
Cost of Concurrency in Hybrid Transactional
Memory
Trevor Brown∗1 and Srivatsan Ravi2

1 Technion, Israel Institute of Technology, Haifa, Israel
me@tbrown.pro

2 University of Southern California, Los Angeles, California, USA
srivatsr@usc.edu

Abstract
State-of-the-art software transactional memory (STM) implementations achieve good perform-
ance by carefully avoiding the overhead of incremental validation (i.e., re-reading previously read
data items to avoid inconsistency) while still providing progressiveness (allowing transactional
aborts only due to data conflicts). Hardware transactional memory (HTM) implementations
promise even better performance, but offer no progress guarantees. Thus, they must be com-
bined with STMs, leading to hybrid TMs (HyTMs) in which hardware transactions must be
instrumented (i.e., access metadata) to detect contention with software transactions.

We show that, unlike in progressive STMs, software transactions in progressive HyTMs can-
not avoid incremental validation. In fact, this result holds even if hardware transactions can
read metadata non-speculatively. We then present opaque HyTM algorithms providing progress-
iveness for a subset of transactions that are optimal in terms of hardware instrumentation. We
explore the concurrency vs. hardware instrumentation vs. software validation trade-offs for these
algorithms. Our experiments with Intel and IBM POWER8 HTMs seem to suggest that (i) the
cost of concurrency also exists in practice, (ii) it is important to implement HyTMs that provide
progressiveness for a maximal set of transactions without incurring high hardware instrumenta-
tion overhead or using global contending bottlenecks and (iii) there is no easy way to derive more
efficient HyTMs by taking advantage of non-speculative accesses within hardware.

1998 ACM Subject Classification D.1.3 Concurrent Programming – parallel programming

Keywords and phrases Transactional memory, Lower bounds, Opacity

Digital Object Identifier 10.4230/LIPIcs.DISC.2017.9

1 Introduction

The Transactional Memory (TM) abstraction is a synchronization mechanism that allows
the programmer to optimistically execute sequences of shared-memory operations as atomic
transactions. Several software TM designs [8, 24, 13, 11] have been introduced subsequent to
the original TM proposal based in hardware [14]. The original dynamic STM implementation
DSTM [13] ensures that a transaction aborts only if there is a read-write data conflict with
a concurrent transaction (à la progressiveness [12]). However, to satisfy opacity [12], read
operations in DSTM must incrementally validate the responses of all previous read operations
to avoid inconsistent executions. This results in quadratic (in the size of the transaction’s
read set) step-complexity for transactions. Subsequent STM implementations like NOrec [8]

∗ Trevor Brown received funding for this work from the Natural Sciences and Engineering Research
Council of Canada.

© Trevor Brown and Srivatsan Ravi;
licensed under Creative Commons License CC-BY

31st International Symposium on Distributed Computing (DISC 2017).
Editor: Andréa W. Richa; Article No. 9; pp. 9:1–9:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.DISC.2017.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

9:2 Cost of Concurrency in Hybrid Transactional Memory

and TL2 [10] minimize the impact on performance due to incremental validation. NOrec
uses a global sequence lock that is read at the start of a transaction and performs value-based
validation during read operations only if the value of the global lock has been changed (by
an updating transaction) since reading it. TL2, on the other hand, eliminates incremental
validation completely. Like NOrec, it uses a global sequence lock, but each data item also
has an associated sequence lock value that is updated alongside the data item. When a data
item is read, if its associated sequence lock value is different from the value that was read
from the sequence lock at the start of the transaction, then the transaction aborts.

In fact, STMs like TL2 and NOrec ensure progress in the absence of data conflicts with
O(1) step complexity read operations and invisible reads (read operations which do not
modify shared memory). Nonetheless, TM designs that are implemented entirely in software
still incur significant performance overhead. Thus, current CPUs have included instructions
to mark a block of memory accesses as transactional [1, 17], allowing them to be executed
atomically in hardware. Hardware transactions promise better performance than STMs, but
they offer no progress guarantees since they may experience spurious aborts. This motivates
the need for hybrid TMs in which the fast hardware transactions are complemented with
slower software transactions that do not have spurious aborts.

To allow hardware transactions in a HyTM to detect conflicts with software transactions,
hardware transactions must be instrumented to perform additional metadata accesses, which
introduces overhead. Hardware transactions typically provide automatic conflict detection at
cacheline granularity, thus ensuring that a transaction will be aborted if it experiences memory
contention on a cacheline. This is at least the case with Intel’s Transactional Synchronization
Extensions [25]. The IBM POWER8 architecture additionally allows hardware transactions
to access metadata non-speculatively, thus bypassing automatic conflict detection. While
this has the advantage of potentially reducing contention aborts in hardware, this makes the
design of HyTM implementations potentially harder to prove correct.

In [3], it was shown that hardware transactions in opaque progressive HyTMs must
perform at least one metadata access per transactional read and write. In this paper, we
show that in opaque progressive HyTMs with invisible reads, software transactions cannot
avoid incremental validation. Specifically, we prove that each read operation of a software
transaction in a progressive HyTM must necessarily incur a validation cost that is linear in
the size of the transaction’s read set. This is in contrast to TL2 which is progressive and has
constant complexity read operations. Thus, in addition to the linear instrumentation cost in
hardware transactions, there is a quadratic step complexity cost in software transactions.

We then present opaque HyTM algorithms providing progressiveness for a subset of
transactions that are optimal in terms of hardware instrumentation. Algorithm 1 is progressive
for all transactions, but it incurs high instrumentation overhead in practice. Algorithm 2
avoids all instrumentation in fast-path read operations, but is progressive only for slow-path
reading transactions. We also sketch how some hardware instrumentation can be performed
non-speculatively without violating opacity.

Extensive experiments were performed to characterize the cost of concurrency in practice.
We studied the instrumentation-optimal algorithms, as well as TL2, Transactional Lock
Elision (TLE) [22] and Hybrid NOrec [23] on both Intel and IBM POWER architectures. Each
of the algorithms we studied contributes to an improved understanding of the concurrency vs.
hardware instrumentation vs. software validation trade-offs for HyTMs. Comparing results
between the very different Intel and IBM POWER architectures also led to new insights.
Collectively, our results suggest the following.
(i) The cost of concurrency is significant in practice; high hardware instrumentation impacts

performance negatively on Intel and much more so on POWER8 due to its limited
transactional cache capacity.

