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—— Abstract

Given a finite metric space (V,d), an approximate distance oracle is a data structure which, when
queried on two points u,v € V, returns an approximation to the the actual distance between u
and v which is within some bounded stretch factor of the true distance. There has been significant
work on the tradeoff between the important parameters of approximate distance oracles (and in
particular between the size, stretch, and query time), but in this paper we take a different point
of view, that of per-instance optimization. If we are given an particular input metric space and
stretch bound, can we find the smallest possible approximate distance oracle for that particular
input? Since this question is not even well-defined, we restrict our attention to well-known classes
of approximate distance oracles, and study whether we can optimize over those classes.

In particular, we give an O(log n)-approximation to the problem of finding the smallest stretch
3 Thorup-Zwick distance oracle, as well as the problem of finding the smallest Patragcu-Roditty
distance oracle. We also prove a matching Q(logn) lower bound for both problems, and an
Q(n%_zk%l) integrality gap for the more general stretch (2k — 1) Thorup-Zwick distance oracle.
We also consider the problem of approximating the best TZ or PR approximate distance oracle
with outliers, and show that more advanced techniques (SDP relaxations in particular) allow us
to optimize even in the presence of outliers.
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1 Introduction

Given a finite metric space (V,d), an approximate distance oracle is a data structure which
can approximately answer distance queries. It is usually a combination of a preprocessing
algorithm to compute a data structure, and a query algorithm which returns a distance
d'(u,v) whenever queried on a pair of vertices u,v € V. An approximate distance oracle is
said to have stretch t if d(u,v) < d'(u,v) <t-d(u,v). Note that there is a trivial stretch 1
distance oracle that uses ©(n?) space: we could just store the entire metric space. So the
goal is to reduce the space, i.e., to build a small data structure that also has small stretch
and small query time.

The seminal work on approximate distance oracles is due to Thorup and Zwick [19].
They showed that for every integer k > 1, every finite metric space has an approximate
distance oracle with stretch (2k — 1) and query time O(k) which uses only O(kn'*%) space.
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A significant fraction of more recent results have built off of the ideas developed in [19],
and much of this follow-up work has stored the exact same (or very similar) data structure,
just with improved query algorithms or slightly different information in the storage (see,
e.g., [17, 21, 5, 6]). Most notably, Patragcu and Roditty [16] gave a different distance oracle
(still using some of the basic ideas from [19]) that has multiplicative stretch of 2 and additive
stretch of 1, with size O(n%) This broke through the stretch 3 barrier from [19]. Later this
result was improved to more general multiplicative/additive stretches [1].

In this paper we ask a natural but very different type of question about approximate
distance oracles: can we find (or approximate) the best approximate distance oracle? If
we are given an input metric space and a stretch bound, is it possible to find the smallest
approximate distance oracle for that particular input? This is an unusual question in two
ways. First, most data structures are by design forced to store all of the input data; the
question is how to store it and what extra information should be stored. This is the case in
other settings where instance-optimality of data structures has been considered, e.g., static
or dynamic optimality of splay trees. Second, it is not clear whether this question is even
well-defined: lower bounds on data structures are commonly arrived at through information
or communication complexity (see, e.g., [15]) but when we ask for the optimal data structure
on one particular instance this approach becomes meaningless.

However, approximate distance oracles are different in ways which allow us to make
meaningful progress towards these optimization questions. First, since we are allowed to
return only approximate distances (up to some stretch factor), we are allowed to store only
part of the input (and indeed this is the entire point of such an oracle). The second problem
is a bit more tricky: given an input, how can we optimize over “the space of all approximate
distance oracles"? What does this mean, and what does this space look like?

To get around this issue, we make an observation: many modern distance oracles (and in
particular Thorup-Zwick, Patragcu-Roditty, and almost all of their variants) have a similar
structure. The preprocessing algorithm chooses a subset of the original distances to store
which has some particular structure, and the query algorithm can return a valid distance
estimate efficiently as long as the stored distances satisfy the required structure. Thus we can
optimize for these particular distance oracles by choosing the best possible set of distances to
remember subject to the required structure. By characterizing this structure for different
types of distance oracles, we can optimize over those types.

