
Multi-Clique-Width∗

Martin Fürer†

The Pennsylvania State University, University Park, USA
furer@cse.psu.edu

Abstract
Multi-clique-width is obtained by a simple modification in the definition of clique-width. It has
the advantage of providing a natural extension of tree-width. Unlike clique-width, it does not
explode exponentially compared to tree-width. Efficient algorithms based on multi-clique-width
are still possible for interesting tasks like computing the independent set polynomial or testing
c-colorability. In particular, c-colorability can be tested in time linear in n and singly exponential
in c and the width k of a given multi-k-expression. For these tasks, the running time as a function
of the multi-clique-width is the same as the running time of the fastest known algorithm as a
function of the clique-width. This results in an exponential speed-up for some graphs, if the
corresponding graph generating expressions are given. The reason is that the multi-clique-width
is never bigger, but is exponentially smaller than the clique-width for many graphs. This gap
shows up when the tree-width is basically equal to the multi-clique width as well as when the
tree-width is not bounded by any function of the clique-width.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory, D.2.8 Metrics

Keywords and phrases clique-width, parameterized complexity, tree-width, independent set
polynomial, graph coloring

Digital Object Identifier 10.4230/LIPIcs.ITCS.2017.14

1 Introduction

Tree-width is the first and by far the most important width parameter. It is motivated by
the fact that almost all interesting problems that are hard for general graphs allow efficient
algorithms when restricted to trees. Furthermore such algorithms are often quite trivial.
The promise of the notion of tree-width is to extend such efficient algorithms to much larger
classes of tree-like graphs. Graphs of bounded tree-width have one shortcoming though.
They are all sparse.

Clique-width [8] is the second most important width parameter. It has been defined
by Courcelle and Olariu [12] based on previously used operations [8]. It is intended to
compensate for the main shortcoming of the class of graphs of bounded tree-width. The
idea is that many graphs are not sparse, but are still constructed in a somewhat simple and
uniform way. One would expect to find efficient algorithms for such graphs too. The most
extreme example is the clique. It’s hard to find a natural problem that is difficult for a
clique.

It turns out that graphs of bounded tree-width actually also have bounded clique-width
[12, 6], and many efficient algorithms extend to the larger class. Indeed, every graph property
expressible in MS1, the monadic second order logic with set quantifiers for vertices only,

∗ This work was partially supported by NSF Grant CCF-1320814.
† Part of this work has been done while visiting Theoretical Computer Science, ETH Zürich, Switzerland

© Martin Fürer;
licensed under Creative Commons License CC-BY

8th Innovations in Theoretical Computer Science Conference (ITCS 2017).
Editor: Christos H. Papadimitrou; Article No. 14; pp. 14:1–14:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ITCS.2017.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2 Multi-Clique-Width

is decidable in linear time (linear in |V | + |E|) for graphs of bounded clique-width [10].
On the other hand, graph properties expressible in MS2, the monadic second order logic
with set quantifiers for vertices and edges, is decidable in linear time for graphs of bounded
tree-width [7], but not for graphs of bounded clique-width [10] under suitable complexity
assumptions.

Recently the split-matching-width (sm-width), a new width parameter has been de-
fined [25] to handle some of theMS2 expressible problems for unbounded tree-width. The
strength of sm-width is strictly between tree-width and clique-width. We will not discuss
it, because we focus on parameters that are at least as strong as clique-width.

We are concerned with the fact that the containment of the bounded tree-width graphs in
bounded clique-width graphs is not obvious. Furthermore, the generalization from bounded
tree-width to bounded clique-width does not come cheap. The width can blow up exponen-
tially, with a potential for a significant loss of efficiency for many algorithms.

This creates a cumbersome situation for the many problems that have efficient solutions
in terms of tree-width as well as in terms of clique-width, assuming the corresponding
decompositions are known. One would like to run the algorithm based on clique-width to
cover a much larger class of graphs, but that would mean an exponential sacrifice in running
time for some graphs with small tree-width. Arguably, there should be a notion of a width
parameter that bridges this gap more graciously.

Naturally, this aesthetic goal is not the whole story. One could run a tree-width and a
clique-width based algorithm and take the result from the one that finishes first. Maybe the
following argument is more important. If every clique-width based algorithm is exponentially
slower than a tree-width based algorithm for a typical graph of small tree-width, then this
seems to indicate some deficiency of the notion of clique-width. Therefore, what we really
want, and what we will achieve, is finding a natural notion of width, such that for many
important computational problems, algorithms based on this width have all of the following
desirable properties.

The algorithms based on this width are at least as fast as algorithms based on tree-width.
The algorithms based on this width are at least as fast as algorithms based on clique-
width.
The algorithms based on this width are exponentially faster than algorithms based on
clique-width, not only for graphs of small tree-width, but for many graphs of arbitrary
large tree-width.

The current author has searched for some time for a parameter naturally generalizing
tree-width and clique-width. Ideally, there should be no exponential blow-up in the param-
eter value. The second objective has been obtained with the notion of fusion-width [18]. It
has been shown before that the fusion operation does not produce unbounded clique-width
graphs from bounded clique-width graphs [9]. Indeed, there is a much tighter relationship.
Graphs of tree-width k have fusion-width at most k + 2 [18], while in the worst case, they
have clique-width exponential in k [6].

