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Abstract
Previous work of the author [39] showed that the Homomorphism Preservation Theorem of clas-
sical model theory remains valid when its statement is restricted to finite structures. In this
paper, we give a new proof of this result via a reduction to lower bounds in circuit complexity,
specifically on the AC0 formula size of the colored subgraph isomorphism problem. Formally,
we show the following: if a first-order sentence Φ of quantifier-rank k is preserved under homo-
morphisms on finite structures, then it is equivalent on finite structures to an existential-positive
sentence Ψ of quantifier-rank kO(1). Quantitatively, this improves the result of [39], where the
upper bound on the quantifier-rank of Ψ is a non-elementary function of k.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases circuit complexity, finite model theory

Digital Object Identifier 10.4230/LIPIcs.ITCS.2017.27

1 Introduction

Preservation theorems are a family of results in classical model theory that equate semantic
and syntactic properties of first-order formulas. A prominent example—and the subject of
this paper— is the Homomorphism Preservation Theorem, which states that a first-order
sentence is preserved under homomorphisms if, and only if, it is equivalent to an existential-
positive sentence. (Definitions for the various terms in this theorem are given in Section 3.)
Two related classical preservation theorems are the Łoś-Tarski Theorem (preserved under
embedding homomorphisms ⇔ equivalent to an existential sentence) and Lyndon’s Theorem
(preserved under surjective homomorphism ⇔ equivalent to a positive sentence).

In all classical preservation theorems, the “syntactic property ⇒ semantic property”
direction is straightforward, while the “semantic property ⇒ syntactic property” direction is
typically proved by an application of the Compactness Theorem.1 In order to use compactness,
it is essential that the semantic property (i.e. preservation under a certain relationship between
structures) holds with respect to all structures, that is, both finite and infinite. One may
also ask about the status of classical preservation theorems relative to a class of structures C .
So long as compactness holds in C (for example, whenever C is first-order axiomatizable),

∗ Supported by NSERC and the JST ERATO Kawarabayashi Large Graph Project. This paper was
partially written at the National Institute of Informatics in Tokyo and during a visit to IMPA, the
National Institute for Pure and Applied Mathematics in Rio de Janeiro.

1 The Compactness Theorem states that a first-order theory T (i.e. set of first-order sentences) is consistent
(i.e. there exists a structure A which satisfies every sentence in T ) if every finite sub-theory of T is
consistent. (See [24] for background and proofs of various preservation/amalgamation/interpolation
theorems in classical model theory.)
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so too will all of the classical preservation theorems. The situation is less clear when C is
the class of finite structures (or a subclass thereof), as the Compactness Theorem is easily
seen to be false when restricted to finite structures.2

The program of classifying theorems in classical model theory according to their validity
over finite structures was a major line of research, initiated by Gurevich [20], in the area known
as finite model theory (see [15, 17, 28]). The status of preservation theorems in particular
was systematically investigated in [3, 38]. Given the failure of the Compactness Theorem on
finite structures, it is not surprising that nearly all of the classical preservation theorems
become false when their statements are restricted to finite structures. A counterexample of
Tait [44] from 1959 showed that the Łoś-Tarski Theorem is false over finite structures, while
Ajtai and Gurevich [1] in 1987 gave the demise of Lyndon’s Theorem via a stronger result
in circuit complexity. Namely, they showed that Monotone ∩ AC0 6= Monotone-AC0, that
is, there is a (semantically) monotone Boolean function that is computable by AC0 circuits,
but not by (syntactically) monotone AC0 circuits. The failure of Lyndon’s theorem on finite
structures follows via the descriptive complexity correspondence between AC0 and first-order
logic. (See [26] about the nexus between logics and complexity classes.)

Given the failure of both the Łoś-Tarski and Lyndon Theorems, it might be expected
that the Homomorphism Preservation Theorem also fails over finite structures (as it seems
to live at the intersection of Łoś-Tarski and Lyndon). On the contrary, however, previous
work of the author [39] showed that the Homomorphism Preservation Theorem remains valid
over finite structures. The technique of [39] is model-theoretic: its starting point is a new
compactness-free proof of the classical theorem, which is then adapted to finite structures. (A
summary of the argument is included in Section 8.) In the present paper, we give a completely
different proof of this result—and moreover obtain a quantitative improvement—via a
reduction to lower bounds in circuit complexity. In particular, we rely on a recent result
(of independent interest) that the AC0 formula size of the colored G-subgraph isomorphism
problem is nΩ(tree-depth(G)ε) for an absolute constant ε > 0.

Related Work

Prior to [39], the status of the Homomorphism Preservation Theorem on finite structures
was investigated by Feder and Vardi [16], Gräedel and Rosen [18], and Rosen [37], who
resolved special cases of the question for restricted classes of first-order sentences. Another
special case is due to Atserias [7] in the context of CSP dualities. (See [39] for a discussion
of these results.) A different—and incomparable— line of results [6, 14, 31] proves versions
of the Homomorphism Preservation Theorems restricted to various sparse classes of finite
structures (see Ch. 10 of [33], as well as [8] related to the Łoś-Tarski Theorem). See
Stolboushkin [43] for an alternative counterexample showing that Lyndon’s Theorem fails on
finite structures, which is simpler than Ajtai and Gurevich [1] (but doesn’t extend to show
Monotone-AC0 6= Monotone ∩AC0).

Outline

The rest of the paper is organized as follows. Because our narrative jumps between logic,
graph theory and circuit complexity, for readability sake the various preliminaries—which
may be familiar (at least in part) to many readers—are presented in separate sections as

2 Consider the theory T = {Φn : n ∈ N} where Φn expresses “there exist ≥ n distinct elements”. Every
finite sub-theory of T has a finite model, but T itself does not.
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needed throughout the paper. In Section 2, we review basic definitions related to structures,
homomorphisms, and first-order logic. In Section 3, we formally state the various preservation
theorems discussed in the introduction, including our main result (Theorem 6). Section 4
includes the necessary background on circuit complexity (AC0 and monotone projections) and
graph theory (tree-width, tree-depth, and minor-monotonicity). In Section 5, we introduce
the colored G-subgraph isomorphism problem and state the known bounds on its complexity
for AC0 circuits and AC0 formulas. Section 6 states a needed lemma from descriptive
complexity (FO = AC0) and a result connecting quantifier-rank to tree-depth. In Section 7,
we prove our main result (Theorem 6) via a reduction to lower bounds for colored G-subgraph
isomorphism. (After all the preliminaries, the reduction itself is relatively simple.) For
comparison sake, the previous model-theoretic proof technique of [39] is summarized in
Section 8. We conclude in Section 9 with a brief discussion of syntax vs. semantics in circuit
complexity.

