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Abstract
We consider the manipulability of tournament rules for round-robin tournaments of n competitors.
Specifically, n competitors are competing for a prize, and a tournament rule r maps the result
of all

(
n
2
)
pairwise matches (called a tournament, T ) to a distribution over winners. Rule r is

Condorcet-consistent if whenever i wins all n− 1 of her matches, r selects i with probability 1.
We consider strategic manipulation of tournaments where player j might throw their match

to player i in order to increase the likelihood that one of them wins the tournament. Regardless of
the reason why j chooses to do this, the potential for manipulation exists as long as Pr[r(T ) = i]
increases by more than Pr[r(T ) = j] decreases. Unfortunately, it is known that every Condorcet-
consistent rule is manipulable [1]. In this work, we address the question of how manipulable
Condorcet-consistent rules must necessarily be - by trying to minimize the difference between
the increase in Pr[r(T ) = i] and decrease in Pr[r(T ) = j] for any potential manipulating pair.

We show that every Condorcet-consistent rule is in fact 1/3-manipulable, and that selecting
a winner according to a random single elimination bracket is not α-manipulable for any α > 1/3.
We also show that many previously studied tournament formats are all 1/2-manipulable, and the
popular class of Copeland rules (any rule that selects a player with the most wins) are all in fact
1-manipulable, the worst possible. Finally, we consider extensions to match-fixing among sets of
more than two players.
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1 Introduction

In recent years, numerous scandals have unfolded surrounding match fixing and throwing at
the highest levels of competitive sports (e.g. Olympic Badminton [11], Professional Tennis [6],
European Football [22], and even eSports [24]). In some instances, the motivation behind
these scandals was gambling profits, and no amount of clever tournament design can possibly
mitigate this. In others, however, the surprising motivation was an improved performance at
that same tournament. For instance, four Badminton teams (eight players) were disqualified
from the London 2012 Olympics for throwing matches. Interestingly, the reason teams wanted
to lose their matches was in order to improve their probability of winning an Olympic medal.
Olympic Badminton (like many other sports) conducts a two-phase tournament. In the first
stage, groups of four play a round-robin tournament, with the top two teams advancing. In
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the second stage, the advancing teams participate in a single elimination tournament, seeded
according to their performance in the group stage. An upset in one group left one of the
world’s top teams with a low seed, so many teams actually preferred to receive a lower seed
coming out of the group stage to face the tougher opponent as late as possible.

While much of the world blames the teams for their poor sportsmanship, researchers in
voting theory have instead critiqued the poor tournament design that punished teams for
trying to maximize their chances of winning a medal. Specifically, the two-phase tournament
lacks the basic property of monotonicity, where no competitor can unilaterally improve their
chances of winning by throwing a match that they otherwise could have won. Thus, recent
work has addressed the question of whether tournament structures exist that are both fair,
in that they select some notion of a qualified winner, and strategyproof, in that teams have
no incentive to do anything but play their best in each match.

One minimal notion of fairness studied is Condorcet-consistence, which just guarantees
that whenever one competitor wins all of their matches (and is what’s called a Condorcet
winner), they win the event with probability 1. Designing Condorcet-consistent, monotone
rules is simple: any single elimination bracket suffices. Popular voting rules such as the
Copeland Rule or the Random Condorcet Removal Rule are also Condorcet-consistent and
monotone, but two-phase tournaments with an initial group play aren’t [17].

Still, monotonicity only guarantees that no team wishes to unilaterally throw a match to
improve their chances of winning, whereas one might also hope to guarantee that no two
teams could fix the outcome of their match in order to improve the probability that one of
them wins. While we have to go back further in history to find a clear instance of this kind of
match-fixing, it did indeed result in a historical scandal. In the 1982 FIFA World Cup (again
a two-stage tournament), Austria, West Germany, and Algeria were in the same group of four
where two would advance. Algeria had already won two matches and lost one, Austria was
2-0, West Germany was 1-1, and the only remaining game was Austria vs. West Germany.
Due to tie-breakers and the specific outcomes of previous matches, Austria would have been
eliminated by a large West German victory, and West Germany would have been eliminated
by a loss or draw. Once West Germany scored an early goal, both teams essentially threw
the rest of the match, allowing both of them to advance at Algeria’s expense [25]. While the
incident was never formally investigated, many fans were confident the teams had colluded
beforehand, and the event is remembered as the “disgrace of Gijón.” Before being eliminated,
Algeria had become the first African team to beat a European team at the World Cup, and
also the first to win two games. West Germany went on to become the runners-up of the
tournament.

Motivated by events like this, it is important also to design tournaments where no two
teams can fix the outcome of their match and improve the probability that one of them wins.
Altman and Kleinberg terms this property 2-Strongly Nonmanipulable (2-SNM), and showed
that no tournament rule is both Condorcet-consistent and 2-SNM [1] (it was previously shown
by Altman et. al. that no deterministic rule is both Condorcet-consistent and 2-SNM [2]).

