Towards Hardness of Approximation for
Polynomial Time Problems®

Amir Abboud! and Arturs Backurs?

1 Stanford University, Palo Alto, USA
abboud@cs.stanford.edu

2 MIT, Cambridge, USA
backurs@mit.edu

—— Abstract

Proving hardness of approximation is a major challenge in the field of fine-grained complexity
and conditional lower bounds in P. How well can the Longest Common Subsequence (LCS) or
the Edit Distance be approximated by an algorithm that runs in near-linear time? In this paper,
we make progress towards answering these questions. We introduce a framework that exhibits
barriers for truly subquadratic and deterministic algorithms with good approximation guarantees.
Our framework highlights a novel connection between deterministic approximation algorithms for
natural problems in P and circuit lower bounds.

In particular, we discover a curious connection of the following form: if there exists a § > 0
such that for all £ > 0 there is a deterministic (1 + &)-approximation algorithm for LCS on two
sequences of length n over an alphabet of size n°) that runs in O(nz_‘s) time, then a certain
plausible hypothesis is refuted, and the class EN? does not have non-uniform linear size Valiant
Series-Parallel circuits. Thus, designing a “truly subquadratic PTAS" for LCS is as hard as
resolving an old open question in complexity theory.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems
Keywords and phrases LCS, Edit Distance, Hardness in P

Digital Object Identifier 10.4230/LIPIcs.ITCS.2017.11

1 Introduction

Canonical examples of problems that are in P due to natural dynamic programming solutions
are Edit Distance and Longest Common Subsequence (LCS) [44, 54]. Given two strings z,y
of length n, the LCS problem asks for the length of the longest sequence that appears in both
x and y as a (not necessarily contiguous) subsequence, and Edit Distance asks to compute
the minimum number of operations (insertion, deletion, or substitution) that is required
to transform x into y. Despite decades of attempts, it is not known how to speed up the
dynamic programming solution beyond the O(n?/log®n) bound of Masek and Paterson [66]
via the “four Russians" technique. Recent research on the exact complexity of polynomial
time problems proved that faster algorithms do not exist [19, 2, 32], not even by polylog
factors [5], unless SAT can be solved faster than brute force. A natural question arises: How
well can we approximate LCS and Edit Distance in truly subquadratic (or near linear) time?
And more generally, can we speed up dynamic programming algorithms without paying too
much in the optimality of the solution?

* This work was supported in part by an IBM PhD Fellowship, the NSF and the Simons Foundation.

© Amir Abboud and Arturs Backurs;

oY licensed under Creative Commons License CC-BY
8th Innovations in Theoretical Computer Science Conference (ITCS 2017).
Editor: Christos H. Papadimitrou; Article No. 11; pp. 11:1-11:26

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ITCS.2017.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2

Towards Hardness of Approximation for Polynomial Time Problems

Various generalizations of LCS and Edit Distance, like the Local Alignment problem
[75, 8], are fundamental in computational biology and genomics. In such applications, the
input size is a few billions, quadratic time algorithms are prohibitive and are rarely run in
practice. To analyze the genome, researchers often use various heuristics, like BLAST [13],
that run in near linear time but have no optimality guarantees. Despite BLAST’s impact, as
witnessed by its more than fifty thousand citations, the bioinformatics community is in an
everlasting search of “better" algorithms that are able to reveal new phenomena in the massive
amounts of biological data that we currently have (see [77, 63, 49]). The theory community
ought to provide guidance: is there hope for fast algorithms with strong guarantees? Is there
evidence against a (1 + ¢)-approximation algorithm that runs in near-linear time, even for
the more basic LCS and Edit Distance problems?

We say that an algorithm c-approximates the Edit Distance ED(S,T) of two given
sequences S, T if it outputs a value x that is ED(S,T) < z < ¢- ED(S,T). Since the
Edit Distance is at most n, an n-approximation is trivial. A linear time /n-approximation
follows from the exact algorithm that computes the Edit Distance in time O(n + d?) where
d = ED(S,T) [65]. Subsequently, this approximation factor has been improved to n%/7 by
Bar-Yossef et al. [21], then to n'/3+°() by Batu et al. [22]. Building on the breakthrough
embedding of Edit Distance by Ostrovsky and Rabani [69], Andoni and Onak obtained the

first near-linear time algorithm with a subpolynomial approximation factor of 90(v/logn)
Most recently, in FOCS’10, Andoni, Krauthgamer, and Onak [15] significantly improved the
approximation to polylogarithmic obtaining an algorithm that runs in time n'*¢ and gives
(log n)©(/€) approximation for every fixed ¢ > 0. There are many works on approximate Edit

Distance in various computational models, see e.g. [68, 15, 38] and the references therein.

While LCS and Edit Distance are closely related, they behave quite differently with
respect to approximations, and these clever approximation algorithms for Edit Distance are
not known to lead to any nontrivial result for LCS. We say that an algorithm c-approximates
the LCS of two given sequences S, T' if it outputs a value z that is w <z < LCS(S,T).
A cute observation shows that the LCS of binary sequences can be approximated to a factor
of 2 in linear time: the longest common subsequence that is all-zero or all-one is at least half
from optimal. Note that a 2 approximation for Edit Distance on binary sequences would be a
breakthrough. In general, for an alphabet of size |X| = s, it is easy to get an s-approximation
for the LCS and it is a longstanding open question to design an (s — d)-approximation in near-
linear time or even strongly subquadratic time for any constant integer s > 2 and constant
d > 0. Even though many ideas and heuristics for LCS were designed [43, 27, 48, 45] (see
also [68, 28] for surveys), none has proven sufficient to compute an (s — ¢)-approximation in
strongly subquadratic time. A general tool for speeding up dynamic programming algorithms
through a controlled relaxation of the optimality constraint could have great impact for
algorithm design. Recently, encouraging positive results along these lines were obtained by
Saha [72, 73] for problems related to parsing context-free languages. However, we are still
far from understanding, more generally, when and how such speedups are possible.

Proving lower bounds for problems in P, under popular conjectures like the Strong
Exponential Time Hypothesis (SETH) [57, 35], is a recent and very active line of work [2, 4,
6,7, 8,9, 14, 19, 32, 33, 31, 30, 42, 70, 71, 79, 1, 18, 20, 47, 41, 40]. The known results for
LCS and Edit Distance [19, 2, 32, 5] do not imply any non-trivial hardness of approximation,
i.e. they only rule out (roughly) (1 + 1/n)-approximations in subquadratic time. Achieving
strong hardness of approximations results is often highlighted as an important open question
for this line of research, and the general sense of the community is that new ideas that deviate
significantly from current techniques might be required.

A. Abboud and A. Backurs

Our Work

In this paper, we make progress towards the important goal of proving inapproximability
results for such fundamental problems in P. We introduce a framework that exhibits barriers for
subquadratic and deterministic algorithms with good approximation guarantees. Admittedly,
the “lower bounds" we obtain for problems like LCS are quite weak and are still far from
the upper bounds. Still, they are much higher than what we knew before: e.g. instead of
the trivial (1 + 1/n)-approximation hardness, we can show evidence against (1 + 1/polylogn)
or even (1 + o(1)) approximations. Perhaps more interesting than the statements is the
framework itself, which highlights a novel connection between deterministic approzimation
algorithms for natural problems in P and circuit lower bounds.

We prove a curious connection of the following form: if there is a truly subquadratic
deterministic (1 4 €)-approximation algorithm for LCS on two sequences of length n over an
alphabet of size n°1), then the complexity class ENP does not have non-uniform linear size
series parallel circuits!. This consequence (explained in more detail below) is widely believed
to be true. However, proving it unconditionally would be a breakthrough in complexity theory
and the study of non-uniform circuit lower bounds. As stated, this is merely a “difficulty" or
a “no-pass" result for LCS, not “hardness". It only shows a “circuit lower bounds" barrier
for designing a fast (1 + o(1))-approximation algorithm for LCS: it is at least as difficult as

resolving a longstanding (and considered to be difficult) open question in circuit complexity.

However, we prove a stronger result (Theorem 5 below), which we think should be regarded
as a “hardness" result as well, giving evidence that such algorithms for LCS might not exist.

We contribute to the growing body of surprising connections between algorithm design

and circuit lower bounds (see the recent survey [85]) [62, 56, 83, 86, 61, 50, 37, 16, 59, 60, 64].

A notable tight connection between faster algorithms for Circuit-SAT and circuit lower
bounds was shown by Williams [83, 86]: faster-than-trivial Circuit-SAT algorithms for many
circuit classes C imply interesting new lower bounds against that class. For example, via this
connection, Jahanjou, Miles, and Viola [60] show that refuting SETH leads to proving the
same lower bound against series-parallel circuits stated above. Abboud et al. [5] go a step
further and show that slightly faster algorithms for natural and well-studied problems in
P (as opposed to Circuit-SAT) are enough to prove lower bounds against large classes like
non-uniform NC'. A related intriguing connection is between derandomization (of algorithms
and circuits) and circuit lower bounds [56, 61, 84, 74, 26, 12]. A derandomization algorithm
for a circuit class C is a deterministic algorithm that is able to distinguish, given a circuit
from C, whether it is unsatisfiable (zero satisfying assignments) or “very satisfiable" (at
least 2™ - (1 — o(1)) satisfying assignments). Note that a derandomization algorithm can
be obtained from an algorithm that approximates the number of satisfying assignments to
circuits from C (known as CAPP - Circuit Acceptance Probability Problem). Combining
the framework of Williams [83] with a “Succinct PCP" [67, 26] shows that to prove a lower
bound against a class C it is enough to obtain a nontrivial derandomization algorithm for
a class C’' (that could be slightly larger than C) [83, 74, 26]. Our work connects circuit
lower bounds, via circuit derandomization tasks, to designing approximation algorithms for
natural optimization problems in P like LCS, as opposed to CAPP or algebraic problems like
polynomial identity testing (Williams [87] recently showed that derandomizing a quadratic
time algorithm for a variant of this problem implies interesting circuit lower bounds).

! The class EN® or TlME[2O(")}NP is the class of problems solvable in exponential time with access to an
NP oracle.

11:3

ITCS 2017

11:4

Towards Hardness of Approximation for Polynomial Time Problems

1.1 Our Results

We will now give a more detailed overview of our results, and then in Section 3 we present
the technical details of our framework. Section 1.3 will discuss how our approach could lead
to further hardness of approximation results for problems in P. The complete proofs are
given in the subsequent sections.

The Gap Block Disjointness Hypothesis

Our result for LCS will be based on the presumed difficulty of solving the following Gap
Block Disjointness (GBD) problem in subquadratic time.

» Definition 1 (Gap Block Disjointness). Given two lists of Boolean matrices A, B C
{0,135 of size |A] = |B| = N, we say that a pair 4; € A, B; € B is a “good pair"
if there exists a k € [K] such that the rows A,(k,-) and B;(k,-) are disjoint, i.e.

