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—— Abstract
In the coalgebraic approach to state-based systems, semantics is captured up to behavioural
equivalence by special coalgebras such as the final coalgebra, the final locally finitely presentable
coalgebra (Addmek, Milius, and Velebil), or the final locally finitely generated coalgebra (Milius,
Pattinson, and Wilmann). The choice of the proper semantic domain is determined by finiteness
restrictions imposed on the systems of interest. We propose a unifying perspective by introducing
the concept of a final locally (I, M)-presentable coalgebra, where the two parameters I and
M determine what a “finite” system is. Under suitable conditions on the categories and type
functors, we show that the final locally (I, M)-presentable coalgebra exists and coincides with the
initial (I, M)-iterative algebra, thereby putting a common roof over several results on iterative,
fg-iterative and completely iterative algebras that were given a separate treatment before.
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1 Introduction

Coalgebras model a wide variety of state-based systems, including deterministic and non-
deterministic automata, weighted automata, labelled transition systems and probabilistic
systems. One striking advantage of the coalgebraic approach is its beautiful account of
semantics: the possible behaviours of states are captured by the final coalgebra, and the
behaviour of a system is given by its final homomorphism. As a prominent example, the set
functor {0, 1} x Id* (modelling deterministic automata) has a final coalgebra carried by the
set of all languages over X, and the final homomorphism maps a state of an automaton to its
accepted language [21].

In computer science, the focus is typically on systems satisfying some finiteness restrictions.
For example, classical automata theory investigates finite automata (i.e. automata with
finitely many states and input symbols) and their behaviours, the regular languages. And in
the recently developed theory of nominal automata [9], the objects of interest are automata
with possibly infinite, but orbit-finite nominal sets of states and inputs. From a “finite” point
of view, the semantics given by the final coalgebra is sometimes unsatisfactory because it may
identify states of finite coalgebras even though there is no finite witness for their behavioural
equivalence. Hence, to obtain the semantics of finite systems, the final coalgebra needs to be
replaced by another semantic domain that properly captures finite behaviours.

One prime challenge in systematically developing a theory of finite behaviours is that
category theory offers several natural ways of modelling finite objects in categories, e.g. as
finitely presentable, finitely generated, or perfectly presentable objects. These concepts are
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equivalent in the category of sets (and give precisely the finite sets) but generally differ,
e.g. in categories of algebraic structures. The first categorical treatment of finite coalgebras
and their final semantics was given in the work of Adamek, Milius, and Velebil [2] and later
elaborated by Milius [16]. These authors modelled finite systems as coalgebras in a locally
finitely presentable category carried by a finitely presentable object of states and introduced
the rational fixpoint of a functor. The latter is essentially a “finitely presentable” version
of the final coalgebra: it forms the final locally finitely presentable coalgebra, i.e. every
coalgebra with a finitely presentable carrier has a unique homomorphism into it, and two
states of such a coalgebra are identified by the unique homomorphism if and only if there
is a finitely presentable witness for their behavioural equivalence. In the recent work of
Milius, Pattinson, and Wifimann [19], a similar and largely parallel theory is developed for
coalgebras based on finitely generated (instead of finitely presentable) objects of states: the
authors introduce the locally finite fizpoint of a functor and prove it to be the final locally
finitely generated coalgebra. The locally finite fixpoint has some technical advantages over
the rational fixpoint, e.g. it is always a subcoalgebra of the final coalgebra, and it captures
many instances of finite behaviours such as regular languages, context-free languages, and
algebraic trees.

The goal of the present paper is to propose a uniform account that captures both the
classical final semantics and its finite versions in the literature as special cases. For this
purpose, we introduce the concept of an (I, M)-accessible category, a generalisation of
accessible and locally finitely presentable categories [6]. The two parameters I (a class
of diagram schemes) and M (a class of morphisms) give rise to the notion of an (I, M)-
presentable object in a category that we take as our general definition of “finite object”. By
taking different choices of I and M, the (I, M)-presentable objects of a category instantiate
e.g. to finitely presentable, finitely generated, perfectly presentable, or arbitrary objects. We
then develop the theory of coalgebras based on (I, M)-presentable objects: under suitable
conditions on the categories and coalgebraic type functors, we show the existence of a final
locally (I, M)-presentable coalgebra, providing a general finite version of final semantics and
putting a common roof over the earlier work in [2, 16, 19]. As a new instance of our setting,
we investigate coalgebras in algebraic categories carried by finitely generated free algebras of
states. Such coalgebras arise naturally as determinisations of coalgebras with side effects,
using the generalised powerset construction of Silva, Bonchi, Bonsangue, and Rutten [22].

Besides providing semantics of state-based systems, final coalgebras are also known to
allow for an abstract and elegant category-theoretic approach to the semantics of guarded
recursive specifications. Generalising classical work of Elgot [11, 12], Nelson [20] and Tiuryn
[23] on algebraic properties of infinite trees, Milius [15] observed that the final coalgebra for a
functor is also its initial completely iterative algebra. Analogous characterisations are known
for the final locally finitely presentable coalgebra [2] and the final locally finitely generated
coalgebra [19], where guarded recursive specifications restricted to a finitely presentable (resp.
finitely generated) object of variables are considered. In Section 5, we will establish these
results uniformly at our level of generality.

