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Abstract
In a voting process on a graph vertices revise their opinions in a distributed way based on the
opinions of nearby vertices. The voting completes when the vertices reach consensus, that is,
they all have the same opinion. The classic example is synchronous pull voting where at each
step, each vertex adopts the opinion of a random neighbour. This very simple process, however,
can be slow and the final opinion is not necessarily the one with the initial largest support. It was
shown earlier that if there are initially only two opposing opinions, then both these drawbacks
can be overcome by a synchronous two-sample voting, in which at each step each vertex considers
its own opinion and the opinions of two random neighbours.

If there are initially three or more opinions, a problem arises when there is no clear majority.
One class of opinions may be largest (the plurality opinion), although its total size is less than
that of two other opinions put together. We analyse the performance of the two-sample voting
on d-regular graphs for this case. We show that, if the difference between the initial sizes A1
and A2 of the largest and second largest opinions is at least Cnmax{

√
(logn)/A1, λ}, then the

largest opinion wins in O((n logn)/A1) steps with high probability. Here C is a suitable constant
and λ is the absolute second eigenvalue of transition matrix P = Adj(G)/d of a simple random
walk on the graph G. Our bound generalizes the results of Becchetti et al. [SPAA 2014] for the
related three-sample voting process on complete graphs. Our bound implies that if λ = o(1), then
the two-sample voting can consistently converge to the largest opinion, even if A1 − A2 = o(n).
If λ is constant, we show that the case A1−A2 = o(n) can be dealt with by sampling using short
random walks. Finally, we give a simple and efficient push voting algorithm for the case when
there are a number of large opinions and any of them is acceptable as the final winning opinion.
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1 Introduction

The problem of reaching consensus in a graph by means of local interactions is an abstraction
of such behavior in human society as well as some processes in computer networks. In a
voting process on a graph, vertices revise their opinions in a systematic and distributed
way based on opinions of other vertices, typically on the opinions of a sample of their local
neighbours. The aim is that eventually a single opinion will emerge, and that this opinion will
reflect the relative importance of the original mix of opinions in some way. Voting processes
have application in various fields of computing including consensus and leader election in
large networks [9, 22], serialisation of read/write in replicated data-bases [21], and analysis
of social behavior [16]. In general, a voting process should be conceptually simple, fast,
fault-tolerant and straightforward to implement [22, 23].

In a synchronous voting process each vertex of a connected graph has one of several
possible opinions. In each time-step, each vertex, using the same protocol, queries the opinion
of one or more of its neighbours and decides whether to modify or to keep its current opinion.
A simple voting protocol is ideally memoryless: in the current step, each vertex uses only its
current opinion and the current opinions of the queried neighbours. When all vertices have a
common (and thus final) opinion, we say a consensus has been reached. For a given voting
process, the main quantities of interest are the probability that a particular opinion wins
and the expected time to reach consensus.

In the classical voter model each vertex initially has a distinct opinion, but in general
we assume that each vertex holds one of k different opinions. The simplest case, two party
voting, is when there are initially two opinions (k = 2). If there are at least three opinions
(k ≥ 3), then the problem is often referred to as plurality consensus. We would like the
dominant opinion to eventually become the final opinion of all vertices. The probability of
this, however, strongly depends on the voting process.

Pull voting

The most well known voting process is synchronous pull voting. In this model, at each step
each vertex changes its opinion to that of a random neighbour. We assume henceforth that
the graphs which we consider are connected and non-bipartite, so that a consensus is possible.
For such a graph, the probability that pull voting ends with a particular opinion taking over
the whole graph is proportional to the initial degree of this opinion in the graph [22]. More
precisely, if A is the set of vertices initially holding a given opinion, then

Pr(A wins in the voting process) =
∑
v∈A

d(v)
2m = d(A)

2m , (1)

where d(v) is the degree of vertex v and m is the number of edges in the graph. Surprisingly,
the probability here depends only on the voting process and the total degree d(A), but does
not depend on the details of the initial arrangement of opinions on the graph.

For an n-vertex graph, let E(T ) be the expected value of the time to consensus T . Much
of the early work was on analysing E(T ) for classical pull voting in an asynchronous model
in a continuous time setting. Here the vertices have independent exponentially distributed
waiting times (Poisson clocks); see e.g. Cox [15] and Aldous [1]. In the synchronous model
the expected time to consensus is O(Hmax logn), where Hmax = O(n3) is the maximum
hitting time of any vertex by a random walk; see Aldous and Fill [2]. For regular expanders
the expected consensus time is Θ(n), see [12].
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Two- and three-sample voting

Since the classical pull voting tends to be slow (E(T ) = Θ(n) for regular expanders) and
may be viewed as undemocratic (giving only weak preference for the largest initial opinion as
shown in (1)), there has been considerable interest in modifying this simple voting process
to avoid these two problems. Instead of taking the opinion of only one neighbour, the next
simplest approach is to sample the opinions of a larger number of neighbours (say two or
three), compare them in some way, and hope that the so-called ‘power of two choices’ improves
the performance of voting. The consequences of this approach are as follows. Firstly, the
number of neighbours queried affects the consensus time and the voting outcome. Secondly,
the relative size of the opinions affects the ability of the process to ensure that the largest
initial opinion wins.

In this setting we study the following protocols for two-sample and three-sample voting. In
the two-sample voting model, at each step, each vertex v chooses two random neighbours with
replacement, and if the selected vertices have the same opinion, then v adopts it; otherwise
v keeps its current opinion. In the three-sample voting model, each vertex v chooses three
random neighbours with replacement and adopts the majority opinion among them. If there
is no majority, v picks the opinion of the first sampled neighbour. Other rules are equally
possible here, e.g. v keeps its opinion. The rule we choose is the one used by Becchetti et
al. [4].

