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Abstract
We present the first super-linear lower bounds for natural graph problems in the CONGEST
model, answering a long-standing open question.

Specifically, we show that any exact computation of a minimum vertex cover or a maximum
independent set requires a near-quadratic number of rounds in the CONGEST model, as well
as any algorithm for computing the chromatic number of the graph. We further show that such
strong lower bounds are not limited to NP-hard problems, by showing two simple graph problems
in P which require a quadratic and near-quadratic number of rounds.

Finally, we address the problem of computing an exact solution to weighted all-pairs-shortest-
paths (APSP), which arguably may be considered as a candidate for having a super-linear lower
bound. We show a simple linear lower bound for this problem, which implies a separation between
the weighted and unweighted cases, since the latter is known to have a sub-linear complexity. We
also formally prove that the standard Alice-Bob framework is incapable of providing a super-linear
lower bound for exact weighted APSP, whose complexity remains an intriguing open question.
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1 Introduction

It is well-known and easily proven that many graph problems are global for distributed
computing, in the sense that solving them necessitates communication throughout the
network. This implies tight Θ(D) complexities, where D is the diameter of the network,
for global problems in the LOCAL model. In this model, a message of unbounded size
can be sent over each edge in each round, which allows to learn the entire topology in D
rounds. Global problems are widely studied in the CONGEST model, in which the size of
each message is restricted to O(logn) bits, where n is the size of the network. The trivial
complexity of learning the entire topology of an m-edges graph in the CONGEST model is
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O(m), and since m can be as large as Θ(n2), one of the most basic questions for a global
problem is how fast in terms of n it can be solved in the CONGEST model.

Some global problems admit fast O(D)-round solutions in the CONGEST model, such as
constructing a breadth-first search tree [60]. Some others have complexities of Θ̃(D +

√
n),

such as constructing a minimum spanning tree, and various approximation and verification
problems [33, 40, 46, 61, 62, 65]. Some problems are yet harder, with complexities that are
near-linear in n [1, 33, 42, 52, 61]. For some problems, no O(n) solutions are known and
they are candidates to being even harder that the ones with linear-in-n complexities.

A major open question about global graph problems in the CONGEST model is whether
natural graph problems for which a super-linear number of rounds is required indeed exist. In
this paper, we answer this question in the affirmative. That is, our conceptual contribution
is that there exist super-linearly hard problems in the CONGEST model. In fact,
the lower bounds that we prove in this paper are as high as quadratic in n, or quadratic up
to logarithmic factors, and hold even for networks of a constant diameter. Our lower bounds
also imply linear and near-linear lower bounds for the CLIQUE-BROADCAST model.

We note that high lower bounds for the CONGEST model may be obtained rather
artificially, by forcing large inputs and outputs that must be exchanged. However, we
emphasize that all the problems for which we show our lower bounds can be reduced to
simple decision problems, where each node needs to output a single bit. All inputs to the
nodes, if any, consist of edge weights that can be represented by polylogn bits.

Technically, we prove a lower bound of Ω(n2/ log2 n) on the number of rounds required
for computing an exact minimum vertex cover, which also extends to computing an exact
maximum independent set. This is in stark contrast to the recent O(log ∆/ log log ∆)-round
algorithm of [8] for obtaining a (2 + ε)-approximation to the minimum vertex cover. Similarly,
we give an Ω(n2/ log2 n) lower bound for 3-coloring a 3-colorable graph, which extends also
for deciding whether a graph is 3-colorable, and also implies the same hardness for computing
the chromatic number χ or computing a χ-coloring. These lower bounds hold even for
randomized algorithms which succeed with high probability.1

An immediate question that arises is whether only NP-hard problems are super-linearly
hard in the CONGEST model. We provide a negative answer to such a postulate, by showing
two simple problems that admit polynomial-time sequential algorithms, but in the CONGEST
model require Ω(n2) rounds (identical subgraph detection) or Ω(n2/ logn) rounds (weighted
cycle detection). The latter also holds for randomized algorithms, while for the former
we show a randomized algorithm that completes in O(D) rounds, providing the strongest
possible separation between deterministic and randomized complexities for global problems
in the CONGEST model.

Finally, we address the intriguing open question of the complexity of computing exact
weighted all-pairs-shortest-paths (APSP) in the CONGEST model. While the complexity of
the unweighted version of APSP is Θ(n/ logn), as follows from [33, 43], the complexity of
weighted APSP remains largely open, and only recently the first sub-quadratic algorithm was
given in [29]. With the current state-of-the-art, this problem could be considered as a suspect
for having a super-linear complexity in the CONGEST model. While we do not pin-down
the complexity of weighted APSP in the CONGEST model, we provide a truly linear lower
bound of Ω(n) rounds for it, which separates its complexity from that of the unweighted
case. Moreover, we argue that it is not a coincidence that we are currently unable to show

1 We say that an event occurs with high probability (w.h.p) if it occurs with probability at least 1− 1
nc ,

for some constant c > 0.
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super-linear lower bound for weighted APSP, by formally proving that the commonly used
framework of reducing a 2-party communication problem to a problem in the CONGEST
model cannot provide a super-linear lower bound for weighted APSP, regardless of the
function and the graph construction used. This implies that obtaining any super-linear
lower bound for weighted APSP provably requires a new technique.

