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Abstract
We first prove that there are uncountably many objects with distinct computational powers.
More precisely, we show that there is an uncountable set of objects such that for any two of them,
at least one cannot be implemented from the other (and registers) in a wait-free manner. We
then strengthen this result by showing that there are uncountably many linearizable objects with
distinct computational powers. To do so, we prove that for all positive integers n and k, there
is a linearizable object that is computationally equivalent to the k-set agreement task among
n processes. To the best of our knowledge, these are the first linearizable objects proven to be
computationally equivalent to set agreement tasks.
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1 Introduction

One of the fundamental problems in distributed computing is to determine whether two
shared objects are equivalent, i.e., whether each can be implemented from the other (and
registers) in a wait-free manner.1 Any two objects that are not equivalent do not have the
same computational power, since at least one cannot implement the other.

To address this fundamental problem, Herlihy proposed the following object classification
scheme: an object O is in level n of a hierarchy if, together with registers, O can be used to
solve consensus among at most n processes [12]. It is clear that objects in different levels
of this hierarchy are not equivalent. Unfortunately, the converse is not true: every level
n ∈ Z+ of this hierarchy contains objects that are not equivalent [2, 7, 11, 16].2 So Herlihy’s
hierarchy does not classify objects in a “precise” way. This motivates the search for a precise
object classification scheme, i.e., one that partitions the universe U of all shared objects such
that the following property holds: two objects are equivalent if and only if they are in the
same cell of the partition.

In this paper, we first prove that there is an uncountable number of objects that are not
equivalent to one another (and so they have distinct computational power). Thus any precise

1 Throughout this paper, we consider only objects, tasks, and implementations that are wait free, so we
subsequently omit all references to wait freedom.

2 We denote by Z+ the set of all positive integers.
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12:2 Objects with Distinct Computational Power and Linearizability of Set Agreement

classification scheme of the universe U of objects contains an uncountable number of cells.
So the cells of a precise classification scheme cannot be labeled using simple integers (as in
Herlihy’s hierarchy) or finite sequences of integers.

Our proof of the above result uses the (n, k)-set agreement task where each of n processes
has a proposal value and must decide on one of the proposed values such that there are at
most k distinct decision values [8]. The set agreement power of an object O is the infinite
sequence ~n = (n1, n2, . . ., nk, . . .) where, for all k ≥ 1, nk is the largest integer such that
instances of O and registers can solve the (nk, k)-set agreement task, or ∞ if instances of O

and registers can solve the (n, k)-set agreement task for every integer n [10].
Let S denote the set of all infinite sequences of positive integers ~n = (n1, n2, . . ., nk, . . .)

such that nk+1 ≥ 2nk for all k ≥ 1. We use a result in [10] to prove that:

For all ~n ∈ S, there is an object R~n with set agreement power ~n. (1)

Note that this is not obvious because it is not the case that every infinite sequence of positive
integers ~n = (n1, n2, . . ., nk, . . .) has a corresponding object R~n with set agreement power ~n.
Finally, we use a standard diagonalization argument to prove that the set S is uncountable.
Therefore, by (1), there is an uncountable number of objects, namely the R~n objects, that
have distinct set agreement power. Since objects with different set agreement power are not
equivalent, we conclude that there are uncountably many objects that are not equivalent
(and so they have distinct computational power).

Next, we prove that the above result holds even if we restrict the universe U of objects
to contain only objects that are linearizable [13]. This result would be immediate if the R~n

objects used in our proof were such objects. Our R~n objects, however, are not linearizable:
this is because they are constructed using (n, k)-set agreement objects which, as described
in [5, 9], are simply “black-boxes” that solve the (n, k)-set agreement task. In fact, to the
best of our knowledge, all the (n, k)-set agreement objects used in the literature to date have
not been defined as linearizable objects.

To show that there are uncountably many linearizable objects with distinct computational
power, we proceed as follows:
1. We first prove that for all positive integers n and k, there is a linearizable object,

denoted LSA(n, k), that is computationally equivalent to the (n, k)-set agreement task
in the following sense: the (n, k)-set agreement task can be solved using the LSA(n, k)
object, and the LSA(n, k) object can be implemented using any solution to the (n, k)-set
agreement task (and registers). This also implies that the linearizable LSA(n, k) object
is equivalent to the (n, k)-set agreement “black-box” object.

2. We then construct linearizable objects, denoted LR~n, that are equivalent to the R~n

objects. Roughly speaking we do so by replacing the (n, k)-set agreement “black-box”
objects used to construct R~n with our linearizable LSA(n, k) objects. Since there is
an uncountable number of R~n objects with distinct computational power, and R~n is
equivalent to LR~n, there is also an uncountable number of linearizable LR~n objects with
distinct computational power.