T. Brown and S. Ravi 9:3

(ii) It is important to implement HyTMs that provide progressiveness for a maximal set of
transactions without incurring high hardware instrumentation overhead or using global
contending bottlenecks.

(iii) There is no easy way to derive more efficient HyTMs by taking advantage of non-
speculative accesses supported within the fast-path in POWER8 processors.

2 Hybrid transactional memory (HyTM)

Transactional memory (TM). A transaction is a sequence of transactional operations (or
t-operations), reads and writes, performed on a set of transactional objects (t-objects). A TM
implementation provides a set of concurrent processes with deterministic algorithms that
implement reads and writes on t-objects using a set of base objects.

Configurations and executions. A configuration of a TM implementation specifies the state
of each base object and each process. In the initial configuration, each base object has its
initial value and each process is in its initial state. An event (or step) of a transaction invoked
by some process is an invocation of a t-operation, a response of a t-operation, or an atomic
primitive operation applied to base object along with its response. An execution fragment is
a (finite or infinite) sequence of events E = e1, e2, An execution of a TM implementation
M is an execution fragment where, informally, each event respects the specification of base
objects and the algorithms specified byM.

For any finite execution E and execution fragment E′, E ·E′ denotes the concatenation
of E and E′, and we say that E · E′ is an extension of E. For every transaction identifier k,
E|k denotes the subsequence of E restricted to events of transaction Tk. If E|k is non-empty,
we say that Tk participates in E, Let txns(E) denote the set of transactions that participate
in E. Two executions E and E′ are indistinguishable to a set T of transactions, if for each
transaction Tk ∈ T , E|k = E′|k. A transaction Tk ∈ txns(E) is complete in E if E|k ends
with a response event. The execution E is complete if all transactions in txns(E) are complete
in E. A transaction Tk ∈ txns(E) is t-complete if E|k ends with Ak or Ck; otherwise, Tk is
t-incomplete. We consider the dynamic programming model: the read set (resp., the write
set) of a transaction Tk in an execution E, denoted RsetE(Tk) (resp., WsetE(Tk)), is the set
of t-objects that Tk attempts to read (and resp. write) by issuing a t-read (resp., t-write)
invocation in E (for brevity, we sometimes omit the subscript E).

We assume that base objects are accessed with read-modify-write (rmw) primitives. A
rmw primitive event on a base object is trivial if, in any configuration, its application does
not change the state of the object. Otherwise, it is called nontrivial. Events e and e′ of an
execution E contend on a base object b if they are both primitives on b in E and at least
one of them is nontrivial.

Hybrid transactional memory executions. We now describe the execution model of a
Hybrid transactional memory (HyTM) implementation. In our model, shared memory
configurations may be modified by accessing base objects via two kinds of primitives: direct
and cached.
(i) In a direct (also called non-speculative) access, the rmw primitive operates on the

memory state: the direct-access event atomically reads the value of the object in the
shared memory and, if necessary, modifies it.

(ii) In a cached access performed by a process i, the rmw primitive operates on the cached
state recorded in process i’s tracking set τi.

DISC 2017

9:4 Cost of Concurrency in Hybrid Transactional Memory

More precisely, τi is a set of triples (b, v,m) where b is a base object identifier, v is a
value, and m ∈ {shared, exclusive} is an access mode. The triple (b, v,m) is added to the
tracking set when i performs a cached rmw access of b, where m is set to exclusive if the
access is nontrivial, and to shared otherwise. We assume that there exists some constant TS
such that the condition |τi| ≤ TS must always hold; this condition will be enforced by our
model. A base object b is present in τi with mode m if ∃v, (b, v,m) ∈ τi.

Hardware aborts. A tracking set can be invalidated by a concurrent process: if, in a
configuration C where (b, v, exclusive) ∈ τi (resp., (b, v, shared) ∈ τi), a process j 6= i

applies any primitive (resp., any nontrivial primitive) to b, then τi becomes invalid and any
subsequent event invoked by i sets τi to ∅ and returns ⊥. We refer to this event as a tracking
set abort.

Any transaction executed by a correct process that performs at least one cached access
must necessarily perform a cache-commit primitive that determines the terminal response
of the transaction. A cache-commit primitive issued by process i with a valid τi does the
following: for each base object b such that (b, v, exclusive) ∈ τi, the value of b in C is updated
to v. Finally, τi is set to ∅ and the operation returns commit. We assume that a fast-path
transaction Tk returns Ak as soon a cached primitive or cache-commit returns ⊥.

Slow-path and fast-path transactions. We partition HyTM transactions into fast-path
transactions and slow-path transactions. A slow-path transaction models a regular software
transaction. An event of a slow-path transaction is either an invocation or response of a
t-operation, or a direct rmw primitive on a base object. A fast-path transaction essentially
encapsulates a hardware transaction. Specifically, in any execution E, we say that a
transaction Tk ∈ txns(E) is a fast-path transaction if E|k contains at least one cached event.
An event of a hardware transaction is either an invocation or response of a t-operation, or a
direct trivial access or a cached access, or a cache-commit primitive.

I Remark (Tracking set aborts). Let Tk ∈ txns(E) be any t-incomplete fast-path transaction
executed by process i, where (b, v, exclusive) ∈ τi (resp., (b, v, shared) ∈ τi) after execution
E, and e be any event (resp., nontrivial event) that some process j 6= i is poised to apply
after E. The next event of Tk in any extension of E · e is Ak.

I Remark (Capacity aborts). Any cached access performed by a process i executing a fast-path
transaction Tk; |Dset(Tk)| > 1 first checks the condition |τi| = TS , where TS is a pre-defined
constant, and if so, it sets τi = ∅ and immediately returns ⊥.

Direct reads within fast-path. Note that we specifically allow hardware transactions to
perform reads without adding the corresponding base object to the process’ tracking set,
thus modeling the suspend/resume instructions supported by IBM POWER8 architectures.
Note that Intel’s HTM does not support this feature: an event of a fast-path transaction
does not include any direct access to base objects.

