removed from the graph. The MIS for what
remains is computed in the second part deterministically in time 2°(V1981987) e only use
the first part of Ghaffari’s algorithm, and the only change to it is a slight modification of
the constants that are used.

We define a slight modification to the first part of Ghaffari’s MIS Algorithm: Set pg(v) =
1/4. Define py1(v) = 1/2 - p(v), if di(v) > 1/2 and pi41(v) = min{2p;(v), 1/4}, otherwise.
Here d;(v) = EueN(v) pi(u) is the effective degree of node v in phase t. In each phase t, the
node v gets marked with probability p:(v) and if none of its neighbors is marked, v joins the
MIS and gets removed along with its neighbors.

3.1 O(log A) round randomized MIS algorithm in the congested clique

We begin by observing that in the congested clique, what remains after O(log A) phases of
Ghalffari’s algorithm can be solved in O(1) rounds. This provides an improved randomized
runtime compared to [26], and specifically, has no dependence on n. The algorithm consists of
two parts. In the first part, we run Ghaffari’s algorithm for O(log A) phases. We emphasize
that this works with both Ghaffari’s algorithm and with our modified Ghaffari’s algorithm,
since the values of the constants do not affect the asymptotic running time and correctness
of the randomized first part of the algorithm. Then, in the second part, a leader collects all
surviving edges and solves the remaining MIS deterministically on that subgraph. We show
that the total number of edges incident to these nodes is O(n) w.h.p., and hence using the
deterministic routing algorithm of Lenzen [38], the second part can be completed in O(1)
rounds w.h.p. We note that the proof that O(n) edges remain cannot be extended to the
case of pairwise independence, which is needed for derandomization, since the concentration
guarantees are rather weak. For this, we need to develop in the following section new
machinery. The full proof Thm. 1 appears in the full version [12].

3.2 Derandomizing the modified MIS algorithm
3.2.1 Ghaffari’s algorithm with pairwise independence

We review the main terminology and notation from [26], up to our modification of constants.
Changing the constants is important as we are using pairwise independence and not complete
independence as in the original algorithm of Ghaffari. A node v is called light if di(v) < 1/4.
We define two types of golden phases for a node v. This is a modification of the corresponding
definitions in [26].
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Type-1 golden phase: p;(v) =1/4 and d;(v) < 1/2;
Type-2 golden phase: d;(v) > 1/4 and at least di(v)/10 of it arises from light nodes.

A node v is called golden in phase t, if phase ¢ is a golden phase for v (of either type).
Intuitively, a node v that is golden in phase t is shown to have a constant probability of
being removed. Specifically, in a golden phase of type-1, v has a constant probability to
join the MIS and in a golden phase of type-2, there is a constant probability that v has a
neighbor that joins the MIS and hence v is removed.

We now prove the analogue of Lemma 3.3 in [26] for the setting in which the coin flips
made by the nodes are not completely independent but are only pairwise independent. We
show that a golden node for phase ¢ is still removed with constant probability even under
this weaker bounded independence guarantee. The proof of the following appears in the full
version [12].

» Lemma 8 (golden nodes with pairwise independence). Consider the modified Ghaffari’s

algorithm with pairwise independent coin flips.

(1) Ift is a type-1 golden phase for a node v, then v joins the MIS in phase t with probability
at least 1/8.

(2) If t is a type-2 golden phase for a node v then v is removed in phase t with probability
at least o = 1/160.

As a result, the following holds in the pairwise independence setting:
» Lemma 9. Within O(log A) phases, every node remains with probability at most 1/A.

Recall that the proof from Subsection 3.1 that O(n) edges remain cannot be extended to
pairwise independence since the concentration guarantees are rather weak. Our algorithm
will use pairwise independence but with some crucial modifications required in order to
guarantee that after O(log A) phases, only O(n/A) nodes remain undecided.

3.2.2 O(lognlog A)-round deterministic MIS in the congested clique

Using derandomization we show there is a deterministic MIS algorithm for the broadcast
congested clique model that completes in O(log Alogn) rounds, as stated in Theorem 2.

3.2.2.1 The challenge

Consider phase t in the modified Ghaffari’s algorithm and let V; be the set of golden nodes
in this phase. Our goal is to select additional nodes into the MIS so that at least a constant
fraction of the golden nodes are removed. Let vy, ..., v, be the nodes that are not removed
in phase t. Towards derandomizing the algorithm, for each node, we define the corresponding
random variables x1, ..., 2, indicating whether v; is marked in phase ¢t. Let X; = (21 =
b1,...,z; = b;) define a partial assignment for v, ..., v; (i.e., whether or not they are in the
MIS in phase t). Let Xy = 0 denote the case where none of the decisions is fixed.

