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Abstract
We provide a variant of cross-polytope locality sensitive hashing with respect to angular distance
which is provably optimal in asymptotic sensitivity and enjoys O(d ln d) hash computation time.
Building on a recent result in [4], we show that optimal asymptotic sensitivity for cross-polytope
LSH is retained even when the dense Gaussian matrix is replaced by a fast Johnson-Lindenstrauss
transform followed by discrete pseudo-rotation, reducing the hash computation time from O(d2)
to O(d ln d). Moreover, our scheme achieves the optimal rate of convergence for sensitivity. By
incorporating a low-randomness Johnson-Lindenstrauss transform, our scheme can be modified
to require only O(ln9(d)) random bits.
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1 Introduction

The nearest neighbor search problem is an essential algorithmic component to a wide variety
of applications including data compression, information retrieval, image storage, computer
vision, and pattern recognition. Nearest neighbor search (NN) can be stated as follows:
given a metric space (X,D) and a set of points P = {x1, ..., xn} ⊂ X, for a query point x ∈ P
find y = argminxi∈P\{x}D(xi, x). In high dimensions, it is known that existing algorithms
have poor performance (see [23]); that is, for a query point x ∈ P , any algorithm for NN
must essentially compute the distances between x and each point in P \ {x}.

In order to improve on linear search, one may relax the problem to that of approximate
nearest neighbors search. Precisely, the (R, c) near neighbor problem ((R, c)-NN) as
introduced in [12] is as follows: given a query point x ∈ P and the assurance of a point
y′ ∈ P such that D(y′, x) < R, find y ∈ P such that D(y, x) < cR. In contrast to exact
nearest neighbors search, the approximate nearest neighbor search problem can be solved in
sublinear query time, and this is achieved using locality sensitive hashing (LSH). The
idea in LSH is to specify a function from the domain X to a discrete set of hash values –
a so-called hash function – which sends closer points to the same hash value with higher
probability than points which are far apart. Then, for a set of points P = {x1, ..., xn} ⊂ X
and a query point x ∈ P, search within its corresponding hash bucket for a nearest neighbor.
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From here on out, we fix the space X = Sd−1 endowed with the euclidean metric. We
begin by recalling the standard notion of sensitivity for a hash family; intuitively, a hash
family with higher sensitivity is much more likely to hash points that are close to the same
hash value, and thus be a better candidate for locality sensitive hashing.

I Definition 1. For r1 ≤ r2 and p2 ≤ p1, a hash family H is (r1, r2, p1, p2)-sensitive if for
all x, y ∈ Sd−1,

If ‖x− y‖2 ≤ r1, then PrH[h(x) = h(y)] ≥ p1.
If ‖x− y‖2 ≥ r2, then PrH[h(x) = h(y)] ≤ p2.

We primarily care about the case where r1 = R, r2 = cR, and to quantify sensitivity of a
certain scheme, we study the parameter

ρ = ln(p−1
1 )

ln(p−1
2 )

. (1)

The key result linking the sensitivity of a hash family to its performance for (R, c)−NN
search is the following:1

I Proposition 2 (Theorem 5 in [12]). Given an (R, cR, p1, p2)-sensitive hash family H, there
exists a data structure that solves (R, c)−NN with constant probability using O(dn+ n1+ρ)
space, O(nρ) query time, and O(nρ ln1/p1 n) evaluations of hash functions from H.

Since the parameter ρ quantifies the performance of a given LSH algorithm for (R, c)−NN ,
it is of interest to make this parameter as small as possible. It was shown in [20] that ρ = 1

c2 is
asymptotically (in d) optimal for the case of unit sphere with the euclidean metric. Spherical
LSH ([5], [6]) was shown to achieve this optimal sensitivity; however, the corresponding
hash functions in spherical LSH are not practical to compute. Subsequently, Andoni, Indyk,
Laarhoven, and Razenshteyn [4] showed the existence of an LSH scheme with optimally
sensitive hash functions which are practical to implement; namely, the cross-polytope LSH
scheme which has been previously proposed in [22] (see also [7], [20], [19]). Given a matrix
G ∈ Rd×d with i.i.d. N (0, 1) entries, the cross polytope hash of a point x ∈ Sd−1 is defined
as

h(x) = argmin
u={±ei}

∥∥∥∥ Gx‖Gx‖2
− u
∥∥∥∥

2
, (2)

where {ei}di=1 is the standard basis for Rd. The paper [4] provided the following collision
probability for cross-polytope LSH.

