
Metatheorems for Dynamic Weighted Matching
Daniel Stubbs∗1 and Virginia Vassilevska Williams†2

1 Computer Science Department, Stanford University, USA
dstubbs@stanford.edu

2 Computer Science Department, Stanford University, USA
virgi@cs.stanford.edu

Abstract
We consider the maximum weight matching (MWM) problem in dynamic graphs. We provide two
reductions. The first reduces the dynamic MWM problem onm-edge, n-node graphs with weights
bounded by N to the problem with weights bounded by (n/ε)2, so that if the MWM problem can
be α-approximated with update time t(m,n,N), then it can also be (1 + ε)α-approximated with
update time O(t(m,n, (n/ε)2) log2 n + logn log logN)). The second reduction reduces the dy-
namic MWM problem to the dynamic maximum cardinality matching (MCM) problem in which
the graph is unweighted. This reduction shows that if there is an α-approximation algorithm
for MCM with update time t(m,n) in m-edge n-node graphs, then there is also a (2 + ε)α-
approximation algorithm for MWM with update time O(t(m,n)ε−2 log2 N). We also obtain
better bounds in our reductions if the ratio between the largest and the smallest edge weight is
small. Combined with recent work on MCM, these two reductions substantially improve upon
the state-of-the-art of dynamic MWM algorithms.

1998 ACM Subject Classification F2.2 Nonnumerical Algorithms and Problems

Keywords and phrases dynamic algorithms, maximum matching, maximum weight matching

Digital Object Identifier 10.4230/LIPIcs.ITCS.2017.58

1 Introduction

The maximum matching problem is one of the most basic problems in algorithms. Starting
from the 1950s, a series of influential papers (among others, [15, 13, 20, 23, 9, 14, 17, 19])
culminated in very efficient algorithms for the problem in n node m edge graphs. There
are two versions of the problem: the unweighted version in which one needs to return a
maximum cardinality matching (MCM), and the weighted version, in which the input graph
has weights on its edges and one seeks a matching of maximum weight (MWM).

For MCM in general graphs, the best known algorithms are the Micali-Vazirani [18]
O(m

√
n) algorithm and the O(nω) time algorithm of Mucha and Sankowski [19] (see also

[12, 23, 20]), where ω < 2.373 is the matrix multiplication exponent [26, 16]. For the special
case of bipartite graphs, a recent breakthrough result of Madry [17] achieved a runtime of
Õ(m10/7). For the maximum weight matching problem, the best known running times are
O(m

√
n log(nN)) [9, 10] and Õ(Nnω) [25] where N is the largest edge weight.

Graphs in applications, however, are dynamic by nature. Edges and vertices fail and
new ones are introduced. Because of this, more resilient, dynamic algorithms are desired.
Such algorithms can update the solution efficiently when an edge insertion or deletion occurs.

∗ Supported by an NSF Graduate Fellowship.
† Supported by NSF Grants CCF-1417238, CCF-1528078 and CCF-1514339, and BSF Grant BSF:2012338.

© Daniel Stubbs and Virginia Vassilevska Williams;
licensed under Creative Commons License CC-BY

8th Innovations in Theoretical Computer Science Conference (ITCS 2017).
Editor: Christos H. Papadimitrou; Article No. 58; pp. 58:1–58:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ITCS.2017.58
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


58:2 Metatheorems for Dynamic Weighted Matching

Maintaining an exact solution to the maximum matching problem, however, turns out to be a
difficult problem. Utilizing fast matrix multiplication, Sankowski [24] gave an algorithm with
update time O(N2.495n1.495) that can maintain the weight of a maximum weight matching;
his algorithm is also the best known in the unweighted case when N = 1. Abboud and
Vassilevska Williams [1] showed in a formal sense that the use of fast matrix multiplication
is inherent even for dynamic bipartite MCM, as fast enough updates would imply a faster
Boolean matrix multiplication algorithm.

Because exact dynamic algorithms seem to be doomed to be inefficient, the majority of
research on dynamic matching has been on maintaining approximate matchings. Following
work by Onak and Rubinfeld [22], Baswana et al. [3] obtained a randomized fully dynamic
algorithm that maintains a maximal (and hence 2-approximate) matching with expected
amortized update time O(logn). Obtaining a fast deterministic algorithm has been a much
more difficult task. Following Neiman and Solomon [21], Gupta and Peng [11] showed how to
obtain a (1+ε)-approximation algorithm to the MCM with update time O(

√
m/ε2). Bernstein

and Stein [5, 4] developed dynamic algorithms that achieve a (3/2 + ε)-approximation in
amortized update time O(m1/4ε−2.5). Just recently Bhattacharya et al. [7] gave a very fast
deterministic algorithm: for every ε > 0, their algorithm achieves a (2 + ε)-approximation
algorithm with update time polylog(n, 1/ε).

For maintaining an approximate MWM, only two results are known. Anand et al. [2]
obtained a randomized 4.911-approximation to the MWM in O(logn logC + logN) expected
amortized update time1, where N is the maximum edge weight and C is the ratio between
N and the lowest edge weight. Gupta and Peng [11] obtained a (1 + ε) approximation in
deterministic worst case O(

√
mε−2−O(1/ε) logN) update time, where N is the largest edge

weight in the graph.
There are two main questions that emerge:

1. Can one get improved dynamic algorithms for MWM? E.g., is there a faster than O(
√
m)

deterministic worst case update algorithm for any constant approximation ratio? Is there
a polylogarithmic update time dynamic algorithm with a better than 4.911-approximation
guarantee? Can one use the recent techniques developed for dynamic MCM algorithms
here?

