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Abstract
In the coalgebraic approach to state-based systems, semantics is captured up to behavioural
equivalence by special coalgebras such as the final coalgebra, the final locally finitely presentable
coalgebra (Adámek, Milius, and Velebil), or the final locally finitely generated coalgebra (Milius,
Pattinson, and Wißmann). The choice of the proper semantic domain is determined by finiteness
restrictions imposed on the systems of interest. We propose a unifying perspective by introducing
the concept of a final locally pI,Mq-presentable coalgebra, where the two parameters I and
M determine what a “finite” system is. Under suitable conditions on the categories and type
functors, we show that the final locally pI,Mq-presentable coalgebra exists and coincides with the
initial pI,Mq-iterative algebra, thereby putting a common roof over several results on iterative,
fg-iterative and completely iterative algebras that were given a separate treatment before.
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1 Introduction

Coalgebras model a wide variety of state-based systems, including deterministic and non-
deterministic automata, weighted automata, labelled transition systems and probabilistic
systems. One striking advantage of the coalgebraic approach is its beautiful account of
semantics: the possible behaviours of states are captured by the final coalgebra, and the
behaviour of a system is given by its final homomorphism. As a prominent example, the set
functor t0, 1u ˆ IdΣ (modelling deterministic automata) has a final coalgebra carried by the
set of all languages over Σ, and the final homomorphism maps a state of an automaton to its
accepted language [21].

In computer science, the focus is typically on systems satisfying some finiteness restrictions.
For example, classical automata theory investigates finite automata (i.e. automata with
finitely many states and input symbols) and their behaviours, the regular languages. And in
the recently developed theory of nominal automata [9], the objects of interest are automata
with possibly infinite, but orbit-finite nominal sets of states and inputs. From a “finite” point
of view, the semantics given by the final coalgebra is sometimes unsatisfactory because it may
identify states of finite coalgebras even though there is no finite witness for their behavioural
equivalence. Hence, to obtain the semantics of finite systems, the final coalgebra needs to be
replaced by another semantic domain that properly captures finite behaviours.

One prime challenge in systematically developing a theory of finite behaviours is that
category theory offers several natural ways of modelling finite objects in categories, e.g. as
finitely presentable, finitely generated, or perfectly presentable objects. These concepts are
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equivalent in the category of sets (and give precisely the finite sets) but generally differ,
e.g. in categories of algebraic structures. The first categorical treatment of finite coalgebras
and their final semantics was given in the work of Adámek, Milius, and Velebil [2] and later
elaborated by Milius [16]. These authors modelled finite systems as coalgebras in a locally
finitely presentable category carried by a finitely presentable object of states and introduced
the rational fixpoint of a functor. The latter is essentially a “finitely presentable” version
of the final coalgebra: it forms the final locally finitely presentable coalgebra, i.e. every
coalgebra with a finitely presentable carrier has a unique homomorphism into it, and two
states of such a coalgebra are identified by the unique homomorphism if and only if there
is a finitely presentable witness for their behavioural equivalence. In the recent work of
Milius, Pattinson, and Wißmann [19], a similar and largely parallel theory is developed for
coalgebras based on finitely generated (instead of finitely presentable) objects of states: the
authors introduce the locally finite fixpoint of a functor and prove it to be the final locally
finitely generated coalgebra. The locally finite fixpoint has some technical advantages over
the rational fixpoint, e.g. it is always a subcoalgebra of the final coalgebra, and it captures
many instances of finite behaviours such as regular languages, context-free languages, and
algebraic trees.

The goal of the present paper is to propose a uniform account that captures both the
classical final semantics and its finite versions in the literature as special cases. For this
purpose, we introduce the concept of an pI,Mq-accessible category, a generalisation of
accessible and locally finitely presentable categories [6]. The two parameters I (a class
of diagram schemes) and M (a class of morphisms) give rise to the notion of an pI,Mq-
presentable object in a category that we take as our general definition of “finite object”. By
taking different choices of I and M, the pI,Mq-presentable objects of a category instantiate
e.g. to finitely presentable, finitely generated, perfectly presentable, or arbitrary objects. We
then develop the theory of coalgebras based on pI,Mq-presentable objects: under suitable
conditions on the categories and coalgebraic type functors, we show the existence of a final
locally pI,Mq-presentable coalgebra, providing a general finite version of final semantics and
putting a common roof over the earlier work in [2, 16, 19]. As a new instance of our setting,
we investigate coalgebras in algebraic categories carried by finitely generated free algebras of
states. Such coalgebras arise naturally as determinisations of coalgebras with side effects,
using the generalised powerset construction of Silva, Bonchi, Bonsangue, and Rutten [22].

Besides providing semantics of state-based systems, final coalgebras are also known to
allow for an abstract and elegant category-theoretic approach to the semantics of guarded
recursive specifications. Generalising classical work of Elgot [11, 12], Nelson [20] and Tiuryn
[23] on algebraic properties of infinite trees, Milius [15] observed that the final coalgebra for a
functor is also its initial completely iterative algebra. Analogous characterisations are known
for the final locally finitely presentable coalgebra [2] and the final locally finitely generated
coalgebra [19], where guarded recursive specifications restricted to a finitely presentable (resp.
finitely generated) object of variables are considered. In Section 5, we will establish these
results uniformly at our level of generality.

