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Abstract
UML allows the multi-viewpoint modelling of systems. One important question is whether an
interaction as specified by a sequence diagram can be actually realised in the system. Here,
the latter is specified as a combination of several state machines (one for each lifeline in the
interaction) by a composite structure diagram. In order to tackle this question, we formalise the
involved UML diagram types as institutions, and their relations as institution (co)morphisms.
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1 Introduction

The “Unified Modeling Language” (UML [17]) is a heterogeneous language: UML comprises
a language family of 14 types of diagrams of structural and behavioural nature. These
sub-languages are linked through a common meta-model, i.e., through abstract syntax; their
semantics, however, is informally described mainly in isolation. In [10], we have outlined
our research programme of “institutionalising UML”. Our objective is to give, based on the
theory of institutions [6], formal, heterogeneous semantics to UML, that — besides providing
formal semantics for the individual sub-languages — ultimately allows to ask questions
concerning the consistency between different diagram types and concerning refinement and
implementation in a system development.

The horizontal dimension of the relationship between the different models has to ensure
consistency of the models, i.e., that the models fit together and describe a coherent system.
There are different kinds of consistency checks on the modelling level: Static checks ensuring
type consistency and type correctness between types and instances. Dynamic checks include
the properties and one or several cooperating instances or types. Most of the dynamic
checks are theoretically undecidable, thus fully automatic tools will not be able to answer all
instances. However, in many cases, useful automatic approximations are possible, while in
other cases, manual effort may be involved.

In this paper, we study one such consistency problem that arises between UML state
machine diagrams, UML composite structure diagrams, and UML sequence diagrams. The
central question that we study is: Are the traces of an interaction diagram are realisable
in a system of state machines, interlinked by a composite structure diagram? In order to
answer this question, we need to define institutions for interaction diagrams and composite
structure diagrams. These are also original contributions. By contrast, we can rely on a
previous institution of state machines given in [11].
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The remainder of this paper is structured as follows: In Section 2, we provide some
background on our goal of heterogeneous institution-based UML semantics and introduce a
small example illustrating interactions, state machines and composite structures. In Section 3,
we recall an institution for state machines. The original contribution of this paper starts in
Section 4, where we define an institution for interactions. Section 5 provides an institution
for composite structures. Section 6 provides institution (co)morphisms for the interplay
among these institutions, and discusses the verification of our main property of feasibility of
an interaction. Finally, in Section 7 we conclude with an outlook to future work.

1.1 ATM Example
In order to illustrate our approach to a heterogeneous institutions-based UML semantics, we
use as a small example the design of a traditional automatic teller machine (ATM) connected
to a bank. For simplicity, we only describe the handling of entering a card and a PIN with
the ATM. After entering the card, one has three trials for entering the correct PIN (which is
checked by the bank). After three unsuccessful trials the card is kept.

Figure 1e shows a possible interaction between an atm and a bank in an environment as
a UML sequence diagram which consists of seven messages: after receiving a card and a PIN
input from the environment, the atm requests the bank to verify if the card and PIN number
combination is valid; first, the bank requests to reenter the PIN, but after receiving a second
PIN the verification is successful.

The composite structure of the ATM-bank system is specified in the component diagram
in Figure 1a. In order to communicate with a bank component, the atm component has
a behaviour port called bankCom and the bank component has a behaviour port atmCom.
Furthermore, atm has a port userCom to a user. Interpreted at the component instance level
this composite structure diagram also specifies the initial configuration of the system with
the component instances atm and bank for the interaction.

Figure 1b provides structural information in the form of the interfaces specifying what is
provided at the userCom port of the atm instance (UserIn) and what is required (UserOut).
An interface is a set of operations that other model elements have to implement. In our case,
the interface is described in a class diagram. Here, the operation keepCard is enriched with a
pre-condition trialsNum >= 3 expressed in the “Object Constraint Language” (OCL) which
refines its semantics: keepCard can only be invoked if the constraint holds.

The dynamic behaviour of the atm component is specified by the behavioural state machine
shown in Figure 1c. The machine consists of five states including Idle, CardEntered, etc.
Beginning in the initial Idle state, the user can trigger a state change by entering the card.
This has the effect that the parameter c from the card event is assigned to cardId in the atm.
Entering a PIN triggers another transition to PINEntered. Then the ATM requests verification
from the bank using its bankCom port. The transition to Verifying uses a completion event:
No explicit trigger is declared and the machine autonomously creates such an event whenever
a state is completed, i.e., all internal activities of the state are finished (in our example there
are no such activities). If the interaction with the bank results in reenterPIN, and the guard
trialsNum < 3 is true, the user can again enter a PIN. In general, a state machine proceeds in
run-to-completion steps: In a state, an event is fetched from the machine’s event pool, where
completion events are preferred; a transition outgoing from the state, triggered by the event,
and with its guard satisfied is chosen; and the chosen transition is fired, leaving the source
state, executing the transition’s effects, and entering the target state. Message reception is
recorded by an (external) event in the state machine’s event pool.
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sd
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Figure 1 ATM example

Another behavioural state machine specifies the behaviour of the bank component, see
Figure 1d. For the sake of simplicity, we have omitted almost all details here. The machine
waits in the starting Idle state until a verify event received via the atmCom port triggers the
transition to the Verifying state. The machine then internally calls a check operation on the
cardId and pin transmitted with the verify event. If this check fails, a reenterPIN event is sent
to the ATM, otherwise, verified is sent. In reality, the machine and its check operation will
be more involved. However, since these internals will not interfere with the ATM machine,
they can be omitted here.

While this is a toy example, our envisaged interplay of interactions, state machines
and composite structure diagrams is of industrial use: we cooperate with Fraunhofer IFF
on applications of this very interplay to modelling parts of the smart electricity grid, e.g.,
adaptive grid protection devices and inter-station communication for voltage regulation.
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2 Heterogeneous Institution-based UML Semantics

We have analysed in [9] that existing approaches to multi-view consistency in UML (i.e.,
addressing the question whether a family of UML diagrams is consistent) all have shortcomings
and drawbacks. Indeed, there are only few approaches that cover more than three different
diagram types, and very few that cover composite structure diagrams. Moreover, even those
that do cover the latter do not provide means to answer our central question, whether the
interaction expressed by the sequence diagram can be realised by the interplay of several
state machines that are interconnected through a composite structure diagram.

