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Abstract
An interesting challenge for the cryptography community is to design authentication protocols
that are so simple that a human can execute them without relying on a fully trusted computer.
We propose several candidate authentication protocols for a setting in which the human user can
only receive assistance from a semi-trusted computer – a computer that stores information and
performs computations correctly but does not provide confidentiality. Our schemes use a semi-
trusted computer to store and display public challenges Ci ∈ [n]k. The human user memorizes
a random secret mapping σ : [n] → Zd and authenticates by computing responses f(σ(Ci)) to
a sequence of public challenges where f : Zkd → Zd is a function that is easy for the human
to evaluate. We prove that any statistical adversary needs to sample m = Ω̃

(
ns(f)) challenge-

response pairs to recover σ, for a security parameter s(f) that depends on two key properties
of f . Our lower bound generalizes recent results of Feldman et al. [26] who proved analogous
results for the special case d = 2. To obtain our results, we apply the general hypercontractivity
theorem [45] to lower bound the statistical dimension of the distribution over challenge-response
pairs induced by f and σ. Our statistical dimension lower bounds apply to arbitrary functions
f : Zkd → Zd (not just to functions that are easy for a human to evaluate). As an application,
we propose a family of human computable password functions fk1,k2 in which the user needs
to perform 2k1 + 2k2 + 1 primitive operations (e.g., adding two digits or remembering a secret
value σ(i)), and we show that s(f) = min{k1 + 1, (k2 + 1)/2}. For these schemes, we prove that
forging passwords is equivalent to recovering the secret mapping. Thus, our human computable
password schemes can maintain strong security guarantees even after an adversary has observed
the user login to many different accounts.
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10:2 Towards Human Computable Passwords

1 Introduction

A typical computer user has many different online accounts which require some form of
authentication. While passwords are still the dominant form of authentication, users struggle
to remember their passwords. As a result users often adopt insecure password practices
(e.g., reuse, weak passwords) [28, 21, 39, 18] or end up having to frequently reset their
passwords. Recent large-scale password breaches highlight the importance of this problem
[1, 21, 11, 2, 50, 3, 4, 5, 6, 7, 8, 9]. An important research goal is to develop usable and secure
password management scheme – a systematic strategy to help users create and remember
multiple passwords. Blocki et al. [13] and Blum and Vempala [17] recently proposed password
management schemes that maintain some security guarantees after a small constant number of
breaches (e.g., an adversary who sees three of the user’s passwords still has some uncertainty
about the user’s remaining passwords).

In this work we focus on the goal of developing human computable password management
schemes in which security guarantees are strongly maintained after many breaches (e.g., an
adversary who sees one-hundred of the user’s passwords still has high uncertainty about the
user’s remaining passwords). In a human computable password management scheme the user
reconstructs each of his passwords by computing the response to a public challenge.

Our human computable password schemes admittedly require more human effort than the
password management schemes of Blocki et al. [13] and Blum and Vempala [17], and, unlike
Blocki et al. [13], our scheme requires users to do simple mental arithmetic (e.g., add two
single-digit numbers) in their head. However, our proposed schemes are still human usable in
the sense that a motivated, security-conscious user would be able to learn to use the scheme
and memorize all associated secrets in a few hours. In particular, the human computation
in our schemes only involves a few very simple operations (e.g., addition modulo 10) over
secret values (digits) that the user has memorized. More specifically, in our candidate human
computable password schemes the user learns to compute a simple function f : Zkd → Zd,1
and memorizes a secret mapping σ : [n]→ Zd. The user authenticates by responding to a
sequence of single digit challenges, i.e., a challenge-response pair (C, f (σ (C))) is a challenge
C ∈ Xk ⊆ [n]k and the corresponding response.

One of our candidate human computable password schemes involves the function

f (x0, x1, x2, x3, x4, x5, . . . , x13) = x13 + x12 + x(x10+x11 mod 10) mod 10 .

If the user memorizes a secret mapping σ from n images to digits then each challenge
C = (I0, . . . , I13) would correspond to an ordered subset of 14 of these images and the
response to the challenge is f

(
σ(I0), . . . , σ(I13)

)
. We observe that a human would only need

to perform three addition operations modulo 10 to evaluate this function. The user would
respond by (1) adding the secret digits associated with challenge images I10 and I11 to get a
secret index 0 ≤ i ≤ 9, (2) finding image Ii, (3) adding the secret digits associated with images
Ii, I12 and I13 to produce the final response. To amplify security the user may respond to
λ ≥ 1 single-digit challenges C1, . . . , Cλ to obtain a λ digit password f(σ(C1)), . . . , f(σ(Cλ)).
We note that the challenge C does not need to be kept secret and thus the images can be
arranged on the screen in helpful manner for the human user – see Figure 1 for an example
and see Appendix A for more discussion of the user interface.

1 In our security analysis we consider arbitrary bases d. However, our specific schemes use the base
d = 10 that is most familiar to human users.
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Figure 1 Computing the response f(σ(C)) = 6 to a single digit challenge C.

We present a natural conjecture which implies that a polynomial time attacker will need
to see the responses to Ω̃

(
ns(f)) random challenges before he can forge the user’s passwords

(accurately predict the responses to randomly selected challenges)2. Here, s(f) is a security
parameter that depends on two key properties of the function f (in our above example
s(f) = 3/2). Furthermore, we provide strong evidence for our conjecture by ruling out a
broad class of algorithmic techniques that the adversary might use to attack our scheme.

Following Blocki et al. [13] we consider a setting where a user has two types of memory:
persistent memory (e.g., a sticky note or a text file on his computer) and associative memory
(e.g., his own human memory). We assume that persistent memory is reliable and convenient
but not private (i.e., an adversary can view all challenges stored in persistent memory, but he
cannot tamper with them). In contrast, a user’s associative memory is private but lossy – if
the user does not rehearse a memory it may be forgotten. Thus, the user can store a password
challenge C ∈ Xk in persistent memory, but the mapping σ must be stored in associative
memory (e.g., memorized and rehearsed). We allow the user to receive assistance from a
semi-trusted computer. A semi-trusted computer will perform computations accurately (e.g.,
it can be trusted to show the user the correct challenge), but it will not ensure privacy of
its inputs or outputs. This means that a human computable password management scheme
should be based on a function f that the user can compute entirely in his head.

Contributions

We provide precise notions of security and usability for a human computable password
management scheme (Section 2). We introduce the notion of UF-RCA security (Unforgeability
under Random Challenge Attacks). Informally, a human computable password scheme is

2 We stress that, unlike [13, 17], our security guarantees are not information theoretic. In fact, a
computationally unbounded adversary would need to see at most O (n) challenge-response pairs to
break the human computable password management scheme.
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10:4 Towards Human Computable Passwords

UF-RCA secure if an adversary cannot forge passwords after seeing many example challenge-
response pairs.

We present the design of a candidate family of human computable password management
schemes fk1,k2 , and analyze the usability and security of these schemes (Section 3). Our
usability analysis indicates that to compute fk1,k2 (σ (C)) the user needs to execute 2k1+2k2+1
simple operations (e.g., addition of single digits modulo 10). The main technical result of
this section (Theorem 10) states that our scheme is UF-RCA secure given a plausible
conjecture about the hardness of random planted constraint satisfiability problems (RP-
CSP). Our conjecture is that any polynomial time adversary needs to see at least m =
nmin{r(f)/2,g(f)+1−ε} challenge-response pairs (C, f (σ (C))) to recover the secret mapping σ.
Here, s(f) = min{r(f)/2, g(f) + 1} is a composite security parameter involving g(f) (how
many inputs to f need to be fixed to make f linear?) and r(f) (what is the largest value
of r such that the distribution over challenge-response pairs are (r − 1)-wise independent?).
We prove that g (fk1,k2) = k1 and r (fk1,k2) = (k2 + 1).

Next we prove that any statistical adversary needs at least Ω̃
(
nr(f)/2) challenge-response

pairs (C, f (σ (C))) to find a secret mapping σ′ that is ε-correlated with σ (Section 4). This
result may be interpreted as strong evidence in favor of the RP-CSP hardness assumption as
most natural algorithmic techniques have statistical analogues (see discussion in Section 4).
While Gaussian Elimination is a notable exception, our composite security parameter accounts
for attacks based on Gaussian Elimination – an adversary needs to see m = Ω̃

(
n1+g(f))

challenge-response pairs to recover σ using Gaussian Elimination. Moving beyond asymptotic
analysis we also provide empirical evidence that our human computable password management
scheme is hard to crack. In particular, we used a CSP solver to try to recover σ ∈ Zn10 given
m challenge-response pairs using the functions f1,3 and f2,2. Our CSP solver failed to find
the secret mapping σ ∈ Z50

10 given m = 1000 random challenge-response pairs with both
functions f1,3 and f2,2. Additionally, we constructed public challenges for cryptographers to
break our human computable password management schemes under various parameters (e.g.,
n = 100, m = 1000).

Our lower bound for statistical adversaries is based on the statistical dimension of the
distribution over challenge-response pairs induced by f and σ. We stress that our analysis of
the statistical dimension applies to arbitrary functions f : Zkd → Zd, not just to functions
that are easy for humans to compute. Our analysis of the statistical dimension generalizes
recent results of Feldman et al. [26] for binary predicates and may be of independent interest.
While the analysis is similar at a high level, we stress that our proofs do require some new
ideas. Because our function f is not a binary predicate we cannot use the Walsh basis
functions to express the Fourier decomposition of f and analyze the statistical dimension
of our distribution over challenge-response pairs as Feldman et al. [26] do. Instead, we use
a generalized set of Fourier basis functions to take the Fourier decomposition of f , and we
apply the general hypercontractivity theorem [45] to obtain our bounds on the statistical
dimension.

We complete the proof of Theorem 10 in Section 5 by proving that forging passwords
and approximately recovering the secret mapping are equivalent problems for a broad class
of human computable password schemes, including our candidate family fk1,k2 . This result
implies that any adversary who can predict the response f(C) to a random challenge C with
better accuracy than random guessing can be used as a blackbox to approximately recover
the secret mapping.
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2 Definitions

2.1 Notation
Given two strings α1, α2 ∈ Znd we use H (α1, α2) .= |{i ∈ [n] α1[i] 6= α2[i]}| to denote the
Hamming distance between them. We will also use H (α1) .= H

(
α1,~0

)
to denote the

Hamming weight of α1. We use σ : [n]→ Zd to denote a secret random mapping that the
user will memorize. We will sometimes abuse notation and think of σ ∈ Znd as a string which
encodes the mapping, and we will use σ ∼ Znd to denote a random mapping chosen from Znd
uniformly at random. Given a distribution D we will use x ∼ D to denote a random sample
from this distribution. We also use x ∼ S to denote an element chosen uniformly at random
from a finite set S.

I Definition 1. We say that two mappings σ1, σ2 ∈ Znd are ε-correlated if H(σ1,σ2)
n ≤ d−1

d − ε,

and we say that a mapping σ ∈ Znd is δ-balanced if maxi∈{0,...,d−1}

∣∣∣∣H(σ,~i)
n − d−1

d

∣∣∣∣ ≤ δ.
Note that for a random mapping σ2 we expect σ1 and σ2 to differ at Eσ2∼Znd [H (σ1, σ2)] =
n
(
d−1
d

)
locations, and for a random mapping σ and i ∼ {0, . . . , d − 1} we expect σ to

differ from ~i at Ei∼Zd,σ∼Znd
[
H
(
σ,~i
)]

= n
(
d−1
d

)
locations. Thus, with probability 1− o(1)

a random mapping σ2 will not be ε-correlated with σ1, but a random mapping σ will be
δ-balanced with probability 1− o(1).

We let Xk ⊆ [n]k denote the space of ordered clauses of k variables without repetition.
We use C ∼ Xk to denote a clause C chosen uniformly at random from Xk and we use
σ (C) ∈ Zkd to denote the values of the corresponding variables in C. For example, if d = 10,
C = (3, 10, 59) and σ (i) = (i+ 1 mod 10) then σ (C) = (4, 1, 0).

We view each clause C ∈ Xk as a single-digit challenge. The user responds to a challenge
C by computing f (σ (C)), where f : Zkd → Zd is a human computable function (see discussion
below) and σ : [n]→ Zd is the secret mapping that the user has memorized. For example,
if d = 10, C = (3, 10, 59), σ (i) = (i+ 1 mod 10) and f (x, y, z) = (x− y + z mod 10) then
f (σ (C)) = (4− 1 + 0 mod 10) = 3. A length-λ password challenge ~C = 〈C1, . . . , Cλ〉 ∈
(Xk)λ is a sequence of t single digit challenges, and f (σ (~c)) = 〈f (σ (C1)) , . . . , f (σ (Cλ))〉 ∈
Zλd denotes the corresponding response (e.g., a password).

Let’s suppose that the user has m accounts A1, . . . , Am. In a human computable password
management scheme we will generate m length-λ password challenges ~C1, . . . , ~Cm ∈ (Xk)λ.
These challenges will be stored in persistent memory so they are always accessible to the user
as well as the adversary. When our user needs to authenticate to account Ai he will be shown
the length-t password challenge ~Ci =

〈
Ci1, . . . , C

i
λ

〉
. The user will respond by computing his

password pi =
〈
f
(
σ
(
Ci1
))
, . . . , f

(
σ
(
Ciλ
))〉
∈ Zλd .

2.2 Requirements for a Human Computable Function
In our setting we require that the composite function f ◦ σ : Xk → Zd is human computable.
Informally, we say that a function f is human-computable if a human user can evaluate f
quickly in his head.

I Requirement 2. A function f is t̂-human computable for a human user H if H can
reliably evaluate f in his head in t̂ seconds.

We argue that a function f will be human-computable whenever there is a fast streaming
algorithm [10] to compute f using only very simple primitive operations. A streaming
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10:6 Towards Human Computable Passwords

algorithm is an algorithm for processing a data stream in which the input (e.g., the challenge
C) is presented as a sequence of items that can only be examined once. In our context the
streaming algorithm must have a very low memory footprint because a typical person can
only keep 7 ± 2 ‘chunks’ of information in working memory [41] at any given time. Our
streaming algorithm can only involve primitive operations that a person could execute quickly
in his head (e.g., adding two digits modulo 10, recalling a value σ(i) from memory).

I Definition 3. Let P be a set of primitive operations. We say that a function f is (P, t̃, m̂)-
computable if there is a space m̂ streaming algorithm A to compute f using only t̃ operations
from P .

In this paper we consider the following primitive operations P : Add, Recall and
TableLookup. Add : Z10 × Z10 → Z10 takes two digits x1 and x2 and returns x1 + x2
mod 10. Recall : [n] → Z10 takes an index i and returns the secret value σ(i) that the
user has memorized. TableLookup : Z10 × [n]10 → [n] takes a digit x1 and finds the
x1’th value from a table of 10 indices. We take the view that no human computable
function should require users to store intermediate values in long-term memory because the
memorization process would necessarily slow down computation. Therefore, we restrict our
attention to space m̂ streaming algorithms and do not include any primitive operation like
MemorizeValue.

I Example. The function f ◦σ(i1, . . . , i5) = σ (i1)+. . .+σ (i5) requires 9 primitive operations
(five Recall operations and four Add operations) and requires space m̂ = 3 (e.g., we need
one slot to store the current total, one slot to store the next value from the data stream and
one free slot to execute a primitive operation).

Similar primitive operations have been studied by cognitive physchologists (e.g., [51]).
The time γH it takes a human user H to execute one primitive operation will typically
improve with practice (e.g., [33]). We note that we allow this computation speed constant
γH to vary from user to user in the same way that two computers might operate at slightly
different speeds. We conjecture that, after training, a human user H with a moderate
mathematical background will be able to evaluate a (P, t̃, 3)-computable function in t̂ ≤ t̃

seconds – the first author of this paper found that (after some practice) he could evaluate
(P, 9, 3)-computable functions in 7.5-seconds (γH ≤ 1).