2 Preliminaries, I

2.1 Structures and Homomorphisms
Throughout this paper, let σ be a fixed finite relational signature, that is, a list of relation
symbols R(r) (where r ∈ N denotes the arity of R). A structure A consists of a set A (called
the unvierse of A) together with interpretations RA ⊆ Ar for each relation symbol R(r) in σ.
A priori, structures may be finite or infinite.

A homomorphism from a structure A to a structure B is a map f : A → B such that
(a1, . . . , ar) ∈ RA =⇒ (f(a1), . . . , f(ar)) ∈ RB for every R(r) ∈ σ and (a1, . . . , ar) ∈ Ar.
Notation A → B asserts the existence of a homomorphism from A to B.

A homomorphism f : A → B is an embedding if f is one-to-one and satisfies (a1, . . . , ar) ∈
RA ⇐⇒ (f(a1), . . . , f(ar)) ∈ RB for every R(r) ∈ σ and (a1, . . . , ar) ∈ Ar.

2.2 First-Order Logic
First-order formulas (in the relational signature σ) are constructed out of atomic formulas
(of the form x1 = x2 or R(x1, . . . , xr) where R(r) ∈ σ and xi’s are variables) via boolean
connectives (ϕ∧ψ, ϕ∨ψ, and ¬ϕ) and universal and existential quantification (∀x ϕ(x) and
∃x ϕ(x)). For a structure A and a first-order formula ϕ(x1, . . . , xk) and a tuple of elements
~a ∈ Ak, notation A |= ϕ(~a) is the statement that A satisfies ϕ with ~a instantiating the free
variables ~x. First-order formulas with no free variables are called sentences and represented
by capital Greek letters Φ and Ψ.

A first-order sentence (or formula) is said to be:
positive if it does not contain any negations (that is, it has no sub-formula of the form
¬ϕ),
existential if it contains only existential quantifiers (that is, it has no universal quantifiers)
and has no negations outside the scope of any quantifier, and
existential-positive if it is both existential and positive.

Two important parameters first-order sentences are quantifier-rank and variable-width.
Quantifier-rank is the maximum nesting depth of quantifiers. Variable-width is the maximum
number of free variables in a sub-formula. As we will see in Section 6, under the descriptive
complexity characterization of first-order logic in terms of AC0 circuits, variable-width
corresponds to AC0 circuit size and quantifier-rank corresponds to AC0 formula size (or,
more accurately, AC0 formula depth when fan-in is restricted to O(n)).

ITCS 2017
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Note that first-order sentences are not assumed to be in prenex form. For example, the
formula (∃x P (x)) ∨ (∃y ¬Q(y)) is existential (but not positive) and has quantifier-rank 1
and variable-width 1.

3 The Homomorphism Preservation Theorem

I Definition 1. A first-order sentence Φ is preserved under homomorphisms [on finite
structures] if (A |= Φ and A → B) =⇒ B |= Φ for all [finite] structures A and B. The notions
of preserved under embeddings and preserved under surjective homomorphisms are defined
similarly.

We now formally state the three classical preservations mentioned in the introduction.

I Theorem 2 (Łoś-Tarski / Lyndon /Homomorphism Preservation Theorems [29]).
A first-order sentence is preserved under [embedding / surjective / all] homomorphisms if, and
only if, it is equivalent to an [existential / positive / existential-positive] sentence.

As discussed in the introduction, Łoś-Tarski and Lyndon’s Theorems become false when
restricted to finite structures.

I Theorem 3 (Failure of Łoś-Tarski and Lyndon Theorems on Finite Structures [1, 44]).
There exists a first-order sentence that is preserved under [embedding / surjective] homomorph-
isms on finite structures, but is not equivalent on finite structures to any [existential / positive]
sentence.

In contrast, the Homomorphism Preservation Theorem remains valid over finite structures.

I Theorem 4 (Homomorphism Preservation Theorem on Finite Structures [39]).
If a first-order sentence of quantifier-rank k is preserved under homomorphisms on finite
structures, then it is equivalent on finite structures to an existential-positive sentence of
quantifier-rank β(k), for some computable function β : N→ N.

We will refer to β : N → N in Theorem 4 as the “quantifier-rank blow-up”. (Formally,
there is one computable function βσ : N → N for each finite relational signature σ.) We
remark that the upper bound on β(k) given by the proof of Theorem 4 is a non-elementary
function of k (i.e. it is grows faster than any bounded-height tower of exponentials). In
contrast, a second result in [39] shows that the optimal bound β(k) = k holds in the classical
Homomorphism Preservation Theorem.

I Theorem 5 (“Equi-rank” Homomorphism Preservation Theorem [39]).
If a first-order sentence of quantifier-rank k is preserved under homomorphism, then it is
equivalent to an existential-positive sentence of quantifier-rank k.

Due to reliance on the Compactness Theorem, the original proof of the classical Ho-
momorphism Preservation Theorem gives no computable upper bound whatsoever on the
quantifier-rank blow-up. Theorem 5 is proved by a constructive, compactness-free argument
(see Section 8). In [39] I conjectured that this stronger “equi-rank” theorem is valid over finite
structures. However, new techniques were clearly needed to improve the non-elementary
upper bound on β(k).

The main result of the present paper is a completely new proof of Theorem 4, which
moreover gives a polynomial upper bound on β(k).
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I Theorem 6 (“Poly-rank” Homomorphism Preservation Theorem on Finite Structures).

If a first-order sentence of quantifier-rank k is preserved under homomorphisms on finite
structures, then it is equivalent on finite structures to an existential-positive sentence of
quantifier-rank kO(1).