This situation motivated us to start a larger effort [10] of giving an institution-based
heterogeneous semantics to several UML diagrams. The specific choice of an institution-based
approach is motivated in greater detail in [9]. The work in this paper is part of this effort.
The vision is to provide semantic foundations for model-based specification and design using
a heterogeneous framework based on Goguen’s and Burstall’s theory of institutions [6]. We
handle the complexity of giving a coherent semantics to UML by providing several institutions
formalising different diagrams of UML, and several institution translations (formalised as so-
called institution morphisms and comorphisms) describing their interaction and information
flow. The central advantage of this approach over previous approaches to formal semantics
for UML (e.g., [13]) is that each UML diagram type can stay “as-is”, without the immediate
need of a coding using graph grammars (as in [3]) or some logic (as in [13]). Such coding
can be done at verification time — this keeps full flexibility in the choice of verification
mechanisms. The formalisation of UML diagrams as institutions has the additional benefit
that a notion of refinement comes for free, see [2] and Section 6 below. Furthermore, the
framework is flexible enough to support various development paradigms as well as different
resolutions of UML’s semantic variation points. This is the crucial advantage of the proposed
approach to the semantics of UML, compared to existing approaches in the literature which
map UML to a specific global semantic domain in a fixed way.

2.1 Institutions

Institutions are an abstract formalisation of the notion of logical systems. Informally,
institutions provide four different logical notions: signatures, sentences, structures1, and
satisfaction. Signatures provide the vocabulary that may appear in sentences and that is
interpreted in structures (= realisations). The satisfaction relation determines whether a
given sentence is satisfied in a given structure. The exact nature of signatures, sentences,
and structures is left unspecified, which leads to a great flexibility. This is crucial for the
possibility to model UML diagrams (which in the first place are not “logics”) as institutions.

More formally [6], an institution I = (SigI ,SenI ,StrI , |=I ) consists of (i) a category of
signatures SigI ; (ii) a sentence functor SenI : SigI → Set, where Set is the category of sets;
(iii) a contra-variant structure functor StrI : (SigI )op → Class, where Class is the category
of classes; and (iv) a family of satisfaction relations |=I

Σ ⊆ StrI (Σ)× SenI (Σ) indexed over
Σ ∈ |SigI |, such that the following satisfaction condition holds for every signature morphism
σ : Σ→ Σ′ in SigI , every sentence ϕ ∈ SenI (Σ), and every Σ′-structure M ′ ∈ StrI (Σ′):

StrI (σ)(M ′) |=I
Σ ϕ ⇔ M ′ |=I

Σ′ SenI (σ)(ϕ) .

1 Structures are called models in [6]. We use the term structure (and, interchangeably, realisation) here in
order to avoid confusion with the term model in the sense of model-driven engineering.
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StrI (σ) is called the reduct functor (also written −|σ), SenI (σ) the translation function
(also written σ(−)).

A theory T in an institution consists of a signature Σ, written sig(T ), and a set of
Σ-sentences; its structure class is the class of all Σ-structures satisfying the sentences.

In the next sections, we formalise different UML diagram types as institutions. We will
also need to relate institutions via so-called comorphisms. They formalise the intuition of
translating or encoding an institution into another one.

An institution comorphism [7] ρ : I → J consists of a functor Φ : SigI → SigJ , a
natural transformation α : SenI →̇ Φ ; SenJ , and a natural transformation β : Φop ; StrJ →̇
StrI , such that for any Σ ∈ |SigI |, for any ϕ ∈ SenI (Σ), and any M ′ ∈ StrJ (Φ(Σ)) the
following satisfaction condition holds:

M ′ |=J
Φ(Σ) αΣ(ϕ) ⇔ βΣ(M ′) |=I

Σ ϕ .

By contrast, institution morphisms formalise the intuition of mapping a “richer” institution
onto a “poorer” or more abstract one. Both morphisms and comorphisms also come in
a “semi” variant (i.e., semi-morphisms and semi-comorphisms) [7]. These omit both the
sentence translation and the satisfaction condition. Semi-(co-)morphisms can provide a model-
theoretic link between institutions that are too different to permit a sentence translation,
e.g., interactions and state machines. Here, we only need semi-morphisms.

An institution semi-morphism µ : I →J consists of a functor Φ : SigI → SigJ and a
natural transformation β : StrI →̇ Φop ; StrJ .

3 An Institution for Simple UML State Machines

We recall our institution for UML simple (non-hierarchical) state machines from [11]; an
institution also covering hierarchical states has been developed in [5]. We only need the
so-called flat state machine institution. Signatures Σ consist of a set of actions A(Σ), a set of
messages M (Σ), a set of variables V (Σ), a set of (external) events E (Σ), a set of completion
events F (Σ), and a set of states S (Σ), such that E (Σ)∩F (Σ) = ∅ = E (Σ)∩ S (Σ). Signature
morphisms map signatures component-wise, where the maps for E (Σ), F (Σ) and S (Σ) need
to be injective.

I Example 1. Considering the UML state machine ATM in Figure 1c, its signature ATMSig
will contain the actions userCom.ejectCard(); trialsNum = 0 and trialsNum++, as well as
the messages userCom.ejectCard() and bankCom.markInvalid(cardId). Variables will include
trialsNum. There are no internal events. States (and completion events) will include Idle,
CardEntered, PINEntered, Verifying and Verified. J

Sentences are labelled transition systems (LTS) with states in S (Σ) and labels in (E (Σ)∪
F (Σ))×G(V (Σ))×A(Σ)× ℘(F (Σ)), where G(V (Σ)) is a set of guard sentences over V (Σ).
For example, the graphs of the state machines in Figures 1c and 1d are such LTS.

