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—— Abstract

Process theories combine a graphical language for compositional reasoning with an underlying cat-
egorical semantics. They have been successfully applied to fields such as quantum computation,
natural language processing, linear dynamical systems and network theory. When investigating
a new application, the question arises of how to identify a suitable process theoretic model.

We present a conceptually motivated parameterized framework for the construction of models
for process theories. Our framework generalizes the notion of binary relation along four axes of
variation, the truth values, a choice of algebraic structure, the ambient mathematical universe
and the choice of proof relevance or provability. The resulting categories are preorder-enriched
and provide analogues of relational converse and taking graphs of maps. Our constructions
are functorial in the parameter choices, establishing mathematical connections between different
application domains. We illustrate our techniques by constructing many existing models from
the literature, and new models that open up ground for further development.
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1 Introduction

The term “process theory” has recently been introduced [11] to describe compositional the-
ories of abstract processes. These process theories typically consist of a graphical language
for reasoning about composite systems, and a categorical semantics tailored to the applic-
ation domain. This compositional perspective has been incredibly successful in reasoning
about questions in quantum computation and quantum foundations. The scope of the pro-
cess theoretic perspective encompasses many other application domains, including natural
language processing [12], signal flow graphs [8], control theory [3], Markov processes [5],
electrical circuits [4] and even linear algebra [31].

When considering a new application of the process theoretic approach, the question arises
of how to find a suitable categorical setting capturing the phenomena of interest. Dagger
compact closed categories are of particular importance as they have an elegant graphical
calculus, and many of the examples cited above live in compact closed categories.

We illustrate the process of constructing new dagger compact closed categories with two
examples in the theory of human cognition, as developed in [18, 19]. This is an unconven-
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tional application area, and therefore highlights clearly the challenges faced when trying to
model a new problem domain in a process theoretic manner.

As our first example, we consider how the notion of convexity can be incorporated into
a compact closed setting. Convexity is important in mathematical models of cognition,
where it is argued that the meaningful concepts should be closed under forming mixtures.
Informally, if we have a space representing animals, then if two points describe dogs, we
would expect any points “in between” should also be models of the concept of being a dog.

An algebraic model of convexity is given by the Eilenberg-Moore algebras of the finite
distribution monad. These algebras, referred to as convex algebras, are sets equipped with
a well behaved operation for forming convex mixtures of elements. Informally, we denote
such a convex mixture as ), p;x; where the p; are positive reals summing to one, and the z;
are elements of the algebra. This notation is not intended to imply there are independent
addition and scaling operations that can be applied to the individual elements.

The Eilenberg-Moore category of any monad on Set!, is itself a regular category. There-
fore the category of convex algebras is regular and we can form its category of relations,
denoted ConvexRel. It is well known that the category of relations over a regular category
is a dagger compact closed category [20]. Concretely, a convex relation is an ordinary binary
relation R which is closed under forming convex mixtures, in the sense that implications of
the following form hold

R(ai,b1) A ... A R(ap, by) = R(Zpiai, Zpibi) (1)

A state of an object A in a monoidal category is a morphism of type I — A where [ is the
monoidal unit. The states in ConvexRel are the convex subsets, as we may have hoped.
This model was used as the mathematical basis for a compositional model of cognition [7].

As our second example, we return to the mathematics of cognition. It is natural to think
about notions of nearness and distance for models of reasoning, a wolf is nearly a dog, a
squirrel is closer to being a rat than an elephant. We would therefore like to capture metrics
within our model. We now consider how to introduce metrics into a compact closed setting.
The construction used in the previous example is not applicable as the various natural
categories of metric spaces are not regular. Therefore, we will require a new approach,
which will entail a small detour. We begin by introducing the notion of a quantale.

» Definition 1 (Quantale). A quantale is a join complete partial order ) with a monoid
structure (®, k) satisfying the following distributivity axioms, for all a,b € Q and A,B C Q

a®[\/B}:\/{a®b\beB} [\/A}m:\/{mbmeA}

A quantale is said to be commutative if its monoid structure is commutative.