For d-regular expanders, two-sample voting was studied in [13] for the case where there
are initially two opinions (k = 2). Provided the initial difference between the sizes of the two
opinions is sufficiently large, the initial majority wins with high probability (w.h.p.)1 and
voting is completed in O(logn) steps. This is tight since the diameter of a d-regular graph is
Ω(logn) for constant d. This result is extended in [14] to non-regular expander graphs.

Two- and three-sample voting for plurality consensus

Not so much is known about improving the performance of voting by using two or more
samples in the case where there are initially three or more opinions (k ≥ 3). Generally,
analysing plurality voting protocols tends to be more involved than analysing two party
voting. The case when some opinion has an absolute majority can usually be reduce to
two-party voting by grouping the other opinions into a single minority class. Difficulties
arise when there is no clear majority, that is, when the largest opinion is smaller than two
(or more) other opinions put together. We note that the well established techniques used in
analysis of the classical pull voting (’single-sample’ voting), for example the correspondence
with multiple coalescing random walks [1, 12], do not have ready extensions or generalisations
to multi-sample voting.

Plurality consensus using the three-sample voting protocol given above was studied by
Becchetti et al. [4]. They proved that for the complete graph, if the difference between the
initial sizes A1 and A2 of the largest and second largest opinions is at least 24n

√
2(logn)/A1,

then the largest opinion wins in O((n logn)/A1) steps w.h.p. They also showed that this result
is tight for some ranges of the parameters. Subsequently Becchetti et al. [3] analyse another
simple plurality voting protocol, which can be viewed as a variation of two-sampling, showing
that polylog convergence on complete graphs can be achieved even if A1 = o(n/polylogn),
provided that A1/A2 ≥ α > 1 for a constant α and only O(polylogn) opinions are initially
’comparable’ in size with the largest opinion. Detailed parameterized bounds are presented

1 “With high probability” (w.h.p.) means in this paper probability at least 1 −n−α, for a constant α > 0.
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in [3], but they do not improve the worst-case general bound given in [4]. Two- and three-
sample voting is memoryless, so requires only k states (log k bits) per vertex to store the
current opinion held by this vertex. The protocol in [3] requires k + 1 states, as it allows
each vertex to hold the “undecided” opinion.

Elsässer et al. [17] consider asynchronous two-sample voting and show that it converges
on complete graphs within O(k logn) rounds, subject to suitable bounds on the number
of opinions and the initial difference between the largest and the second largest opinions.
Becchetti et al. [5] analyse robustness of three-sample voting and show that it converges on
complete graphs in the number of rounds polynomial in k and logn, even if an adversary
corrupts o(

√
n) vertices in each round. Subsequently, Ghaffari and Lengler [19] improve the

number of rounds to O(k logn), allowing at the same time for a stronger adversary.
Berenbrink et al. [6] analyse two-sample and three-sample voting for the case of a large

number of initial opinions. They show that three-sample voting converges on complete graphs
in O(n3/4 logn) rounds for any number of initial opinions k ≤ n, but two-sample voting
requires Ω(n/ logn), if initially each opinion is supported by only O(logn) vertices.

Push voting

The voting processes which we have discussed so far are examples of pull protocols: each
vertex ’pulls’ the information from its (selected) neighbours. In a push protocol, a vertex
’pushes’ its own information onto its neighbours. While the push communication paradigm is
natural and effective in rumor spreading (broadcasting) protocols, it has found so far only
limited use in voting protocols. It is not clear how synchronous push voting could be defined,
so push voting has been mostly confined to asynchronous processes. An example is the work
of Copper et al. [11], who consider both pull and push voting in the context of asynchronous
’discordant voting.’ Elsässer et al. [17] develop an asynchronous plurality consensus algorithm
which combines two-sample voting with push-pull broadcasting. In the current paper, we
propose a general simple framework for push voting.

Other related previous work

Berenbrink et al. [7] propose two synchronous pull-based plurality-consensus protocols for
complete graphs. Their protocols achieve plurality consensus in O(log k log logn) rounds
with log k + Θ(log log k) bits of memory per vertex and in O(logn log logn) rounds with
log k + 4 bits of memory per vertex, provided a sufficient initial bias towards the largest
opinion. Independently, Ghaffari and Parter [20] showed a plurality consensus algorithm of
a similar type, which converges on complete graphs in O(logn log k) rounds and requires
log k +O(1) bits of memory per vertex.

While [3, 4, 5, 7, 17, 20] analyse plurality voting only on complete graphs, Berenbrink et
al. [8] consider arbitrary connected graphs. They show two protocols, which are based on
earlier work on distributed load balancing, and show a detailed analysis of their performance
in various communication models. They achieve, for example, a w.h.p. O(logn) bound on
the number of rounds for expanders in diffusion model (in each round each vertex exchanges
messages with all its neighbours), but each vertex requires Θ((n/(A1 − A2))2 logn log k)
bits of memory. In contrast, two- and three-sample voting, as well as protocols of the type
considered in [3], are very simple protocols requiring only O(logn) bits of memory per vertex.
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2 Our contributions

Our contributions are two-fold. Firstly we extend the analysis of plurality consensus on the
complete graph (using voting) to the case of regular graphs. Secondly we give a push based
algorithm which reaches consensus on the complete graph in four rounds, and apply this to
the problem of approximate plurality consensus.