2 Preliminaries

We start by reviewing some concepts from category theory that we use in the paper.
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2.1 Filtered colimits and locally finitely presentable categories
A category I is filtered if I-colimits commute with finite limits in Set. Equivalently, the
following two properties hold: (i) for any two objects X,Y P I, there exist morphisms
f : X Ñ Z and g : Y Ñ Z with a common codomain Z, and (ii) for any two parallel
morphisms f, g : X Ñ Y in I, there exists a morphism h : Y Ñ Z with h ¨ f “ h ¨ g. A
filtered colimit in a category A is a colimit over a diagram D : I Ñ A with I filtered. If all
colimit injections (and thus also all connecting maps of the diagram) are monomorphisms,
a filtered colimit is called a directed union. An object A of A is called finitely presentable
if the hom-functor ApA,´q : A Ñ Set preserves filtered colimits, and finitely generated if
it preserves directed unions. The full subcategories Afp and Afg of all finitely presentable
(resp. finitely generated) objects of A are closed under finite colimits. Moreover, Afg is
closed under strong quotients, i.e. quotients carried by strong epimorphisms. The category
A is locally finitely presentable if it is cocomplete, Afp is essentially small (that is, its objects
taken up to isomorphism form a set), and every object can be expressed as a filtered colimit
of finitely presentable objects. This implies that also every object is a directed union of
finitely generated objects. Examples of locally finitely presentable categories include the
category of sets, the category of posets, and every variety of (many-sorted) algebras, e.g.
groups, rings, vector spaces, or graphs. The finitely generated objects of a variety are the
algebras with finitely many generators, and the finitely presentable objects are the algebras
presentable with finitely many generators and relations. See [6] for more on locally finitely
presentable categories.

2.2 Sifted colimits and algebraic categories
A category I is sifted if I-colimits commute with finite products in Set. Every filtered
category is sifted, as is every category with binary coproducts. A sifted colimit in a category
A is a colimit over a diagram D : I Ñ A with I sifted. An object A of A is perfectly
presentable if the hom-functor ApA,´q : A Ñ Set preserves sifted colimits. The category
A is called algebraic if it is cocomplete, its full subcategory App of perfectly presentable
objects is essentially small, and every object can be expressed as a sifted colimit of perfect
presentable objects. Algebraic categories can be characterised as the categories of models of
Lawvere theories; in particular, every variety of (many-sorted) algebras is algebraic. The
perfectly presentable objects of an algebraic category are exactly the split quotients of finitely
generated free algebras. Sifted colimits in varieties are formed on the level of underlying sets.
See [7] for more on algebraic categories.

2.3 Factorisation systems
A factorisation system in a category A is a pair pE ,Mq, where E and M are classes
of morphims such that (i) both E and M are closed under composition and contain all
isomorphisms, (ii) every morphism f of A has a factorisation f “ m ¨ e with e P E and
m P M, and (iii) the diagonal fill-in property holds: given morphisms e, f, g,m with e P E ,
m P M and f ¨ e “ m ¨ g, there exists a unique morphism d with d ¨ e “ g and m ¨ d “ f . We
mention the two important properties of factorisation systems:

1. For any two morphisms m and n with n ¨m,n P M one has m P M.
2. If pai : Ai Ñ AqiPI is a colimit in A and Ai

ei
ÝÑ Ai

mi
ÝÝÑ A is the pE ,Mq-factorisation of

ai, then also pmi : Ai Ñ AqiPI is a colimit, provided that all morphisms in E are epic.
Factorisation systems are discussed in detail in [1].

CALCO 2017
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2.4 Coalgebras and algebras
A coalgebra for an endofunctor H : A Ñ A is a pair pC, γq of an object C P A and a
morphism γ : C Ñ HC. A homomorphism between coalgebras pC, γq and pD, δq is a
morphism h : C Ñ D in A with δ ¨ h “ Hh ¨ γ. We denote the category of coalgebras
and homomorphisms by Coalg pHq. The forgetful functor from Coalg pHq to A creates
colimits, that is, colimits of coalgebras are formed in the underlying category A. If A has
a factorisation system pE ,Mq and H preserves M (i.e. m P M implies Hm P M), then
Coalg pHq has the factorisation system of E-carried and M-carried homomorphisms.

Dually, an algebra for an endofunctor H : A Ñ A is a pair pA,αq of an object A P A

and a morphism γ : HA Ñ A. A homomorphism between algebras pA,αq and pB, βq is a
morphism h : AÑ B in A with h ¨ α “ β ¨Hh.

2.5 Final functors
A functor F : I Ñ J is final if (i) for every j P J there exists a morphism f : j Ñ Fi for some
i P I, and (ii) any two morphisms f : j Ñ Fi and f : j Ñ Fi with i, i P I are connected by
a zig-zag, i.e. there exist morphisms k0, . . . , kn P I and f1, . . . , fn P J making the diagram
below commutative:

Fi F i1
Fk0oo Fk1 // Fi2 ¨ ¨ ¨

Fk2oo ¨ ¨ ¨ Fin
Fkn´1oo Fkn // Fi

j

f

jj
f1

hh
f2

aa
fn

66

f

44

If F is final and D : I Ñ A and D1 : J Ñ A are two diagrams in a category A with D1 ¨F “ D,
then D and D1 have the same colimits. More precisely, if pD1j

aj
ÝÑ AqjPJ is a colimit cocone

over D1, then pDi “ D1Fi
aFi
ÝÝÑ AqiPI is a colimit cocone over D. Conversely, if pDi

ai
ÝÑ AqiPI

is a colimit cocone over D, then pD1j
D1fj
ÝÝÝÑ D1Fij “ Dij

aij
ÝÝÑ AqjPJ is a colimit cocone over

D1, where fj : j Ñ Fij is an arbitrary morphism in J with ij P I, which exists by the finality
of F .