HyTM properties. We consider the TM-correctness property of opacity [12]: an execution
E is opaque if there exists a legal (every t-read of a t-object returns the value of its latest
committed t-write) sequential execution S equivalent to some t-completion of E that respects
the real-time ordering of transactions in E. We also assume a weak TM-liveness property for
t-operations: every t-operation returns a matching response within a finite number of its own
steps if running step-contention free from a configuration in which every other transaction is

T. Brown and S. Ravi 9:5

t-complete. Moreover, we focus on HyTMs that provide invisible reads: t-read operations do
not perform nontrivial primitives in any execution.

3 Progressive HyTM must perform incremental validation

In this section, we show that it is impossible to implement opaque progressive HyTMs with
invisible reads with O(1) step-complexity read operations for slow-path transactions. This
result holds even if fast-path transactions may perform direct trivial accesses.

Formally, we say that a HyTM implementationM is progressive for a set T of transactions
if in any execution E ofM; T ⊆ txns(E), if any transaction Tk ∈ T returns Ak in E, there
exists another concurrent transaction Tm that conflicts (both access the same t-object and
at least one writes) with Tk in E [12].

We construct an execution of a progressive opaque HyTM in which every t-read performed
by a read-only slow-path transaction must access linear (in the size of the read set) number
of distinct base objects.

I Theorem 1. LetM be any progressive opaque HyTM implementation providing invisible
reads. There exists an execution E of M and some slow-path read-only transaction Tk ∈
txns(E) that incurs a time complexity of Ω(m2); m = |Rset(Tk)|.

Proof sketch. We construct an execution of a read-only slow-path transaction Tφ that
performs m ∈ N distinct t-reads of t-objects X1, . . . , Xm. We show inductively that for
each i ∈ {1, . . . ,m}; m ∈ N, the ith t-read must access i− 1 distinct base objects during its
execution. The (partial) steps in our execution are depicted in Figure 1.

For each i ∈ {1, . . . ,m},M has an execution of the form depicted in Figure 1b. Start
with the complete step contention-free execution of slow-path read-only transaction Tφ
that performs (i − 1) t-reads: readφ(X1) · · · readφ(Xi−1), followed by the t-complete step
contention-free execution of a fast-path transaction Ti that writes nvi 6= vi to Xi and commits
and then the complete step contention-free execution fragment of Tφ that performs its ith
t-read: readφ(Xi)→ nvi. Indeed, by progressiveness, Ti cannot incur tracking set aborts and
since it accesses only a single t-object, it cannot incur capacity aborts. Moreover, in this
execution, the t-read of Xi by slow-path transaction Tφ must return the value nv written by
fast-path transaction Ti since this execution is indistinguishable to Tφ from the execution in
Figure 1a.

We now construct (i − 1) different executions of the form depicted in Figure 1c: for
each ` ≤ (i− 1), a fast-path transaction T` (preceding Ti in real-time ordering, but invoked
following the (i − 1) t-reads by Tφ) writes nv` 6= v to X` and commits, followed by the
t-read of Xi by Tφ. Observe that, T` and Ti which access mutually disjoint data sets cannot
contend on each other since if they did, they would concurrently contend on some base object
and incur a tracking set abort, thus violating progressiveness. Indeed, by the TM-liveness
property we assumed (cf. Section 2) and invisible reads for Tφ, each of these (i−1) executions
exist.

In each of these (i− 1) executions, the final t-read of Xi cannot return the new value nv:
the only possible serialization for transactions is T`, Ti, Tφ; but the readφ(X`) performed
by Tk that returns the initial value v is not legal in this serialization—contradiction to the
assumption of opacity. In other words, slow-path transaction Tφ is forced to verify the
validity of t-objects in Rset(Tφ). Finally, we note that, for all `, `′ ≤ (i− 1);`′ 6= `, fast-path
transactions T` and T`′ access mutually disjoint sets of base objects thus forcing the t-read
of Xi to access least i − 1 different base objects in the worst case. Consequently, for all

DISC 2017

9:6 Cost of Concurrency in Hybrid Transactional Memory

Table 1 Table summarizing complexities of HyTM implementations.

Algorithm 1 Algorithm 2 TLE HybridNOrec
Instrumentation in fast-path reads per-read constant constant constant
Instrumentation in fast-path writes per-write per-write constant constant

Validation in slow-path reads Θ(|Rset|) O(|Rset|) none O(|Rset|), but validation only if concurrency
h/w-s/f concurrency prog. prog. for slow-path readers zero not prog., but small contention window

Direct accesses inside fast-path yes no no yes
opacity yes yes yes yes

i ∈ {2, . . . ,m}, slow-path transaction Tφ must perform at least i− 1 steps while executing
the ith t-read in such an execution. J

3.1 How STM implementations mitigate the quadratic lower bound
step complexity

NOrec [8] is a progressive opaque STM that minimizes the average step-complexity resulting
from incremental validation of t-reads. Transactions read a global versioned lock at the start,
and perform value-based validation during t-read operations iff the global version has changed.
TL2 [10] improves over NOrec by circumventing the lower bound of Theorem 1. Concretely,
TL2 associates a global version with each t-object updated during a transaction and performs
validation with O(1) complexity during t-reads by simply verifying if the version of the
t-object is greater than the global version read at the start of the transaction. Technically,
NOrec and algorithms in this paper provide a stronger definition of progressiveness: a
transaction may abort only if there is a prefix in which it conflicts with another transaction
and both are t-incomplete. TL2 on the other hand allows a transaction to abort due to a
concurrent conflicting transaction.

3.2 Implications for disjoint-access parallelism in HyTM

The property of disjoint-access parallelism (DAP), in its weakest form, ensures that two
transactions concurrently contend on the same base object only if their data sets are connected
in the conflict graph, capturing data-set overlaps among all concurrent transactions [4]. It is
well known that weak DAP STMs with invisible reads must perform incremental validation
even if the required TM-progress condition requires transactions to commit only in the
absence of any concurrent transaction [12, 16]. For example, DSTM [13] is a weak DAP STM
that is progressive and consequently incurs the validation complexity. On the other hand,
TL2 and NOrec are not weak DAP since they employ a global versioned lock that mitigates
the cost of incremental validation, but this allows two transactions accessing disjoint data
sets to concurrently contend on the same memory location. Indeed, this inspires the proof of
Theorem 1.