» Example 2. Every locale [22] is a commutative quantale, and in particular any complete
chain is a commutative quantale with

\/A:supA a1 ® az = min(a, b) k=T
The Boolean quantale B and the interval quantale I are the chains {0,1} and [0, 1] of

real numbers, with their usual orderings. The quantale F is given by the chain [0, c0] of

! In fact, any regular category in which every regular epimorphism has a section.
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extended positive reals with the reverse ordering. An important example of a commutative
quantale that does not correspond to a locale is the Lawvere quantale C with underlying
set the extended positive reals with reverse order and algebraic structure

\/AZian a1 @ a2 = ay + as k=0

A binary relation between two sets A and B can be described by its characteristic func-
tion A x B — 2 where 2 is the two element set of Boolean truth values. We can generalize
the notion of binary relation by allowing the truth values to be taken in a suitable choice
of quantale @, as a function of the form A x B — ). We can see this as a potentially
infinite matrix of truth values. These binary relations form a category Rel(Q), with iden-
tities and composition given by suitable generalizations of their matrix theoretic analogues.
We will prove that if the quantale of truth values is commutative, Rel(Q) is in fact dagger
compact closed. So we have found another dagger compact closed category, but what has
this got to do with metrics? In order to establish the required connection, we note that
we can order relations pointwise in the quantale order. This order structure makes Rel(Q)
into a poset-enriched symmetric monoidal category. This means we can consider internal
monads, in the sense of formal category theory [32]. These identify important “structured
objects” within our categories. For example, internal monads in Rel(B) are preorders on
their underlying set, and the internal monads of Rel(I) can be seen as a fuzzy generalization
of the notion of a preorder. The key example is the internal monads of Rel(C). These are
endo-relations such that R(a,a) = 0 and R(a,b) + R(b,c) > R(a,c), that is, they are gener-
alized metric spaces [25]. The internal monads of Rel(F) are similar, satisfying R(a,a) =0
and max(R(a,b), R(b,c)) > R(a,c), and can be thought of as generalized ultrametric spaces.
So in particular, Rel(C) gives us a partial order enriched dagger compact closed category in
which the internal monads are generalized metric spaces. Such categories of relations have
been proposed as a unifying categorical setting for investigating various topological notions,
see [10, 21]. Multi-valued relations have also been investigated for compositional models of
natural language [13].

To recap, we have constructed two compact closed categories using differing techniques
that can be found in the literature. Firstly, by exploiting relations respecting algebraic
structure, standard monad and regular category theory provided us with a category where
the states are exactly convex subsets. Secondly, generalizing the notion of relations in
a different direction, we produced a category where the internal monads are generalized
metric spaces. So, using rather ad-hoc methods, we have solved two modelling problems
using generalizations of binary relations. This prompts several questions:

How do these constructions relate to each other? In particular, can we simultaneously

work with convexity and metrics in an appropriate setting? Can they be seen as instances

of a general construction?

Does the notion of binary relation permit further axes of variation, producing additional

examples of compact closed categories? As these parameters vary, can the resulting

categories be related? Formally, this is a question of functoriality in a suitable sense.
These questions provide the starting point for our investigations. We also observe that the
categories we identified in our examples are both in fact instances of Fong and Kissinger’s
hypergraph categories [16]. These are a particularly well behaved class of dagger compact
closed categories, and this will be our technical setting for the remainder of the paper. We
summarize our contributions as follows

We provide parameterized constructions of hypergraph categories of generalized relations

and spans in Theorems 13 and 19, and show they have analogues of relational converse
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and taking the graph of an underlying morphism. Many further aspects are shown to
commute with this important structure. In Section 5 the resulting categories are shown
to be appropriately order enriched.

We address questions of functoriality. Theorem 29 shows that generalized spans can be
functorially mapped to generalized relations. Section 6 shows that homomorphisms of
truth values functorially induce functors between models. In Section 7 we show that our
constructions are functorial in the choices of algebraic structure. We also describe how
the algebraic and truth value structures interact, providing connections with notions of
resource sensitivity in the sense of linear logic. Finally, in Theorem 47 we show that the
functors induced by changes of parameters commute with each other.

Our methods give explicit concrete descriptions of the mathematical objects of interest,
suitable for use in applications. We provide many examples illustrating the flexibility of
our techniques, particularly to the construction of new and existing models of natural
language processing and cognition applications.

Related Work

Categories of relations have been studied in the form of allegories [17]. This work is some-
what removed from our approach, the heavy use of the modular law does not directly yield
the graphical phenomena of interest. Of more direct relevance is the concept of cartesian bic-
ategory of [9]. Although graphical notation is not used directly in this work, these categories
can be seen as close relatives of the hypergraph categories resulting from our constructions.
The emphasis in the study of cartesian bicategories was characterization rather than con-
struction of models.

A somewhat syntactic approach to constructing categories with graphical calculi is the
use of PROPs [26, 24]. They have recently been used to construct various categorical models
relating to control theory [8, 33, 14]. These methods begin with syntax and equations, and
freely derive a resulting category. This style is most effective when the application under
consideration has well understood calculational properties. Our approach instead emphasizes
the direct construction of models which can then be investigated for their suitability to a
given application.