I Proposition 3 (Theorem 1 in [4]). Suppose x, y ∈ Sd−1 are such that ‖x− y‖2 = R, with
0 < R < 2, and H is the hash family defined in (2). Then,

ln
(

1
PrH[h(x) = h(y)]

)
= R2

4−R2 ln d+OR(ln(ln d)). (3)

Consequently,

ρ = 1
c2

4− c2R2

4−R2 + o(1),

1 In particular, the algorithm stores L hash tables from the family G, where each g ∼ G is given by
g(x) = (h1(x), ..., hk(x)), and hi ∼ H, i = 1...k. Then, given a query point x ∈ Sd−1, the algorithm
looks for collisions in the buckets g1(x), ..., gL(x). The choice of parameters k = nρ, L = ln1/p1 n ensure
that the algorithm solves (R, c)−NN with constant probability.
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where here and in the sequel, o(1) means a parameter that goes to 0 as d→∞. This implies
that the above scheme is asymptotically optimal with respect to ρ.2 Still, this scheme is
limited in efficiency by the O(d2) computation required to compute a dense matrix-vector
multiplication in (2). To reduce this computation, [4] proposed to to use a pseudo-random
rotation in place of a dense Gaussian matrix, namely,

h(x) = argminu={±ei} ‖HDbHDb′HDb′′x− u‖2 , (4)

where H ∈ Rd×d is a Hadamard matrix and Db, Db′ , Db′′ ∈ Rd×d are independent diagonal
matrices with i.i.d. Rademacher entries on the diagonal. This scheme has the advantage of
computing hash functions in time O(d ln d), and was shown in [4] to empirically exhibit similar
collision probabilities to cross-polytope LSH, but provable guarantees on the asymptotic
sensitivity of this fast variant of the standard cross-polytope LSH remain open.

1.1 Our Contributions

1.1.1 Fast cross-polytope LSH with optimal asymptotic sensitivity

While we do not prove theoretical guarantees regarding the asymptotic sensitivity of the
particular fast variant (4), we construct a different variant of the standard cross-polytope
LSH (defined below in (5)) which also enjoys O(d ln d) matrix-vector multiplication, and for
which we are able to prove optimal asymptotic sensitivity ρ = 1

c2 :

hF (x) = argmin
u={±ei}

∥∥∥∥ G(HSDbx)
‖G(HSDbx)‖2

− u
∥∥∥∥

2
; (5)

Here, Db : Rd → Rd is a diagonal matrix with i.i.d. Rademacher entries on the diagonal,
HS ∈ Rm×d is a partial Hadamard matrix restricted to a random subset S ⊂ [d] of |S| = m =
O(log(d)) rows, and G : Rm → Rd′ is a Gaussian matrix that lifts and rotates in dimension
d′ in the range m ≤ d′ ≤ d. There is nothing special about lifting to dimension d, and indeed
one could lift to dimension d′ > d, but if d′ grows faster than d, the hash computation no
longer takes time O(d ln d).

The embedding HSDbx acts as a Johnson-Lindenstrauss (JL) transform3, and embeds
the points in dimension m ≈ ln d.

It is straightforward that the hash computation x→ hF (x) takes O(d′m) time from the
Gaussian matrix multiplication and O(d ln d) time from the JL transform. We will show
that optimal asymptotic sensitivity is still achieved without lifting, d′ = m, but we observe
both empirically and theoretically that the rate of convergence to the asymptotic sensitivity
improves by lifting to higher dimension; taking d′ closer to d results in empirically closer
results to the standard cross-polytope scheme (see section 5 for more details). Moreover, our
scheme achieves the lower bound given by Theorem 2 in [4] for the fastest rate of convergence
among all hash families which has to d′ values.

2 In fact, the coefficient 4−c2R2

4−R2 < 1 for every choice of c > 1 and 0 < R < 2, but this does not break the
lower bound given in [20] since the lower bound ρ = 1

c2 only holds for a particular sequence R = R(d).
For cross-polytope LSH and the schemes proposed here, any sequence R(d)→ 0 suffices.

3 Formally, given a finite metric space (X, ‖ · ‖) ⊂ Rd, a JL transform is a linear map Φ : Rd → Rm
such that for all x ∈ X, (1− δ)‖x‖2 ≤ ‖Φx‖2 ≤ (1 + δ)‖x‖2, with m� d close to the optimal scaling
m = Cδ−2 ln(|X|) [13, 2, 16].

ITCS 2017
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Table 1 Various LSH Families and corresponding Hash Functions.