Plurality consensus on regular graphs

The earlier analysis of plurality consensus on the complete graph can be extended to regular
graphs. For regular expanders our results have the same asymptotic convergence time as
given for Kn in [4]. We use the two-sample voting process of [14], but generalize the analysis
from two-party voting to k-party voting.

Let G be a connected regular n-vertex graph and let λ be the second largest absolute
eigenvalue of the transition matrix P = P (G) of a random walk on G. Let A1 be the set of
vertices with the largest initial opinion and A2 the set with the second largest opinion. If no
confusion arises, we also let A stand for the size of set A.

I Theorem 1. Let G be a regular n-vertex graph and let the initial sizes of the opinions be
A1, A2, . . . , Ak in non-increasing order. Assume that A1 − A2 ≥ Cnmax{

√
(logn)/A1, λ},

where λ is the absolute second eigenvalue of P (G) and C > 0 is a suitably large constant.
With probability at least 1− 1/n, after at most O((n/A1) log(A1/(A1 −A2)) + logn) rounds,
the two-sample voting completes and the final opinion is the largest initial opinion.

We note the following w.h.p. property of the second eigenvalue λ for random d-regular graphs
for d = o(n1/2). For d constant it is a result of Friedman [18] that λ ≤ γ/

√
d, where γ = 2 + ε

for some small ε > 0. For d growing with n, the following estimate of λ is given in [10].
Provided d = o(n1/2) there exists constant γ > 0 such that w.h.p. λ ≤ γ/

√
d. In either case

the size separation condition in Theorem 1 is A1 −A2 ≥ C ′n/
√
d.

Theorem 1 can be applied to a number of specific scenarios. Consider, for example, the
case where all k opinions are fairly evenly represented, but with one opinion slightly larger
than the average n/k. More specifically, assume that A1 ≥ (n/k)(1 + ε), for some 0 < ε ≤ 1,
and that A2 ≤ A1/(1 + ε). Theorem 1 implies the following corollary for this case.

I Corollary 2. Let the number of opinions be k ≤ ((1/C)2n/ logn)1/3, A1 ≥ (n/k)(1 + ε),
A2 ≤ A1/(1 + ε), and λ ≤ ε/(Ck), where C > 0 is the constant from Theorem 1 and
ε = k3/2/((1/C2)n/ logn)1/2 ≤ 1. Then with probability at least 1 − 1/n, after O(k logn)
rounds the two-sample voting completes and the final opinion is the largest initial opinion.

In Section 5 we show that the statements of Theorem 1 and Corollary 2 also hold for the
three-sample voting protocol analyzed by Becchetti et. al. [4]. We note that the bound on
the running time in Theorem 1 is O(logn), if A1 is Ω(n/ logn), provided that A1−A2 is also
Ω(n/ logn) and the graph has the λ parameter appropriately small. This includes complete
graphs. The bound obtained in [4] for complete graphs is O(logn) only if A1 = Θ(n).

If the graph is not very expansive (λ is too large), we can improve the ability of two-
sample voting to discriminate the plurality as follows. In `-extended two-sample voting
model (see [14]), each vertex makes two independent random walks of length ` and carries
out two-sample voting using the opinions on the terminal vertices of these walks. Random
walks of length ` replace the transition matrix P used in the proof of Theorem 1 by P `. If
the graph is regular, then the only effect on the proofs is to replace all eigenvalues by their
`-th power. This reduces the absolute second eigenvalue from λ to λ`. The effect is to replace
the condition A1 −A2 ≥ Cnmax{

√
(logn)/A1, λ} of Theorem 1 by the improved condition

A1 −A2 ≥ Cnmax{
√

(logn)/A1, λ
`}, and thus diminishing the influence of λ.

DISC 2017
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Approximate plurality consensus by push voting

In Section 6 we describe a push based algorithm (Algorithm Pushy) and show that it reaches
consensus on Kn in four push rounds whatever the initial mix of opinions. In each round each
vertex activates with some (small) probability p and sends its opinion to all its neighbours
(so to all other vertices, if the graph is complete). Each vertex, after receiving the opinions of
the activated vertices, tallies up different opinions and adopts the opinion with the highest
count, breaking ties uniformly at random.

I Theorem 3. On the complete graph, and irrespective of the initial number and distribution
of opinions, after four rounds of Algorithm Pushy with the parameter p = Θ((logn)/n), there
is a consensus opinion with probability 1− o(1).

If the opinion sets Ai, 1 ≤ i ≤ k, are all of the same size, then in algorithm Pushy
each opinion has the same probability of becoming the consensus opinion, so in this case
the algorithm gives a completely fair solution to plurality. If there are few large opinion
classes of similar sizes, then while there is no guarantee that the largest opinion wins, there
is only small probability that the winning opinion is outside of those large ones. As an
example, suppose there are ` ≥ 1 classes of size at least Θ(n/`), where A1 ≥ A2 ≥ · · · ≥ A`
and ` = O(logn/ log logn), and let δ =

√
` log logn/ logn. Then the probability that the

winning opinion comes from opinions for which Aj(1 +O(δ)) ≤ A1 is only o(1). In particular,
if A2(1 +O(δ)) ≤ A1, then the largest opinion A1 wins with probability 1− o(1).

We can either use Pushy on its own, or combine it with another consensus algorithm
to try to solve plurality approximately but quickly in the following sense. Suppose there
is a given value s such that if possible we would like to choose a consensus opinion which
was initially supported by at least s vertices. According to (the proof of) Theorem 1, and
assuming s = Ω(n2/3 logn) and that the initial largest opinion size is at least s, then after
T = Θ((n/s) logn) rounds of two-sample voting, w.h.p. we will have discarded any opinion
of initial size at most s/(1 + ε). We then use Pushy to return quickly a consensus opinion
chosen from the remaining opinions.

