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Abstract
A logic has uniform interpolation if its formulas can be projected down to given subsignatures,
preserving all logical consequences that do not mention the removed symbols; the weaker property
of (Craig) interpolation allows the projected formula – the interpolant – to be different for each
logical consequence of the original formula. These properties are of importance, e.g., in the
modularization of logical theories. We study interpolation in the context of coalgebraic modal
logics, i.e. modal logics axiomatized in rank 1, restricting for clarity to the case with finitely
many modalities. Examples of such logics include the modal logics K and KD, neighbourhood
logic and its monotone variant, finite-monoid-weighted logics, and coalition logic. We introduce a
notion of one-step (uniform) interpolation, which refers only to a restricted logic without nesting
of modalities, and show that a coalgebraic modal logic has uniform interpolation if it has one-
step interpolation. Moreover, we identify preservation of finite surjective weak pullbacks as a
sufficient, and in the monotone case necessary, condition for one-step interpolation. We thus
prove or reprove uniform interpolation for most of the examples listed above.
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1 Introduction

Given a logic with a notion of formula and signature (and featuring implication for simplicity),
the Craig interpolation property requires that every valid implication φ→ ψ has an interpolant,
i.e. a formula ρ mentioning only the signature symbols that occur in both φ and ψ, such that
both φ → ρ and ρ → ψ are valid. The stricter uniform interpolation property additionally
demands that ρ can be made to depend only on φ and on the signature of ψ (or, yet stricter,
on the shared symbols of φ and ψ), rather than also on ψ itself. Both Craig interpolation
and uniform interpolation are useful in the structuring and modularization of logical theories
for purposes of specification and automated deduction, e.g. in large ontologies [39, 19]. Craig
interpolation was originally proved for first-order logic [5] and later extended to many other
systems, notably various modal logics including the basic modal logic K [8], as well as
intuitionistic logic [9] and the µ-calculus [6]. Uniform interpolation is easily seen to hold for
classical propositional logic but in fact fails for first-order predicate logic [16]. Intuitionistic
logic [30], the basic modal logic K [10, 38], and the modal µ-calculus [17] do have uniform
interpolation, while it fails for the modal logics S4 [11] and K4 [3].

∗ Work by the first and second author forms part of DFG project GenMod3 (SCHR 1118/5-3)

© Fatemeh Seifan, Lutz Schröder, and Dirk Pattinson;
licensed under Creative Commons License CC-BY

7th Conference on Algebra and Coalgebra in Computer Science (CALCO 2017).
Editors: Filippo Bonchi and Barbara König; Article No. 21; pp. 21:1–21:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CALCO.2017.21
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


21:2 Uniform Interpolation in Monotone Coalgebraic Modal Logic

In this paper, we study interpolation and uniform interpolation in the context of predicate-
lifting style coalgebraic modal logic [26, 34], equivalently, of modal logics that are axiomatized
by rank-1 axioms [33, 36]. Coalgebraic modal logic is a generic framework for modal logics
whose semantics goes beyond the standard relational world, and e.g. includes probabilistic,
game-based, neighbourhood-based, or weighted behaviour. It is parametrized over the choice
of a type functor (in our setting, on the category of sets), whose coalgebras play the role
of models. The name of the game in coalgebraic logic is to reduce properties of the full
modal logic to properties of the one-step logic, which restricts to formulas with exactly one
layer of modalities and is interpreted over very simple structures that essentially capture the
collection of successors of a single state in a model. Following this paradigm, we identify a
notion of one-step interpolation, and then establish that for a coalgebraic modal logic L with
finitely many modalities, the following properties imply each other in sequence:
1. the modalities are separating, i.e. support a Hennessy-Milner-style expressivity theorem [26,

34] (implying that the type functor preserves finite sets), and the type functor preserves
surjective finite weak pullbacks (which for finitary functors just means that the functor
preserves surjective weak pullbacks);

2. L has one-step interpolation;
3. L has uniform interpolation.
Here a pullback is called surjective if it consists of surjective maps. If the modalities of L
are separating and monotone, then preservation of finite surjective weak pullbacks is in fact
necessary for one-step interpolation.

As applications of this result, we obtain that neighbourhood logic (i.e. classical modal
logic [4]), monotone modal (neighbourhood) logic [4], the relational modal logics K and
KD, coalition logic [29], and logics of monoid-weighted transition systems for finite refinable
commutative monoids (in particular for finite Abelian groups, even though the latter fail to
admit monotone modalities) have uniform interpolation; for neighbourhood logic, coalition
logic, and monoid-weighted logics, these results appear to be new.

Related Work

Craig interpolation for monotone modal logic was first proved by Hansen and Kupke [14] and
later improved to uniform interpolation by Santocanale and Venema [32]. Craig interpolation
(but not uniform interpolation) for coalition logic was proved by Schröder and Pattinson
using coalgebraic cutfree sequent systems [28]. Hansen, Kupke, and Pacuit [15] have proved
Craig interpolation (but not uniform interpolation) for neighbourhood logic, using semantic
methods. Uniform interpolation for coalgebraic modal logic with a generalized Moss modality
based on a quasifunctorial lax lifting has been shown, for functors preserving finite sets, by
Marti in his MSc thesis [20] (and in fact this result has been extended to coalgebraic modal
fixpoint logics [21]). Logics based on diagonal-preserving lax liftings (even without assuming
quasi-functoriality) satisfy an obvious variant of separation and thus support a generalized
Hennessy-Milner theorem, and moreover can be translated into the language of monotone
predicate liftings [20]. We leave it as an open problem to determine the relationship between
quasifunctoriality and preservation of surjective weak pullbacks in presence of a separating
set of monotone predicate liftings. We emphasize that our criteria for interpolation apply also
to logics that fail to be separating or admit monotone modalities, hence cannot be phrased
in terms of quasifunctorial lax liftings, notable examples of this type being coalition logic,
neighbourhood logic, and logics of finite-Abelian-group-weighted transition systems.

