
42nd International Symposium
on Mathematical Foundations of
Computer Science

MFCS 2017, August 21–25, 2017, Aalborg, Denmark

Edited by

Kim G. Larsen
Hans L. Bodlaender
Jean-François Raskin

LIPIcs – Vo l . 83 – MFCS 2017 www.dagstuh l .de/ l ip i c s

Editors
Kim G. Larsen Hans L. Bodlaender Jean-François Raskin
Aalborg University Eindhoven University of Technology Université libre de Bruxelles
Aalborg, Denmark Eindhoven, Netherlands Brussels, Belgium
kgl@cs.aau.dk h.l.bodlaender@tue.nl jraskin@ulb.ac.be

ACM Classification 1998
F. Theory of Computation

ISBN 978-3-95977-046-0

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-95977-046-0.

Publication date
November, 2017

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.MFCS.2017.0

ISBN 978-3-95977-046-0 ISSN 1868-8969 http://www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-95977-046-0
http://www.dagstuhl.de/dagpub/978-3-95977-046-0
http://dnb.d-nb.de
http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.0
http://www.dagstuhl.de/dagpub/978-3-95977-046-0
http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Gran Sasso Science Institute and Reykjavik University)
Susanne Albers (TU München)
Chris Hankin (Imperial College London)
Deepak Kapur (University of New Mexico)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Anca Muscholl (University Bordeaux)
Catuscia Palamidessi (INRIA)
Raimund Seidel (Saarland University and Schloss Dagstuhl – Leibniz-Zentrum für Informatik)
Thomas Schwentick (TU Dortmund)
Reinhard Wilhelm (Saarland University)

ISSN 1868-8969

http://www.dagstuhl.de/lipics

MFCS 2017

http://www.dagstuhl.de/dagpub/1868-8969
http://www.dagstuhl.de/lipics

Contents

Foreword
Kim G. Larsen, Hans L. Bodlaender, and Jean-François Raskin 0:xi

Regular Papers

Does Looking Inside a Circuit Help?
Russell Impagliazzo, Valentine Kabanets, Antonina Kolokolova,
Pierre McKenzie, and Shadab Romani . 1:1–1:13

The Power of Programs over Monoids in FMVDA
Nathan Grosshans, Pierre McKenzie, and Luc Segoufin . 2:1–2:20

Regular Language Distance and Entropy
Austin J. Parker, Kelly B. Yancey, and Matthew P. Yancey . 3:1–3:14

The Complexity of Boolean Surjective General-Valued CSPs
Peter Fulla and Stanislav Živný . 4:1–4:14

On the Expressive Power of Quasiperiodic SFT
Bruno Durand and Andrei Romashchenko . 5:1–5:14

Parameterized Algorithms for Partitioning Graphs into Highly Connected Clusters
Ivan Bliznets and Nikolai Karpov . 6:1–6:14

Hypercube LSH for Approximate near Neighbors
Thijs Laarhoven . 7:1–7:20

Generalized Predecessor Existence Problems for Boolean Finite Dynamical Systems
Akinori Kawachi, Mitsunori Ogihara, and Kei Uchizawa . 8:1–8:13

Dividing Splittable Goods Evenly and With Limited Fragmentation
Peter Damaschke . 9:1–9:13

Small-Space LCE Data Structure with Constant-Time Queries
Yuka Tanimura, Takaaki Nishimoto, Hideo Bannai, Shunsuke Inenaga, and
Masayuki Takeda . 10:1–10:15

ZX-Calculus: Cyclotomic Supplementarity and Incompleteness for Clifford+T
Quantum Mechanics

Emmanuel Jeandel, Simon Perdrix, Renaud Vilmart, and Quanlong Wang 11:1–11:13

Counting Problems for Parikh Images
Christoph Haase, Stefan Kiefer, and Markus Lohrey . 12:1–12:13

Communication Complexity of Pairs of Graph Families with Applications
Sudeshna Kolay, Fahad Panolan, and Saket Saurabh . 13:1–13:13

Monitor Logics for Quantitative Monitor Automata
Erik Paul . 14:1–14:13

The Complexity of Quantum Disjointness
Hartmut Klauck . 15:1–15:13

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-François Raskin

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:vi Contents

Smoothed and Average-Case Approximation Ratios of Mechanisms: Beyond the
Worst-Case Analysis

Xiaotie Deng, Yansong Gao, and Jie Zhang . 16:1–16:15

Time Complexity of Constraint Satisfaction via Universal Algebra
Peter Jonsson, Victor Lagerkvist, and Biman Roy . 17:1–17:15

The Hardness of Solving Simple Word Equations
Joel D. Day, Florin Manea, and Dirk Nowotka . 18:1–18:14

Comparison of Max-Plus Automata and Joint Spectral Radius of Tropical Matrices
Laure Daviaud, Pierre Guillon, and Glenn Merlet . 19:1–19:14

Binary Search in Graphs Revisited
Argyrios Deligkas, George B. Mertzios, and Paul G. Spirakis . 20:1–20:14

A Formal Semantics of Influence in Bayesian Reasoning
Bart Jacobs and Fabio Zanasi . 21:1–21:14

The Complexity of SORE-definability Problems
Ping Lu, Zhilin Wu, and Haiming Chen . 22:1–22:15

TC0 Circuits for Algorithmic Problems in Nilpotent Groups
Alexei Myasnikov and Armin Weiß . 23:1–23:14

Better Complexity Bounds for Cost Register Automata
Eric Allender, Andreas Krebs, and Pierre McKenzie . 24:1–24:14

Kernelization of the Subset General Position Problem in Geometry
Jean-Daniel Boissonnat, Kunal Dutta, Arijit Ghosh, and Sudeshna Kolay 25:1–25:13

Satisfiable Tseitin Formulas Are Hard for Nondeterministic Read-Once Branching
Programs

Ludmila Glinskih and Dmitry Itsykson . 26:1–26:12

The Complexity of Quantified Constraints Using the Algebraic Formulation
Catarina Carvalho, Barnaby Martin, and Dmitriy Zhuk . 27:1–27:14

Induced Embeddings into Hamming Graphs
Martin Milanič, Peter Muršič, and Marcelo Mydlarz . 28:1–28:15

Structured Connectivity Augmentation
Fedor V. Fomin, Petr A. Golovach, and Dimitrios M. Thilikos 29:1–29:13

Combinatorial Properties and Recognition of Unit Square Visibility Graphs
Katrin Casel, Henning Fernau, Alexander Grigoriev, Markus L. Schmid, and
Sue Whitesides . 30:1–30:15

Weighted Operator Precedence Languages
Manfred Droste, Stefan Dück, Dino Mandrioli, and Matteo Pradella 31:1–31:15

Model Checking and Validity in Propositional and Modal Inclusion Logics
Lauri Hella, Antti Kuusisto, Arne Meier, and Jonni Virtema . 32:1–32:14

Emptiness Problems for Integer Circuits
Dominik Barth, Moritz Beck, Titus Dose, Christian Glaßer, Larissa Michler, and
Marc Technau . 33:1–33:14

Contents 0:vii

Another Characterization of the Higher K-Trivials
Paul-Elliot Angles d’Auriac and Benoit Monin . 34:1–34:13

The Quantum Monad on Relational Structures
Samson Abramsky, Rui Soares Barbosa, Nadish de Silva, and Octavio Zapata 35:1–35:19

Towards a Polynomial Kernel for Directed Feedback Vertex Set
Benjamin Bergougnoux, Eduard Eiben, Robert Ganian, Sebastian Ordyniak, and
M. S. Ramanujan . 36:1–36:15

Timed Network Games
Guy Avni, Shibashis Guha, and Orna Kupferman . 37:1–37:16

Efficient Identity Testing and Polynomial Factorization in Nonassociative Free
Rings

Vikraman Arvind, Rajit Datta, Partha Mukhopadhyay, and S. Raja 38:1–38:13

Faster Algorithms for Mean-Payoff Parity Games
Krishnendu Chatterjee, Monika Henzinger, and Alexander Svozil 39:1–39:14

Attainable Values of Reset Thresholds
Michalina Dżyga, Robert Ferens, Vladimir V. Gusev and Marek Szykuła 40:1–40:14

Lower Bounds and PIT for Non-Commutative Arithmetic Circuits with Restricted
Parse Trees

Guillaume Lagarde, Nutan Limaye, and Srikanth Srinivasan . 41:1–41:14

Approximation and Parameterized Algorithms for Geometric Independent Set
with Shrinking

Michał Pilipczuk, Erik Jan van Leeuwen, and Andreas Wiese . 42:1–42:13

Eilenberg Theorems for Free
Henning Urbat, Jiří Adámek, Liang-Ting Chen, and Stefan Milius 43:1–43:15

Membership Problem in GL(2,Z) Extended by Singular Matrices
Igor Potapov and Pavel Semukhin . 44:1–44:13

Grammars for Indentation-Sensitive Parsing
Härmel Nestra . 45:1–45:13

The Power of Linear-Time Data Reduction for Maximum Matching
George B. Mertzios, André Nichterlein, and Rolf Niedermeier . 46:1–46:14

Two-Planar Graphs Are Quasiplanar
Michael Hoffmann and Csaba D. Tóth . 47:1–47:14

The Shortest Identities for Max-Plus Automata with Two States
Laure Daviaud and Marianne Johnson . 48:1–48:13

On the Upward/Downward Closures of Petri Nets
Mohamed Faouzi Atig, Roland Meyer, Sebastian Muskalla, and Prakash Saivasan 49:1–49:14

On Multidimensional and Monotone k-SUM
Chloe Ching-Yun Hsu and Chris Umans . 50:1–50:13

MFCS 2017

0:viii Contents

Parameterized Complexity of the List Coloring Reconfiguration Problem with
Graph Parameters

Tatsuhiko Hatanaka, Takehiro Ito, and Xiao Zhou . 51:1–51:13

Automata in the Category of Glued Vector Spaces
Thomas Colcombet and Daniela Petrişan . 52:1–52:14

The Equivalence, Unambiguity and Sequentiality Problems of Finitely Ambiguous
Max-Plus Tree Automata are Decidable

Erik Paul . 53:1–53:13

New Insights on the (Non-)Hardness of Circuit Minimization and Related Problems
Eric Allender and Shuichi Hirahara . 54:1–54:14

Strategy Complexity of Concurrent Safety Games
Krishnendu Chatterjee, Kristoffer Arnsfelt Hansen, and Rasmus Ibsen-Jensen 55:1–55:13

A Characterisation of Π0
2 Regular Tree Languages

Filippo Cavallari, Henryk Michalewski, and Michał Skrzypczak 56:1–56:14

On the Exact Amount of Missing Information That Makes Finding Possible
Winners Hard

Palash Dey and Neeldhara Misra . 57:1–57:14

Fractal Intersections and Products via Algorithmic Dimension
Neil Lutz . 58:1–58:12

Domains for Higher-Order Games
Matthew Hague, Roland Meyer, and Sebastian Muskalla . 59:1–59:15

Fine-Grained Complexity of Rainbow Coloring and Its Variants
Akanksha Agrawal . 60:1–60:14

Faster Monte-Carlo Algorithms for Fixation Probability of the Moran Process on
Undirected Graphs

Krishnendu Chatterjee, Rasmus Ibsen-Jensen, and Martin A. Nowak 61:1–61:13

The 2CNF Boolean Formula Satisfiability Problem and the Linear Space Hypothesis
Tomoyuki Yamakami . 62:1–62:14

Variations on Inductive-Recursive Definitions
Neil Ghani, Conor McBride, Fredrik Nordvall Forsberg, and Stephan Spahn 63:1–63:13

One-Dimensional Logic over Trees
Emanuel Kieroński and Antti Kuusisto . 64:1–64:13

An Improved FPT Algorithm for the Flip Distance Problem
Shaohua Li, Qilong Feng, Xiangzhong Meng, and Jianxin Wang 65:1–65:13

Reversible Kleene Lattices
Paul Brunet . 66:1–66:14

Lossy Kernels for Hitting Subgraphs
Eduard Eiben, Danny Hermelin, and M. S. Ramanujan . 67:1–67:14

Undecidable Problems for Probabilistic Network Programming
David M. Kahn . 68:1–68:17

Contents 0:ix

Computational Complexity of Graph Partition underVertex-Compaction to an
Irreflexive Hexagon

Narayan Vikas . 69:1–69:14

Recognizing Graphs Close to Bipartite Graphs
Marthe Bonamy, Konrad K. Dabrowski, Carl Feghali, Matthew Johnson, and
Daniël Paulusma . 70:1–70:14

Parameterized Algorithms and Kernels for Rainbow Matching
Sushmita Gupta, Sanjukta Roy, Saket Saurabh, and Meirav Zehavi 71:1–71:13

Compositional Weak Metrics for Group Key Update
Ruggero Lanotte, Massimo Merro, and Simone Tini . 72:1–72:16

Clique-Width for Graph Classes Closed under Complementation
Alexandre Blanché, Konrad K. Dabrowski, Matthew Johnson, Vadim V. Lozin,
Daniël Paulusma, and Viktor Zamaraev . 73:1–73:14

Computing the Maximum Using (min,+) Formulas
Meena Mahajan, Prajakta Nimbhorkar, and Anuj Tawari . 74:1–74:11

Selecting Nodes and Buying Links to Maximize the Information Diffusion in a
Network

Gianlorenzo D’Angelo, Lorenzo Severini, and Yllka Velaj . 75:1–75:14

K4-Free Graphs as a Free Algebra
Enric Cosme-Llópez and Damien Pous . 76:1–76:14

Making Metric Temporal Logic Rational
Shankara Narayanan Krishna, Khushraj Madnani, and Paritosh K. Pandya 77:1–77:14

Complexity of Restricted Variants of Skolem and Related Problems
S. Akshay, Nikhil Balaji, and Nikhil Vyas . 78:1–78:14

Being Even Slightly Shallow Makes Life Hard
Irene Muzi, Michael P. O’Brien, Felix Reidl, and Blair D. Sullivan 79:1–79:13

Walrasian Pricing in Multi-Unit Auctions
Simina Brânzei, Aris Filos-Ratsikas, Peter Bro Miltersen, and Yulong Zeng 80:1–80:14

Distributed Strategies Made Easy
Simon Castellan, Pierre Clairambault, and Glynn Winskel . 81:1–81:13

Invited Talks

On Definable and Recognizable Properties of Graphs of Bounded Treewidth
Michał Pilipczuk . 82:1–82:2

Hardness and Approximation of High-Dimensional Search Problems
Rasmus Pagh . 83:1–83:1

Temporal Logics for Multi-Agent Systems
Nicolas Markey . 84:1–84:3

Ideal-Based Algorithms for the Symbolic Verification of Well-Structured Systems
Philippe Schnoebelen . 85:1–85:4

MFCS 2017

Foreword

The International Symposium on Mathematical Foundations of Computer Science (MFCS
conference series) is a well-established venue for presenting research papers in theoretical
computer science. The broad scope of the conference encourages interactions between
researchers who might not meet at more specialized venues. The first MFCS conference
was organized in 1972 in Jabłonna (near Warsaw, Poland). Since then, the conference
traditionally moved between the Czech Republic, Slovakia, and Poland. A few years ago,
the conference started traveling around Europe: in 2013 it was held in Austria, in 2014 in
Hungary, in 2015 in Italy, and most recently, in 2016, the conference returned to Poland. We
are happy that this year MFCS is organized in Denmark, the most northern place yet to
host MFCS.

Over 200 abstracts were submitted, of which 192 materialized as papers, of which 80
were finally accepted. The authors of the submitted papers represent nearly 40 countries.
The authors first registered their papers’ abstracts (by the 24th of April, 2017) and only
then their content (by the 28th of April, 2017). This division in two stages has helped with
the assignment of the papers to the PC members. Each paper was assigned to three PC
members, who reviewed and discussed them thoroughly over a period of nearly six weeks. As
the co-chairs of the program committee, we would like to express our deep gratitude to all
the committee members for their hard, dedicated work. The quality of the submitted papers
was very high and many good papers had to be rejected. The conference featured five invited
talks, by Glynn Winskel (University of Cambridge, UK), Michał Pilipczuk (University of
Warsaw, Poland), Rasmus Pagh (IT University of Copenhagen, Denmark), Nicolas Markey
(CNRS, Rennes, France), and Philippe Schnoebelen (LSV – CNRS & ENS Cachan, Université
Paris-Saclay, France). We would like to thank them deeply for their contributions and their
time.

This is the second time that the MFCS proceedings are published in the Dagstuhl/LIPIcs
series. We would like to particularly thank Marc Herbstritt and the LIPIcs team for all the
help and support. We believe that the cooperation between MFCS and Dagstuhl/LIPIcs in
the future will continue to be as seamless and fruitful as ours.

Kim G. Larsen
Hans L. Bodlaender

Jean-François Raskin

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-François Raskin

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

Conference Organization

Program Commitee

Lars Birkedal Aarhus University, Denmark
Manuel Bodirsky TU Dresden, Germany
Hans L. Bodlaender Eindhoven University of Technology, Netherlands
Udi Boker Interdisciplinary Center (IDC) Herzliya, Israel
Patricia Bouyer LSV, CNRS & ENS Cachan, Université Paris Saclay, France
Franck Cassez Macquarie University, Australia
Rocco De Nicola IMT - School for Advanced Studies Lucca, Italy
Rod Downey Victoria University of Wellington, New Zealand
Manfred Droste Leipzig University, Germany
Vojtech Forejt Oxford University, UK
Paweł Gawrychowski University of Haifa, Israel
Raffaella Gentilini University of Perugia, Italy
Kasper Green Larsen MADALGO, Aarhus University, Denmark
Kim Guldstrand Larsen Aalborg University, Denmark
Petteri Kaski Helsinki Institute for Information Technology, Aalto University,

Finland
Bartek Klin University of Warsaw, Poland
Dexter Kozen Cornell University, USA
Stephan Kreutzer Technical University Berlin, Germany
Alexander Kurz University of Leicester, UK
Martin Lange University of Kassel, Germany
Sławomir Lasota University of Warsaw, Poland
Axel Legay IRISA/INRIA, Rennes, France
Christof Löding RWTH Aachen, Germany
Radu Mardare Aalborg University, Denmark
Roland Meyer TU Braunschweig, Germany
Matteo Mio CNRS–ENS-Lyon, France
Luca Moscardelli University of Chieti-Pescara, Italy
Aniello Murano Università degli Studi di Napoli Federico II, Italy
Prakash Panangaden McGill University, Canada
Dana Pardubska Comenius University, Slovakia
Ramamohan Paturi University of California, USA
Arno Pauly Université Libre de Bruxelles, Belgium
Doron Peled Bar Ilan University, Israel
Damien Pous CNRS–ENS Lyon, France
Jean-François Raskin Université Libre de Bruxelles, Belgium
Jörg Rothe Universität Düsseldorf, Germany
Pierre-Yves Schobbens University of Namur, Belgium
Bettina Speckmann TU Eindhoven, Netherlands
Sam Staton University of Oxford, UK
Hans Raj Tiwary Charles University, Czech Republic
Tarmo Uustalu Institute of Cybernetics, Tallinn University of Technology, Estonia
Peter Van Emde Boas ILLC-FNWI-Universiteit van Amsterdam (emeritus), Netherlands
Jiri Wiedermann Academy of Sciences, Czech Republic

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-François Raskin

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:xiv Conference Organization

External Reviewers

Aaronson, Scott Abd Alrahman, Yehia Aceto, Luca
Adams, Michael D. Almagor, Shaull Aman, Bogdan
Amato, Gianluca Angelini, Patrizio Anshu, Anurag
Arcucci, Rossella Asada, Kazuyuki Avni, Guy
Babai, Laszlo Bacci, Giorgio Bacci, Giovanni
Balaji, Nikhil Banik, Aritra Barbieri, Sebastián
Baumeister, Dorothea Beckmann, Arnold Bekos, Michael
Ben Said, Najah Beretta, Stefano Berkholz, Christoph
Bienkowski, Marcin Bilò, Vittorio Biondi, Fabrizio
Bodor, Bertalan Boža, Vladimír Brazdil, Tomas
Bredereck, Robert Brejová, Broňa Brunet, Paul
Bruse, Florian Bulian, Jannis Béal, Marie-Pierre
Cadilhac, Michaël Capobianco, Silvio Carayol, Arnaud
Caucal, Didier Chalermsook, Parinya Chang, Huilan
Chatain, Thomas Chen, Hubie Chen, Yijia
Chini, Peter Chistikov, Dmitry Choffrut, Christian
Clemente, Lorenzo Clifford, Raphael Comin, Carlo
Cosme Llópez, Enric Czerwiński, Wojciech D’Angelo, Gianlorenzo
D’Emidio, Mattia Darais, David Dartois, Luc
Das, Anupam Della Monica, Dario Dereniowski, Dariusz
Detinko, Alla Di Stasio, Antonio Divakaran, Srikrishnan
Doczkal, Christian Doyen, Laurent Dudek, Bartlomiej
Duerr, Christoph Duong, Tan Durier, Adrien
Duris, Pavol Dvorak, Zdenek Dvořák, Pavel
Dvořák, Wolfgang Ehlers, Rüdiger Faella, Marco
Fahrenberg, Uli Fanelli, Angelo Ferrara, Michael
Fijalkow, Nathanaël Forisek, Michal Frati, Fabrizio
Freeman, Rupert Freydenberger, Dominik D. Friedler, Ophir
Froese, Vincent Fuegger, Matthias Furbach, Florian
Furber, Robert Förster, Klaus-Tycho Gasieniec, Leszek
Giesen, Joachim Given-Wilson, Thomas Godin, Thibault
Goncharov, Sergey Greenberg, Noam Greiner, Johannes
Grellois, Charles Grigoriev, Alexander Grippo, Luciano
Guillon, Pierre Guo, Jiong Halfon, Simon
Hansen, Thomas Dueholm Harrenstein, Paul Heindel, Tobias
Heizmann, Matthias Herbreteau, Frédéric Hermelin, Danny
Heuser, Annelie Hlineny, Petr Holik, Lukas
Hon, Wing-Kai Huang, Zengfeng Hundeshagen, Norbert
Hutagalung, Milka Hölzl, Rupert Ibsen-Jensen, Rasmus
Iwata, Yoichi Jansen, Thomas Jeandel, Emmanuel
Jecker, Ismaël Jeż, Artur Johannsen, Jan
Jugé, Vincent Jukna, Stasys Katreniakova, Jana
Kazda, Alexandr Kernberger, Daniel Kieronski, Emanuel
Klauck, Hartmut Knop, Dušan Kocay, William
Kociumaka, Tomasz Kopczynski, Eryk Koroth, Sajin
Koslowski, Jürgen Koster, Arie Kostolányi, Peter

Conference Organization 0:xv

Kralovic, Rastislav Krebs, Andreas Kreiker, Joerg
Krichen, Moez Kufleitner, Manfred Kumar, Nirman
Kuperberg, Denis Kuske, Dietrich Lagerqvist, Victor
Lahiri, Abhiruk Lanese, Ivan Laurent, Fribourg
Lauri, Juho Lazic, Ranko Lehtonen, Erkko
Lombardy, Sylvain Lorber, Florian Loreti, Michele
Lukoťka, Robert Löffler, Maarten Makowsky, Johann
Malvone, Vadim Mamino, Marcello Mamouras, Konstantinos
Manthey, Bodo Marino, Andrea Marković, Petar
Martens, Wim Maubert, Bastien Maushagen, Cynthia
Mayhew, Dillon Mazowiecki, Filip Mccartin, Catherine
McKenzie, Pierre Melideo, Giovanna Mennicke, Stephan
Mercas, Robert Merkle, Wolfgang Merro, Massimo
Meulemans, Wouter Michalewski, Henryk Michaliszyn, Jakub
Michell, Joseph Misra, Neeldhara Monaco, Gianpiero
Mosca, Raffaele Mottet, Antoine Muskalla, Sebastian
Neider, Daniel Neuen, Daniel Neugebauer, Daniel
Neveling, Marc Nguyen, Nhan-Tam Ochremiak, Joanna
Okamoto, Yoshio Okhotin, Alexander Oliveira, Igor Carboni
Opršal, Jakub Ostertág, Richard Ostropolski-Nalewaja, Piotr
Ouaknine, Joel Pascual, Fanny Paulusma, Daniel
Pecatte, Timothée Pedersen, Christian Storm Pedersen, Mathias Ruggaard
Perarnau, Home Perez, Guillermo Peron, Adriano
Piazza, Carla Pilipczuk, Marcin Pilz, Alexander
Pinault, Laureline Piperno, Adolfo Plandowski, Wojciech
Portier, Natacha Potapov, Igor Poulsen, Danny Bøgsted
Prezza, Nicola Pulina, Luca Quilbeuf, Jean
Radhakrishna, Arjun Raman, Venkatesh Ramsay, Steven
Ramyaa, Ramyaa Reimann, Jan Rey, Lisa
Reynier, Pierre-Alain Richerby, David Riondato, Matteo
Roberson, David Roberts, Matt Rubin, Sasha
Rutter, Ignaz S., Krishna Saivasan, Prakash
Sammartino, Matteo Sandu, Gabriel Sattler, Christian
Sauro, Luigi Schadrack, Hilmar Scheder, Dominik
Schneider, Klaus Sciavicco, Guido Selker, Ann-Kathrin
Shirmohammadi, Mahsa Siebertz, Sebastian Silva, Alexandra
Simpson, Stephen Sintos, Stavros Skrzypczak, Michał
Sorrentino, Loredana Stepanovs, Igors Stephan, Frank
Straszak, Damian Streib, Amanda Pascoe Stützle, Thomas
Subramani, K. Thilikos, Dimitrios Tribastone, Mirco
Trubiani, Catia Tschaikowski, Max Turrini, Andrea
Uznański, Przemysław van der Zanden, Tom van Goethem, Arthur
van Iersel, Leo Velaj, Yllka Veltri, Niccolò
Vignudelli, Valeria Vigny, Alexandre Vikas, Narayan
Vinar, Tomas Vinci, Cosimo Viola, Caterina
Volk, Ben Lee Wahlström, Magnus Watanabe, Osamu
Wijs, Anton Williams, Ryan Witt, Carsten
Wolff, Sebastian Wood, David R. Worrell, James

MFCS 2017

0:xvi Conference Organization

Wrochna, Marcin Wrona, Michał Xue, Jie
Yamamoto, Masaki Zahn, Philipp Zamdzhiev, Vladimir
Zehavi, Meirav Zendra, Olivier Zetzsche, Georg
Zhang, Yao Živný, Stanislav

Steering Committee

Juraj Hromkovič ETH, Zurich, Switzerland
Antonín Kučera Masaryk University, Brno, Czech Republic, (chair)
Jerzy Marcinkowski University of Wrocław, Poland
Damian Niwinski University of Warsaw, Poland
Branislav Rovan Comenius University, Bratislava, Slovakia
Jiří Sgall Charles University, Prague, Czech Republic

Does Looking Inside a Circuit Help?
Russell Impagliazzo1, Valentine Kabanets2, Antonina Kolokolova3,
Pierre McKenzie4, and Shadab Romani5

1 University of California, San Diego, La Jolla, CA, USA
russell@cs.ucsd.edu

2 Simon Fraser University, Burnaby, BC, Canada
kabanets@cs.sfu.ca

3 Memorial University of Newfoundland, St. John’s, NL, Canada
kol@cs.mun.ca

4 Université de Montréal, Montréal, QC, Canada
mckenzie@iro.umontreal.ca

5 Simon Fraser University, Burnaby, BC, Canada
sromani@sfu.ca

Abstract
The Black-Box Hypothesis, introduced by Barak et al. [5], states that any property of boolean
functions decided efficiently (e.g., in BPP) with inputs represented by circuits can also be decided
efficiently in the black-box setting, where an algorithm is given an oracle access to the input
function and an upper bound on its circuit size. If this hypothesis is true, then P 6= NP. We
focus on the consequences of the hypothesis being false, showing that (under general conditions
on the structure of a counterexample) it implies a non-trivial algorithm for Circuit-SAT. More
specifically, we show that if there is a property F of boolean functions such that F has high
sensitivity on some input function f of subexponential circuit complexity (which is a sufficient
condition for F being a counterexample to the Black-Box Hypothesis), then Circuit-SAT is solvable
by a subexponential-size circuit family. Moreover, if such a counterexample F is symmetric, then
Circuit-SAT ∈ P/poly. These results provide some evidence towards the conjecture (made in this
paper) that the Black-Box Hypothesis is false if and only if Circuit-SAT is easy.

1998 ACM Subject Classification F.1.1 Models of Computation, F.1.3 Complexity Measures
and Classes, F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Black-Box Hypothesis, Rice’s theorem, circuit complexity, SAT, sensit-
ivity of boolean functions, decision tree complexity

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.1

1 Introduction

Given access to a boolean function f : {0, 1}n → {0, 1}, how fast can we decide if f 6≡ 0? If
we can only access f as an oracle (i.e., in the “black-box” fashion), then it is well-known that
one needs time Ω(2n) for any deterministic or randomized algorithm (and time Ω(2n/2) for
any quantum algorithm). What if f is computable by some small boolean circuit C, and we
are given this circuit C (i.e., we can access f in the “white-box” fashion)? Then the question
of deciding if f 6≡ 0 is exactly the famous Circuit-SAT problem, and no non-trivial complexity
lower bounds are known.

One possible approach to proving that P 6= NP is to argue that being given an actual
small circuit C computing a given boolean function f does not help much, compared to
being given just oracle access to f , and being told the size of C. This could be formalized

© Russell Impagliazzo, Valentine Kabanets, Antonina Kolokolova, Pierre McKenzie, Shadab Romani;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 1; pp. 1:1–1:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

1:2 Does Looking Inside a Circuit Help?

as the Black-Box Hypothesis (BBH) (introduced by Barak et al. [5] as “Scaled-down Rice’s
Theorem” conjecture), which can be informally stated as follows:

If a property F of boolean functions can be decided efficiently on circuits computing
input functions, then F can also be decided efficiently in the black-box setting (that
is, given oracle access to the input function and its circuit size bound).

If this hypothesis is true, then, for F = {f : {0, 1}n → {0, 1} | f 6≡ 0}, we conclude that
Circuit-SAT cannot be solved efficiently, since there are exponential lower bounds for deciding
F in the black-box setting.

So proving the BBH is hard, as it would imply that P 6= NP. The hypothesis may well be
false. Barak et al. [5] already proved that a version of the BBH (for promise problems) is
false, assuming that one-way functions exist. Can we just disprove it then?

In this paper, we give some evidence that disproving the BBH is also hard, as it would
have non-trivial algorithmic applications for Circuit-SAT. Note that if Circuit-SAT is efficiently
solvable, then, as observed above, the Black-Box Hypothesis must be false. We conjecture
that the converse implication also holds. Thus we conjecture the following:

The BBH is false iff Circuit-SAT has a (somewhat) efficient algorithm.

We make a step towards proving this conjecture by showing that if the BBH fails in a
particular way, then Circuit-SAT can be decided by a nonuniform family of subexponential-size
circuits, which would disprove the nonuniform analogue of the Exponential-Time Hypothesis
(ETH) of [13].

1.1 Our results
Before stating our results formally, let us discuss what it means for the BBH to fail. Clearly,
if the BBH fails, there is a property F that is easy in the white-box setting (say, is in BPP),
but requires superpolynomial complexity in the black-box setting. Note that for n-variate
boolean functions f of circuit complexity 2Ω(n), there can’t be any superpolynomial gap
between the white-box and black-box complexities of deciding a given property F . This is
because a white-box algorithm has to look at the input circuit, which is of size at least 2Ω(n),
and the black-box algorithm can read the entire truth-table of f , build a trivial circuit of
size about 2n, and then just simulate the white-box algorithm on it, running in overall time
at most poly(2n). Thus any “magic” speed-up that we get for a property F violating the
BBH must necessarily manifest itself over “easy” inputs, boolean n-variate functions f of
circuit complexity at most 2o(n). In other words, any black-box algorithm for F must be
“slow” even if we care only about inputs f of low circuit complexity.

Recall that the sensitivity of a function F is the maximum, over all its inputs x ∈ {0, 1}N ,
of the number of positions i ∈ [N] such that F (x) 6= F (xi), where xi is x with the ith bit
flipped. It is well-known that every F with sensitivity s requires Ω(s) queries to decide by
any (randomized) black-box algorithm [15]. Thus, a sufficient condition for any black-box
algorithm deciding F to be “slow” (taking time at least T) is that F has “high” sensitivity
(at least Ω(T)). In fact, the same argument from [15] actually implies that if F has a
sensitive input x∗, then F requires large query complexity even when restricted to the inputs
x∗, (x∗)1, (x∗)2, . . . , (x∗)N . The latter can be used to show (see Theorem 3.6 below) that a
sufficient condition for any black-box algorithm deciding F to be “slow” on all inputs f of
subexponential circuit complexity is the following:

there exists a function f∗ : {0, 1}n → {0, 1} of circuit complexity 2o(n) such that F
has “high” sensitivity at f∗.

R. Impagliazzo, V. Kabanets, A, Kolokolova, P. McKenzie, and S. Romani 1:3

An important feature of the OR function (which explains why it requires high black-box
complexity) is the existence of a highly sensitive input, the all-zero string. Moreover, this
sensitive input has a very low circuit complexity (as a boolean function). We show that if
the BBH fails because of a property F with similar conditions (i.e., that F has an “easy”
but “highly sensitive” input), then Circuit-SAT admits a non-trivial algorithm.

I Theorem 1.1 (Main theorem: Informal version). Suppose there is a property F of n-variate
boolean functions such that
1. F is decidable in BPP in the white-box setting, but,
2. for almost all n, F has an input f∗ : {0, 1}n → {0, 1} of sensitivity 2Ω(n) and of circuit

complexity 2o(n) (which implies that F requires exponential time 2Ω(n) to decide in the
black-box setting, even on inputs f of circuit complexity 2o(n)).

Then Circuit-SAT for n-input circuits of size at most 2o(n) can be decided by a nonuniform
family of circuits of size 2o(n).

Intuitively, Theorem 1.1 says that if the BBH fails in a strong way for some property
F , with an exponential gap between the white-box and the black-box complexities, so that
the high black-box complexity of F can be explained through the existence of a highly
sensitive input f∗ (of relatively low circuit complexity), then Circuit-SAT is decidable by a
subexponential-time nonuniform algorithm.

We also observe that the assumption of Theorem 1.1 holds for any property F violating
the BBH whenever F is one of the following:

F is a symmetric function, or
F is a subset of easy functions (i.e., F ⊆ {f | size(f) ≤ 2o(n)}).

Hence, if a counterexample to the BBH is of this kind, then Circuit-SAT is easy for nonuniform
algorithms.

Finally, for the special case of monotone properties F , we get a version of Theorem 1.1
where it suffices to assume that a sensitive input in item (2) of Theorem 1.1 has just
superpolynomial sensitivity s > nω(1) and circuit complexity so(1) (rather than requiring an
exponential sensitivity s ≥ 2Ω(n)). More precisely, we prove the following.

I Theorem 1.2 (Monotone Properties). Let F be a monotone property such that
1. F is decidable in BPP in the white-box setting, but,
2. for almost all n, F has an input f∗ : {0, 1}n → {0, 1} of sensitivity s ≥ nω(1) and of

circuit complexity so(1) ≥ poly(n) (which implies that F requires superpolynomial time to
decide in the black-box complexity setting, even on inputs of circuit complexity so(1)).

Then Circuit-SAT for n-input circuits of size at most 2o(n) can be decided by a nonuniform
family of circuits of size 2o(n).

We also use a “win-win” argument to show the following: If a monotone property is a
counterexample to the Block-box Hypothesis (with appropriate parameters), then either
Circuit-SAT is nonuniformly easy infinitely often, or BPP ⊆ NP (see Theorem 5.2).

1.2 Related work
The Black-Box Hypothesis has its roots in a classical result of computability theory, Rice’s
theorem, which says that any non-trivial property of languages accepted by Turing machines
is undecidable. There are two ways of interpreting Rice’s theorem: (1) Given a Turing
machine M , the only thing one can do is to run it, or (2) the Halting problem is the easiest
non-trivial property of languages of Turing machines, in the sense that if any non-trivial
property is decidable, then so is the Halting problem.

MFCS 2017

1:4 Does Looking Inside a Circuit Help?

The intuition that it may be hard to understand what an algorithm does by looking at the
algorithm description naturally extends to the class of non-uniform algorithms (i.e., circuits).
The focus of this paper is on the second interpretation of Rice’s theorem, with Circuit-SAT
as a complexity counterpart of the Halting problem. In other words, we would like to show
any “non-trivial” counterexample to the Black-Box Hypothesis implies a somewhat efficient
algorithm for SAT.

There have been several attempts to scale down Rice’s theorem to the complexity-theoretic
realm, with different notions of ‘non-trivial’ and ‘hard’. In Rice’s theorem, ‘non-trivial’ means
neither F nor F̄ is empty, and ‘hard’ = undecidable. Borchert and Stephan [6] pioneered a
line of research that looked at counting properties of circuits and stated an analogue of Rice’s
theorem for such properties: if a counting property is non-empty, then it is UP-hard. There,
a property F is a counting property if it only depends on the number of solutions (i.e., F
is a symmetric function). Subsequently, Hemaspaandra and Rothe [10] and Hemaspaandra
and Thakur [11] improved the hardness result, obtaining a version of Rice’s theorem with
NP-hardness.

Barak et al. [5] also look at the properties of boolean functions computed by circuits, but
consider a property trivial if it can be decided by checking the circuit value on relatively
few points. That is, in their setting, the semantic property f(00 . . . 0) = f(11 . . . 1) is trivial,
but ∃x f(x) = 1 is not. Their ‘Scaled-down Rice’s theorem’ conjecture states that every
property of boolean functions f that can be computed in BPP given a circuit for f can be
also computed in comparable probabilistic polynomial time given only oracle access to f
and an upper bound on its circuit complexity. There is a clear relation to obfuscation: if it
were possible to produce a circuit for any f so garbled that access to it is not much better
than the black-box access, that would prove the conjecture. However, in the same paper
they show impossibility of achieving such obfuscation. Nonetheless, [5] is able to disprove a
certain “promise” version of the conjecture, under the assumption that one-way functions
exist (using a special family of unobfuscatable circuits). The main statement, which we will
call here ‘the Black-Box Hypothesis’, remains open.

1.3 Our techniques
Our starting point is the isolation lemma of Valiant and Vazirani [19], which can be interpreted
to say that any white-box BPP algorithm deciding the property F = XOR yields a BPP
algorithm for Circuit-SAT. This can be extended to any property F computing a symmetric
function, at the expense of introducing a small (polynomial) amount of nonuniformity. The
main idea is to take advantage of the existence of a very sensitive input f for any symmetric
property F . (For example, for the case of XOR, every input f : {0, 1}n → {0, 1} has maximum
sensitivity 2n. In general, every symmetric F has a polysize input f of sensitivity at least
2n/2.)

Suppose that f : {0, 1}n → {0, 1} is such a sensitive input for the property F , and
moreover, suppose that f is computable by a small circuit Cf (say of poly(n) size). To decide
if a given circuit C on n inputs is satisfiable, we first use the Valiant-Vazirani result to get
from C a new circuit C ′ such that C ′ is uniquely satisfiable if C is satisfiable, and C ′ is
unsatisfiable otherwise. By XORing the circuits Cf and C ′, we get a new (small) circuit that
leaves f unchanged if C is unsatisfiable, and flips f in exactly one location if C is satisfiable.
If the flipped location happens to land among the sensitive locations of f , we can detect
this by running our assumed white-box algorithm on Cf ⊕ C ′ and noting that its output
is different from that on Cf . To make sure that the flipped location is among the sensitive
ones for f , we consider a random-shift version of C ′ so that its unique satisfying assignment

R. Impagliazzo, V. Kabanets, A, Kolokolova, P. McKenzie, and S. Romani 1:5

(if it exists) will be in a uniformly random location. As, by assumption, f has very many
sensitive locations, this randomization will ensure that we detect if C is satisfiable with
high probability. The runtime of the described algorithm is polynomial in the sizes of Cf
and C. We think of a small circuit Cf as nonuniform advice, thereby getting a non-trivial
nonuniform algorithm for Circuit-SAT.

The (nonuniform) algorithm for Circuit-SAT described above achieves high success prob-
ability in case a sensitive input f : {0, 1}n → {0, 1} (provided as advice via a small circuit
computing f) has very large sensitivity s ≥ Ω(2n). What if the sensitivity is only as large
as 2Ω(n)? (Such a lower bound is the best one can hope for if one assumes the Sensitivity
Conjecture and that the given property F has exponential decision tree complexity.) In
this case, our described algorithm would have success probability only about 2−δn, for some
constant 0 < δ < 1, for solving Circuit-SAT on n-input circuits. However, if the algorithm
runs in (non-uniform) time at most 2o(n) (which will happen if the advice circuit Cf is of
size at most 2o(n)), then we can use the amplification technique of Paturi and Pudlák [17] to
get a new algorithm in non-uniform time 2o(n) that succeeds with probability 1.

For the special case of monotone properties F , we show how to make do with even smaller
sensitivity assumption on the advice function f , getting a subexponential-size Circuit-SAT
algorithm for any superpolynomial sensitivity s > nω(1). The idea is to use hashing (which
is also the main ingredient in the aforementioned result of [17]).

If we don’t assume that a sensitive input f for a given property F would have a small
circuit, we can still say something interesting by applying a “win-win” argument. Informally,
we get that if F has sensitive inputs and an efficient white-box algorithm, then either
Circuit-SAT is nonuniformly easy (in subexponential size, infinitely often), or we get an
efficient “hardness tester”: a polytime algorithm that accepts only truth tables of boolean
functions of exponential circuit complexity, and accepts at least one such truth table. Getting
such a hardness tester is a highly non-trivial task, and is not known unconditionally. Once
you have this tester, you can, for example, conclude that BPP ⊆ NP, using standard
“hardness-randomness” trade-offs [16, 4, 14].

Remainder of the paper. We give some basic definitions and facts in Section 2. We state
and discuss the Black-Box Hypothesis in Section 3. We prove Theorem 1.1 in Section 4. In
Section 5, we consider the special case of monotone properties as counterexamples to the
Black-Box Hypothesis, getting a proof of Theorem 1.2. In Section 6, we consider the case of
properties defined using succinct versions of the Minimal Circuit Size Problem (MCSP). We
consider some variants of the BBH for restricted circuit classes in Section 7. We conclude
with some open problems in Section 8. This is a conference version of the paper, with some
proofs omitted due to space limitations. The full version can be found online as [12].

2 Preliminaries

The truth table of a boolean function f : {0, 1}n → {0, 1} is denoted by tt(f). With a boolean
circuit C on n inputs, we associate the boolean function fn = [C] computed by C. Slightly
abusing the notation, we use tt(C) to denote the truth table of a boolean function computed
by the circuit C. A standard encoding of C as a binary string is denoted desc(C).

A property of boolean functions is a function F : {0, 1}2n → {0, 1}, where strings over
{0, 1}2n are interpreted as truth tables of boolean functions on n variables, for every
n. A meta-language over circuits corresponding to a property F is LF = {desc(C) |
C is a boolean circuit and tt(C) ∈ F}. In particular, if LF is a meta-language over circuits,
then for any circuits C1 and C2, if [C1] = [C2] then C1 ∈ LF ⇔ C2 ∈ LF .

MFCS 2017

1:6 Does Looking Inside a Circuit Help?

The size of a boolean circuit C is the number of gates plus the number of wires. Let
size(f) = minC,[C]=f |C|. We say that f ∈ SIZE(t(n)) if size(f) ≤ t(n).

We denote by Circuit-SATn,m the problem of deciding the satisfiability of a given n-input
circuit of size at most m. For a time bound t = t(n), we denote by RTIME(t) the class of
languages decidable by randomized algorithms, with one-sided error at most 1/2, in time t; as
usual, RP = RTIME(poly). For an advice size function a = a(n), we denote by RTIME(t)/a
the class of languages decidable by an RTIME(t) algorithm, given the correct advice of size
at most a.1

For a function F : {0, 1}N → {0, 1}, with N = 2n, we can think of inputs to F as truth
tables of n-variate boolean functions f : {0, 1}n → {0, 1}. For a circuit size bound t = t(n),
we define the randomized decision tree complexity of F on inputs of complexity at most t,
denoted Rtt(F), as the minimal depth of a randomized decision tree deciding F , with error
probability at most 1/3, on all inputs f : {0, 1}n → {0, 1} of size(f) ≤ t(n).

A boolean function f : {0, 1}n → {0, 1} is sensitive on the ith bit of input x if flipping that
bit changes the value of f(x). Sensitivity of f on input x ∈ {0, 1}n, denoted by sens(f, x),
is the number of bits in x to which f is sensitive. The sensitivity of f , denoted sens(f), is
maxx∈{0,1}n sens(f, x).

Simon’s lemma [18] gives a weak lower bound on sens(f). We will use the following
corollary of this lemma from [3]:

I Lemma 2.1 ([18]). For every non-constant n-variate boolean function f , there exists an
input x ∈ f−1(1) with sens(f, x) ≥ n− log |f−1(1)|.

Although decision tree complexity of a boolean function is polynomially related to many
other measures that we do not define here (see, for example, [7, 9]), its relationship with the
sensitivity remains elusive. The question of whether there is a polynomial relation between
sens(f) and the decision tree complexity Dt(f), known as the Sensitivity Conjecture, has
been formulated already in [15]. However, despite much work, it is still unresolved.

I Conjecture 2.2 (Sensitivity conjecture). There exists an integer k such that, for any function
f , Rt(f) ≤ sens(f)k.

3 Black-Box Hypothesis

3.1 Defining BBH
To investigate whether having a circuit Cf for an input function f helps decide a property
F of boolean functions, we compare the complexity of deciding F on f given a circuit Cf
versus given an oracle access to f . In the latter case, following [5], an algorithm deciding
F (f) is also given as its input the size m of some Cf (or, rather, an upper bound on Cf), in
unary (that is, the algorithm can “see how large the box is”, but cannot peek inside). This
makes the comparison of the running time in both frameworks more meaningful. With this
intuition, we define “white-box” and “black-box” algorithms as follows.

I Definition 3.1 (White-box vs. black-box algorithms). An algorithm A decides a property
F in white-box if A decides the corresponding meta-language LF . That is, given as input a
string desc(C) A accepts iff [C] ∈ F .

1 For semantic complexity classes such as RTIME, it is customary to use the weaker notion of a class with
advice, where the algorithm is required to behave as a true RTIME-type algorithm only when given a
correct advice string, and can behave arbitrarily otherwise.

R. Impagliazzo, V. Kabanets, A, Kolokolova, P. McKenzie, and S. Romani 1:7

An algorithm A decides F in black-box if Af (1n, 1m) accepts iff f ∈ F , where f : {0, 1}n →
{0, 1}, m is an upper bound on the circuit size of f and Af denotes that the algorithm A

has oracle access to the boolean function f ; as usual, 1n and 1m represent n and m in unary.

I Definition 3.2. A property F is in white-box BPP, denoted F ∈ wbBPP, if there is a BPP
algorithm deciding LF . We say F is in black-box BPP, denoted F ∈ bbBPP, if there is a
black-box randomized algorithm Af (1n, 1m) deciding F in time polynomial in n+m, with
the probability of error at most 1/3 over the choice of randomness, for every f, n,m.

With the above definitions, the Black-Box Hypothesis can be stated concisely as follows.

I Hypothesis 3.3 (Black-Box Hypothesis (BBH)). For any property F of boolean functions,

F ∈ wbBPP ⇐⇒ F ∈ bbBPP.

If the BBH holds, then P 6= NP, as the well-known exponential black-box lower bounds
for SAT would rule out even a subexponential-time probabilistic algorithm for SAT. On the
other hand, if NP ⊆ BPP, then the BBH is false, with SAT as a counterexample. Suppose
the BBH is false. Would that imply that SAT is easy? We make the following conjecture.

I Conjecture 3.4. (Informal) BBH is false iff Circuit-SAT is easy.

As a step towards proving the conjecture, we show that if the BBH fails in a particular way
(see the next subsection for the definition), then there is a family of circuits of subexponential
size that decides Circuit-SAT.

3.2 Defining a Strong Counter-Example to BBH
As noted before, a property F ∈ wbBPP can only be a counterexample to BBH when any
black-box algorithm requires superpolynomial time on some input of subexponential size
(otherwise white-box complexity and black-box complexity are polynomially related).

Thus, if F is not in black-box BPP, then any black-box algorithm deciding F requires
superpolynomial time on some input of subexponential circuit size, which we call an easy
input.

Ideally, we would like to prove that if the BBH fails, then Circuit-SATis easy. We do not
know how to show such an implication yet. Instead, we consider the following sufficient
condition for the BBH to fail.

I Definition 3.5 (Strong counterexample to the BBH). A property F is an s-strong counter-
example to the BBH if
1. F is in wbBPP, but
2. for almost all n, F has an input f∗ : {0, 1}n → {0, 1} of size(f∗) ≤ 2o(n) such that

sens(F, f∗) ≥ s.
We call a property a strong counterexample if it is 2Ω(n)-strong.

Next we argue that a strong counterexample to the BBH as defined above would indeed
violate the BBH. First, we recall the following result.

I Lemma 3.6 (implicit in [15]). Let F be a property of n-variate boolean functions. If
sens(F, f) ≥ s for some boolean function f ∈ SIZE(t), then Rt(t+cn) ≥ (2/3)s (for some
constant c > 0).

MFCS 2017

1:8 Does Looking Inside a Circuit Help?

Proof. Let f i be the function that disagrees with f on the ith bit of the output, which is a
sensitive bit of f . Thus, (the truth tables of) f and f i are Hamming neighbours and circuit
complexity of f i is greater than f by at most a linear factor, i.e., size(f i) ≤ size(f) +O(n).
Now to distinguish f from each Hamming neighbour f i with probability at least 2/3, any
randomized decision tree needs to query the ith bit with probability at least 2/3. As there
are s many sensitive bits for f , the expected number of queries is (2/3)s. Thus, there is one
branch on which the randomized decision tree has to query (2/3)s of the bits. J

Applying Theorem 3.6 immediately yields the required implication.

I Corollary 3.7. If F is a nω(1)-strong counterexample to the BBH, then F 6∈ bbBPP (and
hence, the BBH is false).

3.3 Examples of properties with easy sensitive inputs
We give a few examples of properties with easy sensitive inputs. For each of these properties,
violating the BBH is actually equivalent to being a strong counterexample to the BBH.

Symmetric properties. A property F is symmetric if the membership of tt(f) ∈ F depends
only on the number of 1s in tt(f). Such properties were the focus of one of the previous
formulations of a possible complexity analogue of Rice’s theorem, due to Borchert and
Stephan [6] (though their notion of hardness was somewhat different). A basic symmetric
property of N -bit strings such as OR or XOR has an easy input (the all-0 string) of sensitivity
N . We note that every symmetric property has an easy input of sensitivity at least N/2.

I Lemma 3.8. If F is a non-trivial symmetric property of n-variate boolean functions,
then there is a Boolean function f : {0, 1}n → {0, 1} with sens(F, f) ≥ 2n/2 such that f is
computable by an AC0 circuit of polynomial size.

Proof. As F is a non-trivial property, there is a number 1 ≤ k ≤ 2n such that a tt(f) with
k − 1 ones is accepted by F (wlog), but any tt(f) with k ones is rejected by F . If k ≥ 2n/2,
then any string with k ones has sensitivity k. Otherwise, any string with k − 1 ones has
sensitivity 2n − (k − 1) ≥ 2n/2.

Let k be the number of 1s in an input with sensitivity at least 2n/2. Define a required
boolean function f with exactly k ones in its truth table by f(x) = 1 iff x < k, where x is
interpreted as an integer in binary. It is easy to see that f has a polynomial-size circuit, even
of AC0 type (as the comparison of two n-bit integers can be implemented in AC0 [8]). J

Subsets of easy functions. Consider a property F that only contains a subset of easy
functions, that is, only functions of circuit complexity at most t = 2o(n). Easy functions
form a very sparse set (the number of n-bit functions of circuit size at most t is at most 2t2).
So by Simon’s lemma (Theorem 2.1), F contains an (easy) instance of sensitivity at least
2n − t2 = 2n − 2o(n) = Ω(2n).

4 Circuit-SAT algorithm from strong counterexamples

The main theorem of this section shows that a strong counterexample to the BBH (as in
Theorem 3.5) implies that Circuit-SAT on n-input circuits of subexponential size can be
decided by subexponential-size circuits. Formally, we have the following.

R. Impagliazzo, V. Kabanets, A, Kolokolova, P. McKenzie, and S. Romani 1:9

I Theorem 4.1. If there is a strong counterexample to the BBH, then

Circuit-SATn,2o(n) ∈ SIZE(2o(n)).

We prove this theorem in two steps. First we show (in Section 4.1) how sensitivity can
be exploited for deriving a randomized algorithm for satisfiability, whose success probability
depends on the assumed sensitivity of a given counterexample to the BBH. Then (in
Section 4.2) we amplify the success probability of our algorithm.

4.1 From high sensitivity to Circuit-SAT
Here we prove the following.

I Lemma 4.2. Let F be an s-strong counterexample to the BBH, with an s-sensitive function
family f ∈ SIZE(t). Then Circuit-SATn,m is decidable in randomized time poly(t,m), with
success probability Ω(s/2n), given the advice of size poly(t). In particular, we have that

Circuit-SATn,m ∈ SIZE(poly(n · (t(n) +m) · 2n/s(n))).

Proof. Let AF be a BPP algorithm for LF . By Adleman’s argument [1], we can assume that
AF is a deterministic algorithm, using at most poly(m) bits of advice on inputs of length m.

As a warm-up, suppose that F has maximal sensitivity 2n, and, moreover, for each n there
is a maximally sensitive input tt(f) where f has a circuit Cf of size t. Now, if C has at most
1 satisfying assignment, it is enough to check whether AF (C ⊕ Cf) = AF (Cf): if there is a
satisfying assignment for C, it flips a sensitive bit of tt(Cf), otherwise tt(C ⊕ Cf) = tt(Cf).

To use the idea described above we need to guarantee that the circuit C for which we
want to decide satisfiability has at most one satisfiable assignment. This can be done by
applying the Valiant-Vazirani reduction [19] to get new circuit C ′. Assuming that f is a
highly sensitive input, we have a non-trivial chance of hitting one of its sensitive bits if we
randomly shift a unique satisfying assignment of C ′. That is, we check AF (C ′(x⊕ r)⊕ Cf),
where r is a random binary string of length |x|. More formally, our algorithm for Circuit-SAT
is as follows.

Algorithm for Circuit-SAT
Input: A circuit C on n inputs.
Advice: A circuit Cf of size at most t such that tt(Cf) is an s-sensitive string for F .
1. Apply the Valiant-Vazirani reduction to C to obtain a list C1, . . . , Cn satisfying the

following: if C is unsatisfiable then so is every Ci on the list, and if C is satisfiable,
then, with probability at least 1/2, at least one Ci on the list has a unique satisfying
assignment.

2. Pick a random r ∈ {0, 1}n. For each Ci on the list, check if

AF (Cf) 6= AF (Ci(x⊕ r)⊕ Cf).

If the check passes for at least one 1 ≤ i ≤ n, then accept; otherwise, reject.

The running time of the described algorithm is poly(n, t+m). The advice size is poly(t),
as we need Cf , plus the advice of size poly(|C|+ |Cf |) used in Adleman’s averaging argument.
If C is unsatisfiable, then the algorithm rejects C with probability 1. If C is satisfiable, then
the algorithm accepts with probability at least (1/2) · s/2n (the success probability of the
Valiant-Vazirani reduction in Step (1), times the probability of hitting a sensitive bit of the
advice tt(Cf) by a random shift r in Step (2)).

Finally, applying Adleman’s argument to the randomized algorithm above, we get a
nonuniform circuit family solving Circuit-SAT with the stated parameters. J

MFCS 2017

1:10 Does Looking Inside a Circuit Help?

I Corollary 4.3. Let F be a non-trivial symmetric property such that LF ∈ BPP. Then
Circuit-SAT ∈ RP/poly ⊆ P/poly.

Proof. The proof follows from Theorem 3.8 and Theorem 4.2. J

4.2 Amplifying the success probability
Theorem 4.2 is a weaker version of Theorem 4.1 which needs the sensitivity bound s ≥ 2n−o(n).
To handle a smaller sensitivity 2δn, for any δ > 0, we need a better way of amplifying the
success probability of our randomized Circuit-SAT algorithm above, without increasing the
circuit size by too much. We will use the following Exponential Amplification lemma by
Paturi and Pudlák [17].

I Lemma 4.4 (Exponential amplification lemma[17]). Let G be a family of probabilistic circuits
of size bounded by g(m,n) such that G decides Circuit-SAT with one-sided error, achieving the
success probability 2−δn on satisfiable instances. Then there exist a circuit family G′ deciding
Circuit-SAT with success probability 2−δ2n on satisfiable instances, for all large enough n,
where the circuit size of G′ is bounded by g′(n,m) = O(g(dδne) + 5, Õ(g(n,m)))).

Now we can prove Theorem 4.1.

Proof of Theorem 4.1. Let G0
m,n be the circuit family encoding the randomized algorithm

from Theorem 4.2. For concreteness, let desc(Cf) = 2nγ denote a bound on the size
of |Cf |. The size of the complete circuit G0

m,n is O(2knγ · nkγ+1 · mk), where k is the
exponent of the running time of AF . Assuming that m ≤ |Cf | to bound smaller factors,
|desc(G0

m,n)| = O(2knγ · n(k+1)γ+1 ·mk).
Apply the Exponential amplification lemma for t iteration to G0

m,n, where t ∈ ω(1) is a
very slow growing function. If 2o(n) = 2α(n) is the bound on the advice circuit |Cf |, then
we need kt · α(n) < β(n), where β(n) ∈ o(n). As t is non-constant, success probability
becomes 2δtn ∈ 2o(n). Now, using the standard techniques to amplify the success probability
(with 2δtn + O(n) trials and fixing randomness by the averaging argument), we obtain a
deterministic circuit of subexponential size solving Circuit-SAT for circuits of description size
m on n variables. J

5 Monotone properties

Here we consider a special case of monotone properties F . First, we argue that it suffices
to have a monotone counterexample to the BBH with just superpolynomial sensitivity in
order to obtain a non-trivial Circuit-SAT algorithm (Section 5.1). Then we show that having
a monotone property F in white box P such that F requires high decision tree complexity
implies either a non-trivial Circuit-SAT algorithm or non-trivial derandomization of BPP
(Section 5.2).

5.1 Handling a lower sensitivity bound
So far, to get a non-trivial Circuit-SAT algorithm from a counterexample F to the BBH, we
assumed that we have an easy sensitive input f∗ : {0, 1}n → {0, 1} with sens(F, f∗) ≥ 2Ω(n).
Here we show that for a special case ofmonotone properties F , any superpolynomial sensitivity
s ∈ nω(1) would suffice to get the same kind of Circuit-SAT algorithms.

R. Impagliazzo, V. Kabanets, A, Kolokolova, P. McKenzie, and S. Romani 1:11

I Theorem 5.1. Let F be a monotone property such that
1. F is decidable in BPP in the white-box setting, but,
2. for almost all n, F has an input f∗ : {0, 1}n → {0, 1} of sensitivity s ≥ nω(1) and of

circuit complexity so(1) ≥ poly(n) (which implies that F requires superpolynomial time to
decide in the black-box complexity setting, even on functions of circuit complexity so(1)).

Then Circuit-SATn,2o(n) ∈ SIZE(2o(n)).

Proof. Without loss of generality, assume that F (f∗) = 1. Given f∗ as advice, we describe
a Circuit-SAT algorithm for circuits on k = log2 s inputs. We will use random hash functions.
Recall that a universal hash family Hn,k = {h : {0, 1}n → {0, 1}k} has the properties: (1)
for every fixed x ∈ {0, 1}n, the value h(x), for a random h ∈ Hn,k, is uniform over {0, 1}k,
and (2) for every x 6= y ∈ {0, 1}n, the values h(x) and h(y), for a random h ∈ Hn,k, are
independent and uniform over {0, 1}k. Our Circuit-SAT algorithm is as follows:

Given a Circuit-SAT instance C on k inputs of size 2o(k),
1. pick a random hash function h : {0, 1}n → {0, 1}k from the universal hash family
Hn,k, and build a circuit for the following function f ′: for every x ∈ {0, 1}n, set

f ′(x) =
{
f∗(x) if f∗(x) = 0
f∗(x)⊕ C(h(x)) otherwise

2. Run the white-box BPP algorithm to decide F (f ′). If F (f ′) = 0, output “C is
satisfiable”; otherwise, output “C is unsatisfiable”.

For the time analysis, note that the circuit size for f ′ defined above is O(so(1))+poly(n) ≤
O(so(1)), as f ′(x) = f∗(x) ∧ ¬C(h(x)), and h has a circuit of size poly(n).

Thus, the described algorithm runs in time poly(so(1)) ≤ so(1), which is 2o(k) for k-input
Circuit-SAT instances C.

For correctness, note that if C is unsatisfiable, then f ′ = f∗, and so F (f ′) = 1. If C is
satisfiable, say by an assignment y ∈ {0, 1}k, then, with probability at least 1/2 over the
choice of h, the set h−1(y) will contain at least one sensitive location x ∈ {0, 1}n such that
f∗(x) = 1, but flipping f∗ at x results in the new function g such that F (g) = 0.

By monotonicity of F , flipping f∗ at x and at any other locations x′ where f(x′) = 1
results in a new function f ′ such that F (f ′) = 0. J

5.2 Win-win analysis

As the Sensitivity Conjecture is true for monotone properties, assuming that a monotone
property F requires high decision tree complexity (i.e., non-uniform black-box complexity)
implies that F has a (not necessarily easy) sensitive input. We use a “win-win” argument to
prove the following.

I Theorem 5.2. Let F be any monotone property such that
1. F is in P in the white-box setting, but,
2. for almost all input lengths n, F requires decision tree complexity at least s > nω(1) on

inputs f : {0, 1}n → {0, 1}.
Then either Circuit-SATn,2o(n) ∈ SIZE(2o(n)) infinitely often, or BPP ⊆ NP.

MFCS 2017

1:12 Does Looking Inside a Circuit Help?

6 Circuit-SAT algorithm from variants of MCSP

So far we have considered a Circuit-SAT algorithm that relies on the sensitivity of a given
counterexample F to the BBH. In this section we will show a different approach to designing
Circuit-SAT algorithm from properties that are subsets of easy functions, the one that does
not explicitly use the notion of sensitivity.2

We consider the following succinct version of MCSP, denoted SuccinctMCSP, where one
is given a circuit as input, and is asked to determine if there is a smaller circuit computing
the same boolean function; see, e.g., [2] for a recent use and some basic results about
SuccinctMCSP. More formally, for t = t(n), SuccinctMCSPt(C) asks to decide if f = [C] is
in SIZE(t).

I Theorem 6.1. For any efficiently computable t(n) ∈ ω(n), if SuccinctMCSPt ∈ BPP, then

Circuit-SATn,m ∈ RTIME(poly(t(n),m)).

I Theorem 6.2. Let F be a non-empty (for all n) property that contains only a subset of
functions f ∈ SIZE(t(n)), for some efficiently computable t(n) ∈ ω(n). If F ∈ wbBPP, then

Circuit-SATn,m ∈ RTIME(poly(t(n),m))/t(n).

7 BBH for restricted circuit classes

We formulated the BBH with general circuits as inputs to the white-box algorithm. It is
natural to consider its variants with other types of circuits. We observe that for a very weak
type of circuits, e.g., read-once branching programs, the corresponding version of the BBH is
unconditionally false. For AC0 circuits, we show that a strong counterexample to this version
of the BBH implies a non-trivial Circuit-SAT algorithm for AC0 circuits. The case of CNF
formulas remains an interesting open question.

8 Conclusions

We conjecture that the falsehood of the BBH is equivalent to the easiness of Circuit-SAT. In
the present paper, we make a step in that direction, but many interesting questions remain
open. Below we list a few of them.
1. Is it possible to prove our conjecture, assuming the Sensitivity Conjecture is true?
2. Is it possible to get a uniform algorithm for Circuit-SAT for a general class of counter-

examples to BBH, thereby (conditionally) violating the ETH?
3. Are there any algorithmic SAT consequences from the assumption that there is a strong

counterexample to the BBH for CNF formulas (rather than AC0 or general circuits)?
4. The initial formulation of BBH by Barak et al. [5] was mainly inspired by the idea of

virtual black-box obfuscation. Is it possible to use indistinguishability obfuscators for
proving or disproving BBH?

Acknowledgements. We are very grateful to Marco Carmosino, Shachar Lovett and Avi
Wigderson for many insightful discussions. We also thank Rahul Santhanam for his comments
and suggestions on the earlier version of this work.

2 Of course, as noted earlier, Simon’s lemma implies that any such property does have an easy sensitive
input, and so one can use the sensitivity-based Circuit-SAT algorithm described above. The point here,
however, is to have a different type of a Circuit-SAT algorithm.

R. Impagliazzo, V. Kabanets, A, Kolokolova, P. McKenzie, and S. Romani 1:13

References
1 Leonard Adleman. Two theorems on random polynomial time. In Proceedings of the

Nineteenth Annual IEEE Symposium on Foundations of Computer Science, pages 75–83,
1978.

2 Eric Allender, Dhiraj Holden, and Valentine Kabanets. The minimum oracle cir-
cuit size problem. Computational Complexity, 26(2):469–496, 2017. doi:10.1007/
s00037-016-0124-0.

3 Andris Ambainis and Jevgēnijs Vihrovs. Size of sets with small sensitivity: A generalization
of Simon’s lemma. In International Conference on Theory and Applications of Models of
Computation, pages 122–133. Springer International Publishing, 2015.

4 Laci Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subexponential
time simulations unless EXPTIME has publishable proofs. Computational Complexity,
3:307–318, 1993.

5 Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil
Vadhan, and Ke Yang. On the (im) possibility of obfuscating programs. Journal of the
ACM (JACM), 59(2):6, 2012.

6 Bernd Borchert and Frank Stephan. Looking for an analogue of Rice’s theorem in circuit
complexity theory. Math. Log. Q., 46(4):489–504, 2000. doi:10.1002/1521-3870(200010)
46:4<489::AID-MALQ489>3.0.CO;2-F.

7 Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree complexity:
a survey. Theoretical Computer Science, 288(1):21–43, Oct 2002.

8 Ashok K Chandra, Larry Stockmeyer, and Uzi Vishkin. Constant depth reducibility. SIAM
Journal on Computing, 13(2):423–439, 1984.

9 Pooya Hatami, Raghav Kulkarni, and Denis Pankratov. Variations on the sensitivity con-
jecture. Theory of Computing, Graduate Surveys, 2:1–27, 2011.

10 Lane A. Hemaspaandra and Jörg Rothe. A second step towards complexity-theoretic ana-
logs of Rice’s theorem. Theor. Comput. Sci., 244(1-2):205–217, 2000.

11 Lane A. Hemaspaandra and Mayur Thakur. Lower bounds and the hardness of counting
properties. Theor. Comput. Sci., 326(1-3):1–28, 2004.

12 Russell Impagliazzo, Valentine Kabanets, Antonina Kolokolova, Pierre McKenzie, and
Shadab Romani. Does looking inside a circuit help? Electronic Colloquium on Com-
putational Complexity, 17(109), 2017.

13 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.
doi:10.1006/jcss.2001.1774.

14 Russell Impagliazzo and Avi Wigderson. P=BPP if E requires exponential circuits: Deran-
domizing the XOR Lemma. In Proceedings of the Twenty-Ninth Annual ACM Symposium
on Theory of Computing, pages 220–229, 1997.

15 Noam Nisan. CREW PRAMs and decision trees. SIAM Journal on Computing, 20(6):999–
1007, 1991.

16 Noam Nisan and Avi Wigderson. Hardness vs. randomness. Journal of Computer and
System Sciences, 49:149–167, 1994.

17 Ramamohan Paturi and Pavel Pudlák. On the complexity of circuit satisfiability. In Pro-
ceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge,
Massachusetts, USA, 5-8 June 2010, pages 241–250, 2010.

18 Hans-Ulrich Simon. A tight ω (loglog n)-bound on the time for parallel RAM’s to compute
nondegenerated boolean functions. In Foundations of Computation Theory, pages 439–444.
Springer, 1983.

19 Leslie Valiant and Vijay Vazirani. NP is as easy as detecting unique solutions. Theoretical
Computer Science, 47:85–93, 1986.

MFCS 2017

http://dx.doi.org/10.1007/s00037-016-0124-0
http://dx.doi.org/10.1007/s00037-016-0124-0
http://dx.doi.org/10.1002/1521-3870(200010)46:4<489::AID-MALQ489>3.0.CO;2-F
http://dx.doi.org/10.1002/1521-3870(200010)46:4<489::AID-MALQ489>3.0.CO;2-F
http://dx.doi.org/10.1006/jcss.2001.1774

The Power of Programs over Monoids in DA
Nathan Grosshans∗1, Pierre McKenzie2, and Luc Segoufin3

1 LSV, CNRS, ENS Paris-Saclay, Cachan, France, and
DIRO, Université de Montréal, Montréal, Canada
nathan.grosshans@polytechnique.edu

2 DIRO, Université de Montréal, Montréal, Canada
mckenzie@iro.umontreal.ca

3 INRIA and LSV, ENS Paris-Saclay, Cachan, France
luc.segoufin@inria.fr

Abstract
The program-over-monoid model of computation originates with Barrington’s proof that it cap-
tures the complexity class NC1. Here we make progress in understanding the subtleties of the
model. First, we identify a new tameness condition on a class of monoids that entails a natural
characterization of the regular languages recognizable by programs over monoids from the class.
Second, we prove that the class known as DA satisfies tameness and hence that the regular
languages recognized by programs over monoids in DA are precisely those recognizable in the
classical sense by morphisms from QDA. Third, we show by contrast that the well studied class
of monoids called J is not tame and we exhibit a regular language, recognized by a program over
a monoid from J, yet not recognizable classically by morphisms from the class QJ. Finally, we
exhibit a program-length-based hierarchy within the class of languages recognized by programs
over monoids from DA.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Programs over monoids, DA, lower-bounds

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.2

1 Introduction

A program of range n on alphabet Σ over a finite monoid M is a sequence of pairs (i, f)
where i is a number between 1 and n and f is a function assigning an element of the monoid
M to any letter of Σ. This program assigns to each word w1w2 · · ·wn the monoid element
obtained by multiplying out in M the elements f(wi), one per pair (i, f), in the order of the
sequence. When associated with a subset F of M as an acceptance set, a program naturally
defines the language Ln of words of length n to which it assigns a monoid element in F . A
program sequence (Pn)n∈N then defines the language formed by the union of the Ln.

Such sequences became the focus of attention when Barrington [3] made the striking
discovery, in fact partly observed earlier [17], that polynomial length program sequences over
the group S5 and sequences of Boolean circuits of polynomial size, logarithmic depth and
constant fan-in (defining the complexity class NC1) recognize precisely the same languages.

A flurry of work followed. After all, a program over M is a mere generalization of a
morphism from Σ∗ toM and recognition by a morphism equates with acceptance by a finite
automaton. Given the extensive algebraic automata theory available at the time [15, 11, 22],

∗ This work is supported by grants from Digiteo France.

© Nathan Grosshans, Pierre McKenzie, and Luc Segoufin;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 2; pp. 2:1–2:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2:2 The Power of Programs over Monoids in DA

it was to be a matter of a few years before the structure of NC1 got elucidated by algebraic
means.

The “optimism period” produced many significant results. The classes AC0 ⊂ ACC0 ⊆
NC1 were characterized by polynomial length programs over the aperiodic, the solvable,
and all monoids respectively [3, 6]. More generally for any variety V of monoids (a variety
being the undisputed best fit with the informal notion of a natural class of monoids) one
can define the class P (V) of languages recognized by polynomial length programs over a
monoid drawn from V. In particular, if A is the variety of aperiodic monoids, then P (A)
characterizes the complexity class AC0 [6].

But sadly, the optimism period ended: although partial results in restricted settings were
obtained, the holy grail of reproving significant circuit complexity results and forging ahead
by recycling the deep theorems afforded by algebraic automata theory never materialized.
The test case for the approach was to try to prove, independently from the known combina-
torial arguments [1, 12, 14] and those based on approximating circuits by polynomials over
some finite field [24, 27], that P (A) does not contain the parity language MOD2, i.e., that
MOD2 /∈ AC0. But why has this failed?

The answer of course is that programs are much more complicated than morphisms:
programs can read an input position more than once, in non-left-to-right order, possibly
assigning a different monoid element each time. Linear-length programs can indeed trivially
recognize non-regular languages. In the classical theory, any two varieties provably recognize
distinct classes of languages [11, 22]. In the theory of recognition by polynomial length
programs (we will speak then of p-recognition), distinct varieties can yield the same class,
as do, for instance, any two varieties of monoids V and W that each contain a simple
non-Abelian group, for which P (V) = P (W) = NC1 [18, Theorem 4.1].

To further illustrate the subtle behavior of programs, consider the variety of monoids
known as J. J is the variety of monoids generated by the syntactic monoids of the languages
such that membership can be decided by looking for the presence or absence of certain
subwords, where u is a subword of v if u can be obtained from v by removing some letters of
v [26]. It follows that J is unable to recognize the language defined by the regular expression
(a + b)∗ac+. Yet (a + b)∗ac+ is p-recognizable over J. To see this consider the language L
of all words having ca as a subword but not the subwords cca, caa and cb. L is therefore
recognized by a morphism ϕ to some monoid M of J, i.e. L = ϕ−1(F) for some F ⊆M . A
program of range n over M can recognize the words of length n of (a+ b)∗ac+ by using the
following trick: reading the input letters in the order 2, 1, 3, 2, 4, 3, 5, 4, . . . , n, n−1, assigning
to each letter read its image in M by ϕ and using the same acceptance set F as for L. For
instance, on input abacc the program outputs ϕ(baabcacc) which is in F , while on inputs
abbcc and abacca the program outputs respectively ϕ(babbcbcc) and ϕ(baabcaccac) which are
not in F .

Our paper is motivated by the need to better understand such subtle behaviors of poly-
nomial length programs over monoids. Quite a bit of knowledge on such programs has
accumulated over nearly thirty years (consider [5, 20, 21, 16, 28] beyond the references al-
ready mentioned). Yet, even within the realm of questions that do not hold pretense to
major complexity class separations, gaps remain.

One beaming such gap concerns the variety of monoids DA. The importance of DA in
algebraic automata theory and its connections with other fields are well established (see [30]
for an eloquent testimony). DA is a relatively “small” variety, well within the variety of
aperiodic monoids. One could argue that “small” varieties will be sensitive to duplications
and rearrangements in the order in which input letters are read by a program. Presumably
in part for that reason, programs over DA have seemingly not been successfully analyzed
prior to our work.

N. Grosshans, P. McKenzie, and L. Segoufin 2:3

Our main result is a characterization of the regular languages recognized by polynomial
length programs over DA. We show that P (DA) ∩ Reg is precisely the class L (QDA) of
languages recognized classically by morphisms in quasi-DA (QDA). A surjective morphism
ϕ from Σ∗ to a finite monoid M is quasi-DA if, though M might not be in DA, there is a
number k such that the image by ϕ of all words over Σ whose length is a multiple of k forms
a submonoid of M which is in DA. In this particular case, this statement is equivalent to
the fact that the only power added by p-recognition relative to classical recognition through
monoids in DA is the ability to count input positions modulo a constant. Our proof shows,
independently from [1, 12, 14, 24, 27], that, for regular languages, p-recognition over DA
does not distort the algebraic properties of the underlying morphisms beyond adding the
ability for fixed modulo counting on lengths. (This is precisely the statement, once extended
to the variety of all aperiodic monoids, that would yield the elusive semigroup-theoretic proof
that MOD2 /∈ AC0.)

Our main result builds upon a statement of independent interest, namely, that any variety
of monoids V that fulfills an appropriate tameness condition satisfies P (V)∩Reg ⊆ L (QV).
The new tameness condition (see Definition 2) differs subtly but fundamentally from a similar
notion developed for semigroups by Péladeau, Straubing and Thérien [21] and also studied
in the case of monoids by Péladeau [20] and later Tesson [28] in their respective Ph.D. theses,
and thus requires a separate treatment here. Proving that DA indeed satisfies our tameness
condition is the main technical difficulty behind our characterization of P (DA) ∩Reg.

We further consider P (DA). With Ck the class of languages recognized by programs of
length O(nk) over DA, we prove that C1 ⊂ C2 ⊂ · · · ⊂ Ck ⊂ · · · ⊂ P (DA) forms a strict
hierarchy. We also relate this hierarchy to another algebraic characterization of DA and
exhibit conditions on M ∈ DA under which any program over M can be rewritten as an
equivalent subprogram (made of a subsequence of the original sequence of instructions) of
length O(nk), refining a result by Tesson and Thérien [29].

Our final result concerns the variety J. Observing that the regular language (a+ b)∗ac+
mentioned above is not recognizable by a morphism in QJ, we conclude that J is not a tame
variety. Be it the chicken or the egg, this lack of tameness “explains” the unexpected power
of P (J) witnessed in our example above. Furthermore, since J is a p-variety of monoids in
the sense of [21, 20, 28], J explicitly shows that our notion of tameness and that of [21, 20, 28]
differ.

Organization of the paper. In Section 2 we define programs over varieties of monoids,
p-recognition by such programs and the necessary algebraic background. The definition of
tameness for a variety V is given in Section 3 with our first result showing that regular
languages recognized by P (V) are included in L (QV) when V is tame; we also quickly
discuss the case of J, which isn’t tame. We show that DA is tame in Section 4. Finally,
Section 5 contains the hierarchy results about P (DA).

2 Preliminaries

This section is dedicated to introducing the mathematical material used throughout this
paper. Concerning algebraic automata theory, we only quickly review the basics and refer
the reader to the two classical references of the domain by Eilenberg [10, 11] and Pin [22].

General notations. Let i, j ∈ N be two natural numbers. We shall denote by [[i, j]] the set
of all natural numbers n ∈ N verifying i ≤ n ≤ j. We shall also denote by [i] the set [[1, i]].

MFCS 2017

2:4 The Power of Programs over Monoids in DA

Words and languages. Let Σ be a finite alphabet. We denote by Σ∗ the set of all finite
words over Σ. We also denote by Σ+ the set of all finite non empty words over Σ, the empty
word being denoted by ε. A language over Σ is a subset of Σ∗. A language is regular if it
can be defined using a regular expression. Given a language L, its syntactic congruence ∼L
is the relation on Σ∗ relating two words u and v whenever for all x, y ∈ Σ∗, xuy ∈ L if and
only if xvy ∈ L. It is easy to check that ∼L is an equivalence relation and a congruence
for concatenation. The syntactic morphism of L is the mapping sending any word u to its
equivalence class in the syntactic congruence.

The quotient of a language L over Σ relative to the words u and v is the language,
denoted by u−1Lv−1, of the words w such that uwv ∈ L.

Monoids, semigroups and varieties. A semigroup is a set equipped with an associative law
that we will write multiplicatively. A monoid is a semigroup with an identity. An example
of a semigroup is Σ+, the free semigroup over Σ. Similarly Σ∗ is the free monoid over Σ.
A morphism ϕ from a semigroup S to a semigroup T is a function from S to T such that
ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ S. A morphism of monoids additionally requires that the
identity is preserved. A semigroup T is a subsemigroup of a semigroup S if T is a subset
of S and is equipped with the restricted law of S. Additionally the notion of submonoids
requires the presence of the identity. The Cartesian (or direct) product of two semigroups
is simply the semigroup given by the Cartesian product of the two underlying sets equipped
with the Cartesian product of their laws.

A language L over Σ is recognized by a monoid M if there is a morphism h from Σ∗
to M and a subset F of M such that L = h−1(F). We also say that the morphism h

recognizes L. It is well known that a language is regular if and only if it is recognized by a
finite monoid. Actually, as ∼L is a congruence, the quotient Σ∗/∼L is a monoid, called the
syntactic monoid of L, that recognizes L via the syntactic morphism of L. The syntactic
monoid of L is finite if and only if L is regular. The quotient Σ+/∼L is analogously called
the syntactic semigroup of L.

A variety of monoids is a class of finite monoids closed under submonoids, Cartesian
product and morphic images. A variety of semigroups is defined similarly. When dealing
with varieties, we consider only finite monoids and semigroups.

An element s of a semigroup is idempotent if ss = s. For any finite semigroup S there is
a positive number (the minimum such number), the idempotent number of S, often denoted
ω, such that for any element s ∈ S, sω is idempotent.

A variety can be defined by means of identities [25]. The variety is then the class of
monoids such that each of them has all its elements satisfy the identities. For instance, the
variety of aperiodic monoids A can be defined as the class of monoids satisfying the identity
xω = xω+1, where x ranges over the elements of the monoid while ω is the idempotent power
of the monoid. The variety of monoids DA is defined by the identity (xy)ω = (xy)ωx(xy)ω.
The variety of monoids J is defined by the identity (xy)ω = (xy)ωx = y(xy)ω.

Quasi and locally V languages, modular counting and predecessor. If S is a semigroup
we denote by S1 the monoid S if S is already a monoid and S ∪ {1} otherwise.

The following definitions are taken from [23]. Let ϕ be a surjective morphism from Σ∗
to a finite monoid M . For all k consider the subset ϕ(Σk) of M . As M is finite there is a
k such that ϕ(Σ2k) = ϕ(Σk). This implies that ϕ(Σk) is a semigroup. The semigroup given
by the smallest such k is called the stable semigroup of ϕ. If S is the stable semigroup of ϕ,
S1 is called the stable monoid of ϕ. If V is a variety of monoids, then we shall denote by

N. Grosshans, P. McKenzie, and L. Segoufin 2:5

QV the class of such surjective morphisms whose stable monoid is in V and by L (QV) the
class of languages whose syntactic morphism is in QV.

For V a variety of monoids, we say that a finite semigroup S is locally V if, for every
idempotent e of S, the monoid eSe belongs to V; we denote by LV the class of locally-V
finite semigroups, which happens to be a variety of semigroups. Finally, L (LV) denotes the
class of languages whose syntactic semigroup is in LV.

We now define languages recognized by V ∗ Mod and V ∗ D. We do not use the
standard algebraic definition using the wreath product as we won’t need it, but directly a
characterization of the languages recognized by such algebraic objects [7, 31].

Let V be a variety of monoids. We say that a language L over Σ is in L (V ∗Mod)
if there is a number k ∈ N>0 and a language L′ over Σ × {0, · · · , k − 1} whose syntactic
monoid is in V, such that L is the set of words w that belong to L′ after adding to each
letter of w its position modulo k.

Similarly we say that a language L over Σ is in L (V ∗D) if there is a number k ∈ N
and a language L′ over Σ× Σ≤k (where Σ≤k denotes all words over Σ of length at most k)
whose syntactic monoid is in V, such that L is the set of words w that belong to L′ after
adding to each letter of w the word composed of the k (or less when near the beginning of
w) letters preceding that letter. The variety of semigroups V∗D can then be defined as the
one generated by the syntactic semigroups of the languages in L (V ∗D) as defined above.

A variety V is said to be local if L (V ∗D) = L (LV). This is not the usual definition of
locality, defined using categories, but it is equivalent to it [31, Theorem 17.3]. One of the
consequences of locality that we will use is that L (V ∗Mod) = L (QV) [9, Corollary 18]
(see also [8, 19]).

Programs over varieties of monoids. Programs over monoids form a non-uniform model
of computation, first defined by Barrington and Thérien [6], extending Barrington’s permu-
tation branching program model [3]. Let M be a finite monoid and Σ a finite alphabet. A
program P over M is a finite sequence of instructions of the form (i, f) where i is a positive
integer and f a function from Σ to M . The length of P is the number of its instructions. A
program has range n if all its instructions use a number less than n. A program P of range
n defines a function from Σn, the words of length n, to M as follows. On input w ∈ Σn,
each instruction (i, f) outputs the monoid element f(wi). A sequence of instructions then
yields a sequence of elements of M and their product is the output P (w) of the program.

A language L over Σ is p-recognized by a sequence of programs (Pn)n∈N if for each n, Pn
has range n and length polynomial in n and there exists a subset Fn of M such that L∩Σn
is precisely the set of words w of length n such that Pn(w) ∈ Fn.

We denote by P (M) the class of languages p-recognized by a sequence of programs
(Pn)n∈N over M . If V is a variety of monoids we denote by P (V) the union of all P (M)
for M ∈ V.

The following is a simple fact about P (V). Let Σ and Γ be two finite alphabets and
µ : Σ∗ → Γ∗ be a morphism. We say that µ is length multiplying, or that µ is an lm-
morphism, if there is a constant k such that for all a ∈ Σ, the length of µ(a) is k.

I Lemma 1 ([18], Corollary 3.5). Let V be a variety of monoids, then P (V) is closed under
Boolean operations, quotients and inverse images of lm-morphisms.

MFCS 2017

2:6 The Power of Programs over Monoids in DA

3 General results about regular languages and programs

Let V be a variety of monoids. By definition any regular language recognized by a monoid
in V is p-recognized by a sequence of programs over a monoid in V. Actually, since in
a program over some monoid in V, the monoid element output for each instruction can
depend on the position of the letter read, hence in particular on its position modulo some
fixed number, it is easy to see that any regular language in L (V ∗Mod) is p-recognized by
a sequence of programs over some monoid in V. In this section we show that for some “well
behaved” varieties V the converse inclusion holds.

For this we introduce the notion of an sp-variety of monoids. This notion is inspired by
the notion of p-varieties (program-varieties) of monoids, that seems to have been originally
defined by Péladeau in his Ph.D. thesis [20] and later used by Tesson in his own Ph.D.
thesis [28]. The notion of a p-variety has also been defined for semigroups by Péladeau,
Straubing and Thérien in [21] in order to obtain results similar to ours for varieties of
semigroups of the form V ∗D.

Let µ be a morphism from Σ∗ to a finite monoid M . We denote by W(µ) the set of
languages L over Σ such that L = µ−1(F) for some subset F of M . Given a semigroup S
there is a unique morphism ηS : S∗ → S1 extending the identity on S, called the evaluation
morphism of S. We write W(S) for W(ηS). We define W(M) similarly for any monoid M .
It is easy to see that if M ∈ V then W(M) ⊆ P (V). The tameness condition requires a
converse of this observation.

I Definition 2. An sp-variety of monoids, which we will call a tame variety, is a variety V
of monoids such that for any finite semigroup S, if W(S) ⊆ P (V) then S1 ∈ V.

The p-variety of monoids in [20, 28] is similar to our sp-variety but the former only
requires that any finite monoid M verifying W(M) ⊆ P (V) must in fact belong to V. This
implies that any sp-variety of monoids is also a p-variety of monoids, but the converse is not
always true. For instance, J is a p-variety of monoids [28], but Proposition 5 below states
that J is not an sp-variety.

An example of an sp-variety of monoids is the class of aperiodic monoids A. This is a
consequence of the result that for any number k > 1, checking if the number of a modulo
k in a word is congruent to 0 is not in AC0 = P (A) [12, 1] (a language we shall denote
by MODk over the alphabet {0, 1}). Towards a contradiction, assume there would exist a
semigroup S such that S1 is not aperiodic but still W(S) ⊆ P (A). Then there is an x in S
such that xω 6= xω+1. Consider the morphism µ : {a, b}∗ → S1 sending a to xω+1 and b to
xω, and the language L = µ−1(xω). It is easy to see that L is the language of all words with a
number of a congruent to 0 modulo k, where k is the smallest number such that xω+k = xω.
As xω 6= xω+1, k > 1. From W(S) ⊆ P (A) it follows that η−1

S (xω) is p-recognized by a
sequence of programs (Pn)n∈N over an aperiodic monoid. For each n ∈ N, we can transform
Pn into P ′n where each instruction (i, f) in Pn simply becomes the instruction (i, f ′) in P ′n
with f ′(σ) = f(µ(σ)) for all σ ∈ {a, b}, so that P ′n(w) = Pn(µ(w1)µ(w2) · · ·µ(wn)) for all
w ∈ {a, b}n. This entails that the sequence of programs (P ′n)n∈N p-recognizes L, hence L is
in P (A), a contradiction.

The following is the desired consequence of tameness.

I Proposition 3. Let V be an sp-variety of monoids. Then P (V) ∩Reg ⊆ L (QV).

A similar result was proven for varieties of semigroups of the form V ∗ D: if V ∗ D is a
p-variety then the regular languages in P (V ∗D) are exactly those in L (V ∗D ∗Mod) [21]
(programs over semigroups being defined in the obvious way). Our proof follows the same
lines.

N. Grosshans, P. McKenzie, and L. Segoufin 2:7

Proof. Let L be a regular language in P (M) for some M ∈ V. Let ML be the syntactic
monoid of L and ηL its syntactic morphism. Let S be the stable semigroup of ηL, in
particular S = ηL(Σk) for some k. We wish to show that S1 is in V.

We show that W(S) ⊆ P (V) and conclude from the fact that V is an sp-variety that
S1 ∈ V as desired. Let ηS : S∗ → S1 be the evaluation morphism of S. Consider m ∈ S and
consider L′ = η−1

S (m). We wish to show that L′ ∈ P (V). This implies that W(S) ⊆ P (V)
by closure under union, Lemma 1.

Let L′′ = η−1
L (m). Since m belongs to the syntactic monoid of L and ηL is the syntactic

morphism of L, a classical algebraic argument [22, Chapter 2, proof of Lemma 2.6] shows
that L′′ is a Boolean combination of quotients of L or their complements. By Lemma 1, we
conclude that L′′ ∈ P (V).

By definition of S, for any element s of S there is a word us of length k such that
ηL(us) = s. Notice that this is precisely where we need to work with S and not S1.

Let f : S∗ → Σ∗ be the lm-morphism sending s to us and notice that L′ = f−1(L′′). The
result follows by closure of P (V) under inverse images of lm-morphisms, Lemma 1. J

We don’t know whether it is always true that for sp-varieties of monoids V, L (QV) is
included into P (V). We can only prove it for local varieties.

I Proposition 4. Let V be a local sp-variety of monoids. Then P (V) ∩Reg = L (QV).

Proof. This follows from the fact that for local varieties L (QV) = L (V ∗Mod) [9]. The
result follows from Proposition 3, as we always have L (V ∗Mod) ⊆ P (V). J

As A is local [31, Example 15.5] and an sp-variety, it follows from Proposition 4 that the
regular languages in P (A), hence in AC0, are precisely those in L (QA), which is the char-
acterization of the regular languages in AC0 obtained by Barrington, Compton, Straubing
and Thérien [4].

We will see in the next section that DA is an sp-variety. As it is also local [2], we get
from Proposition 4 that the regular languages of P (DA) are precisely those in L (QDA).

As explained in the introduction, the language (a + b)∗ac+ can be p-recognized by a
program over J. A simple algebraic argument shows that it is not in L (QJ). Hence, by
Proposition 3, we have the following result:

I Proposition 5. J is not an sp-variety of monoids.

4 The case of DA

In this section, we prove that DA is an sp-variety of monoids. Combined with the fact that
DA is local [2], we obtain the following result by Proposition 4.

I Theorem 6. P (DA) ∩Reg = L (QDA).

The result follows from the following main technical contribution:

I Proposition 7. (c + ab)∗, (b + ab)∗ and ((b∗ab∗)k)∗ for any integer k ≥ 2 are regular
languages not in P (DA).

Before proving the proposition we first show that it implies that DA is an sp-variety of
monoids. Assume S is a finite semigroup such that W(S) ⊆ P (DA). Let ηS : S∗ → S1 be
the evaluation morphism of S. We need to show that S1 is in DA.

Assume first that S1 is aperiodic. Towards a contradiction, assume S1 is not in DA.
Then, there exist x, y in S such that (xy)ω 6= (xy)ωx(xy)ω.

MFCS 2017

2:8 The Power of Programs over Monoids in DA

Set e = (xy)ω, f = (yx)ω, s = ex and t = ye. Our hypothesis says that exe 6= e. We
now have two cases, depending on whether fyf = f or not.

So, suppose fyf 6= f . In that case, let µ : {a, b, c}∗ → S1 be the morphism sending a to s,
b to t and c to e and consider the language L = µ−1({1, e}). Assume that L contains a word
w with two consecutive a. Then w = w1aaw2 and as w ∈ L, either e = µ(w1)exexµ(w2)
or 1 = µ(w1)exexµ(w2). In both cases e = u1exeu2 for some suitable values of u1 and u2.
This implies that e = uω1 e(xeu2)ω = (u1xe)ωeuω2 . Because S1 is aperiodic, this implies:
e = exeu2 = eu2. Hence exe = e, contradicting the fact that exe 6= e. Similar arguments
show that L cannot contain a word with two consecutive b, a factor ac or a factor cb.

Any word in L is of the form u0v1u1 · · ·uk−1vkuk where k ∈ N, v1, . . . , vk ∈ c+ and
u0, . . . , uk ∈ (a+ b)∗. As w does not contain aa nor bb as a factor, we have that u0, . . . , uk ∈
(b + ε)(ab)∗(a + ε). When k ≥ 1, as moreover w does not contain ac nor cb as a factor,
it follows that u1, . . . , uk−1 ∈ (ab)∗, u0 ∈ (b + ε)(ab)∗ and uk ∈ (ab)∗(a + ε); now since
µ(ab) = exye = e by aperiodicity and µ(b)e = yee = ye /∈ {1, e} (otherwise fyf = f),
eµ(a) = eex = ex /∈ {1, e} (otherwise exe = e), µ(b)eµ(a) = yeeex = yex = f /∈ {1, e}
(by aperiodicity and as otherwise exe = e), w cannot start with b or end with a, hence
u0, uk ∈ (ab)∗. And similarly, u0 ∈ (ab)∗ when k = 0. Therefore, L = (c+ ab)∗.

The other case, when fyf = f , is treated similarly using the morphism µ : {a, b}∗ → S1

sending a to s and b to t and considering the language L = µ−1({1, e, t}). Using arguments
as for the previous case, one can conclude that L = (b+ ab)∗.

Assume now that S1 is not aperiodic. As in the two previous cases, we can then prove
that there exist a morphism µ : {a, b}∗ → S1 and a subset F ⊆ S1 such that L = µ−1(F)
is the regular language ((b∗ab∗)k)∗ for some k ∈ N, k ≥ 2 of all words over {a, b} with a
number of a congruent to 0 modulo k.

In all cases, we have a language L defined as µ−1(Q) for some subset Q of S1 and some
morphism µ to S1 sending letters to elements of S. As W(S) ⊆ P (DA), it follows that
η−1
S (Q) is p-recognized by a sequence of programs (Pn)n∈N over a monoid in DA. As in the
example prior to Proposition 3 in the previous section, for each n ∈ N, we can transform Pn
into P ′n over the same monoid so that the sequence of programs (P ′n)n∈N p-recognizes L. In
all cases, we get a contradiction with Proposition 7.

In the remaining part of this section we prove Proposition 7.

Proof of Proposition 7. The idea of the proof is the following. We work by contradiction
and assume that we have a sequence of programs over some monoid M of DA deciding
one of the targeted language. Let n be much larger than the size of M , and let Pn be the
program running on words of length n. Consider a language of the form ∆∗ for some finite
set ∆ of words (for instance assume ∆ = {c, ab}, ∆ = {b, ab}, . . .). We will show that we
can fix a constant (depending on M and ∆ but not on n) number of entries to Pn such
that Pn always accepts or always rejects and there is a completion of the fixed entries in
∆∗; hence, if ∆ was chosen so that there is actually a completion of the fixed entries in the
targeted language and one outside of it, Pn cannot recognize it. We cannot prove this for
all ∆, in particular it will not work for ∆ = {ab} and indeed (ab)∗ is in P (DA). The key
property of our ∆ is that after fixing any letter at any position, except maybe for a constant
number of positions, one can still complete the word into one within ∆∗. This is not true
for ∆ = {ab} because after fixing a b in an odd position all completions fall outside of (ab)∗.

We now add some technical details.
Let ∆ be a finite set of words. Let Σ be the corresponding finite alphabet and let ⊥ be

a letter not in Σ. A mask is a word over Σ∪{⊥}. The positions of a mask carrying a ⊥ are
called free while the positions carrying a letter in Σ are called fixed. A mask λ′ is a submask
of a mask λ if it is formed from λ by replacing some occurrences of ⊥ by a letter in Σ.

N. Grosshans, P. McKenzie, and L. Segoufin 2:9

A completion of a mask λ is a word w over Σ that is built from λ by replacing all
occurrences of ⊥ by a letter in Σ. Notice that all completions of a mask have the same
length as the mask itself. A mask λ is ∆-compatible if it has a completion in ∆∗.

The dangerous positions of a mask λ are the positions within distance 2l− 2 of the fixed
positions or within distance l − 1 of the beginning or the end of the mask, where l is the
maximal length of a word in ∆. A position that is not dangerous is said to be safe.

We say that ∆ is safe if the following holds. Let λ be a ∆-compatible mask. Let i be any
free position of λ that is not dangerous. Let a be any letter in Σ. Then the submask of λ
constructed by fixing a at position i is ∆-compatible. We have already seen that ∆ = {ab}
is not safe. However our targeted ∆, ∆ = {c, ab}, ∆ = {b, ab}, ∆ = {a, b}, are safe. We
always consider ∆ to be safe in the following.

Finally, we say that a completion w of a mask λ is safe if w is a completion of λ
belonging to ∆∗ or is constructed from a completion of λ in ∆∗ by modifying only letters
at safe positions of λ, the dangerous positions remaining unchanged.

The following lemma is the key to the proof. It shows that modulo fixing a few entries,
one can fix the output.

I Lemma 8. Let M be a monoid in DA. Let λ be a ∆-compatible mask of length n, let P
be a program over M of range n, let u and v be elements of M . Then there is an element
t of M and a ∆-compatible submask λ′ of λ obtained by fixing a number of free positions
independent from n such that any safe completion w of λ′ verifies uP (w)v = t.

The proof of Lemma 8 is technical. As often in this setting, it relies on Green’s relations
for decomposing monoids. Then, at each stage of the decomposition, a small number of safe
positions are fixed accordingly. Details can be found in Appendix A.

Setting ∆ = {c, ab} or ∆ = {b, ab}, when applying Lemma 8 for some monoid M ∈ DA
with the trivial ∆-compatible mask λ of length n containing only free positions, with P

some program over M of range n and with u and v the identity of M , the resulting mask λ′
has the property that we have an element t ofM such that P (w) = t for any safe completion
w of λ′. Since the mask λ′ is ∆-compatible and as long as n is big enough, we have a safe
completion w0 ∈ ∆∗ and a safe completion w1 /∈ ∆∗. Hence P cannot recognize ∆∗. This
implies that (c+ ab)∗ /∈ P (M) and (b+ ab)∗ /∈ P (M). Finally, for any k ∈ N, k ≥ 2, we can
prove that ((b∗ab∗)k)∗ /∈ P (M) by setting ∆ = {a, b} and completing the mask given by the
lemma by setting the letters in such a way that we have the right number of a modulo k in
one case and not in the other case.

This concludes the proof of Proposition 7 because the argument above holds for any
monoid in DA.

5 A fine hierarchy in P (DA)

The definition of p-recognition by a sequence of programs over a monoid given in Section 2
requires that for each n, the program reading the entries of length n has a length polynomial
in n. In the case of P (DA), the polynomial length restriction is without loss of generality:
any program over a monoid in DA is equivalent to one of polynomial length over the same
monoid [29] (in the sense that they recognize the same languages). In this section, we show
that this does not collapse further: in the case of DA, programs of length O(nk+1) express
strictly more than those of length O(nk).

Following [13], we use an alternative definition of the languages recognized by a monoid
in DA. We define by induction a hierarchy of classes of languages SUMk, where SUM
stands for strongly unambiguous monomial. A language L is in SUM0 if it is of the form

MFCS 2017

2:10 The Power of Programs over Monoids in DA

A∗ for some finite alphabet A. A language L is in SUMk if it is in SUMk−1 or L = L1aL2
for some languages L1 ∈ SUMi and L2 ∈ SUMj and some letter a with i+ j = k − 1 such
that no word of L1 contains the letter a or no word of L2 contains the letter a.

Gavaldà and Thérien showed that a language L is recognized by a monoid in DA iff there
is a k such that L is a Boolean combination of languages in SUMk [13]. For each k ∈ N, we
denote by DAk the variety of monoids generated by the syntactic monoids of the Boolean
combinations of languages in SUMk. It can be checked that, for each k, DAk forms a
variety of monoids recognizing precisely Boolean combinations of languages in SUMk (see
Appendix B).

5.1 Strict hierarchy
For each k we exhibit a language Lk ⊆ {0, 1}∗ that can be recognized by a sequence of
programs of length O(nk) over a monoid Mk in DA but cannot be recognized by any
sequence of programs of length O(nk−1) over any monoid in DA.

The language Lk expresses a property of the first k occurrences of 1 in the input word.
To define Lk we say that S is a k-set over n if S is a set where each element is an ordered
tuple of k distinct elements of [n]. For any sequence ∆ = (Sn)n∈N of k-sets over n, we set
L∆ =

⋃
n∈NKn,Sn , where Kn,Sn is the set of words over {0, 1} of length n such that for each

of them, it contains at least k occurrences of 1 and the ordered k-tuple of the positions of
the first k occurrences of 1 belongs to Sn.

On the one hand, we show that for all k there is a monoid Mk in DA such that for all
∆ the language L∆ is recognized by a sequence of programs over Mk of length O(nk). The
proof is done by an inductive argument on k.

On the other hand, we show that there is a ∆ such that for any finite monoidM and any
sequence of programs (Pn)n∈N over M of length O(nk−1), L∆ is not recognized by (Pn)n∈N.
This is done using a counting argument: for some monoid size i, for n big enough, the
number of languages in {0, 1}n recognized by a program over some monoid of size i of length
at most α ·nk−1 is upper-bounded by a number that turns out to be asymptotically smaller
than the number of different possible Kn,Sn

.

Upper bound. We start with the upper bound. Notice that for ∆ = (Sn)n∈N, the language
of words of length n of L∆ is exactly Kn,Sn . Hence the fact that L∆ can be recognized by a
sequence of programs over a monoid in DA of length O(nk) is a consequence of the following
proposition.

I Proposition 9. For all k ∈ N>0 there is a monoid Mk ∈ DAk such that for all n ∈ N
and all Sn k-sets over n, the language Kn,Sn is recognized by a program over Mk of length
at most 4nk.

Proof. We first define by induction on k a family of languages Zk over the alphabet Yk =
{⊥l,>l | 1 ≤ l ≤ k}. For k = 0, Z0 is {ε}. For k > 0, Zk is the set of words containing >k
and such that the first occurrence of >k has no ⊥k to its left, and the sequence between the
first occurrence of >k and the first occurrence of ⊥k or >k to its right, or the end of the
word if there is no such letter, belongs to Zk−1. A simple induction on k shows that Zk is
defined by the following expression

Y ∗k−1>kY ∗k−2>k−1 · · ·Y ∗1 >2>1Y
∗
k

and therefore it is in SUMk and its syntactic monoid Mk is in DAk.

N. Grosshans, P. McKenzie, and L. Segoufin 2:11

Fix n. If n = 0, the proposition follows trivially, otherwise, we define by induction on k
a program Pk(i, S) for every k-set S over n and every 1 ≤ i ≤ n+1 that will for the moment
output letters of Yk instead of outputting elements of Mk.

For any k > 0 and S a k-set over n, let fj,S be the function with fj,S(0) = ε and
fj,S(1) = >k if j is the first element of some ordered k-tuple of S, fj,S(1) = ⊥k otherwise.
We also let gk be the function with gk(0) = ε and gk(1) = ⊥k. If S is a k-set over n and
j ≤ n then S|j denotes the (k − 1)-set over n containing the ordered (k − 1)-tuples t̄ such
that (j, t̄) ∈ S.

For k > 0, 1 ≤ i ≤ n + 1 and S a k-set over n, the program Pk(i, S) is the following
sequence of instructions:

(i, fi,S)Pk−1(i+ 1, S|i)(i, gk) · · · (n, fn,S)Pk−1(n+ 1, S|n)(n, gk).

In other words, the program guesses the first occurrence j ≥ i of 1, returns ⊥k or >k
depending on whether it is the first element of an ordered k-tuple in S, and then proceeds
for the next occurrences of 1 by induction.

For k = 0, 1 ≤ i ≤ n + 1 and S a 0-set over n (that is empty or contains ε, the only
ordered 0-tuple of elements of [n]), the program P0(i, S) is the empty program ε.

A simple computation shows that for any k ∈ N>0, 1 ≤ i ≤ n+ 1 and S a k-set over n,
the number of instructions in Pk(i, S) is at most 4nk.

A simple induction on k shows that when running on a word w ∈ {0, 1}n, for any k ∈ N>0,
1 ≤ i ≤ n + 1 and S a k-set over n, Pk(i, S) returns a word in Zk iff the ordered k-tuple
of the positions of the first k occurrences of 1 starting at position i in w exists and is an
element of S.

For any k > 0 and Sn a k-set over n, it remains to apply the syntactic morphism of Zk
to the output of the functions in the instructions of Pk(1, Sn) to get a program over Mk of
length at most 4nk recognizing Kn,Sn

. J

Lower bound. The following claim is a simple counting argument.

I Claim 10. For all i ∈ N>0 and n ∈ N, the number of languages in {0, 1}n recognized by
programs over a monoid of size i, reading inputs of length n over the alphabet {0, 1}, with
at most l ∈ N instructions, is bounded by ii22i · (n · i2)l.

Proof. Fix a monoidM of size i. Since a program overM of range n with less than l instruc-
tions can always be completed into such a program with exactly l instructions recognizing
the same languages in {0, 1}n (using the identity of M), we only consider programs with
exactly l instructions. As Σ = {0, 1}, there are n · i2 choices for each of the l instructions of
a range n program over M reading inputs in {0, 1}∗. Such a program can recognize at most
2i different languages in {0, 1}n. Hence, the number of languages in {0, 1}n recognized by
programs over M of length at most l is at most 2i · (n · i2)l. The result follows from the facts
that there are at most ii2 isomorphism classes of monoids of size i and that two isomorphic
monoids allow to recognize the same languages in {0, 1}n. J

If for some k ∈ N>0 and 1 ≤ i ≤ α, α ∈ N>0, we apply Claim 10 for all n ∈ N, l = α·nk−1,
we get a number of languages upper-bounded by nO(nk−1), which is asymptotically strictly
smaller than the number of distinct Kn,Sn

, which is 2(n
k).

Hence, for all j ∈ N>0, there exist an nj ∈ N and Tj a k-set over nj such that no program
over a monoid of size 1 ≤ i ≤ j and of length at most j · nk−1 recognizes Knj ,Tj . Moreover,
we can assume without loss of generality that the sequence (nj)j∈N>0 is increasing. Let

MFCS 2017

2:12 The Power of Programs over Monoids in DA

∆ = (Sn)n∈N be such that Snj
= Tj for all j ∈ N>0 and Sn = ∅ for any n ∈ N verifying

that it is not equal to any nj for j ∈ N>0. We show that no sequence of programs over a
finite monoid of length O(nk−1) can recognize L∆. If this were the case, then let i be the
size of the monoid. Let j ≥ i be such that for any n ∈ N, the n-th program has length at
most j ·nk−1. But, by construction, we know that there does not exist any such program of
range nj recognizing Knj ,Tj , a contradiction.

This implies the following hierarchy (where P (V, s(n)) for some variety of monoids V
and a function s : N → N denotes the class of languages recognizable by a sequence of
programs of length O(s(n))):

I Proposition 11. For all k ∈ N, P
(
DA, nk

)
(P

(
DA, nk+1).

5.2 Collapse
Tesson and Thérien showed that any program over a monoid M in DA is equivalent to one
of polynomial length [29]. We now show that if we further assume that M is in DAk then
the length can be assumed to be O(nk).

I Proposition 12. Let k > 0. Let M ∈ DAk. Then any program over M is equivalent to a
program over M of length O(nk).

The equivalent program of length O(nk) is actually a subprogram of the initial one. For
each possible acceptance set, an input word to the program is accepted iff the word over
the alphabet M produced by the program belongs to some fixed Boolean combination of
languages in SUMk. The idea is then just to keep enough instructions so that membership
of the produced word over M in each of these languages does not change. For each of those
languages, the set of instructions to keep is defined by induction on k using the inductive
definition of SUMk given at the beginning of this section. Roughly, at each step, for each
input letter and each input position, the small program keeps the first or last instruction
of the big program producing the “pivot element” when reading this input letter at that
position. The number of instructions kept in the end is then in O(nk). The details can be
found in Appendix C.

6 Conclusion

For local and tame varieties V we have shown that the regular languages recognized by
programs over V are exactly those in L (QV). It is not clear whether locality is necessary.
We don’t have any example of a tame variety V for which L (QV) is not included into
P (V). We leave this question for future work.

We have shown that DA is tame but that J is not. Another example of a tame variety
is A. However we needed the fact that MODm is not in AC0 for all m ≥ 2 in order to
prove tameness. It would be interesting to give a direct algebraic proof of this result. As
this would in particular imply that MOD2 is not in AC0 by Proposition 4, it is certainly a
challenging task.

Finding the regular languages recognized by programs over J is left for future work.
To conclude we should add, in fairness, that the progress reported here does not obviously

bring us closer to major NC1 complexity subclasses separations, but it does uncover new ways
in which a program can or cannot circumvent the limitations imposed by the underlying
monoid algebraic structure available to it.

N. Grosshans, P. McKenzie, and L. Segoufin 2:13

References

1 Miklós Ajtai. Σ1
1-formulae on finite structures. In Ann. Pure and Appl. Logic, volume 24,

pages 1–48, 1983.
2 Jorge Almeida. A syntactical proof of locality of DA. Int. J. of Algebra and Computation

(IJAC), 6(2):165–178, 1996.
3 David A. Mix Barrington. Bounded-width polynomial-size branching programs recognize

exactly those languages in NC1. J. Comput. Syst. Sci., 38(1):150–164, 1989.
4 David A. Mix Barrington, Kevin J. Compton, Howard Straubing, and Denis Thérien. Reg-

ular languages in NC1. J. Comput. Syst. Sci., 44(3):478–499, 1992.
5 David A. Mix Barrington, Howard Straubing, and Denis Thérien. Non-uniform automata

over groups. Inf. Comput., 89(2):109–132, 1990.
6 David A. Mix Barrington and Denis Thérien. Finite monoids and the fine structure of

NC1. J. ACM, 35(4):941–952, 1988.
7 Laura Chaubard, Jean-Éric Pin, and Howard Straubing. Actions, wreath products of C -

varieties and concatenation product. Theoretical Computer Science, 356(1-2):73–89, 2006.
8 Luc Dartois. Méthodes algébriques pour la théorie des automates. PhD thesis, Université

Paris Diderot, Paris, 2014.
9 Luc Dartois and Charles Paperman. Adding modular predicates. CoRR, abs/1401.6576,

2014. URL: http://arxiv.org/abs/1401.6576.
10 Samuel Eilenberg. Automata, Languages, and Machines, volume A. Academic Press, New

York, 1974.
11 Samuel Eilenberg. Automata, Languages, and Machines, volume B. Academic Press, New

York, 1976.
12 Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the polynomial-

time hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984.
13 Ricard Gavaldà and Denis Thérien. Algebraic characterizations of small classes of Boolean

functions. In Proceedings of the 20th Annual Symposium on Theoretical Aspects of Computer
Science (STACS), volume 2607 of Lecture Notes in Computer Science, pages 331–342.
Springer, 2003.

14 Johan Håstad. Almost optimal lower bounds for small depth circuits. In Proceedings of the
18th Annual ACM Symposium on Theory of Computing (STOC), pages 6–20. ACM, 1986.

15 Kenneth Krohn and John L. Rhodes. Algebraic theory of machines. I. Prime decomposition
theorem for finite semigroups and machines. In Trans. Amer. Math. Soc., volume 116, pages
450–464, 1965.

16 Alexis Maciel, Pierre Péladeau, and Denis Thérien. Programs over semigroups of dot-depth
one. Theor. Comput. Sci., 245(1):135–148, 2000.

17 Ward D. Maurer and John L. Rhodes. A property of finite simple non-abelian groups. In
Amer. Math. Soc., volume 16, pages 552–554, 1965.

18 Pierre McKenzie, Pierre Péladeau, and Denis Thérien. NC1: The automata-theoretic view-
point. Computational Complexity, 1:330–359, 1991.

19 Charles Paperman. Circuits booléens, prédicats modulaires et langages réguliers. PhD
thesis, Université Paris Diderot, Paris, 2014.

20 Pierre Péladeau. Classes de circuits booléens et variétés de monoïdes. PhD thesis, Université
Pierre-et-Marie-Curie (Paris-VI), Paris, France, 1990.

21 Pierre Péladeau, Howard Straubing, and Denis Thérien. Finite semigroup varieties defined
by programs. Theor. Comput. Sci., 180(1-2):325–339, 1997.

22 Jean-Éric Pin. Varieties of formal languages. North Oxford, London and Plenum, New-
York, 1986. (Traduction de Variétés de langages formels).

23 Jean-Éric Pin and Howard Straubing. Some results on C-varieties. RAIRO-Theor. Inf.
Appl., 39(1):239–262, 2005.

MFCS 2017

http://arxiv.org/abs/1401.6576

2:14 The Power of Programs over Monoids in DA

24 Alexander A. Razborov. Lower bounds on the size of bounded depth circuits over a complete
basis with logical addition. Mathematical Notes, 41(4):333–338, 1987.

25 Jan Reiterman. The Birkhoff theorem for finite algebras. algebra universalis, 14(1):1–10,
1982.

26 Imre Simon. Piecewise testable events. In Automata Theory and Formal Languages, 2nd
GI Conference, volume 33 of Lecture Notes in Computer Science, pages 214–222. Springer,
1975.

27 Roman Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit
complexity. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing
(STOC), pages 77–82. ACM, 1987.

28 Pascal Tesson. Computational Complexity Questions Related to Finite Monoids and Semi-
groups. PhD thesis, McGill University, Montreal, Canada, 2003.

29 Pascal Tesson and Denis Thérien. The computing power of programs over finite monoids.
J. Autom. Lang. Comb., 7(2):247–258, November 2001.

30 Pascal Tesson and Denis Thérien. Diamonds are forever: the variety DA. Semigroups,
algorithms, automata and languages, 1:475–500, 2002.

31 Bret Tilson. Categories as algebra: An essential ingredient in the theory of monoids. J. of
Pure and Applied Algebra, 48(1-2), 1987.

A Missing proofs from Section 4

Let M be a monoid in DA whose identity we will denote by 1.
Given two elements u, u′ of M we say that u ≤J u′ if there are elements v, v′ of M such

that u′ = vuv′. We write u ∼J u′ if u ≤J u′ and u′ ≤J u. We write u <J u′ if u ≤J u′ and
u′ 6∼J u. Given two elements u, u′ of M we say that u ≤R u′ if there is an element v of M
such that u′ = uv. We write u ∼R u′ if u ≤R u′ and u′ ≤R u. We write u <R u′ if u ≤R u′
and u′ 6∼R u. Given two elements u, u′ of M we say that u ≤L u′ if there is an element v
of M such that u′ = vu. We write u ∼L u′ if u ≤L u′ and u′ ≤L u. We write u <L u′ if
u ≤L u′ and u′ 6∼L u.

We shall use the following well-known fact about these preorders and equivalence rela-
tions (see [22, Chapter 3, Proposition 1.4]).

I Lemma 13. For all elements u and v ofM , if u ≤R v and u ∼J v, then u ∼R v. Similarly,
if u ≤L v and u ∼J v, then u ∼L v.

An element r of M is R-bad for u if u <R ur. Similarly an element r of M is L-bad for
v if u <L rv. It follows from M ∈ DA that being R-bad or L-bad only depends on the ∼R
or ∼L class, respectively:

I Lemma 14. [Folklore] If M is in DA, then u ∼R u′ and ur ∼R u implies u′r ∼R u.
Similarly u ∼L u′ and ru ∼L u implies ru′ ∼L u.

Let ∆ be a finite set of words and Σ be the corresponding finite alphabet, ∆ being safe,
and let n ∈ N. We are now going to prove the main technical lemma that allows us to assert
that after fixing a constant number of positions in the input of a program overM , it can still
be completed into a word of ∆∗, but the program cannot make the difference between any
two possible completions anymore. To prove the lemma, we define a relation ≺ on the set of
quadruplets (λ, P, u, v) where λ is a mask of length n, P is a program over M for words of
length n and u and v are two elements. We will say that an element (λ1, P1, u1, v1) is strictly
smaller than (λ2, P2, u2, v2), written (λ1, P1, u1, v1) ≺ (λ2, P2, u2, v2) if λ1 is a submask of
λ2, P1 is a subprogram of P2 and one of the following cases occurs:

N. Grosshans, P. McKenzie, and L. Segoufin 2:15

1. u2 <R u1 and v1 = v2 and P1 is a suffix of P2 and u1P1(w)v1 = u2P2(w)v2 for all safe
completions w of λ1;

2. v2 <L v1 and u1 = u2 and P1 is a prefix of P2 and u1P1(w)v1 = u2P2(w)v2 for all safe
completions w of λ1;

3. u2 = u1 and v1 = 1 and P1 is a prefix of P2 and u1P1(w)v1 <J u2P2(w)v2 for all safe
completions w of λ1;

4. v2 = v1 and u1 = 1 and P1 is a suffix of P2 and u1P1(w)v1 <J u2P2(w)v2 for all safe
completions w of λ1.

Note that, sinceM is finite, this relation is well-founded (that is, it has no infinite decreasing
chain, an infinite sequence of quadruplets µ0, µ1, µ2, . . . such that µi+1 ≺ µi for all i ∈ N)
and the maximal length of any decreasing chain depends only on M .

I Lemma 8 (restated). Let λ be a ∆-compatible mask of length n, let P be a program over
M of range n, let u and v be elements of M . Then there is an element t of M and a ∆-
compatible submask λ′ of λ obtained by fixing a number of free positions independent from
n such that any safe completion w of λ′ verifies uP (w)v = t.

Proof. The proof goes by induction on ≺.
Let λ be a ∆-compatible mask of length n, let P be a program over M for words of

length n, let u and v be elements of M such that (λ, P, u, v) is of height h, and assume
that for any quadruplet (λ′, P ′, u′, v′) strictly smaller than (λ, P, u, v), the lemma is verified.
Consider the following conditions concerning the quadruplet (λ, P, u, v):
(a) there does not exist any instruction (x, f) of P such that for some letter a the submask

λ′ of λ formed by setting position x to a (if it wasn’t already the case) is ∆-compatible
and f(a) is R-bad for u;

(b) v is not R-bad for u;
(c) there does not exist any instruction (x, f) of P such that for some letter a the submask

λ′ of λ formed by setting position x to a (if it wasn’t already the case) is ∆-compatible
and f(a) is L-bad for v;

(d) u is not L-bad for v.
We will now do a case analysis based on which of these conditions are violated or not.

Case 1: condition 1 is violated. So there exists some instruction (x, f) of P such that for
some letter a the submask λ′ of λ formed by setting position x to a (if it wasn’t already
the case) is ∆-compatible and f(a) is R-bad for u. Let i be the smallest number of such
an instruction.
Let P ′ be the subprogram of P until instruction i− 1. Let w be a safe completion of λ.
By minimality of i and by Lemma 14, it follows that u ∼R uP ′(w).
So, because f(a) is R-bad for u, any safe completion w of λ′, which is also a safe
completion of λ, is such that u ∼R uP ′(w) <R uP ′(w)f(a) ≤R uP (w)v by Lemma 14,
hence uP ′(w) <J uP (w)v by Lemma 13. So (λ′, P ′, u, 1) ≺ (λ, P, u, v), therefore, by
induction we get a ∆-compatible submask λ1 of λ′ and a monoid element t1 such that
uP ′(w) = t1 for all safe completions w of λ1.
Let P ′′ be the subprogram of P starting from instruction i+1. Notice that, since u ∼R t1
(by what we have proven just above), u <R t1f(a) (by Lemma 14) and t1f(a)P ′′(w)v =
uP ′(w)f(a)P ′′(w)v = uP (w)v for all safe completions w of λ1. Hence, (λ1, P

′′, t1f(a), v)
is strictly smaller than (λ1, P, u, v) and by induction we get a ∆-compatible submask λ2
of λ1 and a monoid element t such that t1f(a)P ′′(w)v = t for all safe completions w of
λ2.

MFCS 2017

2:16 The Power of Programs over Monoids in DA

Hence any safe completion w of λ2 is such that

uP (w)v = uP ′(w)f(a)P ′′(w)v = t1f(a)P ′′(w)v = t .