On the complete graph Kn, algorithm Pushy requires O(log2 n) storage per vertex, and
the constant number of push rounds mean that the total number of message transmissions
is O(n logn), which is the same order as in O(logn) rounds of two-sample voting. In this
paper we focus on proving Theorem 3, leaving for separate investigations possibilities of
implementing algorithm Pushy on other interaction models .

3 Preliminary Markov chain results

In this section we establish some technical results used in our proof of Theorem 1. Consider
a connected and non-bipartite graph G = (V,E) with n vertices and m edges. Let P be
the transition matrix of a simple random walk on G. A random walk on a connected
and non-bipartite graph defines a reversible Markov chain with stationary distribution
π(x) = d(x)/(2m), where d(x) denotes the degree of vertex x. The reversibility of P means
that π(x)P (x, y) = π(y)P (y, x), for all vertices x, y.

Let 1 = λ1 > λ2 ≥ . . . ≥ λn > −1 be the eigenvalues of P and define λ = λ(P ) by
λ = max{|λ2|, |λn|}. We also consider the matrix P 2 = P × P (standard matrix product),
which is the transition matrix of the two-step random walk, is also reversible and has the
same stationary distribution and eigenvectors as P . Moreover, the eigenvalues of P 2 are the
squares of the eigenvalues of P . In particular, λ(P 2) = (λ(P ))2. Given A,B ⊆ V and x ∈ V ,
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we define P (x,A) =
∑
y∈A P (x, y) and the flow function Q(A,B) from A to B as

Q(A,B) =
∑
x∈A

π(x)P (x,B). (2)

Q(A,B) is the probability a random walk starting from the stationary distribution makes a
transition from a vertex in A to a vertex in B. Due to reversibility of P , Q(A,B) = Q(B,A).

We use the following standard inequalities, often referred to as the Expander Mixing
Lemma for Inhomogeneous Graphs. Let A,B ⊆ V , and Ac = V \A, then

|Q(A,Ac)− π(A)π(Ac)| ≤ λπ(A)π(Ac), (3)
|Q(A,B)− π(A)π(B)| ≤ λ

√
π(A)π(B)π(Ac)π(Bc). (4)

We also need the following lower bounds for Q2, which can be proven using (4).

I Lemma 4. For any A,B ⊆ V , we have

Q(A,B)2 ≥ (π(A)π(B))2 − 2λ(π(A)π(B))3/2(π(Ac)π(Bc))1/2. (5)

In two-sample voting, the probability vertex x adopts the opinion B in one step is
P (x,B)2 = (dB(x)/d(x))2. Given A,B ⊆ V , define the quantity

R(A,B) =
∑
x∈A

π(x)(P (x,B))2.

R(A,B) is the stationary measure π resulting from vertices in set A choosing opinion B in
one round of two-sample voting. We do not require here A and B to be disjoint, so A = B

is possible. The next lemma shows that there is a connection between two-sample voting
and two-step random walks. While two-sample voting does not refer to random walks in any
explicit way, the transition matrix P of a random walk appears in the analysis of this voting
process because of Lemma 5.

I Lemma 5. For any A ⊆ V , we have R(V,A) = Q2(A,A), where Q2 is the flow function
for the two-step transition matrix P 2.

Proof. From definition of R(V,A), reversibility of P and P 2(x, y) =
∑
z∈V P (x, z)P (z, y):

R(V,A) =
∑
x∈V

π(x)P (x,A)2 =
∑
x∈V

π(x)P (x,A)
∑
y∈A

P (x, y)

=
∑
y∈A

π(y)
∑
x∈V

P (y, x)P (x,A) =
∑
y∈A

π(y)P 2(y,A) = Q2(A,A). J

If G is a complete graph (with a loop at each vertex), then R(V,A) = π(A)2 = (|A|/n)2 and
R(A,B) = π(A)π(B)2 = |A| · |B|2/n3. The next two lemmas give bounds on deviations from
these values in regular graphs.

I Lemma 6. For A ⊆ V , we have

|R(V,A)− π(A)2| = |Q2(A,Ac)− π(A)π(Ac)| ≤ λ2π(A)π(Ac). (6)

Proof. By Lemma 5, R(V,A) = Q2(A,A). Also Q2(A,A) = Q2(A, V ) − Q2(A,Ac) =
π(A)−Q2(A,Ac), so

R(V,A)− π(A)2 = π(A)−Q2(A,Ac)− π(A)2 = π(A)π(Ac)−Q2(A,Ac).

Taking the absolute value of both sides gives the first equality in (6). To obtain the inequality,
apply (3) to P 2, Q2 and λ2 as the second largest absolute eigenvalue of P 2. J

DISC 2017
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I Lemma 7. Let A,B ⊆ V , then

R(A,B) ≥ Q(A,B)2

π(A) ≥ π(A)π(B)2 − 2λπ(A)1/2π(B)3/2π(Ac)1/2π(Bc)1/2.

Proof. The second inequality is from Lemma 4. From convexity of the function z 7→ z2,

R(A,B) = π(A)
∑
x∈A

π(x)
π(A) (P (x,B))2 ≥ π(A)

(∑
x∈A

π(x)
π(A)P (x,B)

)2

= 1
π(A)Q(A,B)2. (7)

J

Suppose the family of sets C = (A1, . . . , Ak) is a partitioning of V . Define the quantity
SC(A) =

∑k
i=1 R(A,Ai). For a complete graph, SC(V ) =

∑k
i=1 π(Ai)2 and the following

lemma bounds the deviation from this value in regular graphs.