Vielk](Anep)(—Ai(k, h) V =Bj(k, h))) = 0.

The Gap Block Disjointness problem is to decide whether we are in case 1 or in case 2 (and
if we are in neither, the output can be arbitrary):
1. (zero “good" pairs) none of the pairs A; € A, B; € B are good.

Pr [\/kE[K](AhE[D](_'Ai(kvh)V_‘Bj(ka h))) :0] =0

i,j€[N]
2. (many “good" pairs) at least N2 - (1 — 1/10gl° N) pairs A; € A, Bj € B are good.

i [Vieix)(Anerp (= Ai(k,) V =B;(k, b)) = 1] = (1 — 1/10g}")

A trivial algorithm solves this problem in quadratic time, by going over all pairs of
matrices, but can we do better? Note that if we ask whether at least one “good pair" exists
(without the above gap-promise) then the problem requires N 2=o(1) under SETH (which is
conjectured to hold even for randomized algorithms), even when K =1 and D = Q(log N),
since this is the Orthogonal Vectors problem [82, 10, 39]. We introduce the hypothesis that
this gap version, with D = Q(log N) and K = N°() | cannot be solved by a deterministic
algorithm in truly subquadratic time.

» Hypothesis 2. There is no € > 0 and o > 0 such that for all constant d we can solve the
Gap Block Disjointness problem on binary matrices in n® x dlogn in deterministic O(n?~¢)

time.

Interestingly, unlike all previous hardness conjectures in the “Hardness in P" research [52,
70, 79, 6, 9, 55, 3, 11], ours does not remain plausible when faced against randomized
algorithms. A near-linear time randomized algorithm that samples a few pairs can easily
solve this problem, with high probability. But can a deterministic algorithm do anything
clever enough to solve the problem in truly subquadratic time? Such an algorithm is not
known, and in fact, Lemma 3 below suggests that it would be a breakthrough.

Series-parallel circuits [78, 34, 81, 46] (or VSP circuits) are special kind of circuits that
can be obtained by combining circuits either in series or in parallel (defined formally in
Section 2). In 1977, Valiant introduced these circuits and argued that most known computer
programs fit under this restriction. His hope was that understanding these circuits would be
easier than the general case. Four decades later, we still do not know how to resolve basic
challenges proposed in his paper, like showing an explicit function that does not have linear

A. Abboud and A. Backurs

ENP can be computed by

such circuits, and proving otherwise would be a major achievement. Our first lemma states
that refuting Hypothesis 2 is at least as difficult as showing these results.

size series parallel circuits. It is still conceivable that the large class

» Lemma 3. If Hypothesis 2 is false, then the class EN? does not have non-uniform linear
size VSP circuits.

A reader familiar with previous SETH lower bounds might wonder why we need this
GBD problem, as opposed to simply considering the K = 1 case, i.e. the gap version of
Orthogonal Vectors. Without going into the details, we remark that, as far as we can show,
a faster deterministic algorithm for that case would not imply any new circuit lower bound.
Intuitively, this is because the K = 1 case can only encode CNF formulas, which is an
extremely weak computational model, for which the corresponding circuit lower bounds are
easy to prove unconditionally.

We stress that this circuit lower bound consequence is only meant to show that the
hypothesis is hard to refute. As evidence that the hypothesis is plausible, we remark that
none of the current (e.g. [39, 53]) or conjectured-to-exist derandomization techniques (e.g. if
P = BPP) are enough to refute it. While a common belief is that randomized algorithms
cannot outperform deterministic ones by more than a polynomial factor, it is plausible that
randomization can give, say, a linear 2(n) speedup.

Reduction to Approximate LCS

The simplicity of the GBD problem makes Hypothesis 2 an appealing starting point for
proving barriers. Our main technical lemma shows how GBD can be reduced to LCS while
creating a multiplicative gap, giving the first nontrivial hardness of approximation result for
LCS.

» Lemma 4. If for some & > 0, there is a deterministic algorithm that can approzimate
the LCS of two given sequences of length n over an alphabet of size n°Y) to within a (1 + ¢)
factor, for all e > 0, in O(n?~%) time, then Hypothesis 2 is false.

Together, these two lemmas imply our main theorem:

» Theorem 5. If for some 0 > 0 there is a deterministic (14 o(1))-approzimation algorithm
for LCS on two sequences of length n over an alphabet of size n°Y) in O(n?=%) time, then
Hypothesis 2 is false and the class ENP does not have non-uniform linear size VSP circuits.

We remark that our hardness for approximate LCS immediately transfers to nontrivial
results for other problems. For example, we get that the RNA Folding problem which is
central in computational biology [2, 17, 51, 76, 80] cannot be approximated to within in a
(14 o(1)) factor in truly subquadratic time.

A simple application of our framework, gives a weaker lower bound for Edit Distance
and LCS on binary sequences. In Section 4.1, we show that a deterministic (1 + 1/polylogn)-
approximation for these problems in truly subquadratic time implies that ENP does not have
log-depth (NC?) circuits.

Tt is likely that more efficient reductions from GBD to LCS (and Edit Distance) can
be devised, and if certain gadgets in our proof can be implemented more efficiently, a tight
conditional lower bound against (2 — d)-approximations for LCS on binary sequences could
follow. Moreover, better gadgetry would be able to boost the consequence from a VSP
circuit lower bound through GBD to a stronger circuit lower bound as in [5]. On a different

11:5

ITCS 2017

11:6

Towards Hardness of Approximation for Polynomial Time Problems

note, we believe that a further tightening of the connections between nontrivial circuit
derandomization and approximation algorithm for extensively studied problems like LCS and
Edit Distance could be a promising direction for proving new circuit lower bounds. Perhaps,
via stronger connections, one would be able to use highly involved algorithms like Andoni et
al’s approximation for Edit Distance [15] to prove new breakthroughs in complexity theory.

1.2 Technical Overview

To motivate our framework, we give a short exposition of the known constructions for hardness
of sequence alignment problems, and why they fail to give any nontrivial consequences of
approximation algorithms.

For concreteness, consider the reductions from CNF-SAT to LCS used to prove that LCS
requires n2~°(Y) time under SETH [2, 32]. In these reductions, we take a CNF formula on n
variables and m clauses, say m = O(n), and produce two sequence of length N - poly log N
where N = 2"/2 5o that the LCS of the two sequences is large iff the formula is satisfiable.
Each sequence is composed of O(N) segments of length O(log N) called assignment gadgets,
representing all 2/2 partial assignments to half of the variables (each half of the variables
is represented in the gadgets in one of the two sequences). When two assignment gadgets
are “matched" in an LCS alignment, the contribution to the total score is X if the two
corresponding partial assignments make up a satisfying assignment to our CNF formula
and X, sqt otherwise, where Xgqt > Xynsat- Due to the way these gadgets are composed,
the optimal LCS will be achieved by matching roughly N = 27/2 pairs and therefore
gaining a score that is at most N - Xy, if the formula is unsatisfiable, and at least
(N = 1) Xynsat + Xsar if it is satisfiable. Now, notice that X, cannot be more than
O(log N), since it is upper bounded by the length of the assignment gadgets, while X541+ is
at least 1, since otherwise the gadgets do not encode enough information. This implies that
the multiplicative gap between the two cases is no more than (1 + 1/~).

A natural attempt to increase this gap is by using a PCP theorem on the initial CNF
formula before reducing it to LCS. For instance, this approach has been used in many ETH
based lower bounds [29] 2. Even if an ultra efficient PCP theorem existed, where the number
of variables remains (1 + o(1)) - n and the gap increases arbitrarily, this approach does not
give any interesting hardness for approximate LCS: The PCP will only affect the gap between
Xsat and Xynsat, which only affects the low order terms in the total score: it is always upper
bounded by the length of the gadgets Xqat/Xunsat = N"(l)7 and so the multiplicative gap
remains (1 + N°"/n). The problem with this approach is that the dominant factor is not
how many clauses our best assignment satisfies, but it is how many assignments satisfy all
clauses. Standard PCP approaches make unsatisfying assignments less satisfying, but they
do not affect the number of satisfying assignments.

This leads to another natural attempt: can we find a different kind of gap amplification
result that reduces a formula f to another formula f’ so that f’ has many satisfying
assignments iff f is satisfiable? To get interesting hardness results for LCS, we will need the
gap between the two cases to be quite large, e.g. zero satisfying assignments vs. at least
2™ /10 satisfying assignments. We would like to do this while keeping the number of variables
(14 0(1)) - n. Unfortunately, this kind of gap amplification for CNF’s and circuits is unlikely
as it would lead to a randomized polynomial time algorithm for CNF-SAT (BPP = NP):
perform the reduction then sample O(n) assignments and check if they satisfy f’.

2 ETH states that 3-SAT cannot be solved in 2°(") time. Obtaining tight lower bounds for problems in P
under ETH is a major open question.

A. Abboud and A. Backurs

While it is easy for a randomized algorithm to distinguish between unsatisfiable formulas
(or circuits) and almost-completely satisfiable ones, the main observation at the base of
our framework is that this task might not be so easy for deterministic algorithms. Given a
circuit on n variables that has 2" — 2"/n1° satisfying assignment, how can a deterministic
algorithm find one of its satisfying assignments? If the algorithm treats the circuit as a
black-box and blindly queries it with assignments until it outputs 1, the runtime will not be
O(2(1=4)™). Otherwise, the algorithm could try to analyze the circuit and understand its
satisfiability properties in order to achieve faster deterministic runtime. The central insight
in the connections between algorithms and lower bounds [85] is that our ability to design
algorithms for analyzing circuits (from a certain class C) is closely related to our ability to
show limitations of circuits (lower bounds against the class C). In fact, there are formal and
quite tight connections showing that a faster-than-trivial deterministic algorithm for the
“circuit-derandomization" problem above, on certain classes of circuits, implies new circuit
lower bounds.

Our framework takes this route in order to get evidence for difficulty and hardness of
designing approximation algorithms. Depending on the target problem (in P) for which we
seek a “lower bound", one might want to start from a different derandomization problem
concerning a different class of circuits so that it embeds as efficiently as possible into the
problem. In this paper, we instantiate the framework with the class of linear size series
parallel circuits and prove that they embed nicely into approximate LCS (via the GBD
problem).

We remark that all our results for consequences of deterministic algorithms remain valid
for (appropriately defined) co-nondeterministic algorithms (see [36] for interesting results on
this notion). It is difficult to approximate LCS even with nondeterminism.

Derandomization implies Circuit Lower Bounds

The connection between derandomizing circuits and lower bounds originates in the works
of Impagliazzo, Kabanets, and Wigderson [56] and has been optimized significantly by the
work of Williams [83], Santhanam and Williams [74], and more recently by Ben-Sasson and
Viola [26]. These connections rely on “Succinct PCP" theorems [24, 67, 25, 23, 26], and the
recent optimized construction of Ben-Sasson and Viola [26] is crucial to our main result.