The proof of Theorem 6 involves a reduction to the AC0 formula size of SUBG, the colored
G-subgraph isomorphism problem. This reduction transforms lower bounds on the AC0

formula size of SUBG into upper bounds on the quantifier-rank blow-up β(k) in Theorem 4.
In Section 7.1, we derive an exponential upper bound β(k) ≤ 2O(k) from an existing lower
bound of [41] on the AC0 formula size of SUBPk (also known as the distance-k connectivity
problem). Two further steps, described in Section 7.2, are required for the polynomial upper
bound β(k) ≤ kO(1) of Theorem 6. The first is a new result in graph minor theory from
[25] (joint work with Ken-ichi Kawarabayashi), which gives a “polynomial excluded-minor
approximation” of tree-depth, analogous to the Polynomial Grid-Minor Theorem of Chekuri
and Chuzhoy [12]. The second ingredient, in a forthcoming paper of the author [42], is a
lower bound on AC0 formula size of SUBG in the special case where G is complete binary
tree.

4 Preliminaries, II

4.1 Circuit Complexity

We consider Boolean circuits with unbounded fan-in AND and OR gates and negations on
inputs. That is, inputs are labelled by variables xi or negated variables xi (where i comes
from some finite index set, typically {1, . . . , n}). We measure size by the number of gates
and depth by the maximum number of gates on an input-to-output path. Boolean circuits
with fan-out 1 (i.e. tree-like Boolean circuits) are called Boolean formulas. (Boolean formulas
are precisely the same as quantifier-free first-order formulas.)

The depth-d circuit/formula size of a Boolean function f is the minimum size of a depth-d
circuit/formula that computes f . AC0 refers to constant-depth, poly(n)-size sequences of
Boolean circuits/formula on poly(n) variables. For a sequence (fn) of Boolean functions on
poly(n) variables and a constant c > 0, we say that “(fn) has AC0 circuit/formula size O(nc)
(resp. Ω(nc))” if for some d (resp. for all d), the depth-d circuit/formula size of fn is Od(nc)
(resp. Ωd(nc)) for all n.

One slightly unusual complexity measure (which arises in the descriptive complexity
correspondence between AC0 and first-order logic in Section 6) is fan-in n depth, that is,
the minimum depth required to compute a Boolean function by AC0 circuits with fan-in
restricted to n. Note that AC0 formula size lower bounds imply fan-in n depth lower bounds:
if f has AC0 formula size ω(nc), then its fan-in n formula depth is at least c (for sufficiently
large n). (This follows from the observation that every depth-d formula with fan-in n is
equivalent to a depth-d formula of size at most nd.)

4.2 Monotone Projections

I Definition 7 (Monotone-Projection Reductions). For Boolean functions f : {0, 1}I → {0, 1}
and g : {0, 1}J → {0, 1}, a monotone-projection reduction from f to g is a map ρ : J →

ITCS 2017
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I ∪ {0, 1} such that f(x) = g(ρ∗(x)) for all x ∈ {0, 1}I where ρ∗(x) ∈ {0, 1}J is defined by

(ρ∗(x))j =


xi if ρ(j) = i ∈ I,
0 if ρ(j) = 0,
1 if ρ(j) = 1.

(Properly speaking, the “reduction” from f to g is the map ρ∗ : {0, 1}I → {0, 1}J induced by
ρ.) Notation f ≤mp g denotes the existence of a monotone-projection reduction from f to g.

When describing monotone-projection reductions later in this paper, it will be natural to
speak in terms of indexed sets of Boolean variables {Xi}i∈I and {Yj}j∈J , rather than sets I
and J themselves. Thus, a monotone-projection reduction ρ : J → I ∪ {0, 1} associates each
variable Yj with either a constant (0 or 1) or some variable Xi.

Note that ≤mp is a partial order on Boolean functions. This is the simplest kind of
reduction in complexity theory. It has the nice property that every standard complexity
measure on Boolean functions is monotone under ≤mp. For instance, letting Ld(f) denote
the depth-d formula size of f , we have f ≤mp g =⇒ Ld(f) ≤ Ld(g).

4.3 Tree-Width and Tree-Depth
Graphs in this paper are finite simple graphs. (In contrast to the previous discussion of
infinite structures, we assume finiteness whenever we speak of graphs.) Formally, a graph G
is a pair (V (G), E(G)) where V (G) is a finite set and E(G) ⊆

(
V (G)

2
)
is a set of unordered

pairs of vertices.
Four specific graphs that arise in this paper: for k ≥ 1, let Kk denote the complete graph

of order k, let Pk denote the path of order k, let Bk denote the complete binary tree of height
k (where every leaf-to-root path has order k), and let Gridk×k denote the k × k grid graph.
(In the case k = 1, all four of these graphs are a single vertex.)

We recall the definitions of two structural parameters, tree-width and tree-depth, which
play an important role in this paper. A tree decomposition of a graph G consists of a tree T
and a family W = {Wt}t∈V (T ) of sets Wt ⊆ V (G) satisfying⋃

t∈V (T )Wt = V (G) and every edge of G has both ends in some Wt, and
if t, t′, t′′ ∈ V (T ) and t′ lies on the path in T between t and t′′, then Wt ∩Wt′′ ⊆Wt′ .

The tree-width of G, denoted tw(G), is the minimum of maxt∈V (T ) |Wt| − 1 over all tree
decompositions (T,W) of G.

The tree-depth of G, denoted td(G), is the minimum height of a rooted forest F such
that V (F ) = V (G) and every edge of G has both ends in some branch in F (i.e. for every
{v, w} ∈ E(G), vertices v and w have an ancestor-descendant relationship in F ). There is
also an inductive characterization of tree-depth: if G has connected components G1, . . . , Gt,
then

td(G) =


1 if |V (G)| = 1,
1 + min

v∈V (G)
td(G− v) if t = 1 and |V (G)| > 1,

max
i∈{1,...,t}

td(Gi) if t > 1.

These two structural parameters, tree-width and tree-depth, are related by inequalities:

tw(G) ≤ td(G)− 1 ≤ tw(G) · log |V (G)|. (1)
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Tree-depth is also related the length of the longest path in G, denoted lp(G):

log(lp(G) + 1) ≤ td(G) ≤ lp(G). (2)

(See Ch. 6 of [33] for background on tree-depth and proofs of these inequalities.)

