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Abstract
The number of rounds, or round complexity, used in an interactive protocol is a fundamental re-
source. In this work we consider the significance of round complexity in the context of Interactive
Proofs of Proximity (IPPs). Roughly speaking, IPPs are interactive proofs in which the verifier
runs in sublinear time and is only required to reject inputs that are far from the language.

Our main result is a round hierarchy theorem for IPPs, showing that the power of IPPs
grows with the number of rounds. More specifically, we show that there exists a gap function
g(r) = Θ(r2) such that for every constant r ≥ 1 there exists a language that (1) has a g(r)-round
IPP with verification time t = t(n, r) but (2) does not have an r-round IPP with verification time
t (or even verification time t′ = poly(t)).

In fact, we prove a stronger result by exhibiting a single language L such that, for every
constant r ≥ 1, there is an O(r2)-round IPP for L with t = nO(1/r) verification time, whereas the
verifier in any r-round IPP for L must run in time at least t100. Moreover, we show an IPP for L
with a poly-logarithmic number of rounds and only poly-logarithmic verification time, yielding a
sub-exponential separation between the power of constant-round IPPs versus general (unbounded
round) IPPs.

From our hierarchy theorem we also derive implications to standard interactive proofs (in
which the verifier can run in polynomial time). Specifically, we show that the round reduc-
tion technique of Babai and Moran (JCSS, 1988) is (almost) optimal among all blackbox trans-
formations, and we show a connection to the algebrization framework of Aaronson and Wigder-
son (TOCT, 2009).
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1 Introduction

Interactive Proofs, introduced by Goldwasser at el. [38] (and in their public-coin form, by
Babai and Moran [8]), are protocols in which a computationally unbounded prover tries
to convince a verifier that an input x belongs to a language L. A recent line of work,
initiated by Ergün, Kumar and Rubinfeld [19] and more recently by Rothblum, Vadhan and
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39:2 A Hierarchy Theorem for Interactive Proofs of Proximity

Wigderson [58], considers a variant of interactive proofs in which the verifier is required to
run in sublinear time. Since the verifier does not have enough time to even read its entire
input, we cannot expect it to reject every false statement. Rather, following the property
testing literature [59, 27] (see also [26]), we relax the soundness condition and only require
that the verifier reject inputs that are far from the language (no matter what cheating
strategy the prover uses). Since the verifier is only assured that the input is close to the
language, such interactive proofs are called interactive proofs of proximity (IPPs). Indeed,
IPPs may be thought of as the property testing analogue of interactive proofs.

From an information theoretic perspective, the key parameters of an IPP are its query
complexity, communication complexity and round complexity. The query complexity is the
number of bits of the input string that the verifier reads. The communication complexity is
the number of bits exchanged between the prover and the verifier, and the round complexity
is the number of rounds of interaction. We think of all of these parameters as being sublinear
in the input length. Additional computational parameters that we aim to minimize are the
verifier’s running time (which should also be sublinear) and the prover’s running time (which,
ideally, should be proportional to the complexity of deciding the language).

In this work we focus on the round complexity of IPPs, and on the relation between the
number of rounds and the other parameters. Specifically, we ask the following question:

Does the power of Interactive Proofs of Proximity grow with the number of rounds?

Understanding the round complexity of protocols is a central problem in the theory of
computation (most notably in complexity theory and cryptography). Some of the main
motivations for reducing round complexity are considerations such as network latency, the
need to stay online or to synchronize messages between the parties, and the overhead involved
in sending and receiving messages.

1.1 Our Results
Our main result answers the foregoing question by showing a hierarchy of IPPs: we show that
for a gap function g(r) = Θ(r2), and for every constant r ≥ 1, it holds that r-round IPPs
can be outperformed by g(r)-round IPPs, in the sense that the verifier in the latter system is
significantly more efficient. We prove our hierarchy theorem by constructing a single explicit
language for which the power of IPPs grows with the number of rounds.

I Theorem 1 (Hierarchy theorem, informally stated (see Theorem 16)). There exists an explicit
language L such that for every constant r ≥ 1 and for inputs of length n:
1. There is an O(r2)-round IPP for L in which the verifier runs in time t = nO(1/r); and
2. The verifier in any r-round IPP for L must run in time at least t′ = t100 (where the

constant 100 is arbitrary). Furthermore, either the communication complexity or query
complexity of the verifier must be at least t′.

Thus, we obtain a characterization (which is exact, up to the specific polynomial of the gap
function g) of the complexity of constant-round IPPs for the language L.

For simplicity, the statement in Theorem 1 is restricted to constant-round protocols.
However, the complexity of the IPP protocol in Theorem 1 actually reduces further as the
round complexity grows to be super-constant. In particular, we obtain a poly-logarithmic
round IPP for L with poly-logarithmic communication and query complexities, and an
ω(1)-round IPP with no(1) communication and query complexities. Together with the lower
bound in Theorem 1, these yield a separation between the power of constant-round IPPs and
super-constant round IPPs, and a sub-exponential separation with respect to poly-logarithmic
round IPPs.
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I Theorem 2 (Constant Round versus General IPPs). There exists a language L that has a
polylog(n)-round IPP with a polylog(n) time verifier and an ω(1)-round IPP with no(1) time
verifier, but for every constant r ≥ 1, the verifier in any r-round IPP for L must run in time
at least nΩ(1/r).

Prior to this work, only a separation between the power of MAPs (which are non-interactive
IPPs, i.e., the entire “interaction” consists of a single message) and IPPs was known [43].

We remark that Theorems 1 and 2, and their proofs, shed new light also on standard
interactive proofs (in which the verifier is given direct access to the input and can run in
polynomial time). We proceed to discuss such implications.

Optimality of the Babai-Moran Round Reduction. Following Vadhan [66], we consider
black-box transformations on interactive proofs, which are transformations that take prover
and verifier strategies (P,V), for an interactive-proof for some language L, and output new
strategies (P ′,V ′), for the same language L, such that new prover and verifier strategies can
only make oracle calls to the original strategies (P,V). More specifically, the new verifier V ′
is only allowed to make oracle calls to V (and in particular does not have direct access to the
input) and P ′ may make oracle calls to both V and P.1

As pointed out by Vadhan, many (but not all) of the known transformations on interactive
proofs from the literature are in fact black-box. We focus on such a transformation, due
to Babai and Moran [8], for reducing the number of rounds of interaction in public-coin
interactive proofs. Using our hierarchy theorem, we show that the overhead incurred by the
round reduction transformation of [8] is close to optimal among all black-box transformations.

Algebrization of Interactive Proofs. As our second application, we show a connection
between our hierarchy theorem and the algebrization framework of Aaronson and Wigderson
[1]. This framework, which is an extension of the relatization framework of Baker, Gill, and
Solovay [9], is viewed as a barrier to proving complexity-theoretic lower bounds using currently
known proof techniques. Loosely speaking, [1] show that almost all known complexity
theoretic results “algebrize” (i.e., fall within their framework), whereas making progress
on some of our most fundamental questions (such as P 6= NP) requires non-algebrizing
techniques.

Using our hierarchy theorem for IPPs, we show that any proof of the complexity class
inclusion #P ⊆ AM (which is widely disbelieved, and in particular implies the collapse
of the polynomial hierarchy) must make use of non-algebrizing techniques, and therefore
must introduce a fundamentally different proof technique. A conceptual connection between
our results and interactive proofs in the algebrization framework is further discussed in
Section 1.3 and elaborated on in Section 5.

1.2 Technical Overview

Loosely speaking, the language for which we prove the round hierarchy theorem consists of
error-correcting encodings of strings x ∈ {0, 1}k whose Hamming weight wt(x) def=

∑
i∈[k] xi,

is divisible by 3 (i.e., wt(x) = 0 (mod 3)).

1 One could also restrict P ′ to make only oracle calls to P (and not to V as we do). However, giving P ′
more freedom only makes our results stronger (since we rule out the broader class of transformations).
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39:4 A Hierarchy Theorem for Interactive Proofs of Proximity

The specific encoding that we use is the low degree extension code LDE : Fk → Fn, over
a field F that is an extension field of GF(2).2 Indeed, it is crucial that the characteristic of F
is different than the modulus 3. The parameter k (which specifies the message length) is
the same as in the preceding paragraph, where we view {0, 1}k as a subset of the message
space Fk.

Before proceeding, we note that throughout this work we use the standard convention
that codes map messages of length k to codewords of length n = poly(k). In particular, this
will mean that inputs to IPPs, which will typically refer to (possibly corrupt) codewords,
have length n, whereas inputs to other types of protocols and sub-routines, may refer to the
underlying messages, which have length k.

Recall that the LDE code is parameterized by a finite field F, a subset of the field H ⊆ F
and a dimension m. To encode a message x ∈ {0, 1}k, where k = |H|m, we view the
message as a function x : Hm → {0, 1} (by associating [k] with Hm) and consider the unique
individual degree |H| − 1 polynomial P : Fm → F that agrees with x on Hm. We denote
this polynomial by P = LDEF,H,m(x). For the time being, the sizes of |F|, |H| and m should
all be thought of as at most poly-logarithmic in n. (See Section 2.3 for additional details
about the LDE encoding.)

Thus, the language for which we prove our round hierarchy, which we denote by Enc-MOD3,
consists of all polynomials P : Fm → F of individual degree |H| − 1 that obtain Boolean
values in the subcube Hm, such that these Boolean values sum up to 0 (mod 3). That is, all
polynomials P such that P |Hm : Hm → {0, 1} and

∑
z∈Hm P (z) ≡ 0 (mod 3).

We prove our hierarchy theorem by showing that for every constant r ≥ 1, the language
Enc-MOD3 has an O(r2)-round IPP in which the verifier runs in time roughly nO(1/r), and
that the verifier in any r-round IPP for Enc-MOD3 must run in time at least nΩ(1/r), where
the constant in the Ω-notation can be made arbitrarily larger than the constant in the
O-notation. In Section 1.2.1 we give an overview of the upper bound, which is technically
more involved, and then, in Section 1.2.2 we give an overview of the lower bound.

1.2.1 Upper Bound
Our goal is to construct an IPP in which the verifier is given oracle access to a function
f : Fm → F and needs to verify that f is close to a polynomial of individual degree |H| − 1
that obtains only Boolean values in Hm such that their sum modulo 3, over the subcube
Hm, is 0. The verifier may interact with the prover for O(r2) rounds.

As its initial step, our verifier checks that the given input f is close to some low degree
polynomial by invoking the low degree test. This test, introduced by Rubinfeld and Sudan
[59], ensures that if f is far from every low degree polynomial, then the verifier will reject
with high probability. Thus, we can assume that f is close to some low degree polynomial.
Moreover, using the self-correction property of polynomials, this means that with a small
overhead, we can treat f as though it were itself a low degree polynomial (rather than just
being close).3

Given this initial step, we can now assume without loss of generality that the function
f : Fm → F is in fact a low degree polynomial. However, the verifier still needs to check
that

∑
z∈Hm f(z) = 0 (mod 3) and that f |Hm : Hm → {0, 1}. For now though, let us focus

2 We remark that a similar result could be obtained if we replaced the modulus 3 and the field’s
characteristic by any two distinct and constant-sized primes.

3 Loosely speaking, the self-correction property of polynomials says that if f is guaranteed to be close
to a low degree polynomial P , then one can read values from P by only making few queries to f . See
Lemma 30 for the precise statement.
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on the former task, which is the main step in our proof: checking that
∑
z∈Hm f(z) = 0

(mod 3) (and we just assume that f |Hm : Hm → {0, 1}).
Viewing f |Hm as a string x ∈ {0, 1}k, we need to construct an interactive proof in which

the verifier uses oracle access to LDE(x) to verify that wt(x) = 0 (mod 3) in sublinear time.
We refer to this type of proof-system, in which the verifier is given oracle access to an encoding
of the input and runs in sublinear time, as a holographic4 interactive proof (HIP).

More precisely, we say that a language has an HIP, with respect to some error-correcting
code C, if it has an interactive proof in which the verifier has oracle access to an encoding
under C of the input and verifies membership in the language using few queries to this
encoding. The redundant representation of the input often allows the verifier to run in
sub-linear time. We remark that HIPs play a central role in this work and we discuss them
more in Section 1.3.

Thus, our task is now to construct an HIP (with respect to the LDE code) for the language

LMOD3
def=
{
x ∈ {0, 1}k : wt(x) = 0 (mod 3)

}
.

Before describing the construction of an HIP for LMOD3, it will be instructive to consider
as a warm-up, the construction of an HIP for the related language LMOD2 = {x ∈ {0, 1}k :
wt(x) = 0 (mod 2)}, where the important distinction is that the modulus 2 is also the
characteristic of the field F under which x is encoded.

In this warmup case, we assume that the verifier is given oracle access to a polynomial
f : Fm → F that obtains Boolean values in Hm (i.e. f |Hm : Hm → {0, 1}), and needs to
check that

∑
z∈Hm f(z) = 0, where the sum is over GF(2). Importantly, since we assumed

that f |Hm is Boolean valued, and that the field F has characteristic 2, we can instead take
the sum over the field F (rather than taking the integer sum mod 2).

The latter problem, of checking whether the sum of a given input polynomial is 0
over a subcube of its domain (i.e., over Hm), has a well-known interactive proof due to
Lund et al. [52], which is often referred to as the sumcheck protocol. In this protocol the
verifier only needs to query the polynomial f at a single point and so it can be viewed
as an HIP. Furthermore, there are known variants of the sumcheck protocol that offer a
suitable tradeoff between the number of rounds and verifier’s complexity, which suffice for
our purposes (i.e., an r-round IPP with verification time roughly n1/r).

The aforementioned variants of the sumcheck protocol suffice for an upper bound for
the warmup case. However, we do not know how to prove a corresponding lower bound,
which is the reason that we set the modulus in our construction to be different from the
field’s characteristic.5 While the original language LMOD3 allows us to prove the desired lower
bound, unfortunately it makes obtaining an upper bound more challenging. We proceed to
the actual problem at hand: constructing an HIP (with respect to the LDE code over a field
of characteristic 2) for checking LMOD3.

Since the modulus and characteristic are different, our task can no longer be expressed as
a linear constraint (over F) on the bits of x. Since we do not know how to solve this problem
directly using the sumcheck protocol, we turn to more complex interactive proofs from the
literature. Specifically, our starting point will be the interactive proof-system of Goldwasser,
Kalai and Rothblum [37], which we shall refer to as the GKR protocol.6

4 The terminology of “holographic” interactive proofs originates from the “holographic proofs” of
Babai et al. [5], which refers to probabilistic proof systems for encoded inputs. The notion of HIP, and
its relation to other notions, is further discussed in Section 1.3.

5 We conjecture that for the warmup case (i.e., when the modulus is 2) a lower bound that (roughly)
corresponds to the upper bound given by the sumcheck protocol does hold.

6 In Section A.1 we discuss our reason for basing our protocol on the GKR proof-system, rather than
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39:6 A Hierarchy Theorem for Interactive Proofs of Proximity

The GKR Protocol. Goldwasser et al. give an interactive proof for any language computable
by a logspace-uniform circuit of size S and depth D such that the number of rounds in their
protocol is D · polylog(S), the communication is also D · polylog(S), and the verifier runs in
time (n+D) · polylog(S). Their protocol is based on algebraic techniques and, in particular,
uses ideas originating from the interactive proof and PCP literature (cf., [63]). Our HIP for
MOD3 will be based on a variant of their proof system.