Proving that there is a linearizable object LSA(n, k) that is computationally equivalent to
the (n, k)-set agreement task is not obvious because the two are not behaviourally equivalent.
Indeed, any linearizable object for the (n, k)-set agreement task imposes restrictions that
are not inherent to this task [15, 6]. To see this, suppose that all the proposal values are
distinct, and two processes propose concurrently. With the (n, k)-set agreement task, each of
these two processes could decide the proposal value of the other. But a linearizable (n, k)-set
agreement object does not allow this behaviour: whichever of the two processes is linearized
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first cannot decide the proposal value of the other process. Since the set of behaviours
allowed by linearizable (n, k)-set agreement objects is a proper subset of those allowed by the
corresponding task, it is conceivable that such objects inherently have greater computational
power than the task. Our result about the LSA(n, k) objects shows that this is not the case.

In summary, the main contributions of this paper are to show that:
1. For all n, k ∈ Z+, there is a linearizable object that is computationally equivalent to the

(n, k)-set agreement task.
2. The number of linearizable objects with distinct computational power is uncountable.

2 Some Basic Definitions

Object equivalence. Given any pair of shared memory objects O and O′, we denote by
O � O′ the relation: there exists an implementation of O′ from instances of O and registers.
We say that O and O′ are equivalent, denoted O ≡ O′, if and only if O � O′ and O′ � O.
Furthermore, given any object O and any collection of objects C, (i) we denote by C � O the
relation: there exists an implementation of O from instances of objects in C and registers,
and (ii) we denote by O � C the relation: there exists an implementation of each object in C
from instances of O and registers. We say O and C are equivalent, denoted O ≡ C, if and
only if O � C and C � O.

Redirection objects. Let Z∗ denote the set of all positive integers and the value ∞, i.e.,
Z∗ = Z+∪{∞}. For all n, k ∈ Z∗, we denote by SA(n, k) the “black-box” (n, k)-set agreement
object described in [5, 9]. Then, given any infinite sequence ~n = (n1, n2, . . ., nk, . . .) such that
nk ∈ Z∗ for all k ∈ Z+, we define a “redirection” object R~n that is equivalent to the collection
SA~n of set agreement objects

⋃∞
k=1{SA(nk, k)}. The object R~n supports the operation

propose(v, k), for any value v and any integer k ∈ Z+. Intuitively, when an operation
propose(v, k) is applied to the R~n object, it is redirected and applied as a propose(v)
operation on the (nk, k)-set agreement object SA(nk, k) in SA~n and the response is returned.
More precisely, for each k ∈ Z+, consider the set of all propose(−, k) operations that are
applied to the object R~n. The values returned to these operations satisfy the properties of
the SA(nk, k) object: If there are at most nk such operations, then (a) k-agreement: at most
k distinct values are returned to these operations, and (b) validity: each value returned to
these operations was proposed by one of them.

I Observation 1. For all infinite sequences ~n = (n1, n2, . . ., nk, . . .) such that nk ∈ Z∗ for
all k ∈ Z+, we have:
(a) For all k ∈ Z+, R~n � SA(nk, k); so R~n � SA~n.
(b) SA~n � R~n.
(c) Thus R~n ≡ SA~n.

3 Uncountability of Objects with Distinct Power

Let b be a non-negative integer, and (a1, a2, . . .) be non-negative integers such that only
finitely many of the a`’s are non-zero. Suppose that for each ` ∈ Z+, we are given a` copies
of SA(n`, `) objects. Using these objects, we can solve k-set agreement among n processes
where n ≤ b +

∑∞
`=1 a`n`, and k ≥ b +

∑∞
`=1 a``. To do so, we partition the n processes

as follows: for every a` that is non-zero, we create a` groups of at most n` processes each,
and we also create one group of at most b processes. In each of the a` groups of at most n`

processes, every process uses an SA(n`, `) object to propose its value and returns the object’s
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12:4 Objects with Distinct Computational Power and Linearizability of Set Agreement

response; in the last group of at most b processes, each process returns its proposal value. In
this way, the n processes return at most b +

∑∞
`=1 a`` distinct values, each proposed by some

process. By extending a result of Chaudhuri and Reiners [9], Delporte et al. proved that the
ability to partition the n processes in such a manner is also a necessary condition to solve
k-set agreement among n processes [10]. The following theorem follows from Theorem 2
of [10]:

I Theorem 2 (Extended Set Agreement Partial Order Theorem). Let m ∈ Z∗ and k ∈ Z+,
and let ~n = (n1, n2, . . ., n`, . . .) be an infinite sequence such that n` ∈ Z∗ for all ` ∈ Z+. Then
SA~n � SA(m, k) if and only if there exists an infinite sequence (a1, a2, . . .) of non-negative
integers and an integer b ∈ N such that:3

b +
∑∞

`=1 a`n` ≥ m.
b +

∑∞
`=1 a`` ≤ k.