I Example 2. Continuing the previous example for the state machine of Figure 1c defining
the behaviour of ATM, this state machine can be represented as the following sentence over
this signature:

(Idle, {Idle card(c)[true]/cardId = c,∅−−−−−−−−−−−−−−−→
T

CardEntered,

CardEntered PIN(p)[true]/pin = p,PINEntered−−−−−−−−−−−−−−−−−−−→
T

PINEntered,

CALCO 2017



15:6 UML Interactions Meet State Machines – An Institutional Approach

PINEntered PINEntered[true]/bank.verify(cardId, pin),∅−−−−−−−−−−−−−−−−−−−−−−−−→
T

Verifying,

Verifying reenterPIN[trialsNum < 3]/trialsNum++,∅−−−−−−−−−−−−−−−−−−−−−−−−→
T

CardEntered, . . .}) .

In particular, PINEntered occurs both as a state and as a completion event to which the third
transition reacts. The junction pseudostate for making the decision whether trialsNum < 3
or trialsNum >= 3 has been resolved by combining the transitions. J

Structures involve a set of configurations Conf (Σ). A configuration consists of a valuation
over variables in V (Σ) in some value domain, an event pool consisting of a sequence events over
E (Σ) ∪ F (Σ), and a state s ∈ S (Σ). Structures are pairs Θ = (IΘ,∆Θ) where IΘ ⊆ Conf (Σ)
is the set of initial configurations, and ∆Θ ⊆ Conf (Σ) × Lbl(Σ) × Conf (Σ) is a labelled
transition relation, for a suitable set of labels Lbl . In [11], we use sets of messages from
M (Σ) as labels, i.e., Lbl(Σ) = ℘(M (Σ)). The drawback is that such a modelling of state
machines does not cater for external events being consumed by the state machine. As a
consequence, the interleaving product construction in [11] has to deeply look into state
machine configurations. By contrast, we here want to treat configurations as black boxes.
We therefore choose the set of labels as

Lbl(Σ) = {out(M ′) | M ′ ⊆ M (Σ)} ∪ {in(M ′) | M ′ ⊆ M (Σ)} .

That is, a transition can either emit a set of messages M ′, in the same way as in [11].
Alternatively, a transition can also consume a set of messages M ′, which is then just added to
the event pool of the machine’s configuration (state and variable valuation are not affected).

Satisfaction of a sentence (which essentially is a syntactic LTS) in a structure (which
essentially is a semantic LTS, i.e. enriches states with variable valuations and event pools)
means that the semantic LTS makes moves as prescribed by the syntactic LTS, if the
respective guard evaluates to true, while simultaneously updating the variable valuation and
the event pool. For details, see [11]. Consumed messages in(M ′) lead to a slight change
w.r.t. [11], the formalisation of which is obvious.

Altogether, this gives us a flat state machine institution SM. Flatness here refers to
the staged construction of the state machine institution in [11], starting with institutions of
actions and guards. The flat construction in [11] directly incorporates these institutions into
the state machine institution.

4 An Institution for Simple UML Interactions

UML sequence diagrams are one variant of UML interactions that specify the communication
between several components (state machines and also users) of a system. We here formalise
a simplified version of sequence diagrams as an institution.

Signatures Σ consist of a set L(Σ) of lifelines and a set M (Σ) of messages. For simplicity,
we do not consider any typing of lifelines or messages. If Σ and Σ′ are signatures, then a
signature morphism σ : Σ→ Σ′ consists of an injective function L(σ) : L(Σ)→ L(Σ′) and a
function M (σ) : M (Σ)→ M (Σ′).

Sentences over the signature Σ are given by the following grammar:

F ::= skip | snd(s, r ,m) | snd(s,m) | rcv(s, r ,m) | rcv(r ,m) |
strict(F1,F2) | seq(F1,F2) | par(F1,F2) | alt(F1,F2)

skip is the empty interaction. snd(s, r ,m) denotes the event of lifeline s ∈ L(Σ) sending
message m ∈ M (Σ) to lifeline r ∈ L(Σ), whereas snd(s,m) denotes the sending from s to
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the environment. Conversely, rcv(s, r ,m) is the event of r receiving message m from s,
and rcv(r ,m) the reception of m from the environment. strict(F1,F2) is strict sequencing
of interactions, i.e., all events in F1 must occur before those in F2. seq(F1,F2) is weak
sequencing, only imposing the restriction that events keep their lifeline-wise order. par(F1,

F2) allows for any parallel interleaving of F1 and F2. alt(F1,F2) chooses either F1 or F2. In
this interaction sub-language we omit, in particular, guards, hiding by ignore and consider,
and so-called negative behaviour as specified with neg and assert; a more comprehensive
account is provided in [20]. Translation of a sentence by a signature morphism σ is the
straightforward lifting of σ to the operators.

I Example 3. Consider the interaction in Figure 1e. Its signature ScenarioSig consists of
two lifelines atm and bank, as well as the seven messages card(17), PIN(4711), verify(17, 4711),
etc. The interaction is then directly expressed by the sentence

seq
(
rcv(atm, card(17)),
seq
(
rcv(atm,PIN(4711)),
seq
(
strict(snd(atm, bank, verify(17, 4711)), rcv(atm, bank, verify(17, 4711))),
seq
(
strict(snd(bank, atm, reenterPIN()), rcv(bank, atm, reenterPIN())),
seq
(
rcv(atm,PIN(4242)), . . .

)))))
where UML’s default composition mechanism is weak sequencing, and strict sequencing is
used to express UML’s requirement that a message must be sent before it can be received. J

Structures over a signature Σ involve traces of events. Events E (Σ) are either of the form
snd(s, r ,m) (“object s ∈ L(Σ) sends invocation m ∈ M (Σ) to object r ∈ L(Σ)”), snd(s,m)
(“s sends m to the environment”), rcv(s, r ,m) (“r receives m from s”), or rcv(r ,m) (“r
receives m from the environment”). An event trace t ∈ E (Σ)∗ is a sequence of events,
where 〈〉 denotes the empty sequence and e :: t event concatenation. A Σ-structure is
then a set of event traces T ⊆ E (Σ)∗. A signature morphism σ : Σ → Σ′ is applied to
events by σ(snd(s, r ,m)) = snd(L(σ)(s),L(σ)(r),M (σ)(m)) and similarly for σ(snd(s,m)),
σ(rcv(s, r ,m)), and σ(rcv(r ,m)); and also to event traces by σ(〈〉) = 〈〉 and σ(e :: t) =
σ(e) :: σ(t). The reduct of T ′ ⊆ E (Σ′)∗ along σ : Σ→ Σ′ is defined by taking the preimage
of σ on event traces:

T ′|σ = {t | σ(t) ∈ T ′} .

