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Abstract
We present a Gaussian random walk in a polytope that starts at a point inside and continues until
it gets absorbed at a vertex. Our main result is that the probability distribution induced on the
vertices by this random walk has strong negative dependence properties for matroid polytopes.
Such distributions are highly sought after in randomized algorithms as they imply concentration
properties. Our random walk is simple to implement, computationally efficient and can be viewed
as an algorithm to round the starting point in an unbiased manner. The proof relies on a simple
inductive argument that synthesizes the combinatorial structure of matroid polytopes with the
geometric structure of multivariate Gaussian distributions. Our result not only implies a long
line of past results in a unified and transparent manner, but also implies new results about
constructing negatively associated distributions for all matroids.
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1 Introduction

A basic problem that underlies a large number of approximation algorithms for combinatorial
problems is: given a fractional point, how should it be rounded to an integral point? Typically,
the fractional point is obtained by solving a linear program and has nice properties which one
would like the integeral point to inherit. For instance, the fractional point might belong to
the spanning tree polytope of a graph and the goal might be to round the point to a spanning
tree whose cost is not much more and, in addition, satisfies some constraints satisfied by the
fractional point; e.g., number of edges in the tree across each cut is small. A common approach
towards this is to construct randomized rounding algorithms for such a problem which output
an unbiased distribution over the underlying set of integral objects (spanning trees for the
above example). Since in most interesting cases the set of integral objects is not a box, the
distributions have correlations. These correlations end up being quite problematic when it
comes to ensure that with high probability the integral point also satisfies the additional
constraints the fractional point satisfies. The ultimate hope here is that the distribution
essentially behaves like a product distribution so that one can apply concentration results
such as Chernoff bounds. On the one hand, this has recently led TCS researchers to come
up with a wide variety of ingenious rounding algorithms which have resulted in significant
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50:2 Random Walks in Polytopes and Negative Dependence

progress on fundamental algorithmic problems [11, 2, 6, 7, 12, 19, 1] (see the book [8] for
more examples). On the other hand, mathematicians have been investigating what kind of
negative dependence properties result in the phenomena of measure concentration [17, 3].
Typically, it is non-trivial to both compute these distributions and prove their negative
dependence properties.

In this paper we take a geometric approach and propose a very simple rounding algorithm
and prove that it gives an unbiased distribution with negative association property for all
matroids. Negative association is a significant strengthening of the negative correlation
property. Roughly a set of random variables (X1, . . . , Xn) is said to be negatively associated
if for any two monotone functions f and g which act on distinct sets of coordinates S and
T respectively, the corresponding random variables f(Xi)i∈S and g(Xj)j∈T are negatively
correlated; see Definition 1 and Theorem 4.

A bit more formally, given a matroid over a universe of size n, consider the polytope in
Rn that is the convex hull of all the bases of the matroid. Let θ be a given fractional point
that lies inside this polytope and is to be rounded to one of the bases. Our algorithm starts
at θ and keeps taking small Gaussian steps centered at the current point – thus maintaining
the unbiasedness. If at some point the trajectory hits a constraint on the boundary of the
polytope it never leaves it – meaning that the Gaussian in the next step is chosen so as to
have no mass outside of this subspace. Thus, eventually, the trajectory gets absorbed at a
vertex of the polytope. This rounding algorithm is inspired by the work of [15] on discrepancy
and its simplicity is self-evident. At any given time, the algorithm has to keep track of the
tight constraints and compute a Gaussian in the space corresponding to the intersection of
these constraints.

