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—— Abstract

A blockchain is a distributed ledger for recording transactions, maintained by many nodes without
central authority through a distributed cryptographic protocol. All nodes validate the informa-
tion to be appended to the blockchain, and a consensus protocol ensures that the nodes agree
on a unique order in which entries are appended. Consensus protocols for tolerating Byzantine
faults have received renewed attention because they also address blockchain systems. This work

discusses the process of assessing and gaining confidence in the resilience of a consensus protocols
exposed to faults and adversarial nodes. We advocate to follow the established practice in cryp-
tography and computer security, relying on public reviews, detailed models, and formal proofs;
the designers of several practical systems appear to be unaware of this. Moreover, we review the
consensus protocols in some prominent permissioned blockchain platforms with respect to their
fault models and resilience against attacks.
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1 Introduction

Blockchains or distributed ledgers are systems that provide a trustworthy service to a group
of nodes or parties that do not fully trust each other. They stand in the tradition of
distributed protocols for secure multiparty computation in cryptography and replicated
services tolerating Byzantine faults in distributed systems. Blockchains also contain many
elements from cryptocurrencies, although a blockchain system can be conceived without a
currency or value tokens. Generally, the blockchain acts as a trusted and dependable third
party, for maintaining shared state, mediating exchanges, and providing a secure computing
engine. Many blockchains can execute arbitrary tasks, typically called smart contracts,
written in a domain-specific or a general-purpose programming language.

In a permissionless blockchain, such as Bitcoin or Ethereum, anyone can be a user or
run a node, anyone can “write” to the shared state through invoking transactions (provided
transaction fees are paid for), and anyone can participate in the consensus process for
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determining the “valid” state. A permissioned blockchain in contrast, is operated by known
entities, such as in consortium blockchains, where members of a consortium or stakeholders in
a given business context operate a permissioned blockchain network. Permissioned blockchains
systems have means to identify the nodes that can control and update the shared state, and
often also have ways to control who can issue transactions. A private blockchain is a special
permissioned blockchain operated by one entity, i.e., within one single trust domain.

Permissioned blockchains address many of the problems that have been studied in the
field of distributed computing over decades, most prominently for developing Byzantine fault-
tolerant (BFT) systems. Such blockchains can benefit from many techniques developed for
reaching consensus, replicating state, broadcasting transactions and more, in environments
where network connectivity is uncertain, nodes may crash or become subverted by an
adversary, and interactions among nodes are inherently asynchronous. The wide-spread
interest in blockchain technologies has triggered new research on practical distributed
consensus protocols. There is also a growing number of startups, programmers, and industry
groups developing blockchain protocols based on their own ideas, not relying on established
knowledge.

The purpose of this paper is to give an overview of consensus protocols actually being
used in the context of permissioned blockchains, to review the underlying principles, and to
compare the resilience and trustworthiness of some protocols. We leave out permissionless
(or “public”) blockchains that are coupled to a cryptocurrency and their consensus protocols,
such as proof-of-work or proof-of-stake, although this is a very interesting subject by itself.

Due to lack of space this paper contains only a part of the text of its long version, available
online [18]. There we point out that developing consensus protocols is difficult and should
not be undertaken in an ad-hoc manner. A resilient consensus protocol is only useful when
it continues to deliver the intended service under a wide range of adversarial influence on the
nodes and the network. Detailed analysis and formal argumentation are necessary to gain
confidence that a protocol achieves its goal. In that sense, distributed computing protocols
resemble cryptosystems and other security mechanisms; they require broad agreement on
the underlying assumptions, detailed security models, formal reasoning, and wide-spread
public discussion. Any claim for a “superior” consensus protocol that does not come with the
necessary formal justification should be dismissed, analogously to the approach of “security
by obscurity,” which is universally rejected by experts.

Section 2 reviews the role of consensus for blockchain platforms. In Section 3, we discuss
the consensus protocols of a number of permissioned blockchain platforms, based on the
available product descriptions or source code. Different consensus mechanisms not directly
following the BFT approach are found in the blockchain platforms Sawtooth Lake, Ripple,
Stellar, and IOTA Tangle; they are discussed in the long version. Table 1 displays a summary
of the discussed protocols.