Hence λ2 and t are the desired solutions.
Case 2: condition 1 is verified but condition 2 is violated, so v is R-bad for u and Case 1

does not apply.
Let w be a safe completion of λ: for any instruction (x, f) of P , as the submask λ′

of λ formed by setting position x to wx (if it wasn’t already the case) is ∆-compatible
(by the fact that ∆ is safe and w is a safe completion of λ), f(wx) cannot be R-bad
for u, otherwise condition 1 would be violated, so u ∼R uf(wx). Hence, by Lemma 14,
u ∼R uP (w) for all safe completions w of λ. Notice then that u ∼R uP (w) <R uP (w)v
(by Lemma 14), hence uP (w) <J uP (w)v (by Lemma 13) for all safe completions w of λ.
So (λ, P, u, 1) ≺ (λ, P, u, v), therefore we obtain a monoid element t1 and a ∆-compatible
submask λ′ of λ by induction such that uP (w) = t1 for all completions w of λ′. t = t1v

is the desired element of M .
Case 3: condition 3 is violated. So there exists some instruction (x, f) of P such that for

some letter a the submask λ′ of λ formed by setting position x to a (if it wasn’t already
the case) is ∆-compatible and f(a) is L-bad for v.
We proceed as for Case 1 by symmetry.

Case 4: condition 3 is verified but condition 4 is violated, so u is L-bad for v and Case 3
does not apply.
We proceed as for Case 2 by symmetry.

Case 5: conditions 1, 2, 3 and 4 are verified.
As it Case 2 and Case 4 we get that u ∼R uP ′(w) and v ∼L P ′′(w)v for any prefix P ′ of
P , any suffix P ′′ of P and all safe completions w of λ. Moreover, since condition 2 and
condition 4 are verified, by Lemma 14, we get that uP (w)v ∼R u and uP (w)v ∼L v for
all safe completions w of λ.
Let w0 be a completion of λ that is in ∆∗. Let λ′ be the submask of λ fixing all dangerous
positions of λ using w0. Then, for any completion w of λ′, which is a safe completion of
λ by construction, we have that uP (w)v ∼R u and uP (w)v ∼L v. As M is aperiodic,
this implies that there is a t in M such that uP (w)v = t for all completions w of λ′
(see [22, Chapter 3, Proposition 4.2]).

This concludes the proof of the lemma. J

B SULk is a variety of languages

A variety of languages is a class of languages over arbitrary finite alphabets closed under
Boolean operations, quotients and inverses of morphisms (i.e. if L is a language in the class
over a finite alphabet Σ, if Γ is some other finite alphabet and ϕ : Γ∗ → Σ∗ is a morphism
of monoids, then ϕ−1(L) is also in the class).

Eilenberg showed [11, Chapter VII, Section 3] that there is a bijective correspondence
between varieties of monoids and varieties of languages: to each variety of monoids V we
can bijectively associate L (V) the variety of languages whose syntactic monoids belong to
V and, conversely, to each variety of languages V we can bijectively associate M(V) the
variety of monoids generated by the syntactic monoids of the languages of V, and these
correspondences are mutually inverse.

We denote by SULk the class of regular languages that are Boolean combinations of
languages in SUMk.

N. Grosshans, P. McKenzie, and L. Segoufin 2:17

In this appendix, we show that, for all k ∈ N, SULk is a variety of languages. As DAk
is the variety of monoids generated by the syntactic monoids of the languages in SULk, by
Eilenberg’s theorem, we know that, conversely, all the regular languages whose syntactic
monoids lie in DAk are in SULk.

Closure under Boolean operations is obvious by construction. Closure under quotients
and inverses of morphisms is respectively given by the following two lemmas and by the fact
that both quotients and inverses of morphisms commute with Boolean operations.

Given a word u over a given finite alphabet Σ, we will denote by alph(u) the set of letters
of Σ that appear in u.

I Lemma 15. For all k ∈ N, for all L ∈ SUMk over a finite alphabet Σ and u ∈ Σ∗, u−1L

and Lu−1 both are a union of languages in SUMk over Σ.

Proof. We prove it by induction on k.
Base case: k = 0.
Let L ∈ SUM0 over a finite alphabet Σ and u ∈ Σ∗. This means that L = A∗ for
some A ⊆ Σ. We have two cases: either alph(u) * A and then u−1L = Lu−1 = ∅; or
alph(u) ⊆ A and then u−1L = Lu−1 = A∗ = L. So u−1L and Lu−1 both are a union of
languages in SUM0 over Σ. The base case is hence proved.
Inductive step. Let k ∈ N>0 and assume that the lemma is true for all k′ ∈ N, k′ < k.
Let L ∈ SUMk over a finite alphabet Σ and u ∈ Σ∗. This means that either L is in
SUMk−1 and the lemma is proved by applying the inductive hypothesis directly for L
and u, or L = L1aL2 for some languages L1 ∈ SUMi and L2 ∈ SUMj and some letter
a ∈ Σ with i + j = k − 1 and, either no word of L1 contains the letter a or no word of
L2 contains the letter a. We shall only treat the case in which a does not appear in any
of the words of L1; the other case is treated symmetrically.
There are again two cases to consider, depending on whether a does appear in u or not.
If a /∈ alph(u), then it is straightforward to check that u−1L = (u−1L1)aL2 and
Lu−1 = L1a(L2u

−1). By the inductive hypothesis, we get that u−1L1 is a union of
languages in SUMi over Σ and that L2u

−1 is a union of languages in SUMj over Σ.
Moreover, it is direct to see that no word of u−1L1 contains the letter a. By distributiv-
ity of concatenation over union, we finally get that u−1L and Lu−1 both are a union of
languages in SUMk over Σ.
If a ∈ alph(u), then let u = u1au2 with u1, u2 ∈ Σ∗ and a /∈ alph(u1). It is again
straightforward to see that

u−1L =
{
u2
−1L2 if u1 ∈ L1

∅ otherwise

and

Lu−1 = L1a(L2u
−1) ∪

{
L1u1

−1 if u2 ∈ L2

∅ otherwise
.

Again, by the inductive hypothesis, we get that L1u1
−1 is a union of languages in SUMi

over Σ and that both u2
−1L2 and L2u

−1 are unions of languages in SUMj over Σ. And,
again, by distributivity of concatenation over union, we get that u−1L and Lu−1 both
are a union of languages in SUMk over Σ.
This concludes the inductive step and therefore the proof of the lemma. J

MFCS 2017

2:18 The Power of Programs over Monoids in DA

I Lemma 16. For all k ∈ N, for all L ∈ SUMk over a finite alphabet Σ and ϕ : Γ∗ → Σ∗
a morphism of monoids where Γ is another finite alphabet, ϕ−1(L) is a union of languages
in SUMk over Γ.

Proof. We prove it by induction on k.
Base case: k = 0.
Let L ∈ SUM0 over a finite alphabet Σ and ϕ : Γ∗ → Σ∗ a morphism of monoids where Γ
is another finite alphabet. This means that L = A∗ for some A ⊆ Σ. It is straightforward
to check that ϕ−1(L) = B∗ where B = {b ∈ Γ | ϕ(b) ∈ A∗}. B∗ is certainly a union of
languages in SUM0 over Σ. The base case is hence proved.
Inductive step. Let k ∈ N>0 and assume that the lemma is true for all k′ ∈ N, k′ < k.
Let L ∈ SUMk over a finite alphabet Σ and ϕ : Γ∗ → Σ∗ a morphism of monoids where
Γ is another finite alphabet. This means that either L is in SUMk−1 and the lemma
is proved by applying the inductive hypothesis directly for L and ϕ, or L = L1aL2 for
some languages L1 ∈ SUMi and L2 ∈ SUMj and some letter a ∈ Σ with i+ j = k − 1
and, either no word of L1 contains the letter a or no word of L2 contains the letter a.
We shall only treat the case in which a does not appear in any of the words of L1; the
other case is treated symmetrically.
Let us define B = {b ∈ Γ | a ∈ alph(ϕ(b))} as the set of letters of Γ whose image word
by ϕ contains the letter a. For each b ∈ B, we shall also let ϕ(b) = ub,1aub,2 with
ub,1, ub,2 ∈ Σ∗ and a /∈ ub,1. It is not too difficult to see that we then have

ϕ−1(L) =
⋃
b∈B

ϕ−1(L1ub,1
−1)bϕ−1(ub,2−1L2) .

By the inductive hypothesis, by Lemma 15 and by the fact that inverses of morphisms
commute with unions, we get that ϕ−1(L1ub,1

−1) is a union of languages in SUMi over
Γ and that ϕ−1(ub,2−1L2) is a union of languages in SUMj over Γ. Moreover, it is direct
to see that no word of ϕ−1(L1ub,1

−1) contains the letter b for all b ∈ B. By distributivity
of concatenation over union, we finally get that ϕ−1(L) is a union of languages in SUMk

over Γ.
This concludes the inductive step and therefore the proof of the lemma. J

C Collapse

In this appendix we prove Proposition 12, stating that whenM is in DAk then any program
over M is equivalent to one of length O(nk).

Recall that if P is a program over some monoid M of range n, then P (w) denotes the
element of M resulting from the execution of the program P on w. It will be convenient
here to also work with the word over M resulting from the sequence of executions of each
instruction of P on w. We denote this word by EP (w).

The result is a consequence of the following lemma and the fact that for any acceptance
set F ⊆M , a word w ∈ Σn (where Σ is the input alphabet) is accepted iff EP (w) ∈ L where
L is a language in SULk, a Boolean combination of languages in SUMk.

I Lemma 17. Let Σ be a finite alphabet, M a finite monoid, and n, k natural numbers.
For any program P over M of range n, any set Γ ⊆ M and any language K over Γ in

SUMk, there exists a subsequence Q of the sequence of instructions P of length O(nmax{k,1})
such that for any subsequence Q′ of the sequence of instructions P containing Q as a sub-
sequence, we have for all words w over Σ of length n:

EP (w) ∈ K ⇔ EQ′(w) ∈ K .

N. Grosshans, P. McKenzie, and L. Segoufin 2:19

Proof. A program P over M of range n is a finite sequence (pi, fi) of instructions where
each pi is a natural number which is at most n and each fi is a function from Σ to M . We
denote by l the number of instructions of P . For each set I ⊆ [l] we denote by P [I] the
program over M consisting of the subsequence of instructions of P obtained after removing
all instructions whose index is not in I. In particular, P [1,m] denotes the initial sequence
of instructions of P , until instruction number m.

We prove the lemma by induction on k.
Inductive step. Let k ≥ 2 and assume the lemma proved for all k′ < k. Let n be a
natural number, P a program over M of range n and length l, Γ ⊆M and any language
K over Γ in SUMk. By definition, K = K1γK2 for some languages K1 ∈ SUMi and
K2 ∈ SUMj with i+ j = k− 1. Moreover either γ does not occur in any of the words of
K1 or it does not occur in any of the words of K2. We only treat the case where γ does
not appear in any of the words in K1. The other case is treated similarly by symmetry.
For each p ≤ n and each a ∈ Σ consider within the sequence of instructions of P the
first instruction of the form (p, f) with f(a) = γ. We let Iγ be the set of indices of these
instructions for all a and p. Notice that the size of I is in O(n).
For all i ∈ Iγ , we let Ji,1 be the set of indices of the instructions within P [1, i − 1]
obtained by induction for K1 and Ji,2 be the same for P [i+ 1, l] and K2.
We now let I be the union of Iγ and Ji,1 and J ′i,2 = {j + i | j ∈ Ji,2} for all i ∈ Iγ . We
claim that P [I] has the desired properties.
First notice that by induction the sizes of Ji,1 and J ′i,2 for all i ∈ Iγ are in O(nmax{k−1,1})
= O(nk−1) and because the size of Iγ is linear in n, the size of I is in O(nk) =
O(nmax{k,1}) as required.
Now take w ∈ Σn.
Assume now that EP (w) ∈ K. Let i be the position in EP (w) of label γ witnessing
the membership in K. Let (pi, fi) be the corresponding instruction of P . In particular
we have that fi(wpi

) = γ. Because γ does not occur in any word of K1, for all j < i

such that pj = pi we cannot have fj(wpj
) = γ. Hence i ∈ Iγ . By induction we have

that EP [1, i− 1][J](w) ∈ K1 for any set J containing Ji,1 and EP [i+ 1, l][J](w) ∈ K2
for any set J containing Ji,2. Hence, if we set I1 = {j ∈ I | j < i} as the subset of I of
elements less than i and I2 = {j − i ∈ I | j > i} as the subset of I of elements greater
than i translated by −i, we have EP [I](w) = EP [1, i− 1][I1](w)γEP [i+ 1, l][I2](w) ∈
K1γK2 = K as desired.
Assume finally that EP [I](w) ∈ K. Let i be the index in I whose instruction provides
the letter γ witnessing the fact that EP [I](w) ∈ K. If i ∈ Iγ we conclude easily by
induction. If not this shows that there is an instruction (pj , fj) with j < i, j ∈ I, pj = pi
and fj(wpj

) = γ. But that would contradict the fact that γ cannot occur in K1.
Base case. There are two subcases to consider.
k = 1. Let n be a natural number, P a program over M of range n and length l,
Γ ⊆M and any language K over Γ in SUM1.
Then K = A∗1γA

∗
2 for some finite alphabets A1 ⊆ Γ and A2 ⊆ Γ. Moreover either

γ /∈ A1 or γ /∈ A2. We only treat the case where γ does not belong to A1, the other
case is treated similarly by symmetry.
We use the same idea as in the inductive step.
For each p ≤ n, each α ∈ Γ and a ∈ Σ consider within the sequence of instructions
of P the first and last instruction of the form (p, f) with f(a) = α. We let I be the
set of indices of these instructions for all a, α and p. Notice that the size of I is in
O(n) = O(nmax{k,1}).

MFCS 2017

2:20 The Power of Programs over Monoids in DA

We claim that P [I] has the desired properties. Take w ∈ Σn.
Assume now that EP (w) ∈ K. Let i be the position in EP (w) of label γ witnessing
the membership in K. Let (pi, fi) be the corresponding instruction of P . In particular
we have that fi(wpi) = γ and this is the γ witnessing the membership in K. Because
γ /∈ A1, for all j < i such that pj = pi we cannot have fj(wpj

) = γ. Hence i ∈ I. From
EP (w) ∈ K it follows that EP [I ∩ [[1, i− 1]]](w) ∈ A1 and EP [I ∩ [[i+ 1, l]]](w) ∈ A2
showing that EP [I](w) = EP [I ∩ [[1, i− 1]]](w)γEP [I ∩ [[i+ 1, l]]](w) ∈ K as desired.
Assume finally that EP [I](w) ∈ K. This means that EP [I ∩ [[1, i− 1]]](w) ∈ A∗1 and
EP [I ∩ [[i+ 1, l]]](w) ∈ A∗2. Let i be the index in I whose instruction provides the
letter γ witnessing the fact that EP [I](w) ∈ K. If there is an instruction (pj , fj), with
j < i and fj(wpj) /∈ A1 then either j ∈ I and we get a direct contradiction with the
fact that EP [I ∩ [[1, i− 1]]](w) ∈ A∗1, or j /∈ I and we get a smaller j′ ∈ I with the
same property, contradicting again the fact that EP [I ∩ [[1, i− 1]]](w) ∈ A∗1. Hence
for all j < i, fj(wpj

) ∈ A1. By symmetry we have that for all j > i, fj(wpj
) ∈ A2,

showing that EP (w) ∈ A∗1γA∗2 = K as desired.
k = 0. Let n be a natural number, P a program over M of range n and length l,
Γ ⊆M and any language K over Γ in SUM0.
Then K = A∗ for some finite alphabet A ⊆ Γ.
We again use the same idea as before.
For each p ≤ n, each α ∈ Γ and a ∈ Σ consider within the sequence of instructions of
P the first instruction of the form (p, f) with f(a) = α. We let I be the set of indices
of these instructions for all a, α and p. Notice that the size of I is in O(n) = O(n{k,1}).
We claim that P [I] has the desired properties. Take w ∈ Σn.
Assume now that EP (w) ∈ K. As EP [I](w) is a subword of EP (w), it follows directly
that EP [I](w) ∈ A∗ = K as desired.
Assume finally that EP [I](w) ∈ K. If there is an instruction (pj , fj), with j ∈ [l]
and fj(wpj) /∈ A then either j ∈ I and we get a direct contradiction with the fact
that EP [I](w) ∈ A∗ = K, or j /∈ I and we get a smaller j′ ∈ I with the same
property, contradicting again the fact that EP [I](w) ∈ A∗ = K. Hence for all j ∈ [l],
fj(wpj

) ∈ A, showing that EP (w) ∈ A∗ = K as desired. J

Regular Language Distance and Entropy∗

Austin J. Parker1, Kelly B. Yancey2, and Matthew P. Yancey3

1 Institute for Defense Analyses – Center for Computing Sciences, Bowie, MD,
USA
ajpark2@super.org

2 University of Maryland, College Park MD, USA, and
Institute for Defense Analyses - Center for Computing Sciences, Bowie, MD,
USA
kbyancey1@gmail.com

3 Institute for Defense Analyses - Center for Computing Sciences, Bowie, MD,
USA
mpyancey1@gmail.com

Abstract
This paper addresses the problem of determining the distance between two regular languages.
It will show how to expand Jaccard distance, which works on finite sets, to potentially-infinite
regular languages.

The entropy of a regular language plays a large role in the extension. Much of the paper
is spent investigating the entropy of a regular language. This includes addressing issues that
have required previous authors to rely on the upper limit of Shannon’s traditional formulation
of channel capacity, because its limit does not always exist. The paper also includes proposing
a new limit based formulation for the entropy of a regular language and proves that formulation
to both exist and be equivalent to Shannon’s original formulation (when it exists). Additionally,
the proposed formulation is shown to equal an analogous but formally quite different notion
of topological entropy from Symbolic Dynamics – consequently also showing Shannon’s original
formulation to be equivalent to topological entropy.

Surprisingly, the natural Jaccard-like entropy distance is trivial in most cases. Instead, the
entropy sum distance metric is suggested, and shown to be granular in certain situations.

1998 ACM Subject Classification F.4.3 Formal Languages, G.2.2 Graph Theory

Keywords and phrases regular languages, channel capacity, entropy, Jaccard, symbolic dynamics

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.3

1 Introduction

In this paper we study distances between regular expressions. There are many motivations for
this analysis. Activities in bioinformatics, copy-detection [9], and network defense sometimes
require large numbers of regular expressions be managed. Metrics aid in indexing and
management of those regular expressions [4]. Further, understanding the distance between
regular languages requires an investigation of the structure of regular languages that we hope
eliminates the need for similar theoretical investigations in the future.

A natural definition of the distance between regular languages L1 and L2 containing
strings of symbols from Σ is: limn→∞

|(L1∆L2)∩Σn|
|(L1∪L2)∩Σn| (where L1∆L2 = (L1 ∪L2) \ (L1 ∩L2) is

the symmetric difference). However, the definition has a fundamental flaw: the limit does

∗ For a full version see [22].

© Austin J. Parker, Kelly B. Yancey, and Matthew P. Yancey;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 3; pp. 3:1–3:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

3:2 Regular Language Distance and Entropy

not always exist. Consider the distance between (aa)∗ and a∗. When n is even, the fraction
is 0, while when n is odd the fraction is 1. Thus, the limit given above is not well defined for
those two languages.

This paper addresses that flaw and examines the question of entropy and distance
between regular languages in a more general way. A fundamental contribution will be a
limit-based distance related to the above that (1) exists, (2) can be computed from the
Deterministic Finite Automaton for the associated regular languages, and (3) does not
invalidate expectations about the distance between languages.

The core idea is two-fold: (1) to rely on the number of strings up-to a given length rather
than strings of a given length and (2) to use Cesáro averages to smooth out the behavior of
the limit. These ideas led us to develop the Cesáro Jaccard distance, which is proven to be
well-defined in Theorem 7.

Tied up in this discussion will be the entropy of a regular language, which is again a
concept whose common definition needs tweaking due to limit-related considerations.

This paper is structured as follows. In Section 2 we discuss related work and define terms
that will be used in the paper. Of particular importance is Table 1, which includes all of the
distance functions defined in the paper. As the Jaccard distance is a natural entry point
into distances between sets, Section 3 will discuss the classical Jaccard distance and how
best to extend it to infinite sets. Section 4 will discuss notions of regular language entropy,
introducing a new formulation and proving it correct from both a channel capacity and a
topological entropy point of view. Section 5 will introduce some distances based on entropy,
and show that some of them behave well, while others do not. Finally, Section 6 provides a
conclusion and details some potential future work.

2 Background

2.1 Related Work
Chomsky and Miller’s seminal paper on regular languages [6] does not address distances
between regular languages. It uses Shannon’s notion of channel capacity (equation 7 from
[6]) for the entropy of a regular language: h(L) = limn→∞

log|L∩Σn|
n .

While Shannon says of that limit that “the limit in question will exist as a finite number
in most cases of interest” [27], its limit does not always exist for regular languages (consider
(Σ2)∗). This motivates much of the analysis in this paper. Chomsky and Miller also examine
the number of sentences up to a given length, foreshadowing some other results in this paper.
However, their analysis was based upon an assumption with deeper flaws than that the limit
exists. In this paper we address those issues.

Several works since Chomsky and Miller have used this same of length exactly n formula
to define the entropy of a regular language [3, 9, 17]. These works define entropy as Chomsky
and Miller, but add the caveat that they use the upper limit when the limit does not
exist. Here we provide foundation for those works by showing the upper limit to be correct
(Theorem 13). Further, this paper suggests an equivalent expression for entropy that may be
considered more elegant: it is a limit that exists as a finite number for all regular languages
which equals the traditional notion of entropy when that limit exists.

Chomsky and Miller’s technique was to develop a recursive formula for the number of
words accepted by a regular language. That recursive formula comes from the characteristic
polynomial of the adjacency matrix for an associated automaton. The eigenvalues of the
adjacency matrix describe the growth of the language (we use the same technique, but
apply stronger theorems from linear algebra that were discovered several decades after

A. J. Park, K. B. Yancey, and M.P. Yancey 3:3

Chomsky and Miller’s work). The recursive formula can also be used to develop a generating
function to describe the growth of the language (see [25]). Bodirsky, Gärtner, Oertzen,
and Schwinghammer [2] used the generating functions to determine the growth of a regular
language over alphabet Σ relative to |Σ|n, and Kozik [16] used them to determine the growth
of a regular language relative to a second regular language. Our approaches share significant
details: they relate the growth of a regular language to the poles of its generating function –
which are the zeroes of the corresponding recurrence relation – which are the eigenvalues of
the associated adjacency matrix. Our technique establishes the “size” of a regular language
independent of a reference alphabet or language.

There is work examining distances between unary regular languages, or regular languages
on the single character alphabet (|Σ| = 1) [11]. It introduces a definition for Jaccard distance
that will appear in this paper: 1 − limn→∞

|L1∩L2∩(
⋃n

i=0
Σi)|

|(L1∪L2)∩(
⋃n

i=0
Σi)| . Further, it gives a closed

form for calculating that distance between two unary regular languages.
Besides the stronger results, our work differs from that of [2, 11, 16] in the analysis of the

distance functions presented: in particular, one can conclude (as a consequence of Theorem
17) that the above equation is mostly trivial – it returns 0 or 1 “most” of the time.

More recently, Cui et al directly address distances between regular languages using a
generalization of Jaccard distance [9]. That paper usefully expands the concept of Jaccard
distance to regular languages by (1) using entropy to handle infinite sized regular languages
(they use the upper limit notion of entropy described above), and (2) allowing operations
other than intersection to be used in the numerator. Further, Cui et al suggest and prove
properties of several specific distance functions between regular languages. The distance
functions in this paper do not generalize the Jaccard distance in the same way, but are
proven to be metrics or pseudo-metrics.

Ceccherini-Silberstein et al investigate the entropy of specific kinds of subsets of regular
languages [3]. They present a novel proof of a known fact from Symbolic Dynamics. They
use the same upper limit notion of entropy as above. Other entropy formulations include
the number of prefixes of a regular language [5], but this has only been proven equivalent to
entropy under restricted circumstances.

Symbolic dynamics [19] studies, among other things, an object called a sofic shift. Sofic
shifts are analogous to deterministic finite automata and their shift spaces are related to
regular languages. The formulation of entropy used in this field does not suffer from issues
of potential non-existence. This paper includes a proof that the topological entropy of a sofic
shift is equivalent to language-centric formulations in this paper: see Theorem 13.

Other related results from symbolic dynamics include an investigation into the comput-
ability of a sofic shift’s entropy [28] and a discussion of the lack of relationship between
entropy and complexity [18]. There is another proposal for the topological entropy of formal
languages [26] that is zero for all regular languages (and hence not helpful as a distance
function for regular languages).

A probabilistic automaton is an automaton with a probability distribution applied
to outgoing transitions from each state. The words of a regular language thus inherit a
probability. Using standard distance functions on probability distributions (such as Lp and
Kullback-Leibler divergence), several distance functions [7, 8, 21] have been created for
probabilistic languages. Note that in this model, the probability of a word exponentially
decreases with its length, and hence these distance functions can be effectively estimated by
words of bounded length. Chan [4] also describes several distance functions using only words
of bounded length. Our paper will uncover features of several distance functions, which will
fit nicely into the above frameworks.

MFCS 2017

3:4 Regular Language Distance and Entropy

Table 1 The distance functions considered in this paper are listed in this table.

J ′n(L1, L2) n Jaccard Distance |Wn(L14L2)|
|Wn(L1∪L2)|

Jn(L1, L2) n≤ Jaccard Distance |W≤n(L14L2)|
|W≤n(L1∪L2)|

JC(L1, L2) Cesàro Jaccard limn→∞
1
n

∑n

i=1 Ji(L1, L2)
H(L1, L2) Entropy Distance h(L14L2)

h(L1∪L2)

HS(L1, L2) Entropy Sum Distance h(L1 ∩ L2) + h(L1 ∩ L2)

2.2 Definitions and Notation

In this paper Σ will denote a set of symbols or the alphabet. Strings are concatenations of
these symbols. All log operations in this paper will be taken base 2. Raising a string to the
power n will represent the string resulting from n concatenations of the original string. A
similar notion applies to sets. In this notation, Σ5 represents all strings of length 5 composed
of symbols from Σ. The Kleene star, ∗, when applied to a string (or a set) will represent
the set containing strings resulting from any number of concatenations of that string (or
of strings in that set), including the empty concatenation. Thus, Σ∗ represents all possible
strings comprised of symbols in Σ, including the empty string.

A regular language is a set L ⊂ Σ∗ which can be represented by a Deterministic Finite
Automaton, DFA for short. A DFA is a 5-tuple (Q,Σ, δ, q0, F), where Q is a set of states,
Σ is the set of symbols, δ is a partial function from Q × Σ to Q, q0 ∈ Q is the initial
state and F ⊂ Q is a set of final states. A regular language can also be constructed by
recursive applications of concatenation (denoted by placing regular expressions adjacent to
one another), disjunction (denoted |), and Kleene star (denoted ∗), to strings and the empty
string. That this construction and the DFA are equivalent is well known [14].

The DFA (Q,Σ, δ, q0, F) can be thought of as a directed graph whose vertices are Q with
edges from q to q′ iff there is an s ∈ Σ such that q′ = δ(q, s). The transition function δ

provides a labeling of the graph, where each edge (q, q′) is labeled by the symbol s such that
δ(q, s) = q′. Note that there may be multiple edges between nodes, each with a different
label. The adjacency matrix A for a DFA is the adjacency matrix for the corresponding
graph. Thus, entries in A are given by aq,q′ , where aq,q′ is the number of edges from vertex
q to vertex q′.

For a regular language L, let Wn(L) denote the set of words in L of length exactly n,
i.e. Wn(L) = L ∩ Σn, and let W≤n(L) denote the set of words in L of length at most n, i.e.
W≤n(L) = L ∩ (

⋃n
i=0 Σi).

Finally, we will discuss when certain distance functions are metrics. A metric on the
space X is a function d : X ×X → R that satisfies

1. d(x, y) ≥ 0 with equality if and only if x = y for all x, y ∈ X

2. d(x, y) = d(y, x) for all x, y ∈ X

3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.
An ultra-metric is a stronger version of a metric, with the triangle inequality (the third
condition above) replaced with the ultra-metric inequality: d(x, z) ≤ max{d(x, y), d(y, z)}
for all x, y, z ∈ X. Also, there exists a weaker version, called a pseudo-metric, which allows
d(x, y) = 0 when x 6= y.

A. J. Park, K. B. Yancey, and M.P. Yancey 3:5

3 Jaccard Distances

The Jaccard distance is a well-known distance function between finite sets. For finite sets
A and B, the Jaccard distance between them is given by |A4B||A∪B| = 1 − |A∩B||A∪B| where A4B
represents the symmetric difference between the two sets (if A ∪ B = ∅ then the Jaccard
distance is 0). This classical Jaccard distance is not defined for infinite sets and as such, is
not a suitable distance function for infinite regular languages and will need to be modified.

3.1 Jaccard Distances using Wn and W≤n

A natural method for applying Jaccard distance to regular languages is to fix n, defined as
follows:

I Definition 1 (n Jaccard Distance). Suppose L1 and L2 are regular languages. Define the n
Jaccard distance by J ′n(L1, L2) = |Wn(L14L2)|

|Wn(L1∪L2)| if |Wn(L1∪L2)| > 0, otherwise J ′n(L1, L2) = 0.

For fixed n, the above is a pseudo-metric since it is simply the Jaccard distance among sets
containing only length n strings. The following proposition points out one deficiency of J ′n.

I Proposition 2. There exists a set S = {L1, L2, L3} of infinite unary regular languages
with L2, L3 ⊂ L1 such that for all n there exists an i 6= j such that J ′n(Li, Lj) = 0.

One may also use W≤n in the definition of a Jaccard-based distance function.

I Definition 3 (n≤ Jaccard Distance). For regular languages L1 and L2, define the n≤ Jaccard
distance by Jn(L1, L2) = |W≤n(L14L2)|

|W≤n(L1∪L2)| if |W≤n(L1 ∪ L2)| > 0, otherwise Jn(L1, L2) = 0.

The issue with J ′n pointed out by Proposition 2 can be proven to not be a problem for
Jn: see the first point of Theorem 4. On the other hand, the second point of Theorem 4
shows that no universal n exists.

I Theorem 4. The function Jn defined above is a pseudo-metric and satisfies the follow-
ing:
1. Let S = {L1, . . . , Lk} be a set of regular languages. There exists an n such that Jn is a

metric over S. Moreover, we may choose n such that n ≤ maxi,j(s(Li) + 1)(s(Lj) + 1)− 1
where s(Li) represents the number of states in the minimal DFA corresponding to Li.

2. For any fixed n there exist regular languages L,L′ with L 6= L′ such that Jn(L,L′) = 0.

For any pseudo-metric, the relation d(x, y) = 0 is an equivalence relation. Thus, if we
mod out by this equivalence relation, the pseudo-metric becomes a metric.

Due to the fact that one must choose a fixed n, Jn and J ′n cannot account for the
infinite nature of regular languages. Limits based on Jn and J ′n are a natural next step.
However, the natural limits involving J ′n and Jn do not always exist. An example showing
this was given for J ′n in the beginning of the introduction (Section 1). A similar example
applies to Jn. Consider the languages given by L1 = (a|b)∗ and L2 = ((a|b)2)∗ (Σ = {a, b}).
For these languages, limn→∞ J2n(L1, L2) = 2/3 and limn→∞ J2n+1(L1, L2) = 1/3. Hence,
limn→∞ Jn(L1, L2) does not exist.

The next theorem gives conditions for when the limit of J ′n exists as n goes to infinity.
Before the theorem is stated we will need some more terminology. Suppose L is a regular
language and M is the corresponding DFA. This DFA is a labeled directed graph. An
irreducible component of M is a strongly connected component of the graph. That is, an

MFCS 2017

3:6 Regular Language Distance and Entropy

Class 1

Class 2

Class 3
a,b

a,b a,b

a,b

Ai =

0 2i 0 0
0 0 2i 0
0 0 0 2i
0 2i 0 0

 if i ≡ 1 mod 3

0 0 2i 0
0 0 0 2i
0 2i 0 0
0 0 2i 0

 if i ≡ 2 mod 3

0 0 2i 0
0 2i 0 0
0 0 2i 0
0 0 0 2i

 if i ≡ 0 mod 3

Figure 1 The DFA for a period 3 language and the associated adjacency matrix raised to the ith

power.

irreducible component is composed of a maximal set of vertices such that for any pair, there
is a directed path between them.

The period of an irreducible graph (or associated adjacency matrix) is the largest integer
p such that the vertices can be grouped into classes Q0, Q1, . . . , Qp−1 such that if x ∈ Qi,
then all of the out neighbors of x are in Qj , where j = i + 1(mod p). The period of a
reducible graph is the least common multiple of the periods of its irreducible components.
See Figure 1 for an example of a regular language whose DFA has period 3. For a more
formal definition of periodicity see [19]. If the graph (or matrix) has period 1 it will be called
aperiodic. Matrices that are irreducible and aperiodic are called primitive. The definition of
primitive presented here is equivalent to the condition that there is an n such that all entries
of the adjacency matrix A raised to the n-th power (An) are positive [20]. This is illustrated
in Figure 1, where the graph is periodic and reducible and all powers of that matrix contain
multiple zeroes.

I Theorem 5. Suppose L1 and L2 are regular languages. If each irreducible component of
the DFA associated to L14L2 and L1 ∪ L2 are aperiodic, then limn→∞ J ′n(L1, L2) converges.

Let us build intuition prior to proving Theorem 5, which will also frame the question
of convergence in the next subsection. We will first discuss Theorem 5 in the case where
the DFA associated to regular languages L14L2 and L1 ∪ L2 are primitive. Suppose A4
and A∪ are the adjacency matrices for L14L2 and L1 ∪ L2 respectively. Perron-Frobenius
theory tells us that the eigenvalue of largest modulus of a primitive matrix is real and unique.
Let (v4, λ4) and (v∪, λ∪) be eigenpairs composed of the top eigenvalues for A4 and A∪
respectively. Notice that i4An4f4, where i4 is the row vector whose jth entry is 1 if j is
an initial state in A4 and 0 otherwise (a similar definition for final states defining column
vector f4 holds), represents words in L14L2 of length n. If we write f4 = c1v4 + c2w and
f∪ = d1v∪+d2y, then i4An4f4 converges to λn4c1i4v4, and i∪An∪f∪ converges to λn∪d1i∪v∪
as n goes to infinity. This convergence is guaranteed because λ∪ and λ4 are unique top
eigenvalues. Thus,

lim
n→∞

J ′n(L1, L2) = lim
n→∞

(
λ4
λ∪

)n
c1i4v4
d1i∪v∪

and the limit converges (λ4 ≤ λ∪ because L14L2 ⊆ L1 ∪ L2).

A. J. Park, K. B. Yancey, and M.P. Yancey 3:7

The general case of Theorem 5, which does not assume L14L2 and L1∪L2 have irreducible
matrices, is more complicated. However, the outline of the argument is the same, and we
will sketch it here. The key difference is the use of newer results. An understanding of the
asymptotic behavior of An for large n was finally beginning to be developed several decades
after Chomsky and Miller investigated regular languages. In 1981 Rothblum [23] proved
that for each non-negative matrix A with largest eigenvalue λ, there exists q ≥ 1 (which
happens to be the period of A) and polynomials S0(x), S1(x), . . . , Sq−1(x) (whose domain is
the set of real numbers and whose coefficients are matrices) such that for all whole numbers
0 ≤ k ≤ q − 1 we have that limn→∞ (A/λ)qn+k − Sk(n) = 0. We will refer to this result
later in the paper, where we will simply call it Rothblum’s Theorem (a slow treatment of
this theory with examples can be found in [24]). So the rest of the proof to Theorem 5 is
observing that q = 1 in the case we are interested in, and so limn→∞ J ′n(L1, L2) converges.

3.2 Cesàro Jaccard
For a sequence of numbers a1, a2, . . ., a Cesàro summation is limn→∞

1
n

∑n
i=1 ai when the

limit exists. The intuition behind a Cesàro summation is that it may give the “average value”
of the limit of the sequence, even when the sequence does not converge. For example, the
sequence aj = eαij (where i2 = −1) has Cesàro summation 0 for all real numbers α 6= 0. This
follows from the fact that rotations of the circle are uniquely ergodic [13]. Not all sequences
have a Cesàro summation, even when we restrict our attention to sequences whose values lie
in [0, 1]. For example, the sequence bi, where bi = 1 when 22n < i < 22n+1 for some n ∈ N
and bi = 0 otherwise has no Cesàro summation. However, we will be able to show that the
Cesàro average of Jaccard distances does exist.

To that end, another limit based distance is the Cesàro average of the Jn or J ′n.

I Definition 6 (Cesàro Jaccard Distance). Suppose L1 and L2 are regular languages. Define
the Cesàro Jaccard distance by JC(L1, L2) = limn→∞

1
n

∑n
i=1 Ji(L1, L2).

The Cesàro Jaccard distance is theoretically better than the above suggestions in Section
3.1 since it can be shown to exist for all regular languages.

I Theorem 7. Let L1 and L2 be two regular languages. Then, JC(L1, L2) is well-defined.
That is, limn→∞

1
n

∑n
i=1 Ji(L1, L2) exists.

We will breifly sketch the proof to Theorem 7. Recall that |Wn(L14L2)| and |Wn(L1∪L2)|
can be calculated using powers of specific matrices. If we take Q to be the least common
multiple of the period from each of the matrices associated with |Wn(L14L2)| and |Wn(L1 ∪
L2)|, we can immediately see that limn→∞ J ′Qn+k(L1, L2) exists, via Rothblum’s Theorem.
Moreover, it will equal zero if they have different values for the largest eigenvalue or the degree
of Sk(x). But if they have the same value for the largest eigenvalue and degree of Sk(x), then
limn→∞ J ′Qn+k(L1, L2) will be the ratio of the leading coefficients of the polynomials Sk(x)
for the two matrices. The proof finishes by observing that J ′C(L1, L2) = 1

n

∑n
i=1 J

′
i(L1, L2)

will be the average of these values.
We will require a new result to show that the more interesting value JC(L1, L2) is

well-defined (part (2) of the theorem is similar to a result in [23]).

I Theorem 8. Let A be the adjacency matrix for a DFA representing a regular language
L, and let λ be the largest eigenvalue of A. Let q and S0(x), S1(x), . . . , Sq−1(x) be as in
Rothblum’s theorem; let d be the largest degree of the polynomials S0(x), S1(x), . . . , Sq−1(x).
Let s` = limn→∞ n−(d+1)∑n

i=1 S`(i) and t` = limn→∞ n−dS`(n).

MFCS 2017

3:8 Regular Language Distance and Entropy

1. If λ < 1, then L is finite.
2. If λ = 1, then limn→∞

1
nd+1

∑n
i=1A

i =
∑q−1
i=0 s`.

3. If λ > 1, then limn→∞
1

(qn+k)dλ
−(qn+k)∑qn+k

i=1 Ai = 1
1−λ−q

∑k
`=k−q+1 λ

`−kt` where the
indices of the ti are taken modulo q.

Using our new result in place of Rothblum’s theorem, we now see that JC(L1, L2) is
well-defined. Note that in J ′C(L1, L2) each congruence class k is handled independently
and the final answer is the average of such results. On the other hand, in JC(L1, L2) each
congruence class k has a limit that is a combination of results from all of the congruence
classes. Thus the total answer is dominated by the overall asymptotic behavior and not just
small periodic undercurrents. We illustrate this point via the next example.

I Example 9. Let L1 = ((a|b)2)∗|c∗ and L2 = ((a|b)2)∗|d∗. The languages L1 and L2 have
((a|b)2)∗ in common and so mutually shared words up to length n grow exponentially. The
languages disagree on c∗ and d∗, whose words only grow polynomially. Hence, L1 and L2 are
very similar and should have a small distance. However, J ′C gives equal weight to words of
even length and odd length, even though the languages are mostly made up of even-length
words.

Rigorously, we have that limn→∞ J2n(L1, L2) = 0 and limn→∞ J ′2n(L1, L2) = 0. Further-
more, limn→∞ J2n+1(L1, L2) = 0 and limn→∞ J ′2n+1(L1, L2) = 1. Thus, JC(L1, L2) = 0,
while J ′C(L1, L2) = 1

2 .

We conclude this section with a fact about the Cesáro Jaccard distance.

I Fact 10. The Cesàro Jaccard distance inherits the pseudo-metric property from Jn.

4 Entropy

In this section we develop the idea of topological entropy for a certain type of dynamical
system and show how it relates to a quantity that we have identified as the language entropy.
Then, we will show how Cesáro Jaccard is related to entropy.

4.1 Topological Entropy
Topological entropy is a concept from dynamical systems where the space is a compact metric
space and the map defined there is continuous [19]. In dynamics, successive applications of
the map are applied and the long term behavior of the system is studied. An orbit of a point
x for the map T is the set {Tn(x) : n ∈ Z}. Topological entropy is an abstract concept
meant to determine the exponential growth of distinguishable orbits of the dynamical system
up to arbitrary scale. A positive quantity for topological entropy reflects chaos in the system
[1]. This concept was motivated by Kolmogorov and Sinai’s theory of measure-theoretic
entropy in ergodic theory [15, 29], which in turn is related to Shannon entropy [27]. An
example of a topological dynamical system is a sofic shift, which is a symbolic system that
is intricately related to DFA. Instead of defining the topological entropy of a sofic shift
symbolically, which is classical, we will use the graph theoretic description.

A sofic shift can be thought of as the space of biinfinite walks (i.e. walks with no beginning
and no end) on a right-solving labeled directed graph (a right-solving labeled graph has a
unique label for each edge leaving a given node). Suppose G is a directed graph where V is
the set of vertices and E is the set of edges of G. Furthermore, suppose that every edge in
E is labeled with a symbol from Σ, and that there is at most one outgoing edge from each

A. J. Park, K. B. Yancey, and M.P. Yancey 3:9

a

b

a

aaa, aaba, ba, aaaaaaa, aaabaabaa, ...

a

b

a

... aabaabaabaaaabaaaaaabaaaaab ...

Figure 2 A DFA with some accepted strings and a sofic shift with a portion of a derived biinfinite
string.

vertex with a given label (i.e. right-solving). Note that this construction is similar to a DFA,
however there are no initial and final states. A biinfinite walk on G with a specified base
vertex is an infinite walk in both directions (forward and backward) from the base vertex
on the graph. This biinfinite walk corresponds to a biinfinite string of symbols from Σ. See
Figure 2.

We will call a finite block of symbols admissible if there is a biinfinite string of symbols
corresponding to a biinfinite walk on G and this finite block appears somewhere within the
biinfinite string. Note that all sufficiently long words in the DFA’s language will contain a
substring of almost the same length that is an admissible block, while not all admissible
blocks will be in the associated DFA’s language. Denote the set of admissible blocks of length
n corresponding to G by Bn(G). The topological entropy of the sofic shift represented by the
right-solving labeled graph G is denoted by ht(G) and is defined by

ht(G) = lim
n→∞

log |Bn(G)|
n

.

Using Perron-Frobenius theory it has been proven that the topological entropy of a sofic
shift represented by a right-solving labeled graph G is equal to the log base 2 of the spectral
radius of the adjacency matrix of G [19]. That is, the topological entropy is given by the log
of the adjacency matrix’s largest modulus eigenvalue. Algorithms for computing eigenvalues
are well known and run in time polynomial in the width of the matrix [12].

As you can see, sofic shifts are very similar to DFA. Given a DFA, M , one can construct
a sofic shift by thinking of M as a labeled directed graph and creating the trim graph by
removing all states that are not part of an accepting path. Information regarding initial and
final states is no longer needed. Note that the graph M is naturally right-solving because of
the determinism of DFA. It is also easiest to remove from M all vertices that do not have
both an outgoing and incoming edge (since we are now interested in biinfinite walks). The
resulting graph is called the essential graph. At this point one is free to apply the above
definition and compute the topological entropy of the sofic shift corresponding to the DFA.
This quantity can be computed by analyzing the irreducible components.

I Theorem 11 ([19]). Suppose that G is the labeled directed graph associated to a sofic shift.
If G1, . . . , Gk are the irreducible components of G, then ht(G) = max1≤i≤k ht(Gi).

In the next subsection we will introduce the language entropy and show that it is the
same as the topological entropy of the sofic shift corresponding to a DFA.

MFCS 2017

3:10 Regular Language Distance and Entropy

4.2 Language Entropy
Traditionally, the entropy of a regular language L (also called the channel capacity [6] or
information rate [10]) is defined as lim supn→∞

log|Wn(L)|
n . This limit may not exist and so

an upper limit is necessary. We will show that this upper limit is realized by the topological
entropy of the corresponding sofic shift and define another notion of language entropy, which
is preferable since an upper limit is not necessary.

I Definition 12 (Language Entropy). Given a regular language L define the language entropy
by h(L) = limn→∞

log|W≤n(L)|
n .

I Theorem 13. Let L be a non-empty regular language over the set of symbols Σ, and let G
be the labeled directed graph of the associated sofic shift. We have that

lim sup
n→∞

log |Wn(L)|
n

= ht(G).

Moreover, for a fixed language L there exists a constant c such that there is an increasing
sequence of integers ni satisfying 0 < ni+1 − ni ≤ c and

lim
i→∞

log |Wni
(L)|

ni
= ht(G).

As a corollary to this theorem we obtain an important statement regarding the connection
between topological entropy (from dynamical systems) and language entropy (similar to
Shannon’s channel capacity). The following statement is consistent with remarks made by
Chomsky and Miller [6] that involved undefined assumptions; we show rigorously that this
formula is correct for all DFA.

I Corollary 14. Let L be a non-empty regular language over the set of symbols Σ, and let G
be the labeled directed graph of the associated sofic shift. Then,

h(L) = lim
n→∞

log |W≤n(L)|
n

= ht(G).

There are some simple properties of language entropy which will be useful later. The
first is a simple re-phrasing of Corollary 14.

I Lemma 15. For any regular language L, we have that |W≤n(L)| = 2n(h(L)+o(1)).

I Lemma 16. Suppose L1 and L2 are regular languages over Σ. The following hold:
1. If L1 ⊆ L2, then h(L1) ≤ h(L2).
2. h(L1 ∪ L2) = max(h(L1), h(L2))
3. max(h(L1), h(L1)) = log |Σ|
4. If h(L1) < h(L2), then h(L2 \ L1) = h(L2).
5. If L1 is finite, then h(L1) = 0.

4.3 Relationship between Entropy and Cesáro Jaccard
In Section 3.2 we proved that the Cesàro Jaccard distance is well-defined. As you will see,
Cesáro Jaccard and entropy are mostly disjoint in what they measure.

I Theorem 17. Let L1, L2 be two regular languages.
1. If h(L14L2) 6= h(L1 ∪ L2), then JC(L1, L2) = 0.
2. If h(L1 ∩ L2) 6= h(L1 ∪ L2), then JC(L1, L2) = 1.
3. If 0 < JC(L1, L2) < 1, then the following equal each other:

h(L1), h(L2), h(L1 ∩ L2), h(L14L2), h(L1 ∪ L2).

A. J. Park, K. B. Yancey, and M.P. Yancey 3:11

To better understand this theorem, consider the following examples corresponding to the
three cases of the theorem: (1) let L1 = ((a|b)2)∗|c∗ and L2 = ((a|b)2)∗|d∗ as in Example
9, (2) let L1 = (a|b)∗|c∗ and L2 = (d|e)∗|c∗, and (3) let L1 = (aa)∗ and L2 = a∗ as in the
Introduction.

5 Entropy Distances

Entropy provides a natural method for dealing with the infinite nature of regular languages.
Because it is related to the eigenvalues of the regular language’s DFA, it is computable in
polynomial time given a DFA for the language. Note that the DFA does not have to be
minimal. We can therefore compute the entropy of set-theoretic combinations of regular
languages (intersection, disjoint union, etc) and use those values to determine a distance
between the languages.

5.1 Entropy Distance
A natural Jaccard-esque distance function based on entropy is the entropy distance.

I Definition 18 (Entropy Distance). Suppose L1 and L2 are regular languages. Define the
entropy distance to be H(L1, L2) = h(L14L2)

h(L1∪L2) if h(L1 ∪ L2) > 0, otherwise H(L1, L2) = 0.

This turns out to be equivalent to a Jaccard limit with added log operations:

I Corollary 19. Suppose L1 and L2 are regular languages. The following relation holds:

lim
n→∞

log |W≤n(L14L2)|
log |W≤n(L1 ∪ L2)| = H(L1, L2).

Note that H is not always a good candidate for a distance function as it only produces
non-trivial results for languages that have the same entropy.

I Proposition 20. Suppose L1 and L2 are regular languages. If h(L1) 6= h(L2), then
H(L1, L2) = 1.

As further evidence that H is not a good candidate for a distance function, we show it is
an ultra-pseudo-metric. The ultra-metric condition, i.e. d(x, z) ≤ max(d(x, y), d(y, z)), is so
strong that it can make it difficult for the differences encoded in the metric to be meaningful
for practical applications.

I Theorem 21. The function H is an ultra-pseudo-metric.

5.2 Entropy Sum
In this subsection we will define a new (and natural) distance function for infinite regular
languages. We call this distance function the entropy sum distance. We will prove that not
only is this distance function a pseudo-metric, it is also sometimes granular. Granularity
lends insight into the quality of a metric. Intuitively, granularity means that for any two
points in the space, you can find a point between them. A metric d on the space X is
granular if for every two points x, z ∈ X, there exists y ∈ X such that d(x, y) < d(x, z) and
d(y, z) < d(x, z), i.e. d(x, z) > max(d(x, y), d(y, z)).

I Definition 22 (Entropy Sum Distance). Suppose L1 and L2 are regular languages. Define
the entropy sum distance to be HS(L1, L2) = h(L1 ∩ L2) + h(L1 ∩ L2).

MFCS 2017

3:12 Regular Language Distance and Entropy

The entropy sum distance was inspired by first considering the entropy of the symmetric
difference directly, i.e. h(L14L2). However, since entropy measures the entropy of the most
complex component (Theorem 11), more information is gathered by using a sum as above in
the definition of entropy sum.

I Theorem 23. The function HS is a pseudo-metric.

The next two propositions display when granularity is achieved and when it is not.

I Proposition 24. Let L1 and L2 be regular languages such that h(L1 ∩ L2), h(L1 ∩
L2) > 0. Then, there exists two regular languages R1 6= R2 such that HS(L1, L2) >

max(HS(L1, Ri), HS(Ri, L2)) for each i.

I Proposition 25. Let L1 and L2 be regular languages such that h(L1 ∩ L2) = 0. For all
regular languages L we have that HS(L1, L2) ≤ max(HS(L1, L), HS(L,L2)).

6 Conclusion and Future Work

This paper has covered some issues related to the entropy of regular languages and the
distance between regular languages. It has proven correct the common upper limit formulation
of language entropy and has provided a limit based entropy formula that can be shown to
exist. Jaccard distance was shown to be related to language entropy, and various limit based
extensions of the Jaccard distance were shown to exist or not exist. The natural entropy
based distance function was shown to be an ultra-pseudo-metric, and some facts were proven
about the function that show it likely to be impractical. Finally, the paper introduces an
entropy-based distance function and proves that function to be a pseudo-metric, as well as
granular under certain conditions.

In this paper several formulations of entropy are developed, and it is natural to consider
which would be the best to use. In a practical sense it does not matter since all formulations are
equivalent (Theorem 13) and can be computed using Shannon’s determinant-based method
[27]. However, conceptually, it can be argued that limn→∞

log|W≤n(L)|
n is the preferable

formulation. First, there is a notational argument that prefers using limits that exist. This
is a limit that exists (Corollary 14), whereas many other limit formulations do not. Second,
this limit captures more readily the concept of “number of bits per symbol” that Shannon
intended. Because regular languages can have strings with staggered lengths, using Wn forces
the consideration of possibly empty sets of strings of a given length. This creates dissonance
when the language has non-zero entropy. Instead, the monotonically growing W≤n more
clearly encodes the intuition that the formulation is expressing the number of bits needed to
express the next symbol among all words in the language.

Apart from expanding to consider context-free languages and other languages ([10]),
one investigation that is absent from this paper is the determination of similarity between
languages that are disjoint but obviously similar (i.e. aa∗ and ba∗). A framework for
addressing such problems is provided in [9], but finding metrics capturing such similarities
can be fodder for future efforts.

References

1 F. Blanchard, E. Glasner, S. Kolyada, and A. Maass. On Li-Yorke pairs. J. Reine Angew.
Math., 547:51–68, 2002.

A. J. Park, K. B. Yancey, and M.P. Yancey 3:13

2 M. Bodirsky, T. Gärtner, T. von Oertzen, and J. Schwinghammer. Efficiently computing
the density of regular languages. In LATIN 2004: Theoretical informatics, volume 2976
of Lecture Notes in Comput. Sci., pages 262–270. Springer, Berlin, 2004. doi:10.1007/
978-3-540-24698-5_30.

3 T. Ceccherini-Silberstein, A. Machì, and F. Scarabotti. On the entropy of regular languages.
Theoretical computer science, 307(1):93–102, 2003.

4 C. Chan, M. Garofalakis, and R. Rastogi. Re-tree: an efficient index structure for regular
expressions. The VLDB Journal—The International Journal on Very Large Data Bases,
12(2):102–119, 2003.

5 C. Chang. Algorithm for the complexity of finite automata. 31st Workshop on Combinat-
orial Mathematics and Computation Theory, pages 216–220, 2014.

6 N. Chomsky and G. Miller. Finite state languages. Information and Control, 1(2):91–112,
1958. doi:10.1016/S0019-9958(58)90082-2.

7 C. Cortes, M. Mohri, and A. Rastogi. On the computation of some standard distances
between probabilistic automata. In Implementation and application of automata, volume
4094 of Lecture Notes in Comput. Sci., pages 137–149. Springer, Berlin, 2006. doi:10.
1007/11812128_14.

8 C. Cortes, M. Mohri, A. Rastogi, and M. Riley. Efficient computation of the relative entropy
of probabilistic automata. In LATIN 2006: Theoretical informatics, volume 3887 of Lecture
Notes in Comput. Sci., pages 323–336. Springer, Berlin, 2006. doi:10.1007/11682462_32.

9 C. Cui, Z. Dang, T. Fischer, and O. Ibarra. Similarity in languages and programs. Theor-
etical Computer Science, 498:58–75, 2013.

10 C. Cui, Z. Dang, T. Fischer, and O. Ibarra. Information rate of some classes of non-
regular languages: an automata-theoretic approach (extended abstract). In Mathematical
foundations of computer science 2014. Part I, volume 86343 of Lecture notes in Comput.
Sci., pages 232–243. Springer, Heidelberg, 2014.

11 Jürgen Dassow, Gema M. Martín, and Francisco J. Vico. A similarity measure for cyclic un-
ary regular languages. Fundam. Inform., 96(1-2):71–88, 2009. doi:10.3233/FI-2009-168.

12 J. Francis. The QR transformation a unitary analogue to the LR transformation — part 1.
The Computer Journal, 4(3):265–271, 1961.

13 B. Hasselblatt and A. Katok. A first course in dynamics: With a panorama of recent
developments. Cambridge University Press, New York, 2003.

14 J. Hopcroft and J. Ullman. Introduction to automata theory, languages, and computation.
Addison-Wesley Publishing Company, Inc., 1979.

15 A. Kolmogorov. Entropy per unit time as a metric invariant of automorphisms. In Dokl.
Akad. Nauk SSSR, volume 124, pages 754–755, 1959.

16 J. Kozik. Conditional densities of regular languages. In Proceedings of the Second Workshop
on Computational Logic and Applications (CLA 2004), volume 140 of Electron. Notes Theor.
Comput. Sci., pages 67–79 (electronic). Elsevier, Amsterdam, 2005. doi:10.1016/j.entcs.
2005.06.023.

17 W. Kuich. On the entropy of context-free languages. Information and Control, 16(2):173–
200, 1970.

18 W. Li. On the relationship between complexity and entropy for Markov chains and regular
languages. Complex systems, 5(4):381–399, 1991.

19 D. Lind and B. Marcus. Symbolic dynamics and coding. Cambridge, 1995.
20 J. Marklof and C. Ulcigrai. Lecture notes for dynamical systems and ergodic theory, 2015-

2016. http://www.maths.bris.ac.uk/∼majm/DSET/index.html.
21 M-J. Nederhof and G. Satta. Computation of distances for regular and context-free prob-

abilistic languages. Theoret. Comput. Sci., 395(2-3):235–254, 2008. doi:10.1016/j.tcs.
2008.01.010.

MFCS 2017

http://dx.doi.org/10.1007/978-3-540-24698-5_30
http://dx.doi.org/10.1007/978-3-540-24698-5_30
http://dx.doi.org/10.1016/S0019-9958(58)90082-2
http://dx.doi.org/10.1007/11812128_14
http://dx.doi.org/10.1007/11812128_14
http://dx.doi.org/10.1007/11682462_32
http://dx.doi.org/10.3233/FI-2009-168
http://dx.doi.org/10.1016/j.entcs.2005.06.023
http://dx.doi.org/10.1016/j.entcs.2005.06.023
http://dx.doi.org/10.1016/j.tcs.2008.01.010
http://dx.doi.org/10.1016/j.tcs.2008.01.010

3:14 Regular Language Distance and Entropy

22 A. Parker, K. Yancey, and M. Yancey. Regular language distance and entropy. arXiv,
602.07715, 2015.

23 U. Rothblum. Expansion of sums of matrix powers. SIAM Review, 23:143–164, 1981.
24 U. Rothblum. Chapter 9, nonnegative matrices and stochastic matrices. In Handbook of

Linear Algebra. (eds: L. Hogben), Chapman and Hall / CRC, 2007.
25 Arto Salomaa and Matti Soittola. Automata-Theoretic Aspects of Formal Power

Series. Texts and Monographs in Computer Science. Springer, 1978. doi:10.1007/
978-1-4612-6264-0.

26 F. Schneider and D. Borchmann. Topological entropy of formal languages. arXiv,
1507.03393, 2015.

27 C. Shannon. A mathematical theory of communication. The Bell System Technical Journal,
27:379–423, 1948.

28 J. Simonsen. On the computability of the topological entropy of subshifts. Discrete math-
ematics and theoretical computer science, 8(1):83–95, 2006.

29 Y. Sinai. On the notion of entropy of a dynamical system. In Dokl Akad Nauk SSSR,
volume 124, pages 768–771, 1959.

http://dx.doi.org/10.1007/978-1-4612-6264-0
http://dx.doi.org/10.1007/978-1-4612-6264-0

The Complexity of Boolean Surjective
General-Valued CSPs∗

Peter Fulla1 and Stanislav Živný2

1 Department of Computer Science, University of Oxford, UK
peter.fulla@cs.ox.ac.uk

2 Department of Computer Science, University of Oxford, UK
standa.zivny@cs.ox.ac.uk

Abstract
Valued constraint satisfaction problems (VCSPs) are discrete optimisation problems with a Q-
valued objective function given as a sum of fixed-arity functions, where Q = Q ∪ {∞} is the set
of extended rationals.

In Boolean surjective VCSPs variables take on labels from D = {0, 1} and an optimal assign-
ment is required to use both labels from D. A classic example is the global min-cut problem in
graphs. Building on the work of Uppman, we establish a dichotomy theorem and thus give a
complete complexity classification of Boolean surjective VCSPs. The newly discovered tractable
case has an interesting structure related to projections of downsets and upsets. Our work general-
ises the dichotomy for {0,∞}-valued constraint languages (corresponding to CSPs) obtained by
Creignou and Hébrard, and the dichotomy for {0, 1}-valued constraint languages (corresponding
to Min-CSPs) obtained by Uppman.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases constraint satisfaction problems, surjective CSP, valued CSP, min-cut,
polymorphisms, multimorphisms

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.4

1 Introduction

The (s, t)-Min-Cut problem asks, given a digraph G = (V,E) with source s ∈ V , sink t ∈ V ,
and edge weights w : E → Q>0, for a subset C ⊆ V with s ∈ C and t 6∈ C minimising
w(C) =

∑
(u,v)∈E,u∈C,v 6∈C w(u, v) [22]. This fundamental problem is an example of a Boolean

valued constraint satisfaction problem (VCSP).
Let D be an arbitrary finite set called the domain. A valued constraint language, or

just a language, Γ is a set of weighted relations; each weighted relation γ ∈ Γ is a function
γ : Dar(γ) → Q, where ar(γ) ∈ N is the arity of γ and Q = Q ∪ {∞} is the set of extended
rationals. If |D| = 2 then Γ is called a Boolean language. An instance I = (V,D, φI) of
the VCSP on domain D is given by a finite set of n variables V = {x1, . . . , xn} and an
objective function φI : Dn → Q expressed as a weighted sum of valued constraints over V ,
i.e. φI(x1, . . . , xn) =

∑q
i=1 wi · γi(xi), where γi is a weighted relation, wi ∈ Q≥0 is the weight

∗ The authors were supported by a Royal Society Research Grant. Stanislav Živný was supported by a
Royal Society University Research Fellowship. This project has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No 714532). The paper reflects only the authors’ views and not the views of the ERC
or the European Commission. The European Union is not liable for any use that may be made of the
information contained therein.

© Peter Fulla and Stanislav Živný;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 4; pp. 4:1–4:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4:2 The Complexity of Boolean Surjective General-Valued CSPs

and xi ∈ V ar(γi) the scope of the ith valued constraint. (We note that we allow zero weights
and for wi = 0 we define wi ·∞ =∞.) Given an instance I, the goal is to find an assignment
s : V → D of domain labels to the variables that minimises φI . Given a language Γ, we
denote by VCSP(Γ) the class of all instances I that use only weighted relations from Γ in
their objective function. Valued CSPS are also called general-valued CSPs to emphasise that
(decision) CSPs are a special case of valued CSPs.

To continue with the (s, t)-Min-Cut example, let D = {0, 1}. We will use the following
three weighted relations: γ : D2 → Q is defined by γ(x, y) = 1 if x = 0 and y = 1, and
γ(x, y) = 0 otherwise; ρd : D → Q, for d ∈ D, is defined by ρd(x) = 0 if x = d and ρd(x) =∞
if x 6= d. Now, given an (s, t)-Min-Cut instance G = (V,E), s, t ∈ V = {x1, . . . , xn}, and
w : E → Q>0 as before, the problem of finding an optimal (s, t)-Min-Cut in G is equivalent
to solving the following instance of VCSP(Γcut), where Γcut = {γ, ρ0, ρ1}: I = (V,D, φI) and
φI(x1, . . . , xn) =

∑
(u,v)∈E w(u, v) · γ(xu, xv) + ρ0(s) + ρ1(t).

It is well known that the (s, t)-Min-Cut problem is solvable in polynomial time. Since
every instance I of VCSP(Γcut) can be reduced to an instance of the (s, t)-Min-Cut problem,
I is solvable in polynomial time. Thus, Γcut is an example of a tractable constraint language.
When VCSP(Γ) is NP-hard, we call Γ an intractable language.

It is natural to ask about the complexity of VCSP(Γ) in terms of Γ. For Boolean valued
constraint languages, we have a complete answer: Cohen et al. [8] showed that every Boolean
valued constraint language is either tractable or intractable, thus obtaining what is known as
a dichotomy theorem. In fact, [8] identified eight different types of tractable valued constraint
languages; one of these types corresponds to submodularity [22] and includes Γcut. The
dichotomy theorem from [8] is an extension of Schaefer’s celebrated result, which gave a
dichotomy for {0,∞}-valued constraint languages [21], and the work of Creignou [9], who
gave a dichotomy theorem for {0, 1}-valued constraint languages.

The (global) Min-Cut problem asks, given a graph G = (V,E) and edge weights w : E →
Q>0, for a subset C ⊆ V with ∅ (C (V minimising w(C) =

∑
{u,v}∈E,|{u,v}∩C|=1 w(u, v)

[22]. This fundamental problem is an example of a Boolean surjective VCSP. Given a VCSP
instance I = (V,D, φI), in the surjective setting the goal is to find a surjective assignment
s : V → D minimising φI ; here s is called surjective if for every d ∈ D there is x ∈ V such
that s(x) = d. For Boolean VCSPs with D = {0, 1}, this simply means that the all-zero and
all-one assignments are not allowed. Given a language Γ, we denote by VCSPs(Γ) the class
of all instances I of the surjective VCSP that use only weighted relations from Γ in their
objective function.

Let D = {0, 1} and define γ : D → Q by γ(x, y) = 0 if x = y and γ(x, y) = 1 if x 6= y.
VCSPs({γ}) captures Min-Cut as every instance of VCSPs({γ}) is a Min-Cut instance and
vice versa. Since Min-Cut is solvable in polynomial time (say, by a reduction to the (s, t)-Min-
Cut problem but other algorithms exist [23]), {γ} is an example of a surjectively tractable,
or s-tractable for short, valued constraint language. As before, if VCSPs(Γ) is NP-hard we
call Γ a surjectively intractable, or s-intractable for short, language.

Surjective VCSPs

What can we say about the complexity of VCSPs(Γ) for arbitrary Γ? In particular, is every Γ
s-tractable or s-intractable? What is the mathematical structure of s-tractable languages?

First, observe that for a language Γ defined on D, we have VCSP(Γ) ≤p VCSPs(Γ).
Indeed, given an instance I of VCSP(Γ), construct a new instance I ′ of VCSPs(Γ) by adding
|D| extra variables. Then, any solution to I can be extended to a surjective solution to I ′ of
the same value and conversely, any (surjective) solution to I ′ induces a solution to I of the
same value.

P. Fulla and S. Živný 4:3

Second, observe that for a language Γ defined on D, we have VCSPs(Γ) ≤p VCSP(Γ∪CD),
where CD is the set of constants on D; that is, CD = {ρd | d ∈ D}, where ρd is defined by
ρd(x) = 0 if x = d and ρd(x) =∞ if x 6= d. Indeed, given an instance of VCSPs(Γ), constants
can be used to go through all O(n|D|) ways to assign all the labels from D to a |D|-subset of
the n variables, each resulting in an instance of VCSP(Γ ∪ CD). Consequently, a tractable
language Γ defined on D with CD ⊆ Γ is also an s-tractable language.

In this paper we deal with Boolean valued constraint languages defined on D = {0, 1}.
By the two observations above, the only Boolean valued constraint languages for which
tractability could be different from s-tractability are tractable languages that do not include
constants.

For Boolean {0,∞}-valued languages, Schaefer’s dichotomy [21] gives six tractable cases,
four of which include constants. Creignou and Hébrard showed that the remaining two
cases (0-valid and 1-valid) are s-intractable, thus obtaining a dichotomy in the surjective
setting [10].

For Boolean {0, 1}-valued languages, Creignou’s dichotomy [9] gives three tractable cases,
one of which includes constants. Uppman showed that the remaining two cases (0-valid and
1-valid) are s-tractable if they are almost-min-min or almost-max-max, respectively, and
s-intractable otherwise, thus obtaining a dichotomy in the surjective setting [24].

Contributions. As our main contribution we classify all Boolean valued constraint languages
(i.e. Q-valued languages) as s-tractable or s-intractable. Our result extends the classifications
from [10] and [24]. Six of the eight tractable cases identified for Boolean valued constraint
languages [8] include constants and thus are also s-tractable. The remaining two cases
(0-optimal and 1-optimal1) are s-tractable if they satisfy a certain condition. This condition,
defined formally in Definition 5, says that both the feasibility and optimality relations of
every weighted relation in the language have to be a projection of a downset (in the 0-optimal
case), or a projection of an upset (in the 1-optimal case). This shows that, surprisingly,
s-tractability of valued constraint languages (that are not covered by the tractable languages
with constants) does not depend on the rational-values in the weighted relations. It is only
the structure of the underlying feasibility and optimality relations that matters. (However,
the running time of our algorithm depends on these values.) Identifying this condition and
establishing that it captures the precise borderline of s-tractability is our main contribution.

The hardness part of our result is proved in the same spirit as for {0,∞}-valued and
{0, 1}-valued languages by carefully analysing the types of weighted relations that can be
obtained in gadgets in the surjective setting, and relying on the explicit dichotomy for
Boolean VCSPs [8].

While 0-optimal and 1-optimal languages are trivially tractable for VCSPs, the algorithm
for surjective VCSPs over the newly identified languages is nontrivial. The s-tractability part
of our result is established by a reduction from Q-valued VCSPs to the Generalised Min-Cut
problem (defined in Section 3), in which we require to find in polynomial time all α-optimal
solutions, where α is a constant depending on the (finite) valued constraint language. The
algorithm for the Generalised Min-Cut problem is essentially the same as in [24]. We show
that the algorithm works in the more general setting with one part of the objective function
being a (Q≥0 ∪ {∞})-valued superadditive set function given by an oracle; see Section 3 for
the details. By providing a tighter analysis we are able to improve the bound on the running
time from roughly O(n33α) to O(n20α), thus answering one of the open problems from [24].

1 A weighted relation is 0-optimal (1-optimal) if the all-zero (all-one) tuple minimises it.

MFCS 2017

4:4 The Complexity of Boolean Surjective General-Valued CSPs

We also show that the dependence of the running time on the language is unavoidable unless
P = NP (cf. Example 27).

All omitted proofs are available in the full version of the paper [14].

Related work. Recent years have seen some remarkable progress on the computational
complexity of CSPs and VCSPs parametrised by the (valued) constraint language, see [1] for
a survey. We highlight the resolution of the “bounded width conjecture” [2] and the result
that a dichotomy for CSPs, conjectured in [11], implies a dichotomy for VCSPs [19, 18]. All
this work is for arbitrary (and thus not necessarily Boolean) finite domains and relies on
the so-called algebraic approach initiated in [6] and nicely described in a recent survey [3].
One of the important aspects of the algebraic approach is the assumption that constants are
present in (valued) constraint languages. (This is without loss of generality with respect to
polynomial-time solvability.) It is the lack of constants in the surjective setting that makes it
difficult, if not impossible, to employ the algebraic approach in this setting. See the work of
Chen [7] for an initial attempt.

For a binary (unweighted) relation γ, VCSPs({γ}) has been studied under the name of
surjective γ-Colouring [4, 20] and vertex-compaction [26]. We remark that our notion of
surjectivity is global. For the γ-Colouring problem, a local version of surjectivity has also
been studied [13, 12].

2 Preliminaries

We denote by ≤p the standard polynomial-time Turing reduction. If A ≤p B and B ≤p A
we write A ≡p B.

We use the notation [n] = {1, . . . , n}. For any tuple x ∈ Dr, we refer to its ith element
as xi. For x,y ∈ Dr, we define x ≤ y if and only if xi ≤ yi for all i ∈ [r].

We define relations as a special case of weighted relations with range {c,∞}, where value
c ∈ Q is assigned to tuples that are elements of the relation in the conventional sense. We
will use both views interchangeably and choose c = 0 unless stated otherwise. Relations are
also called unweighted or crisp.

If s ∈ [r]n is a tuple of coordinates then for any x ∈ Dr we denote its projection to s by
Prs(x) = (xs1 , . . . , xsn) ∈ Dn. For any relation ρ, we define Prs(ρ) = {Prs(x) | x ∈ ρ}. Note
that the coordinates in s may repeat.

We denote by ρ= the binary equality relation {(x, x) | x ∈ D}. Recall from Section 1
that we denote, for any d ∈ D, by ρd the unary relation {(d)}, i.e. ρd(x) = 0 if x = d and
ρd(x) =∞ if x 6= d.

I Definition 1. For a weighted relation γ : Dr → Q, we denote by
Feas(γ) = {x ∈ Dr | γ(x) <∞} the underlying feasibility relation; and by
Opt(γ) = {x ∈ Feas(γ) | γ(x) ≤ γ(y) for every y ∈ Dr} the relation of optimal tuples.

We define Feas(Γ) = {Feas(γ) | γ ∈ Γ} and Opt(Γ) = {Opt(γ) | γ ∈ Γ}.
An assignment s : V → D for a VCSP instance I = (V,D, φI) with V = {x1, . . . , xn}

is called feasible if φI(s(x1), . . . , s(xn)) <∞; s is called optimal if φI(s) ≤ φI(s′) for every
assignment s′.

Recall from Section 1 that any set of weighted relation Γ is called a valued constraint
language. Γ is called s-tractable if for any finite subset Γ′ ⊆ Γ any instance of VCSPs(Γ′)
can be solved in polynomial time. Γ is called s-intractable if VCSP(Γ′) is NP-hard for some
finite Γ′ ⊆ Γ.

P. Fulla and S. Živný 4:5

We apply a k-ary operation h : Dk → D to k r-tuples componentwise; i.e. h(x1, . . . ,xk) =
(h(x1

1, x
2
1, . . . , x

k
1), h(x1

2, x
2
2, . . . , x

k
2), . . . , h(x1

r, x
2
r, . . . , x

k
r)).

The following notion is at the heart of the algebraic approach to decision CSPs [6].

I Definition 2. Let γ be a weighted relation on D. A k-ary operation h : Dk → D is a
polymorphism of γ (and γ is invariant under or admits h) if, for every x1, . . . ,xk ∈ Feas(γ),
we have h(x1, . . . ,xk) ∈ Feas(γ). We say that h is a polymorphism of a language Γ if it is a
polymorphism of every γ ∈ Γ.

The following notion, which involves a collection of k k-ary polymorphisms, plays an
important role in the complexity classification of Boolean valued constraint languages [8].

I Definition 3. Let γ be a weighted relation on D. A list 〈h1, . . . , hk〉 of k-ary polymorphisms
of γ is a k-ary multimorphism of γ (and γ admits 〈h1, . . . , hk〉) if, for every x1, . . . ,xk ∈
Feas(γ), we have

k∑
i=1

γ(hi(x1, . . . ,xk)) ≤
k∑
i=1

γ(xi) .

〈h1, . . . , hk〉 is a multimorphism of a language Γ if it is a multimorphism of every γ ∈ Γ.

Boolean VCSPs

For the rest of the paper let D = {0, 1}. We define some important operations on D. For
any a ∈ D, ca is the constant unary operation such that ca(x) = a for all x ∈ D. Operation
¬ is the unary negation, i.e. ¬(0) = 1 and ¬(1) = 0. Binary operation min (max) returns the
smaller (larger) of its two arguments with respect to the order 0 < 1. Ternary operation Mn
(for minority) is the unique ternary operation on D satisfying Mn(x, x, y) = Mn(x, y, x) =
Mn(y, x, x) = y for all x, y ∈ D. Ternary operation Mj (for majority) is the unique ternary
operation on D satisfying Mj(x, x, y) = Mj(x, y, x) = Mj(y, x, x) = x for all x, y ∈ D.

I Theorem 4 ([8]). Let Γ be a Boolean valued constraint language. Then, Γ is tractable
if it admits any the following eight multimorphisms 〈c0〉, 〈c1〉, 〈min,min〉, 〈max,max〉,
〈min,max〉, 〈Mn,Mn,Mn〉, 〈Mj,Mj,Mj〉, 〈Mj,Mj,Mn〉. Otherwise, Γ is intractable.

We note that Theorem 4 is a generalisation of Schaefer’s classification of {0,∞}-valued
constraint languages [21] and Creignou’s classification of {0, 1}-valued constraint languages [9].

The following definition is new in this paper and crucial for our main result.

I Definition 5. A relation ρ is a downset (upset) if for any x,y such that x ≥ y (x ≤ y) and
x ∈ ρ it holds y ∈ ρ. We will refer to relations that are a projection of a downset (upset) as
PDS (PUS). A weighted relation γ is called a PDS (PUS) weighted relation if both Feas(γ)
and Opt(γ) are PDS (PUS). A language Γ is called PDS (PUS) if every weighted relation
from Γ is PDS (PUS).

I Example 6. Relation ρ = {(0, 0), (0, 1), (1, 0)} is a downset and hence also a PDS, while
ρ′ = {(0, 0, 0), (0, 1, 1), (1, 0, 0)} is a PDS (as ρ′ = Pr(1,2,2)(ρ)) but not a downset. Relation
ρ= is a PDS relation and also a PDS weighted relation.

As one of the reviewers pointed out, PDS (PUS) relations are characterised by the binary
polymorphism x ∧ ¬y (¬x ∨ y).

MFCS 2017

4:6 The Complexity of Boolean Surjective General-Valued CSPs

I Observation 7. Any PDS relation can be written as a sum of a downset and binary equality
relations. More formally, if ρ : Dr → {0,∞} is a PDS then we can write

ρ(x1, . . . , xr) = ρ′(xπ(1), . . . , xπ(r′)) +
r∑

j=r′+1
ρ=(xπ(j), xij) ,

where ρ′ : Dr′ → {0,∞} is a downset, π is a permutation of [r], and ij ∈ {π(1), . . . , π(r′)}
for every r′ + 1 ≤ j ≤ r.

The following result is our main contribution.

I Theorem 8 (Main). Let Γ be a Boolean valued constraint language. Then, Γ is s-tractable
if it admits any of the following six multimorphisms 〈min,min〉, 〈max,max〉, 〈min,max〉,
〈Mn,Mn,Mn〉, 〈Mj,Mj,Mj〉, 〈Mj,Mj,Mn〉, or Γ is PDS, or Γ is PUS. Otherwise, Γ is
s-intractable.

Theorem 8 generalises the following two previously established results.

I Theorem 9 ([10]). Let Γ be a Boolean {0,∞}-valued constraint language. Then, Γ is s-
tractable if it admits any of the following four polymorphisms min, max, Mn, Mj. Otherwise,
Γ is s-intractable.

I Theorem 10 ([24]). Let Γ be a Boolean {0, 1}-valued constraint language. Then, Γ is
s-tractable if it admits the 〈min,max〉 multimorphism, or Γ is PDS, or Γ is PUS. Otherwise,
Γ is s-intractable.

Theorem 10 is stated differently in [24] as the definition of PDS (PUS) languages is
introduced in this paper. In fact, it was not a priori clear what the right condition for
tractability should be for Q-valued constraint languages. Note that for {0, 1}-valued languages,
the condition Feas(Γ) being PDS or PUS is vacuously true. Thus, a {0, 1}-valued language
Γ is PDS (PUS) if Opt(Γ) is PDS (PUS) and this is equivalent to Γ being almost-min-min
(almost-max-max) [24].

Recall that ¬ is the unary negation operation. For a weighted relation γ, we define
¬(γ) to be the weighted relation ¬(γ)(x) = γ(¬(x)). For a language Γ, we define ¬(Γ) =
{¬(γ) | γ ∈ Γ}.

The following observation follows from Definition 5.

I Observation 11. A valued constraint language Γ is PDS if and only if ¬(Γ) is PUS.

I Lemma 12. For a Boolean valued constraint language Γ, VCSPs(Γ) ≡p VCSPs(¬(Γ)).

Proof of Theorem 8. The s-tractability of languages admitting any of the six multimorph-
isms in the statement of the theorem follows from Theorem 4 via the reduction VCSPs(Γ) ≤p
VCSP(Γ∪{ρ0, ρ1}) discussed in the introduction. The s-tractability of PDS languages follows
from Theorem 19, proved in Section 3. The s-tractability of PUS languages is then a simple
corollary of Theorem 19, Observation 11, and Lemma 12.

The s-intractability of the remaining languages is proved in the full version of the paper [14].
The key in the hardness proof is to identify certain operators on weighted relations that
preserve s-tractability, polymorphisms for crisp relations and multimorphisms for weighted
relations, thus allowing for the construction of hardness gadgets. These operators include
scaling by a nonnegative rational, adding a rational, permutation of arguments, identification
of arguments, addition, the Feas(·) and Opt(·) operators, and pinning labels to variables
(assuming the corresponding crisp constant is available). J

P. Fulla and S. Živný 4:7

3 Tractability of PDS languages

We prove that PDS languages are s-tractable by a reduction to a generalised variant of
the Min-Cut problem. The problem and the reduction are stated in Subsection 3.1. The
tractability of the Generalised Min-Cut problem is established in Subsection 3.2.

3.1 Reduction to the Generalised Min-Cut problem
Let V be a finite set. A set function on V is a function f : 2V → Q≥0 ∪ {∞} with f(∅) = 0.

I Definition 13. A set function f : 2V → Q≥0 ∪ {∞} is increasing if f(X) ≤ f(Y) for all
X ⊆ Y ⊆ V ; it is superadditive if f(X) + f(Y) ≤ f(X ∪ Y) for all disjoint X,Y ⊆ V ; it
is posimodular if f(X) + f(Y) ≥ f(X \ Y) + f(Y \X) for all X,Y ⊆ V ; and finally it is
submodular if f(X) + f(Y) ≥ f(X ∩ Y) + f(X ∪ Y) for all X,Y ⊆ V .

It is known and easy to show that any superadditive set function is also increasing.

I Example 14. Let U be a finite set and T ⊆ U a non-empty subset. We define a set function
f on U by f(X) = 1 if T ⊆ X and f(X) = 0 otherwise. Intuitively, this corresponds to a
soft NAND constraint if we interpret T as its scope and X as the set of variables assigned
true. The set function f is superadditive, and hence also increasing.

We now formally define the Min-Cut problem introduced in Section 1.

I Definition 15. An instance of the Min-Cut (MC) problem is given by a graph G = (V,E)
with edge weights w : E → Q>0. The goal is to minimise the objective function g, which is a
set function on V defined by g(X) =

∑
{u,v}∈E,|{u,v}∩X|=1 w(u, v).

Note that g from Definition 15 is posimodular.
Any set X such that ∅ (X (V is called a solution of the MC problem. Note that

a cut (X,V \ X) corresponds to two solutions, namely X and V \ X. Any solution that
minimises the objective function g is called optimal, and any optimal solution with no proper
subset being an optimal solution is called minimal. Note that any two different minimal
optimal solutions X,Y are disjoint, as X \ Y and Y \X are also optimal solutions (by the
posimodularity of g).

We now define the Generalised Min-Cut problem, which is key to establishing Theorem 8.

I Definition 16. Let G = (V,E) be an undirected graph with edge weights w : E → Q>0.
Let g be the objective function of the Min-Cut problem on G and f a superadditive set
function on V given by an oracle. A solution to the Generalised Min-Cut (GMC) problem is
any set X such that ∅ (X (V , and the objective is to minimise the value of f(X) + g(X).

We will denote this minimum by λ. A solution achieving the minimum is called optimal.
In case of 0 < λ < ∞, we will also be looking for all α-optimal solutions (for α ≥ 1) to
the problem, i.e. solutions X such that f(X) + g(X) ≤ αλ. As shown in Subsection 3.2,
Theorem 26, this can be done in polynomial time (for a fixed α).

Uppman [24] used the term “Generalised Min-Cut problem” for a special case of Defini-
tion 16, in which the superadditive function f is given explicitly as a weighted sum of soft
NANDs (cf. Example 14).

Our reduction from the surjective VCSP over a PDS language to the GMC problem is
based on the following notion.

MFCS 2017

4:8 The Complexity of Boolean Surjective General-Valued CSPs

I Definition 17. Let γ be an r-ary weighted relation on domain D = {0, 1}. We will associate
any r-tuple x ∈ Dr with the set X = {i ∈ [r] | xi = 1} and use them interchangeably.

Let J be an instance of the GMC problem on vertices [r] with J(X) denoting the objective
value for any x ∈ Dr (including the all-zero and all-one tuples, which correspond to non-
solutions ∅ and [r]). For any α ≥ 1, we say that J α-approximates γ if J(X) ≤ γ(x) ≤ α·J(X)
for all x ∈ Dr.

I Lemma 18. Let γ be a weighted relation such that Feas(γ) is a downset, Opt(γ) is a PDS,
and γ(x) = 0 for x ∈ Opt(γ). There is a constant α and an instance of the GMC problem
that α-approximates γ.

Proof. We define a set function fFeas on [r] as fFeas(X) = 0 if x ∈ Feas(γ) and fFeas(X) =∞
otherwise. Because Feas(γ) is a downset, fFeas is superadditive.

By Observation 7, we can write Opt(γ) as a sum of a downset ρ on coordinates A ⊆ [r]
and equalities xi = xj for (i, j) ∈ E with |A|+ |E| = r. Let x|A denote the projection of an
r-tuple x to coordinates A in the same order as in ρ. We define a set function fOpt on [r] as
fOpt(X) = 0 if x|A ∈ ρ and fOpt(X) = |X ∩ A| otherwise. Because ρ is a downset, fOpt is
superadditive.

We define a GMC instance J ′ on vertices [r], unit-weight edges E, and the superadditive
set function fFeas + fOpt. By the construction, it holds

J ′(X) =∞ ⇐⇒ fFeas(X) =∞ ⇐⇒ x 6∈ Feas(γ) ⇐⇒ γ(x) =∞ (1)

and

J ′(X) = 0 ⇐⇒ fFeas(X) = fOpt(X) = 0 ∧ |{i, j} ∩X| 6= 1 for all (i, j) ∈ E (2)
⇐⇒ x ∈ Feas(γ) ∧ x|A ∈ ρ ∧ xi = xj for all (i, j) ∈ E (3)
⇐⇒ x ∈ Opt(γ) ⇐⇒ γ(x) = 0 . (4)

Moreover, for any X such that 0 < J ′(X) <∞ it holds 1 ≤ J ′(X) ≤ r.
If γ is crisp then the instance J ′ 1-approximates γ; otherwise let δmin, δmax denote the

minimum and maximum of {γ(x) | 0 < γ(x) <∞}. We scale the weights of the edges and
the superadditive function of J ′ by a factor of δmin/r to obtain an instance J such that
J(X) ≤ γ(x) for all X. Setting α = r · δmax/δmin then gives γ(x) ≤ α · J(X) for all X. J

Finally, we state the reduction.

I Theorem 19. Let Γ be a Boolean valued constraint language. If Γ is PDS, then it is
s-tractable.

Proof. Let Γ′ ⊆ Γ be a finite language. The feasibility relation Feas(γ) for any γ ∈ Γ′ is a
PDS and hence, by Observation 7, a sum of a downset and binary equality relations. A crisp
equality constraint ρ=(x, y) in an instance can be omitted after identifying the variables x
and y. Therefore, we will assume that Feas(γ) is a downset. Moreover, we will assume that
the minimum value assigned by γ is 0, as changing values γ(x) by the same constant for all
x ∈ Dar(γ) affects all assignments equally.

By Lemma 18, for any γ ∈ Γ′, there is a constant αγ and a GMC instance Jγ that
αγ-approximates γ. Let α be the smallest integer such that α ≥ αγ for all γ ∈ Γ′.

Given a VCSPs(Γ′) instance I with an objective function φI(x1, . . . , xn) =
∑q
i=1 wi ·γi(xi),

we construct a GMC instance J that α-approximates φI . For i ∈ [q], we relabel the vertices
of Jγi to match the variables in the scope xi of the ith constraint (i.e. vertex j is relabelled

P. Fulla and S. Živný 4:9

to xij) and identify vertices in case of repeated variables. We also scale both the weights of
the edges of Jγi and the superadditive function by wi. The instance J is obtained by adding
up the GMC instances Jγi for all i ∈ [q].

Let x ∈ Dn denote a surjective assignment minimising φI and y ∈ Dn an optimal solution
to J with J(Y) = λ. Because J α-approximates φI , it holds

λ ≤ J(X) ≤ φI(x) ≤ φI(y) ≤ α · J(Y) = αλ , (5)

and hence x is an α-optimal solution to J . By Lemma 20 in Subsection 3.2, we can determine
whether λ = 0, in which case any optimal solution to J is also optimal for φI ; and whether
λ =∞. If 0 < λ <∞, we find all α-optimal solutions by Theorem 26 in Subsection 3.2. J

3.2 Tractability of the Generalised Min-Cut problem
Proofs of Lemmas 20, 21, and 23 can be found in the full version of the paper [14].

I Lemma 20. There is a polynomial-time algorithm that, given an instance of the GMC
problem, either finds a solution X with f(X) + g(X) = 0, or determines that λ = ∞, or
determines that 0 < λ <∞.

In view of Lemma 20, we can assume that 0 < λ <∞. Our goal is to show that, for a
given α ≥ 1, all α-optimal solutions to a GMC instance can be found in polynomial time.
This will be proved in Theorem 26; before that we need to prove several auxiliary lemmas on
properties of the MC and GMC problems.

I Lemma 21. For any instance J of the GMC problem on a graph G = (V,E) and any
non-empty set V ′ ⊆ V , there is an instance J ′ on the induced subgraph G[V ′] that preserves
the objective value of all solutions X (V ′. In particular, any α-optimal solution X of J
such that X (V ′ is α-optimal for J ′ as well.

I Lemma 22. Let X be an optimal solution to an instance of the GMC problem over vertices
V with λ < ∞, and Y a minimal optimal solution to the underlying MC problem. Then
X ⊆ Y , X ⊆ V \ Y , or X is an optimal solution to the underlying MC problem.

Proof. Assume that X 6⊆ Y and X 6⊆ V \ Y . If Y ⊆ X, we have f(Y) ≤ f(X) as f is
increasing, and hence f(Y) + g(Y) ≤ f(X) + g(X) < ∞. Therefore, Y is optimal for the
GMC problem and X is optimal for the MC problem. In the rest, we assume that Y 6⊆ X.

By the posimodularity of g we have g(X) + g(Y) ≥ g(X \ Y) + g(Y \X). Because Y \X
is a proper non-empty subset of Y , it holds g(Y \X) > g(Y), and hence g(X) > g(X \ Y).
But then f(X) + g(X) > f(X \ Y) + g(X \ Y) as ∞ > f(X) ≥ f(X \ Y). Set X \ Y is
non-empty, and therefore contradicts the optimality of X. J

The following lemma relates the number of optimal solutions and the number of minimal
optimal solutions to the MC problem. Note that this bound is tight for (unweighted) paths
and cycles with at most one path attached to each vertex.

I Lemma 23. For any instance of the MC problem on a connected graph with n vertices
and p minimal optimal solutions, there are at most p(p− 1) + 2(n− p) optimal solutions.

I Lemma 24. For any instance of the GMC problem on n vertices with 0 < λ < ∞, the
number of optimal solutions is at most n(n− 1). There is an algorithm that finds all of them
in polynomial time.

MFCS 2017

4:10 The Complexity of Boolean Surjective General-Valued CSPs

Note that the bound of n(n− 1) optimal solutions precisely matches the known upper
bound of

(
n
2
)
for the number of minimum cuts [17]; the bound is tight for cycles.

Proof. Let t(n) denote the maximum number of optimal solutions for such instances on n
vertices. We prove the bound by induction on n. If n = 1, there are no solutions and hence
t(1) = 0. For n ≥ 2, let Y1, . . . , Yp be the minimal optimal solutions to the underlying MC
problem. As there exists at least one minimum cut and the minimal optimal solutions are all
disjoint, it holds 2 ≤ p ≤ n.

Suppose that the minimal optimal solutions cover all vertices, i.e.
⋃
Yi = V . By Lemma 22,

any optimal solution to the GMC problem is either a proper subset of some Yi or an optimal
solution to the underlying MC problem. Restricting solutions to a proper subset of Yi is by
Lemma 21 equivalent to considering a GMC problem instance on vertices Yi, and hence the
number of such optimal solutions is bounded by t(|Yi|) ≤ |Yi| · (|Yi| − 1). Note that the sum∑
|Yi| · (|Yi| − 1) is maximised when p− 1 of the sets Yi are singletons and the size of the

remaining one equals n− p+ 1. If the graph is connected then, by Lemma 23, there are at
most p(p − 1) + 2(n − p) optimal solutions to the underlying MC problem. Adding these
upper bounds we get

p(p− 1) + 2(n− p) +
p∑
i=1
|Yi| · (|Yi| − 1) (6)

≤ p(p− 1) + 2(n− p) + (p− 1) · 1 · 0 + (n− p+ 1) · (n− p) (7)
= n(n− 1)− 2(p− 2) · (n− p) (8)
≤ n(n− 1) . (9)

If the graph is disconnected, the sets Y1, . . . , Yp are precisely its connected components.
The optimal solutions to the underlying MC problem are precisely unions of connected
components (with the exception of ∅ and V), which means that there can be exponentially
many of them. However, only the sets Y1, . . . , Yp themselves can be optimal solutions to the
GMC problem: We have 0 < λ ≤ f(Yi) + g(Yi) = f(Yi). Because f is superadditive, it holds
f(Yi1 ∪ · · · ∪ Yik) ≥ f(Yi1) + · · ·+ f(Yik) ≥ kλ for any distinct i1, . . . , ik, and hence no union
of two or more connected components can be an optimal solution to the GMC problem. This
gives us an upper bound of p ≤ p(p− 1) + 2(n− p), and the rest follows as in the previous
case.

Finally, suppose that
⋃
Yi 6= V , and hence the graph is connected. This case can be

handled similarly as for
⋃
Yi = V . (The full version of the paper [14] includes a complete

proof.)
Using a procedure generating all minimum cuts [25], it is straightforward to turn the

above proof into a recursive algorithm that finds all optimal solutions in polynomial time. J

I Lemma 25. Let α, β ≥ 1. Let X be an α-optimal solution to an instance of the GMC
problem over vertices V with 0 < λ <∞, and Y an optimal solution to the underlying MC
problem. If g(Y) < λ/β, then

(f(X \ Y) + g(X \ Y)) + (f(X ∩ Y) + g(X ∩ Y)) <
(
α+ 2

β

)
λ ; (10)

if g(Y) ≥ λ/β, then X is an αβ-optimal solution to the underlying MC problem.

Proof. If g(Y) ≥ λ/β, it holds g(X) ≤ f(X) + g(X) ≤ αλ ≤ αβ · g(Y), and hence X is an
αβ-optimal solution to the underlying MC problem. In the rest we assume that g(Y) < λ/β.

P. Fulla and S. Živný 4:11

Because g is posimodular, we have

g(X) + g(Y) ≥ g(X \ Y) + g(Y \X) (11)
g(Y) + g(Y \X) ≥ g(X ∩ Y) + g(∅) , (12)

and hence

g(X) + 2g(Y) ≥ g(X \ Y) + g(X ∩ Y) . (13)

By superadditivity of f , it holds f(X) ≥ f(X \ Y) + f(X ∩ Y). The claim then follows from
the fact that f(X) + g(X) + 2g(Y) < (α+ 2/β)λ. J

Finally, we prove that α-optimal solutions to the GMC problem can be found in polynomial
time.

I Theorem 26. For any instance of the GMC problem on n vertices with 0 < λ <∞ and
α ∈ Z≥1, the number of α-optimal solutions is at most n20α−15. There is an algorithm that
finds all of them in polynomial time.

Note that for a cycle on n vertices, the number of α-optimal solutions to the MC problem
is Θ(n2α), and thus the exponent in our bound is asymptotically tight in α.

Proof. Let β ∈ Z≥3 be a parameter. Throughout the proof, we relax the integrality restriction
on α and require only that αβ is an integer. For α = 1, the claim follows from Lemma 24,
therefore we assume α ≥ 1 + 1/β in the rest of the proof.

Define `(x) = 2(β+1)
β−2 · (βx− 3). We will prove that the number of α-optimal solutions

is at most n`(α); taking β = 4 then gives the claimed bound. Function ` was chosen as a
slowest growing function satisfying the following properties required in this proof: It holds
`(x) + `(y) ≤ `(x+ y − 3/β) for any x, y, and `(x) ≥ 2βx for any x ≥ 1 + 1/β.

We prove the bound by induction on n+αβ. As it trivially holds for n ≤ 2, we will assume
n ≥ 3 in the rest of the proof. Let Y be an optimal solution to the underlying MC problem
with k = |Y | ≤ n/2. If g(Y) ≥ λ/β then, by Lemma 25, any α-optimal solution to the GMC
problem is an αβ-optimal solution to the underlying MC problem. Because g(Y) ≥ λ/β > 0,
the graph is connected, and hence there are at most 22αβ(n

2αβ
)
≤ n2αβ ≤ n`(α) such solutions

by [17]. (In detail, [17, Theorem 6.2] shows that the number of αβ-optimal cuts in an n-vertex
graph is 22αβ−1(n

2αβ
)
, and every cut corresponds to two solutions.)

From now on we assume that g(Y) < λ/β and hence inequality (10) holds. Upper bounds
in this case may be quite loose; in particular, we will use the following inequalities:

(k/n)`(α) ≤ (k/n)`(1+1/β) = (k/n)2(β+1) ≤ (k/n)8 ≤ (k/n)(1/2)7 = k/128n (14)
(1/n)2β ≤ (1/n)6 ≤ (1/n)(1/3)5 < 1/128n . (15)

Consider any α-optimal solution to the GMC problem X.
If X (Y then, by Lemma 21, X is an α-optimal solution to an instance on vertices Y .

By the induction hypothesis, there are at most k`(α) ≤ (k/128n) · n`(α) such solutions.
Similarly, if X (V \ Y , then X is an α-optimal solution to an instance on vertices V \ Y ,

and there are at most (n− k)`(α) = (1− k/n)`(α) · n`(α) ≤ (1− k/n) · n`(α) such solutions.
If Y (X, then X \ Y is an (α − 1 + 2/β)-optimal solution on vertices V \ Y by (10)

and the fact that f(X ∩ Y) + g(X ∩ Y) ≥ λ. Similarly, if V \ Y (X, then X ∩ Y is
an (α − 1 + 2/β)-optimal solution on vertices Y . In either case, we bound the number of
such solutions depending on the value of α: For α < 2− 2/β, there are trivially none; for

MFCS 2017

4:12 The Complexity of Boolean Surjective General-Valued CSPs

α = 2 − 2/β, Lemma 24 gives a bound of n(n − 1) ≤ n`(α)−2β ; and for α > 2 − 2/β we
get an upper bound of n`(α−1+2/β) ≤ n`(α)−2β by the induction hypothesis. The number of
solutions is thus at most n`(α)−2β ≤ (1/128n) · n`(α) for any α.

Finally, we consider X such that ∅ (X \ Y (V \ Y and ∅ (X ∩ Y (Y , i.e. X \ Y and
X ∩ Y are solutions on vertices V \ Y and Y respectively. Let i be the integer for which(

1 + i

β

)
λ ≤ f(X ∩ Y) + g(X ∩ Y) <

(
1 + i+ 1

β

)
λ . (16)

Then, by (10), it holds f(X \ Y) + g(X \ Y) < (α− 1− (i− 2)/β)λ. Therefore, X ∩ Y is a
(1 + (i+ 1)/β)-optimal solution on vertices Y and X \ Y is an (α− 1− (i− 2)/β)-optimal
solution on vertices V \ Y . Because 0 ≤ i ≤ (α− 2)β + 1, we can bound the number of such
solutions by the induction hypothesis as at most

k`(1+ i+1
β) · (n− k)`(α−1− i−2

β) ≤
(
k

n

)`(1+ i+1
β)
· n`(1+ i+1

β)+`(α−1− i−2
β) (17)

≤
(
k

n

)2(β+1)
· 1

2i · n
`(α) , (18)

which is at most 2 · (k/128n) · n`(α) in total for all i.
By adding up the bounds we get that the number of α-optimal solutions is at most n`(α).

A polynomial-time algorithm that finds the α-optimal solutions follows from the above proof
using a procedure generating all αβ-optimal cuts [25]. J

4 Conclusions

While the complexity of (valued) constraint languages is, as in this paper, studied mostly for
finite languages, all known results also hold for languages of infinite size. We now show that
this is not the case for Boolean surjective VCSPs.

I Example 27. We give an example of an infinite Boolean valued constraint language Γ that
is a PDS language but VCSPs(Γ) is NP-hard.

Let D = {0, 1}. For any w ∈ Z≥1, we define γw : D3 → Q by γ(0, 0, 0) = 0, γ(·, ·, 0) = w,
γ(x, y, 1) = 2 if x = y and γ(x, y, 1) = 1 if x 6= y. Note that Feas(γw) = D3 and
Opt(γw) = {(0, 0, 0)} are PDS relations. Let Γ = {γw | w ∈ Z≥1}.

Given an instance G = (V,E) of the Max-Cut problem with V = {x1, . . . , xn} and
no isolated vertices, we choose a value w > 2|E| and construct a VCSPs(Γ) instance
I = (V ∪ {z}, D, φI) with φI(x1, . . . , xn, z) =

∑
{i,j}∈E,i<j γw(xi, xj , z). Cuts in G are in

one-to-one correspondence with assignments to I satisfying z = 1. In particular, a cut of
value k corresponds to an assignment to I of value k + 2(|E| − k) = 2|E| − k. Moreover, any
surjective assignment that assigns label 0 to variable z is of value at least w > 2|E| ≥ 2|E|−k.
Thus, solving I amounts to solving Max-Cut in G.

An obvious open problem is to consider surjective VCSPs on a three-element domain. A
complexity classification is known for {0,∞}-valued languages [5] and Q-valued languages [15]
(the latter generalises the {0, 1}-valued case obtained in [16]). In fact [18] implies a dichotomy
for Q-valued languages on a three-element domain. However, all these results depend on the
notion of core and the presence of constants in the language, and thus it is unclear how to
use them to obtain a complexity classification in the surjective setting. Moreover, one special
case of the CSP on a three-element domain is the 3-No-Rainbow-Colouring problem [4],
whose complexity status is open.

P. Fulla and S. Živný 4:13

References
1 Libor Barto. Constraint satisfaction problem and universal algebra. ACM SIGLOG News,

1(2):14–24, 2014. doi:10.1145/2677161.2677165.
2 Libor Barto and Marcin Kozik. Constraint Satisfaction Problems Solvable by Local Con-

sistency Methods. Journal of the ACM, 61(1), 2014. Article No. 3. doi:10.1145/2556646.
3 Libor Barto, Andrei Krokhin, and Ross Willard. Polymorphisms, and how to use them.

In Andrei Krokhin and Stanislav Živný, editors, The Constraint Satisfaction Problem:
Complexity and Approximability, volume 7 of Dagstuhl Follow-Ups, pages 1–44. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2017. doi:10.4230/DFU.
Vol7.15301.1.

4 Manuel Bodirsky, Jan Kára, and Barnaby Martin. The complexity of surjective homo-
morphism problems - a survey. Discrete Applied Mathematics, 160(12):1680–1690, 2012.
doi:10.1016/j.dam.2012.03.029.

5 Andrei Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-element
set. Journal of the ACM, 53(1):66–120, 2006. doi:10.1145/1120582.1120584.

6 Andrei Bulatov, Andrei Krokhin, and Peter Jeavons. Classifying the Complexity of
Constraints using Finite Algebras. SIAM Journal on Computing, 34(3):720–742, 2005.
doi:10.1137/S0097539700376676.

7 Hubie Chen. An algebraic hardness criterion for surjective constraint satisfaction. Algebra
universalis, 72(4):393–401, 2014. doi:10.1007/s00012-014-0308-x.

8 David A. Cohen, Martin C. Cooper, Peter G. Jeavons, and Andrei A. Krokhin. The
Complexity of Soft Constraint Satisfaction. Artificial Intelligence, 170(11):983–1016, 2006.
doi:10.1016/j.artint.2006.04.002.

9 Nadia Creignou. A dichotomy theorem for maximum generalized satisfiability problems.
Journal of Computer and System Sciences, 51(3):511–522, 1995. doi:10.1006/jcss.1995.
1087.

10 Nadia Creignou and Jean-Jacques Hébrard. On generating all solutions of generalized
satisfiability problems. ITA, 31(6):499–511, 1997.

11 Tomás Feder and Moshe Y. Vardi. The Computational Structure of Monotone Monadic
SNP and Constraint Satisfaction: A Study through Datalog and Group Theory. SIAM
Journal on Computing, 28(1):57–104, 1998. doi:10.1137/S0097539794266766.

12 Jiří Fiala and Jan Kratochvíl. Locally constrained graph homomorphisms - structure,
complexity, and applications. Computer Science Review, 2(2):97–111, 2008. doi:10.1016/
j.cosrev.2008.06.001.

13 Jiří Fiala and Daniël Paulusma. A complete complexity classification of the role assignment
problem. Theoretical Computer Science, 349(1):67–81, 2005. doi:10.1016/j.tcs.2005.09.
029.

14 Peter Fulla and Stanislav Živný. The complexity of Boolean surjective general-valued CSPs.
CoRR, abs/1702.04679, 2017. URL: http://arxiv.org/abs/1702.04679.

15 Anna Huber, Andrei Krokhin, and Robert Powell. Skew bisubmodularity and valued CSPs.
SIAM Journal on Computing, 43(3):1064–1084, 2014. doi:10.1137/120893549.

16 Peter Jonsson, Mikael Klasson, and Andrei A. Krokhin. The approximability of three-
valued MAX CSP. SIAM Journal on Computing, 35(6):1329–1349, 2006. doi:10.1137/
S009753970444644X.

17 David R. Karger. Global Min-cuts in RNC, and Other Ramifications of a Simple Min-
Cut Algorithm. In Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’93), pages 21–30, 1993.

18 Vladimir Kolmogorov, Andrei A. Krokhin, and Michal Rolínek. The complexity of general-
valued CSPs. In Proceedings of the 56th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’15). IEEE Computer Society, 2015.

MFCS 2017

http://dx.doi.org/10.1145/2677161.2677165
http://dx.doi.org/10.1145/2556646
http://dx.doi.org/10.4230/DFU.Vol7.15301.1
http://dx.doi.org/10.4230/DFU.Vol7.15301.1
http://dx.doi.org/10.1016/j.dam.2012.03.029
http://dx.doi.org/10.1145/1120582.1120584
http://dx.doi.org/10.1137/S0097539700376676
http://dx.doi.org/10.1007/s00012-014-0308-x
http://dx.doi.org/10.1016/j.artint.2006.04.002
http://dx.doi.org/10.1006/jcss.1995.1087
http://dx.doi.org/10.1006/jcss.1995.1087
http://dx.doi.org/10.1137/S0097539794266766
http://dx.doi.org/10.1016/j.cosrev.2008.06.001
http://dx.doi.org/10.1016/j.cosrev.2008.06.001
http://dx.doi.org/10.1016/j.tcs.2005.09.029
http://dx.doi.org/10.1016/j.tcs.2005.09.029
http://arxiv.org/abs/1702.04679
http://dx.doi.org/10.1137/120893549
http://dx.doi.org/10.1137/S009753970444644X
http://dx.doi.org/10.1137/S009753970444644X

4:14 The Complexity of Boolean Surjective General-Valued CSPs

19 Marcin Kozik and Joanna Ochremiak. Algebraic properties of valued constraint satisfaction
problem. In Proceedings of the 42nd International Colloquium on Automata, Languages
and Programming (ICALP’15), volume 9134 of Lecture Notes in Computer Science, pages
846–858. Springer, 2015. doi:10.1007/978-3-662-47672-7_69.

20 Barnaby Martin and Daniël Paulusma. The computational complexity of disconnected
cut and 2K2-partition. Journal of Combinatorial Theory, Series B, 111:17–37, 2015. doi:
10.1016/j.jctb.2014.09.002.

21 Thomas J. Schaefer. The Complexity of Satisfiability Problems. In Proceedings of the 10th
Annual ACM Symposium on Theory of Computing (STOC’78), pages 216–226. ACM, 1978.
doi:10.1145/800133.804350.

22 Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, volume 24 of
Algorithms and Combinatorics. Springer, 2003.

23 Mechthild Stoer and Frank Wagner. A simple min-cut algorithm. Journal of the ACM,
44(4):585–591, 1997. doi:10.1145/263867.263872.

24 Hannes Uppman. Max-Sur-CSP on Two Elements. In Proceedings of the 18th In-
ternational Conference on Principles and Practice of Constraint Programming (CP’12),
volume 7514 of Lecture Notes in Computer Science, pages 38–54. Springer, 2012. doi:
10.1007/978-3-642-33558-7_6.

25 Vijay V. Vazirani and Mihalis Yannakakis. Suboptimal Cuts: Their Enumeration, Weight
and Number (Extended Abstract). In Proceedings of the 19th International Colloquium
on Automata, Languages and Programming (ICALP’92), pages 366–377. Springer-Verlag,
1992. URL: http://dl.acm.org/citation.cfm?id=646246.684856.

26 Narayan Vikas. Algorithms for partition of some class of graphs under compac-
tion and vertex-compaction. Algorithmica, 67(2):180–206, 2013. doi:10.1007/
s00453-012-9720-9.

http://dx.doi.org/10.1007/978-3-662-47672-7_69
http://dx.doi.org/10.1016/j.jctb.2014.09.002
http://dx.doi.org/10.1016/j.jctb.2014.09.002
http://dx.doi.org/10.1145/800133.804350
http://dx.doi.org/10.1145/263867.263872
http://dx.doi.org/10.1007/978-3-642-33558-7_6
http://dx.doi.org/10.1007/978-3-642-33558-7_6
http://dl.acm.org/citation.cfm?id=646246.684856
http://dx.doi.org/10.1007/s00453-012-9720-9
http://dx.doi.org/10.1007/s00453-012-9720-9

On the Expressive Power of Quasiperiodic SFT∗

Bruno Durand1 and Andrei Romashchenko2

1 Univ. Montpellier & LIRMM, Montpellier, France
2 CNRS, Paris, France & LIRMM, Montpellier, France

on leave from IITP RAS, Moscow, Russia

Abstract
In this paper we study the shifts, which are the shift-invariant and topologically closed sets of
configurations over a finite alphabet in Zd. The minimal shifts are those shifts in which all
configurations contain exactly the same patterns. Two classes of shifts play a prominent role in
symbolic dynamics, in language theory and in the theory of computability: the shifts of finite
type (obtained by forbidding a finite number of finite patterns) and the effective shifts (obtained
by forbidding a computably enumerable set of finite patterns). We prove that every effective
minimal shift can be represented as a factor of a projective subdynamics on a minimal shift of
finite type in a bigger (by 1) dimension. This result transfers to the class of minimal shifts a
theorem by M. Hochman known for the class of all effective shifts and thus answers an open
question by E. Jeandel. We prove a similar result for quasiperiodic shifts and also show that
there exists a quasiperiodic shift of finite type for which Kolmogorov complexity of all patterns
of size n× n is Ω(n).

1998 ACM Subject Classification F.4.1 Computability theory, G.2.0 Discrete mathematics,
G.2.1 Combinatorics

Keywords and phrases minimal SFT, tilings, quasiperiodicity

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.5

1 Introduction

The study of symbolic dynamics was initially motivated as a discretization of classic dynamical
systems, [9]. Later, the focus of attention in this area shifted towards the questions related
to computability theory. The central notion of symbolic dynamics is a shift (a.k.a. subshift),
which is a set of configurations in Zd over a finite alphabet, defined by a set of forbidden
patterns. Two major notions – two classes of shifts – play now a crucial role in symbolic
dynamics: shifts of finite type (SFT, the shift defined by a finite set of forbidden patterns)
and effective shifts (a.k.a. effectively closed – shifts with an enumerable set of forbidden
patterns). These classes are distinct: every SFT is effective, but in general the reverse
implication does not hold. However, the differences between these classes is surprisingly
subtle. It is known that every effective shift can be simulated in some sense by an SFT of
higher dimension. More precisely, every effective shift in Zd can be represented as a factor of
the projective subdynamics of an SFT of dimension increased by 1, see [10, 6, 1].

Usually, the proofs of computability results in symbolic dynamics involve sophisticated
algorithmic gadgets embedded in dynamical systems. The resulting constructions are typically
intricate and somewhat artificial. So, even if the shifts (effective or SFT) in general are proven
to have a certain algorithmic property, the known proof may be inappropriate for “natural”

∗ Supported by ANR-15-CE40-0016-01 RaCAF grant

© Bruno Durand and Andrei Romashchenko;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 5; pp. 5:1–5:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

5:2 On the Expressive Power of Quasiperiodic SFT

dynamical systems. Thus, it is interesting to understand the limits of the known algorithmic
techniques and find out whether the remarkable properties of algorithmic complexity can be
extended to “simple” and mathematically “natural” types of shifts.

One of the classic natural types of dynamical systems is the class of minimal shifts.
Minimal shifts are those containing no proper shift, or equivalently the shifts where all
configurations have exactly the same patterns. The role minimal shifts play in symbolic
dynamics is similar to the role simple groups play in group theory (in particular every
nonempty shift contains a nonempty minimal shift, see a discussion in [4]). Notice that all
minimal shifts are quasiperiodic (but the converse is not true). Intuitively it seems that
the structure of a minimal shift must be simple (in terms of dynamical systems). Besides,
minimal shifts cannot be “too complex” in algorithmic terms. Indeed, it is known that every
effective minimal shift has a computable language of patterns, and it contains at least one
computable configuration [10] (which is in general not the case for effective shifts and even for
SFT). Nevertheless, minimal shifts can have quite nontrivial algorithmic properties [13, 11].

We have mentioned above that every effective shift S can be represented as a factor of a
projective subdynamics of an SFT S ′ (of higher dimension). In the previously known proofs
of this result [10, 6, 1], even if S is minimal, the structure of the corresponding SFT S ′ (that
simulates by its projective subdynamics the given S) can be very sophisticated (and far from
being minimal). So, a natural question arises (E. Jeandel, [12]): is it true that every effective
minimal (or quasiperiodic) shift can be represented as a factor of a projective subdynamics
on a minimal (respectively, quasiperiodic) SFT of higher dimension? In this paper we give a
positive answer to that questions.

The full proof of the main result of this paper is rather cumbersome for the following
reason: we use the technique of self-simulating tilings (e.g., [6, 7, 16]) combined with some
combinatorial lemmas on quasiperiodic configurations. Unfortunately, there is no clean
separation between the generic technique of self-simulating tilings and the supplementary
features embedded in this type of tilings, so we cannot use the (previously known) technique
of self-simulation as a “black box”. We have to re-explain the core techniques of fixed-
point programming embedded in tilings and adjust the supplementary features within the
construction. While explaining the proofs, we have to balance clarity with formality, and
given the usual space limits of the conference paper we have to sketch some standard parts
of the proof. An extended version of this paper is published on arXiv:1705.01876.

1.1 Notation and basic definitions
Let Σ be a finite set (an alphabet). Fix an integer d > 0. A Σ-configuration is a mapping
f : Zd → Σ. A Zd-shift (or just a shift if d is clear from the context) is a set of configuration
that is (i) shift-invariant (with respect to the translations along each coordinate axis), and
(ii) closed in Cantor’s topology.

A pattern is a mapping from a finite subset in Zd to Σ (a coloring of a finite set of Zd).
Every shift can be defined by a set of forbidden finite patterns F (a configuration belongs to
the shift if and only if it does not contain any pattern from F). A shift is called effective (or
effectively closed) if it can be defined by a computably enumerable set of forbidden patterns.
A shift is called a shift of finite type (SFT), if it can be defined by a finite set of forbidden
patterns.

A special class of a 2-dimensional SFT is defined in terms of Wang tiles. In this case we
interpret the alphabet Σ as a set of tiles – unite squares with colored sides, assuming that all
colors belong to some finite set C (we assign one color to each side of a tile, so technically Σ
is a subset of C4). A (valid) tiling is a set of all configurations where every two neighboring

B. Durand and A. Romashchenko 5:3

tiles match, i.e., share the same color on the adjacent sides. Wang tiles are powerful enough
to simulate any SFT in a very strong sense: for each SFT S there exists a set of Wang tiles
τ such that the set of all τ -tilings is isomorphic to S. In this paper we focus on tilings since
Wang tiles perfectly suit the technique of self-simulation.

A shift S (in the full shift ΣZd) can be interpreted as a dynamical system. There are d
shifts along each of the coordinates, and each of these shifts map S to itself. So, the group
Zd naturally acts on S.

For any shift S on Zd and for any k-dimensional sublattice L in Zd, the L-projective
subdynamics SL of S is the set of configurations of S restricted on L. The L-projective
subdynamics of a Zd-shift can be understood as a Zk-shift (notice that L naturally acts on
SL). In particular, for every d′ < d we have a standard Zd′-projective subdynamics on the
shift S generated by the lattice spanned on the first d′ coordinate axis. In the proofs of
Theorems 1-2 we deal with the standard Z(d−1)-projective subdynamics on Zd-shifts.

A configuration ω is called recurrent if every pattern that appears in ω at least once, must
then appear in this configuration infinitely often. A configuration ω is called quasiperiodic (or
uniformly recurrent) if every pattern P that appears in ω at least once, must appear in every
pattern Q large enough in ω. Notice that every periodic configuration is also quasiperiodic.
It is easy to see that if a shift S is minimal, then every ω ∈ S is quasiperiodic.

For a quasiperiodic configuration ω, its function of a quasiperiodicity is a mapping
ϕ : N → N such that every finite pattern of diameter n either never appears in ω, or it
appears in every pattern of size ϕ(n) in ω, see [4]. Similarly, a shift S has a function of
quasiperiodicity ϕ, if ϕ is a function of a quasiperiodicity for every configuration in S.

If a shift S is minimal, then all configurations in S have exactly the same finite patterns.
For every minimal shift S, the function of quasiperiodicity is finite (for every n) and even
computable. Moreover, for an effective minimal shift, the set of all finite patterns (that can
appear in any configuration) is computable, see [10, 3]. From this fact it follows that every
effective and minimal shift contains a computable configuration.

1.2 The main results
Our first theorem claims that every effective quasiperiodic Zd-shift can be simulated by a
quasiperiodic SFT in Zd+1.

I Theorem 1. Let A be an effective quasiperiodic Zd-shift over some alphabet ΣA. Then
there exists a quasiperiodic SFT B (over another alphabet ΣB) of dimension d+ 1 such that
A is isomorphic to a factor of a d-dimensional projective subdynamics on B.

A similar result holds for effective minimal shifts:

I Theorem 2. For every effective minimal Zd-shift A there exists a minimal SFT B in Zd+1

such that A is isomorphic to a factor of a d-dimensional projective subdynamics on B.

Theorem 1 implies the following somewhat surprising corollary (a quasiperiodic Z2-SFT can
have highly “complex” languages of patterns):

I Corollary 3. There exists a quasiperiodic SFT A of dimension 2 such that Kolmogorov
complexity of every (N ×N)-pattern in every configuration of A is Ω(N).

I Remark. A standalone pattern of size N ×N over an alphabet Σ (with at least two letters)
can have a Kolmogorov complexity up to Θ(N2). However, this density of information cannot
be enforced by local rules, because in every SFT in Z2 there exists a configuration such that
Kolmogorov complexity of all N × N -patterns is bounded by O(N), [5]. Thus, the lower
bound Ω(N) in Corollary 3 is optimal in the class of all SFT.

MFCS 2017

5:4 On the Expressive Power of Quasiperiodic SFT

Universal
Turing
machine

program

Figure 1 The structure of a macro-tile.

I Remark. Every effective (effectively-closed) minimal shift A is computable (given a pattern,
we can algorithmically decide whether it belongs to the configurations of the shift). Patterns
of high Kolmogorov complexity cannot be found algorithmically. So Corollary 3 cannot be
extended to the class of minimal SFT.

To simplify notation and make the argument more visual, in what follows we focus on
the case d = 1. The proofs extend to any d > 1 in a straightforward way, mutatis mutandis.

2 The general framework of self-simulating SFT

In what follows we extensively use the technique of self-simulating tilesets from [6] (this
technique goes back to [8]). We use the idea of self-simulation to enforce a kind of self-similar
structure in a tiling. In this section we remind the reader of the principal ingredients of this
construction.

Let τ be a tileset and N > 1 be an integer. We call a τ -macro-tile an N × N square
correctly tiled by tiles from τ . Every side of a τ -macro-tile contains a sequence of N colors
(of tiles from τ); we refer to this sequence as a macro-color. A tileset τ simulates another
tileset ρ, if there exists a set of τ -macro-tiles T such that

there is one-to-one correspondence between ρ and T (the colors of two tiles from ρ match
if and only if the macro-colors of the corresponding macro-tiles from T match),
for every τ -tiling there exists a unique lattice of vertical and horizontal lines that splits
this tiling into N ×N macro-tiles from T , i.e., every τ -tiling represents a unique ρ-tiling.

For a large class of sufficiently “well-behaved” sequence of integers Nk we can construct a
family of tilesets τk (i = 0, 1, . . .) such that each τk−1 simulates the next τk with the zoom
Nk (and, therefore, τ0 simulates every τk with the zoom Lk = N1 ·N2 · · ·Nk).

If a k-level macro-tile M is a “cell” in a (k + 1)-level macro-tile M ′, we refer to M ′ as a
father of M ; we call the (k + 1)-level macro-tiles neighboring M ′ uncles of M .

In our construction each tile of τk “knows” its coordinates modulo Nk in the tiling: the
colors on the left and on the bottom sides should involve (i, j), the color on the right side
should involve (i+ 1 mod Nk, j), and the color on the top side, respectively, involves (i, j+ 1
mod Nk). So every τk-tiling can be uniquely split into blocks (macro-tiles) of size Nk ×Nk,
where the coordinates of cells range from (0, 0) in the bottom-left corner to (N − 1, N − 1) in
top-right corner. Intuitively, each tile “knows” its position in the corresponding macro-tile.