Recall that S is the set of all infinite sequences of positive integers ~n = (n1, n2, . . ., nk, . . .)
such that nk+1 ≥ 2nk for all k ∈ Z+. We now prove some properties of S that will be useful
for applying Theorem 2.

I Lemma 3. For all ~n ∈ S and all k ∈ Z+, nk+1
k+1 ≥

nk

k .

Proof. By definition, for all ~n ∈ S and k ∈ Z+, nk+1 ≥ 2nk. Furthermore, since k ∈ Z+,
2

k+1 ≥
1
k . Consequently,

nk+1
k+1 ≥

2nk

k+1 = ( 2
k+1 )nk ≥ ( 1

k )nk = nk

k . J

I Corollary 4. For all ~n ∈ S and all k, k′ ∈ Z+ where k′ ≥ k, n′k
k′ ≥

nk

k .

I Observation 5. For all ~n ∈ S and all k ∈ Z+, nk ≥ k.

I Lemma 6. For all ~n ∈ S and all k ∈ Z+, SA~n 6� SA(nk + 1, k).

Proof. Let ~n = (n1, n2, . . ., nk, . . .) be an infinite sequence in S and let k ∈ Z+. Fur-
thermore, let A be the set of all infinite sequences of non-negative integers. Then for all
a = (a1, a2, . . ., ak, . . .) ∈ A and b ∈ N, we define the predicate P(a, b, ~n, k) to be true if and
only if the following inequalities are true:

b +
∞∑

`=1
a`n` ≥ nk + 1 (2)

b +
∞∑

`=1
a`` ≤ k (3)

By Theorem 2, it suffices to show that P(a, b, ~n, k) is false for all a ∈ A and b ∈ N.

Case 1. There exists an integer k′ > k such that ak′ > 0.
Then b +

∑∞
`=1 a`` ≥ ak′k

′ ≥ k′ > k. Thus inequality (3) is false, and so P(a, b, ~n, k) is
false.

Case 2. For all k′ ∈ Z+ such that k′ > k, we have ak′ = 0.
Case 2(a). b +

∑k
`=1 a` = 0

Since a is a sequence of non-negative integers and b is a non-negative integer, this implies
b = 0 and for all 1 ≤ ` ≤ k, a` = 0. Then b +

∑∞
`=1 a`n` = 0 < nk + 1. Thus the

inequality (2) is false, and so P(a, b, ~n, k) is false.

3 We denote by N the set of all natural numbers, including 0.
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Case 2(b). b +
∑k

`=1 a` > 0.
Thus either a` > 0 for some 1 ≤ ` ≤ k, or b > 0. We define the function:

f(a, b, ~n, k) = k(b +
k∑

`=1
a`n`)− (nk + 1)(b +

k∑
`=1

a``)

f(a, b, ~n, k) is the left side of (2) multiplied by the right side of (3), minus the left side
of (3) multiplied by the right side of (2). Thus for all a ∈ A and b ∈ N, if P(a, b, ~n, k) is
true, then f(a, b, ~n, k) ≥ 0.
By algebra,

f(a, b, ~n, k) = k(b +
k∑

`=1
a`n`)− (nk + 1)(b +

k∑
`=1

a``)

= bk − b(nk + 1) + k(
k∑

`=1
a`n`)− (nk + 1)(

k∑
`=1

a``)

= b(k − (nk + 1)) + (
k∑

`=1
ka`n`)− (

k∑
`=1

(nk + 1)a``)

= b(k − (nk + 1)) +
k∑

`=1
(ka`n` − (nk + 1)a``)

= b(k − (nk + 1)) +
k∑

`=1
a`(kn` − (nk + 1)`)

By Observation 5, 0 > k − (nk + 1). Thus if b > 0, then b(k − (nk + 1)) < 0, whereas if
b = 0, then b(k − (nk + 1)) = 0. By Corollary 4, for all 1 ≤ ` ≤ k,

nk

k
≥ n`

`

⇒ nk` ≥ kn`

⇒ 0 ≥ kn` − nk`

⇒ 0 > kn` − (nk + 1)`

Thus for all ` ∈ [1..k], if a` > 0, then a`(kn` − (nk + 1)`) < 0, whereas if a` = 0, then
a`(kn`− (nk +1)`) = 0. Therefore, every term of the sum b(k− (nk +1))+

∑k
`=1 a`(kn`−

(nk + 1)`) is either 0 or negative. Furthermore, since b +
∑k

`=1 a` > 0, either a` > 0
for some 1 ≤ ` ≤ k, or b > 0, so at least one of the terms is negative. Therefore,
f(a, b, ~n, k) < 0, and so P(a, b, ~n, k) is false.