Our starting point is the following theorem (Theorem 1.4 in [26]), which we will state
more formally later in the paper: Let F, be a set of functions from {0,1}" to {0, 1} that
satisfies some minor requirements (e.g. functions that can be computed by linear size circuits
from some class C). If the acceptance probability of a function of the form

AND of fan-in n©™)

of OR’s of fan-in 3

of functions from F,, { o(10gn)
can be distinguished from being = 1 or < 1/n1° in 2" /n®() deterministic time, then there is
a function f in ENP on n variables such that f € F), (and therefore cannot be computed by
linear size circuits from C, and ENP is not contained in non-uniform C).

The optimization of the Succinct PCP by Ben-Sasson and Viola makes the overhead in
this connection quite small: we only need two additional levels to the original circuit class
(the AND and OR), one of which has fan-in 3. When instantiating this theorem with linear
size VSP circuits, this minor overhead allows us to still obtain a simple enough class of
circuits that allows for an efficient reduction to our GBD problem (and then to approximate
LCS).

11:7

ITCS 2017

11:8

Towards Hardness of Approximation for Polynomial Time Problems

Next, we show a reduction from the derandomization task above of AND-OR-VSP circuits
to the GBD problem. This reduction is obtained via a series of transformations to the circuit,
so that we end up with an OR-AND-OR circuit of the following form, for some constants
£, ¢, b, which embeds nicely into GBD:

OR of fan-in n@() . 27/t . gen

of AND of fan-in f(, k) - n where k = 22*“

of OR of fan-in k of literals.

To get this form, we use the classical depth reduction of Valiant [78] which is especially
powerful for VSP circuits, as well as the sparsification lemma for CNF formulas [57, 58]. The
details of Valiant’s depth reduction theorem were clarified by Calabro [34] and Viola [81] (cf.
Cygan et al. [46]). To reduce the derandomization problem of such AND-OR-AND circuits
to GBD we follow the split-and-list technique, similarly to the reduction from CNF-SAT to
Orthogonal Vectors [82]. Choosing all the parameters carefully, we get Lemma 3.

Reducing to Approximate LCS

The reduction from GBD to approximate LCS has two main components: an inner construc-
tion, in which we encode each of the matrices separately into (short) “matrix" or “inner"
gadgets, and an outer construction that combines the inner gadgets into two final (long)
sequences. This outer and inner outline is not different from previous reductions to LCS and
Edit Distance, except that now will we have to make sure that our constructions preserve
multiplicative gaps. Getting a gap in either of these constructions was beyond previous
techniques, and our work contributes to both: The gap in the outer construction will follow,
for the most part, from our starting point (GBD and the derandomization problems as
opposed to SAT). For the inner construction, however, we need to design new gadgetry that
could be of interest even beyond our “difficulty via derandomization" framework. We explain
the main ideas below.

The inner construction: In the inner construction we map each one of our input matrices
A; € A into a sequence a; and each of our B; € B into a sequence b; so that there is a value
Xpaa and a constant € > 0 for which: LCS(a;,b;) < Xpqq if A;, B; is not a good pair, while
if A;, B;j is a good pair then the LCS is much larger LCS(a;,b;) > (1 +¢€) - Xpqa-

Constructions from previous work [2, 32, 5] easily give such “matrix" gadgets, except
the gap between the two cases would be too small: Xpaq vs Xpeq - (1 + 1/n*). Instead, we
introduce some new ideas that lead to a (1 +) gap at the cost of less efficiency in terms of
the length of the gadgets and the alphabet size.

We will first construct “disjointness" gadgets that encode each row of each of our matrices.
For this discussion, fix a pair of matrices 4; € A, B; € B. We will first encode each of A;’s
rows A;(k,-) with a sequence a; j and each of B;’s rows Bj(k,-) with a sequence b; ;, (these
are the disjointness gadgets). Our goal will be to have LCS(a; x,b; k) be Xintersect if the
two rows intersect, and at least (1+¢) - Xynterseet if the rows are disjoint. To achieve this, we
use a new encoding that is specifically tailored towards LCS on large alphabets. The idea of
our encoding is to chop each of our rows of length dlogn into ¢ pieces of length dlogn/e each,
and then think of each piece as a separate letter from an alphabet of size 2¢'°*™/¢ = po(1),
Then, we let a; ; be the concatenation of £ such symbols, corresponding to the ¢ pieces that
appear in the row A;(k,-). Meanwhile, b, ; will be defined differently: for each piece x, we
will enumerate all possible letters o that correspond to pieces y that are disjoint from z, and
write them in a dedicated segment in b; ;. By doing this, the LCS of a; ;, and b; will be
exactly £ if the two rows are disjoint (since all pieces will be disjoint and contribute a letter

A. Abboud and A. Backurs

to the LCS), while if the rows intersect the LCS will be at most £ — 1. Since we can afford
to pick £ to be a (large enough) constant, we obtain a multiplication gap of (1 4 €) where
e =1/(f—1) is a constant.

Next, we need to combine these “disjointness" gadgets into “matrix gadgets" with an

OR: we want the score to be large iff there exists a k € [K] for which the rows are disjoint.

Previously known OR gadgets are not sufficient: the total score would contain a sum over all
k € [K] of the score of the k' disjointness gadget, which would decrease the gap back to
(1+1/K) = (14 1/n>). To overcome this, we use a different OR gadget that heavily abuses
the alphabet in order to keep the multiplicative gap unchanged. The idea is simple: let us
designate a separate alphabet ¥, for the k" disjointness gadget a1 or b; (representing
the k' row of A; or Bj), so that for k # k' the alphabets are disjoint ¥y N X = (. And
now our matrix gadgets, which are an OR of our disjointness gadgets, are defined as follows:

A 1= 051 32 *° A4k

bj = ajk bjk-—1 - bja

The extremely useful property of this construction is that the LCS is the mazimum over k of
the LCS of a; 1 and b; , as opposed to any expression with a summation over all k. To see
this, first note that only letters from gadgets with the same index k£ can be matched, and
now imagine we pick at least one matching for some k, say for £ = 1 so that we matched
some letter between a; 1 and b; 1, and notice that now we can no longer match any letters
from gadgets with a different index k' # k without creating a crossing. Therefore, we get
that the score of these matrix gadgets is exactly the same as the score of the best disjointness
gadget across all rows k € [K], and so if A;, B is a bad pair the score cannot be more than
Xbad = Xinterseet, while if the pair is good the score is Xgood = Xdisjoint > (1+€) - Xinterseet
where ¢ is the same constant defined above.

For the outer construction, we use a similar “alignment gadget" to the one used in previous
works [2; 32], but we need to analyze it more carefully in order to argue that it generates a
gap when working with a gap problem like GBD. We show that if we are in case 2, then there
is a matching that contains a large number of pairs A;, B; each contributing (1 + ¢) - Xpaq,
while in case 1 all pairs in all optimal matchings will contribute only Xjp,q. While previous
work used padding of size that is linear in the size of the inner gadgets, we will have to work

with much smaller paddings of size that is linear only in the LCS between the inner gadgets.

By a careful choice of the parameters we show that this is a (1 + &’) gap, for some &’ > 0.

1.3 Discussion

Fundamentally, our approach is based on the following intuition. If there is a search problem
that we do not expect any (deterministic or randomized) algorithm to be able to solve much
faster than brute force, like the problem of finding a pair of vectors that satisfy some function
(as in GBD and Orthogonal Vectors), then we might expect the gap version of the problem to
be hard for deterministic algorithms: maybe we cannot even distinguish the case in which no
“good solutions" exist in the search space from the case that almost any solution is “good".

In the context of circuit lower bound consequences from circuit analysis algorithms, this
intuition is more or less formal: most lower bound consequences we can get from SAT
algorithm follow also from such a distinguisher.

Does the same hold with respect to the other conjectures used in “Hardness in P" research?
Consider the 3-SUM problem which asks if a set of n numbers contains three that sum to
zero, and is conjectured to require n2~°W) time. If we believe the 3-SUM conjecture, should

11:9

ITCS 2017

11:10

Towards Hardness of Approximation for Polynomial Time Problems

we also believe that we cannot deterministically distinguish an input with many triples
that sum to zero from an instance with few? Would this “Gap 3-SUM Conjecture" have
interesting consequences? We believe that this is an intriguing avenue for future research
and expect it to be fruitful, either in terms of conditional lower bounds, or in terms of a
better understanding of our conjectured-to-be-hard problems.

2 Valiant series-parallel circuits

» Definition 6 (Valiant series-parallel graphs [78, 34, 81, 46]). A multidag G = (V, E) is a
directed acyclic multigraph. Let input(G) be the set of vertices of G with in-degree 0. Let
output(G) be the set of vertices of G with out-degree 0. We say that the multidag G is a
Valiant series parallel (VSP) graph if there exists a labelling | : V' — Z of G with the following
properties:

For all directed edges (u,v) € E we have that I(u) < I(v).

There exists an integer d € Z such that for all v € input(G), I(v) = d. The definition

from [34] asks that d = 0. It is not hard to verify that our definition is equivalent to

theirs.

There exists an integer d’ € Z such that for all v € output(G), l(v) = d'.

There is no pair of directed edges (u,v), (u’,v") € E such that the inequality I(u) <

I(u") < l(v) < 1(v") holds.

» Definition 7 (Valiant series-parallel circuits [78, 34, 81, 46]). A circuit is a Valiant series-
parallel circuit if the underlying multidag is a VSP graph and the fan-in of every gate is at
most 2.

» Definition 8 (Size of a circuit). The size of a circuit on n input variables is equal to the
number of gates in it. We do not count the n + 2 input nodes, i.e. the input variables and
the two constant values 0 and 1 (which are assumed to be given as the last two input nodes
to a circuit).

» Definition 9 (VSP.). We define class VSP.. to be the set of languages recognizable by VSP
circuits of size at most < en where n is the number of input variables. The set of allowed
gates is the set of all gates of fan-in at most 2.

Below we show properties of the class VSP. that we will use later in the paper.
We need the following definition from [26].

» Definition 10 ([26]). Let F,, be a set of functions from {0,1}"” to {0,1}. We say that
F, is efficiently closed under projections if functions in F,, have a poly(n)-size description
and given (the description of) a function f € F,, indexes i,j < n, and a bit b, we can
compute in time poly(n) the functions —f, f(z1,...,2;—1,0 XOR z;,xi41,...,2s), and
flxy, ... @im1,b, 2541, ..., xy), all of which are in F,.

» Lemma 11. The class VSP. is efficiently closed under projections for any constant ¢ > 1.