I Conjecture 4. Let P = {Add,Recall,TableLookup}. For each human user H there
is a small constant γH > 0 such that any (P, t̃, 3)-computable function f will be t̂-human
computable for H with t̂ = γH t̃.

2.3 Password Unforgeability
In the password forgeability game the adversary attempts to guess the user’s password for a
randomly selected account after he has seen the user’s passwords at m/λ other randomly
selected accounts. We say that a scheme is UF-RCA (Unforgeability against Random
Challenge Attacks) secure if any probabilistic polynomial time adversary fails to guess the
user’s password with high probability. In the password forgeability game we select the secret
mapping σ : [n]→ Zd uniformly at random along with challenges C1, . . . , Cm+λ ∼ Xk. The
adversary is given the function f : Zkd → Zd and is shown the challenges C1, . . . , Cm+λ as well
as the values f (σ (Ci)) for i ∈ {1, . . . ,m}. The game ends when the adversary A outputs a
guess 〈q1, . . . , qλ〉 ∈ Zλd for the value of 〈f (σ (Cm+1)) , . . . , f (σ (Cm+λ))〉. We say that the
adversary wins if he correctly guesses the responses to all of the challenges Cm+1, . . . , Cm+λ,
and we use Wins (A, n,m, λ) to denote the event that the adversary wins the game (e.g.,
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∀i ∈ {1, . . . , λ}.qi = f (σ (Cm+i)) ). We are interested in understanding how many example
single digit challenge-response pairs the adversary needs to see before he can start breaking
the user’s passwords.

I Definition 5 (Security). We say that a function f : Zkd → Zd is UF−RCA (n,m, λ, δ)−
secure if for every probabilistic polynomial time (in n,m) adversary A we have

Pr [Wins (A, n,m, λ)] ≤ δ ,

where the randomness is taken over the selection of the secret mapping σ ∼ Znd , the challenges
C1, . . . , Cm+λ as well as the adversary’s coins.

Discussion

Our security model is different from the security model of Blocki et al. [13] in which the
adversary gets to adaptively select which accounts to compromise and which account to
attack. While our security model may seem weaker at first glance because the adversary
does not get to select which account to compromise/attack, we observe that the password
management schemes of Blocki et al. [13] are only secure against one to three adaptive
breaches. By contrast, our goal is to design human computable password schemes that satisfy
UF −RCA security for large values of m (e.g. 1000), which means that it is reasonable
to believe that the user has at most m/λ password protected accounts. If the user has at
most m/λ accounts then union bounds imply that an adaptive adversary – who gets to
compromise all but one account – will not be able to forge the password at any remaining
account with probability greater than mδ/λ (typically, m� λ/δ)3.

2.4 Security Parameters of f
Given a function f : Zkd → Zd we define the function Qf : Zk+1

d → {±1} s.t. Qf (x, i) = 1
if f(x) = i; otherwise Qf (x, i) = −1. We use Qfσ to define a distribution over Xk × Zd
(challenge-response pairs) as follows: PrQfσ [C, i] .= Qf (σ(C),i)+1

2|Xk| . Intuitively, Qfσ is the
uniform distribution over challenge response pairs (C, j) s.t. f (σ (C)) = j. We also use
Qf,j : Zkd → {±1} (Qf,j (x) = Qf (x, j)) to define a distribution over Xk. PrQf,jσ [C] =

Qf,j(f(σ(C)))+1
2|{C′∈Xk:f(σ(C′))=j| = PrQfσ [(C, i) i = j]. We write the Fourier decomposition of a function
Q : Zkd → {±1} as follows

Q(x) =
∑
α∈Zk

d

Q̂α·χα (x) ,where the basis functions are χα (x) .= exp
(
−2π
√
−1 (x · α)
d

)
.

We say that a function Q has degree ` if ` = max
{
H (α) α ∈ Zkd ∧ Q̂α 6= 0

}
– equivalently

if Q(x) =
∑
iQi(x) can be expressed as a sum of functions where each function Qi : Zkd → R

depends on at most ` variables.

I Definition 6. We use r(Q) .= min
{
H (α) ∃α ∈ Zkd.Q̂α 6= 0 ∧ α 6= ~0

}
to denote the dis-

tributional complexity of Q, and we use r(f) = min
{
r
(
Qf,j

)
j ∈ Zd

}
to denote the

distributional complexity of f . We use g(f) .=

min
{
` ∈ N ∪ {0} ∃α ∈ Z`d, S ⊆ [k], d̂ ∈ Zd.s.t |S| = ` & f|S,α is a linear function mod d̂

}
,

3 We assume in our analysis that the adversary does not get to pick the challenges C that the user will
solve.

ITCS 2017



10:8 Towards Human Computable Passwords

to denote the minimum number of variables that must be fixed to make f a linear function.
Here, f|S,α : Zk−`d → Zd denotes the function f after fixing the variables at the indices
specified by S to α. Finally, we use s(f) .= min{r(f)/2, g(f) + 1} as our composite security
measure.

We conjecture that a polynomial time adversary will need to see m = ns(f) challenge-
response pairs before he can approximately recover the secret mapping σ. We call this
conjecture about the hardness of random planted constraint satisfiability problems RP-CSP
(Conjecture 7). In support of RP-CSP we prove that any statistical algorithm needs to see at
least m = Ω̃

(
nr(f)/2) challenge response pairs to (approximately) recover the secret mapping

σ and we observe that a polynomial time adversary would need to see m = O
(
ng(f)+1)

challenge-response pairs to recover σ using Gaussian Elimination. In Section 5 we show that
the human computable password scheme will be UF-RCA secure provided that RP-CSP holds
and that f satisfies a few moderate properties (e.g., the output of f is evenly distributed).

I Conjecture 7 (RP-CSP). For every probabilistic polynomial time adversary A and every
ε, ε′ > 0 there is an integer N s.t. for all n > N , m ≤ nmin{r(f)/2,g(f)+1−ε′} we have
Pr [Success (A, n,m, ε)] ≤ µ(n), where Success (A, n,m, ε) denotes the event that A finds
a mapping σ′ that is ε-correlated with σ given m randomly selected challenge response pairs
(C1, f (σ (C1))) , . . . , (Cm, f (σ (Cm))) and µ(n) is a negligible function. The probability is
over the selection of the random mapping σ, the challenges C1, . . . , Cm and the random coins
of the adversary.

3 Candidate Secure Human Computable Functions

In this section we present a family of candidate human computable functions. We consider
the usability of these human computable password schemes in Section 3.1, and we analyze
the security of our schemes in Section 3.2.

We first introduce our family of candidate human computable functions (for all of our
candidate human computable functions f : Zkd → Zd we fix d = 10 because most humans are
used to performing arithmetic operations on digits). Given integers k1 > 0 and k2 > 0 we
define the function fk1,k2 : Z10+k1+k2

10 as follows

fk1,k2 (x0, . . . , x9+k1+k2) = xj +
9+k1+k2∑
i=10+k1

xi mod 10, where j =
(9+k1∑
i=10

xi

)
mod 10 .

Authentication Process

We briefly overview the authentication process – see Algorithms 2 and 3 in Appendix A for
a more formal presentation of the authentication process. We assume that the mapping
σ : {1, ..., n} → Z10 is generated by the user’s local computer in secret. The user may be shown
mnemonic helpers (see discussion below) to help memorize σ, but these mnemonic helpers are
discarded immediately afterward. After the user has memorized σ he can create a password
pwi for an account Ai as follows: the user’s local computer generates λ random single-
digit challenges Ci1, . . . , Ciλ ∈ Xλ and the user computes pwi = f (σ (C1)) , . . . , f (σ (Cλ)).
The authentication server for account Ai stores the cryptographic hash of pwi, while the
challenges Ci1, . . . , Ciλ ∈ Xλ are stored in public memory (e.g., on the user’s local computer),
which means that they can be viewed by the adversary as well as the legitimate user. To
authenticate the user retrieves the public challenges Ci1, . . . , Ciλ for account Ai and computes
pwi. The server for Ai verifies that the cryptographic hash of pwi matches its records. To
protect users from offline attacks in the event of a server breach, the password pwi should be
stored using a slow cryptographic hash function H like BCRYPT [47].
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3.1 Usability
In our discussion of usability we focus on the time it would take a human user to compute
a password once he has memorized the secret mapping σ. Other important considerations
include the challenge of memorizing and rehearsing the secret mapping σ to ensure that the
user remembers the secret mapping σ over time.

3.1.1 Computation Time
Given a challenge C = (c0, . . . , c9+k1+k2) ∈ X10+k1+k2 we can compute fk1,k2 (σ (C)) we
compute j =

∑9+k1
i=10 σ (ci) mod 10 using k1 − 1 Add operations and k1 Recall operations.

We then execute TableLookup (j, c0, . . . , c9) to obtain cj . Now we need k2 Add operations
and k2 + 1 Recall operations to compute the final response σ (cj) + σ (c10+k1) + . . . +
σ (c9+k1+k2).

I Fact 8. Let P = {Add,Recall,TableLookup} then fk1,k2 ◦ σ is (P, 2k1 + 2k2 + 1, 3)-
computable.

Fact 8 and Conjecture 4 would imply that f1,3 and f2,2 are t̂-human computable with
t̂ = 9 seconds for humans H with computation constant γH ≤ 1. The functions f1,3 and
f2,2 were both t̂-human computable with t̂ = 7.5 seconds for the main author of this paper.
While the value of γH might be larger for many human users who are less comfortable with
mental arithmentic, we note we may have γH � 1 for many human users after training (e.g.,
see https://youtu.be/_-2L6ZxFacg for a particularly impressive demonstration of mental
arithmetic by young children.).

3.1.2 Memorizing and Rehearsing σ
Memorizing the secret mapping might be the most difficult part of our schemes. In practice,
we envision that the user memorizes a mapping from n objects (e.g., images) to digits. For
example, if n = 26 and d = 10 then the user might memorize a random mapping from
characters to digits. The first author of this paper was able to memorize a mapping from
n = 100 images to digits in about 2 hours. We conjecture that the process could be further
expedited using mnemonic helpers – see discussion in the appendix.

After the user memorizes σ he may need to rehearse parts of the mapping periodically to
ensure that he does not forget it. One of the benefits of our human computable password
schemes is that the user will get lots of practice rehearsing the secret mapping each time
he computes a password. In fact users who authenticate frequently enough will not need
to spend any extra time rehearsing the secret mapping as they will get sufficient natural
practice to remember σ.

3.2 Security Analysis
Claim 9 demonstrates that s (fk1,k2) = min {(k2 + 1)/2, k1 + 1}. Intuitively, the security of
our human computable password management scheme will increase with k1 and k2. However,
the work that the user needs to do to respond to each single-digit challenge is proportional
to 2k1 + 2k2 + 1 (See Fact 8).

I Claim 9. Let 0 ≤ k1 and k2 > 0 be given and let f = fk1,k2 we have g(f) = min{k1, 10},
r(f) = k2 + 1 and s(f) = min

{
k2+1

2 , k1 + 1, 11
}
.
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An intuitive way to see that r (fk1,k2) > k2 is to observe that we cannot bias the output
of fk1,k2 by fixing k2 variables. Fix the value of any k2 variables and draw the values for
the other k1 + 10 variables uniformly at random from Z10. One of the k2 + 1 variables in
the sum xj +

∑9+k1+k2
i=10+k1

xi mod 10 will not be fixed. Thus, the probability that the final
output of fk1,k2 (x0, . . . , x9+k1+k2) will be r is exactly 1/10 for each digit r ∈ Z10. Similarly,
an intuitive way to see that r (fk1,k2) ≤ k2 + 1 is to observe that we can bias the value of
fk1,k2 (x0, . . . , x9+k1+k2) by fixing the value of k2 + 1 variables. In particular if we fix the
variables x0, x10+k1 , . . . , x9+k1+k2 so that 0 = x0 +

∑9+k1+k2
i=10+k1

xi mod 10 then the output of
fk1,k2 (x0, . . . , x9+k1+k2) is more likely to be 0 than any other digit. The full proof of Claim
9 can be found in Appendix F.

Theorem 10 states that our human computable password management scheme is UF-RCA
secure as long as RP-CSP (Conjecture 7) holds. In Section 4 we provide strong evidence
in support of RP-CSP. In particular, no statistical algorithm can approximately recover
the secret mapping given m = Õ

(
nr(f)/2) challenge-response pairs. To prove Theorem 10

we need to show that an adversary that breaks UF-RCA security for fk1,k2 can be used to
approximately recover the secret mapping σ. We prove a more general result in Section 5.

I Theorem 10. Let ε, ε′ > 0, λ ≥ 1 be given. Under the RP-CSP conjecture (Conjecture 7)
the human computable password scheme defined by fk1,k2 is UF−RCA (n,m, λ, δ)− secure
for any m ≤ nmin{(k2+1)/2,k1+1−ε′} − λ and δ >

( 1
10 + ε

)λ.
I Remark. In the Appendix we demonstrate that our security bounds are asymptotically
tight. In particular, there is a statistical algorithm to break our human computable password
schemes (fk1,k2) which requires m = Õ

(
n(k2+1)/2) to 1-MSTAT to recover σ (See Theorem

27 in Section G). We also demonstrate that there is a attack based on Gaussian Elimination
that uses m = Õ

(
nk1+1) challenge-response pairs to recover σ.

3.2.1 Exact Security Bounds

We used the Constraint Satisfaction Problem solver from the Microsoft Solver Foundations
library to attack our human computable password scheme4. In each instance we generated a
random mapping σ : [n]→ Z10 and m random challenge response pairs (C, f (σ (C))) using
the functions f2,2 and f1,3. We gave the CSP solver 2.5 days to find σ on a computer with a
2.83 GHz Intel Core2 Quad CPU and 4 GB of RAM. The full results of our experiments
are in Appendix C. Briefly, the solver failed to find the random mapping in the following
instances with f = f2,2 and f = f1,3: (1) n = 30 and m = 100, (2) n = 50 and m = 1, 000
and (3) n = 100 and m = 10, 000.

I Remark. While the theoretical security parameter for f1,3 (s (f1,3) = 2) is slightly better
than the security parameter for f2,2 (s (f2,2) = 1.5), we conjecture that f2,2 may be more
secure for small values of n (e.g., n ≤ 100) because it is less vulnerable to attacks based
on Gaussian Elimination. In particular, there is a polynomial time attack on f1,3 based on
Gaussian Elimination that requires at most n2 examples to recover σ, while the same attack
would require n3 examples with f2,2. Our CSP solver was not able to crack σ ∈ Z100

10 given
10, 000 = 1002 challenge response pairs with f2,2.

4 Thanks to David Wagner for suggesting the use of SAT solvers.
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Human Computable Password Challenge.

We are challenging the security and cryptography community to break our human computable
password scheme for instances that our CSP solver failed to crack (see Appendix B for more
details about the challenge). Briefly, for each challenge we selected a random secret map-
ping σ ∈ Zn10, and published (1) m single digit challenge-response pairs (C1, f (σ (C1))),. . .,
(Cm, f (σ (Cm))), where each clause Ci is chosen uniformly at random from Xk, and (2) 20
length–λ = 10 password challenges ~C1, . . . , ~C20 ∈ (Xk)10. The goal of each challenge is to cor-
rectly guess one of the secret passwords pi = f

(
σ
(
~Ci

))
for some i ∈ [20]. The challenges can

be found at http://www.cs.cmu.edu/~jblocki/HumanComputablePasswordsChallenge/
challenge.htm. There is a $20 prize associated with each individual challenge (total: $360).
We remark that these challenges remain unsolved even after they were presented during the
rump sessions at a cryptography conference and a security conference[12].

4 Statistical Adversaries and Lower Bounds

Our main technical result (Theorem 14) is a lower bound on the number of single digit
challenge-response pairs that a statistical algorithm needs to see to (approximately) recover
the secret mapping σ. Our results are quite general and may be of independent interest.
Given any function f : Zkd → Zd we prove that any statistical algorithm needs Ω̃

(
nr(f)/2)

examples before it can find a secret mapping σ′ ∈ Znd such that σ′ is ε-correlated with σ. We
first introduce statistical algorithms in Section 4.1 before stating our main lower bound for
statistical algorithms in Section 4.2. We also provide a high level overview of our proof in
Section 4.2.