Observe that one can check whether a given string x’s Hamming weight is divisible by 3
using a highly uniform logarithmic-depth formula.7 Thus, applying the GKR result gives us
an interactive proof for LMOD3. Most importantly for our purposes, if the GKR verifier is
given oracle access to the LDE encoding of the input, then it only needs to check a single
(random) element from the encoding (and in particular runs in sublinear time). In other
words, the GKR protocol can be thought of as an HIP with sublinear time verification.8 While
the GKR protocol does yield an HIP for LMOD3, its round complexity is poly-logarithmic and
therefore too large for our purposes (recall that we are aiming for constant round protocols).
The large round complexity is due to the fact that the high-level strategy in the GKR protocol
is to process the circuit layer by layer, where the transition between each two consecutive
layers uses an interactive protocol, which itself is based on the sumcheck protocol.

Even if we were to use a constant-round variant of the sumcheck protocol for each
transition, the GKR protocol still uses Ω(D) rounds, where D is the depth of the circuit,
which in our case is logarithmic and therefore too large. To get around this, we rely on
an unpublished observation, due to Kalai and Rothblum [45], which shows that for every
constant r ≥ 1, if the circuit satisfies an extreme (and somewhat unnatural) uniformity
condition9, then log(n)/r layers can be processed at once, using r rounds of interaction and
roughly n1/r communication. Thus, overall, a logarithmic depth circuit can processed in
O(r2) rounds. Using this observation, [45] obtain constant-round interactive-proofs for all
languages in NC1 that satisfy the aforementioned uniformity condition.10

In our actual construction we do not use the [45] protocol directly (even though the
language LMOD3 satisfies the desired uniformity), but rather give a special purpose protocol
tailored for LMOD3 (which is inspired by their techniques). Doing so allows us to avoid stating
their somewhat cumbersome uniformity condition and to introduce other simplifications (due
to the simple and regular structure of the formula for LMOD3). We proceed to describe this
HIP.

other general purpose interactive proof-systems from the literature.
7 E.g., consider the log(k)-depth full binary tree with the input bits at its leaves, in which each internal

vertex computes the sum modulo 3 of its two children, where each such modulo 3 sum can be computed
by a simple constant size gadget composed of AND, OR and NOT gates.

8 Note that obtaining an interactive-proof for LMOD3 with a linear-time verifier is trivial, since the verifier
can decide membership by itself in linear-time. The key benefit that we get from using the GKR
protocol is that it allows for sublinear time verification given access to an encoded input.

9 Loosely speaking, the uniformity condition requires that it be possible to compute low degree extensions
of gate indicator functions that refer to gates of fan-in t = nO(1/r). That is, we view the formula as a
depth r circuit consisting of gates of fan-in t = nO(1/r) (by grouping together every log(n)/r consecutive
layers). For each of these r layers, and every type of fan-in t gate g : {0, 1}t → {0, 1} that appears in
that layer, we consider a gate indicator function Ig that given as input indices of t+ 1 wires, outputs 1
if the first wire is the result of an application of g to the other t wires. The [45] uniformity requirement
is that it be possible to efficiently compute the low degree extension of Ig.

10Recall that the class NCi consists of languages computable by polynomial-size O
(
(logn)i

)
-depth

circuits with fan-in 2. We emphasize that the [45] result gives constant-round protocols only for NC1

circuits (that are sufficiently uniform), whereas the GKR result gives protocol with a poly-logarithmic
round complexity for all (logspace uniform) languages in NC = ∪k∈NNCk. (Furthermore, the GKR
protocol for NC has poly-logarithmic communication complexity whereas the [45] protocol has n1/O(1)

communication.)
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A Holographic Interactive Proof for LMOD3. Recall that we are given oracle access to a
polynomial X : Fm → F promised to be the low-degree extension of a Boolean assignment
x ∈ {0, 1}k, and our goal is to construct an O(r2)-round HIP for verifying whether x ∈ LMOD3.
Also recall that we have fixed the parameters of the LDE code, including a field F, a subset
H ⊆ F, and a dimension m such that |Hm| = k. However, for now we think of the sizes of
these parameters as being |H| = k1/r, m = r, and |F| = poly(|H|,m), rather than |H| being
poly-logarithmic in k.11

For a given input polynomial X : Fm → F (of individual degree |H| − 1), we define a
sequence of polynomials V0, . . . , Vr, where each Vi : Fi → F has individual degree |H|−1 (note
that these polynomials have gradually increasing domains). The polynomial Vr : Fr → F
is defined as Vr ≡ X. The polynomials V1, . . . , Vr−1 are each defined to be the (unique)
individual degree |H| − 1 polynomial that satisfies the following recursive relation:

∀i ∈ [r], ∀h ∈ Hi−1, Vi−1(h) =
∑
α∈H

Vi(h, α) (mod 3), (1)

where the arithmetic is over the integers (modulo 3). Indeed, V0 ∈ F is defined as a single
field element V0 =

∑
α∈H V1(α) (mod 3). Note that we identify the integers {0, 1, 2} with

three distinct elements in F. Indeed, each of the Vi polynomials takes values in the set
{0, 1, 2} ⊆ F over the subcube Hi.

Taking the [37, 45] view, each polynomial Vi : Fi → F can be thought of as the low degree
extension of the ith-layer (counting from the output layer) in a depth r formula of fan-in k1/r

for LMOD3 such that each gate computes the sum modulo 3 of its k1/r children. In particular,

V0 =
∑
α∈H

V1(α) = · · · =
∑
h∈Hi

Vi(h) = · · · =
∑
h∈Hr

Vr(h) = wt(x) (mod 3).

Our main step is an interactive protocol that reduces a claim about an (arbitrary) single
point in the polynomial Vi−1 to a claim about a single (random) point in Vi. By applying
this interactive reduction r times, we can reduce the initial claim V0 = 0 to a claim about a
single point in Vr, which we can explicitly check (since we have oracle access to Vr ≡ X).
Each interactive reduction will take O(r) rounds so overall we get an HIP for LMOD3 with
O(r2) rounds.

Towards showing such an interactive reduction protocol, we would like to express Equa-
tion (1), which is a modular equation over the integers, as a low degree relation over the field
F. Let t def= |H| = k1/r, and let ξ1, . . . , ξt be the enumeration of all elements in H. Define
the polynomial M̃OD3 : Ft → F as the (unique) individual degree two polynomial such that
for every z ∈ {0, 1, 2}t, it holds that M̃OD3(z) =

∑
j∈[t] zi (mod 3), where the tilde in the

notation is meant to remind us that M̃OD3 is not the modulo 3 summation function but
rather its low degree extension over F. Equation (1) can now be re-stated as:

∀i ∈ [r], ∀h ∈ Hi−1, Vi−1(h) = M̃OD3
(
Vi(h, ξ1), . . . , Vi(h, ξt)

)
(2)

(where we use the fact that the Vi polynomials take values in {0, 1, 2} over Hi.)

11We remark that setting |H| = k1/r is actually problematic for us since it induces a dependence between
the language Enc-MOD3 and the desired round complexity r. Nevertheless, it does yield a weaker
hierarchy theorem in which we use a different language for each value of r. At the end of Section 1.2.1
we discuss how we overcome this difficulty.
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Observe that Equation (2) is a polynomial relation between Vi−1 and Vi that holds
for inputs in Hi−1. We would like to obtain a similar relation for general inputs (i.e., in
Fi−1). To do so, we observe that, for every z ∈ Fi−1, we can express Vi−1(z) as an F-linear
combination of the values {Vi−1(h)}h∈Hi−1 (this follows directly from the fact that the low
degree extension is a linear code). We denote the coefficients in this linear combination
by {βz(h)}h∈Hi−1 (these coefficients arise from Lagrange interpolation, but we ignore the
specifics for this overview). Combining this observation together with Equation (2) we obtain:

∀i ∈ [r], ∀z ∈ Fi−1, Vi−1(z) =
∑

h∈Hi−1

βz(h) · Vi−1(h)

=
∑

h∈Hi−1

βz(h) · M̃OD3
(
Vi(h, ξ1), . . . , Vi(h, ξt)

)
. (3)

Using Equation (3) we will describe an interactive reduction from a claim about Vi−1
to a claim about Vi. Suppose that our interactive reduction starts with a claim that
Vi−1(zi−1) = νi−1 for some zi−1 ∈ Fi−1 and νi−1 ∈ F. By Equation (3) this translates into
the claim:

νi−1 =
∑

h∈Hi−1

βzi−1(h) · M̃OD3
(
Vi(h, ξ1), . . . , Vi(h, ξt)

)
. (4)

We now observe that Qi(w) def= βzi−1(w) · M̃OD3
(
Vi(w, ξ1), . . . , Vi(w, ξt)

)
is a low degree

polynomial over F (since βzi−1 , M̃OD3, and Vi have low degree). Thus, the claim in
Equation (4) refers to the sum of a low degree polynomial over a subcube, which is precisely
the problem that the sumcheck protocol solves.

It seems that we are done, except that a problem arises. In the sumcheck protocol the
verifier is given oracle access to the polynomial whose sum over a subcube we wish to check.
Although the polynomial Qi on which we wish to run the sumcheck protocol is well-defined,
our verifier does not have oracle access to it. Therefore it is not immediately clear how we
can hope to run the sumcheck protocol with respect to Qi.

We resolve this problem by noting that the sumcheck protocol can be used in an input-
oblivious manner. In this variant, the verifier does not need to have oracle access to Qi, but
rather than accepting or rejecting, the verifier outputs a claim of the form Qi(wi−1) = γi−1,
for some point wi−1 ∈ Fi−1 and value γi−1 ∈ F. Completeness means that if the original
claim is true (i.e.,

∑
h∈Hi−1 Qi(h) = νi−1), then the verifier always outputs (wi−1, γi−1)

such that Qi(wi−1) = γi−1, and soundness means that if the original claim is false (i.e.,∑
h∈Hi−1 Qi(h) 6= νi−1), then for any cheating prover strategy, with high probability

Qi(wi−1) 6= γi−1 (or the verifier rejects during the interaction). We stress that in this
variant the verifier makes no queries to Qi.12 As for the number of rounds, recall that in the
sumcheck protocol in each iteration one of the variables is “stripped” from the summation,
which leads to a total of i− 1 ≤ r rounds.

Having run the input-oblivious variant of the sumcheck protocool, our verifier is now
left with the claim Qi(wi−1) = γi−1. However, to obtain our interactive reduction, we still
need to reduce the foregoing claim to a claim about a (single) point in the polynomial
Vi. To do so, the first idea that comes to mind is to have the prover provide the values

12To see that this variant is possible, observe that in the classical sumcheck protocol [52], the verifier only
queries the polynomial at a single point and (at the end of the interaction) checks that it is equal to a
particular value.
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µj = Vi(wi−1, ξj), for every j ∈ [t]. Given these values, the verifier can explicitly check
that indeed γi−1 = βzi−1(wi−1) · M̃OD3(µ1, . . . , µt).13 If the prover indeed sent the correct
values, then this last check assures us that indeed Qi(wi−1) = γi−1. However, since we
cannot assume that the prover sent the correct values, we are left with t claim of the form
Vi(wi−1, ξj) = µj , which the verifier needs to check.

Notice that we have actually reduced a single claim about Vi−1 to t claims about Vi. This
still falls short of our goal which was to reduce to only a single claim about Vi. (Indeed,
we cannot afford to increase the number of claims by a t factor in each iteration, since this
would yield a protocol with complexity tr = k, which is trivial).

The final observation is that the points {(wi−1, α)}α∈H lie on the (axis parallel) line
(wi−1, ∗). Note that the restriction of a low degree polynomial to an axis parallel line is a low
degree (univariate) polynomial. Thus, we will have the prover specify the entire polynomial
Pi : F → F defined as Pi(α) = Vi(wi−1, α), for every α ∈ F. The verifier checks that
γi−1 = βzi−1(wi−1) · M̃OD3 (Pi(ξ1), . . . , Pi(ξt)). The point is that now if the prover supplies
an incorrect values for some Pi(α) (i.e., Pi(α) 6= Vi(wi−1, α)), since both Pi and Vi(wi−1, ∗)
are low degree polynomials, for most ρ ∈ F it holds that Pi(ρ) 6= Vi(w, ρ). Thus, the verifier
chooses at random ρi ∈ F and sets the claim for the next iteration to be Vi(zi) = νi, where
zi = (wi−1, ρi) and νi = Pi(ρi).14

To summarize, our HIP for LMOD3 works in r phases. In the ith phase we reduce a claim
of the form Vi−1(zi−1) = νi−1, for some point zi−1 ∈ Fi−1 and value νi−1 ∈ F, into a claim
Vi(zi) = νi, for zi ∈ Fi and νi ∈ F (which are generated during the interactive reduction). In
particular, the first iteration begins with the claim V0 = 0 (i.e., z0 is the empty string and
ν0 = 0), which corresponds to the claim that x ∈ LMOD3 (i.e., wt(x) = 0 (mod 3)). Thus,
the ith phase in our HIP begins with the claim Vi−1(zi−1) = νi−1. In the ith phase, first the
prover and verifier engage in the sumcheck protocol that arises from Equation (4). This
yields the claim Qi(wi−1) = γi−1, for a point wi−1 ∈ Fi−1 and value γi−1 ∈ F (generated by
the sumcheck protocol). Since the verifier has no access to Qi, it asks the prover to send the
polynomial Pi : F→ F defined as Pi(α) = Vi(wi−1, α). The verifier checks that the values of
this polynomial are consistent with the claim Qi(wi−1) = γi−1, and then selects a random
point ρi ∈ F. The claim for the following phase is that Vi(zi) = νi, where zi = (wi−1, ρi)
and νi = Pi(ρi). After r such phases we are left with the claim Vr(zr) = νr, for zr ∈ Fr and
νr ∈ F, which the verifier can explicitly check (since it has oracle access to Vr ≡ X).

The total number of rounds per interactive reduction is O(r), and the communication
complexity is roughly poly(t, r) = poly(r, k1/r). Since we invoke r such reductions, overall
we obtain an HIP for LMOD3 with round complexity O(r2) and communication complexity
poly(r, k1/r).

Obtaining an HIP over a Small Field. The approach outlined above yields an r2-round HIP
for LMOD3, with respect to the code LDEF,H,m, in which the field size |F| is quite large (i.e.,
|F| ≥ k1/r) and in particular depends on the value of r. Unfortunately, when we transform this
HIP into an IPP for the language Enc-MOD3, the dependence of the field size on r in the HIP
introduces a dependence of the language Enc-MOD3 def= {C(x) : x ∈ {0, 1}k with wt(x) = 0
(mod 3)} on r. This dependence results in a weaker hierarchy theorem, in which we use a

13Note that both βzi−1 and M̃OD3 are explicit functions that the verifier can compute. Moreover they
can even be computed efficiently using standard techniques, see the technical sections for details.

14We remark that this final step is actually very reminiscent of an individual round of the sumcheck
protocol.
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different language for each value of r . Our goal however is to obtain a single language, for
which we can show an r-round IPP for every value of r (with a corresponding lower bound,
which will be discussed in Section 1.2.2).

To this end we show a general reduction that transforms any HIP over a large field F into
an HIP over a much smaller field F′, as long as F is an extension field of F′. We do so by
showing that any F-linear claim regarding the input (e.g., a claim about a single point in the
LDEF,H,m encoding) can be broken down (coordinate-wise) into d claims that are F′-linear,
where d = log(|F|/|F′|) is the degree of the field extension (i.e., (F′)d is isomorphic to F). We
can then easily verify each one of these F′-linear claims using the sumcheck protocol over the
smaller field F′.15

We remark that the ability to switch fields when using (holographic) interactive proofs
seems like a useful tool, and we believe that it will be useful in other contexts as well.