2.6 Colimits in Set
A cocone pci : Ci Ñ CqiPI in Set forms a colimit if and only if (i) the maps ci are jointly
surjective (i.e. every element of C lies in the image of some ci) and (ii) for any two elements
x P Ci and y P Cj (i, j P I) with cipxq “ cjpyq, there exists a zig-zag of connecting morphisms
and elements x1, . . . , xn as shown below:

Ci Ci1
ci1,ioo ci1,i2 // // Ci2 . . .

ci3,i2oo Cin
cin,in´1oo cin,j // Cj

x

P

x1
�oo � //

P

x2

P

xn
� //

P

y

P

If I is filtered, (ii) can be simplified as follows: for any x, y P Ci (i P I) with cipxq “ cipyq,
there exists a connecting morphism cij : Ci Ñ Cj (j P I) with cijpxq “ cijpyq.

3 pI, Mq-accessible categories

As the foundation for our approach to the semantics of finite behaviours we present in this
section a mild generalisation of the concept of a locally finitely presentable category (cf. 2.1).
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While in the latter the concept of a “finite” object is given by finitely presentable objects, we
introduce two parameters that allow for some flexibility in choosing the desired concept of
finiteness. Throughout this paper let us fix a category A with a factorisation system pE ,Mq,
with E a class of epimorphisms, and a collection I of (not necessarily small) sifted categories.

§ Definition 3.1. A category A is I-cocomplete if every I-diagram (i.e. every diagram
I Ñ A with I P I) has a colimit. A colimit cocone pai : Ai Ñ AqiPI over an I-diagram is
called an pI,Mq-colimit if all injections ai lie in M. (The latter implies that all connecting
morphisms aij : Ai Ñ Aj lie in M, see 2.3). A functor F : AÑ B preserves pI,Mq-colimits
if pFai : FAi Ñ FAqiPI is a colimit cocone in B for any pI,Mq-colimit pai : Ai Ñ AqiPI in A.

§ Definition 3.2. An object X of A is pI,Mq-presentable if the hom-functor ApX,´q : AÑ
Set preserves pI,Mq-colimits. We denote by AI,M the full subcategory of all pI,Mq-
presentable objects.

§ Remark 3.3. Using the characterisation of colimits in Set, see 2.6, an object X is pI,Mq-
presentable if and only if for any pI,Mq-colimit pai : Ai Ñ AqiPI in A the following holds:
(i) For every morphism f : X Ñ A, there exists i P I and g : X Ñ Ai with f “ ai ¨ g.
(ii) For any two morphisms g : X Ñ Ai and h : X Ñ Aj (i, j P I) with ai ¨ g “ aj ¨ h, there

exists a zig-zag of connecting morphisms along with morphisms g1, . . . , gn such that the
diagram below commutes:

Ai Ai1
ai1,ioo ai1,i2 // Ai2 ¨ ¨ ¨

ai3,i2oo ¨ ¨ ¨ Ain //
ain,in´1oo ain,j // Aj

X

g

jj
g1

hh
g2

aa
gn

66

h

44

If I is filtered, (ii) simplifies as follows: for any two morphisms g, h : X Ñ Ai (i P I)
with ai ¨ g “ ai ¨ h, there is a connecting morphism aij (j P J) with aij ¨ g “ aij ¨ h.

§ Definition 3.4. The category A is pI,Mq-accessible if (i) A is I-cocomplete, and (ii) every
object of A is an I-colimit of pI,Mq-presentable objects.

§ Example 3.5.

1. Every category A is pI,Mq-accessible w.r.t. the parameters

I “ categories with a terminal object and pE ,Mq “ p isomorphisms, all morphisms q.

Note that pI,Mq-colimits are trivial, and thus every object of A is pI,Mq-presentable.
2. Every locally finitely presentable category A is pI,Mq-accessible w.r.t.

I “ small filtered categories and pE ,Mq “ p isomorphisms, all morphisms q.

Then pI,Mq-colimits are filtered colimits, and thus pI,Mq-presentable objects are precisely
the finitely presentable ones.

3. Every locally finitely presentable category A is pI,Mq-accessible w.r.t.

I “ small filtered categories and pE ,Mq “ p strong epimorphisms, monomorphisms q.

Then pI,Mq-colimits are directed unions, and thus pI,Mq-presentable objects coincide
with the finitely generated ones.

CALCO 2017
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4. Every algebraic category A is pI,Mq-accessible w.r.t.

I “ small sifted categories and pE ,Mq “ p isomorphisms, all morphisms q.

Then pI,Mq-colimits are sifted colimits, and thus pI,Mq-presentable objects are precisely
the perfectly presentable ones.

In the following we generalise some important technical properties of locally finitely
presentable categories to pI,Mq-accessible categories.

§ Lemma 3.6. AI,M is closed under binary coproducts and E-carried quotients.

Proof. Closure under finite coproducts. Let X,Y P AI,M, i.e. the functors ApX,´q and
ApY,´q preserve pI,Mq-colimits, and suppose that X and Y have a coproduct X ` Y

in A. Since all categories in I are sifted by assumption, I-colimits commute with finite
products in Set (see 2.2). Therefore the functor ApX `Y,´q » ApX,´qˆApY,´q preserves
pI,Mq-colimits, which proves X ` Y P AI,M.

Closure under E-quotients. Let e : X Ñ Y be a morphism in E with X P AI,M , and
suppose that pai : Ai Ñ AqiPI is an pI,Mq-colimit. To show that Y P AI,M, we verify the
criterion of Remark 3.3.
(i) Let f : Y Ñ A. Since X P AI,M, the morphism f ¨ e factorises through the cocone, i.e.

f ¨ e “ ai ¨ g for some i P I and g : X Ñ Ai. Diagonal fill-in gives a morphism d : Y Ñ Ai
with ai ¨ d “ f .