So, for all a ∈ A and b ∈ N, P(a, b, ~n, k) is false. Thus SA~n 6� SA(nk + 1, k). J

By Observation 1(b), SA~n � R~n, so by Lemma 6,

I Corollary 7. For all ~n ∈ S and all k ∈ Z+, R~n 6� SA(nk + 1, k).

Since for all ~n ∈ S and all k ∈ Z+, R~n � SA(nk, k) by Observation 1(a), by Corollary 7,

I Corollary 8. For all ~n ∈ S, R~n has set agreement power ~n.

We now prove:

I Lemma 9. S is uncountable.
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12:6 Objects with Distinct Computational Power and Linearizability of Set Agreement

Proof. We prove this via a standard diagonalization argument. Assume, for contradiction,
that S is countable. In other words, there exists some enumeration E of all elements in S.
For all i ∈ Z+ and j ∈ Z+, let E [i, j] denote the j-th number in the i-th sequence of the
enumeration E .

Now consider the infinite sequence ~n = (n1, n2, . . ., nk, . . .) where:
n1 = E [1, 1] + 1.
For all i ≥ 2, ni = E [i, i] + 2ni−1.

Since E is an enumeration of infinite sequences of positive integers, ni is a positive integer for
all i ∈ Z+. Furthermore, by construction, ni is at least twice as large as ni−1 for all i ≥ 2.
Consequently, ~n is an infinite sequence of positive integers where each integer is at least twice
as large as its predecessor, so ~n ∈ S. By construction, however, ni 6= E [i, i] for all i ∈ Z+, so
~n is not any of the infinite sequences in the enumeration E of S. This is a contradiction, so
we conclude that S is uncountable. J

I Theorem 10. There are uncountably many objects that are not equivalent to each other.

Proof. By Lemma 9, S is uncountable. By Corollary 8, for all ~n ∈ S, there is an object with
set agreement power ~n. So there are uncountably many objects with distinct set agreement
power. By definition, objects with different set agreement power are not equivalent. J

Note that the uncountably many objects that Theorem 10 refers to were constructed
using the “black-box” set agreement objects described in [5, 9]. In Section 5, we strengthen
this result by proving that it holds even for linearizable objects [13]. To do this, we first
prove that each set agreement task is equivalent to a linearizable object.

4 Linearizable Set Agreement Objects

Henceforth, we consider objects with ports. With such an object, each process can apply
any operation to any port i ∈ [1..n], and must then wait for a response from that port.
We assume that accesses to the ports are well-formed: no port is accessed concurrently by
multiple processes; i.e., while an operation on a port is pending, no process can apply another
operation on that port. If accesses to the object are not well-formed, the behaviour of the
object is undefined.

For all n, k ∈ Z+, we now define LSA(n, k), a simple linearizable object that we will prove
is equivalent to the (n, k)-set agreement task in the following sense: the (n, k)-set agreement
task can be solved using the LSA(n, k) object, and the LSA(n, k) object can be implemented
using any solution to the (n, k)-set agreement task (and registers).

The behaviour of the LSA(n, k) object when it is accessed sequentially is given by its
sequential specification, described below. The behaviour of LSA(n, k) when it is accessed
concurrently (in a well-formed manner) is linearizable [13].

The sequential specification of LSA(n, k) is given by Algorithm 1. LSA(n, k) has n ports:
each process can apply a propose(v) operation for any value v to any port i ∈ [1..n]. The
state of the LSA(n, k) object consists of:

The set Vin of all values proposed to LSA(n, k); Vin is initially empty.
The set Vout of all values returned by LSA(n, k); Vout is initially empty.

The sequential specification of LSA(n, k) can be formally given in terms of a set of states,
a set of operations, a set of responses, and a state transition relation. For brevity, we omit
this formal definition here.

From the above definition of LSA(n, k), we have:
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Algorithm 1 Sequential specification of the LSA(n, k) object.
Code for port i ∈ [1..n]:

1: procedure propose(v)
2: Vin ← Vin ∪ {v}
3: Let v′ be nondeterministically chosen from Vin such that |Vout ∪ {v′}| ≤ k.
4: Vout ← Vout ∪ {v′}
5: return v′

I Observation 11. For all n, k ∈ Z+, if the LSA(n, k) object is accessed in a well-formed
manner, it satisfies:

k-agreement: There are at most k distinct return values.
Validity: If an operation op returns a value v, then v was proposed by op or by an
operation linearized before op.

This implies:

I Observation 12. For all n, k ∈ Z+, the (n, k)-set agreement task can be solved using an
LSA(n, k) object.