This is a very desirable property of fusion width. The drawback is that attaching a fusion
operation is somewhat unnatural. It is an artificial push of the tree-width concept into a
clique-width-like environment. Here, we investigate a far more natural width parameter
that achieves this goal in a more direct way. We call it multi-clique-width, it is obtained
by a simple modification in the notion of clique-width, namely by allowing every vertex
to have multiple labels. Furthermore, it seems that the multi-clique-width might often be
exponentially smaller than the fusion-width. On the other hand, it can be shown that
multi-clique-width is never more than twice the fusion-width.

M. Fürer 14:3

In this paper, we propose multi-clique-width as a serious contender of clique-width. This
powerful parameter has some very desirable properties. Its definition is equally simple and
natural as that of clique-width. The multi-clique-width is never bigger than the clique-
width, but often exponentially smaller [13]. And most importantly, there is no explosion
of the width when moving from tree-width to multi-clique-width. Furthermore, there are
interesting algorithms where the dependence of the running time on the (potentially much
smaller) multi-clique-width is about the same as the dependence on the clique width for a
similar algorithm working with clique-width. Thus, multi-clique-width allows some tasks to
be solved much more efficiently than previously known.

There are other important width parameter, the rank-width [22] and the boolean-width
[5], that share some significant properties with the multi-clique-width. They too are never
bigger than the clique-width and can be exponentially smaller. So why do we want to
investigate yet another similar parameter?

Rank-width, boolean-width, clique-width, and multi-clique-width are all equivalent in
the sense that the exact same problems are solvable in polynomial time for bounded width.
If one of these parameters is bounded (by a constant), then so are the others. Rank-width
has been introduced with this equivalence in mind [22]. Before, the graphs of bounded
clique-width could not be identified computationally. Therefore, graphs of bounded clique-
width could only be handled efficiently, when a corresponding k-expression had been given.
Now the rank-width rw(G) can be approximated by a constant factor, and a 23rw(G)+2− 1-
expression can be computed in time O(f(k)n9 logn) for some function f [22]. The later
algorithm [20] to compute the rank-width exactly with a similar running time has not much
effect on the approximability of clique-width. In theoretical investigations, the exponential
bound on the clique-width has not often been viewed as a major concern, because the main
goal has been to handle bounded clique-width graphs in polynomial time, not to speed them
up, even when the rank-width is much smaller than the clique-width.

There are algorithms based directly on rank-width [19]. Still, for many application
algorithms, clique-width based algorithms are more natural and easier to design.

We will show that for some computational tasks multi-clique-width can be used with
the same ease as clique-width, but with an exponential speed-up for many graphs. These
are exponential speed-ups in the parameter, meaning that the class of graphs with bounded
parameter value would not change, just the computations get much faster.

Many questions are not yet answered for multi-clique-width. We conjecture multi-clique-
width to be NP-hard. Nevertheless it might be that multi-clique-width could be approxi-
mated by a constant factor in polynomial time. We don’t yet know. These are open problems
for clique-width and boolean-width too.

In comparison with boolean-width or rank-width, when the corresponding decomposi-
tions are given, we notice that the known efficient algorithms for NP-complete problems
are quadratic in n for bounded width, while forMS1 expressible graph properties, we have
linear time algorithms [10] for bounded clique-width or multi-clique-width. Furthermore,
we will illustrate that such algorithms can be quite simple and efficient as a function of the
multi-clique-width.

Naturally, one could argue that this is an unfair comparison. The linear time is a
result of the structural information that is given by the expression defining a graph with
a bound on the clique-width or multi-clique-width. Boolean-width or rank-width on the
other hand are defined with existential properties that constantly require some search in the
graph. There are no concise boolean expressions or rank expressions defining these graphs.
There is truth in this argument, but at the same time, one could claim that this is still an
advantage of clique-width and multi-clique width. Maybe, some nice classes of graphs have

ITCS 2017

14:4 Multi-Clique-Width

nice expressions describing them. If such expressions are known or can easily be found, they
certainly should be used for efficient algorithms.

2 Definitions and Preliminaries

We use the standard notions of tree decomposition, tree-width, k-expression, and clique-
width.

I Definition 1. A tree decomposition of a graph G = (V,E) is a pair ({Bi : i ∈ I}, T),
where T = (I, F) is a tree and each node i ∈ I has a subset Bi ⊆ V of vertices (called the
bag of i) associated to it with the following properties.
1.
⋃
i∈I Bi = V , i.e., each vertex belongs to at least one bag.

2. For all edges e = {p, q} ∈ E, there is at least one i ∈ I with {p, q} ⊆ Bi, i.e., each edge
is represented by at least one bag.

3. For every vertex v ∈ V , the set of indices i of bags containing v induces a subtree of T
(i.e., a connected subgraph of T).

I Definition 2. The width of a tree decomposition is 1 less than its largest bag size. The
tree-width tw(G) [24] of a graph G is the width of a minimal width tree decomposition of G.

It is NP-complete to decide whether the tree-width of a graph is at most k (if k is part of
the input) [1]. For every fixed k, there is a linear time algorithm deciding whether the tree-
width is at most k, and if that is the case, producing a corresponding tree decomposition [2].
For arbitrary k, this task can still be approximated. A tree decomposition of width O(k logn)
can be found in polynomial time [4], and in time O(ckn) almost a 5-approximation [3] can
be found (a tree of width at most 5k + 4 to be precise). Furthermore, a tree decomposition
of width O(k2) can be found in time O(k7n logn) [17].

It is often convenient to view T as a rooted tree, where an arbitrary fixed node has been
chosen as the root.

I Definition 3. A semi-smooth tree decomposition of width k is a rooted tree decomposition
where the bag Bi of every node i contains exactly 1 vertex that is not in the bag of the
parent node p(i). For rooted trees T with v ∈ Bi \Bp(i), we say that node i is the home of
vertex v.