Proof. From Definition 9 it follows that the class VSP, has poly(n) description: the circuit
itself. Consider a function f on n input variables from VSP, that has a VSP circuit of size
at most < cn. We show that the three functions from the statement of Definition 10 can be
computed in poly(n) time and that all of them are in VSP..

A. Abboud and A. Backurs

Function —f

Consider the output. If it is one of the inputs, we add a NOT gate and remove all the other
gates. If the output is not one of the inputs, it must be some gate g. We replace it with gate
—g. Since allow all gates of fan-in at most 2, we can do this. The number of gates did not
increase and the function —f is now in VSP.. Clearly, the transformation can be done in
poly(n) time.

Function f(z1,...,%;—1,b XOR @, Tit1,++.,Tn)

If b = 0, we rewire all gates that used input x; to use input x;. If b = 1, we rewire all gates
to use NOT z;. Since we have all gates of fan in at most 2, we don’t need to introduce the
NOT gate. Instead, we replace the gate by another gate that negates the corresponding
input. Similarly as before, the transformation can be done in poly(n) time and we did not
increase the number of gates. Thus, the resulting function is in VSP..

Function f(z1,...,Zi—1,b, Tit1,...,%n)

The transformation is similar as in the previous case. Instead of rewiring to x;, we rewire to
the constant function 0 which is among the inputs. <

» Lemma 12. Let f1, fo, f3 € VSP, be three functions on n variables from the class VSP..
Then the function

f==(f1 OR f> OR f3)

on the same n variables belongs to VSPy4. if ¢ > 4 and n > 10.

Proof. For every ¢ = 1,2,3, let C; be the VSP circuit of size < c¢n corresponding to
the function f;, and let G; be the underlying VSP multidag of C;. Let the multidag
G := P(G1,G2,G3) be the disjoint union of the underlying VSP multidags G1, G2, G, and
let input(G;) = {u},... ,u?,u?ﬂw?”} be the n 4+ 2 input nodes for C;, i = 1,2,3 (see
Definition 8), where the first n nodes u%, ..., uy correspond to the n input variables, and
u?“ and u?+2 correspond to the two constant functions 0 and 1, respectively. We have
that input(G) = input(G1) U input(G2) U input(G5). Moreover, since |input(G;)| = n + 2,
linput(G)| = 3n + 6. Each C; has only one output gate. Thus, output(G;) = {0;} for some
node o;. Therefore, |output(G)| = 3.

A disjoint union of two VSP multidags is a multidag (see the proof of Lemma 3 in [34]).

Therefore, the multidag G is a VSP multidag. Let, then, [be the labeling of G according to
Definition 6 of VSP graphs. We construct a circuit C for the function f as follows. First, we
let C be the disjoint union of Cy, Ca, C3 (each C; has its own n + 2 input nodes). Therefore,
the underlying graph of C' is G. Next, whenever we add a node or an edge to GG, we do
the same for C', and the other way around. As the circuits C,Cs, C3 do not share their
inputs, we add n + 2 input nodes u!, ..., u", u" T u"*2 to C (and to G). The first n input
nodes u',...,u™ correspond to the n input variables, and the 2 input nodes u"*! and u"*?2
correspond to the two constant function 0 and 1, respectively. We connect the n input nodes
ul,...,u" in pairs to the first n input nodes of C; (for every i = 1,2,3). That is, for every
j=1,...,nandi=1,2 3, we connect u/ to uf In addition, for every j =n+ 1,n+ 2 and
i=1,2,3, we connect v/ to uf

For every newly added input node u?, j = 1, ..., n+2, we update the labeling: I(u/) = d—1.

As a result, the multidag G has input(G) = {u!,...,u™, v, "2} and all weights of these

11:11

ITCS 2017

11:12

Towards Hardness of Approximation for Polynomial Time Problems

nodes are equal to d — 1. It remain to verify the fourth property of VSP graphs. Since for
every u/, if (u’,v) is an edge in G, then [(v) = d, the fourth property also holds. Thus G is
VSP graph.

Now we have three functions f1, fo, f3 on the same set of n+ 2 inputs. To get the function
f=-(f1 OR f2 OR f3), we add two more gates uj, us to the circuit C. We set the labeling:
l(up) =d +1 and I(uz) = d' + 2. u; is an OR gate, and it computes the OR of 01 and o,
(the outputs of the functions f; and f3). The gate us is a “OR gate, and it computes the
negation of the OR of u; (the OR of f; and f3) and o3 (the output of the function f3). Since
all gates of fan-in at most two are allowed, we can implement a -=OR gate. We can check
that C' computes f (the negation of the OR of f1, fa, f3). The size of the circuit C is at
most 3cn + |input(G)| + 2 = 3en + 3n + 8 < 4en as required. It is not hard to verify that
the resulting labeling of ui, us and the rest of the multigraph G satisfies the properties from
Definition 6. Thus, we conclude that the resulting underlying multidag G is a VSP graph
and that C is a VSPy,,, circuit. <

3 VSP Circuits and Block Disjointness

Circuit Lower Bounds from Derandomization

The connection between derandomizing circuits and lower bounds originates in the works of
Impagliazzo, Kabanets, and Wigderson [56] and has been optimized significantly by the work
of Williams [83], Santhanam and Williams [74], and more recently by Ben-Sasson and Viola
[26]. These connections rely on “Succinct PCP" theorems [67, 26], and the recent optimized
construction of Ben-Sasson and Viola [26] is crucial to our main result. Our starting point is
the following theorem.

» Theorem 13 (Theorem 1.4 in [26]). Let F), be a set of function from {0,1}™ to {0,1} that
are efficiently closed under projections (see Definition 10).

If the acceptance probability of a function of the form

AND of fan-in n°M) of

OR’s of fan-in 3 of

functions from F, {0(10gn)
can be distinguished from being = 1 or < 1/n1° in TIME(2"/n®(M), then there is a function
f in ENP on n variables such that f ¢ F),.

The optimization of the Succinct PCP by Ben-Sasson and Viola makes the overhead in
this connection quite small: only two additional levels to the circuit, one of which has fan-in
3. Next, we instantiate this theorem with VSP circuits and then do simple tricks to the
circuits in order to simplify the derandomization task as much as possible.

» Lemma 14. To prove that ENP does not have non-uniform Valiant series parallel (VSP)
circuits of size cn on n input variables, it is enough to show a deterministic algorithm for
the following Derand-VSP problem that runs in 2"/n“’(1) time. Given a circuit over n input
variables of the form:

OR of fan-in n®M of

negations of OR’s of fan-in 3 of

VSP circuits of size cn,
distinguish between the case where no assignments satisfy it, versus the case in which at least
a > 1—1/n' fraction of the assignments satisfy it.

A. Abboud and A. Backurs

Lemma 14 follows from Theorem 13 almost directly: By Lemma 11, the class VSP, (of
functions recognizable by VSP circuits of size < cn) is efficiently closed under projections.
Therefore, we can instantiate Theorem 13 on VSP.. Since distinguishing the acceptance
probability from being = 1 or < 1/n1° is equivalent to distinguishing the rejection probability
from being =0 or > 1 — 1/n'° we get Lemma 14 by negating the function which is AND of
OR of F,,10(10gn) and using De Morgan’s law on the AND. W.l.o.g. we replace the number
of inputs n 4+ O(logn) by n.

From Derandomizing VSP Circuits to Gap Block Disjointness

Let C' be the circuit on n variables given as an input to the Derand-VSP problem described
in Lemma 14. We use known results in complexity theory to convert this circuit into a
simpler form that will be easier to work with when reducing to other problems. By Lemma
12, the circuit C' can be interpreted as:

OR of fan-in n®®) of

VSP circuits of size < 4cn,
where the n©(") VSP circuits use the same set of n inputs.

Next, we use the following classical theorem of Valiant to convert each of these VSP
circuits into an OR of CNF’s on our n inputs. The ideas in the proof are due to Valiant [78],
but the details were shown by Calabro [34] and Viola [81] (cf. Cygan et al. [46]).

» Theorem 15 (Depth reduction [78]). For all ¢ > 1, we can convert any VSP of size 4cn on
n variables into an equivalent formula which is OR of 2"/* k-CNF’s on the same n variables,
where k = 22" for some absolute constant > 0. The reduction runs in 2"/* - n°W) time
for any constants c and .

» Remark. Let € > 0 an arbitrary constant. Given a circuit on n variables with fan-in 2
gates, of size O(n) and O(logn) depth, we can transform it into an equivalent formula which
is OR of 20(mfsim) CNFs with clause size < nf [78]. However, we can’t use this result for
our purposes because it will be crucial for us that the clause size in the statement of Theorem
15 is upper bounded by a constant.

We will also need to apply the sparsification lemma [57, 58].

» Lemma 16. For all k > 3 and € > 0 we can convert a k-CNF formula on n variables
into an equivalent OR of 2™ k-CNF formulas on the same variables where each CNF has
f(g,k) - n clauses, where f(e,k) = (k/)O®).

Combining all these transformations allows us to focus on circuits of the following OR-
AND-OR form. By the following claim, to solve the Derand-VSP problem it is enough
to distinguish between the case in which no assignments satisfy a formula of the above
OR-AND-OR form and the case in which at least 2™ — 2"/n'° assignments do satisty it.

» Claim 17. Let C be an input circuit to the Derand-VSP problem (as described in Lemma 14).
For all £ > 1 and € > 0, we can convert C into an equivalent formula C' on the same set of
n inputs of the following form:

OR of fan-in nOM) . 20/t . 950 of

AND of fan-in f(e, k) -n where k = 22'M, of

OR of fan-in k of literals.

Proof. Recall that an input circuit to the Derand-VSP problem has the form of an OR of
fan-in nCW of series parallel circuits of size < 4cn. We want to decide if C' is unsatisfiable
or at least a 1 — 1/n'° fraction of the assignments satisfy it. First, we apply Theorem 15 on

11:13

ITCS 2017

11:14

Towards Hardness of Approximation for Polynomial Time Problems

every VSP circuit of size < 4cn. This produces a formula which is an OR of 2"/! k-CNFs.
Then, we apply the sparsification of Lemma 16 on every k-CNF to obtain a circuit as in the
statement of the claim. |

This OR-AND-OR form motivates the definition of our Gap Block Disjointness problem
(see Definition 1 in Section 1.1). Recall that our GBD Hypothesis (Hypothesis 2 in Section 1.1)
states that GBD cannot be solved in truly subquadratic time with a deterministic algorithm.
We are now ready to prove that refuting our hypothesis implies a circuit lower bound against
linear size VSP circuits, thus establishing a “circuit lower bounds barrier" for refuting our
hypothesis. The following claim implies Lemma 3 from Section 1.1.