2 Consensus

This section presents background and models for consensus in permissioned blockchains, first
introducing the underlying concept of state-machine replication in Section 2.1. Sections 2.2
and 2.3 briefly review the most prominent family of protocols for this task, which is based
Paxos/Viewstamped Replication (VSR) and PBFT. The essential step of transaction valida-
tion is discussed in Section 2.4. In the long version [18], we furthermore demonstrate the
pitfalls of consensus-protocol design, by analyzing a proposed BFT consensus protocol called
Tangaroa and showing that it does not achieve its goals.
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2.1 Blockchains and consensus

A blockchain is a distributed database holding a continuously growing list of records, controlled
by multiple entities that may not trust each other. Records are appended to the blockchain
in batches or blocks through a distributed protocol executed by the nodes powering the
blockchain. Each block contains a cryptographic hash of the previous block, which fixes
all existing blocks and embeds a secure representation of the complete chain history into
every block. Additional integrity measures are often used in potentially malicious, Byzantine
environments, such as the requirement that a block hash is smaller than a given target (e.g.,
in Nakamoto-style proof-of-work consensus), or a multi-signature (or a threshold signature)
over a block, by the nodes powering the blockchain (for permissioned blockchains). The
nodes communicate over a network and collaboratively construct of the blockchain without
relying on a central authority.

However, individual nodes might crash, behave maliciously, act against the common goal,
or the network communication may become interrupted. For delivering a continuous service,
the nodes therefore run a fault-tolerant consensus protocol to ensure that they all agree on
the order in which entries are appended to the blockchain.

Since the whole blockchain acts as a trusted system, it should be dependable, resilient,
and secure, ensuring properties such as availability, reliability, safety, confidentiality, integrity
and more [4]. A blockchain protocol ensures this by replicating the data and the operations
over many nodes. Replication can have many roles [52, 22, 35], but blockchains replicate
data only for resilience, not for scalability. All nodes validate, in principle, the information
to be appended to the blockchain; this feature stimulates the trust of all nodes in that the
blockchain as a whole operates correctly.

For assessing a blockchain protocol, it is important to be clear about the underlying
trust assumption or security model. This specifies the environment for which the protocol is
designed and in which it satisfies its guarantees. Such assumptions should cover all elements
in the system, including the network, the availability of synchronized clocks, and the expected
(mis-)behavior of the nodes. For instance, the typical generic trust assumption for a system
with n independent nodes says that no more than f < n/k nodes become faulty (crash, leak
information, perform arbitrary actions, and so on), for some k = 2,3,.... The other n — f
nodes are correct. A trust assumption always represents an idealization of the real world; if
some aspect not considered by the model can affect the actually deployed system, then the
security must be reconsidered.

State-machine replication. The formal study and development of algorithms for exploiting
replication to build resilient servers and distributed systems goes back to Lamport et al.’s
pioneering work introducing Byzantine agreement [48, 38]. The topic has evolved through a
long history since and is covered in many textbooks [2, 14, 49, 58]; a good summary can be
found in a “30-year perspective on replication” [22].

As summarized concisely by Schneider [52], the task of reaching and maintaining consensus
among distributed nodes can be described with two elements: (1) a (deterministic) state
machine that implements the logic of the service to be replicated; and (2) a consensus protocol
to disseminate requests among the nodes, such that each node executes the same sequence of
requests on its instance of the service. In the literature, “consensus” means traditionally only
the task of reaching agreement on one single request (i.e., the first one), whereas “atomic
broadcast” [31] provides agreement on a sequence of requests, as needed for state-machine
replication. But since there is a close connection between the two (a sequence of consensus
instances provides atomic broadcast), the term “consensus” more often actually stands for
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atomic broadcast, especially in the context of blockchains. We adopt this terminology here
and also use “transaction” and “request” as synonyms for one of the messages to be delivered
in atomic broadcast.

Asynchronous and eventually synchronous models. Throughout this text, we assume the
eventual-synchrony network model, introduced by Dwork et al. [26]. It models an asynchronous
network that may delay messages among correct nodes arbitrarily, but eventually behaves
synchronously and delivers all messages within a fixed (but unknown) time bound. Protocols
in this model never violate their consistency properties (safety) during asynchronous periods,
as long as the assumptions on the kind and number of faulty nodes are met. When the
network stabilizes and behaves synchronously, then the nodes are guaranteed to terminate
the protocol (liveness). Note that a protocol may stall during asynchronous periods; this
cannot be avoided due to a fundamental discovery by Fischer et al. [27] (the celebrated “FLP
impossibility result”), which rules out that deterministic protocols reach consensus in (fully)
asynchronous networks.

The model is widely accepted today as realistic for designing resilient distributed systems.
Replication protocols have to cope with network interruptions, node failures, system crashes,
planned downtime, malicious attacks by participating nodes, and many more unpredictable
effects. Developing protocols for asynchronous networks therefore provides the best possible
resilience and avoids any assumptions about synchronized clocks and timely network behavior;
making such assumptions can quickly turn into a vulnerability of the system if any one is
not satisfied during deployment.

