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Abstract
We provide new query complexity separations against sensitivity for total Boolean functions: a
power 3 separation between deterministic (and even randomized or quantum) query complexity
and sensitivity, and a power 2.22 separation between certificate complexity and sensitivity. We
get these separations by using a new connection between sensitivity and a seemingly unrelated
measure called one-sided unambiguous certificate complexity (UCmin). We also show that UCmin
is lower-bounded by fractional block sensitivity, which means we cannot use these techniques to
get a super-quadratic separation between bs(f) and s(f).

Along the way, we give a power 1.22 separation between certificate complexity and one-sided
unambiguous certificate complexity, improving the power 1.128 separation due to Göös [20].
As a consequence, we obtain an improved Ω(log1.22 n) lower-bound on the co-nondeterministic
communication complexity of the Clique vs. Independent Set problem.
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1 Introduction

Sensitivity is one of the simplest complexity measures of a Boolean function. For f : {0, 1}n →
{0, 1} and x ∈ {0, 1}n, the sensitivity of x is the number of bits of x that, when flipped,
change the value of f(x). The sensitivity of f , denoted s(f), is the maximum sensitivity of
any input x to f . Sensitivity lower bounds other important measures in query complexity,
such as deterministic query complexity D(f), randomized query complexity R(f), certificate
complexity C(f), and block sensitivity bs(f) (see Section 2 for definitions).

√
s(f) is a lower

bound on quantum query complexity Q(f).
Despite its simplicity, sensitivity has remained mysterious. The other measures are

polynomially related to each other: we have bs(f) ≤ C(f) ≤ D(f) ≤ bs(f)3 and Q(f) ≤
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R(f) ≤ D(f) ≤ Q(f)6. In contrast, no polynomial relationship connecting sensitivity to
these measures is known, despite much interest (this problem was first posed by [31]. For a
survey, see [26]. For recent progress, see [8, 13, 6, 4, 7, 9, 18, 39, 24, 25, 41]).

Until recently, the best known separation between sensitivity and any of these other
measures was quadratic. Tal [41] showed a power 2.11 separation between D(f) and s(f).
In this work, we improve this to a power 3 separation, and also show functions for which
Q(f) = Ω̃(s(f)3) and C(f) = Ω̃(s(f)2.22).

We do this by exploiting a new connection between sensitivity and a measure called
one-sided unambiguous certificate complexity, which we denote by UCmin(f). This measure,
and particularly its two-sided version UC(f) (which is sometimes called subcube complexity),
has received significant attention in previous work (e.g. [14, 17, 37, 11, 27, 23, 20, 21, 16, 5]),
in part because it corresponds to partition number in communication complexity. Intuitively,
UCmin(f) is similar to (one-sided) certificate complexity, except that the certificates are
required to be unambiguous: each input must be consistent with only one certificate. For a
formal definition, see Section 2.5.

We prove the following theorem.

I Theorem 1. For any α ∈ R+, if there is a family of functions with D(f) = Ω̃(UCmin(f)1+α),
then there is a family of functions with D(f) = Ω̃(s(f)2+α). The same is true if we replace
D(f) by bs(f),C(f),R(f),Q(f), and many other measures.

Theorem 1 can be generalized from sensitivity s(f) to bounded-size block sensitivity
bs(k)(f) (block sensitivity where each block is restricted to have size at most k). However,
there is a constant factor loss that depends on k.

We observe that cheat sheet functions (as defined in [2]) have low UCmin; in particular,
one of the functions in [2] already has a quadratic separation between Q(f) and UCmin(f),
giving a cubic separation between Q(f) and s(f).

I Corollary 2. There is a family of functions with Q(f) = Ω̃(s(f)3).

To separate C(f) from s(f), we will use a function f with a significant gap between
C(f) and UCmin(f). Göös [20], as part of the proof of his exciting ω(logn) lower-bound for
communication complexity of clique versus independent set problem, gave a construction of
a function f such that C(f) ≥ UCmin(f)α for α ≈ 1.128. Using Göös’s function [20] would
give a family of functions with C(f) = Ω(s(f)2.128). We show that it is possible to obtain an
even better separation (Theorem 4 below), leading to the following separation between C(f)
and s(f).

I Corollary 3. There is a family of functions with C(f) = Ω(s(f)2.22).

New separation between C and UCmin

It is known that C(f) ≤ UCmin(f)2 (e.g., [20]), and analogously in the communication
complexity world coNPcc(f) ≤ UPcc(f)2 ([43]). Next, we discuss a polynomial separation
between C and UCmin due to [20] that uses function composition.

Throughout the years, Boolean function composition was used extensively to separate
different complexity measures; a non-exhaustive list includes [1, 3, 12, 19, 28, 32, 33, 34, 42, 36,
38, 40, 41]. The natural idea is to exhibit some constant separation between any two measures:
M(f) and N(f) (i.e., M(f) < N(f) for a constant size function f) and then to prove that
M(fk) ≤ M(f)k and N(fk) ≥ N(f)k, for any k ∈ N. This yields an infinite family of
functions with polynomial separation between M and N , as N(fk) ≥M(fk)logN(f)/ logM(f).
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However, this approach does not work straightforwardly in an attempt to separate UCmin
from C, since it is not necessarily true that UCmin(fk) ≤ UCmin(f)k. [20] overcomes this
barrier by considering gadgets over a larger alphabet where the letters of the alphabet are
weighted. He constructs such a gadget using projective planes, and further shows how to
compose gadgets over a weighted alphabet in a way that behaves multiplicatively for both
UCmin and C. Finally, he shows how to simulate the weights and the larger alphabet with
a Boolean function. The gadget fk constructed by Göös satisfies C(fk) = k2 − k + 1 and
UCmin(fk) = k(k+1)

2 , whenever k − 1 is a prime power. The optimum separation is obtained
when k = 8, giving a separation exponent of log(57)/ log(36) ≥ 1.128.

Since C(fk) ≈ k2 and UCmin(fk) ≈ k2/2 and the separation exponent is

log(C(fk))/ log(UCmin(fk)) ≈ log(k2)/ log(k2/2),

it seems that one should try to take k as small as possible. However, the additive terms
affect smaller k’s more significantly, making the optimum attained at k = 8. This motivated
us to try and reduce the weights in other ways, in order to improve the exponent. To do
so, we introduce fractional weights. The argument of Göös as is does not allow fractional
weights, and in particular when Booleanizing the function, it seems inherent to use integer
weights. We overcome this difficulty by considering fractional weights in intermediate steps
of the construction, and then round them up at the end to get integral weights. We obtain
the following separation.

I Theorem 4 (UCmin(f) vs C(f) - Improved). There exists an infinite family of Boolean func-
tions fn : {0, 1}n → {0, 1} such that C(fn) ≥ Ω̃

(
UCmin(fn)

log(38/3)
log(8)

)
≥ Ω(UCmin(fn)1.22).

Using the lifting theorem of Göös et al. [22] (see also [20, Appendix A]), Theorem 4
implies the following

I Theorem 5 (UPcc(f) vs coNPcc(f)). There exists an infinite family of Boolean functions
fn : {0, 1}n × {0, 1}n → {0, 1} such that coNPcc(fn) ≥ Ω(UPcc(fn)1.22).

Hence, the exponent between coNPcc and UPcc is somewhere between 1.22 and 2. We
conjecture the latter to be tight. Moreover, we get as a corollary an improved lower-bound for
the conondeterministic communication complexity of the Clique vs Independent Set problem.

I Corollary 6. There is a family of graphs G such that

coNPcc(CISG) ≥ Ω(log1.22 n).

We refer the reader to [20] for a discussion on the Clique vs Independent Set problem
that shows how Theorem 5 implies Corollary 6.

Limitations of Theorem 1

We note that UCmin(f) upper bounds deg(f), so this technique cannot be used to get
super-quadratic separations between deg(f) and s(f). A natural question is whether we can
use Theorem 1 to get a super-quadratic separation between bs(f) and s(f). To do so, it
would suffice to separate bs(f) from UCmin(f). It would even suffice to separate randomized
certificate complexity RC(f) (a measure larger than bs(f)) from UCmin(f), because of the
following theorem.

I Theorem 7 ([28, Corollary 3.2]). If there exists a family of functions with RC(f) ≥
Ω(s(f)2+α), then there exists a family of functions with bs(g) ≥ Ω(s(g)2+α−o(1)).