The beautiful work on decorated cospans and corelations of [15, 16], motivated by the
program of network theory initiated in [2], is of most direct relevance to our approach. In a
precise sense, the decorated corelation construction is completely generic, every hypergraph
category is produced by that construction. Our emphasis is different, we do not aim for
maximum generality. Instead, our aim is conceptually motivated parameterization. By
providing four clearly motivated features that can be adjusted to application needs, we aim
for a practical construction with which investigators using process theories can construct
new models with desirable features.

2 Mathematical Background

In this section we briefly establish some background. We will be interested in particular
types of symmetric monoidal categories, and will make use of their corresponding graphical
languages [30]. Technical background on monoidal categories and general categorical notions
can be found in [27]. We will also refer to toposes and their internal languages in places,
a standard reference is [23]. The paper has been written with the intention that it should
be readable without any detailed knowledge of topos theory. For such readers, definitions
should be read as if they pertain to ordinary sets, functions and predicate logic. We will
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write Set, Pos and Preord for the categories of sets, partially ordered sets and preordered
sets, with their usual homomorphisms.

» Definition 3 (Compact Closed Category). An object A in a symmetric monoidal category
is said to have dual A* if there exist unit n : I — A* ® A and counit € : A ® A* — I
morphisms. These morphisms are depicted in the graphical calculus using special notation
of Diagram (2) and are required to satisfy the snake equations of Diagram (3). 2

.M CAF

€A g n.AJ (2)
A A A* A*

AR VAR ®

A A A* A*

A compact closed category is a symmetric monoidal category in which every object
has a dual. A compact closed category A, equipped with an identity on objects involu-
tion (=) : A°? — A coherent with the symmetric monoidal compact closed structure, is
referred to as a dagger compact closed category [1].

» Example 4. The canonical example of a dagger compact closed category of relevance
to the current work is the category Rel of sets and binary relations between them. The
symmetric monoidal structure is given by cartesian products of sets, and the dagger by the
usual converse of relations. Objects are self-dual, with the unit on a set A given by the
relation {(*, (a,a)) | a € A} and the counit as its converse.

» Definition 5 (Hypergraph Category). A hypergraph category is a symmetric monoidal
category such that every object A carries both a commutative monoid (7, 1) and a cocom-
mutative comonoid (e,d) structure, as depicted in Diagram (4), satisfying the coherence
conditions of Diagram (5), and their obvious dual [16].

AAA(SA
b

€
i
A A A A

ABAB A®B A®B

%: x‘TU (5)

AB A® B

(=%}

Here, we overload the use of the symbols u, 1, § and € to avoid cluttering our diagrams
with indices or subscripts. We will exploit similar overloading of names in many places in
what follows. The morphisms g and 6 must also satisfy the Frobenius (6) and special (7)
axioms:

A A AA A A

A4 A4 aa

2 Qur string diagrams are oriented bottom to top.
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A A
fos)
A A

Our interest in hypergraph categories is that they are a particularly pleasant form of dagger
compact closed category, as established by the following well known observation.

» Proposition 6. Every hypergraph category is a dagger compact closed category, with the
cup and cap given by Equation (8) and the dagger of a morphism f : A — B given by its
transpose, shown in Diagram (9).

A A ASA €
u:xf m:rfp (8)
n A A A A
A
i) 9)
B

» Example 7. The category Rel is also an example of a hypergraph category. The cocom-
mutative comonoid is given by the relations

e={(a,*) | ac A} 0 ={(a,(a,a)) |ac A}

The monoid is the relational converse of the comonoid structure. The induced dagger com-
pact closed structure of Proposition 6 is exactly that described in Example 4.

As a final technical point, we will be working with various categories with finite products.
Throughout, we will implicitly assume a choice of terminal object and binary products has
been given. To reduce clutter, we therefore resist repeating this assumption in the statements
of our subsequent theorems.

3 Relations

The aim in this section is to broadly generalize the notion of binary relation between sets, in
order to support our motivating examples, and to provide scope for many other variations.
We observed, for sets A and B, and quantale @), that we can consider a function A x B — @)
as a relation, with truth values taken in the quantale. For such generalized relations, we
define identities® and composition of relations R: A — B and S : B — C by analogy with
the usual notions:

La(ar,a2) = \/{k | a1 = as}
(SoR)(a,c) = \/{R(a,b) ® S(b,c) | b € B}

We then observe that all of these definitions actually make sense in the internal language of
an arbitrary topos. This leads us to the following definition.

