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—— Abstract
We present the first self-stabilizing algorithm for leader election in arbitrary topologies whose
space complexity is O(max{log A,loglogn}) bits per node, where n is the network size and A
its degree. This complexity is sub-logarithmic in n when A = n°@.
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1 Context and Motivarion

This paper tackles the problem of designing memory efficient self-stabilizing algorithms for
the leader election problem. Self-stabilization [5] is a general paradigm to provide recovery
capabilities to networks. Intuitively, a protocol is self-stabilizing if it can recover from any
transient failure, without external intervention. Leader election is one of the fundamental
building blocks of distributed computing, as it enables a single node in the network to be
distinguished, and thus to perform specific actions. Leader election is especially important
in the context of self-stabilization as many protocols for various problems assume that a
single leader exists in the network, even after faults occur. Memory efficiency relates to the
amount of information to be sent to neighboring nodes for enabling stabilization. A small
space-complexity induces a smaller amount of information transmission, which (7) reduces the
overhead of self-stabilization when there are no faults, or after stabilization, and ) facilitates
mixing self-stabilization and replication [9].

A foundational result regarding space-complexity in the context of self-stabilizing silent
algorithms is due to Dolev et al. [6], stating that in n-node networks, Q(logn) bits of memory
per node are required for solving tasks such as leader election. So, only talkative algorithms
may have o(log n)-bit space-complexity for self-stabilizing leader election. So far, o(logn)-bits
solutions only exist for ring shaped networks, and the best protocol to date is due to Blin et
al. [3], which present a deterministic solution for arbitrary shaped n-rings with O(loglogn)
bits per node.

In general networks, self-stabilizing leader election is tightly connected to self-stabilizing
tree-construction. On the one hand, the existence of a leader permits time- and memory-
efficient self-stabilizing tree-construction [5]. On the other hand, growing and merging trees
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Compact Leader Election

is the main technique for designing self-stabilizing leader election algorithms in networks, as
the leader is often the root of an inward tree [5]. This high space-complexity is due to the
implementation of two main techniques, used by all algorithms, and recalled below.

The first technique is the use of a pointer-to-neighbor variable, that is meant to designate
unambiguously one particular neighbor of every node. For the purpose of tree-construction,
pointer-to-neighbor variables are typically used to store the parent node in the constructed
tree. Specifically, the parent of every node is designated unambiguously by its identifier,
requiring Q(logn) bits for each pointer variable. In principle, it would be possible to reduce
the memory to O(log A) bits per pointer variable in networks with maximum degree A,
by using node-coloring at distance 2 instead of identifiers to identify neighbors. However,
this, in turn, would require the availability of a self-stabilizing distance-2 node-coloring
algorithm that uses o(logn) bits per node. Unfortunately, self-stabilizing distance-2 coloring
algorithms [10, 8, 8] use variables of O(logn) bits per node. To date, no self-stabilizing
algorithm implements pointer-to-neighbor variables with space-complexity o(logn) bits in
arbitrary networks.

The second technique for tree-construction or leader election is the use of a distance
variable that is meant to store the distance of every node to the elected node in the network.
Such distance variable is used in self-stabilizing spanning tree-construction for breaking
cycles resulting from arbitrary initial state (see [5]). Clearly, storing distances in n-node
networks may require Q(log n) bits per node. There are a few self-stabilizing tree-construction
algorithms that are not using explicit distance variables (see, e.g., [11, 7, 4]), but their space-
complexity is O(logn) bits per node. Using the general principle of distance variables with
space-complexity below O(logn) bits was attempted by Awerbuch et al. [1], and Blin et
al. [2, 3]. These papers distribute pieces of information about the distances to the leader
among the nodes according to different mechanisms, enabling to store o(logn) bits per node,
however, these sophisticated mechanisms have only been demonstrated in rings. To date, no
self-stabilizing algorithms implement distance variables with space-complexity o(logn) bits
in arbitrary networks.

2 Compact Leader Election

In this “Brief Announcement”, we present a self-stabilizing leader election algorithm with
space-complexity O(max{log A,loglogn}) bits in n-node networks with maximum degree A.
This algorithm is the first self-stabilizing leader election algorithm for arbitrary networks
with space-complexity o(logn) (whenever A = n°(1)). Tt is designed for the standard state
model (a.k.a. shared memory model) for self-stabilizing algorithms in networks.

The design of our algorithm requires overcoming several bottlenecks, including the
difficulties of manipulating pointer-to-neighbor and distance variables using o(logn) bits in
arbitrary networks. Overcoming these bottlenecks was achieved thanks to the development
of sub-routine algorithms, each deserving independent special interest described hereafter.

First, we generalize to arbitrary networks the results proposed [2, 3] for rings, and aiming
at publishing the identifiers in a bit-wise manner. This generalization allows us to manipulate
the identifiers with just O(loglogn) bits of memory per node.

Second, we propose the first silent self-stabilizing algorithm for distance-2 coloring that
breaks the space-complexity of Q(logn) bits per node. More precisely this new algorithm
achieves a space-complexity of O(max{log A, loglogn}) bits per node. As opposed to previous
distance-2 coloring algorithms, we do not use identifiers for encoding pointer-to-neighbor
variables, but we use a compact representation of the identifiers to break symmetries. This
algorithm allows us to design a compact encoding of spanning trees.
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Third, we design a new technique to detect the presence of cycles in the initial configuration
resulting from a transient failure. This approach does not use distances, but it is based on
the uniqueness of each identifier in the network. Notably, this technique can be implemented
by a silent self-stabilizing algorithm, with space-complexity O(max{log A,loglogn}) bits
per node.

Last but not least, we design a new technique to avoid the creation of cycles during the
execution of the leader election algorithm. Again, this technique does not uses distances but
maintains a spanning forest, which eventually reduces to a single spanning tree rooted at
the leader at the completion of the leader election algorithm. Implementing this technique
results in a self-stabilizing algorithm with space complexity O(max{log A,loglogn}) bits
per node.

Due to space constraints, the details of our approach are presented in the companion
technical report available as arXiv:1702.07605 (https://arxiv.org/abs/1702.07605).
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