2. All known dynamic MWM algorithms have update times that depend logarithmically on
N . If N can be exponential in n, this causes a polynomial overhead in the running time.
Can the dependence on N be decreased?
If the algorithm had to be exact, then clearly the algorithm has to read the entire edge
weights, so it is natural to have a dependence on logN . However, here the answers can
be approximate, so perhaps one can get away with reading only a few of the bits of the
weight. If this is possible, then the algorithm would be fast even if the edge weights were
exponential in the number of vertices. In particular, a truly polylogarithmic in n update
time for approximate MWM would be possible.

1.1 Our results
In this paper we address both questions above.

Our first contribution is an efficient black-box reduction from dynamic approximate
MWM to dynamic approximate MCM. Applying this reduction, we are able to improve the

1 The update time stated in [2] is O(log n log C), however, taking into account reading the edge weights
on edge insertion actually adds a log N to the running time.



D. Stubbs and V. Vassilevska Williams 58:3

current best algorithms for dynamic MWM. The second contribution is a black-box reduction
from dynamic approximate MWM on an exponential weight range to the same problem on a
polynomial weight range, giving rise to the first algorithm for exponential range dynamic
approximate MWM with truly polylogarithmic update time.

Let C be the ratio between the largest edge weight N and smallest edge weight L. Let
n be the number of nodes and m the number of edges. The two theorems we prove are as
follows:

I Theorem 1. Let A be a dynamic algorithm that maintains an α-approximate MCM with
update time t(m,n). Then, for all ε > 0, there is a dynamic algorithm that maintains a
2α · (1 + ε)-approximate MWM with update time O(t(m,n)ε−2 log2 C + logN).

If the original MCM algorithm was fully dynamic, so is the MWM algorithm, and if the
original MCM algorithm is partially dynamic (incremental or decremental), so is the MWM
one. If the MCM update time was worst case, then so is the MWM one, and if the original
one was deterministic, so is the MWM one.

I Theorem 2. Suppose that there is an algorithm that maintains an α-approximate MWM
with update time T (m,n,N). Then, for every constant ε > 0, one can convert it into an
algorithm that maintains an α · (1 + ε)-approximate MWM with asymptotic update time

T (m,n, n2ε−2) log2 n+ logn log logC + log logN.

The new algorithm enjoys the same properties as the old one (worst-case, deterministic etc).

Composing Theorems 1 and 2 we get that a t(m,n)-update time α-approximate MCM
algorithm can be converted into a (2 + ε)α-approximate MWM algorithm with update time
O(t(m,n)ε−2 log4 n+ logn log logC + log logN).2

Applying Theorems 1 and 2 to the algorithms of Baswana et al. [3], Bhattacharya et
al. [6, 7] and Bernstein and Stein [5, 4], we obtain the following immediate corollary.

I Corollary 3. The following dynamic algorithms exist for MWM for all ε > 0:
a (4 + ε)-approximation with deterministic worst case update time O( poly(logn, 1/ε) +
logn log logC + log logN)
a (4+ε)-approximation with expected amortized update time O(ε−2 log5 n+logn log logC+
log logN), and
a (3 + ε)-approximation in deterministic amortized update time O(m1/4ε−4.5 log4 n +
logn log logC + log logN).

The above Corollary significantly improves upon the state of the art of dynamic MWM
algorithms. In particular, it presents the first truly polylogarithmic update time for approx-
imate dynamic MWM in the case when the edge weights can be exponential in n. Note that
since our algorithm works on subsets of the edges of the original graph, we can derive dynamic
weighted matching algorithms from dynamic maximum cardinality matching algorithms for
special classes of graphs closed under edge deletions, such as the low-arboricity result of
Neiman and Solomon [21].

A big advantage of our meta-algorithms is that they are simple, clean and combinatorial.
Thus, if the original dynamic MCM algorithm is practical, then the MWM algorithms
resulting from our theorems would likely also be practical.

2 The composition gives this runtime for any ε > 1/n3. Of course, if ε ≤ 1/n3, the trivial algorithm that
recomputes the matching from scratch has update time O(1/ε).

ITCS 2017



58:4 Metatheorems for Dynamic Weighted Matching

1.1.1 Overview of the reduction from dynamic MWM to MCM
Here we give an overview of our approach to proving Theorem 1. Our starting point is
a result by Crouch and Stubbs [8] that reduced MWM to MCM in the streaming setting.
This reduction shows how to reduce approximate MWM to a small number of instances of
approximate MCM, but does not show how to maintain the output approximate MWM
efficiently under arbitrary edge updates. Here we show how to make the reduction work in
the dynamic setting.

Suppose that we are given a graph with integer edge weights between L and N and we
want to compute an approximate MWM; let C = N/L. The basic idea of the Crouch and
Stubbs reduction is to take maximal matchings from weight-threshold-based subgraphs of
the underlying graph, and then merge the resulting maximal matchings together greedily. In
particular, one computes an approximate MCM on all edges of weight at least (1 + ε)i, for
i ∈ {b(log1+ε Lc, blog1+ε Lc+ 1, . . . , blog1+εNc}. One produces the output matching from
the approximate MCMs by including all edges from the matching in the weight class with the
highest threshold, and then adding edges in descending order of the height of their weight
class, as long as they are node-disjoint from the edges added so far.