2 Preliminaries

We start by reviewing some concepts from category theory that we use in the paper.
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2.1 Filtered colimits and locally finitely presentable categories

A category [ is filtered if I-colimits commute with finite limits in Set. Equivalently, the
following two properties hold: (i) for any two objects X,Y € I, there exist morphisms
f: X - Zand g: Y — Z with a common codomain Z, and (ii) for any two parallel
morphisms f,g: X — Y in I, there exists a morphism h: Y — Z with h- f = h-g. A
filtered colimit in a category A is a colimit over a diagram D: I — A with [ filtered. If all
colimit injections (and thus also all connecting maps of the diagram) are monomorphisms,
a filtered colimit is called a directed union. An object A of A is called finitely presentable
if the hom-functor A(A,—): A — Set preserves filtered colimits, and finitely generated if
it preserves directed unions. The full subcategories Ay, and Ay, of all finitely presentable
(resp. finitely generated) objects of A are closed under finite colimits. Moreover, Ay, is
closed under strong quotients, i.e. quotients carried by strong epimorphisms. The category
A is locally finitely presentable if it is cocomplete, A, is essentially small (that is, its objects
taken up to isomorphism form a set), and every object can be expressed as a filtered colimit
of finitely presentable objects. This implies that also every object is a directed union of
finitely generated objects. Examples of locally finitely presentable categories include the

category of sets, the category of posets, and every variety of (many-sorted) algebras, e.g.

groups, rings, vector spaces, or graphs. The finitely generated objects of a variety are the
algebras with finitely many generators, and the finitely presentable objects are the algebras
presentable with finitely many generators and relations. See [6] for more on locally finitely
presentable categories.

2.2 Sifted colimits and algebraic categories

A category I is sifted if I-colimits commute with finite products in Set. Every filtered
category is sifted, as is every category with binary coproducts. A sifted colimit in a category
A is a colimit over a diagram D: I — A with [ sifted. An object A of A is perfectly
presentable if the hom-functor A(A, —): A — Set preserves sifted colimits. The category
A is called algebraic if it is cocomplete, its full subcategory A, of perfectly presentable
objects is essentially small, and every object can be expressed as a sifted colimit of perfect
presentable objects. Algebraic categories can be characterised as the categories of models of
Lawvere theories; in particular, every variety of (many-sorted) algebras is algebraic. The
perfectly presentable objects of an algebraic category are exactly the split quotients of finitely

generated free algebras. Sifted colimits in varieties are formed on the level of underlying sets.

See [7] for more on algebraic categories.

2.3 Factorisation systems

A factorisation system in a category A is a pair (£, M), where £ and M are classes
of morphims such that (i) both £ and M are closed under composition and contain all
isomorphisms, (ii) every morphism f of A has a factorisation f = m - e with e € £ and
m € M, and (iii) the diagonal fill-in property holds: given morphisms e, f, g, m with e € £,
me M and f-e=m-g, there exists a unique morphism d with d-e =g and m-d = f. We
mention the two important properties of factorisation systems:

1. For any two morphisms m and n with n - m,n € M one has m € M.
2. If (a;: A; — A)jer is a colimit in A and A; <> A; ™5 A is the (£, M)-factorisation of

ai, then also (m;: A; — A)ier is a colimit, provided that all morphisms in £ are epic.
Factorisation systems are discussed in detail in [1].
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2.4 Coalgebras and algebras

A coalgebra for an endofunctor H: A — A is a pair (C,~) of an object C € A and a
morphism ~: C — HC. A homomorphism between coalgebras (C,~v) and (D,0) is a
morphism h: C — D in A with § - h = Hh -~. We denote the category of coalgebras
and homomorphisms by Coalg (H). The forgetful functor from Coalg (H) to A creates
colimits, that is, colimits of coalgebras are formed in the underlying category A. If A has
a factorisation system (£, M) and H preserves M (i.e. m € M implies Hm € M), then
Coalg (H) has the factorisation system of E-carried and M-carried homomorphisms.

Dually, an algebra for an endofunctor H: A — A is a pair (A, «) of an object A € A
and a morphism v: HA — A. A homomorphism between algebras (A, «) and (B, ) is a
morphism h: A - Bin A with h-a =3 - Hh.

2.5 Final functors

A functor F': I — J is final if (i) for every j € J there exists a morphism f: j — Fi for some
ie I, and (ii) any two morphisms f: j — Fi and f: j — Fi with 4,7 € I are connected by
a zig-zag, i.e. there exist morphisms kg, ..., k, € I and fi,..., f, € J making the diagram
below commutative:

Fk Fk Fk Fkn_1 _,. S
Fi =<2 Fij — 2 Fig <2 ... Ry Ny
f1 f2 fn
f 7

If Fisfinal and D: I — A and D’: J — A are two diagrams in a category A with D’'-F = D,
then D and D’ have the same colimits. More precisely, if (D; &, A)jes is a colimit cocone

over D', then (D; = D}, “ A);er is a colimit cocone over D. Conversely, if (D; <5 A)e;
D' f: a; .

is a colimit cocone over D, then (D; s, D’Fij = D;, —> A)jes is a colimit cocone over

D', where f;: j — F'i; is an arbitrary morphism in J with ¢; € I, which exists by the finality

of F.