In light of this, both works relax the notion of Condorcet-consistency and design tourna-
ment rules that are at least non-imposing (could possibly select each competitor as a winner)
and 2-SNM [2], or α-Condorcet-consistent (if there is a Condorcet winner, she wins with
probability at least α) and 2-SNM. While these relaxations are well-motivated for settings
where pair-wise comparisons are only implicitly made, and not even necessarily learned in
the end (e.g. elections), it is hard to imagine a successful sports competition format where a
competitor could win all their matches and still leave empty handed. This happened during
the 2008 NCAA Football Season. Utah went undefeated (#2, 13-0) in their region but
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were not invited to the bowl game because critics deemed their schedule weak. They were
eventually ranked second nation-wide and beat Alabama (#6, 12-2) in the Sugar Bowl, while
Florida (#1, 13-1) beat Oklahoma (#5, 12-2) for the National Championship. This event
prompted organizers to reconsider the process by which teams are invited to the National
Championship game.

Motivated by match-based applications such as sporting events, where the outcome of
pair-wise matches is explicitly learned and used to select a winner, we consider instead the
design of tournament rules that are exactly Condorcet-consistent, but only approximately
2-SNM. Specifically, we say that a tournament rule is 2-SNM-α if it is never possible for
two teams i and j to fix their match such that the probability that the winner is in {i, j}
improves by at least α. The idea behind this relaxation is that whatever motivates j to throw
the match (perhaps j and i are teammates, perhaps i is paying j some monetary bribe, etc.),
the potential gains scale with α. So it is easier to disincentivize manipulation (either through
investigations and punishments, reputation, or just feeling morally lousy) in tournaments
that are less manipulable.

1.1 Our Results
Our main result is a matching upper and lower bound of 1/3 on attainable values of α
for Condorcet-consistent 2-SNM-α tournament rules. The optimal rule that attains this
upper bound is actually quite simple: a random single elimination bracket. Specifically, each
competitor is randomly placed into one of 2dlog2 ne seeds, along with 2dlog2 ne − n byes, and
then a single elimination tournament is played.

Proving a lower bound of 1/3 is straight-forward: imagine a tournament with three
players, A,B and C, where A beats B, B beats C, and C beats A. Then some pair must
win with combined probability at most 2/3. Yet, any pair could create a Condorcet winner
by colluding, who necessarily wins with probability 1 in any Condorcet-consistent rule.
Embedding this within examples for arbitrary n is also easy: just have A, B, and C each
beat all of the remaining n− 3 competitors1.

On the other hand, proving that a random single elimination bracket is optimal is tricky,
but our proof is still rather clean. For any i, j in any tournament, we directly show that i
can improve her probability of winning by at most 1/3 when j throws their match using a
coupling argument. For every deterministic single elimination bracket where i and j could
potentially gain from manipulation (because i would be the champion if i beat j, but j would
not be the champion even if j beat i), we construct two deterministic single elimination
brackets where no potential exists (possibly because one of them will lose before facing each
other, or because the winner would be in {i, j} no matter the outcome of their match). For
our coupling to be valid, we not only need each mapping to be invertible, but also for their
images to be disjoint. Our coupling is necessarily somewhat involved in order to obtain this
property, but otherwise we believe our proof is likely as simple as possible. Because the
probability that j wins cannot possibly go up by throwing a match to i, this immediately
proves that a random single elimination bracket is 2-SNM-1/3.

We also show that the Copeland rule, a popular rule that chooses the team with the most
wins, is asymptotically 2-SNM-1, the worst possible. Essentially, the problem is that if all
teams have the same number of wins, then any two can collude to guarantee that one of

1 Interestingly, this lower-bound example is far from pathological and occurs at even the highest levels of
professional sports (see [18], for instance).
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them wins, no matter the tie-breaking rule. We further show that numerous other formats,
(the Random Voting Caterpillar, the Iterative Condorcet Rule, and the Top Cycle Rule) are
all at best 2-SNM-1/2. The same example is bad for all three formats: there is one superman
who beats n− 2 of the remaining players, and one kryptonite, who beats only the superman
(but loses to the other n− 2 players).

Our results extend to settings where the winner of each pairwise match is not determinist-
ically known, but randomized (i.e. all partipants know that i will beat j with probability pij).
Specifically, we show that any rule that is 2-SNM-α when all pij ∈ {0, 1} is also 2-SNM-α for
arbitrary pij . Clearly, any lower bound using integral pij also provides a lower bound for
arbitrary pij , so as far as upper/lower bounds are concerned the models are equivalent. Of
course, the randomized model is much more realistic, so it is convenient that we can prove
theorems in this setting by only studying the deterministic setting, which is mathematically
much simpler.

Finally, we consider manipulations among coalitions of k > 2 participants. We say that
a rule is k-SNM-α if no set S of size ≤ k can ever manipulate the outcomes of matches
between players in S to improve the probability that the winner is in S by more than α. We
prove a simple lower bound of α = k−1

2k−1 on all Condorcet-consistent rules, and conjecture
that this is tight.

1.2 Related Works
The mathematical study of tournament design has a rich literature, ranging from social choice
theory to psychology. The overarching goal in these works is to design tournament rules
that satisfy various properties a designer might find desirable. Examples of such properties
might be that all players are treated equally, that a winner is chosen without a tiebreaking
procedure, or that a “most qualified” winner is selected [8, 20, 7, 19, 28, 15, 23]. See [14] for
a good review of this literature and its connections to other fields as well.

Most related to our work are properties involving strategic manipulation. In the more
general field of Voting Theory, there is a rich literature on the design of strategyproof
mechanisms dating back to Arrow’s Impossibility Theorem [3] and the Gibbard-Satterthwaite
Theorem [9, 21, 10]. While tournaments are a very special case (voters are indifferent among
outcomes where they do not win, voters can only “lie” in specific ways, etc.), tournament
design indeed seems to inherit much of the impossibility associated with strategyproof voting
procedures [1], [2].