For example, the stretch-3 Thorup-Zwick distance oracle uses a subtle but simple method
to choose the set of distances to store. It randomly samples a subset of approximately /n
vertices, without using any information about the original metric space, and then creates
a data structure which is related (in a well-defined, important way) to these vertices. The
correctness of the query algorithm does not depend on the choice of the vertices. Thus
instead of simply choosing the subset of vertices uniformly at random, we can instead try to
optimize the set of chosen vertices with respect to the actual input metric space.

In this paper, we give matching ©(logn) upper and lower bounds for optimizing stretch-3
Thorup-Zwick distance oracles, and matching ©(logn) upper and lower bounds for optimizing
the Patragcu-Roditty distance oracle. These upper bounds both use a similar LP relaxation,
but by giving an Q(n%iﬂ%l) integrality gap for optimizing stretch-(2k — 1) Thorup-Zwick
distance oracles, we show that this relaxation is not enough to give nontrivial approximations
when extended to larger stretch values.

As an extension, we also study the problem of optimizing distance oracles with outliers:
if we are allowed to not answer queries for some of the vertices (of our choosing), can we
have much smaller storage space? We give an (O(logn), 1 4 ¢)-bicriteria approximation to
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both stretch-3 Thorup-Zwick and Patrascu-Roditty distance oracles with outliers. We also
give a true approximation to stretch-3 Thorup-Zwick distance oracle with outliers when the
number of outliers is small.

1.1 Relationship to Spanners

It is worth noting that this paper is motivated by a similar line of research on graph spanners
(subgraphs which approximately preserve distances). Spanners and distance oracles tend to
be related (although there is no known formal connection between them), and the traditional
questions asked of spanners (what is the tradeoff between the stretch and the size?) are
similar to the traditional questions asked of distance oracles. Recently, there has been
significant progress in looking at spanners from an optimization point of view: given an input
graph and an allowed stretch bound, can we find the sparsest possible spanner meeting that
stretch bound? In the last few years, upper and lower bounds have been developed for these
problems in the basic case, the directed case, with a degree objective, with fault-tolerance,
etc. See, e.g., [9, 2, 11, 8, 7].

It is natural to ask these kinds of optimization questions for distance oracles as well, but
the definitions become much more difficult. For spanners, the space we are optimizing over
(all subgraphs) is very clear and well-defined. But for distance oracles, as discussed, it is
much harder to define the space of all data structures. Thus in this paper we optimize over
restricted classes, where this space is more well-defined. We view our definitions of these
restricted optimization questions as one of the major contributions of this work.

2 Definitions and Preliminaries

We begin with some basic definitions, including formal definitions of the problems that we
will be working on.

» Definition 1. An approximate distance oracle with (m, a)-stretch, size s, preprocessing
time g, and query time h is a pair of algorithms, preprocess and query, with the following
properties.
preprocess is a randomized preprocessing algorithm preprocess(V,d, m, a,r) which takes
as input a metric space (V,d), stretch bound (m, a), and random string r and outputs a
data structure S where the expected output size is at most E,[|S|] < s(|]V],m,a) and the
expected preprocessing time is at most g(|V|],m, a).
query takes as input a data structure S = preprocess(V,d, m,a,r) (the output of the
preprocess algorithm) with two vertices u,v € V, and outputs a value d’'(u,v) € R such

that d(u,v) < d(u,v) < m-d(u,v)+a. The running time of query is at most h(|V],m, a).

We will frequently refer to these just as “distance oracles" rather than “approximate
distance oracles" when the stretch bound is clear from context.

The query algorithm guarantees here are deterministic: the randomness only affects the
size of the data structure. Note that one could easily define distance oracles so that either the
correctness (with respect to the stretch bound) or the query running time (or both) hold only
in expectation or with high probability, but as discussed in Section 1, essentially all existing
distance oracles (and in particular the Thorup-Zwick distance oracle) have deterministic
guarantees on the queries.

This naturally leads us to the following question: If we fix a particular distance oracle
and metric space, can we find the best possible data structure? Here we will focus on the
output size, not the preprocessing time (as long as the preprocessing time is polynomial). In
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other words, since the query algorithm work on any of the possible data structures which the
preprocessing algorithm might output, can we actually find the smallest such data structure?
This gives the following natural optimization problem.