LSH Family Hash Function

Cross-Polytope LSH h(x) = argmin
u={±ei}

∥∥∥ Gx
‖Gx‖2

− u
∥∥∥

2
, G ∈ Rd×d

Fast Cross-Polytope
LSH

hF (x) = argmin
u={±ei}

∥∥∥ G(HSDbx)
‖G(HsDbx)‖2

− u
∥∥∥

2
, G ∈ Rd′×m

Fast Discrete
Cross-Polytope LSH

hD(x) = argmin
u={±ei}

∥∥∥∥ Ĝ(Zx)
‖Ĝ(Zx)‖2

− u
∥∥∥∥

2
, Ĝ ∈ Rd′×m

1.1.2 Fast cross-polytope LSH with optimal asymptotic sensitivity and
few random bits

Aiming to construct a hash family with similar guarantees which also uses as little randomness
as possible, we also consider a discretized version of the fast hashing scheme (5) in which
the Gaussian matrix G ∈ Rd′×m is replaced by a matrix Ĝ ∈ Rd′×m whose entries are i.i.d.
discrete approximations of a Gaussian; in place of the “standard" fast JL transform HSDb,
we consider Z ∈ Rd×m a low-randomness JL transform that we will clarify later. Then, the
discrete fast hashing scheme we consider is

hD(x) = argmin
u={±ei}

∥∥∥∥∥ Ĝ(Zx)
‖Ĝ(Zx)‖2

− u

∥∥∥∥∥
2

. (6)

Also for this scheme, the hash computation x → h(x) takes O(d′m) time from the
Gaussian matrix multiplication and O(d ln d) time from the JL transform. Our scheme has
several advantages, due to the fact that the choice of d′ in the range d ≤ d′ ≤ m is flexible:
To summarize our main contributions, we prove for both the fast cross-polytope LSH and
the fast discrete cross-polytope LSH,

For each d′ in the range m ≤ d′ ≤ d, this scheme achieves the asymptotically optimal ρ.
Moreover, for d′ = d, the rate of convergence to this ρ is optimal over all hash families
with d hash values.
With the choice d′ = d, the scheme computes hashes in time O(d ln d) and performs well
empirically compared to the standard cross-polytope with dense Gaussian matrix (see
section 5).
With the choice d′ = m, and by discretizing the Gaussian matrix, we arrive at a scheme
that has only O(ln9(d)) bits of randomness and still has optimal asymptotic sensitivity.

Table 1 contains the construction of the original cross-polytope LSH scheme, our fast
cross-polytope scheme, as well as the discretized version.

1.2 Related work
Many of our results hinge on the careful analysis of collision probabilities for the cross-
polytope LSH scheme given in [4]. Additionally, various ways to reduce the runtime of
cross-polytope LSH, specifically using fast, structured projection matrices, are mentioned
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in [8]. They also define a generalization of cross-polytope lsh that first projects to a low
dimensional subspace, but they never consider lifting back up to a high dimensional subspace
again. Johnson-Lindenstrauss transforms have previously been used in many approximate
nearest neighbors algorithms, (see [12], [18], [1], [21], [5], and [9], to name a few), primarily as
a preprocessing step to speed up computations that have some dependence on the dimension.
LSH with p-stable distributions, as introduced in [10], uses a random projection onto a single
dimension, which is later generalized in [3] to random projection onto o(ln d) dimensions,
with the latter having optimal exponent ρ = 1

c2 +O(ln(ln d)/ ln1/3 d). We make a note that
our scheme uses dimension reduction slightly differently, as an intermediate step before lifting
the vectors back up to a different dimension.

Similar dimension reduction techniques have been used in [17], where the data is sparsified
and then a random projection matrix is applied. The authors exploit the fact that the random
projection matrix will have the restricted isometry property, which preserves pairwise distances
between any two sparse vectors. This result is notable in that the reduced dimension has no
dependence on n, the number of points. See section 4 for more discussion.

2 Notation

We now establish notation that will be used in the remainder. OR(f(d)) is to mean
OR(f(d)) = O(f(d)g(R)) for some finite valued function g : (0, 2)→ R. The expression o(1)
is a quantity such that limd→∞ o(1) = 0. H ∈ Rd×d is the Hadamard matrix. Db ∈ Rd×d is a
diagonal matrix whose entries are i.i.d. Rademacher variables. For a matrix M ∈ Rd×d, MS

will denote the restriction of M to its rows indexed by the set S ⊂ {1, ..., d}. The variable G
will always denote a matrix with i.i.d. standard normal Gaussian entries, where the matrix
may vary in size. The variable Ĝ will always denote a matrix with i.i.d. copies of a discrete
random variable X which roughly models a Gaussian. C will denote various constants that
are bounded independent of the dimension. We will use m to denote the projected dimension
of our points, where m � d, and d′ the lifted dimension, where m ≤ d′ ≤ d. For a vector
x ∈ Sd−1 we will denote x̃ = HSDbx.

