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—— Abstract

The following is a summary of the paper “Inferential Privacy Guarantees for Differentially Private

Mechanisms”, presented at the 8% Innovations in Theoretical Computer Science conference in
January 2017. The full version of the paper can be found on arXiv at the following URL:
https://arxiv.org/abs/1603.01508.
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1  Summary of the paper

Differential privacy [3, 4] has become the dominant theoretical framework for quantifying
privacy loss, and has begun to make its way into policy and legal frameworks as a potential
means for such a quantification. Running a differentially private mechanism on a dataset
produces an outcome whose distribution is insensitive to removing one individual’s data from
the dataset or modifying her data. Consequently, differential privacy guards an individual
against the possibility that observers of the mechanism’s outcome will make strong inferences
about her participation or non-participation (or, contingent on participation, inferences about
her data).

Even without an individual’s participation in a dataset, probabilistic inferences about
her private data may be possible due to its correlation with the data of other individuals
present in the dataset. In some cases, but not all, it may be desirable to protect individuals
from such inferences. This paper aims to quantify the extent to which differentially private
mechanisms guarantee such “inferential privacy protection”, as a function of the prior belief
(or set of potential priors) held by observers prior to the release of the mechanism’s outcome.

We can illustrate the issues at play here using the oft-cited example of a study showing that
smoking causes cancer [5]. If the data underlying the study were analyzed in a differentially
private manner, readers of the study should not significantly update their beliefs about a
given individual’s participation in the dataset. However, if the individual were a known
smoker, they should significantly revise their beliefs about her probability of developing
cancer. Such belief revisions, in this circumstance, are generally not construed as a violation
of privacy, because they merely reflect improved knowledge of an aggregate property of the
population, not any knowledge specific to the individual. On the other hand, suppose that
the hypothetical study focused on the more fine-grained question of how the likelihood of
developing smoking-related cancers varies as a function of factors such as age, diet, lifestyle,
and family history, and that the supplementary material accompanying the article included a
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machine learning model (e.g., a random forest regressor) trained to predict these likelihoods.
Even if the input-output behavior of the regressor were not construed as violating privacy, the
regressor itself could be a highly complex object (e.g., a collection of more than a thousand
decision trees) and its contents might reflect private information in the training data. If the
training algorithm were differentially private, would it ensure that participants in the study
were protected from “inferential privacy violations”? This paper abstracts away the specifics
of the example and asks the basic question: when does a differential privacy guarantee for
an algorithm imply an inferential privacy guarantee?

In the paper, we formally define the inferential privacy parameter of a mechanism with
respect to a set of prior distributions. Informally, it measures the maximum amount by
which an adversary might multiplicatively update his belief in the likelihood that a particular
individual’s entry in the database assumes a particular value, given that the adversary
starts with one of the specified prior distributions and performs a Bayesian update on the
mechanism’s outcome. An easy application of Bayes’ Law confirms the fact (known to
many prior authors, e.g. [7]) that when individuals’ private data are mutually independent,
the differential privacy parameter of a mechanism equals its inferential privacy parameter.
On the other hand, we have seen that when the adversary’s prior incorporates uncertainty
about certain aggregate statistics of the population (e.g., the frequency of cancer among
smokers) the inferential privacy parameter of a mechanism may be much greater than its
differential privacy parameter. Interpolating between these two extremes, one might guess
that differentially private mechanisms are guaranteed to have a relatively small inferential
privacy parameter when correlations between individuals are either weak or localized, i.e.
when each individual has only a few others with whom her data correlates strongly.

Our work makes this intuition precise and confirms it rigorously. To do so, we identify
a surprisingly tight relationship between our questions about privacy and inference and
a corresponding set of questions in mathematical physics regarding the magnitude of the
change in a Gibbs measure when an external field is applied to the system. While it may
initially seem surprising that the two fields are connected in this way, one can see the first
intimations of the connection in the discussion about weak, localized correlations at the end
of the preceding paragraph—this is none other than the correlation decay property that is
the hallmark of statistical mechanical systems at high temperature.

Our first main theorem pertains to cases in which the data are binary-valued and the
adversary’s prior distribution satisfies positive affiliation, meaning that conditioning on all
but two entries in the database, the remaining two entries can never be negatively correlated.
This assumption is satisfied by the priors commonly ascribed to biological data—where
heredity and contagion lead to positive correlations among individuals’ attributes, but never
or rarely lead to negative correlations—and to social data, where positive correlations result
from homophily and social contagion. (If one interprets the adversary’s prior as a Gibbs
measure, the positive affiliation property says that the system is ferromagnetic.) Our theorem
gives a precise formula for the worst-case inferential privacy parameter of e-differentially
private mechanisms in terms of the magnetization of the corresponding ferromagnetic system
in an external field of strength §. The proof of the theorem shows that the mechanism
attaining this worst-case bound is not a contrived mechanism; in fact it is one of the most
commonly occurring differentially private mechanisms: adding Laplace noise to the sum
of the values in the database!l Thus, when data are positively affiliated, any inferential
privacy guarantee that one can prove for the Laplace mechanism automatically carries over
to arbitrary differentially private mechanisms.
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Because our theorem provides an exact formula for worst-case inferential privacy in
terms of magnetization (and not merely an upper bound) it allows us to translate results
about the physics of magnets directly into results about inferential privacy. In particular,
existing results about phase transitions in Ising models (e.g., for the infinite d-regular tree [1])
imply that inferential privacy parameters can be surprisingly sensitive to variations in other
parameters of the model. For example, if we vary the differential privacy parameter of
the Laplace mechanism, starting at ¢ = 0 and increasing from there, the mechanism’s
inferential privacy parameter increases gradually until € crosses a critical value, at which
point it can increase very precipitously, approaching a step discontinuity as the number
of individuals tends to infinity. In other words, tiny variations in the differential privacy
parameter of a mechanism can potentially lead to enormous variations in inferential privacy,
a privacy-theoretic manifestation of the physical phenomenon of phase transitions in spin
systems.

Our second main result applies when the data are not binary-valued, or when the prior
violates positive affiliation. It shows that the inferential privacy parameter of a mechanism
is bounded above by a function of the mechanism’s differential privacy parameter and the
spectral norm of an influence matriz encoding the strength of pairwise correlations between
individuals. The theorem again manifests the relationship between inferential privacy and
statistical mechanics; its statement and proof constitute an adaptation of the Dobrushin
Comparison Theorem [2, 6, 8] from the traditional setting of additive approximation to
multiplicative approximation.
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