
Self-Stabilising Byzantine Clock Synchronisation
is Almost as Easy as Consensus∗

Christoph Lenzen1 and Joel Rybicki†2

1 Max Planck Institute for Informatics, Saarland Informatics Campus,
Saarbrücken, Germany
clenzen@mpi-inf.mpg.de

2 Department of Biosciences, University of Helsinki, Finland
joel.rybicki@helsinki.fi

Abstract
We give fault-tolerant algorithms for establishing synchrony in distributed systems in which each
of the n nodes has its own clock. Our algorithms operate in a very strong fault model: we require
self-stabilisation, i.e., the initial state of the system may be arbitrary, and there can be up to
f < n/3 ongoing Byzantine faults, i.e., nodes that deviate from the protocol in an arbitrary
manner. Furthermore, we assume that the local clocks of the nodes may progress at different
speeds (clock drift) and communication has bounded delay. In this model, we study the pulse
synchronisation problem, where the task is to guarantee that eventually all correct nodes generate
well-separated local pulse events (i.e., unlabelled logical clock ticks) in a synchronised manner.

Compared to prior work, we achieve exponential improvements in stabilisation time and the
number of communicated bits, and give the first sublinear-time algorithm for the problem:

In the deterministic setting, the state-of-the-art solutions stabilise in time Θ(f) and have
each node broadcast Θ(f log f) bits per time unit. We exponentially reduce the number of
bits broadcasted per time unit to Θ(log f) while retaining the same stabilisation time.
In the randomised setting, the state-of-the-art solutions stabilise in time Θ(f) and have each
node broadcast O(1) bits per time unit. We exponentially reduce the stabilisation time to
polylog f while each node broadcasts polylog f bits per time unit.

These results are obtained by means of a recursive approach reducing the above task of self-
stabilising pulse synchronisation in the bounded-delay model to non-self-stabilising binary con-
sensus in the synchronous model. In general, our approach introduces at most logarithmic over-
heads in terms of stabilisation time and broadcasted bits over the underlying consensus routine.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Byzantine faults, self-stabilisation, clock synchronisation, consensus

Digital Object Identifier 10.4230/LIPIcs.DISC.2017.32

1 Introduction

Many of the most fundamental problems in distributed computing relate to timing and
fault tolerance. Even though most distributed systems are inherently asynchronous, it is
often convenient to design such systems by assuming some degree of synchrony provided
by reliable global or distributed clocks. For example, the vast majority of existing Very

∗ Full version available on arXiv [27], http://arxiv.org/abs/1705.06173.
† Part of this work was done while JR was affiliated with Helsinki Institute for Information Technology

HIIT, Department of Computer Science, Aalto University.

© Christoph Lenzen and Joel Rybicki;
licensed under Creative Commons License CC-BY

31st International Symposium on Distributed Computing (DISC 2017).
Editor: Andréa W. Richa; Article No. 32; pp. 32:1–32:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.DISC.2017.32
http://arxiv.org/abs/1705.06173
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

32:2 Self-Stabilising Byzantine Clock Synchronisation is Almost as Easy as Consensus

Large Scale Integrated (VLSI) circuits operate according to the synchronous paradigm: an
internal clock signal is distributed throughout the chip neatly controlling alternation between
computation and communication steps. Of course, establishing the synchronous abstraction
is of high interest in numerous other large-scale distributed systems, as it makes the design
of algorithms considerably easier.

However, as the accuracy and availability of the clock signal is typically one of the most
basic assumptions, clocking errors affect system behavior in unpredictable ways that are often
hard – if not impossible – to tackle at higher system layers. Therefore, reliably generating
and distributing a joint clock is an essential task in distributed systems. Unfortunately, the
cost of providing fault-tolerant synchronisation and clocking is still poorly understood.

Pulse synchronisation. In this work, we study the self-stabilising Byzantine pulse synchron-
isation problem [16, 9], which requires the system to achieve synchronisation despite severe
faults. We assume a fully connected message-passing system of n nodes, where
1. an unbounded number of transients faults may occur anywhere in the network, and
2. up to f < n/3 of the nodes can be faulty and exhibit arbitrary ongoing misbehaviour.
In particular, the transient faults may arbitrarily corrupt the state of the nodes and result
in loss of synchrony. Moreover, the nodes that remain faulty may deviate from any given
protocol, behave adversarially, and collude to disrupt the other nodes by sending them
different misinformation even after transient faults have ceased. Note that this also covers
faults of the communication network, as we may map faults of communication links to one of
their respective endpoints. The goal is now to (re-)establish synchronisation once transient
faults cease, despite up to f < n/3 Byzantine nodes. That is, we need to consider algorithms
that are simultaneously (1) self-stabilising [7, 15] and (2) Byzantine fault-tolerant [23].

More specifically, the problem is as follows: after transient faults cease, no matter what
is the initial state of the system, the choice of up to f < n/3 faulty nodes, and the behaviour
of the faulty nodes, we require that after a bounded stabilisation time all the non-faulty
nodes must generate pulses that

occur almost simultaneously at each correctly operating node (i.e., have small skew), and
satisfy specified minimum and maximum frequency bounds (accuracy).

While the system may have arbitrary behaviour during the initial stabilisation phase due to
the effects of transient faults, eventually the above conditions provide synchronised unlabelled
clock ticks for all non-faulty nodes:

skew accuracy

stabilisation
phase

faulty node, arbitrary behaviour

transient
faults cease

next pulse
at the earliest

next pulse
at the latest

correct nodes
pulse with small skew

Node 1
Node 2
Node 3
Node 4

In order to meet these requirements, it is necessary that nodes can estimate the progress of
time. To this end, we assume that nodes are equipped with (continuous, real-valued) hardware
clocks that run at speeds that may vary arbitrarily within 1 and ϑ, where ϑ ∈ O(1). That is,
we normalize minimum clock speed to 1 and assume that the clocks have drift bounded by a
constant. Observe that in an asynchronous system, i.e., one in which communication and/or
computation may take unknown and unbounded time, even perfect clocks are insufficient to
ensure any relative timing guarantees between the actions of different nodes. Therefore, we

C. Lenzen and J. Rybicki 32:3

additionally assume that the nodes can send messages to each other that are received and
processed within at most d ∈ Θ(1) time. The clock speeds and message delays can behave
adversarially within the respective bounds given by ϑ and d.