In other words, the home of a vertex v is the highest node whose bag contains v. The bag
Br of the root r of a semi-smooth tree decomposition contains just one vertex.

I Proposition 4. Every graph G = (V,E) has a semi-smooth tree decomposition of width
k = tw(G) with |I| = |V |. Any tree decomposition of bounded width can be transformed into
a semi-smooth tree decomposition in linear time.

Proof. Do a depth-first search of the tree and omit nodes whose bag is contained in the bag
of the parent. Insert intermediate nodes if more than one vertex has the same home. J

We use the standard notation of k-expression to define clique-width.

I Definition 5. A k-expression is an expression formed from the atoms i(v), the two unary
operations ηi,j and ρi→j , and one binary operation ⊕ as follows.

i(v) creates a vertex v with label i, where i is from the set {1, . . . , k}.
ηi,j creates an edge between every vertex with label i and every vertex with label j for
i 6= j (with i, j ∈ {1, . . . , k}).
ρi→j changes all labels i to j (with i, j ∈ {1, . . . , k}).
⊕ (join-operation) does a disjoint union of the generated labeled graphs.

M. Fürer 14:5

Finally, the generated graph is obtained by deleting the labels.

We also allow multi-way join-operations, as ⊕ is associative.

I Definition 6. The clique-width cw(G) of a graph is the smallest k such that the graph
can be defined by a k-expression [12].

Computing the clique-width is NP-hard [15]. Thus, one usually assumes that a graph is
given together with a k-expression.

Theoretically, this is not necessary, because for constant k, the clique-width can be
approximated in polynomial time [22, 21]. But the approximation ratio is exponential in k.

Now we define multi-clique-width in a similar way as clique-width. The essential differ-
ence is that every vertex can have any set of labels (including singleton sets and the empty
set). There is a new operation εi to delete a label. The creation of multiple vertices with
the same set of labels by one command is an unessential convenience.

I Definition 7. A multi-k-expression is an expression formed from the atoms m〈i1, . . . , i`〉,
the three unary operations ηi,j , ρi→S , and εi, as well as the binary operation ⊕ as follows.
Assume i, j ∈ {1, . . . , k}, ` ∈ {0, . . . , k} and ∅ ⊆ S, {i1, . . . , i`} ⊆ {1, . . . , k}).

m〈i1, . . . , i`〉 with m a positive integer and i1 < · · · < i` ≤ k, creates m vertices, each
with label set {i1, . . . , i`}.
ηi,j creates an edge between every vertex u with label i and every vertex v with label j.
This operation is only allowed when there are no vertices with label i and j simultane-
ously, in particular i 6= j.
ρi→S replaces label i by the set of labels S, i.e., if a vertex v had label set S′ with i ∈ S′
before this operation, then v has label set (S′ \ i) ∪ S after the operation.
εi deletes the label i from all vertices.
⊕ (join-operation) does a disjoint union of the generated labeled graphs.

Finally, the generated graph is obtained by deleting the labels.

S and {i1, . . . , i`} are allowed to be empty, even though the latter is not very interesting,
as it only creates isolated vertices. Note that εi is just the special case of ρi→S with S = ∅.
We list it separately, because one might want to consider the strict multi-k-expressions
without ρi→S . In Theorem 13 below, ρi→S is not used. Alternatively, one might restrict
ρi→S to the classical case with S being a singleton. The relative power of these 3 versions
might be worth studying.

I Definition 8. The multi-clique-width mcw(G) of a graph is the smallest k such that the
graph can be defined by a multi-k-expression.

It turns out that multiply labeled graphs have been used before [12] in a more auxiliary
role, and a variant of the multi-clique-width has actually appeared in the literature un-
der the name m-clique-width [13] in the context of preprocessing for shortest path routing
computations.

Here we list the standard definition of boolean-width in order to compare it with multi-
clique-width.

I Definition 9. A decomposition tree of a graph G = (V,E) is a tree T where V is the set
of leaves and where all internal nodes have degree 3.
Every edge e of T defines a partition of V into X and X consisting of the leaves of the two
trees obtained from T by removing e.
The set of unions of neighborhoods of X across the cut {X,X} is the set

U(X) = {S′ ⊆ X | ∃S ⊆ X S′ = N(S) ∩X}.

ITCS 2017

14:6 Multi-Clique-Width

X defines bool-dim(X) = log2 |U(X)|.
The boolean-width of G is the minimum over all trees T of the maximum over all cuts {X,X}
defined by an edge e of T of bool-dim(X) = log2 |U(X)|.

3 Relationship between Different Width Parameters

Multi-clique-width extends the notions of tree-width and of clique-width in a natural way.

I Proposition 10. For every graph G, mcw(G) ≤ cw(G) ≤ 2mcw(G).

Proof. The first inequality directly follows from the definitions. For the second inequality,
just use a label for every set of labels. J

I Corollary 11. A class of graphs has bounded clique-width if and only if it has bounded
multi-clique-width.

I Corollary 12. Properties of graphs expressible inMS1 (monadic second order logic without
quantifiers over sets of edges) are linear time decidable for graphs of bounded multi-clique-
width.

Proof. This follows from Corollary 11 and the corresponding meta-theorem for clique-width
[10]. J

I Theorem 13. If a tree-decomposition of width k of a graph G = (V,E) is given, then a
multi-(k + 2)-expression for G can be found in polynomial time.