ITCS 2017
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Unfortunately, we show that separating RC(f) from UCmin(f) is impossible. We conclude
that Theorem 1 cannot be used to super-quadratically separate bs(f) from s(f).

I Theorem 8. Let f : {0, 1}n → {0, 1} be a Boolean function. Then RC(f) ≤ 2 UCmin(f)−1.

We show that the factor of 2 in Theorem 8 is necessary. In Appendix A we strengthen
this theorem to show that RC(f) also lower bounds one-sided conical junta degree.

Organization

In Section 2, we briefly define the many complexity measures mentioned here, and discuss
the known relationships between them. In Section 3, we prove Theorem 1 and Corollary 2.
In Section 4 we prove Theorem 4, from which Corollary 3 follows. In Section 5, we discuss a
failed attempt to get a new separation between bs(f) and s(f), and in the process we prove
Theorem 8.

2 Preliminaries

2.1 Query Complexity

Let f : {0, 1}n → {0, 1} be a Boolean function. Let A be a deterministic algorithm that
computes f(x) on input x ∈ {0, 1}n by making queries to the bits of x. The worst-case
number of queries A makes (over choices of x) is the query complexity of A. The minimum
query complexity of any deterministic algorithm computing f is the deterministic query
complexity of f , denoted by D(f).

We define the bounded-error randomized (respectively quantum) query complexity of f ,
denoted by R(f) (respectively Q(f)), in an analogous way. We say an algorithm A computes
f with bounded error if Pr[A(x) = f(x)] ≥ 2/3 for all x ∈ {0, 1}n, where the probability is
over the internal randomness of A. Then R(f) (respectively Q(f)) is the minimum number of
queries required by any randomized (respectively quantum) algorithm that computes f with
bounded error. It is clear that Q(f) ≤ R(f) ≤ D(f). For more details on these measures,
see the survey by Buhrman and de Wolf [15].

2.2 Partial Assignments and Certificates

A partial assignment is a string p ∈ {0, 1, ∗}n representing partial knowledge of a string
x ∈ {0, 1}n. Two partial assignments are consistent if they agree on all entries where neither
has a ∗. We will identify p with the set {(i, pi) : pi 6= ∗}. This allows us to write p ⊆ x to
denote that the string x is consistent with the partial assignment p. We observe that if p
and q are consistent partial assignments, then p ∪ q is also a partial assignment. The size of
a partial assignment p is |p|, the number of non-∗ entries in p. The support of p is the set
{i ∈ [n] : pi 6= ∗}.

Fix a Boolean function f : {0, 1}n → {0, 1}. We say a partial assignment p is a certificate
(with respect to f) if f(x) is the same for all strings x ⊇ p. If f(x) = 0 for such strings, we
say p is a 0-certificate; otherwise, we say p is a 1-certificate. We say p is a certificate for the
string x if p is consistent with x. We use Cx(f) to denote the size of the smallest certificate
for x. We then define the certificate complexity of f as C(f) := maxx∈{0,1}n Cx(f). We also
define the one-sided measures C0(f) := maxx∈f−1(0) Cx(f) and C1(f) := maxx∈f−1(1) Cx(f).
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2.3 Sensitivity and Block Sensitivity

Let f : {0, 1}n → {0, 1} be a Boolean function, and let x ∈ {0, 1}n be a string. A block is
a subset of [n]. If B is a block, we denote by xB the string we get from x by flipping the
bits in B; that is, xBi = xi if i /∈ B, and xB = 1− xi if i ∈ B. For a bit i, we also use xi to
denote x{i}.

We say that a block B is sensitive for x (with respect to f) if f(xB) 6= f(x). We say a bit
i is sensitive for x if the block {i} is sensitive for x. The maximum number of disjoint blocks
that are all sensitive for x is called the block sensitivity of x (with respect to f), denoted by
bsx(f). The number of sensitive bits for x is called the sensitivity of x, denoted by sx(f).
Clearly, bsx(f) ≥ sx(f), since sx(f) has the same definition as bsx(f) except the size of the
blocks is restricted to 1.

We now define the measures s(f), s0(f), and s1(f) analogously to C(f), C0(f), and C1(f).
That is, s(f) is the maximum of sx(f) over all x, s0(f) is the maximum where x ranges over
0-inputs to f , and s1(f) is the maximum over 1-inputs. We define bs(f), bs0(f), and bs1(f)
similarly.

2.4 Fractional Block Sensitivity

Let f : {0, 1}n → {0, 1} be a Boolean function, and let x ∈ {0, 1}n be a string. Note that the
support of any certificate p of x must have non-empty intersection with every sensitive block
B of x; this is because otherwise, xB would be consistent with p, which is a contradiction
since f(xB) 6= f(x).

Note further that any subset S of [n] that intersects with all sensitive blocks of x gives
rise to a certificate xS for x. This is because if xS was not a certificate, there would be an
input y ⊇ xS with f(y) 6= f(x). If we write y = xB , where B is the set of bits where x and y
disagree, then B would be a sensitive block that is disjoint from S, which contradicts our
assumption on S.

This means the certificate complexity Cx(f) of x is the hitting number for the set system
of sensitive blocks of x (that is, the size of the minimum set that intersects all the sensitive
blocks). Furthermore, the block sensitivity bsx(f) of x is the packing number for the same
set system (i.e. the maximum number of disjoint sets in the system). It is clear that the
hitting number is always larger than the packing number, because if there are k disjoint sets
we need at least k domain elements in order to have non-empty intersection with all the sets.

Moreover, we can define the fractional certificate complexity of x as the fractional hitting
number of the set system; that is, the minimum amount of non-negative weight we can
distribute among the domain elements [n] so that every set in the system gets weight at
least 1 (where the weight of a set is the sum of the weights of its elements). We can also
define the fractional block sensitivity of x as the fractional packing number of the set system;
that is, the maximum amount of non-negative weight we can distribute among the sets
(blocks) so that every domain element gets weight at most 1 (where the weight of a domain
element is the sum of the weights of the sets containing that element).

It is not hard to see that the fractional hitting and packing numbers are the solutions to
dual linear programs, which means they are equal. We denote them by RCx(f) for “random-
ized certificate complexity”, following the original notation as introduced by Aaronson [1]
(we warn that our definition differs by a constant factor from Aaronson’s original definition).
We define RC(f), RC0(f), and RC1(f) in the usual way. For more properties of RC(f),
see [1] and [28].

ITCS 2017
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2.5 Unambiguous Certificate Complexity
Fix f : {0, 1}n → {0, 1}. We call a set of partial assignments U an unambiguous collection
of 0-certificates for f if
1. Each partial assignment in U is a 0-certificate (with respect to f)
2. For each x ∈ f−1(0), there is some p ∈ U with p ⊆ x
3. No two partial assignments in U are consistent.

We then define UC0(f) to be the minimum value of maxp∈U |p| over all choices of such
collections U . We define UC1(f) analogously, and set UC(f) := max{UC0(f),UC1(f)}. We
also define the one-sided version, UCmin(f) := min{UC0(f),UC1(f)}.

2.6 Degree Measures
A polynomial q in the variables x1, x2, . . . , xn is said to represent the function f : {0, 1}n →
{0, 1} if q(x) = f(x) for all x ∈ {0, 1}n. q is said to ε-approximate f if q(x) ∈ [0, ε] for all
x ∈ f−1(0) and q(x) ∈ [1− ε, 1] for all x ∈ f−1(1). The degree of f , denoted by deg(f), is
the minimum degree of a polynomial representing f . The ε-approximate degree, denoted by
d̃eg

ε
(f), is the minimum degree of a polynomial ε-approximating f . We will omit ε when

ε = 1/3. [10] showed that D(f) ≥ deg(f), R(f) ≥ d̃eg(f), and Q(f) ≥ d̃eg(f)/2.
We also define non-negative variants of degree. For each partial assignment p we identify

a polynomial p(x) := (Πi: pi=1xi) (Πi: pi=0(1− xi)). We note that p(x) = 1 if p ⊆ x and
p(x) = 0 otherwise, and also that the degree of p(x) is |p|. We say a polynomial is non-negative
if it is of the form

∑
p wpp(x), where wp ∈ R+ are non-negative weights. For such a sum,

define its degree as maxp:wp>0 |p|. Define its average degree as the maximum over x ∈ {0, 1}n

of
∑
p: p⊆x wp|p|. We note that if a non-negative polynomial q satisfies |q(x)| ∈ [0, 1] for all

x ∈ {0, 1}n, then the average degree of q is at most its degree. Moreover, if all the monomials
in q have the same size and q(x) = 1 for some x ∈ {0, 1}n, the degree and average degree of
q are equal.