1.1 The Challenge
Many lower bounds for the CONGEST model rely on reductions from 2-party communication
problems (see, e.g., [1, 17, 26, 28, 33, 42, 57, 58, 62, 65]). In this setting, two players, Alice
and Bob, are given inputs of K bits and need to a single output a bit according to some given
function of their inputs. One of the most common problem for reduction is Set Disjointness,
in which the players need to decide whether there is an index for which both inputs are 1.
That is, if the inputs represent subsets of {0, . . . ,K − 1}, the output bit of the players needs
to indicate whether their input sets are disjoint. The communication complexity of 2-party
Set Disjointness is known to be Θ(K) [50].

In a nutshell, there are roughly two standard frameworks for reducing the 2-party
communication problem of computing a function f to a problem P in the CONGEST model.
One of these frameworks works as follows. A graph construction is given, which consists of
some fixed edges and some edges whose existence depends on the inputs of Alice and Bob.
This graph should have the property that a solution to P over it determines the solution to
f . Then, given an algorithm ALG for solving P in the CONGEST model, the vertices of the
graph are split into two disjoint sets, VA and VB, and Alice simulates ALG over VA while
Bob simulates ALG over VB. The only communication required between Alice and Bob in
order to carry out this simulation is the content of messages sent in each direction over the
edges of the cut C = E(VA, VB). Therefore, given a graph construction with a cut of size |C|
and inputs of size K for a function f whose communication complexity on K bits is at least
CC(f), the round complexity of ALG is at least Ω(CC(f)/|C| logn).

The challenge in obtaining super-linear lower bounds was previously that the cuts in the
graph constructions were large compared with the input size K. For example, the graph
construction for the lower bound for computing the diameter in [33] has K = Θ(n2) and
|C| = Θ(n), which gives an almost linear lower bound. The graph construction in [33] for
the lower bound for computing a (3/2− ε)-approximation to the diameter has a smaller cut
of |C| = Θ(

√
n), but this comes at the price of supporting a smaller input size K = Θ(n),

which gives a lower bound that is roughly a square-root of n.
To overcome this difficulty, we leverage the recent framework of [1], which provides a

bit-gadget whose power is in allowing a logarithmic-size cut. We manage to provide a graph
construction that supports inputs of size K = Θ(n2) in order to obtain our lower bounds for
minimum vertex cover, maximum independent set and 3-coloring2. The latter is also inspired
by, and is a simplification of, a lower bound construction for the size of proof labelling
schemes [34].

Further, for the problems in P that we address, the cut is as small as |C| = O(1). For one
of the problems, the size of the input is such that it allows us to obtain the highest possible
lower bound of Ω(n2) rounds.

2 It can also be shown, by simple modifications to our constructions, that these problems require Ω(m)
rounds, for graphs with m edges.
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With respect to the complexity of the weighted APSP problem, we show an embarrassingly
simple graph construction that extends a construction of [57], which leads to an Ω(n) lower
bound. However, we argue that a new technique must be developed in order to obtain
any super-linear lower bound for weighted APSP. Roughly speaking, this is because given
a construction with a set S of nodes that touch the cut, Alice and Bob can exchange
O(|S|n logn) bits which encode the weights of all lightest paths from any node in their set
to a node in S. Since the cut has Ω(|S|) edges, and the bandwidth is Θ(logn), this cannot
give a lower bound of more than Ω(n) rounds. With some additional work, our proof can be
carried over to a larger number of players at the price of a small logarithmic factor, as well
as to the second Alice-Bob framework used in previous work (e.g. [65]), in which Alice and
Bob do not simulate nodes in a fixed partition, but rather in decreasing sets that partially
overlap. Thus, determining the complexity of weighted APSP requires new tools, which we
leave as a major open problem.

Roadmap. Section 3 contains our lower bound for computing exact minimum vertex cover
or exact maximum independent set. In Section 4 we show our lower bound for computing
exact weighted-all-pairs-shortest-paths, and prove that the Alice-Bob framework cannot give
a super-linear lower bound for this task. Due to space limitations, our lower bounds for
3-coloring a 3-colorable graph, identical subgraphs detection, and weighted cycle detection
appear only in the full version of the paper [18].