Protocol designers today prefer the eventual synchrony assumption for its simplicity and
practitioners observe that it has broader coverage of actual network behavior, especially
when compared to so-called partially synchronous models that assume probabilistic network
behavior over time.

Consensus in blockchain. Although Nakamoto’s Bitcoin paper [45] does not explicitly
mention the state-machine replication paradigm [52], Bitcoin establishes consensus on one
shared ledger based on voting among the nodes: “(Nodes) vote with their CPU power,
expressing their acceptance of valid blocks by working on extending them and rejecting
invalid blocks by refusing to work on them. Any needed rules and incentives can be enforced
with this consensus mechanism” [45].

With the work of Garay et al. [28], a formal equivalence between the task solved by the
“Nakamoto protocol” inside Bitcoin and the consensus problem in distributed computing
was shown for the first time. This result coincided with the insight, developed in the fintech
industry, that a blockchain platform may use a generic consensus mechanism and implement
it with any protocol matching its trust model [55]. In today’s understanding a blockchain
platform may use an arbitrary consensus mechanism and retain most of its further aspects
like distribution, cryptographic immutability, and transparency.

Existing consensus and replication mechanisms have therefore received renewed attention,
for applying them to blockchain systems. Several protocols relevant for blockchains are
reviewed in the next sections. We discuss only protocols for static groups here; they
require explicit group reconfiguration [53, 7] and do not change membership otherwise. This
assumption contrasts with view-synchronous replication [23], where the group composition
may change implicitly by removing nodes perceived as unavailable.
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2.2 Crash-tolerant consensus

As mentioned earlier, the form of consensus relevant for blockchain is technically known as
atomic broadcast. It is formally obtained as an extension of a reliable broadcast among the
node, which also provides a global or total order on the messages delivered to all correct nodes.

An atomic broadcast is characterized by two (asynchronous) events broadcast and deliver

that may occur multiple times. Every node may broadcast some message (or transaction) m

by invoking broadcast(m), and the broadcast protocol outputs m to the local application on

the node through a deliver(m) event.

Atomic broadcast ensures that each correct node outputs or delivers the same sequence
of messages through the deliver events. More precisely [31, 14], it ensures these properties:
Validity: If a correct node p broadcasts a message m, then p eventually delivers m.
Agreement: If a message m is delivered by some correct node, then m is eventually delivered

by every correct node.

Integrity: No correct node delivers the same message more than once; moreover, if a correct
node delivers a message m and the sender p of m is correct, then m was previously
broadcast by p.

Total order: For messages m; and ms, suppose p and q are two correct nodes that deliver
my and my. Then p delivers m; before mo if and only if ¢ delivers m; before mo.

The most important and most prominent way to implement atomic broadcast (i.e.,
consensus) in distributed systems prone to t < n/2 node crashes is the family of protocols
known today as Pazos [36, 37] and Viewstamped Replication (VSR) [46, 41]. Discovered
independently, their core mechanisms exploit the same ideas [39, 40]. They have been
implemented in dozens of mission-critical systems and power the core infrastructure of major
cloud providers today [21].

The Zab protocol inside ZooKeeper is a prominent member of the protocol family; originally
from Yahoo!, it is available as open source [33, 34, 56] (https://zookeeper.apache.org/)
and used by many systems. A more recent addition to the family is Raft [47], a specialized
variant developed with the aim of simplifying the understanding and the implementation
of Paxos. Tt is contained in dozens of open-source tools (e.g., eted — https://github.com/
coreos/etcd).

All protocols in this family progress in a sequence of views or “epochs,” with a unique
leader for each view that is responsible for progress. If the leader fails, or more precisely,
if the other nodes suspect that the leader has failed, they can replace the current leader
by moving to the next view with a fresh leader. This view change protocol must ensure
agreement, such that message already delivered by a node in the abandoned view is retained
and delivered by all correct nodes in this or another future view.

2.3 Byzantine consensus

More recently, consensus protocols for tolerating Byzantine nodes have been developed, where
nodes may be subverted by an adversary and act maliciously against the common goal of
reaching agreement. In the eventual-synchrony model considered here, the most prominent
protocol is PBFT (Practical Byzantine Fault-Tolerance) [19]. It can be understood as an
extension of the Paxos/VSR family [39, 12, 40] and also uses a progression of views and
a unique leader within every view. In a system with n nodes PBFT tolerates f < n/3
Byzantine nodes, which is optimal. Many research works have analyzed and improved aspects
of it and made it more robust in prototypes [24].
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Actual systems that implement PBFT or one of its variants are much harder to find than
systems implementing Paxos/VSR. In fact, BFT-SMaRt (https://github.com/bft-smart/
library) is the only known project that was developed before the interest in permissioned
blockchains surged around 2015 [55]. Actually, Bessani et al. [7, 6] from the University of
Lisbon started work on it around 2010. There is widespread agreement today that BFT-
SMaRt is the most advanced and most widely tested implementation of a BFT consensus
protocol available. Experiments have demonstrated that it can reach a throughput of about
80’000 transactions per second in a LAN [7] and very low latency overhead in a WAN [54].