» Definition 2. Given an approximate distance oracle A = (preprocess, query), the A-
optimization problem takes as input a metric space (V,d) and a stretch bound (m,a), and
the goal is to find a string r which minimizes |preprocess(V,d, m,a,r)]|.

In this paper we will focus on two distance oracles (Thorup-Zwick [19] and Patrascu-
Roditty [16]), so we now introduce these oracles.

2.1 Thorup-Zwick Distance Oracle

For every integer k > 1, Thorup and Zwick [19] provided an approximate distance oracle
with (2k — 1,0)-stretch, size O(nl"‘%), preprocessing time O(knz"‘%), and query time O(k).
We call this distance oracle T Z.

Their preprocessing algorithm first constructs a chain of subsets @ = A, C A1 C ... C
Ap =V by repeated sampling. Each set A;, where ¢ € [k — 1], is obtained by including each
element of A;_; independently with probability n™%.

Let R, = {v € A;—1 | d(u,v) < mingea, d(u,w)} for all w € V and i € [k] (where by
convention min,,eg d(u, w) = oo for all u € V to handle the ¢ = k case). The output data
structure is obtained by storing (in a 2-level hash table) the distance from each node u to
each node in Ule Ry

The data structure also stores a little more information. Each vertex v remembers k& — 1
pivots: argmingea, d(u,w) for all ¢ € [k — 1], and the distance from u to these pivots.
However, this is a fixed space cost, and also negligible, so when analyzing the size of the
oracle we will ignore the cost of storing the pivots

Clearly the output data structure is determined once A1, ..., Ap_1 are fixed. The size of
the data structure is:

cost(Ay,...,Axg_1,V,d) = ZZ|R’LU| = ZZ

u€eV i=1 u€eV i=1

=

{veAdi_1]|du,v) < min d(u,w)}|.

’wEL

We will refer to }°, . [Riu| as the cost in level i.

Let us look back on the definition of approximate distance oracle. The random string r is
only used to generate A;’s, and the query algorithm will return a correct distance estimate
no matter what the sets A; are, but the size is determined by the sets. Therefore, the
T Z-optimization problem is to find the subsets @ = Ay C Ax_1 C ... C Ay =V in order
to minimize the total cost.

2.2 Patrascu-Roditty Distance Oracle

Patragcu and Roditty [16] provided an approximate distance oracle with (2, 1)-stretch, size
O(n%), preprocessing time O(n?), and query time O(1). We call this distance oracle PR.
Note that PR works only for metric spaces with integer distances.

Their preprocessing algorithm first construct a set A C V' via a complicated correlated
sampling (informally, they sample a large set and a small set, and then define A to be
everything in the large set and everything contained in a ball around the small set delimited
by the large set). The data structure consists of a 2-level hash table for the distance from
each node in A to each node in V', as well as a 2-level hash table storing the distance between
each pair {u,v} CV such that d(u,v) < mingea d(u, w) + mingea d(v,w) — 1.



M. Dinitz and Z. Zhang

As with Thorup-Zwick, the output data structure is completely determined once A is
fixed. Let R = {{u,v} CV | d(u,v) < minygea d(u, w) + miny,e 4 d(v,w) — 1}. Then the size
of the data structure is

cost(A,V,d) =n-|A| + |R|

=n- CV: i i - .
n |A|+H{u,v}_v d(u,v)<gl€12d(u,w)+wm€12d(v,w) 1}‘

As before, the random string r is only used to generate the set A, and any A C V gives a
data structure on which the query algorithm works. Therefore, the P R-optimization problem
is to find the subset A C V in order to minimize the total cost.

2.3 Distance Oracles With Outliers

In some cases, a small set of outlier vertices may make the size of the data structure blow up.
Yet in some applications it is acceptable to ignore these outliers. This was the motivation
behind a line of work on distance oracles with slack ([3], [4]), in which the data structure
could ignore the stretch bound on a small fraction of the distances.

In this paper, we consider the case that we can refuse to answer distance queries for some
outlier vertices. In other words, we can essentially remove an outlier set F' out of V when
computing the distance oracle. This gives us the problem of optimizing distance oracle with
outliers, in which we not only need to find the random string to determine the output data
structure, we also need to find the set of outliers to minimize the final cost. More formally,
we have the following type of problem.