In summary, this yields a highly adversarial model of computing, where further restrictions
would render the task infeasible: (1) transient faults are arbitrary and may involve the entire
network; (2) ongoing faults are arbitrary, cover erroneous behavior of both the nodes and the
communication links, and the problem is not solvable if f ≥ n/3 [10]; and (3) the assumptions
on the accuracy of local clocks and communication delay are minimal to guarantee solvability.

Background and related work. If one takes any one of the elements described above out
of the picture, then this greatly simplifies the problem. Without permanent faults, the
problem becomes trivial: it suffices to have all nodes follow a designated leader. Without
transient faults [22], straightforward solutions are given by elegant classics [33, 34], where [34]
also guarantees asymptotically optimal skew [29]. Taking the uncertainty of unknown
message delays and drifting clocks out of the equation leads to the so-called digital clock
synchronisation problem [3, 11, 25, 28, 26], where communication proceeds in synchronous
rounds and the task is to agree on a consistent (bounded) round counter. While this
abstraction is unrealistic as a basic system model, it yields conceptual insights into the
pulse synchronisation problem in the bounded-delay model. Moreover, it is useful to assign
numbers to pulses after pulse synchronisation is solved, in order to get a fully-fledged shared
system-wide clock [24].

In contrast to these relaxed problem formulations, the pulse synchronisation problem was
initially considered to be very challenging – if not impossible – to solve. In a seminal article,
Dolev and Welch [16] proved otherwise, albeit with an algorithm having an impractical
exponential stabilisation time. In a subsequent line of work, the stabilisation time was
reduced to polynomial [6] and then linear in f [12]. However, the linear-time algorithm
relies on simulating multiple instances of synchronous consensus algorithms [30] concurrently,
which results in a high communication complexity.

The consensus problem [30, 23] is one of the fundamental primitives in fault-tolerant
computing. Most relevant to this work is synchronous binary consensus with (up to f)
Byzantine faults. Here, node v is given an input x(v) ∈ {0, 1}, and it must output y(v) ∈ {0, 1}
such that the following properties hold:
1. Agreement: There exists y ∈ {0, 1} such that y(v) = y for all correct nodes v.
2. Validity: If for x ∈ {0, 1} it holds that x(v) = x for all correct nodes v, then y = x.
3. Termination: All correct nodes eventually decide on y(v) and terminate.
In this setting, two of the above main obstacles are not present: the system is properly
initialised (no self-stabilisation required) and computation proceeds in synchronous rounds,
i.e., well-ordered compute-send-receive cycles. This confines the task to understanding how
to deal with the interference from Byzantine nodes. Synchronous consensus is extremely
well-studied; see e.g. [32] for a survey. It is known that precisely b(n − 1)/3c faults can
be tolerated in a system of n nodes [30], Ω(nf) messages need to be sent in total [14],
the connectivity of the communication network must be at least 2f + 1 [8], deterministic
algorithms require f + 1 rounds [19, 1], and randomised algorithms can solve the problem
in constant expected time [18]. In constrast, no non-trivial lower bounds on the time or
communication complexity of pulse synchronisation are known.

The linear-time pulse synchronisation algorithm in [12] relies on simulating (up to) one
synchronous consensus instance for each node simultaneously. Accordingly, this protocol
requires each node to broadcast Θ(f log f) bits per time unit. Moreover, the use of de-

DISC 2017

32:4 Self-Stabilising Byzantine Clock Synchronisation is Almost as Easy as Consensus

Table 1 Summary of pulse synchronisation algorithms for f ∈ Θ(n). For each respective algorithm,
the first two columns give the stabilisation time and the number of bits broadcasted by a node per
time unit. The third column denotes whether algorithm is deterministic or randomised. The fourth
column indicates additional details or model assumptions. All algorithms tolerate f < n/3 faulty
nodes except for (*), where we have f < n/(3 + ε) for any constant ε > 0.

time bits type notes reference

poly f O(log f) det. [6]
O(f) O(f log f) det. [12]
O(f) O(log f) det. this work and [4]

2O(f) O(1) rand. adversary cannot predict coin flips [16]
O(f) O(1) rand. adversary cannot predict coin flips [9]
polylog f polylog f rand. private channels, (*) this work and [21]
O(log f) poly f rand. private channels this work and [18]

terministic consensus is crucial, as failure of any consensus instance to generate correct
output within a prespecified time bound may result in loss of synchrony, i.e., the algorithm
would fail after apparent stabilisation. In [9], these obstacles were overcome by avoiding
the use of consensus by reducing the pulse synchronisation problem to the easier task of
generating at least one well-separated “resynchronisation point”, which is roughly uniformly
distributed within any period of Θ(f) time. This can be achieved by trying to initiate
such a resynchronisation point at random times, in combination with threshold voting and
locally checked timing constraints to rein in the influence of Byzantine nodes. In a way, this
seems much simpler than solving consensus, but the randomisation used to obtain a suitable
resynchronisation point strongly reminds of the power provided by shared coins [31, 2, 18, 3] –
and this is exactly what the core routine of the expected constant-round consensus algorithm
from [18] provides.

Contributions. Our main result is a framework that reduces pulse synchronisation to an
arbitrary (non-self-stabilising) synchronous binary consensus routine at very small overheads.
In other words, given any efficient algorithm that solves consensus in the standard synchronous
model of computing, we show how to obtain an efficient algorithm that solves the pulse
synchronisation problem in the bounded-delay model with clock drift.

While we build upon existing techniques, our approach has many key differences. First
of all, while Dolev et al. [9] also utilise the concept of resynchronisation pulses, these
are generated probabilistically. Moreover, their approach has an inherent time bound
of Ω(f) for generating such pulses. In contrast, we devise a new recursive scheme that
allows us to (1) deterministically generate resynchronisation pulses in Θ(f) time and (2)
probabilistically generate resynchronisation pulses in o(f) time. To construct algorithms that
generate resynchronisation pulses, we employ resilience boosting and filtering techniques
inspired by our recent line of work on digital clock synchronisation in the synchronous
model [28, 25, 26]. One of its main motivations was to gain a better understanding of the
linear time/communication complexity barrier that research on pulse synchronisation ran
into, without being distracted by the additional timing uncertainties due to communication
delay and clock drift. The challenge here is to port these newly developed tools from the
synchronous model to the bounded-delay bounded-drift model in a way that keeps them in
working condition.