Like Paxos/VSR, Byzantine consensus implemented by PBFT and BFT-SMaRt expects an
eventually synchronous network to make progress. Without this assumption, only randomized
protocols for Byzantine consensus are possible, such as the practical variations relying
on distributed cryptography [16] as prototyped by SINTRA [17] or, much more recently,
HoneyBadger [44].

2.4 Validation

In an atomic broadcast protocol resilient to crashes, every message is usually considered to
be an acceptable request to the service. For Byzantine consensus, especially in blockchain
applications, it makes sense to ask that only “valid” transactions are output by the broadcast
protocol. To formalize this, the protocol is parameterized with a deterministic, external
predicate V(), such that the protocol delivers only messages satisfying V(). This notion has
been introduced as external validity by Cachin et al. [15].

The predicate must be deterministically computable locally by every process. More
precisely, V() must guarantee that when two correct nodes p and ¢ in an atomic broadcast
protocol have both delivered the same sequence of messages up to some point, then p obtains
V(m) = TRUE for any message m if and only if ¢ also determines that V(m) = TRUE.

This combination of transaction validation and establishing consensus is inherent in
permissionless blockchains based on proof-of-work consensus, such as Bitcoin and Ethereum.
For permissioned-blockchain protocols, one could in principle also separate this step from
consensus and perform the (deterministic) validation of transactions on the ordered “raw’
sequence output by atomic broadcast. This could make the protocol susceptible to denial-of-
service attacks from clients broadcasting excessively many invalid transactions. Hence most
consensus protocols reviewed in this text combine ordering with validation and use a form of
external validity based on the current blockchain state.

)

3 Permissioned blockchains

This section discusses some notable consensus protocols that are part of (or have at least
been proposed for) the following consortium blockchain systems. We assume there are n
nodes responsible for consensus, but some systems contain further nodes with other roles.

3.1 Overview

Among the recent flurry of blockchain-consensus protocols, many have not progressed past
the stage of a paper-based description. In this section, we review only protocols implemented
in a platform; the platform must either be available as open source or have been described
in sufficient detail in marketing material. So far all implemented protocols discussed here
assume independence among the failures, selfish behavior, and subversion of nodes. This
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Table 1 Summary of consensus resilience properties, some of which use statically configured
nodes with a special role. Symbols and notes: ‘v’ means that the protocol is resilient against
the fault and ‘—’ that it is not; ‘.’ states that no such special node exists in the protocol; ‘7’
denotes that the properties cannot be assessed due to lack of information; (v') denotes the crash
of other nodes, different from the special node; + MultiChain has non-final decisions; & PoET
assumes trusted hardware available from only one vendor; ® Ripple tolerates one of the five default
Ripple-operated validators (special nodes) to be subverted. The last four protocols are discussed in
the long version [18].
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justifies the choice of a numeric trust assumption, expressed only by a fraction of potentially
faulty nodes.

It would be readily possible to extend such protocols to more complex fault assumptions,
as formulated by generic Byzantine quorum systems [42]. For example, this would allow
to run stake-based consensus (as done in some permissionless blockchains) or to express
an arbitrary power structure formulated in a legal agreement for the consortium [11]. No
platform offers this yet, however.

3.2 Hyperledger Fabric — Apache Kafka and PBFT

Hyperledger Fabric (https://github.com/hyperledger/fabric) is a platform for distrib-
uted ledger solutions, written in Golang and with a modular architecture that allows multiple
implementations for its components. It is one of multiple blockchain frameworks hosted
with the Hyperledger Project (https://www.hyperledger.org/) and aims at high degrees
of confidentiality, resilience, flexibility, and scalability.

Following “preview” releases (v0.5 and v0.6) in 2016, whose architecture [13] directly
conforms to state-machine replication, a different and more elaborate design was adopted later
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and is currently available in release v1.0.0-beta. The new architecture [1], termed Fabric V1
here, separates the execution of smart-contract transactions (in the sense of validating the
inputs and outputs of a program) from ordering transactions for avoiding conflicts (in the
sense of an atomic broadcast that ensures consistency). This has several advantages, including
better scalability, a separation of trust assumptions for transaction validation and ordering,
support for non-deterministic smart contracts, partitioning of smart-contract code and data
across nodes, and using modular consensus implementations [59].