In order to define the semantics of sentences, we need some auxiliary notions on events
and traces: The set of lifelines α(e) active in an event e is defined as α(snd(s, r ,m)) = {s} =
α(snd(s,m)) and α(rcv(s, r ,m)) = {r} = α(rcv(r ,m)). Two events e1 and e2 are in conflict,
written as e1 <> e2, if they share active lifelines, i.e., α(e1) ∩ α(e2) 6= ∅. We use the following
binary operations on traces yielding sets of traces, which we will also apply to sets of traces
defining T1 ♦ T2 =

⋃
{t1 ♦ t2 | t1 ∈ T1, t2 ∈ T2}:

Strict sequencing In t1 ; t2, all events of t1 must occur before all events of t2:

〈〉 ; t2 = {t2} , (e :: t1) ; t2 = {e :: t | t ∈ t1 ; t2}

Weak sequencing In t1 ;<> t2, events of t1 may also occur after events of t2. However, the
ordering on lifelines must be preserved; this is ensured by the conflict condition ¬(e1 <> e2):

〈〉 ;<> t2 = {t2} , t1 ;<> 〈〉 = {t1} ,
(e1 :: t1) ;<> (e2 :: t2) = {e1 :: t | t ∈ t1 ;<> (e2 :: t2)} ∪

{e2 :: t | t ∈ (e1 :: t1) ;<> t2, ¬(e1 <> e2)}
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Interleaving t1 ‖ t2 implements parallel interleaving of traces t1 and t2:

〈〉 ‖ t2 = {t2} , t1 ‖ 〈〉 = {t1} ,
(e1 :: t1) ‖ (e2 :: t2) = {e1 :: t | t ∈ t1 ‖ (e2 :: t2)} ∪ {e2 :: t | t ∈ (e1 :: t1) ‖ t2}

With these preliminaries, we are now ready to define the set of traces of a sentence:

P(skip) = {〈〉} P(strict(F1,F2)) = P(F1) ; P(F2)
P(snd(s, r ,m)) = {〈snd(s, r ,m)〉} P(seq(F1,F2)) = P(F1) ;<> P(F2)
P(snd(s,m)) = {〈snd(s,m)〉} P(par(F1,F2)) = P(F1) ‖P(F2)
P(rcv(s, r ,m)) = {〈rcv(s, r ,m)〉} P(alt(F1,F2)) = P(F1) ∪P(F2)
P(rcv(r ,m)) = {〈rcv(r ,m)〉}

The satisfaction relation requires that a sentence is satisfied in a structure iff some of the
sentence’s traces occur in the structure:

T |=Σ F ⇔ P(F ) ∩ T 6= ∅ .

In fact, injectivity of L(σ) in signature morphisms is needed for ensuring the satisfaction
condition: Consider Σ and Σ′ with L(Σ) = {l1, l2, l3, l4}, M (Σ) = {m} = M (Σ′), L(Σ′) =
{l , l3, l4}, and σ : Σ → Σ′ mapping l1 and l2 to l and the rest identically. Let T ′ =
{〈snd(l , l4,m), snd(l , l3,m)〉} and F = seq(snd(l1, l3,m), snd(l2, l4,m)). Then T ′|σ |=Σ F
(witnessed by the trace 〈snd(l2, l4,m), snd(l1, l3,m)〉), but T ′ 6|=Σ′ σ(F ) as snd(l , l4,m) <>
snd(l , l3,m) prohibiting the event order to be changed in the sequential composition.

To show the satisfaction condition for the injective case, we need a lemma:

I Lemma 4. Let σ : Σ→ Σ′ be a signature morphism.
1. P(σ(F )) ⊆ σ(E (Σ)∗).
2. P(σ(F )) = σ(P(F )).

Proof. (1) By a straightforward induction on the structure of F .
(2) By induction on the structure of F . We only show the cases of skip, snd, and seq:

P(σ(skip)) = P(skip) = {〈〉} = σ({〈〉}) = σ(P(skip)) ;

P(σ(snd(ls , lr ,m))) = P(snd(L(σ)(ls),L(σ)(lr ),M (σ)(m))) =
{〈snd(L(σ)(ls),L(σ)(lr ),M (σ)(m))〉} = σ(P(snd(ls , lr ,m))) ;

P(σ(seq(F1,F2))) = P(seq(σ(F1), σ(F2))) = P(σ(F1)) ;<> P(σ(F2)) =
σ(P(F1)) ;<> σ(P(F2)) = σ(P(F1) ;<> P(F2)) = σ(P(seq(F1,F2))) ,

where injectivity of L(σ) is needed for σ(P(F1)) ;<> σ(P(F2)) = σ(P(F1) ;<>P(F2)). J

I Proposition 5 (Satisfaction condition). Let σ : Σ→ Σ′ be a signature morphism and T ′ a
structure over Σ′. Then T ′|σ |=Σ F ⇔ T ′ |=Σ′ σ(F ).