» Definition 3. Given an approximate distance oracle A = (preprocess,query), the A-
optimization problem with outliers takes as input a metric space (V,d), a stretch bound
(m,a), and a bound on the number of outliers f € N. The goal is to find a string r as well as
a set I' CV where |F| < f, in order to minimize |preprocess(V\F,d, m,a,r)|.

We will provide both true approximation results and («, §)-bicriteria results, in which
we slightly violate the bound on the number of outliers. Formally, an («, 5)-approximation
algorithm for the A-optimization problem with outliers is an algorithm which on any input
((V,d),(m,a), f) returns a solution with cost at most a.- OPT that has at most 3 - f outliers
(where OPT is the minimum cost of any solution with at most f outliers).

2.4 Our Results and Techniques

With these definitions in hand, we can now formally state our results.

In Section 3 we discuss the problem of optimizing the 3-stretch Thorup-Zwick distance
oracle, i.e., the T Zs-optimization problem. It is straightforward to obtain an O(logn)-
approximation by reducing to the non-metric facility location problem.

» Theorem 4. There is an O(logn)-approximation algorithm for the T Zy-optimization
problem.

To prove a matching lower bound, we use a reduction from Label Cover to the T Zs-
optimization problem. We use a proof which is similar to the proof of the hardness of Set
Cover in [20] (based on [13]). However, we cannot use a reduction directly from Set Cover
since we will need some extra properties of the starting instances, and thus are forced to
start from Label Cover. We introduce a new notion of (m, !, §)-set families and show that
these can still be plugged into existing hardness results to get the extra structural properties
that we need. This lets us prove the following theorem:
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» Theorem 5. Unless NP C DTIME (n©U08198 ) " the T Z,-optimization problem does not
admit a polynomial-time o(logn)-approzimation.

For larger stretch values, a natural approach is to realize that a simple LP relaxation
suffices to give Theorem 4 in the stretch 3 case, and try to extend this basic LP to larger
stretches. In Section 4, we show that this does not work for the more general T Zy-optimization
problem: the integrality gap jumps up to become a polynomial. The instance is very simple:
it is just the metric space formed by shortest paths on the n-cycle. It turns out to be
straightforward to calculate the optimal fractional LP cost, but proving that the optimal
integral solution is large is surprisingly involved.

» Theorem 6. The basic LP relaxation for the T Zy-optimization problem has an Q(nii T )
integrality gap when k > 2.

In Section 5 we discuss the problem of optimizing the Patragcu-Roditty distance oracle.
The basic LP and a simple rounding algorithm gives us an O(log n)-approximation algorithm.

» Theorem 7. There is an O(logn)-approzimation algorithm for PR-optimization problem.
A reduction from set cover problem also gives us a matching lower bound.

» Theorem 8. Unless P = NP, the PR-optimization problem does not admit a polynomial-
time o(log n)-approzimation.

In Section 6 we move to the outliers setting. For both T'Zs- and P R-optimization
problems, a semidefinite programming relaxation and a simple rounding algorithm gives
us an (O(lofn), 1 + ¢)-approximation algorithm. Here, using an SDP relaxation seems to
be necessary — the corresponding LP relaxation requires violating the number of outliers
by a factor of 2 rather than a factor of 1 + . We can also get a true approximation on

T Zs-optimization problem with outliers if the number of outliers is low. These results form

the following theorems.

» Theorem 9. There is an (O(IOE")7 1+¢)-approzimation algorithm for the T Zy-optimization
problem with outliers.

» Theorem 10. There is an O(logn)-approzimation algorithm for T Zs-optimization problem
with outliers if the number of outliers is at most \/n.

» Theorem 11. There is an (O(lofn), 14-¢€)-approzimation algorithm for the P R-optimization
problem with outliers.

3 T Z,-Optimization Problem

We first give an O(logn)-approximation for T'Zs-optimization (Theorem 4), and follow this
with a matching lower bound.

3.1 Upper Bound

We will prove our upper bound by a reduction to the non-metric facility location problem.