The consensus protocol up to release v0.6-preview was a native implementation of
PBFT [19]. With V1 the ordering service responsible for conflict-avoidance can be provided
by an Apache Kafka cluster (https://kafka.apache.org/). Kafka is a distributed streaming
platform with a publish/subscribe interface, aimed at high throughput and low latency. It
logically consists of broker nodes and consistency nodes, where a set of redundant brokers
processes each message stream and a ZooKeeper instance (https://zookeeper.apache.
org/) running on the consistency nodes coordinates the brokers in case of crashes or network
problems. Fabric therefore inherits is basic resilience against crashes from ZooKeeper. A
second implementation of the ordering service is under development, which uses again
the PBFT protocol and achieves resilience against subverted nodes. Besides, BFT-SMaR#t
(Sec. 2.3) is currently being integrated in Fabric V1 as one of the ordering services. Since
BFT-SMaRt follows the well-established literature on Byzantine consensus protocols as
mentioned earlier, its properties do not need special discussion here.

3.3 Tendermint

Tendermint Core (https://github.com/tendermint/tendermint) is a BFT protocol that
can be best described as a variant of PBFT [19], as its common-case messaging pattern is a
variant of Bracha’s Byzantine reliable broadcast [8]. In contrast to PBFT, where the client
sends a new transaction directly to all nodes, the clients in Tendermint disseminate their
transactions to the validating nodes (or, simply, validators) using a gossip protocol. The
external validity condition, evaluated within the Bracha-broadcast pattern, requires that a
validator receives the transactions by gossip before it can vote for inclusion of the transaction
in a block, much like in PBFT.

Tendermint’s most significant departure from PBFT is the continuous rotation of the
leader. Namely, the leader is changed after every block, a technique first used in BFT
consensus space by the Spinning protocol [51]. Much like Spinning, Tendermint embeds
aspects of PBFT’s view-change mechanism into the common-case pattern. This is reflected
in the following: while a validator expects the first message in the Bracha broadcast pattern
from the leader, it also waits for a timeout, which resembles the view-change timer in PBFT.
However, if the timer expires, a validator continues participating in the Bracha-broadcast
message pattern, but votes for a nil block.

Tendermint as originally described by Buchman [9] suffers from a livelock bug, pertaining
to locking and unlocking votes by validators in the protocol. However, the protocol contains
additional mechanisms not described in the cited report that prevent the livelock from
occurring [10]. While it appears to be sound, the Tendermint protocol and its implementation
are still subject to a thorough, peer-reviewed correctness analysis.

3.4 Symbiont — BFT-SMaRt

Symbiont Assembly (https://symbiont.io/technology/assembly) is a proprietary distrib-
uted ledger platform. The company that stands behind it, Symbiont, focuses on applications
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of distributed ledgers in the financial industry, providing automation for modeling and
executing complex instruments among institutional market participants.

Assembly implements resilient consensus in its platform based on the open-source BFT-
SMaR#t toolkit (Sec. 2.3). Symbiont uses its own reimplementation of BFT-SMaR#t in a
different programming language; it reports performance numbers of 80’000 transactions per
second (tps) using a 4-node cluster on a LAN. This matches the throughput expected from
BFT-SMaRt [7] and similar results in the research literature on BFT protocols [3].

Assembly uses the standard resilience assumptions for BFT consensus in the eventually-
synchronous model considered here.

3.5 R3 Corda — Raft and BFT-SMaRt

Unlike most of the other permissioned blockchain platforms discussed here, Corda (https:
//github.com/corda/corda) does not order all transactions as one single virtual execution
that forms the blockchain. Instead, it defines states and transactions, where every transaction
consumes (multiple) states and produces a new state [32]. Only nodes affected by a transaction
store it. Seen across all users, this transaction execution model produces a hashed directed
acyclic graph or Hash-DAG. Transactions must be wvalid, i.e., endorsed by the issuer and
other affected nodes and correct according to the underlying smart-contract logic governing
the state. Each state points to a notary responsible for ensuring transaction uniqueness, i.e.,
that each state is consumed only once. The notary is a logical service that can be provided
jointly by multiple nodes. The type of a state may designate an asset represented by the
network, such as a token or an obligation, or anything else controlled by a smart contract.