» Claim 18. For all ¢ > 1 and « > 0, there exists a constant d > 1 such that if there is a
deterministic algorithm that solves the Gap Block Disjointness problem on two lists of size N
of binary N® x dlog N matrices in N2/1ogw(l) N time, then ENP does not have non-uniform
VSP circuits of size cm (m is the number of input variables). The constant d can be upper

bounded by

i< 2220<c/a)
Proof. By Theorem 13, to show that ENP does not have non-uniform VSP circuits of size cm,
it suffices to solve the Derand-VSP problem on a circuit C' with n =m + O(log m) variables
in time 27 /n~™),

First, by Claim 17, we can transform the circuit C into an equivalent formula C’ of
form OR-AND-OR (as described in the statement). Then, we show a reduction from the
Derand-VSP problem on the formula C’ to the Block Disjoint Pairs problem with the required
parameters, as follows. Let N := 2"/2. We apply the transformation from Claim 17 to C,
with parameters € := ¢, [:= %, and d := 2f (e, k) < (k/)°®), and get an equivalent formula
C' of the following form:

OR of fan-in n@(1) . 27/t . 9en < 9an/2 — Na of

AND of fan-in f(e, k) -n=d-log N < (k/a)O®) . n where k = 22" < 227/ of

OR of fan-in k of literals.

We think of the formula C” as a disjunction of CNF’s with clause size k.

Let us now transform C’ to an instance of the Block Disjoint Pairs problem. C’ has n

binary input variables x1,...,x,. We split these variables into two parts: z1,...,2,,2 and
T14(n/2) - > Tn, and construct two sets A and B of matrices for the Block Disjoint Pairs
problem.

Set of matrices A

Consider all the N = 2"/2 partial assignments of the first half z1, ... , Ty 2 of the variables.
We will construct a matrix A;, i = 1,... N, for each partial assignment p; of x1,...,2, /2 as
follows. For every k-CNF in C’ we have a corresponding row in A;, such that every clause
of the k-CNF has a corresponding column. Thus, for r = 1,..., N%, the r-th row of the
matrix A; corresponds to the r-th k-CNF in C’, and every clause of the r-th k-CNF has
a corresponding column in the r-th row such that the ¢-th clause corresponds to the t-th
column in the r-th row of A;. We set A;[r,t] to 0 if p; satisfies the ¢-th clause of the r-th
k-CNF, and to 1 otherwise. A clause is satisfied by a partial assignment iff it is satisfied
independently of the assignment of the rest of the variables. We assume that the number of
k-CNFs is N® and the number of clauses in each k-CNF is d - log N. If this is not the case,
then we can add dummy k-CNFs that are not satisfiable, or clauses that are satisfied by any
partial assignment.

A. Abboud and A. Backurs

Set of matrices B

The second set of matrices B is constructed like the set A but with the second half of variables

T14(n/2)s- -1 Tn-
Our construction satisfies all the parameters of the Block Disjoint Pairs problem. In

O(c/a)
particular, d < (k/)0®) < 22° .

Correctness of the reduction

To prove the correctness of our reduction, it suffices to show that the fraction of pairs of
matrices that form a satisfying assignment (the first condition in Definition 1), is the same
as the fraction of assignments that satisfy the circuit C’. We show that the i-th partial
assignment of 21, ..., 2,7 and the j-th partial assignment of z1(/2), ..., %, satisfy C" iff
the matrices A; and B, form a satisfying assignment too. If C” is satisfied, then at least
one of the k-CNFs in C’ is satisfied. Assume, then, without loss of generality, that the r-th
k-CNF is satisfied. Our goal is to show that Apcjaiog v (= Ai(r, h) V =Bj(r, h)) = True. Or,
equivalently, that A;(r, k) - B;(r,h) = 0, for every h € [dlog N]. In fact, this follows from the
fact that the r-th k-CNF is satisfied and from the construction of A; and B;. If, on the other
hand, Viene](Anejdiog N (7 Ai(k, h) V =Bj;(k, h))) = False, then the i-th partial assignment
of x1,...,2, /o and the j-th partial assignment of 1 (,/2),...,%n do not satisfy C’". This
follows from the construction of A; and B; and the fact that no k-CNF is satisfied in this
case.

Therefore, 1 — 1/loglo N = 1 — 2'%/n?® < 1 — 1/ concluding the proof. <

4 The Reduction to Approximate LCS

Our main technical contribution is a reduction from Gap Block Disjointness to (1 +)
approximate LCS. Lemma 4 from Section 1.1 follows from the following claim, and the rest
of this section is dedicated to its proof. For a high level intuition of the reduction see the
introduction.

» Claim 19 (Main). If for some 6 > 0, there is a deterministic algorithm that can approximate
the LCS of two given sequences of length n over an alphabet of size n°Y) to within a (1 + ¢)
factor, for all € > 0, in O(n?~%) time, then Hypothesis 2 is false.

Weighted LCS

A natural generalization of LCS that will be useful in our proof is the weighted longest
common subsequence (WLCS), where each symbol s has a positive integer weight w(s). The
weight of a subsequence is the total weight of the symbols it contains, and the WLCS score

is the maximum total weight that we can obtain if we range over all common subsequences.

As long as the weights are not too large, WLCS and LCS are computationally equivalent
due the following lemma.

» Lemma 20 (Lemma 2 in [2]). Given two weighted sequences x and y, WLCS(z,y) =
LCS(2',y'), where |z'| = Zl‘i‘l w(z;) and |y'| = Z‘;’:‘l w(y;). The construction time of =’y
is O(max(|2'|,]y'])). |z| denotes the length of the sequence z.

Below, we will use the terms LCS and WLCS interchangeably, and if we do not specify
the weight of a symbol s, then it is assumed that w(s) = 1.

11:15

ITCS 2017

11:16

Towards Hardness of Approximation for Polynomial Time Problems

The parameters of the reduction

We will show the following statement which implies what we need.

If we have a deterministic algorithm for the LCS problem that runs in O(n?~¢) time and
that gives (1+ (6/10%)) approximation, then we can solve the Block Disjoint Pairs problem in
O(N?~(¢/2)) time on binary matrices of size N® x dlog N for o := £/10 and d := a(1 + §) /0.
Choosing 0 = o(1) implies d = w(1) and proves the theorem. W.l.o.g. we assume that
d > 1/logn and € < 1/100.

We will show the statement by providing a deterministic reduction from the Block Disjoint
Pairs problem to the LCS problem. We will take the first set of N matrices A = {A1,..., An}
(each matrix is of size N® x dlog N) and produce a sequence x of symbols. The sequence x
is of length |z| < O(N'*2%d/a) =: n. Similarly, we will take the second set of N matrices
B = {By,...,Bx} and produce a sequence y of symbols, |y| < O(N'*22d/a) = n. The
sequences x and y have the property that LCS(z,y) < T if we are in Case 1 of Block Disjoint
Pairs problem on sets of matrices A and B (see Definition 1) and LC'S(x,y) > (1+(5/10°))T
if we are in Case 2. T is some fixed value. We run the deterministic approximation algorithm
for the LCS problem and decide in which case we are. Since the reduction is deterministic,
this gives a deterministic algorithm for the Block Disjoint Pairs problem that runs in time

O(n*5) <0 ((N1+2ad/a)2—e) <0 ((N1+(€/5)/5>25) |

where we use the fact that o = ¢/10 and d = a(1 4 6)/J. Since 6 > 1/logn and ¢ < 1/100,
we get that the runtime is upper bounded by O(N1+(/5)2=2) Jge? N) < O (NQ*(E/z)) as
required.

Construction of inner gadgets

To construct sequences xz and y, we need inner gadgets IG(A;), IG(B;) for every set
A; € A and B; € B. We want that IG(4;) and IG(By) satisfy the property that
LCS(IG(A;),IG(Bj)) = T if the pair A;, B, is not satisfying and LC'S(IG(4;), [G(B;)) =
(14 6)T" if the pair A;, B, is satisfying. Below we will construct such inner gadgets with
IIG(A)|, [IG(B;)| < O(N?*d/a). After that we will construct the final sequences x and y
with the required properties by putting together inner gadgets for all matrices in A and B.

We construct the inner gadgets IG(A;), IG(B;) by constructing disjointness gadgets
DG(Ai(k,-)), DG(Bj(k,-)) for every row k € [K] of matrices A; and B;.

Properties of the disjointness gadgets

The disjointness gadgets will satisfy the following properties
For every k € [K], [DG(Ai(k,)|, [DG(B; (k,))| < O(N*d/a).
If Apepp)(—Ai(k,h) vV ~Bj(k,h)) = False, then LCS(DG(A;i(k,-)), DG(B;(k,-))) =T".
Otherwise, LC'S(DG(A;(k,-)), DG(B,(k,-))) = (1 +6)T".
For every k € [K], DG(A;(k,-)), DG(Bj(k,-)) € 5. g Ny =0 for k # K.
Given such disjointness gadgets, we construct inner gadgets IG(A;), IG(Bj) as follows:
IG(A;) := OF_ DG(A;(k,-)) = Ai(1,-) 0 Ai(2,-) 0 A;(3,-) o... 0 Ay(k,),
IG(B;) := Or_DG(Bj(K +1—k,-)) = Bj(k,-)o Bj(k—1,-)o Bj(k—2,-)o...0Bj(1,-).

Since Xy N Xy = 0 for k # K/, the only way to get LCS(IG(A;),IG(B;)) > 0 is by matching
symbols in A;(k,-) and Bj(k,-). By the construction of IG(A4;) and IG(B;), if we match

A. Abboud and A. Backurs

symbols between A;(k,-) and Bj(k,-), then we can’t match symbols between A;(k’,-) and
Bj(K',-) if k" # k. This means that

LOS(IG(4;), IG(B))) =

T

< LOS(DG(Ai(k,), DG(B;(k,)

From the properties of disjointness gadgets, we get the required properties of the inner
gadgets.

Construction of the disjointness gadgets

Now we will construct the disjointness gadgets DG(A;(k,-)), DG(B;(k,-)). Ai(k,-) is a
binary vector of length dlog N. We split it into d/a binary vectors v; € {0,1}*1°8 N each of
length |v¢| = alog N: Ai(k,-) = v1...v4/4. We define

DG(Ai(k,)) = cx 0 OV 5k 1.0,

where we set w(cy) := (d/a) — 1. Sk, are symbols indexed by rows k, indices of vectors ¢
and vectors v;. We have that

DG(Ai(k, ")) € 3% == {ex} U {spew | v € {0,13%1°5N and ¢ € [d/a]}.