2.6 Colimits in Set

A cocone (¢;: C; — C)er in Set forms a colimit if and only if (i) the maps ¢; are jointly
surjective (i.e. every element of C lies in the image of some ¢;) and (ii) for any two elements
zeCyandy e C; (4,5 € I) with ¢;(z) = ¢;(y), there exists a zig-zag of connecting morphisms
and elements x1,...,x, as shown below:

Ciq,i Ciq,ig Cig,in Cin,ip_1 Cip i
C; o C; . C; C;
w w w w w
T AN To Ty —> Y

If I is filtered, (ii) can be simplified as follows: for any x,y € C; (i € I) with ¢;(x) = ¢;(y),
there exists a connecting morphism ¢;; : C; — C; (j € I) with ¢;;(x) = ¢;;(y).

3 (I, M)-accessible categories

As the foundation for our approach to the semantics of finite behaviours we present in this
section a mild generalisation of the concept of a locally finitely presentable category (cf. 2.1).
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While in the latter the concept of a “finite” object is given by finitely presentable objects, we
introduce two parameters that allow for some flexibility in choosing the desired concept of
finiteness. Throughout this paper let us fix a category A with a factorisation system (€, M),
with £ a class of epimorphisms, and a collection I of (not necessarily small) sifted categories.

» Definition 3.1. A category A is I-cocomplete if every I-diagram (i.e. every diagram
I — A with I € I) has a colimit. A colimit cocone (a;: A; — A);er over an I-diagram is
called an (I, M)-colimit if all injections a; lie in M. (The latter implies that all connecting
morphisms a;;: A; — A; lie in M, see 2.3). A functor F': A — B preserves (I, M)-colimits
if (Fa;: FA; > FA)er is a colimit cocone in B for any (I, M)-colimit (a;: A; — A);er in A.

» Definition 3.2. An object X of A is (I, M)-presentable if the hom-functor A(X,—): A —
Set preserves (I, M)-colimits. We denote by Aja¢ the full subcategory of all (I, M)-
presentable objects.

» Remark 3.3. Using the characterisation of colimits in Set, see 2.6, an object X is (I, M)-
presentable if and only if for any (I, M)-colimit (a;: A; — A);er in A the following holds:
(i) For every morphism f: X — A, there exists i € [ and g: X — A; with f =a; - g.
(ii) For any two morphisms g: X — A; and h: X — A; (4,5 € I) with a; - g = a; - h, there
exists a zig-zag of connecting morphisms along with morphisms g1, ..., g, such that the
diagram below commutes:

iy i iy iy Qig,io Qinip_q Qip,j
A; Ay, A, Sy Ty
g1 92 dn
g h
X

If I is filtered, (ii) simplifies as follows: for any two morphisms g,h: X — A; (i € I)
with a; - g = a; - h, there is a connecting morphism a;; (j € J) with a;; - g = a;; - h.

» Definition 3.4. The category A is (I, M)-accessible if (i) A is I-cocomplete, and (ii) every
object of A is an I-colimit of (I, M)-presentable objects.

» Example 3.5.
1. Every category A is (I, M)-accessible w.r.t. the parameters
I = categories with a terminal object and (&, M) = (isomorphisms, all morphisms ).

Note that (I, M)-colimits are trivial, and thus every object of A is (I, M)-presentable.
2. Every locally finitely presentable category A is (I, M)-accessible w.r.t.

I = small filtered categories and (&, M) = (isomorphisms, all morphisms).

Then (I, M)-colimits are filtered colimits, and thus (I, M)-presentable objects are precisely
the finitely presentable ones.
3. Every locally finitely presentable category A is (I, M)-accessible w.r.t.

I = small filtered categories and (&, M) = (strong epimorphisms, monomorphisms ).

Then (I, M)-colimits are directed unions, and thus (I, M)-presentable objects coincide
with the finitely generated ones.

CALCO 2017
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4. Every algebraic category A is (I, M)-accessible w.r.t.
I = small sifted categories and (€, M) = (isomorphisms, all morphisms ).

Then (I, M)-colimits are sifted colimits, and thus (I, M)-presentable objects are precisely
the perfectly presentable ones.

In the following we generalise some important technical properties of locally finitely
presentable categories to (I, M)-accessible categories.

» Lemma 3.6. A aq is closed under binary coproducts and &-carried quotients.

Proof. Closure under finite coproducts. Let X,Y € Apam, i.e. the functors A(X,—) and
A(Y, =) preserve (I, M)-colimits, and suppose that X and Y have a coproduct X +Y
in A. Since all categories in I are sifted by assumption, I-colimits commute with finite
products in Set (see 2.2). Therefore the functor A(X +Y, —) ~ A(X, —) x A(Y, —) preserves
(I, M)-colimits, which proves X +Y € Aj am.

Closure under £-quotients. Let e: X — Y be a morphism in £ with X € Ay, and
suppose that (a;: A; — A)er is an (I, M)-colimit. To show that ¥ € Ay g, we verify the
criterion of Remark 3.3.
(i) Let f: Y — A. Since X € Ay aq, the morphism f - e factorises through the cocone, i.e.
fre=a;-gforsomeiel and g: X — A;. Diagonal fill-in gives a morphism d: Y — A;
with a; - d = f.