Graph parameters tw(·) and td(·), as well as lp(·), are easily seen to be monotone under
the graph-minor relation. A reminder what this means: recall that a graph H is a minor of a
graph G, denoted H � G, if H can be obtained from G by a sequence of edge contractions and
vertex/edge deletions. A graph parameter f : {graphs} → N is said to be minor-monotone if
H � G =⇒ f(H) ≤ f(G) for all graphs H and G.

5 The Colored G-Subgraph Isomorphism Problem

In this section, we introduce the colored G-subgraph isomorphism problem and state the
known upper and lower bounds on its complexity with respect to AC0 circuits and formulas.

I Definition 8. For a graph G and n ∈ N, the blow-up G↑n is the graph defined by

V (G↑n) = V (G)× [n],
E(G↑n) =

{
{(v, a), (w, b)} : {v, w} ∈ E(G), a, b ∈ [n]

}
.

For α ∈ [n]V (G), let G(α) denote the subgraph of G↑n defined by

V (G(α)) =
{

(v, αv) : v ∈ V (G)
}
,

E(G(α)) =
{
{(v, αv), (w,αw)} : {v, w} ∈ E(G)

}
.

(Note that each G(α) is an isomorphic copy of G.)

I Definition 9. For any fixed graph G, the colored G-subgraph isomorphism problem asks,
given a subgraph X ⊆ G↑n, to determine whether or not there exists α ∈ [n]V (G) such
that G(α) ⊆ X. For complexity purposes, we view this problem as a Boolean function
SUBG,n : {0, 1}|E(G)|·n2 → {0, 1} with variables {Xe}e∈E(G↑n). We write SUBG for the
sequence of Boolean functions {SUBG,n}n∈N.

5.1 Minor-Monotonicity
The following observation appears in [27].

I Proposition 10. If H is a minor of G, then SUBH ≤mp SUBG (i.e. SUBH,n ≤mp SUBG,n
for all n ∈ N).

Proof. By transitivity of ≤mp, it suffices to consider the two cases where H is obtained from
G via deleting or contracting a single edge {v, w} ∈ E(G). In both cases, the monotone pro-
jection maps each variable X{(v′,a),(w′,b)} of SUBG with {v′, w′} 6= {v, w′} to the correspond
variable Y{(v′,a),(w′,b)} of SUBH . In the deletion case, we set the variable X{(v,a),(w,b)} to the
constant 1 for all a, b ∈ [n]. In the contraction case, we set X{(v,a),(w,b)} to 1 if a = b and
to 0 if a 6= b. (This “planted perfect matching” has the effect of gluing the v-fibre and the
w-fibre for instances of SUBH .) J

Proposition 10 implies that the graph parameter G 7→ µ(SUBG) is minor-monotone for
any standard complexity measure µ : {Boolean functions} → N (e.g. depth-d AC0 formula
size). It also implies:

ITCS 2017
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I Corollary 11. For all graphs G, SUBPtd(G) ≤mp SUBG.

Proof. Recall that td(G) ≤ lp(G) by inequality (2). That is, every graph G contains a
path of length td(G).3 Since subgraphs are minors, we have Ptd(G) � G and therefore
SUBPtd(G) ≤mp SUBG by Proposition 10. J

5.2 Upper Bounds
The obvious “brute-force” way of solving SUBG has running time O(n|V (G)|): given an input
X ⊆ G↑n, check if G(α) ⊆ X for each α ∈ [n]V (G). A better upper bound comes from
tree-width: based on an optimal tree-decomposition (T,W), there is a dynamic-programming
algorithm with running time ntw(G)+O(1) [34]. This algorithm can be implemented by AC0

circuits of size ntw(G)+O(1) and depth O(|V (G)|).4
Unlike circuits, formulas cannot faithfully implement dynamic-programming algorithms.

The fastest known formulas for SUBG are tied to tree-depth: based on a minimum-height
rooted forest F witnessing td(G), there are AC0 formulas of size ntd(G)+O(1) solving SUBG
(which come from AC0 circuits of depth td(G) +O(1) and fan-in O(n)). For future reference,
these upper bounds are stated in the following proposition.5

I Proposition 12. For all graphs G, SUBG is solvable by AC0 circuits of size ntw(G)+O(1),
as well as by AC0 formulas of size ntd(G)+O(1).

5.3 Lower Bounds: AC0 Circuit Size
Previous work of the author [40] showed that the AC0 circuit size of SUBKk (a.k.a. the
(colored) k-CLIQUE problem) is nΩ(k) for every k ∈ N. Generalizing the technique of [40],
Amano [5] gave a lower bound on the AC0 circuit size of SUBG for arbitrary graphs G. In
particular, he showed that the AC0 circuit size of SUBGridk×k is nΩ(k). This result, combined
with the recent Polynomial Grid-Minor Theorem6 of Chekuri and Chuznoy [12], implies that
the AC0 circuit size of SUBG is nΩ(tw(G)ε) for an absolute constant ε > 0. An even stronger
lower bound was subsequently proved by Li, Razborov and Rossman [27] (without appealing
to the Polynomial Grid-Minor Theorem).

I Theorem 13. For all graphs G, the AC0 circuit size of SUBG is nΩ(tw(G)/ log tw(G)).

This result is nearly tight, as it matches the upper bound of Proposition 12 up to the
O(log tw(G)) factor in the exponent.

3 This fact is straightforward to prove. Consider the case that G is connected. Starting at any vertex of
G, constructed a rooted tree T by a depth-first search. Observe that for every edge {v, w} ∈ E(G), it
must be the case that v and w lie in a common branch of T . Therefore, the height of T is an upper
bound on td(G). On the other hand, note that each root-to-leaf branch of T is a path in G. Therefore,
the height of T is a lower bound on lp(G).

4 It may be possible to achieve running times of nδ·tw(G)+O(1) for constants δ < 1 using fast matrix
multiplication algorithms (cp. [46]). However, these algorithms appear to require logarithmic-depth
circuits. For unrestricted Boolean circuits, no upper bound better than nO(tw(G)) is known, and in
fact Marx [30] has shown that the Strong Exponential Time Hypothesis rules out circuits smaller than
nO(tw(G)/ log tw(G)).