We define the non-negative degree of f as the minimum degree of a non-negative polyno-
mial representing f . We note that this is a one-sided measure, since it may change when f is
negated; we therefore denote it by deg+

1 (f), and use deg+
0 (f) for the degree of a non-negative

polynomial representing the negation of f . We let deg+(f) be the maximum of the two, and
let deg+

min(f) be the minimum. We also define avdeg+
1 (f) as the minimum average degree of

a non-negative polynomial representing f , with the other corresponding measures defined
analogously. Finally, we define the approximate variants of these, denoted by (for example)
d̃eg

+,ε
1 (f), in a similar way, except the polynomials need only to ε-approximate f .

2.7 Known Relationships
2.7.1 Two-Sided Measures
We describe some of the known relationships between these measures. To start with, we have

s(f) ≤ bs(f) ≤ RC(f) ≤ C(f) ≤ UC(f) ≤ D(f),

where the last inequality holds because for each deterministic algorithm A, the partial
assignments defined by the input bits A examines when run on some x ∈ {0, 1}n form an
unambiguous collection of certificates. We also have

d̃eg(f) ≤ 2Q(f), d̃eg
+

(f) ≤ R(f), deg+(f) ≤ D(f),
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with d̃eg(f) ≤ d̃eg
+

(f) ≤ deg+(f) and Q(f) ≤ R(f) ≤ D(f).
[10] showed D(f) ≤ bs(f) C(f), and [31] showed C(f) ≤ bs(f)2. From this we conclude

that D(f) ≤ C(f)2 and D(f) ≤ bs(f)3. [28] showed
√

RC(f) = O(d̃eg(f)); thus

D(f) ≤ bs(f)3 ≤ RC(f)3 = O(d̃eg(f)6) = O(Q(f)6),

so the above measures are polynomially related (with the exception of sensitivity). Other
known relationships are RC(f) = O(R(f)) (due to [1]), D(f) ≤ bs(f) deg(f) ≤ deg(f)3 (due
to [30]), and deg+(f) ≤ UC(f) (since we can get a polynomial representing f by summing
up the polynomials corresponding to unambiguous 1-certificates of f).

2.7.2 One-Sided Measures
One-sided measures such as C1(f) are not polynomially related to the rest of the measures
above, as can be seen from C1(ORn) = 1. This makes them less interesting to us. On the
other hand, the one sided measures deg+

min(f), d̃eg
+
min(f), and UCmin(f) are polynomially

related to the rest. An easy way to observe this is to note that d̃eg
+
min(f) ≥ d̃eg(f), which

follows from the fact that d̃eg(f) ≤ d̃eg
+
1 (f) and that d̃eg(f) is invariant under negating f .

Similarly, deg(f) ≤ deg+
min(f). We also have

d̃eg
+
min(f) ≤ deg+

min (f) ≤ UCmin(f),

where the last inequality holds since we can form a non-negative polynomial representing f
by summing up the polynomials corresponding to a set of unambiguous 1-certificates.

An additional useful inequality is D(f) ≤ UCmin(f)2. The analogous statement in
communication complexity was shown by [43]. The query complexity version of the proof
can be found in [20].

3 Sensitivity and Unambiguous Certificates

We start by defining a transformation that takes a function f and modifies it so that s0(f)
decreases to 1. This transformation might cause s1(f) to increase, but we will argue that it
will remain upper bounded by 3 UC1(f). We will also argue that other measures, such as
D(f), do not decrease. This transformation is motivated by the construction of [41] that was
used to give a power 2.115 separation between D(f) and s(f).

I Definition 9 (Desensitizing Transformation). Let f : {0, 1}n → {0, 1}. Let U be an
unambiguous collection of 1-certificates for f , each of size at most UC1(f). For each
x ∈ f−1(1), let px ∈ U be the unique certificate in U consistent with x. The desensitized
version of f is the function f ′ : {0, 1}3n → {0, 1} defined by f ′(xyz) = 1 if and only if
f(x) = f(y) = f(z) = 1 and px = py = pz.

The following lemma illustrates key properties of f ′.

I Lemma 10 (Desensitization). Let f ′ be the desensitized version of f : {0, 1}n → {0, 1}.
Then s0(f ′) = 1 and UC1(f ′) ≤ 3 UC1(f). Also, for any complexity measure

M ∈ {D, R, Q, C, C0, C1, bs, bs0, bs1, RC, RC0, RC1, UC, UC0, UC1, UCmin, deg, deg+, d̃eg, d̃eg
+

},

we have M(f ′) ≥M(f).

ITCS 2017
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Proof. We start by upper bounding s0(f ′). Consider any 0-input xyz to f ′ which has at
least one sensitive bit. Pick a sensitive bit i of this input; without loss of generality, this
bit is inside the x part of the input. Since flipping i changes xyz to a 1-input for f ′, we
must have f(xi) = f(y) = f(z) = 1 and pxi = py = pz. In particular, it must hold that
f(y) = f(z) = 1 and py = pz. Let p := py, so p = pz and p = pxi . Since f(xyz) = 0, it must
be the case that x is not consistent with p. Since p is consistent with xi, it must be the case
that p and x disagree exactly on the bit i.

Now, it’s clear that xyz cannot have any sensitive bits inside the y part of the input,
because then x would not be consistent with pz. Similarly, xyz cannot have sensitive bits
in the z part of the input. Any sensitive bits inside the x part of the input must make x
consistent with p; but x disagrees with p on bit i, so this must be the only sensitive bit. It
follows that the sensitivity of xyz is at most 1, as desired. We conclude that s0(f ′) = 1.

Next, we upper bound UC1. Define U ′ := {ppp : p ∈ U} ⊆ {0, 1, ∗}3n. We show that this
is an unambiguous collection of 1-certificates for f ′. First, note that for p ∈ U , if ppp ⊆ xyz,
then f(x) = f(y) = f(z) = 1 and px = py = pz = p, so f ′(xyz) = 1. Thus U ′ is a set of
1-certificates. Next, if xyz is a 1-input for f ′, then f(x) = f(y) = f(z) = 1 and px = py = pz,
which means pxpxpx ⊆ xyz. Since px ∈ U , we have pxpxpx ∈ U ′. Finally, if ppp, qqq ∈ U ′
with ppp 6= qqq, then p 6= q and p, q ∈ U , which means p and q are inconsistent. This
means ppp and qqq are inconsistent. This concludes the proof that U ′ is an unambiguous
collection of 1-certificates for f ′. We have maxppp∈U ′ |ppp| = 3 ·maxp∈U |p| = 3 ·UC1(f), so
UC1(f ′) ≤ 3 ·UC1(f).

Finally, we show that almost all complexity measures do not decrease in the transition
from f to f ′. To see this, note that we can restrict f ′ to the promise that all inputs come
from the set {xyz ∈ {0, 1}3n : x = y = z}. Under this promise, the function f ′ is simply the
function f with each input bit occurring 3 times. But tripling input bits in this way does not
affect the usual complexity measures (among the measures defined in Section 2, sensitivity
is the only exception), and restricting to a promise can only cause them to decrease. This
means that f ′ has higher complexity than f under almost any measure. J

We now prove Theorem 1, which we restate here for convenience.

I Theorem 1. For any α ∈ R+, if there is a family of functions with D(f) = Ω̃(UCmin(f)1+α),
then there is a family of functions with D(f) = Ω̃(s(f)2+α). The same is true if we replace
D(f) by bs(f),C(f),R(f),Q(f), and many other measures.

Proof. Fix f : {0, 1}n → {0, 1} from the family for which D(f) = Ω̃(UCmin(f)1+α). By
negating f if necessary, assume UC1(f) = UCmin(f). Apply the desensitizing transformation
to get f ′. By Lemma 10, we have s0(f ′) ≤ 1 and s1(f ′) ≤ UC1(f ′) ≤ 3 UCmin(f), and also
D(f ′) ≥ D(f). We now consider the function f̂ := OR3 UCmin(f) ◦ f ′. It is not hard to see
that s0(f̂) ≤ 3 UCmin(f) and s1(f̂) = s1(f ′) ≤ 3 UCmin(f), so s(f̂) ≤ 3 UCmin(f).

We now analyze D(f̂). We have D(f ′) ≥ D(f); since deterministic query complexity
satisfies a perfect composition theorem, we have

D(f̂) = D(OR3 UCmin(f)) D(f ′) ≥ 3 UCmin(f) D(f) = Ω̃(UCmin(f)2+α) = Ω̃(s(f̂)2+α).