Proof. Assume, G is given with a tree decomposition of width k = tw(G). In linear time, the
tree decomposition is transformed into a semi-smooth tree decomposition ({Bi : i ∈ I}, T).
Now we assign an identifier ι(v) from {1, 2, . . . , k+1} to each vertex v top-down, i.e., starting
at the root of T . When identifiers have been assigned to the vertices whose homes are above
the home of vertex v, we assign to vertex v the smallest identifier not assigned to the other
vertices in the bag of the home of v.

Next, we define a multi-(k+ 2)-expression whose parse tree T ′ is basically isomorphic to
the tree T of the tree decomposition. The difference it that in T ′ every internal node has an
additional child that is a leaf. We call it an auxiliary leaf. Furthermore, above each internal
node i, we introduce three auxiliary nodes obtained by subdividing the edge to the parent
of i.

The main idea is that every vertex v is created at its home, or more precisely, in the
auxiliary node below its home. Then the edges from v to neighbors of v with a home further
down the tree are added. The upper neighbors of v, i.e., those that have their home higher
up the tree, are not yet created. Vertex v remembers to attach to these neighbors later by
taking the set of identifiers of these neighbors as its labels. All upper neighbors of v are
together with v in the bag Bi of the home i of v in T . The vertex v needs at most k labels
for this purpose. We give v an additional label, k + 2, to allow the lower neighbors of v
to connect to v. Node i of T ′ is a multi-way join operation of all its children, including
the new auxiliary child. The purpose of the three nodes inserted above node i is to add
the edges between v and its neighbors in the subtree of i, and to delete the two labels
(k + 2, and ι(v), the identifier of v) that have been used to create these new edges. The
multi-(k + 2)-expression is built bottom-up.

Now we define the multi-(k+ 2)-expression exactly by assigning atoms to the leaves and
operations to the internal nodes as follows.

M. Fürer 14:7

Regular leaf: Let the leaf i be the home of some vertex v. Let v1, . . . , v` be the neighbors of v
with identifiers i1, . . . , i`. Clearly, {v, v1, . . . , v`} ⊆ Bi. Then the expression 1〈i1, . . . , i`〉
creates v in leaf i.

Auxiliary leaf: Let the internal node i be the home of some vertex v. Let v1, . . . , v` be the
upper neighbors of v with identifiers i1, . . . , i`. Let c0(i) be the child of i which is an
auxiliary leaf. Then the expression for c0(i) is 1〈k + 2, i1, . . . , i`〉.

Internal node: Let i be the home of some vertex v, and let c1(i), . . . , cq(i) be the children
of i in T . Let c0(i) be the auxiliary leaf child of i in T ′. Furthermore, let ι(v) be the
identifier of v. Assume, for child cj(i) we already have the expression Ej . Then the
multi-(k + 2)-expression for node i, or more precisely of the third auxiliary node above
it, is

εk+2(ει(v)(ηι(v),k+2(E0 ⊕ E1 ⊕ · · · ⊕ Eq))).

Now the following is easily proved by induction on the height of node i.

I Claim 14. The multi-(k+2)-expression for node i generates the labeled graph Gi = (Vi, Ei)
induced by the vertices whose home is in the subtree of i. Furthermore, the set of labels of
every vertex v ∈ Vi is equal to the set of identifiers of the neighbors of v in V \ Vi.

By the inductive hypothesis of the claim, all vertices V ′ in the subtree of node i that are
adjacent to v in G have a label ι(v). The vertex v has a label k+ 2, but no label ι(v). Thus
the operation ηι(v),k+2 creates exactly the edges between v and V ′. Now, the labels ι(v) and
k + 2 can be deleted, because both have served their purpose. From every vertex labeled
ι(v), the edge to v is now already constructed, and the label k + 2 only had to mark the
vertex v for the construction of these edges.

The claim for the root implies the theorem. J

A weaker form of Theorem 13 is the implied inequality between multi-clique-width and
tree-width.

I Corollary 15. For every graph G, mcw(G) ≤ tw(G) + 2.

As an immediate corollary, we obtain cw(G) ≤ 2tw(G)+2. The tighter bound of cw(G) ≤
2tw(G)+1 + 1 [12] is obtained by noticing that one could use the label k + 2 strictly as a
singleton label. Instead of deleting it with an εk+2 operation, one could change it to the set
of other labels we wanted to assign to that vertex using a ρi→S operation. The even tighter
bound cw ≤ 1.5 ·2tw(G) [6] is obtained by handling higher degree join nodes more efficiently.
Following every binary join, the necessary edges could be inserted, allowing the number of
labels to be decreased. This saves one fourth of the labels.

I Corollary 16. There are graphs G with cw(G) ≥ 2bmcw(G)/2c−2.

Proof. There are graphs G with tw(G) = k and clique-width cw(G) ≥ 2bk/2c−1 [6]. Such
graphs have multi-clique-width mcw(G) ≤ k + 2 by Corollary 15. J

Naturally, it is easy to find graph classes with unbounded tree-width that still exhibit
this exponential discrepancy between clique-width and multi-clique-width. One way is just
to add a large clique, but there are many not so obvious ways.

We want to compare multi-clique-width with boolean-width.

I Theorem 17. For every graph G, boolw(G) ≤ mcw(G) ≤ 2boolw(G).

ITCS 2017

14:8 Multi-Clique-Width

Proof. boolw(G) ≤ mcw(G): Assuming mcw(G) = k, we start with a multi-k-expression
for G. W.l.o.g., assume that each vertex v is created as a single vertex by the operation
m〈i1, . . . , ij〉 with m = 1. Then, there is a bijection between the vertices V and the leaves of
the parse tree T . Viewed as a graph, the other nodes of T have degrees 2 or 3. We replace
all maximal paths with internal nodes of degree 2 by single edges to obtain a tree T ′.