5 For the uncolored G-subgraph isomorphism graph, one gets essentially the same upper bounds via
a reduction to SUBG using the “color-coding” technique of Alon, Yuster and Zwick [4]. Amano [5]
observed that this uncolored-to-colored reduction can be implemented by AC0 circuits.

6 This states every graph G of tree-width k contains an Ω(kε)×Ω(kε) grid minor for an absolute constant
ε > 0.
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5.4 Lower Bounds: AC0 Formula Size
For the main result of this paper (Theorem 6), we require a lower bound on the AC0 formula
size of SUBG (or in fact on the fan-in O(n) depth of SUBG). Since formulas are a subclass of
circuits, Theorem 13 implies that the AC0 formula size of SUBG is at least nΩ(tw(G)/ log tw(G)).
However, this does not match the ntd(G)+O(1) lower bound of Proposition 12, since td(G)
may be larger than tw(G) (by up to a log |V (G)| factor). In particular, the path Pk has
tree-width 1 and tree-depth dlog(k + 1)e. Although Theorem 13 gives no non-trivial lower
bound on the AC0 formula size of SUBPk , a nearly optimal lower bound was proved in
different work of the author [41]:

I Theorem 14. The AC0 formula size of SUBPk is nΩ(log k). More precisely, the depth-d
formula size of SUBPk,n is nΩ(log k) for all k, d, n ∈ N with k ≤ log logn and d ≤ logn

(log logn)3 .

Via the relationship between AC0 formula size and fan-in O(n) circuit depth, Theorem
14 implies:

I Corollary 15. Circuits with fan-in O(n) computing SUBPk have depth Ω(log k).

I Remark 16. We mention a few other lower bounds related to Corollary 15. A recent paper
of Chen, Oliveira, Servedio and Tan [13] gives a nearly optimal size-depth trade-off for AC0

circuits computing SUBPk . Namely, they prove that the depth-d circuit size of SUBPk,n is
nΩ(d−1k1/(d−1)) for all k ≤ n1/5. (This result is incomparable to Theorem 14.) As a corollary,
this shows that circuits with fan-in O(n) computing SUBPk have depth Ω(log k/ log log k)
(a slightly weaker bound than Corollary 15). Previous size-depth trade-offs due to Beame,
Impagliazzo and Pitassi [9] and Ajtai [2] imply lower bounds of Ω(log log k) and Ω(log∗ k)
respectively on the fan-in O(n) depth of SUBPk .

In Section 7.1, we use Corollary 15 (together with Corollary 11) to prove a weak version
of our main result, Theorem 6, with an exponential upper bound β(k) ≤ 2O(k) on the
quantifier-rank blow-up. We remark that the lower bound of Chen et al. implies a slightly
weaker upper bound of kO(k), while the very first non-trivial lower bound of Ajtai implies a
non-elementary upper bound on β(k) (similar to the original proof of Theorem 4). For the
polynomial upper bound β(k) ≤ kO(1), we require a stronger nΩ(td(G)ε) lower bound on the
AC0 formula size of SUBG for arbitrary graphs G, as we explain in Section 7.2.

6 Preliminaries, III

In this section, we state a few needed lemmas on the relationship between first-order logic
and AC0 formula size. As before, let σ be a fixed finite relational signature. However, we
now stipulate that all structures in Sections 6 and 7 are finite. That is, we drop the
adjective “finite” everywhere since it is assumed. Asymptotic notation in these sections (O(·),
etc.) implicitly depends on σ (although, essentially without loss of generality, it suffices to
prove our results in the special case σ = {R(2)} of a single binary relation).

6.1 Descriptive Complexity: FO = AC0

I Definition 17 (Gaifman Graphs, Encodings, MODELΦ).
For a structure A, we denote by Gaif(A) the Gaifman graph of A. This is the graph
whose vertex set is the universe of A and whose edges are pairs {v, w} such that v 6= w

and v, w appear together in a tuple of any relation of A.
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If A has universe [n], then we denote by Enc(A) ∈ {0, 1}n̂ the standard bit-string encoding
of A where n̂ =

∑
R(t)∈σ n

t (= nOσ(1)). That is, each bit of Enc(A) is the indicator for
a tuple of some relation of A. (Note that Enc(·) is a bijection between structures with
universe [n] and strings in {0, 1}n̂.)
For a first-order sentence Φ and n ∈ N, let MODELΦ,n : {0, 1}n̂ → {0, 1} be the Boolean
function defined, for structures A with universe [n], by

MODELΦ,n(Enc(A)) = 1 def⇐⇒ A |= Φ.

We write MODELΦ for the sequence of Boolean functions {MODELΦ,n}n∈N.

The next lemma gives one-half of the descriptive complexity correspondence between
first-order logic and AC0:

I Lemma 18 (“FO ⊆ AC0”). For all 1 ≤ w ≤ k, if Φ is a first-order sentence of quantifier-
rank k and variable-width w, then MODELΦ is computable by AC0 circuits of depth k and
fan-in O(n) and size O(nw). These circuits are equivalent with AC0 formulas of depth k and
size O(nk).

(To be completely precise, each of these O(·) terms is really Oσ,k(·), that is, with constants
that depend on k as well as the signature σ.) We remark that Lemma 18 has a converse
(“AC0 ⊆ FO”) with respect to both the uniform and non-uniform versions of AC0. We omit
the statement of these results, since the description of AC0 circuits via first-order sentences
is not needed in this paper (see [26] for details).

6.2 Retracts, Cores, Hom-Preserved Classes
The last bit of required background concerns homomorphism-preserved classes of structures.
We begin by defining the key notions of homomorphic equivalence and cores.

I Definition 19 (Homomorphic Equivalence, (Co-)Retracts, Cores).
Recall notation A → B denoting the existence of a homomorphism from A to B.
Structures A and B are homomorphically equivalent, denoted A � B, if A → B and
B → A.
We write A ⊇→ B and say that B is a retract of A and A is a co-retract of B if: (1) B is a
substructure of A and (2) there exists a homomorphism A → B that fixes B pointwise
(a.k.a. a retraction). (Note that A ⊇→ B implies A� B.)
A structure A is a core if it has no proper retract (that is, A ⊇→ B =⇒ A = B).