This concludes the proof for deterministic query complexity.
For other measures, we need the following properties: first, that the measure is invariant

under negating the function (so that we can assume UCmin(f) = UC1(f) without loss of
generality); second, that the measure satisfies a composition theorem, at least in the case
that the outer function is OR; and finally, that the measure is large for the OR function. We
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note that the measures C, bs, RC, R, and Q all satisfy a composition theorem of the form
M(OR ◦ g) ≥ Ω(M(OR)M(g)); for the first three measures, this can be found in [19], for
R it can be found in [21], and for Q it follows from a general composition theorem [35, 29].
Moreover, bs(ORn) = C(ORn) = RC(ORn) = n and R(ORn) = Ω(n). This completes the
proof for these measures; for Q, we will have to work harder, since Q(ORn) = Θ(

√
n).

For quantum query complexity, the trick will be to use the function “Block k-sum” defined
in [2]. It has the property that all inputs have certificates that use very few 0 bits. Actually,
we’ll swap the 0s and 1s so that all inputs have certificates that use very few 1 bits. When
k = logn (where n the size of the input), we denote this function by BSumn. [2] showed
that Q(BSumn) = Ω̃(n), and every input has a certificate with O(log3 n) ones.

Consider the function f̂ := BSumUCmin(f)◦f ′. We have Q(f̂) = Q(BSumUCmin(f))Q(f ′) =
Ω̃(UCmin(f)Q(f)). We now analyze the sensitivity of f̂ . Fix an input z to f̂ = BSumUCmin(f)◦
f ′. This input consists of UCmin(f) inputs to f ′, which, when evaluated, form an input
y to BSumUCmin(f). Note that some of the inputs to f ′ correspond to sensitive bits of y
(with respect to BSumUCmin(f)); the sensitive bits of z are then simply the sensitive bits
of those inputs. Now, consider the certificate of y that uses only O(log3 UCmin(f)) bits
that are 1. Since it is a certificate, it must contain all the sensitive bits of y; thus at most
O(log3 UCmin(f)) of the 1 bits of y are sensitive. It follows that the number of sensitive bits
of z is at most UCmin(f) s0(f ′) +O(log3 UCmin(f)) s1(f ′) = Õ(UCmin(f)). This concludes
the proof. J

It is not hard to see that the same approach can yield separations against bounded-size
block sensitivity (where the blocks are restricted to have size at most k). To do this, we
need the desensitizing construction to repeat the inputs 2k + 1 times instead of 3 times.
Instead of increasing to 3 UCmin(f), the bounded-size block sensitivity would increase to
(2k + 1) UCmin(f), and the deterministic query complexity would increase to (2k + 1) D(f).
When k is constant, we get the same asymptotic separations as for sensitivity.

We now construct separations against UCmin. This proves Corollary 2 and Corollary 3.

I Corollary 2. There is a family of functions with Q(f) = Ω̃(s(f)3).

Proof. By Theorem 1, it suffices to construct a family of functions with Q(f) = Ω̃(UCmin(f)2).
Our function will be a cheat sheet function BKKCS from [2] that quadratically separates
quantum query complexity from exact degree. This function has quantum query complexity
quadratically larger than UCmin, as shown in [5]. J

I Corollary 3. There is a family of functions with C(f) = Ω(s(f)2.22).

Proof. In Theorem 4, we construct a family of functions with C(f) = Ω̃(UCmin(f)
log(38/3)

log(8) ).
Thus, by Theorem 1, we can construct a family of functions with C(f) = Ω̃(s(f)1+ log(38/3)

log(8) ) =
Ω(s(f)2.22). J

4 Improved separation between UC1 and C

In this section we prove Theorem 4, building on the proof by [20]. Our main contribution is
to show how to adapt the argument in [20] to allow for fractional weights. We finally give
a fractional weighting scheme that leads to our improved separation. We observe that in
order to obtain our final result, one can just take Göös’s construction and reweigh it in the
end. Nonetheless, we include the full details here to show that any gadget with a separation
between UC1 and C implies an asymptotic separation (which was not explicit in [20]).
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Throughout the section, Σ and Γ will denote finite sets that correspond to input and
output alphabets of our functions. We shall assume that 0 is not in Σ, and will discuss
functions f : ({0} ∪ Σ)n → Γ where 0 is a special symbol treated differently than others.

4.1 Certificates and Weighted-Certificates for Large-Alphabet
Functions

We generalize the definition of certificates from Boolean functions to functions with arbitrary
input and output alphabets.

I Definition 11 (Multi-valued Certificates, Simple Certificates). A certificate for a function
f : ({0} ∪Σ)n → Γ is a cartesian product of sets S1 × S2 × . . . Sn where each Si ⊆ {0} ∪Σ is
a non-empty set and such that all y ∈ S1 × S2 × . . . Sn have the same f -value.

A simple certificate for f is a certificate where each Si is either: (i) {0} ∪ Σ, or (ii) Si
contains exactly one element, and this element is from Σ (i.e., not the 0 element).1

We define the size of a certificate as the number of i’s such that Si 6= ({0} ∪ Σ). For
x ∈ ({0} ∪ Σ)n, we denote by C(f, x) the size of the smallest certificate for f which contains
x.

For a set T ⊆ Γ we say that S1 × . . .× Sn certifies that “f(·) ∈ T” if this is true for any
y ∈ S1 × . . .× Sn. When T = Γ \ {i} we write “f(·) 6= i” for shorthand.

I Definition 12 (Weight Schemes, Certificate Weights). Let w : Σ→ R+ be a non-negative
weight function. A weight scheme is a mapping, w, associating positive real numbers to
non-empty subsets of {0} ∪ Σ such that:
1. If S = {i}, for some i ∈ Σ, then the weight of S is w(i).
2. If S = ({0} ∪ Σ), then the weight of S is 0.
3. If 0 ∈ S an S 6= ({0} ∪ Σ), then the weight of S is maxi∈Σ\S{w(i)}. (In particular, if

S = {0} then the weight of S is maxi∈Σ{w(i)}.)
(Note that we did not specify the weight of sets S of at least two elements which do not
contain 0, as they will not be used in our analysis.)

The weight of a certificate S1 × . . . × Sn is simply
∑n
i=1 w(Si). For a function f :

({0} ∪Σ)n → Γ and an input x ∈ ({0} ∪Σ)n we define the certificate complexity C((f, w), x)
to be the minimal weight of a certificate S1 × . . . × Sn for f according to w, such that
x ∈ S1 × . . .× Sn.

I Definition 13 (Realization of Weight Schemes). The weight-scheme defined by an integer-
valued weight function w : Σ→ N is realized by gw : ({0} ∪ Σ)m → ({0} ∪ Σ) if:
(i) For i ∈ Σ, there exists a collection of unambiguous certificates of size-(w(i)) for “gw(·) =

i”,
(ii) gw(0m) = 0, and
(iii) In order to prove “gw(0m) ∈ S” it is required to expose at least w(S) coordinates of 0m.

I Lemma 14 (Weight-Scheme Implementation, [20]). Let w : Σ → N be an integer-valued
weight function. Then, there exists a weight scheme associating natural numbers to non-empty
subsets of {0} ∪ Σ that can be realized by a function gw : ({0} ∪ Σ)m → ({0} ∪ Σ) where
m = maxi{wi}.

1 Note that a certificate for “f(x) = 1” for a Boolean function f : {0, 1}n → {0, 1} is always simple.
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Proof. We define gw(x) = i iff the symbol i appears in the first w(i) coordinates and i is the
first non-zero symbol to appear in the string. We set gw(x) = 0 if there is no such i ∈ Σ.
(ii) holds trivially. For (i) note that the decision tree that queries the first w(i) coordinates
induces an unambiguous collection of certificates for “gw(·) = i”. For (iii) we may assume
without loss of generality that S 6= ({0} ∪ Σ) as otherwise the claim is trivial. Since we are
proving that “gw(0m) ∈ S” and indeed gw(0m) = 0 it is required that 0 ∈ S. It remains to
show that it is required to expose the first maxi∈Σ\S w(i) coordinates of the input to gw. Let
i be the element in Σ \ S with maximal weight. Indeed, if one coordinate in the first w(i)
coordinates was not exposed, then it is still possible that gw(·) = i, as all coordinates that
were exposed are equal to 0 and there is an unexposed position in the first w(i) coordinates
that might be marked with i. J

4.2 Composing Functions over Large Alphabet with Fractional Weights
Most of the results below are generalizations of arguments from [20]. However, since unlike
[20] we deal with fractional weights, in addition to the total weight, we also need to take
into account the number of coordinates in the intermediate certificates.