X

g 33

e // Y
f //

d   

A

Ai

ai

OO

(ii) Let g : Y Ñ Ai and h : Y Ñ Aj be two morphisms with i, j P I and ai ¨ g “ aj ¨ h. Since
X P AI,M, there exists a zig-zag connecting g ¨ e and h ¨ e as in the diagram below:

Ai Ai1
ai1,ioo ai1,i2 // Ai2 ¨ ¨ ¨

ai3,i2oo ¨ ¨ ¨ Ain
//

ain,in´1oo ain,j // Aj

X

ge

jj
g1

hh
g2

aa
gn

66

he

44

Since the connecting morphism ai1,i lies in M, diagonal fill-in yields a morphism
d1 : Y Ñ Ai1 with d1 ¨ e “ g1 and ai1,1 ¨ d1 “ g.

X
e //

g1

��

Y

d1

}}
g

��
Ai1 ai1,i

// Ai

Put d2 :“ ai1,i2 ¨d1. Again by diagonal fill-in, there exists d3 : X Ñ Ai3 with ai3,i2 ¨d3 “ d2.
Proceeding in this fashion, we obtain morphisms d1, . . . , dn making the following diagram
commute:

Ai Ai1
ai1,ioo ai1,i2 // Ai2 ¨ ¨ ¨

ai3,i2oo ¨ ¨ ¨ Ain //
ain,in´1oo ain,j // Aj

Y

g

jj
d1

hh
d2

aa
dn

66

h

44

Thus g and h are connected by a zig-zag, as required. đ
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§ Corollary 3.7. In an pI,Mq-accessible category A, every object is an pI,Mq-colimit of
pI,Mq-presentable objects.

Proof. Since A is pI,Mq-accessible, every object is an I-colimit of pI,Mq-presentable objects.
Therefore the statement follows from 2.3(2) and the closure of AI,M under E-quotients. đ

§ Notation 3.8. For any object A P A, denote by AI,M Ó A the comma category whose
objects are the morphisms f : X Ñ A with X P AI,M; a morphism from pf : X Ñ Aq to
pg : Y Ñ Aq is a morphism h : X Ñ Y in A with f “ g ¨ h. The canonical diagram of A is
the diagram πA : pAI,M ÓAq Ñ A mapping pf : X Ñ Aq to X and h : f Ñ g to h.

§ Lemma 3.9. If A is an pI,Mq-accessible category, then every object A P A is the colimit
of its canonical diagram, with colimit injections f : πApfq Ñ A (f P AI,M ÓA).

Proof. Express A as an pI,Mq-colimit pai : Di Ñ AqiPI of pI,Mq-presentable objects Di,
see Corollary 3.7. Then the functor F : I Ñ AI,M mapping i P I to the colimit injection
pai : Di Ñ Aq P AI,M Ó A is final; indeed, the two criteria (i) and (ii) in 2.5 state precisely
that every object of AI,M is pI,Mq-presentable. Since D “ πA ¨ F , it follows from 2.5 that
the morphisms f : πApfq Ñ A form a colimit cocone. đ

4 Locally pI, Mq-presentable coalgebras

In this section, we consider finite systems modelled as coalgebras based on pI,Mq-presentable
objects and show the existence of a final locally pI,Mq-presentable coalgebra, which serves
as the semantic domain of finite behaviours.

§ Assumptions 4.1. From now on, fix an endofunctor H : A Ñ A on an pI,Mq-accessible
category A. Let Coalg I,MpHq denote the full subcategory of Coalg pHq of all coalgebras
pA,αq with A P AI,M. We assume that (i) A has binary coproducts, (ii) H preserves
I-colimits, (iii) H preserves M (i.e. m P M implies Hm P M), and (iv) Coalg I,MpHq P I.

§ Notation 4.2. Let TH
τ
ÝÑ HpTHq be the colimit of the inclusion Coalg I,MpHq �

Coalg pHq. (The colimit exists by Assumption 4.1(iv) and because colimits in Coalg pHq
are formed in the underlying category A). We denote the colimit injections by

α# : pA,αq Ñ pTH , τq ppA,αq P Coalg I,MpHqq.

§ Example 4.3. The following settings of categories and functors satisfy our assumptions.

1. Let A be a category with binary coproducts and H : A Ñ A a functor with a final
coalgebra. Choose I “ categories with a terminal object and pE ,Mq trivial as in Example
3.5.1. Then the above assumptions (i)-(iv) are clearly satisfied. The coalgebra TH is the
colimit of all H-coalgebras, i.e. the final coalgebra νH of H.

2. Let A be a locally finitely presentable category and H : A Ñ A a functor preserving
filtered colimits (a finitary functor for short). Choose I “ small filtered categories and
pE ,Mq trivial as in Example 3.5.2. Then (i), (ii) and (iii) are clearly true, and (iv)
holds because finitely presentable objects are stable under finite colimits and colimits of
H-coalgebras are formed in A. The coalgebra TH is the colimit of all H-coalgebras with
finitely presentable carrier. This coalgebra is the rational fixpoint of H introduced in the
work of Adámek, Milius, and Velebil [2], and is denoted by %H. The term “fixpoint” will
be justified in Lemma 4.5 below.

CALCO 2017
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3. Let A be locally finitely presentable and H : A Ñ A a finitary functor preserving
monomorphisms. Choose I “ small filtered categories and pE ,Mq “ (strong epimorphisms,
mononomorphisms) as in Example 3.5.3. Then (i), (ii) and (iii) are clear, and (iv) holds
because finitely generated objects are stable under finite colimits. The coalgebra TH is
the colimit of all H-coalgebras with finitely generated carrier; this is the locally finite
fixpoint of H investigated by Milius, Pattinson, and Wißmann [19]. We denote it by ϑH.