The next lemma states a few basic properties of cores (see [22, 23]).

I Lemma 20.
(a) Every �-equivalence class contains a unique core up to isomorphism. (That is, every

structure A is homomorphically equivalent to a unique core.)
(b) For every k, there are only finitely many non-isomorphic cores of tree-depth k. (This

number depends on the signature σ.)
(c) (As an aside:) If a graph G is a core, then the colored and uncolored G-subgraph

isomorphism problems are equivalent under linear-size monotone-projection reductions
(see [19, 27]).

I Definition 21 (Hom-Preserved Classes, Minimal Cores).
We say that a class of structures C (i.e. a class of finite structures) is hom-preserved if,
whenever A ∈ C and A → B, we have B ∈ C .
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For a hom-preserved class C , let MinCores(C ) be the set ofM ∈ C with the property
that for all structures A, if A ∈ C and A →M, thenM is isomorphic to a retract of A.

The next lemma states the essential properties of MinCores(C ) (see [39]).

I Lemma 22. The following hold for any hom-preserved class C :
(a) A ∈ C if, and only if, there existsM∈ MinCores(C ) such thatM→A.
(b) Every structure in MinCores(C ) is, indeed, a core.
(c) Every homomorphism between structures in MinCores(C ) is an isomorphism.
(d) C is definable (i.e. within the class of all finite structures) by an existential-positive

sentence of quantifier-rank k if, and only if, td(Gaif(M)) ≤ k for allM∈ MinCores(C ).
(e) C is definable by an existential-positive sentence of variable-width w if, and only if,

MinCores(C ) contains finitely many non-isomorphic structures and tw(Gaif(M)) ≤ w
for everyM∈ MinCores(C ).

Since Lemma 22(d) in particular plays a key role in the next section, we briefly sketch
the proof. In one direction: Suppose C is defined by an existential-positive sentence Φ of
quantifier-rank k. It is easy to show (by a syntactic argument) that Φ is equivalent to a
disjunction Ψ1 ∨ · · · ∨Ψt of primitive-positive sentences Ψi (i.e. existential-positive sentences
that involve conjunctions ∧ but no disjunctions ∨), each with quantifier-rank at most k. For
each Ψi, there is a corresponding structure Ai with the property that B |= Ψi ⇔ Ai → B
and moreover the tree-depth of Ai is at most the quantifier-rank of Ψi (and hence at most
k). Thus, C is generated by A1, . . . ,At and hence MinCores(C ) consists of finitely many
cores, each of tree-depth at most k (coming from the minimal elements among A1, . . . ,At in
the homomorphism order).

For the reverse direction: Start with the assumption that all structures in MinCores(C )
have tree-depth at most k. By Lemma 20(b), MinCores(C ) contains finitely many non-
isomorphic structures M1, . . . ,Mt. For each Mi, let Ψi be the corresponding primitive-
positive sentence of quantifier-rank at most k. Then C is defined by the existential-positive
sentence Ψ1 ∨ · · · ∨Ψt.

7 Proof of Theorem 6

In this section, we finally prove our main result, the “Poly-rank” Homomorphism Preservation
Theorem on Finite Structures (Theorem 6, stated in Section 3). We begin in Section 7.1 by
proving a weaker version of the result with an exponential upper bound β(k) ≤ 2O(k). In
Section 7.2, we describe the improvement to β(k) ≤ kO(1), which involves new results from
circuit complexity and graph minor theory.

7.1 Preliminary Bound: β(k) ≤ 2O(k)

For simplicity sake, we will assume that σ consists of binary relations only. At the end of
this subsection, we explain how to extend the argument to arbitrary σ.

Let Φ be a first-order sentence of quantifier-rank k, let C be the set of finite models of Φ,
and assume that C is hom-preserved (that is, Φ is preserved under homomorphisms on finite
structures). Our goal is to show that Φ is equivalent to an existential-positive sentence of
quantifier-rank 2O(k). By Lemma 22(d), it suffices to show that td(Gaif(M)) ≤ 2O(k) for all
M∈ MinCores(C ).

Consider anyM∈ MinCores(C ). Let G be the Gaifman graph ofM, and let m be the
size of the universe ofM. (Note that m = |V (G)|.) The following claim is key to showing
td(G) ≤ 2O(k).
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I Claim 23. For all n ∈ N, there exists a monotone-projection reduction SUBG,n ≤mp
MODELΦ,mn.

In order to define this monotone-projection reduction, let us identify [mn] with the set
V (G↑n) (= V (G)× [n]). Variables Xe of SUBG,n are indexed by potential edges e ∈ E(G↑n)
in a subgraph X ⊆ G↑n. Variables Yi of MODELΦ,mn are indexed by the set

I :=
{

(R, (v, a), (w, b)) : R(2) ∈ σ, (v, a), (w, b) ∈ V (G↑n)
}
.

(That is, I is the set of potential 2-tuples of relations of structures with universe V (G↑n).)
Define the monotone projection ρ : {Yi}i∈I → {Xe}e∈E(G↑n) ∪ {0, 1} by

ρ : Y(R,(v,a),(w,b)) 7→


X{(v,a),(w,b)} if (v, w) ∈ RM and v 6= w,

1 if (v, w) ∈ RM and v = w,

0 otherwise.

We must show that the corresponding map

ρ∗ : {subgraphs of G↑n} → {structures with universe V (G↑n)}

is in fact a reduction from SUBG,n to MODELΦ,mn. That is, we must show that for any
X ⊆ G↑n,

SUBG,n(X) = 1 ⇐⇒ MODELΦ,mn(ρ∗(X)) = 1. (3)

For the =⇒ direction of (3): Assume SUBG,n(X) = 1. Then G(α) ⊆ X for some
α ∈ [n]V (G). The definition of ρ ensures that the map v 7→ (v, αv) is a homomorphism
fromM to the structure ρ∗(X).7 Since C is hom-preserved, it follows that ρ∗(X) ∈ C and
therefore MODELΦ,mn(ρ∗(X)) = 1.