Proof. We have T ′|σ |=Σ F iff P(F )∩σ−1(T ′) 6= ∅ iff (*) σ(P(F ))∩σ(σ−1(T ′)) 6= ∅ iff (by
Lemma 4(2)) P(σ(F ))∩σ(σ−1(T ′)) 6= ∅ iff (**) P(σ(F ))∩T ′ 6= ∅ iff T ′ |=Σ′ σ(F ). Step (**)
from left to right follows since σ(σ−1(T ′)) ⊆ T ′. For the converse direction, if P(σ(F ))∩T ′ 6=
∅, by Lemma 4(1), P(σ(F )) ∩ σ(E (Σ)∗) ∩ T ′ 6= ∅, hence P(σ(F )) ∩ σ(σ−1(T ′)) 6= ∅. Step
(*) from left to right is clear. From right to left, if t1 ∈ P(F ) and t2 ∈ σ−1(T ′) with
σ(t1) = σ(t2), then t1 ∈P(F ) ∩ σ−1(T ′). J
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Altogether, this gives us an institution SD of sequence diagrams.
If one wants to drop the restriction of injectivity for signature morphisms, one could use so-

called extended structures [21]. This would mean to start with signature morphisms without
injectivity restriction, which only leads to a so-called pre-institution (i.e., an institution
without satisfaction condition). From a pre-institution, one can build an institution of
extended structures. An extended structure over a signature Σ is a pair (σ,M ′) where
σ : Σ→ Σ′ is a (pre-institution, here: possibly non-injective) signature morphism and M ′ is a
Σ′-structure. The institution of extended structures always enjoys the satisfaction condition.

5 An Institution for Simple UML Composite Structures

A UML composite structure diagram specifies the linkage of component instances com-
municating through ports over connectors interlinking ports. We formalise a simplified
(non-hierarchical) variant of composite structures here. All connectors are binary and each
component instance is equipped with a state machine for describing its behaviour.

A composite structure signature Σ consists of a set of components C (Σ); a state machine
assignment S (Σ) : C (Σ)→ |SM-Sig|, where SM-Sig is the category of signatures of the flat
state machine institution (see Section 3); a set P(Σ) of ports p each showing a component
c(p) ∈ C (Σ), a port name n(p), and a set of messages M (p); and a symmetric binary relation
Γ(Σ) ⊆ P(Σ)× P(Σ) of connectors that connect ports, such that

for each port p ∈ P(Σ) and each message m ∈ M (p), the prefixed message n(p).m is a
message of component c’s state machine, i.e., n(p).m ∈ M (S (Σ)(c)), and
for each connector (p1, p2) ∈ Γ(Σ), M (p1) = M (p2), i.e., messages are fully compatible.

We say that port p ∈ P(Σ) is open in Γ(Σ) if there is no p′ ∈ P(Σ) such that (p, p′) ∈ Γ(Σ);
otherwise p is connected.

Note that we consider the message components M (S (Σ)(c)) of the state machine signatures
only. The event components are not relevant here, because they refer to internal events, and
these cannot be sent over a connection.

I Example 6. Consider the composite structure in Figure 1a. Its signature SystemSig
features two components atm and bank. The state machine signature S (SystemSig)(atm)
is that of Example 1. The set of ports is P(SystemSig) = {atmCom, bankCom} with
c(bankCom) = atm, c(atmCom) = bank, n(atmCom) = atmCom, n(bankCom) = bankCom,
and M (atmCom) = {verify(−, −), reenterPIN(), verified(),markInvalid(−)} = M (bankCom).
The placeholders − denote possible arguments, leading to an infinite set of possible messages.
The set of connectors is Γ(SystemSig) = {(atmCom, bankCom), (bankCom, atmCom)}.

The first condition on signatures means that the involved state machines must be able to
communicate all port messages by prefixing with the port name. For example, the bank state
machine in Figure 1d can emit a message atmCom.verified, and the ATM state machine in
Figure 1c can receive a message bankCom.verified as trigger. Both messages are prefixed with
the port name. Inside the port, the message is just verified in both cases. The second condition
on signatures ensures that all such shared messages can be sent over the connector. J

A signature morphism σ : Σ→ Σ′ consists of a function C (σ) : C (Σ)→ C (Σ′) mapping
components; for each c ∈ C (Σ), a signature morphism S (σ)(c) : S (Σ)(c)→ S (Σ′)(C (σ)(c)) ∈
SM-Sig interfacing the state machine signatures; a function P(σ) : P(Σ)→ P(Σ′) mapping
ports; and a function M (σ) :

⋃
{M (p) | p ∈ P(Σ)} →

⋃
{M (p′) | p′ ∈ P(Σ′)} mapping

messages, such that
for each port p ∈ P(Σ), M (σ)(M (p)) ⊆ M (P(σ)(p)), that is, M (σ) restricts to the port
appropriately, and
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(P(σ)× P(σ))(Γ(Σ)) ⊆ Γ(Σ′), i.e., connectors are preserved.

Sentences are pairs (c, ϕ) with c ∈ C and ϕ ∈ SM-Sen(S (Σ)(c)). Thus, on any
component, we can impose state machine sentences over the signature of that component.
Sentence translation is defined by σ(c, ϕ) = (C (σ)(c),S (σ)(c)(ϕ)).

Structures are families R = (R(c) ∈ SM-Str(S (Σ)(c)))c∈C (Σ) of state machine struc-
tures. Given a signature morphism σ : Σ → Σ′ and a Σ′-structure R′ = (R′(c′) ∈
SM-Str(S (Σ′)(c′)))c′∈C (Σ′), its σ-reduct is

R′|σ = (R′(C (σ)(c))|S (σ)(c))c∈C (Σ) .

Satisfaction is defined by selecting the appropriate component:

R |=Σ (c, ϕ) ⇔ R(c) |=SM
S(Σ)(c) ϕ .

Also, the satisfaction condition holds:

I Proposition 7. Let σ : Σ→ Σ′ be a signature morphism and R′ a structure over Σ′. Then
R′|σ |=Σ (c, ϕ)⇔ R′ |=Σ′ σ(c, ϕ).

Proof. R′|σ |=Σ (c, ϕ) iff R′(C (σ)(c))|S (σ)(c) |=SM
S(Σ)(c) ϕ iff (by the satisfaction condition

in SM) R′(C (σ)(c)) |=SM
S(Σ′)(C (σ)(c)) S (σ)(c)(ϕ) iff R′ |=Σ′ σ(c, ϕ). J

Altogether, this gives us an institution CMP of composite structure diagrams.
Note that ports and connectors do not play a role for the satisfaction relation. They will

play a role in the interaction with other institutions, the topic of the next section.

6 Putting It All Together

Our ultimate goal is the formalisation of the question whether the traces of an interaction
diagram are realisable in a system of state machines, interlinked by a composite structure
diagram. We will now introduce the institution translations necessary for reaching this goal.