3 Main Results

We now formalize the intuition about how our scheme behaves relative to cross-polytope
LSH.

I Theorem 4. Suppose H is the family of hash functions defined in (5) with the choice
m = O(ln5(d) ln4(ln d)), and ρ is as defined in (1) for this particular family. Then we have
(i-)

ρ = 1
c2

4− c2R2

4−R2 + o(1).

and this hashing scheme runs in time O(d ln d).

Moreover, we have the optimal rate of convergence,
(ii-)

ρ = 1
c2

4− c2R2

4−R2 +O
(

1
ln d′

)
.

The lower bound given by Theorem 2 in [4] verifies the above rate of convergence is in fact
optimal. We remark that when hashing n points simultaneously, the embedded dimension m

ITCS 2017
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picks up a factor of ln(n). Assuming that n is polynomial in d, the result in Theorem 4 still
holds simultaneously over all pairs of points.

In addition to creating a fast hashing scheme, one can reduce the amount of randomness
involved. In particular, we show that a slight alteration of the scheme still achieves the
optimal ρ-value while using only O(ln9 d) bits of randomness. The idea is to replace the
Gaussian matrix by a matrix of i.i.d. discrete random variables. Some care is required
in tuning the size of this matrix so that the correct number of bits is achieved. As a
consequence the number of hash values for this scheme is of order O(m) (i.e. we lift up to a
smaller dimension), which lowers performance in practice, but does not affect the asymptotic
sensitivity ρ. We additionally use a JL transform developed by Kane and Nelson [14] that
only uses O(ln(d) ln(ln d)) bits of randomness. Specifically, the hash function for this scheme
is

hD(x) = argmin
u={±ei}

∥∥∥∥∥ Ĝ(Zx)
‖Ĝ(Zx)‖2

− u

∥∥∥∥∥
2

where Ĝ ∈ Rd′×m is a matrix with i.i.d. copies of a discrete random variable X which roughly
models a Gaussian, and Z ∈ Rd×m is the JL transform constructed in [14]. Our analysis
allows us to pick the threshold value d′ = m to minimize the number of random bits.

I Theorem 5. There is a hash family H with O(ln9 d) bits of randomness that achieves the
bound

ρ = 1
c2

4− c2R2

4−R2 + o(1),

and runs in time O(d ln d).

3.1 Theorem 4 Part (i-) Proof Outline
First we state an elementary limit result that we will apply to the proofs of both Theorem 4
and Theorem 5.

I Lemma 6. Suppose md(a),md(b) are positive functions, limd→∞md(a) = a,
limd→∞md(b) = b, and that f(d), g(d) are also positive, limd→∞ f(d) = limd→∞ g(d) =∞,
limd→∞

f(d)
g(d) =∞. Then,

lim
d→∞

md(a)f(d) + g(d)
md(b)f(d) + g(d) = a

b

Proceeding to the proof of Theorem 4, the key observation is that for x, y ∈ Sd−1,

Gx̃ = G0

[
x̃

0

]
, where G0 ∈ Rd′×d′ is a square Gaussian matrix. Thus,

Pr[hf (x) = hf (y)] = Pr
[
h

([
x̃

0

])
= h

([
ỹ

0

])]
,

recalling that hf is the fast cross-polytope hash function and h is the standard version. It
then follows that, provided the distance between x̃ and ỹ is close to the distance between
x and y, we can apply proposition 3 to control the above probability. We start with a
lemma for our chosen JL transform that combines a recent improvement on the restricted
isometry property (RIP) for partial Hadamard matrices [11] with a reduction from RIP to
Johnson-Lindenstrauss transforms in [15]; we defer the proof to the appendix.
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I Lemma 7. Suppose γ > 0, x, y ∈ Sd−1, x̃ = HSDbx, ỹ = HSDby and HS ∈ Rm×d is such
that m = O(γ ln4(d) ln4(ln d)). Then with probability 1−O(d−γ),(

1− 1
ln d

)
≤ ‖x̃‖2

2 ≤
(

1 + 1
ln d

)
, (7)(

1− 1
ln d

)
≤ ‖ỹ‖2

2 ≤
(

1 + 1
ln d

)
, (8)(

1− 1
ln d

)
‖x− y‖2

2 ≤ ‖x̃− ỹ‖2
2 ≤

(
1 + 1

ln d

)
‖x− y‖2

2 (9)