Specifically, Altman et. al. proved that no deterministic tournament rule is 2-SNM and
Condorcet-consistent, and Altman and Kleinberg proved that no randomized tournament rule
is 2-SNM and Condorcet-consistent either [2, 1]. More recently, Pauly studied the specific
two-stage tournament rule used by the World Cup (and Olympic Badminton, etc.) [17].
There, it is shown essentially that the problem lies in the first round group stage: no changes
to the second phase can possibly result in a strategyproof 2 tournament.

To cope with their impossibility results, Altman et. al. propose a relaxation of Condorcet-
consistence called non-imposing. A rule r is non-imposing if for all i, there exists a T such
that player i wins with probability 1. They design a clever recursive rule that is non-imposing
and 2-SNM for all n 6= 3. Interestingly, they also show that for n = 3 no such rule exists.
Altman and Kleinberg consider a different relaxation called α-Condorcet-consistent. A rule r
is α-Condorcet-consistent if whenever i is a Condorcet winner in T , we have their probability
of winning T is at least α. They design a rule that is 2/n-Condorcet-consistent and 2-SNM
(in fact it is also k-SNM for all k), but conjecture that much better is attainable.

2 See [17] for the specific notion of strategyproofness studied.
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The two works above are most similar to ours in spirit: motivated by the non-existence
of Condorcet-consistent and 2-SNM tournament rules, we relax one of the notions. These
previous works relax Condorcet-consistency while maintaining 2-SNM exactly, and are most
appropriate in settings where pairwise comparisons of players are only learned implicitly (or
perhaps not at all) through the outcome and not explicitly as the result of matches. Instead,
we relax the notion of 2-SNM and maintain the notion of Condorcet-consistency exactly. In
settings like sports competitions where pairwise comparisons of players are learned explicitly
through matches played, Condorcet-consistency is a non-negotiable desideratum. Therefore,
we believe our approach is more natural in such settings.

Another line of work introduced by [4] considers a different kind of strategyproofness:
how much control does the designer of a single-elimination tournament have over the winner?
Can the designer efficiently find a bracket in such a way to maximize the likelihood that
a player of their choice wins the tournament? The models in this area assume that the
designer is given the probabilities pij that team i beats team j and the problem is known in
the literature as agenda control when pij are real numbers and Tournament Fixing Problem
(TFP) when all probabilities are 0 or 1.

On the negative side, it is known that for n-player tournaments it is NP-hard to decide
whether or not there exists a seeding such that the probability of team k winning is at least δ,
given k, δ, even if pij ∈ {0, 0.5, 1} for all i, j [27]. [26] show that the hardness results persist
even for the TFP when the given team k is a king (for every team j, either k beats j or k
beats a team that beats j) with at least n/4 wins, or a 3−king (is at most 3 "wins" away
from every team) that wins at least half of their games. Follow up work [13] shows that in
the case of balanced single elimination brackets, it is still NP-hard to find a bracket that
favors team k when the designer is allowed to bribe at most (1 − ε) logn of the teams to
throw their respective matches.

On the positive side, there exist structural results that dictate when it is computationally
efficient to find a tournament that favors a given team. [26] show conditions under which,
for large enough tournaments, any sufficiently good team can be favored by the tournament
seeding. Other results [13, 12] show conditions under which 3−kings can be made into
winners of single-elimination tournaments.

A large body of literature exists regarding manipulation and bribery in the context
of voting rules. For an introduction, we recommend the reader consult chapter 7 of the
handbook [16].

1.3 Conclusions and Future Work
Our work contributes to a recent literature on incentive compatible tournament design. While
most previous works insist on strong incentive properties and relaxed fairness properties,
such rules are inadequate for sporting events. Instead, we insist at least that events maintain
Condorcet-consistency, and aim to relax strategyproofness as minimally as possible.

At a high level, our work suggests (similar to previous works), that single elimination
brackets are desirable whenever incentive issues come into play. However, previous desiderata
(such as those considered in [1]) don’t necessarily rule out other tournament formats, like
the Copeland rule, which is ubiquitous in tournaments (both as a complete format and as
subtournaments in a two-phase format). In comparison, our work identifies single elimination
brackets (2-SNM-1/3) as having significantly better strategic properties versus the Copeland
rule (2-SNM-1).

Our work also identifies two practical suggestions when match-fixing is a concern that
aren’t explained by prior benchmarks. First, when hosting a single elimination tournament,

ITCS 2017
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it might be desirable to release the exact bracket as late as possible. The idea is that as
soon as the exact bracket is known, competitors have greater incentive to fix matches (in
our model, up to three times as much), which presumably takes some time and organization.
Obviously, there are more tradeoffs at play: a later release inconveniences athletes and
fans, and (perhaps more importantly to the designers) could negatively impact ticket sales.
But our work does at least identify match-fixing as a part of this tradeoff. Note that some
Olympic events (such as Taekwondo) contest the entire competition in a single day at a
single venue, so a delayed release may indeed be practical. We also note that a similar “fix”
was applied after the 1982 World Cup: the last two matches in each group are now played at
the same time to minimize the amount of information teams have when making potentially
strategic decisions.