Similarly we split the binary vector B;(k,-) of length dlog N into d/« binary vectors
wy € {0,138 each of length |w;| = alog N: Bj(k,:) = w1 ... wa/. We define

DG(B; (k.) = (O Ov : van=o Sk)

where we do the inner product v - w; over the integers (not modulo 2). Notice that
|IDG(A;i(k,-))| < O(d/a) and |DG(Bj(k,-))| < O(N*d/«a) as required.
We claim that if Apepj(—Ai(k, h) vV —~Bj(k, h)) = False, then

LCS(DG(Aq(k,), DG(B, (k,))) = (d/a) — 1

and LOS(DG(A;(k,-)), DG(B;(k,-))) = d/a otherwise. Since d = «(1 4+ 9)/0, we have that
T’ = (d/a) — 1 satisfies the second property of the disjointness gadgets. We now show the
claim.

Clearly, LC'S(DG(A;(k,-)), DG(Bj(k,-))) > (d/a)—1 because we can match the symbols
ci- Also, we have the equality if we match the symbols ¢ in the optimal alignment. Suppose
that we don’t match c;. Then it’s not hard to check that LC'S(DG(A,(k,-)), DG(B;(k,-))) =
d/a if Aperpy(—Ai(k,h) V —Bj(k,h)) = True and < (d/a) — 1 otherwise. Since we have to
take maximum between the cases when we match the symbols ¢, and when we don’t match
cr, we get the required equalities.

The outer construction

In the remainder of the proof we construct the final sequences z and y with the promised
properties. The sequence x is a concatenation of the inner gadgets IG(A;) with some
additional symbols. The sequence y is a concatenation of the inner gadgets IG(B;) with
some additional symbols. Each inner gadget IG(B;) appears twice in the sequence y.

We define integer values vg < v1 < vy < vz as follows. We set vy :=T” (see the definition
of the inner gadgets for T7”), vy := (1 4 §)T”, vg := 10vy, v3 := 100v;. For the simplicity of
the notation, we will write A; instead of IG(A;) and B; instead of IG(B;). It will be clear

11:17

ITCS 2017

11:18 Towards Hardness of Approximation for Polynomial Time Problems

from the context whether we refer to A; (Bj, resp.) or to IG(A;) (IG(Bj), resp.). We define
the sequence z:

T = (?212) 0 (Of=1(0 A; 1)) 0 (?212) :
We define the sequence y:
y::(i1 (20 B, 1))0(?=1(20Bj1))02.

We set the weight of symbols 0, 1 and 2 as follows: w(2) := vy and w(0) = w(1) := vs.

We have two goals. First, we want to show that if there are many satisfying assignments
(each assignment is a pair of A; and B;), then the LC'S score between z and y is large:
LCS(z,y) > (1+(§/10%))T. T is some fixed value that we will define later. Second, if there
are no satisfying assignments, then the LCS score is small: LCS(z,y) < T. We achieve
these two goals via the next two lemmas.

» Lemma 21. If there are many satisfying assignment (see Definition 1), then
LCS(x,y) > (n+ 2)ve + 2nv3 + 0.99nv1 + 0.01nvy =: T".

Proof. We will exhibit n different alignments between = and y and we will show that at least
one of them achieves the LC'S score T". This gives the lower bound on LC'S(x,y).
For k=1,...,n we write

y= (01 (20 B;1))020s,0 (0} (20 B; 1)) 02,
where
sk = (0 By 1) 0 (Of=py1 (20 B; 1)) o (O4Z} (20 B, 1)).
Clearly,
LCS(z,y) =LCS (02, (O5Z{ (20 B; 1)) 0 2)
+LOS (O1(0 A; 1),51)
+LCS (0212, (O} (20 B; 1)) 0 2).
The total contribution of the first and the third term on the r.h.s. is (n + 2)vy because only

symbols 2 can contribute to the LCS score and there are n + 2 symbols 2. For the middle
term we align inner gadgets in pairs and match all symbols 0 and 1. We get the lower bound
n
LCS(z,y) > (n+ 2)ve + 2nvs + Z LCS(Aq, B, iy),
i=1
i+k—1 ifi<n+4+1-k,
i+k—1—n otherwise.

whereji (i) := {

By averaging the r.h.s. over all k =1,...,n, we get

1 n n
LCS(z,y) > - Z ((n + 2)vg + 2nvs + Z LCS(4;, B%(i)))

k=1 i=1

1 n
= (n + 2)vy + 2nv3 + - Z LCS(A;, By iy)
ik=1

1 n

= 2 2 — LCS(A;, B,
(n+2)ve + m}3+”i;1 (])

2 (n —+ 2)’1}2 —+ 271113 + 0.99711)1 + 0.0lm)o,

A. Abboud and A. Backurs

where in the last inequality we use the fact that there are many satisfying assignments. This
finishes the proof of the lemma. <

» Lemma 22. If there are no satisfying assignments, then
LCS(z,y) < (n+ 2)ve + 2nvs + nvg =: T.

Proof. We start with the intuition behind the analysis.

Intuition

We saw in the proof of Lemma 21 that there is an alignment that achieves a large LCS
score. In the alignment we match the n inner gadgets from the first sequence x with an n
consecutive inner gadgets from the second sequence y in pairs. We want to claim that in an
optimal alignment, we will do the same: map the n inner gadgets from the first sequence
with an n consecutive inner gadgets from the second sequence in pairs. Intuitively, this is
because of the following three reasons:

We don’t want to choose less than n inner gadgets from the second sequence because oth-

erwise we can’t match all symbols 0 and 1 from the first sequence with their counterparts

(symbols 0 and 1 have the largest weight - we loose a lot by not matching them).

We don’t want to choose more than n inner gadgets from the second sequence because

otherwise we have fewer symbols 2 from the second sequence to be matched with their

counterparts. Symbols 2 have smaller weight than symbols 0 and 1 but still we loose a

lot by not matching them.

Finally, if we choose n inner gadgets from the second sequence we want to match them in

pairs. If we don’t do that, we can’t match all symbols 0 and 1 which is again expensive.
We proceed to formalize the intuition.

Sequence x starts with 3n copies of symbol 2. Suppose that some of those symbols are
matched. W.Lo.g. the matched symbols from a suffix of (O?",2. W.lL.o.g. the last symbol of

3n 2 is matched. If this is not the case we can match it with the first symbol of y and this

can only increase LC'S. Consider the symbol 2 from y that is matched to the last symbol
2 from (3", 2. Consider the symbol to the right of the symbol 2 in y. It is 0. Let s be its
position in y. W.l.o.g. this symbol 0 is matched to the first symbol 0 from x. If this is not so,
we can make this match and this can’t decrease the LC'S score. Analogously we can argue
that the last symbol 1 from z is matched to a symbol 1 in y. Let ¢ be the location of the
symbol 1 in y. Let 2’ be the substring of = that is to the right of the first symbol 0 in z
and to the left of the last symbol 1 in z. Let 3’ be the substring of y that is to the right of
the symbol 0 at location s in y and to the left of the symbol 1 at location ¢ in y. We write
T = x17' 79 and y = y19'y2. We can upper bound LCS if we range over all such partitions of
x and y:

LCS(x,y) < max LCS(x1,y1) + LCS(2',y') + LCS(x2,y2). (1)
=ity

Let m > 1 denote the number of inner gadgets in y'.

» Claim 23.

LCS(z1,y1) + LCS(x9,y2) < 2u3+ (2n+1— (m — 1))vs.

11:19

ITCS 2017

11:20

Towards Hardness of Approximation for Polynomial Time Problems

Proof. The total number of symbols 2 in y; and ys is 2n+1—(m —1). The total contribution
from all symbols 2 is upper bounded by (2n + 1 — (m — 1))vs. We can also match symbol 0
in z7 and symbol 1 in x5. This upper bounds the total contribution from symbols 0 and 1
by 2v3. There are no other symbols that we can match. The claim follows. |

It remains to give an upper bound on LCS(2',y’). Consider any symbol 0 in z’. Its
neighbour is the symbol 1 to the left of it. Similarly, for any symbol 1 in z’ the neighbour is
the symbol 0 to the right of it. For any symbol 0 in 4’ the neighbour is the first symbol 1 to
the left of it. For any symbol 1 in 3’ the neighbour is the first symbol 0 to the right of it.
For any two symbols 0 that are matched between 2’ and y’, their neighbours (symbols 1)
form a match too. If this does not true, we match the symbols 1 and this can only increase
the LCS score. Similarly, for any two symbols 1 that are matched, their neighbours form
a match too. Let M > 0 denote the number of pairs of matched symbols 0 and 1. This
allows us to upper bound the total contribution from symbols 0 and 1 to LCS(2,y") by
S := 2Mwvy. The M pairs of matched symbols split the sequence = into M + 1 maximal
substrings 71, ...,7ap41. In each one of the M + 1 substrings s; does not contain a symbol
0 or 1 that is matched. Similarly, we split ¢’ into M + 1 maximal substrings p1, ..., pa+1
so that each p; does not contain a symbol 0 or 1 that is matched. Symbols in 7; can only
be matched to symbols in p;. The only symbols that can be matched from r; with symbols
from p; come from the inner gadgets by the definition of r; and p;. Let d; > 1 denote the
number of the inner gadgets in r; and [; > 1 denote the number of the inner gadgets in p;.
Clearly, Ef\grl d; = n and zlj\ﬁ_l l; = m. We claim that LC'S(r;,p;) < (d; +1; — 1)vg. Since
the pairs of matched symbols can’t cross, we can easily check that the total number of pairs
of inner gadgets that can have a match is upper bounded by d; 4+ I; — 1. Because there are
no satisfying assignments, the upper bound LCS(r;,p;) < (d; +1; — 1)vg follows. From all
this we have

M+1 M+1
i=1 =1

We combine this with the equalities Zﬁf d; = n and Zf‘f{l l; = m and get the following

Claim.

» Claim 24.
LCS(z',y') < 2Mwvz + (n + m)vg — (M + 1)vp.
We combine (1) with Claims 23 and 24 and get the following upper bound:

LCS(x,y) <2v9 + n(2va + vg)
+ (M +1)(2vs — vo) — m(v2 — vo).

From Zf‘i‘fl d; = n and Zg‘fl l; = m we get that M < min(n,m) — 1. As we increase M,
the r.h.s. of the upper bound only increases. We choose M = min(n,m) — 1. Consider two
cases.

m >n. We have M =n — 1 and LCS(z,y) < v2(2n + 2) 4+ 2nvs — m(va —vg) < T.

m <n. Wehave M =m — 1 and LCS(z,y) < va(2n+2) + nvg + m(2vs —v2) <T. <

From the above Lemmas 21 and 22 we have that LCS(x,y) > T" if there are many
satisfying assignment and LCS(x,y) < T if there are no satisfying assignments. From the
definition of values vg, vy, v2,v3 (in particular, v1 = (1 + §)vg), we can easily conclude that
T" > (1+ (6/10%))T which gives the properties of # and y that we need.

A. Abboud and A. Backurs

Harder variants of the Block Disjoint Pairs problem

In the paragraph “Construction of the disjointness gadgets”, we do the following construction.