We apply the above lemma with the choice γ = ln d to get that

‖x− y‖2
2(

1− 1
ln d
) − 5

ln d− 1 ≤
∥∥∥∥ x̃

‖x̃‖2
− ỹ

‖ỹ‖2

∥∥∥∥2

2
≤ ‖x− y‖

2
2(

1 + 1
ln d
) + 5

ln d+ 1 . (10)

with probability 1−O(d− ln d). Combining this fact with proposition 3 we get that

Pr[hf (x) = hf (y)] = C(d′)
−R̃2

4−R̃2 ln−1(d′),

where R̃ = ‖x̃ − ỹ‖2 (by equation (10)) goes to R as d → ∞, and C is bounded in the
dimension. We then apply lemma 6 to see that

ρ =
R̃2

4−R̃2 ln(d′) + ln ln(d′) + C

c2R̃2

4−c2R̃2 ln(d′) + ln ln(d′) + C

= 1
c2

4− c2R2

4−R2 + o(1).

We defer the proof of Theorem 4 part (ii-) to the appendix.

3.2 Theorem 5 Proof Outline
We will use the following result (formulated as an analogue to lemma 7) , due to Kane and
Nelson, that reduces the amount of randomness required to perform a JL transform.

I Proposition 8. (Theorem 13 and Remark 14 in [14]) Suppose γ > 0, x, y ∈ Sd−1. Then,
there is a random matrix Z ∈ Rd×m with m = O(γ ln3(d)) and sampled with O(γ ln2(d))
random bits such that with probability 1−O(d−γ),(

1− 1
ln d

)
≤ ‖Zx‖2

2 ≤
(

1 + 1
ln d

)
,(

1− 1
ln d

)
≤ ‖Zy‖2

2 ≤
(

1 + 1
ln d

)
,(

1− 1
ln d

)
‖x− y‖2

2 ≤ ‖Z(x− y)‖2
2 ≤

(
1 + 1

ln d

)
‖x− y‖2

2

Now we want to construct a hash scheme that uses a Gaussian rotation with which to
compare our discretized scheme. Define

h′D(x) = argmin
u={±ei}

∥∥∥∥ G′Zx‖G′Zx‖2
− u
∥∥∥∥

2
, (11)

where G′ ∈ Rm×m is a standard i.i.d. Gaussian matrix. The following elementary lemma
gives us a suitable replacement for each Gaussian in the matrix G′.

ITCS 2017
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I Lemma 9. Suppose g ∼ N (0, 1). Then, there is a symmetric, discrete random variable X
taking 2b values such that for any x ∈ R,

Pr[g ≤ x] = Pr[X ≤ x] +O(2−b) (12)

The discretized scheme can now be constructed by

hD(x) = argmin
u={±ei}

∥∥∥∥∥ ĜZx‖ĜZx‖2
− u

∥∥∥∥∥
2

, (13)

where the entries of Ĝ ∈ Rd′×m are i.i.d. copies of the random variable X in Lemma
9. Note that each discrete random variable has b bits of randomness, so the hashing
scheme has minimial randomness when d′ = m, thus there are m×m× b+O(γ ln2(d)) =
O(γ2 ln6(d)b+ γ ln2(d)) bits of randomness. As we will see, we can choose γ and b to be a
power of ln(d) while still achieve the optimal asymptotic ρ. For this we have the following
lemma.

I Lemma 10. Let x, y ∈ Rd be such that ‖x− y‖2 = R, x̃ = Zx, and let h, h′ be as defined
in (13) and (11) respectively with m = O(ln4(d)), b = log2(d) where R̃ = ‖x̃− ỹ‖2. Then,

ln(Pr[hD(x) = hD(y)]) = ln(Pr[h′D(x) = h′D(y)]) +O
R̃

(1) (14)

We defer the proof of lemma 10 to the appendix, but the idea is as follows. We can first write

Pr[h′D(x) = h′D(y)] = 2d′Pr[h′D(x) = h′D(y) = e1].

Note that the set {h′D(x) = h′D(y) = e1} = {(G′x̃)1 ≥ |(G′x̃)2|, (G′ỹ)1 ≥ |(G′ỹ)2|}, which is
the Gaussian measure of a convex polytope, so we can write the above probability as the
integral over m intervals of the m-dimensional Gaussian probability distribution. We can
then use equation (12) to replace the Gaussian pdf with the discrete Gaussian pdf in each
coordinate succesively, and (keeping track of parameters), the lemma follows.