1.2 Additional Related Work
Vertex Coloring, Minimum Vertex Cover, and Maximum Independent Set: One of the
most central problems in graph theory is vertex coloring, which has been extensively studied
in the context of distributed computing (see, e.g., [9, 10, 11, 12, 13, 14, 19, 21, 22, 30, 31,
32, 38, 54, 56, 63, 66] and references therein). The special case of finding a (∆ + 1)-coloring,
where ∆ is the maximum degree of a node in the network, has been the focus of many of
these studies, but is a local problem, which can be solved in much less than a sublinear
number of rounds.

Another classical problem in graph theory is finding a minimum vertex cover (MVC). In
distributed computing, the time complexity of approximating MVC has been addressed in
several cornerstone studies [5, 6, 8, 14, 35, 36, 37, 45, 47, 48, 49, 59, 64].

Observe that finding a minimum size vertex cover is equivalent to finding a maximum
size independent set. However, these problems are not equivalent in an approximation-
preserving way. Distributed approximations for maximum independent set has been studied
in [7, 15, 23, 53].

Distance Computations: Distance computation problems have been widely studied in the
CONGEST model for both weighted and unweighted networks [1, 33, 39, 40, 41, 42, 43, 51,
52, 57, 61]. One of the most fundamental problems of distance computations is computing all
pairs shortest paths. For unweighted networks, an upper bound of O(n/ logn) was recently
shown by [43], matching the lower bound of [33]. Moreover, the possibility of bypassing this
near-linear barrier for any constant approximation factor was ruled out by [57]. For the
weighted case, however, we are still very far from understanding the complexity of APSP, as
there is still a huge gap between the upper and lower bounds. Recently, Elkin [29] showed an
O(n 5

3 · log
2
3 (n)) upper bound for weighted APSP, while the previously highest lower bound

was the near-linear lower bound of [57] (which holds also for any (polyn)-approximation
factor in the weighted case).
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Distance computation problems have also been considered in the CONGESTED-CLIQUE
model [16, 39, 41], in which the underlying communication network forms a clique. In this
model [16] showed that unweighted APSP, and a (1 + o(1))-approximation for weighted
APSP, can be computed in O(n0.158) rounds.

Subgraph Detection: The problem of finding subgraphs of a certain topology has received
a lot of attention in both the sequential and the distributed settings (see, e.g., [2, 3, 4, 16,
24, 25, 26, 44, 55, 67] and references therein).

The problems of finding paths of length 4 or 5 with zero weight are also related to other
fundamental problems, notable in our context is APSP [2].

2 Preliminaries

2.1 Communication Complexity
In a two-party communication complexity problem [50], there is a function f : {0, 1}K ×
{0, 1}K → {TRUE, FALSE}, and two players, Alice and Bob, who are given two input strings,
x, y ∈ {0, 1}K , respectively, that need to compute f(x, y). The communication complexity
of a protocol π for computing f , denoted CC(π), is the maximal number of bits Alice and
Bob exchange in π, taken over all values of the pair (x, y). The deterministic communication
complexity of f , denoted CC(f), is the minimum over CC(π), taken over all deterministic
protocols π that compute f .

In a randomized protocol π, Alice and Bob may each use a random bit string. A randomized
protocol π computes f if the probability, over all possible bit strings, that π outputs f(x, y)
is at least 2/3. The randomized communication complexity of f , CCR(f), is the minimum
over CC(π), taken over all randomized protocols π that compute f .

In the Set Disjointness problem (DISJK), the function f is DISJK(x, y), whose output is
FALSE if there is an index i ∈ {0, . . . ,K − 1} such that xi = yi = 1, and TRUE otherwise. In
the Equality problem (EQK), the function f is EQK(x, y), whose output is TRUE if x = y,
and FALSE otherwise.

Both the deterministic and randomized communication complexities of the DISJK problem
are known to be Ω(K) [50, Example 3.22]. The deterministic communication complexity of
EQK is in Ω(K) [50, Example 1.21], while its randomized communication complexity is in
Θ(logK) [50, Example 3.9].

2.2 Lower Bound Graphs
To prove lower bounds on the number of rounds necessary in order to solve a distributed
problem in the CONGEST model, we use reductions from two-party communication com-
plexity problems. To formalize them we use the following definition. Let G be the set of all
graphs.

I Definition 1 (Family of Lower Bound Graphs). Fix an integer K, a function f : {0, 1}K ×
{0, 1}K → {TRUE, FALSE} and a predicate P : G → {TRUE, FALSE}. The family of graphs
{Gx,y = (V,Ex,y) | x, y ∈ {0, 1}K}, is said to be a family of lower bound graphs w.r.t. f and
P if the following properties hold:
(1) The set of nodes V is the same for all graphs, and we denote by V = VA∪̇VB a fixed

partition of it;
(2) The existence or the weight of edges in VA × VA may depend on x;
(3) The existence or the weight of edges in VB × VB may depend on y;
(4) P (Gx,y) = f(x, y).