3 Our definition of identities is suitable for interpretation in the internal logic of a topos, unlike the more
natural definition by cases.



D. Marsden and F. Genovese

» Definition 8 (Q-relation). Let £ be a topos, and @ an internal quantale. A @-relation
between £ objects A and B is an £-morphism of type A x B — Q. £-objects and @Q-relations
between them form a category Rel(Q), with identities and composition as described above.

Definition 8 is a first step in the right direction, but in order to capture convexity, as
discussed in the introduction, we must find a way of incorporating algebraic structure. If we
consider an algebraic signature (X, F') with set of operations ¥ and equations F, the general
form of Equation (1), for n-ary operation o € %, is

R(ai,b1) A ... A R(an,by) = R(o(a1,...;an),0(b1,....0,))

We will require throughout that all operation symbols have finite arity, as is conventional
in universal algebra.

It is then natural to consider replacing the logical components of this definition with the
structure of our chosen quantale. This leads to the definition we require.

» Definition 9 (Algebraic Q-relation). Let £ be a topos, and @ an internal quantale.
Let (3, E) be an algebraic variety in £. An algebraic Q-relation between (3, E)-algebras A
and B is a @-relation between their underlying £-objects such that for each ¢ € X the
following axiom holds

R(a1,b1) ® ... ® R(an,by) < R(o(a1,...;an), (b1, ....b,)) (10)

3., E)-algebras and algebraic Q-relations form a category Relis g)(Q), with identities and
(5,E)
composition as for their underlying @-relations.

There is some subtlety to the interaction between truth values and algebraic structure, we
will return to this topic in Section 7. We now continue studying the categorical structure of
algebraic @-relations.

» Proposition 10. Let £ be a topos, (X, E) a variety in €, and Q an internal commutative
quantale. The category Rels gy (Q) is a symmetric monoidal category. The symmetric
monoidal structure is inherited from the finite products in &.

The notions of taking the converse of a relation, and taking the graph of an underlying
function generalize smoothly to algebraic @-relations, in a manner that respects all the
relevant categorical structure.

» Proposition 11. [Converse and Graph] Let £ be a topos, (X, E) a variety in &, and Q
an internal commutative quantale. There are identity on objects strict symmetric monoidal
converse and graph functors with actions on morphisms:

(—)O : Rel(z,E)(Q)Op — Rel(aE)(Q)
R°(b,a) = R(a,b)

(=), : Alg(%, E) — Relx 5)(Q)
fola,0) = \/{k | f(a) = b}
The symmetric monoidal structure on Alg(X, E) is the finite product structure.

The graph functor allows us to lift structures from the underlying category of algebras.
The following canonical comonoids are of particular conceptual importance.
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» Proposition 12. Let £ be a category with finite products. Fach object A carries a cocom-
mutative comonoid structure satisfying the coherence equations (5), via the canonical morph-
isms!:A—1and (14,14): A— AXA.

Finally, we are in a position to establish that our categories of algebraic @-relations are
hypergraph categories.

» Theorem 13. Let £ be a topos, (X, E) a variety in £, and Q an internal commutative
quantale. The category Rels g)(Q) is a hypergraph category. The cocommutative comonoid
structure is given by the graphs of the canonical comonoids described in Proposition 12, and
the monoid structure is given by their converses.

We quickly return to one of the examples discussed in the introduction.

» Example 14. The convex algebras discussed in the introduction can be presented by a fam-
ily of binary operations +?, where p € (0,1), for forming pairwise convex combinations sat-
isfying suitable equations. Writing Convex for this signature, we can construct ConvexRel
as Relconvex(B), where B is the Boolean quantale.

4 Spans

Generalizing the truth values, algebraic structure and ambient category has provided three
degrees of freedom for describing custom hypergraph categories. Currently we can vary the
underlying topos, quantale and choice of algebraic structure. We now investigate a fourth,
final direction of variation.

If we consider a span of sets A L x4 B, we can consider an element x € X as

a proof witness relating f(z) and g(z). Spans A L X% Band BLEY 5 C are
composed by pulling back g along h. Recall that in Set this pullback is given explicitly
by {(z,y) | g(x) = h(y)}, with the obvious projections. Therefore, a pair (x,y) relates a
and c exactly if x relates a to some b and this b is related to ¢ by y. So, at least for the
category Set, we can think of spans as proof relevant relations. This is the intuition we now
pursue, starting by adjusting the notion of Q-relation in Definition 8 to the setting of spans.