I Lemma 8. Consider a partitioning C = (A1, . . . , Ak) of V . Then∣∣∣∣∣SC(V )−
k∑
i=1

π(Ai)2

∣∣∣∣∣ ≤ λ2

(
1−

k∑
i=1

π(Ai)2

)
.

Proof. Using Lemma 6, we get∣∣∣∣∣SC(V )−
k∑
i=1

π(Ai)2

∣∣∣∣∣ ≤
k∑
i=1

∣∣R(V,Ai)− π(Ai)2∣∣ ≤ λ2

(
1−

k∑
i=1

π(Ai)2

)
. J

I Lemma 9. Let C = (A1, . . . , Ak) be a partitioning of V . For any A ⊆ V ,

SC(A) ≥ π(A)
k∑
i=1

π(Ai)2 − 2λπ(A)1/2
k∑
i=1

π(Ai)3/2, (8)

SC(A) ≤ π(A)
k∑
i=1

π(Ai)2 + 2λπ(A)1/2
k∑
i=1

π(Ai)3/2 + λ2. (9)

Proof. Lemma 7 gives:

SC(A) =
k∑
i=1

R(A,Ai) ≥ π(A)
k∑
i=1

π(Ai)2 − 2λπ(A)1/2π(Ac)1/2
k∑
i=1

π(Ai)3/2, (10)

and Inequality (8) follows. To show Inequality (9), observe that SC(A) + SC(Ac) = SC(V )
and use Lemma 8 and (10) applied to Ac

SC(A) = SC(V )− SC(Ac)

≤ π(A)
k∑
i=1

π(Ai)2 + 2λπ(A)1/2π(Ac)1/2
k∑
i=1

π(Ai)3/2 + λ2

(
1−

k∑
i=1

π(Ai)2

)
. J

4 Proof of Theorem 1

From now on we assume the graph is d-regular, so π(x) = 1/n, and for A ⊆ V , π(A) = |A|/n.
Furthermore, nR(A,B) =

∑
x∈A(dB(x)/d)2 is the expected number of vertices in A which

pick two opinions in B. When clear from the context, we use A instead of |A|.
Let Aj be the set of vertices with opinion j. At any step, the opinions are ordered

according to their sizes: A1 ≥ A2 ≥ . . . ≥ Ak. Thus C = (A1, . . . , Ak) is a partition of V .
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Let A′j be the set of vertices with opinion j after one round. We have the following equality,
where the second term in (11) is the expected weight of vertices changing their opinion to Aj
and the third term is the expected weight of vertices changing their opinion from Aj (using
the measure π as the weight of a set of vertices).

E(π(A′j)|C) = π(Aj) +R(V \Aj , Aj)−
∑
i 6=j

R(Aj , Ai) (11)

= π(Aj) +R(V,Aj)−R(Aj , Aj)−
∑
i 6=j

R(Aj , Ai)

= π(Aj) +R(V,Aj)− SC(Aj). (12)

The next lemma shows that, given a sufficient advantage of opinion 1, after one round of
voting opinion 1 remains the largest opinion. More precisely, the lemma gives lower bounds
on the increase of the size of opinion 1 and on the increase of the advantage of this opinion
over the other opinions.

I Lemma 10. Assume A1 ≤ 2n/3, A1 − A2 ≥ Cn
√

(logn)/A1 (requiring
A1 ≥ C2/3n2/3 log1/3 n), where C = 240

√
2, and λ ≤ (A1 −A2)/(32n). Then with probability

at least 1− 1/n2,

A′1 ≥ A1

(
1 + A1 −A2

5n

)
. (13)

min
2≤j≤k

{
A′1 −A′j

}
≥ (A1 −A2)

(
1 + A1

10n

)
, (14)

Proof. Several times in this proof we use that π(A1) ≤ 2/3, which implies that π(Ac1) ≥ 1/3.
Our proof uses the following Chernoff bounds. If X is the sum of independent Bernoulli
random variables, then for ε ∈ (0, 1) and δ ≥ 1,

Pr(X ≥ (1 + ε)E(X)), Pr(X ≤ (1− ε)E(X)) ≤ exp(−ε2E(X)/3), (15)
Pr(X ≥ (1 + δ)E(X)) ≤ exp(−δE(X)/3). (16)

From Equation (12) and Lemmas 6 and 9, we have the following lower and upper bounds on
E(π(A′j)|C) for any j ∈ [k].

E(π(A′j)|C) = π(Aj) +R(V,Aj)− SC(Aj)
≥ π(Aj) + π(Aj)2 − λ2π(Aj)π(Acj)

−π(Aj)
k∑
i=1

π(Ai)2 − 2λπ(Aj)1/2
k∑
i=1

π(Ai)3/2 − λ2

≥ π(Aj)
(

1 + π(Aj)−
k∑
i=1

π(Ai)2

)
− 2λπ(Aj)1/2π(A1)1/2 − (5/4)λ2. (17)

E(π(A′j)|C) = π(Aj) +R(V,Aj)− SC(Aj)

≤ π(Aj) + π(Aj)2 + λ2π(Aj)π(Acj)− π(Aj)
k∑
i=1

π(Ai)2 + 2λπ(Aj)1/2
k∑
i=1

π(Ai)3/2

≤ π(Aj)
(

1 + π(Aj)−
k∑
i=1

π(Ai)2

)
+ (1/4)λ2 + 2λπ(Aj)1/2π(A1)1/2. (18)

DISC 2017



13:10 Fast Plurality Consensus in Regular Expanders

We have λ ≤ π(A1)/32 and π(A1) ≤ 2/3, by assumption, so (17) and (18) imply

π(A1)/2 ≤ E(π(A′1)|C) ≤ 2π(A1). (19)

Define ε1 =
√

9 logn
E(A′

1|C) ≤
√

18 logn
A1

< 1. Using the Chernoff bounds (15), we get

Pr(A′1 ≤ (1− ε1)E(A′1|C)|C) ≤ e−3 log(n) = n−3. (20)

For a fixed j, 2 ≤ j ≤ k, define εj =
√

9(logn)E(A′1|C)/E(A′j |C) and show the following
bound, using (15), for εj ≤ 1, and (16), for εj ≤ 1.