In [27], the (coalgebraic) logic of exact covers was introduced; besides a generic Hennessy-
Milner theorem and results on completeness and small models, a generic uniform interpolation
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theorem was claimed which implies that every rank-1 modal logic with finitely many (not
necessarily monotone) modalities has uniform interpolation. We show by means of a counter-
example that the latter claim is incorrect; our results help delineate in which cases it can be
salvaged.

2 Preliminaries

We assume basic familiarity with category theory (see [1] for an introduction). Throughout,
we work over the category Set of sets and functions as the base category. Given a functor
F ∶ Set → Set, an F-coalgebra is a pair X = (X,ξ) consisting of a set X (of states) and a
function ξ ∶ X → FX. In the spirit of coalgebraic logic, we use such coalgebras as generic
models of modal logics; e.g. Kripke frames can be seen as a coalgebras ξ ∶ X → PX for
the powerset functor P, as they assign to each state x ∈ X a set ξ(x) ∈ P(X) of successor
states. We will later see non-relational examples. We denote by Q the contravariant powerset
functor, which acts on sets by taking powersets and on maps by taking preimage maps
(Qf(A) = f−1[A]).

2.1 Set Functors and Weak Pullbacks
The pullback of a cospan (f, g) =X fÐ→ Z

g←Ð Y in Set is described as

(pb(f, g), π1, π2) where pb(f, g) = {(x, y) ∈X × Y ∣ f(x) = g(y)}

and π1, π2 are the projections to the components.
An important property of set functors in the analysis of coalgebras is weak pullback

preservation [31]. A set functor F preserves weak pullbacks, or weakly preserves pullbacks if
it maps pullbacks to weak pullbacks (equivalently maps weak pullbacks to weak pullbacks),
where a weak pullback is defined categorically like a pullback but requiring only existence,
not uniqueness, of mediating morphisms. In an element-wise formulation, X π1←Ð P

π2Ð→ Y is a
weak pullback of X fÐ→ Z

g←Ð Y if whenever f(x) = g(y) for x ∈X, y ∈ Y , then there exists p ∈ P
(not necessarily unique) such that π1(p) = x, π2(p) = y. It well-known and easy to see that
the identity functor, all constant functors, and the powerset functor preserve weak pullbacks
and that the class of weak-pullback preserving functors is closed under products, coproducts,
exponentiation with constants, functor composition, and taking finitary parts [31, 37]. In
particular, all generalized Kripke polynomial functors (built from powerset, finite powerset,
constant functors, and identity by taking products, coproducts, and exponentiation with
constants) preserve weak pullbacks. Some negative examples are as follows.

I Example 1.
1. The Neighbourhood functor or double contravariant powerset functor N = QQ maps a

set X to NX = QQX and a function f ∶ X → Y to N f(α) = {A ⊆ Y ∣ f−1[A] ∈ α}. This
functor does not preserve weak pullbacks [31].

2. The monotone neighbourhood functor M is a subfunctor of the neighbourhood functor N .
Given an element α ∈ QQX, we put

Up(α) ∶= {Y ⊆X ∣ Y ⊇ Z for some Z ∈ α},

and then say that α is upwards closed if α = Up(α). The functor M is then given on
sets X byMX = {α ∈ QQ(X) ∣ α upwards closed}. Like N ,M does not preserve weak
pullbacks [14].

3. Another functor that does not preserve weak pullbacks is F3
2, defined as a subfunctor of

the cubing functor X ↦X3 by F3
2X = {(x1, x2, x3) ∈X3 ∣ ∣{x1, x2, x3}∣ ≤ 2} [12].

CALCO 2017



21:4 Uniform Interpolation in Monotone Coalgebraic Modal Logic

2.2 Coalgebraic Modal Logic

We briefly recall the syntax and semantics of coalgebraic modal logic.
We fix a countable set V of propositional variables. The syntax of a coalgebraic modal

logic L(Λ) is then determined by the choice a modal signature Λ consisting of modal operators
with assigned arities: the set F(Λ) of (modal) Λ-formulas is defined by the grammar

L(Λ) ∋ φ,ψ ∶∶= v ∣ � ∣ ¬φ ∣ φ ∧ ψ ∣ ♡(φ1,⋯, φn),

where v ∈ V and ♡ ∈ Λ is an n-ary modality (we deviate slightly from usual practice in
coalgebraic modal logic by including propositional variables in the syntax rather then regarding
them as nullary modalities; this is in order to facilitate the definition of interpolation). Other
Boolean operators (⊺,∨,→,↔) are defined in the standard way. We write rk(φ) for the rank
of φ, i.e. the maximal nesting depth of modal operators in φ.

As indicated above, the type of systems underlying the semantics of L(Λ) is determined
by the choice of a set functor F whose coalgebras play the role of frames. The interpretation
of the modal operators is then defined in terms of predicate liftings for F:

I Definition 2 (Predicate liftings). An n-ary predicate lifting for F is a natural transformation
λ ∶ Q(−)n →Q○ F , where Q(−)n denotes the n-fold product of Q with itself. We say that λ
is monotone if λX(Y1, ..., Yn) ⊆ λX(Z1, ..., Zn), whenever Yi ⊆ Zi ⊆X for each i. Equivalently,
we can describe λ by its transposite λ♭ ∶ F → QQn given by λ♭X(t) = {(Y1, ..., Yn) ∈ QQnX ∣
t ∈ λX(Y1, ..., Yn)}.

By the Yoneda lemma, we have the following equivalent description of predicate liftings [34].