6.1 Comorphism SM→ CMP
We introduce a comorphism SM→ CMP that can be used to construe a single state machine
as a (singleton) composite structure. It is a trivial embedding and acts as follows:
Signatures ΣSM 7→ ΣCMP with C (ΣCMP) = {cid}, S (ΣCMP)(cid) = ΣSM, P(ΣCMP) = ∅,

and Γ(ΣCMP) = ∅
Sentences ϕSM 7→ (cid , ϕSM)
Realisations RCMP 7→ RCMP(cid)
The satisfaction condition follows trivially.

Note that the resulting composite structure will name the single component cid . This
can be changed with a renaming along a signature morphism.

6.2 Semi-morphism CMP→ SD
Since interactions and composite structures have very different sentences, all we can hope for
is to relate them via an institution semi-morphism CMP→ SD. On signatures, it construes
components as lifelines, and it assembles all possible messages that can be sent via the
connectors. These are messages that are available in the state machines of the components,
but prefixed with the respective port name. For example, the bank state machine in Figure 1d
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can emit a message atmCom.verified, and the ATM state machine in Figure 1c can receive a
message bankCom.verified as trigger. In the interaction of Figure 1e, there is a message verified
that corresponds to the message atmCom.verified sent over the connector and being received
as bankCom.verified. Hence, the message verified will appear in the resulting interaction
signature.

More formally, a composite structure signature ΣCMP is mapped to the interaction
signature Φ(ΣCMP) with L(Φ(ΣCMP)) = C and

M (Φ(ΣCMP)) =
⋃
{M (p) | p ∈ P(ΣCMP)}

A signature morphism σCMP : ΣCMP → Σ′CMP is mapped to Φ(σCMP) : Φ(ΣCMP) →
Φ(Σ′CMP) with L(Φ(σCMP)) = C (σCMP) and M (Φ(σCMP)) = M (σCMP).

Concerning structures, note that a structure in CMP is a family of state machine
structures: Form the interleaving product of these, and take the traces over the interleaved
product. This is defined as a set of the message sequences of all possible runs in the labelled
transition system, starting with an initial state. This gives an interaction structure.

We will now make this construction more precise. Note that we do not use the interleaved
product construction from [11], because it is not abstract enough. That construction
assumes that variable sets are shared (i.e., “shared memory”), and it moreover looks into the
configurations of the state machines, e.g., in order to inject events into their event pools. By
contrast, we here take a black-box view on state machines, and only use labels on transitions
for communication among state machines. As a side effect, we also overcome the restriction
made in [11] that state sets of the involved state machines must be disjoint, as well as their
event sets. Moreover, a major difference is that in [11] we have used shared message names
for communication, while here, communication happens only via explicit connectors.

Given a ΣCMP-structure R in CMP, we construct an LTS Π(R) representing the
interleaved product as follows: Let us abbreviate C (ΣCMP) by CCMP, S (ΣCMP) by SCMP,
and Γ(ΣCMP) by ΓCMP. Let R(c) = (IRc ,∆Rc ) for each c ∈ CCMP. The state space of
Π(R) is given by

∏
c∈CCMP

Conf (SCMP(c)). Its set of initial states is given by
∏

c∈CCMP
IRc .

The transitions are given by

(sc)c∈CCMP
E−−−→

Π(R)
(s ′c)c∈CCMP

if there is a component ĉ ∈ CCMP such that
either sĉ

in(Mĉ)−−−−→
∆Rĉ

s ′ĉ with all ports in {p | c(p) = ĉ, n(p).m ∈ Mĉ} open in ΓCMP,

E = {rcv(ĉ,m) | n.m ∈ Mĉ}, and sc
out(∅)−−−−→
∆Rc

s ′c or sc = s ′c for all c ∈ CCMP \ {ĉ}; i.e.,

component ĉ receives input from the environment through its open ports and all other
components make only internal steps;
or sĉ

out(M ′
ĉ)−−−−−→

∆Rĉ

s ′ĉ with {p | c(p) = ĉ, n(p).m ∈ Mĉ} = P0 ∪ P1 such that all ports in P0

are open and all ports in P1 connected in ΓCMP, E = {snd(ĉ,m) | p0 ∈ P0, n(p0).m ∈
Mĉ} ∪ {snd(ĉ, c(p2),m), rcv(ĉ, c(p2),m) | p1 ∈ P1, (p1, p2) ∈ ΓCMP, n(p1).m ∈ M ′ĉ},

sc(p2)
in(Mc(p2))
−−−−−−−→

∆Rc(p2)

s ′c(p2) with Mc(p2) = {n(p2).m | n(p1).m ∈ Mĉ} for each (p1, p2) ∈

ΓCMP and p1 ∈ P1, and sc
out(∅)−−−−→
∆Rc

s ′c or sc = s ′c for c ∈ CCMP \ ({ĉ} ∪ {c(p2) | p1 ∈

P1, (p1, p2) ∈ ΓCMP}); i.e., component ĉ sends messages which are received either by
connected partners or the environment, and all other components not participating in
the communication make only internal steps.
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Based on this, the set of traces Tr(Π(R)) of Π(R) is defined as follows: A finite run
in Π(R) is an alternating sequence s0 E1 s1 . . . En sn with s0 ∈ I and si−1

Ei−−−→
Π(R)

si for

i = 1, . . . ,n. In this case, any E 1 . . . En is a trace of Π(R), where for i = 1, . . . ,n, E i is a
sequence with the same elements as the set Ei and all snd-events occur before all rcv-events.

Tr(Π(R)) is the translation of the structure R by the semi-morphism.

I Example 8. Consider the composite structure diagram in Figure 1a, showing instances
atm and bank of the ATM and Bank components, respectively, that are connected through
their bankCom and atmCom ports. In execution, atm and bank will exchange messages, as
prescribed by their state machines, and this exchange is reflected by the interleaving product.
Messages atmCom.verified (sent by the bank state machine) and bankCom.verified (received
by the ATM state machine) will be unified to message verified in the interleaving product
LTS and in its traces. J

6.3 Are Interactions Realisable?
Our initial question was whether the traces of an interaction diagram realisable in a system
of state machines, interlinked by a composite structure diagram. This question can now
be formalised as follows: The system of state machines is formalised as a theory in the
institution CMP, using the comorphism SM→ CMP to inject individual state machines
into the system. This theory typically has a unique structure (because state machine theories
have a unique structure). The structure of this theory in CMP can be translated along the
semi-morphism CMP→ SD, resulting in a set of traces. If this intersects with the traces of
the interaction, the interaction is realisable in the system of state machines.