Since we have O(ε−1 logC) different weight classes, maintaining the approximate MCMs
only incurs a small overhead, over any dynamic matching algorithm for approximate MCM.
The only remaining concern, then, is how much time it takes to maintain the output matching
by merging these together. This is our contribution on top of the result of Crouch and
Stubbs: we show that the greedy merge of the MCMs can be updated efficiently.

We begin by assuming that we have approximate maximum cardinality matchings for
each of the weight classes and an output matchingM constructed statically by merging these
matchings greedily in decreasing order of class height. When an update to the underlying
graph occurs, it might cause some number of the edges in each of the matchings to change.
This number in a weight class is at most the update time of the corresponding MCM data
structure. Assuming that the dynamic algorithm for approximate MCM has update time
T (m,n), the number of changed edges in any one of the matchings is at most T (m,n).

When edges change in an approximate MCM, we fold those changes into M one level at
a time, in order of decreasing class height. If an edge in the output matching was deleted,
we mark its endpoints as “newly free,” so that we can look for new edges that cover those
endpoints in lower classes – note that we needn’t check the higher classes, since any such
edge would have precluded the just-deleted edge from being in the output matching. If an
edge was newly added, we add it to the output matching iff neither of its endpoints is covered
by a higher class edge; if any edges are deleted in the process, we mark their endpoints as
“newly free” and check for edges that cover these newly free nodes in lower classes, as before.

The process of checking for edges to cover a newly free node v is simple: in each lower
class, as we’re rolling in the changes to the current MCM, we also check whether v is matched
in the updated MCM. If it is and its match u is not covered by an edge in the current output
matching from a higher class, we add (u, v) to the output matching and v is no longer newly
free. If u were already matched in the output matching to some node via a less exclusive
edge e, we remove e from the output matching and make its other endpoint newly free.

The main part of the efficiency argument is as follows. The changes in the MCMs cause
at most O(T (m,n)ε−1 logC) edges in our matching data structure to change. For each such
changed edge, we carry out constant immediate processing, and also possibly create up to
two “newly free” nodes. The crucial point is that if a newly free node is matched, then it
can create at most one new newly free node, and so the total number of newly free nodes
that have cascaded down the classes starting from a particular changed edge is at most 2.



D. Stubbs and V. Vassilevska Williams 58:5

For each weight class, we might need to consider up to O(T (m,n)ε−1 logC) newly free
nodes from the classes above it, performing a constant time operation for each. Therefore
the total time it takes to handle the entire merger is O(ε−2 log2(C)T (m,n)). This process is
sufficient to produce an output graph identical to one created by the static merge described
above, since edges from higher classes are allowed to preempt ones from lower classes, just as
if we’d greedily merged them in first. For the actual update time, we need to read in the
weight of any inserted edge, and for this we pay an additional O(logN).

In Section 3 we provide the full details of the algorithm and the proofs of runtime,
correctness and approximation guarantee.

1.1.2 Overview of improving the dependence on the weights
Here we provide an overview of our proof of Theorem 2 presented in Section 4.

A useful fact about weighted matching is that the maximum weight matching of the
restriction of the graph to edges of weight at least a 2ε/n fraction of the weight of the largest
edge (so at least 2εN/n, in our case) has weight at least 1/(1 + ε) times the true maximum
weight matching, even if there are no edges other than the unique edge of weight N in this
subgraph. The reason is simple: a matching has at most n/2 edges, and if none of these
weigh more than 2εN/n, the whole matching weighs only (n/2)(2εN/n) = εN , meaning the
whole matching including the top edge weighs at most (1 + ε)N , as desired. Adding more
edges above the threshold only makes the “best-only” matching a better approximation of
the true matching.

It would be natural to want to apply this principle to fully dynamic weighted matching
algorithms (like ours above) in order to reduce the dependence on the – potentially quite
large – weight range to a dependence on O(ε−1n). Unfortunately, N can potentially change
in the fully dynamic setting: in particular, if we were relying on a single high-weight edge to
carry our matching and that edge is deleted, we would have no approximation at all!

Our solution is to maintain enough copies of a dynamic maximum weight matching
algorithm on a small range of weights, to guarantee that any two edges whose weights are
within a factor of 2ε/n of one another appear in the same data structure somewhere. In
particular, the highest weight edge appears in the same data structure with any edge with
weight within a 2ε/n factor of the maximum weight. At the same time, we keep the weight
ranges nearly disjoint so that only two of the data structures need to be altered by any
update to the underlying graph.

To accomplish both goals, we take weight ranges of the form ((nε−1)i, (nε−1)i+2] for
lognε−1 L ≤ i ≤ lognε−1 N where L and N are the minimum and maximum edge weight in
the data structure throughout its existence. The number of these ranges is now O(lognε−1 C)
(where C = N/L), and we have guaranteed that the MWM in one of these classes is a (1+ε)α
approximation to the true MWM, and that the weight range in each class can be reduced to
nε−1. However, we would like to have a persistent output matching that always contains a
(1 + ε)α approximation of the maximum weight matching, that doesn’t change dramatically
in a single time step just because the highest weight edge was deleted from the graph.

To this end, we define and maintain a specially constructed output matchingM that we call
the census matching. The idea is as follows. M will contain a certain number of edges from
the matchings in each weight class as follows. Consider some weight class ((nε−1)i, (nε−1)i+2]
and suppose that the number of edges in its matching is ni. Let Ni =

∑
j>i nj be the sum

of cardinalities of matchings in classes above i. If ni > Ni, we will have ni −Ni matching
edges Ri from class i that the census matching M will consider. M is constructed by greedily
merging Ri similar to our algorithm from the MWM to MCM reduction.