I Fact 3. The n-ary predicate liftings for F are in one-to-one correspondence with subsets
of F(2n), where 2 = {⊺,�}; e.g. for n = 1, such a subset U determines a predicate lifting λ by
λX(A) = {t ∈ FX ∣ TχA(t) ∈ U} where χA ∶X → 2 is the characteristic map of A ⊆X.

We then complete the semantic parametrization of L(Λ) by assigning to each n-ary modal
operator ♡ ∈ Λ an n-ary predicate lifting J♡K for F.

I Definition 4. An F-model (X,ξ, τ) consists of an F-coalgebra X = (X,ξ) and a valuation
τ ∶ V → P(X) of the propositional variables. We then inductively define a satisfaction
relation ⊧ between states of the model (X,ξ, τ) and formulas of L(Λ) by x ⊩ v iff x ∈ τ(v),
standard clauses for Boolean connectives, and

x ⊧ ♡(φ1, ..., φn) iff ξ(x) ∈ ♡X(Jφ1K, ..., JφnK),

where JφiK = {t ∣ t ⊧ φi}. As usual, we say that a formula φ is satisfiable if there exists a state
x in some model such that x ⊧ φ, and valid if x ⊧ φ for every state x in every F-model.

For readability, we mostly restrict the technical exposition to unary modalities from now on;
the extension to finitary modalities is just a matter of adding indices.

I Example 5.
1. The modal logic K is captured coalgebraically by taking the powerset functor P as the

type functor, Λ = {◇}, and

J◇KX(Y ) = {A ∈ PX ∣ A ∩ Y ≠ ∅}.
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2. Neighbourhood logic (or classical modal logic [4]) has Λ = {◻}, interpreted over the
neighbourhood functor N (Example 1.1) by

J◻KX(Y ) ∶= {α ∈ NX ∣ Y ∈ α}.

Monotone modal (neighbourhood) logic is captured in the same way, replacing N with the
monotone neighbourhood functorM (Example 1.2).

We fix the data F, Λ, J♡K of the logic L(Λ) from now on.

The One-Step Logic

Given any set Z, we denote by Prop(Z) the set of propositional formulas over Z:

Prop(Z) ∋ φ,ψ ∶∶= � ∣ z ∣ ¬φ ∣ φ ∧ ψ (z ∈ Z),

and write Λ(Z) for the set of formulas ♡(z1,⋯, zn) where ♡ ∈ Λ has arity n and z1,⋯, zn ∈ Z.
We then define a one-step formula over Z to be an element of Prop(Λ(Prop(Z))). Here, Z
will often be a subset of V ; also, Z will sometimes be a subset of some powerset PX, in
which case we will understand every element of PX to be interpreted as itself. In general, we
interpret both propositional formulas and one-step formulas over Z w.r.t. P(X)-valuations
τ ∶ Z → P(X) for some set X: We extend τ to propositional formulas using the Boolean
algebra structure of PX, obtaining for φ ∈ Prop(Z) a subset

φτ ∈ PX.

We write X ⊧ φτ if φτ =X. We then define the extension

ψτ ∈ P(FX)

of a one-step formula ψ ∈ Prop(Λ(Prop(Z))) recursively by the evident clauses for Boolean
connectives, and

(♡φ)τ = J♡KX(φτ).

When Z ⊆ P(X) and τ is just subset inclusion, we omit τ from the notation, so ψ ∈
Prop(Λ(PX)) denotes both a one-step formula and its interpretation in P(FX); we then
write FX ⊧ ψ if the interpretation of ψ is all of FX.

I Definition 6. A one-step formula ψ ∈ Prop(Λ(Prop(Z))) is (one-step) satisfiable over
τ ∶ Z → P(X) if ψτ ≠ ∅, and (one-step) satisfiable if ψ is one-step satisfiable over τ for
some τ . Dually, ψ is (one-step) valid (over τ) if ¬ψ is (one-step) unsatisfiable (over τ). We
write FX,τ ⊧ ψ if ψ is one-step valid over τ , and ⊧ ψ if ψ is one-step valid.

We will need the following pieces of terminology and notation:

I Definition 7. For a map f ∶X → Y , we write σf for the substitution mapping A ∈ P(X)
to f[A] (e.g. in one-step formulas of type Prop(Λ(P(X)))), and σf−1 for the substitution
mapping B ∈ P(Y ) to f−1[B]. A set A ∈ P(X) is f -invariant if f−1[f[A]] = A.

Clearly, all sets of the form f−1[B] are f -invariant, i.e. the f -invariant sets are precisely
those of the form f−1[B]. The f -invariant sets form a Boolean subalgebra of P(X). (In fact,
for finite X, Boolean subalgebras of P(X) are in bijection with equivalence relations on X,
so every Boolean subalgebra of P(X) consists of the f -invariant sets for a suitable f .)

CALCO 2017



21:6 Uniform Interpolation in Monotone Coalgebraic Modal Logic

I Definition 8. We denote by S(A) the set of atoms of a finite Boolean algebra A, i.e. its
minimal non-bottom elements, and canA for the canonical isomorphism A→ P(S(A)). Given
a subalgebra A0 of A, we have a canonical projection S(A) → S(A0).

The following lemmas are straightforward consequences of naturality of predicate liftings:

I Lemma 9. Given a finite Boolean subalgebra A of PX for a set X, φ ∈ Prop(Λ(A)) is
satisfiable iff φ canA is satisfiable. Dually, φ is valid (FX ⊧ φ) iff φ canA is valid (FS(A) ⊧
φ canA).