This verification condition can also be expressed in the Distributed Ontology, Model
and Specification Language (DOL) [18, 14]2, which recently has been adopted as a standard
by the Object Management Group (OMG). UML diagrams can be referenced in DOL as-is
using the standard interchange format XMI without the need of an encoding into some other
language. The system of two state machines linked by a composite structure diagram can be
expressed as follows, using the institution comorphism sm2cmp : SM→ CMP introduced in
Section 6.1 above:
model System =

ATM_behaviour with translation sm2cmp with cid |-> atm
and

Bank_behaviour with translation sm2cmp with cid |-> bank
then

cmp
end

Recall that sm2cmp provides exactly one component with name cid. Using renaming in DOL,
we can create two different components of the composite structure diagram, which are joined
by a DOL union. The part cmp contains the specification of ports and connectors from the
UML diagram.

We now express that this system can realise the interactions expressed in sequence
diagram ATM2Bank_Scenario as a refinement in DOL:
refinement r2 =

ATM2Bank_Scenario refined to { System hide along cmp2sd }
end

2 See also http://www.omg.org/spec/DOL/ and http://dol-omg.org.

http://www.omg.org/spec/DOL/
http://dol-omg.org
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Here, cmp2sd : CMP→ SD is the institution semi-morphism introduced in Section 6.2. The
semantics of the DOL refinement is just structure class inclusion. This means that each
structure of System hide along cmp2sd must be a structure of ATM2Bank_Scenario. Now
a structure of System is the (typically unique) family of semantic transition systems for the
involved state machines (here atm and bank). hide along cmp2sd invokes translation along
the institution semi-morphism cmp2sd. The result is the set of traces in the interleaved
product. The requirement is now that this is a structure of ATM2Bank_Scenario, which means
that at least one trace of the interleaved product must be a trace of ATM2Bank_Scenario.
Hence, this exactly captures the condition that the interaction is realisable in the system of
state machines as specified by the composite structure diagram.

I Example 9. The interaction in Figure 1e can be realised by the composite structure in
Figure 1a that connects the state machines in Figure 1d and Figure 1c. J

During a typical development process, UML diagrams are refined and more details are
added. We have

I Proposition 10. Realisability of interactions is preserved when the composite structure
diagram (with its state machines) is refined.

Proof. By the above discussion, realisability of interactions can be expressed as a refinement.
Moreover, refinements compose. J

Note that realisability of interactions is in general not preserved when the interaction
itself is refined.

7 Conclusions

We have presented an important step in our program of formalising families of UML diagrams
using institutions. This formalisation makes UML diagrams ready for use with the OMG-
standardised Distributed Ontology, Model and Specification Language (DOL), which for
example can express refinements. Our initial question whether interaction is realisable in
the system of state machines as specified by the composite structure diagram can be indeed
expressed as a DOL refinement. Such meta relations between UML models are normally
expressed in an ad-hoc way. With our approach, meta relations can be expressed in DOL, a
formal language with a formal, institution-based semantics.

Related approaches to semantics of UML composite structures are [19, 1, 16]. While [1]
only consider static semantics, [19, 16] also consider behaviour. However, [19] do cover neither
interaction diagrams nor composite structures explicitly (they use some ad-hoc sequence of
actions as well as parallel composition in Object-Z), and while [16] treat composite structures
in great detail (also with some operational semantics, which however is not explicated in the
paper), they do not consider interactions.

Related approaches formalising connectors such as [4] use a more category-theoretic
notation and approach. While this is mathematically more elegant, our approach has the
advantage of supporting UML diagrams as they are, without any need of encoding. Moreover,
since we support signature morphisms, DOL’s modularity constructs (which include constructs
for networks of models3 and their colimit) can be fully used also for UML diagrams.

3 Technically, a network of (UML) models is a diagram (in the sense of category theory) of logical theories
that possibly live in different institutions.
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Note that in the sense of [8], our approach is one of asynchronously communicating
components. This is because each UML state machine is equipped with its own event
pool, which acts as a communication buffer. It should be possible to use the results of
[8] for studying (weak) asynchronous compatibility of UML composite structures. This
notion ensures that all messages that are sent by some state machine are indeed accepted by
another one. Note however that UML has a very simple mechanism to avoid deadlocks of
communicating state machines: messages that cannot be processed by a state machine are
simply dropped from the event buffer (this is also built-in in our state machine institution).
Still, it may be interesting to know whether such situations actually happen or not.

Another important piece of future work is the provision of tool support. The tool Hugo/RT
allows checking realisability of interactions for a set of communicating UML state machines,
see our previous work [12]. There, a restricted subset of UML interactions is translated into
a kind of Büchi automata. While UML composite structures are not considered there, it
should be possible to realise our interleaved product construction in Hugo/RT, such that the
verification conditions studied in the present paper can be checked as well. The Heterogeneous
Tool Set (Hets [15]) provides analysis and proof support for multi-logic specifications in
DOL, based on a strong semantic (institution-based) backbone. With Hets, also refinements
can be specified and checked. And indeed, Hets can already read in and process XMI
files, OMG’s interchange format for UML diagrams. Our ultimate goal is to provide a
complete integration of a family of UML diagrams into the DOL/Hets ecosystem, and thus
to provide tools for UML that are currently not available (see the extensive discussion
in [9]): namely comprehensive semantically-grounded support for checking consistency and
verification conditions of multi-view UML diagrams.

References
1 Umesh Bellur and V. Vallieswaran. On OO Design Consistency in Iterative Development.

In Proc. 3rd Intl. Conf. Information Technology: New Generations (ITNG’06), pages 46–51.
IEEE, 2006.