Checking Booleanity. In the above analysis we assumed for simplicity that the input
x = f |Hm is Boolean valued. In order to actually check this, we follow an idea of Kalai and
Raz [46] (which was used in the context of constructing interactive PCPs). We observe that
the polynomial f : Fm → F is Boolean valued in a subcube Hm if and only if the (slightly
higher degree) polynomial g : Fm → F, defined as g(z) = f(z) · (1− f(z)) is identically 0 in
Hm. The latter problem (of checking whether a polynomial vanishes on a particular subcube)
can be solved via a relatively simple reduction to the sumcheck protocol, that has been used
in the construction of PCPs.16 We note that we crucially use fact that the reduction from f

to g is local (i.e., the value of g at a point depends on the value of f at O(1) points), and
therefore can be used in our setting.

1.2.2 Lower Bound

We need to show a lower bound on the complexity of r-round IPPs for our language
Enc-MOD3 = {C(x) : x ∈ {0, 1}k with wt(x) = 0 (mod 3)}, where C : Fk → Fn is
the low degree extension code. Our lower bound will strongly use the fact that any F-
linear code (and in particular the low degree extension code that we use), for a field F of
characteristic 2, is also a GF(2)-linear code.

Our lower bound relies on a connection between IPPs and low-depth circuits, which
was discovered by Rothblum, Vadhan and Wigderson [58]. Following their approach, in
Section 4.3 we show that to prove an IPP lower bound for Enc-MOD3, it suffices to construct
two distributions D0 and D1 over n-bit strings such that:
1. D0 is distributed over the support of Enc-MOD3 (with high probability);
2. D1 is far from Enc-MOD3 (with high probability); and
3. Every sufficiently small DNF formula cannot distinguish between inputs from D0 and D1

(with more than, say, 0.1 advantage).

15To obtain the desired computational efficiency for the latter task, we actually use the [45] protocol,
which introduces an additional O(r2) rounds. We believe this use is an overkill, and we hope to replace
it with a more elementary argument in a following revision.

16 In a nutshell, to check whether g|Hm ≡ 0 we consider the restriction of g to the domain Hm and take
the low degree extension ĝ of that partial function. We observe that g is identically 0 in Hm if and only
if ĝ is identically 0 in Fm. Thus, it suffices to check whether for a random point z ∈ Fm, which the
verifier chooses, it holds that ĝ(z) = 0. The linearity of the LDE code now means that this check can be
solved by invoking the sumcheck protocol. See Section 3.4 for details.
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The two distributions that we consider are D0 and D1 such that Db is uniform over the set
{C(x) : x ∈ {0, 1}k and wt(x) = b (mod 3)}. Note that D0 is the uniform distribution over
Enc-MOD3, and so satisfies requirement (1), whereas the fact that D1 satisfies requirement
(2) follows from the distance of the code C. To show that the third requirement holds,
consider a DNF φ that distinguishes between D0 and D1. We show that the size of φ must
be large. Consider the distributions D′0 and D′1 over k-bit strings defined as

D′b = {x ∈ {0, 1}k : wt(x) = b (mod 3)}.

We can easily construct from φ a circuit φ′ that distinguishes between D′0 and D′1: the
circuit φ′ first computes the encoding C(x) of its input x ∈ {0, 1}k, and then applies the
DNF φ to the result. Using the fact that C is linear over GF(2), it follows that φ′ is a DNF of
parities (i.e., a depth-3 formula with an OR gate at the top layer, AND gates at the middle
layer, and XOR gates at the bottom layer). Now, we can apply the Razborov-Smolensky
[59] lower bound, which shows that any small AC0[2] circuit (i.e., circuits of constant-depth
circuits with AND, OR, and PARITY gates of unbounded fan-in), and in particular a DNF
of parities, cannot even approximate the summation modulo 3 function (i.e., distinguish
between D′0 and D′1).

1.3 Holographic Interactive Proofs
The proof of our hierarchy theorem utilizes a special type of interactive proofs, which we call
holographic interactive proofs. A holographic interactive proof (HIP) is an interactive proof
in which, instead of getting its input x explicitly, the verifier is given oracle access to C(x),
an error-corrected encoding of the input x, for a bounded number of queries. Hence, HIPs
may be thought of as interactive proofs for promise problems of the form (ΠYES,ΠNO) with
ΠYES = {C(x) : x ∈ L} and ΠNO = {C(x) : x 6∈ L}.

The notion of HIP was used, either implicitly or explicitly as a technical tool that underlies
many probabilistic proof systems (e.g., [52, 6, 5, 46, 37, 47, 58, 43, 48, 56, 28]).17 These
works demonstrate that, by using the redundant encoding of the input, we can often achieve
sublinear verification time. (As a matter of fact, in most of these works, it suffices for the
verifier to read just a single point in the encoding.) We remark that throughout this work (as
well as in most previous works18), the specific code that is used is the low-degree extension
code (LDE).

Some of the techniques that were outlined in Section 1.2.1, can be viewed as generic
transformations on HIPs (with respect to the LDE code), and we present them as such in the
technical parts of this work. These techniques include the ability to switch fields, or check
Booleanity, and the connection to IPPs. We wish to highlight the conceptual importance of
HIPs, and advocate a continued systematic study of these proof systems.

We also remark that HIPs with respect to the LDE code are closely related to interactive
proofs in the algebrization framework [1]. In both models the verifier is given oracle access to
a low degree polynomial and may interact with the prover to decide on some property of the
“message” or “oracle” encoded within the polynomial. See Section 5 for further discussion of
this connection.

17The first explicit use is in [5].
18A notable exception is the work of Meir [53], which is based on general tensor codes. We remark

that using Meir’s techniques it may be possible to extend our results to other tensor codes. We leave
exploring this possibility to future work.
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1.4 Related Works
In this section, we discuss several lines of works that are related to our work.

Interactive Proofs of Proximity. The notion of interactive proofs of proximity (IPP) was
first considered by Ergün, Kumar and Rubinfeld [19]. Its study was re-initiated by Rothblum,
Vadhan and Wigderson [58], who showed that every language computable by a low-depth
circuit has an IPP with a sublinear time verifier. IPPs were further studied by [31, 28] who
showed more efficient IPPs for certain restricted complexity classes. Other works have focusing
on variants such as non-interactive (MA) proofs of proximity [43, 20, 30] and interactive
arguments of proximity [49]. Proofs of proximity have also found applications to property
testing and related models [33, 34, 21].

Hierarchy Theorems for Standard Interactive Proofs. Aiello, Goldwasser and Håstad [2]
showed a round hierarchy theorem in a relativized world (i.e., with respect to an oracle).
However, the later results of [52, 60], which are based on non-relativizing techniques, demon-
strate that relativization is not an actual barrier, especially in the context of interactive
proofs.19 We note that although they are technically quite different, both our lower bound
and the lower bound of [2] are based on circuit lower bounds for low depth circuits.

Goldreich, Vadhan and Wigderson [36] showed a conditional round hierarchy result for
standard interactive proofs, based on the assumption that co-SAT does not have a 1-round
AM proof-system with complexity 2o(n).20 We emphasize that the result of [36] is based
on an unproven and arguably strong (yet believable) assumption, whereas our result is
unconditional.

We also note that for computationally sound proofs, also known as arguments, under
reasonable cryptographic assumptions there are extremely efficient 2-round protocols [50] and
even 1-round protocols [48]. In particular, these results show that the power of arguments
does not scale with additional rounds (since a fixed constant number of rounds suffice).
A similar statement holds for arguments of proximity that are the computationally sound
variant of IPPs (see [58, 49]).

Interactive PCPs. Holographic interactive proofs (HIPs) are closely related to the notion
of interactive PCPs, introduced by Kalai and Raz [46]. Roughly speaking, interactive-PCPs
are encodings of NP-witnesses that, like PCPs can be verified using few queries, but here the
verification procedure may use interaction with an unbounded (and untrusted) prover. Thus,
using our terminology, an interactive PCP can be thought of as an HIP for checking the NP
witness relation.

Arthur-Merlin Query Complexity. Every IPP for a language L can be viewed as a protocol,
for a promise problem related to L, in the Arthur Merlin query complexity model, previously
studied by Raz et al. [54]. This model, similarly to IPPs, considers a sub-linear time verifier,
that is given oracle access to an input and may interact with an (untrusted) prover. Indeed,
one may view IPPs as Arthur Merlin query complexity protocols which focus on promise
problems in which the goal of the verifier is to distinguish between inputs having a certain
property from those that are far from having the property.

19 Indeed, Fortnow and Sipser [22] show that the proof of IP = PSPACE cannot be relativized (in fact, IP
does not even contain coNP relative to a random oracle [14]). In fact, the algebrization framework of
Aaronson and Wigderson [1] was proposed precisely to address this issue. Connections between our
results and algebrization are further discussed in Section 5.

20Related assumptions have recently been studied also by Carmosino et al. [10] and Williams [69].
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Thus, our main result directly yields a round hierarchy theorem (for a promise problem)
in the Arthur-Merlin Query Complexity model and a sub-exponential separation between
the complexity of constant-round vs. general (i.e., unbounded round) Arthur-Merlin Query
Complexity protocols.

Interactive Proofs in Other Models. Interactive proof systems were studied also in the
communication complexity setting (e.g., [7, 51, 61, 41, 40]). Here Alice and Bob may interact
with an untrusted Merlin, who sees both of their inputs. We remark that showing any
non-trivial explicit lower bound in the AM variant of this model, much less a hierarchy of
separations, is a notorious open problem.

A recent line of works has studied interactive proofs in the data streaming model (e.g.,
[12, 16, 17, 42, 11, 65, 18]). Most relevant is a result of Chakrabarti et al. [13], who show
a hierarchy theorem for the first four levels in the model of online interactive proofs (with
exponential separations between these four levels).

Universal Locally Verifiable Codes. In a recent work, Goldreich and Gur [29] introduced
the notion of universal locally verifiable codes (universal-LVC), which is closely related to
holographic interactive proofs. A universal-LVC C : {0, 1}k → {0, 1}n for a family of functions
F =

{
fi : {0, 1}k → {0, 1}

}
i∈[M ] is a code such that for every i ∈ [M ], membership in the

subcode {C(x) : fi(x) = 1} can be verified locally given an explicit access to a short
(sublinear length) proof; put differently, for every i ∈ [M ] there exists a 1-message IPP for
the property {C(x) : fi(x) = 1}, with sublinear communication and query complexity.

1.5 Organization
In Section 2 we define IPPs and introduce some notations and definitions that we use
throughout this work. In Section 3 we define holographic interactive proofs (HIPs) and prove
some general results on them. In Section 4, using some of the results of Section 3, we prove
the hierarchy theorem. Lastly, in Section 5 we discuss the implications to classical complexity
theory.

Some of the discussion and proofs are deferred to the appendix. In Appendix A.2 we
discuss an alternative language for the round hierarchy theorem and our choice of basing our
protocol on GKR rather than, say a recent protocol of Reingold et al. [56]. Appendices B
to D contain some standard proofs that are included for completeness.

2 Preliminaries

We begin with some standard notations:
We denote the relative distance, over alphabet Σ, between two strings x ∈ Σn and y ∈ Σn

by ∆(x, y) def= |{xi 6=yi : i∈[n]}|
n . If ∆(x, y) ≤ ε, we say that x is ε-close to y, and otherwise

we say that x is ε-far from y. Similarly, we denote the relative distance of x from a
non-empty set S ⊆ Σn by ∆(x, S) def= miny∈S ∆(x, y). If ∆(x, S) ≤ ε, we say that x is
ε-close to S, and otherwise we say that x is ε-far from S.
We denote the projection of x ∈ Σn to a subset of coordinates I ⊆ [n] by x|I and, for
i ∈ [n], write xi = x|{I} to denote the projection to a singleton.

An additional notation that we will use is that if S = (Sk)k∈N and T = (Tk)k∈N are
ensembles of sets, we denote by S ⊆ T the fact that Sk ⊆ Tk for every k ∈ N.
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Integrality. Throughout this work, for simplicity of notation, we use the convention that
all (relevant) integer parameters that are stated as real numbers are implicitly rounded to
the closest integer.

2.1 Interactive Proofs of Proximity
A language is an ensemble L = (Ln)n∈N, where Ln ⊆ (Σn)n for every n ∈ N and where
Σ = (Σn)n∈N is the alphabet.

I Definition 3 (Interactive Proofs of Proximity (IPP)). Let Σ = (Σn)n∈N be an alphabet
ensemble. An r-round interactive proof of proximity, with respect to proximity parameter
ε > 0, (in short, ε-IPP) for the language L is an interactive protocol between a prover P,
which gets free access to ε and to an input x ∈ Σn, and a verifier V, which gets free access
only to ε and n, as well as oracle access to x. At the end of the protocol, the following
conditions are satisfied:

Completeness: If x ∈ L, then, when V interacts with P , with probability 2/3 it accepts.
Soundness: If x is ε-far from L, then for every prover strategy P∗, when V interacts
with P∗, with probability 2/3 it rejects.

If the completeness condition in Definition 3 holds with probability 1, then we say that
the IPP has perfect completeness. A public-coin IPP is an IPP in which every message from
the verifier to the prover consists only of fresh random coin tosses.

An IPP is said to have query complexity q : N × [0, 1] → N if for every n ∈ N, ε > 0,
x ∈ {0, 1}n, and any prover strategy P∗, the verifier makes at most q(n, ε) queries to x when
interacting with P∗. The IPP is said to have communication complexity c : N× [0, 1]→ N if
for every n ∈ N, ε > 0, and x ∈ Ln the communication between V and P consists of at most
c(n, ε) bits.

2.2 Constructible Error Correcting Codes and Finite Fields
An error correcting code over an alphabet Σ is an injective function C : Σk → Σn. The code
C is said to have relative distance δ if for any x 6= x′ ∈ Σk it holds that ∆(x, x′) ≥ δ.

Throughout this work we deal with (uniform) polynomial-time algorithms, and so we
will need (families of) codes that are efficiently computable. Formally, for a parameter
n = n(k) ≥ 1 that is called the blocklength, and ensemble of alphabets Σ = (Σk)k∈N, we
define a constructible error correcting code over Σ as an ensemble C =

(
Ck : Σkk → Σnk

)
k∈N of

error correcting codes, such that the function f(x) = C|x|(x) is computable by a polynomial-
time Turing machine (in particular this implies that n = poly(k, log(Σ))). An ensemble of
error correcting codes C = (Ck)k∈N is said to have relative distance δ if for all sufficiently
large k, each code Ck in the ensemble has relative distance δ.

Throughout this work, we mostly consider codes defined over finite fields (i.e., the
alphabets Σk are all finite fields). Such codes are called linear if they are linear functions
over the field.

Finite Fields and Polynomials. Many of our algorithms and interactive proofs deal with
finite fields. We consider ensembles of finite fields F = (Fk)k∈N, where |Fk| and say that such
ensembles are constructible if the field operations can be done in poly log(|Fk|) time. Namely,
there exist a Turing machine that given as input k and an appropriate number of elements
in Fk (represented as strings of length O(log(|Fk|)) bits) can compute the field operations
(i.e., addition, subtraction, multiplication, inversion, and sampling random elements) in
polylog(|Fk|) time.
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The following fact shows that there exist constructible finite fields of characteristic 2.
I Fact 4. For every time-constructible function f = f(k) ≥ 1, there exists a constructible
field ensemble F = (Fk)k∈N such that |F| = O(f) and Fk has characteristic 2 (i.e., is an
extension field of GF(2)) for every k ∈ N.
For details see [24, Appendix G.3] and references therein. We will also use the well-known
Schwartz-Zippel Lemma.
I Lemma 5 (Schwartz-Zippel Lemma). Let P : Fm → F be a non-zero polynomial of total
degree d over the field F. Then,

Pr
x∈RFm

[P (x) = 0] ≤ d

|F|
.