We now run the same argument as in Theorem 4 by setting γ = ln d, so combining lemma
10 and proposition 3 applied to h′D(x), we have that

ρ = ln(Pr[hD(x) = hD(y)])
ln(Pr[hD(cx) = hD(cy)])

=
ln(Pr[h′D(x) = h′(y)]) +O

R̃
(1)

ln(Pr[h′D(cx) = h′(cy)]) +O
R̃

(1)

=
R2

+
4−R2

+
ln(d′) + ln ln(d′) + C +O

R̃
(1)

c2R2
−

4−c2R2
−

ln(d′) + ln ln(d′) + C +O
R̃

(1)

=
R2

+
4−R2

+
ln(d′) + ln ln(d′) + C

c2R2
−

4−c2R2
−

ln(d′) + ln ln(d′) + C

= 1
c2

4− c2R2

4−R2 + o(1), by lemma 6.

Finally, by our choice of γ and b in the above lemma, we know that there are O(ln9(d)) bits
of randomness.
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4 Open Problems

Although we achieve a logarithmic number of bits of randomness in Theorem 5, there
is no reason to believe this is optimal among all hash families. More generally, given a
particular rate of convergence to the optimal asymptotic sensitivity we would like to know
the minimal number of required bits of randomness. Note that by the result in [20], for
each dimension d, c > 0, and q > 0, there is some distance R > 0 such that the sensitivity
parameter ρ ≥ 1

c2 −Oq
( 1

ln d
)
. In light of this result, we would like to know, for a given rate

of convergence, whether it gets close to the lower bound 1
c2 for all sequences of distances

R = R(d). Note that this condition holds for cross-polytope lsh with f(d) = O
( 1

ln d
)
.

I Problem 11. Given a rate of convergence f(d) such that limd→∞ f(d) = 0, find the
minimal number of bits Of (d) such that any hash family H over the sphere Sd−1 with Of (d)
bits of randomness satisfies ρ = 1

c2 + f(d) for all sequences R = R(d).

A more practical question is, given a rate of convergence for ρ, what is the fastest one could
compute a hash family achieving this rate.

I Problem 12. Given a rate of convergence f(d) as in Problem 11, find the hash family H
over Sd−1 such that ρ = 1

c2 + f(d) for all sequences R = R(d), that also has the fastest hash
computations.

It would be natural to extend our theoretical analysis to the case of hashing a collection of
n points simultaneously. In this setting, the embedding dimension of the JL matrix would
inherit an additive factor depending on ln(n). Inspired by the construction in [17] which first
sparsifies the data then exploits the restricted isometry property which applies uniformly
over all sparse vectors, we can aim for a construction that doesn’t depend on the number of
data points.

5 Numerical Experiments

To illustrate our theoretical results in the low dimensional case, we ran Monte Carlo simula-
tions to compare the collision probabilities for regular cross-polytope LSH as well as the fast
and discrete versions for various values of the original and lifted dimension. We refer to [4]
for an in depth comparison of run times for cross-polytope LSH and other popular hashing
schemes.

The experiments were run with N = 20000 trials. For each trial, two points were fixed
at the given distance threshold on the unit sphere (in the plane given by the first two
coordinates) and then rotated uniformly at random on the sphere. The discretized scheme
used 10 bits of randomness for each entry. The fast, discrete, and regular cross-polytope
LSH schemes exhibit similar collision probabilities for small distances, with fast/discrete
cross-polytope having marginally higher collision probabilities for larger distances. It is clear
that as the lifted dimension decreases, the fast and discrete versions have higher collision
probabilities at further distances, which decreases the sensitivity of those schemes.
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The following figures illustrate the rate of convergence to the optimal collision probability
as d→∞, as well as various lines that illustrate the optimal rate of convergence C\ ln(d),
where C varies for illustrative purposes. The experiments were run with varying distances
and clearly show the same rate of convergence for the collision probability between the
standard and fast cross-polytope schemes. We note that at low dimensions, the schemes
behave even more similarly because the embedded dimension is much closer to the original
dimension in this case.
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6 Appendix

6.1 Proof of Theorem 4 Part (ii-)

Let ρR,c be the exponent for standard cross-polytope lsh in dimension d′, and ρfastR,c be the
exponent for fast cross-polytope lsh lifted to dimension d′. Suppose that

ρR,c −
1
c2

4− c2R2

4−R2 ≤ C(R, c)F (d′),

where F (d′)→ 0 as d′ →∞ and C(r, c) is constant in the dimension d′.
Assume that HsDb : Rd → Rm is a δ-isometry on x− y, i.e.

||x− y||22 ≤ R2 =⇒ ||x̃− ỹ||22 ≤ (1 + δ)R2 (15)

||x− y||22 ≥ c2R2 =⇒ ||x̃− ỹ||22 ≥ (1− δ)c2R2. (16)