Consider any edge e = (u, v) of T ′, where v is a descendant of u in T . Let X ⊆ V be the
set of vertices of the subtree Tv. For every subset S ⊆ X, the set N(S) ∩ X of neighbors
of S outside of X only depends on the union of the set of labels of the vertices of S. There
are at most 2k such subsets of labels, and thus at most 2k such neighborhoods. The binary
logarithm of the largest such number of neighborhoods over all edges of T ′ is an upper bound
on boolw(G), i.e., boolw(G) ≤ k.

mcw(G) ≤ 2boolw(G): By Proposition 10, mcw(G) ≤ cw(G), and the inequality cw(G) ≤
2boolw(G) [5] is known. J

Even though, boolean-width has the desirable property boolw(G) ≤ mcw(G), some-
times more efficient algorithms are possible in terms of mcw(G) than in terms of boolw(G).
Indeed, every graph property expressible in MS1, is decidable in linear time for graphs
of bounded clique-width [10], while for arbitrary graphs of bounded boolean-width, at least
quadratic time is required. Naturally, this can also be viewed as an indication of the strength
of the boolean-width parameter. Even graphs without a simple structure can have small
boolean-width. In the next section, we will see that for specific problems the (exponential)
dependance of the running time on the multi-clique-width can be quite good.

4 Algorithms based on Multi-Clique-Width

The algorithmic purpose of clique-width and other width parameters is to put problems into
FPT, i.e., making them fixed parameter tractable (see [14]). This means achieving a running
time of O(f(k)nO(1)) for an arbitrary computable function f . In reality things are not so
bad. Algorithms based on clique-width often have a running time of O(ckne) or O(ck log kne)
with k = cw(G), n = |V |, and c and e being small constants.

Assume that we are given a multi-k-expression for G and we have an algorithm with
similar running time when k is the multi-clique-width. Then we have an exponential time
speed-up when choosing the multi-clique based algorithm with running time 2O(k)ne, instead
of the clique-width based algorithm with clique-width 2Ω(k) and running time 22Ω(k)

ne for
infinitely many graphs.

Indeed, we want to illustrate here that this scenario is occurring quite frequently. Let
us see that there are many graphs with unbounded tree-width, multi-clique-width k, and
clique-width exponential in k. Without changing the notion of multi-clique-width, we could
extend the multi-k-expressions to allow arbitrary k/2-labeled graphs of tree-width at most
k/2 − 2 as atoms instead of just isolated vertices. It is not had to see that such graphs
could be produced by proper multi-k-expressions. k/2 labels are sufficient to simulate the
tree-width construction, and the remaining k/2 labels could be placed in any possible way.

But if at least one of the tree-width k/2−2 components are complicated, then the clique-
width is exponential in k [6]. And if the graph contains a large clique of size ` (which could
be Ω(n)), then the tree-width is at least `. Thus, we have a huge class of graphs where the
multi-clique-width is exponentially better than the clique-width.

Now we exhibit the ease of use of the parameter mcw(G) for Independent Set. The
running time as a function of the width is roughly the same for clique-width k as for multi-
clique-width k. Hence, we gain an exponential speed-up in the width parameter for all the
many instances were the clique-width is exponentially bigger than the multi-clique-width.

M. Fürer 14:9

Instead of only finding a maximum independent set, or even just computing its size,
we solve the more involved problem of computing the independent set polynomial, i.e.,
computing the numbers of independent sets of all sizes. This is not much more difficult, and
one can easily simplify the algorithm if only a maximum independent set is needed. Then
the dependence of the running time on the size n goes down to linear from polynomial,
while the dependence on the width k stays singly exponential. In particular, we have an
FPT algorithm to compute the independent set polynomial. We refer to [11, 16] for more
discussions of the fixed parameter tractability of counting problems.

It is worth mentioning that the very same problem of computing the number of inde-
pendent sets of all sizes has been studied by Bui-Xuan et al. [5]. They achieve a running
time of O(α2n2k22k) for graphs with boolean-width k and maximum independent set size
α. Note that α could be as large as Ω(n). We will not elaborate on our running time, but
just remark that using FFTs, O(α logαnk2k) is sufficient for multi-clique-width k.

I Definition 18. The independent set polynomial of a graph G is

I(x) =
n∑
i=1

aix
i

where ai is the number of independent sets of size i in G.

The independent set polynomial is not strong enough to describe the involvement of the
different labels in the independent sets. We need to do a more detailed counting to allow
recurrence equations to govern the definition of the polynomials as the labeled graph is
assembled by a multi-k-expression.

I Definition 19. Let [k] = {1, . . . , k} be the set of vertex labels. The [k]-labeled independent
set polynomial of a [k]-labeled graph G (each vertex can have multiple labels from [k]) is

P (x, x1, . . . , xk) =
n∑
i=1

∑
(n1,...,nk)∈{0,1}k

ai;n1,...,nk
xi

k∏
j=1

x
nj

j

where nj ∈ {0, 1} and ai;n1,...,nk
is the number of independent sets of size i in G which

contain some vertices with label j if and only if nj = 1.

The [k]-labeled independent set polynomial is used in the inductive construction. At the
end, the independent set polynomial I(x) is easily obtained from [k]-labeled independent set
polynomial.

I Theorem 20. Given a graph G with n vertices, and a multi-k-expression generating G
with multi-clique-width k, the independent set polynomial I(x) of G can be computed in time
O(2k(kn)O(1)).