C. Lenzen and J. Rybicki 32:5

The key to efficiency is a recursive approach, where each node participates in only dlog fe
consensus instances, one for each level of recursion. On each level, the overhead of the
reduction over a call to the consensus routine is a constant multiplicative factor both in time
and bit complexity; concretely, this means that both complexities increase by overall factors
of O(log f). Applying suitable consensus routines yields exponential improvements in bit
complexity of deterministic and time complexity of randomised solutions, respectively:
1. In the deterministic setting, we exponentially reduce the number of bits each node

broadcasts per time unit to Θ(log f), while retaining Θ(f) stabilisation time. This is
achieved by employing the phase king algorithm [4] in our construction.

2. In the randomised setting, we exponentially reduce the stabilisation time to polylog f ,
where each node broadcasts polylog f bits per time unit. This is achieved using the
algorithm by King and Saia [21]. We note that this slightly reduces resilience to f <
n/(3 + ε) for any fixed constant ε > 0 and requires private communication channels.

3. In the randomised setting, we can also obtain a stabilisation time of O(log f), polynomial
communication complexity, and optimal resilience of f < n/3 by assuming private
communication channels. This is achieved using the consensus routine of Feldman and
Micali [18]. This almost settles the open question by Ben-Or et al. [3] whether pulse
synchronisation can be solved in expected constant time.

The running times of the randomised algorithms (2) and (3) hold with high probability and
the additional assumptions on resilience and private communication channels are inherited
from the employed consensus routines. Here, private communication channels mean that
Byzantine nodes must make their decision on which messages to sent in round r based on
knowledge of the algorithm, inputs, and all messages faulty nodes receive up to and including
round r. The probability distribution is then over the independent internal randomness of the
correct nodes (which the adversary can only observe indirectly) and any possible randomness
of the adversary. Our framework does not impose these additional assumptions: stabilisation
is guaranteed for f < n/3 on each recursive level of our framework as soon as the underlying
consensus routine succeeds (within prespecified time bounds) constantly many times in a
row. Our results and prior work are summarised in Table 1.

Regardless of the employed consensus routine, we achieve a skew of 2d, where d is the
maximum message delay. This is optimal in our model, but overly pessimistic if the sum of
communication and computation delay is not between 0 and d, but from (d−, d+), where
d+−d− � d+. In terms of d+ and d−, a skew of Θ(d+−d−) is asymptotically optimal [29, 34].
We remark that in [20], it is shown how to combine the algorithms from [9] and [34] to
achieve this bound without affecting the other properties shown in [9]; we are confident that
the same technique can be applied to the algorithm proposed in this work. Finally, all our
algorithms work with any clock drift parameter 1 < ϑ ≤ 1.007, that is, the nodes’ clocks can
have up to 0.7% drift. In comparison, cheap quartz oscillators achieve ϑ ≈ 1 + 10−5.

We consider our results of interest beyond the immediate improvements in complexity of
the best known algorithms for pulse synchronisation. Since our framework may employ any
consensus algorithm, it proves that pulse synchronisation is, essentially, as easy as synchronous
consensus – a problem without the requirement for self-stabilisation or any timing uncertainty.
Apart from the possibility for future improvements in consensus algorithms carrying over,
this accentuates the following open question:

Is pulse synchronisation at least as hard as synchronous consensus?

Due to the various lower bounds and impossibility results on consensus [30, 19, 8, 14]
mentioned earlier, a positive answer would immediately imply that the presented techniques
are near-optimal. However, one may speculate that pulse synchronisation may rather have

DISC 2017

32:6 Self-Stabilising Byzantine Clock Synchronisation is Almost as Easy as Consensus

the character of (synchronous) approximate agreement [13, 17], as precise synchronisation of
the pulse events at different nodes is not required. Considering that approximate agreement
can be deterministically solved in O(logn) rounds, a negative answer is a clear possibility
as well. Given that all currently known solutions either explicitly solve consensus, leverage
techniques that are likely to be strong enough to solve consensus, or are very slow, this would
suggest that new algorithmic techniques and insights into the problem are necessary.

2 Preliminaries

Let V denote the set of all n nodes, F ⊆ V be the set of faulty nodes such that |F | < n/3,
and G = V \F the set of correct nodes. The sets G and F are unknown to the correct nodes
in the system. We assume a continous reference time [0,∞) that is not available to the nodes
in the distributed system. The reference time is only used to reason about the behaviour
of the system. The adversary can choose the initial state of the system (memory contents,
initial clock values, any messages in transit), the set F of faulty nodes which it controls, how
the correct nodes’ clocks progress and what is the delay of each individual message within
the respective maximum clock drift and message delay bounds of ϑ and d. We assume that
ϑ and d are known constants. For the full formal description of the model we refer to [27].

Pulse synchronisation algorithms. In the pulse synchronisation problem, the task is to
have all the correct nodes locally generate pulse events in an almost synchronised fashion,
despite arbitrary initial states and the presence of Byzantine faulty nodes. In addition, these
pulses have to be well-separated. Let p(v, t) ∈ {0, 1} indicate whether a correct node v ∈ G
generates a pulse at time t. Moreover, let pk(v, t) ∈ [t,∞) denote the time when node v
generates the kth pulse event at or after time t and pk(v, t) =∞ if no such time exists. We
say that the system has stabilised from time t onwards if
1. p1(v, t) ≤ t+ Φ+ for all v ∈ G,
2. |pk(v, t)− pk(u, t)| < σ for all u, v ∈ G and k ≥ 1,
3. Φ− ≤ pk+1(v, t)−min{pk(u, t) : u ∈ G} ≤ Φ+ for all v ∈ G and k ≥ 1,
where Φ− and Φ+ are the accuracy bounds controlling the separation of the generated pulses.
That is, (1) all correct nodes generate a pulse during the interval [t, t + Φ+], (2) the kth
pulse of any two correct nodes is less than σ time apart, and (3) for any pair of correct nodes
their subsequent pulses are at least Φ− but at most Φ+ time apart.