4.1 Statistical Algorithms

A statistical algorithm is an algorithm that solves a distributional search problem Z. In our
case the distributional search problem Zε,f is to find a mapping τ that is ε-correlated with
the secret mapping σ given access to m samples from Qfσ – the distribution over challenge
response pairs induced by σ and f . A statistical algorithm can access the input distribution
Qfσ by querying the 1-MSTAT oracle or by querying the VSTAT oracle (Definition 11).

IDefinition 11. [26] [1-MSTAT(L) oracle and VSTAT oracle] LetD be the input distribution
over the domain X. Given any function h : X → {0, 1, . . . , L − 1}, 1-MSTAT(L) takes a
random sample x from D and returns h(x). For an integer parameter T > 0 and any query
function h : X → {0, 1}, VSTAT (T ) returns a value v ∈ [p− τ, p+ τ ] where p = Ex∼D [h(x)]

and τ = max
{

1
T ,
√

p(1−p)
T

}
.

In our context the domain X = Xk × Zd is the set of all challenge response pairs and
the distribution D = Qfσ is the uniform distribution over challenge-response pairs induced
by σ and f . Feldman et al. [26] used the notion of statistical dimension (Definition 12
) to lower bound the number of oracle queries necessary to solve a distributional search
problem (Theorem 13). Before we can present the definition of statistical dimension we
need to introduce the discrimination norm. Intuitively, if the discrimination norm is small
then a statistical algorithm will (whp) not be able to distinguish between honest samples
(C, f(σ(C)) and samples from reference distribution T over Xk × Zd which is completely
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independent of σ 5. We define our reference distribution as follows:

Pr
T

[(C, i)] =
Prx∼Zk

d
[f(x) = i]
|Xk|

.

Now given a set D′ ⊆ Znd of secret mappings the discrimination norm of D′ is denoted by
κ2(D′) and defined as follows:

κ2(D′) .= max
h,‖h‖=1

{Eσ∼D′ [|∆ (h, σ)|]} ,

where h : Xk × Zd → R, ‖h‖ .=
√
E(C,i)∼Xk×Zd [h2 (C, i)] and

∆ (h, σ) .= EC∼Xk [h (C, f (σ (C)))]− E(C,i)∼T [h (C, i)] .

I Definition 12. [26]6. For κ > 0, η > 0, ε > 0, let d′ be the largest integer such that for any
mapping σ ∈ Znd the set Dσ = Znd \ {σ′ ∈ Znd σ′ is ε-correlated with σ } has size at least
(1− η) · |Znd | and for any subset D′ ⊆ Dσ where |D′| ≥ |Dσ|/d′, we have κ2(D′) ≤ κ. The
statistical dimension with discrimination norm κ and error parameter η is d′ and denoted
by SDN(Zε,f , κ, η).

Feldman et al. [26] proved the following lower bound on the number of 1-MSTAT and
VSTAT queries needed to solve a distributional search problem. Intuitively, Theorem 13
implies that many queries are needed to solve a distributional search problem with high
statistical dimension. In Section 4.2 we argue that the statistical dimension our distributional
search problem (finding σ′ that is ε-correlated with the secret mapping σ given m samples
from the distribution Qfσ) is high.

I Theorem 13. [26, Theorems 10 and 12] For κ > 0 and η ∈ (0, 1) let d′ = SDN(Zε,f , κ, η) be
the statistical dimension of the distributional search problem Zε,f . Any randomized statistical
algorithm that, given access to a VSTAT

( 1
3κ2

)
oracle (resp. 1-MSTAT (L)) for the distribu-

tion Qfσ for a secret mapping σ chosen randomly and uniformly from Znd , succeeds in finding
a mapping τ ∈ Znd that is ε-correlated with σ with probability Λ > η over the choice of distri-
bution and internal randomness requires at least Λ−η

1−η d
′ (resp. Ω

(
1
L min

{
d′(Λ−η)

1−η , (Λ−η)2

κ2

})
)

calls to the oracle.

As Feldman et al. [26] observe, almost all known algorithmic techniques can be
modeled within the statistical query framework. In particular, techniques like Expecta-
tion Maximization[25], local search, MCMC optimization[30], first and second order methods
for convex optimization, PCA, ICA, k-means can be modeled as a statistical algorithm
even with L = 2 – see [16] and [22] for proofs. One issue is that a statistical simulation
might need polynomially more samples. However, for L > 2 we can think of our queries
to 1-MSTAT(L) as evaluating L disjoint functions on a random sample. Indeed, Feldman
et al. [26] demonstrate that there is a statistical algorithm for binary planted satisfiability
problems using Õ

(
nr(f)/2) calls to 1-MSTAT

(
ndr(f)/2e).

5 Observe that this implies that a statistical algorithm cannot find the secret σ. In particular, because
the distribution T is independent of the secret mapping σ samples from T will not leak any information
about σ.

6 For the sake of simplicity we define the discrimination norm and the statistical dimension using our
particular distributional search problem Zε,f . Our definition is equivalent to the definition in [26] once
we fix the reference distribution T .



J. Blocki, M. Blum, A. Datta, and S. Vempala 10:13

I Remark. We can also use the statistical dimension to lower bound the number of queries that
an algorithm would need to make to other types of statistical oracles to solve a distributional
search problem. For example, we could also consider an oracle MVSTAT(L, T ) that takes a
query h : X → {0, . . . , L− 1} and a set S of subsets of {0, . . . , L− 1} and returns a vector
v ∈ RL s.t for every Z ∈ S∣∣∣∣∣∑

i∈Z
v[i]− pZ

∣∣∣∣∣ ≤ max
{

1
T
,

√
pZ (1− pZ)

T

}
,

where pZ = Prx∼D [h(x) ∈ Z] and the cost of the query is |S|. Feldman et al. [26, Theorem
7] proved lower bounds similar to Theorem 13 for the MVSTAT oracle. In this paper we
focus on the 1-MSTAT and VSTAT oracles for simplicity of presentation.

4.2 Statistical Dimension Lower Bounds
We are now ready to state our main technical result7.

I Theorem 14. Let σ ∈ Znd denote a secret mapping chosen uniformly at random, let Qfσ
be the distribution over Xk × Zd induced by a function f : Zkd → Zd with distributional
complexity r = r(f). Any randomized statistical algorithm that finds an assignment τ such

that τ is
(√

−2 ln(η/2)
n

)
-correlated with σ with probability at least Λ > η over the choice of

σ and the internal randomness of the algorithm needs at least m calls to the 1-MSTAT(L)
oracle (resp. VSTAT

(
nr

2(logn)2r

)
oracle) with m · L ≥ c1

(
n

logn

)r
(resp. m ≥ nc1 logn) for a

constant c1 = Ωk,1/(Λ−η)(1) which depends only on the values k and Λ−η. In particular if we

set L =
(

n
logn

)r/2
then our algorithms needs at least m ≥ c1

(
n

logn

)r/2
calls to 1-MSTAT(L).

The proof of Theorem 14 follows from Theorems 16 and 13. Theorems 14 and 16 generalize
results of Feldman et al. [26] which only apply for binary predicates f : {0, 1}k → {0, 1}. An
interested reader can find our proofs in Appendix D. At a high level our proof proceeds as
follows: Given any function h : Xk × Zd → R we show that ∆ (σ, h) can be expressed in the
following form: ∆ (σ, h) =

∑k
`=r(f)

1
|X`|b` (σ), where |X`| = Θ

(
n`
)
and each function b` has

degree ` (Lemma 21). We then use the general hypercontractivity theorem [45, Theorem
10.23] to obtain the following concentration bound.

I Lemma 15. Let b : Znd → R be any function with degree at most `, and let D′ ⊆ Znd be a
set of assignments for which d′ = dn/ |D′| ≥ e`. Then Eσ∼D′ [|b (σ)|] ≤ 2(ln d′/c0)`/2‖b‖2,

where c0 = `
( 1

2ed
)
and ‖b‖2 =

√
Ex∼Zn

d

[
b (x)2

]
.

We then use Lemma 15 to bound Eσ∼D′ [∆ (σ, h)] for any set D′ ⊆ Znd such that |D′| =∣∣Zkd∣∣ /d′ (Lemma 25). This leads to the following bound on κ2(D′) = Ok

(
(ln d′/n)r(f)/2

)
.

7 We remark that for our particular family of human computable functions fk1,k2 we could get a theorem
similar to Theorem 14 by selecting σ ∼ {0, 5}n and appealing directly to results of Feldman et al. [26].
However, this theorem would be weaker than Theorem 14 as it would only imply that a statistical
algorithm cannot find an assignment σ′ that is 1

2 −
1

10 + ε-correlated with σ for ε > 0. In contrast, our
theorem implies that we cannot find σ′ that is ε-correlated.
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I Theorem 16. There exists a constant cQ > 0 such that for any ε > 1/
√
n and q ≥ n we

have

SDN
(
Zε,f ,

cQ (log q)r/2

nr/2
, 2e−n·ε

2/2

)
≥ q ,

where r = r(f) is the distributional complexity of f .

Discussion

We view Theorem 14 as strong evidence for RP-CSP (Conjecture 7) because almost all
known algorithmic techniques can be modeled within the statistical query framework[16, 22].
Thus, Theorem 14 rules out most known attacks that an adversary might mount. It also
implies that many popular heuristic based SAT solvers (e.g., DPLL[24]) will not be able
to recover σ in polynomial time. While Theorem 14 does not rule our attacks based on
Gaussian Elimination we consider this class of attacks separately. We need m = Õ

(
ng(f)+1)

examples to extract O(n) linear constraints and solve for σ (see Appendix G.2). However,
our composite security parameter s(f) ≥ g(f) + 1 accounts for attacks based on Gaussian
Elimination.

5 Security Analysis

In the last section we presented evidence in support of RP-CSP (Conjecture 7) by showing
that any statistical adversary needs m = Ω̃

(
nr(f)/2) examples to (approximately) recover σ.

However, RP-CSP only says that it is hard to (approximately) recover the secret mapping
σ, not that it is hard to forge passwords. As an example consider the following NP-hard
problem from learning theory: find a 2-term DNF that is consistent with the labels in a
given dataset. Just because 2-DNF is hard to learn in the proper learning model does not
mean that it is NP-hard to learn a good classifier for 2-DNF. Indeed, if we allow our learning
algorithm to output a linear classifier instead of a 2-term DNF then 2-DNF is easy to learn
[37]. Could an adversary win our password security game without properly learning the
secret mapping?

Theorem 18, our main result in this section, implies that the answer is no. Informally,
Theorem 18 states that any adversary that breaks UF-RCA security of our human computable
password scheme fk1,k2 can also (approximately) recover the secret mapping σ. This implies
that our human computable password scheme is UF-RCA secure as long as RP-CSP holds.
Of course, for some functions it is very easy to predict challenge-response pairs without
learning σ. For example, if f is the constant function – or any function highly correlated
with the constant function – then it is easy to predict the value of f (σ (C)). However, any
function that is highly correlated with a constant function is a poor choice for a human
computable passwords scheme. We argue that any adversary that can win the password
game can be converted into an adversary that properly learns σ provided that the output of
function f is evenly distributed (Definition 17).

I Definition 17. We say that the output of a function f : Zkd → Zd is evenly distributed
if there exists a function g : Zk−1

d → Zd such that f (x1, . . . , xk) = g (x1, . . . , xk−1) + xk
mod d.

Clearly, our family fk1,k2 has evenly distributed output. To see this we simply set
g = fk1,k2−1. We are now ready to state our main result from this section.
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I Theorem 18. Suppose that f has evenly distributed output, but that f is not UF −
RCA (n,m, λ, δ)− secure for δ >

( 1
d + ε

)λ. Then there is a probabilistic polynomial time
algorithm (in n, m, λ and 1/ε) that extracts a string σ′ ∈ Znd that is ε/8-correlated with σ
with probability at least ε3

(8d)2 after seeing m+ λ example challenge response pairs.

The proof of Theorem 18 is in Appendix E. We overview the proof here. The proof
of Theorem 18 uses Theorem 19 as a subroutine. Theorem 19 shows that we can, with
reasonable probability, find a mapping σ′ that is correlated with σ given predictions of
f (σ (C)) for each clause as long as the probability that each prediction is accurate is slightly
better than a random guess (e.g., 1

d + δ). The proof of Theorem 19 is in Appendix E.

I Theorem 19. Let f be a function with evenly distributed output (Definition 17), let σ ∼ Znd
denote the secret mapping, let ε > 0 be any constant and suppose that for every C ∈ Xk we
are given labels `C ∈ Zd s.t. PrC∼Xk [f (σ (C)) = `C ] ≥ 1

d + ε. There is a polynomial time
algorithm (in n, m,1/ε) that finds a mapping σ′ ∈ Znd such that σ′ is ε/2-correlated with σ
with probability at least ε

2d2

The remaining challenge in the proof of Theorem 18 is to show that there is an efficient
algorithm to extract predictions of f (σ (C)) given blackbox access to an adversary A that
breaks UF-RCA security. However, just because the adversary A gives the correct response
to an entire password challenge C1, . . . , Cλ with probability greater than

( 1
d + ε

)λ it does not
mean that the response to each individual challenge C is correct with probability 1

d + ε. To
obtain our predictions for individual clauses C we draw λ extra example challenge response
pairs (C ′1, f (σ (C ′1))) , . . . , (C ′λ, f (σ (C ′λ))), which we use to check the adversary. To obtain
the label for a clause C we select a random index i ∈ [λ] and give A the password challenge
C ′1, . . . , C

′
λ, replacing C ′i with C. If for some j < i the label for clause C ′j is not correct (e.g.,

6= f
(
σ
(
C ′j
))
) then we discard the label and try again. Claim 26 in Appendix E shows that

this process will give us predictions for individual clauses that are accurate with probability
at least 1

d + ε.

6 Related Work

The literature on passwords has grown rapidly over the past decade (e.g., see [40, 46, 18, 19,
38, 15].) Perhaps most related to our paper is the work of Blocki et al. [13, 14] and Blum
and Vempala [17] on developing usable and secure password management schemes. While
the password management schemes proposed in these works are easier to use (e.g., involve
less memorization and/or computation) than our human computable password scheme, these
schemes only remain secure up to their information theoretic limit – after a very small (e.g.,
1–6) number of breaches security guarantees start to break down. By contrast, our schemes
remain secure after a large (e.g., 100) number or breaches.

In contrast to our work, password management software (e.g., PwdHash [49] or
KeePass [48]) relies strong trust assumptions about the user’s computational devices. The
recent breach at LastPass8 highlights the potential danger of such strong assumptions.

Hopper and Blum [34] designed a Human Identification Protocol based on noisy parity, a
learning problem that is believed to be hard9. We emphasize a few fundamental differences

8 See https://blog.lastpass.com/2015/06/lastpass-security-notice.html/ (Retrieved 9/1/2015).
9 Subsequent work [35, 31, 20, 36] has explored the use of the Hopper-Blum protocol for authentication
on pervasive devices like smartcards.
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between our work and the work of Hopper and Blum. First, a single digit challenge in their
protocol consists of an n-digit vector x ∈ Zn10 and the user responds with the mod 10 sum
of the digits at ` ≤ n secret locations (occasionally the user is supposed to respond with
a random digit instead of the correct response so that the adversary cannot simply use
Gaussian Elimination to find the secret locations). By contrast, a single digit challenge in our
protocol consists of an ordered clause of length k � n. Second, their protocols allow for an
O
(
n`/2

)
-time attack called Meet-In-The-Middle [34] after the adversary has seen Õ(log

(
n
`

)
)

challenge-response pairs. Thus, it is critically important to select ` sufficiently large (e.g.,
` = Ω(log(n))) in the Hopper-Blum protocol to defend against this Meet-In-The-Middle
attack. By contrast, we focus on computation of very simple functions over a constant
number of variables so that a human can compute the response to each challenge quickly.
In particular, we provide strong evidence that our scheme is secure against any polynomial
time attacker even if the adversary has seen up to O

(
nc·k

)
challenge-response pairs for some

constant c ≥ 1. Finally, computations in our protocols are deterministic. This is significant
because humans are not good at consciously generating random numbers [53, 27, 42] (e.g.,
noisy parity could be easy to learn when humans are providing source of noise)10.