We now show that the converse also holds: for all n, k ∈ Z+, given any algorithm that
solves the (n, k)-set agreement task, one can implement the linearizable object LSA(n, k).
This implementation of LSA(n, k), shown in Algorithm 2, uses:

P [1..n]: any algorithm that solves the (n, k)-set agreement task, where P [i] is the protocol
executed by process i.
X[1..n]: an atomic snapshot object with n fields, initially all nil; each X[i] stores a value
output by P [i].
R[1..n]: an array of registers, initially all nil; each R[i] stores the return value of the first
operation performed on port i (R[i] is used to have all operations on port i return the
same value).

Note that the atomic snapshot object X[1..n] can be implemented using only registers [1].
To perform an operation propose(v) on port i, a process executes the following steps:

1. It reads R[i] and returns the same value as the previous operation on port i, if it exists
(line 3).

2. It executes protocol P [i] with proposal value v, and stores the decided value into a
temporary local variable pvali (line 4).

3. It writes pvali to the i-th field of the atomic snapshot X (line 5), letting the other
processes know that pvali was decided by protocol P [i].

4. It takes a snapshot of X (line 6) to check whether its own proposed value v was decided
by any protocol of P [1..n]; if so, it writes v to R[i] (line 7), otherwise it writes pvali to
R[i] (line 8).

5. It returns the value in R[i] (line 9).

Note that, for every i ∈ [1..n], protocol P [i] is only executed by the first operation on
port i, and thus it is executed at most once.

I Theorem 13. For all n, k ∈ Z+, Algorithm 2 implements the linearizable object LSA(n, k)
using any algorithm P [1..n] that solves the (n, k)-set agreement task and registers.

Proof. Let H be any history of this implementation of the LSA(n, k) object where accesses
to ports are well-formed.
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12:8 Objects with Distinct Computational Power and Linearizability of Set Agreement

Algorithm 2 Implementing the linearizable object LSA(n, k) using any algorithm P [1..n]
that solves the (n, k)-set agreement task.

1: Code for port i ∈ [1..n]:
2: procedure propose(v)
3: if R[i].read() 6= nil then return R[i].read()
4: pvali ← P [i].execute(v)
5: X[i]← pvali
6: X ′ ← X.scan()
7: if v ∈ X ′ then R[i].write(v)
8: else R[i].write(pvali)
9: return R[i].read()

I Claim 14 (k-agreement). In H, there are at most k distinct return values.

Proof. A value v is returned by an operation on port i only if v 6= nil has been written into
R[i] (line 3 or 9). A value v is written into R[i] only if v was returned by X.scan() (lines 6 to
7) or v has been written into pvali (line 8). For v 6= nil to be returned by X.scan(), v must
have been written into X by an operation on some port i′ (line 5), and therefore previously
written into pvali′ . For all j ∈ [1..n], v is assigned to pvalj only if v was returned by the
protocol P [j] (line 4). Thus any value returned by the object must have previously been
returned by some protocol of the (n, k)-set agreement task solution. Since each protocol
P [j] for j ∈ [1..n] is executed at most once, at most k distinct values are returned by the
protocols and hence the object. J

We now construct a completion H ′ of H as follows: for port i with an incomplete operation
op, if op is the first operation on port i and some other port has a complete operation op′
in H that returns the value proposed by op, complete op immediately after it is invoked by
returning its own proposal value (i.e., the same value that op′ returns); otherwise remove op.
Next, we construct a linearization L of H ′ as follows:
1. Linearize every operation that returns its own proposal value at the point it is invoked.
2. Linearize every operation that returns via line 3 at the point it is invoked.
3. Linearize every remaining operation at the point when it takes a snapshot of X (line 6).
From the above, it is clear that every operation is linearized at some point during its execution
interval.

I Claim 15 (Validity). In H ′, if an operation op returns a value v, then v was proposed by
op or by an operation linearized before op in the linearization L of H ′.

Proof. Suppose an operation op on port i proposes v′ and returns v. If v′ = v, the claim holds.
Now suppose v′ 6= v. Recall that when constructing the completion H ′ of H, incomplete
operations are only completed by returning their own proposal values. Thus op is a complete
operation in H. There are two cases:
Case 1: op is the first operation on port i.

Then, since op proposes v′ and returns v 6= v′, from the code of Algorithm 2 and the way
we linearize operations, it is clear that:
(1) op obtained pvali = v from executing P [i].execute(v′) in line 4,
(2) op wrote pvali = v in X in line 5, and
(3) op is linearized the instant it takes a snapshot of X in line 6.
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Since P [1..n] is a solution for the (n, k)-set agreement task, by (1), at least one port i′

has an operation op′ that starts executing P [i′].execute(v) before or at the same time
as op obtains v in line 4. Clearly, op′ proposes v and is invoked before it starts executing
P [i′].execute(v), and so before op obtains v in line 4. We now show that op′ is linearized
before op, and therefore v was proposed by an operation linearized before op. There are
three subcases:
Case 1(a): op′ is incomplete in H.