4. Let A be an algebraic category and H : A Ñ A a functor preserving sifted colimits.
Choose I “ small sifted categories and pE ,Mq trivial as in Example 3.5.4. Then (i),
(ii) and (iii) are clear, and (iv) holds because perfectly presentable objects are stable
under finite coproducts. The coalgebra TH is formed as the colimit of all coalgebras with
perfectly presentable carrier, and is in the following denoted by ϕH.

§ Remark 4.4. Since H preserves M, the factorisation system of A lifts to Coalg pHq, see
2.4. Consequently, we can express the coalgebra pTH , τq as an pI,Mq-colimit of coalgebras
in Coalg I,MpHq. Indeed, for each pA,αq P Coalg I,MpHq factorise

α# ” pA,αq
eα
ÝÑ pA,αq

mα
ÝÝÑ pTH , τq

in Coalg pHq, where eα P E and mα P M. Then mα “ α# because mα ¨ eα “ α# “ α# ¨ eα
(using that p´q# forms a cocone) and eα is an epimorphism. Therefore, by 2.3(2), the
homomorphisms

α# : pA,αq Ñ pTH , τq ppA,αq P Coalg I,MpHqq

form an pI,Mq-colimit cocone in Coalg pHq. Given a homomorphism h : pA,αq Ñ pB, βq in
Coalg I,MpHq, we denote by h : pA,αq Ñ pB, βq the unique homomorphism (obtained via
diagonal fill-in) with h ¨ eα “ eβ ¨ h.

§ Lemma 4.5 (Lambek Lemma for TH). The coalgebra structure TH
τ
ÝÑ HpTHq is an iso-

morphism in A.

Proof sketch. By Remark 4.4 and since colimits in Coalg pHq are formed in A, we know
that τ is the unique mediating morphism with τ ¨α# “ Hα# ¨α for all pA,αq P Coalg I,MpHq.
One can show that the morphisms

A
α
ÝÑ HA

Hα#
ÝÝÝÑ HTH ppA,αq P Coalg I,MpHqq

form a colimit cocone over the diagram D : Coalg I,M pHq Ñ A mapping pA,αq to A and
h : pA,αq Ñ pB, βq to h. Then the uniqueness of colimits implies that τ is an isomorphism.
The details of the proof are given in the Appendix. đ

§ Example 4.6.

1. Consider the setting of Example 4.3.1. Then the above lemma is precisely the classical
Lambek lemma [14]: the final coalgebra νH is a fixpoint of H.

2. In the setting of Example 4.3.2, the lemma shows that %H forms a fixpoint of H. This
was shown in [2] with a conceptually different proof method.

3. In the setting of Example 4.3.3, the lemma shows that ϑH is a fixpoint of H. This result
is known from [19] where again a different proof method was used.

4. In the setting of Example 4.3.4, we obtain a new fixpoint ϕH for any sifted colimit
preserving endofunctor H on an algebraic category A. The fixpoint ϕH models the
behaviours of pp-coalgebras, i.e. coalgebras with perfectly presentable carrier. Given
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two pp-coalgebras pA,αq and pB, βq, two states a P A and b P B are merged by the
colimit injections α# : AÑ ϕH and β# : B Ñ ϕH if and only if there exists a “perfectly
presentable reason” for it, in the sense that a and b are connected by a zig-zag of
pp-coalgebras as in the diagram below:

pA,αq pA1, α1q
goo h1 //// pA2, α2q . . .

h2oo pAn, αnq
hn´1oo h // pB, βq

a

P

a1
�oo � //

P
a2

P

an
� //

P

b

P

Indeed, this follows from the fact that the sifted colimit defining ϕH is formed on the
level of Set, see 2.2 and 2.6.
One natural occurrence of pp-coalgebras, and in particular coalgebras carried by finitely
generated free algebras, arises in the generalised powerset construction of Silva, Bonchi,
Bonsangue, and Rutten [22]: given a monad T “ pT, η, µq on Set and an endofunctor
H : Set Ñ Set that admits a lifting H : AT Ñ AT to the category of T-algebras, a
coalgebra X Ñ HTX for the functor HT can be transformed into a coalgebra TX Ñ

HTX for the functor H whose carrier is the free T-algebra TX “ pTX, µXq on X. For
example, the classical powerset construction for nondeterministic automata is an instance
of the generalised one by taking H “ t0, 1u ˆ IdΣ and the finite powerset monad T “ Pf .

§ Remark 4.7. In A “ Set perfectly presentable, finitely presentable and finitely generated
objects coincide with the finite sets, and moreover every finitary set functor H preserves
sifted colimits, see [7, Corollary 6.30]. Therefore, for any such H we have ϕH “ %H “ ϑH.
For example, if H “ HΣ “

š

σPΣ Idarpσq is the polynomial set functor associated to a finitary
signature Σ, then the final coalgebra νHΣ is carried by the set of finite or infinite Σ-trees,
and %HΣ “ ϑHΣ “ ϕHΣ is carried by the set of rational trees [13], i.e. finite or infinite trees
that up to isomorphism have only finitely many subtrees. We shall see in Example 4.12
below that in general algebraic categories, the fixpoint ϕH may differ from %H and ϑH.

Our next goal is to characterise the coalgebra TH by a universal property.

§ Definition 4.8. An H-coalgebra is called locally pI,Mq-presentable if it is an I-colimit of
coalgebras in Coalg I,MpHq.

§ Remark 4.9. By factorising as in Remark 4.4, it follows that a locally pI,Mq-presentable
coalgebra can also be expressed as an pI,Mq-colimit of coalgebras in Coalg I,MpHq.

§ Lemma 4.10. If all categories in I are filtered, then every coalgebra in Coalg I,MpHq is
an pI,Mq-presentable object of Coalg pHq.

For the case where H is a finitary functor on a locally finitely presentable category A

(the setting of Example 4.3.2), this is shown in [8, Lemma III.2]. The following proof is a
straightforward generalisation.