Additionally, our work suggests that even in the optimal tournament, hefty punishments
for cheaters might be necessary in order to discourage match-fixing (even without taking
gambling into consideration). In many sports, winning an Olympic gold can make a career.
Unfortunately, our work suggests that punishments roughly on this order might be necessary
in order to properly deter match-fixing.

Finally, we propose two directions for future work. First, while we obtain tight results
for Condorcet-consistent 2-SNM-α rules, we only prove a lower bound of k-SNM- k−1

2k−1 for
Condorcet-consistent rules and k > 2. We conjecture that this is tight, but unfortunately
simulations indicate that all of the formats studied in our work do not achieve this bound. So
it is an interesting open question to design a rule that does. Even partial results (of the form
identified below) would require a new tournament format than those considered in this work.

I Open Question 1. Does there exist a tournament rule that is Condorcet-consistent and k-
SNM- k−1

2k−1 for all k? What about a family of rules F such that for all k, Fk is k-SNM- k−1
2k−1?

What about a rule that is k-SNM-1/2 for all k?3

It is also important to study what bounds are attainable in restricted versions of our
probabilistic model (e.g. if for all i, j, the probability that i beats j lies in [ε, 1− ε]). Realistic
instances at least have some non-zero probability of an upset in every match, but our lower
bounds don’t hold in this model. So it is interesting to see if better formats are possible.

I Open Question 2. Is a random single elimination bracket still optimal among Condorcet-
consistent rules (w.r.t. 2-SNM-α) if for all i, j, the probability that i beats j lies in [ε, 1− ε]?
How does the optimal attainable α for Condorcet-consistent, 2-SNM-α tournament formats
change as a function of ε?

2 Preliminaries and Notation

In this section, we present notation used throughout the remainder of the paper. Where
possible, we adopt notation from [1].

I Definition 1. A (round-robin) tournament T on n players is the set of outcomes of the(
n
2
)
games played between all pairs of distinct players. We write Tij = 1 if player i beats

player j and Tij = −1 otherwise. We also let Tn denote the set of tournaments on n players.

I Definition 2. For a subset S ⊆ [n] of players, two tournaments T and T ′ are S-adjacent
if they only differ on the outcomes of some subset of games played between members of S.

3 Note that k−1
2k−1 → 1/2 as k → ∞.
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In particular, two tournaments T and T ′ are {i, j} adjacent if they only differ in the result
of the game played between player i and player j.

I Definition 3. A tournament rule (or winner determination rule) r : Tn → ∆([n]) is a
mapping from the set of tournaments on n players to probability distributions over these n
players (representing the probability we choose a given player to be the winner). We will
write ri(T ) = Pr[r(T ) = i] to denote the probability that player i wins tournament T under
rule r.

Many tournament rules, while valid by the above definition, would be ill-suited for running
an actual tournament; for example, the tournament rule which always crowns player 1 the
winner. In an attempt to restrict ourselves to ‘reasonable’ tournament rules, we consider
tournaments that obey the following two criteria.

I Definition 4. Player i is a Condorcet winner in tournament T if player i wins their match
against all the other n− 1 players. A tournament rule r is Condorcet-consistent if ri(T ) = 1
whenever i is a Condorcet winner in T .

I Definition 5. A tournament rule r is monotone if, for all i, ri(T ) does not increase when
i loses a game it wins in T . That is, if i beats j in T and T and T ′ are {i, j} adjacent, then
if r is monotone, ri(T ) ≥ ri(T ′).

Intuitively, this first criterion requires us to award the prize to the winner in the case of
a clear winner (hence making the tournament a contest of skill), and the second criterion
makes it so that players have an incentive to win their games. There are various other criteria
one might wish a tournament rule to satisfy; many can be found in [1].

In this paper, we consider the scenario where certain coalitions of players attempt to
increase the overall chance of one of them winning by manipulating the outcomes of matches
within players of the coalition. The simplest case of this is in the case of coalitions of size 2,
where player j might throw their match to player i. If T is the original tournament and T ′
is the manipulated tournament where j loses to i, then player i gains ri(T ′)− ri(T ) from
the manipulation, and player j loses rj(T ) − rj(T ′) (in terms of probability of winning).
Therefore, as long as ri(T ′) − ri(T ) > rj(T ) − rj(T ′), it will be in the players’ interest to
manipulate. Equivalently, if ri(T ′)+rj(T ′) > ri(T )+rj(T ) (i.e., the probability either player
i or j wins increases upon throwing the match), there is incentive for i and j to manipulate.

Ideally, we would like to choose a tournament rule so that, regardless of the tournament,
there will be no incentive to perform manipulations of the above sort. This is encapsulated
in the following definition from [1].

I Definition 6. A tournament rule r is 2-strongly non-manipulable (2-SNM) if, for all pairs
of {i, j}-adjacent tournaments T and T ′, ri(T ) + rj(T ) = ri(T ′) + rj(T ′).

Unfortunately, no tournament rules exist that are simultaneously Condorcet-consistent
and 2-strongly non-manipulable (this is shown in [1] and also follows from our lower bound
in Section 3.1). As tournament designers, one way around this obstacle is to discourage
manipulation. This discouragement can take many forms, both explicit (if players are caught
fixing matches, they are disqualified/fined) and implicit (it is logistically hard to fix matches,
it is unsportsmanlike). So the focus of this paper is to quantify how manipulable certain
tournament formats are (i.e. how much can teams possibly gain by fixing matches), the idea
being that it is easier to discourage manipulation in tournaments that are less manipulable.