Pr(A′j ≥ (1 + εj)E(A′j |C)|C) ≤ n−3. (21)

The bounds (20) and (21) imply that with probability at least 1− n−2, for all 2 ≤ j ≤ k,

A′1 −A′j ≥ (1− ε1)E(A′1|C)− (1 + εj)E(A′j |C)

= E(A′1 −A′j |C)− 2
√

9(logn)E(A′1|C), (22)

and thus

π(A′1)− π(A′j) ≥ E(π(A′1)− π(A′j)|C)− 2
√

9(logn)E(π(A′1)|C)
n

. (23)

The right-hand side of (18) is non-increasing with increasing j, so for each 2 ≤ j ≤ k,

E(π(A′j)|C) ≤ π(A2)
(

1 + π(A2)−
k∑
i=1

π(Ai)2

)
+ (1/4)λ2 + 2λπ(A1). (24)

Let ∆ = π(A1)− π(A2). Inequalities (17) and (24) give for each 2 ≤ j ≤ k,

E(π(A′1)− π(A′j)|C) ≥ ∆
(

1 + π(A1) + π(A2)−
k∑
i=1

π(Ai)2

)
− 4λπ(A1)− (3/2)λ2

≥ ∆(1 + π(A1)π(Ac1))− 4λπ(A1)− 2λ2 (25)
≥ ∆ + ∆π(A1)/7. (26)

Inequality (25) holds because
∑k
i=2 π(Ai)2 ≤ π(A2). In the last step we used that π(Ac1) ≥ 1/3

and λ ≤ ∆/32. From (23), (26) and (19), with probability at least 1− n−2,

min
2≤j≤k

{π(A′1)− π(A′j)} ≥ E(π(A′1)− π(A′j)|C)−
ε1

n
E(A′1|C)−

εj
n

E(A′j |C)

≥ ∆
(

1 + π(A1)/7− 6
∆

√
2 logn
n

π(A1).
)
.

By assumption, ∆ ≥ 240
√

2 log(n)/A1, so with probability at least 1− n−2,

min
2≤j≤k

{π(A′1)− π(A′j)} ≥ ∆(1 + π(A1)/10), (27)

and we get we get (14). This also proves that w.h.p. opinion 1 remains the majority opinion.
The order between the other opinions might change.
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To get information about the increase in the number of vertices with opinion 1, we use
Equation (17) with j = 1 and the assumption that λ ≤ ∆/32. We obtain

E(π(A′1)|C) ≥ π(A1)(1 + π(A1)−
k∑
i=1

π(Ai)2)−∆π(A1)/16−∆2/(32)2

≥ π(A1)(1 + π(A1)− π(A1)2 − π(A2)π(Ac1)−∆/16−∆/(32)2)
> π(A1)(1 + ∆/4). (28)

By using Chernoff bounds (15) with ε =
√

9 logn
E(A′

1|C) and Inequalities (28) and (19), with
probability at least 1− n−2,

A′1 ≥ A1(1 + ∆/4)−
√

E(A′1|C)9 logn ≥ A1(1 + ∆/4)−
√

18A1 logn

= A1(1 + ∆/4− 3
√

2
√

logn/A1)). (29)

From the assumptions of the lemma, we have ∆/20 = (A1 − A2)/(20n) ≥ 3
√

2
√

logn/A1.
Therefore (29) implies A′1 ≥ A1(1 + ∆/5), which is the same as (13). J

I Lemma 11. Assume A1 ≤ 2n/3, A1 − A2 ≥ Cn
√

(logn)/A1 and λ ≤ (A1 −A2)/(32n).
With probability at least 1 − 1/n, after at most O((n/A1) log(A1/(A1 − A2))) rounds, the
number of vertices with opinion 1 is at least 2n/3.

Proof. We apply Lemma 10 to consecutive rounds until the size of opinion 1 reaches 2n/3.
Since w.h.p. the difference between the size of opinion 1 and the size of the second largest
opinion increases, our assumption about λ in Lemma 10 is maintained from round to round.
If the ordering of the opinions according to size changes at any step t, we relabel the opinions
so that A1(t) ≥ A2(t) · · · ≥ Ak(t). Lemma 10 implies that w.h.p. opinion 1 remains the
largest opinion, and thus never relabeled.

Denote by x(i) the fraction of vertices with opinion 1 at the end of round i, and by y(i)
the difference between the fraction of vertices with opinion 1 and the fraction of vertices
with the second largest opinion. Thus x(0) = π(A1), and y(0) = ∆ = π(A1)− π(A2) < x(0).
By (13) and (14) and induction on the number of rounds, with probability at least 1− 1/n,
for each round 1 ≤ i ≤ n, if x(i) < 2/3, then

x(i) ≥ x(i− 1)(1 + y(i− 1)/5), (30)
y(i) ≥ y(i− 1)(1 + x(i− 1)/10). (31)

Iterating (30) and (31) for j = d10/x(0)e < n rounds, we get y(j) ≥ 2y(0) and x(j) ≥
x(0) + y(0), or x(i) ≥ 2/3 for some i ≤ j. Repeating this r = dlog2(x(0)/y(0))e times, we get
for round i1 = rj < n, y(i1) ≥ x(0) and x(i1) ≥ x(0) + y(0) + 2y(0) + 4y(0) · · ·+ 2r−1y(0) ≥
2x(0), or x(i) ≥ 2/3 for some i ≤ i1.