We say that A is an f -resilient pulse synchronisation algorithm with skew σ and accuracy
Φ = (Φ−,Φ+) with stabilisation time T (A), if for any choices of the adversary such that
|F | ≤ f , there exists a time t ≤ T (A) such that the system stabilises from time t onwards.
Moreover, a pulse synchronisation algorithm A is said to be a T -pulser if the accuracy
bounds satisfy Φ−,Φ+ ∈ Θ(T). We use M(A) to denote the maximum number of bits a
correct node communicates per unit time when executing A.

Resynchronisation algorithms. In our pulse synchronisation algorithm, we use so-called
resynchronisation pulses to facilitate stabilisation. Essentially, the resynchronisation pulses
are given by a weak variant of a pulse synchronisation algorithm, where the guarantee is
that at some point all correct nodes generate a pulse almost synchronously, which is followed
by a long period of silence. At all other times, the behaviour can be arbitrary.

Formally, we say that B is an f -resilient resynchronisation algorithm with skew ρ and
separation window Ψ that stabilises in time T (B) if the following holds: for any choices
of the adversary such that |F | ≤ f , there exists a time t ≤ T (B) such that every correct

C. Lenzen and J. Rybicki 32:7

node v ∈ G locally generates a resynchronisation pulse at time r(v) ∈ [t, t+ ρ) and no other
resynchronisation pulse before time t+ ρ+ Ψ. We call such a resynchronisation pulse good.
In particular, we do not impose any restrictions on what the nodes do outside the interval
[t, t+ ρ+ Ψ), that is, there may be spurious resynchronisation pulses outside this interval:

Node 1
Node 2
Node 3
Node 4

good resynchronisation pulse

faulty node, arbitrary behaviour

spurious pulses

t t + ⇢ + t + ⇢
no pulses for

time

3 The transformation framework

Our main contribution is a modular framework that allows us to turn any non-self-stabilising
synchronous consensus algorithm into a self-stabilising pulse synchronisation algorithm in the
bounded-delay model. In particular, this construction yields only a small overhead in time
and communication complexity. This shows that efficient synchronous consensus algorithms
imply efficient pulse synchronisation algorithms. As our construction is relatively involved,
we opt to present it in a top-down fashion.

The main result. For notational convenience, we say that C is a family of synchronous
consensus routines with running time R(f) and message size M(f), if for any f ≥ 0 and
n ≥ n(f), there exists a synchronous consensus algorithm C ∈ C that runs correctly on n
nodes given that there are at most f faulty nodes, terminates in R(f) rounds, and uses
messages of size M(f). Here n(f) gives the minimum number of nodes needed as a function
of the resilience parameter f . Note that R(f),M(f), and n(f) depend on C; however, making
this explicit would clutter notation. We emphasise that the algorithms in C are not assumed
to be self-stabilising. Our main technical result states that given a family of consensus
routines, we can obtain pulse synchronisation algorithms with only small additional overhead.

I Theorem 1. Let C be a family of synchronous consensus routines that satisfy (i) for any
f0, f1 ∈ N, n(f0 + f1) ≤ n(f0) + n(f1) and (ii) both M(f) and R(f) are increasing. Then,
for any f ≥ 0, n ≥ n(f), and 1 < ϑ ≤ 1.007, there exists a T0(f) ∈ Θ(R(f)), such that for
any T ≥ T0(f) we can construct a T -pulser A with skew 2d. The stabilisation time T (A)
and number of bits M(A) broadcasted per time unit satisfy

T (A) ∈ O

d+
dlog fe∑

k=0
R(2k)

 and M(A) ∈ O

1 +
dlog fe∑

k=0
M(2k)

 ,

where the sums are empty when f = 0.

In the deterministic case, the phase king algorithm [5] provides a family of synchronous
consensus routines that satisfy the requirements. Moreover, it achieves optimal resilience
(i.e., the minimal possible n(f) = 3f + 1 [30]), constant message size, and asymptotically
optimal [19] running time R(f) ∈ O(f). Thus, this immediately yields the following result.

I Corollary 2. For any f ≥ 0 and n > 3f , there exists a deterministic f-resilient pulse
synchronisation algorithm over n nodes with skew 2d and accuracy bounds Φ−,Φ+ ∈ Θ(f)
that stabilises in O(f) time and has correct nodes broadcast O(log f) bits per time unit.

DISC 2017

32:8 Self-Stabilising Byzantine Clock Synchronisation is Almost as Easy as Consensus

Randomised algorithms. Extending Theorem 1 for use with randomised consensus routines
is straightforward; the reader is referred to the full paper [27] for details. By applying our
construction to a fast and communication-efficient randomised consensus algorithm, e.g. the
one by King and Saia [21], we get an efficient randomised pulse synchronisation algorithm.

I Corollary 3. Suppose we have private channels. For any f ≥ 0, constant ε > 0, and
n > (3 + ε)f , there exists a randomised f-resilient Θ(polylog f)-pulser over n nodes that
stabilises in polylog f time w.h.p. and has nodes broadcast polylog f bits per time unit.

We can also utilise the constant expected time protocol by Feldman and Micali [18]. With
some care, we can show that for R(f) ∈ O(1), Chernoff’s bound readily implies that the
stabilisation time is not only in O(logn) in expectation, but also with high probability.

I Corollary 4. Suppose we have private channels. For any f ≥ 0 and n > 3f , there exists a
randomised f-resilient Θ(log f)-pulser over n nodes that stabilises in O(log f) time w.h.p.
and has nodes broadcast poly f bits per time unit.

Proof sketch for Theorem 1. The proof of the main result takes an inductive approach.
In the inductive step, we assume two pulse synchronisation algorithms with small resilience.
We then use these to construct (via some hoops we discuss later) a new pulse synchronisation
algorithm with higher resilience. This step is formalised in the following lemma.

I Lemma 5. Let f, n0, n1 ∈ N, n = n0 +n1, f0 = b(f−1)/2c, and f1 = d(f−1)/2e. Suppose
for i ∈ {0, 1} there exists an fi-resilient Θ(R)-pulser Ai that runs on ni nodes and whose
accuracy bounds Φ−h and Φ+

h satisfy Φ+
h = ϕΦ−h for sufficiently small constants ϕ > ϑ. Let

C be an f-resilient consensus algorithm for a network of n nodes that has running time R
and uses messages of at most M bits. Then there exists a Θ(R)-pulser A that

runs on n nodes and has resilience f ,
stabilises in time T (A) ∈ max{T (A0), T (A1)}+O(R),
has nodes broadcast M(A) ∈ max{M(A0),M(A1)}+O(M) bits per time unit, and
has skew 2d and whose accuracy bounds Φ− and Φ+ satisfy that Φ+ = ϕΦ−.