Proof. Let pbi : pBi, βiq Ñ pB, βqqiPI be an pI,Mq-colimit in Coalg pHq, and suppose that
h : pA,αq Ñ pB, βq is a coalgebra homomorphism with pA,αq P Coalg I,MpHq. We need to
show that h factorises through the cocone essentially uniquely. Since the colimit is formed in
A and the object A is pI,Mq-presentable, there exists i P I and a morphism g : AÑ Bi in A

with h “ bi ¨ g. Moreover, since H preserves I-colimits we have that also pHbiqiPI is a colimit
cocone. The two morphisms βi ¨ g,Hg ¨ α : AÑ HBi are merged by Hbi because

Hbi ¨ βi ¨ g “ β ¨ bi ¨ g “ β ¨ h “ Hh ¨ α “ Hbi ¨Hg ¨ α,
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using that h and bi are coalgebra homomorphisms. Therefore, since I is filtered, there exists
a connecting morphism bij : pBi, βiq Ñ pBj , βjq with Hbij ¨ βi ¨ g “ Hbij ¨Hg ¨ α. An easy
computation now shows that the morphism f :“ bij ¨ g is a coalgebra homomorphism from
pA,αq to pBj , βjq with h “ bj ¨ f . Thus h factorises through bj in Coalg pHq.

The uniqueness of factorisations is clear because this holds in the underlying category. đ

§ Theorem 4.11. If all categories in I are filtered, then pTH , τq is the final locally pI,Mq-
presentable H-coalgebra.

Proof. By definition, the coalgebra pTH , τq is locally pI,Mq-presentable. To show the finality,
it suffices to prove that every coalgebra pA,αq in Coalg I,MpHq has a unique homomorphism
into pTH , τq. Clearly the colimit injection α# : pA,αq Ñ pTH , τq is a homomorphism. For the
uniqueness, suppose that h : pA,αq Ñ pTH , τq is any homomorphism. Since pA,αq is pI,Mq-
presentable in Coalg pHq by Lemma 4.10 and the homomorphisms β# : pB, βq Ñ pTH , τq

(pB, βq P Coalg I,MpHq) form an pI,Mq-colimit cocone by Remark 4.4, there exists a
coalgebra pB, βq in Coalg I,MpHq and a homomorphism g : pA,αq Ñ pB, βq with β#

¨ g “ h.
Since the morphisms p´q# form a cocone, this implies h “ β

#
¨ g “ α#. đ

§ Example 4.12. In the setting of Example 4.3.4 where the categories in I are not filtered,
the universal property in the above theorem generally fails, that is, a pp-coalgebra can admit
more than one homomorphism into ϕH. To see this, consider the category A of algebras with
a single unary operation u and the identity functor H “ Id on A. Thus H-coalgebras are
input-free deterministic transition systems endowed with an additional unary operation that
commutes with the transitions. Let FX denote the free algebra of A over the set X, carried
by the set of all terms unpxq with n ě 0 and variables x P X. Note that split quotients
of a term algebra are again term algebras (arising by identifiying variables). Therefore
the perfectly presentable objects of A are exactly the finitely generated free algebras, i.e.
the algebras FX with X finite (cf. 2.2). We write Coalg freepHq for the category of all
H-coalgebras with finitely generated free carrier.

Consider the two H-coalgebras

F txu
α
ÝÑ F txu with αpxq “ x

and

F tyu
β
ÝÑ F tyu with βpyq “ upyq,

and let g : F txu Ñ ϕH be the unique morphism in A with gpxq “ β#pyq. We will prove that
(i) g : pF txu, αq Ñ pϕH, τq is a coalgebra homomorphism and (ii) g ‰ α#, which shows that
there are two distinct homomorphisms from pF txu, αq into pϕH, τq.

To prove (i), observe first that clearly β : pF tyu, βq Ñ pF tyu, βq is a coalgebra homo-
morphism, and thus β# “ β# ¨ β because p´q# forms a cocone. This implies

gpαpxqq “ gpxq (def. α)
“ β#pyq (def. g)
“ β#pβpyqq (see above)
“ τpβ#pyqq (β# coalg. hom.)
“ τpgpxqq (def. g)

and thus g ¨ α “ τ ¨ g because x generates F txu. Hence g is a coalgebra homomorphism.
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To prove (ii), it suffices to show that α#pxq ‰ β#pyq. Since the sifted colimit defining
ϕH is formed in Set (see 2.2), this requires us to show that there is no zig-zag of coalgebra
homomorphisms in Coalg freepHq connecting x and y. In the following, let us call an element
a of an H-coalgebra pA, γq finite if the set tγnpaq : n ě 0u of all states that are reachable
from a by transitions is finite.

(˚) Claim. Let X and Y be finite sets and let h : pFX, γq Ñ pFY, δq be a coalgebra
homomorphism. Then a state t P FX is finite if and only if the state hptq P FY is finite.

Proof. Since h is a coalgebra homomorphism we have hpγnptqq “ δnphptqq for every n ě 0.
This immediately implies that hptq is finite whenever t is finite. Conversely, suppose that t is
not finite. Since the set X of variables is finite, there are only finitely many terms of any
given height in FX. Thus, for every k ě 0, there exists a term unpxq P TX with x P X and
n ě k that is reachable from t. Then hpunpxqq “ unphpxqq is a term of height at least n ě k

in FY , and this term is reachable from hptq because h is a coalgebra homomorphism. Thus
the state hptq P FY is not finite. đ

Since the state x of the coalgebra pF txu, αq is finite and the state y of pF tyu, βq is infinite,
(˚) shows that no zig-zag in Coalg freepHq connecting x and y exists.