If for some q ≥ 1, y(iq) ≥ 2q−1x(0) and x(iq) ≥ 2qx(0), or x(i) ≥ 2/3 for some
i ≤ iq, then at the end of round iq+1 = iq + d10/(2qx(0))e, either y(iq+1) ≥ 2qx(0) and
x(iq+1) ≥ 2q+1x(0), or x(i) ≥ 2/3 for some i ≤ iq+1, or iq+1 > n. Taking q = dlog2(1/x(0))e,
we have iq = O((1/x(0)) log(x(0)/y(0))) = O((n/A1) log(A1/(A1 − A2))) (observe that
iq < n) and 2qx(0) ≥ 1, so we must have x(i) ≥ 2/3 for some i ≤ x(iq). J

When the largest opinion reaches the size 2n/3, it will take over the whole graph within
additional O(logn) rounds. The progress of voting in this final stage would be slowest, if all
minority opinions were joined together into a single “second” opinion. The next lemma can
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be proven in the similar way as it is proven in [14] that two-sample voting finishes in O(logn)
rounds, if there are two opinions, the majority opinion has size at least cn, for a constant
c > 1/2, and λ is sufficiently small. Theorem 1 follows immediately from Lemmas 11 and 12.

I Lemma 12. Let G be a connected regular graph with λ ≤ 1/4. If the majority opinion has
size at least 2n/3, then with probability at least 1− n−2, the voting finishes within O(logn)
rounds.

5 Reducing Three-sample voting to Two-sample voting

In the three-sample voting process considered in [4], each vertex v samples in each round
three random neighbours with replacement, collecting their opinions, say, Yv,1, Yv,2, Yv,3.
Vertex v changes its opinion to the majority of {Yv,1, Yv,2, Yv,3}, or, if there is no majority,
to Yv,1. We show that our analysis of two sampling applies, with small modifications, also to
three sampling, giving the same bounds as in Theorem 1. The crucial idea is to view the
three sampling process in the following equivalent way.

Suppose in a given round we have k opinions, let C = (A1, A2, . . . , An) be the partition
of the vertices into the opinion classes and let A′j be the vertices with opinion j at the next
round. Each verstex v decides on its opinion for the next round in the following way. First, v
takes on the opinion Yv,1. Let A′′j , 1 ≤ j ≤ k, be the opinion classes after this initial updates.
Now v obtains its final opinion by the two-sampling decision using opinions Yv,2, Yv,3 (taken
in the original partition C). Observe that classes A′′j result from choosing only one (random)
vertex, that is, they are obtained by one round of the standard (single-sample and slow) pull
voting. While the sizes of opinions may change in one round of the standard pull voting,
the expected sizes are equal to the initial sizes; see, for example [22]. That is, we have
E(π(A′′j |C)) = π(Aj).

The following lemma implies that the analysis of two-sample voting can be updated to
three-sample voting by putting E(SC(A′′j )|C) in place of SC(Aj) and using the bounds (33)
and (34) on E(SC(A′′j )|C), which are exactly the same as the bounds on SC(Aj) in Lemma 9.
The proof of the lemma and further details will be included in the full version of the paper.

I Lemma 13. Let G be a connected graph and let C = (A1, . . . , Ak) partition V . Then

E(π(A′j)|C) = π(Aj) +R(V,Aj)−E(SC(A′′j )|C), (32)

E(SC(A′′j )|C) ≥ π(Aj)
k∑
i=1

π(Ai)2 − 2λπ(Aj)1/2
k∑
i=1

π(Ai)3/2, (33)

E(SC(A′′j )|C) ≤ π(Aj)
k∑
i=1

π(Ai)2 + 2λπ(Aj)1/2
k∑
i=1

π(Ai)3/2 + λ2. (34)

If C = (A,B), then E(SC(B′′)|C) ≥ π(B)/2.

6 Algorithm Pushy and Proof of Theorem 3

We describe a push-voting algorithm for reaching consensus on a graph G.

Algorithm Pushy
Repeat L times
begin

Each vertex activates with probability p and sends its opinion to all neighbours
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Each vertex keeps a tally of how many opinions of each type it has received
Let M(v) be the set of opinions received by v which have the maximal count

If |M(v)| ≥ 1, vertex v picks an opinion u.a.r. from M(v)
If |M(v)| = 0 (i.e. v has not received any opinion), v keeps its current opinion

end

The following lemma rephrases Theorem 3.

I Lemma 14. Let G = Kn and p = α logn/n, for a sufficiently large constant α > 0. Then
with probability 1− o(1), after L = 4 rounds there is a unique remaining opinion, irrespective
of the initial number and distribution of opinions.

Proof. On the complete graph Kn, for each round, the sets M(v) ≡M are the same for all
vertices. Consider one round and let m = |M |. The expected number of activated vertices
is α logn and the actual number is concentrated around this value (see (15)), so w.h.p. at
least one but fewer than β logn vertices activate in this round, where β = β(α) is a constant
sufficiently larger than α. Thus w.h.p. 1 ≤ m < β logn. If n vertices pick u.a.r. from the set
M , then w.h.p. each opinion i is chosen Ni = (1 + o(1))n/m times (use again (15)). Thus
w.h.p. the number of opinions in the next round is k = m < β logn.