In addition to the coordinates, each tile in τk has some supplementary information encoded
in the colors on its sides (the size of the supplementary information is always bounded by
O(1)). In the middle of each side of a macro-tile we allocate sk � Nk positions where an

B. Durand and A. Romashchenko 5:5

array of sk bits represents a color of a tile from τk+1 (these sk bits are embedded in colors on
the sides of sk tiles of a macro-tile, one bit per a cell). We fix some cells in a macro-tile that
serve as “communication wires” and then require that these tiles carry the same (transferred)
bit on two sides (so the bits of “macro-colors” are transferred from the sides of macro-color
towards its central part). The central part of a macro-tile (of size, say mk ×mk, where
mk = poly(logNk)) is a computation zone; it represents a space-time diagram of a universal
Turing machine (the tape is horizontal, time goes up), see Fig. 1.

The first line of the computation zone contains the following fields of the input data:
(i) the program of a Turing machine π that verifies that a quadruple of macro-colors

correspond to one valid macro-color,
(ii) the binary expansion of the integer rank k of this macro-tile,
(iii) the bits encoding the macro-colors – the position inside the “father” macro-tile of rank

(k + 1) (two coordinates modulo Nk+1) and O(1) bits of the supplementary information
assigned to the macro-colors.

We require that the simulated computation terminates in an accepting state (if not, no
correct tiling can be formed). The simulated computation guarantees that macro-tiles of
level k are isomorphic to the tiles of τk+1. Notice that on each level k of the hierarchy we
simulate in macro-tiles a computation of one and the same Turing machine π. Only the
inputs for this machine (including the binary expansion of the rank number k) varies on
different levels of the hierarchy.

This construction of a tileset can be implemented using the standard technique of self-
referential programming, similar to the Kleene recursion theorem, as it is shown in [6]. The
construction works if the size of a macro-tile (the zoom factor Nk) is large enough. First,
we need enough space in a macro-tile to “communicate” sk bits from each macro-colors to
the computation zone; second, we need a large enough computation zone, so all accepting
computations terminate in time mk and on space mk. In what follows we assume that
Nk = 3Ck for some large enough k.

3 Embedding a bi-infinite sequence into a self-simulating tiling

In this section we adapt the technique from [6] and explain how to “encode” in a self-
simulating tiling a bi-infinite sequence, and provide to the computation zones of macro-tiles
of all ranks an access to the letters of the embedded sequences.

We are going to embed in our tiling a bi-infinite sequence x = (xi) over an alphabet Σ.
To this end we assume that each τ -tile “keeps” a letter from Σ that propagates without
change in the vertical direction. Formally speaking, a letter from Σ should be a part of the
top and bottom colors of every τ -tile (the letters assigned to both sides of a tile must be
equal to each other). We want to guarantee that a Σ-sequence can be embedded in a τ -tiling,
if and only if it belongs to some fixed effective A (so far quasiperiodicity is not assumed).

We want to “delegate” the factors of the embedded sequence to the computation zones of
macro-tiles, where these factors will be validated (that is, we will check that they do not
contain any forbidden subwords). While using tilings with growing zoom factor, we can
guarantee that the size of the computation zone of a k-rank macro-tile grows with the rank
k. So we have at our disposal the computational resources suitable to run all necessary
validation tests on the embedded sequence. It remains to organize the propagation of the
letters of the embedded sequence to the “conscious memory” (the computation zones) of
macro-tiles of all ranks. In what follows we explain how this propagation is organized.

MFCS 2017

5:6 On the Expressive Power of Quasiperiodic SFT

· · · · · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · · · · ·· · ·

· · ·

· · · · · ·

· · ·

· · · · · ·

· · ·

· · ·· · ·

Figure 2 The zone of responsibility (the grey vertical stripe) for a macro-tile (the red square) is
3 times wider than the macro-tile itself.

Zone of responsibility of macro-tiles. In our construction, a macro-tile of level k is a
square of size Lk × Lk, with Lk = N1 ·N2 · . . . ·Nk (where Ni is the zoom factor on level
i of the hierarchy of macro-tiles). We say that a k-level macro-tile is responsible for the
letters of the embedded sequence x assigned to the columns of (ground level) tiles of this
macro-tile as well as to the columns of macro-tiles of the same rank on its left and on its
right. That is, the zone of responsibility of a k-level macro-tile is a factor of length 3Lk

from the embedded sequence, see Fig. 2. (The zones of responsibility of any two horizontally
neighboring macro-tiles overlap.)

Letters assignment: The computation zone of a k-level macro-tile (of size mk ×mk) is too
small to contain all letters from its zone of responsibility. So we require that the computation
zone obtains as an input a (short enough) chunk of letters from its zone of responsibility. Let
us say, that it is a factor of length lk = log logLk from the stripe of 3Lk columns constituting
the zone of responsibility of this macro-tile. We say that this chunk is assigned to this
macro-tile.

The infinite stripe of vertically aligned k-level macro-tiles share the same zone of respons-
ibility. However, different macro-tiles in such a stripe will obtain different assigned chunks.
The choice of the assigned chunk varies from 0 to (3Lk − lk). We need to choose a position
of a factor of length lk in a word of length Lk. Let us say for certainty that for a macro-tile
M of rank k the first position of the assigned chunk (in the stripe of length 3Lk) is defined
as the vertical position of M in the bigger macro-tile of rank (k + 1) (modulo (3Lk − lk)).

I Remark. We have chosen the zoom factors Nk so that Nk+1 � 3Lk. Hence, every chunk of
length lk from a stripe of width 3Lk is assigned to some of the macro-tiles “responsible” for
these 3Lk letters. Since the zones of responsibility of neighboring k-level macro-tiles overlap
by more than lk, every finite factor of length lk in the embedded sequence x is assigned to
some k-level macro-tile (even if it involves columns of two macro-tiles of rank k).

Implementing the letters assignment by self-simulation. In the letters assignment para-
graph above we presented some requirements – how the data must be propagated from the
ground level (individual tiles) to k-level macro-tiles. Technically, for each k-level macro-tile
M we specified which chunk of the embedded sequence should be a part of the data fields on
the computation zone ofM. So far we have not explained how the assigned chunks arrive

B. Durand and A. Romashchenko 5:7

to the high-level data fields. Now, we are going to explain how to implement the desired
scheme of letter assignment in a self-simulating tiling. Technically, we append to the input
data of the computation zones of macro-tiles some supplementary data fields:
(v) the block of lk letters from the embedded sequence assigned to this macro-tile,
(vi) three blocks of bits of lk+1 letters of the embedded sequence assigned to this “father”

macro-tile, and two “uncle” macro-tiles (the left and the right neighbors of the “father”),
(vii) the coordinates of the “father” macro-tile in the “grandfather” (of rank (k + 2)).
Informally, each k-level macro-tile must check that the data in the fields (iv), (v) and (vi)
is consistent. That is, if some letters from the fields (iv) and (v) correspond to the same
vertical column (in the zone of responsibility), then these letters must be equal to each other.
Also, if a k-level macro-tile plays the role of cell in the computation zone of the (k + 1)-level
father, it should check the consistency of its (v) and (vi) with the bits displayed in father’s
computation zone. Finally, we must ensure the coherence of the fields (v) and (vi) for each
pair of neighboring k-level macro-tiles; so this data should make a part of the macro-colors.

Notice that the data from “uncles” macro-tiles is necessary to deal with the letters from
the columns that physically belong to the neighboring macro-tiles. So the consistency of
the fields (v) is imposed also on neighboring k-level macro-tiles that belong to different
(k + 1)-level fathers (the boarder line between these k-level macro-tiles is also the boarder
line between their fathers).

The computations verifying the coherence of the new fields can be performed in polynomial
time, and the required update of the construction fits the constraints on the parameter. See
a more detailed discussion on “letter delegation” in [6, Section 7].

Final remarks: testing against forbidden factors. To guarantee that the embedded se-
quence x contains no forbidden patterns, each k-level macro-tile should allocate some part
of its computation zone to enumerate (within the limits of available space and time) the
forbidden pattern, and verify that the block of lk letters assigned to this macro-tile contains
none of the found forbidden factors.

The time and space allocated to enumerating the forbidden words grow as a function of
k. To ensure that the embedded sequence contains no forbidden patterns, it is enough to
guarantee that each forbidden pattern is found by macro-tiles of high enough rank, and every
factor of the embedded sequence is compared (on some level of the hierarchy) with every
forbidden factor. Thus, we have a general construction of a 2D tiling that simulates a given,
effective 1D shift. In the next sections we explain how to make these tilings quasiperiodic in
the case when the simulated 1D shift is also quasiperiodic.

4 Combinatorial lemmas: the direct product of quasiperiodic and
periodic sequences

The technique from [6] allows to embed in a self-similar tiling a 1-dimensional sequence
and handle factors of this sequence. However, the previously known constructions cannot
guarantee minimality or even quasiperiodicity of the resulting tiling, even if the embedded
sequences have very simple combinatorial structure. To achieve the property of quasiperiod-
icity we will need some new techniques. The new parts of the argument begins with two
simple combinatorial lemmas concerning quasiperiodic sequences.

I Lemma 4. (see [2, 15]) Let x be a bi-infinite recurrent sequence, w be a finite factor in x,
and q be a positive integer number. Then there exists an integer t > 0 such that another copy
of w appears in x with a shift q · t. In other words, there exists another instance of the same

MFCS 2017

5:8 On the Expressive Power of Quasiperiodic SFT

factor w with a shift divisible by q. Moreover, if x is quasiperiodic, then the gap q · t between
neighboring appearances of w is bounded by some number L that depends on x and w (but
not on a specific instance of the factor x in the sequence).

Notation: For a configuration x (over some finite alphabet) we denote with S(x) the shift
that consists of all configurations x′ containing only patterns from x. If a shift T is minimal,
then S(x) = T for all configurations x ∈ T .

I Lemma 5. (a) Let T be an effective minimal shift. Then for every x = (xi) from T and
every periodic configuration y = (yi) the direct product x⊗y (the bi-infinite sequence of pairs
(xi, yi) for i ∈ Z) generates a minimal shift, i.e., S(x⊗ y) is minimal. (b) If in addition the
sequence x are computable, then the set of patterns in S(x⊗ y) is also computable.

I Remark. In general, different configurations x ∈ T in the product with one and the same
periodic y can result in different shifts S(x⊗ y).

Lemma 5 can be deduced from the fact that for every effective minimal shift the function
of quasiperiodicity is computable, [10], and Lemma 4.

5 Towards quasiperiodic SFT

In this section we combine the combinatorial lemmas from the previous section with the
technique of enforcing quasiperiodicity from [7], and prove our main results.

5.1 When macro-tiles are clones of each other

To show that (some) self-simulating tilings enjoy the property of quasiperiodicity, we need
a tool to prove that every pattern in a tiling has “clones” (equal patterns) in each large
enough fragment of this tiling. In our tiling every finite pattern is covered by a block of (at
most) four macro-tiles of high enough rank, so we can focus on the search for “clones” in
macro-tiles. The following lemma gives a natural characterization of the equality of two
macro-tiles in a tiling: they must have the same information in their “conscious memory”
(the data written on the tape of the Turing machine in the computation zone) and the same
information hidden in their “deep subconscious” (the fragments of the embedded 1D sequence
corresponding to the responsibility zones of these macro-tiles must be identical).

I Lemma 6. Two macro-tiles of rank k are equal to each other if and only if they (a) contain
the same bits in the fields (i) - (vi) in the input data on the computation zone, and (b) the
factors of the encoded sequence corresponding to the zones of responsibility of these macro-tiles
(in the corresponding vertical stripes of width 3Nk) are equal to each other.

Proof. Induction by the rank k. For the macro-tile of rank 1 the statement follows directly
from the construction. For a pair of macro-tiles M1 and M2 of rank (k + 1) with identical
data in the fields (i) - (vi) we observe that the corresponding “cells” in M1 and M2 (which
are macro-tiles of rank k) contain the same data in their own fields (i) - (vi), since the
communication wires of M1 and M2 carry the same information bits, their computation
zones represent exactly the same computations, etc. If the factors (of length 3Lk) from the
encoded sequences in the zones of responsibility of M1 and M2 are also equal to each other,
we can apply the inductive assumption. J

B. Durand and A. Romashchenko 5:9

5.2 Supplementary features: constraints that can be imposed on the
self-simulating tiling

The tiles involved in our self-simulating tiles set (as well as all macro-tile of each rank) can
be classified into three types:
(a) the “skeleton” tiles that keep no information except for their coordinates in the father

macro-tile; these tiles work as building blocks of the hierarchical structure;
(b) the “communication wires” that transmit the bits of macro-colors from the border line

of the macro-tile to the computation zone;
(c) the tiles of the computation zone (intended to simulate the space-time diagram of the

Universal Turing machine).
Each pattern that includes only “skeleton” tiles (or “skeleton” macro-tiles of some rank k)
reappears infinitely often in all homologous position inside all macro-tiles of higher rank.
Unfortunately, this property is not true for the patterns that involve the “communication
zone” or the “communication wires”. Thus, the general construction of a fixed-point tiling
does not imply the property of quasiperiodicity. To overcome this difficulty we need some
new technical tricks.

We can enforce the following additional properties (p1) - (p4) of a tiling with only a
minor modification of the construction:
(p1) In each macro-tile, the size of the computation zone mk is much less than the size of

the macro-tile N . In what follows we need to reserve free space in a macro-tile to insert
O(1) (some constant number) of copies of each 2× 2 pattern from the computation zone
(of this macro-tile), right above the computation zone. This requirement is easy to meet.
We assume that the size of a computation zone in a k-level macro-tile of size Nk ×Nk is
only mk = poly(logNk). So we can reserve an area of size Ω(mk) above the computation
zone, which is free of “communication wires” or any other functional gadgets (so far this
area consisted of only skeleton tiles).

(p2) We require that the tiling inside the computation zone satisfies the property of 2× 2-
determinacy. If we know all the colors on the borderline of a 2 × 2-pattern inside of
the computation zone (i.e., a tuple of 8 colors), then we can uniquely reconstruct the
4 tiles of this pattern. Again, to implement this property we do not need new ideas;
this requirement is met if we represent the space-time diagram of a Turing machine in a
natural way.

(p3) The communication channels in a macro-tile (the wires that transmit the information
from the macro-color on the borderline of this macro-tile to the bottom line of its
computation zone) must be isolated from each other. The distance between every
two wires must be greater than 2. That is, each 2 × 2-pattern can touch at most
one communication wire. Since the width of the wires in a k-level macro-tile is only
O(logNk+1), we have enough free space to lay the “communication cables”, so this
requirement is easy to satisfy.

I Remark. Property (p3) is a new feature, it was not used in [7] or any other preceding
constructions of self-simulating tilings.

(p4) In our construction the macro-colors of a k-level macro-tile are encoded by bit strings
of some length rk = O(logNk+1). We assumed that this encoding is natural in some way.
So far the choice of encoding was of small importance; we only required that some natural
manipulations with macro-colors can be implemented in polynomial time. Now, we add
another (seemingly artificial) requirement: that each of rk bits encoding the macro-colors
(on the top, bottom, left and right sides of a macro-color) was equal to 0 and to 1 for quite
a lot of macro-tiles (so the fact that some bit of some macro-color has this or that value,

MFCS 2017

5:10 On the Expressive Power of Quasiperiodic SFT

must not be unique in a tiling). Technically, we require an even stronger property: at
every position s = 1, . . . , rk and for every i = 0, . . . , Nk+1 − 1 there must exist j0, j1 such
that the s-th bit in the top, the left and the right macro-colors of the k-level macro-tile
at the positions (i, j0) and (i, j1) in the (k + 1)-level father macro-tile is equal to 0 and 1
respectively.

There are many (more or less artificial) ways to realize this constraint. For example, we
may subdivide the array of rk bits in three equal zones of size rk/3 and require that for each
macro-tile only one of these three zones contains the “meaningful” bits, and two other zones
contain only zeros and ones respectively; we require then that the “roles” of these three zones
cyclically exchange as we go upwards along a column of macro-tiles.

5.3 Enforcing quasiperiodicity
To achieve the property of quasiperiodicity, we should guarantee that every finite pattern
that appears once in a tiling, must appear in each large enough square. If a tileset τ is
self-similar, then in every τ -tiling each finite pattern can be covered by at most 4 macro-tiles
(by a 2× 2-pattern) of an appropriate rank. Thus, it is enough to show that every 2× 2-block
of macro-tiles of any rank k that appears in at least one τ -tiling, actually appears in this
tiling in every large enough square.

Case 1: skeleton tiles. For a 2 × 2-block of four “skeleton” macro-tiles of level k this is
easy. Indeed, we have exactly the same blocks with every vertical shift multiple of Lk+1 (we
have there a similar block of k-level “skeleton” macro-tiles within another macro-tile of rank
(k + 1)). A vertical shift does not change the embedded letters in the zone of responsibility,
so we can apply Lemma 6.

To find a similar block of k-level “skeleton” macro-tiles with a different abscissa coordinate,
we need a horizontal shift Q which is divisible by Lk+1 (to preserve the position in the
father macro-tile) and at the same time does not change the letters embedded in the zone of
responsibility. This is possible due to Lemma 4, if the embedded sequence is quasiperiodic.
Given a suitable horizontal shift, we can again apply Lemma 6.

Case 2: communication wires. Let us consider the case when a 2 × 2-block of k-level
macro-tiles involves a part of a communication wire. Due to the property (p3) we may
assume that only one wire is involved. The bit transmitted by this wire is either 0 or 1;
in both cases, due to the property (p4) we can find another similar 2 × 2-block of k-level
macro-tiles (at the same position within the father macro-tile of rank (k + 1) and with the
same bit included in the communication wire) in every macro-tile of level (k + 2). In this
case we need a vertical shift longer than in Case 1: we can find a duplicate of the given block
with a vertical shift of size O(Lk+2).

As in Case 1, any vertical shift does not change the letters embedded in the zone of
responsibility of the involved macro-tiles, and we can apply Lemma 6 immediately. If we are
looking for a horizontal shift, we again use quasiperiodicity of the simulated shift and apply
Lemma 4: there exists a horizontal shift that is divisible by Lk+2 and does not change the
letters embedded in the zone of responsibility. Then we again apply Lemma 6.

Case 3: computation zone. Now we consider the most difficult case: when a 2× 2-block of
k-level macro-tiles touches the computation zone. In this case we cannot obtain the property
of quasiperiodicity for free, and we have to make one more (the last one) modification of our
general construction of a self-simulating tiling.

B. Durand and A. Romashchenko 5:11

Universal
Turing
machine

program

Figure 3 Positions of the slots for patterns from the computation zone.

(i, j)

(i, j + 1)

(i, j) (i, j + 1)

(i+ 1, j)

(s, t)

(i+ 1, j) (i+ 2, j)

(i+ 2, j)

(s+ 1, t)

(i+ 2, j) (i+ 3, j)

(i+ 3, j)

(i+ 3, j + 1)

(i+ 3, j) (i+ 4, j)

(i, j + 1)

(i, j + 2)

(i, j + 1) (s, t)

(s, t)

(s, t+ 1)

(s, t) (s+ 1, t)

(s+ 1, t)

(s+ 1, t+ 1)

(s+ 1, t) (s+ 2, t)

(i+ 3, j + 1)

(i+ 3, j + 2)

(s+ 2, t) (i+ 4, j + 1)

(i, j + 2)

(i, j + 3)

(i, j + 2) (s, t+ 1)

(s, t+ 1)

(s, t+ 2)

(s, t+ 1) (s+ 1, t+ 1)

(s+ 1, t+ 1)

(s+ 1, t+ 2)

(s+ 1, t+ 1) (s+ 2, t+ 1)

(i+ 3, j + 2)

(i+ 3, j + 3)

(s+ 2, t+ 1) (i+ 4, j + 2)

(i, j + 3)

(i, j + 4)

(i, j + 3) (i+ 1, j + 3)

(s, t+ 2)

(i+ 1, j + 4)

(i+ 1, j + 3) (i+ 2, j + 3)

(s+ 1, t+ 2)

(i+ 2, j + 4)

(i+ 2, j + 3) (i+ 3, j + 3)

(i+ 3, j + 3)

(i+ 3, j + 4)

(i+ 3, j + 3) (i+ 4, j + 3)

Figure 4 A slot for a 2 × 2-pattern from the computation zone.

Notice that for each 2 × 2-window that touches the computation zone of a macro-tile
there exist only O(1) ways to tile them correctly. For each possible position of a 2×2-window
in the computation zone and for each possible filling of this window by tiles, we reserve
a special 2 × 2-slot in a macro-tile, which is essentially a block of size 2 × 2 in the “free”
zone of a macro-tile. It must be placed far away from the computation zone and from all
communication wires, but in the same vertical stripe as the “original” position of this block,
see Fig. 3. We have enough free space to place all necessary slots due to the property (p1).
We define the neighbors around this slot in such a way that only one specific 2× 2 pattern
can patch it (here we use the property (p2)).

In our construction the tiles around this slot “know” their real coordinates in the
bigger macro-tile, while the tiles inside the slot do not (they “believe” they are tiles in the
computation zone, while in fact they belong to an artificial isolated diversity preserving “slot”
far outside of any real computation), see Fig. 3 and Fig. 4. The frame of the slot consists
of 12 “skeleton” tiles (the white squares in Fig. 4), they form a slot a 2 × 2-pattern from
the computation zone (the grey squares in Fig. 4). In the picture we show the “coordinates”
encoded in the colors on the sides of each tile. Notice that the colors of the bold lines (the
blue lines between white and grey tiles and the bold black lines between grey tiles) should
contain some information beyond coordinates – these colors involve the bits used to simulate
a space-time diagram of the universal Turing machine. In this picture, the “real” coordinates
of the bottom-left corner of this slot are (i+ 1, j + 1), while the “natural” coordinates of the
pattern (when it appears in the computation zone) are (s, t).

We choose the positions of the “slots” in the macro-tile so that coordinates can be
computed with a short program in time polynomial in logN . We require that all slots are
isolated from each other in space, so they do not damage the general structure of “skeleton”
tiles building the macro-tiles.

MFCS 2017

5:12 On the Expressive Power of Quasiperiodic SFT

Through construction, each of these slots is aligned with the “natural” position of the
corresponding 2 × 2-block in the computation zone. This guarantees that the tiles in the
computation zone and their “sibling” in the artificial slots share the same bits of the embedded
sequences in the corresponding zone of responsibility. We have defined the slots so that the
“conscious memory” of the tiles in the computation zone and in the corresponding slots is the
same. Thus, we can apply Lemma 6 and conclude that a 2× 2-blocks in diversity preserving
slots are exactly equal to the corresponding 2× 2-patterns in the computation zone. For a
horizontal shift, similarly to the Cases 1–2 above, we use quasiperiodicity of the embedded
sequences and apply Lemma 4.

I Remark (Concluding Remark). Formally speaking, we proved Lemma 6 before we introduced
the last upgrades of our tileset. However, it is easy to verify that the updates of the main
construction discussed in this Section do not affect the proof of that lemma.

Thus, we constructed a tileset τ such that every Lk×Lk pattern that appears in a τ -tiling
must also appear in every large enough square in this tiling. So, the constructed tileset
satisfies the requirements of Theorem 1.

The proof of Corollary 3. To prove Corollary 3 we only need to combine Theorem 1 with a
fact from [14]: there exists a 1D shift S that is quasiperiodic, and for every configuration
x ∈ S the Kolmogorov complexity of all factors is linear, i.e., K(xixi+1 . . . xi+n) = Ω(n) for
all i. J

The proof of Theorem 2. First of all we notice that the proof of Theorem 1 discussed above
does not imply Theorem 2. If we take an effective minimal 1D-shift A and plug it into the
construction form the proof of Theorem 1, we obtain a tileset τ (simulating A) which is
quasiperiodic but not necessary minimal. The property of minimality can be lost even for a
periodic shift A. Indeed, assume that the minimal period t > 0 of the configurations in A is
a factor of the size Nk of k-level macro-tiles in our self-simulating tiling, then we can extract
from the resulting SFT τ nontrivial shifts Ti, i = 0, 1, . . . , t− 1 corresponding to the position
of the embedded 1D-configuration with respect to the grid of macro-tiles. To overcome this
obstacle we will superimpose some additional constraints on the embedding of the simulated
Z-shift in a Z2-tiling. Roughly speaking, we will enforce only “standard” positioning of the
embedded 1D sequences with respect to the grid of macro-tiles. This will not change the
class of configurations that can be simulated (we still get all configurations from a given
minimal shift A), but the classes of all valid tilings will reduce to some minimal Z2-SFT.

The standardly aligned grid of macro-tiles: In general, the hierarchical structure of macro-
tiles permits non-countably many ways of cutting the plane in macro-tiles of different ranks.
We fix one particular version of this hierarchical structure and say that a grid of macro-tiles
is standardly aligned, if for each level k the point (0, 0) is the bottom-left corner of a k-level
macro-tile. This means that the tiling is cut into k-level macro-tiles of size Lk × Lk by
vertical lines with abscissae x = Lk · t′ and ordinates y = Lk · t′′, with t′, t′′ ∈ Z (so the
vertical line (0, ∗) and the horizontal line (∗, 0) serve as separating lines for macro-tiles of all
ranks). Of course, this structure of macro-tiles is computable.

The canonical representative of a minimal shift: A minimal effectively-closed 1D-shift A
is always computable, i.e., the set of finite patterns that appear in configurations of this shift
is computable. It follows immediately that A contains some computable configuration. Let
us fix one computable configuration x; in what follows we call it canonical.

B. Durand and A. Romashchenko 5:13

The standard embedding of the canonical representative: We superimpose the standardly
aligned grid of macro-tiles with the canonical representative of a minimal shift A: we take
the direct product of the hierarchical structures of the standardly aligned grid of macro-tiles
with the canonical configuration x from A (that is, each tile with coordinates (i, j) “contains”
the letter xi from the canonical configuration).

Claim 1: Given a pattern w of size n ≤ Lk and an integer i, we can algorithmically verify
whether the factor w appears in the standard embedding of the canonical representative with
the shift (i mod Lk) relative to the grid of k-level macro-tiles. This follows from Lemma 5(b)
applied to the superposition of the canonical representative with the periodical grid of k-level
macro-tiles).

I Remark. This verification procedure is computable, but its computational complexity can
be very high. To perform the necessary computation we may need space and time much
bigger than the length of w and Lk.

Upgrade of the main construction: Let us update the construction of self-simulating tiling
from the proof of Theorem 1. So far we assumed that every macro-tile (of every level k)
verifies that the delegated factor of the embedded sequences contains no factors forbidden
for the shift A. Now we make the constraint stronger: we require that the delegated factor
contains only factors allowed in the shift A and placed in the positions (relative to the grid of
macro-tiles) permitted for factors in the standard embedding of the canonical representative.
This property is computable (Claim 1), so every forbidden pattern or a pattern in a forbidden
position will be discovered in a computation in a macro-tile of some rank. The computational
complexity of this procedure can be very high (see Remark after Claim 1), and we cannot
guarantee that the forbidden patterns of small length are discovered by the computation in
macro-tiles of small size. But we do guarantee that each forbidden pattern or a pattern in a
forbidden position is discovered by a computation in some macro-tile of high enough rank.

Claim 2: The new tileset admits correct tilings of the plane. Indeed, at least one tiling is
valid by the construction: the standard embedding of the canonical representative corresponds
to a valid tiling of the plane, since macro-tiles of all rank never find any forbidden placement
of patterns in the embedded sequence.

Claim 3: The new tileset simulates the shift A. This follows immediately from the con-
struction: the embedded sequence must be a configuration from A.

Claim 4: For the constructed tileset τ the set of all tilings is a minimal shift. We need
to show that every τ -tiling contains all patterns that can appear in at least one τ -tiling.
Similarly to the proof of Theorem 1, it is enough to prove this property for 2 × 2-blocks
of k-level macro-tile. The difference with the argument in the previous section is that for
every 2× 2-block of macro-tiles in one tiling T we must find a similar block of macro-tiles
in another tiling T ′, so that this block has exactly the same position with respect to father
macro-tileM of rank (k + 1), andM andM′ own exactly the same factor of the embedded
sequence in their zones of responsibility. This is always possible due to Lemma 5(a) (applied
to the canonical representative of A superimposed with the periodical grid of (k + 1)-level
macro-tiles). This observation concludes the proof. J

MFCS 2017

5:14 On the Expressive Power of Quasiperiodic SFT

Acknowledgments. We are indebted to Emmanuel Jeandel for raising and motivating the
questions which led to this work. We are grateful to Gwenaël Richommes and Pascal Vanier
for fruitful discussions and to the anonymous reviewers for truly valuable comments.

References
1 Nathalie Aubrun and Mathieu Sablik. Simulation of effective subshifts by two-dimensional

subshifts of finite type. Acta Applicandae Mathematicae, 128(1):35–63, 2013.
2 Sergey V. Avgustinovich, Dmitrii G. Fon-Der-Flaass, and Anna E. Frid. Arithmetical

complexity of infinite words. In 3rd Int. Colloq. on Words, Languages and Combinatorics,
pages 51–62, 2003.

3 Alexis Ballier and Emmanuel Jeandel. Computing (or not) quasiperiodicity functions of
tilings. In 2nd Symposium on Cellular Automata Journées Automates Cellulaires (JAC
2010), pages 54–64, 2010.

4 Bruno Durand. Tilings and quasiperiodicity. Theoretical Computer Science, 221(1):61–75,
1999.

5 Bruno Durand, Leonid Levin, and Alexander Shen. Complex tilings. The Journal of
Symbolic Logic, 73(2):593–613, 2008.

6 Bruno Durand, Andrei Romashchenko, and Alexander Shen. Fixed-point tile sets and their
applications. Journal of Computer and System Sciences, 78(3):731–764, 2012.

7 Brunourand Durand and Andrei Romashchenko. Quasiperiodicity and non-computability
in tilings. In Proc. International Symposium on Mathematical Foundations of Computer
Science (MFCS 2015), pages 218–230, 2015.

8 Peter Gács. Reliable computation with cellular automata. Journal of Computer and System
Sciences, 32(1):15–78, 1986.

9 Gustav Hedlund and Marston Morse. Symbolic dynamics. American Journal of Mathem-
atics, 60(4):815–866, 1938.

10 Michael Hochman. On the dynamics and recursive properties of multidimensional symbolic
systems. Inventiones mathematicae, 176(1):131–167, 2009.

11 Michael Hochman and Pascal Vanier. A note on turing degree spectra of minimal shifts.
In The 12th International Computer Science Symposium in Russia, pages 154–161, 2017.

12 Emmanuel Jeandel. Personal communication. private communication, 2015.
13 Emmanuel Jeandel and Pascal Vanier. Turing degrees of multidimensional sfts. Theoretical

Computer Science, 505:81–92, 2013.
14 Andrey Rumyantsev and Maxim Ushakov. Forbidden substrings, kolmogorov complexity

and almost periodic sequences. In Annual Symposium on Theoretical Aspects of Computer
Science, pages 396–407, 2006.

15 Pavel V. Salimov. On uniform recurrence of a direct product. Discrete Mathematics and
Theoretical Computer Science, 12(4), 2010.

16 Linda Brown Westrick. Seas of squares with sizes from a Π0
1 set. arXiv preprint

arXiv:1609.07411, 2016.

Parameterized Algorithms for Partitioning Graphs
into Highly Connected Clusters∗

Ivan Bliznets1 and Nikolai Karpov2

1 V.A. Steklov Institute of Mathematics of the Russian Academy of Sciences,
St. Petersburg, Russia

2 V.A. Steklov Institute of Mathematics of the Russian Academy of Sciences,
St. Petersburg, Russia

Abstract
Clustering is a well-known and important problem with numerous applications. The graph-based
model is one of the typical cluster models. In the graph model, clusters are generally defined
as cliques. However, such an approach might be too restrictive as in some applications, not
all objects from the same cluster must be connected. That is why different types of cliques
relaxations often considered as clusters.

In our work, we consider a problem of partitioning graph into clusters and a problem of
isolating cluster of a special type where by cluster we mean highly connected subgraph. Initially,
such clusterization was proposed by Hartuv and Shamir. And their HCS clustering algorithm
was extensively applied in practice. It was used to cluster cDNA fingerprints, to find complexes
in protein-protein interaction data, to group protein sequences hierarchically into superfamily
and family clusters, to find families of regulatory RNA structures. The HCS algorithm partitions
graph in highly connected subgraphs. However, it is achieved by deletion of not necessarily
the minimum number of edges. In our work, we try to minimize the number of edge deletions.
We consider problems from the parameterized point of view where the main parameter is a
number of allowed edge deletions. The presented algorithms significantly improve previous known
running times for the Highly Connected Deletion (improved from O∗

(
81k
)
to O∗

(
3k
)
),

Isolated Highly Connected Subgraph (from O∗(4k) to O∗
(
kO(k

2/3)
)
), Seeded Highly

Connected Edge Deletion (from O∗
(

16k
3/4
)

to O∗
(
k
√

k
)
) problems. Furthermore, we

present a subexponential algorithm for Highly Connected Deletion problem if the number of
clusters is bounded. Overall our work contains three subexponential algorithms which is unusual
as very recently there were known very few problems admitting subexponential algorithms.

1998 ACM Subject Classification G.2.2 Graph Theory, F.2.2 Nonnumerical Algorithms and
Problems, I.5.3 Clustering, H.3.3 Information Search and Retrieval

Keywords and phrases clustering, parameterized complexity, highly connected

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.6

1 Introduction

Clustering is a problem of grouping objects such that objects in one group are more similar to
each other than to objects in other groups. Clustering has numerous applications, including:
machine learning, pattern recognition, image analysis, information retrieval, bioinformatics,
data compression, and computer graphics. Graph-based model is one of the typical cluster

∗ This research was supported by Russian Science Foundation (project 16-11-10123)

© Ivan Bliznets and Nikolai Karpov;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 6; pp. 6:1–6:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

6:2 Parameterized Algorithms for Partitioning Graphs into Highly Connected Clusters

models. In a graph-based model most commonly cluster is defined as a clique. However,
in many applications, such definition of a cluster is too restrictive [17]. Moreover, clique
model generally leads to computationally hard problems. For example clique problem is
W [1]− hard while s-club problem, with s ≥ 2, is fixed-parameter tractable with respect to
the parameters solution size and s [19]. Because of the two mentioned reasons researchers
consider different clique relaxation models [17, 20]. We mention just some of the possible
relaxations: s-club(the diameter is less than of equal to s), s-plex (the smallest degree
is at least |G| − s), s-defective clique (missing s edges to complete graph), γ-quasi-clique
(|E|/

(|V |
2
)
≥ γ), highly connected graphs (smallest degree bigger than |G|/2) and others.

With different degree of details all these relaxations were studied: s-club[19, 20], s-plex
[14, 1], s-defective clique [21, 7], γ-quasi-clique [18, 16], highly connected graphs [12, 11, 9].

In this work, we study the clustering problem based on highly connected components
model. A graph is highly connected if the edge connectivity of a graph(the minimum number of
edges whose deletion results in a disconnected graph) is bigger than n

2 where n is the number
of vertices in a graph. An equivalent characterization is for each vertex has degree bigger than
n
2 , it was proved in [3]. One of the reasons for this choice is a huge success in applications
of the Highly Connected Subgraphs(HCS) clustering algorithm proposed by Hartuv and
Shamir and the second reason is the lack of research for this model compared with the
standard clique model. HCS algorithm was used [11] to cluster cDNA fingerprints [8], to find
complexes in protein-protein interaction data [10], to group protein sequences hierarchically
into superfamily and family clusters [13], to find families of regulatory RNA structures [15].

Hüffner et al. [11] noted that while Hartuv and Shamir’s algorithm partitions a graph
into highly connected components, it does not delete the minimum number of edges required
for such partitioning. That is why they initiated study of the following problem

Highly Connected Deletion
Instance: Graph G = (V,E).
Task: Find edge subset E′ ⊆ E of the minimum size such that each connected
component of G′ = (V,E \ E′) is highly connected.
For this problem, Hüffner et al. [11] proposed an algorithm which is based on the dynamic

programming technique with the running time bounded by O∗(3n) where n is the number
of vertices. For parameterized version of the problem they proposed an algorithm with the
running time O∗(81k) where k is an upper bound on the size of E′. Additionally, they proved
that the problem admits a kernel with the size O(k1.5). Moreover, they proved conditional
lower bound on the running time of algorithms for Highly Connected Deletion , in
particular, the problem cannot be solved in time 2o(k)·nO(1), 2o(n)·nO(1) , or 2o(m)·nO(1) unless
the exponential-time hypothesis (ETH) fails.

Moreover, in another work Hüffner et al. [12] studied a parameterized complexity of
related problem of finding highly connected components in a graph.

Isolated Highly Connected Subgraph
Instance: Graph G = (V,E), integer k, integer s.
Task: Is there a set of vertices S such that |S| = s, G[S] is highly connected graph
and |E(S, V \ S)| ≤ k.

Seeded Highly Connected Edge Deletion
Instance: Graph G = (V,E), subset S ⊆ V , integer a, integer k.
Task: Is there a subset of edges E′ ⊆ E of size at most k such that G−E′ contains
only isolated vertices and one highly connected component C with S ⊆ V (C) and
|V (C)| = |S|+ a.

They proposed algorithms with the running time O∗(4k) and O∗(16k3/4) respectively.

I. Bliznets and N. Karpov 6:3

Table 1 Results.

Problem Previous result Our result
Highly Connected Deletion (exact) O∗ (3n) O∗ (2n)

Highly Connected Deletion (parameterized) O∗
(
81k
)

O∗
(
3k
)

p-Highly Connected Deletion - O∗
(

2O
(√

pk
))

Isolated Highly Connected Subgraph O∗(4k) O∗
(

kO(k
2/3)
)

Seeded Highly Connected Edge Deletion O∗
(

16k
3/4
)

O∗
(

k
√

k
)

Our results. We propose algorithms which significantly improve previous upper bounds.
Running times of algorithms may be found in a Table 1. We would like to note that three
of the algorithms have subexponential running time which is not common. Until very
recently there were very few problems admitting subexponential running time. To our
mind in algorithm for Isolated Highly Connected Subgraph problem we have an
unusual branching procedure as in one branch parameter is not decreasing. However, the
value of subsequent decrementation of parameter in this branch is increasing which leads to
subexponential running time. We find the fact interesting as we have not met such behavior
of branching procedures before. Presented analysis for this case might be useful in further
development of subexponential algorithms.

2 Algorithms for partitioning

2.1 Highly Connected Deletion
In this section we present an algorithm for Highly Connected Deletion problem. Our
algorithm is based on the fast subset convolution. Let f, g : 2X → {0, 1, . . .M} be two
functions and |X| = n. Björklund et al. in [2] proved that function f ∗ g : 2X → {0, . . . , 2M},
where (f ∗ g)(S) = min

T⊆S
(f(T) + g(S \ T)), can be computed on all subsets S ⊆ X in time

O(2npoly(n,M)).

I Theorem 1. There is a O∗(2n) time algorithm for Highly Connected Deletion
problem.

Proof. Let define function f in the following way

f(S) =
{
|E(S, V \ S)| if G[S] is highly connected
∞ otherwise

Consider function f∗k(V) = f ∗ · · · ∗ f︸ ︷︷ ︸
k times

.

Note that f∗k(V) = min
S1t···tSk=V

(f(S1) + · · ·+ f(Sk)). Hence, to solve the problem it is

enough to find minimum of f∗k(V) over all 1 ≤ k ≤ n. Note that if f∗k(V) =∞ then it is
not possible to partition V into k highly connected components. So if the minimum value of
f∗k(V) is ∞ then there is no partitioning of G into highly connected components.

Our algorithm contains the following steps.
1. Compute f , i.e. compute value f(S) for all S ⊂ V . It takes O(2n(n+m)) time.
2. Using Björklund et al.[2] algorithm iteratively compute f∗i for all 1 ≤ i ≤ n.
3. Find k such that f∗k(V) is minimal.

MFCS 2017

6:4 Parameterized Algorithms for Partitioning Graphs into Highly Connected Clusters

After we perform above steps we will know values of functions f∗i on each subset S ⊆ X.
Let S1 t S2 t · · · t Sk be an optimum partitioning of X into highly connected components.
Knowing values of function f∗k−1 and f it is straightforward to restore Sk in time 2n.
Moreover, knowing f∗k−1, Sk we can find value of Sk−1. Proceeding this way we obtain the
optimum partitioning. As k ≤ n, we spent at most O(n2n) time to find all Si.

It is left to show how to compute all f∗i within O∗(2n) time. The only obstacle why
we cannot straightforwardly apply Björklund’s algorithm is that f sometimes takes infinite
value. It is easy to fix the problem by replacing infinity value with 2m+ 1. We know that
each convolution require O(2npoly(n,M)) time and above we show that we can put M to be
equal 2m+ 1. As we need to perform n subset convolutions. So, the running time of second
step is O∗(2n). Hence, the overall running time is O∗(2n). J

Now we consider parameterized version of Highly Connected Deletion problem (one
is asked whether it is possible to delete at most k edges and get a vertex disjoint union of
highly connected subgraphs).

I Theorem 2. There is an algorithm for Highly Connected Deletion problem with
running time O∗(3k).

Proof. Before we proceed with the proof of the theorem we list several simplification rules
and lemmas proved by Hüffner et al. in [11].

I Rule 3. If G contains a connected component C which is highly connected then replace
original instance with instance (G[V \ V (C)], k).

I Lemma 4. Let G be a highly connected graph and u, v ∈ V (G) be two different vertices
from V (G). If uv ∈ E, then |N(u) ∩N(v)| ≥ 1. If uv 6∈ E then |N(u) ∩N(v)| ≥ 3.

I Rule 5. If u, v ∈ E and N(u) ∩N(v) = ∅ then delete edge uv and decrease parameter k
by 1. The obtained instance is ((V,E \ {uv}), k − 1).

I Definition 6. Let us call vertices u, v k-connected if any cut separating these two vertices
has size bigger than k.

I Rule 7. Let S be an inclusion maximal set of pairwise k-connected vertices and |S| > 2k.
If the induced graph G[S] is not highly connected then our instance is a NO-instance(it is
not possible to delete k edges and obtain vertex disjoint union of higly connected subgraphs).
Otherwise, we replace original instance with an instance (G[V \ S], k − |E(S, V \ S)|).

I Lemma 8. If G is highly connected then diam(G) ≤ 2.

It was shown in [11] that all of the above rules are applicable in polynomial time.
Without loss of generality assume that G is connected. Otherwise, we consider several

independent problems. One problem for each connected component. For each connected
component we find minimum number of edges that we have to delete in order to partition
this component into highly connected subgraphs. Note that in order to find a minimum
number for each subproblem we simply consider all possible values of parameter starting
from 0 to k.

From Lemma 8 follows that if dist(u, v) (distance between two vertices u, v) is bigger
than 2 then in optimal partitioning u and v belong to different connected components. Hence,
if dist(u, v) ≥ 3 then at least one edge from the shortest path between u and v belongs to E′.
If diam(G) > 2 then it is possible to find two vertices u, v such that dist(u, v) = 3. So given
the shortest path u, x, y, v we can branch to three instances (G \ ux, k − 1), (G \ xy, k − 1),

I. Bliznets and N. Karpov 6:5

(G \ yv, k − 1). We apply such branching exhaustively. Finally, we obtain instance with a
graph G′ of diameter 2.

Now, for our algorithm it is enough to consider a case when graph G has the following
properties: (i) diam(G) ≤ 2; (ii) there are no subsets S of pairwise k-connected vertices with
|S| > 2k; (iii) G is not highly connected.

From now on we assume that G has above mentioned properties. Suppose C1tC2t· · ·tC`

is an optimum partitioning of G into highly connected graphs and E′ is a subset of removed
edges. We call vertex affected if it is incident with an edge from E′. Otherwise, it is unaffected.
Denote by U the set of all unaffected vertices and by T the set of all affected vertices. By
C(v) we denote a cluster Ci for which v ∈ Ci. Note that for affected vertex u there is vertex
v such that uv ∈ E(G) and v /∈ C(u).

I Lemma 9. Let G be a graph with diameter 2 then for any optimum partitioning C1 tC2 t
· · · t C` of G into highly connected graphs there is an i such that U is contained in Ci.

Proof. Assume that there are two unaffected vertices u, v ∈ U and C(v) 6= C(u). Note that
any path between u and v must contain an edge from E′ and two different edges contained
in C(u), C(v) and incident to u and v correspondingly. So, the shortest path between u and
v contains at least three edges which contradict our assumption that diam(G) ≤ 2. Hence,
there is an i such that U ⊆ Ci. J

I Lemma 10. Let G be a graph with diameter 2 and optimum partitioning C1 tC2 t · · · tC`

into highly connected graphs. If U is not empty then |E′| ≥ n− |Ci| where U ⊆ Ci.

Proof. Consider an arbitrary unaffected vertex u. For any v ∈ V we have dist(v, u) ≤ 2.
Hence, for any v /∈ C(u) there is an edge connecting component C(u) with vertex v as
otherwise we have dist(u, v) > 2. So we have |E′| ≥ n− |C(u)|. J

For any YES-instance we have k ≥ |E′| ≥ |T |2 , n = |T |+ |U |, and |U | ≤ 2k.The inequality
|U | ≤ 2k follows from the simplification Rule 7 and Lemma 9. As otherwise highly connected
component which contains U is bigger than 2k and hence simplification Rule 7 can be applied
which leads to contradiction. So, it means that n = |T |+ |U | ≤ 4k.

Below we present two algorithms. One of these algorithms solves the problem under
assumption that optimum partitioning contains at least one unaffected vertex, the other one
solves the problem under assumption that all vertices are affected in optimum partitioning.
In order to estimate running time of the algorithms we use the following lemma.

I Lemma 11. [5] For any non-negative integer a, b we have
(

a+b
b

)
≤ 22

√
ab.

At first, consider a case when there is at least one unaffected vertex in optimum parti-
tioning.

I Lemma 12. Let G be a connected graph with diameter at most 2. If there is an optimum
partitioning C1 t C2 t · · · t C` of G into highly connected graphs such that set of unaffected
vertices is not empty then Highly Connected Deletion can be solved in O∗(2 3k

2) time.

Proof. Let us fix some unaffected vertex u (in algorithm we simply brute-force all n possible
values for unaffected vertex u). By Lemma 10 highly connected graph C(u) contains at least
n−k vertices. As u is unaffected thenN(u) ⊂ C(u) and |N(u)| > |C(u)|

2 . Consider set V \N [u].
And partition it into two subsets W1,2 tW≥3, where W1,2 = {v|1 ≤ |N(u)∩N(v)| ≤ 2}, and
W≥3 = {v|3 ≤ |N(u) ∩ N(v)|}. From lemma 4 follows that W1,2 ∩ C(u) = ∅. Note that
knowing set Cpart = C(u) ∩W≥3 we can find set C(u) = Cpart ∪N [u] and after this simply
run algorithm from Theorem 1 on set V (G) \ C(u). We implement this approach.

MFCS 2017

6:6 Parameterized Algorithms for Partitioning Graphs into Highly Connected Clusters

We know that N [u] t Cpart = C(u) and C(u) ≤ 2k. As |Cpart| ≤ C(u)
2 it follows that

|Cpart| ≤ k. Brute-force over all possible values of s = |Cpart|. Having fixed value of s we
enumerate all subsets of W≥3 of size s. All such subsets are potential candidates for a Cpart

role. It is possible to enumerate candidates with polynomial delay i.e. in O∗(
(|W≥3|
|Cpart|

)
) time.

For each listed candidate we run algorithm from Theorem 1. Let R = W≥3 \ Cpart.
Hence, the overall running time for a fixed |Cpart| is bounded by O∗(2|R∪W1,2|)

(|W≥3|
|Cpart|

)
=

O∗(2|R∪W1,2|)
(|Cpart|+|R|
|Cpart|

)
. By Lemma 11 we have:

O∗(2|R∪W1,2|)
(|Cpart|+|R|
|Cpart|

)
= O∗(22

√
|Cpart||R|+|R|+|W1,2|).

We know that |Cpart| ≤ k, 3|R| + |W1,2| ≤ k, hence O∗(22
√
|Cpart||R|+|R|+|W1,2|) ≤

O∗(22
√

k|R|−2|R|+k). The function g(t) = 2
√
kt− 2t+ k attains it maximum when t = k

4 . So
the running time in the worst case is O∗(21.5k). J

It is left to construct an algorithm for a case in which all vertices are affected in optimum
partitioning. First of all note that if n ≤ 1.57k ≤ k log2 3 we can simply run Algorithm 1
and it finds an answer in O∗(2n) = O∗(3k) time. Taking into account that all vertices are
affected we have that n ≤ 2k. So we may assume that 1.57k ≤ n ≤ 2k.

I Lemma 13. Let G be a graph with diameter 2 and |V (G)| ≥ 1.57k. Moreover, (G, k)
Highly Connected Deletion problem admits correct partitioning into highly connected
components C1 t C2 t · · · t C` such that all vertices are affected in this partitioning. Then
there are two highly connected components Ci, Cj such that |Ci|+ |Cj | ≥ n− k.

Proof. Let E′ be set of deleted edges for partitioning C1 t C2 t · · · t C`. From n ≥ 1.57k
follows that in graph (V (G), E′) there is a vertex s of degree 1, let st ∈ E′ be the edge. We
prove that C(s), C(t) are desired highly connected components. As diam(G) ≤ 2 then for
any vertex v ∈ V (G) \ C(s) \ C(t) there is path of length at most 2 from s to v. Hence, any
vertex v ∈ V (G) \C(s) \C(t) should be connected with C(s)∪C(t) in graph G. As |E′| ≤ k
then V (G) \ (C(s) ∪ C(t)) ≤ k. So |C(s)|+ |C(t)| ≥ n− k. J

Now we brute-force all vertices as candidates for a role of vertex s, i.e. vertex of degree 1
in solution E′. Consider two possibilities either |C(s)| > 2n− 3.14k or |C(s)| ≤ 2n− 3.14k.

Consider the first case, if |C(s)| > 2n− 3.14k, then we find solution in O∗(2n− |C(s)|
2) =

O∗(3k) time. In order to do this we consider degG(s) cases. Each case correspond to a
different edge st incident with s. Such an edge we treat as the only edge incident with s
from E′. Having fixed an edge st being from E′ we know that all other edges incident with s
belong to E(C(s)). Denote the set of endpoints of these edges to be U . So we can identify
at least |C(s)|

2 vertices from C(s). Now we can apply the same technique as in proof of
Theorem 1.

We define three functions f, g, h over subsets of W = V \ U .
f(S) = |E(S,W \ S)| if G[S] is highly connected, otherwise it is equal to ∞.
h(S) = min

i
(f∗i(S)).

g(S) = 2|E(W \ S,U)|+ |E(S,W \ S)| if G[U ∪ S] is highly connected otherwise it is ∞.

Let us provide some intuition standing behind the formulas. Value f(S) indicate number
of vertices that we have to delete in order to separate highly connected graph G[S]. h(S)
is a number of edges needed to be deleted in order to separate G[S] into highly connected
components. g(S) in some sense is a number of edge deletion needed to create a highly
connected component U ∪ S which contains vertex s. We show that to solve the problem
it is enough to compute (g ∗ h)(W). In similar way to Theorem 1 (g ∗ h)(W)/2 equals to a

I. Bliznets and N. Karpov 6:7

number of optimum edge deletions. Note that all deleted edges not having endpoints in C(s)
will be calculated two times, one for each of its incident highly connected component, see
definition of function h. Each edge of E′ having an endpoint in U is counted twice in first
term of function g. And finally each edge from E′ having endpoint in C(s) \ U is counted
twice, once in second term of the formula of g, and once in the formula of h. So (g ∗h)(W)/2
is required number of edge deletions.

Second case, if |C(s)| ≤ 2n− 3.14k then n− k ≤ |C(s)|+ |C(t)| ≤ 2n− 3.14k + |C(t)|.
It follows that |C(t)|+ 2n− 3.14k ≥ n− k. Hence, C(t) ≥ 2.14k − n ≥ 0.14k. It means

that in C(t) there is a vertex of degree at most 7 in graph (V (G), E′). We brute-force all
candidates for such vertex and for such edges from E′. Having fixed the candidates, vertex
t′ and at most seven edges, we identify more than a half vertices from C(t′) = C(t) in the
following way. All edges incident to t′ except just fixed set of candidates belong to C(t).
Denote the endpoints of these edges as Ut. In the same way, all edges incident with s except
st belong to C(s). Denote by Us endpoints of edges incident with s except the edge st ∈ E′.
Let U = Us ∪ Ut. Below we show how to solve obtained problem in O∗

(
2n− 1

2 (|C(s)|+|C(t)|)
)

time. As in previous case we apply idea similar to algorithm from Theorem 1. Now we
present only functions which convolution give an answer. As the further details are identical
to Theorem 1.

Our functions are defined over subsets of a set W = V \ U .
f(S) = |E(S,W \ S)| if G[S] is highly connected, otherwise ∞.
h(S) = min

i

(
f∗i(S)

)
.

gs(S) = 2|E(S,Ut)|+ |E(S,W \ S)| if G[S ∪ Us] is highly connected, otherwise ∞.
gt(S) = 2|E(S,Us)|+ |E(S,W \ S)| if G[S ∪ Ut] is highly connected, otherwise ∞.

The only difference from previous case is that we constructed two functions gs, gt instead
of just one function g as now we know two halves of two guessed highly connected components.
Minimum number of edge deletions in YES-instance separating clusters C(s), C(t) (Us ⊆
C(s), Ut ⊆ C(t)) is (h ∗ gs ∗ gt)(W)/2. So in this case we need O∗(2|W |) running time which
is O∗

(
2n− (n−k)

2

)
= O∗

(
2 3k

2

)
. J

2.2 p-Highly Connected Deletion

p-Highly Connected Deletion
Instance: Graph G = (V,E), integer numbers p and k.
Task: Is there a subset of edges E′ ⊂ E of size at most k such that G−E′ contains at
most p connected components and each component is highly connected?
Our algorithm for p-Highly Connected Deletion is insipired by algorithm for p-

Cluster Editing by Fomin et al. [5].
First of all, we prove an upper bound on the number of small cuts in highly connected

graph.

I Lemma 14. Let G = (V,E) be highly connected graph, X = arg min
S⊂V

|V |
4 ≤|S|≤

3|V |
4

|E(S, V \S)|, and

Y = V \X, then
(i) If |E(X,Y)| ≥ |V |

2

100 then for any partition of V = A tB we have |E(A,B)| ≥ |A|·|B|100 .

(ii) If |E(X,Y)| < |V |2
100 then for any partition of V = A tB we have:

|E(A ∩X,B ∩X)| ≥ |X∩A|·|X∩B|
100 , |E(A ∩ Y,B ∩ Y)| ≥ |Y ∩A|·|Y ∩B|

100 ,

|E(A,B)| ≥ |X∩A|·|X∩B|
100 + |Y ∩A|·|Y ∩B|

100 .

MFCS 2017

6:8 Parameterized Algorithms for Partitioning Graphs into Highly Connected Clusters

Proof. i) Let V = A tB. Without loss of generality |A| < |B|.
If |V |4 ≤ |A| then |E(X,Y)| ≤ |E(A,B)|. Hence, |E(A,B)| ≥ |E(X,Y)| ≥ |V |

2

100 ≥
|A|·|B|

100 .

If |A| < |V |
4 then |E(A,B)| ≥

∑
v∈A

(deg(v) − |A|). As deg(v) > |V |
2 for all v ∈ V (G), we

have |E(A,B)| ≥ |A|
(
|V |
2 − |A|

)
≥ |A|·|V |4 ≥ |A|·|B|4 ≥ |A|·|B|100 .

ii) Note that |E(A,B)| ≥ |E(A∩X,B∩X)|+ |E(A∩Y,B∩Y)| . So it is enough to prove
that |E(A ∩X,B ∩X)| ≥ |A∩X|·|B∩X|

50 , as the proof of |E(A ∩ Y,B ∩ Y)| ≥ |A∩Y |·|B∩Y |
50 is

analogous. The sum of these two inequalities gives the proof of the theorem.
Without loss of generality |B ∩X| ≤ |A∩X|. Hence, |V |8 ≤ |A∩X| and |B ∩X| ≤

3|V |
8 .

Consider two cases: |A ∩X| ≥ |V |4 and |A ∩X| < |V |
4 .

Consider case when |A∩X| ≥ |V |4 . At first we prove |E(A∩X,B ∩X)| ≥ |E(B ∩X,Y)|.
It is known that:

|E(A ∩X,V \ (A ∩X))| = |E(X,Y)| − |E(B ∩X,Y)|+ |E(A ∩X,B ∩X)| , (1)

|A∩X| ≥ |V |4 , and |V \ (A ∩X) | ≥ |Y | ≥ |V |4 , it means |E(A∩X,V \ (A ∩X))| ≥ |E(X,Y)|.
The last inequality and (1) imply |E(A ∩ X,B ∩ X)| ≥ |E(B ∩ X,Y)|. It follows that
2|E(A ∩X,B ∩X)| ≥ |E(B ∩X,A ∩X)|+ |E(B ∩X,Y)| = |E(B ∩X,V \ (B ∩X) |.

As 3|V |
8 ≥ |B ∩ X| and |E(B ∩ X,V \ (B ∩X))| ≥ |B ∩ X|

(
|V |
2 − |B ∩X|

)
we have

|E(B ∩X,V \ (B ∩X))| ≥ |B∩X|·|V |
8 . Hence, |E(A ∩X,B ∩X)| ≥ |B∩X|·|V |

16 ≥ |B∩X|·|V |
100 .

It is left to consider case |A ∩ X| < |V |
4 . Note that |E(A ∩ X,B ∩ X)| = |E(A ∩

X,V \ (A ∩ X))| − |E(A ∩ X,Y)|. As |V |4 > |A ∩ X| we have |E(A ∩ X,V \ (A ∩ X))| ≥
|A∩X|

(
|V |
2 − |A ∩X|

)
≥ |V |8 ·

|V |
4 ≥

|V |2
32 . We know that |E(A∩X,Y)| ≤ |E(X,Y)| ≤ |V |

2

100 ,

hence |E(A ∩X,B ∩X) ≥ |V |
2

32 −
|V |2
100 > |V |2

50 ≥
|A∩X|·|B∩X|

100 . J

I Definition 15. A partition of V = V1 t V2 is called a k-cut of G if |E(V1, V2)| ≤ k .

The following lemma limits number of k-cuts in a disjoint union of highly connected
graphs.

I Lemma 16. If G = (V,E) is a union of p disjoint highly connected components and p ≤ k
then the number of k-cuts in G is bounded by 2O

(√
pk
)
.

Proof. Let G be a disjoint union of highly connected components C1, . . . , Cp. For each
Ci we consider sets Xi, Yi where E(Xi, Yi) is a minimum cut of Ci and Ci = Xi t Yi. We
construct a new partition C ′1, . . . , C ′q of V (G). The new partition is obtained from partition
C1 t . . . t Cp in the following way: if |E(Xi, Yi)| < |C2

i |/100 then we split Ci into two sets
Xi, Yi otherwise we take Ci without splitting. Note that p ≤ q ≤ 2p as we either split Ci

into to parts or leave it as is.
We bound number of k-cuts of graph G in two steps. In first step we bound number of

cuts V1, V2 such that |V1 ∩ C ′i| = xi and |V2 ∩ C ′i| = yi where xi, yi are some fixed integers.
In second step we bound number of tuples (x1, . . . , xq, y1, . . . , yq) for which there is at least
one k-cut V1, V2 satisfying conditions |V1 ∩ C ′i| = xi, |V2 ∩ C ′i| = yi.

If xi, yi are fixed and xi + yi = |C ′i| the number of partitions of C ′i is equal to
(

xi+yi

xi

)
.

Note that by Lemma 11 we have
(

xi+yi

xi

)
≤ 2
√

xiyi . Observe that there are at least xiyi

100 edges

between V1∩C ′i and V2∩C ′i by Lemma 14. So if V1tV2 is partition of V then
q∑

i=1
xiyi ≤ 100k.

I. Bliznets and N. Karpov 6:9

Applying Cauchy–Schwarz inequality we infer that
q∑

i=1

√
xiyi ≤

√
q ·
√∑q

i=1 xiyi ≤
√

200pk.

Therefore, the number of considered cuts is at most
q∏

i=1

(
xi+yi

xi

)
≤ 22

∑q

i=1
√

xiyi ≤ 2
√

800pk.

Now we show bound for a second step i.e. number of possible tuples (x1, . . . , xq, y1, . . . , yq)

generating at least one k-cut. Note that min{xi, yi} ≤
√
xiyi. Hence,

q∑
i=1

min(xi, yi) ≤
√

100qk . Tuple (x1, . . . , xq, y1, . . . , yq) can be generated in the following way: at first we
choose which value is smaller xi or yi. Then we express

√
b100qkc as a sum of q + 1

non-negative numbers: min{xi, yi} for 1 ≤ i ≤ q and the rest
√
b100qkc −

q∑
i=1

min(xi, yi).

The number of choices in the first step of generation is equal to 2q ≤ 2
√

2qk, and number of
ways to expreess

√
100qk as a sum of q+1 number is at most

(√100qk+q+1
q

)
≤ 2
√

100qk+q+1 ≤

2
√

100qk+
√

2qk+1. Therefore, the total number of partitions is bounded by 2c
√

pk for some
constant c. J

The last ingredient for our algorithm is the following lemma proved by Fomin et al.[5]

I Lemma 17. [5] All cuts (V1, V2) such that |E(V1, V2)| ≤ k of a graph G can be enumerated
with polynomial time delay.

Now we are ready to present a final theorem.

I Theorem 18. There is a O∗(2O(
√

pk)) time algorithm for p-Highly Connected Dele-
tion problem.

Proof. First of all we solve the problem in case of connected graph. Denote by N set of all
k-cuts in graph G. All elements of set N can be enumerated with a polynomial time delay.
If G is a union of p clusters plus some edges then the size of N is bounded by 2c

√
pk by

Lemma 16 (as additional edges only decrease number of k-cuts). Thus, we enumerate N in
time O∗(2O(

√
pk)). If we exceed the bound 2c

√
pk given by Lemma 16 we know that we can

terminate our algorithm and return answer NO. So we may assume that we enumerate the
whole N and it contains at most 2c

√
pk elements.

We construct a directed graph D, whose vertices are elements of a set N ×{0, 1, . . . , p}×
{0, 1, . . . , k}, note that |V (D)| = 2O(

√
pk). We add arcs going from ((V1, V2), j, l) to

((V ′1 , V ′2), j + 1, l′), where V1 ⊂ V ′1 , G[V ′1 \ V1] is highly connected graph, j ∈ {0, 1, . . . , p− 1},
and l′ = l+ |E(V1, V

′
1 \V1)|. The arcs can be constructed in 2O(

√
pk) time. We claim that the

answer for an instance (G, p, k) is equivalent to existence of path from a vertex ((V,∅), 0, 0)
to a vertex ((∅, V), p′, k′) for some p′ ≤ p, k′ ≤ k.

In one direction, if there is a path from ((∅, V), 0, 0) to ((V,∅), p′, k′) for some k′ ≤ k and
p′ ≤ p, then the consecutive sets V ′1 \ V1 along the path form highly connected components.
Moreover, number of deleted edges from G is equal to last coordinate which is smaller than
k.

Let us prove the opposite direction. Let assume that we can delete at most k edges and
get a graph with highly connected components C1, . . . , Cp. Let us denote Ti = ∪j<iV (Ci),
li+1 = li + |E(Ti+1 \ Ti, Ti)| then the vertices ((Ti, V \ Ti), i− 1, li) constitute desired path
in graph D.

Reachability in a graph can be tested in a linear time with respect to the number of
vertices and arcs. To concude the algorithm we simply test the reachability in the graph D.

MFCS 2017

6:10 Parameterized Algorithms for Partitioning Graphs into Highly Connected Clusters

It is left co consider a case when G is not connected. Let assume that G consist of q
connected components C1, . . . , Cq then for each connected component Ci we find all p′ ≤ p
and k′ ≤ k such that (Ci, p

′, k′) is YES-instance. After this we construct auxiliary directed
graph Q with a set of vertices {0, . . . , q} × {0, . . . , p} × {0, . . . , k}. We add arcs going from
(i, a, b) to (i + 1, a + p′, b + k′) if (Ci, p

′, k′) is a YES-instance. Using similar arguments as
before it could be shown that reachability of vertex (q, p′, k′) from vertex (0, 0, 0) is equivalent
to possibility delete k′ edges and get p′ highly connected components. J

3 Algorithms for finding a subgraph

3.1 Seeded Highly Connected Edge Deletion

Seeded Highly Connected Edge Deletion
Instance: Graph G = (V,E), subset S ⊆ V and integer numbers a and k.
Task: Is there a subset of edges E′ ⊆ E of size at most k such that G−E′ contains
only isolated vertices and one highly connected component C with S ⊆ V (C) and
|V (C)| = |S|+ a.

Hüffner et al. [12] constructed an algorithm with running time O(16k0.75 + k2nm) for
Seeded Highly Connected Edge Deletion problem. We improve the result to
O∗
(

2O(
√

k log k)
)
time algorithm.

I Theorem 19. There is O∗(2O(
√

k log k)) time algorithm for Seeded Highly Connected
Edge Deletion problem.

3.2 Isolated Highly Connected Subgraph

Isolated Highly Connected Subgraph
Instance: Graph G = (V,E), integer k, integer s.
Task: Is there a set of vertices S such that |S| = s, G[S] is highly connected graph
and |E(S, V \ S)| ≤ k.

Hüffner et al. [12] proposed O∗(4k) algorithm for Isolated Highly Connected Sub-
graph problem, in this work we construct subexponential algorithm for the same problem
with running time O∗(kO(k2/3)).

In order to solve Isolated Highly Connected Subgraph problem Hüffner et al.
in [12] constructed algorithm for a more general problem:
f -Isolated Highly Connected Subgraph
Instance: Graph G = (V,E), integer k, integer s, function f : V → N.
Task: Is there a set of vertices S such that |S| = s, G[S] is highly connected and
|E(S, V \ S)|+

∑
v∈S

f(v) ≤ k.

Our algorithm uses reduction rules proposed in [12]. Here, we state the reduction rules
without proof, as the proofs can be found in [12].

I Rule 20. If G contains connected component C of size smaller than s then delete C i.e.
solve instance (G \ C, f, k).

I Rule 21. Let G contains connected component C = (V ′, E′) with minimal cut bigger
than k. If C is highly connected graph, |V ′| = s and

∑
s∈V ′

f(s) ≤ k then output a trivial

I. Bliznets and N. Karpov 6:11

YES-instance otherwise remove C, i.e. consider instance (G \ C, f, k) of f -Isolated Highly
Connected Subgraph problem.

I Rule 22. Let G contains connected component C with minimal cut (A,B) of size at most s
2 .

We define function f ′ in the following way: for each vertex v ∈ A f ′(v) := f(v) + |N(v) ∩B|
and for each v ∈ B we let f ′(v) := f(v) + |N(v) ∩ A|. Replace original instance with an
instance (G \ E(A,B), f ′, k).

I Lemma 23. Rules 20, 21, 22 can be exhaustively applied in time O((sn+ k)m). If rules
20, 21, 22 are not applicable then k > s

2 .

We also use following Fomin and Villanger’s result.

I Proposition 24. [6] For each vertex v in graph G and integers b, f ≥ 0 number of
connected induced subgraphs B ⊆ V (G) satisfying the following properties v ∈ B, |B| =
b + 1, |N(B)| = f ; is at most

(
b+f

b

)
. Moreover, all these sets can be enumerated in time

O
((

b+f
b

)
(n+m)b(b+ f)

)
.

Now we have all ingredients for out algorithm.

I Theorem 25. f-Isolated Highly Connected Subgraph can be solved in time
2O(k2/3 log k).

Proof. First of all we exhaustively apply reduction rules 20, 21, 22. From Lemma 23 follows
that we may assume 2k > s. We consider two cases either k2/3 < s or k2/3 ≥ s.

Case 1: s ≤ k2/3. Enumerate all induced connected subgraphs G′ = (V ′, E′) such that
|V ′| = s and N(V ′) ≤ k. If desired S exists than it is among enumerated sets. From
Proposition 24 follows that number of such sets is at most nkO∗(

(
s+k

s

)
). As s < 2k and

s < k2/3 we have nkO∗(
(

s+k
s

)
) ≤ O∗((s+ k)s) ≤ O∗(2k2/3 log k). Hence, in time O∗(2k2/3 log k)

we can enumerate all potential candidates S′. For each candidate we check in polynomial
time whether G[S′] is highly connected and |E(S′, V \S′)|+

∑
v∈S′

f(v) ≤ k.

Case 2: k
2
3 < s. Let set S be a solution. Define edge set E′ = E(S, V \ S). Consider

function d : S → N where d(v) = |N(v) ∩ (V \S)|. As
∑

v∈S

d(v) = |E(S, V \S)| ≤ k then

there is a vertex v ∈ S such that d(v) ≤ k
s < k

1
3 . Note that for such v we have |N(v)| =

|N(v) ∩ S| + |N(v) \ S| ≤ s + k
1
3 . We branch on possible values of such vertex and a set

of its neighbors that do not belong to S. In order to do this we have to consider at most
n
∑

i≤k1/3

(
s+k1/3

i

)
≤ nk1/322

√
(s+k1/3−i)i ≤ nk1/322

√
3k4/3 = n2O(k2/3) cases. Knowing vertex

v ∈ S and N(v) \ S we find N(v)∩ S. So we already identified at least s
2 + 1 vertices from S,

let denote this set by W . Now we start branching procedure that in right branch extend
set W into a solution set S. Branching procedure takes as an input tuple (G, k, s′,W,B)
where W is a set of vertices determined to be in solution S, B is a set of vertices determined
to be not in solution, k number of allowed edge deletions, s′ = s− |W | number of vertices
that is left to add. The procedure pick a vertex w /∈W ∪B and consider two cases either
w ∈ S,w /∈ B or w /∈ S,w ∈ B. The first call of the procedure is performed on tuple
(G, k − |E(W,N(v) \W)|, s− |W |,W,∅).

Consider arbitrary vertex x ∈ V \ (W ∪ B). If x ∈ S then |N(x) ∩ S| ≥ s
2 . Hence,

|N(x) ∩W | ≥ |N(x) ∩ S| − |S \W | ≥ s
2 − (s− |W |) = |W | − s

2 . So any vertex x such that

MFCS 2017

6:12 Parameterized Algorithms for Partitioning Graphs into Highly Connected Clusters

|N(x)∩W | < |W |− s
2 cannot belong to solution S and we safely put x to B. Otherwise, we run

our procedure on tuples (G, k−|N(x)∩B|, s′−1,W∪x,B) and (G, k−|N(x)∩W |, s′,W,B∪x).
Note that we stop computation in a branch if k′ ≤ 0 or s′ = 0. It is easy to see that the
algorithm is correct.

It is left to determine the running time of the algorithm. Note that procedure contains
two parameters k and s′. In one branch we decrease value of s′ by one in the other branch
we decrease value of k by E(x,W). Note that in first branch we not only decrease value of s′
but we also increase a lower bound on |N(x) ∩W | by 1 as |N(x) ∩W | ≥ |W | − s

2 .
Let us consider a path (x1, x2, . . . xl) from root to leaf in our branching tree. To each

node we assign a vertex xi on which we are branching at this node. For each such path we
construct unique sequence a1, a2, . . . , am and a number b. We put b equal to the number of
vertices from set {x1, x2, . . . , xl} that was assigned to solution S. And ai − 1 is a number
of vertices that was assigned to W in a sequence x1, x2, . . . xj where xj is an i−th vertex
assigned to B in this sequence. Note that |N(xj)∩W | ≥ ai, so

∑
i ai ≤ k. Note that for any

path from root to leaf we can construct a corresponding sequence ai and number b. Moreover,
any sequence a1, a2, . . . am and number b correspond to at most one path from root to node.

I Proposition 26. Given number b and non-decreasing sequence a1, a2, . . . , am we can
uniquely determine a corresponding path in a branching tree.

Proof. For a notation convenience we let a0 = 1. For 1 ≤ i ≤ m we perform the following
operation: we make ai − ai−1 steps of assigning vertices to a solution set, i.e. to set W and
make one step in branch assigning vertex to a set B. After m such iterations we perform
b−m steps of assigning vertices to solution. As a1, a2, . . . am is non-decreasing sequence we
have constructed a unique path in branching tree. It is easy to see that the original sequence
a1, . . . , am and number b correspond to a constructed path. So for each path from root to
leaf there is a corresponding sequence and for each sequence with a number there is at most
one corresponding path from root to node in a tree. J

I Lemma 27. The number of tuples (a1, . . . , am, b) where 0 ≤ b ≤ s, 1 ≤ ai ≤ ai+1 for
i < m, and

∑
i ai ≤ k is bounded by O∗

(
2O(√k)

)
Proof. For fixed l, tuples (a1, . . . , am) such that

∑
i ai = l are well-known and are called

partitions of l. Pribitkin [4] gave a simple upper bound e2.57
√

l on the number of partitions of

l. Hence, number of tuples (a1, . . . , am) is bounded by
k∑

i=0
e2.57

√
i ≤ (k+ 1)e2.57

√
k. Moreover,

we know that 0 ≤ b ≤ s. It means that the number of tuples (a1, . . . , am, b) is bounded by
(s+ 1)(k + 1)2O(√k). J

From Proposition 26 and Lemma 27 follows that the number of nodes in a branching tree
is at most s2O(√k). Hence, the running time of the procedure is at most s2O(√k).

Now, we compute required time for algorithm in this case(case 2). At first, we branch on
a vertex and its neighbors from solution set S. We did it by creating at most O∗

(
2O(k2/3)

)
subcases. In each subcase we run a procedure with running time O∗

(
2O(√k)

)
. So, the

overall runnning time equals to O∗
(

2O(√k)2O(k2/3)
)

= O∗
(

2O(k
2/3)
)
.

The worst running time has Case 1, so the running time of the whole algorithms is
O∗
(
kO(k

2/3)
)
. J

I. Bliznets and N. Karpov 6:13

References
1 Balabhaskar Balasundaram, Sergiy Butenko, and Illya V Hicks. Clique relaxations in

social network analysis: The maximum k-plex problem. Operations Research, 59(1):133–
142, 2011.

2 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Fourier meets
möbius: fast subset convolution. In Proceedings of the 39th Annual ACM Symposium on
Theory of Computing, San Diego, California, USA, June 11-13, 2007, pages 67–74, 2007.
doi:10.1145/1250790.1250801.

3 Gary Chartrand. A graph-theoretic approach to a communications problem. SIAM Journal
on Applied Mathematics, 14(4):778–781, 1966.

4 Wladimir de Azevedo Pribitkin. Simple upper bounds for partition functions. The Ramanu-
jan Journal, 18(1):113–119, 2009. doi:10.1007/s11139-007-9022-z.

5 Fedor V. Fomin, Stefan Kratsch, Marcin Pilipczuk, Michal Pilipczuk, and Yngve Villanger.
Tight bounds for parameterized complexity of cluster editing with a small number of
clusters. J. Comput. Syst. Sci., 80(7):1430–1447, 2014. doi:10.1016/j.jcss.2014.04.
015.

6 Fedor V. Fomin and Yngve Villanger. Treewidth computation and extremal combinatorics.
Combinatorica, 32(3):289–308, 2012. doi:10.1007/s00493-012-2536-z.

7 Jiong Guo, Iyad A Kanj, Christian Komusiewicz, and Johannes Uhlmann. Editing graphs
into disjoint unions of dense clusters. Algorithmica, 61(4):949–970, 2011.

8 Erez Hartuv, Armin O Schmitt, Jörg Lange, Sebastian Meier-Ewert, Hans Lehrach, and
Ron Shamir. An algorithm for clustering cdna fingerprints. Genomics, 66(3):249–256, 2000.

9 Erez Hartuv and Ron Shamir. A clustering algorithm based on graph connectivity. Inf.
Process. Lett., 76(4-6):175–181, 2000. doi:10.1016/S0020-0190(00)00142-3.

10 Wayne Hayes, Kai Sun, and Nataša Pržulj. Graphlet-based measures are suitable for
biological network comparison. Bioinformatics, 29(4):483–491, 2013.

11 Falk Hüffner, Christian Komusiewicz, Adrian Liebtrau, and Rolf Niedermeier. Partitioning
biological networks into connected clusters with maximum edge coverage. IEEE/ACM
Trans. Comput. Biology Bioinform., 11(3):455–467, 2014. doi:10.1109/TCBB.2013.177.

12 Falk Hüffner, Christian Komusiewicz, and Manuel Sorge. Finding highly connected sub-
graphs. In SOFSEM 2015: Theory and Practice of Computer Science - 41st Interna-
tional Conference on Current Trends in Theory and Practice of Computer Science, Pec
pod Sněžkou, Czech Republic, January 24-29, 2015. Proceedings, pages 254–265, 2015.
doi:10.1007/978-3-662-46078-8_21.

13 Antje Krause, Jens Stoye, and Martin Vingron. Large scale hierarchical clustering of protein
sequences. BMC bioinformatics, 6(1):15, 2005.

14 Hannes Moser, Rolf Niedermeier, and Manuel Sorge. Algorithms and experiments for clique
relaxations—finding maximum s-plexes. In International Symposium on Experimental Al-
gorithms, pages 233–244. Springer, 2009.

15 Brian J Parker, Ida Moltke, Adam Roth, Stefan Washietl, Jiayu Wen, Manolis Kellis,
Ronald Breaker, and Jakob Skou Pedersen. New families of human regulatory rna structures
identified by comparative analysis of vertebrate genomes. Genome research, 21(11):1929–
1943, 2011.

16 Jeffrey Pattillo, Alexander Veremyev, Sergiy Butenko, and Vladimir Boginski. On the
maximum quasi-clique problem. Discrete Applied Mathematics, 161(1):244–257, 2013.

17 Jeffrey Pattillo, Nataly Youssef, and Sergiy Butenko. On clique relaxation models in net-
work analysis. European Journal of Operational Research, 226(1):9–18, 2013.

18 Jeffrey Pattillo, Nataly Youssef, and Sergiy Butenko. On clique relaxation models in
network analysis. European Journal of Operational Research, 226(1):9–18, 2013. doi:
10.1016/j.ejor.2012.10.021.

MFCS 2017

http://dx.doi.org/10.1145/1250790.1250801
http://dx.doi.org/10.1007/s11139-007-9022-z
http://dx.doi.org/10.1016/j.jcss.2014.04.015
http://dx.doi.org/10.1016/j.jcss.2014.04.015
http://dx.doi.org/10.1007/s00493-012-2536-z
http://dx.doi.org/10.1016/S0020-0190(00)00142-3
http://dx.doi.org/10.1109/TCBB.2013.177
http://dx.doi.org/10.1007/978-3-662-46078-8_21
http://dx.doi.org/10.1016/j.ejor.2012.10.021
http://dx.doi.org/10.1016/j.ejor.2012.10.021

6:14 Parameterized Algorithms for Partitioning Graphs into Highly Connected Clusters

19 Alexander Schäfer. Exact algorithms for s-club finding and related problems. PhD thesis,
Friedrich-Schiller-University Jena, 2009.

20 Shahram Shahinpour and Sergiy Butenko. Distance-based clique relaxations in networks:
s-clique and s-club. In Models, algorithms, and technologies for network analysis, pages
149–174. Springer, 2013.

21 Haiyuan Yu, Alberto Paccanaro, Valery Trifonov, and Mark Gerstein. Predicting interac-
tions in protein networks by completing defective cliques. Bioinformatics, 22(7):823–829,
2006.

Hypercube LSH for Approximate near Neighbors
Thijs Laarhoven∗

IBM Research, Rüschlikon, Switzerland
mail@thijs.com

Abstract
A celebrated technique for finding near neighbors for the angular distance involves using a set of
random hyperplanes to partition the space into hash regions [Charikar, STOC 2002]. Experiments
later showed that using a set of orthogonal hyperplanes, thereby partitioning the space into the
Voronoi regions induced by a hypercube, leads to even better results [Terasawa and Tanaka,
WADS 2007]. However, no theoretical explanation for this improvement was ever given, and it
remained unclear how the resulting hypercube hash method scales in high dimensions.

In this work, we provide explicit asymptotics for the collision probabilities when using hyper-
cubes to partition the space. For instance, two near-orthogonal vectors are expected to collide
with probability (1

π)d+o(d) in dimension d, compared to (1
2)d when using random hyperplanes.

Vectors at angle π
3 collide with probability (

√
3
π)d+o(d), compared to (2

3)d for random hyperplanes,
and near-parallel vectors collide with similar asymptotic probabilities in both cases.

For c-approximate nearest neighbor searching, this translates to a decrease in the exponent
ρ of locality-sensitive hashing (LSH) methods of a factor up to log2(π) ≈ 1.652 compared to
hyperplane LSH. For c = 2, we obtain ρ ≈ 0.302 + o(1) for hypercube LSH, improving upon the
ρ ≈ 0.377 for hyperplane LSH. We further describe how to use hypercube LSH in practice, and
we consider an example application in the area of lattice algorithms.

1998 ACM Subject Classification F.2 Analysis of algorithms and problem complexity, G.3 Prob-
ability and statistics, H.3 Information storage and retrieval

Keywords and phrases (approximate) near neighbors, locality-sensitive hashing, large deviations,
dimensionality reduction, lattice algorithms

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.7

1 Introduction

Finding (approximate) near neighbors. A key computational problem in various research
areas, including machine learning, pattern recognition, data compression, coding theory, and
cryptanalysis [34, 11, 15, 16, 29, 23], is finding near neighbors: given a data set D ⊂ Rd
of cardinality n, design a data structure and preprocess D in a way that, when given a
query vector q ∈ Rd, one can efficiently find a near point to q in D. Due to the “curse of
dimensionality” [18] this problem is known to be hard to solve exactly (in the worst case) in
high dimensions d, so a common relaxation of this problem is the (c, r)-approximate near
neighbor problem ((c, r)-ANN): given that the nearest neighbor lies at distance at most r
from q, design an algorithm that finds an element p ∈ D at distance at most c · r from q.

Locality-sensitive hashing (LSH) and filtering (LSF). A prominent class of algorithms for
finding near neighbors in high dimensions is formed by locality-sensitive hashing (LSH) [18]
and locality-sensitive filtering (LSF) [9]. These solutions are based on partitioning the space

∗ The author is supported by the SNSF ERC Transfer Grant CRETP2-166734 FELICITY.

© Thijs Laarhoven;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 7; pp. 7:1–7:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

7:2 Hypercube LSH for Approximate near Neighbors

into regions, in a way that nearby vectors have a higher probability of ending up in the same
hash region than distant vectors. By carefully tuning (i) the number of hash regions per
hash table, and (ii) the number of randomized hash tables, one can then guarantee that with
high probability (a) nearby vectors will collide in at least one of the hash tables, and (b)
distant vectors will not collide in any of the hash tables. For LSH, a simple lookup in all of
q’s hash buckets then provides a fast way of finding near neighbors to q, while for LSF the
lookups are slightly more involved. For various metrics, LSH and LSF currently provide the
best performance in high dimensions [8, 9, 7, 13].

Near neighbors on the sphere. In this work we will focus on the near neighbor problem
under the angular distance, where two vectors x,y are considered nearby iff their common
angle θ is small [12, 35, 33, 5]. This equivalently corresponds to near neighbor searching
for the `2-norm, where the entire data set is assumed to lie on a sphere. A special case of
(c, r)-ANN on the sphere, often considered in the literature, is the random case r = 1

c

√
2 and

c · r =
√

2, in part due to a reduction from near neighbor under the Euclidean metric for
general data sets to (c, r)-ANN on the sphere with these parameters [8].

1.1 Related work
Upper bounds. Perhaps the most well-known and widely used solution for ANN for the
angular distance is Charikar’s hyperplane LSH [12], where a set of random hyperplanes is
used to partition the space into regions. Due to its low computational complexity and the
simple form of the collision probabilities (with no hidden order terms in d), this method
is easy to instantiate in practice and commonly achieves the best performance out of all
LSH methods when d is not too large. For large d, both spherical cap LSH [6, 8] and cross-
polytope LSH [36, 17, 5, 21] are known to perform better than hyperplane LSH. Experiments
from [36, 37] showed that using orthogonal hyperplanes, partitioning the space into Voronoi
regions induced by the vertices of a hypercube, also leads to superior results compared to
hyperplane LSH; however, no theoretical guarantees for the resulting hypercube LSH method
were given, and it remained unclear whether the improvement persists in high dimensions.

Lower bounds. For the case of random data sets, lower bounds have also been found,
matching the performance of spherical cap and cross-polytope LSH for large c [30, 32, 5].
These lower bounds are commonly in a model where it is assumed that collision probabilities
are “not too small”, and in particular not exponentially small in d. Therefore it is not clear
whether one can further improve upon cross-polytope LSH when the number of hash regions
is exponentially large, which would for instance be the case for hypercube LSH. Together
with the experimental results from [36, 37], this naturally begs the question: how efficient is
hypercube LSH? Is it better than hyperplane LSH and/or cross-polytope LSH? And how
does hypercube LSH compare to other methods in practice?

1.2 Contributions
Hypercube LSH. By carefully analyzing the collision probabilities for hypercube LSH
using results from large deviations theory, we show that hypercube LSH is indeed different
from, and superior to hyperplane LSH for large d. The following main theorem states the
asymptotic form of the collision probabilities when using hypercube LSH, which are also
visualized in Figure 1 in comparison with hyperplane LSH.

Thijs Laarhoven 7:3

Hyperplane LSH

Hypercube LSH

0 arccos(2
π
) π
3

π
2

π
0

1
π

3
π

ν

1

→ θ

→
p
(θ
)1

/d

Figure 1 Asymptotics of collision probabilities for hypercube LSH, compared to hyperplane
LSH. Here ν = π/(2

√
π2 − 4), and the dashed vertical lines correspond to boundary points of the

piecewise parts of Theorem 1. The blue line indicates hyperplane LSH with d random hyperplanes.

I Theorem 1 (Collision probabilities for hypercube LSH). Let X,Y ∼ N (0, 1)d, let θ ∈ [0, π]
denote the angle between X and Y , and let p(θ) denote the probability that X and Y
are mapped to the same hypercube hash region. For θ ∈ (0, arccos 2

π) (respectively θ ∈
(arccos 2

π ,
π
3)), let β0 ∈ (1,∞) (resp. β1 ∈ (1,∞)) be the unique solution to:

arccos
(
−1
β0

)
= (β0 − cos θ)

√
β2

0 − 1
β0(β0 cos θ − 1) , arccos

(
1
β1

)
= (β1 + cos θ)

√
β2

1 − 1
β1(β1 cos θ + 1) . (1)

Then, as d tends to infinity, p(θ) satisfies:

p(θ) =

(
(β0 − cos θ)2

πβ0(β0 cos θ − 1) sin θ

)d+o(d)

, if θ ∈ [0, arccos 2
π];

(
(β1 + cos θ)2

πβ1(β1 cos θ + 1) sin θ

)d+o(d)

, if θ ∈ [arccos 2
π ,

π
3];

(
1 + cos θ
π sin θ

)d+o(d)
, if θ ∈ [π3 ,

π
2);

0, if θ ∈ [π2 , π].

(2)

Denoting the query complexity of LSH methods by nρ+o(1), the parameter ρ for hypercube
LSH is up to log2(π) ≈ 1.65 times smaller than for hyperplane LSH. For large d, hypercube
LSH is dominated by cross-polytope LSH (unless c · r >

√
2), but as the convergence to

the limit is rather slow, in practice either method might be better, depending on the exact
parameter setting. For the random setting, Figure 2 shows limiting values for ρ for hyperplane,
hypercube and cross-polytope LSH. We again remark that these are asymptotics for d→∞,
and may not accurately reflect the performance of these methods for moderate d. We further
briefly discuss how the hashing for hypercube LSH can be made efficient.

MFCS 2017

7:4 Hypercube LSH for Approximate near Neighbors

Hyperplane LSH

Hypercube LSH

Cross-polytope LSH

1 2 2 2 2 4

0.05

0.1

0.2

0.5

1

→ c

→
ρ

Figure 2 Asymptotics for the LSH exponent ρ when using hyperplane LSH, hypercube LSH, and
cross-polytope LSH, for (c, r)-ANN with c · r =

√
2. The curve for hyperplane LSH is exact for

arbitrary d, while for the other two curves, order terms vanishing as d→∞ have been omitted.

Partial hypercube LSH. As the number of hash regions of a full-dimensional hypercube is
often prohibitively large, we also consider partial hypercube LSH, where a d′-dimensional
hypercube is used to partition a data set in dimension d. Building upon a result of Jiang [19],
we characterize when hypercube and hyperplane LSH are asymptotically equivalent in terms
of the relation between d′ and d, and we empirically illustrate the convergence towards
either hyperplane or hypercube LSH for larger d′. An important open problem remains to
identify how large the ratio d′/d must be for the asymptotics of partial hypercube LSH to be
equivalent to those of full-dimensional hypercube LSH.

Application to lattice sieving. Finally, we consider a specific use case of different LSH
methods, in the context of lattice cryptanalysis. We show that the heuristic complexity
of lattice sieving with hypercube LSH is expected to be slightly better than when using
hyperplane LSH, and we discuss how experiments have previously indicated that in this
application, hypercube LSH is superior to other dimensions up to dimensions d ≈ 80.

2 Preliminaries

Notation. We denote probabilities with P(·) and expectations with E(·). Capital letters
commonly denote random variables, and boldface letters denote vectors. We informally write
P(X = x) for continuous X to denote the density of X at x. For probability distributions
D, we write X ∼ D to denote that X is distributed according to D. For sets S, with abuse
of notation we further write X ∼ S to denote X is drawn uniformly at random from S.
We write N (µ, σ2) for the normal distribution with mean µ and variance σ2, and H(µ, σ2)
for the distribution of |X| when X ∼ N (µ, σ2). For µ = 0 the latter corresponds to the
half-normal distribution. We write X ∼ Dd to denote a d-dimensional vector where each
entry is independently distributed according to D. In what follows, ‖x‖ =

√∑
i x

2
i denotes

the Euclidean norm, and 〈x,y〉 =
∑
i xiyi denotes the standard inner product. We denote

the angle between two vectors by φ(x,y) = arccos〈x/‖x‖,y/‖y‖〉.

I Lemma 2 (Distribution of angles between random vectors [9, Lemma 2]). LetX,Y ∼ N (0, 1)d
be two independent standard normal vectors. Then P(φ(X,Y) = θ) = (sin θ)d+o(d).

Thijs Laarhoven 7:5

Locality-sensitive hashing. Locality-sensitive hash functions [18] are functions h mapping
a d-dimensional vector x to a low-dimensional sketch h(x), such that vectors which are
nearby in Rd are more likely to be mapped to the same sketch than distant vectors. For the
angular distance1 φ(x,y), we quantify a set of hash functions H as follows (see [18]):

I Definition 3. A hash family H is called (θ1, θ2, p1, p2)-sensitive if for x,y ∈ Rd we have:
If φ(x,y) ≤ θ1 then Ph∼H(h(x) = h(y)) ≥ p1;
If φ(x,y) ≥ θ2 then Ph∼H(h(x) = h(y)) ≤ p2.

The existence of locality-sensitive hash families implies the existence of fast algorithms
for (approximate) near neighbors, as the following lemma describes2. For more details on
the general principles of LSH, we refer the reader to e.g. [18, 4].

I Lemma 4 (Locality-sensitive hashing [18]). Suppose there exists a (θ1, θ2, p1, p2)-sensitive
family H. Let ρ = log(p1)

log(p2) . Then w.h.p. we can either find an element p ∈ L at angle at most
θ2 from q, or conclude that no elements p ∈ L at angle at most θ1 from q exist, in time
nρ+o(1) with space and preprocessing costs n1+ρ+o(1).

Hyperplane LSH. For the angular distance, Charikar [12] introduced the hash family
H = {ha : a ∼ D} where D is any spherically symmetric distribution on Rd, and ha satisfies:

ha(x) =
{

+1, if 〈a,x〉 ≥ 0;
−1, if 〈a,x〉 < 0.

(3)

The vector a can be interpreted as the normal vector of a random hyperplane, and the
hash value depends on which side of the hyperplane x lies on. For this hash function, the
probability of a collision is directly proportional to the angle between x and y:

Ph∼H
(
h(x) = h(y)

)
= 1− φ(x,y)

π
. (4)

For any two angles θ1 < θ2, the above family H is (θ1, θ2, 1− θ1
π , 1−

θ2
π)-sensitive.

Large deviations theory. Let {Zd}d∈N ⊂ Rk be a sequence of random vectors corresponding
to an empirical mean, i.e. Zd = 1

d

∑d
i=1U i with U i i.i.d. We define the logarithmic moment

generating function Λ of Zd as:

Λ(λ) = lnEU1 [exp〈λ,U1〉] . (5)

Define DΛ = {λ ∈ Rk : Λ(λ) <∞}. The Fenchel-Legendre transform of Λ is defined as:

Λ∗(z) = sup
λ∈Rk

{〈λ, z〉 − Λ(λ)} . (6)

The following result describes that under certain conditions on {Z ′d}, the asymptotics of the
probability measure on a set F are related to the function Λ∗.

I Lemma 5 (Gärtner-Ellis theorem [14, Theorem 2.3.6 and Corollary 6.1.6]). Let 0 be contained
in the interior of DΛ, and let Zd be an empirical mean. Then for arbitrary sets F ,

lim
d→∞

1
d lnP(z ∈ F) = − inf

z∈F
Λ∗(z). (7)

The latter statement can be read as P(z ∈ F) = exp(−d infz∈F Λ∗(z) + o(d)), and thus
tells us exactly how P(z ∈ F) scales as d tends to infinity, up to order terms.

1 Formally speaking, the angular distance is only a similarity measure, and not a metric.
2 Various conditions and order terms (which are commonly no(1)) are omitted here for brevity.

MFCS 2017

7:6 Hypercube LSH for Approximate near Neighbors

3 Hypercube LSH

In this section, we will analyze full-dimensional hypercube hashing, with hash family H =
{hA : A ∈ SO(d)} where SO(d) ⊂ Rd×d denotes the rotation group, and hA satisfies:

hA(x) = (h1(Ax), . . . , hd(Ax)), hi(x) =
{

+1, if xi ≥ 0;
−1, if xi < 0.

(8)

In other words, a hypercube hash function first applies a uniformly random rotation, and
then maps the resulting vector to the orthant it lies in. This equivalently corresponds to a
concatenation of d hyperplane hash functions, where all hyperplanes are orthogonal. Collision
probabilities for prescribed angles θ between x and y are denoted by:

p(θ) = P(hA(x) = hA(y) | φ(x,y) = θ). (9)

Above, the randomness is over hA ∼ H, with x and y arbitrary vectors at angle θ (e.g.
x = e1 and y = e1 cos θ + e2 sin θ). Alternatively, the random rotation A inside hA may be
omitted, and the probability can be computed over X,Y drawn uniformly at random from
a spherically symmetric distribution, conditioned on their common angle being θ.

3.1 Outline of the proof of Theorem 1
Although Theorem 1 is a key result, due to space restrictions we have decided to defer the
full proof (approximately 5.5 pages) to the appendix. The approach of the proof can be
summarized by the following four steps:

Rewrite the collision probabilities in terms of (normalized) half-normal vectors X,Y ;
Introduce dummy variables x, y for the norms of these half-normal vectors, so that the
probability can be rewritten in terms of unnormalized half-normal vectors;
Apply the Gärtner-Ellis theorem (Lemma 5) to the three-dimensional vector Z =
1
d (
∑
iXiYi,

∑
iX

2
i ,
∑
i Y

2
i) to compute the resulting probabilities for arbitrary x, y;

Maximize the resulting expressions over x, y > 0 to get the final result.
The majority of the technical part of the proof lies in computing Λ∗(z), which involves a
somewhat tedious optimization of a multivariate function through a case-by-case analysis.

A note on Gaussian approximations. From the (above outline of the) proof, and the
observation that the final optimization over x, y yields x = y = 1 as the optimum, one might
wonder whether a simpler analysis might be possible by assuming (half-)normal vectors are
already normalized. Such a computation however would only lead to an approximate solution,
which is perhaps easiest to see by computing collision probabilities for θ = 0. In the exact
computation, where vectors are normalized, 〈X,Y 〉 = 1 implies X = Y . If however we do
not take into account the norms of X and Y , and do not condition on the norms being equal
to 1, then 〈X,Y 〉 = 1 could also mean that X,Y are slightly longer than 1 and have a
small, non-zero angle. In fact, such a computation would indeed yield p(θ)1/d 6→ 0 as θ → 0.

3.2 Consequences of Theorem 1
From Theorem 1, we can draw several conclusions. Substituting values for θ, we can find
asymptotics for p(θ), such as p(π3)1/d =

√
3
π + o(1) and p(π2)1/d = 1

π + o(1). We observe that
the limiting function of Theorem 1 (without the order terms) is continuous everywhere except
at θ = π

2 . To understand the boundary θ = arccos 2
π of the piece-wise limit function, note

that two (normalized) half-normal vectors X,Y have expected inner product E〈X,Y 〉 = 2
π .

Thijs Laarhoven 7:7

LSH exponents ρ for random settings. Using Theorem 1, we can explicitly compute LSH
exponents ρ for given angles θ1 and θ2 for large d. As an example, consider the random
setting3 with c =

√
2, corresponding to θ2 = π

2 and θ1 = π
3 . Substituting the collision

probabilities from Theorem 1, we get ρ→ 1− 1
2 logπ(3) ≈ 0.520 as d→∞. To compare, if we

had used random hyperplanes, we would have gotten a limiting value ρ→ log2(3
2) ≈ 0.585.

For the random case, Figure 2 compares limiting values ρ using random and orthogonal
hyperplanes, and using the asymptotically superior cross-polytope LSH.

Scaling at θ → 0 and asymptotics of ρ for large c. For θ close to 0, by Theorem 1 we
are in the regime defined by β0. For cos θ = 1 − ε with ε > 0 small, observe that β0 ≈ 1
satisfies β0 > 1/ cos θ. Computing a Taylor expansion around ε = 0, we eventually find
β0 = 1 + ε+ 2

√
2

π ε3/2 +O(ε2). Substituting this value β0 into p(θ) with cos θ = 1− ε, we find:

p(θ) =
(

1−
√

2
π

√
ε+O(ε)

)d+o(d)

. (10)

To compare this with hyperplane LSH, recall that the collision probability for d random
hyperplanes is equal to (1− θ

π)d. Since cos θ = 1− ε translates to θ =
√

2ε(1 +O(ε)), the
collision probabilities for hyperplane hashing in this regime are also (1 −

√
2
π

√
ε + O(ε))d.

In other words, for angles θ → 0, the collision probabilities for hyperplane hashing and
hypercube hashing are similar. This can also be observed in Figure 1. Based on this result,
we further deduce that in random settings with large c, for hypercube LSH we have:

ρ→
ln
(

1−
√

2
πc +O

(1
c2

))
ln(1/π) =

√
2

πc ln π +O

(
1
c2

)
≈ 0.393

c
+O

(
1
c2

)
. (11)

For hyperplane LSH, the numerator is the same, while the denominator is ln(1
2) instead

of ln(1
π), leading to values ρ which are a factor log2 π + o(1) ≈ 1.652 + o(1) larger. Both

methods are inferior to cross-polytope LSH for large d, as there ρ = O(1/c2) for large c [5].

3.3 Convergence to the limit
To get an idea how hypercube LSH compares to other methods when d is not too large, we
start by giving explicit collision probabilities for the first non-trivial case, namely d = 2.

I Proposition 6 (Square LSH). For d = 2, p(θ) = 1− 2θ
π for θ ≤ π

2 and p(θ) = 0 otherwise.

Proof. In two dimensions, two randomly rotated vectors X,Y at angle θ can be modeled as
X = (cosψ, sinψ) and Y = (cos(ψ+θ), sin(ψ+θ)) for ψ ∼ [0, 2π). The conditionsX,Y > 0
are then equivalent to ψ ∈ (0, π2) ∩ (−θ, π2 − θ), which for θ < π

2 occurs with probability
π/2−θ

2π over the randomness of ψ. As a collision can occur in any of the four quadrants, we
finally multiply this probability by 4 to obtain the stated result. J

Figure 3 depicts p(θ)1/2 in green, along with hyperplane LSH (blue) and the asymptotics
for hypercube LSH (red). For larger d, computing p(θ) exactly becomes more complicated,

3 Here we assume that c · r → (
√

2)−, i.e. c · r approaches
√

2 from below. Alternatively, one might
interpret this as that if distant points lie at distance

√
2± o(1), then we might expect approximately

half of them to lie at distance less than
√

2, with query complexity O(n/2)ρ+o(1) = nρ+o(1). If however
c · r ≥

√
2 then clearly ρ = 0, regardless of d and c.

MFCS 2017

7:8 Hypercube LSH for Approximate near Neighbors

●
●

●
●

●
●

●
●●●●●●●

●●
●

●
●

●

■
■

■
■

■
■

■
■

■■■
■■■

■
■

■
■

■

■

◆
◆

◆
◆

◆
◆

◆◆
◆

◆◆◆◆
◆◆

◆
◆

◆

◆

▲
▲

▲▲▲▲
▲▲

▲▲
▲

▲

▲

▼
▼

▼
▼

▼

Full hypercube LSH
● 2-dimensional hypercube

■ 4-dimensional hypercube

◆ 8-dimensional hypercube

▲ 16-dimensional hypercube

▼ 32-dimensional hypercube

0 π
8

π
4

3π
8

π
2

1
4

1
2

3
4

1

→ θ

→
p
(θ
)1

/d

Figure 3 Empirical collision probabilities for hypercube LSH for small d. The green curve denotes
the exact collision probabilities for d = 2 from Proposition 6.

and so instead we performed experiments to empirically obtain estimates for p(θ) as d
increases. These estimates are also shown in Figure 3, and are based on 105 trials for each
θ and d. Observe that as θ → π

2 and/or d grows larger, p(θ) decreases and the empirical
estimates become less reliable. Points are omitted for cases where no successes occurred.

Based on these estimates and our intuition, we conjecture that (1) for θ ≈ 0, the scaling
of p(θ)1/d is similar for all d, and similar to the asymptotic behavior of Theorem 1; (2) the
normalized collision probabilities for θ ≈ π

2 approach their limiting value from below; and
(3) p(θ) is likely to be continuous for arbitrary d, implying that for θ → π

2 , the collision
probabilities tend to 0 for each d. These together suggest that values for ρ are actually
smaller when d is small than when d is large, and the asymptotic estimate from Figure 2
might be pessimistic in practice. For the random setting, this would suggest that ρ ≈ 0
regardless of c, as p(θ)→ 0 as θ → π

2 for arbitrary d.

Comparison with hyperplane/cross-polytope LSH. Finally, [36, Figures 1 and 2] previously
illustrated that among several LSH methods, the smallest values ρ (for their parameter
sets) are obtained with hypercube LSH with d = 16, achieving smaller values ρ than e.g.
cross-polytope LSH with d = 256. An explanation for this can be found in:

The (conjectured) convergence of ρ to its limit from below, for hypercube LSH;
The slow convergence of ρ to its limit (from above) for cross-polytope LSH4.

This suggests that the actual values ρ for moderate dimensions d may well be smaller for
hypercube LSH (and hyperplane LSH) than for cross-polytope LSH. Based on the limiting
cases d = 2 and d→∞, we further conjecture that compared to hyperplane LSH, hypercube
LSH achieves smaller values ρ for arbitrary d.

4 [5, Theorem 1] shows that the leading term in the asymptotics for ρ scales as Θ(ln d), with a first order
term scaling as O(ln ln d), i.e. a relative order term of the order O(ln ln d/ ln d).

Thijs Laarhoven 7:9

3.4 Fast hashing in practice
To further assess the practicality of hypercube LSH, recall that hashing is done as follows:

Apply a uniformly random rotation A to x;
Look at the signs of (Ax)i.

Theoretically, a uniformly random rotation will be rather expensive to compute, with A

being a real, dense matrix. As previously discussed in e.g. [3], it may suffice to only consider
a sparse subset of all rotation matrices with a large enough amount of randomness, and as
described in [5, 21] pseudo-random rotations may also be help speed up the computations in
practice. As described in [21], this can even be made provable, to obtain a reduced O(d log d)
computational complexity for applying a random rotation.

Finally, to compare this with cross-polytope LSH, note that cross-polytope LSH in
dimension d partitions the space in 2d regions, as opposed to 2d for hypercube hashing. To
obtain a similar fine-grained partition of the space with cross-polytopes, one would have
to concatenate Θ(d/ log d) random cross-polytope hashes, which corresponds to computing
Θ(d/ log d) (pseudo-)random rotations, compared to only one rotation for hypercube LSH.
We therefore expect hashing to be up to a factor Θ(d/ log d) less costly.

4 Partial hypercube LSH

Since a high-dimensional hypercube partitions the space in a large number of regions, for
various applications one may only want to use hypercubes in a lower dimension d′ < d. In
those cases, one would first apply a random rotation to the data set, and then compute the
hash based on the signs of the first d′ coordinates of the rotated data set. This corresponds
to the hash family H = {hA,d′ : A ∈ SO(d)}, with hA,d′ satisfying:

hA,d′(x) = (h1(Ax), . . . , hd′(Ax)), hi(x) =
{

+1, if xi ≥ 0;
−1, if xi < 0.

(12)

When “projecting” down onto the first d′ coordinates, observe that distances and angles are
distorted: the angle between the vectors formed by the first d′ coordinates of x and y may
not be the same as φ(x,y). The amount of distortion depends on the relation between d′
and d. Below, we will investigate how the collision probabilities pd′,d(θ) for partial hypercube
LSH scale with d′ and d, where pd′,d(θ) = P(h(x) = h(y) | φ(x,y) = θ).

4.1 Convergence to hyperplane LSH
First, observe that for d′ = 1, partial hypercube LSH is equal to hyperplane LSH, i.e.
p1,d(θ) = 1 − θ

π . For 1 < d′ � d, we first observe that both (partial) hypercube LSH and
hyperplane LSH can be modeled by a projection onto d′ dimensions:

Hyperplane LSH: x 7→ Ax with A ∼ N (0, 1)d′×d;
Hypercube LSH: x 7→ (A∗)x with A ∼ N (0, 1)d′×d.

Here A∗ denotes the matrix obtained from A after applying Gram-Schmidt orthogonalization
to the rows of A. In both cases, hashing is done after the projection by looking at the signs
of the projected vector. Therefore, the only difference lies in the projection, and one could
ask: for which d′, as a function of d, are these projections equivalent? When is a set of
random hyperplanes already (almost) orthogonal?

This question was answered in [19]: if d′ = o(d/ log d), then maxi,j |Ai,j − A∗i,j | → 0
in probability as d → ∞ (implying A∗ = (1 + o(1))A), while for d′ = Ω(d/ log d) this

MFCS 2017

7:10 Hypercube LSH for Approximate near Neighbors

maximum does not converge to 0 in probability. In other words, for large d a set of d′ random
hyperplanes in d dimensions is (approximately) orthogonal iff d′ = o(d/ log d).

I Proposition 7 (Convergence to hyperplane LSH). Let pd′,d(θ) denote the collision probabili-
ties for partial hypercube LSH, and let d′ = o(d/ log d). Then pd′,d(θ)1/d′ → 1− θ

π .

As d′ = Ω(d/ log d) random vectors in d dimensions are asymptotically not orthogonal,
in that case one might expect either convergence to full-dimensional hypercube LSH, or to
something in between hyperplane and hypercube LSH.

4.2 Convergence to hypercube LSH
To characterize when partial hypercube LSH is equivalent to full hypercube LSH, we first ob-
serve that if d′ is large compared to lnn, then convergence to the hypercube LSH asymptotics
follows from the Johnson-Lindenstrauss lemma.

I Proposition 8 (Sparse data sets). Let d′ = ω(lnn). Then the same asymptotics for the
collision probabilities as those of full-dimensional hypercube LSH apply.

Proof. Let θ ∈ (0, π2). By the Johnson-Lindenstrauss lemma [20], we can construct a
projection x 7→ Ax from d onto d′ dimensions, preserving all pairwise distances up to a factor
1± ε for ε = Θ((lnn)/d′) = o(1). For fixed θ ∈ (0, π2), this implies the angle φ between Ax
and Ay will be in the interval θ ± o(1), and so the collision probability lies in the interval
p(θ ± o(1)). For large d, this means that the asymptotics of p(θ) are the same. J

To analyze collision probabilities for partial hypercube LSH when neither of the previous
two propositions applies, note that through a series of transformations similar to those
for full-dimensional hypercube LSH, it is possible to eventually end up with the following
probability to compute, where d1 = d′ and d2 = d− d′:

max
x,y,u,v,φ

P

(
1
d1

d1∑
i=1

XiYi = xy cosφ, 1
d1

d1∑
i=1

X2
i = x2,

1
d1

d1∑
i=1

Y 2
i = y2, (13)

1
d2

d2∑
i=1

UiVi = uvf(φ, θ), 1
d2

d2∑
i=1

U2
i = u2,

1
d2

d2∑
i=1

V 2
i = v2

)
. (14)

Here f is some function of φ and θ. The approach is comparable to how we ended up with a
similar probability to compute in the proof of Theorem 1, except that we split the summation
indices I = [d] into two sets I1 = {1, . . . , d′} of size d1 and I2 = {d′+ 1, . . . , d} of size d2. We
then substitute Ui = Xd′+i and Vi = Yd′+i, and add dummy variables x, y, u, v for the norms
of the four partial vectors, and a dummy angle φ for the angle between the d1-dimensional
vectors, given the angle θ between the d-dimensional vectors.

Although the vector Z formed by the six random variables in (14) is not an empirical
mean over a fixed number d of random vectors (the first three are over d1 terms, the last three
over d2 terms), one may expect a similar large deviations result such as Lemma 5 to apply
here. In that case, the function Λ∗(z) = Λ∗(z1, . . . , z6) would be a function of six variables,
which we would like to evaluate at (xy cosφ, x2, y2, uvf(φ, θ), u2, v2). The function Λ∗ itself
involves an optimization (finding a supremum) over another six variables λ = (λ1, . . . , λ6),
so to compute collision probabilities for given d, d′, θ exactly, using large deviations theory,
one would have to compute an expression of the following form:

min
x,y,u,v,φ

{
sup

λ1,λ2,λ3,λ4,λ5,λ6

Fd,d′,θ(x, y, u, v, φ, λ1, λ2, λ3, λ4, λ5, λ6)
}
. (15)

Thijs Laarhoven 7:11

●●●●●●●●●●●●●●●●●
●

●

●

■■■■■■■■■■■■■■■■■
■

■

■

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
◆

◆
◆

◆

▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
▲

▲
▲

▲

▲

▼▼
▼▼▼▼

▼
▼▼

▼▼▼▼▼▼
▼

▼
▼

▼

▼

Partial hypercube LSH (d = 50)
● 2-dimensional hypercube

■ 4-dimensional hypercube

◆ 8-dimensional hypercube

▲ 16-dimensional hypercube

▼ 32-dimensional hypercube

0 π
8

π
4

3π
8

π
2

0

1
4

1
2

3
4

1

→ θ

→
p
(θ
)1

/d

Figure 4 Experimental values of pd′,50(θ)1/d′
, for different values d′, compared with the asymp-

totics for hypercube LSH (red) and hyperplane LSH (blue).

As this is a very complex task, and the optimization will depend heavily on the parameters
d, d′, θ defined by the problem setting, we leave this optimization as an open problem. We
only mention that intuitively, from the limiting cases of small and large d′ we expect that
depending on how d′ scales with d (or n), we obtain a curve somewhere in between the two
curves depicted in Figure 1.

4.3 Empirical collision probabilities

To get an idea of how pd′,d(θ) scales with d′ in practice, we empirically computed several
values for fixed d = 50. For fixed θ we then applied a least-squares fit of the form ec1d+c2 to
the resulting data, and plotted ec1 in Figure 4. These data points are again based on at least
105 experiments for each d′ and θ. We expect that as d′ increases, the collision probabilities
slowly move from hyperplane hashing towards hypercube hashing, this can also be seen in
the graph – for d′ = 2, the least-squares fit is almost equal to the curve for hyperplane LSH,
while as d′ increases the curve slowly moves down towards the asymptotics for full hypercube
LSH. Again, we stress that as d′ becomes larger, the empirical estimates become less reliable,
and so we did not consider even larger values for d′.

Compared to full hypercube LSH and Figure 3, we observe that we now approach the
limit from above (although the fitted collision probabilities never seem to be smaller than
those of hyperplane LSH), and therefore the values ρ for partial hypercube LSH are likely to
lie in between those of hyperplane and (the asymptotics of) hypercube LSH.

MFCS 2017

7:12 Hypercube LSH for Approximate near Neighbors

5 Application: Lattice sieving for the shortest vector problem

We finally consider an explicit application for hypercube LSH, namely lattice sieving algo-
rithms for the shortest vector problem. Given a basis B = {b1, . . . , bd} ⊂ Rd of a lattice
L(B) = {

∑
i λibi : λi ∈ Z}, the shortest vector problem (SVP) asks to find a shortest

non-zero vector in this lattice. Various different methods for solving SVP in high dimensions
are known, and currently the algorithm with the best heuristic time complexity in high
dimensions is based on lattice sieving, combined with nearest neighbor searching [9].

In short, lattice sieving works by generating a long list L of pairwise reduced lattice
vectors, where x,y are reduced iff ‖x − y‖ ≥ min{‖x‖, ‖y‖}. The previous condition is
equivalent to φ(x,y) ≤ π

3 , and so the length of L can be bounded by the kissing constant
in dimension d, which is conjectured to scale as (4/3)d/2+o(d). Therefore, if we have a list
of size n = (4/3)d/2+o(d), any newly sampled lattice vector can be reduced against the list
many times to obtain a very short lattice vector. The time complexity of this method is
dominated by doing poly(d) · n reductions (searches for nearby vectors) with a list of size n.
A linear search trivially leads to a heuristic complexity of n2+o(1) = (4/3)d+o(d) (with space
n1+o(1)), while nearest neighbor techniques can reduce the time complexity to n1+ρ+o(1) for
ρ < 1 (increasing the space to n1+ρ+o(1)). For more details, see e.g. [31, 23, 9].

Based on the collision probabilities for hypercube LSH, and assuming the asymptotics for
partial hypercube LSH (with d′ = O(d)) are similar to those of full-dimensional hypercube
LSH, we obtain the following result. An outline of the proof is given in the appendix.

I Proposition 9 (Complexity of lattice sieving with hypercube LSH). Suppose the asymptotics
for full hypercube LSH also hold for partial hypercube LSH with d′ ≈ 0.1335d. Then lattice
sieving with hypercube LSH heuristically solves SVP in time and space 20.3222d+o(d).

As expected, the conjectured asymptotic performance of (sieving with) hypercube LSH
lies in between those of hyperplane LSH and cross-polytope LSH.

Linear search [31]: 20.4150d+o(d).
Hyperplane LSH [23]: 20.3366d+o(d).
Hypercube LSH: 20.3222d+o(d).
Spherical cap LSH [24]: 20.2972d+o(d).
Cross-polytope LSH [10]: 20.2972d+o(d).
Spherical LSF [9]: 20.2925d+o(d).

In practice however, the picture is almost entirely reversed [1]. The lattice sieving method
used to solve SVP in the highest dimension to date (d = 116) used a very optimized linear
search [22]. The furthest that any nearest neighbor-based sieve has been able to go to date
is d = 107, using hypercube LSH [27, 26]5. Experiments further indicated that spherical LSF
only becomes competitive with hypercube LSH as d & 80 [9, 28], while sieving with cross-
polytope LSH turned out to be rather slow compared to other methods [10, 25]. Although it
remains unclear which nearest neighbor method is the “most practical” in the application of
lattice sieving, hypercube LSH is one of the main contenders.

Acknowledgments. The author is indebted to Ofer Zeitouni for his suggestion to use results
from large deviations theory, and for his many helpful comments regarding this application.
The author further thanks Brendan McKay and Carlo Beenakker for their comments.

5 Although phrased as hyperplane LSH, the implementations from [23, 27, 26] are using hypercube LSH.

Thijs Laarhoven 7:13

References
1 SVP challenge, 2015. URL: http://latticechallenge.org/svp-challenge/.
2 Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical Formulas. Dover

Publications, 1972. URL: http://people.math.sfu.ca/~cbm/aands/toc.htm.
3 Dimitris Achlioptas. Database-friendly random projections. In PODS, pages 274–281, 2001.

doi:10.1145/375551.375608.
4 Alexandr Andoni. Nearest Neighbor Search: the Old, the New, and the Impossible. PhD

thesis, Massachusetts Institute of Technology, 2009. URL: http://hdl.handle.net/1721.
1/55090.

5 Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and
Ludwig Schmidt. Practical and optimal LSH for angular distance. In
NIPS, pages 1225–1233, 2015. URL: https://papers.nips.cc/paper/
5893-practical-and-optimal-lsh-for-angular-distance.

6 Alexandr Andoni, Piotr Indyk, Huy Lê Nguyên, and Ilya Razenshteyn. Beyond locality-
sensitive hashing. In SODA, pages 1018–1028, 2014. doi:10.1137/1.9781611973402.76.

7 Alexandr Andoni, Thijs Laarhoven, Ilya Razenshteyn, and Erik Waingarten. Optimal
hashing-based time-space trade-offs for approximate near neighbors. In SODA, pages 47–
66, 2017. doi:10.1137/1.9781611974782.4.

8 Alexandr Andoni and Ilya Razenshteyn. Optimal data-dependent hashing for approximate
near neighbors. In STOC, pages 793–801, 2015. doi:10.1145/2746539.2746553.

9 Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in nearest
neighbor searching with applications to lattice sieving. In SODA, pages 10–24, 2016. doi:
10.1137/1.9781611974331.ch2.

10 Anja Becker and Thijs Laarhoven. Efficient (ideal) lattice sieving using cross-polytope LSH.
In AFRICACRYPT, pages 3–23, 2016. doi:10.1007/978-3-319-31517-1_1.

11 Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer-Verlag, 2006.

12 Moses S. Charikar. Similarity estimation techniques from rounding algorithms. In STOC,
pages 380–388, 2002. doi:10.1145/509907.509965.

13 Tobias Christiani. A framework for similarity search with space-time tradeoffs using locality-
sensitive filtering. In SODA, pages 31–46, 2017. doi:10.1137/1.9781611974782.3.

14 Amir Dembo and Ofer Zeitouni. Large deviations techniques and applications (2nd edition).
Springer, 2010. doi:10.1007/978-3-642-03311-7.

15 Moshe Dubiner. Bucketing coding and information theory for the statistical high-
dimensional nearest-neighbor problem. IEEE Transactions on Information Theory,
56(8):4166–4179, Aug 2010. doi:10.1109/TIT.2010.2050814.

16 Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification (2nd Edition).
Wiley, 2000.

17 Kave Eshghi and Shyamsundar Rajaram. Locality sensitive hash functions based on con-
comitant rank order statistics. In KDD, pages 221–229, 2008. doi:10.1145/1401890.
1401921.

18 Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the
curse of dimensionality. In STOC, pages 604–613, 1998. doi:10.1145/276698.276876.

19 Tiefeng Jiang. How many entries of a typical orthogonal matrix can be approximated by
independent normals? The Annals of Probability, 34(4):1497–1529, 2006. doi:10.1214/
009117906000000205.

20 William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a
Hilbert space. Contemporary Mathematics, 26(1):189–206, 1984. doi:10.1090/conm/026/
737400.

MFCS 2017

http://latticechallenge.org/svp-challenge/
http://people.math.sfu.ca/~cbm/aands/toc.htm
http://dx.doi.org/10.1145/375551.375608
http://hdl.handle.net/1721.1/55090
http://hdl.handle.net/1721.1/55090
https://papers.nips.cc/paper/5893-practical-and-optimal-lsh-for-angular-distance
https://papers.nips.cc/paper/5893-practical-and-optimal-lsh-for-angular-distance
http://dx.doi.org/10.1137/1.9781611973402.76
http://dx.doi.org/10.1137/1.9781611974782.4
http://dx.doi.org/10.1145/2746539.2746553
http://dx.doi.org/10.1137/1.9781611974331.ch2
http://dx.doi.org/10.1137/1.9781611974331.ch2
http://dx.doi.org/10.1007/978-3-319-31517-1_1
http://dx.doi.org/10.1145/509907.509965
http://dx.doi.org/10.1137/1.9781611974782.3
http://dx.doi.org/10.1007/978-3-642-03311-7
http://dx.doi.org/10.1109/TIT.2010.2050814
http://dx.doi.org/10.1145/1401890.1401921
http://dx.doi.org/10.1145/1401890.1401921
http://dx.doi.org/10.1145/276698.276876
http://dx.doi.org/10.1214/009117906000000205
http://dx.doi.org/10.1214/009117906000000205
http://dx.doi.org/10.1090/conm/026/737400
http://dx.doi.org/10.1090/conm/026/737400

7:14 Hypercube LSH for Approximate near Neighbors

21 Christopher Kennedy and Rachel Ward. Fast cross-polytope locality-sensitive hashing. In
ITCS, 2017. URL: https://arxiv.org/abs/1602.06922.