DISC 2017
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We use the following theorem, which is standard in the context of communication
complexity-based lower bounds for the CONGEST model (see, e.g. [1, 26, 33, 41]) Its proof
is by a standard simulation argument.

I Theorem 2. Fix a function f : {0, 1}K × {0, 1}K → {TRUE, FALSE} and a predicate P . If
there is a family {Gx,y} of lower bound graphs with C = E(VA, VB) then any deterministic al-
gorithm for deciding P in the CONGEST model requires Ω(CC(f)/ |C| logn) rounds, and any
randomized algorithm for deciding P in the CONGEST model requires Ω(CCR(f)/ |C| logn)
rounds.

Proof. Let ALG be a distributed algorithm in the CONGEST model that decides P in T
rounds. Given inputs x, y ∈ {0, 1}K to Alice and Bob, respectively, Alice constructs the
part of Gx,y for the nodes in VA and Bob does so for the nodes in VB. This can be done
by items (1),(2) and (3) in Definition 1, and since {Gx,y} satisfies this definition. Alice and
Bob simulate ALG by exchanging the messages that are sent during the algorithm between
nodes of VA and nodes of VB in either direction. (The messages within each set of nodes
are simulated locally by the corresponding player without any communication). Since item
(4) in Definition 1 also holds, we have that Alice and Bob correctly output f(x, y) based
on the output of ALG. For each edge in the cut, Alice and Bob exchange O(logn) bits per
round. Since there are T rounds and |C| edges in the cut, the number of bits exchanged in
this protocol for computing f is O(T |C| logn). The lower bounds for T now follows directly
from the lower bounds for CC(f) and CCR(f). J

In what follows, for each decision problem addressed, we describe a fixed graph construction
G = (V,E), which we then generalize to a family of graphs {Gx,y = (V,Ex,y) | x, y ∈ {0, 1}K},
which we show to be a family lower bound graphs w.r.t. to some function f and the required
predicate P . By Theorem 2 and the known lower bounds for the 2-party communication
problem, we deduce a lower bound for any algorithm for deciding P in the CONGEST model.
I Remark. For our constructions that use the Set Disjointness function as f , we need to
exclude the possibilities of all-1 input vectors, as otherwise the communication graph is
not connected. However, this restriction does not change the asymptotic bounds for Set
Disjointness, since computing this function while excluding all-1 input vectors can be reduced
to computing this function for inputs that are shorter by one bit (by having the last bit be
fixed to 0).

3 Minimum Vertex Cover and Maximum Independent Set

The first near-quadratic lower bound we present is for computing a minimum vertex cover,
as stated in the following theorem.

I Theorem 3. Any distributed algorithm in the CONGEST model for computing a minimum
vertex cover or for deciding whether there is a vertex cover of a given size M requires
Ω(n2/ log2 n) rounds.

Finding the minimum size of a vertex cover is equivalent to finding the maximum size
of a maximum independent set, because a set of nodes is a vertex cover if and only if its
complement is an independent set. Thus, Theorem 4 is a direct corollary of Theorem 3.

I Theorem 4. Any distributed algorithm in the CONGEST model for computing a maximum
independent set or for deciding whether there is an independent set of a given size requires
Ω(n2/ log2 n) rounds.
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Figure 1 The family of lower bound graphs for deciding the size of a vertex cover, with many
edges omitted for clarity. The node ak−1

1 is connected to all the nodes in TA1 , and a1
2 is connected

to t0
A2 and to all the nodes in FA2 \ {f0

A2}. Examples of edges from b0
1 and b0

2 to the bit-gadgets are
also given. An additional edge, which is among the edges corresponding to the strings x and y, is
{b0

1, b1
2}, while the edge {a0

1, a0
2} does not exist. Here, x0,0 = 1 and y0,1 = 0.

Observe that a lower bound of L for deciding whether there is a vertex cover of some
given size M or not implies a lower bound of L−O(D) for computing a minimum vertex
cover. This is because computing the size of a given subset of nodes can be easily done in
O(D) rounds using standard tools. Therefore, to prove Theorem 3 it is sufficient to prove its
second part. We do so by describing a family of lower bound graphs with respect to the Set
Disjointness function and the predicate P that says that the graph has a vertex cover of size
M . We begin with describing the fixed graph construction G = (V,E) and then define the
family of lower bound graphs and analyze its relevant properties.

The fixed graph construction: Let k be a power of 2. The fixed graph (Figure 1) consists
of four cliques of size k: A1 = {ai1 | 0 ≤ i ≤ k − 1}, A2 = {ai2 | 0 ≤ i ≤ k − 1},
B1 = {bi1 | 0 ≤ i ≤ k − 1} and B2 = {bi2 | 0 ≤ i ≤ k − 1}. In addition, for each
set S ∈ {A1, A2, B1, B2}, there are two corresponding sets of nodes of size log k, denoted
FS = {fhS | 0 ≤ h ≤ log k − 1} and TS = {thS | 0 ≤ h ≤ log k − 1}.