Consider now a round j ≥ 2 with the number of opinions k ≥ 2 (no consensus yet).
We have w.h.p. 2 ≤ k < β logn and each opinion i is represented by Ni = (1 + o(1))n/k
vertices. We will upper bound m, which is the number of opinions with the maximal number
of activations, giving the number of opinions for the next round. The number of activations
of opinion i is a binomial random variable Xi ∼ Bin(Ni, p) independent of any other opinion.
Henceforth we use X and N = (1 + o(1))n/k to denote Xi and Ni. We use the inequalities
for binomial probabilities given below, which hold as follows: (35) for any h, (36) for h > Np,
(37) for h > Np, h = o(

√
N), hp = o(1) and θ = (1 +O(1/h) +O(h2/N))/

√
2π.

Pr(X = h) ≤ 1/
√
Np(1− p), (35)

Pr(X = h) ≤ Pr(X ≥ h) ≤ Pr(X = h) ·
(

1− N − h
h+ 1

p

1− p

)−1
, (36)

Pr(X = h) =
(
N

h

)
ph(1− p)N−h = θ√

h

(
eNp

h

)h
e−Np. (37)

We consider the following four cases, where ω = (log logn)/ log log logn.
C1: (β logn)/ω ≤ k < β logn,
C2: (logn)/ log logn ≤ k < (β logn)/ω,
C3: β(logn)1/6 ≤ k < (logn)/ log logn,
C4: 2 ≤ k < β(logn)1/6.

Case C1: (β logn)/ω ≤ k < β logn. Let h = (11/12)ω = (11/12)(log logn)/ log log logn.
Referring to (36) and recalling that β is sufficiently larger than α,

N − h
h+ 1

p

1− p ≤ (1 + o(1))Np
h
≤ (1 + o(1)) α

(11/12)β < 1/2.

Thus from (36), Pr(X ≥ h) ≤ 2 ·Pr(X = h).
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Let N = (1 + o(1))n/k, p = f/n where f = α logn. Let k = (logn)/σ where 1/β ≤ σ ≤
ω/β. Using (37),

Pr(X = h) = θ√
h

(ne
kh
p
)h
e−np/k = θ√

h

(
ef

hk

)h
e−f/k = θ√

h

(eασ
h

)h
e−ασ

= θ exp
(
−ασ − h log

(
h

eασ

)
− (1/2) log h

)
= θ exp

(
−h log h

(
1 + ασ

h log h + 1
2h −

log(eασ)
h log h

))
= exp (−h log h (1 + o(1)))

= (logn)−(11/12)(1+o(1)) = ρ.

The probability that no opinion is represented at least h times is (1 − ρ)k = o(1). The
expected number of opinions represented at least h times is kPr(X ≥ h), and

kPr(X ≥ h) ≤ 2kPr(X = h) = O(logn)(1/12)(1+o(1)) = o((logn)1/6).

Thus with probability 1− o(1), there is an opinion activated at least h times and the number
m of opinions with the maximal number of activations (that is, the number of opinions for
the next round) is less than β(logn)1/6. That is, in the next round we will have Case C4 or
k = 1.

Case C2: (logn)/ log logn ≤ k < (β logn)/ω. For any h, using (35),

Pr(X = h) ≤ 1√
np/k

= 1√
ωα/β

.

Let j = kγ/
√
ω, where γ ≥ 3e

√
B/A. The probability that more than j opinions are

transmitted the same (maximum) number of times is at most(
k

j

)(
1√
ωα/β

)j−1

≤ O(
√
ω)
(
ke

j

)j ( 1√
ωα/β

)j
= O(

√
ω) e−j = o(1).

Thus the number of opinions in the next round will be j = o(logn/ log logn), with probability
1− o(1). That is, in the next round we will have Case C3 or Case C4 or k = 1.

Case C3: β(logn)1/6 ≤ k < (logn)/(log logn). For Np ≥ α log logn, using (36) and
(37),

Pr(X ≥ eNp) ≤ O(1)√
Np

e−Np = o(1)
(logn)α ,

so with probability 1− o(1) all opinions are transmitted at most eNp times. For h = DNp,
D > 1, by direct calculation

Pr(X = h+ 1)
Pr(X = h) = p

1− p
N − h
h+ 1 = (1 + o(1)) 1

D
.

As Pr(X ≥ E(X)) = γ for some γ > 0 constant, it follows that with probability 1−o(1) there
exists 1 < D < e such that and for h = DNp, the expected number of opinions activated at
least h times is

kPr(X ≥ h) = Θ((logn)1/7).

Thus with probability 1−o(1), the number of opinions with the maximal number of activations
is at most β(logn)1/7. That is, in the next round we will have Case C4 or k = 1.
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Case C4: 2 ≤ k < β(logn)1/6. Using (35) with Np = Ω((logn)5/6), we get

Pr(X = h) = O
(

1/(logn)5/12
)
.

Let Xi be the number of activated vertices of opinion i = 1, . . . , k, then

Pr(∃(i, j) s.t. Xi = Xj) = O

(
k2

(logn)5/12

)
= O

(
1

(logn)1/12

)
= o(1),

so, with probability 1− o(1), a unique maximum opinion remains, that is, k = 1 in the next
round.

The probability that no vertex activates in one round is (1− p)n = O(n−α). Thus after 4
rounds (if Case C2, then no C3 or C4) a unique opinion remains with probability 1−o(1). J
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