22 Thorsten Kleinjung. Private communication, 2014.
23 Thijs Laarhoven. Sieving for shortest vectors in lattices using angular locality-sensitive

hashing. In CRYPTO, pages 3–22, 2015. doi:10.1007/978-3-662-47989-6_1.
24 Thijs Laarhoven and Benne de Weger. Faster sieving for shortest lattice vectors using

spherical locality-sensitive hashing. In LATINCRYPT, pages 101–118, 2015. doi:10.1007/
978-3-319-22174-8_6.

25 Artur Mariano. Private communication., 2016.
26 Artur Mariano and Christian Bischof. Enhancing the scalability and memory usage of

HashSieve on multi-core CPUs. In PDP, pages 545–552, 2016. doi:10.1109/PDP.2016.31.
27 Artur Mariano, Thijs Laarhoven, and Christian Bischof. Parallel (probable) lock-free Hash-

Sieve: a practical sieving algorithm for the SVP. In ICPP, pages 590–599, 2015. URL:
https://eprint.iacr.org/2015/041.

28 Artur Mariano, Thijs Laarhoven, and Christian Bischof. A parallel variant of LDSieve for
the SVP on lattices. PDP, 2017.

29 Alexander May and Ilya Ozerov. On computing nearest neighbors with applications to
decoding of binary linear codes. In EUROCRYPT, pages 203–228, 2015. doi:10.1007/
978-3-662-46800-5_9.

30 Rajeev Motwani, Assaf Naor, and Rina Panigrahy. Lower bounds on locality sensitive
hashing. SIAM Journal of Discrete Mathematics, 21(4):930–935, 2007. doi:10.1137/
050646858.

31 Phong Q. Nguyên and Thomas Vidick. Sieve algorithms for the shortest vector problem
are practical. Journal of Mathematical Cryptology, 2(2):181–207, 2008. doi:10.1515/JMC.
2008.009.

32 Ryan O’Donnell, Yi Wu, and Yuan Zhou. Optimal lower bounds for locality sensitive
hashing (except when q is tiny). In ICS, pages 276–283, 2011. URL: http://conference.
itcs.tsinghua.edu.cn/ICS2011/content/papers/2.html.

33 Ludwig Schmidt, Matthew Sharifi, and Ignacio Lopez-Moreno. Large-scale speaker identi-
fication. In ICASSP, pages 1650–1654, 2014. doi:10.1109/ICASSP.2014.6853878.

34 Gregory Shakhnarovich, Trevor Darrell, and Piotr Indyk. Nearest-Neighbor Methods in
Learning and Vision: Theory and Practice. MIT Press, 2005. URL: http://ttic.
uchicago.edu/~gregory/annbook/book.html.

35 Narayanan Sundaram, Aizana Turmukhametova, Nadathur Satish, Todd Mostak, Piotr
Indyk, Samuel Madden, and Pradeep Dubey. Streaming similarity search over one billion
tweets using parallel locality-sensitive hashing. VLDB, 6(14):1930–1941, 2013. doi:10.
14778/2556549.2556574.

36 Kengo Terasawa and Yuzuru Tanaka. Spherical LSH for approximate nearest neigh-
bor search on unit hypersphere. In WADS, pages 27–38, 2007. doi:10.1007/
978-3-540-73951-7_4.

37 Kengo Terasawa and Yuzuru Tanaka. Approximate nearest neighbor search for a dataset of
normalized vectors. In IEICE Transactions on Information and Systems, volume 92, pages
1609–1619, 2009. URL: http://search.ieice.org/bin/summary.php?id=e92-d_9_1609.

A Proof of Theorem 1

Theorem 1 will be proved through a series of lemmas, each making partial progress towards
a final solution. Reading only the claims made in the lemmas may give the reader an idea
how the proof is built up. Before starting the proof, we begin with a useful lemma regarding
integrals of (exponentials of) quadratic forms.

https://arxiv.org/abs/1602.06922
http://dx.doi.org/10.1007/978-3-662-47989-6_1
http://dx.doi.org/10.1007/978-3-319-22174-8_6
http://dx.doi.org/10.1007/978-3-319-22174-8_6
http://dx.doi.org/10.1109/PDP.2016.31
https://eprint.iacr.org/2015/041
http://dx.doi.org/10.1007/978-3-662-46800-5_9
http://dx.doi.org/10.1007/978-3-662-46800-5_9
http://dx.doi.org/10.1137/050646858
http://dx.doi.org/10.1137/050646858
http://dx.doi.org/10.1515/JMC.2008.009
http://dx.doi.org/10.1515/JMC.2008.009
http://conference.itcs.tsinghua.edu.cn/ICS2011/content/papers/2.html
http://conference.itcs.tsinghua.edu.cn/ICS2011/content/papers/2.html
http://dx.doi.org/10.1109/ICASSP.2014.6853878
http://ttic.uchicago.edu/~gregory/annbook/book.html
http://ttic.uchicago.edu/~gregory/annbook/book.html
http://dx.doi.org/10.14778/2556549.2556574
http://dx.doi.org/10.14778/2556549.2556574
http://dx.doi.org/10.1007/978-3-540-73951-7_4
http://dx.doi.org/10.1007/978-3-540-73951-7_4
http://search.ieice.org/bin/summary.php?id=e92-d_9_1609

Thijs Laarhoven 7:15

I Lemma 10 (Integrating an exponential of a quadratic form in the positive quadrant). Let
a, b, c ∈ R with a, c < 0 and D = b2 − 4ac < 0. Then:

∫ ∞
0

∫ ∞
0

exp(ax2 + bxy + cy2) dx dy =
π + 2 arctan

(
b√
−D

)
2
√
−D

. (16)

Proof. The proof below is based on substituting y = xs (and dy = x ds) before computing
the integral over x. An integral over 1/(a + bs + cs2) then remains, which leads to the
arctangent solution in case b2 < 4ac.

I =
∫ ∞
y=0

∫ ∞
0

exp(ax2 + bxy + cy2) dx dy (17)

=
∫ ∞
s=0

(∫ ∞
0

x exp
(
(a+ bs+ cs2)x2) dx) ds (18)

=
∫ ∞

0

[
exp

(
(a+ bs+ cs2)x2)

2(a+ bs+ cs2)

]∞
x=0

ds (19)

=
∫ ∞

0

[
0− 1

2(a+ bs+ cs2)

]
ds (20)

= −1
2

∫ ∞
0

1
a+ bs+ cs2 ds. (21)

The last equality used the assumptions a, c < 0 and b2 < 4ac so that a+ bs+ cs2 < 0 for all
s > 0. We then solve the last remaining integral (see e.g. [2, Equation (3.3.16)]) to obtain:

I = −1
2

[
2√

4ac− b2
arctan

(
b+ 2cs√
4ac− b2

)]∞
s=0

(22)

= −1
2
√

4ac− b2

(
−π − 2 arctan

(
b√

4ac− b2

))
. (23)

Eliminating minus signs and substituting D = b2 − 4ac, we obtain the stated result. J

Next, we begin by restating the collision probability between two vectors in terms of
half-normal vectors.

I Lemma 11 (Towards three-dimensional large deviations). Let H denote the hypercube hash
family in d dimensions, and as before, let p be defined as:

p(θ) = Ph∼H(h(x) = h(y) | φ(x,y) = θ). (24)

Let X̂, Ŷ ∼ H(0, 1)d and let the sequence {Zd}d∈N ⊂ R3 be defined as:

Zd = 1
d

(
d∑
i=1

X̂iŶi,

d∑
i=1

X̂2
i ,

d∑
i=1

Ŷ 2
i

)
. (25)

Then:

p(θ) =
(

1
2 sin θ

)d+o(d)
max
x,y>0

P(Zd = (xy cos θ, x2, y2)). (26)

Proof. First, we write out the definition of the conditional probability in p, and use the
fact that each of the 2d hash regions (orthants) has the same probability mass. Here

MFCS 2017

7:16 Hypercube LSH for Approximate near Neighbors

X,Y ∼ N (0, 1)d denote random Gaussian vectors, and subscripts denoting what probabilities
are computed over are omitted when implicit.

p(θ) = Ph∼H(h(x) = h(y) | φ(x,y) = θ) (27)
= 2d · PX,Y ∼N (0,1)d(X > 0, Y > 0 | φ(X,Y) = θ) (28)

= 2d · P(X > 0, Y > 0, φ(X,Y) = θ)
P(φ(X,Y) = θ) . (29)

By Lemma 2, the denominator is equal to (sin θ)d+o(d). The numerator of (29) can further
be rewritten as a conditional probability on {X > 0,Y > 0}, multiplied with P(X > 0,Y >

0) = 2−2d. To incorporate the conditionals X,Y > 0, we replace X,Y ∼ N (0, 1)d by
half-normal vectors X̂, Ŷ ∼ H(0, 1)d, resulting in:

p(θ) =
PX̂,Ŷ ∼H(0,1)d(φ(X̂, Ŷ) = θ)

(2 sin θ)d+o(d) = q(θ)
(2 sin θ)d+o(d) . (30)

To incorporate the normalization over the (half-normal) vectors X̂ and Ŷ , we introduce
dummy variables x, y corresponding to the norms of X̂/

√
d and Ŷ /

√
d, and observe that as

the probabilities are exponential in d, the integrals will be dominated by the maximum value
of the integrand in the given range:

q(θ) =
∫ ∞

0

∫ ∞
0

P(〈X̂, Ŷ 〉 = x y d cos θ, ‖X̂‖2 = x2d, ‖Ŷ ‖2 = y2d) dx dy (31)

= 2o(d) max
x,y>0

P
(
〈X̂, Ŷ 〉 = x y d cos θ, ‖X̂‖2 = x2d, ‖Ŷ ‖2 = y2d

)
. (32)

Substituting Zd = 1
d (〈X̂, Ŷ 〉, ‖X̂‖2, ‖Ŷ ‖2), we obtain the claimed result. J

Note that Z1, Z2, Z3 are pairwise but not jointly independent. To compute the density of
Zd at (xy cos θ, x2, y2) for d→∞, we use the Gärtner-Ellis theorem stated in Lemma 5.
I Lemma 12 (Applying the Gärtner-Ellis theorem to Zd). Let {Zd}d∈N ⊂ R3 as in Lemma 11,
and let Λ and Λ∗ as in Section 2. Then 0 lies in the interior of DΛ, and therefore

P(Zd = (xy cos θ, x2, y2)) = exp
(
−Λ∗(xy cos θ, x2, y2)d+ o(d)

)
. (33)

Essentially, all that remains now is computing Λ∗ at the appropriate point z. To continue,
we first compute the logarithmic moment generating function Λ = Λd of Zd:
I Lemma 13 (Computing Λ). Let Zd as before, and let D = D(λ1, λ2, λ3) = λ2

1 − (1 −
2λ2)(1− 2λ3). Then for λ ∈ DΛ = {λ ∈ R3 : λ2, λ3 <

1
2 , D < 0} we have:

Λ(λ) = ln
(
π + 2 arctan

(
λ1√
−D

))
− ln π − 1

2 ln(−D). (34)

Proof. By the definition of the LMGF, we have:

Λ(λ) = lnEX̂1,Ŷ1∼H(0,1)

[
exp

(
λ1X̂1Ŷ1 + λ2X̂

2
1 + λ3Ŷ

2
1

)]
. (35)

We next compute the inner expectation over the random variables X̂1, Ŷ1, by writing out the
double integral over the product of the argument with the densities of X̂1 and Ŷ1.

EX1,Y1

[
exp

(
λ1X1Y1 + λ2X

2
1 + λ3Y

2
1
)]

(36)

=
∫ ∞

0

√
2
π

exp
(
−x

2

2

)
dx

∫ ∞
0

√
2
π

exp
(
−y

2

2

)
dy exp

(
λ1xy + λ2x

2 + λ3y
2) (37)

= 2
π

∫ ∞
0

∫ ∞
0

exp
(
λ1xy +

(
λ2 − 1

2
)
x2 +

(
λ3 − 1

2
)
y2) dx dy . (38)

Thijs Laarhoven 7:17

Applying Lemma 10 with (a, b, c) = (λ2 − 1
2 , λ1, λ3 − 1

2) yields the claimed expression for Λ,
as well as the bounds stated in DΛ which are necessary for the expectation to be finite. J

We now continue with computing the Fenchel-Legendre transform of Λ, which involves a
rather complicated maximization (supremum) over λ ∈ R3. The following lemma makes a
first step towards computing this supremum.

I Lemma 14 (Computing Λ∗(z) – General form). Let z ∈ R3 such that z2, z3 > 0. Then the
Fenchel-Legendre transform Λ∗ of Λ at z satisfies

Λ∗(z) = ln π + sup
λ1,β
β>1

{
z2

2 + z3

2 + λ1z1 − |λ1|β
√
z2z3 + 1

2 ln(β2 − 1) + ln |λ1| (39)

− ln
(
π + 2 arctan

(λ1

|λ1|
√
β2 − 1

))}
. (40)

Proof. First, we recall the definition of Λ∗ and substitute the previous expression for Λ:

Λ∗(z) = sup
λ∈R3

{〈λ, z〉 − Λ(λ)} (41)

= ln π + sup
λ∈R3

{
〈λ, z〉+ ln

√
−D − ln

(
π + 2 arctan

(
λ1√
−D

))}
. (42)

Here as before D = λ2
1 − (1− 2λ2)(1− 2λ3) < 0. Let the argument of the supremum above

be denoted by f(z,λ). We make a change of variables by setting t2 = 1 − 2λ2 > 0 and
t3 = 1− 2λ3 > 0, so that D becomes D = λ2

1 − t2t3 < 0:

f(z, λ1, t2, t3) = z2

2 + z3

2 + λ1z1 −
t2z2

2 − t3z3

2 (43)

+ 1
2 ln(t2t3 − λ2

1)− ln
(
π + 2 arctan

(
λ1√

t2t3−λ2
1

))
. (44)

We continue by making a further change of variables u = t2t3 > λ2
1 so that t2 = u/t3. As

a result the dependence of f on t3 is only through the fourth and fifth terms above, from
which one can easily deduce that the supremum over t3 occurs at t3 =

√
uz2/z3. This also

implies that t2 =
√
uz3/z2. Substituting these values for t2, t3, we obtain:

f(z, λ1, u) = z2
2 + z3

2 + λ1z1 −
√
uz2z3 + 1

2 ln(u− λ2
1)− ln

(
π + 2 arctan

(
λ1√
u−λ2

1

))
.

Finally, we use the substitution u = β2 · λ2
1. From D < 0 it follows that u/λ2

1 = β > 1. This
substitution and some rewriting of f leads to the claimed result. J

The previous simplifications were regardless of z1, z2, z3, where the only assumption that
was made during the optimization of t3 was that z2, z3 > 0. In our application, we want to
compute Λ∗ at z = (xy cos θ, x2, y2) for certain x, y > 0 and θ ∈ (0, π2). Substituting these
values for z, the expression from Lemma 11 becomes:

Λ∗(xy cos θ, x2, y2) = ln π + x2

2 + y2

2 + sup
λ1,β
β>1

{
(λ1 cos θ − |λ1|β)xy + 1

2 ln(β2 − 1) (45)

+ ln |λ1| − ln
(
π + 2 arctan

(λ1

|λ1|
√
β2 − 1

))}
. (46)

MFCS 2017

7:18 Hypercube LSH for Approximate near Neighbors

The remaining optimization over λ1, β now takes slightly different forms depending on
whether λ1 < 0 or λ1 > 0. We will tackle these two cases separately, based on the identity:

Λ∗(z) = max
{

sup
λ∈R3

λ1>0

{〈λ, z〉 − Λ(λ)} , sup
λ∈R3

λ1<0

{〈λ, z〉 − Λ(λ)}
}

= max{Λ∗+(z),Λ∗−(z)}.

I Lemma 15 (Computing Λ∗(z) for positive λ1). Let z = (xy cos θ, x2, y2) with x, y > 0 and
θ ∈ (0, π2). For θ ∈ (0, arccos 2

π), let β0 = β0(θ) ∈ (1,∞) be the unique solution to (1). Then
the Fenchel-Legendre transform Λ∗ at z, restricted to λ1 > 0, satisfies

Λ∗+(z) = x2

2 + y2

2 − 1− ln(xy) +

ln
(
πβ0(β0 cos θ − 1)

2(β0 − cos θ)2

)
, if θ ∈ (0, arccos 2

π);

0, if θ ∈ [arccos 2
π ,

π
2).

(47)

Proof. Substituting λ1 > 0 into (46), we obtain:

Λ∗+(xy cos θ, x2, y2) = ln π + x2

2 + y2

2 + sup
λ1>0
β>1

{
g+(λ1, β)

}
, (48)

g+(λ1, β) = (cos θ − β)λ1xy + ln(β2 − 1)
2 + lnλ1 − ln

(
π + 2 arctan

(1√
β2 − 1

))
. (49)

Differentiating w.r.t. λ1 gives (cos θ − β)xy + 1
λ1
. Recall that β > 1 > cos θ. For λ1 → 0+

the derivative is therefore positive, for λ1 →∞ it is negative, and there is a global maximum
at the only root λ1 = 1/((β − cos θ)xy). In that case, the expression further simplifies and
we can pull out more terms that do not depend on β, to obtain:

Λ∗+(xy cos θ, x2, y2) = ln π + x2

2 + y2

2 − 1− ln(xy) + sup
β>1

{
g+(β)

}
, (50)

g+(β) = ln

 √
β2 − 1

(β − cos θ)
(
π + 2 arcsin 1

β

)
 = ln h+(β). (51)

Here we used the identity arctan(1/
√
β2 − 1) = arcsin(1/β). Now, for β → 1+ we have

h+(β)→ 0+, while for β →∞, we have

h+(β) = 1
π

+ 1
πβ

(
cos θ − 2

π

)
+O

(
1
β2

)
. (52)

In other words, if cos θ ≤ 2
π or θ ≥ arccos 2

π , we have h+(β) → (1
π)− (the second order

term is negative for cos θ = 2
π), while for θ < arccos 2

π we approach the same limit from
above as h+(β) → (1

π)+. For θ < arccos 2
π there is a non-trivial maximum at some value

β = β0 ∈ (1,∞), while for θ ≥ arccos 2
π , we can see from the derivative h′+(β) that h+(β) is

strictly increasing on (1,∞), and the supremum is attained at β →∞. We therefore obtain
two different results, depending on whether θ < arccos 2

π or θ ≥ arccos 2
π .

Case 1: arccos 2
π ≤ θ < π

2 . The supremum is attained in the limit of β → ∞, which
leads to h+(β)→ 1

π and the stated expression for Λ∗+(xy cos θ, x2, y2).
Case 2: 0 < θ < arccos 2

π . In this case there is a non-trivial maximum at some value
β = β0, namely there where the derivative h′+(β0) = 0. After computing the derivative,
eliminating the (positive) denominator and rewriting, this condition is equivalent to (1).
This allows us to rewrite g and Λ∗ in terms of β0, by substituting the given expression for
arcsin

(
1
β0

)
, which ultimately leads to the stated formula for Λ∗+. J

Thijs Laarhoven 7:19

I Lemma 16 (Computing Λ∗(z) for negative λ1). Let z = (xy cos θ, x2, y2) with x, y > 0 and
θ ∈ (0, π2). For θ ∈ (arccos 2

π ,
π
3), let β1 ∈ (1,∞) be the unique solution to (1). Then the

Fenchel-Legendre transform Λ∗ at z, restricted to λ1 < 0, satisfies

Λ∗−(z) = x2

2 + y2

2 − 1− ln(xy) +

0, if θ ∈ (0, arccos 2
π];

ln
(
πβ1(β1 cos θ + 1)

2(cos θ + β1)2

)
, if θ ∈ (arccos 2

π ,
π
3);

ln
(

π

2(1 + cos θ)

)
, if θ ∈ [π3 ,

π
2).

(53)

Proof. We again start by substituting λ1 < 0 into (46):

Λ∗−(xy cos θ, x2, y2) = ln π + x2

2 + y2

2 + sup
λ1<0
β>1

{
g−(λ1, β)

}
, (54)

g−(λ1, β) = (cos θ + β)λ1xy + ln(β2 − 1)
2 + ln(−λ1)− ln

(
π + 2 arctan

(−1√
β2 − 1

))
.

Differentiating w.r.t. λ1 gives (cos θ+ β)xy+ 1
λ1

. For λ1 → −∞ this is positive, for λ1 → 0−
this is negative, and so the maximum is at λ1 = −1/((cos θ + β)xy). Substituting this value
for λ1, and pulling out terms which do not depend on β yields:

Λ∗−(xy cos θ, x2, y2) = ln
(π

2

)
+ x2

2 + y2

2 − 1− ln(xy) + sup
β>1

{
g−(β)

}
, (55)

g−(β) = ln
(√

β2 − 1
(cos θ + β) arccos 1

β

)
= ln h−(β).

Above we used the identity π + 2 arctan(−1/
√
β2 − 1) = 2 arccos 1

β , where the factor 2 has
been pulled outside the supremum. Now, differentiating h− w.r.t. β results in:

h′−(β) =
β
√
β2 − 1(β cos θ + 1) arccos 1

β −
(
β2 − 1

)
(cos θ + β)

β (β2 − 1) (cos θ + β)2 arccos 1
β

. (56)

Clearly the denominator is positive, while for β → 1+ the limit is negative iff cos θ < 1
2 .

For β →∞ we further have h′−(β)→ 0− for cos θ ≤ 2
π and h′−(β)→ 0+ for cos θ > 2

π . We
therefore analyze three cases separately below.

Case 1: π
3 ≤ θ < π

2 . In this parameter range, h′−(β) is negative for all β > 1, and
the supremum lies at β → 1+ with limiting value h−(β) → 1

1+cos θ . This yields the given
expression for Λ∗−.

Case 2: arccos 2
π < θ < π

3 . For θ in this range, h′−(β) is positive for β → 1+ and
negative for β → ∞, and changes sign exactly once, where it attains its maximum. After
some rewriting, we find that this is at the value β = β1(θ) ∈ (1,∞) satisfying the relation
from (1). Substituting this expression for arccos 1

β1
into h−, we obtain the result for Λ∗−.

Case 3: 0 < θ ≤ arccos 2
π . In this case h′− is positive for all β > 1, and the supremum

lies at β →∞. For β →∞ we have h−(β)→ 2
π (regardless of θ) and we therefore get the

final claimed result. J

Proof of Theorem 1. Combining the previous two results with Lemma 12 and Equation 47,
we obtain explicit asymptotics for P(Zd ≈ (xy cos θ, x2, y2)). What remains is a maximiza-
tion over x, y > 0 of p, which translates to a minimization of Λ∗. As x2

2 + y2

2 − 1− ln(xy)
attains its minimum at x = y = 1 with value 0, we obtain Theorem 1. J

MFCS 2017

7:20 Hypercube LSH for Approximate near Neighbors

B Proof of Proposition 9

We will assume the reader is familiar with (the notation from) [23]. Let t = 2ctd+o(d) denote
the number of hash tables, and n = (4/3)d/2+o(d). Going through the proofs of [23, Appendix
A] and replacing the explicit instantiation of the collision probabilities (1 − θ/π) by an
arbitrary function p(θ), we get that the optimal number of hash functions concatenated into
one function for each hash table, denoted k, satisfies

k = ln t
− ln p(θ1) = ctd

d′ log2(π/
√

3)
. (57)

The latter equality follows when substituting θ1 = π/3 and substituting the collision proba-
bilities for partial hypercube LSH in some dimension d′ ≤ d. As we need k ≥ 1, the previous
relation translates to a condition on d′ as d′ ≤ ct

log2(π/
√

3)d. As we expect the collision
probabilities to be closer to those of full-dimensional hypercube LSH when d′ is closer to d,
we replace the above inequality by an equality, and what remains is finding the minimum
value ct satisfying the given constraints.

By carefully checking the proofs of [23, Appendix A.2-A.3], the exact condition on ct to
obtain the minimum asymptotic time complexity is the following:

−cn = max
θ2∈(0,π)

{
log2 sin θ2 + ct

ρ(π3 , θ2)

}
. (58)

Here cn = 1
2 log2(4

3) ≈ 0.20752, and ρ(θ1, θ2) = ln p(θ1)/ ln p(θ2) corresponds to the exponent
ρ for given angles θ1, θ2. Note that in the above equation, only ct is an unknown. Substituting
the asymptotic collision probabilities from Theorem 1, we find a solution at ct ≈ 0.11464,
with maximizing angle θ2 ≈ 0.45739π. This corresponds to a time and space complexity of
(n · t)1+o(1) = 2(cn+ct)d+o(d) ≈ 20.32216d+o(d) as claimed.

Generalized Predecessor Existence Problems for
Boolean Finite Dynamical Systems
Akinori Kawachi1, Mitsunori Ogihara2, and Kei Uchizawa3

1 Graduate School of Engineering, Osaka University, Osaka, Japan
2 Department of Computer Science, University of Miami, Coral Gables, FL, USA
3 Graduate School of Science and Engineering, Yamagata University, Yamagata,

Japan

Abstract
A Boolean Finite Synchronous Dynamical System (BFDS, for short) consists of a finite number of
objects that each maintains a boolean state, where after individually receiving state assignments,
the objects update their state with respect to object-specific time-independent boolean functions
synchronously in discrete time steps. The present paper studies the computational complexity
of determining, given a boolean finite synchronous dynamical system, a configuration, which is
a boolean vector representing the states of the objects, and a positive integer t, whether there
exists another configuration from which the given configuration can be reached in t steps. It was
previously shown that this problem, which we call the t-Predecessor Problem, is NP-complete
even for t = 1 if the update function of an object is either the conjunction of arbitrary fan-in or
the disjunction of arbitrary fan-in.

This paper studies the computational complexity of the t-Predecessor Problem for a variety
of sets of permissible update functions as well as for polynomially bounded t. It also studies
the t-Garden-Of-Eden Problem, a variant of the t-Predecessor Problem that asks whether a
configuration has a t-predecessor, which itself has no predecessor. The paper obtains complexity
theoretical characterizations of all but one of these problems.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Computational complexity, dynamical systems, Garden of Eden, prede-
cessor

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.8

1 Introduction

A dynamical system is a time-dependent network of objects that models evolution, where
each object holds a state value that is an element of a state set. The configuration of the
system is the collective state of the objects and is the vector that assembles the states of
all the objects in a certain order. Given an initial configuration, the system evolves over
time through state update, where the state of an object is updated by a function that takes
as input state values of some nodes, possibly its own state value. Variants of dynamical
systems can be defined by considering the state set (binary, discrete, countably infinite, and
uncountable), the types of permissible update functions, whether the number of states is
fixed, and the order in which the updates are performed (either in a fixed order or all at the
same time).

The simplest dynamical systems are those with the boolean state set, a fixed finite number
of objects, and synchronous updates, where the state update function does not depend on
the time distance from the start. These systems are called boolean finite dynamical systems

© Akinori Kawachi, Mitsunori Ogihara, and Kei Uchizawa;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 8; pp. 8:1–8:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2 Generalized Predecessor Existence Problems for Boolean Finite Dynamical Systems

Figure 1 Configuration space with a loop, a fixed point, and flows into them. Dots represent
configurations, and arrows do transitions. A node of in-degree 0 represents a Garden of Eden.

(BFDS) [1]. Quite often, the BFDS model is further simplified by assuming that the update
functions are chosen from a collection of templates, such as the exclusive-or, the negation,
the conjunction, and the disjunction.

Given a BFDS F of n objects, the number of possible configurations of the system is 2n.
Due to the assumptions that the updates are synchronized and that the update function
does not change over time, the imposed finiteness of the system configuration space leads to
important facts: for each initial configuration a, the system starting from a either converges
to a fixed point or enters some loop having length ≥ 2 and that the convergence or the
entrance to a loop takes place within 2n steps from departure (see Figure 1). These facts
mean that the dichonomical fate of an initial configuration in a BFDS can be tested in the
linear space. In fact, the fate-determination problem (or the convergence problem) as well
as its variant, the reachability problem (whether a configuration be reached from another
configuration with respect to a given BFDS), is PSPACE-complete if a complete boolean
basis is available for building update functions and the complexity is lower for both problems
otherwise [3]. The BDFS offers a rich theory not only in terms of fixed points, reachability,
and cycles, but also in terms of the reversal, that is, the action of going back in time starting
from a given configuration. Since the system changes two distinct configurations the same
configuration with a single update, so a given configuration may have multiple predecessors.
Also, there may exist configurations without predecessors. We call such a configuration
Garden of Eden (GOE) (see Figure 1).

If the update functions are each polynomial time computable, which is indeed the case
where the functions are chosen from a predetermined set of templates, testing whether a
given configuration of a BFDS has a predecessor can be answered in NP, and thus, whether
the configuration is a GOE can be answered in coNP. In fact, it is NP-complete to decide
whether a configuration is not a GOE [2]. This paper makes a deeper investigation into this
problem by asking how much simplification can be given the template set for update functions
to retain this completeness. We show: if the templates are either only conjunction or only
disjunction the GOE problem is in AC0; if the templates are the two-fan-in conjunction
and the two-fan-in disjunction, then the GOE problem is NL-complete; if the templates are
either the combination of the two-fan-in conjunction and the three-fan-in disjunction or the
combination of the two-fan-in disjunction and the three-fan-in conjunction, then the GOE
problem is coNP-complete.

We generalize the GOE Problem further in two ways. First, for an integer t ≥ 1, we
ask whether we can go back from a given configuration successively t times, by cleverly
choosing at each time one of the possible predecessors, if any at all. We call this problem the
t-Predecessor Existence Problem (the t-PRED Problem, for short). Second, for an integer

A. Kawachi, M. Ogihara, and K. Uchizawa 8:3

t ≥ 0, we ask whether we can go back from a given configuration successively t times and
arrive at a GOE, by cleverly choosing at each time one of the possible predecessors, if any at
all. We call this problem the t-Garden Of Eden Existence Problem (the t-GOE Problem,
for short). The GOE Problem we mentioned earlier is indeed the 0-GOE Problem in this
extension. It is easy to see that the 1-PRED Problem is exactly complementary to the 0-GOE
Problem; but, for t ≥ 2, the t-PRED is not necessarily complementary to the (t− 1)-GOE
Problem.

In this paper we ask the complexity of these two extensions with the functions restricted
to be disjunction and conjunction. Except for the 1-GOE Problem with 2-fan-in disjunction
and 2-fan-in conjunction, we obtain complete characterization of the constant-bounded as
well as the polynomial-bounded t-PRED Problem and t-GOE Problem for all the templates
consisting of conjunction and disjunction (see Table 1 in Section 2).

We note here that the papers [5, 6] show that the problem of computing fixed points
in a BFDS exhibits a curious dichotomy between P and #P-complete and that [8] studies
the problem of calculating the length of a cycle that an initial configuration is eventually
taken to, and shows that the problem is polynomial-time solvable for some template sets,
computable in UP for some, and PSPACE-complete for some. Along with these prior papers,
our paper shows BFDS offers a rich theory of computational complexity.

This paper is organized as follows: In the next section we go over the definitions and
prove some useful lemmas and propositions. We then show the results on the predecessor
existence problems in Section 3 and the results on the Garden of Eden problems in Section 4.
We will conclude the paper in Section 5.

2 Preliminaries

For an integer n ≥ 1, a synchronous boolean finite dynamical system (synchronous BFDS, for
short) F of n objects consists of n variables x1, . . . , xn and n boolean functions (f1, f2, . . . , fn)
such that for each i, 1 ≤ i ≤ n, fi is a boolean function that takes input from x1, . . . , xn. A
state configuration a (or simply a configuration) of F is an n-dimensional boolean vector
and for each variable x, a[x] ∈ {0, 1} represents the component of a corresponding to x.
The action of F on an state configuration x is defined by: F(x) = (f1(x), f2(x), . . . , fn(x)).
In other words, the elements of F(x) are obtained by applying the n boolean functions
f1, . . . , fn concurrently on the variables x1, . . . , xn.

In the remainder of the paper, boolean dynamical systems are defined without giving an
explicit ordering among the objects. We will use the notation F [x] to mean the function of
the dynamical system F for the object x.

Given an initial state configuration x0, the synchronous BFDS generates a sequence
of state configurations by iterative applications of F : For all t ≥ 0, xt+1 = F(xt), where
xt = (xt

1, x
t
2, . . . , x

t
n). In other words, for all t ≥ 0, xt = F t(x0).

Although we use the notation to mean that all the n variables are fed to each fi, in reality
some fi may depend on a proper subset of the variables. Let g be a boolean function possibly
with arity less than n. We say that fi has template g to mean that fi is equivalent to g with
input variables properly chosen from x1, . . . , xn. Given a collection of boolean functions, we
say that F has template set B if each function in F has template in B. We are interested in
the following functions as template:

id: this is the identity function with only one input that outputs the value of its input
without changing it;
ANDk, k ≥ 1: this is the conjunction of arity k;
ORk, k ≥ 1: this is the disjunction of arity k.

MFCS 2017

8:4 Generalized Predecessor Existence Problems for Boolean Finite Dynamical Systems

Note that for all k ≥ 2 and m < k ANDk (ORk, respectively) can be used as a template for
ANDm (ORm, respectively) by repeating some of the inputs. Note also that both AND1 and
OR1 are identical to id.

We are interested in the following template sets:
Bid = {id},
B2OR = {OR2} and B2AND = {AND2},
BOR = {ORk | k ≥ 1} and BAND = {ANDk | k ≥ 1},
B2OR,2AND = {OR2,AND2},
B3OR,2AND = {OR3,AND2} and B2OR,3AND = {OR2,AND3}.

Given a synchronous BFDS F and a configuration a of F , we say that another configura-
tion b is the t-th predecessor of a, t ≥ 1, if F t(b) = a. We will omit the word first in the
case where t = 1. By convention, we define the 0-th predecessor of a to be a itself. We say
that a is a Garden of Eden if a has no predecessor. We then consider the following problems.

Let t, t ≥ 1, be a fixed constant. Given a synchronous BFDS F with template set B and
a configuration a, the t-PRED Problem for B asks whether a has a t-th predecessor.
Let t, t ≥ 0, be a fixed constant. Given a synchronous BFDS F with template set B, a
configuration a, the t-GOE Problem for B asks whether a has a t-th Garden of Eden,
i.e., a t-th predecessor that is a Garden of Eden.

We also consider the polynomial version of the two problems.
Given a synchronous BFDS F with template set B, a configuration a, and p presented in
unary as 1p, the Poly-PRED Problem for B asks whether a has a p-th predecessor.
Given a synchronous BFDS F with template set B, a configuration a, and p presented in
unary as 1p, the Poly-GOE Problem for B asks whether a has a p-th Garden of Eden.

Note that as long as the predecessor existence and Garden of Eden problems go, by exchanging
simultaneously between AND and OR and between true and false, any complexity result
with respect to BAND holds with respect to BOR. The same relation holds between B2AND
and B2OR and between B2OR,3AND and B3OR,2AND.

The 1-PRED and 0-GOE are generally called the Predecessor Existence Problem and
the Garden-of-Eden Problem, respectively, and have been well studied. We note here that
the synchronous BFDS often assumes that for each object its update function takes its state
as part of the input; that is, xi is one of the inputs to fi. In this paper we remove that
restriction, since if for all i it holds that fi is either disjunction or conjunction whose inputs
include xi, the system F is monotone and converges within n steps, which gives little room
for exploration.

For GOE Problem, in [2] it is shown that for the sequential dynamical systems (that
is, the systems in which updates are performed one variable at a time with respect to a
predetermined order), t-PRED is NP-complete even if the template set consists of AND’s
and OR’s of any arity. The proof of this result does not directly imply the same result for
the synchronous dynamical system.

In the case of sequential and synchronous dynamical systems, we have the following:

I Proposition 1 ([2]). The Poly-PRED Problem is solvable in polynomial time if B is one
of the following: (i) ANDs of any fan-in and their negation, (ii) ORs of any fan-in and their
negation, and (iii) XORs of any fan-in and their negation.

For GOE Problem, the following is known:

I Proposition 2 ([2]). 0-GOE Problem is coNP-complete in general, but is solvable in
polynomial time if 1-PRED Problem is solvable in polynomial time.

A. Kawachi, M. Ogihara, and K. Uchizawa 8:5

Table 1 The results from this paper. The left panel is for the PRED Problems and the right
panel is for the GOE problems. For “?” it is only known that the problem is NL-hard and in NP.
The “-C” stands for “-complete”.

PRED t

1 ≥ 2 poly
Bid

AC0
DL-C

B2OR, B2AND NL-C
BOR, BAND

B2OR,2AND NL-C
NP-CB2OR,3AND

B3OR,2AND

GOE t

0 1 ≥ 2 poly
Bid AC0 DL-C

B2OR, B2AND NL-C
BOR, BAND NP-C
B2OR,2AND NL-C ?
B2OR,3AND coNP-C Σp

2-CB3OR,2AND

Table 1 summarizes the results shown in this paper.
We prove the following lemma, which will be useful in proving results on BOR and B2OR.

I Definition 3. Let F be an n-variable synchronous BFDS, let a be a configuration of F ,
and let t ≥ 1 be an integer. Define a directed graph G[F ,a, t] = (V,E) with V partitioned
into two groups K and L as follows:

V = V0 ∪ . . . ∪ Vt and for each i, 0 ≤ i ≤ t, Vi = {vi,1, · · · , vi,n};
E = {(vi,p, vi+1,q) | 0 ≤ i ≤ t− 1 and the function for xp takes input from xq }.
L = L0∪ . . .∪Lt, where L0 = {v0,j | the value of xj in a is false } and for each i, 1 ≤ i ≤ t,
Li is the set of all nodes in Vi that are reachable from L0.
K = K0 ∪ . . . ∪Kt and for each i, 0 ≤ i ≤ t, Ki = Vi − Li; specifically, K0 = {v0,j | the
value of xj in a is true }.

I Lemma 4. Let F be an n-variable synchronous BFDS whose template set is the OR
function. Let t ≥ 1 and a a configuration of F . Let G = (V,E) = G[F ,a, t] be as defined in
the above and (K,L) be the partition of V . Then
1. a has a t-th predecessor if and only if for each u ∈ K0 there is a path to a node in Kt

that does not visit any node in L.
2. a has a t-th Garden-of-Eden predecessor if and only if there exist some

M = {vt,j1 , . . . , vt,jm} ⊆ Vt and vt,j0 ∈ Kt\M(= Vt − (Lt ∪M)) such that:
1. for each u ∈ K0 there is a path to a node in Kt \M that does not visit any node in

L ∪M ,
2. each input of the function for xj0 is an input of the function for one of xj1 , · · · , xjm

,
and

3. the cardinality of M is no greater than the arity of the function for xj0 .

Proof. (The Predecessor Case) Suppose the condition in the lemma is satisfied. For
each u ∈ K0 choose one L-free path to some node in Kt. For each i, 0 ≤ i ≤ t, define
Bi = {vi,j | vi,j appears on one of the chosen paths }. Then Bi ⊆ Ki for all i. For each
i, 0 ≤ i ≤ t, define configuration bi by setting the value of a variable xj true if vi,j ∈ Bi

and false otherwise. Then b0 = a and for all i, 0 ≤ i ≤ t− 1, F(bi+1) = bi. Thus, bt is a
t-th predecessor. On the other hand, suppose a has a t-th predecessor. Let b0 = a. Select
configurations b1, . . . ,bt so that for each i, 0 ≤ i ≤ t − 1, bi+1 is a predecessor of bi. For
each i, 0 ≤ i ≤ t, let Si = {vi,j | bi assigns true to xi,j }. Then S0 = K0. Because of the
predecessor relations, for each i, 1 ≤ i ≤ t, Si ⊆ Ki and each node u ∈ Si has at least one
incoming edge from Si−1. Thus, the property holds for F , a, and t.

MFCS 2017

8:6 Generalized Predecessor Existence Problems for Boolean Finite Dynamical Systems

(The Garden Of Eden Case) Suppose that the conditions stated in the lemma hold. As
before for each u ∈ K0 choose a path that is free on M ∪ L but ensure that one of the paths
arrive at some node in Kt \M . Then, following the argument as before, the configurations
induced by the path nodes form a series of t configurations arriving at a. For bt, the value
of xj0 is true and the values of xj1 , . . . , xjm

are false. Each input of xj0 is also an input of
one of xj1 , . . . , xjm . Any predecessor of bt must assign true to one of the inputs of xj0 and
must assign false to all of the inputs of xj1 , . . . , xjm

, but that is not possible. Thus, there is
no predecessor of bt.

On the other hand, suppose that there is a t-th predecessor of a that is a Garden of Eden.
Select such one and define b0, . . . ,bt and S0, . . . , St as before. We have, as we have observed
previously, for all i, 0 ≤ i ≤ t, Si ⊆ Ki, and each node in S0 ∪ · · · ∪ St is along an L-free
path from K0 (which is equal to S0) to St. Let R be the variables that supply input to the
variables corresponding to the nodes in Vt − St. In any predecessor of bt, the value of each
variable in R must be false while each variable in X −R can be set to true if needed. Then,
that bt is a Garden of Eden implies that there is some variable u ∈ St all of whose input
belong to R. Select one such u and for each input h of u, select a variable R that takes input
from h. Construct M by placing the chosen variables from R. Then u and M satisfy the
property in question. J

We have straightforward upper bounds on the predecessor and Garden-Of-Eden problems.

I Proposition 5 ([2]). Suppose the template set B consists only of polynomial-time computable
boolean functions. Then the Poly-PRED Problem is in NP.

I Proposition 6. Suppose the template set B consists only of polynomial-time computable
boolean functions. Then the Poly-GOE Problem is in Σp

2.

The following proposition is useful to reduce the predecessor problems to Garden-Of-Eden
problems.

I Proposition 7. Given a synchronous BFDS F , its configuration a, and t ≥ 1, we can add
t+ 2 variables to F and a to create a new BFDS F ′ and a′ so that:

if a has a t-th predecessor in F , then a′ has a t-th predecessor in F ′ and none of its t-th
predecessors have a predecessor; and
if a does not have a t-th predecessor in F , then a′ does not have a t-th predecessor in F ′.

Proof. Let F , a, and t be given. Introduce t + 2 variables e0, . . . , et+1. We define the
function of e0 to be id(e0) and the function for ei, 1 ≤ i ≤ t+ 1, to be id(ei−1). This is F ′.
We then add to a the values of ei as all false except et+1. Then, for each i, 1 ≤ i ≤ t, the i-th
predecessor of the additional part has false for e0, . . . , et−i and true for et−i+1. Specifically
we have that the t-th predecessor on this part has false for e0 and true for e1. Since e0 and
e1 take input from e0 and is the identify function, clearly, such a t-th predecessor cannot
have a predecessor. Since the new variables and functions are disjoint with those in the
original, the new part does not affect the invertibility of the original part. This proves the
proposition. J

The last general result we present in this section shows that if a predecessor problem with
a certain template set (respectively, a GOE problem with a certain template set) for some t
is hard a problem H, then the problem is hard for t+ 1. We omit the proof of this lemma.

I Lemma 8. Let B be a template set containing the two-fan-in OR. Suppose there is a
many-one reduction g from a problem H to the t-predecessor problem with t ≥ 1 (respectively,

A. Kawachi, M. Ogihara, and K. Uchizawa 8:7

the t-GOE problem with t ≥ 0). Then there is a many-one reduction g′ from H to the
(t + 1)-predecessor problem (respectively, the (t + 1)-GOE problem). Furthermore, if g is
logspace computable (polynomial-time computable) using B as the oracle, then so is g′.

3 The Complexity of Predecessor Problems

We first consider the case of B2OR,3AND and B3OR,2AND, and prove that the problems are
NP-complete.

I Theorem 9. For B2OR,3AND and B3OR,2AND, the t-PRED Problem is NP-complete for all
constants t ≥ 1.

Proof. The inclusion in NP follows from Proposition 5.
We consider B3OR,2AND for NP-hardness and provide a polynomial-time many-one re-

duction from 3SAT to the 1-PRED Problem. Let ϕ be a 3CNF formula with n vari-
ables and m clauses. We introduce variables w, c1, . . . , cm, y1,0, y1,1, . . . , yn,0, yn,1, and
z1,0, z1,1, . . . , zn,0, zn,1. We associate yi,1 with the positive literal of the i-th variable of y and
yi,0 with the negative literal of the i-th variable. We define the functions for these variables
as follows:

w, yi,0, yi,1: the function is id(w).
zi,0: OR(yi,0, yi,1).
zi,1: AND(yi,0, yi,1).
cj : Let the three literals of Cj be yp,b, yq,c, and yr,d. Then the function is
OR(yp,b, yq,c, yr,d).

We set the values of the variables in a to true for w, yi,0, yi,1, and zi,0 and false for zi,1.
Suppose a has a predecessor b. Then for all i, since zi,0 is true and zi,1 is false in

a, in b exactly one of yi,0 and yi,1 is true and the values of y’s in b can be viewed as a
truth-assignment to the n variables of ϕ. Then, for all j, cj is true in a and the inputs to the
function for cj correspond to the literals of Cj , it must be the case that the truth-assignment
as represented by the y’s in b form a satisfying assignment of ϕ. This means that ϕ is
satisfiable.

On the other hand, suppose that ϕ is satisfiable. We take one satisfying assignment α of
ϕ and build b by setting the values to y’s according to α, true to w, and an arbitrary value
to z’s. Then F(b) = a and so a has a predecessor.

Clearly, this reduction can be computed in polynomial time, and so the theorem holds
for t = 1. By combining this with Lemma 8, we obtain the proof for t ≥ 2. J

We then consider the case of B2OR,2AND. In this case, the problem is tractable only when
t = 1.

I Theorem 10. For B2OR,2AND, the 1-PRED Problem is NL-complete and for all constants
t ≥ 2 the problem is NP-complete.

Proof. It is easy to see that the above proof can be carried out for 2SAT with a logspace
computable many-one reduction and so the 1-PRED Problem with B2OR,2AND is NL-hard.
To show that the problem is in NL, note that in the case of B2OR,2AND, given a configuration
a, the value assignments to its predecessor can be written as a 2CNF formula with possible
single-literal clauses; e.g., OR(x, y) = true can be expressed as x ∨ y.

For the 2-PRED Problem, the main idea is to break the computation of three-literal
ORs into the OR to two two-variable ORs. We introduce alternating variables w1 and w2
whose functions are id(w2) and id(w1), respectively, and set their values in a to be true

MFCS 2017

8:8 Generalized Predecessor Existence Problems for Boolean Finite Dynamical Systems

and false, respectively. Then for any predecessor of a, their values should be false and true,
respectively, and for any second predecessor of a, their values should be true and false,
respectively. We use variables yi,0, yi,1, zi,0, zi,1 as in the case of B3OR,2AND and add ui,0, ui,1.
For each j, we introduce three variables cj , dj , and ej and define their functions to be
OR(dj , ej), OR(yp,c, yq,d), and OR(yp,c, yr,e) where yp,c, yq,d, and yr,e are the three literals
of Cj . We define the functions for yi,b to be OR(yi,b, w1) for each b ∈ {0, 1}, the functions
for ui,b to be id(zi,b), the functions for zi,0 to be OR(yi,0, yi,1), and the functions for zi,1 to
be AND(yi,0, yi,1).

In a we set the value of w2 and all ui,1 to false and set everything else to true. Assume a
has a predecessor a′ and a′ has a predecessor a′′. The values of yi,0 and yi,1 in a′′ are OR-ed
and AND-ed and stored in zi,0 and zi,1, respectively, in a′ and then preserved in ui,0 and
ui,1, respectively, in a. So, it must be the case that exactly one of yi,0 and yi,1 is true in a′′
and thus we can view these as truth-assignments to the variables of ϕ. For each clause Cj ,
the first and the second literals of Cj as appearing in a′′ are OR-ed and stored in a′ as dj as
well as the first and the second literals as ej . These two are then joined by an OR in a as cj .
Thus, for a′′ to exist the y’s in a′′ must represent a satisfying assignment of ϕ. Because y’s
are OR-ed with w1 and a′′ should have true for w1, y’s in a′ are all true. This means that
z’s, d’s, and e’s become all true in a. Thus, a has a second predecessor if and only if ϕ is
satisfiable.

The hardness for the case t ≥ 3 follows from Lemma 8. J

If B contains only conjunction or only disjunction, the problems are significantly easy.

I Theorem 11. For BOR and BAND, the t-PRED Problem is in AC0 for all constants t ≥ 1.

Proof. Suppose that B is BOR, and we are given F and a. Let G = (V,E) = G[F ,a, t], and
(K,L) be the partition of V as given in Definition 3. By Lemma 4, we have only to, for
each u ∈ K0, enumerate all the paths from u to Vt and then check if the reachable nodes in
Kt can be reachable from L0. Since the number of all the paths in G is O(nt), this can be
carried out using an AC0 circuit. Thus, we have done. J

We now consider Poly-PRED Problems where t is part of the input. By combining
Proposition 5 and Theorem 9, we obtain the following corollary for the case where B contains
both conjunction and disjunction.

I Corollary 12. Suppose B is one of B2OR,2AND, B2OR,3AND, and B3OR,2AND. Then the
Poly-PRED Problem with template set B is NP-complete.

In the case of Bid, the problem is L-complete, and in the case of BOR and BAND, the
problem is NL-complete. The proofs are omitted due to the page limitation.

I Theorem 13. The Poly-PRED Problem with template set Bid is L-complete under logspace-
uniform AC0-reductions.

I Theorem 14. Suppose B is either BOR or BAND. Then the Poly-PRED Problem with
template set B is NL-complete under logspace-uniform AC0-reductions.

4 The Complexity of Garden-of-Eden Problems

In this section we prove our results on the Garden of Eden problems. In the previous section
we prove our hardness results by producing a many-one reduction from a language L to a
synchronous BFDS and a so that there is a t-th predecessor if the input is a member of L
and so that there is a (t − 1)-st predecessor but no t-th predecessor if the input is not a

A. Kawachi, M. Ogihara, and K. Uchizawa 8:9

member of L. One may think that this construction can be used to produce a many-one
reduction from the complement of L to the (t− 1)-st GOE problem with respect to the same
BFDS. Unfortunately, this is not the case because according to the construction there may
be multiple first predecessors of a and so even in the case where the input is a member of
L, not every (t− 1)-st predecessor of a has a predecessor. Thus, to prove the hardness of a
Garden of Eden problem for a language L the construction must be such that if the input is
in L, there is a (t− 1)-st predecessor that is a Garden of Eden and such that if the input is
not in L, every (t− 1)-st predecessor has a predecessor.

As mentioned earlier, unlike other t ≥ 1, 0-GOE Problem is complementary to 1-PRED
Problem. Noting that NL is closed under complementation [4, 7], we have the following
result from Theorems 9 and 10.

I Theorem 15. The 0-GOE Problem is in AC0 if the template set is one of Bid, B2OR,
B2AND, BOR, and BAND, NL-complete if the template set is B2OR,2AND, and coNP-complete
if the template set is either B2OR,3AND or B3OR,2AND.

Consider then the case where t ≥ 1. We first observe an upper bound on the problems
for the case of BOR and BAND.

I Lemma 16. The Poly-GOE Problem with template BOR or BAND is in NP.

Proof. Let F be a synchronous BFDS with template BOR with n variables x1, . . . , xn and
let a be a configuration of F . Suppose we are testing whether a is a t-th predecessor
and is a GOE in the system F and t is given as 1t as part of input. Consider a layered
digraph G = (V,E) whose variable set V has t+ 2 layers, X0, . . . , Xt, Xt+1, where for each j,
0 ≤ j ≤ t+ 1, Xj consists of n variables x1,j , . . . , xn,j . We draw a directed edge (xi,j , xi′,j′)
if 0 ≤ j ≤ t, j′ = j + 1, and xi′ is an input to the OR function for xi.

Let S be the set of all xi,0 such that the value of xi is true in a and Let S′ be the set of
all xi,0 such that the value of xi is false in a. Let R be the set of all nodes reachable from S′.
Let T ′ = R ∩Xt and T = Xt − T ′.

We claim that a has a t-th predecessor that is a GOE if and only if there exists a set
D ⊆ T such that (i) from each node in S there is a path to a node in D that does not visit R
and (ii) there is a node u in D such that every node v in Xt+1 is reached from u is reached
from some node in Xt −D.

Suppose there is such a D. Define a configuration b by setting the value of u to true if
and only if it belongs to D. Since D is reachable from S without going through the nodes in
R and D ∩R = ∅, we have F t(b) = a and so a is a t-th predecessor of a. Each predecessor
b of must have a value true for at least one of the variables v that is reachable from u, but
since b has value false for all the nodes in Xt −D, all of them must have value false. These
two requirements are conflicting with each other and cannot be satisfied at the same time.
Thus, b is a GOE.

On the other hand, suppose there is no such a D. Suppose there is no D satisfying (i), it
means that a does not have a t-th predecessor, and so, a does not have a t-th predecessor
that is a GOE. Suppose there is a D satisfying (i) but each such D fails to satisfy (ii). For
each such D we define b to be configuration that assigns true to all variables in D and false
to the rest. Also, for each such D we can select for each u ∈ D select one node v in Xt+1−R
that is reachable from u. By setting the value to true for all v’s thus selected to false for
the remainder, we obtain a configuration c. Then b is a t-th predecessor of a and c is a
predecessor of b and so every t-th predecessor of a has a predecessor.

To test the existence of a D in question, we calculate S, S′, R, T ′, T and then try all
possible combinations of D ⊆ T and u ∈ D, and so the test can be carried out in NP.

This proves the lemma. J

MFCS 2017

8:10 Generalized Predecessor Existence Problems for Boolean Finite Dynamical Systems

Unlike predecessor problems, Garden-of-Eden problem is NP-complete even if B is either
BOR or BAND and t is part of the input.

I Theorem 17. The 1-GOE Problem with template BOR or BAND is NP-complete.

Proof. Because we have Lemma 16, we have only to show that the 1-GOE Problem is NP-hard.
We will reduce 3SAT to the problem. Let ϕ be a 3CNF formula of n variables and m clauses.
Our synchronous BFDS uses variables, among other, xi,0, xi,1, yi,0, yi,1, ui, zi, 1 ≤ i ≤ n,
cj , 1 ≤ j ≤ m. The idea is to use yi,0 and yi,1 to encode purported value assignments to the
negative and the positive literals of xi. These assignments are not necessarily opposite to
each other. We use the variable ui to generate yi,0 as the OR of xi,0 and ui and generate
yi,1 as the OR of xi,1 and ui. We generate zi as the OR of yi,0 and yi,1. We use the value
assignments to the literal yi,b’s to evaluate the variables cj ’s, which are corresponding to the
clauses. If ϕ is satisfiable, it is possible to choose the values for yi,b’s so that for each i, yi,0
and yi,1 are opposite to each other and so ui is false. If ϕ is not satisfiable, to make the
value of cj true for all i, we need to assign true to both yi,0 and yi,1 and so for such an i, ui

can be set to true. So, assuming that zi’s and cj ’s are all true, ϕ is satisfiable if and only if
we can choose the values for yi,b’s so that ui’s is all false.

We formalize this idea using additional variables p0, p1, p2, u0, and v0. The functions
for p0, p1, and p2 are respectively id(p2), id(p0), and id(p1); that is, they rotate the values
among them, from p0 to p1, p1 to p2, and then p2 to p0. We set the values for them in a to
be false, false, and true, and so, in each predecessor of a, if any, their values should be false,
true, false, and in each second predecessor of a, if any, their values should be true, false, false.
The function for u0 is the OR of u1, . . . , un and the function for v0 is the OR of u0 and p0.

The functions for the other variables are as follows:
ui: the OR of ui and p0;
zi: the OR of yi,0, yi,1, and p0;
yi,0: the OR of xi,0 and ui;
yi,1: the OR of xi,1 and ui;
xi,0: the OR of xi,0 and p0;
xi,1: the OR of xi,1 and p0;
cj : the OR of yk,b, yl,c, ym,d, and p0 where yk,b, yl,c, ym,d are the variables corresponding
to the three literals of the jth clause in ϕ.

Figure 2 shows how these variables interact.
The configuration a is all true except for p0 and p1. Let us speak of a hypothetical

predecessor b of a and a hypothetical predecessor c of b. As mentioned earlier, the value
of p0 is true in c and false in b. Because of this, all the variables that take p0 as part of
input must be true in b; they are p1, v0, all ui’s, all zi’s, all cj ’s, and all xi,b’s. Since these
are all true, in F(b) the value should be true for u0, all ui’s, all yi,b’s, and xi,b’s, which is
consistent with their value assignments in a. Also, since v0 has value true in a, in b the value
of u0 should be true. The only values that are not determined in b are those of yi,b’s. The
constraints are that for each i, either yi,0 or yi,1 must be true and that these assignments
satisfy all the clauses.

Suppose ϕ is satisfiable. We pick one satisfying assignment of ϕ and select the values of
yi,b accordingly. Then yi,0 and yi,1 are opposite to each other for all i, and so in c ui’s must
be all false. However, since u0 has value true in b and it is the OR of all ui’s, to make it
happen the value of at least one ui must be true in c. These two requirements are conflicting
and so c cannot exist and thus b is a GOE.

On the other hand, suppose ϕ is not satisfiable. We determine the values of yi,b’s in b so
that they turn cj ’s all true in a and for each i, at least one of yi,0 and yi,1 is true. Because ϕ

A. Kawachi, M. Ogihara, and K. Uchizawa 8:11

?

xi,b:
or(xi,b, p0)

ui:
or(ui, p0)

cj: or(p0,
Cj's literals
from y's)

yi,b:
or(ui, xi,b)

?

t,f,f

p0: id(p2),
p1: id(p0),
p2: id(p1)

f,t,f

f,f,t

?

u0:
or(u1, ..., un)

zi:
or(yi,0, yi,1, p0)

v0:
or(u0, p0)

Figure 2 The construction for the 1-GOE Problem for BOR. The top layer is a, the middle layer
is a predecessor of a, and the bottom layer is a second predecessor of a. The arrows show where the
inputs come from but inputs from pi’s are not shown. The variables in each diamond shaped are
fixed because of the use of p0. Unless specified, they are all true. The rectangles with rounded sides
show blocks of variables whose values are expected to be true. They take input from the rectangles
marked with the question mark. They are variables corresponding to the value assignments to the
literals and the ui’s.

is not satisfiable, there must be at least one i such that both yi,0 and yi,1 are true. Select s
to be such an i. In c set us to true and other ui’s to false and set the value of xi,b in c equal
to the value of yi,b in b. Also, set all the remaining variables except the pi’s false. Then this
c is indeed in a predecessor of b. This means that each predecessor b of a has a predecessor
and thus there is no predecessor that is a GOE.

This proves the theorem. J

From the above and Lemmas 8 and 16, we have the following corollary.

I Corollary 18. Let B be either BOR or BAND. The Poly-GOE Problem with template B
and t-GOE Problem for t ≥ 1 with template B are NP-complete.

If the arities of conjunction and disjunction are bounded by two, the problems are
tractable.

I Theorem 19. Let B be one of Bid, B2OR, and B2AND. For all constants t ≥ 0, the t-GOE
Problem with template B is in AC0.

Proof. We have only to test the conditions as stated in Lemma 4 part 2. Specifically, we need
to compute G = (V,E), the partition (K,L) of V , and then try all possible combinations
for u and M to see whether the three properties hold. The conditions can be tested in AC0

because M has cardinality at most 2. J

However, we show that the problem for Bid and that for B2OR or B2AND belong to different
complexity classes if t is part of the input.

I Theorem 20. The Poly-GOE Problem with template Bid is L-complete.

Proof. Theorem 13 shows that the Poly-PRED Problem with template Bid is L-complete.
By Proposition 7, this implies that Theorem 13 shows that the Poly-GOE Problem with
template Bid is L-hard.

To show that the problem is in L, we use Lemma 4. Since the available function template
is id, the set M in the proposition has cardinality 1. As we have seen in Theorem 13, the
reachability part of the test can be carried out in L. As for the remaining properties, we
have only to try all possible combinations of u and M . J

MFCS 2017

8:12 Generalized Predecessor Existence Problems for Boolean Finite Dynamical Systems

I Theorem 21. The Poly-GOE Problem with template B2OR or B2AND is NL-complete.

Proof. The NL-hardness follows from Theorem 14 and Proposition 7. To show that the
problem is in NL, we use Lemma 4. Since the arity of the functions is at most 2, there are
only polynomially many possibilities for the choice of z and M and so the test can be done
in NL. J

In the case where B contains both conjunction and disjunction, the complexity of problems
depends on whether B contains a function of arity more than two or not for any t ≥ 2.

I Theorem 22. The t-GOE Problem with template B2OR,2AND for t ≥ 2 and the Poly-GOE
Problem with template B2OR,2AND are NP-complete.

Proof. The hardness follows from Theorem 10, Proposition 7, and Lemma 8. The membership
in NP comes from the fact that in the case where the functions have arity 2, whether a
configuration has a predecessor can be expressed as a 2CNF formula. We have only to guess
a series of t configurations, verify the series flows into a, and the t-th predecessor in the
series does not have a predecessor. J

I Theorem 23. Let B be either B2OR,3AND or B3OR,2AND. The t-GOE Problem with template
B for t ≥ 1 and the Poly-GOE Problem with template B are Σp

2-complete.

We omit the proof of Thorem 23.

5 Conclusions

In this paper we studied the complexity of the Predecessor Existence Problem and the Garden
of Eden Problem for various orders of predecessor and for various template sets. Other than
those stating containment in AC0 and the 1-Garden of Eden Problem for B2OR,2AND, the
problems are shown to be complete for standard complexity classes and the classes that
appear are diverse: L,NL,NP, coNP, and Σp

2. An obvious next step for the paper is to
pinpoint the complexity for the remaining case. Also, it will be interesting to look at other
template sets.

References
1 C. L. Barrett, H. S. Mortveit, C. M. Reidys. Elements of a theory of simulation II: Sequential

dynamical systems. Applied Mathematics and Computation, 107(2-3):121–136, 2000.
2 C. L. Barrett, H. B.Hunt III, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, R. E. Stearns

and P. T. Tosic. Gardens of Eden and Fixed Points in Sequential Dynamical Systems. In
Proceedings of Discrete Mathematics and Theoretical Computer Science, 95–110, 2001.

3 C. L. Barrett, H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, and R. E.
Stearns. Complexity of reachability problems for finite discrete dynamical systems. Journal
of Computer and System Sciences, 340(3):496–513, 2005.

4 N. Immerman. Nondeterministic space is closed under complementation. SIAM Journal
on Computing, 17:935–938, 1988.

5 S. Kosub. Dichotomy results for fixed-point existence problems for boolean dynamical
systems. Mathematics in Computer Science, 1(3):487–505, 2008.

6 S. Kosub and C. M. Homan. Dichotomy results for fixed point counting in boolean dy-
namical systems. In Proceedings of the Tenth Italian Conference on Theoretical Computer
Science, pages 163–174, 2007.

A. Kawachi, M. Ogihara, and K. Uchizawa 8:13

7 R. Szelepcsényi. The method of forcing for nondeterministic automata. Bulletin of the
EATCS, 33:96–100, 1987.

8 M. Ogihara and K. Uchizawa. Computational complexity studies of synchronous boolean
finite dynamical systems. In Proceedings of the 12th Conference on Theory and Applications
of Models of Computation, pages, 87–98, 2015.

MFCS 2017

Dividing Splittable Goods Evenly and With
Limited Fragmentation
Peter Damaschke

Department of Computer Science and Engineering, Chalmers University, Göteborg,
Sweden
ptr@chalmers.se

Abstract
A splittable good provided in n pieces shall be divided as evenly as possible among m agents,
where every agent can take shares of at most F pieces. We call F the fragmentation. For F = 1
we can solve the max-min and min-max problems in linear time. The case F = 2 has neat
formulations and structural characterizations in terms of weighted graphs. Here we focus on
perfectly balanced solutions. While the problem is strongly NP-hard in general, it can be solved
in linear time if m ≥ n − 1, and a solution always exists in this case. Moreover, case F = 2 is
fixed-parameter tractable in the parameter 2m − n. The results also give rise to various open
problems.

1998 ACM Subject Classification G.2.2 Graph Theory, I.1.2 Algorithms

Keywords and phrases packing, load balancing, weighted graph, linear-time algorithm, paramet-
erized algorithm

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.9

1 Introduction

Suppose that we are given n pieces of a good, and these pieces have sizes x1, . . . , xn. The
good shall be divided among m agents, thereby respecting certain criteria and restrictions.
In a solution, let y1, . . . , ym denote the amounts that the agents receive, and let zij be the
amount that agent j receives from piece i. Clearly, we have yj =

∑n
i=1 zij for all agents j,

and
∑m

j=1 zij ≤ xi for all pieces i. All mentioned variables are non-negative. The agents are
identical, and so are the pieces of the good (apart from their different sizes).

Ideally we would like to divide the good evenly and completely, that is: y1 = . . . = ym and∑n
i=1 xi =

∑m
j=1 yj . Without further restrictions it is a trivial problem to find mn numbers

zij that satisfy these demands. But suppose that we also want to limit the fragmentation, in
the following sense. Let F be some fixed positive integer. Every agent shall get parts of at
most F distinct pieces. Formally, for every j we allow zij > 0 for at most F indices i. (These
indices can be chosen by the solution, but their number is limited by F .) However, every
piece may be divided among an unlimited number of agents.

One possible motivation is that pieces of land, at n different locations and with areas
x1, . . . , xn, shall be assigned to farmers in a fair way. Besides fairness, it would be desirable
for every single farmer to get only a few different fields, rather than several scattered ones,
such that the farmer does not have to divide activities between many different locations.
One may also think of applications in scheduling, where the xi are durations of n jobs that
shall be divided among m workers, in such a way that they get equal workloads, and every
worker is concerned with only a few different jobs, in order to limit context switching. Of

© Peter Damaschke;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 9; pp. 9:1–9:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

9:2 Dividing Splittable Goods Evenly and With Limited Fragmentation

course, in such a scenario we have to assume that the jobs can be arbitrarily split and also
parallelized. An example where these assumptions are realistic is grading of the n exercises
of an exam by m graders.

Prominent problems in Discrete Optimization, in various application domains, deal with
cutting or connecting items from raw materials, e.g., the Cutting Stock and Skiving Stock
problems; see [6]. An action equivalent to cutting is packing items into containers, as in the
Bin Packing and Knapsack problems [5]. (In fact, Skiving Stock is also known as Dual Bin
Packing). However, the problems we consider here differ from all the mentioned problems
in one way or another, and to our best knowledge their complexities have not been studied
before. For instance, in the “Stock” problems we are given large amounts of items of only a
few different sizes, and in the Bin Packing and Knapsack problems the sizes of items to be
packed (or cut out) are prescribed.

The paper is organized as follows. In Section 2 we define splitting problems where the good
shall be divided completely and the minimum share shall be maximized, or vice versa. We call
a solution perfect if all shares are equal. In Section 3 we solve the case of fragmentation F = 1
in linear time. However, we first derive weaker O(n logn) time bounds, because this makes
the presentation easier, and the O(n) solution relies on the (barely practical) linear-time
selection but should still be of theoretical interest. In Section 4 we are concerned with the
case of fragmentation F = 2. Here we focus on structural properties of the problem of getting
perfect solutions, but this may also serve as a basis for, e.g., approximation algorithms for
the more general optimization versions. We describe solutions in a natural way by weighted
graphs. Then we present a linear-time elimination algorithm that finds a tree-like perfect
solution whenever m ≥ n− 1. Based on the graph-theoretic structure we also prove strong
NP-completeness of the general problem, and NP-completeness already for the special case
when m is slightly smaller than n− 1. For m being close to the smallest possible value n/2
we show fixed-parameter tractability. In Section 5 we point out possible directions of further
research.

2 Preliminaries

For clarity we provide formal definitions of the problems. We always silently presume that F
is a fixed positive integer called the fragmentation. Common to all problems are the input
and some of the constraints:

Splitting:
Given are n positive numbers x1, . . . , xn.
Find non-negative numbers zij and yj (for i = 1, . . . , n and j = 1, . . . ,m) subject to:
∀j : yj =

∑n
i=1 zij ,

∀i :
∑m

j=1 zij ≤ xi,
∀j : |{i | zij > 0}| ≤ F ,
and further constraints and objectives specified below.

To fully specify the actual problems we only mention these additional constraints, in
order to avoid repetitions.

Perfect Splitting: ∀i :
∑m

j=1 zij = xi, and all shares yj are equal.

We refer to a solution of Perfect Splitting as a perfect solution. In such a solution,
all agents get the same amount, and no goods are held back.

Min-Max Splitting: ∀i :
∑m

j=1 zij = xi, and the largest share, maxj yj , is minimized.

Max-Min Splitting: ∀i :
∑m

j=1 zij = xi, and the smallest share, minj yj , is maximized.

P. Damaschke 9:3

In the last two problems, still all goods are distributed, but in general the agents get
different shares. If a perfect solution exists, then this is also the optimal solution to both
Min-Max and Max-Min Splitting. The Min-Max problem is more appropriate for
applications where some work must be divided completely, and the goal is not to load any
individual agents too much. The Max-Min problem aims at giving everyone a guaranteed
amount of a good, as large as possible. However, a solution may be perceived as unfair, in the
sense that other agents get significantly more because the entire good must be divided. Also,
the size of the smallest piece is a trivial upper bound on the objective value. To circumvent
these issues one may define modified Max-Min problems which aim at giving maximal but
equal amounts to all agents, possibly leaving the remainder of goods unused. One could also
relax the condition on fragmentation F and allow some outliers. However, we cannot study
all variants in this paper, and we focus on the basic problems.

3 The Case Without Fragmentation (F=1)

First we study Min-Max Splitting and Max-Min Splitting, which also subsumes the
special case of Perfect Splitting, for fragmentation F = 1.

As a trivial observation, either of the first two problems always permits an optimal
solution where, for every piece i, all zij > 0 are equal. Otherwise we can balance these
values without making the solution worse. Thus, such a solution is fully characterized by a
vector (p1, . . . , pn) with

∑n
i=1 pi = m, where pi is the number of indices j with zij > 0. For

every such i, j we obviously have yj = zij = xi/pi. Due to this observation on the possible
yj-values we define the following sequence Y .

I Definition 1. Y is the sequence of all numbers xi/p, where i = 1, . . . , n and p = 1, . . . ,m,
sorted in decreasing order. For k = 1, . . . ,mn let Y [k] denote the value at position k in Y .

The same value xi/p may come from different i and p, therefore a value may occur
multiple times in Y . However, we can break ties arbitrarily and sort equal values in any
order. Formally this can also be achieved by random and infinitesimal perturbations of the
values xi. We will henceforth assume that all values in Y are distinct, hence Y is strictly
monotone decreasing. This avoids circumstantial treatment of specific cases.

Intuitively, the pi should be roughly proportional to the given xi. But the efficient
computation of exact optimal solutions is a bit less obvious. We discuss this matter in the
following subsections.

3.1 Maximizing the minimum
The following lemma deals with the simple problem being inverse to Max-Min Splitting.

I Lemma 2. For any fixed y with 0 < y ≤ mini xi, let k be the maximum number of agents1
such that every agent can obtain an amount at least y. This number k satisfies:
(a) k =

∑n
i=1 pi, where pi := bxi/yc > 0.

(b) k is the maximum index with Y [k] ≥ y.
(c) Y [k] = mini xi/pi.

Proof. (a): For every i we can split the ith piece among at most bxi/yc agents. Summation
over all i yields the assertion. Due to the assumption on y we have pi > 0 for all i.

1 As y is fixed, for notational convenience we do not mention the argument y and call this number only k.

MFCS 2017

9:4 Dividing Splittable Goods Evenly and With Limited Fragmentation

(b): Note that xi/si ≥ y holds for all i and all si ≤ pi, and there exist k such pairs (i, si).
Hence at least k members of Y are greater than or equal to y, that is, Y [k] ≥ y. Since
xi/(pi + 1) < y holds for all i, we also see that no further members of Y have this property.

(c): As seen above, the k values xi/si (si ≤ pi) are exactly those members of Y being
greater than or equal to y, that is, they are the first k items in Y , and clearly mini xi/pi is
the last of them. J

Lemma 2 yields a characterization of the optimal solution.

I Lemma 3. The optimal objective value for Max-Min Splitting with F = 1 is

max min
j
yj = min{Y [m],min

i
xi},

where the maximum is taken over all solutions.

Proof. First suppose that Y [m] < mini xi.
Then we can apply Lemma 2 to y := Y [m]. The maximum number k of agents that can

be served is, due to (b), equal to the maximum index k with Y [k] ≥ Y [m]. This implies
k = m. In other words, m agents can obtain an amount of at least Y [m] each.

Assume that m agents can obtain more, say an amount of y′ > y each, where still
y′ < mini xi. We apply Lemma 2 to y′. The maximum number k′ of agents that can be
served is, due to (b), equal to the maximum index k′ with Y [k′] ≥ y′ > y = Y [m]. This
implies k′ < m. Hence we have shown by contradiction that m agents cannot obtain any
amount larger than y.

The other case to consider is Y [m] ≥ mini xi. Now we can apply Lemma 2 to mini xi.
Part (c) implies that Y [k] = mini xi/pi ≤ mini xi ≤ Y [m], thus k ≥ m. That is, m agents
can be served with an amount at least mini xi. But due to the problem specification, mini xi

is also a trivial upper bound on the objective value, which finally proves the assertion also in
this case. J

The previous lemmas yield already an algorithm for Max-Min Splitting: First, it is
trivial to figure out whether m agents can get a share of at least mini xi each. If so, then
this solution is optimal, and we are done. If not, then Y [m] < mini xi. In this case, find the
value y := Y [m] and then determine the pi as in Lemma 2 (a), using this y.

However, in order to save time we want to get the value Y [m] without naively following
Definition 1 and generating all m − 1 preceding elements of Y . The intuition for a faster
approach is to search the optimal value near the average. In the following we can always
suppose Y [m] < mini xi.

I Lemma 4. Let ȳ :=
∑n

i=1 xi/m be the average amount given to the m agents, and let k
be the maximum number of agents such that every agent can actually obtain an amount at
least ȳ. Then Y [k] ≥ Y [m] and m− k ≤ n.

Proof. Clearly, ȳ ≥ minj yj holds in any solution, hence ȳ ≥ max minj yj (where the
maximum is taken over all solutions). Now Lemma 3 yields ȳ ≥ Y [m], and Lemma 2 applied
to ȳ gives Y [k] ≥ ȳ ≥ Y [m].

For i = 1, . . . , n we define qi := xi/ȳ, with integer and fractional part pi := bqic and
ri := qi − bqic, respectively. Lemma 2 (a) states that k =

∑n
i=1 pi. Thus we observe:

k =
n∑

i=1
pi =

n∑
i=1

(qi − ri) ≥
n∑

i=1
qi − n = m− n.

From this chain of inequalities we get m− k ≤ n. J

P. Damaschke 9:5

Based on these inequalities we will now give an efficient algorithm for Max-Min
Splitting. We adopt the unit cost measure where comparisons and algebraic operations
with real numbers take constant time.

I Theorem 5. Max-Min Splitting with F = 1 can be solved in O(n logn) time.

Proof. First we compute ȳ and all pi (as defined in Lemma 2 with y := ȳ and xi/pi), as
well as k and Y [k] = mini xi/pi. The latter equation holds due to Lemma 2 (c). These
calculations cost O(n) time.

By Lemma 3, the optimal value is Y [m]. In the following we determine the value Y [m].
Note that k and Y [k] are known from the calculations above, and Y [k] ≥ Y [m] and m−k ≤ n
hold due to Lemma 4.

If m ≤ k, then Y [m] = Y [k], and we are done with this part. If m > k, then we only
have to find the next m− k members of Y after Y [k], and since m− k ≤ n, these are at most
n further members. Now we describe a possible way to identify Y [k], . . . , Y [m].

Let us sort the n ratios xi/pi in decreasing order and call this sequence R. Since
Y [k] = mini xi/pi, the last element of R is exactly Y [k]. We call it the marked element, for
later reference. In R we store not only the values xi/pi but also xi and pi separately. We
move a pointer in R from left to right. For every ratio encountered in R we compute the
ratio with incremented denominator (pi := pi + 1) and insert it at the correct position in R.
Note that this position is always to the right of the pointer; in particular, the new ratio may
become the new rightmost element of R. This step is repeated until the pointer reaches a
position m− k elements to the right of the marked element, and then we stop.

The analysis is simple: Since new ratios are always inserted to the right of the pointer,
and R comprises all elements of Y between the marked Y [k] and the pointer, it follows that
we are at Y [m] when we stop, and we can output its value. In order to support fast insertion
of a new ratio into R, we also host R in a balanced search tree. Therefore this procedure can
be done in O(n logn) time.

For every i we recompute pi by pi := bxi/Y [m]c, and the amount given to the pi agents
assigned to the ith piece is xi/pi. J

Some comments on the time bound are in order. Theorem 5 actually says that we need
O(n logn) time to compute the numbers of agents assigned to each piece and their shares,
in an optimal solution. Under the unit cost measure, this time bound is independent of
m which may be arbitrarily larger than n. The “physical” division, i.e., assigning positive
values to m variables zij , takes O(m) additional time in a trivial postprocessing phase.

Modifications of the algorithm can also solve a variant of Max-Min Splitting with
F = 1 where not all goods need to be distributed. Such an algorithm would not get to the
pieces being smaller than the objective value.

3.2 Minimizing the maximum
In order to minimize maxj yj we use the sequence Y from Definition 1 as well. For formal
reasons we also set Y [0] := ∞. The scheme is pretty much the same as for Max-Min
Splitting, but as the two problems are not symmetric, care must be taken for several details
that are different. Similarly as before, we start from the simple problem being inverse to
Min-Max Splitting.

I Lemma 6. For any fixed y > 0 that does not appear in Y , let k ≥ n be the minimum
number of agents needed such that every agent has to take an amount at most y. This number
k satisfies:

MFCS 2017

9:6 Dividing Splittable Goods Evenly and With Limited Fragmentation

(a) k =
∑n

i=1 pi, where pi := dxi/ye.
(b) k is the maximum index with Y [k − n] ≥ y.
(c) Y [k − n] = mini xi/(pi − 1).

Proof. (a): For every i we must split the ith piece among at least bxi/yc agents. Summation
over all i yields the assertion.

(b): Note that xi/si ≥ y holds for all i and all si ≤ pi − 1, and there exist k − n such
pairs (i, si). Hence at least k − n members of Y are greater than or equal to y, that is,
Y [k − n] ≥ y. Since xi/pi < y holds for all i, we also see that no further members of Y have
this property.

(c): As seen above, the k − n values xi/si (si ≤ pi − 1) are exactly those members of Y
being greater than or equal to y, that is, they are the first k − n items in Y , and clearly
mini xi/(pi − 1) is the last of them. J

Again we get a simple characterization of the optimal solution.

I Lemma 7. The optimal objective value for Min-Max Splitting with F = 1 is

min max
j
yj = Y [m− n+ 1],

where the maximum is taken over all solutions.

Proof. We apply Lemma 6 to y := Y [m−n+1]+δ with an infinitesimal δ > 0, added in order
to meet the requirement that y itself does not occur in Y . The minimum number k of agents
needed is, due to (b), equal to the maximum index k with Y [k − n] > Y [m− n+ 1]. This
implies k = m. In other words, m agents have to take an amount of at most Y [m−n+ 1] + δ

each. Since δ can be made arbitrarily small, their maximum load is bounded by Y [m−n+ 1].
Assume that the m agents have to take even less, say y′ < Y [m − n + 1]. We apply

Lemma 6 to y′. The minimum number k′ of agents needed is, due to (b), equal to the
maximum index k′ with Y [k′ − n] ≥ y′. Since, in particular, Y [m+ 1− n] ≥ y′, this implies
k′ ≥ m+ 1. This shows that more than m agents are needed to bound their maximum load
by any amount smaller than Y [m− n+ 1]. J

The proof of Theorem 5 showed already that we can determine Y [m] from ȳ in O(n logn)
time. By a similar procedure we can also determine Y [m − n + 1], which is optimal for
Min-Max Splitting due to Lemma 7. (Note that n is known from the instance.) Again this
costs only O(n logn) time, and the same remarks as earlier apply to the actual construction
of the solution. We can readily state:

I Theorem 8. Min-Max Splitting with F = 1 can be solved in O(n logn) time.

3.3 Splitting in linear time
An obvious question is whether O(n logn) time is actually needed. Re-inspecting the proof
of Theorem 5) we see: The non-trivial case is r := m − k > 0 (but r ≤ n), and there we
only need to find the rth largest ratio after the marked element Y [k]. Thus it may not be
necessary to keep our sequence R of ratios sorted. But a difficulty is that the sought element
is not simply the rth largest xi/(pi + 1), where the pi denote the initial values obtained from
ȳ. Rather, several ratios xi/p with the same index i but varying p may be larger than the
sought element. It is not immediately clear in which order we should generate new ratios
and do comparisons.

P. Damaschke 9:7

But, in fact, we can achieve O(n) time. We present this improvement here separately, as
it does not look very practical (see below). Yet the optimal time bound may be of interest.
First we need a separation property of our sequence of ratios:

I Lemma 9. For positive numbers x, x′, p, q it is impossible that x > x′ and
x

q
>
x′

p
>

x′

p+ 1 >
x

q + 1 .

Proof. Clearly, the ratio of the two outer numbers is larger than the ratio of the two inner
numbers:

x

q
· q + 1

x
>
x′

p
· p+ 1

x′ .

It follows q < p. But this implies (q + 1)x′ < (p+ 1)x, which contradicts the last inequality
in the given chain. J

Now we outline a linear-time algorithm for Max-Min Splitting, improving upon the
implementation details in Theorem 5. First, a few preparations and definitions are needed. We
find the maximum xi in O(n) time. Without loss of generality let x1 = maxi xi. Considering
the sequence of ratios x1/q with integers q, to the right of the marked element Y [k], we
call every interval (x1/q, x1/(q + 1)] a bin. Note that every such interval includes its right
endpoint. For a set S of ratios, the generation step is the following procedure. For every
ratio xi/pi in S, we increment the denominator by 1 and compute the number q of the bin
that contains xi/(pi + 1). Using divisions this requires only O(1) time per element. The
Selection problem is to find the tth smallest number in an unsorted set, for a prescribed
number t.

First we apply the generation step to all initial values xi/pi (that is, with the pi obtained
from ȳ, as earlier). Then we scan the bins from left to right, i.e., for increasing q. For every q
we take all ratios that are currently in the qth bin and apply the generation step to them. At
the same time we count the total number of ratios seen so far, including the x1/q. As soon as
this number reaches r, we know that the sought ratio is in the current bin. Lemma 9 ensures
that every bin contains at most one ratio xi/p (p integer) for every index i, thus O(n) ratios
altogether. Let t := r− s, where s is the number of ratios in all previous bins. Hence we can
finally apply an O(n) time Selection algorithm [1] to the current bin, in order to find the
sought ratio at the tth position in this bin. For the closely related Min-Max Splitting
problem we can proceed similarly. This shows:

I Theorem 10. Max-Min Splitting and Min-Max Splitting with F = 1 can be solved
in O(n) time.

A caveat is that O(n)-time Selection algorithms suffer from a large hidden constant in
the time bound. Instead of a deterministic algorithm we may use the randomized Quickselect,
but then we only get O(n) expected time. One may wonder if O(n) worst-case time can be
accomplished without invoking Selection. However this is not possible. For instance, if
all xi are close to each other and n does not divide m, then finding Y [m] is equivalent to
finding the (m mod n)th largest xi.

Figuratively speaking, our splitting problems are “Selection-complete” under “simple”
linear-time reductions. This statement could be formalized in an algebraic model of com-
putation that cares about constant factors (e.g., by counting the exact depth in a decision
tree model). In a more general perspective it may be interesting to – in this way – strictly
classify problems that are all linear-time solvable but of different complexity when it comes
to constant factors.

MFCS 2017

9:8 Dividing Splittable Goods Evenly and With Limited Fragmentation

4 Perfect Solutions for Fragmentation F=2

In the following we study the case F = 2. It is natural to represent any instance of a splitting
problem, along with its solution, as a weighted graph:

I Definition 11. The solution graph of a solution to a splitting problem with F = 2 is a
graph with n vertices and m edges, specified as follows. We create a vertex of weight xi for
the ith piece. Every edge uv has two ports at the vertices u and v. The solution specifies a
set of m edges and 2m weights of their ports. Specifically, if the jth edge has a port at the
ith vertex, then the weight of this port is zij . Every yj is the sum of the weights of the two
ports of the jth edge. We consider yj as the weight of the jth edge. Similarly, the weights of
all ports at the ith vertex must sum up to xi. An edge can also be a loop at one vertex, and
in this case it is immaterial how its weight is divided into weights of the two ports.

In this section we want to characterize which instances, given by n positive vertex weights
x1, . . . , xn and an integer m, allow a perfect solution (see Section 2). Without loss of
generality we can assume

∑n
i=1 xi = m, hence a perfect solution must satisfy yj = 1 for all j.

That is, all edge weights are 1.

4.1 Many agents make it easy
I Theorem 12. Every instance of Perfect Splitting with F = 2 and m ≥ n − 1 has
a solution whose solution graph is a tree, possibly with loops attached to some vertices.
Moreover, such a solution can be computed in O(n) time.

Proof. We classify the vertices in several categories depending on their weights xi. Vertex i
is called large if xi > 1, normal if xi = 1, medium if 1/2 < xi < 1, and small if 0 < xi ≤ 1/2.

Our strategy works as follows. We create certain edges of weight 1, reduce the remaining
weights of the incident vertices accordingly (and obeying some simple rules), and recursively
solve the residual instances. We only need to show that the process terminates only when
the vertex weights are zero, and it can be implemented in O(n) time. In detail:

First suppose that m > n. Then there exists a large vertex i. Hence we can attach a
loop to it and update xi := xi − 1 and m := m− 1, while n is unchanged. By an inductive
argument, we can attach m− n loops to large vertices, until m = n is reached. The number
of loops attached to every large vertex can be decided, e.g., in a greedy fashion: Choose any
large vertex i and create dxie − 1 loops, take another large vertex, and so on, but stop as
soon as the total number of loops reaches m− n. The computations obviously require only
O(n) arithmetic operations.

Next suppose that m = n. If all vertices are normal, then we append another loop to
each vertex, and we are done. If not all vertices are normal, then there still exists some large
vertex, and we attach another loop to it, as above. Thus we reach m = n− 1.

From now on suppose that m = n− 1. Assume that we find two vertices i and j such
that xi + xj > 1 and xj < 1. Then we join these vertices by an edge of weight 1, which is
divided as follows. The port at vertex j gets the weight xj , and the port at vertex 1 gets the
rest 1− xj . Accordingly we update the vertex weights to xj := 0 and xi := xi − 1 + xj > 0.
This means, there remain n := n− 1 vertices with positive weights, and m := m− 1 edges to
fix. Hence the invariant m = n− 1 is preserved in the residual instance, and we can iterate
this procedure as long as possible.

It remains to prove the existence of such a pair of vertices i and j satisfying xi + xj > 1
and xj < 1, and to find some efficiently. Since m < n, at least one medium or small vertex

P. Damaschke 9:9

exists. As long as some large or normal vertex exists, too, we obviously get a pair as desired.
Now suppose that all vertices are medium or small. We can also take a pair of medium
vertices, if it exists. Thus suppose in the sequel that all vertices are small, except at most
one medium vertex. Now the equation m = n− 1 restricts the possibilities as follows. If two
small vertices exist, then these are the only vertices: We have n = 2 and x1 = x2 = 1/2,
hence we can join the two vertices by a final edge. If only one vertex is small, then there
exists exactly one other vertex which is medium. Hence we still have n = 2 and x1 + x2 = 1,
and we can insert a final edge. The case that no vertex is small is impossible, since then
n = 1 and m = x1 > 0, a contradiction. Altogether this shows that we always find two
desired vertices until n = 2 is reached, and then we can finish up the solution.

The above proof does not only show the existence of a perfect solution wheneverm ≥ n−1,
but it describes already a simple elimination algorithm that computes a perfect solution.
In each step, the updates take O(1) time. The next edge is always built from two vertices
from certain categories (large, normal, medium, small). Since arbitrary vertices from the
respective categories can be chosen, it suffices to maintain four unsorted sets of vertices,
hence we can also update these sets and pick the needed vertices in O(1) time. Therefore
the overall time is O(n).

Consider the graph of non-loop edges inserted by the algorithm until any moment. Upon
insertion of every edge, the weights of its vertices were positive, and the weight of exactly
one of them drops to zero. This implies the invariant that every connected component of the
graph retains exactly one vertex with positive weight. From this it follows, furthermore, that
every new edge merges two connected components. Thus the final solution graph is a tree,
possibly with additional loops. J

Similarly to the time bounds for F = 1, we have not counted in the time for the trivial
postprocessing that actually splits the pieces: Constructing the O(m) loops costs O(m)
additional time. But the solution graph, i.e., the tree and the numbers of loops at its vertices,
are computed in O(n) time.

It is apparent from the algorithm that the tree, and thus the solution, is in general not
unique. This gives rise to interesting additional problems, also in view of the motivations in
Section 1. For instance, assuming that the vertices have pairwise distances (spatial distances,
dissimilarity of tasks, etc.) we may prefer perfect solutions where also some distance measure
(maximum, total, weighted, etc.) is minimized for the chosen edges.

4.2 Structural characterization and hardness

Apart from the last remark, Theorem 12 completely settles the case m ≥ n − 1. In the
following we also allow m < n (but m ≥ n/2, since otherwise not all goods can be divided
with fragmentation F = 2). The conditions in Theorem 12 suggest the following definition.

I Definition 13. Let V be a set of elements called vertices and indexed by 1, . . . , n. Every
vertex i has a weight positive weight xi. We call I ⊆ V an integral set if

∑
i∈I xi is an integer.

We call I ⊆ V a heavy set if
∑

i∈I xi ≥ |I| − 1.

In fact, the existence of perfect solutions can now be characterized as follows.

I Theorem 14. An instance (x1, . . . , xn) of Perfect Splitting with F = 2, where∑n
i=1 xi = m (and m is the number of agents), admits a solution if and only if V can be

partitioned into heavy integral sets.

MFCS 2017

9:10 Dividing Splittable Goods Evenly and With Limited Fragmentation

Proof. “only if”: Suppose that there exists a perfect solution. Since F = 2, the solution
can be represented as a solution graph G as in Definition 11, with vertex set V and with m
edges (some of which may be loops). Let C(k) denote the kth connected component of G,
where the indexing is arbitrary. Let nk and mk denote the number of vertices and edges,
respectively, in C(k). Since

∑n
i=1 xi = m, every agent gets an amount of 1. Hence, for every

k, the vertex set Vk of Ck is integral. Specifically, the sum of vertex weights in C(k) equals
mk which is trivially an integer. Due to connectivity we also have mk ≥ nk − 1, thus Vk is a
heavy set.

“if”: Suppose that V has a partitioning into integral sets Vk which are also heavy. The
latter means that mk ≥ nk − 1, where nk is the number of vertices of Vk, and mk denotes
their total weight. For every Vk we consider an instance of Perfect Splitting with the
given vertex weights and mk agents. Due to mk ≥ nk − 1 and Theorem 12, this instance has
a solution with mk agents. Since m =

∑
k mk, the solutions to all these k instances together

form a solution of the entire instance. J

While Perfect Splitting with F = 2 is easy for m ≥ n− 1 due to Theorem 12, the
complexity jumps for m < n − 1. The reason is that, unfortunately, it is hard to find a
partitioning as required in Theorem 14, as we show next. At first glance hardness might
appear counterintuitive because with fragmentation F = 2 it should always be possible,
within an elimination process as in Theorem 12, to take amounts missing to some zij = 1
from some other piece. But the catch is that all remaining pieces might be too small, and
then the fragmentation F = 2 is not sufficient. Anyway, by a reduction from 3-Partition
(which is a natural candidate that has been reduced earlier to similar packing and scheduling
problems [2]) we can show:

I Theorem 15. Perfect Splitting with F = 2 is strongly NP-complete, and so are
Max-Min Splitting and Min-Max Splitting.

Proof. We give a polynomial-time reduction from the strongly NP-complete 3-Partition
problem to Perfect Splitting. A triplet is a set of exactly three elements. An instance
P of 3-Partition consists of 3k positive rational numbers that shall be partitioned into
k triplets such that the sum of the numbers in each triplet is the same. The instance is a
multiset, i.e., the 3k numbers are not necessarily distinct. Without loss of generality let their
sum be k, hence the sum in each triplet must be 1. Thus we can further assume x ≤ 1 for all
x in P , otherwise P has, trivially, no solution. We also fix some small number d > 0, in fact,
any number with 0 < d < 1/3 will do.

For the reduction we take any given instance P with the above properties, and we
transform every number x from P into 2(1/3 + dx)/(1 + d). Let Q be the multiset of these
transformed numbers. They enjoy the following properties:
(a) Any three numbers from P sum up to 1 if and only if the three transformed numbers in
Q sum up to 2.
(b) The sum of all numbers in Q is 2(3k/3 + dk)/(1 + d) = 2k.
Let n := 3k and m := 2k. Now we can view Q as an instance of Perfect Splitting with
F = 2, where n is the number of pieces, and m = 2k is both the number of agents and the
total amount to distribute.

Assume that P has a solution. Then each of its k triplets has the sum 1. Due to (a), the
three transformed numbers in Q have the sum 2. Hence the triplets form a partitioning of Q
into heavy integral sets. By Theorem 14, Q has a perfect solution.

Conversely, suppose that Q has a perfect solution. Using Theorem 14 again, Q can be
partitioned into heavy integral sets. Since n−m = k and the sets are heavy, the partitioning

P. Damaschke 9:11

must consist of at least k sets. Remember that x ≤ 1 for all x from P . Hence any single
number in Q is at most 2(1/3 + d)/(1 + d) < 1. Any two numbers in Q have a sum at least
(4/3)/(1 + d) > 1 and at most 4(1/3 + d)/(1 + d) < 2. Hence any integral set needs at least
three elements. It follows that Q is partitioned into exactly k triplets. Using again that these
sets are heavy, the sum in each triple is at least 2. Since, due to (b), the total sum equals
2k, the sum in each triplet is exactly 2. Using (a) again, it follows that each corresponding
triplet in P has the sum 1. That means, P has a solution.

Since Perfect Splitting is a special case of the two optimization problems, the last
assertion follows immediately. J

Usual NP-hardness holds already when m is slightly smaller than n− 1 (giving a clear
dichotomy together with Theorem 12), and the proof is less technical:

I Theorem 16. Perfect Splitting with F = 2 and m = n− t is NP-complete for every
fixed t ≥ 2, and so are Max-Min Splitting and Min-Max Splitting.

Proof. First let t = 2. Consider any instance where m = n− 2, and xi < 1 for all i. Any
partitioning into heavy integral sets necessarily consists of exactly two sets I and J , with∑

i∈I xi = |I|−1 and
∑

j∈J xj = |J |−1. Due to Theorem 14, such an instance has a solution
if and only if it can be partitioned into sets I and J with these properties.

On this basis we give a reduction from the NP-complete Subset Sum problem [2]. An
instance of Subset Sum consists of positive rational numbers y1 . . . , yn, and the goal is
to find a subset I of indices such that

∑
i∈I yi equals a prescribed value s. Subset Sum

is NP-complete already in the case that s =
∑n

k=1 yk/2. By scaling we can also assume∑n
k=1 yk = 2, such that we have to divide the sum into 1 + 1. Now we can also assume yk < 1

for all k, otherwise the instance has, trivially, no solution. Finally, we simply set xk := 1− yk

for all k. The equivalence to Perfect Splitting with F = 2 and m = n− 2 is evident.
For t > 2 we finally add 2(t− 2) further items xi = 1/2 to the instance. Arguments are

similar; note that the additional items must form t− 2 pairs, in a partitioning into heavy
integral sets. J

4.3 Few agents make it easy, too
The reductions showing hardness led to instances with m/n ≥ 2/3. The problem becomes
“easy” if m is close to the smallest possible value n/2. (Readers not being familiar with
fixed-parameter tractability are referred to a textbook like [7].)

I Theorem 17. Perfect Splitting with F = 2 is fixed-parameter tractable (FPT) in the
parameter t := 2m− n.

Proof. Consider graphs with n vertices and m edges. We refer to connected components
with two and three vertices as pairs and triplets, respectively. As a preparatory consideration
we construct extremal graphs where the number q of vertices not being in pairs is maximized.
We can assume that some pairs exist, since otherwise q = n is, trivially, maximal.

If some connected component C is not a tree, then we can remove an edge such that C
remains connected. We use this edge to join some pair to another component. This strictly
increases q. Hence assume that all connected components are trees. If some tree has at least
four vertices, then we can remove a leaf and its incident edge. The remainder of the tree
is still connected and is not a pair. We append the edge and the leaf to some pair, which
strictly increases q again. Hence, if q is maximized, then all connected components are pairs
and triples (unless q = n). With p pairs and t′ triples we have m = p+ 2t′ and n = 2p+ 3t′,
hence t = 2m − n = t′. Since the maximum q is shown to be q = 3t′ = 3t, we get that at
most 3t vertices are not in pairs.

MFCS 2017

9:12 Dividing Splittable Goods Evenly and With Limited Fragmentation

Now consider any instance of Perfect Splitting with F = 2, and any two indices i and
j with xi + xj = 1. Assume that the instance has a solution. We consider the partitioning
specified in Theorem 14 and refer to its heavy integral sets as bags.

Assume that i and j are in different bags, say, in I ∪ {i} and J ∪ {j}. We rearrange them
to new bags {i, j} and I ∪ J . The pair is obviously a heavy integral set. Since the original
bags were integral and the weight xi + xj = 1 has been removed, also I ∪ J is integral. Since
the original bags were heavy, I ∪ {i} and J ∪ {j} have sums at least |I| and |J |, respectively.
Hence I ∪ J has a sum at least |I|+ |J | − 1, which means that it is heavy. This shows, under
the above assumption, the existence of an alternative solution where {i, j} is a bag.

Assume that i and j are in the same bag, but together with further indices, say, K ∪{i, j}
with K 6= ∅ is a bag. We split it in two bags K and {i, j}. Clearly, K is integral. Since
K ∪ {i, j} was heavy, it has a sum at least |K|+ 1, such that at least a sum |K| remains
in K, which means that K is also heavy. This shows again the existence of an alternative
solution where {i, j} is a bag.

We are ready to devise an FPT algorithm: First we pair up indices i and j with
xi + xj = 1, as long as possible. (This is the “data reduction” phase, in the terminology of
FPT algorithms.) Then we solve the residual instance, that is, we search for a partitioning
as in Theorem 14, of the remaining indices. The given instance has a perfect solution if and
only if the residual instance has.

The pairing phase is correct due to the above exchange arguments: If a solution exists at
all, then it can be transformed into a solution where any desired pair {i, j} with xi + xj = 1
forms a bag. By traversing a sorted list of the weights simultaneously in ascending and
descending order, this phase is easily implemented in O(n logn) time. The residual instance
has a size at most 3t, and we may solve it naively. J

By way of contrast, Theorem 16 excludes an FPT (even an XP) algorithm in the parameter
t = n−m (unless P=NP).

5 Further Research

By Theorem 15, the optimization versions of or splitting problems with F = 2 (and n > m)
are strongly NP-complete and therefore do not allow FPTAS (unless P=NP). On the other
hand, the structural result in Theorem 14 together with the algorithms in Theorem 12
suggests that one should try and partition the set of pieces into n−m heavy subsets (bags)
and then assign agents to them such that the average amounts per agent in the bag are as
balanced as possible. The latter step would work as in case F = 1, treating the bags as pieces.
In general, the bags will not be integral, but the smaller the fractional parts of the sums are,
the better the solutions should be. Minimizing the fractional parts roughly resembles the
minimum makespan scheduling problem (although the objectives are also quite different).
The latter problem is well studied: It is also strongly NP-complete, but it has a PTAS, and
even an FPTAS when the number of machines (here corresponding to the number n−m of
bags) is fixed; see [3, 4]. Altogether, we conjecture that similar approximation schemes can
be obtained for our splitting problems. Another conjecture is that our FPT result for small
2m− n extends to the optimization versions.

Other open questions were mentioned in the technical sections. Furthermore, as we
have seen, the “graph-theoretic” case F = 2 is already subtle, but several results may be
generalized to F > 2.

P. Damaschke 9:13

References
1 Manuel Blum, Robert W. Floyd, Vaughan R. Pratt, Ronald L. Rivest, and Robert Endre

Tarjan. Time bounds for selection. J. Comput. Syst. Sci., 7(4):448–461, 1973. doi:10.
1016/S0022-0000(73)80033-9.

2 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

3 Dorit S. Hochbaum and David B. Shmoys. A polynomial approximation scheme for schedul-
ing on uniform processors: Using the dual approximation approach. SIAM J. Comput.,
17(3):539–551, 1988. doi:10.1137/0217033.

4 Ellis Horowitz and Sartaj Sahni. Exact and approximate algorithms for scheduling
nonidentical processors. J. ACM, 23(2):317–327, 1976. doi:10.1145/321941.321951.

5 Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack problems. Springer, 2004.
6 John Martinovic and Guntram Scheithauer. Integer rounding and modified integer rounding

for the skiving stock problem. Discrete Optimization, 21:118–130, 2016. doi:10.1016/j.
disopt.2016.06.004.

7 Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Univ. Press, 2006.

MFCS 2017

http://dx.doi.org/10.1016/S0022-0000(73)80033-9
http://dx.doi.org/10.1016/S0022-0000(73)80033-9
http://dx.doi.org/10.1137/0217033
http://dx.doi.org/10.1145/321941.321951
http://dx.doi.org/10.1016/j.disopt.2016.06.004
http://dx.doi.org/10.1016/j.disopt.2016.06.004

Small-Space LCE Data Structure with
Constant-Time Queries
Yuka Tanimura1, Takaaki Nishimoto2, Hideo Bannai3,
Shunsuke Inenaga4, and Masayuki Takeda5

1 Department of Informatics, Kyushu University, Japan
2 RIKEN Center for Advanced Intelligence Project, Chuo-ku, Tokyo, Japan

takaaki.nishimoto@riken.jp
3 Department of Informatics, Kyushu University, Japan

bannai@inf.kyushu-u.ac.jp
4 Department of Informatics, Kyushu University, Japan

inenaga@inf.kyushu-u.ac.jp
5 Department of Informatics, Kyushu University, Japan

takeda@inf.kyushu-u.ac.jp

Abstract
The longest common extension (LCE) problem is to preprocess a given string w of length n so
that the length of the longest common prefix between suffixes of w that start at any two given
positions is answered quickly. In this paper, we present a data structure of O(zτ2 + n

τ) words
of space which answers LCE queries in O(1) time and can be built in O(n log σ) time, where
1 ≤ τ ≤

√
n is a parameter, z is the size of the Lempel-Ziv 77 factorization of w and σ is

the alphabet size. The proposed LCE data structure does not access the input string w when
answering queries, and thus w can be deleted after preprocessing. On top of this main result, we
obtain further results using (variants of) our LCE data structure, which include the following:

For highly repetitive strings where the zτ2 term is dominated by n
τ , we obtain a constant-time

and sub-linear space LCE query data structure.
Even when the input string is not well compressible via Lempel-Ziv 77 factorization, we still
can obtain a constant-time and sub-linear space LCE data structure for suitable τ and for
σ ≤ 2o(logn).
The time-space trade-off lower bounds for the LCE problem by Bille et al. [J. Discrete Al-
gorithms, 25:42-50, 2014] and by Kosolobov [CoRR, abs/1611.02891, 2016] do not apply in
some cases with our LCE data structure.

1998 ACM Subject Classification G.2.1 Combinatorial Algorithms

Keywords and phrases longest common extension, truncated suffix trees, t-covers

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.10

1 Introduction

1.1 The LCE problem
The longest common extension (LCE) problem is to preprocess a given string w of length n so
that the length of the longest common prefix of suffixes of w starting at two query positions is
answered quickly. The LCE problem often appears as a sub-problem of many different string
processing problems, e.g., approximate pattern matching [35, 17], string comparison [34],

© Yuka Tanimura, Takaaki Nishimoto, Hideo Bannai, Shunsuke Inenaga, and Masayuki Takeda;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 10; pp. 10:1–10:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

10:2 Small-Space LCE Data Structure with Constant-Time Queries

and finding string regularities such as maximal repetitions (a.k.a. runs) [30, 1], distinct
squares [22, 2], gapped repeats [11, 31, 18, 14], palindromes and gapped palindromes [21, 29,
39], and 2D palindromes [20].

A well known solution to the LCE problem is achieved by the suffix tree [47] augmented
with a constant-time linear-space longest common ancestor (LCA) data structure [23, 3], or
equivalently the inverse suffix array (ISA) and longest common prefix (LCP) array augmented
with a constant-time range minimum query (RMQ) data structure [37, 3]. Either combination
uses O(n) words of space, answer LCE queries in O(1) time, and can be constructed using
O(n) words of working space, in O(n) time for integer alphabets or in O(n log σ) time for
general ordered alphabets of size σ. The O(n) space requirements, however, can be prohibitive
for massive text, and hence the main focus of recent research has been on more space-efficient
solutions with trade-offs for query time.

1.2 Space-efficient LCE data structures

In this paper, we will call data structures that use o(n) words, or equivalently o(n logn) bits
as sub-linear space data structures. Bille et al. [9] proposed the first sub-linear space LCE
query data structure which occupies O(nτ) words of space, answers LCE queries in O(τ2)
time, and can be built in O(n

2

τ) time using O(nτ) words of working space, for parameter
range 1 ≤ τ ≤

√
n. Bille et al. [8] developed an improved sub-linear space data structure

which occupies O(nτ) words of space, answers LCE queries in O(τ) time, and can be built
in O(n 3

2) expected time using O(nτ) words of working space, or in O(n2+ε) time using O(nτ)
words of working space for parameter 1 ≤ τ ≤ n, where 0 < ε < 1. Tanimura et al. [45]
proposed an LCE data structure of O(nτ) words of space, which can be built in faster O(nτ)
time using O(nτ) words of working space, but takes slower O(τ log min{τ, nτ }) time for LCE
queries, for parameter 1 ≤ τ ≤ n. All of these sub-linear space LCE data structures need to
access to the input string when answering queries. Therefore, these data structures require
extra ndlog σe bits of space for storing the input string. An in-place LCE data structure
based on fingerprints was recently proposed [42].

There also exist compressed LCE data structures which store a compressed form of the
input string represented as a straight-line program (a.k.a. grammar-based text compres-
sion) [41, 25, 6, 7, 24]. For compressible strings, the space usage of these data structures can
be sub-linear.

1.3 Our LCE data structure

This paper proposes the first O(1)-time LCE data structure which takes sub-linear space in
several reasonable cases, namely, when the string is compressible, and/or, when the alphabet
size is suitably small. Our data structure has both flavours of sub-linear space and compressed
LCE data structures. Namely, for parameter 1 ≤ τ ≤

√
n, we present an LCE data structure

which takes O(zτ2 + n
τ) words of space, answers LCE queries in O(1) time, and can be

built in O(n log σ) time for general ordered alphabets of size σ using O(zτ2 + n
τ) words of

working space, where z is the size of the Lempel-Ziv 77 factorization [48] of the input string.
It is known that z is a lower bound on the size of any grammar-based compression of the
string [44], and can be very small for highly repetitive strings. In such cases where the zτ2

term is dominated by n
τ , our LCE data structure uses sub-linear space. An interesting feature

is that we do not actually compress the input string, i.e., do not compute the Lempel-Ziv 77
factorization, but we construct a data structure whose size is bounded by O(zτ2 + n

τ).

Y. Tanimura et al. 10:3

Table 1 Deterministic LCE query data structures. n is the length of the input string, σ is the
alphabet size, z is the size of the Lempel-Ziv 77 factorization of w, l is the length of the LCE, ω
is the machine word size, ε > 0 is an arbitrarily small constant, and τ is a trade-off parameter
(† : 1 ≤ τ ≤ n, � : 1 ≤ τ ≤

√
n). ISA+ consists of the inverse suffix array of w, the LCP array and

the RMQ data structure. ? is valid for ω = Θ(logn) and σ ≤ 2o(logn).

Data structure Preprocessing Ref
Space (bits) Query Time Working space Construction time
O(ω) O(n) O(ω) - naïve
O(nω) O(1) O(nω) O(n) ISA+
ndlog σe+O(nω

τ
) O(τ2) O(nω

τ
) O(n2/τ) � [9]

ndlog σe+O(nω
τ

) O(τ) O(nω
τ

) O(n3/2) exp. † [8](1)
ndlog σe+O(nω

τ
) O(τ) O(nω

τ
) O(n2+ε) † [8](2)

ndlog σe+O(nω
τ

) O(τ log min{τ, n
τ
}) O(nω

τ
) O(nτ) † [45]

ndlog σe+O(ω logn) O(log l) O(ω logn) O(n logn) exp. [42]
O(zω logn log∗ n) O(logn log∗ n) O(zω logn log∗ n) O(n log σ) [41],[25]
O(zω log n

z
) O(logn) O(nω) O(n) [24]

O(zω log n
z

) O(logn) O(n log σ + zω log n
z

) O(n log log σ + z log2 n
z

) [24]+[32]
O((zτ2 + n

τ
)ω) O(1) O((zτ2 + n

τ
)ω) O(n log σ) � ours

O(z1/3n2/3ω) O(1) O(z1/3n2/3ω) O(n log σ logn) ours
o(n logn) O(1) o(n logn) o(n log2 n) ? ours
O(
√
nzω) O(

√
n
z

) O(
√
nzω) O(n log σ logn) ours

Even when the input string is not well compressible via Lempel-Ziv 77, for suitably
small alphabets, we can build a sub-linear space LCE data structure with O(1) query time
using appropriate values of τ . By choosing τ = (nz) 1

3 , our LCE query data structure takes
O(z 1

3n
2
3) words of space, which translates to O(n/(logσ n) 1

3) using the well-known fact
that z = O(n/ logσ n) (e.g. [26]). This means that our data structure can be stored in
O(n logn/(logσ n) 1

3) = O(n(logn) 2
3 (log σ) 1

3) bits of space. This implies that for alphabets
of size σ ≤ 2o(logn) (note that these contain polylogarithmic alphabets), our data structure
takes only o(n logn) bits of space, yet answers LCE queries in O(1) time. Also, our LCE
data structure does not access the input string when answering queries, and hence the input
string does not have to be kept. To our knowledge, this is the first sub-linear space LCE
data structure for strings which are not well compressible with Lempel-Ziv 77.

The key to our efficient LCE query data structure is a hybrid use of the truncated suffix
trees [38] and block-wise LCE queries based on t-covers [43, 9]. The q-truncated suffix tree
of a string w is the compact trie (a.k.a. Patricia tree) which represents all substrings of
w of length at most q. We observe that, for any 1 ≤ q ≤ n, the q-truncated suffix tree
can be stored in O(zq) words of space, including a string to which the edges label pointers
refer. We also show that the block-wise LCE query data structure based on t-covers can be
efficiently built by the t-truncated suffix tree, leading to our result. Several variants of our
data structure are considered, as summarized in Table 1.

The rest of this paper is organized as follows. Section 2 gives some definitions and
introduces tools which will be used as building-blocks of our LCE data structure. In Section 3
we propose our new LCE data structure and analyze its time/space complexities. In Section 4
we review some lower bounds on the LCE problem and show that using our LCE data
structure, these lower bounds do not apply in some cases. We conclude in Section 5.

MFCS 2017

10:4 Small-Space LCE Data Structure with Constant-Time Queries

2 Preliminaries

2.1 Notations
Let Σ be an ordered alphabet of size σ. Each element of Σ∗ is called a string. The length
of a string w is denoted by |w|. The empty string ε is the string of length zero, namely
|ε| = 0. If w = xyz for some strings w, x, y, z, then x, y, and z are respectively called a prefix,
substring, and suffix of w. For any 1 ≤ i ≤ |w|, let w[i] denote the ith character of w. For
any 1 ≤ i ≤ j ≤ |w|, let w[i..j] denote the substring of w that begins at position i and ends
at position j, namely, w[i..j] = w[i] · · ·w[j]. A string of length q is called a q-gram. For any
1 ≤ q ≤ |w|, let Substrq(w) denote the set of all q-grams occurring in w and the q− 1 suffixes
of w of length shorter than q, namely, Substrq(w) = {w[i..min{i+ q − 1, |w|}] | 1 ≤ i ≤ |w|}.

For any string w, let LCEw(i, j) denote the length of the longest common prefix of
w[i..|w|] and w[j..|w|]. We will write LCE(i, j) when w is clear from the context. Since
LCEw(i, i) = |w| − i, we will only consider the case when i 6= j. For any integers i ≤ j, let
[i..j] denote the set of integers from i to j (including i and j).

The Lempel-Ziv 77 factorization with self-references [48] of a string w is a sequence
LZ(w) = f1, . . . , fz of z non-empty substrings of w such that w = f1 · · · fz and for 1 ≤ i ≤ z,

fi = w[|f1 · · · fi−1|+ 1] ∈ Σ if s[|f1 · · · fi−1|+ 1] is a character not occurring in f0 · · · fi−1,
fi is the longest prefix of fi · · · fz such that fi is a substring of w beginning at a position
in range [1..|f1 · · · fi−1|],

where f0 = ε. The size of LZ(w) is the number z of factors f1, . . . , fz, and is denoted
as |LZ(w)| = z. For instance, for string w = abababcabababcabababcd of length 22,
LZ(w) = a, b, abab, c, abababcabababc, d and |LZ(w)| = 6.

Our model of computation is a standard word RAM with machine word size ω ≥ logn.
The space requirements will be evaluated by the number of words unless otherwise stated.

2.2 Tools
We will use the following tools as building blocks of our LCE data structure.

t-covers. For any positive integer t, a set D ⊆ [0..t − 1] is called a t-difference-cover if
[0..t− 1] = {(x− y) mod t | x, y ∈ D}, namely, every element in [0..t− 1] can be expressed by
a difference between two elements in D modulo t. For any positive integer n, a set S ⊆ [1..n]
is called a t-cover of [1..n] if S = {i ∈ [1..n] | (i mod t) ∈ D} with some t-difference-cover
D, and there is a constant-time computable function h(i, j) that for any 1 ≤ i, j ≤ n − t,
0 ≤ h(i, j) ≤ t and i+ h(i, j), j + h(i, j) ∈ S.

I Lemma 1 ([36]). For any integer t, there exists a t-difference-cover D(t) of size O(
√
t)

which can be computed in O(
√
t) time.

I Lemma 2 ([12]). For any integer t (≤ n), there exists a t-cover of size O(n√
t
) which can

be computed in O(n√
t
) time.

In what follows, we will denote by S(t) an arbitrary t-cover of [1..n] which satisfies the
conditions of Lemma 2. See Figure 1 for an example of a t-cover S(t).

Truncated suffix trees. For convenience, we assume that any string w ends with a special
end-marker $ that appears nowhere else in w. Let n = |w|. For any 1 ≤ q ≤ n, the q-truncated
suffix tree of w, denoted q-TST(w), is a Patricia tree which represents Substrq(w). Namely,
q-TST(w) is an edge-labeled rooted tree such that: (1) Each edge is labeled with a non-empty

Y. Tanimura et al. 10:5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

● ● ● ●

●

● ● ●

● ●

● ●

h(3,12) = 4 h(3,12) = 4

5

Figure 1 Let t = 5 and D = {1, 2, 4}. This figure shows an example of a 5-cover S(5) =
{1, 2, 4, 6, 7, 9, 11, 12, 14, 16, 17, 19}. The black dots represent the elements in S(5). For instance, we
have h(3, 12) = 4, namely, 3 + 4, 12 + 4 ∈ S(5).

a $

a

b

$ a

$

b

a

a

b

b

a

b

b

a

b

a

b

b

a

a

b b a b

$

$

a

Figure 2 5-TST(w) with string w = baabbaabbaaabbaabba$.

substring of w; (2) Each internal node v has at least two children, and the labels of the out
edges of v begin with distinct characters; (3) For any leaf u, there is at least one position
1 ≤ i ≤ n such that w[i..min{i+ q − 1, n}] is the string obtained by concatenating the edge
labels from the root to u; (4) For any position 1 ≤ i ≤ n in w, there is a unique leaf u such
that w[i..min{i+ q − 1, n}] is the string obtained by concatenating the edge labels from the
root to u.

Informally speaking, q-TST(w) can be obtained by trimming the full suffix tree of w so
that any path from the root represents a substring of length at most q. Clearly, the number
of leaves in q-TST(w) is equal to |Substrq(w)|. We assume that the leaves of q-TST(w) are
sorted in lexicographical order. Figure 2 shows an example of a q-TST(w). For any node u
of q-TST(w), str(u) denotes the string spelled out by the path from the root to u.

In the case of the full suffix tree (n-TST(w)) of string w of length n, each edge label x is
represented by a pair (i, j) of positions in w such that x = w[i..j]. We call w as the reference
string for the full suffix tree, and this way the full suffix tree can be stored in O(n) space.
For q-TST(w), Vitale et al. [46] showed how to represent q-TST(w) in O(|Substrq(w)|) space,
including the reference string, and how to construct them efficiently, both in time and space.

I Lemma 3 ([46]). Let w be any string of length n over an ordered alphabet of size σ. For
any 1 ≤ q ≤ n, let y = |Substrq(w)|. Then, there exists a reference string w′ of length O(y)
for q-TST(w). Moreover, q-TST(w) with the leaves sorted in lexicographical order, and a
reference string w′ can be constructed in O(n log σ) time with O(y) working space.

We also show the following lemma.

I Lemma 4. q-TST(w) can be represented in O(zq) space, where z = |LZ(w)|.

Proof. By Lemma 3, it suffices to show that |Substrq(w)| = O(zq). For each q-gram
p ∈ Substrq(w), let loccw(p) be the beginning position of the leftmost occurrence of p in w.
If q = 1, then clearly |Substr1(w)| ≤ z and hence the lemma holds. If q ≥ 2 then the interval
[loccw(p)..loccw(p) + q − 1] must cross the boundary of two adjacent factors of LZ(w), since
otherwise the interval is completely contained in a single factor of LZ(w) but this contradicts
that [loccw(p)..loccw(p) + q − 1] is the leftmost occurrence of p in w. Clearly, the maximum

MFCS 2017

10:6 Small-Space LCE Data Structure with Constant-Time Queries

number of q-grams that can cross a boundary of LZ(w) is q − 1. Hence, the total number of
distinct q-grams in w is O(zq). Also, Substrq(w) contains q substrings w[n− q + 1], . . . , w[n]
of w which are shorter than q. Overall, we obtain |Substrq(w)| = O(zq). J

The next theorem follows from Lemmas 3 and 4 and an obvious fact that |Substrq(w)| ≤ n.

I Theorem 5. Given a string w of length n over an ordered alphabet of size σ and integer
1 ≤ q ≤ n, we can construct an O(min{zq, n})-space representation of q-TST(w) in O(n log σ)
time with O(min{zq, n}) working space.

In what follows, we will only consider interesting cases where zq < n for a given 1 ≤ q ≤ n,
and will simply use O(zq) to denote the size of q-TST(w).

3 Our LCE data structure

3.1 Overview of our algorithm
The general framework of our space-efficient LCE algorithm follows the approach of Gawry-
chowski et al.’s LCE algorithm for strings over a general ordered alphabet [19]. Namely, we
compute LCE(i, j) using the two following types of queries:

ShortLCEt(i, j) = min(LCE(i, j), t),

LongLCEt(i, j) =
{
bLCE(i, j)/tc if i, j ∈ S(t),
⊥ otherwise.

LCE(i, j) is computed in the following manner. Let δ = h(i, j). Recall that δ ≤ t can be
computed in constant time and that i+ δ, j + δ ∈ S(t). First, we compare up to the first δ
characters of w[i..|w|] and w[j..|w|] using ShortLCEt(i, j). If l1 = ShortLCEt(i, j) is shorter
than t, then LCE(i, j) = l1. If l1 = t, then LCE(i, j) is at least t long. To check if it further
extends, we compute l2 = LongLCEt(i+ δ, j + δ), and l3 = ShortLCEt(i+ δ + l2, j + δ + l2).
Finally, we get LCE(i, j) = δ + t · l2 + l3. See also Figure 3.