ITCS 2017



58:6 Metatheorems for Dynamic Weighted Matching

In particular, the census matching always contains all the edges of weight within nε−1 of
the current maximum weight. Further, since the total number of edges in matchings that
have any edges considered by the output matching doubles with each lower class that still
has nonempty Ri, and since no matching has more than n/2 edges, the total number of
classes with any edges considered is O(logn).

The output matching itself is relatively simple and behaves like the output matching of
our first algorithm, except that it’s drawing from these “representative sets” Ri, rather than
from approximate maximum cardinality matchings. Fortunately, we can show that only two
representative sets can change at a time, so it only takes O(t(n,m, (nε−1)2, (nε−1)2) logn)
time to do the updates, where t(n,m,N,C) is the update time of the underlying MWM
algorithm, and thus the maximum number of edges that can be added or removed from a
single MWM in a single time step.

We show that when an edge is to be updated, to figure out which pair of classes it belongs
to, we only need to read O(log logN) bits of its weight. To make everything work efficiently,
we introduce a complete binary tree data structure (with the weight classes as leaves) that
helps us maintain the representative sets Ri efficiently, though the tree is only conceptually
complete, as we only add edges and nodes on paths from the root to leaves of non-empty
weight classes to avoid wasting time when a new edge appears of much higher or lower weight
than all previous edges. In particular, the O(log logC) overhead in our running time is due
to the tree having depth O(log logC). The log logN dependence is due to various pointers
to positions in the bits of the weight. The details are in Section 4.

2 Merging matchings greedily

Here we prove a technical lemma used in both of our algorithms.
Let S1, . . . , Sk be matchings in a graphG. For any edge (u, v), let `(u, v) = max{i | (u, v) ∈

Si}. Call a matching M a Greedy Census matching if for any edge (u, v) ∈ Si \M , there
exists either (u, u′) or (v, v′) ∈M ∩ Sj , for some j ≥ i. This property is equivalent to saying
that M could have been constructed by greedily adding edges from each level from k down to
1, ensuring that the added edges are maximal within the current level before moving down.
Thus, we have ∀j : M ∩ (∪i>jSi) is maximal in ∪i>jSi

For an edge (u, v) let L(u, v) be a decreasing set of indices {i1, i2, . . .} such that (u, v) ∈ Sij
for each j and ij > ij+1. In particular, i1 = `(u, v).

I Lemma 4. Suppose we are given any collection of edge sets In1, In2, . . . , Ink and
Del1, . . . , Delk, the sets L(u, v) for all (u, v) and a Greedy Census matching M of S1, . . . , Sk.
Then one can insert all edges of Inj into Sj and delete all edges of Delj from Sj and update
M and all L(u, v) so that M is a Greedy Census of the modified sets Sj, all in time

k∑
j=1

j ·
(
|Inj |+ |Delj |

)
.

In our reduction from MWM to MCM, the sets Sj will correspond to the approximate
maximum cardinality matchings of different weight classes, and in our algorithm for decreasing
the dependence on the edge weight, they will correspond to the sets of representative edges
of different weight classes.

Before we prove Lemma 4, let us introduce some notation.
For each j ∈ [k], let NewFree(j), initially empty, be the set of newly free nodes created

for level j. A newly free node u is any node that was covered by some edge in M , and then



D. Stubbs and V. Vassilevska Williams 58:7

became uncovered after a change to that matching. Specifically, u becomes newly free by
the deletion of an edge (u, v) from M . This deletion could happen for one of two reasons:
either because (u, v) was in Del(j), meaning it was removed by an update to the underlying
graph or some activity at a lower level of the algorithm, and is no longer in consideration for
inclusion in M , or because `(u, v) ≤ j and (u, v) was deleted so that v can be matched via
an edge of level greater than j; that is, we found another better edge for M to use in place
of (u, v) and u was left uncovered.

Now the procedure is as follows. We set NewFree(j) = ∅ for all j. We iterate through
all levels j from k down to 1. Fix a level j. Then, for each edge (x, y) ∈ Delj , remove it
from Sj , and remove j from L(x, y). If now `(x, y) < j, and if (x, y) ∈ M , remove (x, y)
from M and add x and y to NewFree(j). For each (x, y) ∈ Inj , insert it into Sj , add j
to L(x, y). For each (x, y) ∈ Inj , in a second loop, check whether x and y are matched in
M . Suppose that either x is not matched or x is matched to x′ with `(x, x′) < j. Suppose
further that either y is not matched or it is matched to y′ with `(y, y′) < j. Then, remove
(x, x′) and (y, y′) from M , add x′ and y′ to NewFree(j) and insert (x, y) into M . If x or y
are in NewFree(j), remove them from NewFree(j).

Now, for each u ∈ NewFree(j), let v be its match in Sj (recall Sj is a matching). If v is
matched to a node v′ such that `(v, v′) ≥ j, then just move u to NewFree(j − 1) and move
to the next u. Else if v is unmatched in M or if v is matched to some v′ with `(v, v′) < j,
then remove (v, v′) from M , add v′ to NewFree(j−1) and add (u, v) to M . This completes
stage j.

Now we prove the following claims:

I Claim 1. The runtime of the above algorithm is O(
∑k
j=1 j(|Inj |+ |Delj |)).

Proof. Each deletion in Delj can create at most 2 newly free nodes. Each insertion in
Inj can cause the creation of at most 2 newly free nodes as well. If a newly free node is
matched in some stage j, then it can create at most one new newly free node, and this
one is put in NewFree(j − 1). Thus, the total cost of processing newly free nodes is
O(
∑k
j=1 j(|Inj |+ |Delj |)). J

I Claim 2. Let S′i = Si∪Ini \Deli. M is a greedy census matching of the updated matchings
S′1, . . . , S

′
k.