I Lemma 10. Let A0 ⊆ A1 be finite Boolean subalgebras of PX for a set X, let f ∶ S(A1) →
S(A0) be the canonical projection, let φ ∈ Prop(Λ(A0)), and let t ∈ F(S(A1)). Then t ∈ φ canA1

iff Ff(t) ∈ φ canA0 .

Separation and Maximally Satisfiable Sets

The key condition ensuring that L(Λ) satisfies the Hennessy-Milner property, i.e. distinguishes
non-bisimilar states, is separation [26, 34]:

I Definition 11 (Separation). We say that Λ is separating if for each set X, the family of
maps (J♡K♭X ∶ FX →QQX = NX)♡∈Λ is jointly injective.

We proceed to define the MSS-functor (for maximally one-step satisfiable sets) from F and Λ.
(A related functor using maximally one-step consistent sets has been used to show that every
rank-1 modal logic has a coalgebraic semantics [36].)

I Definition 12. A set Φ ⊆ Prop(Λ(P(X))) is one-step satisfiable if the intersection of the
interpretations of the formulas in Φ is non-empty, and maximally one-step satisfiable if Φ is
maximal among such sets. The MSS-functor MΛ

F is given byMΛ
F X being the set of maximally

one-step satisfiable subsets of Prop(Λ(PX)), and MΛ
F f(Φ) = {φ ∈ Prop(Λ(P(Y ))) ∣ φσf−1 ∈

Φ} for f ∶X → Y .

The following lemma allows us to identify F with its MSS-functor whenever Λ is separating.

I Lemma 13. If Λ is separating, then F and MΛ
F are isomorphic.

3 Surjective Weak Pullbacks

We proceed to introduce the key semantic interpolation criterion, preservation of surjective
weak pullbacks. We record explicitly:

I Definition 14. A pullback of a cospan (f, g) of maps (in Set) is surjective if both f and g
are surjective, and finite if all involved sets are finite. A functor preserves (finite) surjective
weak pullbacks if it maps (finite) surjective pullbacks to weak pullbacks.

Recall that under the axiom of choice, every set functor preserves surjective maps. Also,
surjective maps are stable under pullbacks, so all morphisms in a surjective pullback are
surjective. Non-empty binary Cartesian products X×Y are surjective pullbacks of X → 1← Y .
Moreover, the kernel pair of a map f ∶ X → Y is a surjective pullback of the codomain
restriction X → f[X].

For finitary functors, the finiteness restriction in the preservation condition is immaterial:

I Lemma 15. If F is finitary, then F preserves (surjective) weak pullbacks iff F preserves
finite (surjective) weak pullbacks.
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Of course, every functor that preserves weak pullbacks also preserves surjective weak pullbacks,
e.g. the (finite or unrestricted) powerset functor, and more generally all Kripke polynomial
functors. Two negative examples are as follows.

I Example 16.
1. The neighbourhood functor N fails to preserve finite surjective weak pullbacks. To see

this, consider the pullback of the following functions as in [31]. Let X = {a1, a2, a3},
Y = {b1, b2, b3} and Z = {c1, c2} and define surjective maps f ∶ X → Z and g ∶ Y → Z as
follows: f(a1) = f(a2) = c1, f(a3) = c2, g(b1) = c1 and g(b2) = g(b3) = c2.

2. The functor F3
2 fails to preserve finite surjective weak pullbacks. For a counterexample

consider a surjective cospan (f, g) with f = g being the constant map {a, b} → {b}. For
u = (b, b, a) and v = (a, b, b), it is impossible to find a w ∈ F3

2pb(f, g) such that F3
2π1(w) = u

and F3
2π2(w) = v.

We proceed to see examples that fail to preserve weak pullbacks but do preserve surjective
weak pullbacks.

The Monotone Neighbourhood Functor

The monotone neighbourhood functorM does not preserve all weak pullbacks (Example 1.2).
However:

I Proposition 17. The monotone neighbourhood functorM preserves surjective weak pull-
backs.

The proof is facilitated by the following fact:

I Lemma and Definition 18 (Compatibility). Let

P X

Y Z

π2

π1

f

g

(1)

be a surjective pullback, and let α1 ∈ MX, α2 ∈ MY . ThenMf(α1) =Mg(αn) iff α1 and
α2 are compatible, i.e. for every U ∈ α1 we have π2[π−1

1 [U]] ∈ α2 and symmetrically.

Proof (Proposition 17, Sketch). Given a surjective pullback (1) and compatible α1 ∈ MX,
α2 ∈ MY , it is straightforward to show that

β = Up({π−1
1 [U] ∣ U ∈ α1} ∪ {π−1

2 [V ] ∣ V ∈ α2}) ∈MP

satisfiesMπ1(β) = α1 andMπ2(β) = α2. J

Monoid-weighted Functors

Given a commutative monoid M (which we write additively), the monoid-weighted functor
SM is defined by taking SMX to be the set of finitely supported functions X → M (i.e.
functions that vanish almost everywhere), and SMf(µ) = λy. ∑f(x)=y µ(x) for f ∶X → Y and
µ ∈ SMX. Examples of monoid-weighted functors include the free Abelian groups functor
(M = Z), the free vector space functor (M = R), the finite multiset functor (M = N), and the
finite powerset functor (M = 2 = {�,⊺} with + being disjunction).

CALCO 2017



21:8 Uniform Interpolation in Monotone Coalgebraic Modal Logic

I Definition 19 (Refinability). [13] A commutative monoid M is refinable if whenever
∑ni=1 ai = ∑kj=1 bj for a1, . . . , an, b1, . . . , bk ∈M , n, k ≥ 1, then there exists an n× k-matrix over
M with row sums ai and column sums bj .

As shown by Gumm and Schröder [13], SM preserves weak kernel pairs iff M is refinable. In
fact, refinability already ensures preservation of all weak surjective pullbacks:

I Lemma 20. The functor SM preserves weak surjective pullbacks iff M is refinable.