The main difference between Gawrychowski et al.’s method and ours is in how to compute
ShortLCEt(i, j). While they use a Union-Find structure that takes O(n) working space
(for O(n) queries) as a main tool, we use an augmented 2t-TST(w) for Substr2t(w) which
occupies O(zt+ n√

t
) total space, answers ShortLCEt(i, j) queries in O(1) time, and can be

constructed in O(n log σ) time with O(zt) working space. How to answer LongLCEt(i, j)
queries is equivalent to Gawrychowski et al.’s, namely, we sample the positions from S(t) so
that LCE queries for these sampled positions can be answered in O(1) time. We show how
to build the data structure for LongLCEt(i, j) queries by using t-TST(w) for Substr t(w) in
O(n log σ) time with O(zt) working space.

3.2 ShortLCEt queries
For ShortLCEt(i, j) queries, we use 2t-TST(w) which represents the set Substr2t(w) of all
substrings of w of length at most 2t. For any position 1 ≤ i ≤ n, let pi denote the substring
of w that begins at position i and is of length at most 2t, namely, pi = w[i..min{i+2t−1, n}].
Notice that Substr2t(w) =

⋃n
i=1{pi}. For any position 1 ≤ i ≤ n in w, let `(i) = u iff u is

the leaf of 2t-TST(w) such that str(u) = pi. Basically, we will compute ShortLCEt(i, j) by
efficiently finding the LCA of the corresponding leaves `(i) and `(j) on 2t-TST(w). The
reason that we use 2t-TST(w) rather than t-TST(w) will become clear later.

Y. Tanimura et al. 10:7

δ

l1

l2

l3

i

t

S(t) δ

l1

l2

l3

j

t

S(t)
○ ● ● ○ ○ ● ● ○

Figure 3 Illustration of an overview of our LCE(i, j) algorithm. We are given two positions i
and j in string w. First, we compute l1 = ShortLCEt(i, j). If l1 < t, then LCE(i, j) = l1. Otherwise,
we compute LongLCEt(i + δ, j + δ) where i + δ, j + δ ∈ S(t) and 0 ≤ δ ≤ t. We finally compute
l3 = ShortLCE(i+ δ+ l2, j + δ+ l2) where l2 = tLongLCEt(i+ δ, j + δ). Then LCE(i, j) = δ+ l2 + l3.

Now the key is how to access `(i) for a given position i in w. As our goal is to build a
sub-linear space data structure for ShortLCEt queries, we cannot afford to store a pointer
to `(i) from every position 1 ≤ i ≤ n. Thus, we store such a pointer only from every t-th
positions in w. We call these positions as sampled positions. Formally, for every sampled
position j ∈ Qt,n = {1 + kt | 0 ≤ k ≤ dnt e − 1} we explicitly store a pointer from j to
its corresponding leaf `(j) on 2t-TST(w). Also, for each position 1 ≤ i ≤ n in w, let
α(i) = max{j ∈ Qt,n | j ≤ i}. Namely, α(i) is the closest sampled position in Qt,n to the
left of i (or it is i itself if i ∈ Qt,n).

Given a position 1 ≤ i ≤ n, α(i) can be computed in O(1) time with a simple arithmetic
operation. Hence, we can access the leaf `(α(i)) for the closest sampled position α(i) in
O(1) time. The next task is to locate `(i). To describe our constant-time algorithm, let
us consider a conceptual graph G = (V,E) such that V = Substr2t(w) and E = {(u, c, v) |
u[1..2t − 1] = v[2..2t], c = v[1]}, where (u, c, v) represents a directed edge labeled c from
u to v. This graph G is equivalent to the edge-reversed de Bruijn graph of order 2t, with
extra nodes for the 2t− 1 suffixes of w which are shorter than 2t. It is clear that there is a
one-to-one correspondence between the leaves of 2t-TST(w) and the nodes of the graph G.
Thus, we will identify each leaf of 2t-TST(w) with the nodes of graph G.

I Lemma 6. Given 2t-TST(w) for a string w of length n and for any 1 ≤ 2t ≤ n, we can
construct the graph G in O(n) time using O(zt) working space.

Proof. The de Bruijn graph of order q for a string of length n can be constructed in O(n)
time using space linear in the size of the output de Bruijn graph, provided that q-TST(w) is
already constructed [13]. By setting q = 2t, adding extra 2t− 1 nodes for the suffixes that
are shorter than 2t, and reversing all the edges, we obtain our graph G = (V,E).

The number of nodes in V is clearly equal to |Substr2t(w)|. Also, since each edge
in E corresponds to a distinct substring in Substr2t+1(w), the number of edges in E is
equal to |Substr2t+1(w)|. By a similar argument to the proof of Lemma 4, we obtain
|V | = |Substr2t(w)| = O(zt) and |E| = |Substr2t+1(w)| = O(zt). J

Let d = i− α(i). A key observation here is that there is a path of length d from node pi
to node pα(i) in this graph G. Since G is a graph, however, it is not easy to quickly move
from pα(i) to pi. To overcome this difficulty, we consider a spanning tree of G of which the
root is pn = w[n] = $. Let T denote any spanning tree of G. See Figure 4 for examples of
the graph G and its spanning tree T . Although some edges are lost in spanning tree T , it is
enough for our purpose. Namely, the following lemma holds.

MFCS 2017

10:8 Small-Space LCE Data Structure with Constant-Time Queries

I Lemma 7. Any spanning tree T of G satisfies the following properties: (1) There is a non-
branching path of length 2t from the root pn to the node pn−2t. (2) For any 1 ≤ i ≤ n− 2t− 1
and 0 ≤ d < t, let g be the d-th ancestor of pα(i). Then, g[1..t] = pi[1..t].

Proof. The first property is immediate from the fact that the last character w[n] = $ occurs
nowhere else in w and the root represents pn = $.

Since d < t and |pα(i)| = 2t, we have pα(i)[d..d+ t− 1] = pi[1..t]. By the first property
and α(i) ≤ i ≤ n − 2t − 1, the depth of node pα(i) is at least 2t. Also, by following the
in-coming edge of each node in the reversed direction, we delete the first character of the
corresponding string. Hence, pi[1..t] is a prefix of the d-th ancestor g of pα(i). J

We are ready to show the main result of this section.

I Theorem 8. For any string w of length n and integer 1 ≤ t ≤ n, a data structure of
size O(zt + n

t) can be constructed in O(n log σ) time using O(zt) working space such that
subsequent ShortLCEt(i, j) queries for any 1 ≤ i, j ≤ n can be answered in O(1) time, where
z = |LZ(w)|.

Proof. We use a spanning tree T enhanced with a level ancestor data structure [5, 4] which
can be constructed in time and space linear in the size of the input tree T .

Given two positions i, j in w, we answer ShortLCEt(i, j) query as follows:
1. Compute the closest sampled positions α(i) and α(j) by simple arithmetics.
2. Access the nodes pα(i) and pα(j) in the spanning tree T using pointers from the sampled

positions α(i) and α(j), respectively.
3. Let d = i − α(i) and d′ = j − α(j). Access the d-th ancestor u of pα(i) and the d′-th

ancestor of pα(j) using level ancestor queries on T .
4. Compute the LCA x of the two leaves u and v on 2t-TST(w), and return min{|str(x)|, t}.

The correctness follows from Lemma 7. Since each step of the above algorithm takes O(1)
time, we can answer ShortLCEt(i, j) in O(1) time. By Lemma 4, the size of 2t-TST(w) with
an LCA data structure is O(zt), and also the size of the spanning tree T with a level ancestor
data structure is O(|Substr2t(w)|) = O(zt). In addition, we store pointers from the Θ(nt)
sampled positions to their corresponding nodes in T . Overall, the total space requirement of
our data structures is O(zt+ n

t). We can build these data structures in a total of O(n log σ)
time using O(zt) working space by Theorem 5 and Lemma 6. J

3.3 LongLCEt queries
At a high level, our LongLCEt(i, j) query algorithm is an adaptation of the t-cover based
algorithm by Puglisi and Turpin [43], which was later re-discovered by Bille et al. [9]. Gawry-
chowski et al. [19] showed that an O(n√

t
)-space data structure, which answers LongLCEt(i, j)

query in O(1) time, can be constructed in O(n log t) time with t = Ω(log2 n) for a string of
length n over a general ordered alphabet. In this section, we show the same data structure
as Gawrychowski et al. can be constructed in O(n log σ) time with O(zt+ n

t) working space
for a general ordered alphabet of size σ and any 1 ≤ t ≤ n.

Consider a t-cover S(t) of [1..n] for some t-difference-cover D. For each position i ∈ S(t)
such that i + t − 1 ≤ n, the substring bi = w[i..i + t − 1] is said to be a t-block. The goal
here is to answer the block-wise LCE value LongLCEt(i, j) for two given positions in the
t-cover S(t). Since we query LongLCEt(i, j) only for positions i, j ∈ S(t) and the answer to
LongLCEt(i, j) is a multiple of t, we can regard each t-block as a single character. Thus,

Y. Tanimura et al. 10:9

bba$

ba$

a$

$

abba

aaabaabb baaa

baab bbaa

a

b

b

a
a

a

a

b
b

b

b

bba$

ba$

a$

$

abba

aaabaabb baaa

baab bbaa

α(i) i
1 2 3 4 5 6 7 8 9 1011121314151617181920
b a a b b a a b b a a a b b a a b b a $𝑤 =

𝑔

pipα(i)

a

b

b

a
a

a

b
b

b

Figure 4 The left graph G is the edge-reversed de Bruijn graph of order 2t, with extra nodes
for the 2t− 1 suffixes of w which are shorter than 2t, where t = 2 and w is the same string as in
Figure 2. An edge from u to v labeled character c represents c · u[1..2t− 1] = v. The right tree is a
spanning tree of the left graph. Let i = 4 and α(i) = 3. Then pi = bbaa, pα(i) = abba. Let g be the
d-th ancestor of pα(i) in the right tree, where 0 ≤ d < t. Then g[1..t] = pi[1..t] holds by Lemma 7.

we sort all t-blocks in lexicographical order, and encode each t-block by its lexicographical
rank. Since each t-block is of length t, we can sort the t-blocks in O(n√

t
log n√

t
) time with

O(zt+ n√
t
) working space by using any suitable comparison-based sorting algorithm and our

O(1)-time ShortLCEt query data structure of Section 3.2. The next lemma shows that we
can actually compute the lexicographical ranks of all t-blocks more efficiently.

I Lemma 9. Let w be an input string of length n and 1 ≤ t ≤ n be an integer. Given the
data structure for ShortLCEt queries of Theorem 8 for w, we can sort all t-blocks of w in
lexicographic order in O(zt+ n√

t
) time using O(zt+ n

t) working space, where z = |LZ(w)|.

Proof. We insert new (non-branching) nodes to 2t-TST(w) such that every t-gram in w is
represented by an explicit node. This increases the size of the tree by a constant factor.
We also associate each node u such that |str(u)| = t with the lexicographical rank of the
t-gram str(u) among all t-grams in w. Then, we associate each leaf ` of the tree such that
|str(`)| ≥ t with its ancestor v which represents a t-gram. All these can be preformed in
O(zt) total time by standard depth-first traversals on the tree.

Then, for each t-block bi = w[i..i+ t− 1], we can access a leaf ` of 2t-TST(w) such that
str(`)[1..t] = w[i..i+ t− 1] in O(1) time using the algorithm of Theorem 8, and we return the
rank of the ancestor v of ` that represents bi = w[i..i+ t− 1]. Since there are O(n√

t
) t-blocks

in w, it takes a total of O(zt+ n√
t
) time. The working space is O(zt+ n

t) by Theorem 8. J

There is an alternative algorithm to sort the t-blocks, as follows:

I Lemma 10. For any string w of length n over an alphabet of size σ, any integer 1 ≤ t ≤ n,
we can sort all t-blocks in lexicographic order in O(n log σ) time using O(zt) working space,
where z = |LZ(w)|.

Proof. We use t-TST(w) and the reversed de Bruijn graph of order t. We associate each leaf
of the tree representing a t-gram with its lexicographical rank among all leaves in the tree.

Let r be the graph node which represents w[n] = $. We simply traverse the graph while
scanning the input string w from right to left. For each 1 ≤ i ≤ n, this gives us the graph
node representing bi = w[i..i+ t− 1] and hence the corresponding leaf of t-TST(w).

MFCS 2017

10:10 Small-Space LCE Data Structure with Constant-Time Queries

t-TST(w) and the reversed de Bruijn graph can be constructed in O(n log σ) time with
O(zt) working space. The ranks of the leaves in t-TST(w) can be easily computed in O(zt)
time by a standard tree traversal. Traversing the reversed de Bruijn graph takes O(n log σ)
time. Hence the lemma holds. J

For each i ∈ S(t), let ri be the rank of the t-block bi = w[i..i+ t− 1] computed by any of
the algorithms above. Clearly ri ∈ [1..n]. For simplicity, assume

√
t is an integer. For each

position i ∈ D (where D is the underlying t-difference cover), let #i = riri+t · · · ri+mit, where
mi = n−i+1√

t
−1. We create a string code(w) = #1$1 · · ·#k$k of length |S(t)| = O(n√

t
). Since

each #i is a string over the integer alphabet [1..S(t)] ⊂ [1..n] and |D| = O(
√
t), we can regard

code(w) as a string over an integer alphabet of size O(n). Then, we build the suffix array, the
inverse suffix array, the LCP array [37] of code(w) and an range minimum query (RMQ) data
structure [3] for the LCP array. For any position i ∈ S(t) on the original string w, we can
compute its corresponding position i′ on code(w) as i′ = |#1$1#2$2 · · ·#x−1$x−1|+ i−x

t + 1
where x = i mod t. Now, LongLCEt(i, j) query for two positions i, j ∈ S(t) on the original
string w reduces to an LCE query for the corresponding positions on code(w), which can
be answered in O(1) time using an RMQ on the LCP array. All these arrays and the RMQ
data structure can be built in O(n√

t
) time [27, 28, 3].

I Theorem 11. For any string of length n and integer 1 ≤ t ≤ n, a data structure of
size O(n√

t
) can be constructed in O(n log σ) time using O(zt+ n

t) working space such that
subsequent LongLCEt(i, j) queries for any 1 ≤ i, j ≤ n can be answered in O(1) time, where
z = |LZ(w)|.

Proof. We need O(n√
t
) working space for the encoded string code(w) and its suffix array

plus LCP array enhanced with an RMQ data structure. Then the theorem follows from
Theorem 8, and Lemma 9 or Lemma 10. J

3.4 Main result and variants
In what follows, let w be an input string of length n and z = |LZ(w)|. By Theorem 8 and
Theorem 11 shown in the previous subsections, we obtain the main theorem of this paper:

I Theorem 12. For any integer 1 ≤ t ≤ n, an LCE data structure of size O(zt+ n√
t
) can be

constructed in O(n log σ) time with O(zt+ n√
t
) working space such that subsequent LCE(i, j)

query for any 1 ≤ i, j ≤ n can be answered in O(1) time.

We can also obtain the following variants of our LCE data structure.

I Corollary 13. For any integer 1 ≤ t ≤ n, an LCE data structure of size O(z 1
3n

2
3) can

be constructed in O(n log σ logn) time with O(z 1
3n

2
3) working space such that subsequent

LCE(i, j) query for any 1 ≤ i, j ≤ n can be answered in O(1) time.

Proof. The LCE data structure of Theorem 12 for t = (nz) 2
3 < n takes O(z 1

3n
2
3) space. Since

we do not compute z, we are not able to compute the exact value of (nz) 2
3 . However, we

can find the value of t for which the difference between the actual size of t-TST(w) and
d n√

t
e is smallest, by doubling-then-binary searches for t. Since the size of the resulting LCE

data structure can be by a constant factor larger than the smallest variant of our LCE data
structure, it is clearly bounded by O(z 1

3n
2
3). The above method takes O(n log σ logn) total

time and uses O(z 1
3n

2
3) total working space. J

Y. Tanimura et al. 10:11

I Corollary 14. For alphabets of size σ ≤ 2o(logn), an LCE data structure of size o(n logn)
bits can be constructed in o(n log2 n) time with o(n logn) bits of working space such that
subsequent LCE(i, j) query for any 1 ≤ i, j ≤ n can be answered in O(1) time.

Proof. By plugging the well-known fact that z = O(n/ logσ n) into the result of Corollary 13,
we get O(n/(logσ n) 1

3) for the space bound. Thus our data structure can be stored in
S(n) = O(n(logn) 2

3 (log σ) 1
3) bits of space in the transdichotomous word RAM [16] with

machine word size ω = Θ(logn). Hence, for alphabets of size σ ≤ 2o(logn), we obtain an LCE
data structure with the claimed bounds. J

We can also obtain a new time-space trade-off LCE data structure. Observe that using
the data structure of Theorem 8 for 1 ≤ d ≤ n, we can answer ShortLCEt queries for any
1 ≤ t ≤ n in O(max{1, td}) time. Hence the following theorem holds.

I Theorem 15. For any integers 1 ≤ t′ ≤ t ≤ n, a data structure of size O(zt′ + n√
t

+ n
t′)

can be constructed in O(n log σ) time with O(zt+ n√
t

+ n
t′) working space such that subsequent

LCE(i, j) query for any 1 ≤ i, j ≤ n can be answered in O(tt′) time.

Theorem 15 implies the following: (1) By setting t′ = t, we obtain Theorem 12. Moreover,
by choosing also t ← (nz)2/3, we obtain a data structure of size O(z1/3n2/3) answering
LCE queries in constant time, which coincides with Corollary 13. This is the smallest data
structure among the fastest data structures with two parameters t and t′. (2) By setting
t′ =
√
t and for t = n/z, we get a data structure of size O(

√
nz) answering LCE queries in

O(
√

n
z) time. This is the fastest data structure among the smallest data structures with two

parameters t and t′. Note that when we do not know z, this data structure of at most O(
√
nz)

space can be constructed in O(n log σ logn) preprocessing time and O(
√
nz) working space

as in Corollary 13. Although the parameters cannot be arbitrarily chosen, the space-query
time product obtained here is optimal with fastest construction to date.

Moreover, we can reduce the zt term in the working space of Theorem 15 to zt′ by
increasing the preprocessing time. The bottleneck of the working space is in sorting t-blocks,
i.e., Lemma 9 or Lemma 10. Since any two t-blocks can be compared in O(tt′) time using O(tt′)
ShortLCEt′ queries, we can get the following theorem using any suitable comparison-based
sorting algorithm instead of Lemma 9 or Lemma 10.

I Theorem 16. We can construct the data structure of Theorem 15 in O(nt′ log n
t + n log σ)

time and O(zt′ + n√
t

+ n
t′) working space.

4 Lower bounds vs upper bounds for the LCE problem

Let T (n) and S(n) respectively denote the query time and data structure size (in bits) of an
arbitrary LCE data structure for an input string of length n.

Brodal et al. [10] showed that in the non-uniform cell probe model, any RMQ data
structure for a string of length n which uses n

t bits of additional space for any 1 ≤ t ≤ n must
take Ω(t) query time (i.e., Ω(t) character accesses or cell probes). Their proof assumes that
each character in the string is stored in a separate cell, and counted the minimum number of
character accesses required to answer an RMQ. Although their proof uses a binary string
of length n where each character takes only a single bit, the above assumption is valid in a
commonly accepted case that the underlying alphabet size is 2ω, where ω denotes the size
of each cell (i.e. machine word). Then, Bille et al. [9] showed that RMQ queries on any
binary string of length n can be reduced to LCE queries on the same binary string, with

MFCS 2017

10:12 Small-Space LCE Data Structure with Constant-Time Queries

Θ(logn) additional bits of space. This implies that, again assuming that each character
is stored in a separate cell, any LCE data structure for a binary string of length n which
uses S(n) = n

t + Θ(logn) additional bits of space must take T (n) = Ω(t) query time, for
parameter 1 ≤ t ≤ n

logn . Recently, Kosolobov [33] showed another result on time-space
product trade-off lower bound in the non-uniform cell probe model, which can be formalized
as follows:

I Theorem 17 ([33]). In the non-uniform cell probe model where each character is stored
in a separate cell, for any S(n), there exists σ = 2Ω(S(n)/n) such that for any LCE data
structure for a string over the alphabet Σ = {1, . . . , σ}, which takes S(n) bits of space
and answers LCE queries in T (n) time (i.e., with T (n) character accesses or cell probes),
T (n)S(n) = Ω(n logn) holds.

The lower bound by Kosolobov is optimal for the considered range of the alphabet size
σ = 2Ω(S(n)/n), since the data structure of Bille et al. [8] achieves T (n)S(n) = O(n logn).

Interestingly, our LCE data structure proposed in Section 3 reveals that there are some
cases where the above lower bounds do not apply. For highly compressible strings where zt
is dominated by n√

t
, our LCE data structure of Theorem 12 takes O(n logn

t) bits of space
for 1 ≤ t ≤ n with machine word of size ω = Θ(logn). Hence, for parameter 1 ≤ t′ ≤

√
n

logn
we get S(n) = O(nt′). Since our data structure of Theorem 12 always achieves T (n) = O(1)
for any parameter setting, we observe that Bille et al.’s lower bound do not apply for
highly repetitive strings. Notice also that our LCE data structure of Corollary 14 achieves
T (n)S(n) = o(n logn) for alphabet size σ ≤ 2o(logn). This shows that the alphabet size
σ = 2Ω(S(n)/n) is important for Kosolobov’s lower bound to hold.

Kosolobov [33] did suggest a possibility to overcome his lower bound when σ is small,
and the input string can be packed, where logσ n characters can occupy a memory cell,
allowing the algorithm to read logσ n characters with one memory access. We show below
that this is also possible. An input string of length n can be considered as a bit string of
length n log σ. Let t = logn, and first consider the ShortLCElogn queries on the bit string.
When the original string is available in a packed representation, the longest common prefix
of two substrings strings of length logn bits can be computed in constant time using no
extra space using bit operations, namely, by taking the bitwise exclusive or (XOR) and
computing the position of the most significant set bit (msb), or without msb, by multiple
lookups on a table of total size o(n) bits. Next, consider the LongLCElogn queries on the
bit string. By simply using the same data structure as described in Section 3.3 for the bit
string of length n log σ, we can answer LongLCElogn queries in constant time using a data
structure of size O(n logσ√

logn
log(n log σ)) = O(n

√
logn log σ) bits. Using the two queries, we can

answer an LCE query for arbitrary positions i, j of the original string in constant time with
b(LCE(i·log σ, j ·log σ))/ log σc. Since the size of the data structure is S(n) = O(n

√
logn log σ)

bits, we obtain T (n)S(n) = o(n logn) for σ ≤ 2o(
√

logn). Our LCE data structure based
on truncated suffix trees is superior for larger σ, and also when the input string is highly
repetitive and compressible since it does not require the original string.

5 Conclusions and open questions

In this paper, we presented an LCE data structure which uses O(zt+ n√
t
) words of space

and answers in LCE queries in O(1) time, for parameter 1 ≤ t ≤
√
n. This data structure

can be constructed in O(n log σ) time with O(zt+ n√
t
) working space. Using the fact that

Y. Tanimura et al. 10:13

z = O(n/ logσ n) and suitably choosing t, our method achieves the first O(1)-time sub-linear
space LCE data structure for alphabets of size σ ≤ 2o(logn).

An interesting open question is whether we can improve the total space requirement to
O(zt+ n

t). The bottleneck is the LongLCEt data structure that uses O(zt+ n√
t
) space. Another

open question is whether we can compute the size z of the Lempel-Ziv 77 factorization in
O(n log σ) time with sub-linear working space. This is motivated for computing the value
of t which optimizes our space bound O(zt + n

t). A little has been done in this line of
research: Nishimoto et al. [40] showed how to compute the Lempel-Ziv 77 factorization
in O(npolylog(n)) time with O(z logn log∗ n) working space. Fischer et al. [15] showed an
algorithm which computes an approximation of the Lempel-Ziv 77 factorization of size (1+ε)z
in O(1

εn logn) time with O(z) working space, for any 0 < ε ≤ 1.
Another direction of further research is to give a tighter upper bound for the size of the

t-truncated suffix trees than zt. We observed that there exists a string of length n for which
zt is greater by a factor of

√
n than the actual size of the t-truncated suffix tree for some t.

Acknowledgments. We thank Dmitry Kosolobov for explaining his work [33] to us.

References
1 Hideo Bannai, Tomohiro I, Shunsuke Inenaga, Yuto Nakashima, Masayuki Takeda, and

Kazuya Tsuruta. A new characterization of maximal repetitions by Lyndon trees. In Proc.
SODA 2015, pages 562–571, 2015.

2 Hideo Bannai, Shunsuke Inenaga, and Dominik Köppl. Computing all distinct squares in
linear time for integer alphabets. CoRR, abs/1610.03421, 2016.

3 Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In Proc. Latin
2000, pages 88–94, 2000.

4 Michael A. Bender and Martin Farach-Colton. The level ancestor problem simplified. Theor.
Comput. Sci., 321(1):5–12, 2004.

5 Omer Berkman and Uzi Vishkin. Finding level-ancestors in trees. Journal of Computer
and System Sciences, 48(2):214–230, 1994.

6 Philip Bille, Anders Roy Christiansen, Patrick Hagge Cording, and Inge Li Gørtz. Finger
search in grammar-compressed strings. In Proc. FSTTCS 2016, pages 36:1–36:16, 2016.

7 Philip Bille, Inge Li Gørtz, Patrick Hagge Cording, Benjamin Sach, Hjalte Wedel Vildhøj,
and Søren Vind. Fingerprints in compressed strings. J. Comput. Syst. Sci., 86:171–180,
2017.

8 Philip Bille, Inge Li Gørtz, Mathias Bæk Tejs Knudsen, Moshe Lewenstein, and
Hjalte Wedel Vildhøj. Longest common extensions in sublinear space. In Proc. CPM
2015, pages 65–76, 2015.

9 Philip Bille, Inge Li Gørtz, Benjamin Sach, and Hjalte Wedel Vildhøj. Time-space trade-offs
for longest common extensions. J. Discrete Algorithms, 25:42–50, 2014.

10 Gerth Stølting Brodal, Pooya Davoodi, and S. Srinivasa Rao. On space efficient two dimen-
sional range minimum data structures. Algorithmica, 63(4):815–830, 2012.

11 Gerth Stølting Brodal, Rune B. Lyngsø, Christian N. S. Pedersen, and Jens Stoye. Finding
maximal pairs with bounded gap. In Proc. CPM 1999, pages 134–149, 1999.

12 Stefan Burkhardt and Juha Kärkkäinen. Fast lightweight suffix array construction and
checking. In Proc. CPM 2003, pages 55–69, 2003.

13 Bastien Cazaux, Thierry Lecroq, and Eric Rivals. Construction of a de Bruijn graph for
assembly from a truncated suffix tree. In LATA 2015, pages 109–120, 2015.

14 Maxime Crochemore, Roman Kolpakov, and Gregory Kucherov. Optimal bounds for com-
puting α-gapped repeats. In Proc. LATA 2016, pages 245–255, 2016.

MFCS 2017

10:14 Small-Space LCE Data Structure with Constant-Time Queries

15 Johannes Fischer, Travis Gagie, Pawel Gawrychowski, and Tomasz Kociumaka. Approxim-
ating LZ77 via small-space multiple-pattern matching. CoRR, abs/1504.06647, 2015.

16 Michael L. Fredman and Dan E. Willard. Surpassing the information theoretic bound with
fusion trees. J. Comput. Syst. Sci., 47(3):424–436, 1993.

17 Zvi Galil and Raffaele Giancarlo. Improved string matching with k mismatches. ACM
SIGACT News, 17:52–54, 1986.

18 Pawel Gawrychowski, Tomohiro I, Shunsuke Inenaga, Dominik Köppl, and Florin Manea.
Efficiently finding all maximal α-gapped repeats. In Proc. STACS 2016, pages 39:1–39:14,
2016.

19 Pawel Gawrychowski, Tomasz Kociumaka, Wojciech Rytter, and Tomasz Walen. Faster
longest common extension queries in strings over general alphabets. In Proc. CPM 2016,
pages 5:1–5:13, 2016.

20 Sara Geizhals and Dina Sokol. Finding maximal 2-dimensional palindromes. In Proc. CPM
2016, pages 19:1–19:12, 2016.

21 Dan Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University Press,
1997.

22 Dan Gusfield and Jens Stoye. Linear time algorithms for finding and representing all the
tandem repeats in a string. J. Comput. Syst. Sci., 69(4):525–546, 2004.

23 Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM Journal on Computing, 13(2):338–355, 1984.

24 Tomohiro I. Longest common extensions with recompression. In Proc. CPM 2017, 2017.
To appear.

25 Shunsuke Inenaga. A faster longest common extension algorithm on compressed strings
and its applications. In Proc. PSC 2015, pages 1–4, 2015.

26 Juha Kärkkäinen. Repetition-based text indexes. Ph.D. thesis, University of Helsinki,
Department of Computer Science, 1999.

27 Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt. Linear work suffix array construc-
tion. J. ACM, 53(6):918–936, 2006.

28 Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kunsoo Park. Linear-time
longest-common-prefix computation in suffix arrays and its applications. In Proc. CPM
2001, pages 181–192, 2001.

29 Roman Kolpakov and Gregory Kucherov. Searching for gapped palindromes. Theor. Com-
put. Sci., 410(51):5365–5373, 2009.

30 Roman M. Kolpakov and Gregory Kucherov. Finding maximal repetitions in a word in
linear time. In Proc. FOCS 1999, pages 596–604, 1999.

31 Roman M. Kolpakov and Gregory Kucherov. Finding repeats with fixed gap. In Proc.
SPIRE 2000, pages 162–168, 2000.

32 Dominik Köppl and Kunihiko Sadakane. Lempel-Ziv computation in compressed space
(LZ-CICS). In Proc. DCC 2016, pages 3–12, 2016.

33 Dmitry Kosolobov. Tight lower bounds for the longest common extension problem. CoRR,
abs/1611.02891, 2016.

34 Gad M. Landau, Eugene W. Myers, and Jeanette P. Schmidt. Incremental string compar-
ison. SIAM J. Comput., 27(2):557–582, 1998.

35 Gad M. Landau and Uzi Vishkin. Efficient string matching with k mismatches. Theor.
Comput. Sci., 43:239–249, 1986.

36 Mamoru Maekawa. A square root N algorithm for mutual exclusion in decentralized systems.
ACM Trans. Comput. Syst., 3(2):145–159, 1985.

37 Udi Manber and Gene Myers. Suffix arrays: A new method for on-line string searches.
SIAM J. Comput., 22(5):935–948, 1993.

Y. Tanimura et al. 10:15

38 Joong Chae Na, Alberto Apostolico, Costas S. Iliopoulos, and Kunsoo Park. Truncated
suffix trees and their application to data compression. Theor. Comput. Sci., 1-3(304):87–
101, 2003. doi:10.1016/S0304-3975(03)00053-7.

39 Shintaro Narisada, Diptarama, Kazuyuki Narisawa, Shunsuke Inenaga, and Ayumi Shino-
hara. Computing longest single-arm-gapped palindromes in a string. In Proc. SOFSEM
2017, pages 375–386, 2017.

40 Takaaki Nishimoto, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
Dynamic index and LZ factorization in compressed space. In Proc. PSC 2016, pages 158–
170, 2016.

41 Takaaki Nishimoto, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
Fully dynamic data structure for LCE queries in compressed space. In MFCS 2016, pages
72:1–72:15, 2016.

42 Nicola Prezza. In-place longest common extensions. CoRR, abs/1608.05100, 2016.
43 Simon J. Puglisi and Andrew Turpin. Space-time tradeoffs for longest-common-prefix array

computation. In Proc. ISAAC 2008, pages 124–135, 2008.
44 Wojciech Rytter. Application of Lempel-Ziv factorization to the approximation of grammar-

based compression. Theor. Comput. Sci., 302(1-3):211–222, 2003.
45 Yuka Tanimura, Tomohiro I, Hideo Bannai, Shunsuke Inenaga, Simon J. Puglisi, and Masay-

uki Takeda. Deterministic sub-linear space LCE data structures with efficient construction.
In Proc. CPM 2016, pages 1:1–1:10, 2016.

46 Luciana Vitale, Alvaro Martín, and Gadiel Seroussi. Space-efficient representation of trun-
cated suffix trees, with applications to Markov order estimation. Theor. Comput. Sci.,
595:34–45, 2015.

47 P. Weiner. Linear pattern-matching algorithms. In Proc. of 14th IEEE Ann. Symp. on
Switching and Automata Theory, pages 1–11, 1973.

48 Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compression.
IEEE Trans. Information Theory, 23(3):337–343, 1977.

MFCS 2017

http://dx.doi.org/10.1016/S0304-3975(03)00053-7

ZX-Calculus: Cyclotomic Supplementarity and
Incompleteness for Clifford+T Quantum
Mechanics
Emmanuel Jeandel1, Simon Perdrix2, Renaud Vilmart3, and
Quanlong Wang4

1 Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
emmanuel.jeandel@loria.fr

2 Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
simon.perdrix@loria.fr

3 Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
renaud.vilmart@loria.fr

4 Dept. of Computer Science, University of Oxford, UK
quanlong.wang@cs.ox.ac.uk

Abstract
The ZX-Calculus is a powerful graphical language for quantum mechanics and quantum informa-
tion processing. The completeness of the language – i.e. the ability to derive any true equation –
is a crucial question. In the quest of a complete ZX-calculus, supplementarity has been recently
proved to be necessary for quantum diagram reasoning (MFCS 2016). Roughly speaking, supple-
mentarity consists in merging two subdiagrams when they are parameterized by antipodal angles.
We introduce a generalised supplementarity – called cyclotomic supplementarity – which consists
in merging n subdiagrams at once, when the n angles divide the circle into equal parts. We show
that when n is an odd prime number, the cyclotomic supplementarity cannot be derived, leading
to a countable family of new axioms for diagrammatic quantum reasoning.

We exhibit another new simple axiom that cannot be derived from the existing rules of the ZX-
Calculus, implying in particular the incompleteness of the language for the so-called Clifford+T
quantum mechanics. We end up with a new axiomatisation of an extended ZX-Calculus, including
an axiom schema for the cyclotomic supplementarity.

1998 ACM Subject Classification F.1.1 Models of Computation, F.4.1 Mathematical Logic

Keywords and phrases Quantum Computing, ZX-Calculus, Incompleteness, Clifford+T

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.11

1 Introduction

The ZX-Calculus is a powerful diagrammatic language for reasoning in quantum mechanics
introduced by Coecke and Duncan [8]. Every diagram is composed of three kinds of ver-
tices: red and green dots which are parametrised by an angle, and a yellow box; and each
diagram represents a matrix thanks to the so-called standard interpretation. Moreover, any
quantum transformation can be expressed using ZX-diagrams, meaning they are universal.
For instance, some particular states can be represented as evidenced by [9]. The language
initially describes pure quantum state transformations, though some work has been made
to adapt it to non pure evolutions [7, 10] and measurement-based quantum computing [12].

Unlike quantum circuits, the ZX-Calculus comes with a set of equalities between diagrams
that preserve the matrix that is represented. Hence, using a succession of locally applied

© Emmanuel Jeandel, Simon Perdrix, Renaud Vilmart, and Quanlong Wang;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 11; pp. 11:1–11:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2 ZX-Calculus: Cyclotomic Supp. and Incompleteness for Clifford+T Quantum Mech.

such equalities, one can prove that two diagrams represent the same matrix, for the language
is sound i.e. all the equalities do indeed preserve the matrix.

The converse of soundness is called completeness. Here, it amounts to being able to
transform any diagram into another one, as long as both represent the same matrix. Hence,
the concept of completeness is here totally defined by one particular interpretation, the
standard interpretation, unlike other definitions of completeness such as in [18] in which it
is related to a whole family of interpretations.

It has been proven that the ZX-Calculus is in general not complete [17]. Yet, some
restrictions have been proven to be complete. The π

2 -fragment – the language restricted
to angles that are multiples of π

2 , which represents the stabiliser quantum mechanics –
is complete [1], its pseudo-normal form using graph states introduced in the case of the
ZX-Calculus in [11]. Moreover, this proof can be adapted to show the completeness of a ZX-
like calculi used for graphically representing Spekken’s toy model [4, 20] or for graphically
representing the real matrices [15]. The π-fragment – representing the real stabiliser quantum
mechanics – is also complete, with a slightly adapted set of rules [13].

A fragment is approximately universal when any quantum transformation can be ap-
proached with arbitrarily great precision using only the angles in the fragment. Sadly, the
π
2 -fragment is not approximately universal, but the π

4 -fragment is [19]. It is called the Clif-
ford+T quantum mechanics. Completeness for this fragment was an open question, one of
the main ones in the fields of categorical quantum mechanics [6] – even though a partial
answer has been given for the fragment composed of path diagrams involving angles multiple
of π4 [2].

In this paper, we show that in the ZX-Calculus, the π
4 -fragment is not complete, showing

that a scalar equality is derivable using matrices, but not diagrammatically. We propose to
replace the “inverse rule” by this equality, and show that it can prove the former one as well
as a third one: the “zero rule”. Notice that this axiomatisation has been recently turned
into complete axiomatisation of the ZX-calculus for this fragment [14].

We also show that an infinite number of fragments are also incomplete, by proving that
a generalised form of the “supplementarity rule” [16] cannot be derived in them. Supple-
mentarity, which has been proved to be necessary, consists in merging two subdiagrams
when they are parameterized by antipodal angles. The generalised supplementarity – called
cyclotomic supplementarity – consists in merging n subdiagrams at once, when the n angles
divide the circle into equal parts. We show that when n is an odd prime number, the cyc-
lotomic supplementarity cannot be derived, leading to a countable family of new axioms for
diagrammatic quantum reasoning.

Finally, we propose to add the new scalar equation, as well as the cyclotomic supple-
mentarity to the set of rules, and to get rid of the now obsolete “inverse” and “zero” rules.
We address the question of the incompleteness of the – new – general ZX-calculus with a
modified version of the proof by Zamdzhiev and Schröder de Witt [17], for theirs does not
stand any more because of the introduction of the cyclotomic supplementarity.

We present the ZX-Calculus in section 2, prove the incompleteness of the π
4 -fragment

and give a new scalar rule in section 3, and in section 4 we show how to generalise the
supplementarity rule, discuss the way some are derivable from others, present the altered
set of rules and give a new proof of incompleteness of the general ZX-Calculus. Some proofs
are omitted in this paper, you can find them at https://hal.archives-ouvertes.fr/
hal-01445707.

https://hal.archives-ouvertes.fr/hal-01445707
https://hal.archives-ouvertes.fr/hal-01445707

E. Jeandel, S. Perdrix, R. Vilmart, and Q. Wang 11:3

2 ZX-Calculus

2.1 Diagrams and standard interpretation
A ZX-diagram D : k → l is an open graph with k inputs and l outputs – read from top to
bottom – and is generated by:

R
(n,m)
Z (α) : n→ m α

· · ·

· · ·

n

m

R
(n,m)
X (α) : n→ m α

· · ·

· · ·

n

m

H : 1→ 1 e : 0→ 0

I : 1→ 1 σ : 2→ 2

ε : 2→ 0 η : 0→ 2

where n,m ∈ N and α ∈ R

and the two compositions:
Spacial Composition: for any D1 : a → b and D2 : c → d, D1 ⊗ D2 : a + c → b + d

consists in placing D1 and D2 side by side, D2 on the right of D1.
Sequential Composition: for any D1 : a→ b and D2 : b→ c, D2 ◦D1 : a→ c consists in
placing D1 on the top of D2, connecting the outputs of D1 to the inputs of D2.

The standard interpretation of the stabiliser ZX-diagrams associates to any diagram
D : n→ m a linear map JDK : C2n → C2m inductively defined as follows:

JD1 ⊗D2K := JD1K⊗ JD2K JD2 ◦D1K := JD2K ◦ JD1K

r z
:=
(
1
) r z

:=
(

1 0
0 1

) t |

:= 1√
2

(
1 1
1 −1

)

r z
:=

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 r z
:=
(
1 0 0 1

) r z
:=

1
0
0
1

Jα K :=
(
1 + eiα

) u

ww
v α

· · ·

· · ·

n

m

}

��
~ := 2m

2n︷ ︸︸ ︷
1 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
0 0 · · · 0 eiα

(
n+m > 0

)

For any n,m ≥ 0 and α ∈ R,

u

www
v

α

· · ·

· · ·

n

m

}

���
~

=
t |⊗m

◦

u

ww
v α

· · ·

· · ·

n

m

}

��
~ ◦

t |⊗n

(
where M⊗0 =

(
1
)
and M⊗k = M ⊗M⊗k−1 for any k ∈ N∗ := N \ {0}

)
.

MFCS 2017

11:4 ZX-Calculus: Cyclotomic Supp. and Incompleteness for Clifford+T Quantum Mech.

To simplify, the red and green nodes will be represented empty when holding a 0 angle:

· · ·

· · ·
0
· · ·

· · ·
:= and

· · ·

· · ·
0
· · ·

· · ·
:=

Also in order to make the diagrams a little less heavy, when n copies of the same subdiagram
occur, we will use the notation (.)⊗n as defined above.

With the general calculus – with angles being in R – we can represent any matrix of size
a power of 2 i.e. ZX-Diagrams are universal:

∀A ∈ C2n × C2m , ∃D, JDK = A

This requires dealing with an uncountable set of angles, so it is generally preferred to work
with approximate universality – the ability to approximate any linear map with arbitrary
accuracy – in which only a finite set of angles is involved. The π

4 -fragment – ZX-diagrams
where all angles are multiples of π4 – is one such approximately universal fragment, whereas
the π

2 -fragment is not.

2.2 Calculus
The diagrammatic representation of a matrix is not unique in the ZX-Calculus. Hence, a
set of equalities has been proposed to axiomatise the language. This set is summed up in
Figure 1.

The initial set of axioms [8] included the rules (S1), (S2), (S3), (B1), (B2), (K1), (K2)
and (H). The rule (EU) has been proven to be necessary in [11] and the rules (ZO) and (IV)
result from [3, 5]. Finally, the rule (SUP) has been added in [16].

When we can show that a diagram D1 is equal to another one, D2, using a succession of
equalities of this set, we write ZX ` D1 = D2. Given that the rules are sound, this implies
that JD1K = JD2K. The rules can be applied to any subdiagram, meaning, for any diagram
D:

(ZX ` D1 = D2) ⇒
{

(ZX ` D1 ◦D = D2 ◦D) ∧ (ZX ` D ◦D1 = D ◦D2)
(ZX ` D1 ⊗D = D2 ⊗D) ∧ (ZX ` D ⊗D1 = D ⊗D2)

Scalars. We will identify diagrams with 0 input and 0 output – hence representing a 1× 1
matrix – with scalars. We will not ignore them in this paper, while in some versions of
the ZX-Calculus, the global phase or even all the scalars are ignored. Ignoring them would
imply taking the risk of ignoring a zero scalar, which can lead to false statements – if
ZX ` 0 ×D1 = 0 ×D2, we can not say that ZX ` D1 = D2. The first rules to palliate it
appeared in [3] and were simplified in [5].

Only Topology Matters is a paradigm – to be taken as a rule – stating that any wire of a
ZX-diagram can be bent at will, without changing its semantics:

= = =
= =

α = α α = α

E. Jeandel, S. Perdrix, R. Vilmart, and Q. Wang 11:5

· ·
· = α+β

β
· · ·

· · ·· · ·

· · ·
α

· · ·
· · ·

(S1) = (S2)

= (S3) = (IV)

= (B1) = (B2)

=
π π

π

· · · · · ·
(K1) =

π

α

−α

πα

π
(K2)

π
2

π
2

−π
2

= (EU) α

· · ·

= α

· · ·

· · ·

· · ·

(H)

π = π (ZO)

α α+π 2α+π

= (SUP)

Figure 1 Rules for the ZX-calculus with scalars, augmented with the supplementarity rule [16].
All of these rules also hold when flipped upside-down, or with the colours red and green swapped.
The right-hand side of (IV) is an empty diagram. (· · ·) denote zero or more wires, while (· · ·)
denote one or more wires.

3 The π
4 -Fragment is not Complete

In this section, we identify the following simple equation (E), which is sound – both sides
of the equation represent the scalar 1 – but which cannot be derived from the rules of the
ZX-Calculus expressed in Figure 1.

-π
4

π
4 = (E)

Since equation (E) only involves angles multiple of π
4 , it implies the incompleteness of

the π
4 -fragment of the ZX-Calculus. In the following, we exhibit a simple invariant of the

ZX-Calculus to prove that (E) is not derivable, and then we show that (E) subsumes two
existing rules of the ZX-Calculus – namely (IV) and (ZO) –, leading to a simpler – (IV) and
(ZO) rules are replaced by (E) – but more expressive ZX-Calculus that we call ZXE .

MFCS 2017

11:6 ZX-Calculus: Cyclotomic Supp. and Incompleteness for Clifford+T Quantum Mech.

3.1 A Graphical Invariant for the ZX-Calculus
We introduce a simple graphical quantity for ZX-diagrams, the parity of the number of
odd-degree red dots plus the number of H-dots (yellow squares), formally defined as follows:

I Definition 1. Given a ZX-diagram D : n→ m, let JDK ∈ {0, 1} be inductively defined as

JD1 ⊗D2K = JD1 ◦D2K = JD1K + JD2K mod 2,

u

www
v

α

· · ·

· · ·

n

m

}

���
~

= n+m mod 2,
t |

= 1,

and J.K = 0 for all the other generators.

One can define similarly J.K as the parity of the number of odd-degree green dots plus
the number of H-dots. Notice that for any scalar D : 0→ 0, JDK + JDK = 0 mod 2, thanks
to the well known degree sum formula which implies that the sum of the degree of the
vertices of a graph is even. More generally, for any D : n→ m, JDK +JDK = n+m mod 2,
which is clearly an invariant of the ZX-calculus since all the rules preserve the number of
inputs/outputs. As a consequence, a rule preserves J.K if and only if it preserves J.K .

I Lemma 2 (Invariant). For any ZX-diagram D1, if JD1K 6= 0 and ZX ` D1 = D2, then
JD1K = JD2K .

Proof. Notice that all the rules in Figure 1, but (ZO), preserve J.K . Since JD1K 6= 0, the
scalar π cannot appear in any derivation transforming D1 into D2, thus (ZO) is not applied,
as a consequence JD1K = JD2K . J

I Proposition 3. Equation (E) is not derivable using the rules in Figure 1: ZX 0 (E).

Proof. The two diagrams of equation (E) are non zero, and they differ for J.K , so according
to lemma 2, ZX 0 (E). J

Since the diagrams of equation (E) are in the π
4 -fragment, it implies that the π

4 -fragment
of the ZX-calculus is not complete.

I Remark. -π
4

π
4 =

π
4

-π
4

the “doubled” version of (E), contrary to it, is derivable in the
ZX-Calculus.

By completeness of the π
2 -fragment, for any ZX-diagrams D1 and D2 in this particular

fragment, if JD1K = JD2K 6= 0, then JD1K = JD2K . This property is obviously not true
in the π

4 -fragment, equation (E) being a counter example. However, this property is also
satisfied by other, a priori not complete, fragments:

I Proposition 4. For any k 6= 0 mod 4 and any two diagrams D1, D2 with angles multiple
of πk , if JD1K = JD2K 6= 0 then JD1K = JD2K .

Proof. Given k > 0 and D a ZX-diagram with angles multiple of π
k , one can show, by

induction on D, that (
√

2JDK) JDK is a matrix whose entries are in Q[e iπk], the smallest
subfield of C which contains e iπk . Since there is a non-zero entry in JD1K, there exist q1, q2 ∈

Q[e iπk] such that
√

2JD1K
q1 =

√
2JD2K

q2 6= 0, so
√

2(JD1K −JD2K) ∈ Q[e iπk]. Suppose√
2 ∈ Q[e iπk]:

E. Jeandel, S. Perdrix, R. Vilmart, and Q. Wang 11:7

(i) If k = 2 mod 4, then i = e
iπ
2 ∈ Q[e iπk], so e−iπ4 =

√
2 1−i

2 ∈ Q[e iπk]. Therefore e iπ2k =
(e iπk) k+2

4 × e−iπ4 ∈ Q[e iπk]. This implies Q[e iπ2k] = Q[e iπk] which is not possible as they
are vector spaces over Q of dimension respectively ϕ(4k) = 2ϕ(2k) and ϕ(2k) where ϕ
is Euler’s totient function, and ϕ(2k) 6= 0.

(ii) If k is odd then 2k = 2 mod 4. Moreover, since Q[eiπk] ⊆ Q[ei π2k],
√

2 ∈ Q[ei π2k] which
is impossible according to the previous case (i).

Thus
√

2 /∈ Q[e iπk] when k 6= 0 mod 4, so JD1K = JD2K . J

3.2 A Simpler and More Expressive ZX-calculus
Equation (E) cannot be derived in the ZX-calculus (proposition 3), as a consequence we
propose to add this equation (E) as a rule of the language to make it more expressive. We
show in the following that the introduction of this new rule makes the two scalar rules (ZO)
and (IV) obsolete, leading to a language with less rules than the one define in Figure 1.

Let us define ZXE = {(E)} ∪ ZX \ {(IV), (ZO)}. First, notice that, thanks to [5], the
so-called Hopf law is derivable from ZX \ {(IV), (ZO)}, and hence from ZXE :

I Lemma 5.

ZX \ {(IV), (ZO)} ` = (HL)

I Proposition 6. (IV) is derivable from ZXE.

Proof. Using (E), (B1), (HL), (S2) and (S1):

=
π
4

-π
4

=
π
4

-π
4

-π
4=
π
4

=
-π
4

π
4

= J

I Proposition 7. (ZO) is derivable from ZXE.

Hence ZXE ` (IV), (ZO).
I Remark. The other rules of the language remain, a priori, necessary in the presence
of equation (E). In particular the supplementarity which has been recently proved to be
necessary in ZX [16] is necessary in ZXE : one can prove using the interpretation J.K]k,l –
defined in [16] – with k = 3 and l = 8 that ZXE \ {(SUP)} 0 (SUP).
I Remark. One may want to generalise equation (E), replacing the particular angles ±π4 by
some generic angle α. Proposition 4 is a strong evidence that such a generalisation is not
possible and that the language requires at least one rule which is specific to the π

4 angle.

4 Cyclotomic Supplementarity

4.1 Generalisation of (SUP)
The concept of supplementarity in quantum diagram reasoning has been first introduced
by Coecke and Edwards [9], turned into a simple but necessary rule (SUP in Figure 1) in
[16]. Roughly speaking, supplementarity consists in merging two dots sharing the same
neighbour when the difference of their angles is π, i.e. when the two angles are antipodal.

MFCS 2017

11:8 ZX-Calculus: Cyclotomic Supp. and Incompleteness for Clifford+T Quantum Mech.

We generalize this concept to cyclotomic supplementarity as follows: for any n ∈ N∗, n dots
sharing the same neighbour can be merged when their angles divide the circle into equal
parts (cyclotomy), i.e. when their angles are of the form α+ 2kπ

n for k ∈ J0;n− 1K:

=

α+ 2π
n

α+
n−1
n 2πα

· · ·

nα+
(n−1)π

· · ·
(SUPn)

Notice that there are n green dots in the left diagram, and n parallel wires in the right
diagram.

Any of these equations is valid for the standard interpretation of ZX-diagrams:

I Proposition 8. (SUPn) is sound.

Cyclotomic supplementarity has a generalisation: the green dots can be merged not only
when they share the same neighbour, but also when they share the same neighbourhood. It
leads to the notion of cyclotomic twins, which generalise the notion of antiphase twins [13]:

I Definition 9 (Cyclotomic Twins). n dots in a ZX-diagram are cyclotomic twins if:
they have the same colour
their angles divide the circle into equal parts

(
α+ 2kπ

n for k ∈ J0;n− 1K
)

they have the same neighbourhood: for any vertex, the number of wires connecting it to
any of the twins is the same

I Proposition 10 (Cyclotomic Twins and Supplementarity). With ZX ∪ {(SUPn)}n∈N, cyc-
lotomic twins can be merged.

The rest of the section is dedicated to the structures of this family of equations: we show
that (SUPn) is necessary when n is an odd prime number and that (SUPn) can be derived
when n is not prime. As a consequence, we exhibit a countable family of equations that
cannot be derived in the ZX-calculus.

4.2 The Set of Supplementarity Rules for Prime Numbers

It is not necessary to define the supplementarity rules for all numbers n ∈ N as axioms. For
instance, we will prove that their restriction to the set of prime numbers is enough to show
all the others.

Let P be the set of prime numbers.

I Theorem 11.
∀p, q ∈ N∗, ZXE ∪ {(SUPp), (SUPq)} ` (SUPpq)
∀n ∈ N∗, ZXE ∪ {(SUPp)}p∈P ` (SUPn)
∀p ∈ P, p ≥ 3, ZXE ∪ {(SUPq)}q∈P\{p} 0 (SUPp)

E. Jeandel, S. Perdrix, R. Vilmart, and Q. Wang 11:9

Proof.
First statement: If n is not prime, its supplementarity can be derived. Indeed, suppose n

can be decomposed in two numbers p and q (n = pq), for which we know the supple-
mentarity rule.

q

q

q

pq

=

α+ 2π
pq

α+
p−1
pq

2πα

· · · · · ·

α+ 2π
q

α+
pq−1
pq

2π

α+ 2π
q

· · ·

α
α+

q−1
q

2π

· · ·
α+

pq−1
pq

2π

α+ 2π
pq

α+
2π
pq

+ 2π
q

α + 2π
pq

+ q−1
q

2π

· · ·
qα+

(q−1)π

qα+ 2π
p

+(q−1)π
· · ·
qα+ p−1

p
2π

+(q−1)π

= =

pqα+

(pq−1)π

with p-ticked edge representing p parallel wires. The first equality is just a rearranging
of the branches, the second uses (SUPq) p times and the last one exploits Proposition
10 with p(qα+ (q − 1)π) + (p− 1)π = pqα+ (pq − 1)π.

Second Statement: As a direct consequence of the previous statement, since (SUP1) is
trivial, the supplementarity rules for prime numbers are enough to derive all the others.

Third Statement: Let p ∈ P and p ≥ 3. Let us consider the interpretation J.Kp2 which
amounts to multiplying all the angles of a diagram by p2.

The interpretation J.Kp2 coincides with the interpretation J.K]1,p2−1 defined in [16]. As
stated in this article, since the first parameter is odd and the second one is even, all
the rules of ZX\{(SUP2)} hold.
The rule (E) also holds. Indeed, p is odd, and whether p mod 8 is 1, 3, 5 or 7, p2 mod
8 = 1, so p2 π

4 = π
4 mod 2π.

The rule (SUPq) when q ∈ P, q 6= p holds, since gcd(p2, q) = 1:

=

α+ 2π
q

α+
q−1
q

2πα ...
p2qα+
(q−1)π

...
7→ ←[

p2α+
2p2π
q

p2α ... p2α+
q−1
q

2p2π

p2α+
2π
q

p2α ... p2α+
q−1
q

2π

=
...

qα+
(q−1)π

The rule (SUPp) does not hold:

6=

α+ 2π
p

α+
p−1
p

2πα ... p3α

...
7→ ← [

...
pα

p2α...p2α p2α

Indeed, when α = 0, for instance, using on the left side p − 1 times (B1) and (IV),
and on the right side (IV) and p−1

2 times the Hopf law (HL), since p ≥ 3:

...
= = 6=

...
=

)(⊗(p−1)()
⊗(p−1) (⊗(p−1)) ()⊗(p−1)

Every rule but the p-supplementarity (with p ∈ P and p ≥ 3) holds with this interpreta-
tion, so it cannot be derived from the others:
∀p ∈ P, p ≥ 3, ZXE ∪ {(SUPn)}n∈P \ {(SUPp)} 0 (SUPp) J

MFCS 2017

11:10 ZX-Calculus: Cyclotomic Supp. and Incompleteness for Clifford+T Quantum Mech.

I Corollary 12. For any n ≥ 3 odd, the π
2n -fragment of the ZXE-Calculus is incomplete.

Proof. Let p be an odd prime factor of n. Theorem 11 proves that ZXE 0 (SUPp), and
notice that all the angles involved in the rule are multiples of π

2p , hence in the π
2n -fragment.

J

I Remark. We can also notice that all the rules (SUPn) respect the quantity J.K , so that
the rule (E) remains necessary.

4.3 Discussion on the Supplementarity’s Derivability Structure
Let p and q be two natural numbers. We have previously shown ZXE ∪{(SUPp), (SUPq)} `
(SUPpq). In other words, (SUPp) can be deduced from the supplementarity of the dividers of
p. Now, can we deduce this same equality from the supplementarity of some of its multiples?

The first result comes when p is odd:

I Proposition 13.

∀p, q ∈ N∗, (p = 1 mod 2) ⇒ {(HL), (IV), (SUPp), (SUPpq)} ` (SUPq)

There exists another – weaker – derivation when p is even:

I Proposition 14.

∀p, q ∈ N∗, {(HL), (IV), (SUPp), (SUPp2q)} ` (SUPpq)

I Remark. In the last two propositions, we require that the ZX be “general” i.e. with angles
either real or a rational multiple of π because we need α/p to be in the fragment in both
cases. Though, the result can be expanded to any fragment for some α provided α/p be in
the fragment.
To sum up:

ZXE ∪ {(SUPp), (SUPq)} ` (SUPpq)

ZXE ∪ {(SUPp), (SUPp2q)} ` (SUPpq)
(p = 1 mod 2) ⇒ ZXE ∪ {(SUPp), (SUPpq)} ` (SUPq)

4.4 Updated Set of Rules
We propose to add the generalisation of the supplementarity rule to the set of rules of the
ZX-Calculus, and to restrict to the set necessary when dealing with particular fragments.
We notice that the rule (K1) is derivable from the others [5] so we can get rid of it, and the
new set of rules of the ZX-Calculus is shown in figure 2.
I Remark. We can prove that (SUP2) is not derivable from ZXE \ {(SUP2)}, using the
interpretation J.K]k,l defined in [16] with k = 3 and l = 8.

However, it is important to notice that we have not proven that (SUP2) can not be
derived from the rest once the cyclotomic supplementarity is added. Indeed, the family of
interpretations used in the proof of Theorem 11 only works when p is odd, and the one used
previously, J.K]k,l, does not hold for many supplementarity rules.

The rule (SUP2) is all the more peculiar as, due to the Hopf law (HL), it is the only
supplementarity rule that creates a non-trivial scalar – except for the supplementarity rules
for even numbers, which anyway derive from (SUP2). For instance it may create a scalar
worth 0 – when applied with α = 0 – which is the first step towards proving the rule (ZO)
in the π

4 -fragment. Moreover, it is the only supplementarity that can not be proven to be
necessary by simply multiplying the angles by a constant.

E. Jeandel, S. Perdrix, R. Vilmart, and Q. Wang 11:11

· ·
· = α+β

β
· · ·

· · ·· · ·

· · ·
α

· · ·
· · ·

(S1) = (S2)

= (S3)
-π
4

π
4

= (E)

= (B1) = (B2)

=
π

α

−α

πα

π
(K) α

· · ·

= α

· · ·

· · ·

· · ·

(H)

π
2

π
2

−π
2

= (EU) =

α+ 2π
n

α+
n−1
n 2πα

· · ·

nα+
(n−1)π

· · ·
(SUPn)

n ∈ N∗ or n ∈ P

Figure 2 New set of rules for the ZX-calculus with scalars. All of these rules also hold when
flipped upside-down, or with the colours red and green swapped. The right-hand side of (E) is an
empty diagram. (· · ·) in (S1) and (H) denote 0 or more wires, while (· · ·) denote 1 or more wires.

4.5 The General ZX-Calculus is still Not Complete
The argument given by Schröder de Witt and Zamdzhiev [17] to show the incompleteness of
the general ZX-Calculus is not valid anymore – when multiplying the angles by any integer,
there is at least one supplementarity that does not hold. But we can patch the demonstration
to make it valid again.

I Theorem 15. The general ZX-Calculus is incomplete with the set of rules in figure 2.

Proof. We will make the proof using a combination of ZX-rules and matrix calculus on the
interpretations of the diagrams. Consider the following diagrams:

D1 := andπ
2

π
4

π
4

α

D2 :=
α

π
3

π

θ

MFCS 2017

11:12 ZX-Calculus: Cyclotomic Supp. and Incompleteness for Clifford+T Quantum Mech.

We will try to express D1 in the form D2. One can notice that JD1K = JD2K when α0 =
π
2 − arccos

(√
2
3

)
and θ0 = arccos

(√
2

2 +
√

3
6

)
. We can even show:

No more than four values for α are possible when decomposing D1 in the form D2:
When applying the π green state at the top and the 0 green state at the bottom of both D1
and D2, we end up with:

D1 : π
2

π
4

π
4

π

=
π

π
4

−π
2

(B1)

(S1)
(K1)

D2 :
α

α

π
3

π

θ

π

=

α

π
π
3θ

α+π

2α+π
θ

π
3

π
=

(S1) (SUP2)
(HL)

In order for their interpretations to be equal, we need:

ei
π
4
√

2e−iπ4 = 1
2e

iθ(1 + ei
π
3)(1 + ei(2α+π)) i.e.

√
2

2 = ei(θ+π
6 +α+π

2) cos
(π

6

)
cos
(
α+ π

2

)
So using the modulus, cos

(
α+ π

2
)

=
√

2
3 , thus α = ±π2 ± arccos

(√
2
3

)
mod 2π.

α is not a rational multiple of π: One can check that eiα0 is a root of the polynomial
3X4 + 2X2 + 3 which is irreducible in Z (since 30203 is a prime number, thanks to Cohn’s
irreducibility criterion, 3X4 +2X2 +3 is irreducible in Z). The polynomial is not cyclotomic
because its coefficient of higher degree is not 1, hence eiα0 is not a root of unity, i.e. α0 is
not a rational multiple of π. As a consequence, none of the ±π2 ± arccos

(√
2
3

)
are rational

multiples of π.
Now, let us put back all the pieces together. Assume ZX ` D1 = D2 for some α and θ.

Then there exists a finite sequence of rules of the ZX that transforms D2 into D1. We define
q ∈ N∗ such that for any (SUPp) in the sequence, p ≤ q, and S = {k(q + 4)! + 1 | k ∈ N}.
For all q′ ∈ S and for

(
|.

(
|
q′ the interpretation that multiplies the angles by q′, the rules of

the ZX are preserved,
(
|D1

(
|
q′ = D1, and

(
|D2

(
|
q′ is in the form D2. Indeed:

(q+ 4)! is clearly a multiple of 8 so q′ π4 = π
4 mod 2π, so all the rules but the supplement-

arity rules hold, and
(
|D1

(
|
q′ = D1 since it is in the π

4 -fragment.
for any p ∈ P such that p ≤ q, then (q + 4)! = 0 mod p so gcd(p, q′) = 1, which implies
that (SUPp) also holds.
(q + 4)! is a multiple of 6 so q′ π3 = π

3 mod 2π hence
(
|D2

(
|
q′ is in the form D2.

Then, ZX ` D1 =
(
|D2

(
|
q′ .

D1 has a finite number of decompositions in the form D2, but
{(
|D2

(
|
q′ | q

′ ∈ S
}

is infinite
– since α is an irrational multiple of π – and all these diagrams are decompositions of D1 in
the form D2, hence we end up with a contradiction.
So ZX 0 D1 = D2, which proves the incompleteness. J

References
1 Miriam Backens. The zx-calculus is complete for stabilizer quantum mechanics. New

Journal of Physics, 16(9):093021, 2014. doi:10.1088/1367-2630/16/9/093021.
2 Miriam Backens. The zx-calculus is complete for the single-qubit clifford+t group. Elec-

tronic Proceedings in Theoretical Computer Science, 2014. doi:10.4204/EPTCS.172.21.

http://dx.doi.org/10.1088/1367-2630/16/9/093021
http://dx.doi.org/10.4204/EPTCS.172.21

E. Jeandel, S. Perdrix, R. Vilmart, and Q. Wang 11:13

3 Miriam Backens. Making the stabilizer zx-calculus complete for scalars. Electronic Pro-
ceedings in Theoretical Computer Science, 2015. doi:10.4204/EPTCS.195.2.

4 Miriam Backens and Ali Nabi Duman. A complete graphical calculus for spekkens’ toy bit
theory. Foundations of Physics, pages 1–34, 2014. doi:10.1007/s10701-015-9957-7.

5 Miriam Backens, Simon Perdrix, and Quanlong Wang. A simplified stabilizer zx-calculus.
Electronic Proceedings in Theoretical Computer Science, 2016. doi:10.4204/EPTCS.236.1.

6 Categorical quantum mechanics: Zx-completeness. URL: http://cqm.wikidot.com/
zx-completeness.

7 Bob Coecke. Axiomatic description of mixed states from selinger’s cpm-construction. Elec-
tron. Notes Theor. Comput. Sci., 210:3–13, July 2008. doi:10.1016/j.entcs.2008.04.
014.

8 Bob Coecke and Ross Duncan. Interacting quantum observables: categorical algebra and
diagrammatics. New Journal of Physics, 13(4):043016, 2011. doi:10.1088/1367-2630/
13/4/043016.

9 Bob Coecke and Bill Edwards. Three qubit entanglement within graphical z/x-calculus.
Electronic Proceedings in Theoretical Computer Science, 52:22–33, 2011. doi:10.4204/
EPTCS.52.3.

10 Bob Coecke and Simon Perdrix. Environment and classical channels in categorical quantum
mechanics. Logical Methods in Computer Science, Volume 8, Issue 4, November 2012.
doi:10.2168/LMCS-8(4:14)2012.

11 Ross Duncan and Simon Perdrix. Graphs states and the necessity of euler decomposition.
Mathematical Theory and Computational Practice, 5635:167–177, 2009. doi:10.1007/
978-3-642-03073-4.

12 Ross Duncan and Simon Perdrix. Rewriting measurement-based quantum computations
with generalised flow. Lecture Notes in Computer Science, 6199:285–296, 2010. doi:
10.1007/978-3-642-14162-1_24.

13 Ross Duncan and Simon Perdrix. Pivoting makes the zx-calculus complete for real stabil-
izers. Electronic Proceedings in Theoretical Computer Science, 2013. doi:10.4204/EPTCS.
171.5.

14 Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. A complete axiomatisation of
the zx-calculus for clifford+ t quantum mechanics. arXiv preprint arXiv:1705.11151, 2017.

15 Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. Y-calculus: A language for real
matrices derived from the zx-calculus. In Conference on Quantum Physics and Logics
(QPL’17), 2017.

16 Simon Perdrix and Quanlong Wang. Supplementarity is necessary for quantum diagram
reasoning. In 41st International Symposium on Mathematical Foundations of Computer Sci-
ence (MFCS 2016), volume 58 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 76:1–76:14, Krakow, Poland, August 2016. doi:10.4230/LIPIcs.MFCS.2016.76.

17 Christian Schröder de Witt and Vladimir Zamdzhiev. The zx-calculus is incomplete for
quantum mechanics. Electronic Proceedings in Theoretical Computer Science, 2014. doi:
10.4204/EPTCS.172.20.

18 Peter Selinger. Finite dimensional hilbert spaces are complete for dagger compact
closed categories. Logical Methods in Computer Science, 8(4):1–12, 2012. doi:10.2168/
LMCS-8(3:06)2012.

19 Peter Selinger. Quantum circuits of t-depth one. Phys. Rev. A, 87:042302, Apr 2013.
doi:10.1103/PhysRevA.87.042302.

20 Robert Spekkens. Evidence for the epistemic view of quantum states: A toy theory. Phys.
Rev. A, 75:032110, Mar 2007. doi:10.1103/PhysRevA.75.032110.

MFCS 2017

http://dx.doi.org/10.4204/EPTCS.195.2
http://dx.doi.org/10.1007/s10701-015-9957-7
http://dx.doi.org/10.4204/EPTCS.236.1
http://cqm.wikidot.com/zx-completeness
http://cqm.wikidot.com/zx-completeness
http://dx.doi.org/10.1016/j.entcs.2008.04.014
http://dx.doi.org/10.1016/j.entcs.2008.04.014
http://dx.doi.org/10.1088/1367-2630/13/4/043016
http://dx.doi.org/10.1088/1367-2630/13/4/043016
http://dx.doi.org/10.4204/EPTCS.52.3
http://dx.doi.org/10.4204/EPTCS.52.3
http://dx.doi.org/10.2168/LMCS-8(4:14)2012
http://dx.doi.org/10.1007/978-3-642-03073-4
http://dx.doi.org/10.1007/978-3-642-03073-4
http://dx.doi.org/10.1007/978-3-642-14162-1_24
http://dx.doi.org/10.1007/978-3-642-14162-1_24
http://dx.doi.org/10.4204/EPTCS.171.5
http://dx.doi.org/10.4204/EPTCS.171.5
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.76
http://dx.doi.org/10.4204/EPTCS.172.20
http://dx.doi.org/10.4204/EPTCS.172.20
http://dx.doi.org/10.2168/LMCS-8 (3:06) 2012
http://dx.doi.org/10.2168/LMCS-8 (3:06) 2012
http://dx.doi.org/10.1103/PhysRevA.87.042302
http://dx.doi.org/10.1103/PhysRevA.75.032110

Counting Problems for Parikh Images
Christoph Haase1, Stefan Kiefer2, and Markus Lohrey3

1 University of Oxford, UK
2 University of Oxford, UK
3 University of Siegen, Germany

Abstract
Given finite-state automata (or context-free grammars) A,B over the same alphabet and a Parikh
vector ~p, we study the complexity of deciding whether the number of words in the language of A
with Parikh image ~p is greater than the number of such words in the language of B. Recently, this
problem turned out to be tightly related to the cost problem for weighted Markov chains. We
classify the complexity according to whether A and B are deterministic, the size of the alphabet,
and the encoding of ~p (binary or unary).

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Parikh images, finite automata, counting problems

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.12

1 Introduction

In our recent papers [5, 7], the authors started an investigation of the so called cost problem:
Given a Markov chain whose transitions are labelled with non-negative integers and which
has a designated target state t, a probability threshold τ , and a Boolean combination of
linear inequalities over one variable ϕ(x), the cost problem asks whether the accumulated
probability pϕ of paths achieving a value consistent with ϕ when reaching t is at least τ .
It has been shown in [5] by the first two authors that the cost problem can be decided in
PSPACE. In [7] the upper bound was improved to membership in the counting hierarchy
CH, and the same upper bound has been shown for the related problem of computing a
certain bit of the aforementioned probability pϕ. At the algorithmic core of those complexity
results [5, 7] are the following two counting problems: Given a finite-state automaton A over
a finite alphabet Σ and a Parikh vector ~p (i.e., a function mapping every alphabet symbol
from Σ to N), we denote by N(A, ~p) the number of words accepted by A whose Parikh image
is ~p. Then BitParikh is the problem of computing a certain bit of the number N(A, ~p) for
a given finite-state automaton A and a Parikh vector ~p. Further, PosParikh is the problem
of checking whether N(A, ~p) > N(B, ~p) for two given automata A and B (over the same
alphabet) and a Parikh vector ~p. We proved in [7] that BitParikh and PosParikh both
belong to the counting hierarchy if the input automata are deterministic and the Parikh
vectors are encoded in binary, and we used these results to show that the cost problem
belongs to CH.

The counting hierarchy is defined similarly to the polynomial-time hierarchy using counting
quantifiers, see [1] or Section 2.3 for more details. It is contained in PSPACE and this inclusion
is believed to be strict. In recent years, several numerical problems, for which only PSPACE
upper bounds had been known, have been shown to be in CH. Two of the most important and
fundamental such problems are PosSLP and BitSLP: PosSLP is the problem of deciding
whether a given arithmetic circuit over the operations +, − and × evaluates to a positive

© Christoph Haase, Stefan Kiefer, and Markus Lohrey;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 12; pp. 12:1–12:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2 Counting Problems for Parikh Images

Table 1 The complexity landscape of PosParikh. References to propositions proving the stated
complexity bounds are in parentheses.

Parikh vector size of Σ DFA NFA CFG

unary encoding
unary in L (10) NL-compl. (10) P-compl. (10)
fixed PL-compl.(2)

variable PP-compl. (2, 8, 9)

binary encoding

unary in L (10) NL-compl. (10) DP-compl. (10)

fixed PosMatPow-hard,
in CH (1, 2) PSPACE-compl.

(8, 9)
PEXP-compl.

(8, 9)
variable

PosSLP-hard [5],
in CH (1)

number, and BitSLP asks whether a certain bit of the computed number is equal to 1. Note
that an arithmetic circuit with n gates can evaluate to a number in the order of 22n ; hence
the number of output bits can be exponential and a certain bit of the output number can
be specified with polynomially many bits. It has been shown in [5, Prop. 5] that the cost
problem is hard for both PosSLP and PP (probabilistic polynomial time).

The tight relationship between the cost problem and counting problems for Parikh images
motivates the investigation of the complexity of BitParikh and PosParikh also for other
variants: Instead of a DFA, one can specify the language by an NFA or even a context-free
grammar (CFG). Indeed, Kopczyński [9] recently asked about the complexity of computing
the number of words with a given Parikh image accepted by a CFG. Other natural input
parameters are the alphabet size (variable size, fixed size or even singleton) and the encoding
of Parikh vectors (unary or binary). In this paper we carry out a detailed complexity analysis
of PosParikh for the different settings. Our complexity results are collected in Table 1. In
Section 6 we discuss possible extensions to BitParikh.

Interestingly, we show that PosParikh for DFA over a two-letter alphabet and Parikh
vectors encoded in binary is hard for PosMatPow. The latter problem was recently
introduced by Galby, Ouaknine and Worrell [3] and asks, given a square integer matrix
M ∈ Zm×m, a linear function f : Zm×m → Z with integer coefficients, and a positive integer n,
whether f(Mn) ≥ 0, where all numbers in M , f and n are encoded in binary. Note that
the entries of Mn are generally of size exponential in the size of n. It is shown in [3] that
PosMatPow can be decided in polynomial time for fixed dimension m = 2. The same
holds for m = 3 provided that M is given in unary [3]. The general PosMatPow problem
is in CH; in fact, it is is reducible to PosSLP, but the complexity of PosMatPow is left
open in [3]. In particular, it is not known whether PosMatPow is easier to decide than
PosSLP. Our result that PosParikh is PosMatPow-hard already for a fixed-size alphabet
while PosSLP-hardness seems to require an alphabet of variable size [5] could be seen as an
indication that PosMatPow is easier to decide than PosSLP.

Due to space constraints, we can only sketch some proofs in the main part. Full proofs
can be found in [6].

1.1 Related Work
A problem related to the problem PosParikh is the computation of the number of all
words of a given length n in a language L. If n is given in unary encoding, then this
problem can be solved in NC2 for every fixed unambiguous context-free language L [2]. On
the other hand, there exists a fixed context-free language L ⊆ Σ∗ (of ambiguity degree

C. Haase, S. Kiefer, and M. Lohrey 12:3

two) such that if the function an 7→ #(L ∩ Σn) can be computed in polynomial time, then
EXPTIME = NEXPTIME [2]. Counting the number of words of a given length encoded in
unary that are accepted by a given NFA (which is part of the input in contrast to the results
of [2]) is #P-complete [10, Remark 3.4]. The corresponding problem for DFA is equivalent
to counting the number of paths between two nodes in a directed acyclic graph, which is the
canonical #L-complete problem. Note that for a fixed alphabet and Parikh vectors encoded
in unary, the computation of N(A, ~p) for an NFA (resp. DFA) A can be reduced to the
computation of the number of words of a given length encoded in unary accepted by an NFA
(resp. DFA) A′: In that case, one can easily compute in logspace a DFA A~p for the set of all
words with Parikh image ~p and then construct the product automaton of A and A~p.

2 Preliminaries

2.1 Counting Problems for Parikh Images
Let Σ = {a1, . . . , am} be a finite alphabet. A Parikh vector is vector of m non-negative
integers, i.e., an element of Nm. Let u ∈ Σ∗ be a word. For a ∈ Σ, we denote by |u|a the
number of times a occurs in u. The Parikh image Ψ(u) ∈ Nm of u is the Parikh vector
counting how often every alphabet symbol of Σ occurs in u, i.e., Ψ(u) := (|u|a1 , . . . , |u|am).
The Parikh image of a language L ⊆ Σ∗ is defined as Ψ(L) := {Ψ(u) : u ∈ L} ⊆ Nm.

We use standard language accepting devices in this paper. A non-deterministic finite-state
automaton (NFA) is a tuple A = (Q,Σ, q0, F,∆), where Q is a finite set of control states, Σ is
a finite alphabet, q0 ∈ Q is an initial state, F ⊆ Q is a set of final states, and ∆ ⊆ Q×Σ×Q
is a set of transitions. We write p a−→ q whenever (p, a, q) ∈ ∆. For convenience, we sometimes
label transitions with words w ∈ Σ+. Such a transition corresponds to a chain of transitions
that are consecutively labelled with the symbols of w. We call A a deterministic finite-state
automaton (DFA) if for all p ∈ Q and all a ∈ Σ there is at most one state q ∈ Q with
p

a−→ q. Given u = a1a2 · · · an ∈ Σ∗, a run % of A on u is a finite sequence of control states
% = p0p1 · · · pn such that p0 = q0 and pi−1

ai−→ pi for all 1 ≤ i ≤ n. We call % accepting
whenever pn ∈ F and define the language accepted by A as L(A) := {u ∈ Σ∗ : A has an
accepting run on u}. Finally, context-free grammars (CFG) are defined as usual.

Let Σ be an alphabet of size m and ~p ∈ Nm be a Parikh vector. For a language acceptor
A (a DFA, NFA, or CFG), we denote by N(A, ~p) the number of words in L(A) with Parikh
image ~p, i.e.,

N(A, ~p) := #{u ∈ L(A) : Ψ(u) = ~p}.

We denote the counting function that maps (A, ~p) to N(A, ~p) by #Parikh. For complexity
considerations, we have to specify

the type of A (DFA, NFA, CFG),
the encoding of (the numbers in) ~p (unary or binary), and
whether the underlying alphabet is fixed or part of the input (variable).

For instance, we speak of #Parikh for DFA over a fixed alphabet and Parikh vectors encoded
in binary. The same terminology is used for the following computational problems:
PosParikh
INPUT: Language acceptors A,B over an alphabet Σ of size m and a Parikh vector

~p ∈ Nm.
QUESTION: Is N(A, ~p) > N(B, ~p)?

MFCS 2017

12:4 Counting Problems for Parikh Images

BitParikh
INPUT: Language acceptor A over an alphabet Σ of size m, a Parikh vector ~p ∈ Nm,

and a number i ∈ N encoded binary.
QUESTION: Is the i-th bit of N(A, ~p) equal to one?

Note that for a Parikh vector ~p encoded in binary, the number N(A, ~p) is at most doubly
exponential in the input length (size of A plus number of bits in ~p), and this bound can be
reached. Hence, the number of bits in N(A, ~p) is at most exponential, and a certain position
in the binary encoding of N(A, ~p) can be specified with polynomially many bits.

The following two results from [5, 7] are the starting point for our further investigations
in this paper (see Section 2.3 below for the formal definition of the counting hierarchy):

I Theorem 1 ([5, 7]). For DFA over a variable alphabet and Parikh vectors encoded in
binary, the problems BitParikh and PosParikh belong to the counting hierarchy. Moreover,
the problem PosParikh (resp., BitParikh) is PosSLP-hard (resp., BitSLP-hard).1

2.2 Graphs
A (finite directed) multi-graph is a tuple G = (V,E, s, t), where V is a finite set of nodes, E
is a finite set of edges, and the mapping s : E → V (resp., t : E → V) assigns to each edge its
source node (resp., target node). A loop is an edge e ∈ E with s(e) = t(e). A path (of length
n) in G from u to v is a sequence of edges e1, e2, . . . , en such that s(e1) = u, t(en) = v, and
t(ei) = s(ei+1) for all 1 ≤ i ≤ n− 1. The out-degree of a node v ∈ V is the number #s−1(v)
of outgoing edges of v.

An edge-weighted multi-graph is a tuple G = (V,E, s, t, w), where (V,E, s, t) is a multi-
graph and w : E → N assigns a weight to every edge. We can define the ordinary multi-graph
G̃ induced by G by replacing every edge e ∈ E by k = w(e) many edges e1, . . . , ek with
s(ei) = s(e) and t(ei) = t(e). For u, v ∈ V and n ∈ N, define N(G, u, v, n) as the number of
paths in G̃ from u to v of length n. Note that the different edges e1, . . . , ek that replaced an
edge e with w(e) = k are distinguished in paths.

2.3 Computational Complexity
We assume familiarity with basic complexity classes such as L (deterministic logspace), NL,
P, NP, PH (the polynomial time hierarchy) and PSPACE. The class DP is the class of all
intersections K ∩L with K ∈ NP and L ∈ coNP. Hardness for a complexity class will always
refer to logspace reductions.

A counting problem is a function f : Σ∗ → N for a finite alphabet Σ. A counting class is
a set of counting problems. A logspace reduction from a counting problem f : Σ∗ → N to a
counting problem g : Γ∗ → N is a logspace computable function h : Σ∗ → Γ∗ such that for all
x ∈ Σ∗: f(x) = g(h(x)). Note that no post-computation is allowed. Such reductions are also
called parsimonious. Hardness for a counting class will always refer to parsimonious logspace
reductions.

The counting class #P contains all functions f : Σ∗ → N for which there exists a non-
deterministic polynomial-time Turing machine M such that for every x ∈ Σ∗, f(x) is the
number of accepting computation paths of M on input x. The class PP (probabilistic polyno-
mial time) contains all problems A for which there exists a non-deterministic polynomial-time

1 In [5] only the PosSLP-hardness of PosParikh is explicitly shown, but the construction from [5] implies
that BitParikh is BitSLP-hard.

C. Haase, S. Kiefer, and M. Lohrey 12:5

Turing machine M such that for every input x, x ∈ A if and only if more than half of all
computation paths ofM on input x are accepting. By a famous result of Toda [16], PH ⊆ PPP,
where PPP is the class of all languages that can be decided in deterministic polynomial time
with the help of an oracle from PP. Hence, if a problem is PP-hard, then this can be
seen as a strong indication that the problem does not belong to PH (otherwise PH would
collapse). If we replace in the definitions of #P and PP non-deterministic polynomial-time
Turing machines by non-deterministic logspace Turing machines (resp., non-deterministic
polynomial-space Turing machines; non-deterministic exponential-time Turing machines), we
obtain the classes #L and PL (resp., #PSPACE and PPSPACE; #EXP and PEXP). Ladner
[11] has shown that a function f belongs to #PSPACE if and only if for a given input x
and a binary encoded number i the i-th bit of f(x) can be computed in PSPACE. It follows
that PPSPACE = PSPACE. It is well known that PP can be also defined as the class of all
languages L for which there exist two #P-functions f1 and f2 such that x ∈ L if and only if
f1(x) > f2(x), and similarly for PL and PEXP.

The levels of the counting hierarchy Cp
i (i ≥ 0) are inductively defined as follows: Cp

0 = P
and Cp

i+1 = PPCp
i (the set of languages accepted by a PP-machine as above with an oracle

from Cp
i) for all i ≥ 0. Let CH =

⋃
i≥0 Cp

i be the counting hierarchy. It is not difficult to
show that CH ⊆ PSPACE, and most complexity theorists conjecture that CH (PSPACE.
Hence, if a problem belongs to the counting hierarchy, then the problem is probably not
PSPACE-complete. More details on the counting hierarchy can be found in [1].

3 Parikh Counting Problems for DFA

Recall that PosParikh (resp., BitParikh) is PosSLP-hard (resp., BitSLP-hard), see
Theorem 1. The variable alphabet and binary encoding of Parikh vectors are crucial for the
proof of the lower bound. In this section, we complement Theorem 1 by showing further
results for DFA when the alphabet is not unary. The results of this section are collected in
the following proposition.

I Proposition 2. For DFA, we have:
(i) #Parikh (resp. PosParikh) is #L-complete (resp. PL-complete) for a fixed alphabet

of size at least two and Parikh vectors encoded in unary.
(ii) #Parikh (resp. PosParikh) is #P-complete (resp. PP-complete) for a variable alphabet

and Parikh vectors encoded in unary.
(iii) PosParikh is PosMatPow-hard for a fixed binary alphabet and Parikh vectors encoded

in binary.

Proof sketch of Proposition 2(i) and (ii). We only sketch the main ideas, all details can
be found in [6]. Regarding (i), the lower bound for #L follows via a reduction from the
canonical #L-complete problem of computing the number of paths between two nodes in
a directed acyclic graph [12], and for the PL lower bound one reduces from the problem
whether the number of paths from s to t0 is larger than the number of paths from s to t1.
For the upper bound, let A be a DFA over a fixed alphabet and ~p be a Parikh vector encoded
in unary. A non-deterministic logspace machine can guess an input word for A symbol by
symbol. Thereby, the machine only stores the current state of A (which needs logspace) and
the binary encoding of the Parikh image of the word produced so far. The machine stops
when the Parikh image reaches the input vector ~p and accepts iff the current state is final.
Note that since the input Parikh vector ~p is encoded in unary notation, all numbers that
appear in the accumulated Parikh image stored by the machine need only logarithmic space.

MFCS 2017

12:6 Counting Problems for Parikh Images

Moreover, since the alphabet has fixed size, logarithmic space suffices to store the whole
Parikh image. The number of accepting computations of the machine is exactly N(A, ~p),
which yields the upper bound for #L as well as for PL.

Regarding (ii), the #P-lower bound for #Parikh follows from a reduction from #3SAT,
see e.g. [13, p. 442], where the unfixed alphabet allows for representing assignments of Boolean
variables via individual alphabet symbols. For the #P-upper bound, let A be a DFA and ~p
be a Parikh vector encoded in unary. A non-deterministic polynomial-time Turing machine
can first non-deterministically produce an arbitrary word w with Ψ(w) = ~p. Then, it checks
in polynomial time whether w ∈ L(A), in which case it accepts. The proof that PosParikh
is PP-complete is similar and can be found in [6]. J

Statement (iii) is the most difficult part of Proposition 2. We split the proof into several
lemmas below. As stated in Section 1, the PosMatPow problem asks, given a square integer
matrix M ∈ Zm×m, a linear function f : Zm×m → Z with integer coefficients, and a positive
integer n, whether f(Mn) ≥ 0. Unless stated otherwise, subsequently we assume that all
numbers are encoded in binary. Here, we show that PosParikh is PosMatPow-hard for
DFA over two-letter alphabets and Parikh vectors encoded in binary. We first establish
several lemmas that will enable us to prove this proposition. The first lemma is a variant of
the well-known correspondence between matrix powering and counting paths in a directed
graph. In the following, by Mi,j we denote the entry at position (i, j) of the matrix M .

I Lemma 3. Given a matrix M ∈ Zm×m, and i, j ∈ {1, . . . ,m}, one can compute in logspace
an edge-weighted multi-graph G = (V,E, s, t, w) and v+

i , v
+
j , v

−
j ∈ V such that for all n ∈ N

we have (Mn)i,j = N(G, v+
i , v

+
j , n)−N(G, v+

i , v
−
j , n).

Proof. In the following we write Mn
i,j to mean (Mn)i,j . Define an edge-weighted multi-graph

G = (V,E, s, t, w) as follows. Let V := {v+
k , v

−
k : 1 ≤ k ≤ m}. For all k, ` ∈ {1, . . . ,m},

if Mk,` > 0 then include in E an edge e from v+
k to v+

` with w(e) = Mk,`, and an edge e
from v−k to v−` with w(e) = Mk,`. Similarly, if Mk,` < 0 then include in E an edge e from v+

k

to v−` with w(e) = −Mk,`, and an edge e from v−k to v+
` with w(e) = −Mk,`. We prove by

induction on n that we have for all k, ` ∈ {1, . . . ,m}:

Mn
k,` = N(G, v+

k , v
+
` , n)−N(G, v+

k , v
−
` , n)

Note that this implies the statement of the lemma. For the induction base, let n = 0.
If k = ` then Mn

k,` = 1, N(G, v+
k , v

+
` , 0) = 1, and N(G, v+

k , v
−
` , 0) = 0. If k 6= ` then

Mn
k,` = 0 = N(G, v+

k , v
+
` , 0) = N(G, v+

k , v
−
` , 0). For the inductive step, let n ∈ N and

suppose Mn
k,` = N(G, v+

k , v
+
` , n) − N(G, v+

k , v
−
` , n) for all k, `. For s ∈ {1, . . . ,m} write

I+(s) := {` ∈ {1, . . . ,m} : M`,s > 0} and I−(s) := {` ∈ {1, . . . ,m} : M`,s < 0}. For
v, v′, v′′ ∈ V write Ñ(G, v, v′, v′′, n+ 1) for the number of paths in G̃ (the unweighted version
of G) from v to v′′ of length n+ 1 such that v′ is the vertex visited after n steps. We have
for all k, s ∈ {1, . . . ,m}:

Mn+1
k,s =

m∑
`=1

Mn
k,`M`,s

(ind. hyp.)=
m∑

`=1
N(G, v+

k , v
+
` , n)M`,s −

m∑
`=1

N(G, v+
k , v

−
` , n)M`,s

=
∑

`∈I+(s)

N(G, v+
k , v

+
` , n)M`,s +

∑
`∈I−(s)

N(G, v+
k , v

−
` , n)(−M`,s) −

C. Haase, S. Kiefer, and M. Lohrey 12:7

∑
`∈I+(s)

N(G, v+
k , v

−
` , n)M`,s −

∑
`∈I−(s)

N(G, v+
k , v

+
` , n)(−M`,s)

=
∑

`∈I+(s)

Ñ(G, v+
k , v

+
` , v

+
s , n+ 1) +

∑
`∈I−(s)

Ñ(G, v+
k , v

−
` , v

+
s , n+ 1) −

∑
`∈I+(s)

Ñ(G, v+
k , v

−
` , v

−
s , n+ 1) −

∑
`∈I−(s)

Ñ(G, v+
k , v

+
` , v

−
s , n+ 1)

= N(G, v+
k , v

+
s , n+ 1)−N(G, v+

k , v
−
s , n+ 1)

This completes the induction proof. J

In a next step, we extend the previous lemma to matrix powering followed by the application
of a linear function:

I Lemma 4. Given a matrix M ∈ Zm×m and a linear function f : Zm×m → Z with integer
coefficients, one can compute in logspace an edge-weighted multi-graph G = (V,E, s, t, w) and
v0, v

+, v− ∈ V such that f(Mn) = N(G, v0, v
+, n+ 2)−N(G, v0, v

−, n+ 2) for all n ∈ N.

Proof. Denote by bi,j ∈ Z the coefficients of f , i.e., for i, j ∈ {1, . . . ,m} let bi,j ∈ Z such
that for all A ∈ Zm×m we have f(A) =

∑m
i=1

∑m
j=1 bi,jAi,j . By Lemma 3, one can compute

in logspace for all i, j ∈ {1, . . . ,m} an edge-weighted multi-graph Gi,j with vertex set Vi,j ,
and vertices v0

i,j , v
+
i,j , v

−
i,j ∈ Vi,j such that for all n ∈ N we have:

Mn
i,j = N(Gi,j , v

0
i,j , v

+
i,j , n)−N(Gi,j , v

0
i,j , v

−
i,j , n) (1)

Compute the desired edge-weighted multi-graph G as follows. For each i, j ∈ {1, . . . ,m}
include in G (a fresh copy of) the edge-weighted multi-graph Gi,j . Further, include in G fresh
vertices v0, v

+, v−, and edges with weight 1 from v0 to v0
i,j , for each i, j ∈ {1, . . . ,m}. Further,

for each i, j ∈ {1, . . . ,m} with bi,j > 0, include in G an edge from v+
i,j to v+ with weight bi,j ,

and an edge from v−i,j to v− with weight bi,j . Similarly, for each i, j ∈ {1, . . . ,m} with
bi,j < 0, include in G an edge from v+

i,j to v− with weight −bi,j , and an edge from v−i,j to v+

with weight −bi,j . It remains to show that f(Mn) = N(G, v0, v
+, n+ 2)−N(G, v0, v

−, n+ 2)
for all n ∈ N. Indeed, any path of length n + 2 from v0 to v+ must start with an edge
from v0 to v0

i,j for some i, j, continue with a path of length n from v0
i,j to either v+

i,j or v−i,j ,
and finish with an edge to v+. Hence, writing I+ := {(i, j) : 1 ≤ i, j ≤ m, bi,j > 0} and
I− := {(i, j) : 1 ≤ i, j ≤ m, bi,j < 0} we have

N(G, v0, v
+, n+ 2) =

∑
(i,j)∈I+

N(G, v0
i,j , v

+
i,j , n) · bi,j +

∑
(i,j)∈I−

N(G, v0
i,j , v

−
i,j , n) · (−bi,j).

Similarly we have:

N(G, v0, v
−, n+ 2) =

∑
(i,j)∈I+

N(G, v0
i,j , v

−
i,j , n) · bi,j +

∑
(i,j)∈I−

N(G, v0
i,j , v

+
i,j , n) · (−bi,j).

Hence we have:

f(Mn) =
m∑

i=1

m∑
j=1

Mn
i,j · bi,j

(1)=
m∑

i=1

m∑
j=1

N(G, v0
i,j , v

+
i,j , n) · bi,j −

m∑
i=1

m∑
j=1

N(G, v0
i,j , v

−
i,j , n) · bi,j

= N(G, v0, v
+, n+ 2)−N(G, v0, v

−, n+ 2)

This proves the lemma. J

MFCS 2017

12:8 Counting Problems for Parikh Images

u v
13 =⇒

10101 1010 101 10 1

u v

Figure 1 Illustration of the construction of the unweighted multi-graph from Lemma 5. We
assume k = 6. The binary representation of 13 is 10101. The binary numbers over the nodes on the
right hand side correspond to w-values that occur during the construction, but are not part of the
output. Each binary number over a node indicates the number of paths to v.

Next, we show that one can obtain from an edge-weighted multi-graph a corresponding DFA
such that the number of paths in the graph corresponds to the number of words with a
certain Parikh image accepted by the DFA. The proof is split into a couple of intermediate
steps.

I Lemma 5. Given an edge-weighted multi-graph G = (V,E, s, t, w) (with w in binary),
v0, v1 ∈ V and a number k ∈ N in unary such that k ≥ 1 + maxe∈Eblog2 w(e)c, one can
compute in logspace an unweighted multi-graph G′ := (V ′, E′, s′, t′) with V ′ ⊇ V such that
for all n ∈ N we have N(G, v0, v1, n) = N(G′, v0, v1, n · k).

Proof. Note that k is at least the size of the binary representation of the largest weight in
G. Define a mapping b : E → N with b(e) = k for all e ∈ E. Define G′ so that it is obtained
from G by iterating the following construction. Let e ∈ E with b(e) > 1. If w(e) = 1 then
replace e by a fresh path of length b(e) (with w(e′) = b(e′) = 1 for all edges e′ on that path).
If w(e) = 2j for some j ∈ N then introduce a fresh vertex v and two fresh edges e1, e2 from
s(e) to v with b(e1) = b(e2) = w(e1) = w(e2) = 1 and another fresh edge e3 from v to t(e)
with b(e3) = b(e)− 1 and w(e3) = j. Finally, if w(e) = 2j + 1 for some j ∈ N then proceed
similarly, but additionally introduce fresh vertices that create a new path of length b(e) from
s(e) to t(e) (with w(e′) = b(e′) = 1 for all edges e′ on that path). By this construction, every
edge e is eventually replaced by w(e) paths of length k. The construction is illustrated in
Figure 1.

For the logspace claim, note that it is not necessary to store the whole graph for this
construction. The binary representation of k has logarithmic size and can be stored, and a
copy of k can be counted down, keeping track of the b-values in the construction. The edges
can be dealt with one by one. It is not necessary to store the values w(e′) = j for the created
fresh edges; rather those values can be derived from the binary representation of the original
weight w(e) and the current b-value (acting as a “pointer” into the binary representation
of w(e)). J

I Lemma 6. Given an unweighted multi-graph G = (V,E, s, t) and v0, v1 ∈ V , one can
compute in logspace unweighted multi-graphs G0 = (V0, E0, s0, t0) and G1 = (V1, E1, s1, t1)
with V0 ⊇ V and V1 ⊇ V such that for all n ∈ N we have N(G0, v0, v1, n+2) = N(G, v0, v1, n)
and N(G1, v0, v1, n+ 2) = N(G, v0, v1, n) + 1.

Proof. For G0 redirect all edges adjacent to v0 to a fresh vertex v∗0 , and similarly redirect
all edges adjacent to v1 to a fresh vertex v∗1 . Then add an edge from v0 to v∗0 , and an edge
from v∗1 to v1.

For G1 do the same, and in addition add a fresh vertex v, and add edges from v0 to v,
and from v to v1, and a loop on v. This adds a path from v0 to v1 of length n+ 2. J

C. Haase, S. Kiefer, and M. Lohrey 12:9

v

v1

v2

v3

v4

=⇒ v

v1

v2

v3

v4

a

b

b b b

a
b b

b

a

b

b

a

Figure 2 Illustration of the construction of the DFA from Lemma 7. We assume d = 4.

I Lemma 7. Given an unweighted multi-graph G = (V,E, s, t), v0, v1 ∈ V and a number d
in unary so that d is at least the maximal out-degree of any node in G, one can compute
in logspace a DFA A = (Q,Σ, q0, F,∆) with Σ = {a, b} such that for all n ∈ N we have
N(G, v0, v1, n) = N(A, ~p) where ~p(a) = n and ~p(b) = n · (d− 1).

Proof. Define A so that Q ⊇ V , q0 = v0, and F = {v1}. Include states and transitions in A
so that for every edge e (from v to v′, say) in G there is a run from v to v′ in A of length d
so that exactly one transition on this run is labelled with a, and the other d− 1 transitions
are labelled with b. Importantly, each edge e is associated to exactly one such run. The
construction is illustrated in Figure 2. The DFA A is of quadratic size and can be computed
in logspace. It follows from the construction that any path of length n in G corresponds to a
run of length n · d in A, with n transitions labelled with a, and n · (d− 1) transitions labelled
with b. This implies the statement of the lemma. J

Proof of Proposition 2(iii). The above lemmas enable us to prove part (iii) from Propos-
ition 2. Consider an instance of PosMatPow, i.e., a square integer matrix M ∈ Zm×m,
a linear function f : Zm×m → Z with integer coefficients, and a positive integer n. Using
Lemma 4 we can compute in logspace edge-weighted multi-graphs G+ with vertices v+

0 , v
+

and G− with vertices v−0 , v− such that

f(Mn) = N(G+, v
+
0 , v

+, n+ 2)−N(G−, v−0 , v−, n+ 2) .

Let k := 1 + maxe∈Eblog2 w(e)c, where E is the union of the edge sets of G+ and G−. Using
Lemma 5 we can compute unweighted multi-graphs G′+, G′− such that

N(G+, v
+
0 , v

+, n+ 2) = N(G′+, v+
0 , v

+, (n+ 2) · k) and
N(G−, v−0 , v−, n+ 2) = N(G′−, v−0 , v−, (n+ 2) · k) .

Hence,

f(Mn) = N(G′+, v+
0 , v

+, (n+ 2) · k)−N(G′−, v−0 , v−, (n+ 2) · k) .

Using Lemma 6 we can compute unweighted multi-graphs G′′+, G′′− such that

1 +N(G′+, v+
0 , v

+, (n+ 2) · k) = N(G′′+, v+
0 , v

+, (n+ 2) · k + 2) and
N(G′−, v−0 , v−, (n+ 2) · k) = N(G′′−, v−0 , v−, (n+ 2) · k + 2) .

Hence,

f(Mn) + 1 = N(G′′+, v+
0 , v

+, (n+ 2) · k + 2)−N(G′′−, v−0 , v−, (n+ 2) · k + 2) .

MFCS 2017

12:10 Counting Problems for Parikh Images

Let d denote the maximal out-degree of any node in G′′+ or G′′−. Let ~p : {a, b} → N with
~p(a) = (n+ 2) · k + 2 and ~p(b) = ((n+ 2) · k + 2) · (d− 1). Using Lemma 7 we can compute
DFA A,B over the alphabet {a, b} such that

N(G′′+, v+
0 , v

+, (n+2)·k+2) = N(A, ~p) and N(G′′−, v−0 , v−, (n+2)·k+2) = N(B, ~p) .

Hence, f(Mn) + 1 = N(A, ~p)−N(B, ~p). So f(Mn) ≥ 0 if and only if f(Mn) + 1 > 0 if and
only if N(A, ~p) > N(B, ~p). All mentioned computations can be performed in logspace. J

4 Parikh Counting Problems for NFA and CFG

In this section, we show the remaining results for NFA and CFG from Table 1 when the
alphabet is not unary. The following theorem states upper bounds for PosParikh and
#Parikh for NFA and CFG.

I Proposition 8. For an alphabet of variable size, #Parikh (resp., PosParikh) is in
(i) #P (resp., PP) for CFG with Parikh vectors encoded in unary;
(ii) #PSPACE (resp., PSPACE) for NFA with Parikh vectors encoded in binary; and
(iii) #EXP (resp., PEXP) for CFG with Parikh vectors encoded in binary.

Proof (sketch). In all cases, the proof is a straightforward adaption of the proof for the
upper bounds in Proposition 2(i), see [6]. J

The following proposition states matching lower bounds for PosParikh for the cases
considered in Proposition 8:

I Proposition 9. For a fixed alphabet of size two, PosParikh is hard for
(i) PP for NFA and Parikh vectors encoded in unary;
(ii) PSPACE for NFA and Parikh vectors encoded in binary; and
(iii) PEXP for CFG and Parikh vectors encoded in binary.

Proof (sketch). We only provide the main ideas for the lower bounds, all details can be
found in [6]. Let us sketch the proof for (i). The proof is based on the fact that those strings
(over an alphabet Σ) that do not encode a valid computation (called erroneous below) of a
polynomial-time bounded non-deterministic Turing machine M started on an input x (with
|x| = n) can be produced by a small NFA [15] (and this holds also for polynomial-space
bounded machines, which is important for (ii)). Suppose the NFA A generates all words
that end in an accepting configuration of M, or that are erroneous and end in a rejecting
configuration. Symmetrically, suppose that B generates all words that are erroneous and end
in an accepting configuration, or that end in a rejecting configuration. We then have that
#(L(A) ∩ Σg(n))−#(L(B) ∩ Σg(n)) equals the difference between the number of accepting
paths and rejecting paths of M. Here, g(n) is a suitably chosen polynomial.

Let h : Σ∗ → {0, 1}∗ be the morphism that maps the i-th element of Σ (in some enu-
meration) to 0i−110#Σ−i. Moreover, let Ah and Bh be NFA for h(L(A)) and h(L(B)),
respectively, and let ~p be the Parikh vector with ~p(0) := g(n) · (#Σ− 1) and ~p(1) := g(n).
Then N(Ah, ~p)−N(Bh, ~p) = #(L(A)∩Σg(n))−#(L(B)∩Σg(n)) equals the difference between
the number of accepting paths and rejecting paths of M.

The proof for (ii) is similar. For (iii) we use the fact that those strings that do not encode a
valid computation of an exponential-time bounded non-deterministic Turing machine started
on an input x can be produced by a small CFG [8]. J

C. Haase, S. Kiefer, and M. Lohrey 12:11

In our construction above, we do not construct an NFA (resp., CFG) A and a Parikh vector
~p such that N(A, ~p) is exactly the number of accepting computations of M on the given input.
This is the reason for not stating hardness for #P (resp., #PSPACE #EXP) in the above
proposition (we could only show hardness under Turing reductions, but not parsimonious
reductions).

5 Unary alphabets

A special case of PosParikh that has been ignored so far is that of a unary alphabet. Of
course, for a unary alphabet a word is determined by its length, and a Parikh vector is a
single number. Moreover, there is not much to count: Either a language L ⊆ {a}∗ contains
no word of length n or exactly one word of length n. Thus, PosParikh reduces to the
question whether for a given length n (encoded in unary or binary) the word an is accepted
by A and rejected by B. In this section we clarify the complexity of this problem for (i)
unary DFA, NFA, and CFG, and (ii) lengths encoded in unary and binary. In the case of
lengths encoded in binary, PosParikh is tightly connected to the compressed word problem:
Given a unary DFA (resp., NFA, CFG) A and a number n in binary encoding, determine if
an ∈ L(A). In particular, if this problem belongs to a complexity class that is closed under
complement (e.g. L, NL, P), then PosParikh belongs to the same class.

I Proposition 10. For unary alphabets, PosParikh is
(i) in L for DFA with Parikh vectors encoded in binary;
(ii) NL-complete for NFA irrespective of the encoding of the Parikh vector; and
(iii) P-complete for CFG with Parikh vectors encoded in unary.
(iv) DP-complete for CFG with Parikh vectors encoded in binary.

We only give the proof for Part (ii), all remaining proofs can be found in [6]. To this
end, we employ a recent result of Sawa [14]. For a, b ∈ N we write a + bN for the set
{a + b · i : i ∈ N}. Given a unary NFA A = (Q, {a}, q0, F,∆) with p, q ∈ Q and n ∈ N we
write p n−→ q if there is a run of length n from p to q. The subsequent lemma gives an easy
criterion that allows for deciding when a word is in the language of a unary NFA.

I Lemma 11 ([14, Lemma 3.1]). Let A = (Q, {a}, q0, F,∆) be a unary NFA withm := |Q| ≥ 2.
Let n ≥ m2. Then an ∈ L(A) if and only if there are q ∈ Q, qf ∈ F , b ∈ {1, . . . ,m}, and
c ∈ {m2 − b− 1, . . . ,m2 − 2} with n ∈ c+ bN and q0

m−1−−−→ q
b−→ q

c−(m−1)−−−−−−→ qf .

We can now give the proof of Proposition 10 (ii):

Proof of Proposition 10(ii). We first show that the compressed word problem for unary
NFA is in NL, from which we can conclude NL-membership for PosParikh for unary NFA
with Parikh vectors encoded in binary.

Let A = (Q, {a}, q0, F,∆) be the given unary NFA, and let n ∈ N be given in binary. We
claim that, given two states p1, p2 ∈ Q and a number c ∈ N whose binary representation is
of size logarithmic in the input size, we can check in NL whether p1

c−→ p2 holds. To prove
the claim, consider the directed graph G with vertex set Q× {0, . . . , c} and an edge from
(q1, i) to (q2, j) if and only if q1

1−→ q2 and j = i + 1. The graph G can be computed by a
logspace transducer. Then p1

c−→ p2 holds if and only if (p2, c) is reachable from (p1, 0) in G.
The claim follows as graph reachability is in NL.

Now we give an NL algorithm for the compressed word problem. If n < m2 then guess
qf ∈ F and check, using the claim above, in NL whether q0

n−→ qf . If n ≥ m2 we use Lemma 11

MFCS 2017

12:12 Counting Problems for Parikh Images

as follows. We run over all q ∈ Q, qf ∈ F , b ∈ {1, . . . ,m}, and c ∈ {m2 − b− 1, . . . ,m2 − 2}
(all four values can be stored in logspace), and check (i) whether n ∈ c + bN and (ii)
q0

m−1−−−→ q
b−→ q

c−(m−1)−−−−−−→ qf holds. Condition (i) can be checked in logspace (as in the proof
of Proposition 10), and condition (ii) can be checked in NL by the above claim.

It follows that PosParikh is in NL for unary NFA with Parikh vectors encoded in
binary: Given NFA A,B and n ∈ N in binary, we have N(A, n) > N(B, n) (where we identify
the mapping ~p : {a} → N with the single number ~p(a)) if and only if N(A, n) = 1 and
N(B, n) = 0, which holds if and only if an ∈ L(A) and an 6∈ L(B). Since NL is closed under
complement, the latter condition can be checked in NL.

It remains to show the NL lower bound, which we obtain via a reduction from the
graph reachability problem. This problem is to decide whether for a given directed graph
G = (V,E) and vertices s, t ∈ V there is a path from s to t. By adding a loop at node t,
this is equivalent to the existence of a path in G from s to t of length n = #V . Let A be
the NFA obtained from G by labelling every edge with the terminal symbol a and making s
(resp., t) the initial (resp., unique final) state. Moreover, let B be an NFA with L(B) = ∅.
Then N(A, n) > N(B, n) if and only if an ∈ L(A) if and only if there is a path in G from s

to t of length n = |V |. J

6 Open problems

Our PEXP-hardness proof for PosParikh on context-free languages and binary encoded
Parikh vectors requires non-deterministic context-free languages. It might be interesting
to see whether this problem belongs to the counting hierarchy for deterministic pushdown
automata or the subclass of visibly pushdown automata. For this, one might try to generalise
our techniques for DFA from [7], which rely on results from algebraic graph theory (Tutte’s
matrix tree theorem and the BEST theorem for counting Eulerian cycles in digraphs), to
deterministic pushdown automata or visibly pushdown automata.

We believe that results similar to those shown for PosParikh can be also shown for
BitParikh. For instance, the proof of Proposition 2(ii) (showing that #Parikh is #P-
complete for DFA over a variable alphabet and Parikh vectors encoded in unary) shows
that BitParikh for DFA over a variable alphabet and Parikh vectors encoded in unary is
complete for the complexity class MP. The class MP contains all problems which can be
solved in polynomial time with the additional information of one bit from a #P-function
[4]. Moreover, one might also consider the problem of computing N(A, ~p) modulo a fixed
number k. This should yield completeness results for Modk-classes.

References
1 E. Allender and K. W. Wagner. Counting hierarchies: Polynomial time and constant depth

circuits. Bulletin of the EATCS, 40:182–194, 1990.
2 A. Bertoni, M. Goldwurm, and N. Sabadini. The complexity of computing the number

of strings of given length in context-free languages. Theor. Comput. Sci., 86(2):325–342,
1991.

3 E. Galby, J. Ouaknine, and J. Worrell. On matrix powering in low dimensions. In
Proc. STACS 2015, volume 30 of LIPIcs, pages 329–340, 2015.

4 F. Green, J. Köbler, K. W. Regan, T. Schwentick, and J.Torán. The power of the middle
bit of a #p function. Journal of Computer and System Sciences, 50(3):456–467, 1995.

5 C. Haase and S. Kiefer. The odds of staying on budget. In Proc. ICALP 2015, Part II,
volume 9135 of LNCS, pages 234–246. Springer, 2015.

C. Haase, S. Kiefer, and M. Lohrey 12:13

6 C. Haase, S. Kiefer, and M. Lohrey. Efficient quantile computation in markov chains via
counting problems for parikh images. CoRR, abs/1601.04661, 2016. URL: http://arxiv.
org/abs/1601.04661.

7 C. Haase, S. Kiefer, and M. Lohrey. Computing quantiles in Markov chains with multi-
dimensional costs. In Proc. LICS 2017. IEEE, 2017. To appear.

8 H. B. Hunt III, D. J. Rosenkrantz, and T. G. Szymanski. On the equivalence, containment,
and covering problems for the regular and context-free languages. J. Comput. Syst. Sci.,
12(2):222–268, 1976.

9 E. Kopczyński. Complexity of problems of commutative grammars. Log. Meth. Comput.
Sci., 11(1), 2015.

10 D. Kuske and M. Lohrey. First-order and counting theories of omega-automatic structures.
J. Symbolic Logic, 73:129–150, 2008.

11 R. E. Ladner. Polynomial space counting problems. SIAM J. Comput., 18(6):1087–1097,
1989.

12 M. Mahajan and V. Vinay. A combinatorial algorithm for the determinant. In Proc. SODA
1997, pages 730–738. ACM/SIAM, 1997.

13 C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
14 Z. Sawa. Efficient construction of semilinear representations of languages accepted by unary

nondeterministic finite automata. Fundam. Inform., 123(1):97–106, 2013.
15 L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time (preliminary

report). In Proc. STOC 1973, pages 1–9. ACM, 1973.
16 S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20(5):865–877,

1991.

MFCS 2017

http://arxiv.org/abs/1601.04661
http://arxiv.org/abs/1601.04661

Communication Complexity of Pairs of Graph
Families with Applications∗

Sudeshna Kolay1, Fahad Panolan2, and Saket Saurabh3

1 Eindhoven University of Technology, Netherlands
2 Department of Informatics, University of Bergen, Norway
3 Department of Informatics, University of Bergen, Norway, and

The Institute of Mathematical Sciences, HBNI, Chennai, India

Abstract
Given a graph G and a pair (F1,F2) of graph families, the function GDISJG,F1,F2 takes as
input, two induced subgraphs G1 and G2 of G, such that G1 ∈ F1 and G2 ∈ F2 and returns
1 if V (G1) ∩ V (G2) = ∅ and 0 otherwise. We study the communication complexity of this
problem in the two-party model. In particular, we look at pairs of hereditary graph families.
We show that the communication complexity of this function, when the two graph families are
hereditary, is sublinear if and only if there are finitely many graphs in the intersection of these
two families. Then, using concepts from parameterized complexity, we obtain nuanced upper
bounds on the communication complexity of GDISJG,F1,F2 . A concept related to communication
protocols is that of a (F1,F2)-separating family of a graph G. A collection F of subsets of V (G)
is called a (F1,F2)-separating family for G, if for any two vertex disjoint induced subgraphs
G1 ∈ F1, G2 ∈ F2, there is a set F ∈ F with V (G1) ⊆ F and V (G2) ∩ F = ∅. Given a graph G
on n vertices, for any pair (F1,F2) of hereditary graph families with sublinear communication
complexity for GDISJG,F1,F2 , we give an enumeration algorithm that finds a subexponential sized
(F1,F2)-separating family. In fact, we give an enumeration algorithm that finds a 2o(k)nO(1) sized
(F1,F2)-separating family; where k denotes the size of a minimum sized set S of vertices such
that V (G) \ S has a bipartition (V1, V2) with G[V1] ∈ F1 and G[V2] ∈ F2. We exhibit a wide
range of applications for these separating families, to obtain combinatorial bounds, enumeration
algorithms as well as exact and FPT algorithms for several problems.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases Communication Complexity, Separating Family, FPT algorithms

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.13

1 Introduction

The two party communication complexity, introduced by Yao [17], is an important research
area in theoretical computer science with many applications. This notion of complexity is
particularly useful for proving lower bounds for VLSI computation, parallel computation,
data structures as well as circuit lower bounds. In this model of communication, there
are two players, Alice and Bob, holding inputs x ∈ X and y ∈ Y respectively, and they
want to compute a given function f : X × Y → {0, 1}, by communicating as few bits
as possible. It is assumed that both players have infinite computational power. However,
communicating the results to the other player could be very costly. The minimum number of

∗ The research leading to these results has received funding from the European Research Council (ERC)
via grants Rigorous Theory of Preprocessing, reference 267959 and PARAPPROX, reference 306992.

© Sudeshna Kolay, Fahad Panolan, and Saket Saurabh;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 13; pp. 13:1–13:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

13:2 Communication Complexity of Pairs of Graph Families with Applications

bits communicated, for any pair of inputs (x, y), to compute the function f , is called the
(deterministic) communication complexity of f , denoted by D(f). One such communication
complexity problem, which has garnered a lot of attention, is the Clique vs Independent
Set problem, introduced by Yannakakis [16]. For an n-vertex graph G, the Clique vs
Independent Set problem is defined as follows. Alice gets a clique C in G and Bob gets an
independent set I in G. Here both Alice and Bob know the graph G and their goal is to decide
whether the clique and the independent set intersect in some vertex, by exchanging as few bits
as possible. In other words, define the function CISG(C, I) as the cardinality of V (C) ∩ V (I)
(note that |V (C) ∩ V (I)| ∈ {0, 1}) and, Alice and Bob want to compute CISG(C, I). It can
be shown that D(CISG) = O(log2 n). One can also show that D(CISG) = Ω(logn), using
the fooling set technique, a method to show communication lower bounds. Closing the
gap between the upper and lower bound of CISG is a long standing open problem. Very
recently, in 2015, Göös et al. [9] showed a near optimal lower bound of Ω̃(log2 n) for the
problem, where Ω̃(m) hides divisors poly-logarithmic in m. Later, Göös et al. [8] showed
that the same lower bound holds even for randomized communication complexity of the
problem. Other versions of two party communication protocols deal with the concepts of
nondeterministic and co-nondeterministic protocols. There are many works which study
the cost of co-nondeterministic communication protocols of the Clique vs Independent
Set problem [11, 1, 15, 7]. For more details on non-deterministic, co-nondeterministic and
randomized communication complexities, [13] can be referred.

In this work, we study the communication complexity of graph properties that generalize
the function CISG. Let F1 and F2 be two hereditary graph properties. That is, F1 and F2 are
two families of graphs such that if G ∈ Fi, i ∈ {1, 2}, then all induced subgraphs of G are also
in Fi. We define a (F1,F2) communication problem as follows. For any fixed n-vertex graph
G, Alice gets an induced subgraph G1 of G and Bob gets an induced subgraph G2 of G, such
that Gi ∈ Fi, i ∈ {1, 2}, and their objective is to check whether V (G1) and V (G2) intersect,
by communicating as few bits as possible. In other words, we define a function GDISJG,F1,F2

as GDISJG,F1,F2(G1, G2) = 1 if V (G1) and V (G2) do not intersect and 0 otherwise, where
G1 and G2 are induced subgraphs of G and Gi ∈ Fi, i ∈ {1, 2}. Alice and Bob want to find
the value of the function GDISJG,F1,F2 on (G1, G2). Notice that, when F1 is the family of
cliques and F2 is the family of independent sets, then GDISJG,F1,F2(C, I) = 1 if and only if
CISG(C, I) = 0. A trivial protocol for computing GDISJG,F1,F2 is as follows: Alice sends a bit
vector of V (G1) to Bob and Bob checks whether it intersects with the vertex set V (G2); the
number of bits communicated in this protocol is n. One of our main theorems characterizes
pairs of graph families for which the trivial protocol is the best one.

I Theorem 1.1. For any two hereditary families of graphs F1 and F2, for any n ∈ N, there
is an n-vertex graph G such that D(GDISG,F1,F2) = Ω(n) if and only if F1 ∩F2 is an infinite
family.

We give a sketch of the proof for this Theorem. We observe that when a pair of hereditary
graph families have finitely many graphs in their intersection, they have the following
property: In one family, all graphs have their independence number (the maximum size of
an independent set) bounded by a constant, while in the other family, all graphs have their
clique number (the maximum size of a clique) bounded by some other constant. Thus, we
consider the communication complexity for computing GDISJG,F1,F2 when F1 and F2 are
specific families. Let Cr be the family of graphs such that the independence number is at
most r, and I` be the family of graphs such that the clique number is at most `. Such pairs of
families were considered in the study made in [6]. Deriving from Theorem 5 in [10], we show
that D(GDISJG,Cr,I`

) = O(log2 n) and, therefore, conclude the hypothesis of Theorem 1.1.

Sudeshna Kolay, Fahad Panolan, and Saket Saurabh 13:3

One of our main motivation, to carry out the study done in this article, was to introduce
ideas from parameterized complexity in the study of communication complexity and vice
versa. Parameterized complexity theory is a framework for a refined analysis of primarily hard
(NP-hard) problems. Here, every input instance I of a problem Π is accompanied with an
integer parameter k, and the running time is measured in terms of the associated parameter
k and the input size. The main idea of parameterized algorithms is to measure the running
time in terms of both input size as well as a parameter that captures structural properties
of the input instance. Using ideas from parameterized complexity, we obtain the following
nuanced upper bounds on the communication complexity of the function GDISJG,F1,F2 . A
pair (F1,F2) of hereditary graph families where F1 ∩ F2 is finite, will be referred to as a
good pair of graph families.

I Theorem 1.2. Let G be an n-vertex graph and (F1,F2) be a good pair of graph families.
Let optG

F1,F2
be the size of a minimum set S of vertices such that V (G) \ S has a bipartition

(V1, V2) with G[V1] ∈ F1 and G[V2] ∈ F2. Then there is a protocol for GDISJG,F1,F2 that has
O(log2(optG

F1,F2
) + logn) communication complexity.