A transaction in Corda consumes only states controlled by the same notary; hence, one
notary by itself can atomically verify the transaction’s validity and uniqueness to decide
whether it is executed or not. To enable transactions that operate across states governed by
different notaries, there is a specialized transaction that changes the notary, such that one
notary will become responsible for validating the transaction.

Since a node stores only a part of the Hash-DAG, it only knows about transactions
and states that concern the node. This contrasts with most other distributed ledgers and
provides means for partitioning the data among the nodes. As is the case for other smart-
contract platforms, transactions refer to contracts that can be programmed in a universal
general-purpose language.

A notary service in Corda orders and timestamps transactions that include states pointing
to it. “Notaries are expected to be composed of multiple mutually distrusting parties who
use a standard consensus algorithm” (https://docs.corda.net). A notary service needs
to cryptographically sign its statements of transaction uniqueness, such that other nodes
in the network can rely on its assertions without directly talking to the notary. Currently
there is support for running a notary service as a single node (centralized), for running a
distributed crash-tolerant implementation using Raft (Sec. 2.2), and for distributing it using
the open-source BFT-SMaR#t toolkit (Sec. 2.3). When using Raft deployed on n nodes, a
Corda notary tolerates crashes of any ¢ < n/2 of these nodes (Sec. 2.2). With BFT-SMaRt
running on n nodes, the notary is resilient to the subversion of f < n/3 nodes.

3.6 Hyperledger Iroha — Sumeragi

Hyperledger Iroha (https://github.com/hyperledger/iroha) is another open-source block-
chain platform developed under the Hyperledger Project. Its architecture is inspired by the
original (v0.6) design of Fabric (Sec. 3.2). All validating nodes collaboratively execute a
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Byzantine consensus protocol. In that sense it is also similar to Tendermint and Symbiont
Assembly.

The Sumeragi consensus library of Iroha is “heavily inspired” by BChain [25] a chain-style
Byzantine replication protocol that propagates transactions among the nodes with a “chain”
topology. Chain replication [57, 22] arranges the n nodes linearly and each node normally
only receives messages from its predecessor and sends messages to its successor. Although
there is a leader at the head of the chain, like in many other protocols, the leader does
not become a bottleneck since it usually communicates only with the head and the tail
of the chain, but not with all n nodes. This balances the load among the nodes and lets
chain-replication protocols achieve the best possible throughput [30, 3], at the cost of higher
normal-case latency and slightly increased time for reconfiguration after faults.

In Sumeragi, the order of the nodes is determined based on a reputation system, which
takes the “age” of a node and its past performance into account.

As becomes apparent from the documentation (https://github.com/hyperledger/
iroha/wiki/Sumeragi), though, the protocol departs from the “chain” pattern, because the
leader “broadcasts” to all nodes and so does the node at the tail. Hence, it is neither BChain
nor chain replication. Assuming that Sumeragi would correctly implement BChain, then it
relies on the standard assumptions for BFT consensus in the eventually-synchronous model,
just like Fabric v0.6, Tendermint, and Symbiont.

3.7 Kadena — Juno and ScalableBFT

Juno from kadena (https://github.com/kadena-io/juno) is a platform for running smart
contracts that has been developed until about November 2016 according to its website. Juno
claims to use a “Byzantine Fault Tolerant Raft” protocol for consensus and appears to
address the standard BFT model with n nodes, f < n/3 Byzantine faults among them, and
eventual synchrony [26] as timing assumption. Later Juno has been deprecated in favor
of a “proprietary BFT-consensus protocol” called ScalableBF'T [43], which is “inspired by
the Tangaroa protocol” and optimizes performance compared to Juno and Tangaroa. The
whitepaper cites over 7000 transactions per second (tps) throughput on a cluster with size
256 nodes.

The design and implementation of ScalableBFT are proprietary and not available for
public review. Being based on Tangaroa, the design might suffer from its devastating
problems mentioned in Section 2.3. Further statements about ScalableBFT made in a blog
post [50] do not enhance the trust in its safety: “Every transaction is replicated to every node.
When a majority of nodes have replicated the transaction, the transaction is committed.”
As is well-known from the literature [22, 14] in the model considered here, with public-key
cryptography for message authentication and asynchrony, agreement in a consensus protocol
can only be ensured with n > 3f and Byzantine quorums [42] of size strictly larger than
n+f

=5+, which reduces to 2f + 1 with n = 3f + 1 nodes. Hence “replicating among a majority

does not suffice.