Our proof synthesizes polyhedral properties about matroids with well-known properties of
Gaussian distribution. Our key structural observation is that if F is a d-dimensional face of
a matroid polytope and ΣF is the covariance matrix of the d-dimensional Gaussian obtained
by orthogonally projecting an n-dimensional Gaussian onto F , then all the off-diagonal
entries of Σ are non-positive; see Theorem 5. The proof of this relies on an elementary
uncrossing argument from matroid theory. Thus, Gaussian distributions on faces of matroid
polytopes have the negative correlation property. This, in turn, immediately leads to an
inductive argument that shows that from the beginning to the end of this random walk, the
distribution has the negative correlation property. Finally, to go from negative correlation
of Gaussian distributions to negative association, we employ a result that implies that for
Gaussian distribution negative correlations implies negative association [13]. Roughly, this
is a manifestation of the fact that all moments of Gaussian distributions are completely
determined by their covariance matrix.

Negative dependence properties for distributions on bases of matroid have been extensively
studied. Prior to our work, negatively associated distributions were known only for balanced
matroids. In particular, [10] shows that the uniform distribution is negatively associated
for balanced matroids and gives a Markov chain Monte Carlo method to sample from
such a distribution. Unfortunately, the uniform, or more generally, an entropy maximizing
distribution on general matroids does not give negative association property. For general
matroids, the weaker negative cylindrical property (see Definition 3) was shown for the
pipage rounding and randomized swap rounding [6]. The other two matroids that have been
extensively studied are the uniform matroid, where bases are all sets of size k for integer k
[20, 5] and the partition matroid [9, 8].

Lovett and Meka [15], who studied this random walk on the polytope obtained by
intersecting the hypercube with few discrepancy constraints, were interested in the number
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of integral coordinates of the output vertex. In our setting, we study the walk on integral
polytopes, convex hull of bases of matroids, which are typically defined by exponentially many
constraints and are interested in negative dependence properties of the output distribution.

While both the algorithm and the proof are simple and the reason for negative dependence
is clear, several problems about the distribution remain open. First and foremost, what can
we say about non-matroid polytopes? Do non-Gaussian distributions help? While we can
understand the random walk locally, a global perspective seems hard. Concretely, can we
prove that the distribution obtained by our random walk is the solution to some optimization
problem? Finally, do much stronger forms of negative dependence, for example, Strongly
Rayleigh property [3] holds for these distributions in specific matroids (see also [4])?

1.1 Preliminaries
We first give the following definition.

I Definition 1 (Negative Association). Let X1, . . . , Xn be boolean random variables. Then
Xi’s are negatively associated if for every non-decreasing functions f : {0, 1}n → R and
g : {0, 1}n → R we have

E[f(X1, . . . , Xn)g(X1, . . . , Xn)] ≤ E[f(X1, . . . , Xn)]E[g(X1, . . . , Xn)] (1)

if f and g depend on disjoint sets of coordinates.

While negative association is hard to verify, under very mild assumptions, it implies
versions of the central limit theorems (see Yuan et al [21] and Pattersen et al [16]).

A much weaker notion of negative dependence is the negative correlation defined below.

I Definition 2. Let X1, . . . , Xn be real valued random variables. Then Xi’s are negatively
correlated if for each i 6= j ∈ [n], we have

E[XiXj ] ≤ E[Xi]E[Xj ]. (2)

Another notion of negative dependence is the negative cylindrical property that is stronger
than negative correlation but weaker than negative association. This property is also well
studied since it is enough to imply tail bounds ala Chernoff bounds.

I Definition 3. Let X1, . . . , Xn be real valued random variables. Then Xi’s have the
negatively cylindrical property if for each S ⊆ [n], we have

E[
∏
i∈S

Xi] ≤
∏
i∈S

E[Xi]. (3)

A set system M = (U, I) is called a matroid if I ⊆ 2U satisfies two axioms (i) A ∈ I
and B ⊆ A implies that B ∈ I, (ii) A,B ∈ I such that |A| > |B| implies that there exists
a ∈ A\B such that B ∪ {a} ∈ I. Sets of I are called independent sets and the maximal sets
in I are called bases of matroidM. For a matroidM, the corresponding matroid polytope is
the convex hull of the indicator vectors of all the bases ofM.