Naor and Pinkas[43] proposed using visual cryptography[44] to address a related problem:
how can a human verify that a message he received from a trusted server has not been
tampered with by an adversary? Their protocol requires the human to carry a visual
transparency (a shared secret between the human and the trusted server in the visual
cryptography scheme), which he will use to verify that messages from the trusted server have
not been altered.

A related goal in cryptography, constructing pseudorandom generators in NC0, was
proposed by Goldreich [32] and by Cryan and Miltersen [23]. In Goldreich’s construction
we fix C1, . . . , Cm ∈ [n]k once and for all, and a binary predicate P : {0, 1}k → {0, 1}. The
pseudorandom generator is a function G : {0, 1}n → {0, 1}m, whose i’th bit G(x)[i] is given
by P applied to the bits of x specified by Ci. O’Donnel and Witmer gave evidence that
the “Tri-Sum-And” predicate (TSA (x1, . . . , x5) = x1 + x2 + x3 + x4x5 mod 2) provides
near-optimal stretch. In particular, they showed that for m = n1.5−ε Goldreich’s construction
with the TSA predicate is secure against subexponential-time attacks using SDP hierarchies.
Our candidate human-computable password schemes use functions f : Zk10 → Z10 instead of
binary predicates. While our candidate functions are contained in NC0, we note that an
arbitrary function in NC0 is not necessarily human computable.

On a technical level our statistical dimension lower bounds extend work of Feldman et al.
[26], who considered the problem of finding a planted solution in a random binary planted
constraint satisfiability problem. We extend their analysis to handle non-binary planted
constraint satisfiability problems, and argue that our candidate human computable password
schemes are secure. We will discuss this work in more detail later in the paper.

7 Discussion

7.1 Improving Response Time
The easiest way to improve response time is to decrease λ –the number of single-digit
challenges that the user needs to solve. However, if the user wants to ensure that each
of his passwords are strong enough to resist offline dictionary attacks then he would need

10Hopper and Blum also proposed a deterministic variant of their protocol called sum of k-mins, but this
variant is much less secure. See additional discussion in the appendix.
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to select a larger value of λ (e.g., λ ≥ 10). Fortunately, there is a natural way to cir-
cumvent this problem. The user could save time by memorizing a mapping w : Z10 →
{x x is one of 10,000 most common english words} and responding to each challenge C with
w (f (σ (C))) – the word corresponding to the digit f (σ (C)). Now the user can create pass-
words strong enough to resist offline dictionary attacks by responding to just 3–5 challenges.
Even if the adversary learns the words in the user’s set he won’t be able to mount online
attacks. Predicting w (f (σ (C))) is at least as hard as predicting f (σ (C)) even if the
adversary knows the exact mapping w11.

7.2 One-Time Challenges
Malware

Consider the following scenario: the adversary infects the user’s computer with a keylogger
which is never detected over the user’s lifetime. We claim that it is possible to protect
the user in this extreme scenario using our scheme by generating multiple (e.g., 106) one-
time passwords for each of the user’s accounts. When we initially generate the secret
mapping σ ∼ Znd we could also generate cryptographic hashes for millions of one-time
passwords H

(
~C, fk1,k2

(
σ
(
~C
)))

. While usability concerns make this approach infeasible
in a traditional password scheme (it would be far too difficult for the user to memorize a
million one-time passwords for each of his accounts), it may be feasible to do this using a
human computable password scheme. In our human computable password scheme we could
select k1 and k2 large enough that s (fk1,k2) = min{k1 + 1, (k2 + 1)/2} ≥ 6. Assuming that
the user authenticates fewer than 106 times over his lifetime a polynomial time adversary
would never obtain enough challenge-response examples to learn σ. The drawback is that
fk1,k2 will take longer for a user to execute in his head.

Secure Cryptography in a Panoptic World

Standard cryptographic algorithms could be easily broken in a panoptic world where the
user only has access to a semi-trusted computer (e.g., if a user asks a semi-trusted computer
to sign a message m using a secret key sk stored on the hard drive then the computer will
respond with the correct value Sign (sk,m), but the adversary will learn the valuesm and sk).
Our human computable password schemes could also be used to secure some cryptographic
operations (e.g., signatures) in a panoptic world by leveraging recent breakthroughs in
program obfuscation [29]. The basic idea is to obfuscate a “password locked" circuit Pσ,sk,r
that can sign messages under a secret key sk – we need a trusted setup phase for this step.
The circuit Pσ,sk,r will only sign a message m if the user provides the correct response to a
unique (pseudorandomly generated) challenge for m.

7.3 Open Questions
Eliminating the Semi-Trusted Computer

Our current scheme relies on a semi-trusted computer to generate and store random public
challenges. An adversary with full control over the user’s computer might be able to extract
the user’s secret if he is able to see the user’s responses to O(n) adaptively selected password
challenges. Can we eliminate the need for a semi-trusted computer?

11 In fact, it is quite likely that it is much harder for the adversary to predict w (f (σ (C))) because the
adversary will not see which word corresponds with each digit.
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Exact Security Bounds

While we provided asymptotic security proofs for our human computable password schemes,
it is still important to understand how much effort an adversary would need to expend to
crack the secret mapping for specific values of n and m. Our attacks with a SAT solver (see
Appendix C) indicate that the value n = 26 is too small to provide UF-RCA security even
with small values of m (e.g., m = 50). As n increases the problem rapidly gets harder for
our SAT solver (e.g., with n = 50 and m = 1000 the solver failed to find σ). We also present
a public challenge with specific values of n and m to encourage cryptography and security
researchers to find other techniques to attack our scheme.
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Figure 2 A Random Mapping from Images to Digits.

A Authentication Process

In this section of the appendix we illustrate our human computable password schemes
graphically. In our examples, we use the function f = f2,2. To compute the response f (σ (C))
to a challenge C = {x0, . . . , x13} the user computes f (σ (C)) = σ

(
xσ(x10)+σ(x11) mod 10

)
+

σ (x12) + σ (x13) mod 10

Memorizing a Random Mapping

To begin using our human computable password schemes the user begins by memorizing a
secret random mapping σ : [n]→ {0, . . . , 9} from n objects (e.g., letters, pictures) to digits.
See Figure 2 for an example.

The computer can provide the user with mnemonics to help memorize the secret mapping
σ – see Figures 3b and 3c. For example, if we wanted to help the user remember that
σ (eagle) = 2 we would show the user Figure 3b. We observe that a 10×n table of mnemonic
images would be sufficient to help the user memorize any random mapping σ. We stress that
the computer will only save the original image (e.g., Figure 3a). The mnemonic image (e.g.,
Figure 3b or 3c) would be discarded after the user memorizes σ (eagle).

Single-Digit Challenges

In our scheme the user computes each of his passwords by responding to a sequence of
single-digit challenges. For f = f2,2 a single-digit challenge is a tuple C ∈ [n]14 of fourteen
objects. See Figure 6 for an example. To compute the response f (σ (C)) to a challenge
C = {x0, . . . , x13} the user computes f (σ (C)) = σ

(
xσ(x10)+σ(x11) mod 10

)
+σ (x12) +σ (x13)

mod 10. Observe that this computation involves just three addition operations modulo ten.
See Figure 1 for an example. In this example the response to the challenge C = {x0 =
burger, x1 = eagle, . . . , x10 = lightning, x11 = dog, x12 = man standing on world, x13 =
kangaroo} is

f (σ (C)) = σ
(
xσ(x10)+σ(x11) mod 10

)
+ σ (x12) + σ (x13) mod 10

= σ
(
xσ(lightning)+σ(dog) mod 10

)
+σ (man standing on world) + σ (kangaroo) mod 10

= σ (x9+3 mod 10) + σ (man standing on world) + σ (kangaroo) mod 10
= σ (minions) + σ (man standing on world) + σ (kangaroo) mod 10
= 7 + 4 + 5 mod 10 = 6 .

We stress that this computation is done entirely in the user’s head. It takes the main author
7.5 seconds on average to compute each response.
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(a) Original photo (an eagle). (b) Mnemonic to help the user
remember
σ (eagle) = 2.

(c) Mnemonic to help the user
remember
σ (eagle) = 6.

Figure 3 Mnemonics to help memorize the secret mapping σ.

(a) MD,2.

(b) MD,9.

Figure 4 Mnemonics to help the user memorize the secret mapping σ.

Figure 5 Table of Mnemonic Helpers to Help Learn Any Secret Mapping
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Figure 6 A single-digit challenge.

Creating an Account

To help the user create an account the computer would first pick a sequence of single-digit
challenges C1, . . . , Cλ, where the security parameter is typically λ = 10, and would display
the first challenge C1 to the user – see Figure 7 for an example. To compute the first digit
of his password the user would compute f (σ (C1)). After the user types in the first digit
f (σ (C1)) of his password the computer will display the second challenge C2 to the user
– see Figure 8. After the user creates his account the computer will store the challenges
C1, . . . , C10 in public memory. The password pw = f (σ (C1)) . . . f (σ (Cλ)) will not be stored
on the user’s local computer (the authentication server may store the cryptographic hash of
pw).

Authentication

Authenticating is very similar to creating an account. To help the user recompute his
password for an account the computer first looks up the challenges C1, . . . , Cλ which were
stored in public memory, and the user authenticates by computing his password pw =
f (σ (C1)) . . . f (σ (Cλ)). We stress that the single-digit challenges the user sees during
authentication will be the same single-digit challenges that the user saw when he created the
account. The authentication server verifies that the cryptographic hash of pw matches its
record.

Helping the user remember his secret mapping

The computer keeps track of when the user rehearses each value of his secret mapping (e.g.,
(i, σ (i)) for each i ∈ [n]), and reminds the user to rehearse any part of his secret mapping
that he hasn’t used in a long time. One advantage of our human computable password
scheme (compared with the Shared Cues scheme of Blocki et al.[13] ) is that most users will
use each part of their secret mapping often enough that they will not need to be reminded
to rehearse – see discussion in Section A.2. The disadvantage is that we require the user to
spend extra effort computing his passwords each time he authenticates.
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Figure 7 Login Screen

Figure 8 Login Screen after the user responds to the first single-digit challenge
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Algorithm 1: MemorizeMapping
input : I1, ..., In, d, b and Mi,j for i ∈ [n], j ∈ {0, . . . , d− 1}.
Given j ∈ {0, . . . , d− 1} and i ∈ {1, . . . , n} Mi,j is a mnemonic to help the user
associate image Ii with the number j. d is whatever base the user is familiar with
(typically d = 10), and the value b contains random bits which are used to select the
secret mapping σ. ;

Generate and Memorize Secret Mapping;
for i← 1 to n do

// Using random bits b
σ (i) ∼ {0, . . . , d− 1} ;
Mi ←Mi,σ(i) ;
(User) Using Mi memorizes the association (Ii, σ (i)) for i ∈ [n]. ;

end

A.1 Formal View

We now present a formal overview of the authentication process. Algorithm 1 outlines the
initialization process in which the user memorizes a secret random mapping σ generated by
the user’s computer, and Algorithm 2 outlines the account creation process. In Algorithm 2
the user generates the password for an account i by computing the response to a sequence
of random challenges C generated by the user’s computer. The sequence of challenges are
stored in public memory. We assume that all steps in algorithms 1, 2 and 3 are executed on
the user’s local computer unless otherwise indicated. We also assume that the initialization
phase (Algorithms 1 and 2) is carried out in secret (e.g., we assume that the secret mapping
is chosen in secret), but we do not assume that the challenges are kept secret. We use
(User) to denote a step completed by the human user and we use (Server) to denote a
step completed by a third-party server. Algorithm 3 illustrates the authentication process.

A.2 Memorizing and Rehearsing σ

After the user memorizes σ he may need to rehearse parts of the mapping periodically to
ensure that he does not forget it. How much effort does this require? Blocki et al.[13]
introduced a usability model to estimate how much extra effort that a user would need to
spend rehearsing the mapping σ. We used this model to obtain the predictions in Table 1.

Imagine that we had a program keep track of how often the user rehearsed each association
(i, σ (i)) and predict how much longer the user will safely remember the association (i, σ (i))
without rehearsing again – updating this prediction after each rehearsal. The user rehearses
the association (i, σ (i)) naturally whenever he needs to recall the value of σ (i) while
computing the password for any of his password protected accounts. If the user is in danger
of forgetting the value σ (i) then the program sends the user a reminder to rehearse (Blocki
et al.[13] call this an extra rehearsal). Table 1 shows the value of E [ER365], the expected
number of extra rehearsals that the user will be required to do to remember the secret
mapping σ during the first year. This value will depend on how often the user rehearses σ
naturally. We consider four types of users: Active, Typical, Occasional and Infrequent. An
Active user visits his accounts more frequently than a Infrequent user. See Appendix H for
specific details about how Table 1 was computed.
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Algorithm 2: CreateChallenge
input : n, i, λ, d, b and I1, ..., In.

Generate Password Challenge for account Ai. t is a security parameter which
specifies how many digits the password will contain.;

for j = 1→ λ do
Cij ∼ Xk ;
// Using random bits b

end
~Ci ←

〈
Ci1, . . . , C

i
λ

〉
;

Store record
(
i, ~Ci

)
;

for j = 1→ λ do
Load images from Cij . ;
Display Cij for the user. ;
(User) Computes qj ← f

(
σ
(
Cji

))
;

end
Send 〈q1, . . . , qλ〉 = f

(
σ
(
~Ci

))
to server i;

// H is a strong cryptographic hash function

(Server i) Stores hi = H
(
~Ci, 〈q1, . . . , qλ〉

)
;

Algorithm 3: Authenticate
input : Security parameter λ. Account i ∈ [m]. Challenges ~C1, . . . , ~Cm.〈
Ci1, . . . , C

i
λ

〉
← ~Ci ;

// Display Single Digit Challenges
for j = 1→ λ do

(Semi-Trusted Computer) Load images from Cij .;
(Semi-Trusted Computer) Displays Cij to the user. ;
(User) Computes qj ← f

(
σ
(
Cji

))
. ;

end
(Semi-Trusted Computer) Sends 〈q1, . . . , qλ〉 to the server for account i. ;
(Server) Verifies that H

(
~Ci, 〈q1, . . . , qλ〉

)
= hi ;

Table 1 E [ER365]: Extra Rehearsals over the first year to remember σ in our scheme with f2,2

or f1,3. Compared with Shared Cues schemes SC-0,SC-1 and SC-2[13].

Our Scheme (σ ∈ Zn10) Shared Cues
User n = 100 n = 50 n = 30 SC-0 SC-1 SC-2
Very Active 0.396 0.001 ≈ 0 ≈ 0 3.93 7.54
Typical 2.14 0.039 ≈ 0 ≈ 0 10.89 19.89
Occasional 2.50 0.053 ≈ 0 ≈ 0 22.07 34.23
Infrequent 70.7 22.3 6.1 ≈ 2.44 119.77 173.92
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Table 2 Single-Digit Challenge Layout in Scheme 1.