I Definition 7. A tournament rule r is 2-strongly non-manipulable at probability α (2-SNM-
α) if, for all i and j and pairs of {i, j}-adjacent tournaments T and T ′, ri(T ′) + rj(T ′) −
ri(T )− rj(T ) ≤ α.

ITCS 2017
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It is straightforward to generalize this definition to larger coalitions of colluding players.

I Definition 8. A tournament rule r is k-strongly non-manipulable at probability α (k-SNM-
α) if, for all subsets S of players of size at most k, for all pairs of S-adjacent tournaments T
and T ′,

∑
i∈S ri(T ′)−

∑
i∈S ri(T ) ≤ α.

2.1 The Random Single-Elimination Bracket Rule
Our main result concerns a specific tournament rule we call the random single-elimination
bracket rule. This rule can be defined formally as follows.

I Definition 9. A single-elimination bracket (or bracket, for short) B on n = 2h players is a
complete binary tree of height h whose leaves are labelled with some permutation of the n
players. The outcome of a bracket B under a tournament T is the labelling of internal nodes
of B where each node is labelled by the winner of its two children under T . The winner of B
under T is the label of the root of B under this labelling.

I Definition 10. The random single-elimination bracket rule r is a tournament rule on
n = 2h players where ri(T ) is the probability player i is the winner of B under T when B is
chosen uniformly at random from the set of n! possible brackets.

If n is not a power of 2, we define the random single-elimination bracket rule on n players
by introducing 2dlog2 ne − n dummy players who lose to all of the existing n players.

It is straightforward to check that the random single-elimination bracket rule is both
Condorcet-consistent and monotone. Our main result (Theorem 13) shows that in addition
to these properties, the random single-elimination bracket rule is 2-SNM-1/3 (which is the
best possible, by Theorem 11).

We give some examples of other common tournament rules in Section 3.4. While many of
these rules are both Condorcet-consistent and monotone, we do not know of any which are
additionally 2-SNM-1/3.

3 Main Result

3.1 Lower bounds for k-SNM-α
We begin by showing that no tournament rule is 2-SNM-α for α < 1/3. A similar theorem
appears as Proposition 17 in [1] (which states that α = 0 is impossible).

I Theorem 11. There is no Condorcet-consistent tournament rule on n players (for n ≥ 3)
that is 2-SNM-α for α < 1

3 .

Proof. Consider the tournament T on three players A, B, and C where A beats B, B beats
C, and C beats A (illustrated in Figure 1). . Note that, while this tournament has no
Condorcet winner, changing the result of any of the three games results in a Condorcet
winner. For example, if A bribes C to lose to A, then A becomes the Condorcet winner.

If we have a tournament rule r that is 2-SNM-α, then combining this with the above fact
gives rise to the following three inequalities.

rA(T ) + rB(T ) ≥ 1− α
rB(T ) + rC(T ) ≥ 1− α
rC(T ) + rA(T ) ≥ 1− α
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Figure 1 A tournament which attains the lower bound of α = 1/3 for all tournament rules.

Together these imply rA(T )+rB(T )+rC(T ) ≥ 3
2 (1−α). But rA(T )+rB(T )+rC(T ) = 1;

it follows that α ≥ 1
3 , as desired.

We can extend this counterexample to n > 3 players by introducing n− 3 dummy players
who all lose to A, B, and C; the argument above continues to hold. J

We can use similar logic to prove lower bounds for the more general case of k-SNM-α.

I Theorem 12. There is no Condorcet-consistent tournament rule on n players (for n ≥
2k − 1) that is k-SNM-α for α < k−1

2k−1 .

Proof. Consider the following tournament T on the 2k− 1 players labelled 1 through 2k− 1.
Each player i wins their match versus the k − 1 players i + 1, i + 2, . . . , i + (k − 1), and
loses their match versus the k − 1 players i− 1, i− 2, . . . , i− (k − 1) (indices taken modulo
2k− 1). Note that the coalition of players Si = {i, i− 1, . . . , i− (k− 1)} of size k can cause i
to become a Condorcet winner if all players in the coalition agree to lose their games with
i. If we have a tournament rule r that is k-SNM-α, then this implies the following 2k − 1
inequalities (one for each i ∈ [2k − 1]):∑

j∈Si

rj(T ) ≥ 1− α (1)

Summing these 2k − 1 inequalities, we obtain

k

2k−1∑
j=1

rj(T ) ≥ (2k − 1)(1− α) (2)

Since
∑2k−1

j=1 rj(T ) ≤ 1, this implies that α ≥ k−1
2k−1 , as desired. Again, it is possible to

extend this example to any number of players n ≥ 2k − 1 by introducing dummy players
who lose to all 2k − 1 of the above players. J

3.2 Random single elimination brackets are 2-SNM-1/3
We now show that the random single elimination bracket rule is optimal against coalitions
of size 2. The proof idea is simple; for every bracket B that contributes to the incentive to
manipulate ri(T ′) + rj(T ′)− ri(T )− rj(T ) we will show that there are two that do not (in
other words, for every scenario where team i benefits from the manipulation, there exist two
other scenarios where the maniuplation does not benefit either team).

I Theorem 13. The random single elimination bracket rule is 2-SNM-1/3.
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Proof. Let B be the set of n! different possible brackets amongst the n players. For a given
tournament T and a given player i, write 1(B, T, i) to represent the indicator variable which
is 1 if i wins bracket B under the outcomes in T and 0 otherwise. Then we can write

ri(T ) = 1
|B|

∑
B∈B

1(B, T, i).