» Definition 15 (Q-span). Let £ be a finitely complete category, and @ an internal monoid.
A @Q-span of type A — B is a quadruple (X, f,g,x) where (X, f: X - A,g: X - B)isa
span in £ and x : X — @ is a &-morphism, referred to as the characteristic morphism.
Two @Q-spans (X, f,9,x), (Y, h, k, &) are composed by composing their underlying spans by
pullback, and taking the resulting characteristic morphism to be

X xo Y PP x oy X6 0002

where p; and py are the pullback projections.
A morphism of @Q-spans « : (X1, f1,91,x1) = (Xa, f2, g2, x2) between two Q-spans of
type A — B is a &-morphism «a : X7 — X5 such that

fi=fooa g1 =g20C X1 =X20«

» Remark. When discussing @-spans in the remainder of this paper, we actually intend
isomorphism classes of spans with respect to the homomorphisms of Definition 15. This
convention is common when considering categories of ordinary spans, where composition of
spans via pullback is only defined up to isomorphism. All definitions and calculations using
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representatives will respect this isomorphism structure. These isomorphism classes of Q-
spans form a category Span(Q). If we write xj for the constant morphism x; = A LN LN Q
then the identity at A is given by the @-span (A4, 1,1, x&).

The key step now is to incorporate algebraic structure into the picture, paralleling the ideas
of Definition 9. In this case, things are slightly more complicated as we have to explicitly
administer the proof witnesses in the spans. We also must introduce an ordering on our
truth values in order to specify the necessary axiom.

» Definition 16. Let £ be a topos, (X, E) a variety in £, and @ an internal partially
ordered commutative monoid. For (X, E)-algebras A and B, an algebraic @Q-span is a
quadruple (X, f,g,x) which is a Q-span between the underlying £-objects such that for
every o € X if

/\ (f(zs) = a; A g(a;) = b;)

then there exists x such that f(z) = o(ay,...,a,) and g(z) = o(by, ..., b,) and
® (@) < x(@)

(3, E)-algebras and algebraic @Q-spans form a category Span s, E)(Q) with identities and
composition given as for the underlying Q-spans.

As with the algebraic @Q-relations in Section 3, we obtain a symmetric monoidal category
with analogues of relational converse and taking graphs.

» Proposition 17. Let £ be a topos, (X, E) a variety in £, and Q an internal partially ordered
commutative monoid. The category Span(E,E)(Q) is a symmetric monoidal category. The
symmetric monoidal structure is inherited from the finite product structure in .

» Proposition 18. [Converse and Graph] Let £ be a topos, (X, E) a variety in E, and Q
an internal partially ordered commutative monoid. There are identity on objects strict sym-
metric monoidal converse and graph functors with actions on morphisms:

(=) Span(z,E)(Q)OP - SPan(z,E)(Q)
(X, f,9.x)° = (X, 9, f, %)

(=), : Alg(X, E) — Span(aE)(Q)
fo = (A717f7Xk)

As before, we can exploit the graph construction and the canonical comonoids of Pro-
position 12 to establish the existence of a hypergraph structure.

» Theorem 19. Let £ be a topos, (X, E) a variety in £, and Q an internal partially ordered
commutative monoid. The category Span(&E)(Q) is a hypergraph category. The cocom-
mutative comonoid structure is given by the graphs of the canonical comonoids described in
Proposition 12, and the monoid structure is given by their converses.

This construction presents new possibilities, that can be combined with other features,
opening fresh directions for investigation that may not have been immediately apparent.

17:9
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» Example 20. The span construction allows us to build variations on the models we are
already interested in. For example, we can now consider a proof relevant version of the
model in Example 14. From a practical perspective, this presents the possibility of models
in which we can describe the interaction of cognitive phenomena, and provide quantitative
evidence for any relationships that we conclude hold.

» Example 21. Instead of using Set as our base topos in our models, we could consider
using a presheaf topos [C°P, Set] for a small category C. This allows us to construct models
using “sets varying with context”, incorporating all the features discussed in the previous
examples. In linguistic or cognitive examples, contexts could describe time, the agents
involved or the broader setting in which meaning should be interpreted. These context
sensitive models present a lot of new expressive potential, and will be investigated in detail
in future work.

5 Order Enrichment

In order to meaningfully discuss internal monads, we require some 2-categorical structure
on our relational constructions. Specifically, we introduce an appropriate ordering on our
morphisms. Order enrichment is also important from a practical perspective when model-
ling real world applications. For example, in natural language applications, we are often
interested in phenomena such as ambiguity [29, 28] and lexical entailment [6], and these are
best studied from an order theoretic perspective.