X*E>Y*f>A

A;

g

(ii) Let g: Y — A, and h: Y — A, be two morphisms with ¢, j € I and a; - g = a; - h. Since
X € Ap m, there exists a zig-zag connecting g - e and h - e as in the diagram below:

iy i iy ig A Qigig ain>in_1A iy ,j A
i ia e e=<— A —= j
g1 g2 9n
ge he

X

Since the connecting morphism a;, ; lies in M, diagonal fill-in yields a morphism
dli Y — Ail with dl €= (31 and Qiq 1 'dl =4d.

X—*->Y

| )

A —— A,

oagy

Put ds := a;, i,-d1. Again by diagonal fill-in, there exists d3: X — A;, with a;, ;,-d3 = da.
Proceeding in this fashion, we obtain morphisms d1, . .., d, making the following diagram
commute:

Qi i, iy j

R

Thus g and h are connected by a zig-zag, as required. <

Qi i Qi ,ig Qig,ig
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» Corollary 3.7. In an (I, M)-accessible category A, every object is an (I, M)-colimit of
(I, M)-presentable objects.

Proof. Since A is (I, M)-accessible, every object is an I-colimit of (I, M)-presentable objects.
Therefore the statement follows from 2.3(2) and the closure of Ay o under £-quotients. <

» Notation 3.8. For any object A € A, denote by Ay | A the comma category whose
objects are the morphisms f: X — A with X € Aj aq; a morphism from (f: X — A) to
(9: Y — A) is a morphism h: X > Y in A with f = g-h. The canonical diagram of A is
the diagram m4: (Apam | A) — A mapping (f: X — A) to X and h: f — g to h.

» Lemma 3.9. If A is an (I, M)-accessible category, then every object A € A is the colimit
of its canonical diagram, with colimit injections f: wa(f) = A (fe ALm | A).

Proof. Express A as an (I, M)-colimit (a;: D; — A);er of (I, M)-presentable objects D,
see Corollary 3.7. Then the functor F': I — Aj ¢ mapping ¢ € I to the colimit injection
(ai: D; —> A) € Ar pm | A is final; indeed, the two criteria (i) and (ii) in 2.5 state precisely
that every object of Ay aq is (I, M)-presentable. Since D = w4 - F, it follows from 2.5 that
the morphisms f: m4(f) — A form a colimit cocone. <

4 Locally (I, M)-presentable coalgebras

In this section, we consider finite systems modelled as coalgebras based on (I, M)-presentable
objects and show the existence of a final locally (I, M)-presentable coalgebra, which serves
as the semantic domain of finite behaviours.

» Assumptions 4.1. From now on, fix an endofunctor H: A — A on an (I, M)-accessible
category A. Let Coalg r¢(H) denote the full subcategory of Coalg (H) of all coalgebras
(A, ) with A € Appm. We assume that (i) A has binary coproducts, (ii) H preserves
I-colimits, (iii) H preserves M (i.e. m € M implies Hm € M), and (iv) Coalgrm(H) € L.

» Notation 4.2. Let Ty — H(Ty) be the colimit of the inclusion Coalgym(H) —
Coalg (H). (The colimit exists by Assumption 4.1(iv) and because colimits in Coalg (H)
are formed in the underlying category A). We denote the colimit injections by

o (A,a) = (Ty,T) ((A,a) € Coalg am(H)).
» Example 4.3. The following settings of categories and functors satisfy our assumptions.

1. Let A be a category with binary coproducts and H: A — A a functor with a final
coalgebra. Choose I = categories with a terminal object and (€, M) trivial as in Example
3.5.1. Then the above assumptions (i)-(iv) are clearly satisfied. The coalgebra Ty is the
colimit of all H-coalgebras, i.e. the final coalgebra vH of H.

2. Let A be a locally finitely presentable category and H: A — A a functor preserving
filtered colimits (a finitary functor for short). Choose I = small filtered categories and
(€, M) trivial as in Example 3.5.2. Then (i), (ii) and (iii) are clearly true, and (iv)
holds because finitely presentable objects are stable under finite colimits and colimits of
H-coalgebras are formed in A. The coalgebra Ty is the colimit of all H-coalgebras with
finitely presentable carrier. This coalgebra is the rational fixpoint of H introduced in the
work of Addmek, Milius, and Velebil [2], and is denoted by oH. The term “fixpoint” will
be justified in Lemma 4.5 below.

24:7
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3. Let A be locally finitely presentable and H: A — A a finitary functor preserving
monomorphisms. Choose I = small filtered categories and (£, M) = (strong epimorphisms,
mononomorphisms) as in Example 3.5.3. Then (i), (ii) and (iii) are clear, and (iv) holds
because finitely generated objects are stable under finite colimits. The coalgebra Ty is
the colimit of all H-coalgebras with finitely generated carrier; this is the locally finite
fizpoint of H investigated by Milius, Pattinson, and Wifimann [19]. We denote it by ¥ H.

4. Let A be an algebraic category and H: A — A a functor preserving sifted colimits.
Choose I = small sifted categories and (£, M) trivial as in Example 3.5.4. Then (i),
(ii) and (iii) are clear, and (iv) holds because perfectly presentable objects are stable
under finite coproducts. The coalgebra Ty is formed as the colimit of all coalgebras with
perfectly presentable carrier, and is in the following denoted by ¢H.