Assume i loses to j in T . Then, if we let T ′ be the tournament that is {i, j} adjacent to
T , we can write the increase in utility resulting from j throwing to i

1
|B|

∑
B∈B

(1(B, T ′, i) + 1(B, T ′, j)− 1(B, T, i)− 1(B, T, j)) . (3)

Our goal is to show that this sum is at most 1/3. Now, note that if i does not end
up playing j in bracket B under T , i also does not play j in B under T ′ (and vice versa).
In these brackets, 1(B, T ′, i) = 1(B, T, i) and 1(B, T ′, j) = 1(B, T, j), so these brackets
contribute nothing to the sum in Equation 3. On the other hand, in a bracket B where i
does play j, we are guaranteed that 1(B, T, i) = 0 and 1(B, T ′, j) = 0 (since i loses to j in
T and j loses to i in T ′). Therefore, letting Bij be the subset of B of brackets where i meets
j, we can rewrite Equation 3 as

1
|B|

∑
B∈Bij

(1(B, T ′, i)− 1(B, T, j)) .

Since 1(B, T ′, i) ≤ 1, this is at most

1
|B|

∑
B∈Bij

(1− 1(B, T, j)) .

This final sum counts exactly the number of brackets B where i and j meet (under T , so
j beats i) but j does not win the tournament. Call such brackets bad, and call the remaining
brackets good. We will exhibit two injective mappings σi and σj from bad brackets to good
brackets such that the ranges of σi and σj are disjoint. This implies that there are at least
twice as many good brackets as bad brackets, and thus that the sum above is at most 1/3,
completing the proof.

For both mappings, we will need the following terminology. Consider a bad bracket B,
and consider the path from j up to the root of this tree. The nodes of this path are labelled
by players that j would face if they got that far. More specifically, j has some opponent
in the first round. Should j win, j would face some opponent in the second round, then
the third round, etc. all the way to the finals, and these opponents do not depend on the
outcomes of any of j’s matches. Then since B is a bad bracket, j does not win, and at least
one of the players on this path can beat j. Choose the latest such player (i.e. the closest to
the root) and call this player k. Note that k might not be the player that knocks j out of
the tournament (that is the first player along this path who would beat j).

Suppose that i and j meet at height h of the bracket (i.e. in the hth round). Let Bi, Bj , Bk

be the subtrees of height h that contain i, j, and k respectively. An example is shown in
Figure 2.

We first describe the simpler of the two maps, σi. Define σi(B) by swapping the subtrees
Bi and Bk as shown in Figure 3. In this bracket j will lose to k before ever meeting i,
so σi(B) is good. Moreover σi is injective since we can construct its inverse. In σi(B), j
certainly would lose to k at height h before reaching i. Furthermore, because we didn’t



J. Schneider, A. Schvartzman, and S. M. Weinberg 35:11

Figure 2 An example of a bad bracket B.

Figure 3 σi(B).

change Bj at all, j still wins all of its first h − 1 matches and makes it to k (because we
started from a B where j makes it to i at height h). So we can identify k as the first player
who beats j in σi(B), learn the height h, and undo the swap of Bk and Bi.

We now describe the second map, σj . To construct σj(B), begin by swapping the subtrees
Bj and Bk (see Figure 4). Note that the bracket formed in this way is good; since we chose
k to be the latest player on j’s path to victory that can beat j, if j meets i, j will also beat
all subsequent players and win the tournament (note that it is of course possible that j
doesn’t even make it to i, in which case σj(B) is still good. But it is clear that if j meets i,
then j will win the tournament, so σj(B) is good in either case). Unfortunately, this map as
stated is not injective; in particular, we cannot recover the height h to undo the swap as in
the previous case.

The only reason we cannot uniquely identify k in the same way as when we invert σi is
that i might meet some player k′ at height h′ < h in Bi who also could beat j. So, intuitively,
we would like to swap such players out with players who lose to j. Since j beats all of its
opponents in Bj , Bj is an ample source of such players. We will therefore perform some
additional ‘subswap’ operations, swapping subtrees of Bj and Bk so as to uniquely identify
k as the first player i meets in σj(B) who can beat j.

Specifically, for 0 ≤ h′ < h, let a(h′) be the opponent i plays at height h′ in Bi, and let
Bi(h′) be the subtree of Bi with root a(h′) (note that the player that i meets at height h′ is
the root of a subtree of height h′ − 1, and that all these subtrees are disjoint). Similarly, let
b(h′) be the opponent j plays at height h′ in Bj , and let Bj(h′) be the subtree of Bj with
root b(h′). To construct σj(B) from B, first swap Bj and Bk. Then for each h′ ∈ [0, h) such
that a(h′) would beat j, swap the subtrees Bi(h′) and Bj(h′). See Figure 5 for an illustration
of a subswap operation.
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Figure 4 σj(B).

Figure 5 Subswap operation for σj .

Note that σj(B) is still good; it is still the case that if j meets i, j will beat all subsequent
players (all we have done in that part of the bracket is perhaps alter whether or not j will
indeed meet i). On the other hand, since j makes it to height h in Bj , j can beat player
b(h′) for all h′, so k is now the first player i would encounter in σj(B) who can beat j. From
this, we can recover k and thus h, and undo the swap of Bi and Bj . To undo the subswaps,
observe that because we started with a bad bracket B, that j must have beaten all opponents
it faces in the first h rounds. Since all opponents on j’s path who beat j at height less than
h were necessarily put there by our subswap operations, we can just find all such opponents
and swap them back out. This process inverts σj , thus proving that σj is injective.