Generalizing the situation for ordinary set theoretic binary relations, we introduce an
ordering on @-relations.

» Definition 22. Let £ be a topos and @ an internal quantale. We define a partial order
on @Q-relations as follows

RCR iff Va,b.R(a,b) < R'(a,b)

Algebraic Q-relations are ordered similarly, by comparing their underlying @Q-relations.

» Theorem 23. Let £ be a topos, (X, E) a variety in €, and Q an internal commutative
quantale. The category Rels, g)(Q) is a partially ordered symmetric monoidal category.

@-spans can also be ordered, in a manner analogous to that for relations, but explicitly
taking into account the proof witnesses.

» Definition 24. For topos £ and internal partially ordered monoid @, we define a preorder
on Q-spans by saying (X1, f1,91,x1) C (X2, f2, g2, x2) if there is a £-monomorphism m :
X1 — X5 such that fi; = faom, g1 = g2 om and Va.x1(x) < x2(m(z)). Algebraic Q-spans
are ordered similarly, by comparing their underlying Q-spans.

» Theorem 25. Let £ be a topos, (X, E) a variety in £, and Q an internal partially ordered
commutative monoid. The category Span(&E)(Q) is a preorder enriched symmetric mon-
oidal category.

The orders are respected by the important converse operation

» Proposition 26. Let € be a topos, and (X, E) a variety in €. If Q is an internal quantale,
the converse functor of Proposition 11 is a partially ordered functor. If Q is an internal
partially order monoid, the converse functor of Proposition 18 is a preordered functor.
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The order enrichment of Q-relations and @-spans is crucial for us to be able to consider
the internal monads central to the second example of the introduction.

» Example 27. The model incorporating metric spaces as internal monads, as discussed in
the introduction, can be constructed with base topos Set, the empty algebraic signature
and using the Lawvere quantale C as the choice of truth values.

Now that we have both algebraic and order structure available to us within the same con-
struction, we can consider combining the features we are interested in, by making appropriate
choices for the parameters used in the construction.

» Example 28 (Convexity and Metrics). We now see that we can combine both the convex
and metric features in a single model. With underlying topos Set, we take our algebraic
structure as in Example 14 and our quantale C as in Example 27. In this case we find the
internal monads are distance measures d : A x A — [0, oc] satisfying the conditions

d(a, Cl) =0 d(a, b) + d(b, C) > d(a, C) d(al, CLQ) + d(bl, bg) > d(a1 +P by, as 4P bg)

These are generalized metric spaces that respect convex structure. The usual metric on R™
is an example of such a metric.

We can now consider the simplest aspect of functors induced by changes of parameters, the
binary choice between proof relevance and provability. The next theorem shows that the
orders on relations and spans are compatible, in the sense that we can collapse spans to
relations using the join of the quantale to choose optimal truth values, and this mapping is
functorial and respects the order structure.

» Theorem 29. Let £ be a topos, (X, E) a variety in € and Q an internal commutative
quantale. There is an identity on objects, strict symmetric monoidal Preord-functor V,
with action on morphisms:

V : Spany, £)(Q) — Rel(x 5)(Q)
VX, f.9.x)(a,b) = \/{x(2) | f(z) = ang(x) =0b}

V' commutes with graphs and converses in that Vo (=), = (=), and (=)o VP =V o (-)°.

6 Changing Truth Values

We would expect that homomorphisms between our structures of truth values lead to func-
torial relationships between models. This all goes through very smoothly, as we now elab-
orate. Firstly, for algebraic @Q-relations, it is natural to consider internal quantale homo-
morphisms.

» Theorem 30. Let £ be a topos, (X, E) a variety in £, and h : Q1 — Q2 a morphism of
internal commutative quantales. There is an identity on objects, strict symmetric monoidal
Pos-functor h* : Rels, g)(Q1) — Rels g)(Q2), with action on morphisms R — ho R. The
assignment h — h* is functorial.

In the case of the span constructions, morphisms of partially ordered monoids are the
appropriate notion of homomorphism to consider.
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» Theorem 31. Let £ be a topos, (X, FE) a variety in €, and h : Q1 — Q2 a morphism
of internal partially ordered commutative monoids. There is an identity on objects, strict
symmetric monoidal Preord-functor h* : Span s, g)(Q1) — Spany, g(Q2), with action on
morphisms (X, f,g,x) = (X, f,g,h o x). The assignment h — h* is functorial.