A B C D

0 E 5 J
1 F 6 K
2 G 7 L
3 H 8 M
4 I 9 N

Table 3 Human Computable Password Challenges
n – Secret Length
m – # Challenge-Response Pairs

Scheme 1 (f2,2) Scheme 2 (f1,3)

n m Winner m Winner

100 digits
1000 N/A 500 N/A
500 N/A 300 N/A
300 N/A 200 N/A

50 digits
500 N/A 300 N/A
300 N/A 150 N/A
150 N/A 100 N/A

30 digits
300 CSP Solver 150 N/A
100 N/A 100 N/A
50 N/A 50 N/A

Discussion

One of the advantages of our human computable passwords schemes is that memorization
is essentially a one time cost for our Very Active, Typical and Occasional users. Once
the user has memorized the mapping σ : {1, ..., n} → Zd he will get sufficient natural
rehearsal to maintain this memory. In fact, our schemes require the user to expend less extra
effort rehearsing his secret mapping than the Shared Cues password management scheme
of Blocki et al. [13] (with the exception of SC-0 – the least secure Shared Cues scheme).
Intuitively, this is because human computable password schemes require to recall σ(i) for
multiple different values of i to respond to each single-digit challenge C. To compute
f2,2 (σ ({0, . . . , 13})) the user would need to recall the values of σ(10), σ(11), σ(12), σ(13)
and σ(j), where j = σ(10) + σ(11) mod 10. If the user has 10 digit passwords then he will
naturally rehearse the value of σ(i) for up to fifty different values of i each time he computes
one of his passwords. While the user needs to spend extra time computing his password each
time he authenticates in our human computable password scheme, this extra computation
time gives the user more opportunities to rehearse his secret mapping.

B Human Computable Passwords Challenge

While we provided asymptotic security bounds for our human computable password schemes
in our context it is particularly important to understand the constant factors. In our context,
it may be reasonable to assume that n ≤ 100 (e.g., the user may be unwilling to memorize
longer mappings). In this case it would be feasible for the adversary to execute an attack
that takes time proportional to 10

√
n ≤ 1010. We conjecture that in practice scheme 2 (f1,3)

is slightly weaker than scheme 1 (f2,2) when n ≤ 100 despite the fact that s (f2,2) < s (f1,3)
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because of the attack described in Remark G.2. This attack requires Õ
(
n1+g(f)/2) examples,

and the running time O
(

10
√
nn3

)
may be feasible for n ≤ 100. To better understand

the exact security bounds we created several public challenges for researchers to break our
human computable password schemes under different parameters (see Table 3). At this
time these challenges remain unsolved even after they were presented during the rump
sessions at a cryptography conference and a security conference[12]. The challenges can
be found at http://www.cs.cmu.edu/~jblocki/HumanComputablePasswordsChallenge/
challenge.htm. For each challenge we selected a random secret mapping σ ∈ Zn10, and
published (1) m single digit challenge-response pairs (C1, f (σ (C1))) , . . . , (Cm, f (σ (Cm))),
where each clause Ci is chosen uniformly at random from Xk, and (2) 20 length – 10
password challenges ~C1, . . . , ~C20 ∈ (Xk)10. The goal is to guess one of the secret passwords
pi = f

(
σ
(
~Ci

))
for some i ∈ [20].

C CSP Solver Attacks

Theorems 14 and 18 provide asymptotic security bounds (e.g., an adversary needs to see
m = Ω̃

(
ns(f)) challenge-response pairs to forge passwords). However, in our context n is

somewhat small (e.g., n ≤ 100). Thus, it is also important to address the following question:
how many challenge-response pairs does the adversary need to see before it becomes feasible
for the adversary to recover the secret on a modern computer? To better understand the
exact security bounds of our human computable password schemes we used a Constraint
Satisfaction Problem (CSP) solver to attack our scheme. We also created several public
challenges to break our candidate human computable password schemes (see Table 3).

CSP Solver

Our computations were performed on a computer with a 2.83 GHz Intel Core2 Quad CPU
and 4 GB of RAM. In each instance we generated a random mapping σ : [n]→ Z10 and m
random challenge response pairs (C, f (σ (C))) using the functions f2,2 and f1,3. We used
the Constraint Satisfaction Problem solver from the Microsoft Solver Foundations library to
try to solve for σ12. The results of this attack are shown in Tables 4 and 5. Due to limited
computational resources we terminated each instance if the solver failed to find the secret
mapping within 2.5 days, and if our solver failed to find σ in 2.5 days on and instance (n,m)
we did not run the solver on strictly harder instances (e.g., (n′,m′) with n′ ≥ n and m′ ≤ m).
We remark that our empirical results are consistent with the hypothesis that the time/space
resources consumed by the CSP solver increase exponentially in n (e.g., when we decrease n
from 30 to 26 with m = 100 examples the CSP solver can solve for σ ∈ Z26

10 in 40 minutes,
while the solver failed to find σ ∈ Z30

10 in 2.5 days and we observe similar threshold behavior
in other columns of the table. ).

D Statistical Dimension

At a high level our statistical dimension lower bounds closely mirror the lower bounds from
[26] for binary predicates. For example, Lemmas 21, 22, 15, 23 and 25 are similar to Lemmas
2, 4, 5, 6 and 7 from [26] respectively.

12 http://blogs.msdn.com/b/solverfoundation/ (Retrieved 9/15/2014).

http://www.cs.cmu.edu/~jblocki/HumanComputablePasswordsChallenge/challenge.htm
http://www.cs.cmu.edu/~jblocki/HumanComputablePasswordsChallenge/challenge.htm
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Table 4 CSP Solver Attack on f2,2

Key: UNSOLVED – Solver failed to find solution in 2.5 days; HARD – Instance is harder than an
unsolved instance;

m = 50 m = 100 m = 300 m = 500 m = 1000 m = 10000
n = 26 23.5 hr 40 min 4.5 hr 29 min 10 min 2 min
n = 30 HARD UNSOLVED 2.33 hr 35.5 min 10 min 20 s
n = 50 HARD HARD HARD HARD UNSOLVED 7 hr
n = 100 HARD HARD HARD HARD HARD UNSOLVED

Table 5 CSP Solver Attack on f1,3

Key: UNSOLVED – Solver failed to find solution in 2.5 days; HARD – Instance is harder than an
unsolved instance;

m = 50 m = 100 m = 300 m = 500 m = 1000 m = 10000
n = 26 8.7 hr 53 min 1.33 hr 13.5 min 6.3min 2 min
n = 30 HARD UNSOLVED 1 hr 41 min 2 min 15 s
n = 50 HARD HARD HARD HARD UNSOLVED 6.5 hr
n = 100 HARD HARD HARD HARD HARD UNSOLVED

While the high level proof strategy is very similar, we stress that our lower bounds do
requires new ideas because we are working with planted solutions σ ∈ Znd instead of σ ∈ Znd .
We use the basis functions χα where for α ∈ Znd is

χα (x) = exp
(
−2π
√
−1 (x · α)
d

)
.

Note that if d > 2 then the Fourier coefficients b̂α of a function b : Zkd → R might include
complex numbers. While we need to take care to deal with the possibility that a Fourier
coefficients might be complex, we are still able to apply powerful tools from Fourier analysis.
For example, Parseval’s identity∑

α∈Zk
d

∣∣∣b̂α∣∣∣2 = Ex∼Zk
d

[
b (x)2

]
,

still applies and there are versions of the hypercontractivity theorem [45, Chapter 10] that
still apply even when Fourier coefficients are complex.

Another difference is that the reference distribution is defined over clauses and outputs
Xk × Zd (instead of just clauses Xk) because we are working with a function f : Znd → Zd
with non-binary outputs. Some care is needed in finding the right reference distribution.
Unlike [26] we cannot just use the uniform distribution over Xk×Zd as a reference distribution
– instead the reference distribution inherently depends on the function f (Of course it is must
still be independent of σ).

The following definition will be useful in our proofs.

I Definition 20. Given a clause C ∈ Xk and S ⊆ [k] of size `, we let C|S ∈ X` denote
the clause of variables of C at the positions with indices in S (e.g., if C = (1, . . . , k) and
S = {1, 5, k − 2} then C|S = (1, 5, k − 2) ∈ X3). Given a function h : Xk × Zd → R, a clause
C` ∈ X` and i ∈ Zd and a set S ⊆ [k] of size |S| = ` we define

hiS (C`) = |X`|
|Xk|

∑
C∈Xk,C|S=C`

h (C, i) .
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We first show that ∆ (σ, h) can be expressed in terms of the Fourier coefficients of Q̂
as well as the functions h`. In particular, given a function h : Xk × Zd → R we define the
degree ` function b` : Znd → C as follows

b` (σ) .= 1
2

∑
α∈Z`

d
:H(α)=`

(
k

`

) d−1∑
i=0

Q̂f,iα
∑
C∈X`

χα (σ (C))hi`(C) .

Lemma 21 states that

∆ (σ, h) =
k∑
`=1

1
|X`|

b` (σ) .

This observation will be important later because we can use hypercontractivity to bound the
expected value of |b` (σ)|. Notice that if Q has distributional complexity r and ` ≤ r then
b` (σ) = 0 because Q̂f,iα = 0 for all i ∈ Zd and α ∈ Zkd s.t. 1 ≤ H (α) ≤ r. This means that
first r terms of the sum in Lemma 21 will be zero.

I Lemma 21. For every σ ∈ Zkd, j ∈ Zd and h : Xk → R we have ∆ (σ, h) =
∑k
`=1

1
|X`|b` (σ).

Proof of Lemma 21. Before calculating we first observe that for any j ∈ Zd we have

Q̂f,j~0 = Ex∼Zk
d

[
Qf,j (x)χα (x)

]
= Ex∼Zk

d

[
Qf,j (x)

]
=
∑
x∈Zk

d

Qf,j (x)
dk

= 2− d
d

.

Given α ∈ Zkd we also define Sα ⊂ [k] to be the set of indices i s.t. αi 6= 0 – |Sα| = H(α).
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Now we note that

∆ (σ, h) = EC∼Xk [h (C, f (σ (C)))]− E(C,i)∼T [h (C, i)]

=
∑
C∈Xk

(
h
(
C, f(σ(C))

)
|Xk|

−
d−1∑
i=0

Pr
T

[(C, i)]h(C, i)
)

=
∑
C∈Xk

(
h
(
C, f(σ(C))

)
|Xk|

−
d−1∑
i=0

Prx∼Zk
d
[f(x) = i]
|Xk|

h(C, i)
)

=
∑
C∈Xk

d−1∑
i=0

h(C, i)
(
Qf,iσ (C)+1

2 − Prx∼Zk
d
[f(x) = i]

)
|Xk|


=

∑
C∈Xk

d−1∑
i=0

h(C, i)
|Xk|

1
2 − Pr

x∼Zk
d

[f(x) = i] +
∑
α∈Zk

d

Q̂f,iα χα (σ (C))
2


=

∑
C∈Xk

d−1∑
i=0

h(C, i)
|Xk|

1
d
− Pr
x∼Zk

d

[f(x) = i] +
∑

α∈Zk
d
:α6=~0

Q̂f,iα χα (σ (C))
2


=

∑
C∈Xk

d−1∑
i=0

h(C, i)
|Xk|

 ∑
α∈Zk

d
:α6=~0

Q̂f,iα χα (σ (C))
2


=

∑
C∈Xk

d−1∑
i=0

h(C, i)
|Xk|

 k∑
`=1

∑
α∈Zk

d
:H(α)=`

Q̂f,iα χα (σ (C))
2


= 1

2 |Xk|

k∑
`=1

∑
C∈Xk

d−1∑
i=0

h(C, i)

 ∑
α∈Zk

d
:H(α)=`

Q̂f,iα χα (σ (C))


= 1

2 |Xk|

k∑
`=1

∑
α∈Zk

d
:H(α)=`

∑
C∈Xk

d−1∑
i=0

(
h(C, i)

(
Q̂f,iα χα (σ (C))

))

= 1
2 |Xk|

k∑
`=1

∑
α∈Zk

d
:H(α)=`

d−1∑
i=0

Q̂f,iα
∑
C`∈X`

∑
C∈Xk,C|Sα=C`

χα (σ (C))hi(C)

= 1
2 |Xk|

k∑
`=1

∑
α∈Z`

d
:H(α)=`

(
k

`

) d−1∑
i=0

Q̂f,iα
∑
C`∈X`

∑
C∈Xk,C|Sα=C`

χα (σ (C`))h(C, i)

=
k∑
`=1

1
2 |X`|

∑
α∈Z`

d
:H(α)=`

(
k

`

) d−1∑
i=0

Q̂f,iα
∑
C`∈X`

χα (σ (C`))hiSα(C)

=
k∑
`=1

1
|X`|

b`(σ) .

J

The following lemma is similar to Lemma 4 from [26]. Lemma 22 is based on the general
hypercontractivity theorem [45, Chapter 10] and applies to more general (non-boolean)
functions.
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I Lemma 22. [45, Theorem 10.23] If b : Znd → R has degree at most ` then for any

t ≥
(√

2ed
)`
,

Pr
x∼Zn

d

[|b(x)| ≥ t‖b‖2] ≤ 1
d`

exp
(
− `

2edt
2/`
)
,

where ‖b‖2 =
√
Ex∼Zn

d

[
b (x)2

]
Lemma 15 and its proof are almost identical to Lemma 5 in [26]. We simply replace their

concentration bounds with the concentration bounds in Lemma 22. We include the proof for
completeness.

I Lemma 15 (restated). Let b : Znd → R be any function with degree at most `, and let
D′ ⊆ Znd be a set of assignments for which d′ = dn/ |D′| ≥ e`. Then Eσ∼D′ [|b (σ)|] ≤

2(ln d′/c0)`/2‖b‖2, where c0 = `
( 1

2ed
)
and ‖b‖2 =

√
Ex∼Zn

d

[
b (x)2

]
.

Proof of Lemma 15. The set D′ contains 1/d′ fraction of points in Znd . Therefore,

Pr
x∼D′

[|b(x)| ≥ t‖b‖2] ≤ d′

d`
exp

(
− `

2edt
2/`
)
,

for any t ≥
(√

2ed
)`
. For any random variable Y and value a ∈ R,

E[Y ] ≤ a+
∫ ∞
a

Pr[Y ≥ t] dt .

We set Y = |b (σ)| /‖b‖2 and a =
(

ln d′
c0

)`/2
. Assuming that a >

(√
2ed
)`

we get

Eσ∼D′ [|b(σ)|]
‖b‖2

≤
(

ln d′

c0

)`/2
+
∫ ∞

(ln d′/c0)`/2

d′

d`
· e−c0t

2/`
dt

= (ln d′/c0)`/2 + ` · d′

2d` · c`/20
·
∫ ∞

ln d′
e−zz`/2−1dz .

Let u(i) .=
∫∞

ln d′ e
−zz`/2−idz. Applying integration by parts we have

u(i) .=
∫ ∞

ln d′
e−zz`/2−idz =

(
e−zz`/2−i+1)∣∣∞

ln d′
+
∫ ∞

ln d′
e−zz`/2−i+1dz −

(
`

2 − i
)∫ ∞

ln d′
e−zz`/2−idz

=
(
e−zz`/2−i+1)∣∣∞

ln d′
+ u(i− 1)−

(
`

2 − i
)
u(i) .

Thus,

u(i− 1) =
(
`

2 − i+ 1
)
u(i)−

(
e−zz`/2−i+1

)∣∣∣∞
ln d′

=
(
`

2 − i+ 1
)
u(i) + (ln d′)

`
2−i+1

d′
.

Unrolling the recurrence for T ≥ 1 we get

u(1) = (ln d′)
`
2

d′
+
T−1∑
i=1

(ln d′)
`
2−i

d′

i∏
j=1

(
`

2 − j + 1
)

+ u (T + 1)
T∏
j=1

(
`

2 − j + 1
)
.
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We also note that for T = d `2 + 1e we have u (T + 1)
∏T
j=1

(
`
2 − j + 1

)
≤ 0. This follows

because u(T + 1) ≥ 0 for any integer T ≥ 0 and
∏T
j=1

(
`
2 − j + 1

)
≤ 0. It follows that

u(1) ≤ (ln d′)
`
2

d′
+
d `2 +1e∑
i=1

(ln d′)
`
2−i

d′

i∏
j=1

(
`

2 − j + 1
)
≤ (ln d′)

`
2

d′

1 +
d `2 +1e∑
i=1

`−i
(
`

2

)i ≤ 2 (ln d′)
`
2

d′

where we used the condition d′ ≥ e` to obtain the second to last inequality. Now we have

Eσ∼D′ [|b(σ)|]
‖b‖2

≤ (ln d′/c0)`/2 + ` · d′

2d` · c`/20
· u(1)

≤ (ln d′/c0)`/2 + ` · d′

2d` · c`/20
·

(
2 (ln d′)

`
2

d′

)
≤ 2(ln d′/c0)`/2 . J

I Lemma 23. Let D′ ⊆ {0, . . . , d − 1}n be a set of assignments for which d′ = dn/ |D′|.
Then

Eσ∼D′
[∣∣∣∣ 1
|X`|

b` (σ)
∣∣∣∣] ≤ 2

((
k

`

)√
`!d
)

(ln d′/c0)`/2 max
α∈Z`

d

d−1∑
i=0

‖hSα (σ) ‖2√
|X`|

.