» Remark 4.4. Since H preserves M, the factorisation system of A lifts to Coalg (H), see
2.4. Consequently, we can express the coalgebra (T, 7) as an (I, M)-colimit of coalgebras
in Coalgy ar(H). Indeed, for each (A, ) € Coalgy a(H) factorise

o = (4,a) = (A,@) = (T, 7)

in Coalg (H), where e,, € £ and m, € M. Then m,, = @” because mg, - e, = a¥ = a” - e,
(using that (—)# forms a cocone) and e, is an epimorphism. Therefore, by 2.3(2), the
homomorphisms

at: (A, @) - (Tg,T) ((A,«) € Coalg m(H))

form an (I, M)-colimit cocone in Coalg (H). Given a homomorphism h: (A4, a) — (B, 3) in

Coalg y(H), we denote by h: (A, @) — (B, ) the unique homomorphism (obtained via
diagonal fill-in) with k- e, = eg - h.

» Lemma 4.5 (Lambek Lemma for T). The coalgebra structure Ty — H(Tg) is an iso-
morphism in A.

Proof sketch. By Remark 4.4 and since colimits in Coalg (H) are formed in A, we know
that 7 is the unique mediating morphism with 7-a# = Ha™ -@ for all (4, a) € Coalgy i (H).
One can show that the morphisms

A2 ga, gr, ((4, ) € Coalg m(H))

form a colimit cocone over the diagram D: Coalgy y(H) — A mapping (A, ) to A and
h: (A,a) — (B, B) to h. Then the uniqueness of colimits implies that 7 is an isomorphism.
The details of the proof are given in the Appendix. “

» Example 4.6.

1. Consider the setting of Example 4.3.1. Then the above lemma is precisely the classical
Lambek lemma [14]: the final coalgebra vH is a fixpoint of H.

2. In the setting of Example 4.3.2, the lemma shows that oH forms a fixpoint of H. This
was shown in [2] with a conceptually different proof method.

3. In the setting of Example 4.3.3, the lemma shows that ¥ H is a fixpoint of H. This result
is known from [19] where again a different proof method was used.

4. In the setting of Example 4.3.4, we obtain a new fixpoint ¢H for any sifted colimit
preserving endofunctor H on an algebraic category A. The fixpoint ¢ H models the
behaviours of pp-coalgebras, i.e. coalgebras with perfectly presentable carrier. Given



H. Urbat

two pp-coalgebras (A4, «) and (B, ), two states a € A and b € B are merged by the
colimit injections a#: A — pH and f#: B — @H if and only if there exists a “perfectly
presentable reason” for it, in the sense that a and b are connected by a zig-zag of
pp-coalgebras as in the diagram below:

h1 ha hp—1
(A, a) <2 (A1, 01) —> (Ag, 09) <— ... <" (A, ) —— (B, B)
w w w w w
a faq as ap ——>b

Indeed, this follows from the fact that the sifted colimit defining @ H is formed on the
level of Set, see 2.2 and 2.6.

One natural occurrence of pp-coalgebras, and in particular coalgebras carried by finitely
generated free algebras, arises in the generalised powerset construction of Silva, Bonchi,
Bonsangue, and Rutten [22]: given a monad T = (7,7, ) on Set and an endofunctor
H: Set — Set that admits a lifting H: AT — AT to the category of T-algebras, a
coalgebra X — HTX for the functor HT can be transformed into a coalgebra TX —
HTX for the functor H whose carrier is the free T-algebra TX = (TX, ux) on X. For
example, the classical powerset construction for nondeterministic automata is an instance
of the generalised one by taking H = {0,1} x Id* and the finite powerset monad T = Ps.

» Remark 4.7. In A = Set perfectly presentable, finitely presentable and finitely generated
objects coincide with the finite sets, and moreover every finitary set functor H preserves
sifted colimits, see [7, Corollary 6.30]. Therefore, for any such H we have oH = oH = 9H.
For example, if H = Hy = [[, .5,
signature X, then the final coalgebra vHy is carried by the set of finite or infinite -trees,
and pHy, = 9Hy = ¢Hy is carried by the set of rational trees [13], i.e. finite or infinite trees
that up to isomorphism have only finitely many subtrees. We shall see in Example 4.12
below that in general algebraic categories, the fixpoint ¢ H may differ from poH and JH.

1d>(?) is the polynomial set functor associated to a finitary

Our next goal is to characterise the coalgebra Ty by a universal property.

» Definition 4.8. An H-coalgebra is called locally (I, M)-presentable if it is an I-colimit of
coalgebras in Coalga(H).

» Remark 4.9. By factorising as in Remark 4.4, it follows that a locally (I, M)-presentable
coalgebra can also be expressed as an (I, M)-colimit of coalgebras in Coalga(H).

» Lemma 4.10. If all categories in I are filtered, then every coalgebra in Coalg a(H) is
an (I, M)-presentable object of Coalg (H).

For the case where H is a finitary functor on a locally finitely presentable category A
(the setting of Example 4.3.2), this is shown in [8, Lemma III.2]. The following proof is a
straightforward generalisation.