Proof. Consider for contradiction an edge (u, v) ∈ Si \M such that neither u nor v are
matched with edges of level at least i. Before updating, one of the following was true, since
M was a census matching: 1) (u, v) /∈ Si, 2) (u, v) ∈ Si ∩M or 3) (wlog) (u, u′) ∈ Sj ∩M ,
for some j > 1. In case 1, (u, v) must have been in Ini, and, since neither u nor v are
matched at a level above i, (u, v) would have been added to M , and then it’s not true that
(u, v) ∈ Si \M . In case 2, (u, v) left M with the update, but is still in Si, so it wasn’t in
Deli. This can only have happened because a higher level edge, wlog (u, u′) was in In`(u,u′),
causing (u, v) to be removed from M . Since the Ini are processed in descending order, and
the edges in Del`(u,u′) get deleted before the edges from In`(u,u′) get inserted, (u, u′) will
not be deleted by anything in this batch of updates, and so (u, u′) is in M , and u is matched,
violating the second part of the assertion. In case 3, the higher level edge, (u, u′) must have
been deleted in the update, either directly by being in Deli or indirectly by having a higher
level edge claim u′. In either case, u would be added to NewFree(`(u′, u)), and it would
either get matched to v, putting (u, v) ∈ M , or it would get matched to some (u, u′′) of
higher level than (u, v), both of which invalidate the assertion. J

ITCS 2017



58:8 Metatheorems for Dynamic Weighted Matching

3 A meta-algorithm for approximating MWM

Let ε > 0 be fixed. For every integer i, let Ei contain all edges of G that have weight
≥ (1 + ε)i. Let Di be a data structure that maintains an α-approximate MCM of Ei with
update time t(m,n).

Let ` be the smallest i such that Ei 6= Ei+1. During each stage of the dynamic algorithm
we have a pointer to D`, for the current value of `. Let M be the approximate MWM that we
are maintaining. Let M̃i be the approximate MCM maintained by Di, and let Mi := M ∩ M̃i.
We will actually maintain M so that Mi = M ∩ Ei.

We define the level `(u, v) of edge (u, v) to be i such that w(u, v) ∈ [(1 + ε)i, (1 + ε)i+1).
We use Lemma 4 and its algorithm from Section 2 with Si = M̃i to maintain the greedy

census matching M . To do this, when a weighted edge (u, v) is inserted or deleted, we insert
or delete it from all data structures Dj with j ≤ `(u, v). If `(u, v) = ` and D` \D`+1 became
empty, update `. Now, after the Dj are updated, we figure out all the sets Inj and Delj to
feed into the data structure from Section 2.

We immediately obtain:

I Lemma 5. M is a maximal matching in the graph ∪iM̃i.

I Lemma 6. The update time is O(t(m,n)(log1+εN/L)2).

Proof. Let µ = log1+εN/L. |Delj | and |Inj | for each j are at most O(t(m,n)) since
the (amortized/expected/worst case) number of deletions or insertions performed by each
Dj is ≤ t(m,n). By the proofs in Section 2, the running time should be asymptotically∑
j j · |Inj |+ |Delj | ≤ t(m,n)

∑µ
j=1 j ≤ O(µ2t(m,n)). J

The proof of the Lemma below directly follows from Claim 2 from Section 2.

I Lemma 7. For every j, M ∩ Ej is maximal matching in the graph ∪i≥jM̃i

Now we can prove the approximation guarantee part of our result.

I Lemma 8. If each M̃j is an α-approximate MCM, then M is a 2α(1 + ε)-approximate
MWM.

Proof. Consider a fixed optimal MWM M∗, and let mi be the cardinality of the MCM on
edges of level i, and note that |M∗ ∩ Ei| ≤ mi. Clearly α|M̃i| ≥ mi ≥ |M∗ ∩ Ei|. Further,
2|M ∩ Ei| ≥ |M̃i| by Lemma 7, since M ∩ Ei is a maximal matching on a superset of the
edges in M̃i, meaning |M ∩ Ei| ≥ 1

2α |M
∗ ∩ Ei|. This means that for each i, every 2α edges

of M∗ can be assigned to a single “babysitter” edge of M of equal or higher level – this
is perhaps easier to see by subtracting out all of the already assigned “pairs” from higher
levels, giving |M ∩Ei| − 1

2α |M
∗ ∩Ei+1| ≥ 1

2α (|M∗ ∩Ei| − |M∗ ∩Ei+1|). Since the babysitter
edge e is of at least as high a level as all of its charges, (1 + ε)w(e) ≥ w(e∗), and, in general,
2(1 + ε)αw(M ∩ Ei) ≥ w(M∗ ∩ Ei), which, taking i = L, proves the lemma. J

4 A Meta-meta-algorithm for approximating MWM

4.1 The Census Matching
We maintain a matching using the process from Section 2, partitioning the weight range,
running a matching algorithm on each partition, and merging the results, just like in Section 3.
However, we keep weighted (rather than unweighted) matchings in each class, and we only
consider some of the edges from a few of these classes, rather than merging all of the edges.