2 Mihai Codescu, Till Mossakowski, Don Sannella, and Andrzej Tarlecki. Specification Re-
finements: Calculi, Tools, and Applications. Sci. Comp. Prog., 2017. To appear.

3 Gregor Engels, Reiko Heckel, and Jochen Malte Küster. The Consistency Workbench:
A Tool for Consistency Management in UML-Based Development. In Perdita Stevens,
Jon Whittle, and Grady Booch, editors, Proc. 6th Intl. Conf. Unified Modeling Language
(UML’03), volume 2863 of Lect Notes Comp. Sci. Springer, 2003.

4 José Luiz Fiadeiro. Categories for Software Engineering. Springer, 2005.
5 Martin Glauer. Institution for Hierarchical UML State Machines. Master thesis, Otto-von-

Guericke-Universität Magdeburg, 2015.
6 Joseph A. Goguen and Rod M. Burstall. Institutions: Abstract Model Theory for Specific-

ation and Programming. J. ACM, 39:95–146, 1992.
7 Joseph A. Goguen and Grigore Roşu. Institution Morphisms. Formal Asp. Comp., 13:274–

307, 2002.
8 Rolf Hennicker, Michel Bidoit, and Thanh-Son Dang. On Synchronous and Asynchron-

ous Compatibility of Communicating Components. In Alberto Lluch-Lafuente and José
Proença, editors, Proc. 18th IFIP WG 6.1 Intl. Conf. Coordination Models and Languages
(COORDINATION’16), volume 9686 of Lect. Notes Comp. Sci., pages 138–156. Springer,
2016.

9 Alexander Knapp and Till Mossakowski. Multi-view Consistency in UML, 2016. URL:
https://arxiv.org/abs/1610.03960.

https://arxiv.org/abs/1610.03960


A. Knapp and T. Mossakowski 15:15

10 Alexander Knapp, Till Mossakowski, and Markus Roggenbach. An Institutional Framework
for Heterogeneous Formal Development in UML. A Position Paper. In Rocco De Nicola
and Rolf Hennicker, editors, Software, Services, and Systems. Essays Dedicated to Martin
Wirsing on the Occasion of His Retirement from the Chair of Programming and Software
Engineering, volume 8950 of Lect. Notes Comp. Sci., pages 215–230. Springer, 2015.

11 Alexander Knapp, Till Mossakowski, Markus Roggenbach, and Martin Glauer. An Institu-
tion for Simple UML State Machines. In Alexander Egyed and Ina Schaefer, editors, Proc.
18th Intl. Conf. Fundamental Approaches to Software Engineering (FASE’15), volume 9033
of Lect. Notes Comp. Sci., pages 3–18. Springer, 2015.

12 Alexander Knapp and Jochen Wuttke. Model Checking of UML 2.0 Interactions. In Thomas
Kühne, editor, Reports Rev. Sel. Papers Ws.s Symp.s MoDELS 2006, volume 4364 of Lect.
Notes Comp. Sci., pages 42–51. Springer, 2007.

13 Kevin Lano, editor. UML 2 — Semantics and Applications. Wiley, 2009.
14 Till Mossakowski, Mihai Codescu, Fabian Neuhaus, and Oliver Kutz. The Distributed

Ontology, Modelling and Specification Language — DOL. In Arnold Koslow and Arthur
Buchsbaum, editors, The Road to Universal Logic — Festschrift for the 50th Birthday of
Jean-Yves Beziau, vol. II, Studies in Universal Logic. Birkhäuser, 2015.

15 Till Mossakowski, Christian Maeder, and Klaus Lüttich. The Heterogeneous Tool Set. In
Orna Grumberg and Michael Huth, editors, Proc. 13th Intl. Conf. Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’07), volume 4424 of Lect. Notes Comp.
Sci., pages 519–522. Springer, 2007.

16 Iulian Ober and Iulia Dragomir. Unambiguous UML Composite Structures: The OMEGA2
Experience. In Ivana Cerná, Tibor Gyimóthy, Juraj Hromkovic, Keith G. Jeffery, Rastislav
Královic, Marko Vukolic, and Stefan Wolf, editors, Proc. 37th Conf. Current Trends in
Theory and Practice of Computer Science (SOFSEM’11), volume 6543 of Lect. Notes Comp.
Sci., pages 418–430. Springer, 2011.

17 Object Management Group. Unified Modeling Language 2.5. Standard formal/2015-03-01,
OMG, 2015. URL: http://www.omg.org/spec/UML/2.5.

18 Object Management Group. Distributed Ontology, Modeling, and Specification Language
(DOL) 1.0 - Beta. Standard ptc/2016-02-37, OMG, 2016. URL: http://www.omg.org/
spec/DOL/.

19 Holger Rasch and Heike Wehrheim. Checking Consistency in UML Diagrams: Classes
and State Machines. In Elie Najm, Uwe Nestmann, and Perdita Stevens, editors, Proc.
6th IFIP WG 6.1 Intl. Conf. Formal Methods for Open Object-Based Distributed Systems
(FMOODS’03), volume 2884 of Lect. Notes Comp. Sci., pages 229–243. Springer, 2003.

20 Tobias Rosenberger. Relating UML State Machines and Interactions in an Institutional
Framework. Master thesis, Universität Augsburg, 2017.

21 Lutz Schröder, Till Mossakowski, and Christoph Lüth. Type Class Polymorphism in an
Institutional Framework. In José Luiz Fiadeiro, editor, Rev. Sel. Papers 17th Intl. Ws.
Recent Trends in Algebraic Development Techniques (WADT’04), volume 3423 of Lect.
Notes Comp. Sci., pages 234–248. Springer, 2005.

CALCO 2017

http://www.omg.org/spec/UML/2.5
http://www.omg.org/spec/DOL/
http://www.omg.org/spec/DOL/

	Introduction
	ATM Example

	Heterogeneous Institution-based UML Semantics
	Institutions

	An Institution for Simple UML State Machines
	An Institution for Simple UML Interactions
	An Institution for Simple UML Composite Structures
	Putting It All Together
	Comorphism SM -> CMP
	Semi-morphism CMP -> SD
	Are Interactions Realisable?

	Conclusions