4 Hybrid transactional memory algorithms

4.1 Instrumentation-optimal progressive HyTM

We describe a HyTM algorithm that is a tight bound for Theorem 1 and the instrumentation
cost on the fast-path transactions established in [3]. Pseudocode appears in Algorithm 1.
For each t-object Xj , our implementation maintains a base object vj that stores Xj ’s value
and a sequence lock rj .

T. Brown and S. Ravi 9:7

Rφ(X1) · · ·Rφ(Xi−1)
i− 1 t-reads Rφ(Xi)→ nvWi(Xi, nv)

commits

Slow-PathFast-Path

TφTi

(a) Slow-path transaction Tφ performs i− 1 distinct t-reads (each returning the initial value)
followed by the t-read of Xi that returns value nv written by fast-path transaction Ti.

Rφ(X1) · · ·Rφ(Xi−1)
i− 1 t-reads

Wi(Xi, nv)
commits

Rφ(Xi)→ nv

Slow-Path

Fast-Path

TφTφ

Ti

(b) Fast-path transaction Ti does not contend with any of the i− 1 t-reads performed by Tφ
and must be committed in this execution since it cannot incur a tracking set or capacity abort.
The t-read of Xi must return nv because this execution is indistinguishable to Tφ from 1a.

Rφ(X1) · · ·Rφ(Xi−1)
i− 1 t-reads

Wi(Xi, nv)
commits

Wi(Xi, nv)
commits

Wi−1(Xi−1, nv)
commits

W1(X1, nv)
commits

Rφ(Xi)→?

Slow-Path

Fast-PathFast-Path

Fast-Path Fast-Path

TφTφ

Rφ(Xi)→?

Slow-Path

Rφ(X1) · · ·Rφ(Xi−1)
i− 1 t-reads

TφTφ

Ti−1 Ti

T1 Ti

(c) In each of these each i− 1 executions, fast-path transactions cannot incur a tracking set or
capacity abort. By opacity, the t-read of Xi by Tφ cannot return new value nv. Therefore, to
distinguish the i− 1 different executions, t-read of Xi by slow-path transaction Tφ is forced to
access i− 1 different base objects.

Figure 1 Proof steps for Theorem 1.

Fast-path transactions: For a fast-path transaction Tk executed by process pi, the readk(Xj)
implementation first reads rj (direct) and returns Ak if some other process pj holds a lock on
Xj . Otherwise, it returns the value ofXj . As with readk(Xj), the write(Xj , v) implementation
returns Ak if some other process pj holds a lock on Xj ; otherwise process pi increments
the sequence lock rj . If the cache has not been invalidated, pi updates the shared memory
during tryCk by invoking the commit-cache primitive.

Slow-path read-only transactions: Any readk(Xj) invoked by a slow-path transaction first
reads the value of the t-object from vj , adds rj to Rset(Tk) if its not held by a concurrent

DISC 2017

9:8 Cost of Concurrency in Hybrid Transactional Memory

transaction and then performs validation on its entire read set to check if any of them have
been modified. If either of these conditions is true, the transaction returns Ak. Otherwise, it
returns the value of Xj . Validation of the read set is performed by re-reading the values of
the sequence lock entries stored in Rset(Tk).

Slow-path updating transactions: An updating slow-path transaction Tk attempts to
obtain exclusive write access to its entire write set. If all the locks on the write set were
acquired successfully, Tk performs validation of the read set and if successful, updates the
values of the t-objects in shared memory, releases the locks and returns Ck; else pi aborts
the transaction.

Direct accesses inside fast-path: Note that opacity is not violated even if the sequence
lock accesses during t-read may be performed directly without incurring tracking set aborts.

4.2 Instrumentation-optimal HyTM that is progressive only for
slow-path reading transactions

Algorithm 2 does not incur the linear instrumentation cost on the fast-path reading trans-
actions (inherent to Algorithm 1), but provides progressiveness only for slow-path reading
transactions. The instrumentation cost on fast-path t-reads is avoided by using a global lock
that serializes all updating slow-path transactions during the tryCk procedure. Fast-path
transactions simply check if this lock is held without acquiring it (similar to TLE [22]). While
per-read instrumentation is avoided, Algorithm 2 still has per-write instrumentation.

4.3 Sacrificing progressiveness and minimizing contention window
Observe that the lower bound in Theorem 1 assumes progressiveness for both slow-path and
fast-path transactions along with opacity and invisible reads. Note that Algorithm 2 retains
the validation step complexity cost since it provides progressiveness for slow-path readers.

Hybrid NOrec [7] is a HyTM implementation that does not satisfy progressiveness (unlike
its STM counterpart NOrec), but mitigates the step-complexity cost on slow-path transactions
by performing incremental validation during a transactional read iff the shared memory
has changed since the start of the transaction. Conceptually, Hybrid NOrec uses a global
sequence lock gsl that is incremented at the start and end of each transaction’s commit
procedure. Readers can use the value of gsl to determine whether shared memory has changed
between two configurations. Unfortunately, with this approach, two fast path transactions
will always conflict on the gsl if their commit procedures are concurrent. To reduce the
contention window for fast path transactions, the gsl is actually implemented as two separate
locks (the second one called esl). A slow-path transaction locks both esl and gsl while it
is committing. Instead of incrementing gsl, a fast path transaction checks if esl is locked
and aborts if it is. Then, at the end of the fast path transaction’s commit procedure, it
increments gsl twice (quickly locking and releasing it and immediately commits in hardware).
Although the window for fast path transactions to contend on gsl is small, our experiments
have shown that contention on gsl has a significant impact on performance.