2 Our Algorithm and Result

2.1 Algorithm
We present a discrete implementation of the random walk algorithm. We first introduce
some notation. Let

P = {x ∈ Rn : Ax ≤ b}

ITCS 2017
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be the inequality description of P . Often we refer to individual inequalities or equalities as
a>j x≤ bj or a>j x= bj . For any face F of P defined by

F = {x ∈ P : A=x = b=},

let d(F ) denote the dimension of F . Let C(F ) denote the matrix whose columns form an
orthonormal basis of the subspace

{x ∈ Rn : A=x = 0}.

Observe that the dimension of C(F ) is n× d(F ).

Algorithm 1: Algorithm Random Walk
1: Input: θ, error parameter ε. Let T = n2

ε2 .
2: Initialization x0 ← θ. Let t← 0, F0 = P .
3: while dimension of Ft > 0 or t ≤ T do
4: while there exists j such that 0 < bj − a>j xt < nε, do
5: Let y denote the point in Ft ∩ {x: a>j x= bj} closest to xt.
6: Let xt ← y, Ft ← Ft ∩ {x: a>j x= bj}.
7: end while
8: Let d denote the dimension of Ft and let g be a normal Gaussian in d

dimensions.
9: Let xt+1 = xt + ε · C(Ft)g and let Ft+1 ← Ft. If xt+1 /∈ P , then abort.

10: Let t← t+ 1.
11: end while
12: Return xt.

If the algorithm ends at time t∗ ≤ T with the vertex xt∗ , we let xt = xt∗ for each
t∗ ≤ t ≤ T .

2.2 Main Result
Our main result is to show that the random walk algorithm described above gives a distribution
over vertices of the matroid polytope that is negatively associated.

I Theorem 4. Given any matroidM = (U, I), let P denote the convex hull of bases ofM
and let n = |U |. Given any θ ∈ P and error parameter ε > 0, the random walk algorithm
returns a vertex of P before time T = n2

ε2 with probability at least 1 − e−n. Moreover,
conditioned on algorithm returning a vertex of P , the output random vertex xT satisfies the
following properties.
1. For each i ∈ U ,

θ(i)− n2ε ≤ E[xT (i)] ≤ θ(i) + n2ε.

2. For every 1-Lipschitz non-decreasing functions f1 : RU → [0, 1] and f2 : RU → [0, 1]
depending on disjoint set of coordinates, we have

E[f1(xT )f2(xT )] ≤ E[f1(xT )]E[f2(xT )] + n
√
nε (4)

Moreover, the expected running time of the algorithm is polynomial in n and 1
ε .
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To prove the theorem, we rely on two crucial observations which also illustrate the
crucial role of matroid polytopes. We show that for every face F of P , a standard Gaussian
projected on F is negatively correlated; see Theorem 5. This result relies crucially on
the facial structure of the matroid polytopes and a characterization of every face in terms
of tight constraints defining the matroid polytope. Secondly, we use the classical result
that for Gaussian random variables, negative correlation implies negative association (see
Theorem 12). The above results use an inductive argument to show that the random walk
algorithm leads to a distribution that is negatively associated.
I Remark. We mention that we describe the discrete version due to algorithmic implications
but it naturally leads to error terms in Theorem 4. From a structural point of view, one can
construct a Brownian motion that sticks to the face of the polytope as does our random walk
and ends at a vertex of the polytope. The resulting distribution over bases of the polytope
will satisfy the marginals and the inequality for negative association exactly.

3 Projected Gaussian in Matroids

In this section, we prove that standard Gaussian projected on any face of the matroid
polytope is negatively correlated.

I Theorem 5. LetM = (U, I) denote a matroid and P denote the convex hull of all bases
ofM. Let F be the face of P and g ∈ RU be a standard Gaussian random variable. Then for
any distinct i, j ∈ U we have E[(Cg)i(Cg)j ] ≤ 0 where C is the projection matrix projecting
onto F .

Proof. Before we prove the general case, we prove the case whenM is a uniform matroid.
The convex hull of the bases of this matroid is well understood and has well characterized
faces. The general case, whose facial structure is more complicated, will use this case as a
building block.