Given two vectors zF := A;(k,-),w* := Bj(k,-) € {0,1}4°8 N we construct sequences
DG(z%) and DG(w*) such that LCS between them is LOS(z*,w*) = d/a if the vectors
are orthogonal and LOS(z¥,w*) = (d/a) — 1 otherwise. We split the vector z* into d/a
shorter vectors 2, .. .,zg/a € {0,1}eN_ Similarly, we split the vector w* into d/a
shorter vectors w¥, ..., zs/a € {0,1}*°e N We construct DG(z*) by replacing each shorter
vector zF by a symbol corresponding to it (indexed by the alog N binary values) and its
position. We construct DG(w*) by replacing each shorter vector wf by a sequence of symbols
corresponding to all vectors that are orthogonal to wf. This implies that we have a large
LCS score if there are many orthogonal pairs zF, wF of short vectors. Instead of replacing wf
by a sequence of symbols corresponding to all orthogonal vectors, we can take an arbitrary
function fF :{0,1}2*%°8N — {0 1} and replace wf by a sequence of symbols corresponding
to all vectors u € {0,1}*!°8" such that fF(u,wf) = 1. We recover the orthogonality

constraint by choosing functions fF that evaluates to 1 iff the two vectors are orthogonal.

For arbitrary functions ff,..., fg/a :{0,1}2218 N 5 10 1}, we get that LOS(2¥, w*) = d/a
if fRF wh)=...= fclf/a(z(’j/a,ws/a) =1 and LCS(z*, w*) = (d/a) — 1 otherwise. Clearly,
the new version of Block Disjoint Pairs problem is harder to solve than the one restricted to
the orthogonality constraints.

To further increase the hardness of the Block Disjoint Pairs problem we can define
functions ¢* : {0,1}%* — {0,1} and require that LCS(z*, w*) = q if

gk(f{c(zfa w]f)v te fclic/a(zs/aaw(];/o/)) =1

and LOS(zF,w*) = ¢’ < q otherwise (for some constants ¢ and ¢’). Notice that previously
all functions g are AND functions. This modification requires that the gap (¢/q') — 1 is at
least a constant (we have a constant gap for the AND function) and that the functions g*
can be efficiently simulated with LC'S.

4.1 Hardness for Approximate Binary LCS and Edit Distance

The results in this section follow from simple observations over [5] that are easy to make
with our framework in mind.
We refer the reader to [5] for the definition and background on Branching Programs.

» Theorem 25 (Theorem 2 in [5]). There is a reduction from SAT on nondeterministic
branching programs on m variables, length T, and width W, to an instance of Edit-Distance
or LCS on two binary sequences x and y of length n = 2m/2 . TOUogW
runs in O(n) time.

), and the reduction

We need additional properties of the reduction from Theorem 25.

» Claim 26. Let P be the Branching Program that we want to reduce.
If we reduce Branching Program P to LCS problem then we have the following two
properties:

If P is not satisfiable, then LCS(x,y) < C for some integer constant C = C(m, T, W) < n.

If at least half of the assignments satisfy the Branching Program P, then LCS(x,y) >
C +(2m/2)2).

If we reduce Branching Program P to Edit-Distance problem then we have the following
two properties:
If P is not satisfiable, then Edit(x,y) > C for some integer constant C = C(m, T, W) < n.

11:21

ITCS 2017

11:22

Towards Hardness of Approximation for Polynomial Time Problems

If at least half of the assignments satisfy the Branching Program P, then Edit(z,y) <
C —(2m/2)2).

Proof. The proof follows from the proof of Claim 9 in [5].

Consider the case when P is not satisfiable. The proof does not change - we show that
LCS is upper bounded and Edit-Distance is lower bounded by some fixed quantity C'.

Consider the case when P is satisfied by at least half of the assignments. In the proof of
Claim 9 the authors choose an integer A such that the corresponding alignment pairs up two
gadgets that form a satisfying assignment to the Branching Program P. When there are
many satisfying assignments (at least half), we can show that there is an integer such in the
corresponding alignment at least half of the assignments are satisfying. By the properties of
the gadgets constructed in [5], we get the required lower bound on LCS and the required
upper bound on Edit-Distance. |

Theorem 25 and Claim 26 combined give the following theorem.

» Theorem 27. Suppose we have a (1 + §) approzimation algorithm for Edit-Distance or
LCS with 6 = o (YT°0es™) that runs in f(n) = f(2™/2 . TOWsW)) deterministic time for
some function f. Then in time f(27/2 . TCUeW)) we can decide if a Branching program on
m variables, length T and width W is not satisfiable or at last half of the assignments are
satisfying.

From the discussion in [5] on the connection between BPs and NC circuits, a lower bound
for NC* follows. Namely, 1+ 1/poly log n approximation algorithm implies that there exists
f € ENP such that f ¢ NC*.

Acknowledgments. We thank Piotr Indyk, Michael P. Kim, Dana Moshkovitz, Virginia
Vassilevska Williams, and Ryan Williams for helpful discussions on this work.

—— References

1 Amir Abboud, Arturs Backurs, Thomas Dueholm Hansen, Virginia Vassilevska Williams,
and Or Zamir. Subtree isomorphism revisited. In Proc. of 27th SODA, pages 1256-1271,
2016.

2 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight Hardness Results
for LCS and other Sequence Similarity Measures. In Proc. of 56th FOCS, pages 59-78,
2015.

3 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. If the current clique
algorithms are optimal, so is valiant’s parser. In Foundations of Computer Science (FOCS),
2015 IEEFE 56th Annual Symposium on, pages 98-117. IEEE, 2015.

4 Amir Abboud, Fabrizio Grandoni, and Virginia Vassilevska Williams. Subcubic equival-
ences between graph centrality problems, APSP and diameter. In Proc. of 26th SODA,
pages 1681-1697, 2015.

5 Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and Ryan Willi-
ams. Simulating Branching Programs with Edit Distance and Friends or: A Polylog Shaved
is a Lower Bound Made. In STOC’16, 2016.

6 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower
bounds for dynamic problems. In Proc. of 55th FOCS, pages 434-443, 2014.

7 Amir Abboud, Virginia Vassilevska Williams, and Joshua R. Wang. Approximation and
fixed parameter subquadratic algorithms for radius and diameter in sparse graphs. In Proc.
of 27th SODA, pages 377-391, 2016.

8 Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of faster
sequence alignment. In Proc. of 41st ICALP, pages 39-51, 2014.

A. Abboud and A. Backurs

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Amir Abboud, Virginia Vassilevska Williams, and Huacheng Yu. Matching triangles and
basing hardness on an extremely popular conjecture. In Proc. of 47th STOC, pages 41-50,
2015.

Amir Abboud, Ryan Williams, and Huacheng Yu. More applications of the polynomial
method to algorithm design. In Proc. of 26th SODA, pages 218-230, 2015.

Amir Abboud, Virginia Vassilevska Williams, and Joshua Wang. Approximation and
fixed parameter subquadratic algorithms for radius and diameter. arXiv preprint
arXiv:1506.01799, 2015.

Josh Alman, Timothy M Chan, and Ryan Williams. Polynomial representations of threshold
functions and algorithmic applications. In to appear at FOCS, 2016.

Stephen F Altschul, Thomas L Madden, Alejandro A Schéffer, Jinghui Zhang, Zheng Zhang,
Webb Miller, and David J Lipman. Gapped blast and psi-blast: a new generation of protein
database search programs. Nucleic acids research, 25(17):3389-3402, 1997.

A. Amir, T. M. Chan, M. Lewenstein, and N. Lewenstein. On hardness of jumbled indexing.
In Proc. ICALP, volume 8572, pages 114-125, 2014.

Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Polylogarithmic approxim-
ation for edit distance and the asymmetric query complexity. In FOCS, pages 377-386,
2010.

Léaszlé Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. Bpp has subexponential
time simulations unless exptime has publishable proofs. In Structure in Complexity Theory
Conference, 1991., Proceedings of the Sixzth Annual, pages 213-219. IEEE, 1991.

Rolf Backofen, Dekel Tsur, Shay Zakov, and Michal Ziv-Ukelson. Sparse rna folding: Time
and space efficient algorithms. Journal of Discrete Algorithms, 9(1):12-31, 2011.

Arturs Backurs, Nishanth Dikkala, and Christos Tzamos. Tight hardness results for max-
imum weight rectangles. arXiv preprint arXiv:1602.05837, 2016.

Arturs Backurs and Piotr Indyk. Edit Distance Cannot Be Computed in Strongly Sub-
quadratic Time (unless SETH is false). In Proc. of 47th STOC, pages 51-58, 2015.

Arturs Backurs and Piotr Indyk. Which regular expression patterns are hard to match?
arXiv preprint arXi:1511.07070, 2015.

Ziv Bar-Yossef, TS Jayram, Robert Krauthgamer, and Ravi Kumar. Approximating edit
distance efficiently. In Foundations of Computer Science, 2004. Proceedings. 45th Annual
IEEE Symposium on, pages 550-559. IEEE, 2004.

Tugkan Batu, Funda Ergun, and Cenk Sahinalp. Oblivious string embeddings and edit
distance approximations. In Proceedings of the seventeenth annual ACM-SIAM symposium
on Discrete algorithm, pages 792-801. Society for Industrial and Applied Mathematics,
2006.

Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan. Short
peps verifiable in polylogarithmic time. In Computational Complezity, 2005. Proceedings.
Twentieth Annual IEEE Conference on, pages 120-134. IEEE, 2005.

Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan.
Robust peps of proximity, shorter pcps and applications to coding. In Proceedings of the
36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, June 15-16,
2004, pages 1-10, 2004. doi:10.1145/1007352.1007361.

Eli Ben-Sasson and Madhu Sudan. Short pcps with polylog query complexity. SIAM
Journal on Computing, 38(2):551-607, 2008.

Eli Ben-Sasson and Emanuele Viola. Short pcps with projection queries. In ICALP, Part
I, pages 163-173, 2014.

Lasse Bergroth, Harri Hakonen, and Timo Raita. New approximation algorithms for longest
common subsequences. In String Processing and Information Retrieval: A South American
Symposium, 1998. Proceedings, pages 32—40. IEEE, 1998.

11:23

ITCS 2017

http://dx.doi.org/10.1145/1007352.1007361

11:24

Towards Hardness of Approximation for Polynomial Time Problems

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Lasse Bergroth, Harri Hakonen, and Timo Raita. A survey of longest common subsequence
algorithms. In String Processing and Information Retrieval, 2000. SPIRE 2000. Proceed-
ings. Seventh International Symposium on, pages 39-48. IEEE, 2000.

Mark Braverman, Young Kun-Ko, and Omri Weinstein. Approximating the best nash
equilibrium in n0(108 7)_time breaks the exponential time hypothesis. In Proceedings
of the Twenty-Sizth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2015, San Diego, CA, USA, January 4-6, 2015, pages 970-982, 2015. doi:10.1137/1.