For a golden node v (in phase t), let r,; be the random variable indicating whether v
gets removed in phase ¢, and let R; be the random variable of the number of removed golden
nodes. By linearity of expectation, E(Ry) = Y E(r,;) is the expected number of removed
golden nodes in phase t. By Lemma 8, there is a constant ¢ such that E(R;) > ¢ - |V4].
Potentially, we could aim for the following: Given the partial assignment X;, compute the
two expectations of the number of removed golden nodes conditioned on the two possible
assignments for x; 11, E(R; | X;, 241 = 0) and E(R; | X;, 2,41 = 1), and choose ;41
according to the larger expectation.

11:9
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However, towards the above goal we face the following main challenges. (C1) The value of
R; cannot be easily computed, since when using probabilities of neighboring nodes we might
be double-counting: a node might be removed while having more than a single neighbor that
joins the MIS. (C2) The search space of size 2" is too large and in particular, the conditional
expectation computation consists of n steps. (C3) Even when using pairwise independence
to enjoy an O(logn)-bit seed, searching a good seed point in a space of size O(poly n) in a
brute force manner cannot be done efficiently in the congested clique. (C4) Despite our proof
that golden nodes are removed with constant probability even with pairwise independence,
it is still not clear how to implement the second part of the MIS algorithm, because showing
that only O(n/A) nodes survive cannot be done with pairwise independence. That is, the
proof from Subsection 3.1 that O(n) edges remain inherently needs full independence.

Addressing (C4) requires a priority-based scheme for choosing the nodes that join the
MIS, which requires a novel age-based weighting approach to be added to the MIS algorithm.
Next, we describe our main derandomization tools and then provide our algorithm.

3.2.2.2 Derandomization tools

We define a pessimistic estimator to the conditional expectation E(R; | X;), which can be
computed efficiently in our model. Then, we describe how to reduce the search space using
pairwise independence. In our algorithm, the nodes will apply the method of conditional
expectations on the estimator in order to find a “good” seed of length O(logn).

Tool 1: The pessimistic estimator function. Consider phase t and recall that V; are the
golden nodes in this phase. Similarly to the clever approach of [42, 43], we define a variable
)y that will satisfy that 7, > 1), . The idea is to account for a removed node of type-2
only if it is removed because a single one of its neighbors joins the MIS. Since this can only
occur for one of its neighbors, we avoid double-counting when computing the probabilities.
This allows coping with challenge (C1).

Let m, ; be the random variable indicating the event that v is marked. Let m,, , + indicate
the event that both u and v are marked. Define v, ; = my ¢ — ZMGN(U) My ot if v is of type-
1, and ¥, = ZueN(v)(mu»t — ZweN(u) My w,t — Zw,eN(v)\{u} My t), if v is of type-2.
Denoting ¥, = Zuev,, 1y ¢ gives that W, is a lower bound on the number of removed golden
nodes, i.e., ¥; < R;. For a partial assignment X; = (z1 = b1,...,2; = b;) indicating which
of the nodes are in the MIS, we have?

Prim,; =1 | Xi]— ZueN(v) Primy e | Xi], if vis of type-1.
E(Wot | Xi) =4 uenyPrimus =1 | Xil =3 e p Primuw: =1 | Xi]— (1)
Powrew wn\fu) PrMuw e =1 | X;)], if v is of type-2,

where W (v) € N(v) is a subset of v’s neighbors satisfying that >_, () pe(w) € [1/40,1/4]
(as used in the proof of Lemma 8). By Lemma 8, it holds that E(¢,,) > «a for v € V;.
Hence, we have that: E(r, ;) > E(t, ) > «. Since r,, + > 1, ; even upon conditioning on the
partial assignment X;, we get: E(Ry ¢ | Xi) > E(V; [ Xy) =30 oy, E(uy | Xi) > - |Vi].
Our algorithm will employ the method of conditional expectations on a weighted version of
E(¥,; | X;), as will be discussed later.

2 For ease of presentation, here we condition on a n-length vector. However, our algorithm will use
the pairwise independence — discussed in the following paragraph — to condition on a seed of length

O(logn).
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Tool 2: Pairwise independence. We now combine the method of conditional expectations
with a small search space. We use Lemma 7 with d = 2, v = O(logn) and a prime number
B = O(log A). This is because we need the marking probability, p:(v), to be Q(1/poly A).