Given the above lemma, it is relatively straightforward to show Theorem 1. Essentially,
we can prove the claim for f ∈

⋃
k≥0[2k, 2k+1) using induction on k. As the base case, we

use f = 0, that is, pulse synchronisation algorithms that tolerate no faulty nodes. These
are trivial to obtain for any n: we pick a single node as a leader that generates a pulse
when Φ+ − ϑd time has passed on its local clock. Whenever the leader node pulses, all other
nodes observe this within d time units. We have all other nodes generate a pulse whenever
they observe the leader node generating a pulse. Thus, for f = 0 we have algorithms that
stabilise in O(d) time, broadcast O(1) bits in O(d) time, and have accuracy bounds such that
Φ− = Φ+/ϑ−d. For the inductive step, we can assume that f ′-resilient pulse synchronisation
algorithms exist for all f ′ < 2k and n′ ≥ n(f ′) and apply Lemma 5.

The auxiliary results. In order to show Lemma 5, we use two main ingredients: (1) a pulse
synchronisation algorithm whose stabilisation mechanism is triggered by a resynchronisation
pulse and (2) a resynchronisation algorithm providing the latter. These ingredients are
formalised in the following two theorems.

I Theorem 6. Let f ≥ 0, n > 3f and (1 +
√

5)/3 > ϑ > 1. Suppose for a network of n
nodes there exist

an f -resilient synchronous consensus algorithm C, and
an f-resilient resynchronisation algorithm B with skew ρ ∈ O(d) and sufficiently large
separation window Ψ ∈ O(R) that tolerates clock drift of ϑ,

C. Lenzen and J. Rybicki 32:9

A(7, 2): pulse synchronisation algorithm (Theorem 6)

A(2, 0) A(2, 0)

B(4, 1): resynchronisation algorithm (T7)

A(4, 1): pulse synchronisation algorithm (T6) A(3, 0): trivial pulse synchronisation algorithm

B(7, 2): resynchronisation algorithm (Theorem 7)

Figure 1 Recursively building a 2-resilient pulse synchronisation algorithm A(7, 2) over 7 nodes.
The construction utilises low resilience pulse synchronisation algorithms to build high resilience
resynchronisation algorithms which can then be used to obtain highly resilient pulse synchronisation
algorithms. Here, the base case consists of trivial 0-resilient pulse synchronisation algorithms A(2, 0)
and A(3, 0) over 2 and 3 nodes, respectively. Two copies of A(2, 0) are used to build a 1-resilient
resynchronisation algorithm B(4, 1) over 4 nodes using Theorem 7. The resynchronisation algorithm
B(4, 1) is used to obtain a pulse synchronisation algorithm A(4, 1) via Theorem 6. Now, the
1-resilient pulse synchronisation algorithm A(4, 1) over 4 nodes is used together with the trivial
0-resilient algorithm A(3, 0) to obtain a 2-resilient resynchronisation algorithm B(7, 2) for 7 nodes
and the resulting pulse synchronisation algorithm A(7, 2). White nodes represent correct nodes
and black nodes represent faulty nodes. The gray blocks contain too many faulty nodes for the
respective algorithms to correctly operate, and hence, they may have arbitrary output.

where C runs in R = R(f) rounds and lets nodes send at most M = M(f) bits per round.
Then a ϕ0(ϑ) ∈ 1 +O(ϑ− 1) exists so that for any constant ϕ > ϕ0(ϑ) and sufficiently large
T ∈ O(R), there exists an f -resilient pulse synchronisation algorithm A for n nodes that

has skew σ = 2d and satisfies the accuracy bounds Φ− = T and Φ+ = Tϕ,
stabilises in T (B) +O(R) time and has nodes broadcast M(B) +O(M) bits per time unit.

To apply the above theorem, we require suitable consensus and resynchronisation al-
gorithms. We rely on consensus algorithms from prior work and construct efficient resyn-
chronisation algorithms ourselves. The idea is to combine pulse synchronisation algorithms
that have low resilience to obtain resynchronisation algorithms with high resilience.

I Theorem 7. Let f, n0, n1 ∈ N, n = n0 + n1, f0 = b(f − 1)/2c, f1 = d(f − 1)/2e, and
1 < ϑ ≤ 1.007. Suppose that for some given Ψ ∈ Ω(1), sufficiently small constant ϕ > ϕ0(ϑ),
and T0 ∈ Θ(Ψ), it holds that for any h ∈ {0, 1} and T0 ≤ T ∈ O(Ψ) there exists a pulse
synchronisation algorithm Ah that

runs on nh nodes and tolerates fh faulty nodes,
has skew σ = 2d and accuracy bounds Φ−h = T and Φ+

h = Tϕ.
Then there exists a resynchronisation algorithm B with skew ρ ∈ O(d) and separation window
of length Ψ that generates a resynchronisation pulse by time max{T (A0), T (A1)}+O(Ψ),
where nodes broadcast only O(1) additional bits per time unit.

Given a suitable consensus algorithm, one can readily combine Theorems 6 and 7 to
obtain Lemma 5. Therefore, we can reduce the problem of constructing an f -resilient pulse
synchronisation algorithm to finding algorithms that tolerate up to bf/2c faults and recurse;
see Figure 1 for an example on how the two types of algorithms are interleaved.

In the remainder of this paper, we overview the main ideas behind the above two theorems.
As the proofs are relatively involved due to a large number of technicalities arising from the

DISC 2017

32:10 Self-Stabilising Byzantine Clock Synchronisation is Almost as Easy as Consensus

(2) auxiliary state machine

Output:
synchronised pulses

(1)

resync.
pulses P : non-SS pulser alg.