Proof. Using dynamic programming, we compute the [k]-labeled independent set polynomial
of the [k]-labeled graphs generated by subexpressions of the given multi-k-expression. The
computation is done bottom-up in the parse tree of the given multi-k-expression.

For any atomic expression m〈i1, . . . , ij〉 creating m vertices with labels i1, . . . , ij , we have
the [k]-labeled independent set polynomial

1 +
m∑
`=1

(
m

`

)
x`xi1 · · ·xij = 1 + ((1 + x)m − 1)xi1 · · ·xij .

ITCS 2017

14:10 Multi-Clique-Width

In O(m) arithmetic operations, we can compute all coefficients using the recurrence
(
m
`+1
)

=(
m
`

)
(m − `)/(` + 1). Thus all atomic expressions for the n = |V | vertices can be computed

in time O(n).
If the expression E has the polynomial P̃ (x, x1, . . . , xk), then ηi,j(E) has the polynomial

P (x, x1, . . . , xk) = P̃ (x, x1, . . . , xk) mod xixj ,

i.e., terms containing xi and xj are deleted. This is correct, because a set of vertices is
independent after the introduction of the edges between labels i and j, if and only if it was
an independent set before and does not contain both labels i and j.

If the expression E has the polynomial P̃ (x, x1, . . . , xk), then ρi→S(E) has the polynomial

P (x, x1, . . . , xk) = P̃ (x, x1, . . . , xi−1, xi1 · · ·xij , xi+1, . . . , xk)
mod (x2

i1 − xi1) · · · mod (x2
ij − xij) (1)

for S = {i1, . . . , ij}, i.e., first xi is replaced by the product xi1 . . . xij . Then squares of
indeterminates are replaced by their first powers. This is correct, because we still count all
independent sets. They just occur in different categories as they involve different labels.

If the expression E has the polynomial P̃ (x, x1, . . . , xk), then εi(E) has the polynomial

P (x, x1, . . . , xk) = P̃ (x, x1, . . . xi−1, 1, xi+1, . . . , xk),

i.e., the indeterminate xi is replaced by 1. This is correct, because it is just a special case
ρi→S(E).

If the expression E` (` ∈ {1, 2}) has the polynomial P̃`(x, x1, . . . , xk), then the expression
E1 ⊕ E2 has the polynomial

P (x, x1, . . . , xk) = P̃1(x, x1, . . . , xk) P̃2(x, x1, . . . , xk)
mod (x2

1 − x1) · · · mod (x2
k − xk), (2)

i.e., in the product of the polynomials, every x2
i is replaced by xi, as we only care about the

occurrence of a label and not about the multiplicity of such an occurrence. This is correct,
because every independent set of G1 can be combined with every independent set of G2 to
form an independent set of the join graph G, and every independent set of G can be formed
in this way.

Finally,

I(x) =
n∑
i=1

aix
i =

n∑
i=1

∑
(n1,...,nk)∈{0,1}k

ai,n1,...,nk
xi = P (x, 1, . . . , 1),

because
ai =

∑
(n1,...,nk)∈{0,1}k ai,n1,...,nk

.
To bound the running time, one should notice that the polynomial P (x, x1, . . . , xk) has

2k(n+ 1) coefficients.
The polynomial P̃ (x, x1, . . . , xi−1, xi1 · · ·xij , xi+1, . . . , xk) in Eq. (1) has at most 2k(n+1)

non-zero coefficients, not 3k(n+1), because the substitution does not increase the number of
monomials. If the product in Eq. (2) is computed by school multiplication, then the running
time is O(4k(kn)O(1)). But with a fast Fourier transform (evaluating the polynomial for
xi = 0 and x1 = 1 for all i), the time is only O(2k(kn)O(1)). J

M. Fürer 14:11

The easier problem of just finding the size of a maximum independent set (rather than
computing the numbers of independent sets of all sizes) is now trivial. At each stage,
for all exponents n1, . . . , nk, the coefficient ai;n1,...nk

is only stored for the largest i with
ai;n1,...,nk

6= 0.

I Corollary 21. A maximum independent set can be found in time O(2kkO(1)n) in graphs
with multi-clique-width k.

Proof. If during the dynamic programming algorithm to compute the size of a maximum
independent set, one always stores where the largest exponent i came from, then at the end,
one can easily backtrace to actually find a maximum independent set. J

As an additional example, we consider the NP-complete decision problem c-coloring,
asking whether the input graph G can be colored with c colors for a constant integer c ≥ 3,
such that no adjacent vertices have the same color.

I Theorem 22. For graphs G of multi-clique-width k with a given multi-k-expression for
G, and any positive integer constant c, the c-coloring problem can be solved in time 2O(ck)n.

Proof. We present a dynamic programming algorithm based on the parse tree structure of
the multi-k-expression. We classify the colorings of the graphs generated by sub-expressions
according to the labels used for the vertices of each color. Let Q with |Q| = c be the set of
colors and L with |L| = k be the set of labels. Let B1, . . . , Br with r = 2ck be the sequence
(say in lexicographic order) of all bipartite graphs with the left vertex set Q and the right
vertex set L. Let Ep be the set of edges in Bp. For every subexpression F , we define F (Bp)
to be true, if and only if the following holds. The graph generated by F can be colored with
Q such that some vertex colored with q ∈ Q is labeled with a set of labels containing i ∈ L,
if and only if (q, i) is an edge in Bp.

We now show that F (Bp) can easily be computed from all the F ′(Bp′) where F ′ is a
subexpression of F and p′ ∈ {1, . . . , r}. We analyze according to the structure of F .