Proof. Let (b;: (B;,8;) — (B, 8))ier be an (I, M)-colimit in Coalg (H), and suppose that
h: (A,a) — (B, ) is a coalgebra homomorphism with (A, a) € Coalgy a(H). We need to
show that h factorises through the cocone essentially uniquely. Since the colimit is formed in
A and the object A is (I, M)-presentable, there exists ¢ € I and a morphism g: A — B; in A
with h = b; - g. Moreover, since H preserves I-colimits we have that also (Hb;)cr is a colimit
cocone. The two morphisms (; - g, Hg - a«: A — H B; are merged by Hb; because

Hbi-Bi-g=B-bi-g=B-h=Hh-a=Hb-Hg-a,

24:9
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using that h and b; are coalgebra homomorphisms. Therefore, since I is filtered, there exists
a connecting morphism b;;: (B;, ;) — (Bj, ;) with Hb;; - B; - g = Hb;; - Hg - a. An easy
computation now shows that the morphism f := b;; - ¢ is a coalgebra homomorphism from
(A, ) to (Bj, ;) with h = b; - f. Thus h factorises through b; in Coalg (H).

The uniqueness of factorisations is clear because this holds in the underlying category. «

» Theorem 4.11. If all categories in I are filtered, then (T, T) is the final locally (I, M)-
presentable H -coalgebra.

Proof. By definition, the coalgebra (T4, 7) is locally (I, M)-presentable. To show the finality,
it suffices to prove that every coalgebra (A, ) in Coalgy r(H) has a unique homomorphism
into (Tgr, 7). Clearly the colimit injection a®: (A, ) — (T, 7) is a homomorphism. For the
uniqueness, suppose that h: (A,a) — (Ty,7) is any homomorphism. Since (4, «) is (I, M)-
presentable in Coalg (H) by Lemma 4.10 and the homomorphisms B#: (B,B) — (Ty,7)
((B,B) € Coalgyam(H)) form an (I, M)-colimit cocone by Remark 4.4, there exists a

coalgebra (B, ) in Coalgy s (H) and a homomorphism g: (A, o) — (B, 8) with B# -g = h.

Since the morphisms (—)# form a cocone, this implies h = B# g = a¥. <

» Example 4.12. In the setting of Example 4.3.4 where the categories in I are not filtered,
the universal property in the above theorem generally fails, that is, a pp-coalgebra can admit
more than one homomorphism into pH. To see this, consider the category A of algebras with
a single unary operation v and the identity functor H = Id on A. Thus H-coalgebras are
input-free deterministic transition systems endowed with an additional unary operation that
commutes with the transitions. Let F'X denote the free algebra of A over the set X, carried
by the set of all terms u"(z) with n > 0 and variables € X. Note that split quotients
of a term algebra are again term algebras (arising by identifiying variables). Therefore
the perfectly presentable objects of A are exactly the finitely generated free algebras, i.e.
the algebras FX with X finite (cf. 2.2). We write Coalg f...(H) for the category of all
H-coalgebras with finitely generated free carrier.
Consider the two H-coalgebras

F{z} 5 F{z} with a(z) =2
and

Fly} & Py} with B(y) = u(y),

and let g: F{x} — @H be the unique morphism in A with g(x) = 37 (y). We will prove that
(i) g: (F{z},a) — (pH,7) is a coalgebra homomorphism and (ii) g # a*, which shows that
there are two distinct homomorphisms from (F{z}, @) into (pH,T).

To prove (i), observe first that clearly : (F{y},5) — (F{y}, ) is a coalgebra homo-
morphism, and thus 8# = % - 3 because (—)# forms a cocone. This implies

9(a(z)) = g(z) (def. «)
= 8%(y) (def. g)
= 6%(B(y)) (see above)
= 7(8%(y)) (B* coalg. hom.)
=7(9(x)) (def. g)

and thus g - a = 7 - g because x generates F'{x}. Hence g is a coalgebra homomorphism.
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To prove (ii), it suffices to show that a®(z) # 57 (y). Since the sifted colimit defining
©H is formed in Set (see 2.2), this requires us to show that there is no zig-zag of coalgebra
homomorphisms in Coalg fec(H) connecting 2z and y. In the following, let us call an element
a of an H-coalgebra (A,~) finite if the set {¥"(a) : n = 0} of all states that are reachable
from a by transitions is finite.

(%) Claim. Let X and Y be finite sets and let h: (FX,y) — (FY,d) be a coalgebra
homomorphism. Then a state ¢t € FX is finite if and only if the state h(t) € FY is finite.

Proof. Since h is a coalgebra homomorphism we have h(y"(t)) = §"(h(t)) for every n = 0.
This immediately implies that h(t) is finite whenever ¢ is finite. Conversely, suppose that ¢ is
not finite. Since the set X of variables is finite, there are only finitely many terms of any
given height in FFX. Thus, for every k > 0, there exists a term u™(z) € TX with z € X and
n = k that is reachable from ¢. Then h(u™(z)) = u™(h(x)) is a term of height at least n > k
in F'Y, and this term is reachable from h(t) because h is a coalgebra homomorphism. Thus
the state h(t) € F'Y is not finite. <

Since the state x of the coalgebra (F{z},«) is finite and the state y of (F{y}, 3) is infinite,
(#) shows that no zig-zag in Coalg fc.(H) connecting = and y exists.