The latter are called bit-gadgets and their nodes are bit-nodes.
The bit-nodes are partitioned into 2 log k 4-cycles: for each h ∈ {0, . . . , log k − 1} and

` ∈ {1, 2}, we connect the 4-cycle (fhA`
, thA`

, fhB`
, thB`

). Note that there are no edges between
pairs of nodes denoted fhS , or between pairs of nodes denoted thS .

The nodes of each set S ∈ {A1, A2, B1, B2} are connected to nodes in the corresponding
set of bit-nodes, according to their binary representation, as follows. Let si` be a node
in a set S ∈ {A1, A2, B1, B2}, i.e. s ∈ {a, b}, ` ∈ {1, 2} and i ∈ {0, . . . , k − 1}, and let
ih denote the bit number h in the binary representation of i. For such a node si` define
bin(si`) =

{
fhS | ih = 0

}
∪

{
thS | ih = 1

}
, and connect si` by an edge to each of the nodes in

bin(si`). The next two claims address the basic properties of vertex covers of G.

I Claim 5. Any vertex cover of G must contain at least k − 1 nodes from each of the clique
A1, A2, B1 and B2, and at least 4 log k bit-nodes.

DISC 2017
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Proof. In order to cover all the edges of each if the cliques on A1, A2, B1 and B2, any vertex
cover must contain at least k − 1 nodes of the clique. For each h ∈ {0, . . . , log k − 1} and
` ∈ {1, 2}, in order to cover the edges of the 4-cycle (fhA`

, thA`
, fhB`

, thB`
), any vertex cover

must contain at least two of the cycle nodes. J

I Claim 6. If U ⊆ V is a vertex cover of G of size 4(k − 1) + 4 log k, then there are two
indices i, j ∈ {0, . . . , k − 1} such that ai1, a

j
2, b

i
1, b

j
2 are not in U .

Proof. By Claim 5, U must contain k − 1 nodes from each clique A1, A2, B1 and B2, and
4 log k bit-nodes, so it must not contain one node from each clique. Let ai1, a

j
2, b

i′

1 , b
j′

2 be the
nodes in A1, A2, B1, B2 which are not in U , respectively. To cover the edges connecting ai1
to bin(ai1), U must contain all the nodes of bin(ai1), and similarly, U must contain all the
nodes of bin(bi′1 ).

If i 6= i′ then there is an index h ∈ {0, . . . , log k − 1} such that ih 6= i′h. So whether both
nodes of the edge

(
fhA1

, thB1

)
are in U , or both nodes of

(
thA1

, fhB1

)
are. However, U contains

exactly 4 log k bit-nodes and at least two nodes from each 4-cycle, and a simple counting
argument implies that U also contain at most two nodes from each 4-cycle. So, the other
nodes of the 4-cycle {fhA1

, thB1
, thA1

, fhB1
} are not in U , and the other edge is not covered.

Thus, it must be the case that i = i′. A similar argument shows j = j′. J

Adding edges corresponding to the strings x and y: Given two binary strings x, y ∈
{0, 1}k

2
, we augment the graph G defined above with additional edges, which defines Gx,y.

Assume that x and y are indexed by pairs of the form (i, j) ∈ {0, . . . , k − 1}2. For each such
pair (i, j) we add to Gx,y the following edges. If xi,j = 0, then we add an edge between the
nodes ai1 and aj2, and if yi,j = 0 then we add an edge between the nodes bi1 and bj2. To prove
that {Gxy} is a family of lower bound graphs, it remains to prove the next lemma.

I Lemma 7. The graph Gx,y has a vertex cover of cardinality M = 4(k − 1) + 4 log k iff
DISJ(x, y) = FALSE.

Proof. For the first implication, assume that DISJ(x, y) = FALSE and let i, j ∈ {0, . . . , k − 1}
be such that xi,j = yi,j = 1. Note that in this case ai1 is not connected to aj2, and bi1
is not connected to bj2. We define a set U ⊆ V as the union of the two sets of nodes
(A1 \ {ai1})∪ (A2 \ {aj2})∪ (B1 \ {bi1})∪ (B2 \ {bj2}) and bin(ai1)∪ bin(aj2)∪ bin(bi1)∪ bin(bj2),
and show that U is a vertex cover of Gx,y.