BD

B : resync. alg.
SS + BD

A : pulse sync. alg.
output of C

C : consensus alg.
synchronous, non-SS

(3) main state machine
SS + BD

transitions to
WAIT

Figure 2 Constructing a self-stabilising (SS) and Byzantine fault-tolerant (BD) pulse synchron-
isation algorithm A out of a Byzantine fault-tolerant but non-stabilising pulse synchronisation
algorithm P, synchronous consensus algorithm C, and resynchronisation algorithm B. All algorithms
run on the same node set. (1) The resynchronisation algorithm B eventually outputs a good resyn-
chronisation pulse, which resets the stabilisation mechanism used by the auxiliary state machine. (2)
The auxiliary state machine simulates the executions of C using P. Simulations are initiated either
due to nodes transitioning to a special wait state of the main state machine (see Figure 3) or a
certain time after a resynchronisation pulse. (3) The main state machine. It generates pulses when
a consensus instance outputs “1” and, when stabilised, guarantees re-initialisation of the consensus
algorithm by the auxiliary state machine.

uncertainties introduced by the clock drift and message delay, we focus on summarising the
key ideas and deliberately skip over a number of details and avoid formalising the claims.
All the missing details and full proofs are given in the full paper [27].

4 The self-stabilising pulse synchronisation algorithm (Theorem 6)

We now overview the key elements in the construction of Theorem 6 illustrated in Figure 2:
a non-self-stabilising pulse synchronisation algorithm P,
a synchronous, non-self-stabilising consensus routine C,
a self-stabilising resynchronisation algorithm B, and
the constructed pulse synchronisation algorithm A.

Non-self-stabilising pulse synchronisation. The first component we need is a non-self-
stabilising pulse synchronisation algorithm P that tolerates Byzantine faults. To this end,
we use a variant of the classic clock synchronisation algorithm by Srikanth and Toeug [33]
that avoids transmitting clock values in favour of unlabelled pulses. As we do not require
self-stabilisation for now, we can assume that all nodes receive an initialisation signal during
the time window [0, τ) for a given parameter τ . The following theorem summarises the
properties of the algorithm.

I Theorem 8. Let n > 1, f < n/3, and τ > 0. If every correct node receives an initialisation
signal during [0, τ), then there exists a pulse synchronisation algorithm P such that:

all correct nodes generate the first pulse (after initialisation) within time O(ϑ2dτ),
the pulses have skew 2d,
the accuracy bounds are Φ− ∈ Ω(ϑd) and Φ+ ∈ O(ϑ2d), and
the algorithm communicates at most one bit per time unit.

We can simulate synchronous message-passing algorithms with the above algorithm as
follows. Assuming that no transient failures or new initialisation signals occur after time τ ,
by time O(ϑ2dτ) the algorithm starts to generate pulses with skew 2d and accuracy bounds
Φ− ∈ Ω(ϑd) and Φ+ ∈ O(ϑ2d). We can set the Ω(ϑd) term to be large enough so that all

C. Lenzen and J. Rybicki 32:11

pulserecover
G1

G1’

G2’
Transition guards:

G2

G2

wait ⌘ T1 expires and saw � n � f ‘pulse’ messages within time T1

at some point before the timeout expires

⌘ T1 expires and G1 is not satisfied

⌘ auxiliary machine signals ‘output 1’

⌘ Twait expires or auxiliary machine signals ‘output 0’

G1

G1’
G2
G2’

Figure 3 The main state machine. When a node transitions to state pulse, it generates a pulse
event and sends a pulse message to all nodes. When the node transitions to state wait, it broadcasts
a wait message to all nodes. Guard G1 employs a sliding window memory buffer, which stores any
pulse messages that have arrived within time T1. When a correct node transitions to pulse, it
resets a local timer of length T1. Once it expires, either Guard G1 or Guard G1’ become satisfied.
Similarly, the timer Twait is reset when a node transitions to wait. Once it expires, Guard G2’ is
satisfied and the node transitions from wait to recover. The node transitions to state pulse when
Guard G2 is satisfied, which requires an “output 1” signal from the auxiliary state machine.

correct nodes can complete local computations and send/receive messages for each simulated
round i − 1 before the ith pulse occurs. Thus, nodes can associate each message with a
distinct round i (by counting locally) and simulate synchronous message-passing algorithms.

The self-stabilising algorithm. The general idea is to repeatedly simulate C to agree on
the time of the next pulse. However, we must deal with an arbitrary initial system state. In
particular, the correct nodes may be scattered over the states, with inconsistent memory
content, and also the timers employed in the transition guards may have arbitrary values
(within their domains). Nonetheless, assume for the moment that there is a small window of
length ρ ∈ O(d) during which each node receives a resynchronisation pulse, which triggers
the initialisation of the stabilisation mechanism.

The construction relies on two components: (1) a main state machine given in Figure 3
and (2) an auxiliary state machine that acts as a wrapper for an arbitrary consensus algorithm.
The main state machine is responsible for generating pulses, whereas the auxiliary state
machine generates signals that drive the main state machine. The main machine works as
follows: whenever a node enters the pulse state, it waits for some time to see if at least n−f
nodes generated a pulse within a short time window. If not, the system has not stabilised,
and the node goes into the recover state to indicate this. Otherwise, the node goes into
the wait state, where it remains for long enough to (a) separate any subsequent pulses from
previous ones and (b) receive the next signal from the auxiliary machine. Once stabilised, the
auxiliary machine is guaranteed to send the signal “1” within bounded time. This indicates
that the node should pulse again. If no signal arrives on time or the signal is “0”, this means
that the system has not stabilised and the node goes into the recover state.

While the auxiliary state machine is slightly more involved, the basic idea is simple:
(a) nodes try to check whether at least n− f nodes transition to the wait state in the main
state machine in a short enough time window (that is, a time window that would suffice
during correct operation) and (b) then use a consensus routine to agree on this observation.
Assuming that all correct nodes participate in the simulation of the consensus routine, we
get the following:

If the consensus algorithm C outputs “0”, then some v ∈ G did not see n − f nodes
transitioning to wait in a short time window, and hence, the system has not yet stabilised.
If the consensus algorithm C outputs “1”, then every v ∈ G agrees that a transition to
wait happened recently.

DISC 2017

32:12 Self-Stabilising Byzantine Clock Synchronisation is Almost as Easy as Consensus

In particular, the idea is that when the system operates correctly, the consensus simulation
will always succeed and output “1” at every correct node.