» Remark 4.13. In the above example the fixpoints ¢H, YH and vH are carried by the
terminal object 1, while ¢H is nontrivial. In general, all four fixpoints may be pairwise
distinct. This holds, e.g., for the endofunctor H = IN x Id on the category A of sets with two

unary operations, with both operations on IN given by the successor map; see Milius [17].

In addition, in loc. cit. the author discusses sufficient conditions on the functor H ensuring
that the three fixpoints ¢ H, oH and 9H (each of which represents different flavours of finite
behaviours) coincide.

5 (I, M)-iterative algebras

In this section, we establish another universal property of Ty it is the initial (I, M)-iterative

algebra and thus forms the universal domain of solutions for guarded recursive specifications.

The results of this section put a common roof over results from [15, 2, 19]. Since the proofs
are essentially identical to the ones of [2], we confine ourselves to describing the constructions
involved.

For motivation, recall that for an algebra A over a finitary signature X, a flat system of
equations is a finite system of recursive equations of the form z; = t¢4,...,x, = t, where
Z1, ... %, are the variables and each t; is either an element of A or a Y-term of height 1 in
the variables x1,...,x,. Thus, a flat system corresponds to a function e: X — Hy X + A
with X = {z1,...2,}. The algebra A is called iterative if every flat system of equations has
a unique solution in A.

» Example 5.1. The Y-algebra of finite or infinite trees is iterative, as is the Y-algebra of
rational trees (see Remark 4.7). Given the signature ¥ of a binary operation symbol * and a
constant symbol ¢, the flat system xy = x9 * 1, 2 = ¢, has the following unique solution in
the algebra of rational trees:

T = * Ty = C.
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Replacing Hs by a general endofunctor H: A — A and the finite set X of variables an
arbitrary (I, M)-presentable object, the concept of an iterative Y-algebra generalises has the
following categorical generalisation:

» Definition 5.2. Let HA % A be an H-algebra. By a flat equation morphism is meant
a morphism e: X — HX + A with X € Apam. A solution of e in (A, «) is a morphism
el X — A making the following square commute:

X el A

ei T[Q,A]

HX+A—>HA+ A
Hel+A

The algebra (A4, «) is called (I, M)-iterative if every flat equation morphism admits a unique
solution.

» Example 5.3. In the settings of Example 4.3.1-3, (I, M)-iterative algebras are called com-
pletely iterative algebras [15], iterative algebras [2] and fg-iterative algebras [19], respectively.

Since the coalgebra structure 7 of Tj is an isomorphism by Lemma 4.5, we can view Tx as
an H-algebra (Tg,71). We aim to show that this algebra is (I, M)-iterative and, in fact,
the initial (I, M)-iterative algebra. This requires further assumptions on our setting:

» Assumptions 5.4. In addition to the Assumptions 4.1 given in the previous section,
we assume that (i) all categories in I are filtered, (ii) M is closed under coproducts, i.e.
m,m’ € M implies m + m' € M, and (iii) Coalgm(H + X) €I for every X € A.

Here H + X : A — A is the endofunctor given by Y — HY + X.

» Example 5.5. In the setting of Example 4.3.1, the above assumption (iii) states precisely
that H is an iteratable endofunctor, i.e. the functor H + X admits a final coalgebra for every
X € A. In Example 4.3.2/3, (iii) is trivially satisfied.

» Lemma 5.6. (Ty, 7 1) is an (I, M)-iterative algebra.

Proof sketch. Let e: X — HX + Ty be a flat equation morphism with X € Ay aq. Express
the coalgebra (T'y, 7) as an (I, M)-colimit

a”: (A, @) — (Tg,T) ((A, ) € Coalg m(H),

see Remark 4.4. Since colimits commute with coproducts and M is closed under coproducts,
we have the (I, M)-colimit

HX +a*: HX +A—> HX + Ty ((A,a) € Coalgyr(H))

in A. Therefore, since X is (I, M)-presentable, there exists a coalgebra (A, a) € Coalg | s (H)
and a morphism ey making the triangle below commute:

X > HX +Ty

\ T HX+a#*
€o

HX + A
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Form the coalgebra

s=X+ AL, gy A BXYT gy L gAY (X 4+ A)
where inl and inr denote the left and right coproduct injections, and can is the canonical
morphism determined by can - inl = Hinl and can - inr = Hinr. Letting s# be the unique
homomorphism into (T, 7), the morphism

T inl — s
el=X—>X+A—Ty

can be shown to be the unique solution of e. The argument is identical to the proof of [2,
Lemma 3.5]. «

» Theorem 5.7. (Ty, 77 1) is the initial (I, M)-iterative algebra.

Proof sketch. Let HA % A be an (I, M)-iterative algebra. Any coalgebra (X,¢) €
Coalg a(H) induces a flat equation morphism

ce=XSHX D HX+ A

with the unique solution 62 : X — A. The morphisms ez form a cocone in A over the diagram

defining Ty. Therefore there exists a unique h: Ty — A in A with h - &% = ez for all
(X,€) € Coalgpm(H), which can be shown to be the unique H-algebra homomorphism
from (T, 77 1) to (A, ). The proof is analogous to [2, Theorem 3.3] <

» Example 5.8. By specialising the above theorem to the settings of Example 4.3.1-3, we
recover the following three results from the literature [15, 2, 19]:

1. If A is a category with binary coproducts and H is a functor with a final coalgebra vH,
then v H is the initial completely iterative algebra for H.