R

The claimed performance number of more than 7000 tps is in line with the throughput of
30°000-80°000 tps, as reported by a representative state-of-the-art BF'T protocol evaluation in
the literature [3]. However, since Juno is proprietary, it is not not clear how it actually works
nor why one should trust it, as discussed before. One should rather build on established
consensus approaches and publicly validated algorithms than on a proprietary protocol for
resilience. As the resilience of Juno and ScalableBFT cannot be assessed, it remains unclear
whether it actually provides consensus as intended.
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3.8 Chain — Federated Consensus

The Chain Core platform (https://chain.com) is a generic infrastructure for an institutional
consortium to issue and transfer financial assets on permissioned blockchain networks. It
focuses on the financial services industry and supports multiple different assets within the
same network.

The Federated Consensus [20] protocol of Chain Core is executed by the n nodes that
make up the network. One of the nodes is statically configured as “block generator.” It
periodically takes a number of new, non-executed transactions, assembles them into blocks,
and submits the block for approval to “block signers.” Every signer validates the block
proposed for a given block height, checking the signature of the generator, validating the
transactions, and verifying some real-time constraints and then signs an endorsement for
the block. Each signer endorses only one block at each height. Once a node receives ¢ such
endorsements for a block, the node appends the block to its chain.

The protocol is resilient to a number of malicious (Byzantine-faulty) signers but not to a
malicious block generator. If the block generator violates the protocol (e.g., by signing two
different blocks for the same block height) the ledger might fork (i.e., the consensus protocol
violates safety). The documentation states that such misbehavior should be addressed by
retaliation and measures for this remain outside the protocol.

More specifically, when assuming the block generator operates correctly and is live, this
Federated Consensus reduces to an ordinary Byzantine quorum system that tolerates f faulty
signer nodes when ¢ = 2f + 1 and n = 3f + 1; its use for consensus is similar, say, to the
well-understood “authenticated echo broadcast” [14, Sec. 3.10.3]. Up to f block signers may
behave arbitrarily, such as by endorsing incorrect transactions or by refusing to participate,
and the protocol will remain live and available (with the correct block generator).

Overall, however, Federated Consensus is a special case of a standard BFT-consensus
protocol that appears to operate with a fixed “leader” (in the role of the block generator).
The protocol cannot prevent forks if the generator is malicious. Even if the generator simply
crashes, the protocol halts and requires manual intervention. Standard BFT protocols instead
will tolerate leader corruption and automatically switch to a different leader if it becomes
apparent that one leader malfunctions.

Since the block generator must be correct, the purpose of a signature issued by a block
signer remains unclear, at least at the level of the consensus protocol. The only reason
appears to be guaranteeing that the signer cannot later repudiate having observed a block.

3.9 Quorum — QuorumChain and Raft

Quorum (https://github.com/jpmorganchase/quorum), mainly from developers at JP-
Morgan Chase, is an enterprise-focused version of Ethereum, executing smart contracts
with the Ethereum virtual machine, but using an alternative to the default proof-of-work
consensus protocol of the public Ethereum blockchain. The platform currently contains two
consensus protocols, called QuorumChain and Raft-based consensus.

QuorumChain. This protocol uses a smart contract to validate blocks. The trust model
specifies a set of n “voter” nodes and some number of “block-maker” nodes, whose identities
are known to all nodes. The documentation remains unclear about the trust model, not
clearly expressing in which ways one or more of these nodes might fail or behave adversarially.
(One can draw some conclusions from the protocol though.)
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The protocol uses the standard peer-to-peer gossip layer of Ethereum to propagate blocks
and votes on blocks, but the logic itself is formulated as a smart contract deployed with
the genesis block. Nodes digitally sign every message they send. Only block-maker nodes
are permitted to propose block to be appended; nodes with voter role validate blocks and
express their approval by a (yes) vote. A block-maker waits for a randomly chosen time
and then creates, signs, and propagates a new block that extends its own chain. A voter
will validate the block (by executing its transactions and checking its consistency), “vote”
on it, and propagate this. A voter apparently votes for every received block that is valid
and extends its own chain, and it may vote multiple times for a given block height. Voting
continues for a period specified in real time. Each node accepts and extends its own chain
with the block that obtains more votes than a given threshold, and if there are multiple ones,
the one with most votes. There is one block-maker node by default.

To assess the resilience of the protocol, it is obvious that already one malicious block-
maker node can easily create inconsistencies (chain forks) unless the network is perfect and
already provides consensus. With one block-maker, if this node crashes, the protocol halts.
Depending on how the operator sets the voting threshold and on the network connectivity,
it may fork the chain with only two block-makers and without any Byzantine fault. With
a Byzantine fault in a block-maker node or a voter node can disrupt the protocol and also
create inconsistencies. Furthermore, the protocol relies on synchronized clocks for safety and
liveness. Taken together, the protocol cannot ensure consensus in any realistic sense.