Let k be an integer and I = {S ⊆ U : |S| ≤ k}. In this case, we have

P = {x ∈ RU :
∑
i∈U

xi = k, 0 ≤ xi ≤ 1 ∀i ∈ U}.

First consider the face which is P itself. We let n denote the size of |U |.

I Lemma 6. Let C denote the n × (n − 1) matrix whose columns form the orthonormal
basis of subspace {x ∈ RU :

∑
i∈U xi = 0}. We have CC> = In − 1

nJn where In denotes the
identity matrix in n dimensions and Jn denotes the n dimensional matrix with all ones.

Proof. Let Ĉ be n× n formed by adding the column 1√
n

(1, . . . , 1) to C. Then all columns
of Ĉ form an orthonormal basis of Rn. Then ĈĈ> = In. But ĈĈ> = CC> + 1

nJn giving us
that CC> = In − 1

nJn. J

Since all off-diagonal entries of In − 1
nJn are negative, this implies that the standard

Gaussian projected on P is negatively correlated. Any other face F is obtained by setting
some of the variables to 0 or 1 in P . Thus the covariance matrix of the face will be a block
matrix of the form Id − 1

nJd with the zero matrix. This completes the proof for the case
whenM is a uniform matroid.

We now consider the general case. LetM = (U, I) denote a matroid and P denote the
convex hull of all independent sets ofM. In the next lemma, we characterize the possible
covariance matrices for projections of normal Gaussians on any of the faces of the matroid

ITCS 2017



50:6 Random Walks in Polytopes and Negative Dependence

polytope. It shows that the covariance matrix is of block diagonal form where each block
has the same structure as the covariance matrix for the uniform matroid as seen earlier.

I Lemma 7. Let F be a face of P and X be a projection of a normal Gaussian on F . The
covariance matrix of X (up to permuting indices of columns and rows) is Σ = CC> where Σ
is a block diagonal matrix with blocks of size d1, . . . , dr such that

∑
i di = n and each block of

size di is exactly Idi
− 1

di
Jdi

where Idi
is the identity matrix and Jdi

is the all-ones matrix
with sizes di × di.

Proof. The proof uses the characterization of any face of P by a maximal set of tight
constraints which satisfy the chain structure. A collection of sets A1, A2, . . . , Ak ⊆ U form a
chain if A1 ⊆ A2 ⊆ · · · ⊆ Ak. The lemma is standard using the uncrossing technique (see
Chapter 40 [18] or Lemma 5.2.4 [14]).

I Claim 8. Given any face F of P , there exists a chain S′1 ⊆ S′2 ⊆ · · · ⊆ S′r = U where
r = n− d and integers kj ≥ 0 for each 1 ≤ j ≤ r such that

F = {x ∈ P :
∑
i∈S′

j

xj = kj ∀ 1 ≤ j ≤ r}.

Let Sj = S′j \ S′j−1 for each 1 ≤ j ≤ r where S0 = ∅. Then the following two subspaces
are equal

{x ∈ Rn : x(S′j) = 0 ∀ 1 ≤ j ≤ r} = {x ∈ Rn : x(Sj) = 0 ∀ 1 ≤ j ≤ r}.

Thus columns of C can be chosen to form an orthonormal basis of the subspace

{x ∈ Rn : x(Sj) = 0 ∀ 1 ≤ j ≤ r}.

Since {Sj : 1 ≤ j ≤ r} form a partition of U , we can choose columns of C to be divided
into groups of size |Sj | − 1 for each 1 ≤ j ≤ r where the jth group is supported on the
elements of Sj . Let Cj denote the submatrix with these |Sj | − 1 columns. Thus, we can
apply Lemma 6 and C>j Cj has the property that the non-zero entries form a block matrix of
Idi
− 1

di
Jdi

on the elements corresponding to Sj . Since C ′js have disjoint support, we have
CC> =

∑r
i=1 CjC

>
j as required. J

This completes the proof of Theorem 5. J

4 Negative Dependence Properties

In this section, we show the negative dependence properties of the random walk algorithm in
matroid polytopes.