The next observation is that hf (x) applies the standard cross-polytope lsh scheme on HsDbx,
so conditioned on HsDbx being a δ-isometry, we can analyze the fast scheme in terms of the
standard scheme as follows:

ρfastR,c ≤ ρR′,c′ ,

where R′ = R
√

1 + δ, c′ =
√

1−δ
1+δ c. Now, we can say

ρfastR,c −
1
c2

4− c2R2

4−R2 ≤ [ρfastR,c − ρR′,c′ ] +
[
ρR′,c′ −

1
(c′)2

4− (c′)2(r′)2

4− (R′)2

]
+
[

1
(c′)2

4− (c′)2(R′)2

4− (R′)2 − 1
c2

4− c2R2

4−R2

]
≤ C(R′, c′)F (d) +

[
1

(c′)2
4− (c′)2(R′)2

4− (R′)2 − 1
c2

4− c2R2

4−R2

]
.
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The difference in the last equation can be bounded as

1
(c′)2

4− (c′)2(R′)2

4− (R′)2 − 1
c2

4− c2R2

4−R2 =
(

1 + δ

c2(1− δ)

)
4− (1− δ)c2R2

4− (1− δ)R2 −
1
c2

4− c2R2

4−R2

≤ (1 + δ)(4− (1− δ)c2R2)(4−R2)− (4− c2R2)(1− δ)(4− (1− δ)R2)
c2

2 (4−R2)2

= δO(R, c) + (1 + δ)(4− c2R2)(4−R2)− (1− δ)(4− c2R2)(4−R2)
c2

2 (4−R2)2

= δD(R, c),

so it follows that ρfastR,c −
1
c2

4−c2R2

4−R2 ≤ δD(R, c) + C(R′, c′)F (d′) conditioned on the fact that
HsDb is a δ-isometry on x− y. Note that for d′ large enough, C(R′, c′) is bounded above
by a constant independent of the dimension. We can make the choice δ = 1

ln(d) , so that the
isometry condition holds with probability 1−O(d− ln d), so if ρ is the true exponent without
conditioning, we get that

ρ ≤ p1

p2 + C ln (1− d− ln d)

≤ p1

p2 − Cd− ln d

≤ p1

p2
(1 + Cd− ln d/p1),

where C > 0 is an constant that changes by line but is independent of the dimension. From
this expression it is easy to see that the error term decays at least like 1/ ln d′ (recall that
d′ ≤ d).
Finally, provided F (d′) decays as fast as than 1

ln(d′) , the result will hold. This follows from
Theorem 1 in [4].

6.2 Proof of Lemma 6
We know that for any ε > 0 and d large enough, md(b) ≥ b− ε, so that

lim
d→∞

g(d)
md(b)f(d) + g(d) ≤ lim

d→∞

g(d)
(b− ε)f(d) + g(d)

= lim
d→∞

1
(b− ε) f(d)

g(d) + 1
= 0,

and by positivity the inequality is an equality. This implies that

lim
d→∞

md(a)f(d) + g(d)
md(b)f(d) + g(d) = lim

d→∞

md(a)f(d)
md(b)f(d) + g(d) .

The same argument on the reciprocal shows that

lim
d→∞

md(a)f(d)
md(b)f(d) + g(d) = lim

d→∞

md(a)f(d)
md(b)f(d) = a

b

6.3 Proof of Lemma 7
Define the event

Ev,δ := {v ∈ Rn : (1− δ)‖v‖2 ≤ ‖ṽ‖2 ≤ (1 + δ)‖v‖2}.
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sCombining Theorem 4.5 of [11] and Theorem 3.1 of [15], we know that for any η ∈ (0, 1),
any s ≥ 40 ln(12/η), some C0 > 0, and provided m = O(δ−2 ln2(1/δ)s ln2(s/δ) ln(d)),

Pr[Ex,δ ∩ Ey,δ ∩ Ex−y,δ] ≥ (1− η)(1− 2−C0 ln(d) ln(s/δ))

Setting δ = 1/ ln(d), η = d−γ , s = 40C ln(12d), we get

Pr[Ex,δ ∩ Ey,δ ∩ Ex−y,δ] ≥ (1− d−γ)(1− 2−C0 ln(d) ln(40γ ln(12d) ln(d))),

and the lemma follows.