T. Brown and S. Ravi 9:9

Algorithm 1 Progressive fast-path and slow-path opaque HyTM implementation; code for
transaction Tk

1 Shared objects
2 vj , value of each t- object Xj

3 rj , a sequence lock of each t- object Xj

5 Code for fast-path transactions

7 readk(Xj)
8 ovj := vj

9 orj := rj . direct read
10 if orj .isLocked() then return Ak

11 return ovj

13 writek(Xj , v)
14 orj := rj

15 if orj .isLocked() then return Ak

16 rj := orj .IncSequence()
17 vj := v
18 return OK

20 tryCk ()
21 commit - cachei

23 Function : release (Q)
24 for each Xj ∈ Q do rj := orj .unlock()

26 Function : acquire (Q)
27 for each Xj ∈ Q
28 if rj .tryLock() . CAS/LLSC
29 Lset(Tk) := Lset(Tk) ∪ {Xj }
30 else
31 release (Lset(Tk))
32 return false
33 return true
34
35 Code for slow-path transactions

37 Readk (Xj)
38 if Xj ∈ Wset(Tk) then return Wset(Tk). locate (Xj)
39 orj := rj

40 ovj := vj

41 Rset(Tk) := Rset(Tk) ∪ {Xj ,orj }
42 if orj .isLocked() then return Ak

43 if not validate () then return Ak

44 return ovj

46 writek(Xj , v)
47 orj := rj

48 nvj := v
49 if orj .isLocked() then return Ak

50 Wset(Tk) := Wset(Tk) ∪ {Xj , nvj , orj }
51 return OK

53 tryCk ()
54 if Wset(Tk) = ∅ then return Ck

55 if not acquire (Wset(Tk)) then return Ak

56 if not validate ()
57 release (Wset(Tk))
58 return Ak

59 for each Xj ∈ Wset(Tk) do vj := nvj

60 release (Wset(Tk))
61 return Ck

63 Function : validate ()
64 if ∃ Xj ∈ Rset(Tk):orj .getSequence() 6= rj .getSequence() then return false
65 return true

DISC 2017

9:10 Cost of Concurrency in Hybrid Transactional Memory

Algorithm 2 Opaque HyTM implementation that is progressive only for slow-path reading
transactions; code for Tk by process pi

1 Shared objects
2 L, global lock

4 Code for fast-path transactions
5 startk ()
6 if L.isLocked() then return Ak

8 readk (Xj)
9 ovj := vj

10 return ovj

12 writek (Xj , v)
13 orj := rj

14 rj := orj .IncSequence()
15 vj := v
16 return OK

18 tryCk ()
19 return commit - cachei

23 Code for slow-path transactions

25 tryCk ()
26 if Wset(Tk) = ∅ then return Ck

27 L.Lock()
28 if not acquire (Wset(Tk)) then return Ak

29 if not validate () then
30 release (Wset(Tk))
31 return Ak

32 for each Xj ∈ Wset(Tk) do vj := nvj

33 release (Wset(Tk))
34 return Ck

36 Function : release (Q)
37 for each Xj ∈ Q do rj := nrj .unlock()
38 L.unlock(); return OK

5 Evaluation

We now study the performance characteristics of Algorithms 1 and 2, Hybrid NOrec, TLE
and TL2. Our experimental goals are:
(G1) to study the performance impact of instrumentation on the fast-path and validation

on the slow-path,
(G2) to understand how HyTM algorithm design affects performance with Intel and IBM

POWER8 HTMs, and
(G3) to determine whether direct accesses can be used to obtain performance improve-

ments on IBM POWER8 using suspend/resume instructions to escape from a hardware
transaction.

5.1 Experimental system
The experimental Intel system is a 2-socket Intel E7-4830 v3 with 12 cores per socket and 2
hyperthreads (HTs) per core, for a total of 48 threads. Each core has a private 32KB L1
cache and 256KB L2 cache (shared between HTs on a core). All cores on a socket share a
30MB L3 cache. This system has a non-uniform memory architecture (NUMA) in which
threads have significantly different access costs to different parts of memory depending on
which processor they are currently executing on. The machine has 128GB of RAM, and runs
Ubuntu 14.04 LTS. All code was compiled with the GNU C++ compiler (G++) 4.8.4 with
build target x86_64-linux-gnu and compilation options -std=c++0x -O3 -mx32.

We pin threads so that the first socket is saturated before we place any threads on the
second socket. Thus, thread counts 1-24 run on a single socket. Furthermore, hyperthreading
is engaged on the first socket for thread counts 13-24, and on the second socket for thread
counts 37-48. Consequently, our graphs clearly show the effects of NUMA and hyperthreading.

The experimental POWER8 system is a IBM S822L with 2x 12-core 3.02GHz processor
cards, 128GB of RAM, running Ubuntu 16.04 LTS. All code was compiled using G++ 5.3.1.
This is a dual socket machine, and each socket has two NUMA zones. It is expensive to
access memory on a different NUMA zone, and even more expensive if the NUMA zone is on
a different socket. POWER8 uses the L2 cache for detecting tracking set aborts, and limits

T. Brown and S. Ravi 9:11

the size of a transaction’s read- and write-set to 8KB each [20]. This is in contrast to Intel
which tracks conflicts on the entire L3 cache, and limits a transaction’s read-set to the L3
cache size, and its write-set to the L1 cache size.

We pin one thread on each core within a NUMA zone before moving to the next zone. We
remark that unlike the thread pinning policy for Intel which saturated the first socket before
moving to the next, this proved to be the best policy for POWER8 which experiences severe
negative scaling when threads are saturated on a single 8-way hardware multi-threaded core.
This is because all threads on a core share resources, including the L1 and L2 cache, a single
branch execution pipeline, and only two load-store pipelines.

5.2 Hybrid TM implementations
For TL2, we used the implementation published by its authors. We implemented the other
algorithms in C++. Each hybrid TM algorithm first attempts to execute a transaction
on the fast-path, and will continue to execute on the fast-path until the transaction has
experienced 20 aborts, at which point it will fall back to the slow-path. We implemented
Algorithm 1 on POWER8 where each read of a sequence lock during a transactional read
operation was enclosed within a pair of suspend/resume instructions to access them without
incurring tracking set aborts (Algorithm 1∗). We remark that this does not affect the
opacity of the implementation. We also implemented the variant of Hybrid NOrec (Hybrid
NOrec∗) in which the update to gsl is performed using a fetch-increment primitive between
suspend/resume instructions, as is recommended in [23].