D. Stubbs and V. Vassilevska Williams 58:9

In particular, we “semi-partition” the weight range, such that every value within that
range falls into exactly two of our semi-partition intervals. Each interval is of the form
((n/ε)i, (n/ε)i+2], for i ∈ Z such that log(wo)− 1 ≤ i ≤ log(w∗)− 1, where wo and w∗ are
the highest and lowest weights that have appeared on any edge in the matching, even if that
edge was later deleted. For each of these semi-partitions, we maintain a maximum weight
matching algorithm on the subgraph defined by the edges in the underlying graph whose
weights fall within that interval. We denote by Wi the approximate MWM maintained on
the interval ((n/ε)i, (n/ε)i+2].

To merge the Wis together, we maintain a single census matching C, which uses the
algorithm from Section 2 to combine a subset of the edges from O(logn) specific Wis, as
determined by a binary tree data structure that we will call the “responsibility tree”, T . We
will describe this below.

As described in the introduction, we strive to select from each Wi a number of represent-
ative edges. Let ni be the cardinality of Wi, and let Ni =

∑
j>i nj be the total sum of the

cardinalities of the matchings in classes above i. If ni > Ni, we will have ni −Ni matching
edges Ri from class i that the census matching M will consider. The tree data structure T
will facilitate maintaining the cardinalities that the Ris need to have.

4.2 The Responsibility Tree

We build a near-complete binary tree with leaves corresponding to the Wis to efficiently
determine which edges should be sent to the census matching to ensure the desired prop-
erties. The Wis are arranged in descending order from left to right, with the leftmost leaf
corresponding to Wlogn/ε(w∗) and the rightmost to Wlogn/ε(wo). The leaves track the number
of edges in the matchings and the number of those edges which are represented, and the
internal nodes have attributes which depend on the attributes of their children. Whether or
not each Wi has the correct number of represented edges can be determined just by looking
at the attributes of the root, and if those attributes are wrong, the incorrectly represented
classes/leaves can each be tracked down in a single traversal from root to leaf.

Every node in the tree has three attributes: mass, high, and low. The mass attribute
is a running tally of the total number of edges among matchings in the classes associated
with the leaves of this subtree. The “high” and “low” attributes validate the number of
representatives that classes in this subtree have: if the “high” indicator h(v) on any node
v is negative, some class in that node’s subtree t(v) has too many representatives, and if
the “low” indicator l(v) on any node v in the left-most branch (the “spine”) is positive, then
some class in that node’s subtree t(v) has too few representatives.

We refer to edges that are in the selection pool for the census matching as “representatives,”
and we record the number of representatives for each class as R(v).

We refer to the high indicator for a vertex v as h(v), its left child as v.l, and its right
child as v.r.

h(v) :=


min(h(v.l), h(v.r)−m(v.l)) if v is not a leaf
∞ if leaf(v) ∧R(v) = 0
m(v)−R(v) if leaf(v) ∧R(v) > 0

ITCS 2017



58:10 Metatheorems for Dynamic Weighted Matching

Similarly for the low indicator, `(v),

`(v) :=
{
m(v)−R(v) if v is a leaf
max(h(v.l), h(v.r)−m(v.l)) otherwise

Finally, mass, m(v), is simply

m(v) :=
{
# edges in matching if v is a leaf
m(v.l) +m(v.r) otherwise

4.2.1 Tree Properties
I Lemma 9. If the root r has h(r) = l(r) = 0, then for every class `i, m(`i) = R(`i) +∑
j>im(`j) if R(`i) is positive, and m(`i) ≤

∑
j>im(`j) otherwise. That is, if the root’s

high and low indicators are both 0, then no class has too many or too few representatives.

We will prove the lemma using two claims below.

I Claim 3 (No Class has Too Many Representatives.). For any node v,

h(v) = min
{ai∈t(v)|R(ai)6=0}

m(ai)−R(ai)−
∑

j>i∈t(v)

m(aj)

 .

Proof. By induction. For a leaf a, the subtree t(a) is trivial, and this is the definition of
h(a). For an internal node v, h(v) = min(h(v.l), h(v.r)−m(v.l)). v.l has no higher classes to
account for in t(v), and subtracting m(v.l) from h(v.r) subtracts the masses of all previously
unaccounted for classes, meaning both children fit the conditions, and h(v) is simply the
minimum of these, as desired. J

Consider a class ai such that its number of represented edges is greater than it should
be, i.e., the total number of edges in classes above it

∑
j>i(m(aj)), plus the number of its

representatives R(ai), is greater than its own mass m(ai). Then by Claim 3, h(r) will be
negative.

Thus, if h(r) = 0, there is no class with too many representatives.

I Claim 4 (No Class has Too Few Representatives.). For any node v,

`(v) = max
ai∈t(v)

m(ai)−R(ai)−
∑

j>i∈t(v)

m(aj)

 .

Proof. By induction, symmetrical to proof of Claim 3. J

Consider a class ai such that its number of represented edges is less than it should be,
i.e., m(ai)−R(ai)−

∑
j>i(m(aj)) > 0. Then by Claim 4, `(r) > 0.

Thus, if `(r) = 0, no node has too few representatives.

4.3 The Census Matching is Nearly as Good as The Underlying MWM
We define the “Census matching” to be the resultant matching from combining the repres-
entative edges from each class in a way that mimics a static greedy merge, that is, using the
algorithm of Section 2.



D. Stubbs and V. Vassilevska Williams 58:11

4.3.1 The Best is Good Enough

I Lemma 10. There exists a matching, MB, such that 1) the ratio between the lowest and
highest weight edges in MB is at most ε−1n/2 and 2) (1 + ε)w(MB) ≥ w(M∗)

Proof. Consider the lowest interval of width ε−1n/2 such that there are no edges above that
interval; thus, the interval will contains the highest weight edge(s) in the underlying graph at
the top, as well as all edges that weigh at least 2ε/n times as much as those edges. We call
this interval B = [2ε/nw∗, w∗], where w∗ is the highest weight of any edge in the underlying
graph.