Consider phase t. Using the explicit construction of Lemma 7, if all nodes are given
a shared random seed of length v, they can sample a random hash function h : {0,1}7 —
{0,1}” from ‘H., g which yields n pairwise independent choices. Specifically, flipping a biased
coin with probability of p;(v) can be trivially simulated using the hash value h(ID,) where
ID, is an O(logn)-bit ID of v.3 Since h is a random function in the family, all random
choices are pairwise independent and the analysis of of the golden phases goes through.
This standard approach takes care of challenge (C2).

Even though using a seed of length O(log n) reduces the search space to be of polynomial
size, still, exploring all possible 20(°g7) — O(n®) seeds in a brute force manner is too time
consuming. Instead, we employ the method of conditional expectations to find a good seed.
That is, we will consider E(¥; | Y;) where Y; = (y1 = b1,...,y; = b;) is a partial assignment
to the seed Y = (y1,...,Ya). The crux here is that since a random seed is good, then so
is the expectation over seeds that are sampled uniformly at random. Hence, the method of
conditional expectations will find a seed that is at least as good as the random selection.
Specifically, we still use the pessimistic estimator of Equation (1), but we condition on the
small seed Y; rather than on X;. This addresses challenge (C3).

Tool 3: An age-based weighted adaptation. To handle challenge (C4), we compute the
expectation of a weighted version of W, which favors old nodes where the age of a node
is counted as the number of golden phases it experienced. Let age(v) be the number of
golden phases v has till phase ¢ and recall that a golden node is removed with probability
at least a. Define ¢}, , = (1/(1 — a))®9¢(") . 4p, ;, and ¥} = > vev, Yoo We use the method
of conditional expectations for:

E(V; | Vi)=Y E@, | Yi), (2)

veVy

rather than for E(¥; |Y;). The choice of this function will be made clear in the proof.

3.2.2.3 Algorithm Description

The first part of the algorithm consists of ©(log A) phases, where in phase ¢, we derandomize
phase ¢t in the modified Ghaffari’s algorithm using O(logn) deterministic rounds. In the
second part, all nodes that remain undecided after the first part, send their edges to the
leader using the deterministic routing algorithm of Lenzen. The leader then solves locally
and notifies the relevant nodes to join the MIS. In the analysis section, we show that after
the first part, only O(n/A) nodes remain undecided, and hence the second part can be
implemented in O(1) rounds.

From now on we focus on the first part. Consider phase ¢ in the modified Ghaffari’s
algorithm. Note that at phase ¢, some of the nodes are already removed from the graph
(either because they are part of the MIS or because they have a neighbor in the MIS). Hence,
when we refer to nodes or neighboring nodes, we refer to the remaining graph induced on
the undecided nodes.

3 Flipping a biased coin with probability 1/2¢, is the same as getting a uniformly distributed number y
in [1,b] and outputting 1 if and only if y € [1,2°7%].

11:11
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Let Y = (y1,...,Yy) be the v random variables that are used to select a hash function
and hence induce a deterministic algorithm. We now describe how to compute the value of
y; in the seed, given that we already computed y; = b1,...,y;—1 = b;—1. By exchanging IDs
(of ©(logn) bits), as well as the values p;(v) and d;(v) with its neighbors, a node can check
if it is a golden type-1 or type-2 node. In addition, every node maintains a counter, age(v)
referred to as the age of v, which measures the number of golden phases it had so far.

Depending on whether the node v is a golden type-1 or type-2 node, based on Equation
(1), it computes a lower bound on the conditional probability that it is removed given the
partial seed assignment Y;, = (y1,...,y; = b) for every b € {0,1}. These lower bound
values are computed according to the proofs of Lemma 8. Specifically, a golden node v
of type-1, uses the IDs of its neighbors and their p;(u) values to compute the following:
E(ps | Yip) = Primye =1 | Yip] — ZHEN(D) Primy: =1 | Y], where Prim,, =
1 | Y] is the conditional probability that v is marked in phase ¢ (see full version [12]
for full details about this computation). For a golden node v of type-2 the lower bound is
computed differently. First, v defines a subset of neighbors W (v) C N(v), satisfying that
2 wew () Pt(w) € [1/40,1/4], as in the proof of Lemma 8. Let M (u) be the conditional
probability on Y; ; that u is marked but none of its neighbors are marked. Let My ;(u, W (v))
be the conditional probability on Y;; that another node other than u is marked in W (v).*
By exchanging the values M;,(u), v computes: E(¢,; | Yip) = Zuew(u) Primy: =
1| Yip] — Myp(u) — Myp(u, W(v)).

Finally, as in Equation (2), the node sends to the leader the values E(v; , | Yi,) =
1/(1 — @)™ . E(¢,; | Yip) for b € {0,1}. The leader computes the sum of the
E(y ¢ | Yip) values of all golden nodes V;, and declares that y; = 0if >, oy, E(¢y,, | Yip) >
Yvev, E(W s | Yip), and y; = 1 otherwise. This completes the description of computing
the seed Y.