In each algorithm, instead of placing a lock next to each address in memory, we allocated
a global array of one million locks, and used a simple hash function to map each address to
one of these locks. This avoids the problem of having to change a program’s memory layout
to incorporate locks, and greatly reduces the amount of memory needed to store locks, at
the cost of some possible false conflicts since many addresses map to each lock. Note that
the exact same approach was taken by the authors of TL2.

We chose not to compile the hybrid TMs as separate libraries, since invoking library
functions for each read and write can cause algorithms to incur enormous overhead. Instead,
we compiled each hybrid TM directly into the code that uses it.

5.3 Experimental methodology
We used a simple unbalanced binary search tree (BST) microbenchmark as a vehicle to
study the performance of our implementations. The BST implements a dictionary, which
contains a set of keys, each with an associated value. For each TM algorithm and update rate
U ∈ {40, 10, 0}, we run six timed trials for several thread counts n. Each trial proceeds in
two phases: prefilling and measuring. In the prefilling phase, n concurrent threads perform
50% Insert and 50% Delete operations on keys drawn uniformly randomly from [0, 105)
until the size of the tree converges to a steady state (containing approximately 105/2 keys).
Next, the trial enters the measuring phase, during which threads begin counting how many
operations they perform. In this phase, each thread performs (U/2)% Insert, (U/2)% Delete
and (100− U)% Search operations, on keys/values drawn uniformly from [0, 105), for one
second.

Uniformly random updates to an unbalanced BST have been proven to yield trees of log-
arithmic height with high probability. Thus, in this type of workload, almost all transactions
succeed in hardware, and the slow-path is almost never used. To study performance when
transactions regularly run on slow-path, we introduced an operation called a RangeIncrement

DISC 2017

9:12 Cost of Concurrency in Hybrid Transactional Memory

2x12-core Intel E7-4830v3
No threads perform

RangeIncrement (W1)
One thread performs

RangeIncrement (W2)
0%

up
da

te
s

10
%

up
da

te
s

40
%

up
da

te
s

2x12-core IBM POWER8
No threads perform

RangeIncrement (W1)
One thread performs

RangeIncrement (W2)

0%
up

da
te
s

10
%

up
da

te
s

40
%

up
da

te
s

Figure 2 Results for a BST microbenchmark. The x-axis represents the number of concurrent
threads. The y-axis represents operations per microsecond.

that often fails in hardware and must run on the slow-path. A RangeIncrement(low, hi)
atomically increments the values associated with each key in the range [low, hi] present in
the tree. Note that a RangeIncrement is more likely to experience data conflicts and capacity
aborts than BST updates, which only modify a single node.

We consider two types of workloads: (W1) all n threads perform Insert, Delete and
Search, and (W2) n− 1 threads perform Insert, Delete and Search and one thread performs
only RangeIncrement operations. Figure 2 shows the results for both types of workloads.

5.4 Results
We first discuss the results for the Intel machine. We first discuss the 0% updates graph
for workload type W1. In this graph, essentially all operations committed in hardware. In
fact, in each trial, a small fraction of 1% of operations ran on the slow-path. Thus, any
performance differences shown in the graph are essentially differences in the performance of
the algorithms’ respective fast-paths (with the exception of TL2). Algorithm 1, which has
instrumentation in its fast-path read operations, has significantly lower performance than
Algorithm 2, which does not. Since this is a read-only workload, this instrumentation is
responsible for the performance difference.

In the W1 workloads, TLE, Algorithm 2 and Hybrid NOrec perform similarly (with a
small performance advantage for Hybrid NOrec at high thread counts). This is because the
fast-paths for these three algorithms have similar amounts of instrumentation: there is no
instrumentation for reads or writes, and the transaction itself incurs one or two metadata
accesses. In contrast, in the W2 workloads, TLE performs quite poorly, compared to the
HyTM algorithms. In these workloads, transactions must periodically run on the slow-path,
and in TLE, this entails acquiring a global lock that restricts progress for all other threads.
At high thread counts this significantly impacts performance. Its performance decreases as
the sizes of the ranges passed to RangeIncrement increase. Its performance is also negatively

T. Brown and S. Ravi 9:13

impacted by NUMA effects at thread counts higher than 24. (This is because, when a thread
p reads the lock and incurs a cache miss, if the lock was last held by another thread on the
same socket, then p can fill the cache miss by loading it from the shared L3 cache. However,
if the lock was last held by a thread on a different socket, then p must read the lock state
from main memory, which is significantly more expensive.)

On the other hand, in each graph in the W2 workloads, the performance of each HyTM
(and TL2) is similar to its performance in the corresponding W1 workload graph. For
Algorithm 1 (and TL2), this is because of progressiveness. Although Algorithm 2 is not
truly progressive, fast-path transactions will abort only if they are concurrent with the
commit procedure of a slow-path transaction. In RangeIncrement operations, there is a long
read-only prefix (which is exceptionally long because of Algorithm 2’s quadratic validation)
followed by a relatively small set of writes. Thus, RangeIncrement operations have relatively
little impact on the fast-path. The explanation is similar for Hybrid NOrec (except that it
performs less validation than Algorithm 2).

Observe that the performance of Hybrid NOrec decreases slightly, relative to Algorithm 2,
after 24 threads. Recall that, in Hybrid NOrec, the global sequence number is a single point
of contention on the fast-path. (In Algorithm 2, the global lock is only modified by slow-path
transactions, so fast-path transactions do not have a single point of contention.) We believe
this is due to NUMA effects, similar to those described in [5]. Specifically, whenever a threads
on the first socket performs a fast-path transaction that commits and modifies the global
lock, it causes cache invalidations for all other threads. Threads on socket two must then
load the lock state from main memory, which takes much longer than loading it from the
shared L3 cache. This lengthens the transaction’s window of contention, making it more
likely to abort. (In the 0% updates graph in the W2 workload, we still see this effect, because
there is a thread performing RangeIncrement operations.)