» Definition 12. In the non-metric facility location problem we are given a set F' of
facilities, a set D of clients, an opening cost function f : F — R*, and a connection
cost function ¢ : D x F — RT. The goal is to find the set S C F which minimizes
Yics f(i) + > ,cpminjes c(i, j) (i.e. the sum of the opening and connection costs).
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Non-metric facility location is a classic problem, and much is known about it, including
the following upper bound due to Hochbaum.

» Theorem 13 ([14]). There is a polynomial time algorithm which gives an O(logn)-
approximation to the non-metric facility location problem.

Hochbaum'’s algorithm is a greedy algorithm, but it is also straightforward to design an
algorithm with similar bounds using an LP relaxation. Since it is not necessary we do not
present the relaxation here, but generalizations of the relaxation will prove its importance in
the more general T'Z), setting (see Section 4).

We now show that the T'Zs-optimization problem is essentially a special case of non-metric
facility location problem. First, simple arithmetic manipulation of the cost function of the
T Zs-optimization problem gives the following:

cost(A1,V,d) = Z | Riv| + Z | Rou|

u€eV ueV
- Z {fveV|du,v) < min d(u,w)}‘ + Z H{v € A1 | d(u,v) < o0
uev wed uev
= Z {veV]du,v) < Heu,? d(u,w)}‘ +n|A]
ucV !
= Z n+ Z 1£I€1if1111 H{v eV |d(u,v) < d(u,w)} .
wEAL ueV

Given an instance (V,d) of the T'Zs-optimization problem, we create an instance of
non-metric facility location by setting ' = D = V, opening costs f(v) = n for all v € V|
and connection costs c¢(u,w) = {v € V | d(u,v) < d(u,w)}| for all u,w € V. Then the
cost function of the T Zs-optimization problem is exactly the same as the cost function of
non-metric facility location problem. Therefore T'Z; is a special case of non-metric facility
location, which together with Theorem 13 implies Theorem 4.

3.2 Lower Bound

Proving an (logn) hardness of approximation (Theorem 5) turns out to be surprisingly
difficult. Details appear in the full version [10]; here we provide an informal overview.
Technically we reduce directly to T Zs-optimization from a version of the Label Cover
problem that corresponds to applying parallel repetition [18] to 3SAT-5, which is a standard
starting point for hardness reductions. Informally, though, we are “really” reducing from Set
Cover: given an instance of Set Cover, we show how to create an instance of T'Zs-optimization
where the cost of the optimal solution is the same (up to a constant and a polynomial scaling
factor). But in order for our reduction to work, we actually need more than just an arbitrary
Set Cover instance: we need a version of Set Cover in which it is hard even to cover most of
the elements, not just all of them.

So we have to also give a new reduction from Label Cover to Set Cover, showing that
even this version of Set Cover is hard. It turns out that Feige’s reduction [13], reinterpreted
by Vazirani [20], essentially already gives us what we need. We just need to analyze it a
bit more carefully. In particular, a key component of this reduction is what Vazirani called
(m,1)-set systems, which can be thought of as nearly-unbiased sample spaces. We generalize
this notion to (m, 1, d)-set systems, given in the following definition.
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» Definition 14. A set B (the universe) and a collection of subsets Ci,...,C,, of B form
an (m,l,d)-set system if any collection of [ sets in {C1,...,Cpp,C1,...,Cp} whose union
contains at least (1 — §)|B| elements must include both C; and C; for some i.

An (m,l)-set system is just a (m,l,0)-set system. While not all (m,!)-set systems are
(m, 1, d)-set systems for larger 0, the construction of (m,)-set systems in [20] actually does
generalize directly to larger values of §. With this tool in hand, we follow through the rest of
the reduction and it gives us the type of Set Cover instances which we need. Technically
our reduction skips this step by going directly from Label Cover to T Zs-optimization, but
generating these kinds of Set Cover instances is intuitively what the first part of the reduction
is doing.

4 TZ,-Optimization Problem

We now move to the more general 7' Z;-optimization problem. While we are not able to give
nontrivial upper bounds for this problem, we can at least show that the basic LP relaxation
(as discussed in Section 3.1) does not give polylogarithmic bounds in this more general
setting.