First, recall that when constructing the completion H ′ of H, an incomplete operation
in H is completed with its own proposal value if it is the first operation on its port,
and its proposal value is decided by some complete operation in H. Since op′ executes
P [i′].execute(v), it is the first operation on port i′. Furthermore, a complete operation
in H, namely op, returns the value v that is proposed by op′, so op′ is completed in
H ′ by returning v immediately after it is invoked. Then, since op′ returns its own
proposal value, op′ is linearized at the moment it is invoked. Thus op′ is linearized
before op obtains v in line 4. Therefore op′ is linearized before op executes line 6, and
thus before op is linearized.

Case 1(b): op′ is complete in H and it returns the value v that it proposed.
Then op′ is linearized at the moment op′ is invoked. Thus op′ is linearized before
before op obtains v in line 4. Therefore op′ is linearized before op executes line 6, and
thus before op is linearized.

Case 1(c): op′ is complete in H and it returns a value different from the value v that it
proposed.
Since op′ executes P [i′].execute(v), it is the first operation on port i′. Thus op′ is
linearized when it takes a snapshot of X in line 6, and this snapshot does not contain
v (otherwise op′ would return v). Since the snapshot does not contain v, it occurs
before op writes v in X in line 5 (see (2) above). Therefore op′ is linearized before op
executes line 6, and thus before op is linearized.

Case 2: op is not the first operation on port i.
Then the first operation op′ on port i also returns the same value v. Thus from case 1,
v was proposed by op′ or by an operation linearized before op′. Since the history H is
well-formed, i.e., operations on port i are not concurrent, op′ is linearized before op. So v

was proposed by an operation linearized before op. J

Let HL be the sequential history obtained by ordering all the operations in the complete
history H ′ by their linearization points in L. Since the completion of H to H ′, and the
linearization of H ′ to HL does not introduce new return values, from Claim 14 we have:

I Observation 16 (k-agreement). In HL, there are at most k distinct return values.

By the definition of HL and Claim 15, we have:

I Observation 17 (Validity). In HL, if an operation op returns a value v, then v was proposed
by op or by an operation before op.

To prove that Algorithm 2 implements the linearizable object LSA(n, k), it suffices to
show that HL satisfies the sequential specification of LSA(n, k).

Suppose, for contradiction, that HL violates the sequential specification of LSA(n, k), and
let op be the first operation in HL that does so. Let v be the value proposed by op, and v′ be
the value returned by op. According to the sequential specification of LSA(n, k), v′ should
be such that (i) v′ is in Vin ∪ {v}, and (ii) |Vout ∪ {v′}| ≤ k. Thus, since op violates the
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sequential specification of LSA(n, k), either (i) v′ is not in Vin ∪ {v}, or (ii) |Vout ∪ {v′}| > k.
We consider these two cases below:
Case 1: v′ is not in Vin ∪ {v}.

By the sequential specification of LSA(n, k), Vin ∪ {v} is the set of all values proposed by
op and the operations before op in HL. Thus op returns a value v′ that was not proposed
by op or by an operation that is before op in HL. So HL violates Observation 17.

Case 2: |Vout ∪ {v′}| > k.
By the sequential specification of LSA(n, k), Vout ∪ {v′} is the set of all values returned
by op and the operations before op in HL. Thus the operations in HL return more than
k distinct values. So HL violates Observation 16. J

I Theorem 18. For all n, k ∈ Z+, the linearizable object LSA(n, k) is equivalent to the
(n, k)-set agreement task, that is:
(a) The (n, k)-set agreement task can be solved using LSA(n, k), and
(b) LSA(n, k) can be implemented using any algorithm that solves the (n, k)-set agreement

task (and registers).

Proof. Part (a) follows by Observation 12, and Part (b) is immediate from Theorem 13. J

5 Uncountability of Linearizable Objects with Distinct Power

In this section, we prove that there are uncountably many linearizable objects with distinct
computational power.

For every infinite sequence ~n = (n1, n2, . . ., nk, . . .) such that nk ∈ Z+ for all k ∈ Z+, we
define a linearizable “redirection” object LR~n that is equivalent to the collection LSA~n of
linearizable objects

⋃∞
k=1{LSA(nk, k)}. The object LR~n has a port i for every integer i ∈ Z+,

each process can apply a propose(v, k) operation for any value v and any integer k ∈ Z+

to any port i ∈ Z+. Intuitively, when an operation propose(v, k) is applied on a port i of
the LR~n object, the operation propose(v) is applied to port i of the LSA(nk, k) object in
LSA~n and its response is returned. If no such port exists (because i > nk), the operation
simply returns ⊥ without changing the state.