Let f : ({0}∪Σ)N → {0, 1}, and let w : Σ→ R+. We treat the pair (f, w) as a “weighted
function”. Let C be an unambiguous collection of simple 1-certificates of size-s and weight at
most W for (f, w). Let Σ0 be a finite set that does not contain 0 and w0 : Σ0 → R+. We
define (f̃ , w̃), where f̃ : ({0} ∪Σ×Σ0)N → ({0} ∪Σ0) as follows. Denote by π1(x) and π2(x)
the projection of x ∈ ({0} ∪ Σ × Σ0)N to its ({0} ∪ Σ)N coordinates and its ({0} ∪ Σ0)N
coordinates respectively. The value of f̃(x) is defined as follows.

If f(π1(x)) = 0, then set f̃(x) := 0. Otherwise, let T ∈ C be the unique certificate for
“f(·) = 1” on π1(x). Read the corresponding coordinates of T from π2(x) and if all of
them are equal to some i ∈ Σ0, then set f̃(x) := i; otherwise set f̃(x) := 0.

Let w̃ : Σ×Σ0 → R+ be defined as w̃(σ, i) = w(σ) ·w0(i). The following lemma shows useful
bounds on the certificates of the new function f̃ according to w̃.

I Lemma 15 (From Boolean to Larger Output Alphabet). Let f̃ , f , w̃, w and w0 be defined
as above. Then,
(B1) There is an unambiguous collection of simple size-s certificates for “f̃(·) = i” with

weight at most w0(i) ·W according to w̃.
(B2) The certificate complexity of “f̃(0N ) 6= i” with respect to w̃ is at least w0(i)·C((f, w), 0N ).

Proof.
(B1) The unambiguous collection of simple 1-certificates for f corresponds to unambiguous

collection of simple i-certificates for f̃ by checking that each queried symbol has its
Σ0-part equals i. The weight of each certificate in the collection is at most w0(i) ·W as
each coordinate weighs w0(i) times its “original” weight.

(B2) Fix i ∈ Σ0. Assume we have a certificate for “f̃(0n) 6= i”. This is a cartesian product
S1×. . .×SN such that each Si contains the 0 symbol and under which ∀x ∈ S1 × . . .× SN
it holds that f̃(x) 6= i. Take f̂ to be f̃ restricted only to input alphabet {0} ∪ (Σ× {i}).
Then S′1 × . . . × S′n where S′j = Sj ∩ ({0} ∪ (Σ × {i})) is a certificate for “f̂(0N ) 6= i”.
Using property 3 in Definition 12, we show that w(S′j) ≤ w(Sj). We consider two cases.
If S′j = {0} ∪ (Σ× {i}), then w(S′j) = 0 ≤ w(Sj). Otherwise,

w(S′j) = max
σ∈(Σ×{i})\S′

j

w(σ) ≤ max
σ∈(Σ×Σ0)\Sj

w(σ) = w(Sj).
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However, proving that “f̂(0N ) = 0” is equivalent to proving that “f(0N ) = 0”, except for
the reweighing. Since each coordinate weighs according to w̃ at least w0(i) times its weight
according to w, the weight of the certificate S1×. . .×Sn is at least w0(i)·C((f, w), 0N ). J

I Lemma 16 (Composition Lemma). Let h : ({0} ∪ [k])n → {0, 1} with h(0n) = 0, and let
w0 : [k] → R+ such that (h,w0) has an unambiguous collection of simple 1-certificates of
size-k and (fractional) weight u, however any certificate for “h(0n) = 0” is of (fractional)
weight v.

Let f̃ and w̃ be as defined above. Let f ′ : ({0} ∪ Σ × [k])n×N → {0, 1} be defined by
f ′ = h ◦ f̃ , and w′ : ({0} ∪ Σ× [k])→ N be equal to w̃. Then,
(A1) (f ′, w′) has an unambiguous collection of simple certificates 1-certificates with size at

most sk and weight at most u ·W .
(A2) C((f ′, w′), 0Nn) ≥ v · C((f, w), 0N ).

Proof.
(A1) Take the unambiguous collection C of simple 1-certificates for h of size-k and (fractional)

weight u. For any certificate T from C replace the verification that some coordinate equals
i with the simple certificate that the relevant N -length input of f̃ belongs to f̃−1(i). The
cost of each such certificate to f̃ will be at most W · w0(i) according to w̃ ≡ w′. Thus,
the overall cost will be W · u, and the certificates will be of size at most sk. It is easy to
verify that these certificates are unambiguous, since unambiguous collections of simple
certificates are closed under composition.

(A2) Let T be a certificate for “f ′(0N ·n) = 0” of minimal weight (according to w′), and let
wT be its weight. Let T1, . . . , Tn be the substrings of T of length N according to the
composition of h ◦ f̃ . By Lemma 15[B1], if Ti certifies that “f̃(0N ) 6= j”, then it costs
at least w0(j) · C((f, w), 0N ). We construct a certificate H for h from T . If Ti certifies
that f̃(0N ) 6= j then (H)i 6= j. More formally, let H = S1 × . . .× Sn, where for i ∈ [n]
the set Si consists of {0} union with all j such that Ti does not certify that f̃(0N ) 6= j.
Suppose by contradiction that H does not certify that “h(0n) = 0”. Then, there exists an
input y ∈ S1× . . .×Sn (i.e., an input consistent with H) such that h(y) = 1. Thus, there
exist inputs x(1), . . . , x(n) each of length N such that f̃(x(i)) = yi and Ti is consistent
with x(i), which shows that T is not a certificate for h ◦ f̃w̃. Thus, H is a certificate for
h(0n) = 0, and we get that

wT ≥ w0(H) · C((f, w), 0N ) = v · C((f, w), 0N ). J

Next, we show how to take any “gadget” h – a function over a constant number of symbols
– with some gap between the UC1(h) and C(h, 0n), and convert it into an infinite family of
functions with a polynomial separation between UC1 and C.

I Theorem 17 (From Gadgets to Boolean Unweighted Separations). Let u, v ∈ R, k ∈ N be
constants such that 1 ≤ k ≤ u < v. Let h : ({0} ∪ [k])n → {0, 1} with h(0n) = 0, and let
w0 : [k] → R+ such that (h,w0) has an unambiguous collection of simple 1-certificates of
size-k and (fractional) weight u, however any certificate for “h(0n) = 0” is of (fractional)
weight v.

Then, there exists an infinite family of Boolean functions {h′m}m∈N with
1. UC1(h′m) ≤ poly(m) · um
2. C(h′m) ≥ vm
3. h′m is defined over poly(m) · exp(O(m)) many bits.
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Proof. We start by defining a sequence of weighted functions {(hm, wm)}m∈N over large
alphabet size with a polynomial gap between UC1 and C. We then convert these functions
into unweighted Boolean functions with the desired properties.

We take h1 := h and w1 := w0. For m ≥ 2 we take (hm, wm) to be the composition
of (h,w0) with (h̃m−1, w̃m−1). Let Σm = [k]m. Then, hm : ({0} ∪ Σm)nm → {0, 1} and
wm : ({0} ∪ Σm)→ R+. Using Lemma 16, we have that
(i) The maximal weight in wm is at most (w0,max)m, where w0,max := maxi{w0(i)}.
(ii) There exists an unambiguous collection of simple 1-certificates of size km and weight at

most um for (hm, wm).
(iii) C((hm, wm),~0) ≥ vm.

Making Weights Integral

First, we modify the weights so that they will be integral. We take w′m(·) to be dwm(·)e.
Taking ceiling on the weights may only increase the certificate complexities. Thus,
C((hm, w′m),~0) ≥ vm. On the other hand, the weight of any certificate may only increase
additively by its size, hence UC1((hm, w′m)) ≤ um + km ≤ 2um.

Eliminating Weights

Next, we convert the weighted function (hm, w′m) to an unweighted Boolean function h′m
with similar UC1 and C complexities. First, we remove the weights by applying Lemma 14
(using the fact that w′m is integer-valued). We define h′′m = hm ◦ gw′m . Lemma 14 implies that

C(h′′m) ≥ C((hm, w′m)) ≥ vm

and

UC1(h′′m) ≤ UC1((hm, w′m)) ≤ 2 · um.