41 TheLP

Let B, (v) = {w € V | d(u,w) < d(u,v)}. For every v € V and i € [k], let 2 be a variable
Wthh 15 supposed to be an indicator for whether v € A;. Similarly, for all u,v € V and i € [k],
let ym, be a variable which is supposed to be an indicator for whether v € R;,. (Recall that
Ry, ={v e A;_1]|d(u,v) < mingea, d(u,w)}) We can easily write an LP relaxation for this
problem:

(LPrz,) : min Ez 1Zuvevyuv
st. 0=aW <20 Ve <001 wev
y(lg > l‘g;iil) - ZwGB (,U) () VU,'U S ‘/,Z S [k]
i) >0 Vu,v € V,i € [k]

It can easily be shown that this is a valid relaxation (the proof can be found in the full
version [10]). When restricted to the special case of k = 2, it is not hard to see that this
LP is essentially a special case of the basic LP relaxation for non-metric facility location,
which can be used to prove the O(logn) bound of Theorem 4. But for larger values of k the
behavior is different, and does not result in a polylogarithmic integrality gap.

4.2 Integrality Gap

The integrality gap instance is quite simple: the metric (V,d) induced by shortest-path
distances in a cycle. Slightly more formally, we let V' = [n], and use the cycle distance
d(u,v) = min{|u — v|,n + min{u, v} — max{u,v}}.

Details can be found in the full version [10]. It turns out to be relatively easy to find a
fractional solution to LPrz, with cost O(nHz’@%l) on this instance. The tricky part is lower
bounding the optimal solution, i.e., showing that the optimal integral solution has cost at
least Q(n**). Combining these two results gives us an Q(n%_ﬁ) integrality gap, proving
Theorem 6.



M. Dinitz and Z. Zhang

5 PR-Optimization Problem

We now move from Thorup-Zwick distance oracles to Patragcu-Roditty distance oracles. We
show that from an optimization perspective, they are similar to T'Zs in that we can find
matching bounds: an O(logn)-approximation, and (logn)-hardness.

5.1 Upper Bound

In this section we prove Theorem 7 by using an LP and randomized rounding to give an
O(logn)-approximation to the PR-optimization problem.

Let B,(v) ={w €V | d(u,w) < d(u,v)}, and B(u,r) ={w € V | d(u,w) < r}. We can
see By (v) = B(u,d(u,v)). Now, let x, be a variable which is supposed to be an indicator for
whether v € A, and let y,, be a variable which is supposed to be an indicator for whether
{u,v} € R (recall that R = {{u,v} CV | d(u,v) < miny,eca d(u, w) + ming,ea d(v,w) — 1}).
We can write the following LP relaxation:

(LPpRr) :min > _,,n-xy+ Z{u,u}gv Yuw
st Yyo > 1— ZwEB(u,r)UB(v,d(u,v)fr) Zy  Yu,v € V,Vr € [0,d(u,v)]
x, €[0,1] YoeV
Yur > 0 Yu,v €V

At first blush it may not be obvious that the first type of constraint in this LP really
captures the characterization of pairs in R. But it is actually not that hard to see that this
is a valid relaxation (a formal proof can be found in the full version [10]). Note that while
the number of constraints appears to be exponential (recall that we assume integer weights,
but not necessarily unit weights, and hence d(u, v) is not necessarily polynomial in the input
size), it is in fact possible to solve this LP in polynomial time. We can do this by noting
that for each u,v € V, only at most n different value of r actually yield different constraints,
so we can simply write the constraints for those values.

Our algorithm is relatively straightforward. We first solve LPppr and get an optimal
fractional solution (z¥,y*, ). We then use independent randomized rounding, adding each
v € V to A independently with probability min{4Inn - 2%, 1}.

» Lemma 15. If y;, < 3, then the probability that {u,v} € R is at most *.