Finally, note that in σi(B), k must play j before either plays i, whereas in σj(B), k must
play i before either plays j. Therefore the ranges of σi and σj are disjoint, and this completes
the proof.

For the reader aiming to understand our coupling argument better, Appendix A contains
some specific examples. J

3.3 Extension to randomized outcomes
Thus far we have been assuming that all match results are deterministic and known to
the players in advance. Of course, this is not true in general; in real life, the outcomes
of games are inherently unpredictable. It is perhaps imaginable that this unpredictability
could increase the incentive to manipulate. In this section we show that this is not the
case; a simple application of linearity of expectation shows that results about deterministic
tournaments still hold for their randomized counterparts. We begin by defining a randomized
tournament as follows.
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I Definition 14. A randomized tournament T is a random variable whose values range
over (deterministic) tournaments T . As shorthand, we will write PT (T ) to represent the
probability that T = T .

Note that this definition accounts for the most straightforward generalization of tourna-
ment outcomes from deterministic to randomized, where for each match between players i
and j we assign a probability pij to the probability that i beats j. This definition further
allows for the possibility of correlation between matches (e.g., with some probability player i
has a good day and wins all his matches, and with some probability he has a bad day and
loses all his matches).

Manipulations in this randomized model are similar to manipulations in the deterministic
model in that they effectively force the result of a match to a win or a loss. Formally, let
σij(T ) for a (deterministic) tournament T be the tournament formed by T but where i beats
j (if i beats j in T , then σij(T ) = T ). A tournament rule r is 2-SNM-α if for all i and j,

ET [ri(σij(T )) + rj(σij(T ))− ri(T )− rj(T )] ≤ α (4)

We then have the following theorem:

I Theorem 15. If a rule r is 2-SNM-α in the deterministic tournament model, it is also
2-SNM-α in the randomized tournament model.

Proof. Note that we can write the expectation in Equation 4 as∑
T

PT (T ) (ri(σij(T )) + rj(σij(T ))− ri(T )− rj(T ))

If r is 2-SNM-α for deterministic tournaments, then each term in this sum is at most
PT (T )α. It follows that this sum is at most α, and therefore r is also 2-SNM-α for randomized
tournaments. J

It is straightforward to generalize the above definitions and result to the case of k-SNM-α.

3.4 Other tournament formats
Finally, there are many other tournament formats that are either used in practice or have
been previously studied. In this section we show that many of these formats are more
susceptible to manipulation than the random single elimination bracket rule; in particular,
all of the following formats are at best 2-SNM-1/2.

By far the most common tournament rule for round robin tournaments is some variant
of a ‘scoring’ rule, where the winner is the player who has won the most games (with ties
broken in some fashion if multiple players have won the same maximum number of games).
In voting theory, this rule is often called Copeland’s rule, or Copeland’s method [5].

I Definition 16. A tournament rule r is a Copeland rule if the winner is always selected
from the set of players with the maximum number of wins.

We begin by showing that no Copeland rule can be 2-SNM-α for any α < 1 (regardless
of how the rule breaks ties).

I Theorem 17. There is no Copeland rule on n players that is 2-SNM-α for α < 1− 2
n−1 .
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Proof. Assume to begin that n = 2k + 1 is odd, and let r be a Copeland rule on n players.
Let T be the tournament where each player i beats the k players {i+ 1, i+ 2, . . . , i+ k} but
loses to the k players {i− 1, i− 2, . . . , i− k}, with indices taken modulo n (similar to the
tournament in the proof of Theorem 12).

Since
∑n

i=1 ri(T ) = 1, there must be some i such that ri−1(T ) + ri(T ) ≤ 2
n . On the

other hand, if player i− 1 throws their match to player i, then player i becomes the unique
Copeland winner (winning k + 1 games) and ri(T ′) = 1. It follows that, for such a rule, if r
is 2-SNM-α, then α ≥ 1− 2

n .
If n is even, then we can embed the above example for n− 1 by assigning one player to

be a dummy player that loses to all teams. This immediately implies α ≥ 1− 2
n−1 in this

case. J

In [1], Altman and Kleinberg provide three examples of tournament rules that are
Condorcet-consistent and monotone: the top cycle rule, the iterative Condorcet rule, and the
randomized voting caterpillar rule. We prove lower bounds on α for each of these in turn.
Interestingly, the same tournament provides all three lower bounds.

I Definition 18. The superman-kryptonite tournament on n players has i beat j whenever
i < j, except that player n beats player 1. That is, player 1 beats everyone except for player
n, who loses to everyone except for player 1.

Now we show that the superman-kryptonite tournament provides lower bounds against
the tournament rules considered in [1].

I Definition 19. The top cycle of a tournament T is the minimal set of players who never
lose to any other player. The top cycle rule is a tournament rule which assigns the winner to
be a uniformly random element of this set.

I Theorem 20. The top cycle rule on n players is not 2-SNM-α for any α < 1− 2
n .

