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—— Abstract

Recently, very fast deterministic and randomized algorithms have been obtained for connectivity

and minimum spanning tree in the unicast congested clique. In contrast, no solution faster than
a simple parallel implementation of the Boruvka’s algorithm has been known for both problems
in the broadcast congested clique. In this announcement, we present the first sub-logarithmic
deterministic algorithm for connected components in the broadcast congested clique.
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1 Introduction

In the congested clique model, each pair of n nodes of a network is connected by a separate
communication link. Communication is synchronous, each node in each round can send
message of O(logn) bits to each other node of the network. The main purpose of such a
model is to understand the role of congestion in distributed computation, separately from
limitations of locality. In the unicast congested clique, a node can send (possibly) different
message to each other node of the network. In contrast, in the broadcast congested clique,
each node can only send a single (the same) message to all other nodes in a round.

Graph problems in the congested clique model are considered under the assumption that
the input is an undirected n-node weighted graph G(V, E, w), where each node corresponds
to a node of the communication network which initially knows the network size n, its unique
ID in [n], the IDs of its neighbors in the input graph and the weights of its incident edges.
In the connected components problem, the set of edges inducing connected components of
the input graph has to be determined.

The main complexity measure is round complexity, equal to the number of rounds in an
execution of an algorithm. A natural generalization parametrizes the size (in bits) of messages
transmitted in a round, called bandwidth and denoted by b. Yet another generalization is that
the size of messages in various rounds might be different, but not larger than the bandwidth.
Then, bit complezity is defined as the sum of sizes of messages in all rounds.

Formal study of the congested clique model was initiated in [4], where a O(loglogn)
round deterministic algorithm for minimum spanning tree (MST), and therefore also for
the connected components problem, in the unicast congested clique is presented. The best
known randomized solution for MST in the unicast model works in O(log* n) rounds [2],
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improving the O(logloglogn) bound [3]. If the bandwidth is b = y/nlogn, one can compute
deterministically Connectivity in O(1) of rounds, even in the broadcast congested clique [5].
In an extreme scenario of one-round protocols in the broadcast congested clique, connected
components can be computed with public random bits using ©(log® n)-size messages [1].

2 Connected Components Algorithm

In this section we describe our algorithm for the connected components problem. In the
following [p] denotes the set {1,2,...,p}. Given a partition C of a graph G(V,E) into
connected components and v € V, C¥ denotes the component containing v. We define
deg.(v) for a vertex v wrt a partition C as the number of components connected with v,
i.e., dege(v) = |N¢(v)|, where Ne(v) = {C € C|Ju € C such that (v,u) € E and C # C"}.
For a component C' € C, we define deg,(C) = max,cc{deg,(v)}. Given a partition C of the
graph into components, we define the linear ordering = of components, where C' = C' iff
deg-(C) > deg(C') or deg.(C) = dege(C’) and ID(C) > ID(C"). A component C' is a local
mazximum if all its neighbors are smaller with respect to the > ordering.

The algorithm consists of the main part and the playoff (see Alg. 1). The main part is
split into phases. In a phase, edges connecting currently build connected components are
reported. The edges which connect nodes to the components of large degree are preferred.
The intended result of a phase is that each component either has a small degree (smaller
than s) or it is connected to some “host” of large degree (directly or by a path). As the
number of such “hosts” will be relatively small, we obtain significant reduction of the number
of components of large degree in each phase. Moreover, we separately deal with components
of small degree by allowing them to broadcast all their neighbours in the playoff.

At the beginning of phase 1 of the main part, each node is active and it forms a separate
component. During an execution of the algorithm, nodes from components of small degree
(smaller than s) are deactivated. At the beginning of a phase, a partition C of the graph of
active nodes is known. In Round 1 of a phase, each node v determines N¢(v) and announces
its degree dege(v). With this information, each node v knows the ordering of components of
C according to . Then, each active node v (except of members of local maxima) broadcasts
its incident edge to the largest active component from N¢(v) according to > (Round 2). Next,
each node v of each local maximum C' checks whether edges connecting C' to all components
from N¢(v) have been already broadcasted. If it is not the case, an edge connecting v to
a new component C’ is broadcasted by v (Round 3). Based on broadcasted edges, new
components are determined and their degrees are computed (Round 4). Each new component
with degree smaller than s is deactivated at the end of a phase.

The playoff lasts s rounds in which each node v of each deactivated component broadcasts
an edge going to each component connected to v at the moment of deactivation (there are at
most s such components for each deactivated node).

The key property of the algorithm is that each active component C' of degree > s is
either connected during a phase to all its neighbors or to a component which is larger than
C according to ». Thus, the number of active components decreases s times in each phase.

» Theorem 1. Alg. 1 solves the spanning forest problem in O(s + log, n) rounds.

logn

For s =
loglogn

Algorithm 1 gives the claimed o(logn) result.

» Corollary 2. [t is possible to solve the connected components problem in the broadcast

. . logn
congested clique in O (log logn) rounds.
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Algorithm 1 BroadcastCC(v, s) > s is the threshold between small/large degree
1: C < the partition into one-node components {vi},...,{vn}
2: while there are active components do > execution at a node v
3: Round 1: v broadcasts deg.(v)
4 if deg,(v) > 0 then > C — the current partition into connected components
5: Cmax(v) + the largest element of N¢(v) wrt the ordering >
6: Round 2:
7 if C" is not a local maximum then v broadcast an edge (u,v) such that u € Crmax
8 Round 3:
9: if C" is a local maximum then
10: Niost (v) <~ {C'|C € N¢(v) and no edge connecting C' and C” was broadcasted}
11: if Niost(v) # 0 then
12: u < a neighbor of v such that u € C for some C' € Niogst(v)
13: v broadcasts an edge (u,v)
14: v computes the new partition C into components, using all broadcasted edges
15: Round 4: v broadcasts deg.(v) > degrees wrt the new components!
16: if deg.(C") < s then deactivate v
17: Remove deactivated components from the partition C

18: Playoff (s rounds): deactivated nodes broadcast edges to neighboring components.

Now, assume that the bandwidth is b = dlogn. If s = d in Algorithm 1, we get log; n phases,
each requiring O(logn) bits per node. Edges from deactivated nodes can be broadcasted
during playoff in one round, using O(dlogn) bits bandwidth. This gives O(log,;n) round

algorithm using O(logn(d + }‘;i =) bit complexity.

» Corollary 3. [t is possible to solve the connectivity problem in the broadcast congested

cliqgue with bandwidth dlogn in logyn rounds and O(logn(d + 11223)) bit complexity.

The above corollary gives an improvement over a result from [5], where bit complexity is

2
0 (d lj’fgj) in O(log;n) rounds. Moreover, our algorithm does not use number theoretic

techniques as d-pruning or deterministic sparse linear sketches needed in [5].

Conclusions. We have shown the first sub-logarithmic algorithm for connected components
in the broadcast congested clique. On the other hand, it is still not known whether MST can
be computed in o(logn) rounds.
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