First, U covers all the edges inside the cliques A1, A2, B1 and B2, as it contains k − 1
nodes from each clique. These nodes also cover all the edges connecting nodes in A1 to nodes
in A2 and all the edges connecting nodes in B1 to nodes in B2. Furthermore, U covers any
edge connecting some node u ∈ (A1 \ {ai1})∪ (A2 \ {aj2})∪ (B1 \ {bi1})∪ (B2 \ {bj2}) with the
bit-gadgets. For each node s ∈ ai1, a

j
2, b

i
1, b

j
2, the nodes bin(s) are in U , so U also cover the

edges connecting s to the bit gadget. Finally, U covers all the edges inside the bit gadgets,
as from each 4-cycle (fhA`

, thA`
, fhB`

, thB`
) it contains two non-adjacent nodes: if ih = 0 then

fhA1
, fhB1

∈ U and otherwise thA1
, thB1

∈ U , and if jh = 0 then fhA2
, fhB2

∈ U and otherwise
thA2

, thB2
∈ U . We thus have that U is a vertex cover of size 4(k − 1) + 4 log k, as needed.

For the other implication, let C ⊆ V be a vertex cover of Gx,y of size 4(k − 1) + 4 log k.
As the set of edges of G is contained in the set of edges of Gx,y, C is also a cover of G, and
by Claim 6 there are indices i, j ∈ {0, . . . , k − 1} such that ai1, a

j
2, b

i
1, b

j
2 are not in C. Since

C is a cover, the graph does not contain the edges (ai1, a
j
2) and (bi1, b

j
2), so we conclude that

xi,j = yi,j = 1, which implies that DISJ(x, y) = FALSE. J

Having constructed the family of lower bound graphs, we are now ready to prove Theorem 3.



K. Censor-Hillel, S. Khoury, and A. Paz 10:9

Proof of Theorem 3. To complete the proof of Theorem 3, we divide the nodes of G (which
are also the nodes of Gx,y) into two sets. Let VA = A1 ∪ A2 ∪ FA1 ∪ TA1 ∪ FA2 ∪ TA2 and
VB = V \ VA. Note that n ∈ Θ(k), and thus K = |x| = |y| = Θ(n2). Furthermore, note that
the only edges in the cut E(VA, VB) are the edges between nodes in {FA1 ∪TA1 ∪FA2 ∪TA2}
and nodes in {FB1 ∪ TB1 ∪ FB2 ∪ TB2}, which are in total Θ(logn) edges. Since Lemma 7
shows that {Gx,y} is a family of lower bound graphs, we can apply Theorem 2 on the above
partition to deduce that because of the lower bound for Set Disjointness, any algorithm
in the CONGEST model for deciding whether a given graph has a cover of cardinality
M = 4(k − 1) + 4 log k requires at least Ω(K/ log2(n)) = Ω(n2/ log2(n)) rounds. J

4 Weighted APSP

In this section we use the following natural extension of Definition 1, in order to address more
general 2-party functions, as well as distributed problems that are not decision problems.

For a function f : {0, 1}K1 × {0, 1}K2 → {0, 1}L1 × {0, 1}L2 and a graph problem, we
define a family of lower bound graphs in a way similar to Definition 1, replacing item (4) in
Definition 1 with a generalized requirement: for Gx,y, the output values of the nodes in VA
in a solution to the problem uniquely determine the first L1 bits of f(x, y), and the output
values of the of nodes in VB uniquely determine the last L2 bits of f(x, y). Next, we argue
that theorem similar to Theorem 2 holds for this case.

I Theorem 8. Fix a function f : {0, 1}K1 × {0, 1}K2 → {0, 1}L1 × {0, 1}L2 and a graph
problem P . If there is a family {Gx,y} of lower bound graphs with C = E(VA, VB) then any
deterministic algorithm for solving P in the CONGEST model requires Ω(CC(f)/ |C| logn)
rounds, and any randomized algorithm for deciding P in the CONGEST model requires
Ω(CCR(f)/ |C| logn) rounds.

The proof is similar to that of Theorem 2. Notice that the only difference between the
theorems, apart from the sizes of the inputs and outputs of f , are with respect to item (4)
in the definition of a family of lower bound graphs. However, the essence of this condition
remains the same and is all that is required by the proof: the values that a solution to P
assigns to nodes in VA determines the output of Alice for f(x, y), and the values that a
solution to P assigns to nodes in VB determines the output of Bob for f(x, y).

4.1 A Linear Lower Bound for Weighted APSP
Nanongkai [57] showed that any algorithm in the CONGEST model for computing a poly(n)-
approximation for weighted all pairs shortest paths (APSP) requires at least Ω(n/ logn)
rounds. In this section we show that a slight modification to this construction yields an Ω(n)
lower bound for computing exact weighted APSP. As explained in the introduction, this gives
a separation between the complexities of the weighted and unweighted versions of APSP.
At a high level, while we use the same simple topology for our lower bound as in [57], the
reason that we are able to restore the missing logarithmic factor is because our construction
uses O(logn) bits for encoding the weight of each edge out of many optional weights, while
in [57] only a single bit is used per edge for encoding one of only two options for its weight.