Proof. If i, < 1, then the first constraint implies that D we B(u,r)UB(vd(u)—r) T = 1 for
all 7 € [0, d(u,v)]. Therefore, the probability that A N (B(u,r) U B(v,d(u,v) —r)) = & for a
specific r € [0, d(u,v)] is at most
— nn-z* 1
H (1 —min{dlnn-z},1}) <e 2w BB - LR < —~

weB(u,r)UB(v,d(u,v)—r)

A union bound over all the different values of » we used in our LP implies that the
probability that there exists an r € [0, d(u,v)] where AN (B(u, r)UB(v,d(u,v)—7r)) = & is at
most # n = % We claim that the existence of such an r is implied by {u,v} € R, and hence
the probability that {u,v} € R is at most % To see this, suppose that {u,v} € R, i.e. suppose
that d(u,v) < mingea d(u, w) + minge 4 d(v, w) — 1. Then if we set 7 = min,ea d(u, w) — 1,
this implies that min,ea d(v, w) > d(u,v) — r. But then this would imply that no element
of Ais in B(u,r)U B(v,d(u,v) — ). <
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Let OPTy,p,,, denote the optimal cost of LPpgr. Then the above lemma implies that the
expected cost of the rounding algorithm is at most

1
E[n|A| + |R]] < § n-at-Alnn+2- E yi, +n*- = <O(logn) - OPTrp,, +n
n
veV u,veV

< O(logn)-OPT

(where we use the fact that OPT > Q(n)). This completes the proof of Theorem 7.

5.2 Q(logn)-hardness

We now show a matching hardness bound for the PR-optimization problem by reducing
from the Set Cover problem.

Consider a set cover instance (U, S) where |U| + |S| = n. For each e € U, we create a
group of vertices G. where |G| = 3n. For each S € S, we also create a group of vertices Gg
where |Gg| = 3n.

Now we construct the following metric space: V' = (. Ge) U (Uges G's) and

if u € Ge,v € G
ifueGg,veGg
, ifu€eGe,veGg,eeS

d(u,v) =

N — = =

, otherwise.

In the full version [10] we show that if there is a solution §* to the set cover instance
(U,S) where |S*| = t, then there is a set A where cost(A,V,d) < t|V|. We also show that
if there is a set A C V where cost(A4,V,d) < t|V], then there exists a solution $* to the
set cover instance (U,S) where |S*| = t. These two claims, together with an appropriate
hardness theorem for Set Cover [12], imply Theorem 8.

6 Distance Oracles With Outliers

We now move to the more difficult outliers setting, where we can also optimize over a set of
vertices to ignore. Recall that for an approximate distance oracle A, our goal is now to find
a set of vertices F' (the outliers) where |F| < f as well as a string r in order to minimize
|preprocess(V '\ F,d, m,a,r)|. In other words, we are going to try to solve the same problems
as before, but where we can choose a set F' to remove. We begin with T'Z5, and then move
to PR.

6.1 T Z,-Optimization Problem With Outliers

For this problem, it is easy to see that the cost function becomes:

cost(A, F,V,d) = (n— f)| A+ Y |Rul
u€V\F

=(n— A+ Y

ueV\F

{ve V\F|d(u,v) < glelg d(u,w)}|.

A natural approach is to use an LP which is similar to LPrz, to solve this problem (but
for TZ,), suitably adapted to handle outliers. Let x, be a variable which is supposed to be
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an indicator for whether v € A, let y,, be a variable which is supposed to be an indicator for
whether v € Ry, and let z, be a variable which is supposed to be an indicator for whether
v € F. Then we can write the following natural LP relaxation:

(LPTzzo) : min ZUEV(TL - f) “ Ty + Zu,vEV Yuv
St Yuo > 1 — 2y — 2y — ZwEBu(v) Ty Yu,veV

ZUEV‘ZU < f

x, €[0,1] YoeV
Yuv = 0 Yu,v eV
zy € [0,1] YoeV

Unfortunately, this LP can not give an («a, 3)-approximation with 5 = 2 — e. To see this,
consider the case that f = %. Then the optimal solution to LPrz,0 is 0, by setting all z,
to %, all z, to 0, and all y,, = 0. Thus any integral solution, to be competitive with this
fractional solution, must treat all nodes as outliers, requiring 3 to be at least 2.