§ Remark 4.13. In the above example the fixpoints %H, ϑH and νH are carried by the
terminal object 1, while ϕH is nontrivial. In general, all four fixpoints may be pairwise
distinct. This holds, e.g., for the endofunctor H “ Nˆ Id on the category A of sets with two
unary operations, with both operations on N given by the successor map; see Milius [17].
In addition, in loc. cit. the author discusses sufficient conditions on the functor H ensuring
that the three fixpoints ϕH, %H and ϑH (each of which represents different flavours of finite
behaviours) coincide.

5 pI, Mq-iterative algebras

In this section, we establish another universal property of TH : it is the initial pI,Mq-iterative
algebra and thus forms the universal domain of solutions for guarded recursive specifications.
The results of this section put a common roof over results from [15, 2, 19]. Since the proofs
are essentially identical to the ones of [2], we confine ourselves to describing the constructions
involved.

For motivation, recall that for an algebra A over a finitary signature Σ, a flat system of
equations is a finite system of recursive equations of the form x1 “ t1, . . . , xn “ tn where
x1, . . . xn are the variables and each ti is either an element of A or a Σ-term of height 1 in
the variables x1, . . . , xn. Thus, a flat system corresponds to a function e : X Ñ HΣX ` A

with X “ tx1, . . . xnu. The algebra A is called iterative if every flat system of equations has
a unique solution in A.

§ Example 5.1. The Σ-algebra of finite or infinite trees is iterative, as is the Σ-algebra of
rational trees (see Remark 4.7). Given the signature Σ of a binary operation symbol ˚ and a
constant symbol c, the flat system x1 “ x2 ˚ x1, x2 “ c, has the following unique solution in
the algebra of rational trees:

x1 “ ˚

c ˚

c ˚

¨ ¨ ¨

x2 “ c.
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Replacing HΣ by a general endofunctor H : A Ñ A and the finite set X of variables an
arbitrary pI,Mq-presentable object, the concept of an iterative Σ-algebra generalises has the
following categorical generalisation:

§ Definition 5.2. Let HA α
ÝÑ A be an H-algebra. By a flat equation morphism is meant

a morphism e : X Ñ HX ` A with X P AI,M. A solution of e in pA,αq is a morphism
e: : X Ñ A making the following square commute:

X

e

��

e: // A

HX `A
He:`A

// HA`A

rα,As

OO

The algebra pA,αq is called pI,Mq-iterative if every flat equation morphism admits a unique
solution.

§ Example 5.3. In the settings of Example 4.3.1-3, pI,Mq-iterative algebras are called com-
pletely iterative algebras [15], iterative algebras [2] and fg-iterative algebras [19], respectively.

Since the coalgebra structure τ of TH is an isomorphism by Lemma 4.5, we can view TH as
an H-algebra pTH , τ´1q. We aim to show that this algebra is pI,Mq-iterative and, in fact,
the initial pI,Mq-iterative algebra. This requires further assumptions on our setting:

§ Assumptions 5.4. In addition to the Assumptions 4.1 given in the previous section,
we assume that (i) all categories in I are filtered, (ii) M is closed under coproducts, i.e.
m,m1 P M implies m`m1 P M, and (iii) Coalg I,MpH `Xq P I for every X P A.

Here H `X : AÑ A is the endofunctor given by Y ÞÑ HY `X.

§ Example 5.5. In the setting of Example 4.3.1, the above assumption (iii) states precisely
that H is an iteratable endofunctor, i.e. the functor H `X admits a final coalgebra for every
X P A. In Example 4.3.2/3, (iii) is trivially satisfied.

§ Lemma 5.6. pTH , τ´1q is an pI,Mq-iterative algebra.

Proof sketch. Let e : X Ñ HX ` TH be a flat equation morphism with X P AI,M. Express
the coalgebra pTH , τq as an pI,Mq-colimit

α# : pA,αq Ñ pTH , τq ppA,αq P Coalg I,MpHq,

see Remark 4.4. Since colimits commute with coproducts and M is closed under coproducts,
we have the pI,Mq-colimit

HX ` α# : HX `AÑ HX ` TH ppA,αq P Coalg I,MpHqq

inA. Therefore, sinceX is pI,Mq-presentable, there exists a coalgebra pA,αq P Coalg I,MpHq

and a morphism e0 making the triangle below commute:

X

e0 $$

e // HX ` TH

HX `A

HX`α#

OO
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Form the coalgebra

s ” X `A
re0,inrs
ÝÝÝÝÑ HX `A

HX`α
ÝÝÝÝÑ HX `HA

can
ÝÝÑ HpX `Aq

where inl and inr denote the left and right coproduct injections, and can is the canonical
morphism determined by can ¨ inl “ H inl and can ¨ inr “ H inr. Letting s# be the unique
homomorphism into pTH , τq, the morphism

e: ” X
inl
ÝÑ X `A

s#
ÝÝÑ TH

can be shown to be the unique solution of e. The argument is identical to the proof of [2,
Lemma 3.5]. đ

§ Theorem 5.7. pTH , τ´1q is the initial pI,Mq-iterative algebra.

Proof sketch. Let HA α
ÝÑ A be an pI,Mq-iterative algebra. Any coalgebra pX, ξq P

Coalg I,MpHq induces a flat equation morphism

eξ ” X
ξ
ÝÑ HX

inl
ÝÑ HX `A

with the unique solution e:ξ : X Ñ A. The morphisms e:ξ form a cocone in A over the diagram
defining TH . Therefore there exists a unique h : TH Ñ A in A with h ¨ ξ# “ e:ξ for all
pX, ξq P Coalg I,MpHq, which can be shown to be the unique H-algebra homomorphism
from pTH , τ

´1q to pA,αq. The proof is analogous to [2, Theorem 3.3] đ

§ Example 5.8. By specialising the above theorem to the settings of Example 4.3.1-3, we
recover the following three results from the literature [15, 2, 19]:

1. If A is a category with binary coproducts and H is a functor with a final coalgebra νH,
then νH is the initial completely iterative algebra for H.