I Theorem 9. Any distributed algorithm in the CONGEST model for computing exact
weighted all pairs shortest paths requires at least Ω(n) rounds.

The reduction is from the following, perhaps simplest, 2-party communication problem.
Alice has an input string x of size K and Bob needs to learn the string of Alice. Any algorithm
(possibly randomized) for solving this problem requires at least Ω(K) bits of communication,
by a trivial information theoretic argument.
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Notice that the problem of having Bob learn Alice’s input is not a binary function as
addressed in Section 2. Similarly, computing weighted APSP is not a decision problem, but
rather a problem whose solution assigns a value to each node (which is its vector of distances
from all other nodes). We therefore use the extended Theorem 8 above.

The fixed graph construction: The fixed graph construction G = (V,E) is defined as
follows. It contains a set of n− 2 nodes, denoted A = {a0, ..., an−3}, which are all connected
to an additional node a. The node a is connected to the last node b, by an edge of weight 0.

Adding edge weights corresponding to the string x: Given the binary string x of size
K = (n− 2) logn we augment the graph G with edge weights, which defines Gx, by having
each non-overlapping batch of logn bits encode a weight of an edge from A to a. It is
straightforward to see that Gx is a family of lower bound graphs for a function f where
K2 = L1 = 0, since the weights of the edges determine the right-hand side of the output
(while the left-hand side is empty).

Proof of Theorem 9. To prove Theorem 9, we let VA = A ∪ {a} and VB = {b}. Note that
K = |x| = Θ(n logn). Furthermore, note that the only edge in the cut E(VA, VB) is the edge
(a, b). Since we showed that {Gx} is a family of lower bound graphs, we apply Theorem 8 on
the above partition to deduce that because K bits are required to be communicated in order
for Bob to know Alice’s K-bit input, any algorithm in the CONGEST model for computing
weighted APSP requires at least Ω(K/ logn) = Ω(n) rounds. J

4.2 The Alice-Bob Framework Cannot Give a Super-Linear Lower
Bound for Weighted APSP

In this section we argue that a reduction from any 2-party function with a constant partition
of the graph into Alice and Bob’s sides is provable incapable of providing a super-linear lower
bound for computing weighted all pairs shortest paths in the CONGEST model. A more
detailed inspection of our analysis shows a stronger claim: our claim also holds for algorithms
for the CONGEST-BROADCAST model, where in each round each node must send the
same (logn)-bit message to all of its neighbors. The following theorem states our claim.

I Theorem 10. Let f : {0, 1}K1 ×{0, 1}K2 → {0, 1}L1 ×{0, 1}L2 be a function and let Gx,y
be a family of lower bound graphs w.r.t. f and the weighted APSP problem. When applying
Theorem 8 to f and Gx,y, the lower bound obtained for the number of rounds for computing
weighted APSP is at most linear in n.

Roughly speaking, we show that given an input graph G = (V,E) and a partition of
the set of vertices into two sets V = VA ∪ VB, such that the graph induced by the nodes
in VA is simulated by Alice and the graph induced by nodes in VB is simulated by Bob,
Alice and Bob can compute weighted all pairs shortest paths by communicating O(n logn)
bits of information for each node touching the cut C = (VA, VB) induced by the partition.
This means that for any 2-party function f and any family of lower bound graphs w.r.t. f
and weighted APSP according to the extended definition of Section 4.1, since Alice and
Bob can compute weighted APSP which determines their output for f by exchanging only
O(|V (C)|n logn) bits, where V (C) is the set of nodes touching C, the value CC(f) is at
most O(|V (C)|n logn). But then the lower bound obtained by Theorem 8 cannot be better
than Ω(n), and hence no super-linear lower can be deduced by this framework as is.
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Formally, given a graph G = (V = VA∪̇VB , E) we denote C = E(VA, VB). Let V (C)
denote the nodes touching the cut C, with CA = V (C) ∩ VA and CB = V (C) ∩ VB. Let
GA = (VA, EA) be the subgraph induced by the nodes in VA and let GB = (VB , EB) be the
subgraph induced by the nodes in VB. For a graph H, we denote the weighted distance
between two nodes u, v by wdistH(u, v).

I Lemma 11. Let G = (V = VA∪̇VB , E, w) be a graph with an edge-weight function
w : E → {1, . . . ,W}, such that W ∈ polyn. Suppose that GA, CB, C and the values of w
on EA and C are given as input to Alice, and that GB, CA, C and the values of w on EB
and C are given as input to Bob.

Then, Alice can compute the distances in G from all nodes in VA to all nodes in V and Bob
can compute the distances from all nodes in VB to all the nodes in V , using O(|V (C)|n logn)
bits of communication.