Proof. Let T be the superman-kryptonite tournament on n players. The top cycle in T

contains all the players, so r1(T ) + rn(T ) = 2
n . However, if player n throws their match to

player 1, player 1 becomes a Condorcet winner and r1(T ′) = 1. It follows that α ≥ 1− 2
n . J

I Definition 21. The iterative Condorcet rule is a tournament rule that uniformly removes
players at random until there is a Condorcet winner, and then assigns that player to be the
winner.

I Theorem 22. The iterative Condorcet rule on n players is not 2-SNM-α for any α <
1
2 −

1
n(n−1) .

Proof. Let T be the superman-kryptonite tournament on n players. Note that no Condorcet
winner will appear until either player 1 is removed, player n is removed, or all other n− 2
players are removed. If all the other n− 2 players are removed before players 1 or n (which
occurs with probability 2

n(n−1) ), then player n wins. If this does not happen and player n is

removed before player 1 (which occurs with probability 1
2

(
1− 2

n(n−1)

)
= 1

2 −
1

n(n−1) ), then
player 1 becomes the Condorcet winner and wins. Otherwise, player 1 will be removed before
player n, while some players in 2 through n− 1 remain, and one of them will become the
Condorcet winner (the remaining player in {2, . . . , n− 1} with lowest index). It follows that
r1(T ) = 1

2 −
1

n(n−1) and rn(T ) = 2
n(n−1) , so r1(T ) + rn(T ) = 1

2 + 1
n(n−1) .

On the other hand, if player n throws their match to player 1, then again player 1 becomes
a Condorcet winner and r1(T ′) = 1. It follows that α ≥ 1

2 −
1

n(n−1) . J
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I Definition 23. The randomized voting caterpillar rule is a tournament rule which chooses
a winner as follows. Choose a random permutation π of [n]. Start by matching π(1) and
π(2), and choose a winner according to T . Then for all i ≥ 3 match π(i) with the winner of
the most recent match. The player that wins the last match (against π(n)) is declared the
winner.

I Theorem 24. The randomized voting caterpillar rule on n players is not 2-SNM-α for
any α < 1

2 −
n−3

n(n−1) .

Proof. Let T be the superman-kryptonite tournament on n players. The only way player 1
loses is if either player n occurs later in π than player 1 (which happens with probability 1

2 )
or if π(n) = 1 and π(1) = 2 and they play in the first round (which happens with probability

1
n(n−1) ). The only way player n can win is if π(n) = n (i.e., they only play the very last
game), in which case they will play player 1 and win (this happens with probability 1

n ). It
follows that r1(T ) = 1

2 −
1

n(n−1) and rn(T ) = 1
n , so r1(T ) + rn(T ) = 1

2 + n−2
n(n−1) .

On the other hand, if player n throws their match to player 1, then again player 1 becomes
a Condorcet winner and r1(T ′) = 1. It follows that α ≥ 1

2 −
n−2

n(n−1) . J
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player j would be the champion conditioned on getting past i. The players have no incentive
to manipulate these brackets.

We designed two injective transformations with disjoint images, σi and σj . σi was more
straight-forward, but we include an example below anyway. σj was more complex. We
include below an example showing that the complexity is necessary, and then an example of
σj . All figures are at the end.

A.1 Example of the transformation σi(B)
Recall that σi essentially swaps the sub-brackets rooted at i and k. See Section 3.2 for a
formal description.

Consider the partial bracket B1 shown in Figure 6. Then, applying the transformation
σi(B1) as described in our paper will yield the bracket B′1 shown in Figure 7. Note that
this mapping is injective: by examining σi(B), we see exactly where j is eliminated, and
conclude that this must be where i met j in the original B.

A.2 Counterexample to a naive σj(B)
We could try using the same ideas in σi for σj : simply swap the subtrees rooted at k and j.
Unfortunately, this mapping is not injective.

Consider the two brackets B3, B4 shown in Figure 8. Then applying this naive transform-
ation will map these brackets to the same bracket (see Figure 9), showing that the mapping
may not be injective. This motivates the need for the more involved transformation σj from
Section 3.2.

Specifically, observe that in B3, i meets j in round 2, so the depth-2 subtree rooted at k
would get swapped with the depth-2 subtree rooted at j. In B4, i meets j in round 1, so the
single node i1 would get swapped with the single node j. It is easy, but tedious, to complete
this into a full tournament/bracket.

A.3 Example of the transformation σj(B)
Essentially, the problem with the naive transformation is that it’s hard to recover where i
met j in the original B just from the naive σj(B). This is because maybe on its path to j, i
met many other competitors who also would have beaten j, in addition to the k we swap in
from the mapping. Our more involved transformation fixes this by additionally swapping all
such competitors out of the subtree below i, so we can again recover where i met j in the
original B.

Consider the partial bracket B2 shown in Figure 10 and assume that in the tournament
in case i2 would beat j. Then, applying the transformation σj(B2) as described in our paper
will yield the bracket B′2 shown in 11.

Note that this mapping is injective! First, we can recover where i met j in the original B
by looking at where i first encounters someone who would beat j in σj(B). Once we learn
this, we also know that in the original B, j actually advanced this far in the tournament to
meet i, so we know exactly which subtrees we need to un-swap with subtrees of i.
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Figure 6 A partial bracket B1.

Figure 7 σi(B1).
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Figure 8 Two partial brackets B3, B4.

Figure 9 Swapping the subtrees corresponding to j, k in both brackets above yields this bracket.
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Figure 10 A partial bracket B2.

Figure 11 σj(B2).
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