Given that a) weak pullback preserving finitary functors are known to admit separating
sets of monotone predicate liftings [18], and b) the monotone neighbourhood functor itself
preserves surjective weak pullbacks but not all weak pullbacks, it is tempting to conjecture
that preservation of surjective weak pullbacks is already sufficient for existence of a separating
set of monotone predicate liftings. This is not true, however:

I Definition 21. A commutative monoid M is positive if for a, b ∈ M , a + b = 0 implies
a = b = 0.

I Proposition 22. Let M be refinable. Then SM has a separating set of monotone predicate
liftings iff M is positive.

That is, every commutative monoid that is refinable but not positive gives rise to a monoid-
weighted functor that preserves surjective weak pullbacks but does not admit a separating set
of monotone predicate liftings. One class of such commutative monoids are the non-trivial
Abelian groups: they clearly fail to be positive, and are easily seen to be refinable [13].

4 One-Step Interpolation

We proceed to develop our notion of one-step interpolation, and its relationship to preservation
of surjective weak pullbacks.

I Assumption 23. From here on, we assume throughout that the modal signature Λ is finite.

In a nutshell, L(Λ) has one-step interpolation if adding one layer of modalities preserves
interpolation:

I Definition 24. Two Boolean subalgebras A1, A2 of P(X) for a set X are interpolable
if whenever A ⊆ B for A ∈ A1 and B ∈ A2, then there exists C ∈ A1 ∩ A2 such that A ⊆ C
and C ⊆ B. We say that L(Λ) has one-step interpolation if given interpolable A1, A2 and
φ ∈ Prop(Λ(A1)), ψ ∈ Prop(Λ(A2)) such that FX ⊧ φ → ψ, there is always an interpolant
ρ ∈ Prop(Λ(A1 ∩A2)) such that FX ⊧ φ→ ρ and FX ⊧ ρ→ ψ. Moreover, L(Λ) has uniform
one-step interpolation if the interpolant can be made to depend only on φ and A1 ∩A2 =∶ A0;
it is then called a uniform A0-interpolant of φ.

It is in fact not hard to see that under Assumption 23, these two notions coincide, so we
refer to them just as one-step interpolation:

I Lemma 25. The logic L(Λ) has one-step uniform interpolation iff L(Λ) has one-step
interpolation.

Proof. ‘Only if’ : trivial. ‘If’ : One-step interpolation implies that, given data as in Defini-
tion 24, the formula

i(φ) = ⋀{ρ ∈ Prop(Λ(Prop(A0))) ∣ FX ⊧ φ→ ρ},

which is effectively finite because Λ is finite, is a uniform A0-interpolant of φ. J
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I Remark 26. In any logic supporting the requisite propositional connectives, the set of
formulas φ having a uniform interpolant is easily seen to be closed under disjunction, and
similarly the set of pairs of formulas φ,ψ such that an interpolant between φ and ψ exists
is closed under disjunction in φ and under conjunction in ψ. When establishing (one-step)
uniform interpolation for φ, or (one-step) interpolation between φ and ψ, we can therefore
assume that φ is a conjunctive clause over modalized formulas and that ψ is a disjunctive
clause over modalized formulas.

Our first positive example is neighbourhood logic:

I Example 27. Neighbourhood logic has one-step interpolation (and hence, by Lemma 25,
uniform one-step interpolation). To see this, let A1,A2 be interpolable Boolean subalgebras
of P(X), let φ be a conjunctive clause over Λ(A1), and let ψ be a disjunctive clause over
Λ(A2) such that FX ⊧ φ→ ψ (this case suffices by Remark 26). We can assume w.l.o.g. that
FX /⊧ ¬φ and FX /⊧ ψ. Then FX ⊧ φ→ ψ implies that φ contains a conjunct ε ◻A and ψ a
disjunct ε ◻B, with ε representing either nothing or negation, such that A = B. Then ε ◻A
interpolates between φ and ψ.

Preservation of surjective weak pullbacks is sufficient for uniform one-step interpolation:

I Lemma 28. Let Λ be separating, and let F preserve finite surjective weak pullbacks. Then
L(Λ) has one-step uniform interpolation.

Proof. Let A0 ⊆ A1 be finite Boolean subalgebras of PX, and let φ ∈ Prop(Λ(A1)). We show
that

i(φ) = ⋀{ρ ∈ Prop(Λ(A0)) ∣ FX ⊧ φ→ ρ}

(effectively a finite formula) is a uniform A0-interpolant for φ. Dually, we show for ψ ∈
Prop(Λ(A2)) with A1, A2 interpolable, A1 ∩A2 ⊆ A0, and i(φ) ∧ψ satisfiable that also φ ∧ψ
is satisfiable. By Lemma 9, we have s ∈ F(S(A2)) such that s ⊧ (i(φ) ∧ ψ) canA2 . Let θ be
the Prop(Λ(A1 ∩ A2))-theory θ = ⋀{ρ ∈ Prop(Λ(A1 ∩ A2)) ∣ s ⊧ ρ canA2} of s. Then φ ∧ θ
is satisfiable: otherwise, FX ⊧ φ → ¬θ, so FX ⊧ i(φ) → ¬θ by definition of i(φ), which by
Lemma 9 contradicts s ⊧ (i(φ) ∧ θ) canA2 .

