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Abstract
What can be computed by a network of n randomized finite state machines communicating under
the stone age model [4] (a generalization of the beeping model’s communication scheme)? The
inherent linear upper bound on the total space of the network implies that its global computa-
tional power is not larger than that of a randomized linear space Turing machine, but is this
tight? The reported reseach answers this question affirmatively for bounded degree networks by
introducing a stone age algorithm (operating under the most restrictive form of the model) that
given a designated I/O node, constructs a tour in the network that enables the simulation of the
Turing machine’s tape. To construct the tour, it is first shown how to 2-hop color the network
concurrently with building a spanning tree, with high probability.
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1 Introduction

Synergy, the whole is greater than the sum of its parts, is many times true, however in
traditional distributed computing, each node is usually assumed to be as powerful as a Turing
machine, hence its local computational power is equivalent to the global computational power
of the whole network. Here, we address the computational power of a network of randomized
finite state machines with a very weak communication scheme (similar to the communication
scheme of the beeping model), and show that even under these harsh conditions, synergy can
be achieved: the whole is at least as powerful as the sum of its parts.

Recently, there is a growing interest in the study of networks of sub-silicon devices,
including biological networks [1, 6, 8] and networks of man-made nano-devices [7, 3, 2],
through the lens of theoretical distributed computing. These are typically large networks
of primitive devices that nevertheless perform complicated tasks, thus raising the following
question: How do limitations on the local computation and communication capabilities of
the individual nodes affect the global computational power of the whole network?

The reported research addresses this question using the stone age (SA) model of Emek
and Wattenhofer [4] that captures a network of randomized finite state machines (FSMs)
with very weak communication capabilities (refer to [4] for a formal definition). It has been
shown in [4, Sec. 5 (full version)] that an n-node SA network with a path topology can
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simulate a randomized O(n)-space Turing machine, referred to hereafter as an RSPACE(n)
machine. Little is known though about the global computational power of SA networks with
more general topologies and/or more restrictive communication schemes. In th reported
research, we shed some light into this unexplored research domain.

2 Sequential Stone Age Machines

We wish to use a SA network to simulate an RSPACE(n) machineM, but before we can
describe this simulation, we have to explain how the O(n)-bit input I ofM, that is normally
stored inM’s tape at the beginning of the execution, is provided to the implementing SA
algorithm. Clearly, no node in the network can hold more than a constant number of bits of
I and unlike [4], where a path topology is assumed, here the network topology is arbitrary
and does not (initially) induce any sequential order on the nodes, so storing I in the network
nodes before the execution commences does not seem to work. Instead, we introduce the
key notion of a sequential stone age machine (SSAM), where I is fed to the SA algorithm
bit-by-bit in a sequential fashion.

Formally, given a network G = (V, E), a SSAM is a SA algorithm operating in G that
allows an external user to
(1) pick any node v ∈ V and send to it a designated I/O_prepare message;
(2) wait until v sends a designated I/O_ready message;
(3) feed v with a sequence of input bits by means of sending a sequence of designated input

messages (and receiving a corresponding sequence of acknowledgments from v);
(4) wait until the computational process terminates; and
(5) get the desired output back from v by means of receiving from it a sequence of designated

output messages.
We refer to node v picked by the user in (1) as an I/O node. To exploit the combined
computational power of all the nodes the computational process described in (4) typically
involves the whole network. The SSAM is said to be a (T p, T io)-SSAM if it is guaranteed
that the external user waits at most T p time between sending the I/O_prepare message and
receiving the I/O_ready message and at most T io time between feeding the input bits and
getting back the output bits.

3 Our Results

We prove that any problem that can be solved with high probability (abbreviated whp
hereafter) by an RSPACE(n) machine in time T can be solved whp on any bounded degree
network of n randomized finite state machines, with a designated I/O node, using a b = 1
stone age communication scheme, in O(D + T ) time, where D denotes the diameter of the
network. In the b = 1 stone age communication model a node cannot tell whether a received
message with text M was sent to it by one neighbor or by more than one. In other words,
it takes O(D) time to initialize the SSAM so that it is ready to accept its input, whereas
the actual simulation of the RSPACE(n) machine takes O(T ) time. Specifically, our main
algorithmic contribution is a SA algorithm that given an n-node bounded degree graph
G = (V, E) and a designated root node r ∈ V , constructs a 2-hop coloring of G and a node
sequence 〈S(i)〉2n−1

i=0 , referred to as a tour, that satisfies: (i) every node appears in S exactly
twice; (ii) S(0) = S(2n− 1) = r; and (iii) the state of node S(i) encodes enough information
to route a message to S(i + 1 mod 2n) and to S(i− 1 mod 2n) that reaches its destination
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in O(1) time for every 0 ≤ i ≤ 2n− 1; our algorithm terminates with a correct 2-hop coloring
and a correct tour in time O(D) whp.

In the SSAM context, the tour S is constructed during phase (2) (while the external user
waits for the I/O_ready message) with the I/O node serving as the root. This tour can then
be employed to simulate a randomized Turing machineM with a (2n)-cell tape in phase (4).

4 Main Technical Challenges

A 2-hop coloring is a useful construction in anonymous networks (see, e.g., [5]) that enables
local point-to-point communication under broadcast communication schemes. As discussed in
[4, Sec. 4.3], it is fairly easy to design a 2-hop coloring SA algorithm in bounded degree graphs
with bounding parameter b = 2 (refer to [4] for the definition of a bounding parameter).
However, here the bounding parameter is set to b = 1, thus turning the 2-hop coloring
construction into a challenging task because the nodes can no longer verify (deterministically)
that their neighborhood does not admit color conflicts. The setting considered in the reported
research is even harder since the graph may contain self-loops (unlike the simple graphs
considered in [4]).

Our algorithm resolves this issue by coloring the nodes concurrently with growing a tree
T̃ of depth O(D), rooted at the designated root r. The nodes use a randomized test that
looks for color conflicts and if a conflict is detected, the tree T̃ is carefully used to reset
the coloring and tree construction processes. It is interesting to point out that without a
designated root, it is impossible to obtain even a 1-hop coloring in our setting.

Another source of difficulty that we had to overcome when designing our algorithm stems
from the requirement that the algorithm terminates correctly whp. While whp guarantees are
common in traditional distributed graph algorithms, they are more challenging to obtain with
SA algorithms: the individual nodes do not (and cannot) have any notion of n; nevertheless,
the algorithm should err with probability that decreases (polynomially) with n.
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