Both these functors commute with graphs and converses.

» Proposition 32. With the same assumptions, the induced functors of Theorems 30 and 31

commute with graphs and converses. That is, h*o(—), = (—), and (—)°o(h*)°P = h*o(—)°.

» Example 33. For any commutative quantale ) there is a partially ordered monoid morph-
ism 1 — @, induced by the monoid unit. Here, 1 is the terminal quantale. Therefore there is
a strict symmetric monoidal functor Span s, (1) — Spany, 5)(Q). This example motiv-
ates our use of partially ordered monoids, rather than simply restricting to the quantales of
interest in our primary applications, as the required morphism is not a quantale morphism.

» Example 34. There is a quantale morphism B — C from the Boolean to the Lawvere
quantale. The induced functor identifies the ordinary binary relations as living within the
category Rel(C) that we introduced to capture metric spaces as internal monads.

When using ordinary relational models of natural language, the meanings of two sen-
tences are typically compared using the inner product of the corresponding states. This is a
crude measure of similarity as it is a simple Boolean test of overlap. By embedding Boolean
relations into Rel(C), more subtle comparisons can be made using a metric. For example
we can measure how far apart two states are at their nearest point.

7 Algebraic Structure

We now investigate the interaction between truth values and algebraic structure. Again, this
will lead to functorial relationships between models, but the subject is more delicate than in
the previous sections. The essential detail is that in Equation (10) is only required to hold
for the operations in our signature. It does not directly say anything about derived terms
and operations. We will require several definitions in order to make the situation precise.

» Definition 35. Let (X, E) be an algebraic signature. We say that a term 7 over a finite
set of variables is affine if it uses each variable at most once and relevant if it uses each
variable at least once. A term is linear if it is both affine and relevant. We will refer
to a term as cartesian to emphasize that its use of variables is unrestricted. We use
the same terminology for the derived operation associated to 7. An interpretation of
signature (X1, E1) in signature (X, F3) is a mapping assigning each o € X to a derived
term of (Xq, E2) of the same arity, such that the equations E; can be proved in equational
logic from FEs. We say that an interpretation is linear, affine, relevant or cartesian if
all the derived terms used in the interpretation are suitably restricted. It is standard that
every interpretation i contravariantly induces a functor ¢ between the categories of algebras.

» Definition 36. Let £ be a topos. If @ is an internal quantale, we say that a Q-relation R
is affine if R(a1,b1) ® R(az2,b2) < R(a1,b1) and relevant if R(a,b) < R(a,b) ® R(a,b).
R is cartesian if it is both affine and linear. We say that R is linear to emphasize that
no additional axioms are assumed to hold. Similarly, if @ is an internal partially ordered
monoid, we say that a Q-span (X, f, g, x) is affine if x(z1) ® x(22) < x(z1), and relevant
if x(z) < x(z) ® x(x). A @-span is said to be cartesian if it is both affine and relevant,

and linear if no additional axioms are assumed to hold.
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Our terminology is derived from that sometimes used for variants of linear logic. If we view
truth values as resources, the question is when can these resources be “copied” or “deleted”.
The next proposition shows that if our truth values are well behaved, so are our morphisms.

» Lemma 37. Let Q be an internal quantale. If p® q < p holds, every relation is affine and
if p < p® p then every relation is relevant. Similarly, if @ is an internal partially ordered
monoid, if p®Rq < p holds, every span is affine and if p < p @ p then every span is relevant.

Each of our special classes of relations and spans forms a hypergraph category.

» Theorem 38. Let £ be a topos and (X,E) a variety in . If Q is a commutative
quantale, the affine, relevant and cartesian relations each form a sub-hypergraph category
of Relix; ) (Q). If Q is a commutative partially ordered monoid, the affine, relevant and
cartesian spans each form a sub-hypergraph category of Span(E’E)(Q), In each case, the
morphisms in the image of the graph functor are all cartesian.

» Definition 39. We will write Rel(3i}(Q) and Span((:;r)'};)(Q) for the sub-hypergraph
categories of cartesian relations and spans described in Theorem 38, and use similar notation
for the other restricted classes of morphisms.

Our restricted classes of relations respect the corresponding classes of derived terms.

» Proposition 40. Let £ be a topos, (X, E) a variety in £ and Q an internal commutative
quantale. For linear (affine, relevant, cartesian) algebraic Q-relation R : A — B the axziom

R(al, bl) K. Q R(CLn, bn) S R(’I’(CLl7 ...7CLn),T(b17 T bn))
holds for every linear (affine, relevant, cartesian) n-ary derived operation T.
Spans with sufficient structure also respect the corresponding types of derived terms.