Proof. We describe a protocol for the required computation, as follows. For each node
u ∈ CB , Bob sends to Alice the weighted distances in GB from u to all nodes in VB , that is,
Bob sends {wdistGB

(u, v) | u ∈ CB , v ∈ VB} (or ∞ for pairs of nodes not connected in GB).
Alice constructs a virtual graph G′A = (V ′A, E′A, w′A) with the nodes V ′A = VA ∪CB and edges
E′A = EA ∪ C ∪ (CB × CB). The edge-weight function w′A is defined by w′A(e) = w(e) for
each e ∈ EA ∪ C, and w′A(u, v) for u, v ∈ CB is defined to be the weighted distance between
u and v in GB , as received from Bob. Alice then computes the set of all weighted distances
in G′A, {wdistG′

A
(u, v) | u, v ∈ V ′A}.

Alice assigns her output for the weighted distances in G as follows. For two nodes
u, v ∈ VA ∪ CB, Alice outputs their weighted distance in G′A, wdistG′

A
(u, v). For a node

u ∈ V ′A and a node v ∈ VB \CB , Alice outputs min{wdistG′
A

(u, x) + wdistGB
(x, v) | x ∈ CB},

where wdistG′
A
is the distance in G′A as computed by Alice, and wdistGB

is the distance in
GB that was sent by Bob.

For Bob to compute his required weighted distances, for each node u ∈ CA, similar
information is sent by Alice to Bob, that is, Alice sends to Bob the weighted distances in GA
from u to all nodes in VA. Bob constructs the analogous graph G′B and outputs his required
distance. The next paragraph formalizes this for completeness, but may be skipped by a
convinced reader.

Formally, Alice sends {wdistGA
(u, v) | u ∈ CA, v ∈ VA}. Bob constructs G′B =

(V ′B , E′B , w′B) with V ′B = VB ∪ CA and edges E′B = EB ∪ C ∪ (CA × CA). The edge-
weight function w′B is defined by w′B(e) = w(e) for each e ∈ EB ∪ C, and w′B(u, v) for
u, v ∈ CA is defined to be the weighted distance between u and v in GA, as received from
Alice (or ∞ if they are not connected in GA). Bob then computes the set of all weighted
distances in G′B, {wdistG′

B
(u, v) | u, v ∈ V ′B}. Bob assigns his output for the weighted

distances in G as follows. For two nodes u, v ∈ VB ∪ CA, Bob outputs their weighted
distance in G′B, wdistG′

B
(u, v). For a node u ∈ V ′B and a node v ∈ VA \ CA, Bob outputs

min{wdistG′
B

(u, x) + wdistGA
(x, v) | x ∈ CA}, where wdistG′

B
is the distance in G′B as

computed by Bob, and wdistGA
is the distance in GA that was sent by Alice. J

The proof of Theorem 10 appears in the full version of the paper [18].

I Remark. In the full version of the paper [18] we show that generalizing the Alice-Bob
framework to a shared-blackboard multi-party setting is still insufficient for providing a
super-linear lower bound for weighted APSP. We suspect that a similar argument can be
applied for the framework of non-fixed Alice-Bob partitions (e.g., [65]), but this requires
precisely defining these frameworks which is not addressed here.
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5 Discussion

This work provides the first super-linear lower bounds for the CONGEST model, raising a
plethora of open questions. First, we showed for some specific problems, namely, computing
a minimum vertex cover, a maximum independent set and a χ-coloring, that they are nearly
as hard as possible for the CONGEST model. However, we know that approximate solutions
for some of these problems can be obtained much faster, in a polylogarithmic number of
rounds or even less. A family of specific open questions is then to characterize the exact
trade-off between approximation factors and round complexities for these problems.

Another specific open question is the complexity of weighted APSP, which has also been
asked in previous work [27, 57]. Our proof that the Alice-Bob framework is incapable of
providing super-linear lower bounds for this problem may be viewed as providing evidence
that weighted APSP can be solved much faster than is currently known. Together with
the recent sub-quadratic algorithm of [29], this brings another angle to the question: can
weighted APSP be solved in linear time?

Finally, we propose a more general open question which addresses a possible classification
of complexities of global problems in the CONGEST model. Some such problems have
complexities of Θ(D), such as constructing a BFS tree. Others have complexities of Θ̃(D+

√
n),

such as finding an MST. Some problems have near-linear complexities, such as unweighted
APSP. And now we know about the family of hardest problems for the CONGEST model,
whose complexities are near-quadratic. Do these complexities capture all possibilities, when
natural global graph problems are concerned? Or are there such problems with a complexity
of, say, Θ(n1+δ), for some constant 0 < δ < 1? A similar question was recently addressed
in [20] for the LOCAL model, and we propose investigating the possibility that such a
hierarchy exists for the CONGEST model.

Acknowledgements. We thank Amir Abboud, Ohad Ben Baruch, Michael Elkin, Yuval
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