The obvious problem here is that the consensus routine is not self-stabilising and it
operates in a synchronous model of computation. To remedy the latter problem, we use the
algorithm from Theorem 8 to simulate round-based execution. However, this requires that
an initialisation signal is generated within a time window of length τ , thus requiring some
level of synchrony among the correct nodes. To wiggle our way out of this issue, we carefully
construct the main state machine and auxiliary machine to satisfy the following properties:
1. The main state machine guarantees that if some correct node transitions to wait, then

after a short interval no correct node transitions to wait for an extended period of time.
2. If a node u ∈ G sees at least n− f nodes transitioning to wait in a short time window

(including itself), then the node attempts to start a consensus instance with input “1”.
3. If node u ∈ G attempts to start a simulation of consensus with input “1”, then at least

n− 2f > f correct nodes v ∈ G must have recently transitioned to wait. As all nodes
can reliably detect this event, this essentially ensures that their auxilliary machines
synchronise. This way, we can guarantee that all correct nodes initialise a new consensus
instance within τ time of each other and generate a consistent output.

4. If this output is “1”, all correct nodes generate a synchronised pulse and the system
stabilises. Otherwise, all of them transition to state recover.

5. If no u ∈ G attempts to start a simulation of consensus with input “1” within a certain
time, we make sure that all correct nodes end up in recover. Here, we exploit that any
consensus instance can be made silent [26], which means that no messages are sent by
correct nodes if they all have input “0”. Hence, even if not all correct nodes actually
participate in an instance, it does not matter as long as no correct node has input “1”.

Thus, either the system stabilises within a certain time or all correct nodes end up in state
recover. This is where we utilise the resynchronisation signals: when a resynchronisation
signal is received, the nodes reset a local timer. Since the resynchronisation signal has a
small skew of ρ ∈ O(d), these timers expire within a relatively small time window as well. If
the timer expires when all correct nodes are in the recover state, then they can explicitly
restart the system in synchrony, also resulting in stabilisation. The key here is to get a good
resynchronisation pulse at some point, so that no spurious resynchronisation pulses interfere
with the described stabilisation mechanism until it is complete. Once succesful, no correct
nodes transition to recover anymore. Thus, any subsequent resynchronisation pulses do
not affect pulse generation. For a detailed discussion and formal analysis, see [27].

5 Generating resynchronisation pulses (Theorem 7)

The final ingredient is a mechanism to generate resynchronisation pulses; see Figure 4 for the
general structure of the construction. Recall that a good resynchronisation pulse is an event
triggered at all correct nodes within a small time interval, followed by at least Ψ time during
which no correct node triggers a new such event. In order to construct an algorithm that
generates such an event, we partition the set of n nodes into two disjoint blocks of roughly
n/2 nodes. Each block runs an instance of a pulse synchronisation algorithm tolerating fi

faults, where f0 + f1 + 1 = f (and f0 ≈ f1 ≈ f/2). For these two algorithms, we choose
different pulsing frequencies (that is, accuracy bounds) that are roughly coprime integer
multiples of the desired separation window Ψ. Both algorithms are used as potential sources
of resynchronisation pulses. The idea behind our construction is illustrated in Figure 5. If
both instances stabilise, it is not difficult to set up the frequencies such that Ai eventually
generates a pulse that is not followed by a pulse from A1−i within time Ψ.

C. Lenzen and J. Rybicki 32:13

F₀(n, f) : filter 0

A₀(n₀, f₀)

Output: resynchronisation pulses

block 0

n = n₀ + n₁ = 4
f = f₀ + f₁ + 1 = 1F₁(n, f) : filter 1

A₁(n₁, f₁)
block 1 (faulty) Legend

correct node

Parameters

faulty node

Figure 4 Construction of an f -resilient resynchronisation algorithm on n nodes from fi-resilient
pulse synchronisation algorithms on ni nodes, where f = f0 + f1 + 1 and n = n0 + n1. The n nodes
are divided into two groups of n0 and n1 nodes. These groups run pulse synchronisation algorithms
A0 and A1, respectively. At least one of these algorithms is guaranteed to stabilise eventually. Here,
A1 (gray block) has too many faulty nodes and does not stabilise. All of the n nodes together run
two filtering mechanisms F0 and F1 for the outputs of A0 and A1, respectively. These ensure that
no correct node locally generates a resynchronisation pulse without all correct nodes registering this
event, and then apply timeout constraints to enforce the desired frequency bounds.

source

output

(a)
faulty source

source

output

(b) spurious (early) pulse

source

Figure 5 Idea of the resynchronisation algorithm. We take two pulse sources with (up to scaling)
coprime frequencies and output the logical OR of the two sources. In this example, the pulses of the
first source should occur in the blue regions, whereas the pulses of the second source should hit the
yellow regions. The green regions indicate a period where a pulse from either source is followed by
at least Ψ time of silence. Eventually, such a region appears. (a) Two correct sources that pulse
with set frequencies. (b) One faulty source that produces spurious pulses. Here, a pulse occurs too
early (red region), and thus, we then enforce that the faulty source is silenced for Θ(Ψ) time.

Unfortunately, one of the instances (but not both) could have more than fi faulty nodes,
never stabilise, and thus generate possibly inconsistent pulses at arbitrary points in time.
We overcome this by a two-step filtering process illustrated in Figure 6. First, we apply a
number of threshold votes ensuring that if a pulse of a block is considered as a candidate
resynchronisation pulse by some correct node, then all correct nodes observe this event.
Second, we locally filter out any observed events that do not obey the prescribed frequency
bounds for the respective block. Thus, the faulty block either generates (possibly inconsistent)
pulses within the prescribed frequency bounds only, or its influence is suppressed entirely
(for sufficiently long time). Either way, the correctly operating block will eventually succeed
in generating a resynchronisation pulse. Further details and all missing proofs appear in the
full version of this paper [27].

Acknowledgements. We are grateful to Danny Dolev for numerous discussions on the pulse
synchronisation problem and detailed comments on early drafts of this paper. We also wish
to thank Borzoo Bonakdarpour, Janne H. Korhonen, Christian Scheideler, Jukka Suomela,
and anonymous reviewers for their helpful comments.