Booleanizing

To make the inputs of the function h′′m Boolean we repeat the argument of Göös [20]. If f is
a function f : ΣN → {0, 1}, we may always convert it to a boolean function by composing it
with some surjection gΣ : {0, 1}dlog |Σ|e → Σ. The following naive bounds will suffice for our
purposes:

C(f) ≤ C(f ◦ gΣ) ≤ C(f) · dlog |Σ|e forall C ∈ {UC1,C}. (1)

In our final alphabet Σ = {0} ∪ [k]m, thus h′m = h′′m ◦ gΣ is a Boolean function with

C(h′m) ≥ C(h′′m) ≥ vm

and

UC1(h′m) ≤ UC1(h′′m) · dlog |Σ|e ≤ 2 · um ·O(m log k).

Input Length

The input length of hm is nm. By lemma 14, the input length of h′′m is at most nm ·(wm0,max+1).
Thus the input length to h′m is at most

O(log(|Σ|) · (n · w0,max)m) = O(m · log(k) · (n · w0,max)m) J
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4.3 Gadgets Based on Projective Planes

We will use a reweighed version of the function constructed by Göös [20] based on projective
planes as our gadget. Let us first recall the definition of a projective plane.

I Definition 18 (Projective plane). A projective plane is a k-uniform hyper-graph with
n = k2 − k + 1 edges and n nodes with the following properties.

Each node is incident on exactly k edges.
For every two nodes, there exists a unique edge containing both.
Every two edges intersect on exactly one node.

Given a projective plane, it follows from Hall’s theorem that it is possible to assign an
ordering to the edges incident to each vertex in a way that for each edge, its assigned order
for each of its nodes is different. Namely, for each i, there are no two nodes for which their
i-th incident edge is the same.

It is well-known that projective planes exist for every k such that k − 1 is a prime power.
Göös [20] introduced the following function f : ({0} ∪ Σ)n → {0, 1} based on a projective
plane, with Σ = [k]. We think of the inputs of f as a sequence of pointers, one for each node,
where 0 is the Null pointer, and i ∈ [k] is a pointer to the i-th edge on which the node is
incident on. We set f(x) = 1 if there is an edge of the projective plane such that all its nodes
point to it, and f(x) = 0 otherwise.

We will be interested in showing a gap between the certificate complexity of “f(0n) = 0”
and UC1(f). However, the function as is, allows a certificate of size k for “f(0n) = 0”
matching its UC1(f). One certificate for “f(0n) = 0” is to pick an arbitrary edge of the
projective plane, and certify that all its nodes have the Null pointer. This certifies “f(0n) = 0”
as every two edges in a projective plane intersect on a node. An unambiguous collection of
size k certificates consists of picking for each edge all its nodes and ensuring that they point
to that edge. This collection is unambiguous using the same property that every two edges
intersect on one node.

In order to obtain a gadget with a gap between UC1 and C, Göös introduced weights on
the input alphabet of f . Each element i ∈ Σ is assigned a weight w(i), where the weights are
intended to carry the following meaning: For every i ∈ Σ it costs w(i) for a certificate to
assure that “xj = i”, and moreover 0 has the special property that it costs maxi∈Σ w(i) to
assure that “xj = 0” (as in Definition 12). In [20] each i ∈ [k] is assigned a weight w(i) = i.
Göös [20] implemented this weighting scheme specifically for the case when w(i) := i via
a weighting gadget gw : ({0} ∪ Σ)k → ({0} ∪ Σ) (as done in Lemma 14) and considering
f ◦gw. Our improvement comes from considering a different weighting scheme with fractional
weights.

I Claim 19 (Reweighing the Projective Plane). Let f be defined as above, and let w(i) :=
i

(k+1)/2 . Then, (f, w) has an unambiguous collection of simple 1-certificates of size k and
weight k. Moreover, any certificate for f(0n) = 0 is of weight at least k2−k+1

(k+1)/2

Proof. Göös [20, Claims 6 and 7] showed that with respect to the weight-function w′(i) = i,
the function f has an unambiguous collection of simple 1-certificates of size-k and weight
(k · (k + 1))/2. However, any certificate for “f(0n) = 0” is of weight at least k2 − k + 1.

From this, it is immediate that with respect to w ≡ w′

(k+1)/2 , f has an unambiguous
collection of simple 1-certificates of size-k and (fractional) weight (k·(k+1))/2

(k+1)/2 = k. However,
any certificate for 0n is of weight at least k2−k+1

(k+1)/2 . J
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4.4 Putting Things Together

Given a gadget (h,w0) such that h has unambiguous collection of simple 1-certificates of
size-k and (fractional) weight u, however any certificate for 0n is of (fractional) weight v,
with v > u > 1 and u ≥ k, Theorem 17 gives a polynomial separation between C and UC1:

C(h′m) ≥ vm = (um)log(v)/ log(u) ≥ Ω̃
(

UC1(h′m)log(v)/ log(u)
)
. (2)

We take h to be the projective plane function f described in Section 4.3 with k = 8,
n = k2 − k + 1 = 57 and weight function w0(i) = i

(k+1)/2 . By Claim 19, we have that with
respect to w0, h has an unambiguous collection of simple 1-certificates of size-k and weight
k = 8. However, any certificate for 0n is of weight k2−k+1

(k+1)/2 = 38/3. Plugging these values in
Equation (2) we get a better separation:

C(h′m) ≥ Ω̃
(

UC1(h′m)
log(38/3)

log(8)

)
≥ Ω(UC1(h′m)1.22) , (3)

where the input length is N ≤ poly(m) · exp(O(m)). The lifting theorem of [22, 20] incurs a
loss factor of log(N) = O(m) in the separation, however this is negligible compared to the
poly(m) · um versus vm separation.

4.5 Further Improvements

Since our theorem is general in transforming a fractional weighted gadget into a polynomial
separation, it is enough to only improve the gadget construction in order to improve the
UC1 vs C exponent. Indeed, even using the same gadget (the projective plane function of
Göös) we can consider different weight function. Using computer search it seems that such
reweighing is indeed better than our choice of w0. However, the improvement is mild and
currently we do not have a humanly verifiable proof for the lower bound on the certificate
complexity of 0n under the reweighing. Indeed, Göös relied on the fact that the weights were
w′(i) = i in order to present a simple proof of his lower bound on the certificate complexity
of “h(0n) = 0” according to w′. It seems though (we have verified this using computer-search
for small values of k) that the best weights are attained by taking w′(i) = i+ 1 and then
reweighing by multiplying all weights by the constant α = 1

(k+3)/2 , so that the unambiguous
certificates for h will be of weights k. We leave proving a lower bound under this weight
function as an open problem.

5 Attempting a Super-Quadratic Separation vs. Block Sensitivity

In this section, we describe why attempting to use Theorem 1 to get a super-quadratic
separation between bs(f) and s(f) fails. In the process, we show some new lower bounds for
UCmin(f) and even for the one-sided non-negative degree measures.

One approach for the desired super-quadratic separation is to find a family of functions
for which bs(f) � UCmin(f). In fact, by [28], it suffices to provide a family of functions
for which RC(f) � UCmin(f) (as explained in Section 5.1). In Section 5.2, we show that
even separating RC(f) from UCmin(f) is impossible: we have RC(f) ≤ 2 UCmin(f)− 1. This
means our techniques do not give anything new for this problem. This is perhaps surprising,
since RC(f) is similar to C(f), yet [20] showed a separation between C(f) and UCmin(f).
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5.1 A Separation Against RC(f) is Sufficient
[28] showed that a separation between s(f) and RC(f) implies an equal separation between
s(f) and bs(f) (see Theorem 7). The key insight is that bs(f) becomes RC(f) when the
function is composed enough times; this was observed by [40] and by [19]. This means that if
we start with a function separating s(f) and RC(f) and compose it enough times, we should
get a function with the same separation between s(f) and RC(f), but with the additional
property that bs(f) ≈ RC(f).

5.2 But RC(f) Lower Bounds UCmin(f)
We would get a super-quadratic separation between bs(f) and s(f) if we had a super-
linear separation between RC(f) and UCmin(f). Unfortunately, this is impossible using our
paradigm, as we now show. Actually, we can prove an even stronger statement, namely that
RC(f) ≤ (2 ãvdeg

+,ε
min(f)− 1)/(1− 4ε). We note that this implies Theorem 8, because when

ε = 0, we have

RC(f) ≤ 2 avdeg+
min(f)− 1 ≤ 2 deg+

min(f)− 1 ≤ 2 UCmin(f)− 1.