For the special case of Clique vs Independent Set problem we get a protocol that
has O(log2(optG

C1,I1
) + logn) communication complexity. We would like to mention that the

protocol used to show that D(GDISJG,Cr,I`
) = O(log2 n) uses the full computational power of

Alice and Bob. In the protocol, both players are able to compute the communication matrix
of the function GDISJG,Cr,I`

. In contrast, we design a protocol to study communication
complexity in terms of the degeneracy of graphs in the given family, where all the computations
of both players are polynomial time operations. In particular, we consider the pair of families
(C1,D`), where D` is the set of all `-degenerate graphs and C1 is the set of all complete
graphs. Note that D0 is the family of independent sets. Hence, this is still a generalization
of the Clique vs Independent Set problem. We prove the following theorem regarding
the communication complexity of GDISJG,C1,D`

, with the help of a protocol where both the
players only execute polynomial time computations. This will be utilized later.

I Theorem 1.3. For any constant ` ∈ N and an n-vertex graph G, there is a deterministic
protocol that computes the function GDISJG,C1,D`

using O(` log2 n) bits and where both players
have polynomial computational power.

Separating Families

The main motivation for Yannakakis to introduce the Clique vs Independent Set problem
was to study the number of constraints in the linear programming of a vertex packing polytope.
As a spin-off of this study, he provided relations between the Clique vs Independent set
problem and a CI-separating family (Clique-Independent set separating family): for a graph
G, a family F , of subsets of V (G), is called a CI-separating family if for any disjoint clique C
and independent set I in G, there is a set F ∈ F such that C ⊆ F and I ∩F = ∅. He showed
that the co-nondeterministic communication complexity of CISG is log q(G), where q(G) is
the cardinality of a CI-separating family of G. Yannakakis also provided a polynomial sized
CI-separating family on comparability graphs and their complements, chordal graphs and
their complements, and asked whether there is a polynomial sized family on general graphs,
or even on perfect graphs. Lovász [14] extended the work of Yannakakis to t-perfect graphs
and gave a polynomial sized CI-separating family on t-perfect graphs. Bousquet et al. [2]
proved the existance of polynomial sized CI-separating families for the following class of
graphs: random graphs, split-free graphs (here the graph does not have a fixed split graph

MFCS 2017

13:4 Communication Complexity of Pairs of Graph Families with Applications

as an induced subgraph), graphs with no induced path Pk on k vertices nor its complement
(here k is a constant), and graphs with no induced P5. But, a result of Göös [7], that shows
that the co-nondeterministic communication complexity of CISG is Ω(log1.128 n), implies that
the cardinality of CI-separating family on general graphs is super polynomial in the number
of vertices.

The communication complexity of CISG, D(CISG) = O(log2 n) implies that there is a
CI-separating family of cardinality nO(log n) (See [13]). We would like to remark that the
existence of a CI-separating family does not imply that such a family can be enumerated
in time polynomial in the size of the family. The best known bound on the cardinality of
a enumerable CI-separating family on general graphs is O(n

log n
2), by Hajnal (unpublished,

cited in [14]). Cygan et. al. [4] also enumerated a CI-separating family, of cardinality
nO(log n), in time nO(log n). In the special case of finding a CI-separating family, one can
use the communication protocol of CISG, given in [14], to enumerate such a family in time
nO(log n). To generalize from the definition of CI-separating families, for a graph G, and a
pair of families F1 and F2, a notion of (F1,F2)-separating family was introduced. A family
P of vertex subsets of V (G) is called a (F1,F2)-separating family if for any two disjoint
vertex subsets V1 and V2 with G[V1] ∈ F1 and G[V2] ∈ F2, there is a set A ∈ P such that
V1 ⊆ A and V2 ∩A = ∅.

From an observation made in [13], it is implied that a non-deterministic protocol for
GDISJG,F1,F2 corresponds to a (F1,F2)-separating family. This implies that if
D(GDISJG,F1,F2) = c, then there is a (F1,F2)-separating family of size 2c. Similar to
the case of CI-separating families, describing an enumeration algorithm to find the best sep-
arating family is a problem of wide interest. In this paper, we show that a (Cr, I`)-separating
family of size 2O(logr+` n) can be enumerated in time 2O(logr+` n). This, in turn, implies the
following theorem.

I Theorem 1.4. For any two hereditary families of graphs F1 and F2, for each integer
n > 0, there is an n-vertex graph G such that any (F1,F2)-separating family must be of size
2Ω(n) if and only if F1 ∩ F2 is an infinite family.

Note that although D(GDISJG,Cr,I`
) = O(log2 n), we are not able to find a (Cr, I`)-

separating family of size 2O(log2 n) that can be enumerated in time 2O(logr+` n). We also get
the following theorem as a “separating family” analogue of Theorem 1.2. This theorem is
extremely useful in designing parameterized algorithms.

I Theorem 1.5. Let (F1,F2) be a good pair of graph families and G be an n-vertex graph.
Let S be a minimum sized vertex set of G such that V (G) \ S has a bipartition (V1, V2) with
G[V1] ∈ F1 and G[V2] ∈ F2. Let |S| = optG

F1,F2
. Then a (F1,F2)-separating family, for G,

of cardinality 2O(logc optG
F1,F2)nO(1) can be enumerated in time 2O(logc optG

F1,F2)nO(1), where c
is a constant.

Another pair of graph properties (families of graphs) we consider is the family of complete
graphs, C1 and that of `-degenerate graphs, D`. By Theorem 1.3, we already know that
D(GDISG,C1,D`

) is O(` log2 n). We also give an algorithm to enumerate a (C1,D`)-separating
family for an n-vertex graph, of cardinality nO(` log n), in time nO(` log n). In other words, we
succeed in efficiently enumerating a (C1,D`)-separating family of size nO(` log n), the existence
of which results from D(GDISG,C1,D`

) = O(` log2 n).

Sudeshna Kolay, Fahad Panolan, and Saket Saurabh 13:5

Applications

In 2013, Cygan et al. [4] drew a very interesting relation between the field of enumerating
separating families and designing algorithms. As mentioned earlier, a CI-separating family
of cardinality nO(log n) is enumerated in time nO(log n), and this family is used to design fast
exact and parameterized algorithms. They showed that Split Vertex Deletion, where
we want to delete at most k vertices from a given n-vertex graph to get a split graph, can be
solved in time O(1.2738kkO(log k) +n3). They also showed that all induced split subgraphs of
a given n-vertex graph can be listed in time O(3n/3nO(log n)) time. This work motivated the
last part of our study: designing exact and FPT algorithms. Not only are the enumeration
algorithms for separating families interesting combinatorial questions in their own right,
but they also help to design fast FPT and exact exponential time algorithms for a class of
problems. A generic class of problems for which a separating family based approach works is
as follows. Let G be a family of graphs. Then G + kv contains all graphs G such that there is
a vertex set S ⊆ V (G), of size at most k, with the property that the graph G \ S ∈ G. Given
two graph families F1,F2, we consider the following problem in this paper.

(F1,F2)-p-Partition Parameter: k

Input: A graph G and a non-negative integer k
Question: Is there a vertex set S ⊆ V (G), of size at most k, such that there is a partition
V1] V2 of V (G) \ S and G[Vi] ∈ Fi, i ∈ {1, 2}?

The optimization version of (F1,F2)-p-Partition is denoted by (F1,F2)-Partition.
Here, the aim is to find the minimum size of a vertex set S such that V (G) \ S has a
bipartition (V1, V2) with G[V1] ∈ F1 and G[V2] ∈ F2. Let F1 and F2 be a good pair of
graph families. For any positive integer k, let the families F1 + kv and F2 + kv have FPT
recognition algorithms. That is, there are algorithms which take as input a graph G and
an integer k, decide whether G ∈ Fi + kv, i ∈ {1, 2} and run in time f(k)|V (G)|O(1). For
ease of notation, if F1 and F2 be a good pair of graph families, and the families F1 + kv

and F2 + kv have FPT recognition algorithms, then we call (F1,F2) an FPT-good pair of
families.

I Theorem 1.6. Let (F1,F2) be an FPT-good pair of families. Also, let A1 and A2 be the
best recognition algorithms for F1 + kv and F2 + kv respectively. For an n-vertex input graph
and non-negative integer k, let the running time of Ai, i ∈ {1, 2}, be Ti(n, k). Then (F1,F2)-p-
Partition on an instance (G, k) can be solved in time 2O(logc k)nO(1)·max{T1(n, k), T2(n, k)}.

One could obtain a result analogous to Theorem 1.6 for (F1,F2)-Partition. Some of
the problems for which we get faster FPT and exact algorithms are (Clique,Planar)-p-
Partition, (Clique,Triangle-free)-p-Partition, (Clique,Forest)-p-Partition and
(Clique, Treewidth-t)-p-Partition.

2 Preliminaries

We use N to denote the set of natural numbers. For n ∈ N, we use [n] to denote {1, . . . , n}.
Through out the paper we use n to denote the number of vertices in the graph used in the
context. In this paper, the function log is used to denote the logarithm function with base 2.
We use standard notations from graph theory [5]. The vertex set and edge set of a graph
are denoted as V (G) and E(G) respectively. The complement of the graph G is denoted by
G. The neighbourhood of a vertex v is represented as NG(v), or, when the context of the
graph is clear, simply as N(v). The closed neighbourhood of a vertex v, denoted by N [v], is

MFCS 2017

13:6 Communication Complexity of Pairs of Graph Families with Applications

subset N(v) ∪ {v}.The non-neighbourhood of a vertex v is denoted by NG(v). The degree of
a vertex v, or the number of neighbours of v, is denoted by dG(v). Similarly, the non-degree
of v, or the number of non-neighbours of v, is denoted by dG(v). An induced subgraph of
G on the vertex set V ′ ⊆ V is written as G[V ′]. For a vertex subset V ′ ⊆ V , G[V \ V ′] is
also denoted as G− V ′. We denote by ω(G) the size of a maximum clique in G. Similarly,
α(G) denotes the size of a maximum independent set in G. A subgraph G′ of G is denoted
as G′ ≤s G. A complete graph on n vertices is denoted by Kn. A stable graph on n vertices
is a graph G with edge set ∅, and is denoted by Kn. An empty graph is a graph which does
not have any vertices, and therefore no edges as well. Given two subgraphs G1, G2 ≤s G,
G1 ∩G2 is the induced subgraph G[V (G1)∩ V (G2)]. Similarly, G1 ∪G2 denoted the induced
subgraph G[V (G1) ∪ V (G2)]. For any positive integers r, `, we use R(r, `) to denote the
Ramsey number. That is, any graph on at least R(r, `) vertices will have either a clique of
size r or an independent set of size `. A family F of graphs is said to be hereditary if for
any graph G ∈ F , every induced subgraph of G is also contained in F . Let G be a family of
graphs. Then G + kv contains all graphs G such that there is a vertex set S ⊆ V (G), of size
at most k, with the property that the graph G− S ∈ G.

Informally, a protocol can be thought of as a communication between two players, Alice
and Bob. They have decided on some function f and wish to evaluate f(x, y), for some input
x ∈ X and y ∈ Y . The catch is that x is only known to Alice and y is only known to Bob.
Now we give a formal definition of a communication protocol.

I Definition 2.1 ([12]). A protocol Π over a domain X × Y with range Z is a binary tree
where each internal node v is labelled either by a function av : X → {0, 1} or by a function
bv : Y → {0, 1}, and each leaf is labelled with an element z ∈ Z. The value of the protocol Π
on an input (x, y) is the label of the leaf reached by starting at the root, and walking along a
path in the tree. At each internal node v labelled by av, the walk takes left if av(x) = 0 and
right if av(x) = 1, and at each internal node labelled by bv, the walk takes left if bv(y) = 0
and right if bv(y) = 1. The cost of the protocol Π on an input (x, y) is the length of the path
taken on the input (x, y). The cost of the protocol Π is the height of the binary tree.

I Definition 2.2 ([12]). For a function f : X × Y → Z, the deterministic communication
complexity of f is the minimum cost of Π, over all protocols Π that compute f . We denote
the deterministic communication complexity of f by D(f).

For further reading on Communication Complexity, including the concepts of non-
deterministic and co-nondeterministic communication complexity of a function, we refer the
reader to [12, 13]. One of the first functions, whose communication complexity was studied,
is the Disjointness function. For any x, y ∈ {0, 1}n, the function is defined as,

DISJn(x, y) =
{

0 if there exists i ∈ [n], x[i] = y[i] = 1
1 otherwise

I Proposition 2.3 ([12]). D(DISJn) ≥ n

We study a variant of the DISJn function, called the Graphic Disjointness function.
Let G be a graph on n vertices and m edges. Let F1 and F2 be two hereditary graph families.
The following function is defined for the graph G, and the families F1,F2 as follows. For any
two vertex subsets V1 and V2 such that G[V1] ∈ F1 and G[V2] ∈ F2,

GDISJG,F1,F2(V1, V2) =
{

1 if V1 ∩ V2 = ∅
0 otherwise

A problem, related to that of computing GDISJG,F1,F2 , is the problem of enumerating
separating families for two graph families.

Sudeshna Kolay, Fahad Panolan, and Saket Saurabh 13:7

I Definition 2.4. Let G be a graph on n vertices, F1 and F2 be two graph families. Suppose
F is a family of subsets of V (G) with the following property: If we take any two vertex
disjoint induced subgraphs G1, G2 ≤s G, such that G1 ∈ F1 and G2 ∈ F2, there is a set
F ∈ F such that V (G1) ⊆ F and V (G2) ∩ F = ∅. Then F is called an (F1,F2)-separating
family in G. Such a set F is called a separating set for G1 and G2.

I Observation 2.5. Let G be an n-vertex graph. Let G1, G2 be induced subgraphs of G.
Suppose for each v ∈ V (G1), dG(v) < n/2 and for each w ∈ V (G2), dG(w) < n/2. Then,
V (G1) ∩ V (G2) = ∅ and {v | v ∈ V (G), dG(v) < n/2} is a separating set for G1 and G2.

3 Communication protocols for pairs of Hereditary graph families

To prove Theorem 1.1, we first need to prove a sublinear communication complexity bound for
a specific pair of graph families. More formally, in this section we consider a pair of hereditary
families of graphs, Cr = {H | α(H) ≤ r} and I` = {H | ω(H) ≤ `}. Here, r and ` are two
positive integers. In this section, we consider the communication complexity of GDISJG,Cr,I`

.
Using this, we complete the proof of Theorem 1.1. In the later half of this Section, we give
upper bounds on the communication complexity of the function GDISJG,F1,F2 , in terms of a
structural parameter of the graph G. We consider one such structural parameter and design
a protocol with the help of this additional parameter.

3.1 Communication Protocol for Families of Sparse and Dense graphs
As a corollary to Theorem 5 of [10], we obtain the following Lemma:

I Lemma 3.1. For any r, ` ∈ N, D(GDISJG,Cr,I`
) = O(R(r + 1, `+ 1) log2 n).

The protocol designed to show that D(GDISJG,Cr,I`
) = O(R(r + 1, `+ 1) log2 n) heavily

relies on the infinite computational power of both the players (See full version). In this
section, we describe a protocol, with much worse communication complexity, but where both
players resort to polynomial time computations only. The communication complexity of
this protocol is still sublinear in |V (G)|. This protocol will be very useful when we design
enumeration algorithms for (Cr, I`)-separating families in Section 4.

We will describe a communication protocol for GDISJG,Cr,I`
, with complexity O(logr+` n),

for any r, ` ∈ N. Here, Alice receives an induced subgraph G1 of G such that G1 ∈ Cr, and
Bob receives an induced subgraph G2 of G such that G2 ∈ I`. They have to determine
whether V (G1) ∩ V (G2) = ∅ or not. Note that both Alice and Bob receive the graph G.

First, we give a protocol Π1,2 for GDISJG,C1,I2 , with a cost of O(log3 n). This protocol
uses a protocol Π1,1, for GDISJG,C1,I1 , as a sub-protocol. As mentioned earlier, for any pair
of induced subgraphs C, I ∈ G, with C ∈ C1, I ∈ I1, GDISJG,C1,I1(C, I) = 1 if and only
if CISG(C, I) = 0. The function CISG has a deterministic protocol of cost O(log2 n) [16].
Therefore, there is a protocol Π1,1 of cost O(log2 n) for GDISJG,C1,I1 . The protocol for
the general case GDISJG,Cr,I`

can be designed in a recursive manner that uses protocols of
GDISJG,Cr,I`−1 and GDISJG,Cr−1,I`

as subprotocols.

I Lemma 3.2. For a graph G, there is a deterministic protocol for computing GDISJG,C1,I2

using O(log3 n) bits and where both players have polynomial computational power.

Proof sketch. Let Alice get the induced subgraph G1 and Bob get the induced subgraph G2.
The following is a protocol Π1,2 that Alice and Bob will execute. Alice and Bob continue
with the protocol till either they detect a vertex in the intersection of V (G1) and V (G2),

MFCS 2017

13:8 Communication Complexity of Pairs of Graph Families with Applications

or one of G, G1 and G2 becomes an empty graph. The protocol is executed in top down
fashion, i.e., the two players resort to a step only if the previous steps are not applicable.
1. If either G1 or G2 is an empty graph, then the players declare that the graphs are disjoint.
2. Alice looks for a vertex v ∈ V (G1) with dG(v) ≥ n/2. She sends the vertex v to Bob.

If v ∈ V (G2), then Bob lets Alice know and they terminate the protocol. Otherwise,
both players delete the vertices of NG(v) ∪ {v} from the graph G to obtain graph
G′ = G−(NG(v)∪{v}). Alice defines G′1 = G1−{v} while Bob defines G′2 = G2−NG(v).
Then, they continue the protocol for determining whether V (G′1) ∩ V (G′2) = ∅ in G′.

3. Bob looks for a vertex v ∈ V (G2) with dG(v) ≥ n/2. Bob sends the vertex v to Alice. If
v ∈ V (G1), then Alice lets Bob know and they terminate the protocol. Otherwise, both
players use the protocol Π1,1 to compute GDISJG[NG(v)],C1,I1(G[NG(v)∩V (G1)], G[NG(v)∩
V (G2)]). If the output is 0, then they declare that V (G1) ∩ V (G2) 6= ∅ and stop.
Otherwise, they delete the vertices of NG[v] from G to get G′ = G−NG[v]. Alice defines
G′1 = G1 −NG[v] while Bob defines G′2 = G2 −NG[v]. Then, they continue the protocol
for determining whether V (G′1) ∩ V (G′2) = ∅ in G′.

4. Suppose all the above steps fails, then, both players declare that V (G1) ∩ V (G2) = ∅.
The full proof is given in the full version of this paper. J

I Corollary 3.3. For any graph G, there is a deterministic protocol for GDISJG,C2,I1 using
O(log3 n) bits, where both players have polynomial computational power.

We can give a protocol Πr,`, for the problem GDISJG,Cr,I`
, of cost O(logr+` n), using a

protocol for Πr,`−1 or Πr−1,`. We use similar arguments as in the protocol Π1,2, to design
the protocol Πr,`. Thus, we can prove the following theorem using induction on r + `.

I Lemma 3.4. For r, ` ∈ N and graph G, there is a deterministic protocol for GDISJG,Cr,I`

using O(logr+` n) bits and where both players have polynomial computational power.

3.2 Characterization for Hereditary graph families
We are ready to prove Theorem 1.1. That is, we try to determine D(GDISJG,F1,F2) for any
given pair of hereditary families F1,F2. If one of F1 or F2 is finite, then the number of
vertices of each graph in one of the families is bounded by a constant. Thus, a trivial protocol
would be for the player, who receives the bounded-sized subgraph, to send the full subgraph
over to the other player, using O(logn) bits. This implies, D(GDISJG,F1,F2) = O(logn). So,
the interesting case is when both F1 and F2 are infinite. Now we prove Theorem 1.1.

Proof of Theorem 1.1. Without loss of generality we can assume that both F1 and F2 are
infinite. Suppose the intersection family is finite. This means that there is a constant r such
that a complete graph Kr, on r vertices, does not belong to the intersection family, because
of finiteness. Since Kr does not belong to F1 ∩ F2, it must not belong to at least one of
the families. Let this be F1. Since F1 is hereditary, no graph in F1 has Kr as an induced
subgraph. This implies that for any graph G in F1, ω(G) ≤ r − 1. Now we show that for
any graph G in F2, α(G) ≤ `− 1 for some constant `. Towards that, we first claim that F1
contains all stable graphs. Otherwise, since F1 is a hereditary family, if F1 does not contain
a stable graph on `′ vertices, all graphs in F1 neither have a r-sized clique as an induced
subgraph nor an `′-sized independent set as an induced subgraph. However, by Ramsey’s
theorem, each graph in F1 has at most R(r, `′) vertices, thus contradicting the infiniteness of
F1. So far we know that, F1 ∩ F2 is finite and F1 contains all stable graphs. This implies
that F2 does not contain all stable graphs. Let ` be an integer such that K` /∈ F2. By the

Sudeshna Kolay, Fahad Panolan, and Saket Saurabh 13:9

hereditary property of F2, no graph in F2 contains K` as an induced subgraph. That is,
for all graph G in F2, α(G) ≤ `− 1. Thus, Lemma 3.1 gives us a deterministic protocol for
GDISJG,F1,F2 , with o(n) communication complexity.

For the reverse direction, suppose F1∩F2 is an infinite family. To proveD(GDISJG,F1,F2) =
Ω(n) we give a simple reduction from DISJn. In DISJn, Alice is given x ∈ {0, 1}n and Bob is
given y ∈ {0, 1}n and they want to check whether there is an i ∈ [n] such that x[i] = y[i] = 1.
Now we create an instance of GDISJG,F1,F2 as follows. We fix an n-vertex graph G ∈ F1 ∩F2
(such a graph exists because of hereditary property), with V (G) = {v1, . . . , vn}. Let
Vx = {vi ∈ V (G) | i ∈ [n], x[i] = 1} and Vy = {vi ∈ V (G) | i ∈ [n], y[i] = 1}. Since
G ∈ F1∩F2, G[Vx] ∈ F1 and G[Vy] ∈ F2. In the GDISJG,F1,F2 problem, Alice gets G[Vx] and
Bob gets G[Vy]. Clearly Vx ∩Vy 6= ∅ if and only if there is an i ∈ [n] such that x[i] = y[i] = 1.
Hence, by Proposition 2.3, D(GDISJG,F1,F2) = Ω(n). J

For the rest of this paper, a pair (F1,F2) of hereditary graph families where F1 ∩ F2
is a finite graph family, will be referred to as a good pair of graph families. The proof of
Theorem 1.1 also gives us the following folklore corollary.

I Corollary 3.5. Let F1 and F2 be a good pair of graph families. Then, there are constants
r and `, such that for any graph G1 ∈ F1 and G2 ∈ F2, ω(G1) ≤ r and α(G2) ≤ `.

Corollary 3.5 and Ramsey theorem leads us to another useful corollary.

I Corollary 3.6. Let G be a graph. Let F1 and F2 be a good pair of graph families. Then there
are constant r and ` (same as the constants mentioned in Corollary 3.5) such that, for any
pair (G1, G2) of induced subgraphs of G, if G1 ∈ F1 and G2 ∈ F2, then |V (G1) ∩ V (G2)| <
R(r + 1, `+ 1).

3.3 A Parameterized approach to designing protocols
In Section 3.1, for each pair of constants r, `, we saw a protocol for GDISJG,Cr,I`

with sublinear
communication complexity. We also showed that any good pair (F1,F2) of graph families
must be such that there are constants r, ` with F1 ⊆ Cr,F2 ⊆ I`. In this section, we give an
alternate protocol that uses the structure of the input graph G, to obtain a more refined
upper bound on the communication complexity of GDISJG,F1,F2 . For a graph, let optG

F1,F2

denote the size of a minimum set S of vertices such that V (G) \ S has a bipartition (V1, V2)
with G[V1] ∈ F1 and G[V2] ∈ F2. In this section, for a graph G and a good pair of graph
families (F1,F2), we give a protocol for GDISJG,F1,F2 that has O(log2(optG

F1,F2
) + logn)

communication complexity.

Proof of Theorem 1.2. We can assume that Alice and Bob both have a minimum vertex
set S such that V (G) \ S has a bipartition (V1, V2) with G[V1] ∈ F1 and G[V2] ∈ F2. Thus
|S| = optG

F1,F2
. The players also have a bipartition (V1, V2) of V (G)\S, such that G[V1] ∈ F1

and G[V2] ∈ F2.
Now let Alice receive the induced subgraph G1 ∈ F1 and Bob receive the induced subgraph

G2 ∈ F2. The following is a protocol Π that Alice and Bob will execute. The protocol is
executed in top down fashion, i.e., the two players resort to a step only if the previous steps
are not applicable.
1. If either G1 or G2 is an empty graph, then they declare that the graphs are disjoint.
2. Alice and Bob run the protocol Πr,` to compute GDISJG[S],Cr,I`

(G1[S], G2[S]). If there is
a vertex intersection between G1[S] and G2[S], then they declare that the graphs G1 and
G2 intersect and stop the protocol.

MFCS 2017

13:10 Communication Complexity of Pairs of Graph Families with Applications

3. Suppose there is no vertex intersection between G1[S] and G2[S]. Alice sends the vertices
of the subgraph G1 ∩G[V2] to Bob. If Bob finds that V (G2) ∩ V (G1 ∩G[V2]) 6= ∅, then
Bob lets Alice know and they terminate the protocol.

4. Suppose Bob does not find any vertex common to both V (G1 ∩ G[V2]) and V (G2).
Then Bob sends the vertices of the subgraph G2 ∩ G[V1] to Alice. If Alice finds that
V (G1) ∩ V (G2 ∩G[V2]) 6= ∅, then Alice lets Bob know and they terminate the protocol.
Otherwise, they declare that the two graphs G1 and G2 do not intersect on any vertex.

If V (G1[S]) ∩ V (G2[S]) 6= ∅, then the subprotocol Πr,` correctly detects the intersection in
step 2. Otherwise, V (G1) and V (G2) can intersect either in V1 or in V2 and they detect in
step 3 or step 4. If neither of the above cases happen, then V (G1) ∩ V (G2) = ∅.

Next, we show the bound on the communication complexity. Following from Lemma 3.1,
GDISJG[S],Cr,I`

(G1[S], G2[S]) can be computed with the communication of O(log2 optG
F1,F2

)
bits. By definition, G1 ∈ F1 and G[V2] ∈ F2. Then, by Corollary 3.6, |V (G1) ∩ V (G[V2])| <
R(r + 1, `+ 1). Thus, in step 3, Alice sends at most R(r + 1, `+ 1) logn bits to Bob. By a
similar argument, in step 4, Bob sends at most R(r + 1, `+ 1) logn bits to Alice. Therefore,
the communication complexity of Π is O(logr+`(optG

F1,F2
) + logn). J

Suppose (F1,F2) is a pair of hereditary graph families that are not good. By Theorem 1.1,
for an n-vertex graph G, any protocol for GDISJG,F1,F2 must have communication complexity
Ω(n). This gives us the following corollary.

I Corollary 3.7. Let (F1,F2) be a pair of hereditary graph families that have infinitely many
graphs in their intersection. Then, for each integer n > 0, there is a graph G such that for any
computable function f , there cannot be a protocol for GDISJG,F1,F2 , that has communication
complexity f(optG

F1,F2
) + o(n).

4 Separating families

In this section, we design enumeration algorithms for separating families for a good pair of
graph families. It was stated in [13] that a non-deterministic protocol for GDISJG,F1,F2 cor-
responds to a (F1,F2)-separating family. This means that if GDISJG,F1,F2 has deterministic,
and hence non-deterministic, complexity c, then there exists a (F1,F2)-separating family of
size 2c. From Corollary 3.5 and Lemma 3.1, this means that, for an n-vertex graph, there
exists a (F1,F2)-separating family of size 2O(log2 n), for any constants r, `. However, since
the protocols use players with unlimited power of computation, this does not mean that
there is an enumeration algorithm that finds such a separating family in time 2O(log2 n)nO(1).
First, for an n-vertex graph G, we design an algorithm to enumerate a (Cr, I`)-separating
family of size 2O(logr+` n), in time 2O(logr+` n)nO(1). This uses ideas from the protocol given
in Lemma 3.4. Then, for a good pair (F1,F2) of graph families, we utilize the structure of G,
for a different approach to design enumeration algorithms for (F1,F2)-separating families.

I Lemma 4.1. For any r, ` ∈ N, every graph with n vertices has a (Cr, I`)-separating family
of cardinality 2O(logr+` n). Moreover, such a family can be enumerated in time 2O(logr+` n).

Lemma 4.1 and Corollary 3.5 gives us the following Corollary.

I Corollary 4.2. Let F1 and F2 be a good pair of graph families. Then, there are constants
r and `, such that every n-vertex graph has a (F1,F2)-separating family of cardinality
2O(logr+` n) and it can be enumerated in time 2O(logr+` n).

In fact, we obtain Theorem 1.4 from Lemma 4.1 and Corollary 3.5.

Sudeshna Kolay, Fahad Panolan, and Saket Saurabh 13:11

Separating families and parameterization

We give the proof of Theorem 1.5. We show that the upper bound obtained due to Corollary 4.2
can be improved if we use ideas from Parameterized Complexity, as we did for Theorem 1.2.
This is extremely useful for designing FPT algorithms. Again, the ideas from the protocol of
Lemma 3.4 comes to more use than the protocol of Lemma 3.1. To show this, we first prove
the following lemma.

I Lemma 4.3. Let (F1,F2) be a good pair of graph families. Given, as input, G,S ⊆ V (G)
and partition V1]V2 of V (G) \S such that G[V1] ∈ F1 and G[V2] ∈ F2, there is an algorithm
to enumerate (F1,F2)-separating family S for G of cardinality 2O(logc(|S|))nO(1) in time
2O(logc(|S|))nO(1), where c is a constant.

Proof. We know that G[V1] ∈ F1 and G[V2] ∈ F2. Since (F1,F2) is a good pair of graph
families, by Corollary 3.5, we know that there are constants r, `, such that for any G1 ∈ F1
and G2 ∈ F2, ω(G1) ≤ r and α(G2) ≤ `. Let us define c = r + `. By Lemma 4.1, the graph
G[S] has a (F1,F2)-separating family S ′ of cardinality 2O(logr+` |S|). Moreover, such a family
can be enumerated in time 2O(logr+`(|S|)). Now consider the family.

S =
{

A ∪ (V1 \ S1) ∪ S2 | A ∈ S ′, S1 ⊆ V1, S2 ⊆ V2, |S1| < R(r + 1, ` + 1), |S2| < R(r + 1, ` + 1)
}

The cardinality of S is bounded by 2O(logc(|S|))nO(2R(r+1,`+1)) and it can be enumerated
in time 2O(logc(|S|))nO(2R(r+1,`+1)). We show that S is indeed a (F1,F2)-separating family
for G. Consider any disjoint vertex subsets U1 and U2 of V (G) such that G[U1] ∈ F1 and
G[U2] ∈ F2. We need to show that there is a set T ∈ S such that U1 ⊆ T and T ∩ U2 = ∅.
Since the two families F1 and F2 are hereditary, G[U1 ∩ S] ∈ F1 and G[U2 ∩ S] ∈ F2. Since
S ′ is a (F1,F2)-separating family for G[S] there is a set A ∈ S ′ such that S ∩ U1 ⊆ A and
(S ∩ U2) ∩ A = ∅. Since G[U1], G[V1] ∈ F1 and G[U2], G[V2] ∈ F2, by Corollary 3.6, we
know that |U1 ∩ V2| < R(r + 1, `+ 1) and |U2 ∩ V1| < R(r + 1, `+ 1). Now consider the set
T = A∪(V1\(U2∩V1))∪(U1∩V2). Since |U1∩V2| < R(r+1, `+1) and |U2∩V1| < R(r+1, `+1),
by the definition of S, T ∈ S. Notice that U1 ⊆ T and U2 ∩ T = ∅. Hence, we are done. J

Lemma 4.3 gives us Theorem 1.5. Suppose there was an approximation algorithm A for
(F1,F2)-Partition, where the approximation factor is defined by a computable function
f depending only on the size of an optimal solution, and let the running time of A be
T (n) on an n-vertex input graph. Then, a (F1,F2)-seperating family, for G, of cardinality
2O(logc f(optG

F1,F2))nO(1) can be enumerated in time 2O(logc f(opt))nO(1), where c is the same
constant as in Theorem 1.5, which is at most r + `.

5 Applications in Parameterized and Exact Algorithms

In this section we relate the results obtained in previous sections to exact and FPT algorithms.
The main result of this section is to show that the (F1,F2)-p-Partition problem is FPT. In
fact, we propose an algorithm strategy that might result in faster running times than that of
the best known algorithms for certain pairs (F1,F2). We also provide combinatorial bounds
on the number of maximal induced subgraphs that have a vertex bipartition (A,B), where
G[A] ∈ F1 and G[B] ∈ F2. We also give a strategy to design an enumeration algorithm for
all such maximal induced subgraphs. Similarly, we can find the maximum(minimum) size
of such an induced subgraph. These results and their corollaries can be found in the full
version of the paper.

MFCS 2017

13:12 Communication Complexity of Pairs of Graph Families with Applications

Parameterized Algorithms

The question of what is the maximum size of an induced subgraph, that has a vertex
bipartition (A,B) with G[A] ∈ F1 and G[B] ∈ F2, brings us to the question of how ‘far’ a
graph is from becoming a graph with the desired bipartition. The (F1,F2)-p-Partition
problem addresses this question. In this part, we look at this problem and a technique to
solve this problem, when the pair of families are a good pair of families. The technique we
use is an adaptation of the popular iterative compression technique.

I Observation 5.1. If an instance (G, k) is a YES instance of (F1,F2)-p-Partition, then
for any induced subgraph G′ ≤s G, (G′, k) is also a YES instance of (F1,F2)-p-Partition.

Let F1 and F2 be a good pair of graph families, and for any positive integer k, the families
F1 + kv and F2 + kv have FPT recognition algorithms, that is, there are algorithms which
take as input a graph G and an integer k, decides whether G ∈ Fi + kv, i ∈ {1, 2} and runs
in time f(k)|V (G)|O(1). For ease of notation, if F1 and F2 be a good pair of graph families,
and the families F1 + kv and F2 + kv have FPT recognition algorithms, then we call (F1,F2)
an FPT-good pair of families.

We obtain a fast FPT algorithm for (F1,F2)-p-Partition, as claimed in Theorem 1.6 by
incorporating the iterative compression technique. For more details about the algorithmic
technique of iterative compression we refer to the book (chapter 4 [3]).

Proof Sketch for Theorem 1.6. Let (G, k) be an input instance. The algorithm is based on
the iterative compression technique. Due to Observation 5.1, the iterative compression tech-
nique is meaningful for this problem. The iteration step is exactly as described in [3](chapter
4). The description of the compression problem and an algorithm to solve the same is given
below.

The input of the compression problem is a graph G′ and a vertex set S ⊆ V (G′), of size
at most k + 1. The set S satisfies the property that there is a partition V1] V2 of V (G) \ S
such that G[V1] ∈ F1 and G[V2] ∈ F2. The compression problem outputs YES if there is
a vertex set S′ of size at most k such that there is a partition V ′1] V ′2 of V (G) \ S′ with
G[V ′1] ∈ F1 and G[V ′2] ∈ F2. Otherwise, the output is NO. Lemma 4.3 can be used to solve
the compression problem in time 2O(logc k)nO(1) · 2kmax{T1(n, k), T2(n, k)}.

By Lemma 4.3, we know that there is an enumeration algorithm which outputs a (F1,F2)-
separating family S of cardinality 2O(logc |S|)nO(1) in time 2O(logc |S|)nO(1). Now for each
S ∈ S and each pair of non-negative integers k1, k2 such that k1 + k2 ≤ k, we run A1 on
(G[S], k1) and A2 on (G−S, k2). We output YES if both A1 and A2 outputs YES. Otherwise
our algorithm will output NO. The full proof is in the full version of the paper. J

There are several corollaries of Theorem 1.6, to be found in the full version.

6 Conclusion

In this paper, we studied the parameterized communication complexity of the function
GDISJG,F1,F2 . We also obtained separating families for good pairs of families, and used them
to give combinatorial bounds, exact algorithms and FPT algorithms. An important question
here is to see if the lower bounds for CISG can be used to obtain non-trivial lower bounds for
GDISJG,F1,F2 , when (F1,F2) is a good pair of graph families. Also, it would be interesting to
study the communication complexity of these functions in terms of other parameters of the
input. We would like to thank Pranabendu Misra and an anonymous reviewer for insightful
comments.

Sudeshna Kolay, Fahad Panolan, and Saket Saurabh 13:13

References
1 Kazuyuki Amano. Some improved bounds on communication complexity via new decom-

position of cliques. Discrete Applied Mathematics, 166:249–254, 2014. doi:10.1016/j.dam.
2013.09.015.

2 Nicolas Bousquet, Aurélie Lagoutte, and Stéphan Thomassé. Clique versus independent
set. Eur. J. Comb., 40:73–92, 2014. doi:10.1016/j.ejc.2014.02.003.

3 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

4 Marek Cygan and Marcin Pilipczuk. Split vertex deletion meets vertex cover: New fixed-
parameter and exact exponential-time algorithms. Inf. Process. Lett., 113(5-6):179–182,
2013. doi:10.1016/j.ipl.2013.01.001.

5 R. Diestel. Graph Theory. Springer, Berlin, second ed., electronic edition, February 2000.
6 Tomas Feder, Pavol Hell, Sulamita Klein, and Rajeev Motwani. Complexity of graph

partition problems. In Proceedings of the Thirty-first Annual ACM Symposium on Theory
of Computing, STOC’99, pages 464–472, New York, NY, USA, 1999. ACM. doi:10.1145/
301250.301373.

7 Mika Göös. Lower bounds for clique vs. independent set. In IEEE 56th Annual Symposium
on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October,
2015, pages 1066–1076, 2015. doi:10.1109/FOCS.2015.69.

8 Mika Göös, T. S. Jayram, Toniann Pitassi, and Thomas Watson. Randomized communic-
ation vs. partition number. Electronic Colloquium on Computational Complexity (ECCC),
22:169, 2015. URL: http://eccc.hpi-web.de/report/2015/169.

9 Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic communication vs.
partition number. In IEEE 56th Annual Symposium on Foundations of Computer Sci-
ence, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 1077–1088, 2015.
doi:10.1109/FOCS.2015.70.

10 Vince Grolmusz and Gábor Tardos. A note on non-deterministic communication com-
plexity with few witnesses. Theory Comput. Syst., 36(4):387–391, 2003. doi:10.1007/
s00224-003-1158-7.

11 Hao Huang and Benny Sudakov. A counterexample to the Alon-Saks-Seymour con-
jecture and related problems. Combinatorica, 32(2):205–219, 2012. doi:10.1007/
s00493-012-2746-4.

12 Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University
Press, New York, NY, USA, 1997.

13 László Lovász. Communication complexity: a survey. Paths, flows, and VLSI-layout, pages
235–265, 1990.

14 László Lovász. Stable sets and polynomials. Discrete Mathematics, 124(1-3):137–153, 1994.
doi:10.1016/0012-365X(92)00057-X.

15 Manami Shigeta and Kazuyuki Amano. Ordered biclique partitions and communication
complexity problems. Discrete Applied Mathematics, 184:248–252, 2015. doi:10.1016/j.
dam.2014.10.029.

16 Mihalis Yannakakis. Expressing combinatorial optimization problems by linear pro-
grams. Journal of Computer and System Sciences, 43(3):441–466, 1991. doi:10.1016/
0022-0000(91)90024-Y.

17 Andrew Chi-Chih Yao. Some complexity questions related to distributive comput-
ing(preliminary report). In Proceedings of the Eleventh Annual ACM Symposium on The-
ory of Computing, STOC’79, pages 209–213, New York, NY, USA, 1979. ACM. doi:
10.1145/800135.804414.

MFCS 2017

http://dx.doi.org/10.1016/j.dam.2013.09.015
http://dx.doi.org/10.1016/j.dam.2013.09.015
http://dx.doi.org/10.1016/j.ejc.2014.02.003
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1016/j.ipl.2013.01.001
http://dx.doi.org/10.1145/301250.301373
http://dx.doi.org/10.1145/301250.301373
http://dx.doi.org/10.1109/FOCS.2015.69
http://eccc.hpi-web.de/report/2015/169
http://dx.doi.org/10.1109/FOCS.2015.70
http://dx.doi.org/10.1007/s00224-003-1158-7
http://dx.doi.org/10.1007/s00224-003-1158-7
http://dx.doi.org/10.1007/s00493-012-2746-4
http://dx.doi.org/10.1007/s00493-012-2746-4
http://dx.doi.org/10.1016/0012-365X(92)00057-X
http://dx.doi.org/10.1016/j.dam.2014.10.029
http://dx.doi.org/10.1016/j.dam.2014.10.029
http://dx.doi.org/10.1016/0022-0000(91)90024-Y
http://dx.doi.org/10.1016/0022-0000(91)90024-Y
http://dx.doi.org/10.1145/800135.804414
http://dx.doi.org/10.1145/800135.804414

Monitor Logics for Quantitative Monitor
Automata∗

Erik Paul

Institute of Computer Science, Leipzig University, Leipzig, Germany
epaul@informatik.uni-leipzig.de

Abstract
We introduce a new logic called Monitor Logic and show that it is expressively equivalent to
Quantitative Monitor Automata.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Quantitative Monitor Automata, Nested Weighted Automata, Monitor
Logics, Weighted Logics

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.14

1 Introduction

In the last years, there has been increasing interest in quantitative features of the specification
and analysis of systems. Such quantitative aspects include the consumption of a certain
resource or the output of a benefit. Both weighted automata and weighted logics [7] are
means to achieve this quantitative description of systems. They can be employed for both
finite and infinite input.

Very recently, Chatterjee et al. introduced a new automaton model operating on infinite
words [4]. Quantitative Monitor Automata are equipped with a finite number of monitor
counters. At each transition, a counter can be started, terminated, or the value of the counter
can be increased or decreased. The term “monitor” stems from the fact that the values of
the counters do not influence the behavior of the automaton. The values of the counters
when they are terminated provide an infinite sequence of weights, which is evaluated into a
single weight using a valuation function.

Quantitative Monitor Automata possess several interesting features. They are expressively
equivalent to a subclass of Nested Weighted Automata [3], an automaton model which for
many valuation functions has decidable emptiness and universality problems. Quantitative
Monitor Automata are also very expressive. As an example, imagine a storehouse with a
resource which is restocked at regular intervals. Between restocks, demands can remove one
unit of this resource at a time. Such a succession of restocks and demands can be modeled as
an infinite sequence over the alphabet {restock, demand}. Interesting quantitative properties
of such a sequence include the long-term average demand, the minimum demand and the
maximum demand between restocks. These properties can be described using Quantitative
Monitor Automata. At every restock a counter is started, counting the number of demands
until the next restock. An appropriate valuation function then computes the desired property.
For the average demand, this can be achieved with the Cesàro mean which was introduced
to automata theory by Chatterjee et. al in [2]. Note that behaviors like these cannot be

∗ This work was supported by Deutsche Forschungsgemeinschaft (DFG), Graduiertenkolleg 1763
(QuantLA).

© Erik Paul;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 14; pp. 14:1–14:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2 Monitor Logics for Quantitative Monitor Automata

modeled using weighted Büchi-automata [11, 12] or their extension with valuation functions
[8]. In the latter model, the Cesàro mean of any sequence is bounded by the largest transition
weight in the automaton. This is not the case for Quantitative Monitor Automata.

In this paper, we develop a logic which is expressively equivalent to Quantitative Monitor
Automata. Our main results are the following.

We introduce a new logic which we call Monitor Logic.
We show that this Monitor Logic is expressively equivalent to Quantitative Monitor
Automata.
We show various closure properties of Quantitative Monitor Automata and prove that
Muller and Büchi acceptance conditions provide the same expressive power.

The relationship between automata and logics plays a large role in specification and verification.
Statements are often easier to formulate in the form of a logic formula rather than directly as
an automaton. Consequently, the fundamental Büchi-Elgot-Trakhtenbrot Theorem [1, 10, 17],
which established the coincidence of regular languages with languages definable in monadic
second order logic, has found use in many areas of application. An extension to semiring
weighted automata was later given by Droste and Gastin [6].

Our logic is equipped with three quantifiers. A sum quantifier to handle the computations
on the counters, a valuation quantifier to handle the valuation, and a third quantifier to
combine the weights of all runs on a word. Our biggest challenge was to find appropriate
restrictions on the use of the quantifiers. Without any restrictions the logic would be too
powerful, which we also formally prove using counter examples. The most important result
of our considerations is that the computations of the sum quantifier should depend on an
MSO-definable condition.

We note that our constructions are effective. Given a formula from our logic, we can
effectively construct a Quantitative Monitor Automaton describing this formula. Conversely,
for every automaton we can effectively construct a formula with the automaton’s behavior.

2 Preliminaries

Let N = {0, 1, 2, . . .} denote the natural numbers, Z the integers and R the reals. An alphabet
Σ is a finite set. An infinite word over Σ is a sequence w = a0a1a2 . . . from Σ. The set of
infinite words over Σ is denoted by Σω. The set of finite words Σ∗ over Σ is defined as the
set of finite sequences a0a1 . . . an from Σ. The empty word is denoted by ε. A mapping
Σω → R ∪ {∞} is called a series.

A (nondeterministic) Muller automaton over Σ (NMA) is a tuple A = (Σ, Q, q0,F , δ)
where (1) Σ is an alphabet, (2) Q is a finite set of states, (3) q0 ∈ Q is the initial state, (4)
F ⊆ P(Q) is the set of final sets and (5) δ ⊆ Q× Σ×Q is the set of transitions.

Let a0a1 . . . ∈ Σω be an infinite word. A run of A over w is an infinite sequence of
transitions rw = (ti)i≥0 so that ti = (qi, ai, qi+1) ∈ δ for all i ≥ 0. We denote by InQ(rw) the
set of states which appear infinitely many times in rw, i.e.

InQ(rw) = {q ∈ Q | ∀i∃j ≥ i : tj = (q, aj , qj+1)}.

A run rw of A over w ∈ Σω is called accepting if InQ(rw) ∈ F , that is, if the states which
appear infinitely many times in rw form a set in F . In this case we say that w is recognized
(accepted) by A. The set of accepting runs over a word w ∈ Σω is denoted by AccA(w). The
infinitary language of A, denoted by Lω(A), is the set of all infinite words that are accepted
by A. A language L ⊆ Σω is called ω-recognizable if there is a Muller automaton A so that
L = Lω(A).

E. Paul 14:3

A Muller automaton A = (Σ, Q, q0,F , δ) is called deterministic if the set of transitions
δ can be interpreted as a function Q× A→ Q, i.e. if for every (p, a) ∈ Q× A there exists
exactly one q ∈ Q with (p, a, q) ∈ δ. It is well known and will be important to us that for
each Muller automaton A, we can effectively construct a deterministic Muller automaton
with the same language [15, 16].

3 Quantitative Monitor Automata

An ω-valuation function is a mapping Val : ZN → R ∪ {∞} that assigns real values or ∞ to
infinite sequences of integers. Typical examples of such functions are the Cesàro mean

Ces((zi)i≥0) =
{

limn→∞
1
n

∑n−1
i=0 zi if this limit exists

∞ otherwise,

the supremum Sup((zi)i≥0) = supi≥0 zi, the infimum Inf((zi)i≥0) = infi≥0 zi, the limit
superior LimSup((zi)i≥0) = limn→∞ supi≥n zi and the limit inferior LimInf((zi)i≥0) =
limn→∞ infi≥n zi.

For a new symbol 1 and an ω-valuation function Val, we extend the domain of Val to
sequences z = (zi)i≥0 from Z ∪ {1} as follows. If at some point z becomes constantly 1, we
let Val(z) =∞. Otherwise we let z′ be the subsequence of z which contains all elements that
are not 1 and define Val(z) = Val(z′).

We now define Quantitative Monitor Automata. We use a different name, however, in
order to distinguish between Büchi and Muller acceptance conditions.

A Büchi automaton with monitor counters (BMCA) A is a tuple (Σ, Q, I, F, δ, n,Val)
where (1) Σ is the alphabet, (2) Q is a finite set of states, (3) I ⊆ Q is the set of initial
states, (4) F is the set of accepting states, (5) δ is a finite subset of Q×Σ×Q× (Z∪{s, t})n,
called the transition relation, such that for every (q, a, q′,u) ∈ δ at most one component of u
contains s, (6) n is the number of counters and (7) Val is an ω-valuation function.

Intuitively, the meaning of a transition (q, a, q′,u) is that if the automaton is in state q
and reads an a, it can move to state q′ and start counter j if uj = s, add uj to the current
value of counter j if this counter is activated and uj ∈ Z, or stop counter j if uj = t. Initially,
all counters are inactive. We will also call A an n-BMCA or a Val-BMCA, thereby stressing
the number of counters or the ω-valuation function used.

Let a0a1 . . . ∈ Σω be an infinite word. A run of A over w is an infinite sequence of
transitions rw = (ti)i≥0 so that ti = (qi, ai, qi+1,ui) ∈ δ for all i ≥ 0.

A run rw of A over w ∈ Σω is called accepting if (1) q0 ∈ I, (2) InQ(rw) ∩ F 6= ∅, (3) if
uji = s for some i ≥ 0, then there exists l > i such that ujl = t and for all k ∈ {i+1, . . . , l−1}
we have ujk ∈ Z, (4) if uji = t for some i ≥ 0, then there exists l < i such that ujl = s and for
all k ∈ {l+ 1, . . . , i− 1} we have ujk ∈ Z and (5) infinitely often some counter is activated, i.e.

{i ≥ 0 | uji = s for some j}

is an infinite set. The set of accepting runs over a word w ∈ Σω is denoted by AccA(w).
An accepting run rw defines a sequence z = (zi)i≥0 from Z ∪ {1} as follows. If uji = s

for some j ∈ {1, . . . , n} and l > i is such that ujl = t and for all k ∈ {i + 1, . . . , l − 1}
we have ujk ∈ Z, then zi =

∑l−1
k=i+1 u

j
k. If uji 6= s for all j ∈ {1, . . . , n}, then zi = 1. We

also call z the weight-sequence associated to rw. The weight of the run rw is defined as
Val(rw) = Val(z). The behavior of the automaton A is the series JAK : Σω → R ∪ {∞}

MFCS 2017

14:4 Monitor Logics for Quantitative Monitor Automata

defined by JAK(w) = infrw∈Acc(w) Val(rw), where the infimum over the empty set is defined
as ∞. A series Σω → R∪ {∞} is called MC-recognizable if there exists a BMCA A such that
JAK = S. The notions of n-MC-recognizable and Val-MC-recognizable are defined likewise.

A Muller automaton with monitor counters (MMCA) is defined like a BMCA, but instead
of a set of accepting states we have a set of accepting sets F ⊆ P(Q). The condition (2) for
a run rw on a word w ∈ Σω to be accepting is then replaced by InQ(rw) ∈ F , i.e. a Muller
acceptance condition.

Büchi automata with monitor counters use a Büchi acceptance condition, i.e. at least one
accepting state has to appear infinitely often. Lemma 3 shows that using a Muller acceptance
condition does not influence the expressive power.

I Example 1. Consider the the alphabet Σ = {demand, restock} with the ω-valuation
function Val = Ces. We model a storehouse with some sort of supply that is restocked
whenever restock is encountered, and one unit of the supply is removed at every demand.
Given an infinite sequence of restocks and demands, we are interested in the long-time average
demand between restocks. Under the assumption that every such sequence starts with a
restock, this behavior is modeled by the following automaton with two monitor counters.

q0 q1 q2
(restock, s, 0)

(restock, t, s)

(demand, 1, 0)

(restock, s, t)

(demand, 0, 1)

When for the valuation function we take Inf or Sup, the automaton above describes the
lowest or highest demand ever encountered, for the latter assuming that the demands are
bounded.

I Example 2 ([4]). Consider the alphabet Σ = {a,#} and the language L consisting
of words (#2a∗#a∗#)ω. On these words, we consider the quantitative property “the
maximal block-length difference between even and odd positions”, i.e. the value of the word
##am1#am2### . . . shall be supi≥1 |m2i−1 −m2i|. With the choice Val = Sup, a BMCA
realizing this behavior is the following.

q0 q1 q2 q3
(#, s, 0) (#, 0, s) (#, 0, 0)

(a, 1,−1) (a,−1, 1)

(#, t, t)

Each (#2am1#am2#)-block is processed by starting both counters on the first two #’s,
accumulating m1 into the first counter and accumulating −m1 into the second, reading #,
then accumulating m1 −m2 into the first counter and −m1 +m2 into the second, and finally
terminating both counters on the last #. Thus, the associated weight-sequence for only this
block is (m1 −m2,−m1 +m2,1, . . . ,1). Clearly, the final value of counter one is always the
negative of the final value in counter two. Since our ω-valuation function is Sup, only the
positive counter value actually plays a role in the value assigned to the whole word, and this
positive value is |m1 −m2|.

E. Paul 14:5

In the rest of this section, we prove various closure properties for automata with monitor
counters and that BMCA and MMCA have the same expressive power.

I Lemma 3. Büchi automata with monitor counters are expressively equivalent to Muller
automata with monitor counters.

Proof. The proof is similar to the standard construction to show that Büchi automata are
expressively equivalent to Muller automata, see for example [9]. J

The next lemma shows that MC-recognizable series are closed under projections and their
preimage. Given two alphabets Σ and Γ and a mapping h : Σ→ Γ and thus a homomorphism
h : Σω → Γω, we define for every S : Σω → R ∪ {∞} the projection h(S) : Γω → R ∪ {∞} by

h(S)(w) = inf{S(v) | h(v) = w}

for every w ∈ Γω. Moreover, if S′ : Γω → R ∪ {∞}, then we put h−1(S′) = S′ ◦ h, i.e.
h−1(S′) : Σω → R ∪ {∞}, w 7→ S′(h(w)).

I Lemma 4. Let Σ and Γ be two alphabets, h : Σ→ Γ be a mapping and Val be an ω-valuation
function.
(i) If S : Σω → R ∪ {∞} is Val-MC-recognizable, then the projection h(S) : Γω → R ∪ {∞}

is also Val-MC-recognizable.
(ii) If S′ : Γω → R ∪ {∞} is Val-MC-recognizable, then h−1(S′) : Σω → R ∪ {∞} is also

Val-MC-recognizable.

For two series S1, S2 : Σω → R ∪ {∞}, the minimum min(S1, S2) of S1 and S2 is defined
pointwise, i.e.

min(S1, S2)(w) = min{S1(w), S2(w)}.

Applying the usual union construction for automata, we can show that the minimum of two
MC-recognizable series is MC-recognizable as well.

I Lemma 5. For any given ω-valuation function Val, the Val-MC-recognizable series are
closed under minimum.

Let L ⊆ Σω and S : Σω → R∪{∞}. The intersection of L and S is the series L∩S : Σω →
R ∪ {∞} defined for w ∈ Σω by

L ∩ S(w) =
{
S(w) if w ∈ L
∞ otherwise.

The intersection of a recognizable language with an MC-recognizable series is MC-recognizable
as well.

I Lemma 6. Let Val be an ω-valuation function, let L ⊆ Σω be ω-recognizable and S : Σω →
R ∪ {∞} be Val-MC-recognizable. Then L ∩ S is also Val-MC-recognizable.

Proof. The proof is similar to the standard product construction to show that recognizable
languages are closed under intersection. J

MFCS 2017

14:6 Monitor Logics for Quantitative Monitor Automata

4 Monitor MSO logic

We first want to give a motivation for the quantifiers and restrictions we use in our logic. We
are looking for a logic which is expressively equivalent to automata with monitor counters.
It is clear that we need a valuation quantifier in order to model the valuation done by the
automata. The question is which types of formulas should be allowed in the scope of the
valuation quantifier. From [8] it follows that allowing only almost Boolean formulas (see
below) is too weak. We would only describe Muller automata over valuation monoids, and
these are strictly weaker than automata with monitor counters [4].

We therefore have to allow at least some other quantifier in the scope of the valuation
quantifier. Taking into account the automaton model we want to describe, this should be a
sum quantifier. Most weighted logics [6, 9, 8, 13, 14, 5] use quantifiers that act unconditionally
on the whole input, i.e. on the whole word, tree or picture. However, in Lemma 11 we will
see that in our case, an unrestricted sum quantifier quickly gets out of hand.

The intention of the sum quantifier as we define it here is to have a sum quantifier which
acts on infinite words, but still computes only finite sums on a given word. The computation
of the sum quantifier depends on a first order variable x and a second order variable X
provided to it. The variable X serves as a “list” of start and stop positions, and the variable
x indicates where the summation on the infinite word should take place. Simply put, the
sum is evaluated to 1 if x does not point to a position in X or there is no successor of x in
X. Otherwise, if y is x’s successor in X, the sum is taken from x+ 1 to y − 1.

Intuitively, each sum quantifier corresponds to a counter. In a run of an automaton
with monitor counters, not more than one counter can be started at each letter of the given
word. Therefore, we use Boolean formulas to choose which counter to use. We combine
these choices between counters into so-called x-summing formulas, where x is the first order
variable provided to each sum quantifier in the formula.

We provide a countable set V of first and second order variables, where lower case letters
like x and y denote first order variables and capital letters like X and Y denote second
order variables. We define a three step logic over an alphabet Σ according to the following
grammars.

β ::= Pa(x) | x ≤ y | x ∈ X | ¬β | β ∨ β | ∃x.β | ∃X.β
ψ ::= k | β ? ψ : ψ

ζx ::= 1 | β ? ζx : ζx |
⊕x,X

y.ψ

ϕ ::= β ? ϕ : ϕ | min(ϕ,ϕ) | inf x.ϕ | inf X.ϕ | Valx.ζx

where x, y,X ∈ V , a ∈ Σ and k ∈ Z. The formulas β are called Boolean or MSO formulas, the
formulas ψ almost Boolean formulas, the formulas ζx x-summing formulas and the formulas
ϕ monitor MSO (mMSO) formulas. We remark that within an x-summing formula, the first
order variable provided to each sum quantifier is always x. This restriction is not imposed
on the second order quantifiers, i.e. β ?

⊕x,X
y.ψ1 :

⊕x,Z
y.ψ2 is an x-summing formula, but

β ?
⊕x,X

y.ψ1 :
⊕z,Z

y.ψ2 is neither an x-summing nor a z-summing formula. Also note that
the x-summing formulas are only auxiliary formulas, see Remark 7 later on.

The set of free variables Free(ϕ) is defined as usual, i.e. ∃, inf and Val bind variables, and
in
⊕x,X

y.ψ the variable y is bound. A formula without free variables is called a sentence.
Let w ∈ Σω. We put dom(w) = {0, 1, 2, . . .} and denote the i-th letter of w by wi, i.e.

w = w0w1w2 Let V be a finite set of first and second order variables with Free(ϕ) ⊆ V.
A (V, w)-assignment is a mapping ρ : V → dom(w) ∪ P(dom(w)) where every first order

E. Paul 14:7

variable is mapped to an element of dom(w) and every second order variable is mapped
to a subset of dom(w). The update ρ[x → i] for i ∈ dom(w) is defined as ρ[x → i](x) = i

and ρ[x → i](X) = ρ(X) for all X ∈ V \ {x}. The update ρ[X → I] for I ⊆ dom(w)
is defined similarly. We encode (V, w)-assignments as usual with an extended alphabet
ΣV = Σ× {0, 1}V . Here, we refer to a word over the alphabet ΣV by (w, ρ), where w is the
projection to Σ and ρ is the projection to {0, 1}V . A word over ΣV represents an assignment
if and only if for every first order variable the respective row in the extended word contains
exactly one 1, in which case (w, ρ) is called valid.

It is not difficult to see that the set

NV = {(w, ρ) ∈ ΣωV | (w, ρ) is valid}

is ω-recognizable. Let (w, ρ) ∈ Σω
V . For a Boolean formula β we define the satisfaction

relation (w, ρ) |= β as usual: if (w, ρ) is not valid, then (w, ρ) |= β does not hold; otherwise
we define it as follows.

(w, ρ) |= Pa(x) ⇐⇒ wρ(x) = a

(w, ρ) |= x ≤ y ⇐⇒ ρ(x) ≤ ρ(y)
(w, ρ) |= x ∈ X ⇐⇒ ρ(x) ∈ ρ(X)
(w, ρ) |= ¬β ⇐⇒ (w, ρ) |= β does not hold
(w, ρ) |= β1 ∨ β2 ⇐⇒ (w, ρ) |= β1 or (w, ρ) |= β2
(w, ρ) |= ∃x.β ⇐⇒ (w, ρ[x→ i]) |= β for some i ∈ dom(w)
(w, ρ) |= ∃X.β ⇐⇒ (w, ρ[X → I]) |= β for some I ⊆ dom(w).

Let β be an MSO formula. We will write Σβ for ΣFree(β) and Nβ for NFree(β). We recall the
fundamental Büchi Theorem [1], namely that for Free(β) ⊆ V the language

LV(β) = {(w, ρ) ∈ NV | (w, ρ) |= β}

defined by β over ΣV is ω-recognizable. We abbreviate L(β) = LFree(β)(β).
Conversely, every ω-recognizable language L ⊆ Σω is definable by an MSO sentence β,

i.e. L = L(β).
We now come to the semantics of the remaining formulas. Let Val be an ω-valuation

function. For an almost Boolean, x-summing or monitor MSO formula η we define the
semantics JηKV(w, ρ) of η under the (V, w)-assignment ρ as follows: if (w, ρ) is not valid,
then JηKV(w, ρ) =∞; otherwise the semantics are defined as follows.

JkKV(w, ρ) = k

Jβ ? ψ1 : ψ2KV(w, ρ) =
{

Jψ1KV(w, ρ) if (w, ρ) |= β

Jψ2KV(w, ρ) otherwise

J
⊕x,X

y.ψKV(w, ρ) =

min{j∈ρ(X)|j>ρ(x)}−1∑

i=ρ(x)+1

JψKV(w, ρ[y → i])
if ρ(x) ∈ ρ(X) and
{j ∈ ρ(X) | j > ρ(x)} 6= ∅

1 otherwise.
Jmin(ϕ1, ϕ2)KV(w, ρ) = min{Jϕ1KV(w, ρ), Jϕ2KV(w, ρ)}

Jinf x.ϕKV(w, ρ) = infi∈dom(w)JϕKV(w, ρ[x→ i])
Jinf X.ϕKV(w, ρ) = infI⊆dom(w)JϕKV(w, ρ[X → I])
JValx.ζxKV(w, ρ) = Val((JζxKV(w, ρ[x→ i]))i∈dom(w)).

We write JηK for JηKFree(η). To indicate the ω-valuation function Val or the alphabet Σ used,
we may denote the set of monitor MSO formulas by mMSO(Σ,Val).

MFCS 2017

14:8 Monitor Logics for Quantitative Monitor Automata

I Remark 7. From the semantics defined here it is clear that any x-summing sentence ζx is
semantically equivalent to 1. In this sense, the x-summing formulas constitute no meaningful
fragment of our logic, and are only auxiliary formulas for the construction of monitor MSO
formulas.

Note also that for (w, ρ) valid, we have JValx.1K(w, ρ) =∞. By abuse of notation, we
can thus define the abbreviation ∞ = Val x.1.
I Remark 8. The condition used in the definition of the sum quantifier is definable by the
MSO formula

notLast(x,X) = x ∈ X ∧ ∃y.(y ∈ X ∧ x < y),

where x < y is an abbreviation for x ≤ y ∧ ¬(y ≤ x). We can therefore also write

J
⊕x,X

y.ψK(w, ρ) =
{∑min{j∈ρ(X)|j>ρ(x)}−1

i=ρ(x)+1 JψK(w, ρ[y → i]) if (w, ρ) |= notLast(x,X)
1 otherwise.

In Lemma 12 we will see that the first order variable x is necessarily also the variable which
is quantified by Val. If we define an unrestricted sum quantifier

⊕
y.ψ by

J
⊕
y.ψK(w, ρ) =

∑
i∈dom(w)JψK(w, ρ[y → i]),

we can write our restricted sum quantifier as

J
⊕x,X

y.ψK(w, ρ) =
JnotLast(x,X) ?

⊕
y.(x < y ∧ ∀z.((x < z ∧ z ≤ y)→ ¬z ∈ X) ? ψ : 0) : 1K(w, ρ).

I Example 9. Consider Example 1 again, i.e. the alphabet Σ = {demand, restock} with the
ω-valuation function Val = Ces. Then the formula

ϕ = inf X.
(
∀z.(z ∈ X ↔ Prestock(z)) ? Val x.

⊕x,X
y.1 :∞

)
describes the average total demand between two restocks. We recall that ∞ is simply an
abbreviation for the formula Valx.1. As in Example 1, if we take Inf or Sup for the valuation
function, the formula above describes the lowest or highest demand ever encountered.

I Lemma 10 (Consistency Lemma). Let ϕ ∈ mMSO(Σ,Val) and V be a finite set of variables
with V ⊇ Free(ϕ).
(i) For any valid (w, ρ) ∈ ΣωV we have JϕKV(w, ρ) = JϕK(w, ρ�Free(ϕ)).
(ii) JϕK is MC-recognizable if and only if JϕKV is MC-recognizable.

The following lemma shows that the use of an unrestricted sum quantifier leads to not
MC-recognizable series.

I Lemma 11. Consider the unrestricted sum quantifier from Remark 8

J
⊕
y.ψK(w, ρ) =

∑
i∈dom(w)JψK(w, ρ[y → i]),

the ω-valuation function Val defined by

Val((zi)i≥0) =
{∑∞

i=0 zi if this sum converges
∞ otherwise

and the alphabet Σ = {a, b}. Then for the almost Boolean formula

ψ = y ≤ x ∧ ∀z.(z ≤ x→ Pa(z)) ?−1 : 0,

the formula ϕ = Val x.
⊕
y.ψ is not Val-MC-recognizable.

E. Paul 14:9

Proof (sketch). One easily checks that

JϕK(w) =
{
−m(m+1)

2 if w = ambw′ for some w′ ∈ Σω

∞ if w = aω.

The idea is now that with only finitely many transitions, and therefore only finitely many
different weights, this quadratic growth cannot be realized if only transitions up to the first
b in each word influence the weight of the runs. But once the automaton has read this first b,
it cannot distinguish between the words anymore. Under appropriate assumptions, we can
therefore combine runs from different words to obtain a contradiction. J

The next lemma shows that the first order variable x provided to the sum quantifier is
necessarily the variable that Val quantifies.

I Lemma 12. Consider the ω-valuation function Val defined by

Val((zi)i≥0) =
{

1
z0

if 0 < z0 = z1 = z2 = . . .

−1 otherwise.

and the alphabet Σ = {a}. We define the abbreviation

(y = x+ 1) = x ≤ y ∧ ¬(y ≤ x) ∧ ∀z.(z ≤ x ∨ y ≤ z).

Then for the Boolean formula

β(X) = ∀x1.∀x2.((x1 ∈ X ∧ x2 = x1 + 1)→ ¬(x2 ∈ X)),

the formula ϕ = inf X. inf z.
(
β(X) ? Val x.

⊕z,X
y.1 :∞

)
is not Val-MC-recognizable.

Proof (sketch). One can check that JϕK(aω) = 0. For a BMCA A realizing this series, the
weight-sequence associated to each run has to be constant, and there must be a sequence of
runs such that this constant grows arbitrarily large. The latter fact can be exploited to show
that there must be a run whose associated weight-sequence is not constant, which leads to
the contradiction JAK(aω) = −1. J

5 The main result

In this section, we want to show that the MC-recognizable series coincide with the series
definable by monitor MSO formulas from our logic. In Lemma 14, we show how a given
MMCA can be described by a monitor MSO formula. To show that every series definable by
a monitor MSO formula is also MC-recognizable, we show by induction on the structure of
the formula how to construct an MMCA with the same behavior as the formula. We first
formulate our main theorem.

I Theorem 13. Let Σ be an alphabet and Val an ω-valuation function. A series S : Σω →
R ∪ {∞} is Val-MC-recognizable if and only if there is a monitor MSO sentence ϕ ∈
mMSO(Σ,Val) with JϕK = S.

In the following lemma, we show the first direction, namely how to obtain a formula for a
given MMCA.

I Lemma 14. For every Val-MMCA A, there exists a sentence ϕ ∈ mMSO(Σ,Val) with
JAK = JϕK.

MFCS 2017

14:10 Monitor Logics for Quantitative Monitor Automata

Proof. For first order variables x and y and second order variables X1, . . . , Xk we define the
MSO formulas

first(x) = ∀y.x ≤ y
x < y = x ≤ y ∧ ¬(y ≤ x)

(y = x+ 1) = x < y ∧ ∀z.(z ≤ x ∨ y ≤ z)

partition(X1, . . . , Xk) = ∀x.
k∨
i=1

x ∈ Xi ∧
∧
j 6=i
¬(x ∈ Xj)

 .

Now let A = (Σ, Q, I,F , δ, n,Val) be an n-MMCA. For every (p, a, q,u) ∈ δ we choose a
second order variable X(p,a,q,u) and with k = |δ| we fix a bijection v : {1, . . . , k} → δ. For
i ∈ {1, . . . , k} we write Xi for Xv(i) and X̄ for (X1, . . . , Xk). Furthermore, we fix second
order variables Y1, . . . , Yn and write Ȳ for (Y1, . . . , Yn). For j ∈ {1, . . . , n} and ? ∈ {s, t} we
abbreviate

(uj(x) = ?) =
∨

(p,a,q,u)∈δ
uj=?

x ∈ X(p,a,q,u).

Intuitively, we use the variables X̄ to encode runs, i.e. by assigning the transition v(i) to
every position in Xi. The variables Ȳ are used to mark the starts and stops of the counters
in X̄. In the following, we define the MSO formula muller(X̄) which checks that X̄ encodes
a run of A satisfying the Muller acceptance condition, and the MSO formula valid(X̄) which
checks that X̄ encodes an accepting run. The MSO formula valid∗(X̄, Ȳ) asserts that the
positions in Ȳ conform to the starts and stops of the counters in X̄. The precise formulas
are as follows.

matched(X̄) =
∧

(p,a,q,u)∈δ

∀x.
(
x ∈ X(p,a,q,u) → Pa(x)

)
∧ ∀x.∀y.

(
y = x+ 1→

∨
q∈Q

(∨
(p,a,q,u),(q,a′,p′,u′)∈δ

(x ∈ X(p,a,q,u) ∧ y ∈ X(q,a′,p′,u′))
))

muller(X̄) = partition(X̄) ∧matched(X̄) ∧ ∃x.

first(x) ∧
∨

(p,a,q,u)∈δ
p∈I

x ∈ X(p,a,q,u)

∧
∨
F∈F

∃x.∀y.x ≤ y →

 ∨

(p,a,q,u)∈δ
q∈F

y ∈ X(p,a,q,u)

∧
∧
q∈F
∃z.

y ≤ z ∧ ∨
(p,a,q,u)∈δ

z ∈ X(p,a,q,u)

valid(X̄) = muller(X̄) ∧ ∀x.∃y.(x ≤ y ∧
n∨
j=1

uj(y) = s)∧

n∧
j=1
∀x.
((

(uj(x) = s)→ ∃y.(x < y ∧ uj(y) = t ∧ ∀z.((x < z ∧ z < y)→ ¬(uj(z) = s)))
)

∧
(

(uj(x) = t)→ ∃y.(y < x ∧ uj(y) = s ∧ ∀z.((y < z ∧ z < x)→ ¬(uj(z) = t)))
))

E. Paul 14:11

valid∗(X̄, Ȳ) = valid(X̄) ∧
n∧
j=1
∀x.(x ∈ Yj ↔ (uj(x) = s ∨ uj(x) = t)).

For (p, a, q,u) ∈ δ we let wtj(p, a, q,u) = uj and for i ∈ {1, . . . , k − 2} and j ∈ {1, . . . , n}
define inductively

ψjk−1 = (y ∈ Xk−1 ? wtj(v(k − 1)) : wtj(v(k)))

ψji =
(
y ∈ Xi ? wtj(v(i)) : ψji+1

)
ζn+1 = 1

ζj =
(

(uj(x) = s) ?
⊕x,Yj y.ψj1 : ζj+1

)
.

Then with ϕ = inf X̄. inf Ȳ .(valid∗(X̄, Ȳ) ? Valx.ζ1 :∞), we have JAK = JϕK. The formula
ψj1 evaluates to the weight for counter j in the transition at position y, i.e. it is wtj(v(i)) iff
y is in Xi. The formula ζ1 evaluates to the output of the counter started at position x in
the run encoded by X̄. More precisely, ζ1 evaluates to

⊕x,Yj y.ψj1 if counter j is started at
position x, and to 1 if no counter is started at x. Finally, the formula ϕ takes the infimum
over the weights of all “runs” X̄, in the sense that assignments to X̄ and Ȳ only influence
the value of ϕ if X̄ encodes an accepting run and Ȳ mirrors its counter starts and stops. J

The remainder of this section is dedicated to show the converse, namely that for every
monitor MSO formula there is an MMCA with the same behavior as the formula.

I Lemma 15. Let β be an MSO formula and ϕ1, ϕ2 ∈ mMSO(Σ,Val) such that Jϕ1K and
Jϕ2K are MC-recognizable. Then with ϕ = β ? ϕ1 : ϕ2, the series JϕK is also MC-recognizable.

Proof. Let V = Free(ϕ). Then we have Free(ϕ1) ⊆ V and Free(ϕ2) ⊆ V and hence by
Lemma 10 Jϕ1KV and Jϕ2KV are MC-recognizable. Due to Free(β) ⊆ V, the classical Büchi
theorem tells us that both LV(β) and LV(¬β) are ω-recognizable. Hence by Lemma 5 and
Lemma 6, JϕK = min(LV(β) ∩ Jϕ1KV ,LV(¬β) ∩ Jϕ2KV) is also MC-recognizable. J

I Lemma 16. Let ϕ1, ϕ2 ∈ mMSO(Σ,Val) be such that Jϕ1K and Jϕ2K are MC-recognizable.
Then ϕ = min(ϕ1, ϕ2), the series JϕK is also MC-recognizable.

Proof. Let V = Free(ϕ1) ∪ Free(ϕ2), then by Lemma 10, Jϕ1KV and Jϕ2KV are also MC-
recognizable. Hence by Lemma 5, JϕK = min(Jϕ1KV , Jϕ2KV) is also MC-recognizable. J

I Lemma 17. Let ϕ ∈ mMSO(Σ,Val) such that JϕK is MC-recognizable. Then inf x.ϕ and
inf X.ϕ are also MC-recognizable.

Proof. We show the lemma for inf x.ϕ. The proof for inf X.ϕ is similar. Let V = Free(inf x.ϕ),
then x /∈ V. We now consider the homomorphism h : ΣωV∪{x} → ΣωV , which erases the x-row.
Then for any (w, ρ) ∈ ΣωV , we have that

Jinf x.ϕKV(w, ρ) = inf{JϕKV∪{x}(w, ρ[x→ i]) | i ≥ 0} = h(JϕKV∪{x})(w, ρ).

As Free(ϕ) ⊆ V ∪ {x}, Lemma 10 shows that JϕKV∪{x} is MC-recognizable and therefore by
Lemma 4 (i) the series Jinf x.ϕKV is MC-recognizable as well. J

I Lemma 18. Let ψ be an almost Boolean formula and V ⊇ Free(ψ). Then there are
MSO formulas β1, . . . , βn and weights z1, . . . , zn ∈ Z such that Free(ψ) =

⋃n
i=1 Free(βi),

NV =
⋃n
i=1 LV(βi), for i 6= j we have LV(βi) ∩ LV(βj) = ∅ and for (w, ρ) ∈ NV we have

JψKV(w, ρ) = zi if and only if (w, ρ) ∈ LV(βi).

MFCS 2017

14:12 Monitor Logics for Quantitative Monitor Automata

Proof. For ψ = k with k ∈ Z, we choose β1 as any tautology, for example β1 = ∃x.x ≤ x,
and z1 = k.

For ψ = β ? ψ1 : ψ2 we assume that the lemma is true for ψ1 with β
(1)
1 , . . . , β

(1)
n1

and z
(1)
1 , . . . , z

(1)
n1 and for ψ2 with β

(2)
1 , . . . , β

(2)
n2 and z

(2)
1 , . . . , z

(2)
n2 . Then for ψ we choose

β1, . . . , βn1+n2 and z1, . . . , zn1+n2 as follows. For i ∈ {1, . . . , n1} we set βi = β ∧ β(1)
i and

zi = z
(1)
i and for i ∈ {1, . . . , n2} we set βn1+i = ¬β ∧ β(2)

i and zn1+i = z
(2)
i . J

I Lemma 19. Let ζ be an x-summing formula and V ⊇ Free(ζ). Then there are MSO
formulas β1, . . . , βn and formulas ζ1, . . . , ζn with ζi =

⊕x,Yi y.ψi for some almost Boolean
formula ψi such that Free(ζ) =

⋃n
i=1 Free(βi)∪Free(ζi), for i 6= j we have LV(βi)∩LV(βj) = ∅,

for (w, ρ) ∈ NV we have JζKV(w, ρ) = JζiKV(w, ρ) if and only if (w, ρ) ∈ LV(βi) and if
(w, ρ) /∈

⋃n
i=1 LV(βi) then JζK(w, ρ) = 1. We can assume the variables Yi to be pairwise

distinct.

I Theorem 20. Let ζ be an x-summing formula. Then JValx.ζK is MC-recognizable.

Proof (sketch). We adapt and expand an idea from [9]. Let β1, . . . , βn and ζ1, . . . , ζn be
the formulas we can find for ζ according to Lemma 19. We write ζi =

⊕x,Yi y.ψi. Then
for each i ∈ {1, . . . , n}, let βi1, . . . , βini and zi1, . . . , zini be the formulas and weights we can
find for ψi according to Lemma 18.

The proof idea is as follows. For V = Free(Valx.ζ), the mapping JValx.ζK assigns values
to words from Σω

V . Consider (w, ρ) ∈ Σω
V . We can interpret each ζi as a counter which

is stopped and then restarted at the k-th letter of w depending on whether (w, ρ[x → k])
satisfies βi. As our automata cannot stop and start a single counter at the same time, each
counter i will correspond to two counters i and i′ in the automaton we construct. The
computations of counter i depend on βi1, . . . , βini . We extend the alphabet ΣV by adding
two entries for each counter to each letter in ΣV . The entries for counter i can contain an
s to indicate the start of the counter, a t to indicate a stop, a number j ∈ {1, . . . , ni} to
indicate that the counter is active and should add zij to its current value, or a ⊥ to indicate
that the counter is inactive. Let Σ̃V be this new alphabet. We show that we can define an
ω-recognizable language L over Σ̃V which has all information about the counter operations
encoded in the word. For example, if (w, ρ[x → k]) |= βi, then in the word (w, ρ, v) ∈ Σ̃ωV
corresponding to (w, ρ) the entry for counter i in the k-th letter should contain an s. Then
if (w, ρ[x→ k, y → k + 1]) |= βij , the i-entry of the k + 1-th letter should contain a j. The
precise formulation of this is involved.

When we have shown that the language L is recognizable, we can construct a deterministic
Muller automaton Ã which recognizes L. Turning Ã into an MMCA and applying a projection,
we finally obtain the recognizability of JValx.ζK. J

This concludes our induction, and thus the proof of Theorem 13.

6 Conclusion

We introduced a new logic which is expressively equivalent to Quantitative Monitor Automata.
Since our proofs are constructive, we immediately obtain the possibility to reduce the
satisfiability and equivalence problems of our logic to the emptiness and equivalence problems
of Quantitative Monitor Automata. Future work could therefore focus on the investigation
of this automaton model, and on the related model of Nested Weighted Automata [3].

E. Paul 14:13

References
1 J. Richard Büchi. Weak second-order arithmetic and finite automata. Z. Math. Logik und

Grundl. Math., 6:66–92, 1960.
2 Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Quantitative languages.

In Michael Kaminski and Simone Martini, editors, Proc. CSL, volume 5213 of LNCS, pages
385–400. Springer, 2008.

3 Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop. Nested weighted automata.
In Proc. LICS, pages 725–737, 2015.

4 Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop. Quantitative monitor auto-
mata. In Xavier Rival, editor, Proc. SAS, volume 9837 of LNCS. Springer, 2016.

5 Manfred Droste and Stefan Dück. Weighted automata and logics on graphs. In Giuseppe F.
Italiano, Giovanni Pighizzini, and Donald T. Sannella, editors, Proc. MFCS, volume 9234
of LNCS, pages 192–204. Springer, 2015.

6 Manfred Droste and Paul Gastin. Weighted automata and weighted logics. Theor. Comput.
Sci., 380:69–86, 2007.

7 Manfred Droste, Werner Kuich, and Heiko Vogler, editors. Handbook of Weighted Automata.
Monogr. Theoret. Comput. Sci. EATCS Ser. Springer, 2009.

8 Manfred Droste and Ingmar Meinecke. Weighted automata and weighted MSO logics for
average and long-time behaviors. Inform. Comput., 220–221:44–59, 2012.

9 Manfred Droste and George Rahonis. Weighted automata and weighted logics on infinite
words. In Proc. DLT, volume 4036 of LNCS, pages 49–58. Springer, 2006.

10 Calvin C. Elgot. Decision problems of finite automata design and related arithmetics. Trans.
Am. Math. Soc., 98(1):21–51, 1961.

11 Zoltán Ésik and Werner Kuich. A semiring-semimodule generalization of ω-regular lan-
guages I. Journal of Automata, Languages and Combinatorics, 10(2/3):203–242, 2005.

12 Zoltán Ésik and Werner Kuich. A semiring-semimodule generalization of ω-regular lan-
guages II. Journal of Automata, Languages and Combinatorics, 10(2/3):243–264, 2005.

13 Ina Fichtner. Weighted picture automata and weighted logics. Theor. Comput. Syst.,
48(1):48–78, 2011.

14 Christian Mathissen. Weighted logics for nested words and algebraic formal power series.
In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólf-
sdóttir, and Igor Walukiewicz, editors, Proc. ICALP, volume 5126 of LNCS, pages 221–232.
Springer, 2008.

15 Wolfgang Thomas. Automata on infinite objects. In Jan van Leeuwen, editor, Handbook
of Theoretical Computer Science (Vol. B), pages 133–191. Elsevier Science, 1990.

16 Wolfgang Thomas. Languages, automata, and logic. In Grzegorz Rozenberg and Arto
Salomaa, editors, Handbook of Formal Languages (Vol. 3), pages 389–455. Springer, 1997.

17 Boris Avraamovich Trakhtenbrot. Finite automata and logic of monadic predicates. Doklady
Akademii Nauk SSSR, 140:326–329, 1961. In Russian.

MFCS 2017

The Complexity of Quantum Disjointness∗

Hartmut Klauck

Centre for Quantum Technologies and Nanyang Technological University,
Singapore
hklauck@gmail.com

Abstract
We introduce the communication problem QNDISJ, short for Quantum (Unique) Non-Disjoint-
ness, and study its complexity under different modes of communication complexity. The main
motivation for the problem is that it is a candidate for the separation of the quantum commu-
nication complexity classes QMA and QCMA. The problem generalizes the Vector-in-Subspace
and Non-Disjointness problems. We give tight bounds for the QMA, quantum, randomized com-
munication complexities of the problem. We show polynomially related upper and lower bounds
for the MA complexity. We also show an upper bound for QCMA protocols, and show that the
bound is tight for a natural class of QCMA protocols for the problem. The latter lower bound
is based on a geometric lemma, that states that every subset of the n-dimensional sphere of
measure 2−p must contain an ortho-normal set of points of size Ω(n/p).

We also study a “small-spaces“ version of the problem, and give upper and lower bounds for
its randomized complexity that show that the QNDISJ problem is harder than Non-disjointness
for randomized protocols. Interestingly, for quantum modes the complexity depends only on the
dimension of the smaller space, whereas for classical modes the dimension of the larger space
matters.

1998 ACM Subject Classification F.1.2 Modes of Computation, F.1.3 Complexity Measures and
Classes

Keywords and phrases Communication Complexity, Quantum Proof Systems

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.15

1 Introduction

Communication complexity [30, 23] is a central area in computational complexity and the
source of many lower bounds for other computational (nonuniform) models. Because of this
much of the research in communication complexity is focused on lower bounds. Most of these
lower bound applications employ the lower bound to the Disjointness problem shown by
Kalyanasundaram and Schnitger [14] (see also [26, 7] for simpler proofs), or, in the quantum
case the lower bound by Razborov [27] (see also [28]).

The present paper is mainly motivated by the following open problem. The complexity
class QMA (in the Turing machine world) is the quantum analogue of NP (or rather of
MA), namely the class of problems, that can be verified efficiently given a (non-interactive)
quantum proof (by a quantum verifier). Similarly, QCMA is the class of problems where a
classical proof can be verified efficiently by a quantum verifier. Obviously, the relationship
between the two classes is highly interesting. This relates to the problem of whether more

∗ This work is funded by the Singapore Ministry of Education (partly through the Academic Research
Fund Tier 3 MOE2012-T3-1-009) and by the Singapore National Research Foundation. Also supported
by Majulab UMI 3654.

© Hartmut Klauck;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 15; pp. 15:1–15:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

15:2 The Complexity of Quantum Disjointness

information can be present in a quantum state than in a classical state (of the same size), in
this case based on the capacity to function as a proof. This problem was first suggested by
Aharonov and Naveh [5].

Aharonov and Naveh have conjectured that QCMA = QMA, because the local Hamilto-
nian problem is complete for QMA (Turing machine model, [15]), and hence in some sense
only a constant number of qubits in a quantum proof need to be touched by the verifier at
once, so only localized entanglement seems necessary. Nevertheless such a result has not
been established since. On the other hand, obviously we are far away from proving such
separations as QCMA 6= QMA for the Turing machine model (one implication would be
P 6= PSPACE). Aaronson and Kuperberg [3] have shown a separation of the classes relative
to a quantum oracle, a result that does not imply the usual relativization obstacle to showing
that the classes are equal. It remains open whether QCMA 6= QMA relative to some classi-
cal oracle (which would imply that anyone who wants to show that QMA = QCMA must
use non-relativizing techniques). Aaronson and Wigderson [4] have proposed the stronger
algebrization obstacle to showing complexity theoretic results, and give many examples of
such results requiring non-algebrizing techniques. One of their methods is to use separations
of complexity classes in communication complexity (see [6]) in order to show algebrization
separations. This motivates trying to separate QCMA and QMA in communication com-
plexity (besides the power of quantum proofs being interesting in any model). The main
reason why this is preferable over trying to solve the (usually easier) separation in the query
complexity model (which would give an oracle separation) is that we have a proper candidate
problem for the separation, namely the problem Linear-Space-Distance (LSD) introduced
by Raz and Shpilka [25], who show that LSD is QMA-complete (for the communication
complexity model).

Due the QMA-completeness of LSD, if there is a separation of QMA from QCMA (in
communication complexity), then there is one using LSD. However, the problem is awkward
in the sense that the 1-inputs (resp. the 0-inputs) do not form a manifold. This complicates
reasoning about the problem, which is of a geometrical nature, and is best studied in its non-
discretized version. We propose a subproblem of LSD that has the following nice properties:
its input sets are Riemannian manifolds and there are nontrivial protocols for various modes
of communication for the problem, exhibiting limits on lower bounds that can be shown,
guiding our intuition.

The problem we propose is called Quantum (Unique) Non-Disjointness (short QNDISJ).
Informally, the 0-inputs of QNDISJ are pairs (WA,WB) of subspaces of Rn that are orthogonal
to each other, while the 1-inputs are pairs such that WA ∩WB has dimension 1, and the
spaces are orthogonal outside of their intersection.

We view QNDISJ as a natural quantum analogue of the Disjointness problem. This works
as follows: For a fixed ortho-normal basis of Rn a subset x ⊆ {1, . . . , n} can be identified
with a subspace (by taking the span of the basis vectors indexed by x). Hence, if Alice and
Bob have sets of size s, t respectively that are disjoint, then their inputs correspond to two
orthogonal subspaces, i.e., a 0-inputs of QNDISJ. If the sets intersect on 1 element, then
the two subspaces have a 1-dimensional intersection, and they are (also) a 1-input. The
difference between (the complement) of Disjointness and QNDISJ is then that there is no
fixed basis for the latter problem, but rather that Alice and Bob know their own subspaces,
but no good basis of the whole space, in which the intersecting (unit) vector is a basis vector.

Another problem of which QNDISJ is a generalization is the Vector-in-Subspace problem
[22, 24, 16], which is the same problem, only that Alice has a 1-dimensional subspace, and
Bob an n/2-dimensional subspace. For this problem Klartag and Regev give a Ω(n1/3) lower

H. Klauck 15:3

bound on the randomized communication complexity and Raz gives a randomized O(
√
n)

upper bound, with the upper bound likely tight. The quantum complexity of this problem is
O(logn).

We explore the communication complexity of QNDISJ for the following modes of commu-
nication: QMA, QCMA, MA, randomized, quantum. We also consider the version of the
problem, where the dimensions of the subspaces are s, t with s ≤ t ≤ n/2. We give (almost)
matching upper and lower bounds for randomized, quantum, QMA-protocols in the case
s = t = n/4. We give non-trivial bounds for smaller spaces as well (see the table later on).
One interesting conclusion is that for the quantum modes (Q, QCMA, QMA) the complexity
depends (up to small factors) only on s, the dimension of the smaller space, whereas for the
classical modes (R, MA) the complexity of the larger space matters. We also give a lower
bound for QCMA protocols for QNDISJ under a restriction on the protocols. This restriction
is that the proof (sent by Merlin, who sees both subspaces) depends on the intersection of
the subspaces only (and can hence be viewed as an (arbitrary) subset of the sphere). We
prove a geometric lemma about large subsets of the sphere that allows us to reduce a smaller
instance of Disjointness to the “leftover” problem of QNDISJ, once one of the classical proofs
is fixed (namely the problem of accepting all 1-inputs for which this proof is good, while
rejecting all 0-inputs).

Our restriction seems natural, because it is difficult to imagine how other information
from Merlin could be useful to Alice (who knows her space, just not the intersection) or
Bob. So our conditional bound can be seen as some evidence that quantum proofs are
really more powerful than classical proofs. We note that a separation between QMA- and
QCMA-communication complexity in the one-way model is known [21], but that result has
no bearing on algebrization and the analogous problem for Turing machines.

2 Organization of the Paper

This is an extended abstract. In the next section we give a formal definition of QNDISJs,t.
In Section 4 we have a table describing our results and define the property under which our
conditional QCMA lower bound holds. In Section 5 we have preliminaries, and in Section 6
a rough overview of our main techniques. See the full paper for more formal statements and
for proofs.

3 Definition of the Problem

Denote by Sn−1 = {x ∈ Rn : ||x|| = 1} the sphere. The Grassmannian is Gn,m = {V : V ⊆
Rn and V is an m-dimensional subspace}. We define our main problem on two manifolds.
Throughout the paper we will fix n as the dimension of the underlying space when talking
about our problem. s, t are the dimensions of Alice’s and Bob’s subspace and we will always
have s ≤ t ≤ n/2.

I Definition 1. The orthogonal manifold Os,t is the set of pairs of subspaces WA,WB , where
WA is an s-dimensional subspace of Rn, WB a t-dimensional subspace of Rn, and WA ⊥WB .

I Definition 2. The intersection manifold Is,t is the set of pairs of subspaces WA,WB,
where WB is an s-dimensional subspace of Rn, WB a t-dimensional subspace of Rn, and
WA,WB intersect in a 1-dimensional subspace spanned by some vector z. Furthermore
(WA ∩ z⊥) ⊥ (WB ∩ z⊥).

MFCS 2017

15:4 The Complexity of Quantum Disjointness

Table 1 Complexity of QNDISJs,t for s ≤ t.

Mode Upper Bound Lower Bound
QMA O(log n) Ω(

√
log t) 1)

R O(min{s
√

t, n log n}) Ω(s(t/s)1/3)
Q O(

√
s log n) Ω(

√
s)

MA O(
√

s
√

t) Ω(t1/6)
QCMA O(s1/3 log n) Ω(s1/3) (*)

1) The lower bound becomes Ω(log t), if Alice and
Bob do not share entanglement.

(*) This lower bound is conditional on assumption
(*) about protocols (see below).

I Definition 3. The problem QNDISJs,t is a partial function. The set of 1-inputs is Is,t.
The set of 0-inputs is Os,t. For all other pairs of subspaces the function is undefined.

When we don’t indicate s, t, then s = t = n
4 . We leave n, the dimension of the underlying

space, implicit.

To provide some insight as to the name of the problem, consider Razborov’s hard
distribution for the Disjointness problem [26]: disjoint inputs are disjoint pairs of sets of
size n/4, intersecting inputs are pairs of sets of size n/4 that have intersection size 1. If
we fix an ortho-normal basis of Rn, we can view each set as picking n/4 basis vectors and
hence consider Alice and Bob’s inputs as subspaces of dimension n/4. The subspaces are
orthogonal for disjoint sets and are in the intersection manifold for intersecting inputs.

The difference between Non-disjointness and QNDISJ is that Alice and Bob do not
know a good basis for the whole space. Alice knows her space, and she can find a basis for
her space, but the intersecting vector is a basis vector only in a hidden basis neither she nor
Bob know. The situation is as if someone would take the Non-disjointness example above,
and apply a secret unitary transformation to the bases of the subspaces, and then only hand
the transformed basis of WA to Alice and only the transformed basis of WB to Bob.

The Vector-in-Subspace problem is QNDISJ1,n/2. Similar to the reduction from Non-
Disjointness above, there is a reduction from INDEXn (see Section 5.1) to this problem.
Furthermore note that QNDISJ1,1 is a somewhat natural real version of the Equality
problem.

We don’t explicitly consider discretized versions of QNDISJ in this paper. Obviously one
can easily encode an approximation of the problem by providing Alice and Bob with a basis
of their subspaces rounded to precision 1/poly(n).

4 Results

Our results concerning the communication complexity of QNDISJs,t are collected in the
following table. Alice receives the s-dimensional subspace, Bob the t-dimensional subspace,
and s ≤ t. The bounds for QMA, Q, R are tight up to logarithmic factors in the case
s = t = n/4. Note that unless mentioned, we allow entanglement shared by Alice and Bob
for the lower bounds (but don’t use entanglement in our protocols).

We now explain the lower bound for QCMA protocols which holds under a certain
assumption on the protocols. It is natural to assume that the prover should send information
about the intersection to one of the players. The intersection (in the case of a 1-input) is a
1-dimensional subspace, and hence the prover should probably send some information about

H. Klauck 15:5

the (normalized) vector that spans it. A message from the prover would then correspond to
a subset of the unit sphere, e.g. could be a spherical cap (or something else).

Our assumption about Merlin’s proof is hence that the prover sends messages that
correspond to subsets P of the unit sphere. All 1-inputs, where WA ∩WB ∈ P should be
accepted on such a proof with high probability.

What this means is that the prover communicates arbitrary information about the
intersection, but nothing more. One more point is: which sphere? There are 3 possibilities:
the sphere in Rn, the sphere in WA, and the sphere in WB . Each of these is fine regarding
our assumption. Indeed in the case of s = t = n/4 this difference does not matter much. For
smaller spaces it is more convenient to use the sphere in WA (assuming that Merlin sends
his message to Alice).

We now make the assumption formal. in a QCMA-protocol the prover Merlin sends a
classical message (the proof) to Alice, after which Alice and Bob verify the proof, using
quantum communication. See Section 5.1 for the definition. We can identify Merlin’s proof
message with the subset of 1-inputs, which will be accepted with probability at least 2/3 by
the verifier(s) when given this proof. So besides the actual message, we also refer to said
subset of the 1-inputs as a proof. Hence, with a proof length of p we get a set of at most 2p
proofs that cover the set of 1-inputs. In particular, under any given distribution, the average
proof must have measure at least 2−p on the 1-inputs. For QNDISJ, the set of 1-inputs is
the intersection manifold In/4,n/4.

A proof that satisfies our assumption also corresponds to a subset of the sphere Sn−1.

I Definition 4. A subset P ′ of the intersection manifold In/4,n/4 is called intersectional, if
there is a subset P ⊆ Sn−1 such that P ′ = {(WA,WB) : (WA,WB) ∈ In/4,n/4 and (WA ∩
WB) is spanned by some z ∈ P}.

I Definition 5. A QCMA-protocol for a function f satisfies assumption (*), if it is a valid
QCMA protocol, and if there is a strategy for Merlin, in which he can convince Alice and
Bob to accept with probability at least 2/3 for every 1-input by using intersectional proofs
only.

5 Preliminaries

5.1 Communication Complexity
We assume familiarity with the standard modes of communication complexity, and use R(f)
to denote the randomized communication complexity (for simplicity we choose public coin
randomness), and Q(f) to denote the (entanglement assisted) quantum communication
complexity, with error 1/3 in each case. For details we refer to [29].

Proof systems have been introduced into communication complexity in [6], and studied
further in e.g. [18, 25, 1, 4, 19, 20, 10, 12]. We now define the main models involving a prover
that we use.

I Definition 6. In a Merlin Arthur protocol a prover (Merlin) sends a string to Alice, who
then communicates with Bob. Merlin sees both inputs x, y while Alice sees only x and Bob
only y. The goal is to compute a Boolean function f(x, y). Alice and Bob have shared
randomness that is invisible to Merlin. Such a protocol is sound, if all 0-inputs are accepted
with probability at most 1/3 given any message of Merlin, and complete, if all 1-inputs are
accepted with probability at least 2/3 for some message of Merlin.

The cost of the protocol is the total communication length used, in the worst case,
i.e., the total length of the messages sent by Merlin, Alice and Bob. The Merlin Arthur

MFCS 2017

15:6 The Complexity of Quantum Disjointness

communication complexity of f is the minimum complexity over all sound and complete
protocols for f . It is denoted by MA(f).

If we fix the proof length to some parameter p, then it is natural to only count the length
of the communication among Alice and Bob. We denote the MA complexity with fixed proof
length p by MAp(f).

It is easy to see that for all f : {0, 1}n × {0, 1}n → {0, 1} we have MAn(f) = O(1). One
can also establish easily by a counting argument that for most such f we haveMA(f) = Θ(n).
It is open to prove a larger lower bound than Ω(

√
n) for any explicit function.

We now turn to quantum versions of this model.

I Definition 7. In a QCMA protocol Merlin sends a classical message to Alice, while Alice
and Bob can communicate using quantum messages and may hold parts of an arbitrary
entangled state (not accessible by Merlin). The remaining description is as for MA-protocols.
The QCMA-complexity of f is denoted by QCMA(f). If we restrict the length of the proof
to p, then we count only the length of the communication between Alice and Bob. The
corresponding complexity measure is denoted by QCMAp(f).

In a QMA protocol Merlin may send a quantum message to Alice. Otherwise the definition
is as above. The notations are QMA(f) and QMAp(f).

Finally, we consider the model where Merlin, Alice, Bob additionally share a classical
public coin. Merlin then sends a quantum message to Alice, and Alice and Bob communicate
with quantum messages (but have no shared entanglement). This can be called Arthur
Quantum Merlin Arthur, because the shared public coin could be seen as a challenge to
Merlin. The complexity is denoted AQMA(f).

We define AQMA protocols because we can precisely capture the complexity of
QNDISJs,t in this model (see the full paper, the bound is Θ(log t).

Besides the problem QNDISJs,t, and Vector-in-Subspace= QNDISJ1,n/2 we also con-
sider the following problems:

I Definition 8. The disjointness problem DISJs,t, or short DISJ in case s = t = n/4, is the
problem where Alice gets x ∈ {0, 1}n, Bob gets y ∈ {0, 1}n, and they should accept if and
only if ∨i(xi ∧ yi) = 0 (and we have |x| = s and |y| = t). The complement of this problem is
NDISJ.

In the problem INDEXn Alice receives x ∈ {0, 1}n, Bob receives i ∈ [n], and the required
output is xi. This is (more or less) equivalent to NDISJn/2,1.

In the problem IPn Alice and Bob receive x, y ∈ {0, 1}n, and the required output is⊕
i xi ∧ yi.

One of the main techniques of quantum computing is amplitude amplification, a general-
ization of Grover search [8, 13].

I Fact 9. Suppose we are given a quantum protocol that, depending on the input x, y, either
accepts with probability δ, or never accepts, with communication c, and hence computes a
function f(x, y) with large, but one-sided error.

Then there is a quantum protocol for f with communication O(
√

1/δ · c) and constant
(one-sided) error.

I Definition 10. A reduction from a problem f : X × Y → {0, 1} to a problem g : U × V →
{0, 1} consists of two mappings ρ : X → U and τ : Y → V such that

g(ρ(x), τ(y)) = f(x, y) for all x, y.

H. Klauck 15:7

Clearly, when there is a reduction from f to g, then for every mode of communication
complexity g is at least as hard as f , because Alice and Bob can perform arbitrary local
computations for free.

Finally, we note that by standard techniques we may assume that all amplitudes in all
our quantum protocols are real.

5.2 Spherical Caps
Let Sn−1 denote the (n− 1)-dimensional sphere (i.e., the set of unit vectors in Rn). By µ we
usually denote the uniform distribution on a manifold, i.e., the Haar measure. A spherical
cap centered on a unit vector c is the set Ccε = {w ∈ Sn−1 : 〈v, c〉 ≥ ε}, where we leave n
implicit and ε ≥ 0. If we care only about the area or measure of a cap, we drop the center c,
because the caps are isomorphic to each other.

We are interested in the measure µ(Cε). For this we should know the area of both
the sphere and a spherical cap. Let An−1 denote the area of Sn−1. An explicit formula
is An−1 = 2π

n
2

Γ(n
2) . This is maximized (over integers) at n = 7. It can be shown that

An−2/An−1 ≥
√
n

4 for all n ≥ 2.
Next we state upper and lower bounds on the area or measure of a cap Cε in Sn−1.

I Lemma 11. Let ε ≤ 1/2.
1. The measure µ(Cε) is at most e−nε2/2.
2. The area of Cε is at least An−2e

−nε2
/(8nε).

3. µ(Cε) ≥ e−nε
2
/(32ε

√
n).

4. If v ∈ Sn−1 is a fixed vector, and w is randomly drawn from Sn−1 under µ, then the
probability that 〈v, w〉2 ≥ k

n is ≤ 2e−k/2 and ≥ e−k/(16
√
k) for all 1 ≤ k ≤ n/4.

5.3 Concentration of Measure
We now consider projecting random unit vectors on larger subspaces. Unsurprisingly, the
larger the subspace gets, the better the concentration of measure is. First note, that when
a random unit vector from Rn is projected onto a fixed subspace of dimension t, then the
expected squared projection length is t/n. The following bounds can be found in [11].

I Fact 12. Let v be a uniformly random vector from Sn−1, W a fixed t-dimensional subspace
of Rn, and L denote ||ProjW v||2.
1. For 0 < β < 1 : Prob(L ≤ (1− β) tn) ≤ e−tβ2/4.
2. For 0 < β < 1 : Prob(L ≥ (1 + β) tn) ≤ e−tβ2/8.

We also state a version of the Johnson-Lindenstrauss Theorem, for inner products, see
[11].

I Fact 13. Let 0 < ε < 0.5, n,m > 0 integers and k such that k ≥ 64/ε2 · lnm. Then for
any set {v1, . . . vm} ⊆ Rn ∩ Sn−1 a random projection g : Rn → Rk plus re-normalization
(together a mapping f) has the property that for all i, j

〈vi|vj〉 − ε ≤ 〈f(vi)|f(vj)〉 ≤ 〈vi|vg〉+ ε.

5.4 Sampling by Equators
This is the core technical result from [16].

MFCS 2017

15:8 The Complexity of Quantum Disjointness

I Fact 14. Let A ⊆ Sn−1 be a set of measure µ(A) ≥ 2−p. Let v ∈ Sn−1 be a uniformly
random vector from the unit sphere, and v⊥ ⊆ Rn the corresponding uniformly random
subspace of dimension n− 1 orthogonal to v. For any p+1

n < k < 1 we have

Prob[|µv⊥(v⊥ ∩A)
2−p − 1| ≥ k] ≤ e−γnk/(p+1),

where γ > 0 is a constant, and µv⊥ is the uniform measure on Sn−1 ∩ v⊥.

5.5 Nets on the Sphere
A reasonable short proof of intersection for QNDISJ is the nearest center (to the intersection)
of a cap in an ε-net consisting of spherical caps on the sphere. For us ε (usually the maximum
distance between any vector and the nearest cap center) will be much larger than in the
standard literature about ε-nets, i.e., ε will be close to

√
2. Therefore we prefer to simply call

a set of vectors such that the union of caps around them covers the sphere a net. For the
matter of quantum measurements, one can also allow the union of caps and corresponding
anti-caps as elements of a net. An anti-cap is simple the set {−v : v ∈ Ccε}. Recall that
for Cε we use the inner product between the cap center and the vectors in the cap as the
defining closeness parameter.

I Lemma 15. For 1 ≤ p ≤ n/4 there is a set M of 20e2pn2 vectors such that for every
vector v ∈ Sn−1 there is a vector w ∈M with 〈v, w〉2 ≥ p

n .

6 Techniques

Here we briefly sketch the main ideas in the paper.

6.1 QMA
There is a simple protocol with complexity O(logn): For a 1-input (WA,WB) Merlin sends
a unit vector in the intersection WA ∩WB as a quantum state to Alice. Alice measures this
with an observable containing WA. If the measurement does not yield WA as the result, she
rejects. Otherwise she sends the measured state to Bob, who measures with an observable
containing WB , and accepts iff the result is WB .

We explore lower bounds, and are able to show a lower bound of Ω(
√

log t) via a reduction
from the inner product function IPlog t to QNDISJ1,t. We can get rid of the square root if
we don’t allow entanglement between Alice and Bob via a reduction from a random function
f : {0, 1}m × {0, 1}m → {0, 1} for m = log t together with a proof that QMA(f) is Θ(m)
with high probability.

The log t upper bound is tight, if we allow a public coin to be shared by Alice, Bob, and
Merlin. This holds via dimension reduction with the Johnson-Lindenstrauss Theorem (Fact
13). Without the public coin it remains open whether there is a better upper bound than
logn. For very small s, t we can use the randomized protocol (described below) to beat this
bound.

6.2 Randomized
For s = t = n/4 the complexity is Θ̃(n), with the lower bound inherited from the standard
disjointness problem DISJ and the upper bound by Alice sending a uniformly random unit

H. Klauck 15:9

vector v ∈ WA ∩ Sn−1 encoded with additive error 1/poly(n) for each position. Bob then
checks if this vector has projection ≈ 4/n or only 1/poly(n) onto WB .

For smaller s ≤ t things become interesting. We give a protocol of complexity O(s
√
t)

extending the protocol of [24] for the Vector-in-Subspace problem. In that protocol one tries
to communicate a vector by using a public coin containing a lot of random unit vectors,
and indicating which of them has the largest inner product with the vector one tries to
communicate.

The extension is to do this for vectors that have a small overlap with the desired vector
only, and to the case of differently sized spaces. This extension is like trying to run the
mentioned protocol twice, and a careful analysis is needed using concentration of measure on
the sphere and for random projections on subspaces. Basically, Alice has a vector with a
given projection onto Bob’s space, and tries to communicate the overlap, by pointing out the
random vector (in the public coin) that has the best overlap with her vector. For the part of
her vector that is in Bob’s space to be ‘visible’ it must be larger than the ‘noise’, namely the
usual deviation of a random vector from its expected projection onto the space. Furthermore
it is also important for larger values of s, t to communicate the inner product between her
vector and the chosen random vector, because otherwise the noise makes the signal useless.
We note that for s

√
t ≥ n logn our protocol becomes useless.

We also show a lower bound. This builds on the lower bound for the Vector-in-Subspace
problem in [16]. The idea is to use a direct sum argument. The conditional external
information cost [7] has a direct sum property for the OR of s instances of a problem. It is
easy to embed an OR of s instances of QNDISJ1,t/s into one instance of QNDISJs,t. We
then extend the result of [16] about QNDISJ1,n/2 to conditional external information cost.
Originally, this result uses the rectangle/corruption bound. The difficulty is that for the
direct sum argument we must lower bound the conditional information cost. For this we
define a partition (a random subspace V of dimension n/3 is drawn, thenWA ∈ Sn−1∩V and
WB ⊆ V ⊥ are chosen randomly and independently). We then have to bound the information
cost conditioned on V .

Overall we get a lower bond of Ω(s(t/s)1/3). This approach might be improved to Ω(
√
st)

by improving the lower bound for QNDISJ1,t.
We note some special cases in the following corollary.

I Corollary 16.
1. R(QNDISJ) is between Ω(n) and O(n logn).
2. R(QNDISJ√n,n/2) is between Ω(n2/3) and O(n).
3. R(QNDISJ√n,√n) is between Ω(n1/2) and O(n3/4).
4. R(QNDISJO(1),O(1)) is Θ(1).

6.3 Quantum
The upper bound O(

√
s logn) is by amplitude amplification (see Fact 9): if Alice sends the

uniform superposition over a basis of her space WA to Bob, who measures with an observable
containing WB as an element, then for 1-inputs the probability of acceptance is 1/s. Note
that for 0-inputs this protocol never accepts.

The lower bound of Ω(
√
s) is by reduction from the classical disjointness problem DISJ

and Razborov’s lower bound for the latter [27].
It remains open, whether the log-factor can be shaved off of the upper bound (compare [2]).
The protocol in our upper bound uses many rounds. Round-dependant lower bounds

can be derived from the corresponding Disjointness lower bounds, see [9]. In particular, the

MFCS 2017

15:10 The Complexity of Quantum Disjointness

one-way quantum complexity of QNDISJs,t (Alice to Bob) is Ω(s) (by a reduction from
INDEXs, see [17]).

I Theorem 17. There is a quantum protocol with k rounds (Alice starting) that computes
QNDISJs,t with communication O(s/k · logn) as long as k ≤

√
s. The protocol is optimal

up to poly-logarithmic factors.

Proof. The lower bound is by reduction from Disjointness and the main result in [9]. For
the upper bounds we use amplitude amplification on the following protocol: Alice sends s/k2

copies of the state used in our quantum protocol above. Bob measures those copies, and
accepts with probability 1/k2. J

6.4 QCMA
We give a protocol of complexity O(s1/3 logn) in which Merlin can use caps on the sphere
are his proofs. The verification is via amplitude amplification.

Merlin and Alice agree beforehand on a net of spherical caps on the sphere in WA for all
subspaces WA of dimension s. This net has 2p centers. On a 1-input (WA,WB) Merlin sends
Alice the closest center to an intersecting unit vector in WA ∩WB from the agreed upon net.
Alice and Bob then use the same amplitude amplification protocol as in the prover-less case.
Since the cap-center is better than a uniform superposition we get a better upper bound.
The reason is that the cap center |c〉 satisfies 〈c|x〉2 ≥ p/s for the intersection |x〉, whereas a
uniform superposition |u〉 over some ortho-normal basis guarantees only 〈u|x〉2 ≥ 1/s.

I Theorem 18.
1. For all log s ≤ p ≤ s: QCMAp(QNDISJs,t) ≤ O(

√
s/p logn).

2. QCMA(QNDISJs,t) ≤ O(s1/3 logn)

We give a conditional lower bound, for protocols with property (*). Such protocols
need communication Ω(s1/3). It is enough to show that QCMA(QNDISJ) = Ω(n1/3) by
padding.

The idea is that under the condition (*) an (intersectional) proof corresponds to a large
subset of the sphere, and we can then, by a new geometrical lemma, find an ortho-normal
set of size Ω(n/p) in any subset of the sphere of measure 2−p. This result can be used to
give a reduction from DISJn/p,n/p to the subfunction of QNDISJ that accepts all 1-inputs
in the proof and rejects all 0-inputs.

For this we fix one large, intersectional proof. We then have a quantum protocol that
accepts all 1-inputs in the proof, while rejecting all 0-inputs. We find our large ortho-normal
set inside the proof, and then embed the classical DISJn/p,n/p instance. The lower bound
follows via the quantum lower bound for DISJn/p,n/p [27].

This is the geometric lemma mentioned above.

I Lemma 19. Let A ⊆ Sn−1 be a set of measure at least µ(A) ≥ 2−p for o(
√
n) ≥ p ≥ ω(1).

Then A contains a set of ` = n/(40p) vectors v1, . . . , v` such the xi form an ortho-normal
system (i.e., every vi is orthogonal to the span of the other vectors).

The lower bound statement is as follows.

I Theorem 20. Under the condition (*)
1. QCMAp(QNDISJn/4,n/4) ≥ Ω(

√
n/p) for p ≤ o(

√
n).

2. QCMA(QNDISJs,t) ≥ Ω(s1/3).

H. Klauck 15:11

6.5 MA
We “Merlinize” our randomized protocol (proofs are still spherical caps as in the QCMA
case). The result is an upper bound that is the square root of the randomized upper bound.

I Theorem 21.
1. For all log s ≤ p ≤ s: MAp(QNDISJs,t) ≤ O(s

√
t/p).

2. MA(QNDISJs,t) ≤ O(
√
s
√
t).

Lower bounds for MA-communication complexity can be shown by using the rectangle bound
[18]. [16] give such a lower bound, and we get a lower bound that depends polynomially on
t. Sadly, no direct sum result is known for the rectangle bound, and our bound is simply
a lower bound for QNDISJ1,t. We note that the Grassmannian manifold is much harder
to handle than the sphere, and so going for an improved rectangle bound heads on seems
difficult.

I Fact 22. MA(QNDISJ1,t) = Ω(t1/6).

It is interesting that this lower bound depends polynomially on the dimension of the
larger subspace, whereas our QCMA upper bound depends only on the dimension of the
smaller subspace.

7 Open Problems

We list a number of interesting open problems.
1. Show an unconditional, large lower bound on QCMA(QNDISJ).
2. Give better bounds for the randomized and MA complexities of QNDISJs,t.
3. Since the randomized and MA protocols we give are one-way protocols, it might be

interesting to also get one-way lower bounds.
4. Is Q(QNDISJs,t) = O(

√
s)?

5. Our QMA upper and lower bounds are not close for small dimensional subspaces. For
instance we only know that QMA(QNDISJlogn,logn) is between

√
log logn and logn.

6. Raz and Shpilka [25] show that QMA protocols can be made one-way, but in general
only at a polynomial blowup in communication. Can a gap be shown (for instance for
Disjointness)?

7. We show that AQMA(INDEXn) ≥ Ω(logn). Larger lower bounds for any explicit
functions for even AM-complexity are wide open.

8. There is still a gap between the best lower and upper bound known for QMA(DISJ)
[20].

9. What is the QMA communication complexity (with entanglement) of a random function?
10. It would be nice if applications of our bounds could be found. Most applications of

communication complexity employ Disjointness, so it is quite likely that the ‘hidden basis”
version of the problem (in particular also the Vector-in-Subspace problem) has interesting
applications, e.g. in data-streaming.

References
1 S. Aaronson. Qma/qpoly⊆ pspace/poly: De-merlinizing quantum protocols. In Proceedings

of 21st IEEE Conference on Computational Complexity, 2006.
2 S. Aaronson and A. Ambainis. Quantum search of spatial regions. In Proceedings of 44th

IEEE FOCS, pages 200–209, 2003.

MFCS 2017

15:12 The Complexity of Quantum Disjointness

3 S. Aaronson and G. Kuperberg. Quantum versus classical proofs and advice. Theory of
Computing, 3(1):129–157, 2007.

4 S. Aaronson and A. Wigderson. Algebrization: A New Barrier in Complexity Theory. ACM
Transactions on Computation Theory, 1(1), 2009.

5 D. Aharonov and T. Naveh. Quantum np - a survey. quant-ph/0210077, 2002.
6 L. Babai, P. Frankl, and J. Simon. Complexity classes in communication complexity theory.

In Proceedings of 27th IEEE FOCS, pages 337–347, 1986.
7 Z. Bar-Yossef, T. S. Jayram, R. Kumar, and D. Sivakumar. Information theory methods

in communication complexity. In Proceedings of 17th IEEE Conference on Computational
Complexity, pages 93–102, 2002.

8 G. Brassard, P. Høyer, M. Mosca, and A. Tapp. Quantum amplitude amplification and
estimation. In Quantum Computation and Quantum Information: A Millennium Volume,
volume 305 of AMS Contemporary Mathematics Series, pages 53–74. AMS, 2002. quant-
ph/0005055.

9 M. Braverman, A. Garg, Young K.K., J. Mao, and D. Touchette. Near-optimal bounds on
bounded-round quantum communication complexity of disjointness. In IEEE 56th Annual
Symposium on Foundations of Computer Science, pages 773–791, 2015.

10 A. Chakrabarti, G. Cormode, A. McGregor, J. Thaler, and S. Venkatasubramanian. Veri-
fiable stream computation and arthur-merlin communication. In 30th Conference on Com-
putational Complexity, pages 217–243, 2015.

11 S. Dasgupta and A. Gupta. An elementary proof of a theorem of johnson and lindenstrauss.
Random Structures & Algorithms, 22(1):60–65, 2003.

12 M. Göös, T. Pitassi, and T. Watson. Zero-information protocols and unambiguity in arthur-
merlin communication. Algorithmica, 76(3):684–719, 2016.

13 L. K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings
of 28th ACM STOC, pages 212–219, 1996.

14 B. Kalyanasundaram and G. Schnitger. The probabilistic communication complexity of set
intersection. SIAM Journal on Discrete Mathematics, 5(4):545–557, 1992. Earlier version
in Structures’87.

15 A. Yu. Kitaev. Quantum NP, January 1999. Talk given at AQIP’99, DePaul University,
Chicago.

16 B. Klartag and O. Regev. Quantum one-way communication is exponentially stronger than
classical communication. In Proceedings of 43rd ACM STOC, 2011.

17 H. Klauck. On quantum and probabilistic communication: Las Vegas and one-way proto-
cols. In Proceedings of 32nd ACM STOC, pages 644–651, 2000.

18 H. Klauck. Rectangle size bounds and threshold covers in communication complexity. In
18th Annual IEEE Conference on Computational Complexity, pages 118–134, 2003.

19 H. Klauck. A strong direct product theorem for disjointness. In Proceedings of the 42nd
ACM Symposium on Theory of Computing, STOC, pages 77–86, 2010.

20 H. Klauck. On arthur merlin games in communication complexity. In Proceedings of the
26th Annual IEEE Conference on Computational Complexity, pages 189–199, 2011.

21 H. Klauck and S. Podder. Two Results about Quantum Messages. In Proceedings of MFCS,
2014.

22 I. Kremer. Quantum communication. Master’s thesis, Hebrew University, Computer Science
Department, 1995.

23 E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press,
1997.

24 R. Raz. Exponential separation of quantum and classical communication complexity. In
Proceedings of 31st ACM STOC, pages 358–367, 1999.

H. Klauck 15:13

25 R. Raz and A. Shpilka. On the power of quantum proofs. In 19th Annual IEEE Conference
on Computational Complexity, pages 260–274, 2004.

26 A. Razborov. On the distributional complexity of disjointness. Theoretical Computer
Science, 106(2):385–390, 1992.

27 A. Razborov. Quantum communication complexity of symmetric predicates. Izvestiya of
the Russian Academy of Sciences, mathematics, 67(1):159–176, 2003. quant-ph/0204025.

28 A. Sherstov. The pattern matrix method for lower bounds on quantum communication. In
Proceedings of 40th ACM STOC, pages 85–94, 2008.

29 R. de Wolf. Quantum communication and complexity. Theoretical Computer Science,
287(1):337–353, 2002.

30 A. C-C. Yao. Some complexity questions related to distributive computing. In Proceedings
of 11th ACM STOC, pages 209–213, 1979.

MFCS 2017

Smoothed and Average-Case Approximation
Ratios of Mechanisms: Beyond the Worst-Case
Analysis∗

Xiaotie Deng1, Yansong Gao2, and Jie Zhang†3

1 Shanghai Jiao Tong University, China
deng-xt@cs.sjtu.edu.cn

2 Shanghai Jiao Tong University, China
799@sjtu.edu.cn

3 University of Southampton, United Kingdom
jie.zhang@soton.ac.uk

Abstract
The approximation ratio has become one of the dominant measures in mechanism design problems.
In light of analysis of algorithms, we define the smoothed approximation ratio to compare the
performance of the optimal mechanism and a truthful mechanism when the inputs are subject
to random perturbations of the worst-case inputs, and define the average-case approximation
ratio to compare the performance of these two mechanisms when the inputs follow a distribution.
For the one-sided matching problem, Filos-Ratsikas et al. [21] show that, amongst all truthful
mechanisms, random priority achieves the tight approximation ratio bound of Θ(

√
n). We prove

that, despite of this worst-case bound, random priority has a constant smoothed approximation
ratio. This is, to our limited knowledge, the first work that asymptotically differentiates the
smoothed approximation ratio from the worst-case approximation ratio for mechanism design
problems. For the average-case, we show that our approximation ratio can be improved to
1 + e. These results partially explain why random priority has been successfully used in practice,
although in the worst case the optimal social welfare is Θ(

√
n) times of what random priority

achieves. These results also pave the way for further studies of smoothed and average-case
analysis for approximate mechanism design problems, beyond the worst-case analysis.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases Mechanism Design, Approximation Ratio, Smoothed Analysis, Average-
case Analysis

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.16

1 Introduction

Algorithmic mechanism design [35, 36] deals with optimization problems where the input
is provided by self-interested agents that participate in the mechanism by reporting their
private information. If it best serves their purpose, they might have incentives to report
false information. The goal of the designer is to motivate agents to always report truthfully.
At the same time, the mechanism designer aims to optimize some objective function over

∗ Research results reported in this work are partially supported by the National Natural Science Foundation
of China (Grant No.61632017).