Again by Lemma 9, we thus have t ∈ F(S(A1)) such that t ⊧ (φ ∧ θ) canA1 . Let A be the
Boolean subalgebra of PX generated by A1 ∪A2. Then the diagram

S(A) S(A1)

S(A2) S(A1 ∩A2),

π1

π2 f

g

where all maps are canonical projections, is a finite surjective pullback because A1, A2 are
interpolable, hence weakly preserved by F. We claim that Ff(t) = Fg(s): indeed, both
sides satisfy θ canA1∩A2 by Lemma 10, and since θ is a complete Prop(Λ(A1 ∩A2))-theory,
equality follows by separation. It follows that we have u ∈ F(S(A)) such that Fπ1(u) = t
and Fπ2(u) = s. Again by Lemma 10, u ⊧ φ canA and u ⊧ ψ canA, so by Lemma 9, φ ∧ ψ is
satisfiable. J

The example of neighbourhood logic (Examples 27 and 16.1) shows that the converse of
Lemma 28 does not hold in general. It does however hold in the monotone case:

I Lemma 29. Let L(Λ) be monotone and separating and have one-step interpolation. Then
F preserves finite surjective weak pullbacks.
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The proof relies on invariant sets, and uses the following lemma (which can be seen as a
rewording of Lemma 9):

I Lemma 30. Let f ∶X → Y be surjective, let A denote the subalgebra of P(X) consisting
of the f -invariant sets, and let φ ∈ Prop(Λ(A)). Then FX ⊧ φ iff FY ⊧ φσf .

Proof (Lemma 29, Sketch). Let X π1←Ð P
π2Ð→ Y be a finite surjective pullback of X fÐ→ Z

g←Ð
Y as in Diagram (1). As indicated in Section 2, we can identify F with its MSS functor,
i.e. we assume that FX consists of maximally satisfiable subsets Φ ⊆ Prop(Λ(P(X))). In
this reading, we are given Φ1 ∈ FX and Φ2 ∈ FY such that Ff(Φ1) = Fg(Φ2), which by a
straightforward generalization of Lemma 18 means that Φ1 and Φ2 are compatible, i.e.

φ ∈ Φ2 implies φσπ−1
2
σπ1 ∈ Φ1

and symmetrically. We have to show that there exists Φ ∈ FR such that Fπ1(Φ) = Φ1 and
Fπ2(Φ) = Φ2, i.e.

φ ∈ Φ1 ⇐⇒ φσπ−1
1
∈ Φ (2)

and correspondingly for Φ2. In (2), ‘⇒’ is sufficient, because the logic has negation. That is,
we have to show that the set {φσπ−1

1
∣ φ ∈ Φ1} ∪ {φσπ−1

2
∣ φ ∈ Φ2} is one-step satisfiable. Since

Φ1 and Φ2 are effectively finite and closed under conjunctions, it thus suffices to show that
whenever φ1 ∈ Φ1 and φ2 ∈ Φ2, then

φ = φ1σπ−1
1
∧ φ2σπ−1

2

is one-step satisfiable. Assume the contrary; then φ1σπ−1
1
→ ¬φ2σπ−1

2
is one-step valid. Now let

A1 denote the Boolean subalgebra of P(R) consisting of the π1-invariant sets, correspondingly
A2 for the π2-invariant sets. One checks that A1, A2 are interpolable. Since L(Λ) has one-
step interpolation, we therefore find ρ ∈ Prop(Λ(A1 ∩ A2)) such that R ⊧ φ1σπ−1

1
→ ρ and

R ⊧ ρ→ ¬φ2σπ−1
2
. Using surjectivity of the πi, Lemma 30, and compatibility, we can derive

ρσπ1 ∈ Φ1, ρσπ2 ∈ Φ2, and eventually ¬φ2 ∈ Φ2, contradicting satisfiability of Φ2. J

5 Uniform Interpolation

We now relate one-step interpolation to interpolation for the full logic. Recall from Section 2.2
that we work in a language with propositional variables. Given a set V0 ⊆ V of propositional
variables, we write F(Λ, V0) for the set of Λ-formulas mentioning only propositional atoms
from V0, and put

Fn(Λ, V0) = {φ ∈ F(Λ, V0) ∣ rk(φ) ≤ n}.

For a state x in some model, we put

ThnV0
(x) = {ρ ∈ Fn(Λ, V0) ∣ x ⊧ ρ}

(eliding the model, which will always be clear from the context). Since Λ is assumed to be
finite, we have

I Lemma 31. For finite V0, Fn(Λ, V0) is finite up to logical equivalence.

We record explicitly:



F. Seifan, L. Schröder, and D. Pattinson 21:11

I Definition 32. We say that L(Λ) has interpolation if whenever ⊧ φ→ ψ for φ ∈ F(Λ, V1)
and ψ ∈ F(Λ, V2), then there exists an interpolant ρ ∈ F(Λ, V1 ∩ V2) such that ⊧ φ→ ρ and
⊧ ρ → ψ; and L(Λ) has uniform interpolation if the interpolant ρ can be made to depend
only on V0 ∶= V1 ∩ V2. We then call ρ a uniform V0-interpolant of φ.

We do not currently know whether one-step interpolation in the strong sense of Definition 24 is
necessary for L(Λ) to have interpolation. However, a weaker version of one-step interpolation
is necessary:

I Lemma 33. If L(Λ) has interpolation, then the one-step logic Prop(Λ(Prop(V ))) has
interpolation.

This can be used to disprove interpolation in some examples (contradicting [27] as indicated
in the introduction):

I Example 34. Let N∨ be the subfunctor of the neighbourhood functor N defined by

N∨X = {α ∈ NX ∣ ∀A,B ⊆X.A ∪B =X ⇒ (A ∈ α ∨B ∈ α)},

and interpret the modality ◻ over N∨ like over N . Take V1 = {p, q}, V2 = {r, p}. Then the
implication ¬ ◻ (p ∨ q) → ◻(¬p ∨ r) is valid but has no interpolant in Prop({◻}(Prop{p})).