2.3 Low-Degree Extension
Let F = (Fk)k∈N be an ensemble of fields, and let H = (Hk)k∈N ⊆ F (the notation H ⊆ F
means that Hk ⊆ Fk, for every k ∈ N). Let m = m(k) ≥ 1 be a parameter, which we often
call the dimension.

A basic fact is that for every function f : Hm → F there exists a unique function
f̃ : Fm → F such that f̃ is a polynomial with individual degree |H| − 1 that agrees with f on
Hm. Moreover, there exists an individual degree |H| − 1 polynomial β : Fm × Fm → F such
that for every function f : Hm → F it holds that

f̃(z) =
∑
x∈Hm

β(x, z) · f(x).

The function f̃ is called the low degree extension of F (with respect to the field F, subset H
and dimension m).

The following two propositions show that the low degree extension encoding can be
computed efficiently.
I Proposition 6. Let F = (Fk)k∈N be a constructible field ensemble, let H = (Hk)k∈N ⊆ F
be an ensemble of subsets and let m = m(k) be the dimension.

There exists a Turing machine that on input k runs in time poly(|H|,m, log |F|) and space
O(log(|F|)+ log(m)), and outputs the polynomial β : Fm×Fm → F defined above, represented
as an arithmetic circuit over F.

Moreover, the arithmetic circuit β can be evaluated in time poly(|H|,m, log(|F|)) and
space O(log(|F|) + log(m)). Namely, there exists a Turing machine with the above time and
space bounds that given an input pair (x, z) ∈ Fm × Fm outputs β(x, z).
See, e.g., [57, Proposition 3.2.1] for a proof of Proposition 6.
I Proposition 7. Let F = (Fk)k∈N be a constructible field ensemble, let H = (Hk)k∈N ⊆ F
be an ensemble of subsets and let m = m(k) be the dimension.

Let φ : Hm → F and suppose that φ can be evaluated by a Turing Machine in time t
and space s. Then, there exists a Turing machine that, given as an input a point z ∈ Fm,
runs in time |H|m · (poly(|H|,m, log(|F|)) +O(t)) and space O(m · log(|H|) + s + log(|F|))
and outputs the value φ̂(z) where φ̂ is the unique low degree extension of φ (with respect to
H,F,m).
Proof. The Turing machine computes

φ̂(z) =
∑
x∈Hm

β(x, z) · φ(x)

by generating and evaluating β as in Proposition 6. J
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Low Degree Extension as an Error-Correcting Code. The low degree extension can also
be viewed as an error-correcting code in the following way. Suppose that H and m are such
that |H|m = k. Then, we can associate a string x ∈ Fk with a function x : Hm → F by
identifying Hm with [k] in some canonical way.

We define the low degree extension of a string x as LDEF,H,m(x) = x̃. That is, the function
LDEF,H,m is given as input the string x ∈ Fk, views it as a function x : Hm → F and outputs
its low degree extension x̃. By Proposition 7 the code LDEF,H,m is constructible, and by the
Schwartz-Zippel Lemma (Lemma 5), the code LDEF,H,m has relative distance 1− m·|H|

|F| .

3 Holographic Interactive Proofs

In this section we define holographic interactive proofs and show several transformations and
generic results (which will be used in Section 4 for the proof of the hierarchy theorem). In
Section 3.1 we give a formal definition and some basic facts. Having read Section 3.1, the
reader may freely skip the rest of Section 3 and proceed directly to Section 4, which is the
main technical section, and return to read the results of Sections 3.2 to 3.4 when they are
used in Section 4.

Sections 3.2 to 3.4 focus on HIPs with respect to the low degree extension encoding.
In Section 3.2 we show that such HIPs imply interactive proofs of proximity (for a related
language). In Section 3.3 we show that one can switch the field under which the HIPs input
is encoded (at a moderate cost) to any other field that shares the same characteristic. Finally,
in Section 3.4 we show that HIPs can efficiently verify that the input (which can presumably
be an arbitrary vector over the field) is actually Boolean valued (i.e., in {0, 1}k).

3.1 Definition and Basic Facts
A holographic interactive proof is similar to a standard interactive proof, except that rather
than getting the input explicitly, the verifier gets oracle access to an encoding of the input
(via an error correcting code). Using this redundant representation, we could potentially
hope to have protocols in which the verifier runs in sublinear time and, in particular, does
not even read its entire input. This hope is indeed materialized in several protocols from the
literature (e.g., [52, 37, 56]).

As a matter of fact, it turns out that for some codes (specifically the low degree extension),
reading just a single point p from the encoded input suffices for the verifier.21 Thus, we
restrict our attention to such protocols. Furthermore, in order to facilitate composition,
rather than having the verifier actually read the (encoded) input at the point p, the verifier
outputs a claim about the point (i.e., it outputs p together with a symbol that it would have
expected to see, had it actually queried the (encoded) input at p).

Formally, holographic interactive proofs are parametrized by a (constructible) error
correcting code C, under which the input is encoded, and are defined as follows.

I Definition 8 (Holographic Interactive Proofs (HIP)). Let Σ = (Σk)k∈N and Λ = (Λk)k∈N be
alphabet ensembles such that Λ ⊆ Σ. Let L ⊆ Λ, and let C : Σk → Σn be a constructible
error correcting code.

21For the low degree extension this can be shown to hold generically. The high level idea is to consider a
low degree curve passing through all the points that the verifier wishes to read. The prover specifies the
values for all the points on the curve and the verifier checks the provided answer on a random point
on the curve. Soundness follows from the fact that composing a low-degree curve with a low-degree
polynomial results in a low degree univariate polynomial. See, e.g., [46, Section 6] for details.
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An r-round public-coin holographic interactive proof (HIP) for the language L, with respect
to the code C, is an interactive protocol between a prover P, which gets as input x ∈ Σk,
and a verifier V, which gets as input only k. At the end of the protocol either the verifier
rejects or it outputs a coordinate i ∈ [n] and a symbol σ ∈ Σ such that:

Completeness: If x ∈ L, then, when V interacts with P, with probability 1 it outputs
(i, σ) such that C(x)|i = σ.
Soundness: If x 6∈ L, then for every prover strategy P∗, when V interacts with P∗,
with probability 1− ε either V rejects or it outputs (i, σ) such that C(x)|i 6= σ, where
ε = ε(k) ∈ [0, 1] is called the soundness error.

In this work, all the holographic proofs that we consider are with respect to the low degree
extension code (using a variety of different parameters), which was defined in Section 2.3
above.

I Remark (Different Alphabets for the Language and the Code). Typically, when using HIPs
the alphabet Λ over which the language is defined will be the same as the alphabet Σ over
which the code is defined. Still, in some cases it will be convenient for us to present HIPs that
only work for particular sub-alphabets of the code (e.g., when the input is binary but the
code is more naturally defined over some large alphabet) and so we give this more flexible
definition.

Our definition of HIPs tries to capture many of the known interactive proof-systems in
the literature, while being flexible and easy to compose. Indeed, the fact that HIPs can be
transformed into standard interactive proofs which is immediate, is captured by the following
proposition.

I Proposition 9. Let Σ = (Σk)k∈N and Λ = (Λk)k∈N be alphabets such that Λ ⊆ Σ. Let L be
a language over the alphabet Λ and let C : Σk → Σn be a constructible error correcting code.

Any HIP for L can be converted into a standard interactive proof with only a poly(n)
additive overhead to the verifier’s running time (and all other parameters remain unchanged).
Moreover, the precise overhead is equal to the time that it takes to compute the ith character
of C(x), given x ∈ Λk and the index i ∈ [n].

Proof. The prover and verifier run the HIP. If the HIP verifier rejects, then we immediately
reject. Otherwise, the HIP verifier outputs a pair (i, σ) ∈ [n]× Σ with the associated claim
C(x)|i = σ. We can now check this claim directly by computing C(x)|i and comparing with
σ. J

The Sumcheck Protocol (as an HIP). We will make extensive use of the classical sumcheck
protocol of Lund et al. [52]. Recall that the sumcheck protocol is an interactive proof for
verifying that the sum, over a subcube, of a low degree polynomial is zero. Our protocol
differs slightly from the “textbook” sumcheck protocol in two ways:
1. The verifier does not actually read any points from the input polynomial. Rather, at the

end of the protocol it outputs a claim about a single point of the polynomial (i.e., the
protocol is an HIP).

2. Following other works in the literature, our protocol allows a trade-off between the number
of rounds and the communication complexity (rather than having the number of rounds
correspond exactly to the dimension of the polynomial).

I Lemma 10 (Sumcheck as an HIP). Let F be a constructible field ensemble and let H ⊆ F be
an ensemble of subsets of F. Let m = m(k) be an ensemble of integers such that m = log|H|(k).
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Let L = ∪k∈NLk, where Lk = {x ∈ Fk :
∑
i∈[k] xi = 0} and where the summation is over

the field F. Then, for every r ∈ [m], there exists an r-round (public-coin) HIP for L, with
respect to the code LDEF,H,m, with soundness error m·|H|

|F| and communication complexity
|H|dm/re · r · log |F|. The verifier runs in time |H|dm/re · r · polylog(|F|) and the prover runs
in time poly(|F|m, r).

The proof of Lemma 10, which is standard, is included for completeness in Appendix C.

3.2 From HIP to IPPs
Proposition 9 above, shows that an HIP can be easily transformed into a standard interactive
proof. We now show that HIPs, with respect to the low degree extension encoding, can
be easily transformed into highly efficient (and in particular sublinear) interactive proof
of proximity (IPP) for a related language. More specifically, we transform an HIP for the
language L with respect to the LDEF,H,m code, into an IPP for the language LDEF,H,m(L) def=
{LDEF,H,m(x) : x ∈ L}.22

I Lemma 11. Let F = (Fk)k∈N be an ensemble of finite fields, let H = (Hk)k∈N be an
ensemble of subsets (i.e. H ⊆ F) and let m = m(k) be such that |H|m = k.

Suppose that the language L has an r-round HIP, with respect to the code LDEF,H,m, with
communication complexity c. Then, the language LDEF,H,m(L) has an r-round ε-IPP with
query complexity O(|H| ·m · 1/ε) and communication complexity c.

The key observations that we use to prove Proposition 11 are that (1) the IPP verifier can
first check that its input is close to a low degree polynomial using low degree test. If the test
passes, then, using the self-correctability of polynomials, the IPP verifier can emulate access
to the encoded input of the HIP. Given these two observations the proof of Proposition 11 is
standard and so we defer it to Appendix B.

3.3 Field Switching
In this subsection we show that HIPs can evaluate points in a LDE over an extension field
of the base field under which the input is actually encoded. This fact is used in the proof
Lemma 17 and allows us to first construct an HIP over a large field, and later convert it into
an HIP over the smaller field.

The key observation for our field switching, is that verifying a linear claim involving the
LDE over an extension field K/F can be reduced to verifying several linear claims over the
base field F. Each of these linear claims can be verified via a sumcheck protocol (in fact, it
suffices to verify a random linear combination of these claims), and so an HIP can emulate
access to the LDE over the extension field K by making queries to the LDE over field F. We
proceed to the formal statement and proof.

Let F = (Fk)k∈N and K = (Kk)k∈N be constructible field ensembles such that K is a
degree s = s(k) ≤ log(k) field extension of F (i.e., Kk ∼= Fs(k)

k , for every k ∈ N). Let
H = (Hk)k∈N ⊆ F and G = (Gk)k∈N ⊆ K be ensembles of subsets of F and K, respectively.
Let m = m(k) and ` = `(k) be ensembles of integers such that |H|m = |G|` = k.

22More generally, for any code C that is locally testable and decodable (such as the LDE code), one can
transform an HIP for the language L into an IPP for the language C(L) = {C(x) : x ∈ L}. Moreover, if
the query location produced by the HIP verifier is uniformly distributed (which is typically the case),
then local testability by itself suffices.
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Recall that for a given string x ∈ {0, 1}k, we define LDEF,H,m as the unique individual
degree |H| − 1 polynomial P : Fm → F such that P (z) = xz, for every z ∈ Hm (where we
identify the sets Hm and [k] in some, computationally efficient, canonical way). Similarly,
we define LDEK

G,` as the unique individual degree |G| − 1 polynomial P : K` → K such that
P (z) = xz, for every z ∈ G` (where now we identify G` and [k]).

I Lemma 12. Let Let Let F and K be finite field ensembles as defined above. Let L =
∪k∈NLk be a language such that Lk ⊆ {0, 1}k for every k ∈ N. Suppose that L has a
ρ-round HIP, with respect to the code LDEK,G,r, with soundness error δ = δ(k) ∈ [0, 1] and
communication complexity c = c(k). Then, for every parameter r = r(k) ≥ 1, the language L
also has a (ρ+ r + 1)-round HIP, with respect to the code LDEF,H,m, with soundness error(
δ +O

(
|H|·m
|F|

))
and communication

(
c+ poly(k1/r, |H|, r, log |F|)

)
.

Furthermore, the computational overhead for the verifier is poly(k1/r, |H|, r, log |F|) and
the computational overhead for the prover is poly(k).

We remark that for the furthermore part, we make use of the [45] constant-round variant
of the GKR protocol.

Proof of Lemma 12. Before presenting the desired HIP, we start with some algebraic nota-
tion and basic facts. Throughout this proof we use 〈·, ·〉K and 〈·, ·〉F to denote inner products
over the fields K and F, respectively.

Recall that elements in K are represented as vectors in Fs. Let b1, . . . , bs : K∗ → F∗ be
functions defined as follows. For every α ∈ K∗ it holds that α = (b1(α), . . . , bs(α)). That is,
the functions b1, . . . , bs decompose a vector w ∈ Kt into its s components over Ft.

I Proposition 13. For every w ∈ Kk and x ∈ {0, 1}k it holds that

〈w, x〉K = (〈b1(w), x〉F, . . . , 〈bs(w), x〉F).

Proof. We denote by ∗ multiplication in K and by · multiplication in F. For k = 1 the
proposition simply states that, for w ∈ K and x ∈ {0, 1} it holds that w ∗ x = (b1(w) ·
x, . . . , bs(w) · x). The latter can be easily verified to hold for x ∈ {0, 1} by observing that,
in both K and F, multiplication by x = 0 always returns 0 and multiplication by x = 1 is
identity. The proposition follows by induction on k. J

We proceed to describe the HIP (P ′,V ′). Let (P,V) be an HIP for L, with respect to the
code LDEK,G,r, with soundness error δ. To prove the lemma, we need to construct an HIP
(P ′,V ′) for L, with respect to the code LDEF,H,m.

First, P ′ and V ′ emulate the HIP (P, V ). If V rejects, then V ′ immediately rejects.
Otherwise, V outputs a pair (z, ν) ∈ K`×K with the associated claim that

(
LDEK

G,`(x)
)
|z = ν.

Since LDEK
G,` is a K-linear code, there exists a vector w ∈ Kk (that depends only on the code

LDEK
G,` and the point z) such that

(
LDEK

G,`(x)
)
|z = 〈w, x〉, for every x ∈ {0, 1}k. Thus, V ′

only needs to verify that 〈w, x〉K = ν.
For every i ∈ [s], let wi

def= bi(w) ∈ Fk and let νi
def= bi(ν) ∈ F. By Proposition 13 the

K-linear equation 〈w, x〉 = ν is equivalent to the following s F-linear equations:

∀i ∈ [s], 〈wi, x〉F = νi. (5)

The verifier V ′ chooses at random an F-linear combination of these s linear equations.
Namely, it selects at random γ1, . . . , γs ∈ F and sends these coefficients to the prover. Let
w′

def=
∑
i∈[s] γi · wi and ν′

def=
∑
i∈[s] γi · νi (where the summations are over F). Note that if

ITCS 2017



39:20 A Hierarchy Theorem for Interactive Proofs of Proximity

Equation (5) holds then (with probability 1) 〈w′, x〉F = ν′, whereas if Equation (5) does not
hold then 〈w′, x〉F 6= ν′ with probability 1− 1

|F| over the choice of γ1, . . . , γs ∈ F. We next
observe that the latter is an F-linear claim about the input x and such claims can be directly
solved using the sumcheck protocol.