Fortunately we can give a stronger semidefinite programming relaxation, allowing for
a better approximation. As in LPryz,0, let ¥, be a variable which is supposed to be an
indicator for whether v € A, let 4, be a variable which is supposed to be an indicator for
whether v € Ry, and let z, be a variable which is supposed to be an indicator for whether
v € F. We can then write this SDP:

(SDPrz,0) :min 3, cv(n—f) - [|Z]* + 3, sev 1Funll?
s.1. H?juvnz >1—Zy - Zy — EwEBu(U) ”wa2 Vu,v €V

SeevlAlP < f

2] <1 YoevV
||.7juv||2 <1 Yu,v eV
[2]1> <1 Yo eV

Our approximation algorithm first solves SDPrz,0 to get an optimal solution (Z7, ¥7,,, 75 )-
We then use independent randomized rounding to construct A, adding each v € V to A
independently with probability min{22% . ||z%||2, 1} where ¢ is a small constant. Finally, we
use threshold rounding to construct F' by adding each v € V to F if || Z[|? > 1—_}{

We want to show that this is an (O(logn), 1 + ¢)-approximation. It is easy to see that
|F| < (1+e¢)f because Y, oy |1Z5]> < f. In order to prove Theorem 9 it only remains to
prove that the expected cost is at most O(logn) - OPT. This proof can be found in the full
version [10].

When f < 4 /n we can actually give a true O(logn)-approximation (Theorem 10). The
algorithm is almost the same; we just need to change the threshold rounding for outliers to

instead pick the f vertices with largest ||Z,||? value. Details appear in the full version [10].

6.2 P R-Optimization Problem With Outliers

For this problem, the cost function becomes:
cost(A,F,V,d) = (n— f)-|A| + |R|
=(n—f) A+ |[{{u,v} CV\F | d(u,v) < mi% d(u,w) + migd(v,w) —1}.
we we
We will again use an SDP relaxation. Let &, be a variable which is supposed to be an

indicator for whether v € A, let #,, be a variable which is supposed to be an indicator for
whether {u,v} € R, and let Z, be a variable which is supposed to be an indicator for whether
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v € F. We have the following relaxation (which we call SDPpg) which is similar to both
LPPR and SDPTzzoZ

min - 37 ey (n = f) - 18l + X vy cv [l
s.1. ||guv||2 >1- ’g’uf : 2’0 - ZwEB(u,T)UB(U,d(u,'U)—T) ||f’w||2 V’U”U € ‘/,’l” € [OVd(UVU)]

YeevlzlP<f

”va2§1 YveV
”?juv”2 <1 Vu,v eV
”ZUHQSI YveV

Note that SDPppg is solvable in polynimial time for the same reason that LPpg is
solvable: for each pair of (u,v), we can find n different values of r that give all of the distinct
constraints.

The rounding algorithm is basically the same as the T Zs-optimization problem with
outliers. We first solve the SDPpg and get an optimal solution (&}, ¢, , 7). We then use
independent randomized rounding to get A, adding each v € V to A independently with
probability min{m% -||#%]12, 1} where ¢ is a small constant. Then we use threshold rounding
to get F', adding each v € V to F if || Z]|? > ﬁ

This is an (O(logn), 1 4 €)-approximation. It is easy to see that |F| < (14 ¢)f because
> vev I1ZilI? < f. The proof that the expected cost is at most O(logn) - OPT is in the full
version [10], which completes the proof of Theorem 11.

7 Conclusion and Future Work

In this paper we initiate the study of approzimating approximate distance oracles. This is a
different take on the question of optimizing data structures, where we attempt to find the
best data structure for a particular input, rather than for a class of inputs. In order to make
this tractable (or even well-defined), we restrict our attention to known classes of distance
oracles, and show that it is sometimes possible to find the best of these restricted oracles.
We also extended our approaches to optimize in the presence of outliers.

For future work, the major question is clearly whether we can approximately optimize
higher level (i.e., higher stretch) Thorup-Zwick distance oracles. Although we show an
integrality gap for the basic LP, it is quite conceivable that a stronger LP or SDP could
be used to give a logarithmic approximation ratio. Beyond this, there are other distance
oracles which could be optimized — we chose Thorup-Zwick and Pétragcu-Roditty since they
are well-known and in some ways canonical, but it would be interesting to extend these
ideas to other oracles. At a higher level, we believe that the definitions and ideas we have
introduced here could lead to many interesting questions about optimizing data structures
for given inputs: can we find near-optimal distance labels? Or compact routing schemes? Or
connectivity oracles? Or fault-tolerant oracles? Essentially any data structure question in
which there is a choice of which data to store, rather than how to store it, can be put into
our optimization framework. Exploring this space is an exciting future direction.
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