† Part of this work was done when Jie Zhang was at the University of Oxford and was visiting Shanghai
Jiao Tong University. Jie Zhang was supported by the ERC Advanced Grant 321171 (ALGAME).

© Xiaotie Deng, Yansong Gao, and Jie Zhang;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 16; pp. 16:1–16:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.16
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

16:2 Smoothed and Average-Case Approximation Ratios of Mechanisms

the agents’ reports, subject to a polynomial-time implementability constraint. Examples
of applications include scheduling problems [17, 28, 29], facility location problems [22, 39],
kidney exchange problems [6], assignment problems [19], one-sided matching [21], resource
allocation [24], and auction design [3, 4, 26, 30, 34]. For a more detailed investigation, we
refer the reader to [37]. The canonical measure of evaluating how well a truthful mechanism
approximately optimizes the objective is the approximation ratio [39]. Given any instance,
the approximation ratio compares the performance of the optimal mechanism (which always
outputs an optimal solution but is not necessarily truthful) against the performance of a
truthful mechanism. The worst-case ratio is the largest value of this ratio, amongst all
possible inputs.

The difference of mechanism design to algorithm design is the additional constraint of
motivating agents to act truthfully in the mechanism. In algorithm design problems, in
contrast, the inputs are not controlled by rational agents, and the worst-case time complexity
is one of the dominant measures to evaluate the performance of algorithms. However, this
is a very pessimistic measure. On one hand, if it is possible to obtain a small worst-case
complexity, then it is a very strong guarantee on the performance of the algorithm no matter
what input is given. On the other hand, there are algorithms that perform well in practice
but have a high worst-case complexity bound. To address this disparity, the average-case
time complexity of an algorithm is an alternative measure to the worst-case complexity; it
measures the time complexity of the algorithm, averaged over all possible inputs when they
follow a certain distribution. The main motivation of studying average-case complexity is
that some algorithms may have to run for a high-order polynomial-time or even exponential
time in the worst case, but the input for this to happen may rarely or never occur in practice.
So instead of only focusing on unrealistic worst-case instances, researchers consider the
performance of the algorithm on average. One criticism to average-case complexity, however,
is that it requires assumptions about the distribution of inputs, and these are not guaranteed
to hold in practice. Even for the same algorithm, when it is applied to different application
areas, the real-world distribution may vary. In light of this, smoothed complexity is a hybrid
of the worst-case and average-case analysis that inherits advantages of both. Specifically, it
measures the expected performance of algorithms under slight random perturbations of the
worst-case inputs. If the smoothed complexity of an algorithm is low, then it is unlikely that
the algorithm will take a long time to solve practical instances whose data are subject to
slight noise and imprecisions. Although average-case and smoothed analysis are usually more
complex than the worst-case analysis, they provide different measures from the worst-case
complexity.

In this paper, we extend the classical worst-case approximation ratio analysis of mechan-
isms to the smoothed approximation ratio and average-case approximation ratio analysis.
Average-case approximation ratio, on average, measures the performance of a truthful mech-
anism in approximately maximizing social welfare (or minimizing social cost) against the
performance of the optimal mechanism; the smoothed approximation ratio compares the
performance of these two mechanisms when the inputs are subject to random perturbations
of worst-case inputs. Therefore, the central questions in smoothed analysis and average-case
analysis in mechanism design framework are:

Given a mechanism design problem, in case the worst-case approximation ratio is asymp-
totically large, are there any mechanisms that achieve a constant smoothed approximation
ratio and a constant average-case approximation ratio? Given a concrete mechanism for the
problem, does it have a constant smoothed approximation ratio and a constant average-case
approximation ratio?

X. Deng, Y. Gao, and J. Zhang 16:3

As a first step of extending the worst-case analysis to the smoothed and average-case
analysis in mechanism design, we study the problem of approximate social welfare maxim-
ization (without money) in the one-sided matching settings (also referred to as the house
allocation problem). These settings consider the fundamental resource allocation problem of
assigning items to agents, such that each agent receives exactly one item. It has numerous
applications, such as assigning workers to shifts, students to courses, and patients to doctor
appointments. In this problem, agents are asked to provide their preferences over items.
In game-theoretic terms, these are the agents’ von Neumann-Morgenstern utilities [49, 50].
Social welfare is the sum of all agents’ utilities. It is easy to see that agents, as self-interested
identities, have an incentive to misreport their preferences if they can benefit from this
behavior. The random priority mechanism, apart from being truthful, also satisfies the
desirable properties of anonymity and ex-post Pareto efficiency. In term of social welfare
maximization, Filos-Ratsikas et al. [21] show that amongst all truthful mechanisms, random
priority achieves the worst-case approximation ratio tight bound of Θ(

√
n). That is, random

priority can guarantee an upper bound of O(
√
n) and there is a worst-case instance on which

no mechanism can do better than Ω(
√
n). Nevertheless, the tight bound instance has a

very unique structure such that it is very unlikely to happen in practice. Therefore, we are
in great request to understand how well random priority performs on average, when the
instances are sampled from a certain distribution. How well it performs under some random
perturbations of the worst-case inputs? We address these questions in this paper.

1.1 Our contribution

To the best of our knowledge, this is the first work that asymptotically differentiates the
smoothed approximation ratio from the worst-case approximation ratio for mechanism design
problems. In particular, we show the following results:

The random priority mechanism has a constant smoothed approximation ratio.
The average-case approximation ratio of random priority is upper bounded by a constant
1 + e, when agents’ valuations are drawn from the uniform distribution U(0, 1).

Our results imply that, although in the worst-case the optimal social welfare is Θ(
√
n) times

of the social welfare attainable by random priority, under polynomial small perturbation
around the worst-case inputs and on average, random priority achieves a constant factor of
the optimal social welfare.

In [21], the tight bound examples for the worst-case approximation ratio have a unique
structure where the preferences of all agents over the items have the same ordering, and
the values are all close to either 1 or 0. From the average-case perspective, these examples
rarely happen if the valuations are independently and identically drawn from a uniform
distribution. From the smoothed analysis perspective, this unanimous ordering would break
up after any random perturbation. This is the high-level intuition behind why the smoothed
and average-case approximation ratios could be asymptotically different from the worst-case
approximation ratio.

1.2 Related work

Spielman and Teng [43, 44] first propose the methodology of smoothed analysis of algorithms
with the attempt to explain why the simplex algorithms usually run in polynomial time in
practice. They start with the shadow-vertex pivot rule and show its polynomial smoothed
complexity. Since then, smoothed analysis has been studied on a variety of different problems

MFCS 2017

16:4 Smoothed and Average-Case Approximation Ratios of Mechanisms

and algorithms, including linear programming [11, 40, 44], online and approximation al-
gorithms [9, 10, 41], searching and sorting [7, 23, 31], game theory [14, 16], local search [5, 20],
clustering and knapsack problem [32]. A comprehensive survey can be found in [45].

For average-case analysis of algorithms, different results have been obtained in, for
example, quicksort for sorting problem [18] and the simplex algorithm for solving linear
programming [13]. We refer the reader to [48] for a comprehensive survey.

In the presence of incentives, the one-sided matching problem was originally defined by
Hylland and Zeckhauser [27], and has been studied extensively ever since [12, 19, 33, 46, 51].
We refer the interested reader to surveys on this problem [2, 42]. The random priority
mechanism, also known as random serial dictatorship, has been extensively studied [1, 12, 47].
It has also been widely used in practice, for example, the supplementary round of school
student assignment mechanism in New York City, is shown to be equivalent to a random
priority mechanism [38].

In the Bayesian auction design literature [15, 25], the focus is on how well a truthful
mechanism can approximately maximize the expected revenue, when instances are taken from
the entire input space. More specifically, the dominant approach in the study of Bayesian
auction design is the ratio of expectations. One disadvantage of this approach is that it does
not directly compare the performance of the two mechanisms on specific inputs. To address
this problem, in what follows, we present a different approach, the expectation of the ratio,
and compare them in more detail.

2 Preliminaries

We study the one-sided matching problem that consists of n agents and n indivisible items.
All the agents are endowed with von Neumann - Morgenstern utilities over the items. The
VNM utility theorem states that any rational agent whose preference satisfies four axioms,
namely completeness, transitivity, continuity, and independence, is endowed with a utility
function to represent its preference. These agents report their preferences to a mediator;
based on their report, the problem is to allocate items to agents, according to a random
permutation such that every agent receives exactly one item.

In this paper, we adopt the unit-range canonical representation of agents’ valuation [8, 51].
That is, for the utility aij of agent i receiving item j, we have maxj{aij} = 1,minj{aij} = 0,
for any i ∈ [n] 1. Following this, a valuation profile (or instance) of agents’ preferences can
be represented by a matrix A = [aij]n×n, where row vector ai = (ai1, . . . , ain) indicates the
valuation of agent i’s preference. An allocation is an assignment of items to agents. We
denote an allocation by a matrix X = [xij]n×n, where xij indicates the probability of agent i
receiving item j. Given any preferences of the agents as input, a mechanism is a mapping
from the input to an allocation X as output.

We denote the set of all possible instances by A and denote the set of all possible allocation
by X . Given a mechanism M and a valuation profile A ∈ A, as well as its allocation X(A) ∈ X ,
we denote the utility of agent i by ui(X(A)) =

∑
j aijxij and denote the social welfare by

SWM(X(A)) =
∑
i ui(X(A)). When the context is clear, we drop the allocation notation and

simplely refer them by ui(A) and SWM(A). We note that there is another interpretation

1 We note here that our model would be more general and some calculations would be simpler if we drop
the constraint maxj{aij} = 1 and minj{aij} = 0, but only require that 0 ≤ aij ≤ 1, for all i, j ∈ [n].
The only reason to have such a constraint is to follow the unit-range canonical representation of agents’
valuation studied in literature.

X. Deng, Y. Gao, and J. Zhang 16:5

of our one-sided matching problem: items are divisible and xij is the fraction of agent i
receiving item j. Since the number of agents is equal to the number of items, and every
agent receives exactly one item, the allocation matrix X is a doubly stochastic matrix, i.e.,∑
j xij = 1 for any i, and

∑
i xij = 1 for any j. According to the Birkhoff - von Neumann

theorem, every doubly stochastic matrix can be decomposed into a convex combination of
some permutation matrices. Therefore, ui(A) and SWM(A) can be interpreted as expected
utilities and expected social welfare in the indivisible items setting, and can be interpreted
as exact utilities and exact social welfare in the divisible items setting.

Agents are self-interested and look to maximize their utilities by giving a mendacious
preference to the mechanism as part of the input. In approximate mechanism design, we
restrict our interest to the class of truthful mechanisms, i.e., the mechanisms in which agents
cannot improve their utilities by misreporting. The canonical measure of efficiency of a
truthful mechanism M is the worst-case approximation ratio,

rworst(M) = sup
A∈A

SWOPT(A)
SWM(A) ,

where SWOPT(A) = maxX∈X
∑n
i=1 ui(X) is the optimal social welfare which is equal to the

value of the maximum weight matching between agents and items. This ratio compares social
welfare of the optimal allocation against social welfare of a truthful mechanism M. Note that
the ratio is no less than 1.

Random priority mechanism fixes an ordering of the agents uniformly at random and
then lets them pick their most preferred item from the set of available items based on this
ordering. It is shown in [21] that random priority achieves the matching approximation ratio
bound of Θ(

√
n). This result implies that random priority is asymptotically the best truthful

mechanism.

2.1 Smoothed and average-case approximation ratios

Analogously to the definition of smoothed complexity of algorithms, we define the smoothed
approximation ratio as follows:

rsmoothed(M) = max
A

E
gij∼N(0,1)

[
SWOPT(A + σ||A||G)
SWM(A + σ||A||G)

]
,

where the parameter σ is the size of the perturbation and G = [gij]n×n. That is to say,
σ||A||G is a matrix of independent Gaussian variables of mean 0 and standard deviation
σ||A||. We multiply by ||A|| to relate the magnitude of the perturbation to the magnitude
of the input A. We say that a mechanism has a constant smoothed approximation ratio if
its smoothed approximation ratio is polynomial only in 1/σ, when the size of the input n
approaches infinity 2. Following the natural of the unit-range representation, we consider
the property-preserving perturbation by restricting a natural perturbation model to preserve

2 We will show that the smoothed approximation ratio of random priority is polynomial only in 1/σ
but not in n. This is in contrast to its worst-case approximation ratio Θ(

√
n). For this reason our

result asymptotically differentiates the smoothed approximation ratio from the worst-case ratio. It is a
scenery analogously to the analysis of algorithms, where in some problems the smoothed complexity is
polynomial in n and 1/σ but the worst-case complexity is exponential in n. In both studies, the point
of smoothed analysis is to show that although the mechanism (algorithm) may perform poorly in the
worst case, it performs well under slight random perturbations of worst-case inputs.

MFCS 2017

16:6 Smoothed and Average-Case Approximation Ratios of Mechanisms

certain properties of the input. Specifically, the perturbation preserves agents’ 0 and 1
valuation and all valuations stay in the interval [0, 1] 3.

Similarly, we define the average-case approximation ratio of mechanisms as follows:

raverage(M) = E
aij∼U

[
SWOPT(A)
SWM(A)

]
,

where the elements aij of input A is chosen from a distribution U. In this paper, we consider
the case that agent’s values aij are independent variables and follow the uniform distribution
U(0, 1). For any agent i, since aij , j = 1, . . . , n, are independent and identically distributed
U(0, 1) random variables, the sum

∑n
j=1 aij follows the Irwin-Hall distribution. So,

Pr

 n∑
j=1

aij ≤ x

 = 1
n!

bx−1c∑
k=0

(−1)k
(
n

k

)
(x− 1− k)n,

where b·c is the floor function.
In the following, we contrast this approach to the established literature on Bayesian

mechanism design.

2.2 Bayesian mechanism design approach
In Bayesian mechanism design [15, 25], there is also a prior distribution from which the agent
types come from, but the objective is to characterize the maximum ratio (for some given
distribution of the agent types) of the expected social welfare of a truthful mechanism over
the expected social welfare of the optimal mechanism, i.e., the ratio of expectations. That is,
the objective is to characterize the ratio r in the following formula,

E [SWOPT(A)] ≤ r · E [SWM(A)] .

Thus, the key difference to our approach is that this measurement does not directly
compare the performance of the two mechanisms on specific inputs. We discuss this in more
detail in the following.

2.3 Comparison of the two approaches
We note that the worst-case approximation ratio compares the performance of the two
mechanisms on a case-by-case basis. In addition, the smoothed analysis of algorithms is
defined as the performance of the algorithm on the worst-case input when it is subject
to a slight random perturbation. Therefore, it measures the averaged performance of the
algorithm in a small neighbourhood area of an individual input. In essence, both metrics
consider a specific input (or some small noise around a specific input). Indeed, our approach
is informed by these two metrics.

Average-case approximation ratio and the Bayesian approach each has their strength
in measuring how good a truthful mechanism approximates the optimal mechanism. The
random priority mechanism for the one-sided matching problem is used for example, in the
supplementary round of school student assignment in the New York City once in a while. In

3 We note that the choice of Gaussian perturbation is standard in classical smoothed analysis of algorithms,
and restriction of property-preserving perturbations is necessary and meaningful even in average-case
analysis of algorithms.

X. Deng, Y. Gao, and J. Zhang 16:7

this case, we are interested in how likely a truthful mechanism performs well on a particular
instance. Therefore, the average-case approximation ratio, which is the expectation of ratio,
fits in this need. On the other hand, online auction mechanisms, as the revenue source for
Internet businesses, are used one a daily base. In that case, we are interested in how well
a truthful mechanism performs comparing to the optimal mechanism when instances are
sampled throughout the entire input space. Therefore, the Bayesian approach, which is the
ratio of expectations, is more suitable.

We note that our definitions, the expectation of ratio, introduce more technical challenges.
As we are interested in characterizing the expectation of a non-linear function (ratio of
two variables), we can no longer handle expectations of two different variables separately.
Let us take for example when agents’ valuations are drawn independently and identically
from the uniform distribution U(0, 1). In the Bayesian approach, it is trivial to see that the
expected social welfare of the completely random mechanism (by ignoring agents’ valuations
and allocate items totally random) is n/2, and the expected social welfare of the optimal
mechanism is less than n. So the ratio of two expectations is less than 2. However, for the
case-by-case comparison in the average-case approximation ratio, it is not directly clear what
the ratio would be. In this paper, as a first step, we study the uniform distribution for the
average-case ratio and the smoothed ratio. We suspect that different distributions would
result in different ratios. In contrast, by the linearity of the ratio in two expectations, in the
well-studied Bayesian auction design literature, it is common that positive results hold for a
class of distributions, such as monotone hazard distributions [25].

3 Smoothed Analysis

In this section we show that random priority has a constant smoothed approximation ratio.
Firstly, let us understand the structure of the profile space A in the unit-range setting. For

each agent i with valuations ai = (ai1, . . . , ain), it has utility 0 on its least preferred item and
has utility 1 on its most preferred item. So there remains n− 2 elements which are random
variables following the uniform distribution U(0, 1). Note that there are n(n− 1) possible
choices to select n− 2 out of n elements to be random variables, while the other two elements
being either 0 or 1. So there are (n(n− 1))n possible configuration of such random variables.
Therefore, we can decompose the sample space A into sets Sk, k = 1, . . . , (n(n− 1))n, where
each set Sk contains the instances A that the specific two out of n values of aij , j ∈ [n] are
fixed for each agent i.

Given any valuation profile A, its 0 and 1 entries are fixed so it must belong to exactly
one of the set Sk. Let S(A) ∈ {Sk}k∈[(n(n−1))n] denote the set where A belongs to. Let
H(A) = {(i, j) : aij = 0 or aij = 1}, clearly H(A) has 2n elements. Given any set Sk and any
two instances A1 and A2 chosen from Sk, it is easy to see that H(A1) = H(A2).

For convenience, denote Γ = (γij)n×n = σ||A||G. The probability density function of Γ is

f(Γ) = K · e−
|Γ|2

2σ2||A||2 = K · e
−

n∑
i=1

n∑
j=1

γ2
ij

2σ2||A||2

,

where K is a constant, |Γ|2 =
n∑
i=1

n∑
j=1

γ2
ij . Therefore, our problem of characterizing the

smoothed approximation ratio of random priority is reduced to computing the upper bound
of

max
A∈A

∫
A+Γ∈S(A)

1
K ′
· e−

|Γ|2

2σ2||A||2 · SWOPT (A + Γ)
SWRP (A + Γ) dΓ,

MFCS 2017

16:8 Smoothed and Average-Case Approximation Ratios of Mechanisms

where K ′ =
∫

A+Γ∈S(A) e
− |Γ|2

2σ2||A||2 dΓ. As we clarified in the Preliminaries, we consider the
property-preserving perturbation that preserves agents’ 0 and 1 valuation and all valuations
stay in the interval [0, 1]. Therefore, our integral is taken over the space A + Γ ∈ S(A). We
would need the following auxiliary lemma. The proof is omitted due to the page limit.

I Lemma 1. For any valuation profile A ∈ A and standard vector norm such as Euclidean
norm, p-norm and maximum norm, we have ||A|| ≥ 1.

Our main result of this section is the following.

I Theorem 2. Random priority has a constant smoothed approximation ratio. That is to
say, its smoothed approximation ratio is polynomial in 1/σ, when the input size n approaches
infinity.

Obviously, when 1
σ ≥
√
n, since the smoothed approximation ratio is upper bounded by

worst-case approximation ratio O(
√
n), there ∃M > 0, such that

rsmoothed ≤ rworst ≤ O(
√
n) ≤M · 1

σ

In the following we focus on the case when 1
σ <
√
n. We further divide our analysis into

two cases, depending on the size of the perturbation σ and the magnitude of A.

Case 1: σ||A|| ≤ 1.
Firstly, the following lemma lower bounds the constant K ′.

I Lemma 3. When σ||A|| ≤ 1, for any instance A and Gaussian perturbation Γ, we have

K ′ =
∫

A+Γ∈S(A)
e
− |Γ|2

2σ2||A||2 dΓ ≥
(
e−

1
2 · σ||A||

)n(n−2)

Proof.

K′ =
∫

A+Γ∈S(A)
e
− |Γ|2

2σ2||A||2 dΓ =
∏

(i,j)∈H(A)

e
− 0

2σ2||A||2
∏

(i,j)6∈H(A)

∫
aij+γij∈[0,1]

e
−
|γij |

2

2σ2||A||2 dγij

= 1 ·
∏

(i,j)6∈H(A)

∫ 1−aij

−aij

e
−
|γij |

2

2σ2||A||2 dγij

=
∏

(i,j) 6∈H(A)

(∫ 1−aij

0
e
−
|γij |

2

2σ2||A||2 dγij +
∫ aij

0
e
−
|γij |

2

2σ2||A||2 dγij

)

≥
∏

(i,j)6∈H(A)

(∫ 1−aij

0
e
−
|γij |

2

2σ2||A||2 dγij +
∫ 1

1−aij

e
−
|γij |

2

2σ2||A||2 dγij

)
=

∏
(i,j)6∈H(A)

∫ 1

0
e
−
|γij |

2

2σ2||A||2 dγij

=
(∫ 1

0
e
−
|γij |

2

2σ2||A||2 dγij

)n(n−2)

≥
(∫ σ||A||

0
e
−
|γij |

2

2σ2||A||2 dγij

)n(n−2)

≥
(∫ σ||A||

0
e−

1
2 dγij

)n(n−2)

=
(
e−

1
2 · σ||A||

)n(n−2)

J

Secondly, given any instance A and its associated set S(A), we further partition the set S(A)
into two subsets, according to the value of social welfare of random priority on its elements,
namely Sc(A) = {B ∈ S(A) : SWRP (B) ≤ nc} and the residual S(A)/Sc(A) = {B ∈ S(A) :

X. Deng, Y. Gao, and J. Zhang 16:9

SWRP (B) > nc}, where 0 < c < 1 is a parameter that will facilitate us to prove our main
theorem. Let V(Sc(A)) and V(S(A)) be the volume of Sc(A) and S(A), respectively. We
upper bound the fraction of the elements of the set S(A) for which the social welfare of
random priority on its elements is no more than nc. A useful observation here is that, this
objective is equivalent to computing the probability that the social welfare of random priority
on any instance A is no more than nc, when the agents’ values aij are independently and
identically drawn from the uniform distribution U(0, 1).

I Lemma 4. Given any n, for every 0 < c < 1, we have

V(Sc(A))
V(S(A)) ≤

e2n
√

2πn
·
(

2e
n1−c

)n(n−2)
.

Proof. We note that random priority is a truthful mechanism, and it fixes an ordering of
agents uniformly at random. Every agent i has a probability of 1/n to be selected first to
choose an item, a probability of 2/n to be selected first or second to choose an item, and
so on. That is to say, for each agent i, if we sort the items in decreasing order according
to agent i’s preference, then the allocation vector xi = (xij) obtained by random priority
would stochastically dominates the vector (1

n , . . . ,
1
n). I.e., for every k = 1, . . . , n, it holds

that
∑k
j=1 xij ≥ k/n.

Therefore, the utility of agent i in any instance A is ui(A) =
∑n
j=1 aijxij ≥

1
n ·
∑n
j=1 aij .

Hence, we have social welfare SWRP(A) =
∑
i ui(A) ≥ 1

n

∑
i,j aij . So, SWRP(A) ≤ nc

implies
∑
i∈[n],j∈[n] aij ≤ n1+c. Together with the observation noted above, we utilize the

Irwin-Hall distribution to prove the lemma.
V(Sc(A))
V(S(A)) = Pr [SWRP(A) ≤ nc] ≤ Pr

[∑
i∈[n],j∈[n]

aij ≤ n1+c
]

= Pr
[∑

(i,j)6∈H(A)
aij ≤ n1+c − n

]
= 1

(n(n− 2))!

bn1+c−nc∑
k=0

(−1)k
(
n(n− 2)

k

)
(n1+c − n− k)n(n−2)

≤ 1
(n(n− 2))!

n(n−2)∑
k=0

(
n(n− 2)

k

)
n(1+c)(n(n−2)) = 1

(n(n− 2))! · (2n
1+c)n(n−2)

≤ (2n1+c)n(n−2)√
2π(n(n− 2)) ·

(
n(n−2)

e

)n(n−2) = (2n1+c)n(n−2)

√
2πn ·

(
n2

e

)n(n−2) ·
√

2πn ·
(
n2

e

)n(n−2)√
2π(n(n− 2)) ·

(
n(n−2)

e

)n(n−2)

= 1√
2πn

·
(2e
n1−c

)n(n−2)
·
(

1 + 2
n− 2

)n(n−2)+ 1
2

≤ 1√
2πn

·
(2e
n1−c

)n(n−2)
· e2n = e2n

√
2πn

·
(2e
n1−c

)n(n−2)
J

Combing these two lemmas we can prove our main theorem under this case.

Proof of Case 1 of Theorem 2. Note that when A + Γ 6∈ Sc(A), we can upper bound
SWOPT (A+Γ)
SWRP (A+Γ)

≤ n1−c, and in all cases SWOPT (A+Γ)
SWRP (A+Γ)

≤ O(
√
n) according to the worst-case

approximation ratio result [21]. In addition, by Lemma 4 we have,

V(Sc(A)) ≤ e2n
√

2πn
·
(

2e
n1−c

)n(n−2)
·V(S(A)) = e2n

√
2πn

·
(

2e
n1−c

)n(n−2)
· 1

MFCS 2017

16:10 Smoothed and Average-Case Approximation Ratios of Mechanisms

Therefore,

E
gij∼N(0,1)

[
SWOPT(A + σ||A||G)
SWRP(A + σ||A||G)

]
=
∫

A+Γ∈S(A)

e
− |Γ|2

2σ2||A||2∫
A+Γ∈S(A) e

− |Γ|2

2σ2||A||2 dΓ
·
SWOPT (A+Γ)

SWRP (A+Γ)
dΓ

=
∫

A+Γ6∈Sc(A)

e
− |Γ|2

2σ2||A||2 · SWOPT (A+Γ)
SWRP (A+Γ)∫

A+Γ∈S(A) e
− |Γ|2

2σ2||A||2 dΓ
dΓ +

∫
A+Γ∈Sc(A)

e
− |Γ|2

2σ2||A||2 · SWOPT (A+Γ)
SWRP (A+Γ)∫

A+Γ∈S(A) e
− |Γ|2

2σ2||A||2 dΓ
dΓ

≤
∫

A+Γ6∈Sc(A)

e
− |Γ|2

2σ2||A||2 · n1−c∫
A+Γ∈S(A) e

− |Γ|2

2σ2||A||2 dΓ
dΓ +

∫
A+Γ∈Sc(A)

e
− |Γ|2

2σ2||A||2 ·O(
√
n)∫

A+Γ∈S(A) e
− |Γ|2

2σ2||A||2 dΓ
dΓ

≤ n1−c + V(Sc(A)) · 1 ·O(
√
n)∫

A+Γ∈S(A) e
− |Γ|2

2σ2||A||2 dΓ
≤ n1−c +

e2n
√

2πn ·
(

2e
n1−c

)(n(n−2)) ·O(
√
n)(

e−
1
2 · σ||A||

)n(n−2) (by Lemma 3)

= n1−c + e2n
√

2πn
·O(
√
n) ·
(

2e
3
2

n1−cσ||A||

)(n(n−2))

Now let 1−c = 2
(n−2) logn+ log(2e

3
2)

logn + log(1/σ||A||)
logn . According to Lemma 1, we have ||A|| ≥ 1,

combining with the assumption 1
σ <
√
n, we get that log(1/σ||A||)

logn ≤ log(1/σ)
logn < log(

√
n)

logn = 1
2 ,

which means 0 < 1− c < 1
2 , as n approaches infinity. Therefore the value of 1− c is feasible.

Then,

E
gij∼N(0,1)

[
SWOPT(A + σ||A||G)
SWRP(A + σ||A||G)

]
≤ 2e

3
2 · e

2
n−2 · 1

σ||A|| + O(
√
n)√

2πn
≤ 2e

3
2 · e

2
n−2 · 1

σ
+ O(

√
n)√

2πn

So, when σ||A|| ≤ 1 and 1
σ <
√
n, we have Egij∼N(0,1)

[
SWOPT(A+σ||A||G)
SWRP(A+σ||A||G)

]
< 2e 3

2 · 1
σ as n

approaches infinity.

Case 2 σ||A|| > 1. The proof is omitted due to the page limit.
Combining these two cases we complete our proof of Theorem 2. J

4 Average-case Analysis

In this section we show the average-case approximation ratio of the random priority mechanism
can be improved to 1 + e.

Firstly, we upper bound the probability of the social welfare of random priority when it
is smaller than a value nc, for a certain parameter c.

I Lemma 5. Given any n, for every 0 < c < 1, such that e2
√

2πn ·
(2e
n1−c

)n−2
< 1, we have

Pr[SWRP (A) ≤ nc] ≤ e2
√

2π
·
√
n ·
(

2e
n1−c

)n−2
.

Proof. For any agent i, since aij , j = 1, . . . , n, are independent and identically distributed
U(0, 1) random variables, the sum

∑n
j=1 aij follows the Irwin-Hall distribution. In addition,

in the unit-range setting, there exist j1 and j2 such that aij1 = 1, aij2 = 0, so
∑n
j=1 aij ≤ x

is equivalent to
∑
j 6=j1,j2 aij ≤ x− 1, given any x > 0. Therefore,

Pr
[∑n

j=1
aij ≤ x

]
= Pr

[∑
j 6=j1,j2

aij ≤ x− 1
]

= 1
(n− 2)!

bx−1c∑
k=0

(−1)k
(
n− 2
k

)
(x− 1− k)n−2

X. Deng, Y. Gao, and J. Zhang 16:11

where b·c is the floor function. So,

Pr

 n∑
j=1

aij 6 nc

 = 1
(n− 2)!

bnc−1c∑
k=0

(−1)k
(
n− 2
k

)
(nc − 1− k)n−2

≤ 1
(n− 2)!

bnc−1c∑
k=0

(
n− 2
k

)
(nc)n−2 ≤ 1

(n− 2)!

n−2∑
k=0

(
n− 2
k

)
nc(n−2)

= 1
(n− 2)! · (2n

c)n−2 ≤ (2nc)n−2√
2π(n− 2) ·

(
n−2

e
)n−2 (1)

= (2nc)n−2
√

2πn ·
(
n
e
)n−2 ·

√
2πn ·

(
n
e
)n−2√

2π(n− 2) ·
(
n−2

e
)n−2

= 1√
2πn

·
(

2e
n1−c

)n−2
·
(

1 + 2
n− 2

)n−2+ 1
2

≤ 1√
2πn

·
(

2e
n1−c

)n−2
· e2 = e2

√
2πn

·
(

2e
n1−c

)n−2

where inequality (1) is due to Stirling’s formula.
As we have shown in Lemma 4, in random priority mechanism, agent i’s utility ui(A) =∑n
j=1 aijxij ≥

1
n ·
∑n
j=1 aij . It implies that Pr [ui(A) > x] ≥ Pr

[
1
n

∑n
j=1 aij > x

]
. Therefore,

Pr [SWRP (A) > nc] = Pr
[

n∑
i=1

ui(A) > nc

]
≥

n∏
i=1

Pr
[
ui(A) > 1

n
· nc
]

≥
n∏
i=1

Pr

 1
n

n∑
j=1

aij >
1
n
· nc
 =

n∏
i=1

Pr

 n∑
j=1

aij > nc

 =
n∏
i=1

1− Pr

 n∑
j=1

aij 6 nc

≥

(
1− e2
√

2πn
·
(

2e
n1−c

)n−2
)n
≥ 1− n · e2

√
2πn

·
(

2e
n1−c

)n−2
(2)

= 1− e2
√

2π
·
√
n ·
(

2e
n1−c

)n−2

where inequality (2) is due to Bernoulli’s inequality and the condition that
e2
√

2πn ·
(2e
n1−c

)n−2
< 1. Hence,

Pr[SWRP (A) ≤ nc] ≤ e2
√

2π
·
√
n ·
(

2e
n1−c

)n−2
. J

Secondly, we lower bound the probability of the social welfare of random priority when it is
lager than n

2 .

I Lemma 6. Given any n, we have Pr[SWRP (A) ≥ n
2] ≥ 1

2 .

Proof. Firstly, as we show in Lemma 4, the utility of agent i in any instance A is ui(A) =∑n
j=1 aijxij ≥

1
n ·
∑n
j=1 aij , and the social welfate SWRP(A) =

∑
i ui(A) ≥ 1

n

∑
i,j aij .

Therefore, event
{∑

i,j aij ≥
n2

2

}
implies

{
SWRP(A) ≥ n

2
}
. So, we have Pr

[∑
i,j aij ≥

n2

2

]
≤

Pr
[
SWRP(A) ≥ n

2
]
.

MFCS 2017

16:12 Smoothed and Average-Case Approximation Ratios of Mechanisms

Secondly, let E be the n × n all-ones matrix. Denote matrix A′ = (a′ij)n×n = E − A.
Obviously

∑
i,j aij +

∑
i,j a

′
ij = n2. Since all aij ’s follow the uniform distribution,

Pr

∑
i,j

aij ≥
n2

2

 = Pr

∑
i,j

a′ij ≥
n2

2

 = Pr

n2 −
∑
i,j

aij ≥
n2

2

 = Pr

∑
i,j

aij ≤
n2

2

 .
So Pr

[∑
i,j aij ≥

n2

2

]
= 1

2 . Hence, Pr
[
SWRP(A) ≥ n

2
]
≥ Pr

[∑
i,j aij ≥

n2

2

]
= 1

2 . J

Next we will use Lemma 5 and Lemma 6 to prove our main result in this section.
Essentially, Lemma 5 and Lemma 6 bound the probability of the social welfare of random
priority on valuation profile A. By carefully choosing parameter c, we can divide the valuation
space into three sets: {SWRP (A) ≤ nc}, {nc < SWRP (A) <

n
2 } and {SWRP (A) ≥ n

2 }. We
bound the probabilities of instance A falling into each set and the ratios of optimal social
welfare against the social welfare of random priority mechanism. Note that in any cases, the
worst-case ratio is upper bounded by O(

√
n). By adding them up together, we obtain our

upper bound of 1 + e.

I Theorem 7. The average case approximation ratio is upper bounded by 1 + e. That is,

raverage = E
aij∼U

[
SWOPT (A)

SWRP (A)

]
≤ 1 + e.

Proof. Let 1−c = logn(2e)+ 2
n−2 . It is easy to verify that c satisfies the condition of Lemma

5 and nc < n
2 . So the above three sets are collectively exhaustive and mutually exclusive,

and we have

E
aij∼U

[
SWOPT (A)

SWRP (A)

]
= Pr

[
SWRP (A) ≥

n

2

]
· E
SWRP (A)≥

n
2

[
SWOPT (A)

SWRP (A)

]
+

Pr
[
nc < SWRP (A) <

n

2

]
· E
nc<SWRP (A)<

n
2

[
SWOPT (A)

SWRP (A)

]
+

Pr
[
SWRP (A) ≤ nc

]
· E
SWRP (A)≤n

c

[
SWOPT (A)

SWRP (A)

]
≤ Pr

[
SWRP (A) ≥

n

2

]
· n

n/2 + (1− Pr
[
SWRP (A) ≥

n

2

]
) · n
nc

+ Pr
[
SWRP (A) ≤ nc

]
·O(
√
n)

< n1−c + (2− n1−c) · Pr
[
SWRP (A) ≥

n

2

]
+ e2
√

2π
·
√
n ·
(2e
n1−c

)n−2
·O(
√
n)

By our choice of c, we have n1−c = 2e · n
2

n−2 . So,

raverage < 2e · n
2

n−2 − (2e · n
2

n−2 − 2) · Pr
[
SWRP (A) ≥

n

2

]
+ e2
√

2π
·
√
n ·
(

2e
2e · n

2
n−2

)n−2

·O(
√
n)

≤ 2e · n
2

n−2 − (2e · n
2

n−2 − 2) · 1
2 + e2
√

2π
· 1
n2 ·O(n)

= e · n
2

n−2 + 1 + e2
√

2π
· 1
n2 ·O(n) < 1 + e. J

5 Conclusion and Discussion

In this paper, we extend the worst-case approximation ratio analysis in mechanism design
to the smoothed approximation ratio and average-case approximation ratio analysis. For
social welfare maximization in one-sided matching problem, we show a clear separation of

X. Deng, Y. Gao, and J. Zhang 16:13

the approximation ratio bounds from the smoothed analysis and average-case analysis to the
worst-case analysis. Our results partially explain why random priority has been successfully
used in practice, although in the worst case the optimal social welfare is Θ(

√
n) times of

what random priority achieves.
There are quite a few emerging open questions in the smoothed and average-case ap-

proximation ratio analysis of mechanisms. Firstly, it would be good to improve our upper
bounds and to characterize matching lower bound. Secondly, our average-case analysis is
based on a uniform distribution; it is open to consider other distributions that resembles
real-life applications of the one-sided matching mechanisms. Thirdly, beside unit-range
representation, another interesting valuation normalization is unit-sum; it is open to study
the smoothed and average-case analysis in that setting. Last but most importantly, our
analysis pave the way of characterizing the smoothed and average-case approximation ratio
in other mechanism design problems, such as the scheduling problem.

References
1 Atila Abdulkadiroğlu and Tayfun Sönmez. Random serial dictatorship and the core from

random endowments in house allocation problems. Econometrica, pages 689–701, 1998.
2 Atila Abdulkadiroğlu and Tayfun Sönmez. Matching Markets: Theory and Practice. Ad-

vances in Economics and Econometrics (Tenth World Congress), pages 3–47, 2013.
3 Saeed Alaei, Jason D. Hartline, Rad Niazadeh, Emmanouil Pountourakis, and Yang Yuan.

Optimal auctions vs. anonymous pricing. In IEEE 56th Annual Symposium on Foundations
of Computer Science, FOCS, pages 1446–1463. IEEE Computer Society, 2015.

4 Aaron Archer, Christos H. Papadimitriou, Kunal Talwar, and Éva Tardos. An approximate
truthful mechanism for combinatorial auctions with single parameter agents. In Proceedings
of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages
205–214, 2003.

5 David Arthur and Sergei Vassilvitskii. Worst-case and smoothed analysis of the ICP al-
gorithm, with an application to the k-means method. SIAM J. Comput., 39(2):766–782,
2009.

6 I. Ashlagi, F. Fischer, I. Kash, and Ariel D. Procaccia. Mix and match. In Proceedings of
the 11th ACM conference on Electronic commerce (ACM-EC), pages 305–314, 2010.

7 Cyril Banderier, René Beier, and Kurt Mehlhorn. Smoothed analysis of three combinatorial
problems. In 28th International Symposium, Mathematical Foundations of Computer Sci-
ence, MFCS, volume 2747 of Lecture Notes in Computer Science, pages 198–207. Springer,
2003.

8 Salvador Barbera. Strategy-proof Social Choice. In K. J. Arrow, A. K. Sen, and K. Suzu-
mura, editors, Handbook of Social Choice and Welfare, volume 2, chapter 25. North-Holland:
Amsterdam, 2010.

9 Luca Becchetti, Stefano Leonardi, Alberto Marchetti-Spaccamela, Guido Schäfer, and Tjark
Vredeveld. Average case and smoothed competitive analysis of the multi-level feedback al-
gorithm. In Algorithms for Optimization with Incomplete Information, pages 16–21, volume
05031 of Dagstuhl Seminar Proceedings, 2005.

10 Markus Bläser, Bodo Manthey, and B. V. Raghavendra Rao. Smoothed analysis of parti-
tioning algorithms for euclidean functionals. Algorithmica, 66(2):397–418, 2013.

11 Avrim Blum and John Dunagan. Smoothed analysis of the perceptron algorithm for linear
programming. In David Eppstein, editor, Proceedings of the Thirteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA, pages 905–914, 2002.

12 Anna Bogomolnaia and Hervé Moulin. A New Solution to the Random Assignment Problem.
Journal of Economic Theory, 100:295–328, 2001.

MFCS 2017

16:14 Smoothed and Average-Case Approximation Ratios of Mechanisms

13 Karl-Heinz Borgwardt. The average number of pivot steps required by the simplex-method
is polynomial. Zeitschr. für OR, 26(1):157–177, 1982.

14 Endre Boros, Khaled M. Elbassioni, Mahmoud Fouz, Vladimir Gurvich, Kazuhisa Makino,
and Bodo Manthey. Stochastic mean payoff games: Smoothed analysis and approximation
schemes. In Automata, Languages and Programming - 38th International Colloquium, IC-
ALP Part I, volume 6755 of Lecture Notes in Computer Science, pages 147–158. Springer,
2011.

15 Shuchi Chawla and Balasubramanian Sivan. Bayesian algorithmic mechanism design. SIGe-
com Exchanges, 13(1):5–49, 2014.

16 Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of computing two-
player nash equilibria. J. ACM, 56(3), 2009. doi:10.1145/1516512.1516516.

17 George Christodoulou, Elias Koutsoupias, and Angelina Vidali. A lower bound for schedul-
ing mechanisms. Algorithmica, 55(4):729–740, 2009.

18 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms (3. ed.). MIT Press, 2009.

19 Shaddin Dughmi and Arpita Ghosh. Truthful assignment without money. In ACM Con-
ference on Electronic Commerce, pages 325–334, 2010.

20 Matthias Englert, Heiko Röglin, and Berthold Vöcking. Worst case and probabilistic ana-
lysis of the 2-opt algorithm for the TSP. Algorithmica, 68(1):190–264, 2014.

21 Aris Filos-Ratsikas, Søren Kristoffer Stiil Frederiksen, and Jie Zhang. Social welfare in
one-sided matchings: Random priority and beyond. In 7th International Symposium on
Algorithmic Game Theory (SAGT), pages 1–12, 2014.

22 Aris Filos-Ratsikas, Minming Li, Jie Zhang, and Qiang Zhang. Facility location with double-
peaked preferences. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence, pages 893–899. AAAI Press, 2015.

23 Mahmoud Fouz, Manfred Kufleitner, Bodo Manthey, and Nima Zeini Jahromi. On
smoothed analysis of quicksort and hoare’s find. Algorithmica, 62(3-4):879–905, 2012.

24 M. Guo and V. Conitzer. Strategy-proof allocation of multiple items between two agents
without payments or priors. In Ninth International Joint Conference on Autonomous
Agents and Multi Agent Systems (AAMAS), volume 10, pages 881–888, 2010.

25 Jason D. Hartline and Brendan Lucier. Bayesian algorithmic mechanism design. In Proceed-
ings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, pages 301–310,
2010.

26 Jason D. Hartline and Tim Roughgarden. Simple versus optimal mechanisms. In Pro-
ceedings 10th ACM Conference on Electronic Commerce, ACM-EC, pages 225–234. ACM,
2009.

27 Aanund Hylland and Richard Zeckhauser. The Efficient Allocation of Individuals to Posi-
tions. The Journal of Political Economy, 87(2):293–314, 1979.

28 Elias Koutsoupias. Scheduling without payments. Theory Comput. Syst., 54(3):375–387,
2014.

29 Elias Koutsoupias and Angelina Vidali. A lower bound of 1+φ for truthful scheduling
mechanisms. In the 32nd International Symposium, Mathematical Foundations of Com-
puter Science, MFCS, volume 4708 of Lecture Notes in Computer Science, pages 454–464.
Springer, 2007.

30 Daniel J. Lehmann, Liadan O’Callaghan, and Yoav Shoham. Truth revelation in approx-
imately efficient combinatorial auctions. J. ACM, 49(5):577–602, 2002.

31 Bodo Manthey and Rüdiger Reischuk. Smoothed analysis of binary search trees. Theor.
Comput. Sci., 378(3):292–315, 2007.

32 Bodo Manthey and Heiko Röglin. Smoothed analysis: Analysis of algorithms beyond worst
case. it - Information Technology, 53(6):280–286, 2011.

http://dx.doi.org/10.1145/1516512.1516516

X. Deng, Y. Gao, and J. Zhang 16:15

33 Timo Mennle and Sven Seuken. An axiomatic approach to characterizing and relaxing
strategyproofness of one-sided matching mechanisms. In Proceedings of the 15th ACM
Conference on Economics and Computation, pages 37–38, 2014.

34 Ahuva Mu’alem and Noam Nisan. Truthful approximation mechanisms for restricted com-
binatorial auctions. Games and Economic Behavior, 64(2):612–631, 2008.

35 Noam Nisan and Amir Ronen. Algorithmic mechanism design. In Proceedings of the Thirty-
First Annual ACM Symposium on Theory of Computing, STOC, pages 129–140, 1999.

36 Noam Nisan and Amir Ronen. Algorithmic mechanism design. Games and Economic
Behavior, 35(1-2):166–196, 2001.

37 Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V. Vazirani, editors. Algorithmic
Game Thoery. Cambridge University Press, 2007.

38 Jay Sethuraman Parag A. Pathak. Lotteries in student assignment: An equivalence result.
Theoretical Economics, 6:1–17, 2011.

39 Ariel D Procaccia and Moshe Tennenholtz. Approximate mechanism design without money.
In Proceedings of the 10th ACM Conference on Electronic Commerce, pages 177–186. ACM,
2009.

40 Arvind Sankar, Daniel A. Spielman, and Shang-Hua Teng. Smoothed analysis of the con-
dition numbers and growth factors of matrices. SIAM J. Matrix Analysis Applications,
28(2):446–476, 2006.

41 Guido Schäfer and Naveen Sivadasan. Topology matters: Smoothed competitiveness of
metrical task systems. Theor. Comput. Sci., 341(1-3):216–246, 2005.

42 Tayfun Sönmez and Utku Ünver. Matching, allocation and exchange of discrete resources.
Handbook of Social Economics, 1A:781–852, 2011.

43 Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: why the
simplex algorithm usually takes polynomial time. In Proceedings on 33rd Annual ACM
Symposium on Theory of Computing, STOC, pages 296–305. ACM, 2001.

44 Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of termination of linear
programming algorithms. Math. Program., 97(1-2):375–404, 2003.

45 Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis: an attempt to explain the
behavior of algorithms in practice. Commun. ACM, 52(10):76–84, 2009.

46 Lars-Gunnar Svensson. Strategy-proof allocation of indivisble goods. Social Choice and
Welfare, 16(4):557–567, 1999.

47 Lars-Gunnar Svensson. Strategy-proof allocation of indivisible goods. Social Choice and
Welfare, 16(4):557–567, 1999.

48 Wojciech Szpankowsk. Average case analysis of algorithms. Chapman Hall CRC, 2010.
49 John Von Neumann and Oskar Morgenstern. Theory of games and economic behavior.

Princeton university press, 1953.
50 John Von Neumann and Oskar Morgenstern. Theory of games and economic behavior (60th

Anniversary Commemorative Edition). Princeton university press, 2007.
51 Lin Zhou. On a Conjecture by Gale about One-Sided Matching Problems. Journal of

Economic Theory, 52:123–135, 1990.

MFCS 2017

Time Complexity of Constraint Satisfaction via
Universal Algebra∗

Peter Jonsson1, Victor Lagerkvist2, and Biman Roy3

1 Department of Computer and Information Science, Linköping University,
Linköping, Sweden
peter.jonsson@liu.se

2 Institut für Algebra, TU Dresden, Dresden, Germany
victor.lagerqvist@tu-dresden.de

3 Department of Computer and Information Science, Linköping University,
Linköping, Sweden
biman.roy@liu.se

Abstract
The exponential-time hypothesis (ETH) states that 3-SAT is not solvable in subexponential time,
i.e. not solvable in O(cn) time for arbitrary c > 1, where n denotes the number of variables.
Problems like k-SAT can be viewed as special cases of the constraint satisfaction problem (CSP),
which is the problem of determining whether a set of constraints is satisfiable. In this paper
we study the worst-case time complexity of NP-complete CSPs. Our main interest is in the
CSP problem parameterized by a constraint language Γ (CSP(Γ)), and how the choice of Γ
affects the time complexity. It is believed that CSP(Γ) is either tractable or NP-complete, and
the algebraic CSP dichotomy conjecture gives a sharp delineation of these two classes based on
algebraic properties of constraint languages. Under this conjecture and the ETH, we first rule out
the existence of subexponential algorithms for finite-domain NP-complete CSP(Γ) problems. This
result also extends to certain infinite-domain CSPs and structurally restricted CSP(Γ) problems.
We then begin a study of the complexity of NP-complete CSPs where one is allowed to arbitrarily
restrict the values of individual variables, which is a very well-studied subclass of CSPs. For such
CSPs with finite domain D, we identify a relation SD such that (1) CSP({SD}) is NP-complete
and (2) if CSP(Γ) overD is NP-complete and solvable in O(cn) time, then CSP({SD}) is solvable
in O(cn) time, too. Hence, the time complexity of CSP({SD}) is a lower bound for all CSPs of
this particular kind. We also prove that the complexity of CSP({SD}) is decreasing when |D|
increases, unless the ETH is false. This implies, for instance, that for every c > 1 there exists a
finite-domain Γ such that CSP(Γ) is NP-complete and solvable in O(cn) time.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes, G.2.0 Discrete Math-
ematics General.

Keywords and phrases Clone Theory, Universal Algebra, Constraint Satisfaction Problems

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.17

1 Introduction

The constraint satisfaction problem over a constraint language Γ (CSP(Γ)) is the computa-
tional decision problem of verifying whether a set of constraints over Γ is satisfiable or not.

∗ The second author has received funding from the DFG-funded project “Homogene Strukturen, Be-
dingungserfüllungsprobleme, und topologische Klone” (Project number 622397). The third author is
partially supported by the National Graduate School in Computer Science (CUGS), Sweden.

© Peter Jonsson, Victor Lagerkvist, and Biman Roy;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 17; pp. 17:1–17:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.17
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

17:2 Time Complexity of Constraint Satisfaction via Universal Algebra

This problem is widely studied from both a theoretical and a practical standpoint. From a
practical point of view this problem can be used to model many natural problems occurring
in real-world applications. From a more theoretical point of view the CSP problem is (among
several other things) of great interest due to its connections with universal algebra. It is
widely believed that finite-domain CSP problems admit a dichotomy between tractable and
NP-complete problems, and the so-called algebraic approach has been used to conjecture
an exact borderline between tractable and NP-complete problems [15]. This conjectured
borderline is sometimes called the algebraic CSP dichotomy conjecture. The gist of the
algebraic approach is to associate an algebra, a set of functions satisfying a certain closure
property, to each constraint language. This associated algebra is usually referred to as the
polymorphisms of a constraint language, and is known to determine the complexity of a
CSP problem up to polynomial-time many-one reductions [26]. However, the mere fact that
two CSPs are polynomial-time interreducible does not offer much insight into their relative
worst-case time complexity. For example, on the one hand, it has been conjectured that the
Boolean satisfiability problem with unrestricted clause length, SAT, is not solvable strictly
faster than O(2n), where n denotes the number of variables [23]. On the other hand, k-SAT
is known to be solvable strictly faster than O(2n) for every k ≥ 1 [22], and even more efficient
algorithms are known for severely restricted satisfiability problems such as 1-in-3-SAT [36].
This discrepancy in complexity stems from the fact that a polynomial time reduction can
change the structure of an instance and e.g. introduce a large number of fresh variables.
Hence, it is worthwhile to study the complexity of NP-complete CSPs using more fine-grained
notions of reductions. To make this a bit more precise, given a constraint language Γ we let

T(Γ) = inf{c | CSP(Γ) is solvable in time 2cn}

where n denotes the number of variables. If T(Γ) = 0 then CSP(Γ) is said to be solvable in
subexponential time, and the conjecture that 3-SAT is not solvable in subexponential time is
known as the exponential-time hypothesis (ETH) [23]. It is worth remarking that no concrete
values of T(Γ) are known when CSP(Γ) is NP-complete. Despite this, studying properties of
the function T can still be of great interest since such properties can be used to compare
and relate the worst-case running times of NP-complete CSP problems. Moreover, for
Boolean constraint languages, several properties of the function T are known. For example,
it is known that there exists a finite Boolean constraint language Γ such that CSP(Γ) is
NP-complete and T(Γ) = 0 if and only if T(Γ) = 0 for every Boolean constraint language
Γ [27]. Hence, even though the status of the ETH is unclear at the moment, finding a
subexponential time algorithm for one NP-complete Boolean CSP problem is tantamount to
being able to solve every Boolean CSP problem in subexponential time. It is also known that
there exists a Boolean relation R such that CSP({R}) is NP-complete but T({R}) ≤ T(Γ)
for every Boolean constraint language Γ such that CSP(Γ) is NP-complete. In Jonsson
et al. [27] this problem is referred to as the easiest NP-complete Boolean CSP problem.
The existence of this relation e.g. rules out the possibility that for each Boolean constraint
language Γ there exists ∆ such that T(∆) < T(Γ) — a scenario which otherwise would have
been compatible with the ETH. These results were obtained by considering more refined
algebras than polymorphisms, so-called partial polymorphisms. We will describe this algebraic
approach in greater detail later on, but the most important property is that the partial
polymorphisms of finite constraint languages give rise to a partial order v with the property
that if Γ v ∆, then T(Γ) ≤ T(∆). We remark that partial polymorphisms are not only
useful when studying CSPs with this very fine-grained notion of complexity, but have also
been used to study the classical complexity of many different computational problems where
polymorphisms are not applicable [3, 4, 11, 14, 21].

P. Jonsson, V. Lagerkvist, and B. Roy 17:3

Hence, even though no concrete values are known for T(Γ) when CSP(Γ) is NP-complete,
quite a lot is known concerning the relationship between T(Γ) and T(∆) for Boolean Γ and ∆.
In this paper we study similar properties of the function T for constraint languages defined
over arbitrary finite domains. After having introduced the necessary definitions in Section 2,
in Section 3 we consider the existence of subexponential time algorithms for NP-complete
CSP problems, in light of the ETH and the algebraic CSP dichotomy conjecture. For this
question we obtain a complete understanding and prove that, assuming the algebraic CSP
dichotomy conjecture, the ETH is false if and only if (1) there exists a finite constraint
language Γ over a finite domain such that CSP(Γ) is NP-complete and T(Γ) = 0, if and only
if (2) T(Γ) = 0 for every finite constraint language Γ defined over a finite domain. In other
words, finding a subexponential time algorithm for a single NP-complete, finite-domain CSP
problem is tantamount to being able to solve all CSP problems in subexponential time. We
also study structurally restricted CSPs where the maximum number of constraints a variable
may appear in is bounded by a constant B (CSP(Γ)-B). For problems of this form our results
are not as sharp, but we prove that, again assuming the algebraic CSP dichotomy conjecture,
that if CSP(Γ) is NP-complete and Γ satisfies an additional algebraic condition, then there
exists a constant B such that CSP(Γ)-B is not solvable in subexponential time (unless
the ETH is false). We also remark that our proof extends to certain constraint languages
defined over infinite domain, and give several examples of infinite-domain NP-complete CSP
problems that are not solvable in subexponential time, unless the ETH is false. These results
may be interesting to compare to those of de Haan et al. [17], who study subexponential
algorithms for structurally restricted CSPs. One crucial difference to our results is that de
Haan et al. do not consider constraint language restrictions. For example, it is proven that
CSP(∆)-2, where ∆ is the set of all finitary relations of finite cardinality, is not solvable in
subexponential time unless the ETH is false. However, a result of this form tells us very little
about the complexity of CSP(Γ)-2 for specific constraint languages, since it does not imply
that CSP(Γ)-2 is not solvable in subexponential time for every NP-complete CSP(Γ)-2.

We have thus established that T(Γ) > 0 for every NP-complete, finite-domain CSP(Γ),
assuming the ETH and the algebraic CSP dichotomy conjecture. This immediately raises
the question of which further insights can be gained concerning the behaviour of the function
T. For example, for a fixed finite domain, is it possible to construct an infinite chain of
NP-complete CSPs with strictly decreasing complexity such that T tends to 0? We study
such questions in Section 4 for CSPs where one in an instance is allowed to restrict the values
of individual variables arbitrarily. This restricted CSP problem is particularly well-studied,
and it is used as the definition of CSPs in many cases: see, for instance, the textbook
by Russell and Norvig [33, Section 3.7] and the handbook by Rossi et al. [32, Section 2].
This may be viewed as restricting oneself to constraint languages that contain all unary
relations. A closely related restriction (that is typically used when studying CSPs from the
algebraic viewpoint) is that every unary relation is primitively positively definable in Γ (see
Section 2). Such constraint languages are known as conservative. These two restrictions are
computationally equivalent up to polynomial-time many-one reductions but it is not known
whether they are equivalent under reductions that preserve time complexity. Thus, we need
to separate them, so we say that a constraint language that contains all unary relations is
ultraconservative. We note that the algebraic CSP dichotomy conjecture has been verified to
hold for the conservative CSPs [12] so it holds for ultraconservative CSPs, too. We show that
for every finite domain D there exists a relation SD such that CSP({SD}) is NP-complete and
T({SD}) = T({SD} ∪ 2D) ≤ T(Γ) for every ultraconservative and NP-complete CSP(Γ) over
D. This relation will be formally defined in Section 4.1, but is worth pointing out that SD

MFCS 2017

17:4 Time Complexity of Constraint Satisfaction via Universal Algebra

contains only three tuples and that CSP({SD}) can be viewed as a higher-domain variant of
the monotone 1-in-3-SAT problem. We refer to CSP({SD} ∪ 2D) as the easiest NP-complete
ultraconservative CSP problem over D1. Note that the properties of the relation SD rule
out the possibility of an infinite sequence of ultraconservative languages Γ1,Γ2, . . . such that
each CSP(Γi) is NP-complete and T(Γi) tends to 0, but also have stronger implications,
since the value T({SD}) is a conditional lower bound for the complexity of all NP-complete,
ultraconservative CSPs over D.

To prove these results we have to overcome several major obstacles. Similar to Jonsson et
al. [27]) we use partial polymorphisms instead of total polymorphisms in order to achieve more
fine-grained notions of reductions. However, the proof strategy used in Jonsson et al. [27]
does not work for arbitrary finite domains since it requires a comprehensive understanding
of the polymorphisms of constraint languages resulting in NP-complete CSPs, which is
only known for the Boolean domain [29]. Our first observation to tackle this difficulty is
that the reformulation of conservative CSP dichotomy theorem making use of primitive
positive interpretations (pp-interpretations) is useful in our context. At the moment, we
may think of a pp-interpretation as a tool which allows us to compare the expressitivity
of constraint languages defined over different domains, modulo logical formulas consisting
of existential quantification, conjunction, and equality constraints. It is well-known that
pp-interpretations can be used to obtain polynomial-time reductions between CSPs, and that
a conservative CSP(Γ) problem is NP-complete if and only if Γ pp-interprets 3-SAT [1, 12].
However, as already pointed out, such reductions are not useful when studying CSPs with
respect to the function T, and it is a priori not evident how the assumption that Γ can pp-
interpret 3-SAT can be used to show that T({SD}) ≤ T(Γ). Using properties of conservative
constraint languages and quantifier-elimination techniques we in Section 4.1 first show that
this assumption can be used to prove there exists a relation R over D of cardinality 3 such
that (1) CSP({R}) is NP-complete and (2) T({R}) ≤ T(Γ). However, this is not enough in
order to isolate a unique easiest problem, since there for every finite domain exists a large
number of such relations. In Section 4.2, using a combination of partial clone theory and
size-preserving reductions, we show that T({SD}) ≤ T({R}) for every such relation R of
cardinality 3. We then analyse the time complexity of the problem CSP({SD}) and prove
that T({SD}) tends to 0 for increasing values of |D|. This also shows, despite the fact that
no finite-domain NP-complete CSP(Γ) is solvable in subexponential time (if the algebraic
CSP dichotomy conjecture and the ETH are true), that one for every c > 0 can find Γ over
a finite domain such that CSP(Γ) is NP-complete and solvable in O(2cn) time. When all
of these results are adjoined, they demonstrate that the function T can indeed be analysed
without an extensive knowledge of the polymorphisms related to a constraint language.

2 Preliminaries

2.1 Constraint Languages and the Constraint Satisfaction Problem
A k-ary relation R over a set D is a subset of Dk, and we write ar(R) = k to denote its
arity. A finite set of relations Γ over a set D is called a constraint language. Given two
tuples s and t we let s_t denote the concatenation of s and t, i.e., if s = (s1, . . . , sk1)
and t = (t1, . . . , tk2) then s_t = (s1, . . . , sk1 , t1, . . . , tk2). If t is an n-ary tuple we let t[i]
denote its ith element and Proji1,...,in′ (t) = (t[i1], . . . , t[in′]), n′ ≤ n, denote the projection

1 Note that 2D is the set of all unary relations over D.

P. Jonsson, V. Lagerkvist, and B. Roy 17:5

of t on the coordinates i1, . . . , in′ ∈ {1, . . . , n}. Similarly, if R is an n-ary relation we
let Proji1,...,in′ (R) = {Proji1,...,in′ (t) | t ∈ R}. We write EqD for the equality relation
{(x, x) | x ∈ D}. If there is no risk for confusion we omit the subscript and simply write
Eq. For each d ∈ D we write Rd for the unary, constant relation {(d)}. We will occasionally
represent relations by first-order formulas, and if ϕ(x1, . . . , xk) is a first-order formula with
free variables x1, . . . , xk then we write R(x1, . . . , xk) ≡ ϕ(x1, . . . , xk) to define the relation
R = {(f(x1), . . . , f(xk)) | f is a model of ϕ(x1, . . . , xk)}. As a graphical representation, we
will sometimes view a k-ary relation R = {t1, . . . , tm} as an m× k matrix where the columns
of the matrix enumerate the arguments of the relation (in some fixed ordering). For example,(

0 0 1 1
0 1 0 1

)
represents the relation {(0, 0, 1, 1), (0, 1, 0, 1)}.

The constraint satisfaction problem over a constraint language Γ over D (CSP(Γ)) is the
computational decision problem defined as follows.

Instance: A set V of variables and a set C of constraint applications R(x1, . . . , xk) where
R ∈ Γ, ar(R) = k, and x1, . . . , xk ∈ V .

Question: Does there exist f : V → D such that (f(x1), . . . , f(xk)) ∈ R for each
R(x1, . . . , xk) in C?

If Γ = {R} is singleton then we write CSP(R) instead of CSP({R}), and if Γ is Boolean
we typically write SAT(Γ) instead of CSP(Γ). We let B = {0, 1}. For example, let
R 6= 6= 6=01

1/3 = {(0, 0, 1, 1, 1, 0, 0, 1), (0, 1, 0, 1, 0, 1, 0, 1), (1, 0, 0, 0, 1, 1, 0, 1)}. The SAT problem
over R 6= 6= 6=01

1/3 can be seen as a variant of 1-in-3-SAT where each variable in each constraint has
a complementary variable. We will return to this SAT problem several times in the sequel.
For each k ≥ 3 let Γk

SAT be the constraint language which for every t ∈ Bk contains the
relation Bk \ {t}. Hence, SAT(Γk

SAT) can be viewed as an alternative formulation of k-SAT.

2.2 Primitive Positive Definitions and Interpretations
Let Γ be a constraint language. A k-ary relation R is said to have a primitive positive
definition (pp-definition) over Γ if R(x1, . . . , xk) ≡ ∃y1, . . . , yk′ . R1(x1) ∧ . . . ∧ Rm(xm),
where each Ri ∈ Γ ∪ {Eq} and each xi is an ar(Ri)-ary tuple of variables over x1, . . . , xk,
y1, . . . , yk′ . In addition, if the primitive positive formula does not contain any existentially
quantified variables, we say that it is a quantifier-free primitive positive formula (qfpp), and if
it does not contain any equality constraints we say that it is a equality-free primitive positive
formula (efpp). For example, the reader can verify that the textbook reduction from k-SAT
to (k − 1)-SAT, where a clause of length k is replaced by clauses of length k − 1 making use
of one fresh variable, can be formulated as a pp-definition but not as a qfpp-definition. We
write 〈Γ〉 (respectively 〈Γ〉6∃) to denote the smallest set of relations containing Γ and which
is closed under pp-definitions (respectively qfpp-definitions). If Γ = {R} is singleton then we
instead write 〈R〉 and 〈R〉 6∃. Note that 〈Γ〉 is closed under projections, in the sense that if
R ∈ 〈Γ〉 then Proji1,...,in(R) ∈ 〈Γ〉 for all i1, . . . , in ∈ {1, . . . , ar(R)}, but that this does not
necessarily hold for 〈Γ〉 6∃. Jeavons [25] proved the following important result.

I Theorem 1. If Γ is a constraint language and ∆ is a finite subset of 〈Γ〉, then CSP(∆) is
polynomial-time reducible to CSP(Γ).

Theorem 1 naturally holds also for relations defined by qfpp- or efpp-formulas. However,
there are additional advantages of these more restricted ways of defining relations and we
will return to them later on. We are now ready to define the concept of primitive positive
interpretations.

MFCS 2017

17:6 Time Complexity of Constraint Satisfaction via Universal Algebra

I Definition 2. Let D and E be two domains and let Γ and ∆ be two constraint languages
over D and E, respectively. A primitive positive interpretation (pp-interpretation) of ∆
over Γ consists of a d-ary relation F ⊆ Dd and a surjective function f : F → E such that
F, f−1(EqE) ∈ 〈Γ〉 and f−1(R) ∈ 〈Γ〉 for every R ∈ ∆, where f−1(R), ar(R) = k, denotes
the (k · d)-ary relation

{(x1,1, . . . , x1,d, . . . , xk,1, . . . , xk,d) ∈ Dk·d | (f(x1,1, . . . , x1,d), . . . , f(xk,1, . . . , xk,d)) ∈ R}.

The main purpose of pp-interpretations is to relate constraint languages which might be
incomparable with respect to pp-definitions. For an example, let us consider the relation
R6= = {(x, y) ∈ {0, 1, 2}2 | x 6= y}, and observe that CSP({R6=}) corresponds to the 3-
coloring problem. We invite the reader to verify that the standard reduction from 3-coloring
to 3-SAT can be phrased as a pp-interpretation of R6= over Γ3

SAT, but that this reduction
cannot be expressed via pp-definitions due to the different domains. Hence, pp-interpretations
are generalizations of pp-definitions, and can be used to obtain polynomial-time reductions
between CSPs.

I Theorem 3 (cf. Theorem 5.5.6 in Bodirsky [5]). If Γ,∆ are constraint languages and there
is a pp-interpretation of ∆ over Γ, then CSP(∆) is polynomial-time reducible to CSP(Γ).

2.3 Polymorphisms and Partial Polymorphisms
Let f be a k-ary function over a finite domain D. We say that f is a polymorphism of an
n-ary relation R over D if f(t1, . . . , tk) ∈ R for each k-ary sequence of tuples t1, . . . , tk ∈ R.
Here, and in the sequel, we use f(t1, . . . , tk) to denote the componentwise application of
the function f to the tuples t1, . . . , tk, i.e., f(t1, . . . , tk) is a shorthand for the n-ary tuple
(f(t1[1], . . . , tk[1]), . . . , f(t1[n], . . . , tk[n])). Similarly, if f is a partial function over D, we say
that f is a partial polymorphism of an n-ary relation R over D if f(t1, . . . , tk) ∈ R for every
sequence t1, . . . , tk such that f(t1, . . . , tk) is defined for each componentwise application. If
f is a polymorphism or a partial polymorphism of a relation R then we occasionally also say
that R is invariant under f . We let Pol(R) and pPol(R) denote the set of all polymorphisms,
respectively partial polymorphisms, of the relation R. Similarly, for a constraint language Γ,
we write Pol(Γ) for the set

⋂
R∈Γ Pol(R), and pPol(Γ) for the set

⋂
R∈Γ pPol(R). We write

Inv(F) to denote the set of all relations invariant under the set of total or partial functions F .
It is known that Inv(Pol(Γ)) = 〈Γ〉 and that Inv(pPol(Γ)) = 〈Γ〉6∃, giving rise to the following
Galois connections.

I Theorem 4 ([9, 10, 19, 31]). Let Γ and Γ′ be two constraint languages. Then Γ ⊆ 〈Γ′〉 if
and only if Pol(Γ′) ⊆ Pol(Γ) and Γ ⊆ 〈Γ′〉 6∃ if and only if pPol(Γ′) ⊆ pPol(Γ).

2.4 Time Complexity and Size-Preserving Reductions
Given a constraint language Γ we let T(Γ) = inf{c | CSP(Γ) is solvable in time 2cn} where
n denotes the number of variables in a given instance. If T(Γ) = 0 then CSP(Γ) is said to
be solvable in subexponential time. The conjecture that SAT(Γ3

SAT) > 0 is known as the
exponential-time hypothesis (ETH) [24]. We now introduce a type of reduction useful for
studying the complexity of CSPs with respect to the function T.

I Definition 5. Let Γ and ∆ be two constraint languages. The function f from the instances
of CSP(Γ) to the instances of CSP(∆) is a many-one linear variable reduction (LV-reduction)
with parameter d ≥ 0 if (1) f is a polynomial-time many-one reduction from CSP(Γ) to

P. Jonsson, V. Lagerkvist, and B. Roy 17:7

CSP(∆) and (2) |V ′| = d · |V | + O(1) where V , V ′ are the set of variables in I and f(I),
respectively.

The term CV-reduction, short for constant variable reduction, is used to denote LV-
reductions with parameter 1, and we write CSP(Γ) ≤CV CSP(∆) when CSP(Γ) has a
CV-reduction to CSP(∆). It follows that if CSP(Γ) ≤CV CSP(∆) then T(Γ) ≤ T(∆), and if
CSP(Γ) LV-reduces to CSP(∆) then T(Γ) = 0 if T(∆) = 0. We have the following theorem
from Jonsson et al. [27], relating the partial polymorphisms of constraint languages with the
existence of CV-reductions.

I Theorem 6 ([27]). Let D be a finite domain and let Γ and ∆ be two constraint languages
over D. If pPol(∆) ⊆ pPol(Γ) then CSP(Γ) ≤CV CSP(∆).

We remark that the original proof only concerned Boolean constraint languages but that the
same proof also works for arbitrary finite domains. Using Theorem 6 and algebraic techniques
from Schnoor and Schnoor [35], Jonsson et al. [27] proved that T({R 6=6= 6=01

1/3 }) ≤ T(Γ) for
any finite Γ such that SAT(Γ) is NP-complete. This problem was referred to as the easiest
NP-complete SAT problem. We will not go into the details but remark that the proof idea
does not work for arbitrary finite domains since it requires a characterisation of every Pol(Γ)
such that CSP(Γ) is NP-complete. Such a list is known for the Boolean domain due to
Post [29] and Schaefer [34], but not for larger domains.

2.5 Complexity of CSP
Let Γ be a constraint language over a finite domain D. We say that Γ is idempotent if
Rd ∈ 〈Γ〉 for every d ∈ D, conservative if 2D ⊆ 〈Γ〉, and ultraconservative if 2D ⊆ Γ. A
unary function f ∈ Pol(Γ) is said to be an endomorphism, and if f in addition is bijective it
is said to be an automorphism. A constraint language Γ is a core if every endomorphism is
an automorphism. The following theorem is well-known, see e.g. Barto [1], but is usually
expressed in term of polynomial-time many-one reductions instead of CV-reductions.

I Theorem 7. Let Γ be a core constraint language over the domain {d0, . . . , dk−1}. Then
CSP(Γ ∪ {Rd0 , . . . , Rdk−1}) ≤CV CSP(Γ).

If Γ is a constraint language over D = {d0, . . . , dk−1}, then Γ ∪ {Rd0 , . . . , Rdk−1} is both
idempotent and a core since its only endomorphism is the identity function on D. The CSP
dichotomy conjecture states that for any Γ over a finite domain, CSP(Γ) is either tractable
or NP-complete [18]. This conjecture was later refined by Bulatov et al. [15] to also induce a
sharp characterization of the tractable and intractable cases, expressed in terms of algebraic
properties of the constraint language, and is usually called the algebraic CSP dichotomy
conjecture. We will use the following variant of the conjecture which is expressed in terms of
pp-interpretations.

I Conjecture 8. [1, 15] Let Γ be an idempotent constraint language over a finite domain.
Then CSP(Γ) is NP-complete if Γ pp-interprets Γ3

SAT and tractable otherwise.

It is worth remarking that if Γ pp-interprets Γ3
SAT then Γ can pp-interpret every finite-

domain relation [5, Theorem 5.5.17].

3 Subexponential Time Complexity

For Boolean constraint languages it has been proven that SAT(Γ3
SAT) is solvable in subex-

ponential time if and only if there exists a finite Boolean constraint language Γ such that

MFCS 2017

17:8 Time Complexity of Constraint Satisfaction via Universal Algebra

SAT(Γ) is NP-complete and solvable in subexponential time [27]. We will strengthen this
result to arbitrary domains and prove that CSP(Γ) is never solvable in subexponential time
if Γ can pp-interpret Γ3

SAT, unless the ETH is false. The result can also be extended to
certain structurally restricted CSPs. The degree of a variable x ∈ V of an instance (V,C) of
CSP(Γ) is the number of constraints in C containing x. We let CSP(Γ)-B, B ≥ 1, denote
the restricted CSP(Γ) problem where each variable occurring in an instance has degree at
most B. We then obtain the following theorem, whose proof can be found in the extended
preprint [28].

I Theorem 9. Assume that the ETH is true and let Γ be a finite constraint language over a
domain D such that Γ pp-interprets Γ3

SAT. Then CSP(Γ) is not solvable in subexponential
time, and if Γ efpp-defines EqD then there exists a constant B, depending only on Γ, such
that CSP(Γ)-B is not solvable in subexponential time.

We have now obtained a complete understanding of subexponential solvability of finite-
domain CSPs modulo the ETH.

I Corollary 10. Assume that the algebraic CSP dichotomy conjecture is true. Then the
following statements are equivalent: (1) the ETH is false, (2), CSP(Γ) is solvable in subex-
ponential time for every finite Γ over a finite domain, and (3) there exists a finite constraint
language Γ over a finite domain D such that CSP(Γ) is NP-complete and subexponential.

Proof. The implication from (1) to (2) follows from Impagliazzo et al. [24, Theorem 3]. The
implication from (2) to (3) is trivial. For the implication from (3) to (1), we first note that
CSP(Γc) ≤CV CSP(Γ), where Γc is the core of Γ [1, Theorem 3.5]. If Γc is expanded with
all constants, then Theorem 7 shows that the complexity does not change, and, last, this
language can pp-interpret Γ3

SAT, due to the assumption that the algebraic CSP dichotomy
conjecture is true, which via Theorem 9 implies that 3-SAT is solvable in subexponential
time, and thus that the ETH is false. J

For CSP(Γ)-B our results are not as precise since we need the additional assumption that
the equality relation is efpp-definable. This is not surprising since the most powerful dichotomy
results for CSPs are usually concerned with either constraint language restrictions [12, 15],
structural restrictions [17, 20], but rarely both simultaneously. However, in the Boolean
domain there are plenty of examples which illustrates how the equality relation may be
efpp-defined [16, 27], suggesting that similar techniques may also exist for larger domains.

Theorem 9 also applies to many interesting classes of infinite-domain CSPs. For example,
if we consider Γ such that each R ∈ Γ has a first-order definition over the structure (Q;<),
it is known that CSP(Γ) is NP-complete if and only if Γ can pp-interpret Γ3

SAT [5, 7]. Hence,
Theorem 9 is applicable, implying that if CSP(Γ) is not solvable in subexponential time if it is
NP-complete, unless the ETH fails. More examples of infinite-domain CSPs where Theorem 9
is applicable includes graph satisfiability problems [8] and phylogeny constraints [6]. Note
that all of these results hold independently of whether the algebraic CSP dichotomy is true
or not. We also remark that the intractable cases of the CSP dichotomy conjecture for
certain infinite-domain CSPs are all based on pp-interpretability of Γ3

SAT [2]. If this conjecture
is correct, Theorem 9 and the ETH implies that none of these problems are solvable in
subexponential time.

4 The Easiest NP-Complete Ultraconservative CSP Problem

The results from Section 3, assuming the algebraic CSP dichotomy conjecture and the ETH,
implies that T(Γ) > 0 for any finite-domain and NP-complete CSP(Γ). However, it is safe to

P. Jonsson, V. Lagerkvist, and B. Roy 17:9

say that very little is known about the behaviour of the function T in more general terms.
For example, is there for an arbitrary NP-complete CSP(Γ) possible to find an NP-complete
CSP(∆) such that T(∆) < T(Γ)? Such a scenario would be compatible with the consequences
of Theorem 9. We will show that this is unlikely, and prove that there for every finite domain
D exists a relation SD such that CSP(SD) is NP-complete but T({SD}) ≤ T(Γ) for any
ultraconservative Γ over D such that CSP(Γ) is NP-complete. To prove this we have divided
this section into two parts. In Section 4.1 we show that if Γ is ultraconservative and CSP(Γ)
is NP-complete, then there exists a relation R ∈ 〈Γ〉 6∃ which shares certain properties with
the relation R 6= 6= 6=01

1/3 . In Section 4.2 we use properties of these relations in order to prove
that there for every finite domain D is possible to find a relation SD such that CSP(SD) is
CV-reducible to any other NP-complete and ultraconservative CSP(Γ) problem.

4.1 SB-Extensions
The columns of the matrix representation of the relation R 6= 6= 6=01

1/3 from Jonsson et al. [27]
(resulting in the easiest NP-complete SAT problem) enumerates all Boolean ternary tuples.
We generalize this relation to arbitrary finite domains as follows.

I Definition 11. For each finite D let SD = {t1, t2, t3} denote the |D|3-ary relation such that
there for every (d1, d2, d3) ∈ D3 exists 1 ≤ i ≤ |D|3 such that (t1[i], t2[i], t3[i]) = (d1, d2, d3).

Hence, similar to R 6= 6=6=01
1/3 , the columns of the matrix representation of SD enumerates

all ternary tuples over D. For each D the relation SD is unique up to permutation of
arguments, and although we will usually not be concerned with the exact ordering, we
sometimes assume that SB = R 6= 6= 6=01

1/3 and that Proj1,...,8(SD) = SB. The notation SD is a
mnemonic for saturated, and the reason behind this will become evident in Section 4.2.1. For
example, for {0, 1, 2} we obtain a relation {t1, t2, t3} with 27 distinct arguments such that
(t1[i], t2[i], t3[i]) ∈ {0, 1, 2}3 for each 1 ≤ i ≤ 27. Jonsson et al. [27] proved that SB ∈ 〈Γ〉6∃
for every Boolean and idempotent constraint language Γ such that SAT(Γ) is NP-complete.
This is not true for arbitrary finite domains, and in order to prove an analogous result we
will need the following definition.

I Definition 12. Let R be an n-ary relation of cardinality 3 over a domain D, |D| ≥ 2. Let
a, b ∈ D be two distinct values. If there exists i1, . . . , i8 ∈ {1, . . . , n} such that

Proji1,...,i8(R) = {(a, a, b, b, b, a, a, b), (a, b, a, b, a, b, a, b), (b, a, a, a, b, b, a, b)},

then we say that R is an SB-extension.

For example, SD is an SB-extension for every domain D. Note that CSP(R) is always
NP-complete when R is an SB-extension. We will now prove that if CSP(Γ) is NP-complete
and Γ is ultraconservative, then Γ can pp-define an SB-extension.

I Lemma 13. Let Γ be an ultraconservative constraint language over a finite domain D such
that CSP(Γ) is NP-complete. Then there exists a relation R ∈ 〈Γ〉 which is an SB-extension.

Proof. Since CSP(Γ) is NP-complete and Γ is ultraconservative, Γ can pp-interpret every
Boolean relation. Therefore let f : F → B, F ⊆ Dd denote the parameters in the pp-
interpretation of SB, and note that f−1(SB) ∈ 〈Γ〉, but that f−1(SB) is not necessarily an
SB-extension since it could be the case that |f−1(SB)| > 3. Pick two tuples s and t in F
such that f(s) = 0 and f(t) = 1. Such tuples must exist since f is surjective. Now consider
the relation F1(x1, . . . , xd) ≡ F (x1, . . . , xd) ∧ {(s[1]), (t[1])}(x1) ∧ . . . ∧ {(s[d], t[d])}(xd).

MFCS 2017

17:10 Time Complexity of Constraint Satisfaction via Universal Algebra

This relation is pp-definable over Γ since Γ is ultraconservative and since F ∈ 〈Γ〉. By
construction, it is clear that s, t ∈ F1. Assume furthermore than |F1| > 2, i.e., that there
exists u ∈ F1 \ {s, t}. Assume without loss of generality that f(u) = 0, and observe that
there for each i ∈ {1, . . . , d} holds that u[i] ∈ {s[i], t[i]}. We claim that there exists some
i ∈ {1, . . . , d} such that u[i] = t[i] 6= s[i]. To see this, observe that there must exist i such
that u[i] 6= s[i], since otherwise u = s, and it then follows that u[i] = t[i]. Construct the
relation F2(x1, . . . , xd) ≡ F1(x1, . . . , xd) ∧ {(u[1]), (t[1])}(x1) ∧ . . . ∧ {(u[d]), (t[d])}(xd), and
note that F2 ⊂ F1 since s /∈ F2. By repeating this procedure we will obtain a relation F ′ ⊆ F
such that F ′ = {s0, s1} and such that f(s0) = 0, f(s1) = 1. Using F ′ we can then pp-define

R(x1,1, . . . , x1,d, . . . , x8,1, . . . , x8,d) ≡f−1(SB)(x1,1, . . . , x1,d, . . . , x8,1, . . . , x8,d)∧
F ′(x1,1, . . . , x1,d) ∧ . . . ∧ F ′(x8,1, . . . , x8,d).

Clearly, if (a1,1, . . . , a1,d, . . . , a8,1, . . . , a8,d) ∈ R, then (ai,1, . . . , ai,d) ∈ {s0, s1} for each 1 ≤
i ≤ 8, and (f(a1,1, . . . , a1,d), . . . , f(a8,1, . . . , a8,d)) ∈ SB if and only if
(a1,1, . . . , a1,d, . . . , a8,1, . . . , a8,d) ∈ f−1(SB). Since R ⊆ f−1(SB), this implies that
(f(a1,1, . . . , a1,d), . . . , f(a8,1, . . . , a8,d)) ∈ SB if and only if (a1,1, . . . , a1,d, . . . , a8,1, . . . , a8,d) ∈
R and each (ai,1, . . . , ai,d) ∈ {s0, s1}. In other words each element f(ai,1, . . . , ai,d) in a tuple
of SB uniquely correponds to d arguments ai,1, . . . , ai,d in the corresponding tuple of R, since
(ai,1, . . . , ai,d) = s0 if f(ai,1, . . . , ai,d) = 0, and (ai,1, . . . , ai,d) = s1 if f(ai,1, . . . , ai,d) = 1. It
follows that

R = {s_0 s_0 s_1 s_1 s_1 s_0 s_0 s1, s
_
0 s

_
1 s

_
0 s

_
1 s

_
0 s

_
1 s

_
0 s1, s

_
1 s

_
0 s

_
0 s

_
0 s

_
1 s

_
1 s

_
0 s1},

and therefore also that R is an SB-extension. J

Observe that the existence of an SB-extension R ∈ 〈Γ〉 does not imply that CSP(R) ≤CV

CSP(Γ). To accomplish this, we need to show that Γ can also qfpp-define an SB-extension.
The proof is available in the extended preprint [28].

I Lemma 14. Let Γ be an ultraconservative constraint language over a finite domain D such
that CSP(Γ) is NP-complete. Then there exists a relation in 〈Γ〉6∃ which is an SB-extension.

4.2 Properties of and Reductions between SB-Extensions
By Lemma 14, we can completely concentrate on SB-extensions. We will prove that T({SD}) ≤
T(Γ) for every ultraconservative Γ over D such that CSP(Γ) is NP-complete. To prove
this, we begin in Section 4.2.1 by investigating properties of SB-extensions, which we use
to simplify the total number of distinct cases we need to consider. With the help of these
results we in Section 4.2.2 develop techniques in order to show that CSP(SD) ≤CV CSP(R)
for every SB-extension over D.

4.2.1 Saturated SB-Extensions
In this section we simplify the number of cases we need to consider in Section 4.2.2. First note
that if R = {t1, t2, t3} over D is a relation with ar(R) > |D|3 then there exists i and j such
that (t1[i], t2[i], t3[i]) = (t1[j], t2[j], t3[j]). We say that the jth argument is redundant, and it
is possible to get rid of this by identifying the ith and jth argument with the qfpp-definition

R′(x1, . . . , xi, . . . , xj−1, xj+1, . . . , xn) ≡ R(x1, . . . , xi, . . . , xj−1, xi, xj+1, . . . , xn).

P. Jonsson, V. Lagerkvist, and B. Roy 17:11

This procedure can be repeated until no redundant arguments exist, and we will therefore
always implicitly assume that ar(R) ≤ |D|3 and that R has no redundant arguments. If R is
an n-ary SB-extension then the argument i ∈ {1, . . . , n} is said to be 1-choice, or constant, if
|Proji(R)| = 1, 2-choice if |Proji(R)| = 2, and 3-choice if |Proji(R)| = 3.

I Definition 15. An n-ary SB-extension R = {t1, t2, t3} is said to be saturated if there for
each 1 ≤ i ≤ n and every function τ : {1, 2, 3} → {1, 2, 3}, exists 1 ≤ j ≤ n such that
(tτ(1)[i], tτ(2)[i], tτ(3)[i]) = (t1[j], t2[j], t3[j]).

I Example 16. The relation SD is saturated for every D, but if we consider the relations R
and R′ defined by the matrices

(0 0 1 1 1 0 0 0 1 2
0 1 0 1 0 1 0 0 1 2
1 0 0 0 1 1 2 0 1 2

)
and

(0 0 1 1 1 0 0 0 1 2
0 1 0 1 0 1 1 0 1 2
1 0 0 0 1 1 2 0 1 2

)
then neither relation

is saturated. First, R is not saturated since its matrix representation, for example, does not
contain the column (0, 2, 0). Second, R′ is not saturated due to the 3-choice argument in
position 7.

We will now see that we without loss of generality may assume that an SB-extension is
saturated (see the extended preprint for proof [28]).

I Lemma 17. Let R be an SB-extension. Then there exists a saturated SB-extension
R′ ∈ 〈R〉6∃.

I Example 18. If R is the relation from Example 16 then the saturated relation R′ in 〈R〉6∃
from Lemma 17 is given by R′ =

(0 0 1 1 1 0 0 0 2 2 2 0 0 1 2
0 1 0 1 0 1 0 2 0 2 0 2 0 1 2
1 0 0 0 1 1 2 0 0 0 2 2 0 1 2

)
.

4.2.2 Reductions Between SB-Extensions
The main result of this section (Theorem 23 and Theorem 24) show that T({SD}) =
T({SD} ∪ 2D) ≤ T(Γ) whenever Γ is an ultraconservative constraint language over D such
that CSP(Γ) is NP-complete. The result is proven by a series of CV-reductions that we
present in Lemmas 19–22. Due to space constraints, we only present the proof of Lemma 20
which illustrates several useful techniques, and the remaining proofs can be found in the
extended preprint [28]. Before we begin, we note that if R is an SB-extension over D then
{R} is not necessarily a core. For a simple counterexample, {SB} is not a core over {0, 1, 2}
since the endomorphism e(0) = 0, e(1) = 1, e(2) = 0, is not an automorphism. However, if R
is an SB-extension and E = {d1, . . . , dm} the set

⋃
1≤i≤ar(R) Proji(R), every endomorphism

e : E → E of R must be an automorphism. Hence, Theorem 7 is applicable, and we conclude
that CSP({R,Rd1 , . . . , Rdm}) ≤CV CSP(R). When working with reductions between SB-
extensions we may therefore freely make use of constant relations. Given an instance (V,C)
of CSP(R), where R is an SB-extension, we say that a variable x ∈ V occurring in a k-choice
position in a constraint in C, 1 ≤ k ≤ 3, is a k-choice variable.

I Lemma 19. Let R be a saturated SB-extension. Then there exists a CV-reduction f from
CSP(R) to CSP(R) such that for every instance I of CSP(R), each variable in f(I) occurs
as a 3-choice variable in at most one constraint.

I Lemma 20. Let R be a saturated SB-extension and let R′ be R with one or more 3-choice
arguments removed, such that R′ is still saturated. Then CSP(R) ≤CV CSP(R′).

Proof. Let R = {t1, t2, t3}, n = ar(R), n′ = ar(R′), and assume that Proj1,...,n′(R) = R′. Let
I = (V,C) be an instance of CSP(R). First apply Lemma 19 in order to obtain an instance
I1 = (V1, C1) of CSP(R) such that each 3-choice variable only occurs in a 3-choice position
in a single constraint. Assume there exists x ∈ V1 and two distinct constraints c, c′ ∈ C1

MFCS 2017

17:12 Time Complexity of Constraint Satisfaction via Universal Algebra

such that x occurs in positions i ∈ {n′ + 1, . . . , n} in c and in a 1- or 2-choice position
j ∈ {1, . . . , n} in c′. Let S = Proji(R) ∩ Projj(R), and note that |S| ≤ 2. Assume first
that |S| = 2, let S = {d1, d2}, and assume without loss of generality that t1[i] = t1[j] = d1,
t2[i] = t2[j] = d2, and that t3[i] 6= t3[j] (the other cases can be treated similarly). Since R
is saturated there exists a 2-choice argument i′ ∈ {1, . . . , n} such that t1[i′] = t1[i] = t1[j],
t2[i′] = t2[i] = t2[j], and such that t3[i′] 6= t3[i]. Let y be the variable occurring in the i′th
position of c. Create a fresh variable x̂, replace x in position i with x̂, and for each constraint
where x occurs as a 1- or 2-choice variable, replace x with y. Repeat this procedure until
every 3-choice variable occurring in position n′ + 1, . . . , n only occurs in a single constraint,
and let I2 = (V2, C2) be the resulting instance. Assume there exists x ∈ V2 and a constraint
c ∈ C2 such that x occurs as a 3-choice variable in position i ∈ {n′ + 1, . . . , n} and also in a
distinct position j ∈ {1, . . . , n} in c. Let L = {tr | 1 ≤ r ≤ 3, tr[i] = tr[j]}. Since R does not
have any redundant arguments it must be the case that |L| < 3. If |L| = 0 then the instance
is unsatisfiable, in which case we output an arbitrary unsatisfiable instance, and if |L| = 1 it
is easy to see that any variable occurring in c can be assigned a fixed value, and the constraint
may be removed. Therefore, assume that |L| = 2, and e.g. that L = {t1, t2}. Since R is
saturated there exists a 2-choice argument j′ ∈ {1, . . . , n} such that t1[j′] = t2[j′] 6= t3[j′].
Let y be the variable occurring in position j′ in c and add the constraint Rt1[j′](y). Repeat
this for every variable occurring in position n′ + 1, . . . , n in a constraint in C2, and then
replace each constraint R(x1, . . . , x

′
n, . . . , xn) by R′(x1, . . . , xn). Note that any variable x̂

introduced in the previous step of this reduction will be removed. Hence, the reduction is a
CV-reduction. J

I Lemma 21. Let R be an SB-extension and let R′ be an SB-extension obtained by adding
additional 2-choice arguments to R. Then CSP(R′) ≤CV CSP(R).

I Lemma 22. Let R be a saturated SB-extension over D with 3-choice arguments. Then
CSP(SD) ≤CV CSP(R).

We have thus proved the main result of this section.

I Theorem 23. Let D be a finite domain and let Γ be a finite, ultraconservative constraint
language over D. If CSP(Γ) is NP-complete then T({SD}) ≤ T(Γ).

Proof. We first observe that if R is an SB-extension over a finite domain D, then
CSP(SD) ≤CV CSP(R). By Lemma 17 we may assume that R is saturated. If R does
not contain any 3-choice arguments we use Lemma 20 together with Lemma 21 and ob-
tain a CV-reduction from CSP(SD) to CSP(R). Hence, assume that R contains one or
more 3-choice arguments. In this case we use Lemma 22 and obtain a CV-reduction from
CSP(SD) to CSP(R). By Lemma 14 there exists an SB-extension R ∈ 〈Γ〉6∃, implying that
CSP(R) ≤CV CSP(Γ) via Theorem 6, and we know that CSP(SD) ≤CV CSP(R). We
conclude that T({SD}) ≤ T({R}) ≤ T(Γ). J

Clearly, {SD} is not an ultraconservative constraint language but the complexity of
CSP(SD) does not change when we expand the language by adding all unary relations over
D (the proof can be found in the extended preprint [28]).

I Theorem 24. Let D be a finite domain. Then T({SD}) = T({SD} ∪ 2D).

Thus, no NP-complete CSP over an ultraconservative constraint language over D is
solvable strictly faster than CSP(SD), and, in particular, T({SD′}) ≤ T({SD}) whenever
D′ ⊇ D. This raises the question of whether T(SD) = T(SD′) for all D,D′ ⊇ {0, 1}, or if

P. Jonsson, V. Lagerkvist, and B. Roy 17:13

it is possible to find D and D′ such that T({SD′}) < T({SD}). As the following theorem
shows, this is indeed the case, unless T({SD}) = 0 for every finite D and the ETH fails.
I Theorem 25. inf{T({SD}) | D finite and |D| ≥ 2} = 0.
Proof. Let Dk = {0, . . . , k − 1}, k ≥ 5. We will analyse a simple algorithm for CSP(SDk

).
Let I = (V,C) be an arbitrary instance of CSP(SDk

). Extend the instance with variables
Z = {z0, . . . , zk−1} and the constraints Ri(zi), 0 ≤ i ≤ k− 1. Arbitrarily choose a constraint
c = SDk

(x1, . . . , xk3) and let X = {x1, . . . , xk3}. It is straightforward to verify that if a
variable x appears in k2 + 1 or more positions, then c cannot be satisfied. Thus, |X| ≥ k.
If X ∩ Z = ∅, then we branch on the three tuples in SDk

and in each branch at least k
variables in V \ Z will be given fixed values. If a variable, say xi, is given the fixed value
d, then we identify xi with zd. Thus, at least k variables in V \ Z are removed. Assume
to the contrary that X ∩ Z 6= ∅. If a variable z ∈ Z occurs in a 3-choice position, then
the variables in X \ Z can be assigned fixed values and no branching is needed. If no
variable z ∈ Z occurs in a 3-choice position, then there are k(k− 1)(k− 2) 3-choice positions
in SDk

and they are all covered by variables in V \ Z. Thus, we perform three branches
based on the tuples in SDk

. Recall that a variable can occur in at most k2 positions in the
constraint c since c is otherwise not satisfiable. This implies that at least bk(k−1)(k−2)

k2 c ≥ 1
variables in V \ Z are given fixed values (and are removed from V \ Z) in each branch.
When there are no SDk

constraints left, we check whether the remaining set of unary
constraints are satisfiable or not. It is straightforward to perform this test in polynomial
time. A recursive equation that gives an upper bound on the time complexity of this
algorithm is thus T (1) = poly(||I||), T (n) = 3T (n − bk(k−1)(k−2)

k2 c) + poly(||I||)) (where n
denotes the number of variables and ||I|| the number of bits required to represent I) so
T (n) ∈ O(3n·

k2
k(k−1)(k−2) · poly(||I||)). The function k2

k(k−1)(k−2) obviously tends to 0 with
increasing k so the infimum of the set {T({SD}) | D is finite and |D| ≥ 2} is equal to 0. J

5 Concluding Remarks and Future Research

In this paper we have studied the time complexity of NP-complete CSPs. Assuming the
algebraic CSP dichotomy conjecture, we have ruled out subexponential time algorithms
for NP-complete, finite-domain CSPs, unless the ETH is false. This proof also extends to
degree-bounded CSPs and many classes of CSPs over infinite domains. We then proceeded to
study the time complexity of CSPs over ultraconservative constraint languages, and proved
that no such NP-complete CSP is solvable strictly faster than T({SD}). These results raise
several directions for future research.

First, Theorem 9 shows that the algebraic approach is viable for analysing the existence
of subexponential algorithms for certain structurally restricted CSP(Γ) problems. An
interesting continuation would be to determine which of the structurally (but not constraint
language) restricted CSPs investigated by de Haan et al. [17] could be used to prove similar
results. For example, is it the case that CSP(Γ) is not solvable in subexponential time
whenever CSP(Γ) is NP-complete and the primal treewidth of an instance is bounded by
Ω(n), unless the ETH fails?

Second, Several independent solutions to the algebraic CSP dichotomy conjecture have
recently been announced [13, 30, 37]. If any of these proposed proofs is correct, it is tempting
to extend Theorem 23 to constraint languages that are not necessarily ultraconservative or
conservative. As a starting point, one could try to strengthen the results in Section 4.1, in
order to prove that 〈Γ〉6∃ contains an SB-extension whenever CSP(Γ) is NP-complete and Γ
is conservative (but not ultraconservative).

MFCS 2017

17:14 Time Complexity of Constraint Satisfaction via Universal Algebra

Acknowledgements. We thank Hannes Uppman for several helpful discussions on the topic
of this paper.

References
1 L. Barto. Constraint satisfaction problem and universal algebra. ACM SIGLOG News,

1(2):14–24, October 2014.
2 L. Barto and M. Pinsker. The algebraic dichotomy conjecture for infinite domain constraint

satisfaction problems. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic
in Computer Science (LICS 2016), pages 615–622, New York, NY, USA, 2016. ACM.

3 M. Behrisch, M. Hermann, S. Mengel, and G. Salzer. Give me another one! In Proceedings
of the 26th International Symposium on Algorithms and Computation (ISAAC-2015), pages
664–676, 2015.

4 M. Behrisch, M. Hermann, S. Mengel, and G. Salzer. As close as it gets. In Proceedings of
the 10th International Workshop on Algorithms and Computation (WALCOM-2016), pages
222–235, 2016.

5 M. Bodirsky. Complexity classification in infinite-domain constraint satisfaction. Mé-
moire d’habilitation à diriger des recherches, Université Diderot – Paris 7. Available at
arXiv:1201.0856, 2012.

6 M. Bodirsky, P. Jonsson, and T. V. Pham. The complexity of phylogeny constraint sat-
isfaction. In 33rd Symposium on Theoretical Aspects of Computer Science, STACS 2016,
February 17-20, 2016, Orléans, France, pages 20:1–20:13, 2016.

7 M. Bodirsky and J. Kára. The complexity of temporal constraint satisfaction problems.
Journal of the ACM, 57(2):9:1–9:41, 2010.

8 M. Bodirsky and M. Pinsker. Schaefer’s theorem for graphs. J. ACM, 62(3):19:1–19:52,
June 2015.

9 V. G. Bodnarchuk, L. A. Kaluzhnin, V. N. Kotov, and B. A. Romov. Galois theory for
Post algebras. I. Cybernetics, 5:243–252, 1969.

10 V. G. Bodnarchuk, L. A. Kaluzhnin, V. N. Kotov, and B. A. Romov. Galois theory for
Post algebras. II. Cybernetics, 5:531–539, 1969.

11 E. Böhler, E. Hemaspaandra, S. Reith, and H. Vollmer. Equivalence and isomorphism
for boolean constraint satisfaction. In In Proceedings of the 16th International Workshop
on Computer Science Logic (CSL-2002), pages 412–426, Berlin, Heidelberg, 2002. Springer
Berlin Heidelberg.

12 A. Bulatov. Complexity of conservative constraint satisfaction problems. ACM Transac-
tions on Computational Logic, 12(4):24:1–24:66, July 2011.

13 A. Bulatov. A dichotomy theorem for nonuniform csps. CoRR, abs/1703.03021, 2017. URL:
http://arxiv.org/abs/1703.03021.

14 A. Bulatov and A. Hedayaty. Counting problems and clones of functions. Multiple-Valued
Logic and Soft Computing, 18(2):117–138, 2012.

15 A. Bulatov, P. Jeavons, and A. Krokhin. Classifying the complexity of constraints using
finite algebras. SIAM Journal on Computing, 34(3):720–742, March 2005. doi:10.1137/
S0097539700376676.

16 N. Creignou, U. Egly, and J. Schmidt. Complexity classifications for logic-based argument-
ation. ACM Transactions on Computational Logic (TOCL), 15(3):19:1–19:20, 2014.

17 R. de Haan, I. A. Kanj, and S. Szeider. On the subexponential-time complexity of CSP.
Journal of Artificial Intelligence Research (JAIR), 52:203–234, 2015. doi:10.1613/jair.
4540.

18 T. Feder and M.Y. Vardi. The computational structure of monotone monadic SNP and
constraint satisfaction: A study through datalog and group theory. SIAM Journal on
Computing, 28(1):57–104, 1998.

http://arxiv.org/abs/1703.03021
http://dx.doi.org/10.1137/S0097539700376676
http://dx.doi.org/10.1137/S0097539700376676
http://dx.doi.org/10.1613/jair.4540
http://dx.doi.org/10.1613/jair.4540

P. Jonsson, V. Lagerkvist, and B. Roy 17:15

19 D. Geiger. Closed systems of functions and predicates. Pacific Journal of Mathematics,
27(1):95–100, 1968.

20 M. Grohe. The structure of tractable constraint satisfaction problems. In Proceedings of the
31st International Symposium on Mathematical Foundations of Computer Science (MFCS
2006), pages 58–72, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

21 L. Ham. Gap theorems for robust satisfiability: Boolean CSPs and beyond. To appear in
Theoretical Computer Science, 2017. doi:10.1016/j.tcs.2017.03.006.

22 T. Hertli. 3-SAT faster and simpler - unique-SAT bounds for PPSZ hold in general. SIAM
Journal on Computing, 43(2):718–729, 2014. doi:10.1137/120868177.

23 R. Impagliazzo and R. Paturi. On the complexity of k-SAT. Journal of Computer and
System Sciences, 62(2):367–375, 2001.

24 R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential com-
plexity? Journal of Computer and System Sciences, 63:512–530, 2001.

25 P. Jeavons. On the algebraic structure of combinatorial problems. Theoretical Computer
Science, 200:185–204, 1998.

26 P. Jeavons, D. Cohen, and M. Gyssens. Closure properties of constraints. Journal of the
ACM, 44(4):527–548, July 1997. doi:10.1145/263867.263489.

27 P. Jonsson, V. Lagerkvist, G. Nordh, and B. Zanuttini. Strong partial clones and the time
complexity of SAT problems. Journal of Computer and System Sciences, 84:52–78, 2017.

28 P. Jonsson, V. Lagerkvist, and B. Roy. Time Complexity of Constraint Satisfaction via
Universal Algebra. ArXiv e-prints, June 2017. arXiv:1706.05902.

29 E. Post. The two-valued iterative systems of mathematical logic. Annals of Mathematical
Studies, 5:1–122, 1941.

30 A. Rafiey, J. Kinne, and T. Feder. Dichotomy for digraph homomorphism problems. CoRR,
abs/1701.02409, 2017. URL: http://arxiv.org/abs/1701.02409.

31 B.A. Romov. The algebras of partial functions and their invariants. Cybernetics, 17(2):157–
167, 1981.

32 F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of Constraint Programming,
volume 2 of Foundations of Artificial Intelligence. Elsevier, 2006.

33 S. J. Russell and P. Norvig. Artificial Intelligence - A Modern Approach (3. internat. ed.).
Pearson Education, 2010.

34 T. Schaefer. The complexity of satisfiability problems. In Proceedings of the 10th Annual
ACM Symposium on Theory Of Computing (STOC-78), pages 216–226. ACM Press, 1978.

35 H. Schnoor and I. Schnoor. Partial polymorphisms and constraint satisfaction problems.
In N. Creignou, P. G. Kolaitis, and H. Vollmer, editors, Complexity of Constraints, volume
5250 of Lecture Notes in Computer Science, pages 229–254. Springer Berlin Heidelberg,
2008.

36 M. Wahlström. Algorithms, measures and upper bounds for satisfiability and related prob-
lems. PhD thesis, Linköping University, TCSLAB - Theoretical Computer Science Labor-
atory, The Institute of Technology, 2007.

37 D. Zhuk. The proof of csp dichotomy conjecture. CoRR, abs/1704.01914, 2017. URL:
https://arxiv.org/abs/1704.01914.

MFCS 2017

http://dx.doi.org/10.1016/j.tcs.2017.03.006
http://dx.doi.org/10.1137/120868177
http://dx.doi.org/10.1145/263867.263489
http://arxiv.org/abs/1706.05902
http://arxiv.org/abs/1701.02409
https://arxiv.org/abs/1704.01914

The Hardness of Solving Simple Word Equations
Joel D. Day1, Florin Manea2, and Dirk Nowotka3

1 Kiel University, Department of Computer Science, Kiel, Germany
jda@informatik.uni-kiel.de

2 Kiel University, Department of Computer Science, Kiel, Germany
flm@informatik.uni-kiel.de

3 Kiel University, Department of Computer Science, Kiel, Germany
dn@informatik.uni-kiel.de

Abstract
We investigate the class of regular-ordered word equations. In such equations, each variable
occurs at most once in each side and the order of the variables occurring in both left and right
hand sides is preserved (the variables can be, however, separated by potentially distinct constant
factors). Surprisingly, we obtain that solving such simple equations, even when the sides contain
exactly the same variables, is NP-hard. By considerations regarding the combinatorial structure
of the minimal solutions of the more general quadratic equations we obtain that the satisfiability
problem for regular-ordered equations is in NP. The complexity of solving such word equations
under regular constraints is also settled. Finally, we show that a related class of simple word
equations, that generalises one-variable equations, is in P.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, F.4.3 Formal
Languages

Keywords and phrases Word Equations, Regular Patterns, Regular Constraints

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.18

1 Introduction

A word equation is an equality α = β, where α and β are words over an alphabet Σ∪X (called
the left, respectively, right side of the equation); Σ = {a, b, c, . . .} is the alphabet of constants
and X = {x1, x2, x3, . . .} is the alphabet set of variables. A solution to the equation α = β is
a morphism h : (Σ ∪X)∗ → Σ∗ that acts as the identity on Σ and satisfies h(α) = h(β). For
instance, α = x1abx2 and β = ax1x2b define the equation x1abx2 = ax1x2b, whose solutions
are the morphisms h with h(x1) = ak, for k ≥ 0, and h(x2) = b`, for ` ≥ 0.

The study of word equations (or the existential theory of equations over free monoids) is
an important topic found at the intersection of algebra and computer science, with significant
connections to, e.g., combinatorial group or monoid theory [19, 18, 2], unification [25, 11, 12],
and, more recently, data base theory [9, 8]. The problem of deciding whether a given word
equation α = β has a solution or not, known as the satisfiability problem, was shown to
be decidable by Makanin [20] (see Chapter 12 of [17] for a survey). Later it was shown
that the satisfiability problem is in PSPACE by Plandowski [22]; a new proof of this result
was obtained in [14], based on a new simple technique called recompression. However, it
is conjectured that the satisfiability problem is in NP; this would match the known lower
bounds: the satisfiability of word equations is NP-hard, as it follows immediately from,
e.g., [4]. This hardness result holds in fact for much simpler classes of word equations, like
quadratic equations (where the number of occurrences of each variable in αβ is at most
two), as shown in [3]. There are also cases when the satisfiability problem is tractable. For

© JoelD. Day, Florin Manea, and Dirk Nowotka;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 18; pp. 18:1–18:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.18
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

18:2 The Hardness of Solving Simple Word Equations

instance, word equations with only one variable can be solved in linear time in the size of
the equation, see [13]; equations with two variables can be solved in time O(|αβ|5), see [1].

In most cases, the NP-hardness of the satisfiability problem for classes of word equations
was shown as following from the NP-completeness of the matching problem for corresponding
classes of patterns with variables. In the matching problem we essentially have to decide
whether an equation α = β, with α ∈ (Σ ∪X)∗ and β ∈ Σ∗, has a solution; that is, only one
side of the equation, called pattern, contains variables. The aforementioned results [4, 3]
show, in fact, that the matching problem is NP-complete for general α, respectively when
α is quadratic. Many more tractability and intractability results concerning the matching
problem are known (see [24, 6, 7]). In [5], efficient algorithms were defined for, among others,
patterns which are regular (each variable has at most one occurrence), non-cross (between
any two occurrences of a variable, no other distinct variable occurs), or patterns with only a
constant number of variables occurring more than once.

Naturally, for a class of patterns that can be matched efficiently, the hardness of the
satisfiability problem for word equations with sides in the respective class is no longer
immediate. A study of such word equations was initiated in [21], where the following results
were obtained. Firstly, the satisfiability problem for word equations with non-cross sides
(for short non-cross equations) remains NP-hard. In particular, solving non-cross equations
α = β where each variable occurs at most three times, at most twice in α and exactly once in
β, is NP-hard. Secondly, the satisfiability of one-repeated variable equations (where at most
one variable occurs more than once in αβ, but arbitrarily many other variables occur only
once) having at least one non-repeated variable on each side, was shown to be trivially in P.

In this paper we mainly address the class of regular-ordered equations, whose sides are
regular patterns and, moreover, the order of the variables occurring in both sides is the
same. This seems to be one of the structurally simplest classes of equations whose number of
variables is not bounded by a constant. One central motivation for studying these equations
with a simple structure is that understanding their complexity and combinatorial properties
may help us to identify a boundary between classes of word equations whose satisfiability
is tractable and intractable. Moreover, we wish to gain a better understanding of the core
reasons why solving word equations is hard. In the following, we overview our results,
methods, and their connection to existing works from the literature.

Lower bounds. Our first result closes the main problem left open in [21]. Namely, we show
that it is (still) NP-hard to solve regular (ordered) word equations. Note that in these word
equations each variable occurs at most twice: at most once in every side. They are particular
cases of both quadratic equations and non-cross equations, so the reductions showing the
hardness of solving these more general equations do not carry over. To begin with, matching
quadratic patterns is NP-hard, while matching regular patterns can be done in linear time.
Showing the hardness of the matching problem for quadratic patterns in [3] relied on a simple
reduction from 3-SAT, where the two occurrences of each variable were used to simulate
an assignment of a corresponding variable in the SAT formula, respectively to ensure that
this assignment satisfies the formula. To facilitate this final part, the second occurrences of
the variables were grouped together, so the equation constructed in this reduction was not
non-cross. Indeed, matching non-cross patterns can be done in polynomial time. So showing
that solving non-cross equations is hard, in [21], required slightly different techniques. This
time, the reduction was from an assignment problem in graphs. The (single) occurrences of
the variables in one side of the equation were used to simulate an assignment in the graph,
while the (two) occurrences of the variables from the other side were used for two reasons:

J. D. Day, F. Manea, and D. Nowotka 18:3

to ensure that the previously mentioned assignment is correctly constructed and to ensure
that it also satisfies the requirements of the problem. For the second part it was also useful
to allow the variables to occur in one side in a different order as in the other side.

As stated in [21], showing that the satisfiability problem for regular equations seems to
require a totally different approach. Our hardness reduction relies on some novel ideas, and,
unlike the aforementioned proofs, has a deep word-combinatorics core. As a first step, we
define a reachability problem for a certain type of (regulated) string rewriting systems, and
show it is NP-complete (in Lemma 7). This is achieved via a reduction from the strongly
NP-complete problem 3-Partition [10]. Then we show that this reachability problem can be
reduced to the satisfiability of regular-ordered word equations; in this reduction (described
in the successive Lemmas 9, 10, and 11), we essentially try to encode the applications of
the rewriting rules of the system into the periods of the words assigned to the variables in
a solution to the equation. In doing this, we are able to only use one occurrence of each
variable per side, and moreover to even have the variables in the same order in both sides.

Our reduction suggests the ability of this simple class of equations to model other natural
problems in rewriting, combinatorics on words, and beyond. In this respect, our construction
seems interesting with respect to the expressibility of word equations, as studied in [15].

Upper bounds. A consequence of the results in [23] is that the satisfiability problem for
a certain class of word equations is in NP if the lengths of the minimal solutions of such
equations (where the length of the solution defined by a morphism h is the image of the
equation’s sides under h) are at most exponential. With this in mind, we show Lemma 14,
which gives us an insight in the combinatorial structure of the minimal solutions of quadratic
equations: if we follow around the minimal solutions the positions that are fixed inside the
images of the variables by each terminal of the original equation (in order, starting with
that terminal), we obtain sequences that should not contain repetitions. Consequently, in
Proposition 17, we give a simple and concise proof of the fact that the image of any variable in
a minimal solution to a regular-ordered equation is at most linear in the size of the equation.
It immediately follows that the satisfiability problem for regular-ordered equations is in NP.
While this result was expected, the approach we use to obtain it seems rather interesting
to us, and also a promising approach to showing that other, more complicated, classes of
restricted word equations can be solved in NP-time. For instance, it is an open problem to
show this for arbitrary regular or quadratic equations. It is worth noting that our polynomial
upper bound on length of minimal solutions of regular-ordered equations does not hold even
for slightly relaxed versions of such equations. More precisely, non-cross equations α = β

where the order of the variables is the same in both sides and each variable occurs exactly
three times in αβ, but never only on one side, may already have exponentially long minimal
solutions (see Proposition 2). To this end, it seems even more surprising that it is NP-hard
to solve equations with such a simple structure (regular-ordered), which, moreover, have
quadratically short solutions. As such, regular-ordered equations seem to be among the
structurally simplest word-equations, whose satisfiability problem is intractable.

Extending our ideas, we settle the complexity of solving regular-ordered equations with
regular constraints (as defined in [3], where each variable is associated with an NFA), which
is in NP for regular-ordered equations whose sides contain exactly the same variables, or
when the languages defining the scope of the variables are all accepted by NFAs with at
most c states, where c is a constant. For regular-ordered equations with regular constraints
without these restrictions, the problem remains PSPACE-complete.

Finally, we use again a reasoning on the structure of the minimal solutions of equations,
similar to the above, to show that if we preserve the non-cross structure of the sides of the

MFCS 2017

18:4 The Hardness of Solving Simple Word Equations

considered word equations, but allow only one variable to occur an arbitrary number of times
(all the others occur exactly once in total, and hence in at most one side), we get a class of
equations whose satisfiability problem is in P. This problem is related to the one-repeated
variable equations considered in [21]; in this case, we restrict the equations to a non-cross
structure of the sides, but drop the condition that at least one non-repeated variable should
occur on each side. Moreover, this problem generalises the one-variable equations [13], while
preserving the tractability of their satisfiability problem. Last, but not least, this result shows
that the pattern searching problem, in which, given a pattern α ∈ (Σ ∪ {x1})∗ containing
constants and exactly one variable x1 (occurring several times) and a text β ∈ (Σ ∪ {x1})∗
containing constants and the same single (repeated) variable, we check whether there exists
an assignment of x1 that makes α a factor of β, is tractable; indeed, this problem is the same
as checking whether the word equation x2αx3 = β, with α, β ∈ (Σ ∪ {x1})∗, is satisfiable.

2 Preliminaries

Let Σ be an alphabet. We denote by Σ∗ the set of all words over Σ; by ε we denote the empty
word. Let |w| denote the length of a word w. For 1 ≤ i ≤ j ≤ |w| we denote by w[i] the letter
on the ith position of w and w[i..j] = w[i]w[i+ 1] · · ·w[j]. A word w is p-periodic for p ∈ N
(and p is called a period of w) if w[i] = w[i+ p] for all 1 ≤ i ≤ |w| − p; the smallest period of
a word is called its period. By extension, for a word w of period p, we sometimes call w[1..p]
the period of w. Let w = xyz for some words x, y, z ∈ Σ∗, then x is called prefix of w, y is a
factor of w, and z is a suffix of w. Two words w and u are called conjugate if there exist
non-empty words x, y such that w = xy and u = yx. The powers of w are defined by w0 = ε,
wn = wwn−1 for n ≥ 1, and wω = ww · · · , an infinite concatenation of the word w.

Let Σ = {a, b, c, . . .} be an alphabet of constants and let X = {x1, x2, x3, . . .} be an
alphabet of variables. We assume that X and Σ are disjoint. A word α ∈ (Σ ∪ X)∗ is
usually called pattern. For a pattern α and a letter z ∈ Σ ∪X, let |α|z denote the number of
occurrences of z in α; var(α) denotes the set of variables from X occurring in α. A morphism
h : (Σ ∪ X)∗ → Σ∗ with h(a) = a for every a ∈ Σ is called a substitution. We say that
α ∈ (Σ ∪ X)∗ is regular if, for every x ∈ var(α), we have |α|x = 1; e. g., ax1ax2cx3x4b is
regular. Note that L(α) = {h(α) | h is a substitution} (the pattern language of α) is regular
when α is regular, hence the name of such patterns. The pattern α is non-cross if between
any two occurrences of the same variable x no other variable different from x occurs, e. g.,
ax1bax1x2ax2x2b is non-cross, but x1bx2x2bx1 is not.

A word equation is a tuple (α, β) ∈ (Σ ∪X)+ × (Σ ∪X)+; we usually denote such an
equation by α = β, where α is the left-hand side (LHS, for short) and β the right-hand side
(RHS) of the equation. A solution to an equation α = β is a substitution h with h(α) = h(β),
and h(α) is called the solution word (defined by h); the length of a solution h of the equation
α = β is |h(α)|. A solution of shortest length to an equation is also called minimal.

A word equation is satisfiable if it has a solution and the satisfiability problem is to
decide for a given word equation whether or not it is satisfiable. The satisfiability prob-
lem for general word equations can be solved non-deterministically in time polynomial in
n logN , where n is the length of the equation and N the length of its minimal solution [23].
The next result follows.

I Lemma 1. Let E be a class of word equations. Suppose there exists a polynomial P such
that for any equation in E its minimal solution, if it exists, has length at most 2P (n) where n
is the length of the equation. Then the satisfiability problem for E is in NP.

J. D. Day, F. Manea, and D. Nowotka 18:5

A word equation α = β is regular or non-cross, if both α and β are regular or both α
and β are non-cross, respectively; α = β is quadratic if each variable occurs at most twice
in αβ. We call a regular or non-cross equation ordered if the order in which the variables
occur in both sides of the equation is the same. That is, if x and y are variables occurring
both in α and β, then all occurrences of x occur before all occurrences of y in α if and
only if all occurrences of x occur before all occurrences of y in β. Note, however, that
variables may occur only in one side of a regular or non-cross ordered equation. For instance
x1x1ax2x3bx4 = x1ax1x2bx3 is ordered non-cross, while x1x1ax3x2b = x1ax1x2bx3 is still
non-cross but not ordered. Next we give an example of very simple word equations whose
minimal solution has exponential length, whose structure follows that in [16, Theorem 4.8].

I Proposition 2. The minimal solution to the word equation xnaxnbxn−1bxn−2 · · · bx1 =
axnx2

n−1bx2
n−2b...bx2

1ba2 has length Θ(2n).

For a word equation α = β and an x ∈ var(αβ), a regular constraint (for x) is a regular
language Lx. A solution h for α = β satisfies the regular constraint Lx if h(x) ∈ Lx. The
satisfiability problem for word equations with regular constraints is to decide on whether an
equation α = β with regular constraints Lx, x ∈ var(αβ), given as an NFA, has a solution
that satisfies all regular constraints.

Finally, we recall the 3-Partition problem (see [10]). This problem is NP-complete in
the strong sense, i.e., it remains NP-hard even when the input numbers are given in unary.

I Problem 3 (3-Partition – 3-PAR).
Instance: 3m nonnegative integers (given in unary) A = (k1, . . . , k3m), whose sum is ms
Question: Is there a partition of A into m disjoint groups of three elements, such that each
group sums exactly to s.

3 Lower bounds

In this section, we show that the highly restricted class of regular-ordered word equations is
NP-hard, and, thus, that even when the order in which the variables occur in an equation is
fixed, and each variable may only repeat once – and never on the same side of the equation –
satisfiability remains intractable. As mentioned in the introduction, our result shows the
intractability of the satisfiability problem for a class of equations considerably simpler than
the simplest intractable classes of equations known so far. Our result seems also particularly
interesting since we are able to provide a corresponding upper bound in the next section,
and even show that the minimal solutions of regular-ordered equations are “optimally short”.

I Theorem 4. The satisfiability problem for regular-ordered word equations is NP-hard.