Let x̃ : Fm → F (resp., w̃′) be the low degree extension of the input x (resp., the vector
w′ ∈ Fk) with respect to the field F, set H and dimension m. That is, x̃ and w̃′ are the
unique individual degree |H| − 1 polynomial that agree with x and w′, respectively, on Hm.
Let P : Fm → F be defined as the individual degree 2(|H|−1) polynomial P (z) = w̃′(z) · x̃(z).
Note that

∑
z∈Hm P (z) = 〈w′, x〉F. Thus, checking that 〈w′, x〉F = ν′ is equivalent to∑

z∈Hm P (z) = ν′ which we can solve by having the prover and verifier run the sumcheck
protocol with respect to the polynomial P .23

In case the sumcheck verifier rejects then V ′ immediately rejects. Otherwise, the result is
a pair (z′′, ν′′) ∈ Fm×F. The prover sends to the verifier the value µ = x̃(z′′). The verifier V ′
checks that µ · w̃′(z′′) = ν′′ and if so it outputs (z′′, µ), otherwise it rejects. This completes
the description of the protocol.

Actually, one point about this protocol remains unclear - how can the verifier efficiently
compute w̃′(z′′). If we were to ignore the computational resources of the verifier, then we
could do this by brute force (e.g., in time roughly |H|m), since w̃′ is independent of the input
x. Nevertheless, we do aim for efficient verification and so we need to be able to compute
w̃′(z′′) efficiently. We will do so by using additional interaction with the prover, based on
the [45] variant of the GKR protocol. We give a sketch in the following paragraph.

Computing w̃′(z′′). We start by taking a closer look at the vector w defined above. By
the definition of the low degree extension (see Section 2.3), the vector w ∈ KG` is defined as
wh = β(h, z), for every h ∈ G`, where β is as defined in Section 2.3. Thus, we have that:

w̃′(z′′) =
∑
i∈[s]

γi · bi

( ∑
h∈Hm

β(h, z′′) · β(h, z)
)
. (6)

We observe that Equation (6) can be represented as a (highly uniform) depth O(log(s) +
m · log(H) + log(|G|) + log(`)) = O(log(k)) Boolean circuit (on input z, z′′) of size s ·Hm ·
poly(|G|, `, log(|K)) = poly(k). Applying the [45] variant of the GKR protocol, we obtain
an r-round interactive proof for verifying Equation (6) in which the verifier runs in time
kO(1/r) · polylog(|F|) and with similar communication complexity.

Completeness. Fix x ∈ L. By the completeness of (P,V), the verifier outputs (z, ν) ∈
K` ×K such that

(
LDEK

G,`(x))
∣∣
z

= ν, or equivalently, 〈w, x〉K = ν. By Proposition 13 this
implies that 〈wi, x〉F = νi, for every i ∈ [s]. Therefore, for every γ1, . . . , γs ∈ F it holds that:

〈w′, x〉F =
∑
i∈[s]

γi · 〈wi, x〉F =
∑
i∈[s]

γi · νi = ν′.

By definition of P , this means that
∑
z∈Hm P (z) = 〈w′, x〉F − ν′ = 0 and the completeness

of the sumcheck protocol implies that ν′′ = P (z′′) = x̃(z′′) · w̃(z′′). Thus the verifier accepts
when checking that µ · w̃(z′′) = ν′′.

23We remark that while we defined sumcheck as a protocol for the language L = {x ∈ Fk :
∑

i∈[k] xi = 0},
a trivial, standard modification of the sumcheck protocol yields a protocol for Lν = {x ∈ Fk :∑

i∈[k] xi = ν}, for every ν ∈ F.
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Soundness. Fix x 6∈ L and a cheating prover strategy P∗. By the soundness of (P, V ),
with probability 1− ε, the verifier either rejects (in which case V ′ also rejects) or outputs
(z, ν) ∈ K` × K such that 〈w, x〉K 6= ν. Assuming that the latter holds, by Proposition 13
there exists some i∗ ∈ [s] such that 〈wi∗ , x〉F 6= νi∗ . Therefore,

Pr [〈w′, x〉F = ν′] = Pr

∑
i∈[s]

γi · 〈wi, x〉F =
∑
i∈[s]

γi · νi


= Pr

γi∗ · (〈wi∗ , x〉F − νi∗) =
∑
i6=i∗

γi · (νi − 〈wi, x〉F)


= 1/|F|.

Thus, with probability 1− 1
|F| it holds that 〈w

′, x〉F 6= ν′, and in particular
∑
z∈Hm P (z) 6= 0

(where P is the polynomial as defined above).
Hence, by the soundness of the sumcheck protocol, with probability |H|·m|F| either the

sumcheck verifier rejects (in which case we also reject) or it outputs a pair (z′′, ν′′) ∈ Fm × F
such that P (z′′) 6= ν′′, or in other words x̃(z′′) · w̃(z′′) 6= ν′′. Now, the prover sends over
a value µ. If x̃(z′′) = µ then, conditioned on the above event, the verifier rejects when
checking that µ · w̃(z′′) = ν′. If x̃(z′′) 6= µ, then the verifier outputs a pair (z′′, µ) such
that

(
LDEF,H,m(x)

)
z′′
6= µ as desired. By a union bound, the overall soundness error is

ε+ 1
|F| + |H|·m

|F| .

Complexity. On top of the ρ rounds that (P,V) takes, the verifier also sends the message
(γ1, . . . , γs), but this message can be appended to the last message from V to P . In addition,
the two parties run an r-round sumcheck protocol and an r round variant of the GKR
protocol. There is one additional message from the prover with the value µ, so the overall
number of rounds is ρ+O(r).

The communication in the first part of the protocol (i.e., the emulation of (P, V )) is c.
In addition, the verifier sends the linear combination (γ1, . . . , γs) which takes s · log |F| bits.
Lastly, both the sumcheck and the GKR protocol add communication poly(k1/r, |H|, r, log |F|)
and the additional prover message is just log2 |F| bits.

As for the verifier’s complexity, beyond running the original (P,V) protocol, it runs
the sumcheck and GKR protocols which takes time poly(k1/r, |H|, r, log |F|). The prover’s
additional time in running these two protocols is poly(|H|m) = poly(k). J

3.4 Booleanity Testing
In this subsection we show that HIPs can efficiently check that their input is the low-degree
extension of a Boolean assignment. To do so, we follow an idea of Kalai and Raz [46], which
was introduced in the context of constructing interactive PCPs.

We show a simple reduction from checking whether a polynomial P : Fm → F is
Boolean valued in a subcube Hm (i.e., P |HmHm → {0, 1}) to checking whether a related
(slightly higher degree) polynomial Q vanishes on Hm. Specifically, consider the polynomial
Q(x) = P (x) · (1 − P (x)), and observe that P is Boolean-valued in Hm if only if Q is
identically zero in Hm. Checking whether a given polynomial is identically 0 (i.e., vanishes)
on a subcube of its domain can be solved via a fairly well-known reduction to the sumcheck
protocol. We also note that the reduction from P to Q is local (i.e., each query to Q can be
computed by a single query to P ) and therefore can be used in our setting.
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We start by showing an HIP for inputs that vanish on a subcube. We first note that
checking whether an individual degree |H| − 1 polynomial vanishes on the subcube Hm is
trivial, since such a polynomial vanishes on Hm if and only if it vanishes on Fm. The actual
challenge is checking whether a higher degree polynomial (e.g., with individual degree |G| − 1
for some G such that |G| > |H|) vanishes on Hm.

Formally, for a given field ensemble F, ensembles of subsets H,G ⊆ F and dimension m,
let Vanishing-SubcubeF,H,m,G be the set of all functions f : Gm → F that vanish on Hm (i.e.,
f |Hm ≡ 0).

The following proposition, which gives an HIP for Vanishing-SubcubeF,H,m,G, is implicit
in many classical constructions of PCPs (e.g., [5]). We include a proof in Appendix D for
completeness.

I Proposition 14. Let F be a constructible field ensemble, let H ⊆ G ⊆ F be ensembles of
subsets, and let m = m(k). For every r = r(k) ≤ log(k)

log log(k) , there exists an (r + 2)-round
(public-coin) HIP for Vanishing-SubcubeF,H,m,G, with respect to the code LDEF,G,m, with
soundness error O

(
m·|G|
|F|

)
and communication complexity m · log(|F|) + |G|dm/re · r · log |F|.

The verifier runs in time |G|dm/re · r · polylog(|F|) and the prover runs in time poly(|F|m).

Denote by BoolF the set of all Boolean strings, viewed as a subset of F∗. We show an
HIP for Bool, which given access to a polynomial P = LDEF,H,m(x) for some x ∈ Fk, checks
that x ∈ {0, 1}k.

I Proposition 15. Let F be a constructible field ensemble, let H ⊆ F, and let m ∈ N. For
every r ∈ [m], there exists an (r+2)-round (public-coin) HIP for BoolF,H,m, with respect to the
code LDEF,H,m, with communication complexity O(r · (2d+ |H| − 1)m/r · log |F|+m · log(|F|))
and soundness error O

(
m·|H|
|F|

)
.

Proof. Given a degree d polynomial P : Fm → F such that P = LDEF,H,m(x) for some
x ∈ F|H|m , define the degree 2d polynomial Q : Fm → F as Q(x) def= P (x) · (1− P (x)). Note
that we can write Q = LDEF,G,m(y) for H ⊆ G ⊆ F and y ∈ F|G|m , where |G| = O(|H|).

Observe that P is Boolean-valued inHm if and only if Q is identically 0 inHm (this follows
from the fact that the univariate polynomial z · (1− z) has exactly two roots: 0 and 1). Thus,
to verify that P is Boolean-valued in Hm, we run the HIP for Vanishing-SubcubeF,H,m,G in
Proposition 14, with respect to the polynomial Q. Note that each query Q(x) can be answered
by a single query to P (specifically, by returning P (x) · (1−P (x))). Correctness follows from
the correctness of the HIP for Vanishing-SubcubeF,H,m,G. Communication complexity and
soundness error follow from Proposition 14. J

4 The Hierarchy Theorem

In this section we prove our main theorem: a round hierarchy for IPPs.

I Theorem 16 (IPP Hierarchy Theorem). There exists a language L and a gap function
g(r) = Θ(r2) such that for every constant r ≥ 1 it holds that:
1. Upper Bound: There exists a g(r)-round (public-coin) ε-IPP, for L with communication

complexity nO(1/r) and query complexity poly(logn, ε). The verifier runs in time nO(1/r) +
poly(log(n), ε) and the prover runs in time poly(n).

2. Lower Bound: For every r-round IPP for L, with respect to proximity parameter
ε = 1/10, that has query complexity q and communication complexity c, it holds that
max(c, q) = nΩ(1/r).
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Furthermore, L also has a polylog(n)-round (public-coin) ε-IPP with communication
polylog(n) and query complexity poly(logn, 1/ε), and with a poly(logn, ε)-verifier and poly(n)-
time prover.

The O and Ω notation in the theorem statement hide universal constants that do not depend
on r. Note that any constant gap between the exponents in the upper and lower bounds can
be obtained by increasing g by a suitable constant factor.

The rest of this section is devoted to the proof of Theorem 16. In Section 4.1 we present
the language for which we show the IPP round hierarchy, in Section 4.3 we prove the lower
bound (see Lemma 23), and in Section 4.2 we prove the upper bound (see Lemma 17).
Combining Lemma 23 and Lemma 17 yields Theorem 16.

4.1 The Language: Encoded MOD3
Let F = (Fk)k∈N be a (constructible) field ensemble of characteristic 2 (i.e., each Fk is an
extension field of GF(2)). Let H = (Hk)k∈N be an ensemble of subsets H ⊆ F and let
m = m(k) be the dimension such that |H| = log(k), m = log(k)

log log(k) and |F| = Θ(|H|2m).

Denote n def= |Fm|, and note that |H|m = k and that k2 ≤ n ≤ k3.
We first define an (auxiliary) language LMOD3, where:

LMOD3
def= {x ∈ {0, 1}∗ : wt(x) = 0 (mod 3)} .

That is, LMOD3 simply consists of strings whose Hamming weight is divisible by 3. The
actual language for which we prove the IPP lower bound is Enc-MOD3 = LDEF,H,m(LMOD3).
That is,

Enc-MOD3 =
{

LDEF,H,m(x) : x ∈ LMOD3
}
.

Or in words, Enc-MOD3 consists of all m-variate polynomials over F, of individual degree
|H| − 1, that take Boolean values in Hm such that the integer sum over all elements in Hm

is divisible by 3.

4.2 The Upper Bound
In this section, we construct an IPP for Enc-MOD3. This IPP suffices both for the results in
the constant-round regime and poly-logarithmic round regime of Theorem 16.

I Lemma 17. For every r = r(n) ≤ log(n)
log log(n) , there exists an O(r2)-round public-coin ε-IPP

for Enc-MOD3 with perfect completeness and soundness error 1/2. The communication
complexity is nO(1/r) and the query complexity is poly(log(n), 1/ε). Furthermore, the verifier
runs in time

(
nO(1/r) + poly(log(n), 1/ε)

)
and the prover runs in time poly(n).

The main step in the proof of Lemma 17 is the construction of an HIP for the related
language LMOD3 (defined above), with respect to the LDE code (with the parameters that were
specified in Section 4.1). Given this HIP, Lemma 17 follows by using a generic transformation
from HIPs (with respect to the LDE encoding) into IPPs, which we establish in Proposition 11.

Before constructing this HIP, as an intermediate goal, we first construct an HIP for LMOD3,
with respect to the low-degree extension with different parameters than those that were set
in Section 4.1. Specifically, we shall use a larger field K, whose size is polynomially related to
k (rather than poly-logarithmic). In particular, there will be a dependence between the size
of K and the number of rounds in the HIP. Later we will use a generic transformation to
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Figure 1 The recursive depth r formula of fan-in k1/r that computes the sum mod 3 of its input
x ∈ {0, 1}k, and the low-degree extension of each one of the formula’s layers when evaluated on x.

convert this HIP into one in which the low degree extension can be over a much smaller field
(e.g., of poly-logarithmic size), which in particular does not depend on the number of rounds.

The following lemma, which is the main lemma proved in this section, gives an HIP for
LMOD3 over the relatively large field K.

I Lemma 18. Let r = r(k) ≥ 1, let K = (Kk)k∈N be a constructible field ensemble of size
|K| = Ω(r2 · k2/r), let G = (Gk)k∈N ⊆ K be an ensemble of subsets of K of size |G| = k1/r.

Then, there exists an r2-round public-coin HIP for LMOD3, with perfect completeness and
soundness error O

(
r2·k2/r

|K|

)
. The communication complexity is O(r2 · k2/r · log |K|). The

verifier runs in time kO(1/r) · poly(r, log(k)) and the prover runs in time poly(|K|r).

(See Section 1.2 for a high-level overview of the proof.)

Proof. Let r = r(k) ≥ 1. Recall that K = (Kk)k∈N is a constructible field ensemble field of
size |K| = Ω(r2 · k1/r) and that G = (Gk)k∈N is an ensemble of subsets of size |G| = k1/r.
Since we only deal with a single input length k (which we think of as varying), in the following
we omit the subscripts and use K (resp., G) when we actually mean Kk (resp., Gk).