This stronger statement says that one-sided conical junta degree is lower bounded by two-
sided randomized certificate complexity, which helps clarify the hierarchy of lower bounds
for randomized algorithms.

The proof of the relationship RC(f) ≤ (2 ãvdeg
+,ε
min(f)−1)/(1−4ε) is somewhat technical;

we leave it for Appendix A, and provide a cleaner proof (of RC(f) ≤ 2 UCmin(f)− 1) below.
One interesting thing to note about it is that it holds for partial functions as well, as long as
the definition of ãvdeg

+,ε
min(f) requires the approximating polynomial to evaluate to at most 1

on the entire Boolean hypercube.
Before providing the proof, we’ll provide a warm up proof that bs(f) ≤ 2 UCmin(f).

I Lemma 20. For all non-constant f : {0, 1}n → {0, 1}, we have bs(f) ≤ 2 UCmin(f)− 1.

Proof. Without loss of generality, we have UCmin(f) = UC1(f). We also have bs1(f) ≤
C1(f) ≤ UC1(f), so it remains to show that bs0(f) ≤ 2 UC1(f) − 1. Also without loss of
generality, we assume that the block sensitivity of 0n is bs(f) and that f(0n) = 0.

Let B1, B2, . . . , Bbs(f) be disjoint sensitive blocks of 0n. Let U be an unambiguous
collection of 1-certificates for f , each of size at most UC1(f). For each i ∈ [bs(f)], we have
f(~0Bi) = 1, so there is some 1-certificate pi ∈ U such that pi is consistent with ~0Bi . Since
pi is a 1-certificate, it is not consistent with ~0, so it has a 1 bit (which must have index in
Bi). Now, if i 6= j, the certificate pi has a 1 inside Bi and only 0 or ∗ symbols outside Bi,
and the certificate Bj has a 1 inside Bj and only 0 or ∗ symbols outside Bj ; thus pi and
pj are different. Since U is an unambiguous collection, pi and pj must conflict on some bit
(with one of them assigning 0 and the other assigning 1), or else there would be an input
consistent with both.

We construct a directed graph on vertex set [bs(f)] as follows. For each i, j ∈ [bs(f)] with
i 6= j, we draw an arc from i to j if pi has a 0 bit in a location where pj has a 1 bit. It follows
that for each pair i, j ∈ [bs(f)] with i 6= j, we either have an arc from i to j or else we have
an arc from j to i (or both). The number of arcs in this graph is at least bs(f)(bs(f)− 1)/2,
so the average out degree is at least (bs(f)− 1)/2. Hence there is some vertex i with out
degree at least (bs(f)− 1)/2. But this means pi conflicts with (bs(f)− 1)/2 other certificates
pj1 , pj2 , . . . , pj(bs(f)−1)/2 with pi having a bit 0 and pjk having a 1-bit; however, two different
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certificates pjx and pjy cannot both agree on a 1 bit, since the 1 bits of pjx must come from
block Bjx and the blocks are disjoint. This means pi has at least (bs(f)− 1)/2 zero bits. It
must also have at least one 1 bit. Thus |pi| ≥ bs(f)/2 + 1/2, so bs(f) ≤ 2 UCmin(f)− 1. J

We now generalize this lemma from bs to RC, proving Theorem 8. A further strengthening
of the result can be found in Appendix A.

I Theorem 8. Let f : {0, 1}n → {0, 1} be a Boolean function. Then RC(f) ≤ 2 UCmin(f)−1.

Proof. Without loss of generality, we have UCmin(f) = UC1(f). We also have RC1(f) ≤
C1(f) ≤ UC1(f), so it remains to show that RC0(f) ≤ 2 UC1(f)− 1. Also without loss of
generality, we assume that the randomized certificate of 0n is RC(f) and that f(0n) = 0.

We prove the theorem using the characterization of RC(f) as the fractional block sensitivity
of f . Let B1, B2, . . . , Bm be minimal sensitive blocks of 0n. Let a1, . . . , am be weights assigned
to blocks B1, . . . , Bm such that∑

j

aj = RC(f) , and ∀i ∈ [n] :
∑
j:i∈Bj

aj ≤ 1 .

Let U be an unambiguous collection of 1-certificates for f , each of size at most UC1(f).
For each i ∈ [m], we have f(~0Bi) = 1, so there is some 1-certificate pi ∈ U such that pi is
consistent with ~0Bi . Since pi is a 1-certificate, it is not consistent with ~0, so it has a 1 bit
(which must have index in Bi). Next, we show that if i 6= j, then pi and pj are different.
Assume by contradiction that pi = pj , then pi is a partial assignment that satisfy both ~0Bi
and ~0Bj , hence it must satisfy ~0Bi∩Bj , but this means that f(~0Bi∩Bj ) = 1 which contradicts
the fact that both Bi and Bj are minimal sensitive blocks for ~0.

We established that for any i 6= j, the partial assignments pi and pj are different. Since U
is an unambiguous collection, pi and pj must conflict on some bit (with one of them assigning
0 and the other assigning 1), or else there would be an input consistent with both.

We construct a directed weighted graph on vertex set [m] as follows. For each i, j ∈ [m]
with i 6= j, we draw an arc from i to j with weight ai · aj , if pi has a 0 bit in a location where
pj has a 1 bit. It follows that for each pair i, j ∈ [m] with i 6= j, we either have an arc from i

to j or else we have an arc from j to i (or both). The total weight of the arcs in this graph is∑
i<j

ai · aj · (|p−1
i (1) ∩ p−1

j (0)|+ |p−1
i (0) ∩ p−1

j (1)|) ≥
∑
i<j

ai · aj

= 1
2 · (

∑
i

ai)2 − 1
2 ·
∑
i

a2
i

≥ 1
2 · (

∑
i

ai)2 − 1
2 ·
∑
i

ai (ai ≤ 1)

≥ 1
2 · (RC(f)2 − RC(f))

Note that by symmetry, the LHS equals∑
i

ai ·
∑
j 6=i

aj · |p−1
i (0) ∩ p−1

j (1)|.

Since
∑
i ai = RC(f), by averaging,

∃i : 1
2(RC(f)− 1) ≤

∑
j 6=i

aj · |p−1
i (0) ∩ p−1

j (1)|. (4)
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Next, we get a lower bound on |p−1
i (0)| from Eq. (4).

1
2(RC(f)− 1) ≤

∑
j 6=i

aj · |p−1
i (0) ∩ p−1

j (1)|

=
∑

k:pi(k)=0

∑
j:pj(k)=1

aj

≤
∑

k:pi(k)=0

∑
j:k∈Bj

aj (pj is consistent with ~0Bj )

≤ |p−1
i (0)|. (

∑
j:k∈Bj aj ≤ 1 for all k)

We showed that pi has at least (RC(f)− 1)/2 zero bits. It must also have at least one 1 bit.
Thus |pi| ≥ RC(f)/2 + 1/2, so RC(f) ≤ 2 UCmin(f)− 1. J

We note that the relationships in Lemma 20 and Theorem 8 are tight.2 Let k be any
non-negative integer, we construct a function f on n = 2k + 1 variables with s(f) = bs(f) =
RC(f) = n and UCmin(f) ≤ k + 1. This shows that the inequalities bs(f) ≤ 2 UCmin(f)− 1
and RC(f) ≤ 2 UCmin(f)−1 are both tight for all values of UCmin(f). We define the function
f by describing a set of partial assignments p0, . . . , pn−1 such that f(x) = 1 if and only if
∃i : pi ⊆ x. Let p = 0k1∗k. The assignments p0, . . . , pn−1 are all possible cyclic-shifts of p,
namely for 0 ≤ i ≤ k, pi = 0k−i1∗k0i and for k + 1 ≤ i ≤ 2k we have pi = ∗2k+1−i0k1∗i−1−k.
It is easy to verify that any two different partial assignments pi and pj are not consistent
with one another. Hence, p0, . . . , pn−1 is an unambiguous collection of 1-certificates for f ,
each of size k+ 1, exhibiting that UCmin(f) ≤ k+ 1. On the other hand, f(0) = 0 and for all
i ∈ [n], we have f(ei) = 1, showing that f has sensitivity n on the all-zeros input. Overall,
we showed that s(f) = bs(f) = RC(f) = n = 2k + 1 while UCmin(f) ≤ k.
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A Lower Bound for Approximate Non-Negative Degree

Here we show that the lower bound in Theorem 8 holds even for one-sided average approximate
non-negative degree, the smallest version of conical junta degree. This is saying that conical
juntas, in all their forms, give a more powerful lower bound technique for randomized
algorithms than RC(f).