9781611973730.66.

Karl Bringmann. Why walking the dog takes time: Frechet distance has no strongly
subquadratic algorithms unless seth fails. In Proc. of 55th FOCS, pages 661-670, 2014.
Karl Bringmann and Marvin Kiinnemann. Improved approximation for fréchet distance
on c-packed curves matching conditional lower bounds. CoRR, abs/1408.1340, 2014. URL:
http://arxiv.org/abs/1408.1340.

Karl Bringmann and Marvin Kunnemann. Quadratic Conditional Lower Bounds for String
Problems and Dynamic Time Warping. In Proc. of 56th FOCS, pages 79-97, 2015.

Karl Bringmann and Wolfgang Mulzer. Approximability of the Discrete Fréchet Distance.
In Proc. of 31st SoCG, pages 739-753, 2015.

Chris Calabro. A lower bound on the size of series-parallel graphs dense in long paths. In
Electronic Colloquium on Computational Complexity (ECCC), volume 15, 2008.

Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. The complexity of satisfiab-
ility of small depth circuits. In Proc. of 4th IWPEC, pages 75-85, 2009.

Marco L Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan Paturi,
and Stefan Schneider. Nondeterministic extensions of the strong exponential time hypo-
thesis and consequences for non-reducibility. In Proceedings of the 2016 ACM Conference
on Innovations in Theoretical Computer Science, pages 261-270. ACM, 2016.

Marco L Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova.
Tighter connections between derandomization and circuit lower bounds. In LIPIcs-Leibniz
International Proceedings in Informatics, volume 40. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2015.

Diptarka Chakraborty, Elazar Goldenberg, and Michal Koucky. Streaming algorithms for
embedding and computing edit distance in the low distance regime. In Proceedings of the
Forty-eighth Annual ACM Symposium on Theory of Computing, 2015.

Timothy M Chan and Ryan Williams. Deterministic apsp, orthogonal vectors, and more:

Quickly derandomizing razborov-smolensky. In Proceedings of the Twenty-seventh Annual
ACM-SIAM Symposium on Discrete Algorithms. SODA, 2016.

Yi-Jun Chang. Hardness of rna folding problem with four symbols. arXiv preprint
arXiv:1511.04751, 2015.

Krishnendu Chatterjee, Wolfgang Dvordk, Monika Henzinger, and Veronika Loitzenbauer.
Model and objective separation with conditional lower bounds: Disjunction is harder than
conjunction. arXiv preprint arXiv:1602.02670, 2016.

Shiri Chechik, Daniel H Larkin, Liam Roditty, Grant Schoenebeck, Robert E Tarjan, and
Virginia Vassilevska Williams. Better approximation algorithms for the graph diameter. In
Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1041-1052. STAM, 2014.

F Chin and Chung Keung Poon. Performance analysis of some simple heuristics for com-
puting longest common subsequences. Algorithmica, 12(4-5):293-311, 1994.

Thomas H.. Cormen, Charles Eric Leiserson, Ronald L Rivest, and Clifford Stein. Intro-
duction to algorithms, volume 6. MIT press Cambridge, 2001.

http://dx.doi.org/10.1137/1.9781611973730.66
http://dx.doi.org/10.1137/1.9781611973730.66
http://arxiv.org/abs/1408.1340

A. Abboud and A. Backurs

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

Maxime Crochemore, Costas S Iliopoulos, Yoan J Pinzon, and James F Reid. A fast and
practical bit-vector algorithm for the longest common subsequence problem. Information
Processing Letters, 80(6):279-285, 2001.

Marek Cygan, Holger Dell, Daniel Lokshtanov, Daniel Marx, Jesper Nederlof, Yoshio
Okamoto, Ramamohan Paturi, Saket Saurabh, and Magnus Wahlstrém. On problems as
hard as cnf-sat. In Computational Complezity (CCC), 2012 IEEE 27th Annual Conference
on, pages 74-84. IEEE, 2012.

Sgren Dahlgaard. On the hardness of partially dynamic graph problems and connections
to diameter. arXiv preprint arXiv:1602.06705, 2016.

J Boutet de Monvel. Extensive simulations for longest common subsequences. The Furopean
Physical Journal B-Condensed Matter and Complex Systems, 7(2):293-308, 1999.

Robert C Edgar and Serafim Batzoglou. Multiple sequence alignment. Current opinion in
structural biology, 16(3):368-373, 2006.

Lance Fortnow and Adam R Klivans. Efficient learning algorithms yield circuit lower
bounds. Journal of Computer and System Sciences, 75(1):27-36, 20009.

Yelena Frid and Dan Gusfield. A simple, practical and complete o-time algorithm for rna
folding using the four-russians speedup. Algorithms for Molecular Biology, 5(1):1, 2010.
A. Gajentaan and M. H. Overmars. On a class of o(n?) problems in computational geometry.
Comput. Geom. Theory Appl., 45(4):140-152, 2012.

Ofer Grossman and Dana Moshkovitz. Amplification and derandomization without slow-
down. arXiv preprint arXiv:1509.08123, 2015.

Dan Gusfield. Algorithms on strings, trees and sequences: computer science and computa-
tional biology. Cambridge university press, 1997.

Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Sara-
nurak. Unifying and strengthening hardness for dynamic problems via the online matrix-
vector multiplication conjecture. In Proceedings of the Forty-Seventh Annual ACM on
Symposium on Theory of Computing, pages 21-30. ACM, 2015.

Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy witness:
Exponential time vs. probabilistic polynomial time. Journal of Computer and System
Sciences, 65(4):672-694, 2002.

Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. Journal of
Computer and System Sciences, 62(2):367-375, 2001.

Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63:512-530, 2001.
Russell Impagliazzo and Avi Wigderson. P= bpp if e requires exponential circuits: Deran-
domizing the xor lemma. In Proceedings of the twenty-ninth annual ACM symposium on
Theory of computing, pages 220-229. ACM, 1997.

Hamid Jahanjou, Eric Miles, and Emanuele Viola. Local reductions. In Automata, Lan-
guages, and Programming, pages 749-760. Springer, 2015.

Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests
means proving circuit lower bounds. Computational Complezity, 13(1-2):1-46, 2004.
Richard M Karp and Richard Lipton. Turing machines that take advice. Enseign. Math,
28(2):191-209, 1982.

Kazutaka Katoh and Daron M Standley. Mafft multiple sequence alignment software version
7: improvements in performance and usability. Molecular biology and evolution, 30(4):772—
780, 2013.

Adam Klivans, Pravesh Kothari, and Igor C Oliveira. Constructing hard functions using
learning algorithms. In Computational Complexity (CCC), 2013 IEEE Conference on, pages
86-97. IEEE, 2013.

11:25

ITCS 2017

11:26

Towards Hardness of Approximation for Polynomial Time Problems

65

66

67

68

69

70

71

72

73

74

75

76

7

78
79

80

81
82

83

84

85

86
87

Gad M Landau, Eugene W Myers, and Jeanette P Schmidt. Incremental string comparison.
SIAM Journal on Computing, 27(2):557-582, 1998.

William J Masek and Michael S Paterson. A faster algorithm computing string edit dis-
tances. Journal of Computer and System sciences, 20(1):18-31, 1980.

Thilo Mie. Short pcpps verifiable in polylogarithmic time with o (1) queries. Annals of
Mathematics and Artificial Intelligence, 56(3-4):313-338, 2009.

Gonzalo Navarro. A guided tour to approximate string matching. ACM computing surveys
(CSUR), 33(1):31-88, 2001.

Rafail Ostrovsky and Yuval Rabani. Low distortion embeddings for edit distance. Journal
of the ACM (JACM), 54(5):23, 2007.

Mihai Patrascu. Towards polynomial lower bounds for dynamic problems. In Proceedings
of the forty-second ACM symposium on Theory of computing, pages 603-610. ACM, 2010.
Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms for the
diameter and radius of sparse graphs. In Proc. of 45th STOC, pages 515524, 2013.
Balaram Saha. The dyck language edit distance problem in near-linear time. In Foundations
of Computer Science (FOCS), 2014 IEEE 55th Annual Symposium on, pages 611-620.
IEEE, 2014.

Barna Saha. Language edit distance and maximum likelihood parsing of stochastic gram-
mars: Faster algorithms and connection to fundamental graph problems. In Foundations of
Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on, pages 118-135. IEEE,
2015.

Rajesh Santhanam and Ross Williams. On medium-uniformity and circuit lower bounds.
In Computational Complexity (CCC), 2018 IEEE Conference on, pages 15-23. IEEE, 2013.
Temple F Smith and Michael S Waterman. Identification of common molecular sub-
sequences. Journal of molecular biology, 147(1):195-197, 1981.

Yinglei Song. Time and space efficient algorithms for rna folding with the four-russians
technique. arXiv preprint arXiv:1503.05670, 2015.

Julie D Thompson, Desmond G Higgins, and Toby J Gibson. Clustal w: improving the
sensitivity of progressive multiple sequence alignment through sequence weighting, position-
specific gap penalties and weight matrix choice. Nucleic acids research, 22(22):4673-4680,
1994.

Leslie G Valiant. Graph-theoretic arguments in low-level complexity. Springer, 1977.
Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between path,
matrix and triangle problems. In Proc. of 51st FOCS, pages 645-654, 2010.

Balaji Venkatachalam, Dan Gusfield, and Yelena Frid. Faster algorithms for rna-folding
using the four-russians method. Algorithms for Molecular Biology, 9(1):1, 2014.

Emanuele Viola. On the power of small-depth computation. Now Publishers Inc, 2009.
Ryan Williams. A new algorithm for optimal constraint satisfaction and its implications.
In Automata, Languages and Programming, pages 1227-1237. Springer, 2004.

Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds. STAM
Journal on Computing, 42(3):1218-1244, 2013.

Ryan Williams. Natural proofs versus derandomization. In Proceedings of the forty-fifth
annual ACM symposium on Theory of computing, pages 21-30. ACM, 2013.

Ryan Williams. Algorithms for Circuits and Circuits for Algorithms: Connecting the
Tractable and Intractable. In Proceedings of the International Congress of Mathematicians,
2014. URL: http://web.stanford.edu/~{}rrwill/ICM-survey.pdf.

Ryan Williams. Nonuniform ACC circuit lower bounds. J. ACM, 61(1):2:1-2:32, 2014.
Ryan Williams. Strong ETH Breaks With Merlin and Arthur: Short Non-Interactive Proofs
of Batch Evaluation. In CCC"16, 2016.

http://web.stanford.edu/~{}rrwill/ICM-survey.pdf

	Introduction
	Our Results
	Technical Overview
	Discussion

	Valiant series-parallel circuits
	VSP Circuits and Block Disjointness
	The Reduction to Approximate LCS
	Hardness for Approximate Binary LCS and Edit Distance