For the ⇐= direction of (3): Assume MODELΦ,mn(ρ∗(X)) = 1, that is, ρ∗(X) ∈ C .
By Lemma 22(a) there exist N ∈ MinCores(C ) and a homomorphism γ : N → ρ∗(X).
The definition of ρ ensures that the map π : (v, i) 7→ v is a homomorphism from ρ∗(X) to
M.8 The composition π ◦ γ is a homomorphism from N toM. By Lemma 22(c), it is an
isomorphism. Therefore, without loss of generality, we may assume thatM = N and π ◦ γ is
the identity map on the universe V (G) ofM. This means that π(v) ∈ {(v, a) : a ∈ [n]} for all
v ∈ V (G). We may now define α ∈ [n]V (G) as the unique element such that γ : v 7→ (v, αv)
for all v ∈ V (G). From the definition of ρ and the fact that G = Gaif(M), we infer that
G(α) ⊆ X.9 We conclude that SUBG,n(X) = 1, finishing the proof of Claim 23.

7 To see why, suppose we have (v, w) ∈ RM for some R(2) ∈ σ. We must show that ((v, αv), (w,αw)) ∈
Rρ
∗(X). First, consider the case that v 6= w. The assumption G(α) ⊆ X implies that {(v, αv), (w,αw)} ∈

E(X). Since ρ maps the variable Y(R,(v,αv),(w,αw)) to the variable X{(v,αv),(w,αw)} (which has value 1
for X), it follows that ((v, αv), (w,αw)) ∈ Rρ

∗(X). Finally, consider the case that v = w. In this case, ρ
maps the variable Y(R,(v,αv),(w,αw)) to the constant 1. So again we have ((v, αv), (w,αw)) ∈ Rρ

∗(X).
8 In fact, this holds for every X ⊆ G↑n independent of the assumption that MODELΦ,mn(ρ∗(X)) = 1.
This follows from the observation that π is (in particular) a homomorphism from ρ∗(G↑n) toM. To see
why, consider any ((v, a), (w, b)) ∈ Rρ

∗(G↑n) (corresponding to Y(R,(v,a),(w,b)) = 1). It must be the case
that (v, w) ∈ RM, since the contrary assumption (v, w) /∈ RM would mean that ρ maps the variable
Y(R,(v,a),(w,b)) to 0.

9 Consider an edge {(v, αv), (w,αv)} ∈ E(G(α)). By definition of G(α), we have {v, w} ∈ E(G). Since
G = Gaif(M), there exists a relation R(2) ∈ σ such that (v, w) ∈ RM or (w, v) ∈ RM. Without
loss of generality, assume (v, w) ∈ RM. Since γ : M → ρ∗(X) is a homomorphism, we have
(γ(v), γ(w)) = ((v, αv), (w,αw)) ∈ Rρ

∗(X). Since (v, w) ∈ RM and v 6= w, the monotone projec-
tion ρ maps Y(R,(v,αv),(w,αw)) to X{(v,αv),(w,αw)}. It follows that {(v, αv), (w,αw)} ∈ E(X). Therefore,
G(α) is a subgraph of X.
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We proceed to show that td(G) ≤ 2O(k). By Corollary 11, we have SUBPtd(G),n ≤mp
SUBG,n. By Claim 23 and transitivity of ≤mp, it follows that SUBPtd(G),n ≤mp MODELΦ,kn.
Therefore, µ(SUBPtd(G),n) ≤ µ(MODELΦ,kn) for every standard complexity measure µ :
{Boolean functions} → N (in particular, depth-k formula size). By Lemma 18 (the simulation
of first-order logic by AC0), there exist depth-k formulas of size O((mn)k) which compute
MODELΦ,mn. Therefore, there exist depth-k formulas of size O((mn)k) which compute
SUBPtd(G),n. On the other hand, by Theorem 14, the depth-k formula size of SUBPtd(G),n

is nΩ(log td(G)) for all sufficiently large n such that k < log logn. Therefore, we have
nΩ(log td(G)) ≤ O((mn)k) for all sufficiently large n. Since m (= |V (G)|) is constant, it
follows that k ≥ Ω(log td(G)), that is, td(G) ≤ 2O(k). This completes the proof that
β(k) ≤ 2O(k) for binary signatures σ.

I Remark 24. In this argument, as an alternative to depth-k formula size, we may instead
consider fan-in O(n) depth (i.e. fan-in cn depth for a sufficiently large constant c) and appeal
to Corollary 15 instead of Theorem 14.

Finally, we explain how to adapt the above argument when σ is an arbitrary finite
relational signature. Here the variables of MODELΦ,kn are indexed by the set{

(R, (v1, a1), . . . , (vt, at)) : R(t) ∈ σ, (v1, a1), . . . , (vt, at) ∈ V (G)× [n]
}

and the reduction {subgraphs of G↑n} → {structures with universe V (G↑n)} is defined by

Y(R,(v1,a1),...,(vt,at)) 7→

{∧
1≤i<j≤t : vi 6=vj X{(vi,ai),(vj ,aj)} if (v1, . . . , vt) ∈ RM,

0 otherwise.

(By convention,
∧
i∈∅Xi = 1.) Note that this reduction is not a monotone projection, as we

are mapping each Y -variable to a conjunction of X-variables. This reduction is, however,
computed by a single layer of constant fan-in AND gates. Therefore, under this reduction,
any Boolean formula computing MODELΦ,kn is converted to a Boolean formula computing
SUBG,n with an increase of 1 in depth and a constant factor increase in size. Other than
this change, the rest of the argument is identical to the case of binary signatures.

7.2 Improvement to β(k) ≤ kO(1)

The upper bound β(k) ≤ 2O(k) in the previous section relies on the exponential approximation
of tree-depth in terms of the longest path, that is, log(lp(G)+1) ≤ td(G) ≤ lp(G) (inequality
(2)). To achieve a polynomial upper bound on β(k), we require a polynomial approximation
of tree-depth in terms of a few manageable classes “excluded minors”. This realization led to
a conjecture of the author, which was soon proved in joint work with Ken-ichi Kawarabayashi
[25].

I Theorem 25. Every graph G of tree-depth k satisfies one (or more) of the following
conditions for ` = Ω̃(k1/5):
(i) tw(G) ≥ `,
(ii) G contains a path of length 2`, or
(iii) G contains a B`-minor.