First, we have the following simple claim.

I Lemma 9. The algorithm ends in T = n2

ε2 iterations with probability at least 1 − e−n.
Conditioned on terminating, if the algorithm terminates with solution xT , then xT = θ +∑T

t=1 εC(Ft)gt +
∑n

i=1 ζi where gt are independent Gaussians and |ζi| ≤ nε for each i. Here
C(Ft) is the projection matrix at time t and is also a random variable.

Proof. The probability that the algorithm aborts in a single iteration is bounded by the
probability of the event that a Gaussian with covariance at most εI is outside the ball of
radius εn. Standard concentration result that this probability is bounded by e−n2 . Thus the
probability of aborting in the first T iterations is at most n2

ε2 e
−n2 ≤ 1

2e
−n for large enough n
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and ε < 1
n2 . Let us condition on the event that the algorithm does not abort. Now we bound

the number of iterations. In each iteration, the expected distance squared from θ increases
by at least ε2. This follows since

E[‖xt+1 − θ‖2
2|xt] = ε2E[gC(Ft)C(Ft)>g] ≥ ε2

where we use the fact that C(Ft)>g is projection of a standard Gaussian in at least dimension
one. Taking expectation over xt, we get the squared distance increases by at least ε. Since
the distance is bounded by diameter of P which is

√
n. Thus, with probability at least

1− 1
2e
−n, the algorithm terminates in n2ε2 iterations with a vertex of P conditioned on the

event that it doesn’t terminate. Thus, we get the first claim.
Now consider the case that the algorithm succeeds and returns xT . At each iteration t,

we add εC(Ft)gt to the current vector except when we project on a face. Since the dimension
of the face reduces by one, there are at most n projection steps. The error term introduced
by the projection is denoted by ζi where |ζi| ≤ nε for each 1 ≤ i ≤ n. thus we obtain that

xT = θ +
T∑

t=1
εC(Ft)gt +

n∑
i=1

ζi. J

From now, we condition on the event that the algorithm does not abort and terminates
with a vertex at iteration T . Thus all expectations stated from now on are conditioned on
this event.

4.1 Negative Cylinder Property
We first show the negative cylinder property as defined in Definition 3. Recall that negative
cylinder property is enough to obtain concentration results as given by Chernoff bounds.

I Lemma 10. For any subset R ⊆ U ,

E[
∏
i∈R

xT (i)] ≤
∏
i∈R

E[xT (i)] + 2n2ε =
∏
i∈R

θ(i) + 2n2ε

Proof. We will show that
∏

i∈R xt(i) forms a supermartingale (modulo the error terms).
Since

∏
i∈R x0(i) =

∏
i∈R θ(i), we will have the claim. Let us verify the supermartingale

property, by first ignoring the error term introduced due to fixing a constraint. Recall that

xt+1 = xt(i) + εC(Ft)gt.

Let ht = C(Ft)gt. Consider any time t+ 1.

E[
∏
i∈R

xt+1(i)|xt] = E[
∏
i∈R

(xt(i) + εht) |xt]

=
∏
i∈R

xt(i) + ε
∑
j∈R

E[ht(j)|xt] ·

 ∏
i∈R\{j}

xt(i)


+ε2

∑
j,k∈R,j 6=k

E[ht(j)ht(k)|xt] ·

 ∏
i∈R\{j,k}

xt(i)


+ε3

∑
j,k,l∈R,j 6=k 6=l

E[ht(j)ht(k)ht(l)|xt] ·

 ∏
i∈R\{j,k,l}

xt(i)

 + . . .