We now discuss the results for the IBM POWER8 machine. Algorithm 1 performs poorly
on POWER8: POWER8 transactions can only load 64 cache lines before they will abort [21].
Transactions read locks and tree nodes, which are in different cache lines: together, they
often exceed 64 cache lines loaded in a tree operation, so most transactions cannot succeed
in hardware. Consequently, on POWER8, it is incredibly important either to have minimal
instrumentation in transactions, or for metadata to be located in the same cache lines as
program data. Of course, the latter is not possible for HyTMs, which do not have control
over the layout of program data. Consequently, Algorithm 2 outperforms Algorithm 1 in
POWER8 quite easily by avoiding the per-read instrumentation.

Algorithm 1 is improved slightly by the expensive (on POWER8) suspend/resume on
sequence locks during transactional reads, but it still performs relatively poorly. To make
suspend/resume a practical tool, one could imagine attempting to collect several metadata
accesses and perform them together to amortize the cost of a suspend/resume pair. For
instance, in Algorithm 1, one might try to update the locks for all of the transactional writes
at once, when the transaction commits. Typically one would accomplish this by logging all
writes so that a process can remember which addresses it must lock at commit time. However,
logging the writes inside the transaction would be at least as costly as just performing them.

Observe that Hybrid NOrec does far worse with updates in POWER8 than on the Intel
machine. This is due to the fact that fetch-increment on a single location experiences severe
negative scaling on the POWER8 processor: e.g., in one second, a single thread can perform
37 fetch-add operations while 6 threads perform a total of 9 million and 24 threads perform
only 4 million fetch-add operations. In contrast, the Intel machine performs 32 million
operations with 6 threads and 45 million with 24 threads. This is likely because this Intel
processor provides fetch-add instructions while it must be emulated on POWER8.

DISC 2017

9:14 Cost of Concurrency in Hybrid Transactional Memory

In Hybrid NOrec∗, the non-speculative increment of gsl actually makes performance
worse. Recall that in Hybrid NOrec, if a fast-path transaction T1 increments gsl, and then
a software transaction T2 reads gsl (as part of validation) before T1 commits, then T1 will
abort, and T2 will not see T1’s change to gsl. So, T2 will have a higher chance of avoiding
incremental validation (and, hence, will likely take less time to run, and have a smaller
contention window). However, in Hybrid NOrec∗, once T1 increments gsl, T2 will see the
change to gsl, regardless of whether T1 commits or aborts. Thus, T2 will be forced to perform
incremental validation. In our experiments, we observed that a much larger number of
transactions ran on the fallback path in Hybrid NOrec∗ than in Hybrid NOrec (often several
orders of magnitude more).

6 Related work and discussion

HyTM implementations and complexity. Early HyTMs like the ones described in [9, 15]
provided progressiveness, but subsequent HyTM proposals like PhTM [18] and Hybrid-
NOrec [7] sacrificed progressiveness for lesser instrumentation overheads. However, the clear
trade-off in terms of concurrency vs. instrumentation for these HyTMs have not been studied
in the context of currently available HTM architectures. This instrumentation cost on the
fast-path was precisely characterized in [3]. In this paper, we proved the inherent cost of
concurrency on the slow-path thus establishing a surprising, but intuitive complexity separa-
tion between progressive STMs and HyTMs. Moreover, to the best of our knowledge, this is
the first work to consider the theoretical foundations of the cost of concurrency in HyTMs in
theory and practice (on currently available HTM architectures). Proof of Theorem 1 is based
on the analogous proof for step complexity of STMs that are disjoint-access parallel [16, 12].
Our implementation of Hybrid NOrec follows [23], which additionally proposed the use of
direct accesses in fast-path transactions to reduce instrumentation overhead in the AMD
Advanced Synchronization Facility (ASF) architecture.

Beyond the two path HyTM approach. Employing an uninstrumented fast fast-path. We
now describe how every transaction may first be executed in a “fast” fast-path with almost no
instrumentation and if unsuccessful, may be re-attempted in the fast-path and subsequently
in slow-path. Specifically, we transform an opaque HyTM M to an opaque HyTM M′
using a shared fetch-and-add metadata base object F that slow-path updating transactions
increment (and resp. decrement) at the start (and resp. end). In M′, a “fast” fast-path
transaction checks first if F is 0 and if not, aborts the transaction; otherwise the transaction
is continued as an uninstrumented hardware transaction. The code for the fast-path and the
slow-path is identical toM.

Recent work has investigated fallback to reduced hardware transactions [19] in which an
all-software slow-path is augmented using a slightly faster slow-path that is optimistically
used to avoid running some transactions on the true software-only slow-path. Amalgamated
lock elision (ALE) was proposed in [2] which improves over TLE by executing the slow-path
as a series of segments, each of which is a dynamic length hardware transaction. Invyswell [6]
is a HyTM design with multiple hardware and software modes of execution that gives
flexibility to avoid instrumentation overhead in uncontended executions. We remark that
such multi-path approaches may be easily applied to each of the Algorithms proposed in
this paper. However, in the search for an efficient HyTM, it is important to strike the fine
balance between concurrency, hardware instrumentation and software validation cost. Our
lower bound, experimental methodology and evaluation of HyTMs provides the first clear
characterization of these trade-offs in both Intel and POWER8 architectures.

T. Brown and S. Ravi 9:15

Acknowledgements. Computations were performed on the SOSCIP Consortium’s Agile
computing platform. SOSCIP is funded by the Federal Economic Development Agency of
Southern Ontario, the Province of Ontario, IBM Canada Ltd., Ontario Centres of Excellence,
Mitacs and 15 Ontario academic member institutions. This work was performed while Trevor
Brown was a student at the University of Toronto.

References

1 Advanced Synchronization Facility Proposed Architectural Specification, March 2009.
http://developer.amd.com/wordpress/media/2013/09/45432-ASF_Spec_2.1.pdf.

2 Yehuda Afek, Alexander Matveev, Oscar R. Moll, and Nir Shavit. Amalgamated lock-
elision. In Proceedings of 29th Int. Sym. on Distributed Computing, DISC’15, pages 309–
324, 2015. doi:10.1007/978-3-662-48653-5_21.

3 Dan Alistarh, Justin Kopinsky, Petr Kuznetsov, Srivatsan Ravi, and Nir Shavit. Inherent
limitations of hybrid transactional memory. In Proceedings of 29th Int. Sym. on Distributed
Computing, DISC’15, pages 185–199, 2015.