2. If A is locally finitely presentable and H is a finitary functor, then poH is the initial
iterative algebra for H.

3. If A is locally finitely presentable with coproducts stable under monomorphisms, and H
is a finitary functor preserving monomorphisms, then 9 H is the initial fg-iterative algebra
for H.

» Remark 5.9 (Free (I, M)-iterative algebras). The forgetful functor from the category of all
(I, M)-iterative algebras and homomorphisms into A has a left adjoint. The free (I, M)-
iterative algebra over an object X € A is constructed as follows.

Observe first that the functor H + X satisfies the Assumptions 4.1: it preserves I-colimits
because H does and colimits commute with coproducts; it preserves M because H does and
M is stable under coproducts by Assumption 5.4(ii); and one has Coalgy sm(H + X) € I by
Assumption 5.4(iii). Therefore Theorem 4.11 (applied to the functor H + X in lieu of H)
shows that there exists a final locally (I, M)-presentable coalgebra

THX = TH+X

for H 4+ X, constructed as the colimit of all coalgebras in Coalgy pm(H + X). We denote
the coalgebra structure of Ty X and its inverse (see Lemma 4.5) by

TuX 25 H(TyX) + X and H(TpX) + X 292 1o x

respectively. The latter is the initial (I, M)-iterative algebra for H + X by Theorem 5.7.
Then a standard argument identical to [15, Theorem 2.10] shows that H(TyX) 25 Ty X is
the free (I, M)-iterative H-algebra over X, with unit nx: X —» Ty X.
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By definition, (I, M)-iterative algebras have unique solutions for every flat equation morphism.
This property implies a much stronger one: every guarded equation morphism has a unique
solution. Recall that for a X-algebra A, a guarded system of equations consists of equations
r1 =t1,...,x, = t, where each t; is either an element of A or a rational 3-tree over X + A
of height at least 1. This concept can be generalised to our present setting as follows:

» Definition 5.10. Let (A, «) be an (I, M)-iterative algebra. By a guarded equation morphism
is meant a morphism e: X — Ty (X + A) with X € Ay a¢ for which there exists a morphism
e making the left-hand triangle below commute. A solution of e is a morphism ef: X — A
making the right-hand diagram commute. Here & is the unique homomorphism with
a-na = ida, using the freeness of Ty A.

X o Ty(X + A) x— < A
\ T[gmnr] l T&
H(Ty(X +A))+ A TH(X‘FA)WTHA

» Theorem 5.11. FEvery (I, M)-iterative algebra admits unique solutions of guarded equation
morphisms.

Proof sketch. Let (A, «) be an (I, M)-iterative algebra, and suppose that e: X — Ty (X +A)
is a guarded equation morphism with associated eg: X — HTgy (X + A) + A. Express the
coalgebra Ty (X + A) as an (I, M)-colimit

o W — Ty (X + A) ((W,w) € Coalg m(H + X + A)),

see Remark 4.4. Since H preserves (I, M)-colimits, M is stable under coproducts and colimits
commute with coproducts, it follows that

Hw* + A: HW + A — H(Tg(X + A)) + A (W, w) € Coalgy m(H + X + A))

forms an (I, M)-colimit cocone in A. Therefore, since X is (I, M)-presentable, the morphism
eo factorises through Hw# + A for some (W, w) € Coalgpm(H + X + A):

X —“ H(Ty(X + A)) + A
THE# +A

HW + A

fo

Form the following flat equation morphism, where inm is the middle coproduct injection:
[w,inm]

s=W+ X 2 gy x o4 I gy o A gy x) 44

Since the algebra (A, ) is (I, M)-iterative, s has the unique solution s': X — A, and one
can verify that

H PR — Tt
=X W+X A

is the unique solution of e. The argument is identical to the proof of [2, Theorem 4.6] <
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6 Conclusion and Future Work

Our paper has provided the first steps towards a uniform categorical treatment of finite
systems and finite recursive specifications, where the meaning of “finite” becomes a parameter
that can be chosen according to the applications in mind. As our main technical result we
showed that, under suitable assumptions on the categories and functors, there exists a final
locally (I, M)-presentable coalgebra that forms a fixpoint of the type functor and captures
precisely the behaviours of finite systems. The uniformity of our setting does away with
the previous need of developing coalgebraic semantics for each of the competing notions of
finiteness independently, often with structurally very similar results and proofs.

In the case of finitary endofunctors on locally finitely presentable categories, the rational
fixpoint and its characterisation as the initial iterative algebra formed the starting point for
extensive research on iterative monads [5, 4], iteration theories [3], recursive program schemes
[18], and proof systems for language equivalence [16, 10] from a (co-)algebraic perspective.
We expect that many of the results in loc. cit. generalise to our present setting, and thus
could be extended to finiteness conditions that so far have not been investigated, e.g. to
finitely generated objects of variables.

Acknowledgements. 1 am grateful to Jifi Addmek and Stefan Milius for many helpful
discussions.
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