Denote by t
def= |G| = k1/r and fix a canonical ordering α1, . . . , αt of the set of ele-

ments in G (i.e., G = {α1, . . . , αt}). Let MOD3t : {0, 1, 2}t → {0, 1, 2} be defined as
MOD3t(σ1, . . . , σt)

def=
∑
j∈[t] σj (mod 3).

Fix an input x ∈ {0, 1}k. As described in Section 1.2, we define polynomials V0, . . . , Vr
that contain sums, modulo 3, of certain intervals in x. Taking the [37] view, one can consider
a depth r formula, with fan-in t = k1/r, composed of MOD3t gates, that computes the sum
mod 3 of its input (see Figure 1). Viewed this way, each polynomial Vi corresponds to the
low degree extension of the ith layer of this formula (counting from output to input).

Since |Gr| = k, we can associate elements in Gr with the integers in the set {1, . . . , k} in
the natural way. Thus, we can view the input x ∈ {0, 1}k as a function, which we denote
by Vr : Gr → {0, 1}, that is defined as Vr(p) = xp, for every p ∈ Gr. We define functions
V0, . . . , Vr−1 via backward recursion as follows. For every i ∈ [r], let Vi−1 : Gi−1 → {0, 1, 2}
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be defined as:

∀p ∈ Gi−1, Vi−1(p) = MOD3t
(
Vi((p, α1)), . . . , Vi((p, αt))

)
, (7)

where (p, α) denotes the element in Gi which is obtained by concatenating p ∈ Gi−1 with
α ∈ G. For the case i = 0, we define G0 = {⊥}, where ⊥ is defined as the empty string
(in particular (⊥, p) = (p,⊥) = p), and note that, for i = 1, Equation (7) reduces to
V0(⊥) = MOD3t

(
V1(α1)

)
, . . . , V1(αt)

)
.

As noted above, intuitively, each Vi should be thought of as specifying a sum of certain
intervals in the input, according to a partition (which depends on i). For example, Vr contains
the value of each of the individual coordinate of x (i.e., the most fine grained partition)
whereas V0 contains the overall sum (i.e., the coarsest partition). More generally, we have
the following immediate fact:

I Fact 19. For every i ∈ {0, . . . , r} and p ∈ Gi it holds that Vi(p) =
∑
q∈Gr−i x(p,q) (mod 3)

(where (p, q) denotes the concatenation of the two vectors p and q).

In particular, by setting i = 0, we have that V0(⊥) =
∑
q∈Gr xq (mod 3) =

∑
i∈[k] xi

(mod 3).
For the rest of the proof we use f̃ to denote the low degree extension of a function f

(see Section 2.3 for details on the low degree extension encoding) and associate the integers
0, 1 and 2 with three distinct elements in K in some canonical way (so that we can view
{0, 1, 2} ⊆ K). Let M̃OD3t : Kt → K be the unique individual degree 2 extension of the
function MOD3 : {0, 1, 2}t → {0, 1, 2} with respect to the field K, the subset {0, 1, 2} ⊆ K,
and dimension t. For every i ∈ [r], let Ṽi : Ki → K be the unique individual degree |G| − 1
extension of Vi with respect to the field K, the set G and dimension i. Let Ṽ0 ≡ V0 (recall
that V0 : {⊥} → {0, 1, 2} is just a singleton value V0(⊥) ∈ K). Observe that the polynomial
Ṽr is the low degree extension of the input x with respect to the field K, the set G and
dimension r.

A crucial fact that we will use is that, for every i ∈ [r], each point in Ṽi−1 can be
expressed as a certain type of composition of the low degree polynomial Ṽi with the low
degree polynomial M̃OD3. More specifically, using the properties of the low degree extension
(see Section 2.3), it holds that for every i ∈ [r] and z ∈ Ki−1:

Ṽi−1(z) =
∑

p∈Gi−1

β(z, p) · Vi−1(p)

=
∑

p∈Gi−1

β(z, p) ·MOD3t
(
Vi((p, α1)), . . . , Vi((p, αt))

)
=

∑
p∈Gi−1

β(z, p) · M̃OD3t
(
Ṽi((p, α1)), . . . , Ṽi((p, αt))

)
. (8)

where the polynomial β is as defined in Section 2.3, and the last equality uses the fact that
Ṽi|Gi ≡ Vi|Gi and M̃OD3t|{0,1,2}t ≡ MOD3t|{0,1,2}t .

Using the above definition, we proceed to describe our HIP for LMOD3. The protocol
is performed in r phases, each of which takes at most r rounds of interaction (for a total
of at most r2 rounds). We begin the protocol with a claim about the value of a single
point (as a matter of fact, the only point) in Ṽ0 (recall that, by Fact 19, the value of Ṽ0(⊥)
corresponds to the desired output - the sum modulo 3 of the input bits). In the ith phase,
we reduce the task of verifying the value of a single (arbitrary) point in Ṽi−1 to verifying
the value of a single point in Ṽi. Thus, after r phases, we have reduced the problem of
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verifying Ṽ0(⊥) =
∑
j∈[k] xj (mod 3) to verifying a single point in Ṽr, which is the low degree

extension of the input x.
Define z0 = ⊥ and ν0 = 0. The original claim is that Ṽr(z0) = ν0. We shall maintain

the invariant that for every phase i ∈ {0, . . . , r}, at the end of the ith phase, the prover
and verifier both know a vector zi ∈ Ki and a scalar νi ∈ K such that the current claim
is that Ṽi(zi) = νi. Thus, the goal of the ith phase is to (interactively) reduce the claim
Ṽi−1(zi−1) = νi−1 to a claim of the form Ṽi(zi) = νi (for some zi and νi that are generated
during the ith phase):

Phase i.
1. Reduce to Claim about t Points in Ṽi: The phase begins with a claim that νi−1 =

Ṽi−1(zi−1). By Equation (8) this is equivalent to:

νi−1 =
∑

p∈Gi−1

β(zi−1, p) · M̃OD3t
(
Ṽi((p, α1)), . . . , Ṽi((p, αt))

)
(9)

We now observe that the right-hand side of Equation (9) corresponds to a sum, over an
(i− 1)-dimensional subcube, of the values of a low degree polynomial. Specifically, denote

fi−1(w) = β(zi−1, w) · M̃OD3t
(
Ṽi((w,α1)), . . . , Ṽi((w,αt))

)
,

and observe that fi−1 has total degree (t− 1) · (i− 1) + 2t · (t− 1) · i ≤ 3t2r polynomial.
Equation (9) can be rewritten as νi−1 =

∑
p∈Gi−1 fi−1(p). The prover and verifier run

an i-round sumcheck protocol with respect to this equation.
In case the sumcheck verifier rejects, our verifier immediately rejects. Otherwise, the
output of the sumcheck protocol is a (random) point wi−1 ∈ Ki−1 and value γi−1 ∈ K
with an associated alleged claim that γi−1 = fi−1(wi−1).

2. Query Reduction: At this point the verifier has a claim regarding the values of t points
of Ṽi (specifically, the claim γi−1 = fi−1(wi−1) refers to the points (wi, α1), . . . , (wi, αt)).
The goal of this step is to reduce this more elaborate claim to a claim about a single
point in Ṽi:
a. The prover sends to the verifier the univariate degree t − 1 polynomial Pi : K → K

defined as Pi(η) = Ṽi(wi, η) (given by its t coefficients).
b. The verifier receives a degree t − 1 polynomial Qi (which is allegedly equal to Pi).

The verifier checks that γi = β(zi−1, wi−1) · M̃OD3t
(
Qi(α1), . . . , Qi(αt)

)
. If the check

fails then the verifier immediately rejects and halts. Otherwise, the verifier chooses a
random field element ηi ∈ K and sends ηi to the prover.

c. The claim for the next round is that Ṽi(zi) = νi, where νi = Pi(ηi) and zi = (wi, ηi).
After all of the r phases are complete, the verifier outputs (zr, νr) and the associated claim
is that Ṽr(zr) = νr. Since Ṽr is simply the low degree extension of the input x, the latter
is a claim about a single point in the low degree extension of the input as required by the
definition of an HIP verifier.

Complexity. Since the communication complexity of each sumcheck is O(r · k1/r · log |K|),
the total communication complexity is O(r2 · k1/r · log |K|). As for the round complexity,
the ith phase uses a sumcheck of i ≤ r rounds of interaction. Moreover, each sumcheck
concludes with a message from the prover to the verifier so we can “piggyback”and attach
the polynomial Qi to that last message from the prover and send back the value ηi as our
response (which is still part of the last round of the sumcheck protocol) so each phase just
takes ≤ r rounds and overall we have ≤ r2 rounds.
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As for computational complexity, in the first step of each phase, the parties invoke a
sumcheck protocol in which, by Lemma 10, the verifier runs in time kO(1/r) · r · polylog|K|,
and the prover runs in time poly(|K|r). In the second step of each phase, the prover computes
and sends Pi, which clearly can be done in time poly(|K|r), and the verifier computes γi,
which boils down to evaluating the functions β and M̃OD3t at a single point, which can be
done in time poly(t, log k) = kO(1/r) · poly(log |K|) (see Proposition 6 and Appendix E for the
time complexity of computing β and M̃OD3t, respectively). The obtain the total running
times (for the entire r phases), we multiply the time per phase by r.

Completeness. Perfect completeness follows readily from the construction (and the prefect
completeness of the sumcheck protocol).

Soundness. To conclude the proof of Lemma 18 we only need to show that soundness holds.
Our analysis follows the soundness analysis in [37, Theorem 3.1].

Fix an input x ∈ {0, 1}k such that
∑
i∈[k] xi 6≡ 0 (mod 3) (i.e. x 6∈ LMOD3) and a cheating

strategy P∗. Denote by A the event that the verifier does not reject in the interaction with
the prover P∗. For every i ∈ {0, 1, . . . , r}, denote by Ti the event that Ṽi(zi) = νi. Note
that since

∑
i∈[k] xi 6= 0 (mod 3) it holds that the event ¬T0 occurs with probability 1. For

every i ∈ [r], let Ei denote the event that the polynomial Qi that the prover sent is indeed
identical to Pi(η) = Ṽi(wi, η).

Our analysis will be based on the following two claims.

I Claim 20.

Pr
[
A ∧ Ei | ¬Ti−1

]
≤ 3t2r
|K|

.

Proof. Assume that the event Ti−1 occurs. Then, by the soundness of the sumcheck protocol,
with probability 3t2r

|K| (over the verifier’s coins in the sumcheck protocol) it holds that

fi−1(wi−1) 6= γi−1, or in other words β(zi−1, wi−1) · M̃OD3t
(
Ṽi((wi−1, α1)), . . . ,

Ṽi((wi−1, αt))
)
6= γi−1. If the latter happens and then the prover sends the correct polynomial

Pi (i.e., the event Ei occurs) then the verifier immediately rejects in Item 2b. Thus, with
probability 1− 3t2r

|K , either the event ¬A or ¬Ei must occur. J

On the other hand:

I Claim 21.

Pr
[
Ti | ¬Ei

]
≤ t

|K|
.

Proof. The event ¬Ei implies that the polynomial Qi sent by the prover differs from the
correct polynomial Pi. Since both Qi and Pi are degree t− 1 polynomials, they can agree
on at most t− 1 points, and so, with probability 1− t−1

|K| over the choice of ηi it holds that
νi = Q(ηi) 6= P (ηi) = Ṽi((wi, ηi)) = Ṽi(zi). J

Finally, observe that the probability that the verifier errs is simply Pr[A ∧ ¬Tr], which
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we can bound (using Claim 20, Claim 21 and elementary probability theory) as follows:

Pr[A ∧ Tr] = Pr[A ∧ ¬T0 ∧ Tr]
≤ Pr

[
∃i ∈ [r] such that A ∧ ¬Ti−1 ∧ Ti

]
≤

r∑
i=1

Pr [A ∧ ¬Ti−1 ∧ Ti]

=
r∑
i=1

(Pr[A ∧ ¬Ti−1 ∧ Ti ∧ Ei] + Pr[A ∧ ¬Ti−1 ∧ Ti ∧ ¬Ei])

≤
r∑
i=1

(
Pr
[
A ∧ Ei | ¬Ti−1

]
+ Pr

[
Ti | ¬Ei

])
≤

r∑
i=1

(
3t2r
|K|

+ t

|K|

)
≤ 4t2r2

|K|
.

This concludes the proof of Lemma 18. J

Lemma 18 provides an r2-round HIP for LMOD3, with respect to the code LDEK,G,r, where
K is a field ensemble of size Θ

(
r2 · k2/r). We now use a general result, which is stated

and proved in Section 3, which transforms any such HIP, in which the field K has small
characteristic, into an HIP over the code LDEF,H,m where the size of the field F is now only
poly-logarithmic in k. Specifically, by applying Lemma 12 to the protocol of Lemma 18, and
using a field K which is an extension field of some field F of size polylog(k), we obtain the
following corollary:

I Corollary 22. Let F = (Fk)k∈N be a constructible field ensemble, H = (Hk)k∈N ⊆ F be
an ensembles of subsets of F and let m = m(k) be a dimension such that |H| = log(k),
m = log(k)

log log(k) and |F| = Θ(|H| ·m).
Then, for every parameter r = r(k) ≤ log(k)

log log(k) , the language LMOD3 has an has an
O(r2)-round (public-coin) HIP with respect to the code LDEF,H,m with soundness error 1/2
and communication complexity kO(1/r). The verifier runs in time kO(1/r) and the prover
runs in time poly(k).

Lemma 17 follows from Corollary 22 by applying Proposition 11, which is a generic
transformation from any HIP, over the low degree extension encoding, into an IPP.

4.3 The Lower Bound
I Lemma 23. Let r = r(k) ≥ 1 be a constant. For every r-round IPP for Enc-MOD3,
with respect to proximity parameter ε = 1/10, with query complexity q and communication
complexity c ≥ Ω(logn), it holds that max(c, q) = nΩ(1/r).

We remark that our proof of Lemma 23 gives a similar result even for super constant values
of r (as long as r = O

(√
log(n)

log log(n)

)
) but for simplicity we restrict ourselves to constant r.

We also remark that the constants in the lemma’s statement can be improved but we avoid
optimizing them for sake of readability.

Proof. Throughout the proof of Lemma 23 all proofs of proximity refer to proximity parameter
ε = 1/10.
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Figure 2 After fixing the randomness, an AMP for Π can be expressed as follows: (a) a disjunction
over O(2c) decision trees of depth q · log(|F|), (b) a DNF formula with O(2c+q·log(|F|)) clauses of
width q · log |F| over the linear code C(w), and (c) a DNF⊕ circuit of size Õ(2c+q·log(|F|)) over x.

The following proposition, due to [58] (building on [8, 39, 36]), shows that to prove
Lemma 23, it suffices to prove a lower bound for AMPs, which are public-coin IPPs with only
a single round of interaction between the verifier and prover. More precisely, in an AMP for
a language L, the verifier first sends a random string r to the prover, who responds with a
proof π, which can depend on both the input x and the verifier’s message r. Then, given π
(and based on its original random coins r), the verifier needs to decide whether to accept
or reject. (Note that the verifier is not allowed to toss additional coins after receiving the
message from the prover.)

I Proposition 24 (IPP to AMP). If there exists an r-round (public or private coin) IPP
for a language L, with communication complexity c ≥ log(n) and query complexity q, then
there exists an AMP for L with communication complexity cr+2 · (log(c) · r)O(r) and query
complexity cr+1 · q · (log(c) · r)O(r).

The proof of Proposition 24, which appears in [58, Section 4], proceeds by observing that the
private-coin to public-coin transformation of [39] as well as the round reduction transformation
of [8, 36], which are transformations on standard interactive proofs, can be applied to IPPs
as well.