The behaviour of the LR~n object when it is accessed sequentially is given by its sequential
specification, described below. The behaviour of LR~n when it is accessed concurrently (in a
well-formed manner) is linearizable [13].

The sequential specification of LR~n is given by Algorithm 3. The state of the LR~n object
consists of the following:

For all k ∈ Z+, the set V k
in of all the values proposed by propose(−, k) operations on

ports 1 to nk of LR~n; V k
in is initially empty.

For all k ∈ Z+, the set V k
out of all the values returned by propose(−, k) operations on

ports 1 to nk of LR~n; V k
out is initially empty.

From the above, it is clear that the sequential specification of LR~n can be formally given
in terms of a set of states, a set of operations, a set of responses, and a state transition
relation. For brevity, we omit this formal definition here.

I Observation 19. For all infinite sequences ~n = (n1, n2, . . ., nk, . . .) such that nk ∈ Z+ for
all k ∈ Z+, we have that:
(a) For all k ∈ Z+, LR~n � LSA(nk, k); so LR~n � LSA~n.
(b) LSA~n � LR~n.
(c) Thus LR~n ≡ LSA~n.
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Algorithm 3 Sequential specification of the LR~n object.
Code for port i ∈ Z+:

1: procedure propose(v, k)
2: if i > nk then return ⊥
3: V k

in ← V k
in ∪ {v}

4: Let v′ be nondeterministically chosen from V k
in such that |V k

out ∪ {v′}| ≤ k.
5: V k

out ← V k
out ∪ {v′}

6: return v′

I Lemma 20. For all infinite sequences ~n = (n1, n2, . . ., nk, . . .) such that nk ∈ Z+ for all
k ∈ Z+, we have that the linearizable object LR~n is equivalent to the object R~n.

Proof. By Observation 1(c), R~n ≡ SA~n, where SA~n is the collection of “black-box” set
agreement objects:

⋃∞
k=1{SA(nk, k)}. By Observation 19(c), LR~n ≡ LSA~n, where LSA~n is

the collection of linearizable set agreement objects:
⋃∞

k=1{LSA(nk, k)}.
By definition, for all k ∈ Z+, the “black-box” set agreement object SA(nk, k) is equivalent

to the (nk, k)-set agreement task. By Theorem 18, for all k ∈ Z+, LSA(nk, k) is equivalent
to the (nk, k)-set agreement task. Thus, for all k ∈ Z+, SA(nk, k) ≡ LSA(nk, k). Therefore,⋃∞

k=1{SA(nk, k)} ≡
⋃∞

k=1{LSA(nk, k)}, i.e., SA~n ≡ LSA~n. So, by transitivity, R~n ≡
LR~n. J

Consequently, by Corollary 8 and Lemma 20,

I Corollary 21. For all ~n ∈ S, LR~n has set agreement power ~n.

I Theorem 22. There are uncountably many linearizable objects that are not equivalent to
each other.

Proof. By Lemma 9, S is uncountable. By Corollary 21, for all ~n ∈ S, there is a linearizable
object with set agreement power ~n. So there are uncountably many linearizable objects with
distinct set agreement power. By definition, objects with different set agreement power are
not equivalent. J

Thus, there are uncountably many linearizable objects with distinct computational power.

6 Concluding remark

In this paper, we used Theorem 2 to prove that there are uncountably many objects with
distinct computational power. We can use the same theorem to prove an interesting result
about the robustness [14] of classifications of certain objects. Consider the subset of shared
objects UC ∈ U that are equivalent to their set agreement power, namely:

UC = {O | O ≡
∞⋃

k=1
{SA(nk, k)} where ~n = (n1, n2, . . .) is the set agreement power of O}

In some sense, UC is a generalization of the family of objects known as Common2 [3, 4], which
is the set of objects that are equivalent to the 2-consensus object. Thus UC contains every
object in Common2, which includes several common objects such as stack, swap, fetch&add,
and test&set [3, 4].

If we restrict Herlihy’s [12] consensus hierarchy to UC , we can prove the resulting hierarchy
is robust [14] in the following sense: in UC , for all n ∈ Z+, any non-empty set of objects with
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consensus number at most n cannot be used to implement any object with consensus number
n′ > n. In fact, we can prove a more general result, as we now describe.

To describe our robustness result, we first define what it means for a sequence to dominate
another. Given any pair of sequences ~v = (v1, v2, . . . , v`) and ~v′ = (v′1, v′2, . . . , v′`) of the same
length ` ∈ Z+, we say that v dominates v′, denoted ~v ≥ ~v′, if for all k ∈ [1..`], vk ≥ v′k;
similarly, we say that v strictly dominates, denoted ~v > ~v′, if ~v ≥ ~v′ and ~v 6= ~v′.