Consider the optimal matching on edges with weights that fall within B, Optb. Clearly,
its weight is at least w∗, since the trivial matching formed by taking just the single highest
weight edge has that weight, and is a matching on edges in B. Now consider the amount by
which the true optimum matching, Opt, exceeds the weight of Optb. Any gains the true
optimum makes must be from the inclusion of edges outside of (hence, below) B, each of
which weighs at most 2εw∗/n. Further, the optimum matching can only include n/2 such
edges (because it is a matching), meaning

w(Opt)− w(Optb) ≤
n

2
2εw∗

n
(1)

= εw∗ (2)
≤ εw(Optb) (3)

which tells us that

w(Opt) ≤ (1 + ε)w(Optb) (4)

J

So if we have a maximum weight matching algorithm that gives an α-approximation,
and run it on just edges with weights in B, we get a (1 + ε)α-approximation to the overall
maximum weight matching. Moreover, if we run it on edges from some interval containing
B, we get the same guarantees.

I Corollary 11. For any graph G, there exists an interval I = [(ε−1n/2)i, (ε−1n/2)i+2)] such
that for any MWM algorithm A, (1 + ε)w(A(GI)) ≥ w(A(G)), where GI is the restriction of
G to edges with weights in I.

4.3.2 The Census Displays the Best

I Lemma 12. w(M) ≥ w(MB)

Proof. Since we have a copy of our MWM algorithm running for each non-empty interval
of the form ((ε−1n)i, (ε−1n)i+2], we have a MWM covering a superset of every interval of
“width” ε−1n/2, and, in particular, B. By Lemma 1, the top non-empty class (which contains
B) has all of its edges represented, and by the fact that the census matching prioritizes
higher weight edges, all of these representatives will, in fact, be included in the final census
matching. This means that the census matching is a superset of MWMB , meaning its weight
is at least (1 + ε)αw(Opt). J

ITCS 2017



58:12 Metatheorems for Dynamic Weighted Matching

4.4 Maintaining the Census is Fast
I Lemma 13. Given an underlying MWM running in time T (n,m,C,N), the census match-
ing can be maintained in O(log2(n)T (n,m, (n/ε)2, (n/ε)2)) time.

Proof. By Lemma 9, any class with 1 or more representatives has more edges in its underlying
matching than every class above it. Clearly, this means that each class with any representatives
has twice as many edges in its matching than the last. Combined with the fact that
no matching can have more than n/2 matchings, this means there are at most O(logn)
represented classes, and consequently only O(logn) levels in the census matching. Then the
proof follows from the Lemma in Section 2.

Within each of the classes, an instance of the underlyingMWM is being run with weights
between 1 and (n/ε)2, and so the maximum number of edges that can change in any given
matching (and thus the cardinality of Deli and Ini) is bounded above by the running time
of the MWM on that interval, i.e. T (n,m, (n/ε)2, (n/ε)2) J

4.5 Maintaining the Tree is Fast
I Lemma 14. Updating the tree after an insertion or deletion takes O(logn log logC) time

Proof. Since the Responsibility Tree is a near-complete binary tree with O(logC) leaves, the
length of the path from a leaf to the root is O(log logC), meaning only O(log logC) nodes
need to be changed for each leaf whose underlying matching had a change in cardinality or
represenatives. Since any edge is within the purview of only two Wis, only two classes can
have a change in the cardinality of their underlying matchings.

By the proof of Lemma 13, O(logn) classes have a non-zero number of representatives
before and after the update, meaning that for all but O(logn) classes, the number of
representatives was 0 before and after the change. So the total number of classes which had
a change in number of representatives or cardinality is at most O(logn), which, combined
with the fact that updating each one takes O(log logC) time, gives us the desired time
complexity. J

4.6 Numerical Considerations (reading an update is fast)
We assume that updates arrive with weights w that are organized like standard floating point
numbers: a significand s, a base b, and an exponent x such that 1 ≤ s < b and sbx = w,
along with pointers to where in the number these segments begin and end. Note that s will
be O(logw) bits long, b will be a constant number of bits, and x will be O(log logw) bits.

We want two pieces of information from this update: the pair of Wis that the edge should
be processed by, and enough information about the edge’s weight to maintain those Wis
without too much error. The first piece of information is easy to approximate from reading
just the exponent and the base, since the significand only changes the weight of w by a factor
of at most b. Then we can send the edges to class i and i+ 1 for i = x/ logb(n/ε). The only
concern then is if x/ logb(n/ε) < i+ 1 but sx/ logb(n/ε) = logn/ε w ≥ i+ 1, in which case
the edge “belonged” in classes i+ 1 and i+ 2 but was sent to i and i+ 1 instead. Fortunately,
if w is on the border in this way, and i+ 2 is the highest non-empty class, w would be on
one of the lowest weight edges in that class, meaning that its weight is at most εb/n times
the weight of the largest edge in the matching, and the error incurred is only O(ε) times
that weight, even if a full n/2 edges of this type are missed, and so the error is subsumed
into the rounding error.