Proof. For simplicity of notation we set b = b`. Our first goal will be to find the Fourier
coefficients of

b(σ) = 1
2

∑
α∈Z`

d
:H(α)=`

(
k

`

) d−1∑
i=0

Q̂f,iα
∑
C∈X`

χα (σ (C))hiSα(C) .

Given α = (α1, . . . , α`) ∈ Z`d with H(α) = ` and a clause C = (c1, ..., c`) ∈ X` we define the
projection αC ∈ Z`d of α onto C to be the unique vector s.t. αCci = αi for each i ≤ ` and
αj = 0 for each j /∈ {c1, . . . , c`} – note that H(αC) = ` .

Given α, α′ ∈ Zkd with H(α) = H(α′) = ` and C,C ∈ X` we say that the pairs (α,C`)
and (α′, C ′`) are equivalent if and only if their projections are equal αC = α′C

′13. We can
partition the set {α ∈ Zkd : H (α) = `} ×X` into equivalence classes E1, . . . , Et. If the pairs
(α,C`) and (α′, C ′`) are equivalent then we observe that the clauses C and C ′ must contain
the same variables though perhaps in a different order. Furthermore, given an equivalence
class Ej such that (α,C) ∈ Ej we have (α′, C) /∈ Ej for any α′ 6= α ∈ Zkd. Thus each
equivalence class has size `! because there are `! ways to reorder the ` variables in a clause C.
We can rewrite b(σ) as

b(σ) =
(
k
`

)
2

t∑
j=1

∑
(α,C)∈Ej

d−1∑
i=0

Q̂f,iα hiSα(C)χα(σ(C))

Let (α,C) ∈ Ej then the Fourier coefficient of αC is

b̂j = b̂αC =
(
k
`

)
2

∑
(α′,C′)∈Ej

d−1∑
i=0

Q̂f,iα hi`(C ′) .

13For example, if C = (1, 2, 5), C = (1, 5, 2) and α = (4, 5, 6) and α′ = (4, 6, 5) then the pairs (α,C`) and(
α′, C′`

)
are equivalent.
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We also note that t = |X`|(d−1)k
`! .

Now we can apply Parseval’s identity along with the Cauchy-Schwarz inequality to obtain

Eσ∼Zn
d

[
b (σ) b (σ)

]
= Eσ∼Zn

d

[
|b (σ)|2

]
= Eσ∼Zn

d

[
t∑
j=1

∣∣b̂j∣∣2]

=
(
k
`

)2

4 Eσ∼Zn
d

 t∑
j=1

∣∣∣∣∣∣
∑

(C,α)∈Ej

d−1∑
i=0

Q̂f,iα hiSα(C)

∣∣∣∣∣∣
2

≤
(
k
`

)2

4 Eσ∼Zn
d

 t∑
j=1

 ∑
(C,α)∈Ej

d−1∑
i=0

∣∣Q̂f,iα ∣∣2
 ∑

(C,α)∈Ej

d−1∑
i=0

∣∣hiSα(C)
∣∣2

≤
(
k
`

)2

4 Eσ∼Zn
d t∑

j=1

(
`! max
j≤t,(C,α)∈Ej

d−1∑
i=0

∣∣Q̂f,iα ∣∣2)
 ∑

(C,α)∈Ej

d−1∑
i=0

∣∣hiSα(C)
∣∣2

≤
(
k
`

)2

4 Eσ∼Zn
d(`! max

j≤t,(C,α)∈Ej

d−1∑
i=0

∣∣Q̂f,iα ∣∣2)
 t∑
j=1

∑
(C,α)∈Ej

d−1∑
i=0

∣∣hiSα(C)
∣∣2

≤
(
k
`

)2

4 Eσ∼Zn
d[(

`! max
j≤t,(C,α)∈Ej

d−1∑
i=0

∣∣Q̂f,iα ∣∣2)(max
α∈Z`

d

∑
C∈X`

d−1∑
i=0

∣∣hiSα(C)
∣∣2)]

≤
(
k
`

)2

4 Eσ∼Zn
d[(

`! max
j≤t,(C,α)∈Ej

d−1∑
i=0

∣∣Q̂f,iα ∣∣2)(|X`|max
α∈Z`

d

d−1∑
i=0

EC∼X`
[
hiSα(C)2])]

≤
(
k
`

)2
d`! |X`|
4 Eσ∼Zn

d

[(
max

j≤t,(C,α)∈Ej

d−1∑
i=0

∣∣Q̂f,iα ∣∣2)]max
α∈Z`

d

d−1∑
i=0

‖hiSα‖
2
2

≤
(
k
`

)2
d`! |X`|
4 max

α∈Z`
d

d−1∑
i=0

‖hiSα‖
2
2 .

Before we can apply Lemma 15 we must address a technicality. The range of b = b` might
include complex numbers, but Lemma 15 only applies to functions b with range R. For
c, d ∈ R we adopt the notation Im

(
c+ d

√
−1
)

= d and Re
(
c+ d

√
−1
)

= c. We observe
that

Eσ∼Zn
d

[
b (σ) b (σ)

]
= Eσ∼Zn

d

[
Re (b (σ))2 + Im (b (σ))2

]
= ‖Re (b) ‖22 + ‖Im (b) ‖22 .

We first observe that Re (b) and Im (b) are both degree ` functions because b is a degree
` function.
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Now we can apply Lemma 15 to get

Eσ∼D′ [|Re (b (σ))|] ≤ 2 (ln d′/c0)`/2

d`
‖Re(b)‖2

≤ 2 (ln d′/c0)`/2

d`

√
Eσ∼Zn

d

[
b (σ) b (σ)

]
≤

((
k

`

)√
`!d
)

(ln d′/c0)`/2
√
|X`|max

α∈Z`
d

d∑
i=0
‖hSα (σ) ‖2 .

A symmetric argument can be used to bound Eσ∼D′ [Im (b (σ))]. Now because

|b (σ)| ≤ |Re (b (σ))|+ |Im (b (σ))| ,

it follows that

Eσ∼D′

[∣∣∣∣ 1
|X`|

b (σ)
∣∣∣∣] ≤ 2

((
k

`

)√
`!d
)(

1
|X`|

)(
(ln d′/c0)`/2

)
max
α∈Z`

d

d−1∑
i=0
‖hSα (σ) ‖2

√
|X`|

≤ 2
((

k

`

)√
`!d
)

(ln d′/c0)`/2 max
α∈Z`

d

d−1∑
i=0

‖hSα (σ) ‖2√
|X`|

.

J

We will use Fact 24 to prove Lemma 25. The proof of Fact 24 is found in [26, Lemma 7].
We include it here for completeness.

I Fact 24. [26] If h : Xk × Zd → R satisfies ‖h‖22 = 1 then for any i ∈ Zd, 0 ≤ ` ≤ k and
S ⊆ [k] of size |S| = ` we have

∑d−1
i=0 ‖hiS‖22 ≤ d.

Proof. First notice that for any C`, S ⊆ [k] s.t |S| = `

∣∣{C ∈ Xk C|S = C`}
∣∣ = |Xk|
|X`|

.

By applying the definition of h` along with the Cauchy-Schwartz inequality
d−1∑
i=0
‖hiS‖22 =

d−1∑
i=0

EC`∼X`
[
hiS (C`)2

]

=
(
|X`|
|Xk|

)2 d−1∑
i=0

EC`∼X`


 ∑
C∈Xk,C|S=C`

h (C, i)

2


≤
(
|X`|
|Xk|

)2 d−1∑
i=0

EC`∼X`

 |Xk|
|X`|

 ∑
C∈Xk,C|S=C`

h (C, i)2


≤

(
|X`|
|Xk|

)
dEC`∼X`,i∼Zd

 ∑
C∈Xk,C|S=C`

h (C, i)2


= dEC∼Uk

[
h (C)2

]
= d‖h‖22 = d .

J

I Lemma 25. Let r = r(f), let D′ ⊆ {0, . . . , d− 1}n be a set of secret mappings and let
d′ = dn/|D′|. Then κ2(D′) = Ok

(
(ln d′/n)r/2

)
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Proof. Let h : Xk → R be any function such that EUk
[
h2] = 1. Using Lemma 21 and the

definition of r,

|∆ (σ, h)| =

∣∣∣∣∣
k∑
`=r

1
|X`|

b` (σ)

∣∣∣∣∣
≤

k∑
`=r

∣∣∣∣ 1
|X`|

b` (σ)
∣∣∣∣ .

We apply Lemma 23 and Fact 24 to get

Eσ∼D′ [|∆ (σ, h)|] ≤ 2
k∑
`=r

(
k

`

)√
`!d (ln d′/c0)`/2 max

α∈Zd

d−1∑
i=0

‖hiSα (σ) ‖2√
|X`|

≤
k∑
`=r

((
k

`

)
d
√
`!
)(

2 (ln d′/c0)`/2√
|X`|

)

≤ Ok

(
(ln d′)`/2

nr/2

)
.

J

I Theorem 16 (restated). There exists a constant cQ > 0 such that for any ε > 1/
√
n and

q ≥ n we have

SDN
(
Zε,f ,

cQ (log q)r/2

nr/2
, 2e−n·ε

2/2

)
≥ q ,

where r = r(f) is the distributional complexity of f .

Proof of Theorem 16. First note that, by Chernoff bounds, for any solution τ ∈ Znd the
fraction of assignments σ ∈ Znd such that τ and σ are ε-correlated (e.g., H (σ, τ) ≤ n(d−1)

d −
ε · n) is at most e−2n·ε2 . In other words |Dσ| ≥

(
1− e−2n·ε2

)
|Znd |, where Dσ = Znd \{

σ′ H (σ, σ′) ≤ n(d−1)
d − ε · n

}
Let D′ ⊆ Dσ be a set of distributions of size |Dσ|/q. Then

for d′ = dn/|D′| = q · dn/|Dσ|, by Lemma 25 we get

κ2(D′) = Ok

(
(ln d′)r/2

nr/2

)
(1)

= Ok

(
(ln q)r/2

nr/2

)
, (2)

where the last line follows by Sterling’s Approximation

q = d′|Dσ|/dn = d′|Dσ|/dn ≈ d′c′
√
d

n

for a constant c′. The claim now follows from the definition of SDN. J

The proof of Theorem 14 follows from Theorem 16 and the following result of Feldman et
al. [26].
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I Theorem 13 (restated). [26, Theorems 10 and 12] For κ > 0 and η ∈ (0, 1) let
d′ = SDN(Zε,f , κ, η) be the statistical dimension of the distributional search problem Zε,f .
Any randomized statistical algorithm that, given access to a VSTAT

( 1
3κ2

)
oracle (resp.

1-MSTAT (L)) for the distribution Qfσ for a secret mapping σ chosen randomly and uniformly
from Znd , succeeds in finding a mapping τ ∈ Znd that is ε-correlated with σ with probability
Λ > η over the choice of distribution and internal randomness requires at least Λ−η

1−η d
′ (resp.

Ω
(

1
L min

{
d′(Λ−η)

1−η , (Λ−η)2

κ2

})
) calls to the oracle.

I Theorem 14 (restated). Let σ ∈ Znd denote a secret mapping chosen uniformly at random,
let Qfσ be the distribution over Xk×Zd induced by a function f : Zkd → Zd with distributional
complexity r = r(f). Any randomized statistical algorithm that finds an assignment τ such

that τ is
(√

−2 ln(η/2)
n

)
-correlated with σ with probability at least Λ > η over the choice of

σ and the internal randomness of the algorithm needs at least m calls to the 1-MSTAT(L)
oracle (resp. VSTAT

(
nr

2(logn)2r

)
oracle) with m · L ≥ c1

(
n

logn

)r
(resp. m ≥ nc1 logn) for a

constant c1 = Ωk,1/(Λ−η)(1) which depends only on the values k and Λ−η. In particular if we

set L =
(

n
logn

)r/2
then our algorithms needs at least m ≥ c1

(
n

logn

)r/2
calls to 1-MSTAT(L).

E Security Proofs

I Theorem 19 (restated). Let f be a function with evenly distributed output (Definition
17), let σ ∼ Znd denote the secret mapping, let ε > 0 be any constant and suppose that for
every C ∈ Xk we are given labels `C ∈ Zd s.t. PrC∼Xk [f (σ (C)) = `C ] ≥ 1

d + ε. There is
a polynomial time algorithm (in n, m,1/ε) that finds a mapping σ′ ∈ Znd such that σ′ is
ε/2-correlated with σ with probability at least ε

2d2

Proof of Theorem 19. Let f : Zkd → Zd be a function with evenly distributed output. We
select fix C−1 ∼ Xk−1 and i ∼ [n] \ C−1. Given j ∈ [n] \ C−1 we let Cj = (C−1, j) ∈ Xk

denote the corresponding clause. Now we generate the mapping σ′ by selecting σ′(i) at
random, and setting σ′(j) = σ′(i) + `Cj − `Ci mod d for j ∈ [n] \ Ci. For j ∈ C−1 we select
σ′(j) at random. We let GOOD

(
C−1, i, σ′

)
denote the event that

Pr
j∼[n]\C−1

[
`Cj = f (σ (Cj))

]
≥ 1
d

+ ε/2 ,

σ′(i) = σ(i) and `Ci = f (σ (Ci)). Assume that the event GOOD
(
C−1, i

)
occurs, in this

case for each j s.t. `Cj = f (σ (Cj)) we have

σ′(j)− σ(j) ≡
(
σ′(i) + `Cj − `Ci

)
− σ(j) mod d

≡
(
`Cj − `Ci

)
+ σ(i)− σ(j) mod d

≡ g
(
σ
(
C−1))+ σ (j)−

(
g
(
σ
(
C−1))+ σ (i)

)
+ σ(i)− σ(j) mod d

≡ 0 mod d .

Therefore, we have

n−H (σ, σ′)
n

≥ 1
d

+ ε/2− k − 1
n

.

We note that by Markov’s inequality the probability of success is at least

Pr
C−1∼Xk−1

[
GOOD

(
C−1)] ≥ ε

2d2 . J
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Before proving Theorem 18 we introduce some notation and prove an important claim. We
use AC1,...,Cm : (Xk)λ → Zλd to denote an adversary who sees the challenges C1, . . . , Cm ∈ Xk

and the corresponding responses f (σ (C1)) , . . . , f (σ (Cm)). AC1,...,Cm (C ′1, . . . , C ′λ) ∈ Zλd
denotes the adversaries prediction of f (σ (C ′1)) , . . . , f (σ (C ′λ)). Given a function b : (Xk)λ →
Zλd , challenges C ′1, . . . , C ′λ ∈ Xk and responses f (σ (C ′1)) , . . . , f (σ (C ′λ)) we use Pb,i,C′1,...,C′m :
Xk × [t]→ Zd ∪ {⊥} to predict the value of a clause C ∈ Xk

Pb,C′1,...,C′λ (C, i) =

b
(
Ĉ1, . . . , Ĉλ

)
[i], if f

(
σ
(
Ĉj

))
= b

(
Ĉ1, . . . , Ĉλ

)
[j] ∀j < i

⊥, otherwise

where Ĉi = C and Ĉj = C ′j for j 6= i. We allow our predictor Pb,C′1,...,C′λ (C, i) to output ⊥
when it is unsure. Informally, Claim 26 says that for b = AC1,...,Cm our predictor Pb,i,C′1,...,C′m
is reasonably accurate whenever it is not unsure. Briefly, Claim 26 follows because for
b = AC1,...,Cm we have

Pr [Wins (A, n,m, λ)] =
d∏
i=1

Pr
C∼Xk

C1,...,Cm∼Xk
C′1,...,C

′
λ
∼Xk

[
Pb,C′1,...,C′λ (C, i) = f (σ (C)) Pb,C′1,...,C′λ (C, i) 6= ⊥

]
.