If F is an atomic expression m〈i1, . . . , ij〉 creating m vertices with labels i1, . . . , ij , then
F (Bp) is true, if and only if Ep = {(q, i) | q ∈ Q′ and i ∈ {i1, . . . , ij}} for some Q′ with
∅ 6= Q′ ⊆ Q.

If F = ηi,j(F ′), then F (Bp) is true, if and only if F ′(Bp) is true and for no color q ∈ Q
there are both edges (q, i) and (q, j) present in Bp. In other words, a previous coloring is
still valid, if and only if no color appears at both endpoints of newly added edges.

If F = ρi→S(F ′), then F (Bp) is true, if and only if F ′(Bp′) is true for some p′ with

Ep = {(q, `) | (q, `) ∈ Ep′ and ` 6= i} ∪ {(q, j) | (q, i) ∈ Ep′ and j ∈ S}.

If F = F ′ ⊕ F ′′, then F (Bp) is true, if and only if F ′(Bp′) is true and F ′′(Bp′′) is true
for some p′, p′′ with Ep = Ep′ ∪ Ep′′ .

Given this simple characterization of F (Bp) in terms of F ′(Bp′) for some p′ and the
immediate sub-expressions F ′, it should be immediately clear how the value of F (Bp) can
be computed, when the values of the F ′(Bp′) are known.

Furthermore, it is a simple proof by induction on the structure of an expression F that
F (Bp) is true, if and only if the graph generated by F can be colored with Q such that some
vertex colored with q ∈ Q is labeled with a set of labels containing i ∈ L, if and only if (q, i)
is an edge in Bp.

Naturally, at the end, the graph generated by F is k-colorable, if and only if F (Bp) is
true for some Bp.

ITCS 2017

14:12 Multi-Clique-Width

The running time is linear in n, because there are O(n) nodes to process and the time
spent in every node only depends on the number c of colors and the number k of labels. In
every node, an array of 2ck boolean values (one for each bipartite graph on the vertex sets
Q and L) has to be processed in a simple fashion. The resulting running time is 2O(ck)n.

There is quite some waste of time involved in handling all the bipartite graphs on the
vertex sets Q and L, because the truth value for a graph Bj does not change, when the set
of colors Q and the set of labels L are permuted in an arbitrary way. This does not mean
that the running time can be divided by c!k!, because typically many such permutations are
automorphisms not creating new bipartite graphs. The exact number of isomorphism types
of such bipartite graphs can be computed with the Redfield-Pólya enumeration theorem (see
[23]), but that does not result in a nicer upper bound. Clearly, any practical implementation
would do the computation for just one bipartite graph for every isomorphism type. J

5 Conclusions and Open Problems

We have proposed a powerful parameter multi-clique-width. It allows us to achieve faster
running times for natural classes of graphs and interesting algorithmic tasks. Assume, we
are given the input graph by a multi-k-expression. Then we have very efficient algorithms
for this class of graphs, as illustrated by the independent set polynomial and the coloring
problem. On the other hand, for any algorithm based on clique-width, we could only get
exponentially slower (in k) algorithms for the same problems and the same collection of
graphs. Also, equally efficient algorithms are not known based on rank-width or boolean-
width, when the corresponding decompositions are given.

Most questions related to the new multi-clique-width are still open. Is it difficult to
compute or approximate? We expect it to be NP-hard, like clique-width. We also conjecture
it to be in FPT (fixed parameter tractable) and to be constant factor approximable in time
singly exponential in the multi-clique-width and linear in the length like tree-width. But
obviously this is very difficult, as it is also open for clique-width.

A main question is whether most algorithms for clique-width k, can be extended to work
with similar efficiency for multi-clique-width k. We have illustrated that this is the case for
some interesting counting and decision problems. On the other hand, there is the question
of identifying the problems where this is not the case.

References
1 Stefan Arnborg, D. G. Corneil, and Andrzej Proskurowski. Complexity of finding embed-

dings in a k-tree. SIAM Journal of Alg. and Discrete Methods, 8:277–284, 1987.
2 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small

treewidth. SIAM J. Comput., 25(6):1305–1317, 1996. doi:10.1137/S0097539793251219.
3 Hans L. Bodlaender, Pål G. Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lokshtanov,

and Michal Pilipczuk. An O(ckn) 5-approximation algorithm for treewidth. In Proc. 54th
FOCS 2013, pages 499–508. IEEE, 2013.

4 Hans L. Bodlaender, John R. Gilbert, Hjálmtyr Hafsteinsson, and Ton Kloks. Approximat-
ing treewidth, pathwidth, frontsize, and shortest elimination tree. J. Algorithms, 18(2):238–
255, 1995. doi:10.1006/jagm.1995.1009.

5 Binh-Minh Bui-Xuan, Jan Arne Telle, and Martin Vatshelle. Boolean-width of graphs.
Theor. Comput. Sci., 412(39):5187–5204, 2011. doi:10.1016/j.tcs.2011.05.022.

6 Derek G. Corneil and Udi Rotics. On the relationship between clique-width and treewidth.
SIAM J. Comput., 34(4):825–847, 2005. doi:10.1137/S0097539701385351.

7 Bruno Courcelle. The monadic second-order logic of graphs. I. recognizable sets of finite
graphs. Inf. Comput, 85(1):12–75, March 1990. doi:10.1016/0890-5401(90)90043-H.

http://dx.doi.org/10.1137/S0097539793251219
http://dx.doi.org/10.1006/jagm.1995.1009
http://dx.doi.org/10.1016/j.tcs.2011.05.022
http://dx.doi.org/10.1137/S0097539701385351
http://dx.doi.org/10.1016/0890-5401(90)90043-H

M. Fürer 14:13

8 Bruno Courcelle, Joost Engelfriet, and Grzegorz Rozenberg. Handle-rewriting hypergraph
grammars. J. Comput. Syst. Sci., 46(2):218–270, 1993. doi:10.1016/0022-0000(93)
90004-G.