As to sufficiency, we have

I Theorem 35. If L(Λ) has one-step interpolation then L(Λ) has uniform interpolation.

Proof (Sketch). Induction on the rank, proving the stronger claim that the rank of the
uniform interpolant of φ is at most rk(φ). Let φ ∈ Ln(Λ, V1), and let V0 ⊆ V1. We claim that

i(φ) = ⋀{φ′ ∈ Fn(Λ, V0) ∣ ⊧ φ→ φ′}

(by Lemma 31, effectively a finite formula) is a uniform V0-interpolant for φ. The proof
reduces straightforwardly to showing that, given ψ ∈ F(Λ, V2) where V1 ∩ V2 ⊆ V0 and
models D = (Y, ζ, τ2), C = (X,ξ, τ1) and y0 ∈ Y , x0 ∈ X such that y0 ⊧D i(φ) ∧ ψ and
x0 ⊧C φ ∧ThV0(y0), the formula φ ∧ ψ is satisfiable.

Using a minor variation of standard model constructions in coalgebraic modal logic [33,
35, 24], we can assume that C, D are finite dags in which all states have a well-defined
height (distance from any initial state in a supporting Kripke frame), with x0 and y0 being
initial states whose depth (length of the longest path starting at x0 and y0, respectively)
equals the rank of the relevant formulas, and in which every state x of height n − k in C is
uniquely determined (among the states of height n−k) by ThkV1

(x), correspondingly for y ∈D
and ThkV2

(x). Moreover, we can assume that the models are canonical, i.e. every maximally
satisfiable subset of Fk(Λ, V1) is indeed satisfied at a unique state of height n− k of C, as by
Lemma 31, there are only finitely many such sets; correspondingly for D and Fk(Λ, V2).

We now construct a model E = (Z,γ, τ) of φ ∧ ψ as follows. We put

Z = {(x, y) ∈X × Y ∣ n ≥ ht(x) = ht(y) =∶ k,Thn−kV0
(x) = Thn−kV0

(y)}
∪ {y ∈ Y ∣ ht(y) > n},

denoting the first part by Z0 and the second by Z1, and their height-k levels by Zk0 , Zk1 , Zk,
respectively. Note that (x0, y0) ∈ Z0. It is straightforward to define the valuation τ on Z.
Moreover, we define a coalgebra structure γ ∶ Z → FZ such that γ(z) ∈ FZk+1 for z ∈ Zk. We
put γ(y) = ζ(y) ∈ FZ1 ⊆ FZ for y ∈ Z1 (using that w.l.o.g. F preserves inclusions [2]), and on
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states (x, y) ∈ Z0 of maximal height n by γ(x, y) = ζ(y). On the rest of Z0 we define γ by
a coherence requirement: By construction of Z, we have a well-defined pseudo-satisfaction
relation ⊧0 on Z given by

(x, y) ⊧0 ρ ⇐⇒
⎧⎪⎪⎨⎪⎪⎩

x ⊧C ρ (ρ ∈ Fn−ht(x)(Λ, V1))
y ⊧D ρ (ρ ∈ Frk(ψ)−ht(y)(Λ, V2))

y ⊧0 ρ ⇐⇒ y ⊧D ρ (ρ ∈ Frk(ψ)−ht(y)(Λ, V2))

For a ρ ∈ Fn(Λ, V1) ∪ Frk(ψ)(Λ, V2), we then have the pseudo-extension ρ̂ ⊆ Z defined by

ρ̂ = {z ∈ Z ∣ rk(ρ) ≤ n − ht(z), z ⊧0 ρ}.

Then we say that γ is coherent if for ♡ρ ∈ Fn−k(Λ, V1) ∪Fn−k(Λ, V2), k ≤ n, and (x, y) ∈ Zk0 ,

γ(x, y) ⊧ ♡(ρ̂ ∩Zk+1
0 ) ⇐⇒ (x, y) ⊧0 ♡ρ. (3)

For i = 0,1,2, let Ai be the Boolean subalgebra of PZk+1
0 consisting of the sets of the form

ρ̂ ∩Zk+1
0 for ρ ∈ Fn−k−1(Λ, Vi). Then, of course, A1 ∩A2 ⊆ A0, and by induction, A1, A2 are

interpolable. We define φ0 ∈ Prop(Λ(A1)) and ψ0 ∈ Prop(Λ(A2)) by

φ0 = ⋀{ε♡(ρ̂ ∩Zk+1
0 ) ∣ (x, y) ⊧0 ε♡ρ, ρ ∈ Fn−k−1(Λ, V1), ε ∈ {⋅,¬}}

ψ0 = ⋀{ε♡(ρ̂ ∩Zk+1
0 ) ∣ (x, y) ⊧0 ε♡ρ, ρ ∈ Fn−k−1(Λ, V2), ε ∈ {⋅,¬}}.

By Lemma 25, φ0 has a uniform A0-interpolant i(φ0), and by showing satisfiability of
i(φ0) ∧ψ0, one establishes that φ0 ∧ψ0 is satisfiable, which means that γ(x, y) satisfying (3)
exists. Then, we have by induction on ρ ∈ Fn(Λ, V1) ∪Frk(ψ)(Λ, V2) that z ⊧E ρ iff z ⊧0 ρ for
ht(z) = k and rk(ρ) ≤ n − k; so in particular z0 = (x0, y0) ⊧ φ and z0 ⊧ ψ, as required. J

I Remark 36. Canonical models in the sense of the above proof sketch in fact bear a strong
resemblance to models based on the stages of the final sequence of functors of the type
P(Vi) × F, i = 0,1 (e.g. [25]). This indicates in particular that the proof may eventually be
made to bear a relationship, via duality, with Ghilardi’s method of graded modal algebras [10].