D. Stubbs and V. Vassilevska Williams 58:13

The second piece of information does require us to read the significand, but fortunately
only very few bits of it. Since all of the edges within class i have weights between (n/ε)i
and (n/ε)i+2, and because misreporting the lower order bits of the weights only causes
multiplicative (1 − ε/n) error in each edge weight, for a total error of ε from all edges in
the matching, we can divide the weights of the edges by the lower bound of their classes,
resulting in needing to send weights that can be described in only O(log(n/ε)) bits. Further,
since we can just truncate off the trailing bits of the significand rather than performing a
true division, we only need to read the first O(log(n/ε)) bits of the significand to determine
which values to send.

References

1 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower
bounds for dynamic problems. In 55th IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 434–443,
2014.

2 A. Anand, S. Baswana, M. Gupta, and S. Sen. Maintaining approximate maximum
weighted matching in fully dynamic graphs. In FSTTCS, pages 257–266, 2012.

3 S. Baswana, M. Gupta, and S. Sen. Fully dynamic maximal matching in O(logn) update
time. In FOCS, pages 383–392, 2011.

4 Aaron Bernstein and Cliff Stein. Fully dynamic matching in bipartite graphs. In Automata,
Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan,
July 6-10, 2015, Proceedings, Part I, pages 167–179, 2015.

5 Aaron Bernstein and Cliff Stein. Faster fully dynamic matchings with small approximation
ratios. In In Proc. SODA, page to appear, 2016.

6 Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. Deterministic fully
dynamic data structures for vertex cover and matching. In Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA,
January 4-6, 2015, pages 785–804, 2015.

7 Sayan Bhattacharya, Monika Henzinger, and Danupon Nanangkai. New deterministic ap-
proximation algorithms for fully dynamic matching. In Proc. STOC, page to appear, 2016.

8 Michael Crouch and Daniel Stubbs. Improved streaming algorithms for weighted match-
ing, via unweighted matching. In Approximation, Randomization, and Combinatorial Op-
timization. Algorithms and Techniques, APPROX/RANDOM 2014, September 4-6, 2014,
Barcelona, Spain, pages 96–104, 2014.

9 H. Gabow. A scaling algorithm for weighted matching on general graphs. In Prof. FOCS,
pages 90–100, 1985.

10 H. N. Gabow and R. E. Tarjan. Faster scaling algorithms for general graph-matching
problems. J. ACM, 38(4):815–853, 1991.

11 M. Gupta and R. Peng. Fully dynamic (1 + ε)-approximate matchings. In 54th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013,
Berkeley, CA, USA, pages 548–557, 2013.

12 N. J. A. Harvey. Algebraic structures and algorithms for matching and matroid problems.
In Proc. FOCS, volume 47, pages 531–542, 2006.

13 J. Hopcroft and R. Karp. An n5/2 algorithm for maximum matchings in bipartite graphs.
SIAM Journal on Computing, 2(4):225–231, 1973.

14 Jonathan A. Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. An almost-linear-
time algorithm for approximate max flow in undirected graphs, and its multicommodity
generalizations. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on

ITCS 2017



58:14 Metatheorems for Dynamic Weighted Matching

Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 217–
226, 2014.

15 H. W. Kuhn. The hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2:83–97, 1955.

16 François Le Gall. Powers of tensors and fast matrix multiplication. In International Sym-
posium on Symbolic and Algebraic Computation, ISSAC ’14, Kobe, Japan, July 23-25, 2014,
pages 296–303, 2014.

17 A. Madry. Navigating central path with electrical flows: from flows to matchings, and back.
In Proc. FOCS, 2013.

18 Silvio Micali and Vijay V. Vazirani. An o(sqrt(|v|) |e|) algorithm for finding maximum
matching in general graphs. In 21st Annual Symposium on Foundations of Computer
Science, Syracuse, New York, USA, 13-15 October 1980, pages 17–27, 1980.

19 M. Mucha and P. Sankowski. Maximum matchings via gaussian elimination. In Proc.
FOCS, volume 45, pages 248–255, 2004.

20 K. Mulmuley, U. V. Vazirani, and V. V. Vazirani. Matching is as easy as matrix inversion.
In Proc. STOC, volume 19, pages 345–354, 1987.

21 O. Neiman and S. Solomon. Simple deterministic algorithms for fully dynamic maximal
matching. In Proceedings of the Forty-fifth Annual ACM Symposium on Theory of Com-
puting, STOC ’13, pages 745–754, 2013.

22 Krzysztof Onak and Ronitt Rubinfeld. Maintaining a large matching and a small vertex
cover. In Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010,
Cambridge, Massachusetts, USA, 5-8 June 2010, pages 457–464, 2010.

23 M. O. Rabin and V. V. Vazirani. Maximum matchings in general graphs through random-
ization. J. Algorithms, 10(4):557–567, 1989.

24 P. Sankowski. Faster dynamic matchings and vertex connectivity. In Proc. SODA, pages
118–126, 2007.

25 P. Sankowski. Maximum weight bipartite matching in matrix multiplication time. Theor.
Comput. Sci., 410(44):4480–4488, 2009.

26 V. Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd. In Proc.
STOC, pages 887–898, 2012.


	Introduction
	Our results
	Overview of the reduction from dynamic MWM to MCM
	Overview of improving the dependence on the weights


	Merging matchings greedily
	A meta-algorithm for approximating MWM
	A Meta-meta-algorithm for approximating MWM
	The Census Matching
	The Responsibility Tree
	Tree Properties

	The Census Matching is Nearly as Good as The Underlying MWM
	The Best is Good Enough
	The Census Displays the Best

	Maintaining the Census is Fast
	Maintaining the Tree is Fast
	Numerical Considerations (reading an update is fast)