This result is analogous to the Polynomial Grid-Minor Theorem [12], which can be used
to replace condition (i) with the condition that G contains an Ω(kε)× Ω(kε) grid minor for
an absolute constant ε > 0. In cases (i) and (ii), Theorems 13 and 14 respectively imply
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that SUBG has AC0 formula size nΩ̃(td(G)1/5). This leaves only case (iii), where forthcoming
work of the author [42] shows the following (via a generalization of the “pathset complexity”
framework of [41]).

I Theorem 26. The AC0 formula size of SUBBk is nΩ(kε) for an absolute constant ε > 0.

Together Theorems 25 and 26 imply:

I Theorem 27. For all graphs G, the AC0 formula complexity of SUBG is nΩ(td(G)ε) for
an absolute constant ε > 0.

Plugging Theorem 27 into the argument in the previous subsection directly yields the
polynomial upper bound β(k) ≤ kO(1) of Theorem 4. (In fact, we get β(k) ≤ k1/ε for the
constant ε > 0 of Theorem 27.)

8 Comparison with the Method in (R. 2008)

In this section, for the sake of comparison, we summarize the model-theoretic approach of the
original proof of Theorem 4 in [39]. The starting point in [39] is a new compactness-free proof
of the classical Homomorphism Preservation Theorem, which moreover yields the stronger
“equi-rank” version (Theorem 5). The proof is based on an operation mapping each structure
A to an infinite co-retract Γ(A). (We drop the assumption of the last two sections that
structures are finite by default.) In order to state the key property of this operation, we
introduce notation A ≡FO(k) B (resp. A ≡∃+FO(k) B) denoting the statement that A and B
satisfy the same first-order sentences (resp. existential-positive sentences) of quantifier-rank
k.

I Theorem 28. There is an operation Γ : {structures} → {structures} associating every
structure A with a co-retract Γ(A) ⊇→ A such that, for all structures A and B and k ∈ N,

A ≡∃+FO(k) B =⇒ Γ(A) ≡FO(k) Γ(B).

There is a straightforward proof that Theorem 28 implies Theorem 5 (see [39]). The
structure Γ(A) is the Fraïsse limit of the class of co-finite co-retracts of A (that is, structures
A′ such that A′ ⊇→ A and A′ \A is finite). We remark that Γ(A) is infinite, even when A is
finite. For this reason, Theorem 28 says nothing in the setting of finite structures.

The Homomorphism Preservation Theorem on Finite Structures (Theorem 4) is proved
in [39] by considering a sequence of finitary “approximations” of Γ(A). (This is somewhat
analogous to sense in which large random graph G(n, 1/2) “approximate” the infinite Rado
graph.)

I Theorem 29. There is a computable function β : N → N and a sequence {Γk}k∈N of
operations Γk : {finite structures} → {finite structures} associating every finite structure A
with a sequence {Γk(A)}k∈N of finite co-retracts Γk(A) ⊇→ A such that, for all finite structures
A and B and k ∈ N,

A ≡∃+FO(β(k)) B =⇒ Γk(A) ≡FO(k) Γk(B).

Theorem 4 follows directly from Theorem 29, inheriting the same quantifier-rank blow-up
β(k). The proof of Theorem 29 in [39] implies a non-elementary upper bound on β(k). While
the present paper improves the upper bound β(k) ≤ kO(1) in Theorem 4, we remark that
this it does not imply any improvement to β(k) in Theorem 29.
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9 Syntax vs. Semantics in Circuit Complexity

We conclude this paper by stating some consequences of our results in circuit complexity. Let
HomPreserved denote the class of all homomorphism-preserved graph properties (for example,
{G : girth(G) ≤ 20 or clique-number(G) ≥ 10}). This is a semantic class, akin to the class
Monotone of all monotone languages. The new proof in this paper of the Homomorphism
Preservation Theorem on Finite Structures using AC0 lower bounds is easily to imply the
following “Homomorphism Preservation Theorem for (non-uniform) AC0”:

HomPreserved ∩AC0 = ∃+FO (⊆ {poly-size monotone DNFs}).

In other words, every homomorphism-preserved graph property in AC0 is definable (among fi-
nite graphs) by an existential-positive first-order sentence and, therefore, also by a polynomial-
size monotone DNF (moreover, with constant bottom fan-in). As a consequence, for every
integer d ≥ 2, we get a collapse of the AC0 depth hierarchy with respect to homomorphism-
preserved properties:

HomPreserved ∩AC0[depth d] = HomPreserved ∩AC0[depth d+ 1].

In contrast, it is known that AC0[depth d] 6= AC0[depth d + 1] by the Depth Hierarchy
Theorem [21].

These results have an opposite nature to the “syntactic monotonicity 6= semantic mono-
tonicity” counterexamples of Ajtai and Gurevich [1] and Razborov [35] (as well as Tardos
[45]), which respectively show that

Monotone ∩AC0 6= Monotone-AC0 and Monotone ∩ P 6= Monotone-P.

In light of the results of this paper, I feel that questions of syntax vs. semantics in circuit
complexity are worth re-examining. For instance, so far as I know, there is no known
separation between the uniform average-case monotone vs. non-monotone complexity of any
monotone function in any well-studied class of Boolean circuits (AC0, NC1, etc.) It is plausible
that syntactic monotonicity = semantic monotonicity in the average-case. Evidence for this
viewpoint comes from the considering the slice distribution (that is, the uniform distribution
on inputs of Hamming weight exactly bn/2c). With respect to the slice distribution, it is
known that monotone and non-monotone complexity are equivalent within a poly(n) factor
by a classic result of Berkowitz [11].

As for an even stronger “Homomorphism Preservation Theorem” in circuit complexity, we
can state the following: if for every k, SUBPk requires unbounded-depth formula size nΩ(log k)

(which is widely conjectured to be true) or even nωk→∞(1), then HomPreserved∩NC1 = ∃+FO.
Therefore, I strongly believe in a “Homomorphism Preservation Theorem for NC1”. On the
other hand, the homomorphism-preserved property of being 2-colorable a.k.a. non-bipartite
(= {G : Ck → G for any odd k}) is in Logspace (this follows from Reingold’s theorem [36]),
yet it is not ∃+FO-definable. Therefore, we may assert that HomPreserved ∩ Logspace 6=
∃+FO.
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