Once the nodes compute Y, they can simulate phase ¢ of the modified Ghaffari’s al-
gorithm. In particular, the seed Y defines a hash function h € H, 3 and h(ID(v)) can be
used to simulate the random choice with probability p;(v). The nodes that got marked send
a notification to neighbors and if none of their neighbors got marked as well, they join the
MIS and notify their neighbors. Nodes that receive join notification from their neighbors are
removed from the graph. This completes the description of the first part of the algorithm.
A pseudocode appears in the full version [12].

Analysis. The correctness proof of the algorithm uses a different argument than that of
Ghaffari [26]. Our proof does not involve claiming that a constant fraction of the golden
nodes are removed, because in order to be left with O(n/A) undecided nodes we have to
favor removal of old nodes. The entire correctness is based upon Lemma 15 in the full
paper attached, which justifies the definition of the expectation given in Equation (2). The
remaining O(n) edges incident to the undecided nodes can be collected at the leader in O(1)
rounds using the deterministic routing algorithm of Lenzen [38]. The leader then solves MIS
for the remaining graph locally and informs the nodes. This completes the correctness of
the algorithm. Theorem 2 follows.

4 The term M, »(u, W(v)) is important as it is what prevents double counting, because the corresponding
random variables defined by the neighbors of v are mutually exclusive.
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3.3 An O(Dlog®n) deterministic MIS algorithm for CONGEST

Here we provide a fast deterministic MIS algorithm for the harsher CONGEST model. For
comparison, in terms of n alone, the best deterministic MIS algorithm is by Panconesi and
Srinivasan [48] from more than 20 years ago and is bounded by 920(V/logn) 1ounds. However,
the algorithm requires large messages and hence is suitable for the LOCAL model but not for
CONGEST. The only known non-trivial deterministic solution for CONGEST is to use any
(A+1)-coloring algorithm running in O(A +log* n) rounds (for example [3, 6]) to obtain the
same complexity for deterministic MIS in CONGEST (notice that there are faster coloring
algorithms, but the reduction has to pay for the number of colors anyhow). The following
is our main result for CONGEST.

» Theorem 4 (restated). There is a deterministic MIS algorithm for the CONGEST model
that completes in min{O(D log® n), O(2V18 1081081 ) 1o s,

Proof. The bound of 20(VIegnloglosn) follows by the network decomposition of [5]. To
get a bound of O(D log? n) rounds, we use a similar algorithm to Theorem 2 with two
main differences. First, we run Ghaffari’s algorithm for O(logn) rounds instead of O(log A)
rounds. Each round is simulated by a phase with O(D logn) rounds. Specifically, in each
phase, we need to compute the seed of length O(logn), this is done bit by bit using the
method of conditional expectations exactly as described eariler and aggregating the result
at some leader node (aggregation is done in the standard way). The leader then notifies
the assignment of the bit to the entire graph. Since each bit in the seed is computed in
O(D) rounds, overall the run time is O(Dlog?n). For the correctness, we assume towards
contradiction that after Q(logn) rounds, at least one node remains undecided. Then, we
show that every node that survives can charge Q(n¢) nodes that are removed, which is a
contradiction as there only n nodes. |

4 Discussion

We have shown how to derandomize an MIS algorithm and a spanner construction in the
congested clique model, and derandomize an MIS algorithm in the CONGEST model. This
greatly improves upon the previously known results. Whereas our techniques imply that
many local algorithms can be derandomized in the congested-clique (e.g., hitting set, ruling
sets, coloring, matching etc.), the situation appears to be fundamentally different for global
tasks such as connectivity, min-cut and MST. For instance, the best randomized MST
algorithm in the congested-clique has time complexity of O(log™n) rounds [27], but the
best deterministic bound is O(loglogn) rounds [41]. Derandomization of such global tasks
might require different techniques.

The importance of randomness in local computation lies in the fact that recent devel-
opments [14] show separations between randomized and deterministic complexities in the
unlimited bandwidth setting of the LOCAL model. While some distributed algorithms hap-
pen to use small messages, our understanding of the impact of message size on the complexity
of local problems is in its infancy.

This work opens a window to many additional intriguing questions. First, we would
like to see many more local problems being derandomized despite congestion restrictions.
Alternatively, significant progress would be made by otherwise devising deterministic al-
gorithms for this setting. Finally, understanding the relative power of randomization with
bandwidth restrictions is a worthy aim for future research.
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