Thus, given Proposition 24, and using the fact that r is constant, to prove Lemma 23 it
suffices to show that every AMP for Enc-MOD3 with query complexity q and communication
complexity c satisfies max(c, q) = nΩ(1), or equivalently, since n = O(k3), that max(c, q) =
kΩ(1). The following proposition, which is inspired by the [58] lower bound, shows that AMPs
for properties of linear codes can be viewed as distributions over (relatively) small DNFs
of parities. By DNF of parities, we refer to depth 3 circuits whose bottom layer consists of
parity gates, middle layer consists of AND gates and top layer is a single OR gate. In the
following we denote such circuits by DNF⊕.

I Proposition 25. Let F be an extension field of GF(2), let C : Fk → Fn be an F-linear code,
and let f : {0, 1}k → {0, 1}. If there exists an AMP for Πf

def= {C(x) : x ∈ {0, 1}k ∧ f (x) =
1} with communication complexity c ≥ log(n) and query complexity q, then there exists a
distribution D over DNF⊕ circuits of size 2O(c+q·log2(|F|)) such that Prϕ∼D[ϕ(x) = f(x)] ≥ 0.9,
for all x ∈ {0, 1}k.

Proof. Let V be an AMP verifier for Π. We assume without loss of generality that V has
soundness error at most 0.1 (e.g., by repeating the protocol in parallel O(1) times). Recall
that in an AMP protocol, for a given input y ∈ Fn, the verifier first sends a random string
r, then the prover replies with an alleged proof π = π(r, y), and finally the verifier makes
queries to y and decides whether to accept or reject. Denote by Vyr,π the output of the verifier
for a fixed string r, given oracle access to y and direct access to π.
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For a fixed string r and alleged proof π, the verifier Vyr,π can be represented as an |F|-ary
decision tree of depth q (on input y), which we denote by Dr,π : {0, 1}k → {0, 1}. The
completeness and soundness requirements of an AMP guarantee that for a fixed string r, the
verifier accepts an input C(x) if and only if there exists a string π such that VC(x)

r,π = 1. Thus,
VC(x)
r,π =

∨
π∈{0,1}O(c) Dr,π

(
C(x)

)
(see Figure 2(a)). Observe that by viewing elements of F in

their bit-representation and assigning a clause for each accepting leaf in the decision tree, each
Dr,π can be represented as a binary DNF formula with |F|O(q) clauses of width O(q · log |F|).
Merging the two consecutive layers of disjunctions, we obtain a binary DNF formula that on
input y ∈ Fn computes Vyr,π with 2O(c+q·log2(|F|)) clauses of width O(q · log2(|F|)) each (see
Figure 2(b) for an illustration).

We next observe that every linear combination over the field F, which is an extension
field of GF(2), can be represented by log2(|F|) linear combinations over GF(2).24 Thus, we
can view the function C : Fk → Fn, which is an F-linear function, as a GF(2)-linear function
C : GF(2)k·log2(|F|) → GF(2)n·log2(|F|). Hence, for every random string r, there exists a DNF⊕
circuit of size:

2O(c+q·log2(|F|)) · q · log2(|F|) + n · log2(|F|) = 2O(c+q·log(|F|))

(which is constructed by composing the code C with the DNF
∨
π∈{0,1}O(c) Dr,π) that on

input x ∈ {0, 1}k outputs 1 if and only if there exists a proof π that V would accept, given
input C(x).

Therefore, there exists a distribution D over DNF⊕s of size 2O(c+q·log(|F|)) such that for
every x ∈ {0, 1}k, it holds that Prϕ∈D [ϕ(x) = f (x)] ≥ 0.9. This concludes the proof of
Proposition 25. J

Let fMOD3 : {0, 1}k → {0, 1} such that fMOD3 = 1 if and only if
∑
i∈[k] xi ≡ 0 (mod 3).

By Proposition 25, choosing Π = Enc-MOD3, C = LDEF
H,m, f = fMOD3, and using the (easy

direction of) Yao’s minimax principle, it suffices to show that there exists a distribution
X over inputs in {0, 1}k such that for every DNF⊕ ϕ of size

(
2O(c+q·log2(|F|))) it holds that

Prx∈X [ϕ(x) = fMOD3 (x)] < 0.9 (where recall that |F| = polylog(k)). To that end, we shall
use the celebrated result of Razborov [55] and Smolensky [62].

I Theorem 26 (Razborov-Smolensky (see also [68, Theorem 2])). Every AC0(⊕) circuit ϕ of
size s and depth d satisfies

Pr
x∈{0,1}k

[ϕ(x) = fMOD3(x)] < 2
3 +O

(
log(s)d√

k

)
.

This concludes the proof of Lemma 23. J

5 Implications for Classical Interactive Proofs

In this section, we derive from our hierarchy theorem implications to standard interactive
proofs (in which the verifier can run in polynomial time). Loosely speaking, in Section 5.1
we show that the round reduction of public-coin interactive proofs, due to Babai and Moran
[8], is (almost) optimal among all blackbox transformations, and in Section 5.2 we show that
any proof that #P ⊆ AM will require using non-algebrizing techniques.

24Fix a linear combination α ∈ Ft over F (the extension field). For every i ∈ [log2(|F|)], the function
`α,i(x) = biti(〈α, x〉) that outputs the tth bit of 〈α, x〉 is a linear function over GF(2).
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5.1 Blackbox Round Reduction Transformations
Babai and Moran [8] proved a “speedup” theorem, which loosely speaking, shows that very r-
round public-coin interactive proof protocol can be transformed into an (r−1)-round protocol
at the cost of increasing the communication complexity quadratically (some quantitative
improvements were later obtained by Goldreich, Vadhan and Wigderson [36]). Combined
with the private-coin to public-coin transformation of Goldwasser and Sipser [39], one can
obtain a similar “speedup” theorem for private-coin interactive proofs.

Vadhan [66] considered the affect of certain transformations on interactive proofs. He
introduced the notion of a “blackbox transformation” (defined below) and showed that the
aforementioned private-coin to public-coin transformation, and a transformation from 2-sided
error to 1-sided error of Goldreich, Mansour and Sipser [32], are (in a certain sense) optimal
amongst all black-box transformation.

In this section, we use our hierarchy theorem to derive a similar result for the round
reduction theorem of Babai and Moran. Following [66], we define a black-box transformation
on interactive proofs as a procedure that takes as input an interactive proof (P,V) for some
language L and outputs a new interactive proof (P ′,V ′), for the same language L, such that:

The strategy of the verifier V ′ can be implemented by an algorithm given oracle access to
the strategy of V.
The strategy of the prover P ′ can be implemented by a algorithm given oracle access to
the strategy of both P and V.

Here, the strategy of a party (i.e., prover or verifier) is the function that takes the party’s
random coins and the history of messages exchanged and outputs its next message. We stress
that the new strategies (P ′,V ′) cannot even explicitly look at the input x; their only access
to the input x is given by queries to the strategies (P,V).

An r-to-r′ blackbox round reduction transformation, for r′ < r, is a black-box transformation
that, given as input an r-round interactive proof, produces an r′-interactive proof (for the
same language). We remark that the [8] round-reduction is a blackbox round reduction
transformation, and we show that it is nearly optimal, out of all blackbox reductions.

I Theorem 27. There exists a language L such that for every constant r ≥ 1, there exists
an r-round (public-coin) interactive proof (P, V ) for L, with communication complexity
c = c(n), such that for every r-to-r′ blackbox round reduction transformation T , in the
resulting interactive proof (P ′,V ′) = T (P,V) it holds that either the communication is at
least cΩ(

√
r/r′) or V ′ invokes V at least cΩ(

√
r/r′) times.

Proof. Let r ∈ N be a constant, and consider the language

LMOD3 =
{
x ∈ {0, 1}k : wt(x) = 0 (mod 3)

}
k∈N .

Fix input length k ∈ N, field F, subset H ⊂ F, and dimension m = log(k)
log log(k) such that

|H| = log(k) and |F| = Θ(|H|2m).
By Corollary 22, there exists an r-round HIP for LMOD3, with respect to the code LDEF,H,m,

with communication complexity c def= kO(1/
√
r). As noted in Proposition 9, this HIP implies

an interactive proof (P,V) for LMOD3, with communication complexity c. Recall that on
input x ∈ {0, 1}k, the parties (P,V) invoke the HIP for LMOD3, and the verifier checks the
HIP’s output claim by computing a single point of LDEF,H,m(x).

Let T be an r-to-r′ blackbox round reduction transformation on interactive proofs, and
let (P ′,V ′) = T (P,V) be the resulting r′-round interactive proof for LMOD3. Using (P ′,V ′),
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we construct an r′-round ε-IPP for the language

Enc-MOD3 = {LDEF,H,m(x) : x ∈ LMOD3} .

Recall that V only computes LDEF,H,m(x) and queries it at a single point, and so each oracle
call to V that V ′ makes can be emulated by making a single query to LDEF,H,m(x). Therefore,
we can view (P ′,V ′) as an HIP, with respect to LDEF,H,m, for LMOD3, with communication
complexity c.

By applying Proposition 11 on (P ′,V ′), we obtain an r′-round IPP for Enc-MOD3; denote
its communication complexity by C and query complexity by Q. Finally, by Lemma 23 we
have that:

max(C,Q) = kΩ(1/r′) = cΩ(
√
r/r′). J

5.2 The Algebrization Barrier
The relatization framework, introduced by Baker, Gill, and Solovay [9], tried to capture
the intuition that we not understand how circuits operate and therefore we may as well
treat them as black-boxes. Later on, the seminal result of [52, 60] showed that even without
understanding how circuits operate, we can still do more than just evaluate them (i.e., treat
them as oracles). Specifically, arithmetizing the circuit, allows us to evaluate points in a low
degree extension of the function computed by the circuit. The latter cannot be done only via
oracle access and has turned out to be incredibly useful.

The algebrization framework, introduced by Aaronson and Wigderson [1], tries to capture
this additional power. Specifically, in this framework, rather than just giving oracle access
to the given function, we give oracle access also to a low degree extension of the function.
Results such as IP = PSPACE can be showed to have “algebrizing” proofs. Despite the power
that we obtain by having access to the low degree extension of the function, [1] also showed
that some central questions in complexity theory cannot be proved within this framework
(i.e., by “algebrizing”) techniques.

Loosely speaking, for two complexity classes C1 and C2, the inclusion C1 ⊆ C2 is said to
algebrize if CA1 ⊆ CÃ2 for every oracle A and every low-degree extension Ã of A. (See [1] for
the precise definition, discussions and many more details.) We say that proving the inclusion
C1 ⊆ C2 requires non-algebrizing techniques, or cannot be proved via algebrizing techniques,
if the inclusion does not algebrize.

Before stating our results, we point out that there is an intimate connection (or a high
level equivalence) between the class the algebrized class IPÃ (where Ã is the low degree
extension of some oracle A) and the notion of HIPs (with respect to the low degree extension
encoding). Indeed, in both cases the verifier needs to verify a property of some string, given
oracle access to its low degree extension and interaction with the prover. For an IPÃ the
string is the truth table of A and for HIPs the string is simply the input.

Using this relation, we use our hierarchy theorem to show that the inclusion #P ⊆ AM,
which is widely believed not to hold25, cannot be proved via algebrizing techniques. As
a matter of fact, the proof of Theorem 28 can be easily extended to show that even the
containment of #P in a powerful variant of AM in which, for inputs of length N , the
verifier is allowed to run in time 2o(N) and with 2o(N) communication, cannot be proved via
algebrizing techniques.

25 In particular it implies the collapse of the polynomial hierarchy to its second level.
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I Theorem 28. There exists an oracle A and a low-degree extension Ã of A such that
#PA 6⊆ AMÃ.

Proof Sketch. Consider the problem #CSAT, which is the problem of counting the number of
satisfying assignments of a given (Boolean) circuit C, and recall that #CSAT is #P-complete.
Let A : {0, 1}N → {0, 1} be an oracle and consider an input circuit C that, given as input
x ∈ {0, 1}N , just outputs A(x). We associate A with its truth table, which is a string of
length 2N . Let Ã = LDEF,H,m(A), where F, H,m are defined as in Section 4.1, with respect
to the parameter k = 2N .

Observe that if #PA ⊂ AMÃ, then there exists an AM proof system for computing the
number of satisfying assignments of the circuit C, which is exactly the Hamming weight of A
(viewed as an k-bit string), in which the communication complexity is poly(N) and in which
the verifier only makes poly(N) oracle queries to Ã. Thus, following Proposition 11, we can
obtain from this AM proof system a 1-round IPP for Enc-MOD3 with communication and
query complexities poly(N) = polylog(k), which violates the lower bound in Lemma 23. J

I Remark (Using Prime Order Fields). We remark that the proof of Theorem 28 is strongly
based on the fact that we take a low degree extension over a field that has characteristic
2. Our result can extend to other constant size characteristics but we do not know how to
extend it to arbitrary fields. In fact, it is consistent with our result (however unlikely) that
there is a proof that #P ⊆ AM based (in a crucial way) on taking the low degree extension
of the circuit with respect to a large prime order field.

We remark that we are unaware of any complexity class containments in the literature
that are only known based on algebrization using prime order fields.26
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A Talmudic Discussions

A.1 Why GKR and not other Interactive Proofs?
One may wonder whether we could base our upper bound on other interactive proofs from
the literature. Other than the protocols of [37, 45], two other general purpose interactive
proof-systems that come to mind are Shamir’s27[60] protocol for IP = PSPACE and a recent
protocol of Reingold, Rothblum and Rothblum [56] that gives constant-round interactive
proofs for bounded-space computations.

27 Indeed, here we specifically refer to Shamir’s [60] protocol and not to the [52] protocol (on which [60]
builds).
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Shamir’s protocol is not suitable for our needs both because it is not constant-round, and,
perhaps more fundamentally, because the verifier in Shamir’s protocol needs to access the
low-degree extension of the input over a field that is only determined during the interaction
(recall that the verifier in Shamir’s protocol chooses a random prime p, and the players both
work over the field of integers modulo p). For our purposes the field has to be fixed a priori
(since we want the input for the IPP to be encoded under the LDE code corresponding to
that field).

As for the protocol of [56], the latter does actually yield a constant-round HIP for LMOD3
(which can be modified to yield an IPP for Enc-MOD3 as above) but the tradeoff that it offers
between rounds and the verifier’s complexity is exponentially worse than what we obtain.
More specifically, for every constant r ≥ 1, the [56] protocol yields a 2Õ(r)-round HIP for
LMOD3 with verification time roughly 2Õ(r) · k1/r. In contrast, we obtain an O(r2)-round HIP
with verification time roughly poly(r) · k1/r.

A.2 An Alternative Candidate Language for the Round Hierarchy
Theorem

The language for which we proved our round hierarchy consists of encodings of strings whose
Hamming weight is divisible by 3. As described next, it seems as though a similar result can
be obtained for a related language Enc-Maj that consists of encodings of strings x ∈ {0, 1}k
with wt(x) ≥ k/2, although there are some technical difficulties to overcome.

First note that the lower bound for Enc-Maj follows along the same lines as our lower
bound for Enc-MOD3, where now we use the fact that AC0[2] circuits cannot approximate
the majority function [55, 62]. In contrast, showing an upper bound (i.e., an IPP or HIP)
introduces some new difficulties. As explained in Section 1 (and formalized in Section 4), our
upper bound for Enc-MOD3 is based on the observation that computing the sum, modulo
3, of the bits of an input string can be done by a (highly uniform) NC1 circuit. Given this
observation, we based our protocol on a variant of the GKR interactive proof for small-depth
computations.