Raft-based consensus. The second and more recent consensus option available for Quorum
is based on the Raft protocol [47], which is a popular variant of Paxos [36] available in
many open-source toolkits. Quorum uses the implementation in etcd (https://github.com/
coreos/etcd) and co-locates every Quorum-node with an etcd-node (itself running Raft).
Raft will replicate the transactions to all participating nodes and ensure that each node
locally outputs the same sequence of transactions, despite crashes of nodes. The deployment
actually tolerates that any ¢ < n/2 of the n etcd-nodes may crash. Raft relies on timeliness
and synchrony only for liveness, not for safety.

This is a canonical design, directly interpreting the replication of Quorum smart contracts
as a replicated state machine. It seems appropriate for a protected environment, which is
not subject to adversarial nodes.

3.10 MultiChain

The MultiChain platform (https://github.com/MultiChain/multichain) is intended for
permissioned blockchains in the financial industry and for multi-currency exchanges in a
consortium, aiming at compatibility with the Bitcoin ecosystem as much as possible.

MultiChain uses a dynamic permissioned model [29]: There is a list of permitted nodes
in the network at all times, identified by their public keys. The list can be changed through
transactions executed on the blockchain, but at all times, only nodes on this list validate
blocks and participate in the protocol.

As the MultiChain platform is derived from Bitcoin, its consensus mechanism is called
“mining” [29]; however, in the permissioned model, the nodes do not solve computational
puzzles. Instead, any permitted node may generate new blocks after waiting for a random
timeout, subject to a diversity parameter p € [0,1] that constrains the acceptable miners
for a given block height. More precisely, if the permitted list has length L, then a block
proposal from a node is only accepted if the blockchain held by the validating node does
not already contain a block generated by the same node among the [pL] most recent blocks.
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Any participating node will extend its blockchain with the first valid block of this kind that
it receives, and if it learns about different, conflicting chain extensions, it will select the
longer one (as in Bitcoin). Furthermore, a well-behaved node will not generate a new block
if its own chain already contains a block of his within the last [pL] blocks.

It appears that the random timeouts and network uncertainty easily lead to forks in the
ledger, even if all nodes are correct. If two different nodes may generate a valid block at
roughly the same time, and any other node will append the one of which it hears first to its
chain, then these two nodes will be forked. This is not different from consensus in Bitcoin
and will eventually converge to a single chain if all nodes follow the protocol. However, if
a single attacking node generates transactions and blocks as it wants, and assuming that
the network behaves favorably for the attack, the node can take over the entire network and
revert arbitrarily many past transactions (in the same way as a “51%-attack” in Bitcoin).

Hence, MultiChain exhibits non-final transactions similar to any proof-of-work consensus.

But whereas lack of finality appears to be a consequence of the public nature of proof-of-work,
and since MultiChain is permissioned, forks and non-final decisions could be avoided here
completely. The traditional consensus protocols for this model, discussed in Sections 2.2 and
2.3, all reach consensus with finality. In the model of non-final consensus decisions, with the
corresponding delays and throughput constraints, the MultiChain consensus protocol can
only remain consistent and live with one single correct node.

3.11 Further platforms

Another recent extension of the Ethereum platform is HydraChain (https://github.com/
HydraChain/hydrachain/blob/develop/README.md), which adds support for creating a
permissioned distributed ledger using the Ethereum infrastructure. The repository describes
a proprietary consensus protocol “initially inspired by Tendermint.” Without clear explanation
of the protocol and formal review of its properties, its correctness remains unclear.

The Swirlds hashgraph algorithm is built into a proprietary “distributed consensus
platform” (https://www.swirlds.com); a white paper is available [5] and the protocol is
also implemented in an open-source consensus platform for distributed applications, called
Babble (https://github.com/babbleio/babble). It targets consensus for a permissioned
blockchain with n nodes and f < n/3 Byzantine faults among them, i.e., the standard
Byzantine consensus problem according to Section 2.3. In contrast to PBFT and other
protocols discussed there, it operates in a “completely asynchronous” model. The white paper
states arguments for the safety and liveness of the protocol and explains that hashgraph
consensus is randomized to circumvent the FLP impossibility [27]. Since the algorithm is
guaranteed to reach agreement on a binary decision (i.e., with only 0/1 outcomes) only
with exponentially small probability in n [5, Thm. 5.16], it appears similar to Ben-Or-style
randomized agreement [14, Sec. 5.5]. However, no independent validation or analysis of
hashgraph consensus is available.
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