Consider the set of objects UC that are equivalent to their set agreement power. For any
integer ` ∈ Z+, we can partition UC into equivalence classes such two objects are in the same
class if and only if the first ` components of their set agreement powers are the same; we
call this an `-partition of UC , and denote it P` (note that the 1-partition of UC is simply
Herlihy’s consensus hierarchy restricted to the objects in UC [12]). Let C be any equivalence
class of P`. By definition, the first ` components of the set agreement power of every object
in C is some sequence ~v = (v1, v2, . . . , v`); this sequence is the label of C. If C and C ′ are
equivalence classes of P` with labels ~v and ~v′ respectively, we say that C dominates C ′ if
~v ≥ ~v′, and C strictly dominates C ′ if ~v > ~v′.

Our generalized robustness result for can now be stated as follows: Consider the `-partition
P` of UC , and let C be any equivalence class of P`. Objects in equivalence classes that are
dominated by C cannot implement objects in equivalence classes that strictly dominate C.
A proof of this result is given in the appendix.
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(b) O implements an object O′, i.e., O � O′; and
(c) O′ is in an equivalence class C ′ that strictly dominates C.

Let ~v = (v1, v2, . . . , v`) and ~v′ = (v′1, v′2, . . . , v′`) be the labels of C and C ′, respectively.
Since C ′ dominates C, ~v′ > ~v, and so there is a d ∈ [1..`] such that v′d > vd. Since O′ is in C ′,
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SA(v′k, k) for each k ∈ [1..`]. In particular, O′ implements SA(v′d, d), i.e., O′ � SA(v′d, d).

Henceforth, Oi is an arbitrary object in O. Let ~ni = (ni
1, ni

2, . . . , ni
k, . . .) be the set

agreement power of Oi. Since every object in O (including Oi) is in an equivalence class
that is dominated by C, and C has label ~v = (v1, v2, . . . , v`), we have that for all k ∈ [1..`],
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ni
k ≤ vk. Let SA~ni be the collection of set agreement objects

⋃∞
k=1{SA(ni

k, k)}. Since
Oi ∈ UC , by definition of UC , Oi ≡ SA~ni .

Let ~n = (n1, n2, . . . , nk, . . .) be the infinite sequence such that for all k ∈ [1..`], nk = vk,
and for all k > `, nk = ∞. Thus for all k ∈ Z+, nk ≥ ni

k. Let SA~n be the collection of
set agreement objects

⋃∞
k=1{SA(nk, k)}. Since for all k ∈ Z+, nk ≥ ni

k, we have SA~n �
SA~ni . Since Oi ≡ SA~ni , SA~n � Oi. Recall that Oi is an arbitrary object in O, so SA~n

implements every object in O, i.e., SA~n � O. Since O � O′ and O′ � SA(v′d, d), we have
SA~n � SA(v′d, d).

Since SA~n =
⋃∞

k=1{SA(nk, k)} implements SA(v′d, d), by Theorem 2, there is an infinite
sequence (a1, a2, . . .) of non-negative integers and an integer b ∈ N such that:

b +
∞∑

k=1
aknk ≥ v′d

b +
∞∑

k=1
akk ≤ d

Note that for all k > d, ak = 0, otherwise b +
∑∞

k=1 akk > d. Thus we have:

b +
d∑

k=1
aknk ≥ v′d

b +
d∑

k=1
akk ≤ d

Let O∗ be an arbitrary object in the equivalence class C, and ~n∗ = (n∗1, n∗2, . . . , n∗k, . . .)
be the set agreement power of O∗. Since O∗ is in C and the label of C is ~v = (v1, v2, . . . , v`),
for all k ∈ [1..`], n∗k = vk = nk. Thus, since d ∈ [1..`], we have:

b +
d∑

k=1
akn∗k ≥ v′d

b +
d∑

k=1
akk ≤ d

Since for all k > d, ak = 0, we have:

b +
∞∑

k=1
akn∗k ≥ v′d

b +
∞∑

k=1
akk ≤ d

Let SA~n∗ be the collection of set agreement objects
⋃∞

k=1{SA(n∗k, k)}. By the above
equations and Theorem 2, SA~n∗ � SA(v′d, d). Since the set agreement power of O∗ is
~n∗ = (n∗1, n∗2, . . . , n∗k, . . .) and O∗ ∈ UC , by definition of UC , we have that O∗ ≡ SA~n∗ . Thus
O∗ � SA(v′d, d). Hence the d-set agreement number of O∗ is at least v′d > vd. However,
recall that for all k ∈ [1..`], n∗k = vk, so in particular n∗d = vd. Therefore the d-set agreement
number of O∗ is vd — a contradiction. J
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