I Claim 26. Let A be an adversary s.t Pr [Wins (A, n,m, λ)] >
( 1
d + ε

)λ and let b =
AC1,...,Cm then

Pr
i∼[λ],C∼Xk
C1,...,Cm∼Xk
C′1,...,C

′
λ∼Xk

[
Pb,C′1,...,C′λ (C, i) = f (σ (C)) Pb,C′1,...,C′λ (C, i) 6= ⊥

]
≥
(

1
d

+ ε

)
.

Proof of Claim 26. We draw examples (C1, f (σ (C1))) , . . . , (Cm, f (σ (Cm))) to construct
b = AC1,...,Cm . Given a random length-λ password challenge (C ′1, . . . , C ′λ) ∈ (Xk)t we let

pj = Pr
C,C1,...,Cm,C′1,...,C

′
λ
∼Xk

[
Pb,j,C′1,...,C′t (C) = f (σ (C)) Pb,j,C′1,...,C′λ (C) 6= ⊥

]
denote the probability that the adversary correctly guesses the response to the j’th challenge
conditioned on the event that the adversary correctly guesses all of the earlier challenges.
Observe that

Pr
C,C1,...,Cm,C′1,...,C

′
λ−1∼Xk,i∼[t]

[
Pb,i,C′1,...,C′λ (C, i) = f (σ (C))

]
=

λ∑
i=1

pi/λ ,

so it suffices to show that
∑λ
i=1 pi/λ ≥

1
d + ε. We obtain the following constraint

λ∏
i=1

pi =
λ∏
i=1

Pr
C,C1,...,Cm,C

′
1,...,C

′
λ
∼Xk

[
Pb,j,C′1,...,C′λ (C) = f (σ (C)) Pb,j,C′1,...,C′λ (C) 6= ⊥

]
=

λ∏
i=1

Pr
C1,...,Cm,C

′
1,...,C

′
λ
∼Xk[

AC1,...,Cm

(
C′1, . . . , C

′
λ

)
[i] = f

(
σ
(
C′i
))
∀j < i. AC1,...,Cm

(
C′1, . . . , C

′
λ

)
[j] = f

(
σ
(
C′j
))]

= Pr
C1,...,Cm,C

′
1,...,C

′
λ
∼Xk

[
AC1,...,Cm

(
C′1, . . . , C

′
λ

)
=
(
f
(
σ
(
C′1
))
, . . . , f

(
σ
(
C′λ
)))]

≥
(1
d

+ ε

)λ
.
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If we minimize
∑t
i=1 pi/λ subject to the constraint

∏λ
i=1 pi ≥

( 1
d + ε

)λ then we obtain
the desired upper bound

∑λ
i=1 pi/λ ≥

1
d + ε. J

I Theorem 18 (restated). Suppose that f has evenly distributed output, but that f is not
UF−RCA (n,m, λ, δ)− secure for δ >

( 1
d + ε

)λ. Then there is a probabilistic polynomial
time algorithm (in n, m, λ and 1/ε) that extracts a string σ′ ∈ Znd that is ε/8-correlated with
σ with probability at least ε3

(8d)2 after seeing m+ λ example challenge response pairs.

Proof of Theorem 18. Given random clauses C1, . . . , Cm, C
′
1, . . . , C

′
λ ∼ Xk we let

Good (C1, . . . , Cm, C
′
1, . . . , C

′
λ) denote the event that

Pr
i∼[t],C∼Xk

[
Pb,C′1,...,C′λ (C, i) = f (σ (C)) Pb,C′1,...,C′λ (C, i) 6= ⊥

]
≥
(

1
d

+ ε

2

)
.

By Markov’s Inequality and Claim 26 we have Pr [Good (C1, . . . , Cm, C
′
1, . . . , C

′
λ)] ≥ ε

2 . Here,
b = AC1,...,Cm and

Pb,C′1,...,C′λ (C, i) =

b
(
Ĉ1, . . . , Ĉλ

)
[i], if f

(
σ
(
Ĉj

))
= b

(
Ĉ1, . . . , Ĉλ

)
[j] ∀j < i

⊥, otherwise

Assuming that the event Good (C1, . . . , Cm, C
′
1, . . . , C

′
λ) occurs we obtain labels for each

clause C ∈ Xk by selecting a random permutation π : [λ] → [λ], setting i = 1 and setting
`C = Pb,C′1,...,C′λ (C, π(i)) – if `C 6= ⊥ then we increment i and repeat. Note that we
will always find a label `C 6= ⊥ within t attempts because Pb,C′1,...,C′λ (C, 1) 6= ⊥. Let
GoodLabels denote the event that

Pr
C∼Xk

[GC ] ≥ 1
d

+ ε

4 ,

where GC is the indicator random variable for the event `C = f (σ (C)). We have

E

[
1
|Xk|

∑
C∈Xk

GC

]
≥ 1
d

+ ε

2 ,

so we can invoke Markov’s inequality again to argue that Pr [GoodLabels Good] ≥ ε
4 .

If the event GoodLabels occurs then we can invoke Theorem 19 to obtain σ′ that is
ε/8-correlated with σ with probability at least ε

8d2 . Our overall probability of success is

ε

8d2 ×
ε

4 ×
ε

2 = ε3

(8d)2 . J

F Security Parameters of fk1,k2

I Claim 9 (restated). Let 0 ≤ k1 and k2 > 0 be given and let f = fk1,k2 we have g(f) =
min{k1, 10}, r(f) = k2 + 1 and s(f) = min

{
k2+1

2 , k1 + 1, 11
}
.

Proof of Claim 9. Let f(x) = fk1,k2(x) = x(∑9+k1
i=10

xi mod 10
) +

∑9+k1+k2
i=10+k1

xi mod 10. We

first observe that if we fix the values of x10, . . . , x9+k1 ∈ Z10 and let i′ =
∑9+k1
i=10 xi mod 10

then f ′ (x0, . . . , x9, x10+k1 , . . . , x9+k1+k2) = xi′ +
∑9+k1+k2
i=10+k1

xi mod 10 is a linear func-
tion. Similarly, if we fix the values of x0 = . . . = x9 = c then the resulting function
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f ′ (x10, . . . , x9+k1+k2) = c+
∑9+k1+k2
i=10+k1

xi mod 10 is linear. Thus, g(f) ≤ min{10, k1}. Now
suppose that we don’t fix all of the values x10, . . . , x9+k1 ∈ Z10 and at least one of the
variables x0, . . . , x9 is not fixed. In this case the resulting function will not be linear. Thus,
g (f) ≥ min{k1, 10}. We also note that for any α ∈ Z10+k1+k2

10 s.t. H (α) ≤ k2 and i, t ∈ Z10
that

Pr
x∼Z10+k1+k2

10

[f(x) = t α · x ≡ i mod 10] = Pr
x∼Z10+k1+k2

10

[f(x) = t] = 1
10 .

Therefore,

Q̂f,tα = E
x∼Z10+k1+k2

10

[
Qf,t (x)χα (x)

]
=

9∑
i=0

Pr [α · x ≡ i mod 10]E
x∼Z10+k1+k2

10

[
Qf,t (x)χα (x) α · x ≡ i mod 10

]
=

9∑
i=0

exp
(
−2πi

√
−1

10

)
Pr [α · x ≡ i mod 10]E

x∼Z10+k1+k2
10

[
Qf,t (x) α · x ≡ i mod 10

]
= 1

10

9∑
i=0

exp
(
−2πi

√
−1

10

)
E
x∼Z10+k1+k2

10

[
Qf,t (x) α · x ≡ i mod 10

]
= 0 ,

which implies that r(f) ≥ k2 + 1. Similarly, if we set α = (α0, . . . , α9+k1+k2) such that
α0 = 1 and α10+k1 = . . . = α9+k1+k2 = 1 so that α has hamming weight k2 + 1 then we can
verify that Q̂f,tα 6= 0. J

G Security Upper Bounds

G.1 Statistical Algorithms
Theorem 27 demonstrates that our lower bound for statistical algorithms are asymptotically
tight for our human computable password schemes fk1,k2 . In particular, we demonstrate that
m = Õ

(
n(k2+1)/2) queries to 1-MSTAT are sufficient for a statistical algorithm to recover σ.

I Theorem 27. For f = fk1,k2 there is a randomized algorithm that makes
O
(
nmax{1,(k2+1)/2} log2 n

)
calls to the 1-MSTAT

(
ndr(fi)/2e

)
oracle and returns σ with prob-

ability 1− o(1).

For binary functions f ′ : {0, 1}k → {0, 1}, Feldman et al. [26] gave a randomized statistical
algorithm to find σ′ ∈ {0, 1}n using just O

(
nr(f)/2 log2 n

)
calls to the 1-MSTAT

(
ndr(f)/2e)

oracle. Their main technique is a discrete spectral iteration procedure to find the eigenvector
(singular vector) with the largest eigenvalue (singular value) of a matrix M sampled from
a distribution Mσ′,p over

∣∣Xbr(f)/2c
∣∣× ∣∣Xdr(f)/2e

∣∣ matrices. With probability 1− o(1) this
eigenvector will encode the value

∑
i∈C σ

′ (i) mod 2 for each clause C ∈ Xr(f)/2. We show
that the discrete spectral iteration algorithm of Feldman et al [26] can be extended to recover
σ ∈ Z10 when fk1,k2 is one of our candidate human computable functions.

Discussion

We note that Theorem 27 cannot be extended to arbitrary functions f : Zkd → Zd. Consider for
example the unique function f : Z6

10 → Z10 s.t. f(x1, . . . , x6) ≡ f ′ (x1 mod 2, . . . , x6 mod 2)
mod 2 and f(x1, . . . , x6) ≡ f ′′ (x1 mod 5, . . . , x6 mod 5) mod 5, where f ′ : Z6

2 → Z2 and
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f ′′ : Z6
5 → Z5. By the Chinese Remainder Theorem instead of picking a secret mapping

σ ∈ Zn10 we could equivalently pick the unique secret mappings σ1 ∈ Zn2 and σ2 ∈ Zn5 s.t
σ ≡ σ1 mod 2 and σ ≡ σ2 mod 5. Now drawing challenge response pairs from the distribu-
tions Qfσ is equivalent to drawing challenge-response pairs from the distributions Qf ′σ1

and
Qf
′′

σ2
. Suppose that f ′(x1, . . . , x6) = x1x2 +x3 +x4 +x5 +x6 mod 2, and f ′′(x1, . . . , x6) = x1.

Then we have r(f) = min (r(f ′), r(f ′′)) = r(f ′′) = 1, but r(f ′) = 4. We can find σ2 using
O
(
n log2 n

)
calls to 1-MSTAT(n), but to find σ we must also recover σ1. This provably

requires at least Ω̃
(
nr(f

′)/2
)

= Ω̃
(
n2) calls to 1-MSTAT

(
n2).

Background

The proof of Theorem 27 relies on the discrete spectral iteration algorithm of [26]. We begin
by providing a brief overview of their algorithm. In their setting the secret mapping σ is
defined over the binary alphabet Zn2 . Let c1 = d r(f)

2 e, c2 = b r(f)
2 c and let δ ∈ [0, 2]\{1}. They

use σ to define a distribution over |Xc1 | × |Xc2 | matrices Mσ,δ,p = M̂ (Qσ,δ,p)− Jp, where J
denotes the all ones matrix. For (C1) ∈ Xc1 , (C2) ∈ Xc2 such that C1

⋂
C2 = ∅ we have

M̂ (Qσ,δ,p) [(C1) , (C2)] =


1, with probability (p (2− δ)) if

∑
j∈C1∪C2

σ (j) ≡ 0 mod 2
1, with probability (pδ) if

∑
j∈C1∪C2

σ (j) 6≡ 0 mod 2
0, otherwise

.

Given a vector x ∈ {±1}|Xc2 | (resp. y ∈ {±1}|Xc1 |) Mσ,δ,px defines a distribution over
vectors in R|Xc1 | (resp. MT

σ,py defines a distribution over vectors in R|Xc1 |).

If r(f) is even then the largest eigenvalue of E [Mσ,δ,p] has a corresponding eigenvector
x∗ ∈ {±1}Xr(f)/2 , where for Ci ∈ Xr(f)/2 we have x∗ [Ci] = 1 if

∑
j∈Ci σ(j) ≡ 1 mod 2;

otherwise x∗ [Ci] = −1 (if r(f) is odd then we consider the top singular value instead).
Feldman et al [26] use discrete spectral iteration to find x∗ (or −x∗). Given x∗ it is easy to
find σ using Gaussian Elimination.
The discrete spectral iteration algorithm of Feldman et al [26] starts with a random vector
x0 ∈ {0, 1}|Xc2 |. They then sample xi+1 ∼ Mσ,px

i and execute a normalization step to
ensure that xi+1 ∈ {0, 1}|Xk2 |. When r(f) is odd, power iteration has two steps: draw a
sample yi ∼Mσ,δ,px

i and sample from the distribution xi+1 = MT
σ,δ,py

i. They showed that

O
(
log
∣∣Xr(f)

∣∣) iterations suffice to recover σ whenever p = K log|Xr(f)|
(δ−1)2

√
|Xr(f)|

, and that for a

vector x ∈ {0, 1}|Xk2 | (resp. y ∈ {±1}|Xk1 |) it is possible to sample from Mσ,δ,px (resp.
MT
σ,δ,py) using O (1/p) queries to 1-MSTAT (|Xc1 |).

Our Reduction

The proof of Theorem 27 uses a reduction to the algorithm of Feldman et al[26].

Proof of Theorem 27 (sketch). Given a mapping σ ∈ Znd and a number i ∈ Zd we define a
mapping σi ∈ Zn2 where

σi(j) =
{

1, ifσ (j) = i

0, otherwise
.

Clearly, to recover σ it is sufficient to recover σi for each i ∈ Zd. Therefore, to prove Theorem
27 it suffices to show that given x ∈ {±1}|Xk2 | (resp. y ∈ {±1}|Xk1 |) we can sample from
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the distribution Mσi,δ,px (resp. MT
σi,δ,p

y) using O (1/p) queries to 1-MSTAT
(∣∣Xdr(f)/2e

∣∣)
for each i ∈ {0, . . . , d− 1}, where 1-MSTAT uses the distribution Qfσ. In general, this will
not possible for arbitrary functions f . However, Lemma 28 shows that for our candidate
human computable functions f1,3, f2,2 we can sample from the distributions Mσi,δ,px (resp.
MT
σi,δ,p

y). The proof of Lemma 28 is similar to the proof of [26, Lemma 10]. J

I Lemma 28. Given vectors ~x ∈ {±1}|Xc1 |, ~y ∈ {±1}|Xc2 | we can sample from Mσi,δ,px and
MT
σ,δ,py using O

(
n(k2+1)/2 log2 n

)
calls to the 1-MSTAT

(
ndr(f)/2e) oracle for f = fk1,k2 .

The proof of Lemma 28 relies on Fact 29.

I Fact 29. For each j, t ∈ Z10 we have

Pr
(x0,...,x9+k1+k2 )∼Z10+k1+k2

10

[
xt +

10+k1+k2∑
i=10+k1

xi ≡ j fk1,k2 (x0, . . . , x9+k1+k2 ) ≡ j mod 10

]

=
(

9
10

(
1

10

)
+ 1

10

) (
1

10

)(
1

10

) = 19
100 ,

and

Pr
(x0,...,x9+k1+k2 )∼Z10+k1+k2

10

[
xt +

10+k1+k2∑
i=10+k1

xi ≡ j fk1,k2 (σ (x0, . . . , x9+k1+k2 )) 6≡ j mod 10

]

=
(

9
10

(
1

10

)
+ 1

10 (0)
) (

1
10

)(
1

10

) = 9
100 .