4 Hagit Attiya, Eshcar Hillel, and Alessia Milani. Inherent limitations on disjoint-access paral-
lel implementations of transactional memory. Theory of Computing Systems, 49(4):698–719,
2011.

5 Trevor Brown, Alex Kogan, Yossi Lev, and Victor Luchangco. Investigating the perform-
ance of hardware transactions on a multi-socket machine. In Proceedings of 28th ACM Sym.
on Parallelism in Algorithms and Architectures, SPAA’16, pages 121–132, 2016.

6 Irina Calciu, Justin Gottschlich, Tatiana Shpeisman, Gilles Pokam, and Maurice Herlihy.
Invyswell: a hybrid transactional memory for haswell’s restricted transactional memory. In
Int. Conf. on Par. Arch. and Compilation, PACT’14, pages 187–200, 2014.

7 Luke Dalessandro, Francois Carouge, Sean White, Yossi Lev, Mark Moir, Michael L. Scott,
and Michael F. Spear. Hybrid NOrec: a case study in the effectiveness of best effort
hardware transactional memory. In ASPLOS’11, pages 39–52. ACM, 2011.

8 Luke Dalessandro, Michael F. Spear, and Michael L. Scott. Norec: Streamlining stm by
abolishing ownership records. SIGPLAN Not., 45(5):67–78, January 2010.

9 Peter Damron, Alexandra Fedorova, Yossi Lev, Victor Luchangco, Mark Moir, and Daniel
Nussbaum. Hybrid transactional memory. SIGPLAN Not., 41(11):336–346, October 2006.

10 Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking ii. In Proceedings of the
20th International Conference on Distributed Computing, DISC’06, pages 194–208, Berlin,
Heidelberg, 2006. Springer-Verlag.

11 K. Fraser. Practical lock-freedom. Technical report, Cambridge University Computer
Laboratory, 2003.

12 Rachid Guerraoui and Michal Kapalka. Principles of Transactional Memory, Synthesis
Lectures on Distributed Computing Theory. Morgan and Claypool, 2010.

13 Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer, III. Software
transactional memory for dynamic-sized data structures. In Proc. of 22nd Int. Sym. on
Principles of Distr. Comp., PODC’03, pages 92–101, New York, NY, USA, 2003. ACM.

14 Maurice Herlihy and J. Eliot B. Moss. Transactional memory: architectural support for
lock-free data structures. In ISCA, pages 289–300, 1993.

15 Sanjeev Kumar, Michael Chu, Christopher J. Hughes, Partha Kundu, and Anthony Nguyen.
Hybrid transactional memory. In Proceedings of the Eleventh ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP’06, pages 209–220, New York,
NY, USA, 2006. ACM.

DISC 2017

http://developer.amd.com/wordpress/media/2013/09/45432-ASF_Spec_2.1.pdf
http://dx.doi.org/10.1007/978-3-662-48653-5_21

9:16 Cost of Concurrency in Hybrid Transactional Memory

16 Petr Kuznetsov and Srivatsan Ravi. Progressive transactional memory in time and space.
In Proceedings of 13th Int. Conf. on Parallel Computing Technologies, PaCT’15, pages
410–425, 2015.

17 Hung Q. Le, G. L. Guthrie, Derek Williams, Maged M. Michael, Brad Frey, William J.
Starke, Cathy May, Rei Odaira, and Takuya Nakaike. Transactional memory support in
the IBM POWER8 processor. IBM Journal of Research and Development, 59(1), 2015.

18 Yossi Lev, Mark Moir, and Dan Nussbaum. Phtm: Phased transactional memory. In In
Workshop on Transactional Computing (Transact), 2007.

19 Alexander Matveev and Nir Shavit. Reduced hardware transactions: a new approach to
hybrid transactional memory. In Proceedings of the 25th ACM symposium on Parallelism
in algorithms and architectures, pages 11–22. ACM, 2013.

20 Takuya Nakaike, Rei Odaira, Matthew Gaudet, Maged M. Michael, and Hisanobu Tomari.
Quantitative comparison of hardware transactional memory for Blue Gene/Q, zEnterprise
EC12, Intel Core, and POWER8. In Proc. of 42nd Int. Sym. on Comp. Arch., ISCA ’15,
pages 144–157, NY, USA, 2015.

21 Andrew T. Nguyen. Investigation of hardware transactional memory. 2015.
http://groups.csail.mit.edu/mag/Andrew-Nguyen-Thesis.pdf.

22 Ravi Rajwar and James R. Goodman. Speculative lock elision: Enabling highly concurrent
multithreaded execution. In Proc. of 34th ACM/IEEE Int. Sym. on Microarchitecture,
MICRO’01, pages 294–305, Washington, DC, USA, 2001.

23 Torvald Riegel, Patrick Marlier, Martin Nowack, Pascal Felber, and Christof Fetzer. Op-
timizing hybrid transactional memory: The importance of nonspeculative operations. In
Proc. of 23rd ACM Sym. on Parallelism in Algs. and Arch., pages 53–64. ACM, 2011.

24 Nir Shavit and Dan Touitou. Software transactional memory. In Principles of Distributed
Computing (PODC), pages 204–213, 1995.

25 Richard M. Yoo, Christopher J. Hughes, Konrad Lai, and Ravi Rajwar. Performance eval-
uation of intel® transactional synchronization extensions for high-performance com-
puting. In Proceedings of Int. Conf. on High Perf. Computing, Networking, Storage and
Analysis, SC’13, pages 19:1–19:11, New York, NY, USA, 2013.

	Introduction
	Hybrid transactional memory (HyTM)
	Progressive HyTM must perform incremental validation
	How STM implementations mitigate the quadratic lower bound step complexity
	Implications for disjoint-access parallelism in HyTM

	Hybrid transactional memory algorithms
	Instrumentation-optimal progressive HyTM
	Instrumentation-optimal HyTM that is progressive only for slow-path reading transactions
	Sacrificing progressiveness and minimizing contention window

	Evaluation
	Experimental system
	Hybrid TM implementations
	Experimental methodology
	Results

	Related work and discussion