For Enc-Maj, we could similarly hope to base our protocol on an NC1 circuit, but this
time we need a circuit that computes the majority function. Obtaining such a circuit is less
trivial and here we encounter some difficulties:

Valiant [67] (see the presentation of Goldreich [25]) gave a non-uniform construction
of an NC1 circuit for majority. We could base our protocol on this result and obtain a
non-uniform verifier (and in particular, its running time would be super-linear, although
it would still have the desired query and communication complexities).
The aforementioned construction of [67] can actually be shown to produce a (highly-
uniform) randomized construction. That is, there exists a randomized logspace Turing
machine that given as input 1n, with all but exponentially vanishing probability, produces
an NC1 circuit, on n-bit strings, that computes the majority function correctly (on all
inputs). We could have our verifier run this procedure to obtain the desired NC1 circuit,
but this would introduce an (exponentially small) completeness error, which we would
like to avoid.
Lastly, we mention that the celebrated [3] sorting network of Ajtai, Komlós and Szemerédi
gives rise to a uniform (and deterministic) construction of an NC1 circuit for majority (by
sorting the input bits and outputting the median). This construction is quite complex
and in particular we have not verifed whether it satisfies the uniformity condition that is
required for the [45] result.28

28We note that other partial, but arguably simpler, de-randomization results of Valiant’s formula have
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B From HIPs to IPPs (Proof of Proposition 11)

The two main ingredients that we shall use to prove Proposition 11 are the well-known low
(individual) degree test29 for multivariate polynomials [59, 64, 4], and the self-correction
procedure for polynomials [23, 64].

I Lemma 29 (Individual Degree Test). Let d,m ∈ N such that dm < |F|/10 and ε ∈ (0, 1/10).
Denote by Polyd,m,F the set of all m-variate, individual degree d polynomials over F. Then,
there exists an ε-tester for Polyd,m,F with query complexity dm · poly(1/ε).

I Lemma 30. Let ε < 1/3 and d,m ∈ N such that d ≤ |F|. There exists an algorithm
(corrector) that, given x ∈ Fm and oracle access to an m-variate function f : Fm → F that is
ε-close to a polynomial p of individual degree d, makes O(d ·m) queries and outputs p(x)
with probability 9/10. Furthermore, if f has total degree d, the algorithm outputs p(x) with
probability 1.

Given Lemmas 29 to 30, we can now describe the IPP (with respect to some proximity
parameter ε) for LDEF,H,m(L). Recall that the verifier is given oracle access to a function
f : Fm → F and the prover is given direct access to f . Assume, without loss of generality,
that the HIP for L has soundness error 1/10.30

First, the verifier and prover run the HIP protocol for L with respect to the input f |Hm .
(Recall that an HIP does not even query its input and therefore, so far, no queries have
been made.) If the HIP verifier rejects then we immediately reject. Otherwise, the verifier
outputs a pair (z, ν) ∈ Fm × F (with the associated claim that f(z) = ν). Then, the verifier
runs the individual degree tester of Lemma 29 on f , with respect to proximity parameter
ε, individual degree |H| − 1 (and soundness error 1/3). If the low degree test rejects, the
verifier immediately rejects. Lastly, the verifier decodes f at point z, using the self-correction
procedure of Lemma 30, again with soundness error 1/10. The procedure outputs a value ν′.
The verifier accepts if ν = ν′ and otherwise it rejects.

Completeness follows from the perfect completeness of the HIP, the low degree test and
the local self-correction. For soundness, let f : Fm → F be a function such that f is ε-far
from LDEF,H,m(L) and fix a cheating prover strategy P∗. Consider first the case that f is
ε-far from an individual degree |H| − 1 polynomial. In this case, by the low degree test, with
probability at least 2/3, the verifier rejects and we are done. Thus, we can assume that f is
ε-close to some individual degree |H| − 1 polynomial P : Fm → F. Observe that since f is
ε-far from LDEF,H,m(L) it must be the case that P |Hm 6∈ L.

We view the HIP as being applied to P |Hm . By the soundness of the HIP, when the
verifier interacts with any cheating prover (and in particular P∗) with probability 9/10 it
either rejects (in which case we also reject) or it outputs a pair (z, ν) ∈ Fm × F such that
P (z) 6= ν. The verifier reads the point z with self-correction and so, with probability at least
9/10 it will obtain the actual value ν′ = P (z) and reject when comparing ν′ and ν. Thus,
with probability 0.92 ≥ 2/3 our verifier rejects.

been obtained by [44] and [15]. However, these partial derandomizations do not seem to suffice for our
purposes.

29Actually, the cited works provide a test for total degree. A test for individual degree (which is implicit
in [35, Section 5.4.2]) can be obtained via a simple reduction (see, e.g., [43, Theorem A.8]).

30 Indeed, parallel repetition of IPPs decreases their soundness error at an exponential rate (see [31,
Appendix A] for details).
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C The Sumcheck Protocol (Proof of Lemma 10)

In this appendix we prove Lemma 10.
We use a variant of the sumcheck protocol that takes r rounds, where for simplicity we

assume that r divides m. We maintain the invariant that before the ith rounds begins, both
the verifier and the prover agree on values w1, . . . , wi−1 ∈ Fm/r and νi−1 ∈ F, where ν0

def= 0.
For every i ∈ [r], the ith round of the sumcheck protocol is as follows.
1. The prover sends to the verifier the individual degree |H| − 1 polynomial Pi : Fm/r → F

(by specifying its coefficients), defined as:

Pi(z)
def=

∑
xi+1,...,xr∈Hm/r

P (w1, . . . , wi−1, z, xi+1, . . . , xr).

2. The verifier receives a polynomial Qi : Fm/r → F (which is allegedly equal to Pi) and
checks that

∑
z∈Hm/r Qi(z) = νi−1.

3. The verifier select uniformly at random wi ∈ Fm/r and sends wi to the prover.
4. Set νi

def= Qi(wi).

At the end of the protocol, the verifier outputs ((w1, . . . , wr), νr) ∈ Fm × F.
The running times and communication complexity of the protocol can be readily verified.

We proceed to show that completeness and soundness hold.

C.1 Completeness
Let P : Fm → F be an individual degree |H| − 1 polynomial such that

∑
x∈Hm P (x) = 0. In

this case, at every round i ∈ [ρ], the prover sends the polynomial Qi ≡ Pi. Hence, for every
i ∈ [r]:∑

z∈Hm/r

Qi(z) =
∑

z∈Hm/r

Pi(z)

=
∑

z∈Hm/r

∑
xi+1,...,xr∈Hm/r

P (w1, . . . , wi−1, z, xi+1, . . . , xr)

= Pi−1(wi−1)
= Qi−1(wi−1)
= νi−1

and so all of the verifier’s checks pass. At the end of the protocol the verifier outputs
((w1, . . . , wr), νr) ∈ Fm × F and νr = Pr(wr) = P (w1, . . . , wr)) as required.

C.2 Soundness
Let P : Fm → F be an individual degree |H| − 1 polynomial such that

∑
x∈Hm P (x) 6= 0 and

fix a cheating prover strategy P∗.
The next two claims relate the polynomials Qi sent by the prover to the corresponding

polynomials Pi (recall that Pi was defined as Pi(z) =
∑
xi+1,...,xr∈Hm/r P (w1, . . . , wi−1, z,

xi+1, . . . , xr)). Recall that both polynomials depend only on w1, . . . , wi−1.

I Claim 31. If Q1 ≡ P1, then the verifier rejects with probability 1.

Proof. Observe that
∑
x1∈Hm/r P1(x1) =

∑
z∈Hm P (z) 6= 0, and so, if Q1 ≡ P1, then the

verifier rejects when testing that
∑
z∈Hm/r Q1(z) = ν0 = 0. J
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I Claim 32. For every i ∈ [r − 1] and every w1, . . . , wi−1 ∈ Fm/r, if Qi 6≡ Pi then, with
probability 1− (m/r)·|H|

|F| over the choice of wi, if Qi+1 ≡ Pi+1 then the verifier rejects.

Proof. Since the (total degree (m/r) ·(|H|−1)) polynomials Qi and Pi differ, by the Shwartz-
Zippel lemma (Lemma 5), with probability 1− (m/r)·|H|

|F| over the choice of wi ∈R Fm/r, it
holds that Qi(wi) 6= Pi(wi). If the latter event occurs and the prover sends Qi+1 ≡ Pi+1,
then the verifier rejects when testing whether

∑
z∈Hm/r Qi+1(z) = νi, since

νi = Qi(wi) 6= Pi(wi) =
∑

z∈Hm/r

Pi+1(z) =
∑

z∈Hm/r

Qi+1(z). J

By Claims 31 and 32 and an application of the union bound, with probability 1− (r −
1) · (m/r)·|H

|F| , if there exists an i ∈ [r − 1] such that Qi 6≡ Pi but Qi+1 ≡ Pi+1 then the
verifier rejects. However, by Claim 31, we can assume that Q1 6≡ P1 and so we get that
with probability 1 − (r − 1) · (m/r)·|H

|F| either the verifier rejects or Qr 6≡ Pr. Note that if
Qr 6≡ Pr then by the Shwartz Zippel Lemma with probability 1 − (m/r)·|H|

|F| it holds that
Qr(wr) 6= Pr(wr) and therefore:

νr = Qr(wr) 6= Pr(wr) = P (w1, . . . , wr)

and so the soundness condition holds, with soundness error (r−1)· (m/r)·|H|F| + (m/r)·|H
|F| = m·|H

|F| .

D Interactive Proof for Vanishing-Subcube (Proof of Proposition 14)

Let F be a constructible field ensemble, let H ⊆ G ⊆ F be ensembles of subsets, and let
m ∈ N. Recall that Vanishing-SubcubeF,H,m,G is the set of all functions f : Gm → F that
vanish on Hm (i.e., f |Hm ≡ 0). We show that for every r ∈ [m], there exists an r + 2-round
(public-coin) HIP for Vanishing-SubcubeF,H,m,G, with respect to the code LDEF,G,m.

Recall that in an HIP with respect to the code LDEF,G,m, the input should be thought of
as an m-variate polynomial P with individual degree |G| − 1. The prover has direct access
to P and the verifier needs to output a pair (z, ν) ∈ Fm × F, with the associated claim that
P (z) = ν.

For a given function P : Fm → F, we define the polynomial P̃ (x) =
∑
z∈Hm δ(z, x) · P (z),

where δ : Fm × Fm → F is an individual degree |H| − 1 polynomial such that for every
a, b ∈ Hm, it holds that δ(a, b) = 1 if a = b and δ(a, b) = 0 otherwise (and δ is arbitrary in
F2m\H2m).31

To check that P is identically 0 in Hm, the verifier first chooses at random r ∈ Fm and
sends r to the prover. Now, the prover and verifier run an interactive proof to check that
P̃ (r) = 0, by invoking the sumcheck protocol with respect to the summation

∑
z∈Hm δ(z, r) ·

P (z) = 0, where we observe that the polynomial δ(·, r)·P (·) has individual degree |H|+|G|−1.
If the sumcheck verifier rejects, then we immediately reject. Otherwise, the sumcheck verifier
outputs a pair (z, ν) ∈ Fm × F, and the prover then sends the value ν′ = P (z). Finally, the
verifier checks that δ(z, r) · ν′ = ν and if so outputs (z, ν′).

For completeness, note that if P is identically 0 in Hm, then P̃ is identically 0 in Fm. In
particular, with probability 1 over the choice of r it holds that P̃ (r) =

∑
z∈Hm δ(z, r)·P (h) = 0.

Thus, by the completeness of the sumcheck protocol, the sumcheck verifier outputs a pair

31We note that P̃ is in fact the low degree extension of the function P , when the latter is restricted to
Hm.
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(z, ν) such that δ(z, r) · P (z) = 0. The prover now sends the value ν′ = P (z), and so the
verifier’s check that δ(z, r) · ν′ = ν passes, and it outputs the claim (z, ν′), which is correct
since P (z) = ν′.

As for soundness, if P is not identically 0 in Hm, then by definition, P̃ is not identically
0 in Fm, and therefore by the Schwartz-Zippel lemma (see Lemma 5), with probability
1 − m·(|H|−1)

|F| over the choice of r, it holds that P̃ (r) 6= 0. Thus, the sumcheck protocol
is invoked on the sum

∑
z∈Hm δ(z, r) · P (z) 6= 0 and so, with probability 1− m·(|H|+|G|−2)

|F|
either the sumcheck verifier rejects, or it outputs a claim (z, ν) such that δ(z, r) · P (z) 6= ν.
Assuming the latter happens, if the prover now sends ν′ = P (z), then the verifier rejects.
Hence, it must send ν′ 6= P (z), and so the verifier outputs the incorrect claim (z, ν′).

E Efficiently Computing M̃OD3t

Recall that M̃OD3t : Kt → K was defined as the (unique) individual degree 2 polynomial
such that for every h ∈ {0, 1, 2}t it holds that M̃OD3t(h) =

∑
i∈[t] hi (mod 3). In this section

we show that M̃OD3 is efficiently computable. Namely, that given a point z ∈ Kt, one can
compute M̃OD3t(z) in time poly(t, log(|K|)).

I Proposition 33. Let K be a constructible field ensemble. There exists a poly(t, log(|K|))-
time algorithm that given a point z ∈ Kt outputs the value M̃OD3t(z).

Proof. To prove Proposition 33, we first show that for every σ ∈ {0, 1, 2} and i ∈ [t], we
can construct a size poly(i) uniform arithmetic circuit over K that computes the function
F

(σ)
i : Ki → K, which is defined as the unique individual degree 2 polynomial such that:

∀h ∈ {0, 1, 2}i, F
(σ)
i (h) =

{
1 if

∑
i∈[t] hi = σ (mod 3)

0 otherwise
.

where the summation is over integers modulo 3. Despite their similarity, note that M̃OD3t is
the low degree extension of a function that computes the sum modulo 3 of its input, whereas
F

(σ)
t is the low degree extension of a function that indicates whether the sum modulo 3 is

congruent to σ.
Given arithmetic circuits that compute F(σ)

t , we can now compute M̃OD3t : Kt → K as:

M̃OD3t(z) =
∑

σ∈{0,1,2}

σ · F (σ)
i (z), (10)

where here the arithmetic is over the field K, and the equality follows from the fact that
both sides of the equation are polynomials of individual degree 2 that agree on {0, 1, 2}t and
therefore must agree on Kt. Thus, it remains to prove the following claim.

I Claim 34. For every σ ∈ {0, 1, 2} and i ∈ N, there exists an arithmetic circuit of size
O
(
ilog2(6)) over K that computes F (σ)

i .

Proof. We prove the proposition for i’s that are powers of two and note that the general
case follows easily (e.g., by using a circuit of size that is the nearest power of two and fixing
some of its inputs to 0).

The proof is by induction on i, where the base case i = 1, is trivial. Fix i (that is a power
of two) and suppose that we have constructed arithmetic circuits for computing F (σ)

i for
every σ ∈ {0, 1, 2}.
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Fix τ ∈ {0, 1, 2}. The main observation is that for every z1, z2 ∈ Ki it holds that

F
(τ)
2i (z1, z2) =

∑
σ∈{0,1,2}

F
(σ)
i (z1) · F (τ−σ mod 3)

i (z2), (11)

where the equality follows from the fact that that both sides of the equation are polynomials
of individual degree 2 that agree on {0, 1, 2}i and therefore must agree on K2i.

Denoting by Si the size of the arithmetic circuit that Equation (11) yields for F (σ)
i , it

holds that:

S2i = 6 · Si + c = · · · = 6log(2i) · S1 + c ·
i−1∑
j=0

6j = O
(

(2i)log2(6)
)
,

where c ≤ 10 is the constant overhead that arises from Equation (11). This concludes the
proof of Claim 34. J

Proposition 33 now follows by combining Equation (10) and Claim 34. J
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