2. If A is locally finitely presentable and H is a finitary functor, then %H is the initial
iterative algebra for H.

3. If A is locally finitely presentable with coproducts stable under monomorphisms, and H
is a finitary functor preserving monomorphisms, then ϑH is the initial fg-iterative algebra
for H.

§ Remark 5.9 (Free pI,Mq-iterative algebras). The forgetful functor from the category of all
pI,Mq-iterative algebras and homomorphisms into A has a left adjoint. The free pI,Mq-
iterative algebra over an object X P A is constructed as follows.

Observe first that the functor H `X satisfies the Assumptions 4.1: it preserves I-colimits
because H does and colimits commute with coproducts; it preserves M because H does and
M is stable under coproducts by Assumption 5.4(ii); and one has Coalg I,MpH `Xq P I by
Assumption 5.4(iii). Therefore Theorem 4.11 (applied to the functor H `X in lieu of H)
shows that there exists a final locally pI,Mq-presentable coalgebra

THX :“ TH`X

for H `X, constructed as the colimit of all coalgebras in Coalg I,MpH `Xq. We denote
the coalgebra structure of THX and its inverse (see Lemma 4.5) by

THX
τX
ÝÝÑ HpTHXq `X and HpTHXq `X

r%X ,ηX s
ÝÝÝÝÝÑ THX,

respectively. The latter is the initial pI,Mq-iterative algebra for H ` X by Theorem 5.7.
Then a standard argument identical to [15, Theorem 2.10] shows that HpTHXq

%X
ÝÝÑ THX is

the free pI,Mq-iterative H-algebra over X, with unit ηX : X Ñ THX.
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By definition, pI,Mq-iterative algebras have unique solutions for every flat equation morphism.
This property implies a much stronger one: every guarded equation morphism has a unique
solution. Recall that for a Σ-algebra A, a guarded system of equations consists of equations
x1 “ t1, . . . , xn “ tn where each ti is either an element of A or a rational Σ-tree over X `A
of height at least 1. This concept can be generalised to our present setting as follows:

§ Definition 5.10. Let pA,αq be an pI,Mq-iterative algebra. By a guarded equation morphism
is meant a morphism e : X Ñ THpX `Aq with X P AI,M for which there exists a morphism
e0 making the left-hand triangle below commute. A solution of e is a morphism e: : X Ñ A

making the right-hand diagram commute. Here rα is the unique homomorphism with
rα ¨ ηA “ idA, using the freeness of THA.

X
e //

e0 ''

THpX `Aq

HpTHpX `Aqq `A

r%,η¨inrs

OO
X

e: //

e

��

A

THpX `Aq
TH re

:,As

// THA

rα

OO

§ Theorem 5.11. Every pI,Mq-iterative algebra admits unique solutions of guarded equation
morphisms.

Proof sketch. Let pA,αq be an pI,Mq-iterative algebra, and suppose that e : X Ñ THpX`Aq

is a guarded equation morphism with associated e0 : X Ñ HTHpX `Aq `A. Express the
coalgebra THpX `Aq as an pI,Mq-colimit

w# : W Ñ THpX `Aq ppW,wq P Coalg I,MpH `X `Aqq,

see Remark 4.4. Since H preserves pI,Mq-colimits, M is stable under coproducts and colimits
commute with coproducts, it follows that

Hw# `A : HW `AÑ HpTHpX `Aqq `A ppW,wq P Coalg I,MpH `X `Aqq

forms an pI,Mq-colimit cocone in A. Therefore, since X is pI,Mq-presentable, the morphism
e0 factorises through Hw# `A for some pW,wq P Coalg I,MpH `X `Aq:

X
e0 //

f0 ''

HpTHpX `Aqq `A

HW `A

Hw#
`A

OO

Form the following flat equation morphism, where inm is the middle coproduct injection:

s ”W `X
rw,inms
ÝÝÝÝÑ HW `X `A

rinl,f0,inrs
ÝÝÝÝÝÝÑ HW `A

H inl`A
ÝÝÝÝÝÑ HpW `Xq `A

Since the algebra pA,αq is pI,Mq-iterative, s has the unique solution s: : X Ñ A, and one
can verify that

e: ” X
inr
ÝÑW `X

s:
ÝÑ A

is the unique solution of e. The argument is identical to the proof of [2, Theorem 4.6] đ
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6 Conclusion and Future Work

Our paper has provided the first steps towards a uniform categorical treatment of finite
systems and finite recursive specifications, where the meaning of “finite” becomes a parameter
that can be chosen according to the applications in mind. As our main technical result we
showed that, under suitable assumptions on the categories and functors, there exists a final
locally pI,Mq-presentable coalgebra that forms a fixpoint of the type functor and captures
precisely the behaviours of finite systems. The uniformity of our setting does away with
the previous need of developing coalgebraic semantics for each of the competing notions of
finiteness independently, often with structurally very similar results and proofs.

In the case of finitary endofunctors on locally finitely presentable categories, the rational
fixpoint and its characterisation as the initial iterative algebra formed the starting point for
extensive research on iterative monads [5, 4], iteration theories [3], recursive program schemes
[18], and proof systems for language equivalence [16, 10] from a (co-)algebraic perspective.
We expect that many of the results in loc. cit. generalise to our present setting, and thus
could be extended to finiteness conditions that so far have not been investigated, e.g. to
finitely generated objects of variables.

Acknowledgements. I am grateful to Jiří Adámek and Stefan Milius for many helpful
discussions.
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