≤
∏
i∈R

xt(i) + 2ε3n3

ITCS 2017
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where we use the fact that E[ht(j)|xt] = 0 for each j ∈ R and
ε2 ∑

j,k∈R,j 6=k E[ht(j)ht(k)|xt] ≤ 0 for each j 6= k ∈ R from Theorem 5. The later terms
have increasing powers of ε and thus we can bound the error terms using the fact that ε ≤ 1

n2 .
Applying an inductive argument, and also incorporating the error term introduced due

to fixing constraints, we obtain the lemma.
J

4.2 Negative Association
We now prove the stronger negative dependence property of negative association. This relies
on the following classical lemma about Gaussian distribution that says that pairwise negative
correlation is enough to obtain negative association. The definition of negative association is
extended to real random variables as well.

I Definition 11 (Negative Association). Let X1, . . . , Xn be real valued random variables.
Then Xi’s are negatively associated if for every non-decreasing functions f : Rn → R and
g : Rn → R we have

E[f(X1, . . . , Xn)g(X1, . . . , Xn)] ≤ E[f(X1, . . . , Xn)]E[g(X1, . . . , Xn)] (5)

if f and g depend on disjoint set of coordinates.

Observe that the definitions are consistent and if a set of boolean random variables are
negatively associated as per Definition 1 then they are also negatively associated as per
Definition 11. This follows since every non-decreasing f : {0, 1}n → R which depends on
S ⊆ [n] can be extended to a non-decreasing function f̂ : Rn → R which depends on S.
Indeed, for any x ∈ [0, 1]n, let

f̂(x) =
∑

T⊆[n]

f(T )
∏
i∈T

xi

∏
i/∈T

(1− xi)

and for any other x, let

f̂(x) = f(x ∧ 1)

where (x∧1)i = min{xi, 1}. A straightforward check shows that f̂ and f agree on the boolean
hypercube. Moreover, f̂ is non-decreasing and only depends on S.

I Theorem 12. [13] Let f1 : Rn → R and f2 : Rn → R be non-decreasing functions depending
on a disjoint set of coordinates. Let X = (X1, . . . , Xn) be a Gaussian random variable which
is negatively correlated. Then we have

E[f1(X)f2(X)] ≤ E[f1(X)]E[f2(X)].

We now prove the following theorem.

I Lemma 13. For any non-decreasing functions f1, f2 : Rn → R depending on disjoint set
of coordinates that are 1-Lipschitz, we have for each 0 ≤ t ≤ T ,

E[f1(xt)f2(xt)] ≤ E[f1(xt)]E[f2(xt)] + 2n
√
nε

Proof. We first ignore the errors introduced due to projection onto tight constraints and
prove the inequality without the error term. We let yt denote the corresponding fractional
points. Thus yt = θ +

∑t−1
s=1 C(Fs)gs. We prove that

E[f1(yt)f2(yt)] ≤ E[f1(yt)]E[f2(yt)]
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by induction on t. For t = 0, y0 = θ and both sides are equal. Now, let the statement be
true for t ≤ T − 1. We have yt+1 = yt + Ctgt where we denote C(Ft) by Ct. Thus we have

E[f1(yt+1)f2(yt+1)|yt] = E[f1(yt + Ctgt)f2(yt + Ctgt)|yt]

But now observe that Ctgt is a Gaussian in Rn which is negatively correlated from Theorem 5.
For any yt, we apply Theorem 12 to the functions f1(yt + ·) and f2(yt + ·), we obtain

E[f1(yt+1)f2(yt+1)|yt] = E[f1(yt + Ctgt)f2(yt + Ctgt)|yt]
≤ E[f1(yt + Ctgt)|yt]E[f2(yt + Ctgt)|yt]
= E[f1(yt+1)|yt]E[f2(yt+1)|yt].

Now taking expectations w.r.t. yt, we obtain that

E[f1(yt)f2(yt)] ≤ E[f1(yt)]E[f2(yt)].

Now bound the distance between xt and yt. We have

‖xt − yt‖2 = ‖
t−1∑
i=1

ζi‖2 ≤
√
nmax

i
‖ζi‖2 ≤ n

√
nε.

Since f1 and f2 are 1-Lipschitz, we have the result of the lemma. J
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