» Proposition 41. Let £ be a topos, (X, E) a variety in €, and Q an internal partially
ordered commutative monoid. For (3, E)-algebras A and B, and linear (affine, relev-
ant, cartesian) algebraic Q-span (X, f,g,x) and n-ary linear (affine, relevant, cartesian)
term 7 if N\, (f(x;i) = a; A g(z;) = b;) then there exists x such that f(x) = T(a1,...,an),
g(z) =7(b1,....bn) and @, x(z;) < x(z).

Finally, we can establish a contravariant functorial relationship between interpretations
and functors between relational models.

» Theorem 42. Let & be a topos and Q an internal commutative quantale. Leti : (X1, Eq) —
(X2, Es) be a linear interpretation of signatures. There is an identity on morphisms strict
symmetric monoidal functor i* : Rell(igihEQ)(Q) — Rell(iglyEl)(Q), sending each (Xq, Es)-
algebra to the corresponding (X1, E1)-algebra under the interpretation. The assignment i —
i* extends to a contravariant functor. Similar results hold for affine, relevant and cartesian
interpretations and relations. In each case, the induced functors commute with graphs and
converses. That is, (=), 01 = i* o (=), and (=) o (i*)°? = i* o (=)°, where i is the
interpretation induced functor of Definition 35.

A similar contravariant functorial relationship holds between interpretations and functors
between span based models.

» Theorem 43. Let £ be a topos and Q an internal partially ordered commutative monoid.
Let i : (X1, E1) — (32, E3) be a linear interpretation of signatures. There is an identity
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on morphisms strict monoidal functor i* : Spanl(ng’EZ))(Q) — Spanl(izr;‘hEl)(Q), sending
each (32, E9)-algebra to the corresponding (X1, F1)-algebra under the interpretation. The
assignment i — 1* extends to a contravariant functor. Similar results hold for affine, relevant
and cartesian interpretations and spans. In each case, the induced functors commute with
graphs and converses. That is, (=), 01 =i* o (=), and (=), o (i*)P = i*(—), where i is the
interpretation induced functor of Definition 35.

We also note that the extensional collapse functor of Theorem 29 also respects our
different classes of spans and relations.

» Proposition 44. Let £ be a topos, (X, E) a variety in £ and @ an internal commutative
quantale. The functor V of Theorem 29 maps cartesian, affine and linear algebraic Q-spans
to the corresponding class of algebraic QQ-relations.

» Example 45. Let ((),0) denote the signature with no operations or equations. For any
signature (X, E) there is a trivial linear interpretation (§,0) — (X,E). We therefore
have, for every choice of internal quantale ), strict symmetric monoidal forgetful func-

tors Rel(x; ) (Q) — Rel (g ¢)(Q) and Span(Z}E)(Q) — Span(@’@)(Q).

» Example 46. The signature for convex algebras has linear interpretations in both real
vector spaces and affine semilattices. Therefore for any commutative quantale @, we find
relations between real vector spaces and relations between affine join semilattices as sub-
hypergraph categories of Relconper (Q)-

Finally, we establish that our various induced functors between models are independent, in
that they all commute with each other.

» Theorem 47. Let £ be a topos, h : Q1 — Q2 a morphism of internal commutative
quantales and i : (X1, E1) — (X2, Es) a cartesian interpretation. For the induced functors
of Theorems 30, 31, 42 and 43, the following diagram commutes:

car 7’* car
Span(E; Es) (@) —— Span(zf)El)(Ql)
car 7’ cart
Span(Z; Es) (Q@2) Spany;, El)(QQ)
Relc%r;EQ (@1) " Re %1 El)(Ql)

Ny

Rel(y) 5,)(Q2) Rel(y ) (Q2)

where the vertical arrows are the V' functors of Theorem 29. Similar diagrams commute for
affine, relevant and linear interpretations, relations and spans.

8 Conclusion

We have developed a parameterized scheme for constructing order enriched hypergraph
categories, by generalizing the notion of binary relation along four axes of variation: the
ambient category, the truth values, the algebraic structure and the choice between proof
relevance and provability. This construction provides a concrete, conceptually motivated
approach for producing models of process theories when investigating new applications. As
well as recovering many existing models, by allowing us to combine features, the framework
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points to new settings in which features such as convexity, distances, contextual meaning
and proof witnesses can be incorporated into a single model. Detailed exploration of these
new models in linguistic and cognition applications is left to later work.
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