9 Bruno Courcelle and Johann A. Makowsky. Fusion in relational structures and the verifi-
cation of monadic second-order properties. Mathematical Structures in Computer Science,
12(2):203–235, 2002.

10 Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory Comput. Syst., 33(2):125–150, 2000.
doi:10.1007/s002249910009.

11 Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. On the fixed parameter complexity
of graph enumeration problems definable in monadic second-order logic. Discrete Applied
Mathematics, 108(1-2):23–52, 2001. doi:10.1016/S0166-218X(00)00221-3.

12 Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs. Discrete
Applied Mathematics, 101(1-3):77–114, 2000. doi:10.1016/S0166-218X(99)00184-5.

13 Bruno Courcelle and Andrew Twigg. Constrained-path labellings on graphs of bounded
clique-width. Theory Comput. Syst., 47(2):531–567, 2010. URL: http://springerlink.
metapress.com/content/b3268gtk313180q0/.

14 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

15 Michael R. Fellows, Frances A. Rosamond, Udi Rotics, and Stefan Szeider. Clique-width
minimization is NP-hard. In Jon M. Kleinberg, editor, STOC, pages 354–362. ACM, 2006.
doi:10.1145/1132516.1132568.

16 Eldar Fischer, Johann A. Makowsky, and Elena V. Ravve. Counting truth assignments of
formulas of bounded tree-width or clique-width. Discrete Applied Mathematics, 156(4):511–
529, 2008. doi:10.1016/j.dam.2006.06.020.

17 Fedor V. Fomin, Daniel Lokshtanov, Michal Pilipczuk, Saket Saurabh, and Marcin
Wrochna. Fully polynomial-time parameterized computations for graphs and matrices of
low treewidth. CoRR, abs/1511.01379, 2015. URL: http://arxiv.org/abs/1511.01379.

18 Martin Fürer. A natural generalization of bounded tree-width and bounded clique-width.
Proceedings of LATIN 2014: Theoretical Informatics - 11th Latin American Symposium.
Springer LNCS, 8392:72–83, 2014. doi:10.1007/978-3-642-54423-1.

19 Robert Ganian and Petr Hlinený. On parse trees and myhill-nerode-type tools for handling
graphs of bounded rank-width. Discrete Applied Mathematics, 158(7):851–867, 2010. doi:
10.1016/j.dam.2009.10.018.

20 Petr Hlinený and Sang il Oum. Finding branch-decompositions and rank-decompositions.
SIAM J. Comput, 38(3):1012–1032, 2008. doi:10.1137/070685920.

21 Sang-il Oum. Approximating rank-width and clique-width quickly. ACM Trans. Algorithms,
5(1):10:1–10:20, December 2008. doi:10.1145/1435375.1435385.

22 Sang-il Oum and Paul D. Seymour. Approximating clique-width and branch-width. J.
Comb. Theory, Ser. B, 96(4):514–528, 2006. doi:10.1016/j.jctb.2005.10.006.

23 G. Pólya and R. C. Read. Combinatorial Enumeration of Groups, Graphs and Chemical
Compounds. Springer-Verlag, New York, 1987.

24 Neil Robertson and Paul D. Seymour. Graph minors. III. Planar tree-width. J. Comb.
Theory, Ser. B, 36(1):49–64, 1984. doi:10.1016/0095-8956(84)90013-3.

25 Sigve Hortemo Sæther and Jan Arne Telle. Between treewidth and clique-width. In Di-
eter Kratsch and Ioan Todinca, editors, Graph-Theoretic Concepts in Computer Science -
40th International Workshop, WG 2014, Nouan-le-Fuzelier, France, June 25-27, 2014. Re-
vised Selected Papers, volume 8747 of Lecture Notes in Computer Science, pages 396–407.
Springer, 2014. doi:10.1007/978-3-319-12340-0.

ITCS 2017

http://dx.doi.org/10.1016/0022-0000(93)90004-G
http://dx.doi.org/10.1016/0022-0000(93)90004-G
http://dx.doi.org/10.1007/s002249910009
http://dx.doi.org/10.1016/S0166-218X(00)00221-3
http://dx.doi.org/10.1016/S0166-218X(99)00184-5
http://springerlink.metapress.com/content/b3268gtk313180q0/
http://springerlink.metapress.com/content/b3268gtk313180q0/
http://dx.doi.org/10.1007/978-1-4471-5559-1
http://dx.doi.org/10.1145/1132516.1132568
http://dx.doi.org/10.1016/j.dam.2006.06.020
http://arxiv.org/abs/1511.01379
http://dx.doi.org/10.1007/978-3-642-54423-1
http://dx.doi.org/10.1016/j.dam.2009.10.018
http://dx.doi.org/10.1016/j.dam.2009.10.018
http://dx.doi.org/10.1137/070685920
http://dx.doi.org/10.1145/1435375.1435385
http://dx.doi.org/10.1016/j.jctb.2005.10.006
http://dx.doi.org/10.1016/0095-8956(84)90013-3
http://dx.doi.org/10.1007/978-3-319-12340-0

	Introduction
	Definitions and Preliminaries
	Relationship between Different Width Parameters
	Algorithms based on Multi-Clique-Width
	Conclusions and Open Problems