6.4 Proof of Lemma 10
Note that since the entries of Ĝx̃ are symmetric and i.i.d., the probability of hashing to one
value is equal for all hash values, so we get

Pr[hD(x) = hD(y)] = 2d′Pr[hD(x) = hD(y) = e1]

= 2d′Pr[∩d
′

j=2(Ĝx̃)1 ≥ |(Ĝx̃)j |, (Ĝỹ)1 ≥ |(Ĝỹ)j |]

= 2d′E(Ĝx̃)1,(Ĝỹ)1
(Pr[(Ĝx̃)1 ≥ |(Ĝx̃)2|, (Ĝỹ)1 ≥ |(Ĝỹ)2|]d

′−1). (17)

Our goal is to bound the probability Pr[(Ĝx̃)1 ≥ |(Ĝx̃)2|, (Ĝỹ)1 ≥ |(Ĝỹ)2|] in terms of the prob-
ability Pr[(G′x̃)1 ≥ |(G′x̃)2|, (G′ỹ)1 ≥ |(G′ỹ)2|]. Define EG′ = {(G′x̃)1 ≥ |(G′x̃)2|, (G′ỹ)1 ≥
|(G′ỹ)2|} and similarly for Ĝ. Since EG′ is a convex polytope, we can write

Pr[EG′ ] =
∫
I1

∫
I2(x1)

...

∫
Im(x1,x2,...,xm−1)

1
(2π)m e

−(x2
1+...+x2

m)/2dxm...dx1,

where each Ij(x1, ..., xj) is a (possibly unbounded) interval. By construction of X,∫
Ij(x1,...,xj)

1
2π e

−x2
j+1/2dxj+1 =

∫
Ij(x1,...,xj)

pX(xj+1)dxj+1 +O(2−b)

where pX(x) is the pdf of X. This implies that

Pr[EG′ ]

=
∫
I1

∫
I2(x1)

...

∫
Im(x1,...,xm−1)

1
(2π)m−1 e

−(x2
1+...+x2

m−1)/2pX(xm)dxm...dx1 +O(2−b)

... =
∫
I1

∫
I2(x1)

...

∫
Im(x1,...,xm−1)

pX(x1)...pX(xm)dxm...dx1 +O(m2−b)

= Pr[EĜ ] +O(m2−b).

Plugging this into (17), we get

Pr[hD(x) = hD(y)] = 2d′E(Ĝx̃)1,(Ĝỹ)1
(Pr[EG′ ] +O(m2−b)))d

′−1

= 2d′E(Ĝx̃)1,(Ĝỹ)1

d′−1∑
k=1

(
d′ − 1
k

)
Pr[EG′ ]k(O(m2−b))d

′−1−k

 .
We now make the choice m = C ln4(d), b = log2(d) ln(d), so that the above summation
becomes

d′−1∑
k=1

(
d′ − 1
k

)
Pr[EG′ ]d

′−1−k(C ln4(d)d− ln(d))k

=
d′−1∑
k=1

(
d′ − 1
k

)
Pr[EG′ ]d

′−1−k(C ln4(d)d− ln(d))k
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This first term in the summation is the main term Pr[EG′ ]d
′−1 and the other terms can be

bounded using Sterling’s approximation as follows,(
d′ − 1
k

)
Pr[EG′ ]d

′−1−k(C ln4(d)d− ln(d))k ≤
(
d′e

k

)k
(C ln4(d)d− ln(d))k.

For k ≥ 1 this is certainly bounded by O(d− ln(d)+1), and we have

d′−1∑
k=1

(
d′ − 1
k

)
Pr[EG′ ]d

′−1−k(C ln4(d)d− ln(d))k

= Pr[EG′ ]d
′−1 +O(d− ln(d)+2)

We note that the last asymptotic approximation is very rough but sufficient for our purposes.
This means that

Pr[hD(x) = hD(y)] = 2d′E(Ĝx̃)1,(Ĝỹ)1
(Pr[EG′ ]d

′−1) +O(md− ln(d)+2). (18)

Using the same technique as above where we replace the Gaussian density function with
PX(x), we have

Pr[h′D(x) = h′D(y)] = 2d′E(G′x̃)1,(G′ỹ)1
(Pr[EG′ ]d

′−1)

= 2d′E(Ĝx̃)1,(Ĝỹ)2
(Pr[EG′ ] +O(m2−b))d

′−1

= 2d′E(Ĝx̃)1,(Ĝỹ)2
(Pr[EG′ ]d

′−1) +O(md− ln(d)+2)

Finally, plugging this into (18), we get

Pr[hD(x) = hD(y)] = Pr[h′D(x) = h′D(y)] +O(md− ln(d)+2)

= Pr[h′D(x) = h′D(y)] +O(d− ln(d)+3).

Now, we know that by Theorem 3, ln(Pr[hD(x) = hD(y)]) = − R̃2

4−R̃2
ln(d′) +O

R̃
(ln(ln d′)),

so provided d is large enough that ln(d)− 2 > R̃2

4−R̃2
, the lemma follows.
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