I Theorem 21. Let f : {0, 1}n → {0, 1} be a non-constant function, and let ãvdeg
+,ε
min(f)

denote the minimum average degree of a non-negative polynomial that approximates either
f or its negation with error at most ε (see Section 2.6 for definitions). If ε < 1/4, we have
RC(f) ≤ 2 ãvdeg

+,ε
min(f)−1

1−4ε .

Proof. Let q be the non-negative approximating polynomial with average degree ãvdeg
+,ε
min(f).

Without loss of generality, we assume q approximates f rather than its negation. We can
write q ≡

∑
p∈{0,1,∗} wpp, so for any x ∈ {0, 1}n, we have

q(x) =
∑

p∈{0,1,∗}

wpp(x) =
∑
p: p⊆x

wp,

where recall that wp are non-negative weights given to partial assignments. This means for
all x ∈ {0, 1}n, we know that∣∣∣∣∣∣f(x)−

∑
p: p⊆x

wp

∣∣∣∣∣∣ ≤ ε,
∑
p: p⊆x

wp ≤ 1, and
∑
p: p⊆x

wp|p| ≤ ãvdeg
+,ε
min(f).

Now, consider the input y ∈ {0, 1}n for which RCy(f) = RC(f). There are two cases:
either y is a 0-input, or else y is a 1-input. If y is a 1-input, we use the fractional certificate
complexity interpretation of RCy(f): the value RCy(f) is the minimum amount of weight
that can be distributed to the bits of y such that every sensitive block of y contains bits of
total weight at least 1. We assign to bit i ∈ [n] the weight

1
1− 2ε

∑
p: p⊆y,pi 6=∗

wp.

Then each sensitive block B ⊆ [n] for y satisfies f(yB) = 0, so the sum of wp over all p ⊆ y
that have support disjoint from B must be at most ε. Since the sum of wp over all p ⊆ y is
at least 1− ε, there must be weight at least 1− 2ε assigned to partial assignments consistent
with p whose support overlaps B. It follows that the total weight given to the bits in B is at
least 1, which means this weighting is feasible. This means the total weight upper bounds
RCy(f), so

RC(f) = RCy(f) ≤ 1
1− 2ε

∑
i∈[n]

∑
p: p⊆y, pi 6=∗

wp = 1
1− 2ε

∑
p: p⊆y

wp|p| ≤
ãvdeg

+,ε
min(f)

1− 2ε .
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It remains to deal with the case where y is a 0-input. In this case, we use the fractional
block sensitivity interpretation of RCy(f): the value of RCy(f) is the maximum amount of
weight that can be distributed to the sensitive blocks of y such that every bit of y lies inside
blocks of total weight at most 1. Without loss of generality, we can assume only minimal
sensitive blocks are assigned weight (minimal sensitive blocks are sensitive blocks such that
all their proper subsets are not minimal).

Let B := {B ⊆ [n] : f(yB) 6= f(y)} be the set of sensitive blocks of y, and letM := {B ∈
B : ∀B′ ⊂ B,B′ /∈ B} be the set of minimal sensitive blocks of y. Let {aB}B∈M with aB ∈ R+

be the optimal weighting of the minimal sensitive blocks. This means
∑
B∈M aB = RCy(f)

and
∑
B3i aB ≤ 1 for all i ∈ [n].

We have
∑
p⊆y wp ≤ ε and

∑
p⊆yB wp ≥ 1− ε for all B ∈ B. Thus, for any B1, B2 ∈M

with B1 6= B2, we can write

2−2ε ≤
∑
p⊆yB1

wp+
∑
p⊆yB2

wp =
∑

p⊆yB1 : p*yB1∪B2

wp+
∑

p⊆yB2 : p*yB1∪B2

wp+
∑
p∈G

wp+
∑
p∈H

wp,

where G := {p : p ⊆ yB1 , p ⊆ yB1∪B2} and H := {p : p ⊆ yB2 , p ⊆ yB1∪B2}. The last two
sums are equal to

∑
p∈G∪H wp +

∑
p∈G∩H wp. We have

∑
p∈G∪H wp ≤

∑
p⊆yB1∪B2 wp ≤ 1.

Also, any p ∈ G∩H satisfies p ⊆ yB1∩B2 . Since B1 6= B2 and they are both minimal sensitive
blocks, we have f(yB1∩B2) = 0, so

∑
G∩H wp ≤

∑
p⊆yB1∩B2 wp ≤ ε. It follows that∑

p⊆yB1 : p*yB1∪B2

wp +
∑

p⊆yB2 : p*yB1∪B2

wp ≥ 1− 3ε.

Note that the above sums are over disjoint sets, since if p ⊆ yB1 and p * yB1∪B2 , then p
must disagree with yB2 on some bit inside B2. If we split out the parts of the sums for which
p ⊆ y, we get∑

p⊆y

wp +
∑

p⊆yB1 : p*y, p*yB1∪B2

wp +
∑

p⊆yB2 : p*y, p*yB1∪B2

wp ≥ 1− 3ε.

Since f(y) = 0, the first sum is at most ε, so∑
p⊆yB1 : p*y, p*yB1∪B2

wp +
∑

p⊆yB2 : p*y, p*yB1∪B2

wp ≥ 1− 4ε.

We now write the following.

RC(f)2 − RC(f) =
∑
B1∈M

aB1

∑
B2∈M

aB2 −
∑
B1∈M

aB1

≤
∑
B1∈M

aB1

∑
B2∈M

aB2 −
∑
B1∈M

a2
B1

=
∑
B1∈M

aB1

∑
B2 6=B1

aB2

≤ 1
1− 4ε

∑
B1∈M

aB1

∑
B2 6=B1

aB2 ∑
p⊆yB1 : p*y, p*yB1∪B2

wp +
∑

p⊆yB2 : p*y, p*yB1∪B2

wp


= 2

1− 4ε
∑
B1∈M

aB1

∑
B2 6=B1

aB2

∑
p⊆yB1 : p*y, p*yB1∪B2

wp,
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where the second line follows because aB1 ≤ 1 for all B1 ∈M.
Note that

∑
B1∈M aB1 = RC(f), so if we divide both sides by RC(f), the last line

becomes a weighted average. It follows that there exists some minimal block B1 such that

RC(f)− 1 ≤ 2
1− 4ε

∑
B2 6=B1

aB2

∑
p⊆yB1 : p*y, p*yB1∪B2

wp

= 2
1− 4ε

∑
p⊆yB1 : p*y

wp
∑

B2 6=B1:p*yB1∪B2

aB2 .

Examine the inner summation above. Note that yB1∪B2 = (yB1)B2\B1 . Since p ⊆ yB1 , the
condition p * yB1∪B2 is equivalent to the support of p having non-empty intersection with
B2 \B1. Using supp(p) to denote the support of p, we have

RC(f)− 1 ≤ 2
1− 4ε

∑
p⊆yB1 : p*y

wp
∑

i∈supp(p)\B1

∑
B2∈M: i∈B2

aB2

≤ 2
1− 4ε

∑
p⊆yB1 : p*y

wp
∑

i∈supp(p)\B1

1

= 2
1− 4ε

∑
p⊆yB1 : p*y

wp| supp(p) \B1|

≤ 2
1− 4ε

∑
p⊆yB1 : p*y

wp(|p| − 1)

≤ 2
1− 4ε ãvdeg

+,ε
min(f)− 2

1− 4ε
∑

p⊆yB1 :p*y

wp

≤ 2
1− 4ε ãvdeg

+,ε
min(f)− 2

1− 4ε

 ∑
p⊆yB1

wp −
∑
p⊆y

wp


≤ 2

1− 4ε ãvdeg
+,ε
min(f)− 2

1− 4ε (1− ε− ε)

≤ 2
1− 4ε ãvdeg

+,ε
min(f)− 2− 4ε

1− 4ε ,

where the second line follows because the sum of aB over all blocks B ∈ M containing a
given element i ∈ [n] is at most 1, and the fourth line follows because the conditions p ⊆ yB1

and p * y imply that the support of p is not disjoint from B1. Finally, we get

RC(f) ≤ 2
1− 4ε ãvdeg

+,ε
min(f)− 1

1− 4ε = 2 ãvdeg
+,ε
min(f)− 1

1− 4ε ,

as desired. J
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