Proof of Lemma 28. Given a value j ∈ Z10 and a value i ∈ Z10 we let xij ∈ {0, 1} be the
indicator variable for the event xj = i. By Fact 29 it follows that

Pr
(x0,...,xk1+k2+9)∼Zk1+k2+10

10[
xi0 + xi9+k1 + . . .+ xi7+k1+c1 ≡ 1 mod 2 fk1,k2 (σ (x0, . . . , x9+k1+k2 )) ≡ ic1 mod 10

]
6= Pr

(x0,...,xk1+k2+9)∼Zk1+k2+10
10[

xi0 + xi9+k1 + . . .+ xi7+k1+c1 ≡ 1 mod 2 fk1,k2 (σ (x0, . . . , x9+k1+k2 )) 6≡ ic1 mod 10
]
.

Now for fk1,k2 we define the function hi,+ : Xk1+k2+10 × Z10 → Xc1 ∪ {⊥} as follows

hi,+ (x0, . . . , x9+k1+k2 , fk1,k2 (σ (x0, . . . , x9+k1+k2)))

=
{

(x0, x9+k1 , . . . , x7+k1+c1) iffk1,k2 (σ (x0, . . . , x13)) ≡ ic1 mod 10
⊥ otherwise.

.

Intuitively, given a clause C1 ∈ Xc1 the probability that hi,+ returns C1 is greater if∑
j∈C1

σi(j) ≡ 1 mod 2.
Given a vector x ∈ {±1}|Xc1 | we query our 1-MSTAT (|Xc1 |+ 1) oracle d10/pe times with

the function hi,+ to sample from Mσi,δ,px. Let q1, . . . , qd10/pe ∈ Xc1 denote the responses
and let x [qj ] denote the value of the vector x at index qj . We observe that for some δ 6= 1
we have

Mσi,δ,px[C] ∼
∑

j∈d10/pe
qj 6=⊥

x [qj ]− p
∑

C′∈Xc1

x[C ′] ,

for every C ∈ Xc2 . J
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Algorithm 4: GaussianAttack
input :Clauses C1, . . . , Cm ∼ Xk, and labels f (σ (C1)) , . . . , f (σ (Cm)).
forall S ∈ Xg(f), α ∈ Zg(f)

d do
LC← ∅ ;
// LC is the set of linear constraints extracted
forall C ∈ {C1, . . . , Cm} do

LC← LC
⋃

TryExtract (C, f (σ (C)) , S, α) ;
if |LC| ≥ n then

σ′ ← LinearSolve (LC) ;
if ∀i ∈ [m]. f (σ′ (Ci)) = f (σ (Ci)) ∈ C then

return σ′

end
end

end
end

Open Question

Can we precisely characterize the functions f : Zkd → Zd for which we can efficiently recover
σ after seeing Õ

(
nr(f)/2) challenge-response pairs? Feldman et al. [26] gave a statistical

algorithm that recovers the secret mapping whenever d = 2 after making Õ
(
nr(f)/2) queries

to 1-MSTAT
(
nr(f)/2). While we show that the same algorithm can be used to recover σ

after making Õ
(
nr(f)/2) queries to 1-MSTAT

(
nr(f)/2) in our candidate human computable

password schemes with d = 10, we also showed that these results do not extend to all
functions f : Zkd → Zd.

G.2 Gaussian Elimination
Most known algorithmic techniques can be modeled within the statistical query frame-
work. Gaussian Elimination is a notable exception. As an example consider the function
f(x1, . . . , x7) = x1 + . . . + x7 mod 10 (in this example r(f) = 7 and g(f) = 0). Our
previous results imply that any statistical algorithm would need to see at least m = Ω̃

(
n7/2)

challenge response pairs (C, f (σ (C))) to recover σ. However, it is trivial to recover σ from
O(n) random challenge response pairs using Gaussian Elimination. In general, consider
the following attacker shown in algorithm 4, which uses Gaussian Elimination. Algorithm
4 relies on the subroutine TryExtract (C, f (σ (C)) , S, α), which attempts to extract a
linear constraint from (C, f (σ (C))) under the assumption that σ (S) = α. We assume
TryExtract (C, f (σ (C)) , S, α) returns ∅ if it cannot extract a linear constraint. For ex-
ample, if we assume that σ(1) = 4 and σ(2) = 8 and let C = (i0, i1, ..., i9, 1, 2, i10, i11) (with
ij ∈ [n] \ {1, 2}) then we have f2,2 (σ (C)) = σ (i4+8 mod 10) + σ (i10) + σ (i11) mod 10. In
this case, TryExtract (C, f (σ (C)) , {1, 2}, {4, 8}) would return the constraint f (σ (C)) =
σ (i2) + σ (i10) + σ (i11) mod 10. However, TryExtract (C, f (σ (C)) , {i0, 2}, {4, 8}) would
return ∅.

Fact 30 says that an attacker needs at leastm = Ω̃
(
n1+g(f)) challenge-response pairs to re-

cover σ using Gaussian Elimination. This is because the probability that

TryExtract (C, f (σ (C))S, α) extracts a linear constraint is at most O
((
|S|
n

)−g(f)
)
, which

is O
(
n−g(f)) for |S| constant. The adversary needs O(n) linearly independent constraints
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to run Gaussian Elimination. If the adversary can see at most Õ
(
ns(f)) examples neither

approach (Statistical Algorithms or Gaussian Elimination) can be used to recover σ.

I Fact 30. Algorithm 4 needs to see at least m = Ω̃
(
n1+g(f)) challenge-response pairs to

recover σ.

Remark G.2 explores the tradeoff between the adversary’s running time and the number
of challenge-response pairs that an adversary would need to see to recover σ using Gaussian
elimination. In particular the adversary can recover σ from Õ

(
n1+g(f)/2) challenge-response

pairs if he is willing to increase his running time by a factor of d
√
n. In practice, this attack

may be reasonable for n ≤ 100 and d = 10, which means that it may be beneficial to look for
candidate human computable functions f that maximize min{r(f)/2, 1 + g(f)/2} instead of
s(f) whenever n ≤ 100.

I Remark. If the adversary correctly guesses value of σ (S) for |S| = nε then he may be able
to extract a linear constraint from a random example with probability Ω(1/n(1−ε)g(f)). The
adversary would only need Õ

(
n1+(1−ε)g(f)) examples to solve for σ, but his running time

would be proportional to dεn – the expected number of guesses before he is correct.

H Rehearsal Model

In this section we review the usability model of Blocki et al. [13]. Their usability model
estimates the ‘extra effort’ that a user needs to expend to memorize and rehearse all of
his secrets for a password management scheme. In this section we use (ĉ, â) to denote a
cue-association pair, and we use the variable t to denote time (days). In our context (ĉ, â)
might denote the association between a letter (e.g., ‘e’) and the secret digit associated
with that letter (e.g., σ (e)). If the user does not rehearse an association (ĉ, â) frequently
enough then the user might forget it. Their are two main components to their usability
model: rehearsal requirements and visitation schedules. Rehearsal requirements specify
how frequently a cue-association pair must be used for a user to remember the association.
Visitation schedules specify how frequently the user authenticates to each of his accounts
and rehearses any cue-association pairs that are linked with the account.

H.1 Rehearsal Requirements

Blocki et al. [13] introduce a rehearsal schedule to ensure that the user remembers each
cue-association pair.

I Definition 31. [13] A rehearsal schedule for a cue-association pair (ĉ, â) is a sequence of
times tĉ0 < tĉ1 < .... For each i ≥ 0 we have a rehearsal requirement, the cue-association pair
must be rehearsed at least once during the time window

[
tĉi , t

ĉ
i+1
)

= {x ∈ R tĉi ≤ x < tĉi+1}.

A rehearsal schedule is sufficient if a user can maintain the association (ĉ, â) by following
the rehearsal schedule. The length of each interval

[
tĉi , t

ĉ
i+1
)
may depend on the strength of

the mnemonic techniques used to memorize and rehearse a cue-association pair (ĉ, â) as well
as i – the number of prior rehearsals [54, 52].

Expanding Rehearsal Assumption [13]: The rehearsal schedule given by tĉi = 2is is
sufficient to maintain the association (ĉ, â), where s > 0 is a constant.
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Table 6 Visitation Schedules - number of accounts visited with frequency λ (visits/days)

Schedule λ 1
1

1
3

1
7

1
31

1
365

Very Active 10 10 10 10 35
Typical 5 10 10 10 40
Occasional 2 10 20 20 23
Infrequent 0 2 5 10 58

H.2 Visitation Schedules

Suppose that the user has m accounts A1, . . . , Am. A visitation schedule for an account Ai
is a sequence of real numbers τ i0 < τ i1 < . . ., which represent the times when the account Ai
is visited by the user. Blocki et al. [13] do not assume that the exact visitation schedules
are known a priori. Instead they model visitation schedules using a random process with a
known parameter λi based on E

[
τ ij+1 − τ ij

]
– the average time between consecutive visits to

account Ai.
A rehearsal requirement

[
tĉi , t

ĉ
i+1
)
can be satisfied naturally if the user visits a site Aj

that uses the cue ĉ (ĉ ∈ cj) during the given time window. Here, cj denote the set of
cue-association pairs that the user must remember when logging into account Aj . Formally,

I Definition 32. [13] We say that a rehearsal requirement
[
tĉi , t

ĉ
i+1
)
is naturally satisfied by

a visitation schedule τ i0 < τ i1 < . . . if ∃j ∈ [m], k ∈ N s.t ĉ ∈ cj and τ jk ∈
[
tĉi , t

ĉ
i+1
)
. We use

ERt,ĉ =
∣∣∣{i tĉi+1 ≤ t ∧ ∀j, k.

(
ĉ /∈ cj ∨ τ jk /∈

[
tĉi , t

ĉ
i+1
))}∣∣∣ ,

to denote the number of rehearsal requirements that are not naturally satisfied by the
visitation schedule during the time interval [0, t].

I Example. Consider the human computable function f2,2 from section 3, and suppose that
the user has to compute f2,2 (σ (Ci)) to authenticate at account Aj , where Ci = (x0, . . . , x13).
When the user computes f2,2 he must rehearse the associations (x10, σ (x10)), (x11, σ (x11)),
(x12, σ (x12)), (x13, σ (x13)) and (xi, σ (xi)) where i = (σ (x10) + σ (x11) mod 10). Thus
cj ⊃ {xi, x10, x11, x12, x13}. When user authenticates he naturally rehearses each of these
associations in cj .

If a cue-association pair (ĉ, â) is not rehearsed naturally during the interval
[
tĉi , t

ĉ
i+1
)
then

the user needs to perform an extra rehearsal to maintain the association. Intuitively, ERt,ĉ
denotes the total number of extra rehearsals of the cue-association pair (ĉ, â) during the time
interval [0, t], and ERt =

∑
ĉ∈C ERt,ĉ denotes the total number of extra rehearsals during

the time interval [0, t] to maintain all of the cue-association pairs. Thus, a smaller value of
E [ERt] indicates that the user needs to do less extra work to rehearse his secret mapping.

Poisson Arrival Process

The visitation schedule for each account Aj is given by a Poisson arrival process with
parameter λj , where 1/λj = E

[
τ ij+1 − τ ij

]
denotes the average time between consecutive

visits to account Aj .
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Table 7 E [ER365]: Extra Rehearsals over the first year to remember σ : {1, . . . , n} → Z10 in our
scheme with f2,2 or f1,3. Compared with Shared Cues schemes SC-0,SC-1 and SC-2[13].

Our Scheme (σ ∈ Zn10) Shared Cues
User n = 100 n = 50 n = 30 SC-0 SC-1 SC-2
Very Active 0.396 0.001 ≈ 0 ≈ 0 3.93 7.54
Typical 2.14 0.039 ≈ 0 ≈ 0 10.89 19.89
Occasional 2.50 0.053 ≈ 0 ≈ 0 22.07 34.23
Infrequent 70.7 22.3 6.1 ≈ 2.44 119.77 173.92

Table 8 Single-Digit Challenge Layout. Given a random mapping σ from letters to digits the
user can compute f2,2 (σ (‘C′)) by executing the following steps (1) Recall σ(‘A′) – the number
associated with the letter A, (2) Recall σ(‘B′), (3) Compute i = σ(‘A′) + σ(‘B′) mod 10 – without
loss of generality suppose that i = 8, (4) Find the letter at index i – ‘M’ if i = 8, (5) Recall σ(‘M ′)
(6) Recall σ(‘C′) (7) Compute j = σ(‘M ′) + σ(‘C′) mod 10 (8) Recall σ(‘D′) (9) Return j + σ(‘D′)
mod 10.

A B C D

0 E 5 J
1 F 6 K
2 G 7 L
3 H 8 M
4 I 9 N

Evaluating Usability

Blocki et al. [13] prove the following theorem. Given a sufficient rehearsal schedule and
a visitation schedule, Theorem 33 predicts the value of ERt, the total number of extra
rehearsals that a user will need to do to remember all of the cue-association pairs required
to reconstruct all of his passwords.

I Theorem 33. [13] Let iĉ∗ =
(
arg maxx tĉx < t

)
− 1 then

E [ERt] =
∑
ĉ∈C

iĉ∗∑
i=0

exp

−
∑
j s.t.
ĉ∈cj

λj

(tĉi+1 − tĉi
)

We use the formula from Theorem 33 to obtain the usability results in Table 7. To
evaluate this formula we need to be given the rehearsal requirements, a visitation schedule
(λi) for each account Ai and a set of public challenges ~Ci ∈ (X14)10 for each account Ai. The
rehearsal requirements are given by the Expanding Rehearsal Assumption [13] (we use the
same association strength parameter s = 1 as Blocki et al. [13]), and the visitation schedules
for each user are given in Table 6. We assume that each password is 10 digits long and that
the challenges ~Ci ∈ (X14)10 are chosen at random by Algorithm 2. Notice that each time
the user responds to a single digit challenge he rehearses the secret mapping at five locations
(see discussion in Section 3.1). Because the value of E [ER365] depends on the particular
password challenges that we generated for each account, we ran Algorithm 2 and computed
the resulting value E [ER365] one-hundred times. The values in Table 7 represent the mean
value of E [ER365] across all hundred instances.
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I Sum of k-Mins

In the basic Hopper-Blum [34] Human Identification Protocol the user memorizes a subset
S ⊆ [n] of k = |S| secret indices. A single digit challenge consisted of a vector x ∈ Zn10 of
n digits and the user responded by with the mod 10 sum of the digits at k ≤ n secret
locations plus an error term e∑

i∈S
xi mod 10 + e .

Typically, the user will set e = 0, but occasionally the user is supposed to respond with a
completely random digit instead of the correct response (e.g., so that the adversary cannot
simply use Gaussian Elimination to find S). Thus, the human user must occasionally
generate random numbers in his head to execute the Hopper-Blum protocol. This is
potentially problematic because humans are not good at consciously generating random
numbers [53, 27, 42]. In fact, hard learning problems like noisy parity might even be easy to
learn when humans are providing the source of noise.

Hopper and Blum [34] also proposed a deterministic human identification protocol call
sum of k-mins. In this protocol the user memorized k secret pairs (i, j) of indices S ⊆ [n]2.
As before a single digit challenge consists of a vector x ∈ Zn10 of n digits. However, now the
response to the challenge is deterministic∑

(i,j)∈S

min{xixj} mod 10 .

We observe that for any constant k the protocol is not secure against polynomial time
attackers who have seen O

(
k · logn

)
examples. The adversary can simply enumerate all

possible sets S of k pairs and cross out the ones that are inconsistent with the challenge-
response pairs he has already seen. Even for larger k (e.g., greater human work) Hopper
and Blum [34] observed that the protocol was not secure against an adversary who has seen
O(n2) examples. To see this observe that we can create an indicator variable yi,j for each
pair (i, j). Each challenge response pair (x, r) yields a linear constraint∑

(i,j)

yi,j min{xi, xj} = r mod 10 .
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