As indicated in the introduction, our results can be summed up as follows:

I Theorem 37. Let Λ be finite. Then the following properties imply each other in se-
quence:
1. Λ is separating and the type functor F preserves finite surjective weak pullbacks.
2. L(Λ) has one-step interpolation
3. L(Λ) has uniform interpolation
4. L(Λ) has interpolation
5. The one-step logic Prop(Λ(Prop(V ))) has interpolation.
Moreover, if Λ is monotone and separating, then 2. implies 1.

We note that if Λ is finite and separating, then F preserves finite sets. As indicated above, we
suspect but cannot currently prove that 5 implies 2, which would make items 2–5 equivalent.
From Theorem 37, we obtain uniform interpolation for the following concrete logics:

I Example 38.
1. Whenever F preserves weak pullbacks and Λ is finite and separating, then L(Λ) has

uniform interpolation. This case is covered already in [20], see Remark 39. In particular,
we obtain that the modal logics K and KD have uniform interpolation, thus reproving
previous results [10, 38].
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2. Since the monotone neighbourhood functor preserves surjective weak pullbacks (Section 3),
we obtain that monotone modal logic has uniform interpolation, again reproving a previous
result [32].

3. If M is a finite refinable monoid, then the monoid-weighted functor SM (Section 3)
preserves surjective weak pullbacks, so that any rank-1 modal logic that is expressive (i.e.
separating) for SM has uniform interpolation, such as the logic with modalities [m] for
m ∈M , interpreted by the predicate lifting given by [m]X(A) = {µ ∈ SM ∣ ∑x∈A µ(x) =m}.
This holds in particular when M is a finite Abelian group, in which case SM does not
have a separating set of monotone predicate liftings so that this case is not covered by
existing generic results [20]. If we take M = Z/nZ, then the modalities [m] described
above are modulo-constraints as found in Presburger modal logic [7]: [m]φ says that the
number of successors of the current state (counting multiplicities) equals m modulo n.

4. Neighbourhood logic fails to preserve surjective weak pullbacks (Example 16) but does
have one-step interpolation (Example 27), so we obtain that neighbourhood logic has
uniform interpolation.

5. One-step interpolation has been proved, in slightly different terms, for coalition logic [28],
so that our results improve the known interpolation result for coalition logic [28] to
uniform interpolation.

I Remark 39. We conclude with a more detailed discussion of the relationship between our
results and results on the logic of quasi-functorial lax liftings. Glossing over the ramifications
of the axiomatics, a diagonal-preserving lax lifting L for a set functor T [22] extends T to act
also on relations, satisfying monotonicity w.r.t. inclusion of relations, preservation of relational
converse and diagonal relations, and lax preservation of composition (LR ○LS ⊆ L(R ○ S)).
The monotone neighbourhood functor and its polyadic variants have diagonal-preserving lax
liftings, and diagonal-preserving lax liftings are easily seen to be inherited along products
and subfunctors, so that every functor that has a separating set of monotone predicate
liftings has a diagonal-preserving lax lifting. Conversely, every finitary functor that has
a diagonal-preserving lax lifting has a separating set of monotone predicate liftings, the
so-called Moss liftings [20]. A lax lifting induces a modal logic with a slightly non-standard
modality ∇ that generalizes Moss’ modality for weak-pullback-preserving functors [23]; for
functors that preserve finite sets, the ∇-modality and the predicate-lifting based modalities
are however mutually intertranslatable [20], essentially by dint of the fact that both are
separating. Summing up, for a functor that preserves finite sets, a diagonal-preserving lax
lifting exists iff a separating (finite) set of monotone predicate lifting exists, and the induced
logics are essentially the same.

Marti [20] shows that the logic of a diagonal-preserving lax lifting L for T has uniform
interpolation if T preserves finite sets and L is quasifunctorial, i.e. satisfies LS○LR = L(S○R)∩
(dom(LR) × rg(LS)) where dom(LR) = {t ∣ ∃t. (s, t) ∈ LR} and rg(LS) = {t ∣ ∃s. (s, t) ∈ LS}.
We recall again that our reduction of uniform interpolation to one-step interpolation holds also
in cases where either separation or monotonicity fails, such as coalition logic / alternating-time
logic and neighbourhood logic, respectively. Also, we have seen examples (Abelian-group-
weighted functors) where there is no monotone separating set of predicate liftings but we
nevertheless obtain uniform interpolation from preservation of surjective weak pullbacks.

6 Conclusions

We have given sufficient criteria for a rank-1 modal logic (with finitely many modalities), i.e. a
coalgebraic modal logic, to have uniform interpolation: In the general case, we have established
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a reduction to the one-step logic; and in the case where the modalities are separating, we have
given a simple semantic criterion, namely preservation of (finite) surjective weak pullbacks,
which in the monotone case is in fact also necessary for one-step interpolation. We have thus
reproved uniform interpolation for the relational modal logics K and KD and for monotone
(neighbourhood) modal logic, and newly established uniform interpolation for coalition logic,
neighbourhood logic (i.e. classical modal logic), and various logics of finite-monoid-weighted
transition systems. All proofs are entirely semantic; we leave a proof-theoretic treatment, in
generalization of tentative results based on cut-free sequent systems [28], for future work.
In particular, such a treatment will hopefully lead to practically feasible algorithms for the
computation of interpolants. Further open issues concern the question of how our results
relate to definability of bisimulation quantifiers [30, 38], and of course the development of
generic criteria for interpolation in the presence of infinitely many modalities.

Acknowledgements. The authors wish to thank Tadeusz Litak and Sebastian Enqvist for
helpful discussions. Erwin R. Catesbeiana has provided valuable hints on interpolating
between unsatisfiable formulas.
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