DISC 2017

32:14 Self-Stabilising Byzantine Clock Synchronisation is Almost as Easy as Consensus

Filter for A₀

The local outputs of a single node

< >
faulty, arbitrary behaviour

1:
2:
3:
4:

5:
6:
7:
8:

Filter for A₁
— threshold votes
ensure that if
someone accepts a
pulse, all see this
— timeout since last
pulse; reject early or
late pulses

good pulsebad pulsesA₀

A₁

faulty, arbitrary behaviour

Same as the
first filter, but
apply to A₁

Figure 6 Example of the resynchronisation construction for 8 nodes tolerating 2 faults. We
partition the network into two parts, each running a pulse synchronisation algorithm Ai. The
output of Ai is fed into the respective filter and any pulse that passes the filtering is used as a
resynchronisation pulse. The filtering consists of (1) having all nodes in the network participate in
a threshold vote to see if anyone thinks a pulse from Ai occurred (i.e. enough nodes running Ai

generated a pulse) and (2) keeping track when was the last time a pulse from Ai occurred to check
that the accuracy bounds of Ai are respected: pulses that appear too early or too late are ignored.

References
1 M. K. Aguilera and S. Toueg. Simple bivalency proof that t-resilient consensus requires

t+ 1 rounds. Information Processing Letters, 71(3):155–158, 1999.
2 M. Ben-Or. Another advantage of free choice: Completely asynchronous agreement proto-

cols. In PODC 1983, pages 27–30, 1983.
3 M. Ben-Or, D. Dolev, and E. N. Hoch. Fast self-stabilizing Byzantine tolerant digital clock

synchronization. In PODC 2008, pages 385–394, 2008.
4 P. Berman, J. A. Garay, and K. J. Perry. Towards optimal distributed consensus. In FOCS

1989, pages 410–415, 1989.
5 P. Berman, J. A. Garay, and K. J. Perry. Bit optimal distributed consensus. In Computer

Science: Research and Applications, pages 313–321, 1992.
6 A. Daliot, D. Dolev, and H. Parnas. Self-stabilizing pulse synchronization inspired by

biological pacemaker networks. In SSS 2003, pages 32–48, 2003.
7 Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communications

of the ACM, 17(11):643–644, 1974.
8 D. Dolev. The Byzantine generals strike again. Journal of Algorithms, 3(1):14–30, 1982.
9 D. Dolev, M. Függer, C. Lenzen, and U. Schmid. Fault-tolerant algorithms for tick-

generation in asynchronous logic. Journal of the ACM, 61(5):30:1–30:74, 2014.
10 D. Dolev, J. Y. Halpern, and H. R. Strong. On the possibility and impossibility of achieving

clock synchronization. Journal of Computer and System Sciences, 32(2):230–250, 1986.
11 D. Dolev, K. Heljanko, M. Järvisalo, J. H. Korhonen, C. Lenzen, J. Rybicki, J. Suomela,

and S. Wieringa. Synchronous counting and computational algorithm design. Journal of
Computer and System Sciences, 82(2):310–332, 2016.

12 D. Dolev and E. N Hoch. Byzantine self-stabilizing pulse in a bounded-delay model. In
SSS 2007, pages 234–252, 2007.

13 D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and W. E. Weihl. Reaching approximate
agreement in the presence of faults. Journal of the ACM, 33(3):499–516, 1986.

14 D. Dolev and R. Reischuk. Bounds on information exchange for Byzantine agreement.
Journal of the ACM, 32(1):191–204, 1985.

15 S. Dolev. Self-Stabilization. Cambridge, MA, 2000.
16 S. Dolev and J. L. Welch. Self-stabilizing clock synchronization in the presence of Byzantine

faults. Journal of the ACM, 51(5):780–799, 2004.
17 A. D. Fekete. Asymptotically optimal algorithms for approximate agreement. Distributed

Computing, 4(1):9–29, 1990.

C. Lenzen and J. Rybicki 32:15

18 P. Feldman and S. Micali. Optimal algorithms for Byzantine agreement. In STOC 1988,
pages 148–161, 1988.

19 M. J. Fischer and N. A. Lynch. A lower bound for the time to assure interactive consistency.
Information Processing Letters, 14(4):183–186, 1982.

20 P. Khanchandani and C. Lenzen. Self-stabilizing Byzantine clock synchronization with
optimal precision. In SSS 2016, pages 213–230, 2016.

21 V. King and J. Saia. Breaking the O(n2) bit barrier. Journal of the ACM, 58(4):1–24,
2011.

22 L. Lamport and P. M. Melliar-Smith. Synchronizing clocks in the presence of faults. Journal
of the ACM, 32(I):52–78, 1985.

23 L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM Transac-
tions on Programming Languages and Systems, 4(3):382–401, 1982.

24 C. Lenzen, M. Függer, M. Hofstätter, and U. Schmid. Efficient construction of global time
in SoCs despite arbitrary faults. In DSD 2013, pages 142–151, 2013.

25 C. Lenzen and J. Rybicki. Efficient counting with optimal resilience. In DISC 2015, pages
16–30, 2015.

26 C. Lenzen and J. Rybicki. Near-optimal self-stabilising counting and firing squads. In SSS
2016, pages 263–280, 2016.

27 C. Lenzen and J. Rybicki. Self-stabilising Byzantine clock synchronisation is almost as easy
as consensus, 2017. Full version. URL: http://arxiv.org/abs/1705.06173.

28 C. Lenzen, J. Rybicki, and J. Suomela. Towards optimal synchronous counting. In PODC
2015, pages 441–450, 2015.

29 J. Lundelius and N. Lynch. An upper and lower bound for clock synchronization. Inform-
ation and Control, 62(2–3):190–204, 1984.

30 M. C. Pease, R. E. Shostak, and L. Lamport. Reaching agreement in the presence of faults.
Journal of the ACM, 27(2):228–234, 1980.

31 M. O. Rabin. Randomized Byzantine generals. In FOCS 1983, pages 403–409, 1983.
32 M. Raynal. Fault-tolerant agreement in synchronous message-passing systems. Morgan &

Claypool, 2010.
33 T. K. Srikanth and S. Toueg. Optimal clock synchronization. Journal of the ACM,

34(3):626–645, 1987.
34 J. L. Welch and N. Lynch. A new fault tolerant algorithm for clock synchronization. In-

formation and Computation, 77(1):1–36, 1988.

DISC 2017

http://arxiv.org/abs/1705.06173

	Introduction
	Preliminaries
	The transformation framework
	The self-stabilising pulse synchronisation algorithm (Theorem 6)
	Generating resynchronisation pulses (Theorem 7)