In order to show NP-hardness, we shall provide a reduction from a reachability problem
for a simple type of regulated string-rewriting system. Essentially, given two words – a
starting point, and a target – and an ordered series of n rewriting rules (a rewriting program,
in a sense), the problem asks whether this series of rules may be applied consecutively (in
the predefined order) to the starting word such that the result matches the target. We stress
that the order of the rules is predefined, but the place where a rule is to be applied within
the sentential form is non-deterministically chosen.

I Problem 5 (Rewriting with Programmed Rules – REP).
Instance: Words ustart, uend ∈ Σ∗ and an ordered series of n substitution rules wi → w′i,
with wi, w′i ∈ Σ∗, for 1 ≤ i ≤ n.

MFCS 2017

18:6 The Hardness of Solving Simple Word Equations

Question: Can uend be obtained from ustart by applying each rule (i.e., replacing an occurrence
of wi with w′i), in order, to ustart.

I Example 6. Let ustart = b5 and uend = (a11bc2)5; for 1 ≤ i ≤ 10, consider the rules
wi → w′i with wi = b and w′i = aibc. We can obtain uend from ustart by first applying
w1 → w′1 to the first b, then w2 → w′2 to the second b, and further, in order for 3 ≤ i ≤ 5, by
applying wi → w′i to the ith b. Then, we apply w6 to the fifth b (counting from left to right).
Further we apply in order, for 7 ≤ i ≤ 10, wi → w′i to the (11− i)th occurrence of b.

It is not so hard to see that REP is NP-complete (the size of the input is the sum of
the lengths of ustart, uend, wi and w′i). A reduction can be given from 3-PAR, in a manner
similar to the construction in the example above. Importantly for our proof, 3-PAR is
strongly NP-complete, so it is simpler to reduce it to a problem whose input consists of words.

I Lemma 7. REP is NP-complete.

Our reduction centres on the construction, for any instance µ of REP, of a regular-ordered
word equation αµ = βµ which possesses a specific form of solution – which we shall call
overlapping – if and only if the instance of REP has a solution. By restricting the form of
solutions in this way, the exposition of the rest of the reduction is simplified considerably.
The main idea is that the applications of the rewriting rules are encoded in the periods of
each variable in the solution.

I Definition 8. Let n ∈ N, µ be an instance of REP with ustart, uend and rules wi → w′i
for 1 ≤ i ≤ n. Let # be a ‘new’ letter not occurring in any component of REP. We define
the regular-ordered equation αµ = βµ such that:
αµ := x1 w1 x2 w2 · · · xn wn xn+1 # uend, βµ := # ustart x1 w

′
1 x2 w

′
2 · · · xn w

′
n xn+1.

A solution h : (X ∪ Σ)∗ → Σ∗ is called overlapping if, for every 1 ≤ i ≤ n, there exists
zi ∈ Σ∗ such that wizi is a suffix of h(xi) and h(#ustartx1 · · ·w′i−1xi) = h(x1w1 · · ·xiwi)zi.

Of course, satisfiability of a class of word equations asks whether any solution exists,
rather than just overlapping solutions. Hence, before we prove our claim that αµ = βµ has an
overlapping solution if and only if µ satisfies REP, we present a construction of an equation
α = β which has a solution if and only if αµ = βµ has an overlapping solution. Essentially,
this shows that solving the satisfiability of regular-ordered equations is as hard as solving
the satisfiability of word equations when we restrict our search to overlapping solutions.

I Lemma 9. Let µ be an instance of REP. There exists a regular-ordered equation α = β of
size O(|αµβµ|) such that α = β is satisfiable if and only if αµ = βµ has an overlapping solution.

The rest of the proof relies on the following technical characterisation of overlapping
solutions to αµ = βµ in terms of periods vi of the images h(xi). The yi factors will correspond
to the zi factors discussed in the definition of overlapping solutions (see also Figure 1).

I Lemma 10. Let µ be a an instance of REP with ustart, uend and rules wi → w′i for
1 ≤ i ≤ n. A substitution h : (X ∪ Σ)∗ → Σ∗ is an overlapping solution to αµ = βµ if and
only if there exist prefixes v1, v2, . . . , vn of h(x1), h(x2), . . . , h(xn) such that:
1. h(xi) wi is a prefix of vωi for 1 ≤ i ≤ n, and
2. v1 = #ustart, and for 2 ≤ i ≤ n, vi = yi−1w

′
i−1, and

3. yn w′n h(xn+1) = h(xn+1) #uend,
where for 1 ≤ i ≤ n, yi is the suffix of h(xi) of length |vi| − |wi|.

J. D. Day, F. Manea, and D. Nowotka 18:7

. . .

. . .

. . .

. . .

yi−1
xi xi+1

xi−1 xi xi+1

yi

vi vi+1

w′i−1 w′i

wih(αµ)

h(βµ)

Figure 1 The period of h(xi) is vi, and since wiyi is a suffix of h(xi) and |wiyi| = |vi|, we have
that wiyi is a cyclic shift of vi (i.e., they are conjugate) – so vi = swit and wiyi = wits for some s, t.
vi+1 is conjugate to sw′

it since vi+1 = yiw
′
i = tsw′

i. Thus vi+1 is obtained from vi by “applying” the
rule wi → w′

i (and conjugating, but we can keep track of this due to the unique occurrence of #).

We shall now take advantage of Lemma 10 in order to demonstrate the correctness of our
construction of αµ = βµ – i.e., that it has an overlapping solution if and only if µ satisfies
REP. In particular, the periods vi of the images h(xi) of the variables – which are obtained
as the ‘overlap’ between the two occurrences of h(xi) – store the ith stage of a rewriting
ustart → . . .→ uend. In fact, this is obtained as the conjugate of vi starting with #. Thus
the solution-word, when it exists, stores a sort-of rolling computation history.

I Lemma 11. Let µ be a an instance of REP with ustart, uend and rules wi → w′i for
1 ≤ i ≤ n. There exists an overlapping solution h : (X ∪ Σ)∗ → Σ∗ to the equation αµ = βµ
if and only if µ satisfies REP.

Proof. Suppose firstly that µ satisfies REP. Then there exist s1, s2, . . . , sn, t1, t2, . . . , tn
such that ustart = s1w1t1, for 1 ≤ i ≤ n − 1, siw′iti = si+1wi+1ti+1 and snw

′
ntn = uend.

Let h : (X ∪ Σ)∗ → Σ∗ be the substitution such that h(x1) = #s1w1t1#s1, h(xn+1) =
tn#snw′ntn#snw′ntn, and for 2 ≤ i ≤ n, h(xi) = ti−1#si−1w

′
i−1ti−1#si. We shall now show

that h satisfies Lemma 10, and hence that h is an overlapping solution to αµ = βµ.
Let v1 = #s1w1t1, let y1 := t1#s1, and for 2 ≤ i ≤ n, let vi := ti−1#si−1w

′
i−1 and

let yi := ti#si. Note that for 1 ≤ i ≤ n, vi is a prefix of h(xi), and moreover, since
si−1w

′
i−1ti−1 = siwiti, yi is the suffix of h(xi) of length |vi| − |wi|.

It is clear that h satisfies Condition (1) of Lemma 10 for i = 1. For 2 ≤ i ≤ n, we
have h(xi)witi = ti−1#si−1wi−1ti−1#siwiti = ti−1#si−1wi−1ti−1#si−1wi−1ti−1, which is a
prefix of vωi , and hence h(xi)wi is also a prefix of vωi . Thus h satisfies Condition (1) for all i.
Moreover, v1 = #ustart, and for 2 ≤ i ≤ n, yi−1w

′
i−1 = ti−1#si−1w

′
i−1 = vi, so h satisfies

Condition (2). Finally, ynw′nh(xn+1) = tn#snw′ntn#snw′ntn#snw′ntn = h(xn+1)#uend so h
also satisfies Condition (3).

Now suppose that h is an overlapping solution to αµ = βµ. Then h satisfies Condi-
tions (1), (2) and (3) of Lemma 10. Let vi, yi be defined according to the lemma for
1 ≤ i ≤ n, and let vn+1 = ynw

′
n. We shall show that µ satisfies REP as follows. We begin

with the following observations, whose proofs are omitted due to space constraints.

I Claim 12. For 1 ≤ i ≤ n, yiwi and vi are conjugate. Hence, for 1 ≤ i ≤ n+ 1, |vi|# = 1.

Let ṽi be the (unique) conjugate of vi which has # as a prefix. Then we have the following:

I Claim 13. For 1 ≤ i ≤ n, there exist si, ti such that ṽi = #siwiti and ṽi+1 = #siw′iti.

Recall from Condition (3) of Lemma 10 that vn+1h(xn+1) = ynw
′
nh(xn+1) =

h(xn+1)#uend. Consequently, vn+1 and #uend are conjugate, so ṽn+1 = #uend. Moreover,
by Condition (2) of Lemma 10, v1 = ṽ1 = #ustart. Thus, it follows from Claim 13 that µ
satisfies REP. J

MFCS 2017

18:8 The Hardness of Solving Simple Word Equations

x z

y y

y

w

i k

h(α)

h(β)

a a a

j

· · ·
· · · · · ·

· · ·

j j

Figure 2 Fixing positions: since an occurrence of the ith letter of h(x) corresponds to an
occurrence of the (|h(y)| − j)th letter of y, whose other occurrences correspond to the kth letter of
h(z) and first letter of h(w), all these positions are equivalent and contain the same letter, e.g., a.

It is clear that the equation αµ = βµ (and hence also the equation α = β given in
Lemma 9) may be constructed in polynomial time, therefore our reduction from REP is
complete. So, by Lemmas 7 and 11, we have shown Theorem 4.

4 NP-upper bound

In this section, we discuss a series of results related to the satisfiability of regular-ordered
word equations. To this end, we extend the classical approach of filling the positions (see
e.g., [15] and the references therein). This method essentially comprises of assuming that for
a given equation α = β, we have a solution h with specified lengths |h(x)| for each variable x.
The assumption that h satisfies the equation induces an equivalence relation on the positions
of each h(x): if a certain position in the solution-word is produced by an occurrence of the
ith letter of h(x) on the RHS and an occurrence of the jth letter of h(y) on the LHS, then
these two positions must obviously have the same value/letter and we shall say that these
occurrences correspond. These individual equivalences can be combined to form equivalence
classes, and if no contradictions occur (i.e., two different terminal symbols a and b do not
belong to the same class), a valid solution can be derived.

Such an approach already allows for some straightforward observations regarding the
(non-)minimality of a solution h. In particular, if an equivalence class of positions is not
associated with any terminal symbol, then all positions in this class can be mapped to ε,
resulting in a strictly shorter solution. On the other hand, even for our restricted setting, this
observation is insufficient to provide a bound on the length of minimal solutions. In fact, in
the construction of the equivalence classes we ignore, or at least hide, some of the structural
information about the solution. In what follows, we shall see that by considering the exact
‘order’ in which positions are equated, we are able to give some more general conditions
under which a solution is not minimal.

For our approach, rather than just constructing these equivalence classes, we shall
construct sequences of equivalent positions, and then analyse “similar” sequences. For
example, one occurrence of a position i in h(x) might correspond to an occurrence of position
j in h(y), while another occurrence of position j in h(y) might correspond to position k in h(z),
and so on, in which case we would consider the sequence: . . .→ (x, i)→ (y, j)→ (z, k)→

The sequence terminates when either a variable which occurs only once or a terminal
symbol is reached. For general equations, considering all such sequences leads naturally to a
graph structure where the nodes are positions (x, i) ∈ X ×N, and number of edges from each
node is determined by the number of occurrences of the associated variable. Each connected
component of such a graph corresponds to an equivalence class of positions as before. In the
case of quadratic (and therefore also regular) equations, where each variable occurs at most
twice, each ‘node’ (x, i) has at most two edges, and hence our graph is simply a set of disjoint
chains, without any loops. As before, each chain (called in the following sequence) must be

J. D. Day, F. Manea, and D. Nowotka 18:9

xx

a a a

y y

x x

w w w

· · ·
· · · · · · · · ·

· · ·· · ·· · ·
· · · a

(x, 1, d1) (x, 2, d1)(x, 1, d3)

(y, 1, d2) (y, 2, d2)

(x, 2, d3)

(y, 2, d4)(y, 1, d4)

a

Figure 3 Illustration of Lemma 14 in the case of a short subsequence
. . . , (x, 1, d1), (y, 2, d2), (x, 1, d3), (y, 2, d4), . . .: since the two sequences starting at (x, 1, d1)
and (x, 1, d3) are similar, they define a common region w (shaded). Since they are consecutive, the
first and last occurrences of w are adjacent, and on opposite sides of the equation. Thus, removing
the region w from h(x) and h(y) does not alter the fact that h satisfies the equation.

associated with some occurrence of a terminal symbol, which must occur either at the start
or the end. Hence we have k < n sequences, where n is the length of the equation, such that
every position (x, i), where x is a variable and 1 ≤ i ≤ |h(x)|, occurs in exactly one sequence.
It is also not hard to see that the total length of the sequences is upper bounded by 2|h(α)|.

In order to be fully precise, we will distinguish between different occurrences of a
variable/terminal symbol by associating each with an index z ∈ N by enumerating occurrences
from left to right in αβ. When considering quadratic equations, z ∈ {1, 2} for each variable x.

Formally, we define our sequences for a given solution h to a quadratic equation α = β as
follows: a position is a tuple (x, z, d) such that x is a variable or terminal symbol occurring
in αβ, 1 ≤ z ≤ |αβ|x, and 1 ≤ d ≤ |h(x)|. Two positions (x, z, d) and (y, z′, d′) correspond
if they generate the same position in the solution-word. The positions are similar if they
belong to the same occurrence of the same variable (i.e., x = y and z = z′). For each
position p associated with either a terminal symbol or a variable occurring only once in αβ,
we construct a sequence Sp = p1, p2, . . . such that

p1 = p and p2 is the (unique) position corresponding with p1, and
for i ≥ 2, if pi = (x, z, d) such that x is a terminal symbol or occurs only once in αβ,
then the sequence terminates, and
for i ≥ 2, if pi = (x, z, d), such that x is a variable occurring twice, then pi+1 is the
position corresponding to the (unique) position (x, z′, d) with z′ 6= z (i.e., the ‘other’
occurrence of the ith letter in h(x)).

We extend the idea of similarity from positions to sequences of positions in the natural way:
two sequences p1, p2, . . . , pi and q1, q2, . . . , qi are similar whenever pj and qj are similar for
all j ∈ {1, 2, . . . , i}. Our main tool is the following lemma, which essentially shows that if
a sequence contains two similar consecutive subsequences, then the solution defining that
sequence is not minimal.

I Lemma 14. Let h be a solution to a quadratic equation α = β, and let p be a position
associated with a single-occurring variable or terminal symbol. If the sequence Sp has a
subsequence p1, p2, . . . , pt, pt+1, pt+2, . . . , p2t such that p1, p2, . . . , pt and pt+1, pt+2, . . . , p2t
are similar, then h is not minimal.

Proof. Assume that Sp has such a subsequence and assume w.l.o.g. that it is length-minimal
(so t is chosen to be as small as possible). For 1 ≤ i ≤ 2t, let pi = (xi, zi, di) and note that
by definition of similarity, for 1 ≤ i ≤ t, xi = xi+t and zi = zi+t. Assume that d1 < dt+1
(the case where d1 > dt+1 may be treated identically). We need the following two claims,
whose proofs are omitted due to space constraints.

MFCS 2017

18:10 The Hardness of Solving Simple Word Equations

I Claim 15. Suppose that (x, z, d), (x, z, d′), (x, z, d′′) are positions with d ≤ d′ < d′′ such that
(x, z, d) and (x, z, d′′) correspond to (y, z′, e) and (y, z′, e′′) respectively. Then e′′−e = d′′−d,
and there exists e′ with e′ − e = d′ − d such that (x, z, d′) and (y, z′, e′) correspond.

A straightforward consequence of Claim 1 is that there exists a constant C ∈ N such that
for all i ∈ {1, 2, . . . , t}, di+t−di = C. Intuitively, each pair of similar positions pi = (xi, zi, di)
and pi+t = (xi, zi, di + C) are the first and last positions of a factor h(xi)[di..di + C − 1],
which as we shall see later on in the proof, can be removed to produce a shorter solution g.

It also follows from Claim 1, along with the fact that we chose t to be minimal, that
there does not exist a position pi = (x1, z1, k) in the chain such that d1 < k < d1 + C.
Symmetrically, there does not exist a position pi = (xt, zt, k) such that dt < k < dt + C:

I Claim 16. Let j ∈ {2, . . . , t, t+ 2, . . . , 2t} such that xj = x1(= xt+1) and zj = z1(= zt+1).
Then dj /∈ {d1, . . . , dt+1(= d1 + C)}. Likewise, if j ∈ {1, . . . , t − 1, t + 1, . . . , 2t − 1} such
that xj = xt and zj = zt, then dj /∈ {dt, . . . , d2t}.

Using the observations above, we shall remove parts of the solution h to obtain a new,
strictly shorter solution and thus show that h is not minimal as required.

To do this, we shall define a new equation α′ = β′ obtained by replacing the second
occurrence of each variable x (when it exists) with a new variable x′. The reason is so
we may delete factors independently from different occurrences of h(xi), and more easily
keep track of the equivalence of the left and right hand side of the equation. Note that we
can derive a solution h′ to α′ = β′ from the solution h to our original equation by simply
setting h′(x) = h′(x′) = h(x) for all x ∈ var(αβ). Likewise, any solution to α′ = β′ for which
this condition holds (i.e., h′(x) = h′(x′) for all x ∈ var(αβ)) induces a solution g to our
original equation α = β given by g(x) = h′(x)(= h′(x′)). Finally, for each position (x, z, d)
in the original solution h, there exists a unique “associated position” in h′ given by h(x)[d] if
z = 1 and h(x′)[d] if z = 2. Furthermore, it follows from the definitions that for any pair of
positions p, q which correspond (in terms of h), we can remove the associated positions from
h′ and the result will still be a valid solution to our modified equation α′ = β′ (although
such a solution may no longer induce a valid solution to our original equation, since it is no
longer necessarily the case where h′(x) = h′(x′) for all x).

We construct our shorter solution g to α = β as follows. Let h′ be the solution to
α′ = β′ derived directly from h. Recall from the definition of Sp that, for 1 ≤ i < t, the
positions (xi, zi, di) and (xi+1, zi+1, di+1) correspond, where z = (z + 1) mod 2 (i.e., so that
z 6= z). Moreover, (xi, zi, di +C) and (xi+1, zi+1, di+1 +C) correspond, and thus by Claim 1,
(xi, zi, di + k) and (xi+1, zi+1, di+1 + k) correspond for 0 ≤ k ≤ C − 1. Since corresponding
positions must have the same value/letter, it follows that there exists a factor w ∈ Σ+ such
that w = h(xi)[di..di + C − 1](= h′(x)[di..di + C − 1] = h′(x′)[di..di + C − 1]) for 1 ≤ i ≤ t.

We now produce a new solution, h′′ to α′ = β′ as follows. For each i such that 1 ≤ i ≤ t−1
and for each k such that di ≤ k ≤ di + C − 1, delete from h′ the pair of positions associated
with (xi, zi, di + k) and (xi+1, zi+1, di+1 + k). Note that since these positions correspond, in
deleting them, we continue to have a valid solution to α′ = β′. Notice also that for every
position associated with (xi, zi, di + k) such that 1 < i ≤ t, we also delete the position
associated with (xi, zi, di + k). Hence, for all x /∈ {x1, xt}, h′′(x) = h′′(x′). The same does
not necessarily hold for x1 and xt, however. In particular, we deleted positions associated
with (x1, z1, d1 + k) and (xt, zt, dt + k) for 0 ≤ k ≤ C − 1, but not their counterparts
(x1, z1, d1 + k) and (xt, zt, dt + k). Hence, to derive a valid solution g, we must also delete
these positions. To see that, in doing so, we still have a valid solution to α′ = β′, note
firstly that, by Claim 2, we have not deleted any of these positions already. Moreover, it

J. D. Day, F. Manea, and D. Nowotka 18:11

follows from the sequence Sp that (xt, zt, dt) corresponds to (x1, z1, d1 + C). Assume z1 = 1
(the case z1 = 2 is symmetric). It follows that zt = 1 (since zt 6= z1). Thus there exists
an index m such that h′′(x1)[d1..d1 + C − 1] generates the factor w starting at position
m in h′′(α′) and h′′(xt)[dt..dt + C − 1] generates the (same) factor w starting at position
m+ |w| in h′′(β). It is straightforward to see that removing these factors (i.e., deleting the
positions associated with (x1, z1, d1 + k) and (xt, zt, dt + k) for 0 ≤ k ≤ C − 1) does not
affect the agreement of the two sides of the equation. Thus we obtain a shorter solution h′′
to α′ = β′ such that h(x) = h(x′) for all variables x, hence a shorter solution g given by
g(x) = h′′(x) to α = β. J

An important fact related to the representation of the minimal solutions of quadratic
equations as oriented sequences of positions, that start or end with a terminal symbol, is
that the number of such sequences is linear in the size of the equation. Also, for variables
that occur only once in a quadratic equation (so, only in one side), each of their positions is
the start or end of a chain, so their length can be at most linear in the size of the equation.
Thus, when interested in showing that a certain class of quadratic equation is in NP, we can
assume that these equations do not contain variables occurring only once. Such variables
could be non-deterministically replaced by words of at most linear size, and we would have
to solve a new equation, whose size is at most quadratic in the size of the original one.

Further, using Lemma 14 and the observations above, we obtain immediately that minimal
solutions to regular-ordered equations are at most linear in the length of the equation.

I Proposition 17. Let E be a regular-ordered word equation with length n, and let h be a
minimal solution to E. Then |h(x)| < n for each variable x occurring in E.

Proof. Every position of a minimal solution h to E occurs somewhere in one of the associated
sequences Sp, and there are no more than n such sequences. So, it is sufficient to show
that each one contains at most one position (x, z, d) for each variable x. This follows easily
from the fact that E is regular and ordered and h is minimal, so it fulfils the restrictions of
Lemma 14. J

We can see that, in terms of restricting the lengths of individual variables, the result in
Proposition 17 is optimal. For instance, in a minimal solution h to the equation wcx1 = x1cw,
with w ∈ {a, b}∗, the variable x1 is mapped to w, so |h(x)| = |E| − 2 ∈ O(|E|). Furthermore,
Theorem 18 follows now as a direct consequence of Proposition 17 and Lemma 1, as the
length of a minimal solution to a regular-ordered equation α = β is O(|αβ|2).

I Theorem 18. The satisfiability problem for regular-ordered equations is in NP.

It is a simple consequence of Proposition 17 that the satisfiability of a regular-ordered
equation E with a constant number k of variables can be checked in P-time.

We now consider the satisfiability problem for regular equations with regular constraints,
where we can make further use of the ideas presented so far in this section. Firstly, we
observe that the problem is, in general, PSPACE-complete, even for regular-ordered equations
(the proof given in [21] that the problem is PSPACE-complete for regular equations is also
sufficient for the regular-ordered case).

I Proposition 19. The satisfiability of regular-ordered equations with regular constraints is
PSPACE-complete

However, when considering regular equations whose sides contain exactly the same
variables, and, moreover, in the same order, we get the following result, which shows an

MFCS 2017

18:12 The Hardness of Solving Simple Word Equations

important difference between the unrestricted regular-ordered equations, where the variables
occurring only on one side do not affect the complexity of the satisfiability problem, and the
same type of equations subject to regular constraints.

I Theorem 20. The satisfiability of regular-ordered equations whose sides contain exactly
the same variables, with regular constraints, is in NP.

The same upper bound holds also for regular-ordered equations with regular constraints,
when the regular constraints are regular languages accepted by NFAs with at most c states,
where c is a constant (called constant regular constraints in the following).

I Theorem 21. The satisfiability problem for regular-ordered equations with constant regular
constraints is in NP.

The proofs of the last two results rely also on the approach outlined in Lemma 14, but
they are more involved. We first define the sequences of positions fixed by the terminals in a
minimal solution of an equation. While this time the sequences may contain repetitions, we
show that they cannot contain repetitions of non-constant exponent (where the constant,
however, depends exponentially on c). This provides, again, a polynomial upper bound on
the length of minimal solutions of such equations.

5 Tractable equations

Finally, we discuss a class of equations for which satisfiability is in P. Tractability was
obtained so far from two sources: bound the number of variables by a constant (e.g., one
or two-variable equations [13, 1]), or heavily restrict their structure (e.g., regular equations
whose sides do not have common variable, or equations that only have one repeated variable,
but at least one non-repeated variable on each side [21]). The class we consider slightly relaxes
the previous restrictions. As the satisfiability of quadratic or even regular-ordered equations
is NP-hard it seems reasonable to consider here patterns where the number of repeated
variables is bounded by a constant (but may have an arbitrary number of non-repeated
variables). More precisely, we consider here non-cross equations with only one repeated
variable. This class generalises naturally the class of one-repeated variables.

I Theorem 22. Let x ∈ X be a variable and D be the class of word equations α = β such
that α, β ∈ (Σ ∪X)∗ are non-cross and each variable of X other than x occurs at most once
in αβ. Then the satisfiability problem for D is in P.

In the light of the results from [21], it follows that the interesting case of the above theorem
is when the equation α = β is such that α = xu1xu2 · · ·ukx and β = β′v0xv1xv2 · · ·xvkβ′′
where v0, v1, . . . , vk, u1, u2, . . . , uk ∈ Σ∗ and β′, β′′ are regular patterns that do not contain
x and are variable disjoint. Essentially, this is a matching problem in which we try to align
two non-cross patterns, one that only contains a repeated variable and constants, while the
other contains the repeated variable, constants, and some wild-cards that can match any
factor. As the proofs of [21] used essentially the non-repeated variables occurring in each of
the sides, a novel and much more involved approach was needed here. The idea of our proof
is to first show that such equations have minimal solutions of polynomial length. Further,
we note that if we know the length of β′ (w.r.t. the length of α) then we can determine the
position where the factor v0xv1xv2 · · ·xvk occurs in α, so the problem boils down to seeing
how the positions of x are fixed by the constant factors vi. Once this is done, we check if
there exists an assignment of the variables of β′ and β′′ such that the constant factors of
these patterns fit correctly to the corresponding prefix, respectively, suffix of α.

J. D. Day, F. Manea, and D. Nowotka 18:13

6 Conclusions and Prospects

The main result of this paper is the NP-completeness of the satisfiability problem for regular-
ordered equations. While the lower bound seems remarkable to us because it shows that
solving very simple equations, which also always have short solutions, is NP-hard, the upper
bound seems more interesting from the point of view of the tools we developed to show it. We
expect the combinatorial analysis of sequences of equivalent positions in a minimal solution to
an equation (which culminated here in Lemma 14) can be applied to obtain upper bounds on
the length of the minimal solutions to more general equations than just the regular-ordered
ones. It would be interesting to see whether this type of reasoning leads to polynomial upper
bounds on the length of minimal solutions to regular (not ordered) or quadratic equations,
or to exponential upper bounds on the length of minimal solutions of non-cross or cubic
equations. In the latter cases, a more general approach should be used, as the equivalent
positions can no longer be represented as linear sequences, but rather as directed graphs.

Regarding the final section our paper, it seems interesting to us to see whether deciding
the satisfiability of word equations with one repeated variable (so without the non-cross sides
restriction) is still tractable. Also, it seems interesting to analyse the complexity of word
equations where the number of repeated variables is bounded by a constant.

References

1 R. Da̧browski and W. Plandowski. Solving two-variable word equations. In Proc. 31th
International Colloquium on Automata, Languages and Programming, ICALP 2004, volume
3142 of Lecture Notes in Computer Science, pages 408–419, 2004.

2 V. Diekert, A. Jez, and M. Kufleitner. Solutions of word equations over partially commut-
ative structures. In Proc. 43rd International Colloquium on Automata, Languages, and
Programming, ICALP 2016, volume 55 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 127:1–127:14, 2016.

3 V. Diekert and J. M. Robson. On quadratic word equations. In Proc. 16th Annual Sym-
posium on Theoretical Aspects of Computer Science, STACS 1999, volume 1563 of Lecture
Notes in Computer Science, pages 217–226, 1999.

4 A. Ehrenfeucht and G. Rozenberg. Finding a homomorphism between two words is NP-
complete. Information Processing Letters, 9:86–88, 1979.

5 H. Fernau, F. Manea, R. Mercaş, and M.L. Schmid. Pattern matching with variables:
Fast algorithms and new hardness results. In Proc. 32nd Symposium on Theoretical As-
pects of Computer Science, STACS 2015, volume 30 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 302–315, 2015.

6 H. Fernau and M. L. Schmid. Pattern matching with variables: A multivariate complexity
analysis. Information and Computation, 242:287–305, 2015.

7 H. Fernau, M. L. Schmid, and Y. Villanger. On the parameterised com-
plexity of string morphism problems. Theory of Computing Systems, 2015.
http://dx.doi.org/10.1007/s00224-015-9635-3.

8 D. D. Freydenberger. A logic for document spanners. In Proc. 20th International Conference
on Database Theory, ICDT 2017, Leibniz International Proceedings in Informatics (LIPIcs),
2017. To appear.

9 D. D. Freydenberger and M. Holldack. Document spanners: From expressive power to
decision problems. In Proc. 19th International Conference on Database Theory, ICDT
2016, volume 48 of Leibniz International Proceedings in Informatics (LIPIcs), pages 17:1–
17:17, 2016.

MFCS 2017

18:14 The Hardness of Solving Simple Word Equations

10 M. R. Garey and D. S. Johnson. Computers And Intractability. W. H. Freeman and
Company, 1979.

11 J. Jaffar. Minimal and complete word unification. Journal of the ACM, 37(1):47–85, 1990.
12 A. Jez. Context unification is in PSPACE. In Proc. 41st International Colloquium on

Automata, Languages, and Programming, ICALP 2014, volume 8573 of Lecture Notes in
Computer Science, pages 244–255. Springer, 2014.

13 A. Jeż. One-variable word equations in linear time. Algorithmica, 74:1–48, 2016.
14 A. Jeż. Recompression: A simple and powerful technique for word equations. Journal of

the ACM, 63, 2016.
15 J. Karhumäki, F. Mignosi, andW. Plandowski. The expressibility of languages and relations

by word equations. Journal of the ACM, 47:483–505, 2000.
16 A. Koscielski and L. Pacholski. Complexity of Makanin’s algorithm. Journal of the ACM,

43(4):670–684, 1996.
17 M. Lothaire. Algebraic Combinatorics on Words. Cambridge University Press, Cambridge,

New York, 2002.
18 R. C. Lyndon. Equations in free groups. Transactions of the American Mathematical

Society, 96:445–457, 1960.
19 R. C. Lyndon and P. E. Schupp. Combinatorial Group Theory. Springer, 1977.
20 G. S. Makanin. The problem of solvability of equations in a free semigroup. Matematicheskii

Sbornik, 103:147–236, 1977.
21 F. Manea, D. Nowotka, and M. L. Schmid. On the solvability problem for restricted classes

of word equations. In Proc. 20th International Conference on Developments in Language
Theory, DLT 2016, volume 9840 of Lecture Notes in Computer Science, pages 306–318.
Springer, 2016.

22 W. Plandowski. An efficient algorithm for solving word equations. In Proceedings of the
38th Annual ACM Symposium on Theory of Computing, STOC 2006, pages 467–476, 2006.

23 W. Plandowski and W. Rytter. Application of Lempel-Ziv encodings to the solution of
words equations. In Proc. 25th International Colloquium on Automata, Languages and
Programming, ICALP’98, volume 1443 of Lecture Notes in Computer Science, pages 731–
742. Springer, 1998.

24 D. Reidenbach and M. L. Schmid. Patterns with bounded treewidth. Information and
Computation, 239:87–99, 2014.

25 K. U. Schulz. Word unification and transformation of generalized equations. Journal of
Automated Reasoning, 11:149–184, 1995.

Comparison of Max-Plus Automata and Joint
Spectral Radius of Tropical Matrices
Laure Daviaud∗1, Pierre Guillon2, and Glenn Merlet3

1 MIMUW, University of Warsaw, Warsaw, Poland
ldaviaud@mimuw.edu.pl

2 Université d’Aix-Marseille CNRS, Centrale Marseille, I2M, UMR 7373,
Marseille, France
pierre.guillon@math.cnrs.fr

3 Université d’Aix-Marseille CNRS, Centrale Marseille, I2M, UMR 7373,
Marseille, France
glenn.merlet@univ-amu.fr

Abstract
Weighted automata over the tropical semiring Zmax = (Z∪{−∞},max,+) are closely related to
finitely generated semigroups of matrices over Zmax. In this paper, we use results in automata
theory to study two quantities associated with sets of matrices: the joint spectral radius and the
ultimate rank. We prove that these two quantities are not computable over the tropical semiring,
i.e. there is no algorithm that takes as input a finite set of matrices Γ and provides as output the
joint spectral radius (resp. the ultimate rank) of Γ. On the other hand, we prove that the joint
spectral radius is nevertheless approximable and we exhibit restricted cases in which the joint
spectral radius and the ultimate rank are computable. To reach this aim, we study the problem
of comparing functions computed by weighted automata over the tropical semiring. This problem
is known to be undecidable, and we prove that it remains undecidable in some specific subclasses
of automata.

1998 ACM Subject Classification F.4.3 Formal Languages

Keywords and phrases max-plus automata, max-plus matrices, weighted automata, tropical
semiring, joint spectral radius, ultimate rank

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.19

1 Introduction

Weighted automata were introduced by Schützenberger in [25] as a quantitative extension
of nondeterministic finite automata. They compute functions from the set of words over
a finite alphabet to the set of values of a semiring, allowing one to model quantities such
as costs, gains or probabilities. In this paper, we particularly focus on max-plus automata:
automata weighted within the tropical semiring Zmax = (Z ∪ {−∞},max,+). A max-plus
automaton is thus a nondeterministic finite automaton whose transitions are weighted by
integers. The value associated to a word w depends on the runs labelled by w: the weight of
a given run is the sum of the weights of the transitions in the run, and the weight of w is
the maximum of the weights of the accepting runs labelled by w. This kind of automata is

∗ The first author was partly supported by ANR Project ELICA ANR-14-CE25-0005, by ANR Project
RECRE ANR-11-BS02-0010 and by project LIPA that has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant
agreement No 683080).

© Laure Daviaud, Pierre Guillon, and Glenn Merlet;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 19; pp. 19:1–19:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.19
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

19:2 Max-Plus Automata and Joint Spectral Radius

particularly suitable to model gain maximisation, to study worst-case complexity [8] and
to describe discrete event systems [12, 14]. The so-called linear presentation gives a matrix
representation of such an automaton. More precisely, there is a canonical way to associate a
max-plus automaton with a finitely generated semigroup of matrices over Zmax. Usually, the
matrix representation is used to provide algebraic proofs of automata results. In this paper,
we use results in automata theory to study two quantities related to sets of matrices: the
joint spectral radius and the ultimate rank. The joint spectral radius generalises the notion
of spectral radius for sets of matrices. The ultimate rank unifies some usual other notions of
ranks. We link some comparison problems on max-plus automata with the computation of
these two quantities. This leads to (1) proving results about comparison problems in some
restricted classes of max-plus automata that we believe to be interesting for themselves and
(2) applying these results to the study of the computability of the joint spectral radius and
the ultimate rank.

Decidability questions about the description of functions computed by max-plus automata
have been intensively studied. In his celebrated paper [20], Krob proves the undecidability
of the equivalence problem for max-plus automata: there is no algorithm to decide if two
max-plus automata compute the same function. In fact, his proof gives a stronger result: it
is undecidable to determine whether a max-plus automaton computes a positive function.
More recent approaches are based on a reduction from the halting problem of two-counter
machines [1, 6]. By various reductions, this leads to the undecidability of several properties
of automata with weights in different versions of the tropical semiring: (N ∪ {−∞},max,+),
(N ∪ {+∞},min,+)... The reader is referred to [21] for a survey on these questions.

By encoding the alphabet, and splitting each transition into several transitions with
weight 1 and −1, it can be derived that the undecidability remains even if the automata are
restricted to have weights within {−1, 1} (Theorem 2). In [10], Gaubert and Katz notice
that the undecidability of the comparison also remains true even if the number of states of
the automata is bounded by a certain integer d. This extension is based on Krob’s original
proof and on the use of a universal diophantine equation. However, they ask for a more
direct proof that would allow one to control the bound d. As an attempt to answer this
question, we extend the proofs through two-counter machines. This allows a much sharper
bound on the number of states for which comparison is undecidable (Theorem 2) than the
one that would have followed from a universal diophantine equation.

The class of functions computed by max-plus automata that have all their states both
initial and final is strictly included in the class of functions computed by max-plus automata.
It is closely related to the study of finitely generated semigroup of tropical matrices. In this
paper, we prove that comparison remains undecidable in this restricted class (Theorem 4).
(In [1], it is proved that the undecidability remains for min-plus automata with all states
final; we can deduce the same result for max-plus automata.)

The tropical (sub-)joint spectral radius is a natural counterpart of the usual joint spectral
radius over the semiring (R,+,×). Although the latter is a well-studied notion when
considering the semiring (R,+,×) (see [18] and the references therein) only few results are
known when considering the tropical semiring. As far as we know, the best known result
concerning its computability is given in [4], where it is shown that the joint spectral radius is
NP-hard to compute and to approximate for tropical matrices. The tropical spectral radius
as we defined it latter in this paper can be used to approximate the usual one in the spirit
of [2] or [9], and from an applied point of view, for a max-plus linear system, it corresponds
to the cycle time for an optimal scheduling of tasks, already studied in [12, 11, 14].

We drastically improve the NP-hardness result, by proving that the joint spectral radius
is not computable in the tropical semiring, i.e. there is no algorithm that takes as input a

L. Daviaud, P. Guillon, and G. Merlet 19:3

finite set Γ of matrices and provides as output the joint spectral radius of Γ (Theorem 8).
As a corollary of this result, we also get the uncomputability of the ultimate rank, a notion
introduced – and a question raised – in [15] (Theorem 9).

On the other hand, we also give positive results. By making a link with a result in
[7] about approximate comparison of max-plus automata, we prove that the joint spectral
radius is approximable in EXPSPACE (Theorem 10). We also show that, when restricted to
matrices with only finite rational entries, computing the joint spectral radius or the ultimate
rank is PSPACE-complete (Theorem 12).

2 Definitions and first properties

We introduce definitions and notation of tropical matrices and max-plus automata.

2.1 Tropical matrices
A semigroup (S, ·) is a set S equipped with an associative binary operation ‘·’. If, furthermore,
the product has a neutral element 1, (S, ·, 1) is called a monoid. The monoid is said to be
commutative if · is commutative. A semiring (S,⊕,⊗, 0S , 1S) is a set S equipped with two
binary operations ⊕ and ⊗ such that (S,⊕, 0S) is a commutative monoid, (S − {0S},⊗, 1S)
is a monoid, 0S is absorbing for ⊗, and ⊗ distributes over ⊕. We shall use the tropical
semiring:

Zmax = (Z ∪ {−∞},max,+,−∞, 0)

Note that 0Zmax = −∞ and 1Zmax = 0. We may also use the restriction of Zmax to the
nonnegative integers, (N ∪ {−∞},max,+,−∞, 0) denoted by Nmax.

Semigroups of matrices. Let S be a semiring. The set of matrices with d rows and d′

columns over S is denotedMd×d′(S), or simplyMd(S) if d = d′. The set of all matrices
over S isM(S). As usual, the product AB for two matrices A,B (provided that the width
of A and the height of B, denoted d, coincide) is defined as:

(AB)i,j =
⊕

16k6d

(Ai,k ⊗Bk,j)
(

= max
16k6d

(Ai,k +Bk,j) for S = Zmax

)
The diagonal matrix with 1S (i.e. 0 for Zmax) on the diagonal, and 0S (i.e. −∞ for Zmax)

elsewhere is denoted Id. It is a standard result that (Md(S), ·, Id) is a monoid.
For a positive integer k, we denote by Mk the product of M by itself k times. Moreover,

‖M‖∞ denotes the maximal entry of a matrix M (it is not a norm). For k ∈ Zmax and
A ∈ M(Zmax), k � A is defined by (k � A)ij = k + Aij . For a set of matrices Γ, this
notation is extended by k � Γ = {k �A|A ∈ Γ}. Finally, if Γ ⊂Md(S), we denote by 〈Γ〉
the submonoid generated by Γ.

Graph of a matrix. Any square matrix A ∈ Md(Zmax), for a positive integer d, can be
represented by a graph G(A): the vertices are the indices 1, . . . , d, and there is an edge from
i to j, labelled Ai,j , if and only if the latter is finite. The spectral radius ρ(A) of a square
matrix A ∈Md(Zmax), for some positive integer d, known to be the limit limn→+∞

1
n ‖A

n‖∞,
can be seen as the maximal average weight of the cycles in G(A):

ρ(A) = sup
`∈N\{0}

16i1,...,i`6d

(
1
`

(
Ai1,i2 +Ai2,i3 + . . .+Ai`−1,i`

+Ai`,i1

))

MFCS 2017

19:4 Max-Plus Automata and Joint Spectral Radius

q1 q2

a : 1

b : 0

a : 0

b : 1

µ(a) =
(

1 −∞
−∞ 0

)
µ(b) =

(
0 −∞
−∞ 1

)

I =
(
0 0

)
F =

(
0
0

)
Figure 1 Graph and matrix representations of a max-plus automaton.

The critical graph Gc(A) is the union of cycles (i1, . . . , i`) that achieve this maximum. Its
strongly connected components are the maximal subgraphs C ⊆ Gc(A) such that for any
vertices i, j of C there is a path from i to j in Gc(A). The cyclicity of a strongly connected
component is the greatest common divisor of the length of its cycles. The cyclicity of Gc(A)
is the least common multiple of the cyclicities of its strongly connected components. The
reader is referred to [3, 16, 5] for more detailed explanations.

2.2 Max-plus automata
We give the definition of max-plus automata that can be viewed as graphs or as sets of
matrices. A max-plus automaton A over the alphabet Σ with d states is a map µ from
Σ to Md(Zmax) together with an initial vector I ∈ M1×d({0,−∞}) and a final vector
F ∈ Md×1({0,−∞})1. The map µ is uniquely extended into a morphism, also denoted µ,
from the semigroup Σ+ of nonempty finite words over alphabet Σ into Md(Zmax). The
function computed by the automaton, JAK, maps each word w ∈ Σ+ to Iµ(w)F ∈ Zmax.
Sometimes, 0 will denote the function constantly equal to 0, and > the induced partial order
over functions Σ+ → Zmax (so that we can write things like JAK > 0).

Another way to represent a max-plus automaton is in terms of graphs. Given a map µ
from Σ+ toMd(Zmax), the corresponding automaton has d states q1, . . . qd, that correspond
to the lines, or to the columns of the matrices. There is a transition from qi to qj labelled by
a letter a ∈ Σ, with weight µ(a)i,j , if and only if the latter is finite. The initial (resp. final)
states are the states qi such that Ii = 0 (resp. Fi = 0). A run over the word w is a path
(a sequence of compatible transitions) in the graph, labelled by w. Its weight is the sum of
the weights of the transitions. The weight of a given word w is the maximum of the weights
of the accepting runs (runs going from an initial state to a final state) labelled by w. The
weight of w, given by the graph representation, is exactly the value Iµ(w)F , given by the
matrix presentation.

Given a positive integer d and a max-plus automaton A defined by some map µ : Σ→
Md(Zmax), we denote ΓA = {µ(a)| a ∈ Σ}. Then the set of weights on the transitions of A
corresponds to the finite entries appearing in matrices of ΓA.

I Example 1. Figure 1 gives the matrix and graph presentations of a max-plus automaton
with 2 states, both initial (ingoing arrow) and final (outgoing arrow), over the alphabet
{a, b}. The function that it computes associates a word w to the value max(|w|a, |w|b) where
|w|x denotes the number of occurrences of the letter x ∈ {a, b} in w.

This work aims to link results in automata theory with the study of semigroups of
matrices. Concepts defined over semigroups of matrices correspond to concepts over the

1 Note that, unlike variants in the literature, our weighted automata have no input or output weight
(that is, I and F have entries in {0,−∞}), but this does not restrict the set of computed functions.

L. Daviaud, P. Guillon, and G. Merlet 19:5

subclass of automata in which all states are both initial and final, because if M ∈Md(Zmax),
and I and F have only 0 entries, then IMF = ‖M‖∞, so that for this class of automata,
JAK (w) = ‖µ(w)‖∞ for every word w.

3 Undecidability of the comparison of max-plus automata

We are interested in the comparison problem, i.e. deciding, given two max-plus automata
A and B, whether JAK 6 JBK. There exist (at least) two different approaches to prove the
undecidability of this problem. The original one by Krob [20] is a reduction from the tenth
problem of Hilbert about diophantine equations. The proof is nicely written in [21], where it
encodes a homogoneous polynomial P of degree 4 on n variables with integer coefficients into
a max-plus automaton A computing a function with values in N, such that P − 1 has a root
in Nn if and only if there is a word w such that JAK (w) = 0, i.e. if JAK ≥ 1. A more recent
approach [1, 6], consists of a reduction from the halting problem of a two-counter machine.
This computational model was introduced by Minsky [23, 24], and is as powerful as a Turing
machine. It can be viewed as a finite-state machine with two counters. The equality of the
counters with 0 can be tested and the counters can be incremented and decremented if not 0.
The idea of the proof is to embed it into a max-plus automaton.

3.1 Restriction on the parameters
Different parameters can be taken into account when dealing with the size of a max-plus
automaton: we will focus on the number of states, the maximal and minimal weights
appearing on the transitions and the size of the alphabet. When considering the matrix
representation of an automaton A, these parameters correspond respectively to the dimension,
the maximal and minimal finite entries and the number of matrices in ΓA.

Regarding the size of the alphabet, by a classical encoding from an arbitrary alphabet to
a two-letter alphabet, one can see that the comparison problem remains undecidable when
restricting to the class of automata on the binary alphabet.

Regarding the two other parameters, if they are both bounded, the problem becomes
decidable since we are now only considering a finite number of max-plus automata. What is
more interesting to study is when one of the parameter is bounded and not the other. We
will see that this problem remains undecidable in these cases, and our purpose is to give
bounds on these parameters that allow to keep the undecidability.

On the one hand, Gaubert and Katz notice in [10] that the original proof of Krob, applied
to some specific diophantine equations gives that the problem remains undecidable when
bounding the number of states. They also raised the question of finding an alternative proof
that could allow to control this number of states. We roughly counted how many states we
would obtain by using a so-called universal diophantine equation given in [17], of degree 4
with 58 unknowns. At the very least, we would be able to bound the number of states by
8700 on a 6-letter alphabet. On the other hand, the proof via two-counter machines allows
to drastically improve this number, as we are going to see.

Define Posk(S) (resp. Posk
d(S)) as the following problem: Given a max-plus automaton

A on a k-letter alphabet, with weights in S ⊆ Zmax (resp. and d states), determine whether
JAK > 0.

I Theorem 2. Problems Pos2({−1, 1}) and Pos6
553(Zmax) are undecidable.

The first statement is easily derived from the general undecidability: given a max-plus
automaton A, one can first decompose all the transitions from A into a sequence of transitions

MFCS 2017

19:6 Max-Plus Automata and Joint Spectral Radius

with weights 1 or −1 and 0 thanks to a suitable encoding of the alphabet, such that A
computes a non negative function if and only if the newly created automaton computes a
non negative function. Using then a usual encoding of any alphabet in a two-letter alphabet,
we can obtain an automaton over two letters and with weights still in {−1, 0, 1}. Then, we
transform again the automaton by multiplying all the weights by 2, so that a transition
weighted by 1 (resp. −1) is now weighted by 2 (resp. −2). Finally, we decompose a transition
labelled by a letter a with weight 2 (resp. −2) into two transitions each labelled by a with
weight 1 (resp. −1), and a transition labelled by a with weight 0 into two transitions each
labelled by a, one with weight 1 and the other with weight −1. For example, the word ab2a
is now encoded by a2b4a2. All the words that are not composed with square of the letters
(which form a rational language) are given weight > 0 (by using only weights in {1,−1}). It
is easy to see that the obtained automaton computes a nonnegative function if and only if
JAK > 0. Moreover the obtained automaton is on a two letter alphabet with weights within
{−1, 1}.

The undecidability of Pos6
553(Zmax) is a contribution of the present paper. The halting

problem is undecidable for a universal two-counter machine on any input (the initial value of
the first counter). We construct a max-plus automaton simulating the runs of a two-counter
machine where the input n ∈ N is now encoded by an additional widget involving two edges
with weights n and −n. Thus we construct a max-plus automaton with a fixed number of
states (depending only on the number of states of the universal two-counter machine) but
arbitrary weights (induced by the value of the input of the universal two-counter machine).

3.2 Restriction on initial and final states

It is easy to see that max-plus automata having all their states initial and final compute
only subadditive functions, that is to say functions f such that for any two words u and
v, f(uv) 6 f(u) + f(v). In particular, the support of such a function is closed by taking
factors (if uvw is in the support then v is also in the support). Thus, as for unweighted
automata [19], this subclass of automata defines a strict subclass of functions of the functions
computed by max-plus automata. However, the following lemma shows that the comparison
problem remains undecidable within this subclass.

I Lemma 3. Let Σ be a finite alphabet and ? /∈ Σ be a special symbol. Given a max-plus
automaton A on Σ, with d states and weights within a set S, one can build a max-plus
automaton A′ on Σ′ = Σ ∪ {?}, with d + 1 states, all of which are initial and final, and
weights within S ∪ {0}, such that:

min(inf
u∈Σ+

JAK (u)
|u|

, 0) ≤ inf
w∈Σ′+

JA′K (w)
|w|

and inf
u∈Σ′+

JA′K (u)
|u|

≤ inf
w∈Σ+

JAK (w)
|w|+ 1

In particular, JAK > 0 if and only if JA′K > 0.

Proof. Consider a max-plus automaton A defined by a map µ : Σ→Md(Zmax), an initial
vector I and a final vector F , and a new symbol ?. Let Σ′ = Σ∪{?}. The idea is to construct
a new automaton A′ by adding a new state q and transitions from every final state of A to
every initial state of A as well as transitions from every final state of A to q, loops around q
and transitions from q to every initial state of A, all labelled by ? with weight 0. All the
states of the new automaton A′ are initial and final. Let us note µ′, I ′ and F ′ defining this
new automaton.

L. Daviaud, P. Guillon, and G. Merlet 19:7

Any word w ∈ Σ′+\{?}∗ can be written: w = ?n0w1 ?
n1 w2 ?

n2 . . . wk?
nk where for all

1 6 i 6 k, wi ∈ Σ+ and for all 0 < i < k, ni > 0, n0 > 0 and nk > 0. We get:

JA′K (w) = ‖µ′(w)‖∞ ≥
k∑

i=1
Iµ(wi)F

since the weight of ? is 0. This is at least
∑k

i=1 |wi| infu
JAK(u)
|u| . If JAK ≥ 0, then we

get JA′K (w) ≥ 0. Otherwise, infu
JAK(u)
|u| < 0, and since

∑
i |wi| ≤ |w|, we get JA′K(w)

|w| ≥
infu

JAK(u)
|u| . Moreover, since the weights of the words in {?}∗ is 0 in A′, then the first

inequality holds.
The other inequality is obtained by observing how arcs labelled ? are positioned in A′.

Indeed, if a transition labelled by ? is taken, then it has to start from a final state or q, and
has to end in an initial state or q. Moreover, no other letter labels a transition starting or
ending in q. So, when reading a word w ∈ Σ+ between two ?, this word is read on a run
that was already an existing accepting run in A.

Thus, we see that for all words w ∈ Σ+ and all k ∈ N: JA′K ((?w)k?) = k JAK (w), so
that:

inf
u∈Σ′+

JA′K (u)
|u|

≤ inf
w∈Σ+

k∈N

JA′K ((?w)k?)
k(|w|+ 1) + 1 ≤ inf

w∈Σ+

k∈N

JAK (w)
|w|+ 1 + 1/k . J

As a corollary of this lemma and of the previous results on the undecidability of comparison,
we get the following theorem.

I Theorem 4. The restrictions of Problems Pos3({−1, 0, 1}) and Pos7
554(Zmax) to automata

whose states are all initial and final are still undecidable.

Simultaneously to the latter construction, one can also encode the alphabet into the
binary alphabet in a smart way, yielding to the following result:

I Theorem 5. The restrictions of Problems Pos2({−1, 0, 1}) and Pos2
3319(Zmax) to automata

whose states are all initial and final are still undecidable.

4 Joint spectral radius and ultimate rank of tropical matrices

4.1 Joint spectral radius
The definition of spectral radius extends to the joint spectral radius of a set Γ ⊆Md(Zmax)
of matrices, as follows:

ρ(Γ) = inf
`>0

{
1
`
‖M1 · · ·M`‖∞

∣∣∣∣M1, . . . ,M` ∈ Γ
}

The following lemma, which gives other equivalent definitions2, is a known application of
Fekete’s subadditive lemma (see for example [11, Theorem 3.4]).

2 Note that here we use the inf definition for the joint spectral radius instead of the sup definition used
in the literature (see [18] and references therein). The latter is easy to compute in Zmax since it is the
spectral radius of the generators’ tropical sum, unlike the notion considered here (sometimes called
lower spectral radius or joint spectral subradius).

MFCS 2017

19:8 Max-Plus Automata and Joint Spectral Radius

I Lemma 6. For any set Γ of matrices inMd(Zmax), we have:

ρ(Γ) = lim
`→∞

min
{

1
`
‖M1 · · ·M`‖∞

∣∣∣∣M1, . . . ,M` ∈ Γ
}

(1)

= inf
`>0

{
1
`
ρ(M1 · · ·M`)

∣∣∣∣M1, . . . ,M` ∈ Γ
}

(2)

Proof. Let u` = inf {‖M1 · · ·M`‖∞ |M1, . . . ,M` ∈ Γ}. The sequence (u`)` is subadditive
i.e. for all `, `′, u`+`′ 6 u` + u`′ . Indeed for all M1, . . . ,M`+`′ ∈ Γ, ‖M1 · · ·M`+`′‖∞ 6
‖M1 · · ·M`‖∞+ ‖M`+1 · · ·M`+`′‖∞. Thus by Fekete’s lemma, lim`→∞

u`

` is well defined and
inf`>0

u`

` = lim`→∞
u`

` , which implies (1).
For the second equality, let us set: ρ′(Γ) = inf`>0

{ 1
`ρ(M1 · · ·M`)

∣∣M1, . . . ,M` ∈ Γ
}
.

Since for all matrices M , ρ(M) 6 ‖M‖∞, we have ρ′(Γ) 6 ρ(Γ). Let us show the reverse
inequality. For all ε > 0, there is ` > 0 and M1, . . . ,M` ∈ Γ such that 1

`ρ(M1 · · ·M`) 6
ρ′(Γ) + ε. By definition, it means that 1

` limn
1
n ‖(M1 · · ·M`)n‖∞ 6 ρ′(Γ) + ε, or equivalently,

limn
1

n` ‖(M1 · · ·M`)n‖∞ 6 ρ′(Γ) + ε. By definition, ρ(Γ) 6 limn
1

n` ‖(M1 · · ·M`)n‖∞, thus,
for all ε > 0, ρ(Γ) 6 ρ′(Γ) + ε, that concludes the proof. J

It can be easily seen that ρ(k � Γ) = ρ(Γ) + k.

4.2 Ultimate rank
In the classical setting of a field, the notion of rank enjoys many equivalent definitions.
These notions do not coincide in the case of Zmax. However, it was noticed in [15] that
they coincide on the limit points of the powers of the matrix, when properly normalized
(or considered projectively). This is formalized in [15, Theorem 5.2], and equivalent to the
following definition: the ultimate rank urk(M) of a matrix M ∈Md(Zmax) is the sum of the
cyclicities of the strongly connected components of its critical graph. Clearly, urk(M) = 0 (M
has empty critical graph) if and only if ρ(M) = −∞, and this corresponds to the nilpotency
of M . As for the joint spectral radius, this notion can be generalized to sets of matrices. The
ultimate rank of a set Γ ⊆Md(Zmax) of matrices is: urk(Γ) = min {urk(M)|M ∈ 〈Γ〉}.

Clearly, urk(Γ) = 0 if and only if ρ(Γ) = −∞, and this corresponds to the mortality
of the semigroup generated by Γ. It can be seen (or read in [15, Theorem 5.2]) that the
ultimate rank is a projective notion: urk(k � Γ) = urk(Γ) for any k ∈ Z.

In some interesting cases, urk(Γ) is indeed the reached minimum of the ranks in the
semigroup, so that it is the dimension of the limit set of the action of Γ on Rd. Those cases
include sets with irreducible fixed structure (all matrices have the same infinite entries), and
sets of matrices with no line of −∞ that contain one matrix with only finite entries. This
is implicitely used in [22] and allows to extend some nice properties of products of random
matrices from matrices with the so-called memory-loss property (case urk(Γ) = 1) to more
general ones (see [22, Corollary 1.2]).

4.3 Uncomputability and link with automata
Finitely generated semigroups of matrices exactly correspond to max-plus automata that
have all their states initial and final. In particular, the following lemma links the computation
of the joint spectral radius of the former to the comparison of the latter.

I Lemma 7. Let A be a max-plus automaton over an alphabet Σ whose all states are both
initial and final. The following statements are equivalent.
1. JAK > 0.
2. For all matrices M in 〈ΓA〉, ‖M‖∞ > 0.

L. Daviaud, P. Guillon, and G. Merlet 19:9

3. For all matrices M in 〈ΓA〉, ρ(M) > 0.
4. ρ(ΓA) > 0.

According to the terminology in [1], this also corresponds to the case when A is called
universal with threshold 0.

Proof. Items 1. and 2. are equivalent since all the states of A are both initial and final. Thus,
for all words w, JAK (w) = ‖µ(w)‖∞. Moreover, 〈ΓA〉 is exactly the set {µ(w)|w ∈ Σ+}.
Items 2. and 3. are equivalent by definition of the joint spectral radius. Finally, Items 3.
and 4. are equivalent by Lemma 6. J

The uncomputability of the joint spectral radius is deduced from the equivalence in
Lemma 7 and from Theorem 4 and 5. More precisely, define JSRk(S) (resp. JSRk

d(S)) as the
following problem: Given a finite set of k matrices with coefficients in S ⊆ Zmax (resp. and
dimension d), determine whether their joint spectral radius is greater than or equal to 0.

I Theorem 8. Problems JSR2({−∞,−1, 0, 1}) and JSR7
554(Zmax) are undecidable.

Proof. The undecidability comes from a reduction from the problem stated in Theorem 4
and 5. Consider a max-plus automaton A whose states are all initial and final. By Lemma 7,
JAK > 0 if and only if ρ(ΓA) > 0. Thus JSR2({−∞,−1, 0, 1}) and JSR7

554(Zmax) are
undecidable. J

By reduction from Theorem 8, we prove that the ultimate rank is also uncomputable.
Define URk(S) (resp. URk

d(S)) as the following problem: Given a finite set of k matrices
with coefficients in S (resp. and dimension d), determine whether the ultimate rank of the
semigroup that they generate is equal to 1.

I Theorem 9. Problems UR2({−∞,−1, 0, 1}) and UR7
1109(Zmax) are undecidable.

Proof. From any matrix M , one can build: M̂ =

 M −∞ −∞
−∞ M −∞
−∞ −∞ 0

 . It is then clear

that, for any finite family of matrices Γ, the semigroup generated by Γ̂ =
{
M̂
∣∣∣M ∈ Γ

}
is〈

Γ̂
〉

=
{
M̂
∣∣∣M ∈ 〈Γ〉}.

If M has size d and entries in S, then M̂ has size 2d + 1 and entries in S ∪ {−∞, 0}.
Moreover, if ρ(M) < 0, then the critical graph of M̂ is simply the loop over the last vertex
(last line of the matrix M̂), so that urk(M̂) = 1. Otherwise, the critical graph of M̂ contains
at least two copies of that of M (which is nonempty), so that urk(M̂) ≥ 2. Thus, ρ(M) > 0
if and only if urk(M̂) ≥ 2. By reduction from the undecidable problems of Theorem 8, we
can deduce that UR2({−∞,−1, 0, 1}) and UR7

1109(Zmax) are undecidable. J

I Remark. As noted above, the joint spectral radius and ultimate rank are not altered
through translation by a constant; thus uncomputability is preserved with other restrictions
over the entries. Regarding the joint spectral radius, the comparison to 0 may no longer
be undecidable, but the comparison to some other constants will be. For instance, if
Γ ⊂M(Nmax), positivity is always true, but the question whether ρ(Γ) > 1 is undecidable.

MFCS 2017

19:10 Max-Plus Automata and Joint Spectral Radius

4.4 Approximation of the joint spectral radius
Still by using results in automata theory, we prove that even though the joint spectral radius
is not computable in general, it is approximable and computable in restricted cases in the
following sense.

I Theorem 10. There is an algorithm that, given a finite set Γ of matrices and n ∈ N \ {0},
computes a value α ∈ Q ∪ {−∞} such that α− 1

n 6 ρ(Γ) 6 α+ 1
n .

Proof. The proof uses the main result of [7]. This result is originally stated for min-
plus automata using only positive weights. These automata are defined over the min-plus
semiring (Z ∪ {+∞},min,+,+∞, 0). By using the morphism from the min-plus to the
max-plus semiring that associates k to −k, we can state the result of [7] in the max-plus
case: there is an algorithm A that, given a max-plus automaton A over an alphabet Σ using
only nonpositive weights and n ∈ N \ {0}, computes a value α ∈ Q ∪ {+∞} such that:
α− 1

n 6 infw∈Σ+
JAK(w)
|w| 6 α+ 1

n .
Now, let us exhibit an algorithm that gives an approximation of the joint spectral radius

of any finite set of matrices with only nonpositive entries. Consider a finite set of matrices Γ
with only nonpositive entries, and a max-plus automaton A such that Γ = ΓA. From [7], A
also gives an approximation of the joint spectral radius of Γ, since we have:

ρ(Γ) = inf
`>0

{
1
`
‖M1 · · ·M`‖∞

∣∣∣∣M1, . . . ,M` ∈ Γ
}

= inf
`>0

{
1
`

JAK (w)
∣∣∣∣w ∈ Σ`

}
= inf

w∈Σ+

JAK (w)
|w|

.

Consider now a finite set of matrices Γ with arbitrary entries. Let k denote the greatest
entry that appears in at least one of the matrices of Γ. Construct the set Γ′ = −k � Γ. The
set Γ′ is then a finite set of matrices with only nonpositive entries, on which we can apply
A. We then get an approximation of the joint spectral radius of Γ by adding k to the value
given by the algorithm. J

This implies, in particular, that the joint spectral radius of every finite set of matrices is a
computable real number.

Remarks about the complexity. The algorithm of [7] is EXPSPACE in the size of the auto-
maton and in n. Moreover the problem is PSPACE-hard by reduction from the universality
problem of a nondeterministic automaton: Given a nondeterministic finite automaton A over
a 2-letter alphabet Σ, the problem to determine whether the language accepted by A is Σ+ is
PSPACE-complete. A precise statement of the reduction is given in the following lemma.

I Lemma 11. Given a nondeterministic finite automaton A over a 2-letter alphabet Σ, one
can construct in polynomial time a set of 3 matrices Γ with entries in {−∞, 0} such that
A accepts Σ+ if and only if the joint spectral radius of Γ is equal to 0. Otherwise, the joint
spectral radius of Γ is equal to −∞.

Proof. Consider a nondeterministic finite automaton A over a 2-letter alphabet Σ. We
construct a max-plus automaton A′ from A by weighting the transitions by 0. Then, A
accepts Σ+ if and only if JA′K = 0 (otherwise there is a word w such that JA′K (w) = −∞).
By Lemma 3, one can construct a max-plus automaton B over a 3-letter alphabet such that
every state of B is both initial and final, B has only weight 0 on its transitions, and JA′K > 0
if and only if JBK > 0. Hence, JA′K = 0 if and only if JBK = 0. By Lemma 7, JBK > 0 if and

L. Daviaud, P. Guillon, and G. Merlet 19:11

only if the joint spectral radius of ΓB is nonnegative. Since, ΓB contains only matrices with
entries in {0,−∞}, it implies that JBK = 0 if and only if the joint spectral radius of ΓB is
equal to 0. All the constructions are polynomial. J

Notice that Lemma 11 also proves that JSR3({0,−∞}) is PSPACE-hard. A result in [1]
implies that JSRk(Z− ∪ {−∞}) is also PSPACE, where Z− denotes the set of nonpositive
integers. Hence, Problem JSR3({0,−∞}) is also PSPACE-complete.

4.5 Restriction to finite entries
Let us consider the restriction to matrices with only finite entries. In terms of automata, it
means that for all letters a, there is a transition labelled by a between any pair of states. In
this case, the joint spectral radius and ultimate rank are computable.

I Theorem 12. There are PSPACE algorithms to compute the joint spectral radius and the
ultimate rank of any finite set of matrices with finite entries. In particular, in this case, the
joint spectral radius is a rational number. Moreover, JSR3({0,−1}) and UR3({0,−1}) are
PSPACE-complete.

PSPACE algorithm. To prove that the problems are PSPACE, the key point is the
following lemma:

I Lemma 13 ([13]). Let Γ ⊂Md({−b, . . . , b}) for some nonnegative integers b and d. Then
for all matricesM ∈ 〈Γ〉 and all indices i, j, the quantityMi,j−M1,1 belongs to {−2b, . . . , 2b}.

Let Γ be a finite set of matrices with entries in {−b, . . . , b}. By Lemma 13, the set
Λ = {−M1,1 �M |M ∈ 〈Γ〉} contains at most (4b+ 1)d2−1 matrices.

Moreover, since the operation of adding the same constant to all the entries of a matrix
commutes with the product of matrices, Λ is the set of matrices −M1,1 �M such that M
is a product of at most (4b + 1)d2−1 matrices of Γ. Finally, the ultimate rank of Γ is the
minimum of the ultimate rank of the matrices in Λ, which can be computed by the following
algorithm in NPSPACE. Start with a matrix M = M1 ∈ Γ and a counter ` with value 1.
At each (nondeterministic) step, either compute urk(M) and stop, or increase ` by one and
multiply M by some matrix M` ∈ Γ. If ` = (4b+ 1)d2−1, then compute urk(M) and stop.

Since the maximum value of ` is simply exponential in the size |Γ|d2 log(b) of the input,
both ` and the size of the entries of M = M1 · · ·M` are simply exponential and thus can be
stored in polynomial space. Since the product of matrices and ultimate rank of one matrix
can be computed in P the algorithm is in NPSPACE=PSPACE.

For the joint spectral radius, let us prove that

ρ(Γ) = min
`6(4b+1)d

M1,...,M`∈Γ

{
1
`
ρ(M1 · · ·M`)

}
(3)

and conclude in the same way. Let us consider a product M1 · · ·M` of matrices in Γ and the
orbit of the vector with all entries equal to 0 under the action of M1,M2, . . . ,M`,M1,M2,
By Lemma 13, this orbit projectively has size at most (4b + 1)d. Hence, it cycles after t
steps for some t 6 (4b+ 1)d and has a period p 6 (4b+ 1)d. Each time the orbit goes back
to the same vector projectively, all coordinates have increased by some value, which is the
spectral radius of M(t+1) mod `M(t+2) mod ` · · ·M(t+p) mod `. Indeed, for matrices with only
finite entries, the spectral radius is the only eigenvalue. Finally, we get 1

`ρ(M1 · · ·M`) =
1
pρ(M(t+1) mod `M(t+2) mod ` · · ·M(t+p) mod `), which proves (3).

MFCS 2017

19:12 Max-Plus Automata and Joint Spectral Radius

PSPACE-hardness. Let Γ be a finite set of matrices with entries in {0,−∞}. Let Γ′ be
the set Γ where every entry with value −∞ has been replaced by −1. The joint spectral
radius of Γ is equal to 0 if and only if the joint spectral radius of Γ′ is equal to 0. Otherwise,
ρ(Γ) = −∞ and ρ(Γ′) is strictly negative. By Lemma 11, JSR3({0,−∞}) is PSPACE-hard,
and thus JSR3({0,−1}) is PSPACE-hard.

Now, let us reduce JSR3([{0,−1}) to UR3({0,−1}). From any matrix M ∈Md({0,−1}),

with d ∈ N\{0}, one can build the matrix: M̃ =
[

M (−1)
(−1) 0

]
∈ Md+1({0,−1}) , where

(−1) is the vector with appropriate size whose entries are all −1.
It is then clear that, for any finite family of matrices Γ, the semigroup generated by

Γ̃ =
{
M̃
∣∣∣M ∈ Γ

}
is
〈

Γ̃
〉

=
{
M̃
∣∣∣M ∈ 〈Γ〉}.

Moreover, note that if ρ(M) < 0, then the critical graph of M̃ is the loop over the last
vertex, so that urk(M̃) = 1. Otherwise, ρ(M) = 0, and the critical graph is the union of
this loop and the critical graph of M , so that urk(M̃) = 1 + urk(M). We deduce that the
ultimate rank of Γ̃ is greater than or equal to 2 if and only if ρ(Γ) > 0.

I Remark. Lemma 13 is implicitely used in [12, Corollary 2] to prove that the functions
computed by max-plus automata with rational entries whose linear representation generates
a so-called primitive semigroup (which includes matrices with finite entries) can be computed
by a deterministic automaton.

It is also shown (as Corollary 4) that the minimal growth rate of a deterministic automaton,
i.e. the joint spectral radius of its linear representation, can be computed as the spectral
radius of one matrix whose indices are the states of the automaton.

This gives another algorithm to compute the joint spectral radius of a finite set of matrices
with finite integers, but not a PSPACE one, since the size of the deterministic automaton is
only bounded by (4b+ 1)d2 , while Equation (3) allows to compute only matrices of size d
without storing them.

5 Conclusion and open questions

In this paper, we have proved that the joint spectral radius and the ultimate rank of a finite
set of matrices over the tropical semiring are not computable (from the proof it can be seen
that they are actually computably-enumerable-complete). To this end, we have proved the
undecidability of the comparison of max-plus automata in restricted cases: when all the
states are both initial and final and when the number of states is bounded.

As for the restriction on the number of states, we proved that comparison is undecidable
when restricted to 553 states. Now, the question is to understand what happens between 2
and 552 states. Even when restricted to 2 states, it seems quite a difficult question to answer.
Moreover, the various proofs highlight a link between several universal models: diophantine
equations and two-counter machines. Having better size bounds on these models would
give a better bound for our undecidable problem, but conversely, getting the decidability of
comparison for max-plus automata with at most a certain number of states could lead to
improve the known lower bounds on the size of these universal objects.

As for the joint spectral radius, one could ask if it is always rational or if, on the opposite,
the set of joint spectral radii of finite families of matrices admits some computability-theoretic
characterization. With respect to complexity, the main open question is whether it is PSPACE
to approximate the joint spectral radius.

L. Daviaud, P. Guillon, and G. Merlet 19:13

References

1 Shaull Almagor, Udi Boker, and Orna Kupferman. What’s decidable about weighted auto-
mata? In ATVA 2011, pages 482–491. Springer-Verlag, oct 2011.

2 Yu. A. Al’pin. Bounds for joint spectral radii of a set of nonnegative matrices. Mathematical
Notes, 87(1):12–14, 2010. doi:10.1134/S0001434610010025.

3 François Louis Baccelli, Geert Jan Olsder, Jean-Pierre Quadrat, and Guy Cohen. Syn-
chronization and linearity. An algebra for discrete event systems. Chichester: Wiley, 1992.

4 Vincent D. Blondel, Stéphane Gaubert, and John N. Tsitsiklis. Approximating the spec-
tral radius of sets of matrices in the max-algebra is np-hard. Automatic Control, IEEE
Transactions on, 45(9):1762–1765, Sep 2000. doi:10.1109/9.880644.

5 Peter Butkovič. Max-linear systems. Theory and algorithms. London: Springer, 2010.
doi:10.1007/978-1-84996-299-5.

6 Thomas Colcombet. On distance automata and regular cost function. Presented at the
Dagstuhl seminar “Advances and Applications of Automata on Words and Trees”, 2010.

7 Thomas Colcombet and Laure Daviaud. Approximate comparison of distance automata. In
Natacha Portier and Thomas Wilke, editors, STACS, volume 20 of LIPIcs, pages 574–585.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013. doi:10.4230/LIPIcs.STACS.
2013.574.

8 Thomas Colcombet, Laure Daviaud, and Florian Zuleger. Size-change abstraction and
max-plus automata. In Erzsébet Csuhaj-Varjú, Martin Dietzfelbinger, and Zoltán Ésik,
editors, Mathematical Foundations of Computer Science 2014 - 39th International Sym-
posium, MFCS 2014, Budapest, Hungary, August 25-29, 2014. Proceedings, Part I, volume
8634 of Lecture Notes in Computer Science, pages 208–219. Springer, 2014. doi:10.1007/
978-3-662-44522-8_18.

9 Ludwig Elsner and P. van den Driessche. Bounds for the perron root using max eigenvalues.
Linear Algebra and its Applications, 428(8):2000–2005, 2008. doi:10.1016/j.laa.2007.
11.014.

10 Stéphane Gaubert and Ricardo Katz. Reachability problems for products of matrices
in semirings. International Journal of Algebra and Computation, 16(3):603–627, jun
2006. URL: http://arxiv.org/abs/math/0310028, arXiv:0310028, doi:10.1142/
S021819670600313X.

11 Stéphane Gaubert and Jean Mairesse. Task resource models and (max,+) automata. In
Idempotency (Bristol, 1994), volume 11 of Publ. Newton Inst., pages 133–144. Cambridge
Univ. Press, Cambridge, 1998. doi:10.1017/CBO9780511662508.009.

12 Stéphane Gaubert. Performance evaluation of (max,+) automata. IEEE Trans. Automat.
Control, 40(12):2014–2025, 1995. doi:10.1109/9.478227.

13 Stéphane Gaubert. On the Burnside problem for semigroups of matrices in the (max,+)
algebra. Semigroup Forum, 52(1):271–294, 1996. doi:10.1007/BF02574104.

14 Stéphane Gaubert and Jean Mairesse. Modeling and analysis of timed Petri nets using heaps
of pieces. IEEE Trans. Automat. Control, 44(4):683–697, 1999. doi:10.1109/9.754807.

15 Pierre Guillon, Zur Izhakian, Jean Mairesse, and Glenn Merlet. The ultimate rank of
semi-groups of tropical matrices. Journal of Algebra, 437:222–248, September 2015. doi:
10.1016/j.jalgebra.2015.02.026.

16 Bernd Heidergott, Geert Jan Oldser, and Jacob van der Woude. Max plus at work. Modeling
and analysis of synchronized systems: a course on max-plus algebra and its applications.
Princeton, NJ: Princeton University Press, 2006.

17 James P. Jones. Universal Diophantine equation. J. Symbolic Logic, 47(3):549–571, 1982.
doi:10.2307/2273588.

MFCS 2017

http://dx.doi.org/10.1134/S0001434610010025
http://dx.doi.org/10.1109/9.880644
http://dx.doi.org/10.1007/978-1-84996-299-5
http://dx.doi.org/10.4230/LIPIcs.STACS.2013.574
http://dx.doi.org/10.4230/LIPIcs.STACS.2013.574
http://dx.doi.org/10.1007/978-3-662-44522-8_18
http://dx.doi.org/10.1007/978-3-662-44522-8_18
http://dx.doi.org/10.1016/j.laa.2007.11.014
http://dx.doi.org/10.1016/j.laa.2007.11.014
http://arxiv.org/abs/math/0310028
http://arxiv.org/abs/0310028
http://dx.doi.org/10.1142/S021819670600313X
http://dx.doi.org/10.1142/S021819670600313X
http://dx.doi.org/10.1017/CBO9780511662508.009
http://dx.doi.org/10.1109/9.478227
http://dx.doi.org/10.1007/BF02574104
http://dx.doi.org/10.1109/9.754807
http://dx.doi.org/10.1016/j.jalgebra.2015.02.026
http://dx.doi.org/10.1016/j.jalgebra.2015.02.026
http://dx.doi.org/10.2307/2273588

19:14 Max-Plus Automata and Joint Spectral Radius

18 Raphaël Jungers. The joint spectral radius, volume 385 of Lecture Notes in Control and
Information Sciences. Springer-Verlag, Berlin, 2009. Theory and applications. doi:10.
1007/978-3-540-95980-9.

19 Jui-Yi Kao, Narad Rampersad, and Jeffrey Shallit. On NFAs where all states are final,
initial, or both. Theoretical Computer Science, 410(47):5010–5021, 2009. doi:10.1016/j.
tcs.2009.07.049.

20 Daniel Krob. The equality problem for rational series with multiplicities in the tropical
semiring is undecidable. In Automata, languages and programming (Vienna, 1992), volume
623 of Lecture Notes in Comput. Sci., pages 101–112. Springer, Berlin, 1992. doi:10.1007/
3-540-55719-9_67.

21 Sylvain Lombardy and Jean Mairesse. Max-plus automaton. In Handbook of Automata.
European Mathematical Society, To appear.

22 Glenn Merlet. Semigroup of matrices acting on the max-plus projective space. Linear
Algebra and its Applications, 432(8):1923–1935, 2010. doi:10.1016/j.laa.2009.03.029.

23 Marvin L. Minsky. Recursive unsolvability of Post’s problem of “tag” and other topics in
theory of Turing machines. Ann. of Math. (2), 74:437–455, 1961.

24 Marvin L. Minsky. Computation: finite and infinite machines. Prentice-Hall, Inc., Engle-
wood Cliffs, N.J., 1967. Prentice-Hall Series in Automatic Computation.

25 Marcel-Paul Schützenberger. On the definition of a family of automata. Information and
Control, 4:245–270, 1961.

http://dx.doi.org/10.1007/978-3-540-95980-9
http://dx.doi.org/10.1007/978-3-540-95980-9
http://dx.doi.org/10.1016/j.tcs.2009.07.049
http://dx.doi.org/10.1016/j.tcs.2009.07.049
http://dx.doi.org/10.1007/3-540-55719-9_67
http://dx.doi.org/10.1007/3-540-55719-9_67
http://dx.doi.org/10.1016/j.laa.2009.03.029

Binary Search in Graphs Revisited∗

Argyrios Deligkas1, George B. Mertzios2, and Paul G. Spirakis3

1 Faculty of Industrial Engineering and Management, Technion, Israel
argyris@technion.ac.il

2 School of Engineering and Computing Sciences, Durham University, UK
george.mertzios@durham.ac.uk

3 Department of Computer Science, University of Liverpool, UK,
University of Patras, Greece, and CTI, Greece
p.spirakis@liverpool.ac.uk

Abstract
In the classical binary search in a path the aim is to detect an unknown target by asking as
few queries as possible, where each query reveals the direction to the target. This binary search
algorithm has been recently extended by [Emamjomeh-Zadeh et al., STOC, 2016] to the problem
of detecting a target in an arbitrary graph. Similarly to the classical case in the path, the
algorithm of Emamjomeh-Zadeh et al. maintains a candidates’ set for the target, while each
query asks an appropriately chosen vertex – the “median” – which minimises a potential Φ
among the vertices of the candidates’ set. In this paper we address three open questions posed
by Emamjomeh-Zadeh et al., namely (a) detecting a target when the query response is a direction
to an approximately shortest path to the target, (b) detecting a target when querying a vertex
that is an approximate median of the current candidates’ set (instead of an exact one), and
(c) detecting multiple targets, for which to the best of our knowledge no progress has been made
so far. We resolve questions (a) and (b) by providing appropriate upper and lower bounds, as well
as a new potential Γ that guarantees efficient target detection even by querying an approximate
median each time. With respect to (c), we initiate a systematic study for detecting two targets
in graphs and we identify sufficient conditions on the queries that allow for strong (linear) lower
bounds and strong (polylogarithmic) upper bounds for the number of queries. All of our positive
results can be derived using our new potential Γ that allows querying approximate medians.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Discrete
Mathematics: Graph Theory

Keywords and phrases binary search, graph, approximate query, probabilistic algorithm, lower
bound

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.20

1 Introduction

The classical binary search algorithm detects an unknown target (or “treasure”) t on a path
with n vertices by asking at most logn queries to an oracle which always returns the direction
from the queried vertex to t. To achieve this upper bound on the number of queries, the
algorithm maintains a set of candidates for the place of t; this set is always a sub-path, and
initially it is the whole path. Then, at every iteration, the algorithm queries the middle
vertex (“median”) of this candidates’ set and, using the response of the query, it excludes

∗ Partially supported by ISF 2021296, EPSRC grant EP/P020372/1, EPSRC grant EP/P02002X/1, and
Liverpool EEECS initiative NeST

© Argyrios Deligkas, George B. Mertios, Paul G. Spirakis;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 20; pp. 20:1–20:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.20
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

20:2 Binary Search in Graphs Revisited

either the left or the right half of the set. This way of searching for a target in a path can
be naturally extended to the case where t lies on an n-vertex tree, again by asking at most
logn queries that reveal the direction in the (unique) path to t [22]. The principle of the
binary search algorithm on trees is based on the same idea as in the case of a path: for every
tree there exists a separator vertex such that each of its subtrees contains at most half of the
vertices of the tree [14], which can be also efficiently computed.

Due to its prevalent nature in numerous applications, the problem of detecting an unknown
target in an arbitrary graph or, more generally in a search space, has attracted many research
attempts from different viewpoints. Only recently the binary search algorithm with logn
direction queries has been extended to arbitrary graphs by Emamjomeh-Zadeh et al. [10]. In
this case there may exist multiple paths, or even multiple shortest paths form the queried
vertex to t. The direction query considered in [10] either returns that the queried vertex q is
the sought target t, or it returns an arbitrary direction from q to t, i.e. an arbitrary edge
incident to q which lies on a shortest path from q to t. The main idea of this algorithm
follows again the same principle as for paths and trees: it always queries a vertex that is the
“median” of the current candidates’ set and any response to the query is enough to shrink
the size of the candidates’ set by a factor of at least 2. Defining what the “median” is in the
case of general graphs now becomes more tricky: Emamjomeh-Zadeh et al. [10] define the
median of a set S as the vertex q that minimizes a potential function Φ, namely the sum of
the distances from q to all vertices of S.

Apart from searching for upper bounds on the number of queries needed to detect a
target t in graphs, another point of interest is to derive algorithms which, given a graph G,
compute the optimal number of queries needed to detect an unknown target in G (in the
worst case). This line of research was initiated in [18] where the authors studied directed
acyclic graphs (DAGs). Although computing a query-optimal algorithm is known to be
NP-hard on general graphs [4,8,16], there exist efficient algorithms for trees; after a sequence
of papers [1, 13, 17, 19, 26], linear time algorithms were found in [19, 22]. Different models
with queries of non-uniform costs or with a probability distribution over the target locations
were studied in [5–7,15].

A different line of research is to search for upper bounds and information-theoretic
bounds on the number of queries needed to detect a target t, assuming that the queries
incorporate some degree of “noise”. In one of the variations of this model [2, 10, 11], each
query independently returns with probability p > 1

2 a direction to a shortest path from
the queried vertex q to the target, and with probability 1− p an arbitrary edge (possibly
adversarially chosen) incident to q. The study of this problem was initiated in [11], where
Ω(logn) and O(logn) bounds on the number of queries were established for a path with n
vertices. This information-theoretic lower bound of [11] was matched by an improved upper
bound in [2]. The same matching bound was extended to general graphs in [10].

In a further “noisy” variation of binary search, every vertex v of the graph is assigned a
fixed edge incident to v (also called the “advice” at v). Then, for a fraction p > 1

2 of the
vertices, the advice directs to a shortest path towards t, while for the rest of the vertices
the advice is arbitrary, i.e. potentially misleading or adversarially chosen [3]. This problem
setting is motivated by the situation of a tourist driving a car in an unknown country that
was hit by a hurricane which resulted in some fraction of road-signs being turned in an
arbitrary and unrecognizable way. The question now becomes whether it is still possible to
navigate through such a disturbed and misleading environment and to detect the unknown
target by asking only few queries (i.e. taking advice only from a few road-signs). It turns out
that, apart from its obvious relevance to data structure search, this problem also appears in

A.Deligkas, G. B. Mertzios and P. G. Spirakis 20:3

artificial intelligence as it can model searching using unreliable heuristics [3,20,23]. Moreover
this problem also finds applications outside computer science, such as in navigation issues in
the context of collaborative transport by ants [12].

Another way of incorporating some “noise” in the query responses, while trying to detect
a target, is to have multiple targets hidden in the graph. Even if there exist only two
unknown targets t1 and t2, the response of each query is potentially confusing even if every
query correctly directs to a shortest path from the queried vertex to one of the targets. The
reason of confusion is that now a detecting algorithm does not know to which of the hidden
targets each query directs. In the context of the above example of a tourist driving a car
in an unknown country, imagine there are two main football teams, each having its own
stadium. A fraction 0 < p1 < 1 of the population supports the first team and a fraction
p2 = 1− p1 the second one, while the supporters of each team are evenly distributed across
the country. The driver can now ask questions of the type “where is the football stadium?”
to random local people along the way, in an attempt to visit both stadiums. Although every
response will be honest, the driver can never be sure which of the two stadiums the local
person meant. Can the tourist still detect both stadiums quickly enough? To the best of our
knowledge the problem of detecting multiple targets in graphs has not been studied so far;
this is one of the main topics of the present paper.

The problem of detecting a target within a graph can be seen as a special case of a
two-player game introduced by Renyi [25] and rediscovered by Ulam [27]. This game does not
necessarily involve graphs: the first player seeks to detect an element known to the second
player in some search space with n elements. To this end, the first player may ask arbitrary
yes/no questions and the second player replies to them honestly or not (according to the
details of each specific model). Pelc [24] gives a detailed taxonomy for this kind of games.
Group testing is a sub-category of these games, where the aim is to detect all unknown
objects in a search space (not necessarily a graph) [9]. Thus, group testing is related to the
problem of detecting multiple targets in graphs, which we study in this paper.

1.1 Our contribution
In this paper we systematically investigate the problem of detecting one or multiple hidden
targets in a graph. Our work is driven by the open questions posed by the recent paper
of Emamjomeh-Zadeh et al. [10] which dealt with the detection of a single target with
and without “noise”. More specifically, Emamjomeh-Zadeh et al. [10] asked for further
fundamental generalizations of the model which would be of interest, namely (a) detecting
a single target when the query response is a direction to an approximately shortest path,
(b) detecting a single target when querying a vertex that is an approximate median of the
current candidates’ set S (instead of an exact one), and (c) detecting multiple targets, for
which to the best of our knowledge no progress has been made so far.

We resolve question (a) in Section 2.1 by proving that any algorithm requires Ω(n) queries
to detect a single target t, assuming that a query directs to a path with an approximately
shortest length to t. Our results hold essentially for any approximation guarantee, i.e. for
1-additive and for (1 + ε)-multiplicative approximations.

Regarding question (b), we first prove in Section 2.2 that, for any constant 0 < ε < 1,
the algorithm of [10] requires at least Ω(

√
n) queries when we query each time an (1 + ε)-

approximate median (i.e. an (1 + ε)-approximate minimizer of the potential Φ over the
candidates’ set S). Second, to resolve this lower bound, we introduce in Section 2.3 a new
potential Γ. This new potential can be efficiently computed and, in addition, guarantees
that, for any constant 0 ≤ ε < 1, the target t can be detected in O(logn) queries even when
an (1 + ε)-approximate median (with respect to Γ) is queried each time.

MFCS 2017

20:4 Binary Search in Graphs Revisited

Regarding question (c), we initiate in Section 3 the study for detecting multiple targets
on graphs by focusing mainly to the case of two targets t1 and t2. We assume throughout
that every query provides a correct answer, in the sense that it always returns a direction to
a shortest path from the queried vertex either to t1 or to t2. The “noise” in this case is that
the algorithm does not know whether a query is returning a direction to t1 or to t2. Initially
we observe in Section 3 that any algorithm requires n

2 − 1 (resp. n− 2) queries in the worst
case to detect one target (resp. both targets) if each query directs adversarially to one of the
two targets. Hence, in the remainder of Section 3, we consider the case where each query
independently directs to the first target t1 with a constant probability p1 and to the second
target t2 with probability p2 = 1− p1. For the case of trees, we prove in Section 3 that both
targets can be detected with high probability within O(logn) queries.

For general graphs, we distinguish between biased queries (p1 > p2) in Section 3.1 and
unbiased queries (p1 = p2 = 1

2) in Section 3.2. For biased queries, we observe that we can
utilize the algorithm of Emamjomeh-Zadeh et al. [10] to detect the first target t1 with high
probability in O(logn) queries; this can be done by considering the queries that direct to t2
as “noise”. Thus our objective becomes to detect the target t2 in a polylogarithmic number of
queries. Notice here that we cannot apply the “noisy” framework of [10] to detect the second
target t2 , since now the “noise” is larger than 1

2 . We derive a probabilistic algorithm that
overcomes this problem and detects the target t2 with high probability in O(∆ log2 n) queries,
where ∆ is the maximum degree of a vertex in the graph. Thus, whenever ∆ = O(poly logn),
a polylogarithmic number of queries suffices to detect t2. In contrast, we prove in Section 3.2
that, for unbiased queries, any deterministic (possibly adaptive) algorithm that detects
at least one of the targets requires at least n

2 − 1 queries, even in an unweighted cycle.
Extending this lower bound for two targets, we prove that, assuming 2c ≥ 2 different targets
and unbiased queries, any deterministic (possibly adaptive) algorithm requires at least n

2 − c
queries to detect one of the targets.

Departing from the fact that our best upper bound on the number of biased queries in
Section 3.1 is not polylogarithmic when the maximum degree ∆ is not polylogarithmic, we
investigate in Section 4 several variations of queries that provide more informative responses.
In Section 4.1 we turn our attention to “direction-distance” biased queries which return with
probability pi both the direction to a shortest path to ti and the distance between the queried
vertex and ti. In Section 4.2 we consider another type of a biased query which combines the
classical “direction” query and an edge-variation of it. For both query types of Sections 4.1
and 4.2 we prove that the second target t2 can be detected with high probability in O(log3 n)
queries. Furthermore, in Sections 4.3 and 4.4 we investigate two further generalizations of
the “direction” query which make the target detection problem trivially hard and trivially
easy to solve, respectively.

1.2 Our Model and Notation
We consider connected, simple, and undirected graphs. A graph G = (V,E), where |V | = n,
is given along with a weight function w : E → R+ on its edges; if w(e) = 1 for every e ∈ E
then G is unweighted. An edge between two vertices v and u of G is denoted by vu, and in
this case v and u are said to be adjacent . The distance d(v, u) between vertices v and u is
the length of a shortest path between v and u with respect to the weight function w. Since
the graphs we consider are undirected, d(u, v) = d(v, u) for every pair of vertices v, u. Unless
specified otherwise, all logarithms are taken with base 2. Whenever an event happens with
probability at least 1− 1

nα for some α > 0, we say that it happens with high probability.
The neighborhood of a vertex v ∈ V is the set N(v) = {u ∈ V : vu ∈ E} of its adjacent

vertices. The cardinality of N(v) is the degree deg(v) of v. The maximum degree among

A.Deligkas, G. B. Mertzios and P. G. Spirakis 20:5

all vertices in G is denoted by ∆(G), i.e. ∆(G) = max{deg(v) : v ∈ V }. For two vertices
v and u ∈ N(v) we denote by N(v, u) = {x ∈ V : d(v, x) = w(vu) + d(u, x)} the set of
vertices x ∈ V for which there exists a shortest path from v to x, starting with the edge vu.
Note that, in general, N(u, v) 6= N(v, u). Let T = {t1, t2, · · · , t|T |} ⊆ V be a set of (initially
unknown) target vertices . A direction query (or simply query) at vertex v ∈ V returns with
probability pi a neighbor u ∈ N(v) such that ti ∈ N(u, v), where

∑|T |
i=1 pi = 1. If there exist

more than one such vertices u ∈ N(v) leading to ti via a shortest path, the direction query
returns an arbitrary one among them, i.e. possibly chosen adversarially, unless specified
otherwise. Moreover, if the queried vertex v is equal to one of the targets ti ∈ T , this is
revealed by the query with probability pi.

2 Detecting a Unique Target

In this section we consider the case where there is only one unknown target t = t1, i.e. T = {t}.
In this case the direction query at vertex v always returns a neighbor u ∈ N(v) such that
t ∈ N(u, v). For this problem setting, Emamjomeh-Zadeh et al. [10] provided a polynomial-
time algorithm which detects the target t in at most logn direction queries. During its
execution, the algorithm of [10] maintains a “candidates’ set” S ⊆ V such that always t ∈ S,
where initially S = V . At every iteration the algorithm computes in polynomial time a vertex
v (called the median of S) which minimizes a potential ΦS(v) among all vertices of the current
set S. Then it queries a median v of S and it reduces the candidates’ set S to S ∩N(v, u),
where u is the vertex returned by the direction query at v. The upper bound logn of the
number of queries in this algorithm follows by the fact that always |S ∩ N(v, u)| ≤ |S|

2 ,
whenever v is the median of S.

2.1 Bounds for Approximately Shortest Paths

We provide lower bounds for both additive and multiplicative approximation queries. A
c-additive approximation query at vertex v ∈ V returns a neighbor u ∈ N(v) such that
w(vu) + d(u, t) ≤ d(v, t) + c. Similarly, an (1 + ε)-multiplicative approximation query at
vertex v ∈ V returns a neighbor u ∈ N(v) such that w(vu) + d(u, t) ≤ (1 + ε) · d(v, t).

It is not hard to see that in the unweighted clique with n vertices any algorithm requires
in worst case n− 1 1-additive approximation queries to detect the target t. Indeed, in this
case d(v, t) = 1 for every vertex v 6= t, while every vertex u /∈ {v, t} is a valid response of an
1 -additive approximation query at v. Since in the case of the unweighted clique an additive
1-approximation is the same as a multiplicative 2-approximation of the shortest path, it
remains unclear whether 1 -additive approximation queries allow more efficient algorithms
for graphs with large diameter. In the next theorem we strengthen this result to graphs with
unbounded diameter.

I Theorem 1. Assuming 1-additive approximation queries, any algorithm requires at least
n− 1 queries to detect the target t, even in graphs with unbounded diameter.

In the next theorem we extend Theorem 1 by showing a lower bound of n · ε
4 queries

when we assume (1 + ε)-multiplicative approximation queries.

I Theorem 2. Let ε > 0. Assuming (1 + ε) -multiplicative approximation queries, any
algorithm requires at least at least n · ε

4 queries to detect the target t.

MFCS 2017

20:6 Binary Search in Graphs Revisited

2.2 Lower Bound for querying the Approximate Median
The potential ΦS : V → R+ of [10], where S ⊆ V , is defined as follows. For any set S ⊆ V
and any vertex v ∈ V , the potential of v is ΦS(v) =

∑
u∈S d(v, u). A vertex x ∈ V is an

(1 + ε)-approximate minimizer for the potential Φ over a set S (i.e. an (1 + ε)-median of S)
if ΦS(x) ≤ (1 + ε) minv∈V ΦS(v), where ε > 0. We prove that an algorithm querying at each
iteration always an (1 + ε)-median of the current candidates’ set S needs Ω(

√
n) queries.

I Theorem 3. Let ε > 0. If the algorithm of [10] queries at each iteration an (1 + ε)-median
for the potential function Φ, then at least Ω(

√
n) queries are required to detect the target t in

a graph G with n vertices, even if the graph G is a tree.

2.3 Upper Bound for querying the Approximate Median
In this section we introduce a new potential function ΓS : V → N for every S ⊆ V , which
overcomes the problem occured in Section 2.2. This new potential guarantees efficient
detection of t in at most O(logn) queries, even when we always query an (1 + ε)-median
of the current candidates’ set S (with respect to the new potential Γ), for any constant
0 < ε < 1. Our algorithm is based on the approach of [10], however we now query an
approximate median of the current set S with respect to Γ (instead of an exact median with
respect to Φ of [10]).

I Definition 4 (Potential Γ). Let S ⊆ V and v ∈ V . Then ΓS(v) = max{|N(v, u) ∩ S| :
u ∈ N(v)}.

I Theorem 5. Let 0 ≤ ε < 1. There exists an efficient adaptive algorithm which detects the
target t in at most log n

1−log(1+ε) queries, by querying at each iteration an (1 + ε)-median for the
potential function Γ.

Proof. Our proof closely follows the proof of Theorem 3 of [10]. Let S ⊆ V be an arbitrary
set of vertices of G such that t ∈ S. We will show that there exists a vertex v ∈ V such
that ΓS(v) ≤ |S|2 . First recall the potential ΦS(v) =

∑
x∈S d(v, x) . Let now v0 ∈ V be a

vertex such that ΦS(v0) is minimized, i.e. ΦS(v0) ≤ ΦS(v) for every v ∈ V . Let u ∈ N(v0)
be an arbitrary vertex adjacent to v0. We will prove that |N(v0, u) ∩ S| ≤ |S|

2 . Denote
S+ = N(v0, u) ∩ S and S− = S \ S+. By definition, for every x ∈ S+, the edge v0u lies
on a shortest path from v0 to x, and thus d(u, x) = d(v0, x)− w(v0u). On the other hand,
trivially d(u, x) ≤ d(v0, x) +w(v0u) for every x ∈ S, and thus in particular for every x ∈ S−.
Therefore ΦS(v0) ≤ ΦS(u) ≤ ΦS(v0) + (|S−| − |S+|) · w(v0u), and thus |S+| ≤ |S−|. That
is, |N(v0, u) ∩ S| = |S+| ≤ |S|

2 , since S− = S \ S+. Therefore which then implies that
ΓS(v0) ≤ |S|2 as the choice of the vertex u ∈ N(v0) is arbitrary.

Let vm ∈ V be an exact median of S with respect to Γ. That is, ΓS(vm) ≤ ΓS(v) for
every v ∈ V . Note that ΓS(vm) ≤ ΓS(v0) ≤ |S|2 . Now let 0 ≤ ε < 1 and let va ∈ V be an
(1 + ε)-median of S with respect to Γ. Then ΓS(va) ≤ (1 + ε)ΓS(vm) ≤ 1+ε

2 |S|. Our adaptive
algorithm proceeds as follows. Similarly to the algorithm of [10] (see Theorem 3 of [10]), our
adaptive algorithm maintains a candidates’ set S, where initially S = V . At every iteration
our algorithm queries an arbitrary (1+ε)-median vm ∈ V of the current set S with respect to
the potential Γ. Let u ∈ N(vm) be the vertex returned by this query; the algorithm updates
S with the set N(v, u) ∩ S. Since ΓS(va) ≤ 1+ε

2 |S| as we proved above, it follows that the
updated candidates’ set has cardinality at most 1+ε

2 |S|. Thus, since initially |S| = n, our
algorithm detects the target t after at most log(2

1+ε) n = log n
1−log(1+ε) queries. J

A.Deligkas, G. B. Mertzios and P. G. Spirakis 20:7

Notice in the statement of Theorem 5 that for ε = 0 (i.e. when we always query an exact
median) we get an upper bound of logn queries, as in this case the size of the candidates’
set decreases by a factor of at least 2. Furthermore notice that the reason that the algorithm
of [10] is not query-efficient when querying an (1 + ε)-median is that the potential ΦS(v)
of [10] can become quadratic in |S|, while on the other hand the value of our potential ΓS(v)
can be at most |S| by Definition 4, for every S ⊆ V and every v ∈ V . Furthermore notice
that, knowing only the value ΦS(v) for some vertex v ∈ V is not sufficient to provide a
guarantee for the proportional reduction of the set S when querying v. In contrast, just
knowing the value ΓS(v) directly provides a guarantee that, if we query vertex v the set S
will be reduced by a proportion of ΓS(v)

|S| , regardless of the response of the query. Therefore,
in practical applications, we may not need to necessarily compute an (exact or approximate)
median of S to make significant progress.

3 Detecting Two Targets

In this section we consider the case where there are two unknown targets t1 and t2, i.e. T =
{t1, t2}. In this case the direction query at vertex v returns with probability p1 (resp. with
probability p2 = 1 − p1) a neighbor u ∈ N(v) such that t1 ∈ N(v, u) (resp. t2 ∈ N(v, u)).
Detecting more than one unknown targets has been raised as an open question by Emamjomeh-
Zadeh et al. [10], while to the best of our knowledge no progress has been made so far in
this direction. Here we deal with both problems of detecting at least one of the targets and
detecting both targets. We study several different settings and derive both positive and
negative results for them. Each setting differs from the other ones on the “freedom” the
adversary has on responding to queries, or on the power of the queries themselves. We will
say that the response to a query directs to ti, where i ∈ {1, 2}, if the vertex returned by the
query lies on a shortest path between the queried vertex and ti.

It is worth mentioning here that, if an adversary would be free to arbitrarily choose
which ti each query directs to (i.e. instead of directing to ti with probability pi), then any
algorithm would require at least bn

2 c (resp. n− 2) queries to detect at least one of the targets
(resp. both targets), even when the graph is a path. Indeed, consider a path v1, . . . , vn where
t1 ∈ {v1, . . . , vbn2 c} and t2 ∈ {vbn2 c+1, . . . , vn}. Then, for every i ∈ {1, . . . , bn

2 c}, the query
at vi would return vi+1, i.e. it would direct to t2. Similarly, for every i ∈ {bn

2 c+ 1, . . . , n},
the query at vi would return vi−1, i.e. it would direct to t1. It is not hard to verify that in
this case the adversary could “hide” the target t1 at any of the first bn

2 c vertices which is not
queried by the algorithm and the target t2 on any of the last n− bn

2 c vertices which is not
queried. Hence, at least bn

2 c queries (resp. n− 2 queries) would be required to detect one of
the targets (resp. both targets) in the worst case.

As a warm-up, we provide in the next theorem an efficient algorithm that detects with
high probability both targets in a tree using O(log2 n) queries.

I Theorem 6. For any constant 0 < p1 < 1, we can detect with probability at least(
1− log n

n

)2
both targets in a tree with n vertices using O(log2 n) queries.

Since in a tree both targets t1, t2 can be detected with high probability in O(log2 n)
queries by Theorem 6, we consider in the remainder of the section arbitrary graphs instead
of trees. First we consider in Section 3.1 biased queries, i.e. queries with p1 >

1
2 . Second we

consider in Section 3.2 unbiased queries, i.e. queries with p1 = p2 = 1
2 .

MFCS 2017

20:8 Binary Search in Graphs Revisited

Algorithm 1 Given t1, detect t2 with high probability with O(∆ log2 n) queries

1: S ← V ; c← 7(1+p1)2

p1(1−p1)2

2: while |S| > 1 do
3: Compute an (approximate) median v of S with respect to potential Γ; Compute

Et1(v)
4: Query c∆ logn times vertex v; Compute the multiset Q(v) of these query responses
5: if Q(v) \ Et1(v) 6= ∅ then
6: Pick a vertex u ∈ Q(v) \ Et1(v) and set S ← S ∩N(v, u)
7: else
8: Pick a most frequent vertex u ∈ Q(v) and set S ← S ∩N(v, u)

9: return the unique vertex in S

3.1 Upper Bounds for Biased Queries
In this section we consider biased queries which direct to t1 with probability p1 >

1
2 and to t2

with probability p2 = 1− p1 <
1
2 . As we can detect in this case the first target t1 with high

probability in O(logn) queries by using the “noisy” framework of [10], our aim becomes to
detect the second target t2 with the fewest possible queries, once we have already detected t1.

For every vertex v and every i ∈ {1, 2}, denote by Eti(v) = {u ∈ N(v) : ti ∈ N(v, u)}
the set of neighbors of v such that the edge uv lies on a shortest path from v to ti. Note
that the sets Et1(v) and Et2(v) can be computed in polynomial time, e.g. using Dijkstra’s
algorithm. We assume that, once a query at vertex v has chosen which target ti it directs
to, it returns each vertex of Eti(v) equiprobably and independently from all other queries.
Therefore, each of the vertices of Et1(v)\Et2(v) is returned by the query at v with probability

p1
|Et1 (v)| , each vertex of Et2(v) \ Et1(v) is returned with probability 1−p1

|Et2 (v)| , and each vertex
of Et1(v) ∩ Et2(v) is returned with probability p1

|Et1 (v)| + 1−p1
|Et2 (v)| . We will show in Theorem

8 that, under these assumptions, we detect the second target t2 with high probability in
O(∆ log2 n) queries where ∆ is the maximum degree of the graph.

The high level description of our algorithm (Algorithm 1) is as follows. Throughout
the algorithm we maintain a candidates’ set S of vertices in which t2 belongs with high
probability. Initially S = V . In each iteration we first compute an (exact or approximate)
median v of S with respect to the potential Γ (see Section 2.3). Then we compute the
set Et1(v) (this can be done as t1 has already been detected) and we query c∆ logn times
vertex v, where c = 7(1+p1)2

p1(1−p1)2 is a constant. Denote by Q(v) the multiset of size c∆ logn
that contains the vertices returned by these queries at v. If at least one of these O(∆ logn)
queries at v returns a vertex u /∈ Et1(v), then we can conclude that u ∈ Et2(v), and thus we
update the set S by S ∩N(v, u). Assume otherwise that all O(∆ logn) queries at v return
vertices of Et1(v). Then we pick a vertex u0 ∈ N(v) that has been returned most frequently
among the O(∆ logn) queries at v, and we update the set S by S ∩N(v, u0). As it turns out,
u0 ∈ Et2(v) with high probability. Since we always query an (exact or approximate) median
v of the current candidates’ set S with respect to the potential Γ, the size of S decreases by
a constant factor each time. Therefore, after O(logn) updates we obtain |S| = 1. It turns
out that, with high probability, each update of the candidates’ set was correct, i.e. S = {t2}.
Since for each update of S we perform O(∆ logn) queries, we detect t2 with high probability
in O(∆ log2 n) queries in total.

Recall that every query at v returns a vertex u ∈ Et1(v) with probability p1 and a vertex
u ∈ Et2(v) with probability 1− p1. Therefore, for every v ∈ V the multiset Q(v) contains at

A.Deligkas, G. B. Mertzios and P. G. Spirakis 20:9

least one vertex u ∈ Et2(v) with probability at least 1− p|Q(v)|
1 = 1− p|c∆ log n|

1 . In the next
lemma we prove that, every time we update S using Step 8, the updated set contains t2 with
high probability.

I Lemma 7. Let S ⊆ V such that t2 ∈ S and let S′ = S ∩ N(v, u) be the updated set at
Step 8 of Algorithm 1. Then t2 ∈ S′ with probability at least 1− 2

n .

Proof. Let δ = 1−p1
1+p1

and c = 7(1+p1)2

p1(1−p1)2 be two constants. Recall that each of the vertices
of Et1(v) \ Et2(v) is returned by the query at v with probability p1

|Et1 (v)| , each vertex of
Et2(v) \ Et1(v) is returned with probability 1−p1

|Et2 (v)| , and each vertex of Et1(v) ∩ Et2(v) is
returned with probability p1

|Et1 (v)| +
1−p1
|Et2 (v)| . Observe that these probabilities are the expected

frequencies for these vertices in Q(v). Recall that Step 8 is executed only in the case where
Q(v) ⊆ Et1(v). To prove the lemma it suffices to show that, whenever Q(v) ⊆ Et1(v), the
most frequent element of Q(v) belongs to Et1(v) ∩ Et2(v) with high probability.

First note that, for the chosen value of δ,

(1 + δ) p1

|Et1(v)| < (1− δ)
(

p1

|Et1(v)| + 1− p1

|Et2(v)|

)
(1)

Let u ∈ Et1(v)\Et2(v), i.e. the query at v directs to t1 but not to t2. We define the random
variable Zi(u), such that Zi(u) = 1 if u is returned by the i-th query at v and Zi(u) = 0
otherwise. Furthermore define Z(u) =

∑c∆ log n
i=1 Zi(u). Since Pr(Zi(u) = 1) = p1

|Et1 (v)| ,
it follows that E(Z(u)) = c∆ logn p1

|Et1 (v)| by the linearity of expectation. Then, using
Chernoff’s bounds we can prove that

Pr(Z(u) ≥ (1 + δ)E(Z(u))) ≤ 1
n2 . (2)

Thus (2) implies that the probability that there exists at least one u ∈ Et1(v) \ Et2(v) such
that Z(u) ≥ (1 + δ)E(Z(u)) is

Pr
(
∃u ∈ Et1(v) \ Et2(v) : Z(u) ≥ (1 + δ) p1

|Et1(v)|

)
< (∆− 1) 1

n2 <
1
n
. (3)

Now let u′ ∈ Et1(v)∩Et2(v). Similarly to the above we define the random variable Z ′i(u′),
such that Z ′i(u′) = 1 if u′ is returned by the i -th query at v and Z ′i(u′) = 0 otherwise.
Furthermore define Z ′(u′) =

∑c∆ log n
i=1 Z ′i(u′). Since Pr(Z ′i(u′) = 1) = p1

|Et1 (v)| + 1−p1
|Et2 (v)| , it

follows that E(Z(u)) = c∆ logn
(

p1
|Et1 (v)| + 1−p1

|Et2 (v)|

)
by the linearity of expectation. Then

we obtain similarly to (2) that

Pr(Z ′(u′) ≤ (1− δ)E(Z ′(u′))) < 1
n2 (4)

Thus, it follows by the union bound and by (1), (3), and (4) that

Pr(∃u ∈ Et1(v) \ Et2(v) : Z(u) ≥ Z ′(u′)) ≤ 2
n
. (5)

That is, the most frequent element of Q(v) belongs to Et1(v)∩Et2(v) with probability at
least 1− 2

n . This completes the proof of the lemma. J

With Lemma 7 in hand we can now prove the main theorem of the section.

I Theorem 8. Given t1, Algorithm 1 detects t2 in O(∆ log2 n) queries with probability at
least (1− 2

n)O(log n).

MFCS 2017

20:10 Binary Search in Graphs Revisited

Note by Theorem 8 that, whenever ∆ = O(poly logn) we can detect both targets t1 and
t2 in O(poly logn) queries. However, for graphs with larger maximum degree ∆, the value of
the maximum degree dominates any polylogarithmic factor in the number of queries. The
intuitive reason behind this is that, for an (exact or approximate) median v of the current
set S, whenever deg(v) and Et1(v) are large and Et2(v) ⊆ Et1(v), we can not discriminate
with a polylogarithmic number of queries between the vertices of Et2(v) and the vertices of
Et1(v) \ Et2(v) with large enough probability. Although this argument does not give any
lower bound for the number of queries in the general case (i.e. when ∆ is unbounded), it
seems that more informative queries are needed to detect both targets with polylogarithmic
queries in general graphs. We explore such more informative queries in Section 4.

3.2 Lower Bounds for Unbiased Queries
In this section we consider unbiased queries, i.e. queries which direct to each of the targets
t1, t2 with equal probability p1 = p2 = 1

2 . In this setting every query is indifferent between
the two targets, and thus the “noisy” framework of [10] cannot be applied for detecting
any of the two targets. In particular we prove in the next theorem that any deterministic
(possibly adaptive) algorithm needs at least n

2 − 1 queries to detect one of the two targets.

I Theorem 9. Let p1 = p2 = 1
2 . Then any deterministic (possibly adaptive) algorithm needs

at least n
2 − 1 queries to detect one of the two targets, even in an unweighted cycle.

In the next theorem we generalize the lower bound of Theorem 9 to the case of 2c ≥ 2
different targets T = {t1, t2, . . . , t2c} and the query to any vertex v /∈ T is unbiased, i.e. pi = 1

2c

for every i ∈ {1, 2, . . . , 2c}.

I Theorem 10. Suppose that there are 2c targets in the graph and let pi = 1
2c for every

i ∈ {1, 2, . . . , 2c}. Then, any deterministic (possibly adaptive) algorithm requires at least
n
2 − c queries to locate at least one target, even in an unweighted cycle.

4 More Informative Queries for Two Targets

A natural alternative to obtain query-efficient algorithms for multiple targets, instead of
restricting the maximum degree ∆ of the graph (see Section 3.1), is to consider queries
that provide more informative responses in general graphs. As we have already observed in
Section 3.1, it is not clear whether it is possible to detect multiple targets with O(poly logn)
direction queries in an arbitrary graph. In this section we investigate natural variations and
extensions of the direction query for multiple targets which we studied in Section 3.

4.1 Direction-Distance Biased Queries
In this section we strengthen the direction query in a way that it also returns the value of
the distance between the queried vertex and one of the targets. More formally, a direction-
distance query at vertex v ∈ V returns with probability pi a pair (u, `), where u ∈ N(v) such
that ti ∈ N(u, v) and d(v, ti) = `. Note that here we impose again that all pi’s are constant
and that

∑|T |
i=1 pi = 1, where T = {t1, t2, . . . , t|T |} is the set of targets. We will say that

the response (u, `) to a direction-distance query at vertex v directs to ti if ti ∈ N(v, u) and
` = d(v, ti). Similarly to our assumptions on the direction query, whenever there exist more
than one such vertices u ∈ N(v) leading to ti via a shortest path, the direction-distance
query returns an arbitrary vertex u among them (possibly chosen adversarially). Moreover,

A.Deligkas, G. B. Mertzios and P. G. Spirakis 20:11

Algorithm 2 Given t1, detect t2 with high probability with O(log3 n) direction-distance
queries

1: S ← V

2: while |S| > 1 do
3: Compute an (approximate) median v of S with respect to potential Γ; Compute

Et1(v)
4: Query logn times vertex v; Compute the set Q(v) of different query responses
5: if there exists a pair (u, `) ∈ Q(v) such that u /∈ Et1(v) or ` 6= d(v, t1) then
6: S ← S ∩N(v, u)
7: else
8: for every (u, `) ∈ Q(v) do
9: Query logn times vertex u; Compute the set Q(u) of different query responses

10: if for every (z, `′) ∈ Q(u) we have `′ = `− w(vu) then
11: S ← S ∩N(v, u); Goto line 2

12: return the unique vertex of S

if the queried vertex v is equal to one of the targets ti ∈ T , this is revealed by the query with
probability pi. These direction-distance queries have also been used in [10] for detecting one
single target in directed graphs.

Here we consider the case of two targets and biased queries, i.e. T = {t1, t2} where p1 > p2.
Similarly to Section 3.1, initially we can detect the first target t1 with high probability in
O(logn) queries using the “noisy” model of [10]. Thus, in what follows we assume that t1
has already been detected. We will show that the second target t2 can be detected with high
probability with O(log3 n) additional direction-distance queries using Algorithm 2. The high
level description of our algorithm is the following. We maintain a candidates’ set S such
that at every iteration t2 ∈ S with high probability. Each time we update the set S, its size
decreases by a constant factor. Thus we need to shrink the set S at most logn times. In
order to shrink S one time, we first compute an (1 + ε) -median v of the current set S and
we query logn times this vertex v. Denote by Q(v) the set of all different responses of these
logn direction-distance queries at v. As it turns out, the responses in Q(v) might not always
be enough to shrink S such that it still contains t2 with high probability. For this reason we
also query logn times each of the logn neighbors u ∈ N(v), such that (u, `) ∈ Q(v) for some
` ∈ N. After these log2 n queries at v and its neighbors, we can safely shrink S by a constant
factor, thus detecting the target t2 with high probability in log3 n queries.

For the description of our algorithm (see Algorithm 2) recall that, for every vertex v, the
set Et1(v) = {u ∈ N(v) : t1 ∈ N(v, u)} contains all neighbors of v such that the edge uv lies
on a shortest path from v to t1.

I Theorem 11. Given t1, Algorithm 2 detects t2 in at most O(log3 n) queries with probability
at least 1−O

(
logn · plog n

1

)
.

4.2 Vertex-Direction and Edge-Direction Biased Queries
An alternative natural variation of the direction query is to query an edge instead of querying
a vertex. More specifically, the direction query (as defined in Section 1.2) queries a vertex
v ∈ V and returns with probability pi a neighbor u ∈ N(v) such that ti ∈ N(u, v). Thus, as
this query always queries a vertex, it can be also referred to as a vertex-direction query. Now

MFCS 2017

20:12 Binary Search in Graphs Revisited

we define the edge-direction query as follows: it queries an ordered pair of adjacent vertices
(v, u) and it returns with probability pi YES (resp. NO) if ti ∈ N(v, u) (resp. if ti /∈ N(v, u)).
Similarly to our notation in the case of vertex-direction queries, we will say that the response
YES (resp. NO) to an edge-direction query at the vertex pair (v, u) refers to ti if ti ∈ N(v, u)
(resp. if ti /∈ N(v, u)). Similar but different edge queries for detecting one single target on
trees have been investigated in [10,13,21,26].

Here we consider the case where both vertex-direction and edge-direction queries are
available to the algorithm, and we focus again to the case of two targets and biased queries,
i.e. T = {t1, t2} where p1 > p2. Similarly to Sections 3.1 and 4.1, we initially detect t1 with
high probability in O(logn) vertex-direction queries using the “noisy” model of [10]. Thus,
in the following we assume that t1 has already been detected.

I Theorem 12. Given t1, it is possible to detect t2 in at most O(log2 n) vertex-direction
queries and O(log3 n) edge–direction queries with probability at least 1−O(logn · plog n

1).

4.3 Two-Direction Queries
In this section we consider another variation of the direction query that was defined in
Section 1.2 (or “vertex-direction query” in the terminology of Section 4.2), which we call
two-direction query. Formally, a two-direction query at vertex v returns an unordered pair
of (not necessarily distinct) vertices {u, u′} such that t1 ∈ N(v, u) and t2 ∈ N(v, u′). Note
here that, as {u, u′} is an unordered pair, the response of the two-direction query does not
clarify which of the two targets belongs to N(v, u) and which to N(v, u′).

Although this type of query may seem at first to be more informative than the standard
direction query studied in Section 3, we show that this is not the case. Intuitively, this type
of query resembles the unbiased direction query of Section 3.2. To see this, consider e.g. the
unweighted cycle where the two targets are placed at two anti-diametrical vertices; then,
applying many times the unbiased direction query of Section 3.2 at any specific vertex v
reveals with high probability the same information as applying a single two-direction query at
v. Based on this intuition the next theorem can be proved with exactly the same arguments
as Theorem 9 of Section 3.2.

I Theorem 13. Any deterministic (possibly adaptive) algorithm needs at least n
2 − 1 two-

direction queries to detect one of the two targets, even in an unweighted cycle.

4.4 Restricted Set Queries
The last type of queries we consider is when the query is applied not only to a vertex v of
the graph, but also to a subset S ⊆ V of the vertices, and the response of the query is a
vertex u ∈ N(v) such that t ∈ N(v, u) for at least one of the targets t that belong to the set
S. Formally, let T be the set of targets. The restricted-set query at the pair (v, S), where
v ∈ V and S ⊆ V such that T ∩ S 6= ∅, returns a vertex u ∈ N(v) such that t ∈ N(v, u)
for at least one target t ∈ T ∩ S. If there exist multiple such vertices u ∈ N(v), the query
returns one of them adversarially. Finally, if we query a pair (v, S) such that T ∩S = ∅, then
the query returns adversarially an arbitrary vertex u ∈ N(v), regardless of whether the edge
vu leads to a shortest path from v to any target in T . That is, the response of the query can
be considered in this case as “noise”. In the next theorem we prove that this query is very
powerful, as |T | · logn restricted-set queries suffice to detect all targets of the set T .

I Theorem 14. Let T be the set of targets. There exists an adaptive deterministic algorithm
that detects all targets of T with at most |T | · logn restricted-set queries.

A.Deligkas, G. B. Mertzios and P. G. Spirakis 20:13

References
1 Yosi Ben-Asher, Eitan Farchi, and Ilan Newman. Optimal search in trees. SIAM J. Comput.,

28(6):2090–2102, 1999.
2 Michael Ben-Or and Avinatan Hassidim. The bayesian learner is optimal for noisy binary

search (and pretty good for quantum as well). In 49th Annual IEEE Symposium on Found-
ations of Computer Science, FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA,
pages 221–230, 2008.

3 Lucas Boczkowski, Amos Korman, and Yoav Rodeh. Searching on trees with noisy memory.
CoRR, abs/1611.01403, 2016.

4 Renato Carmo, Jair Donadelli, Yoshiharu Kohayakawa, and Eduardo Sany Laber. Search-
ing in random partially ordered sets. Theor. Comput. Sci., 321(1):41–57, 2004.

5 Ferdinando Cicalese, Tobias Jacobs, Eduardo Sany Laber, and Marco Molinaro. On the
complexity of searching in trees and partially ordered structures. Theor. Comput. Sci.,
412(50):6879–6896, 2011.

6 Ferdinando Cicalese, Tobias Jacobs, Eduardo Sany Laber, and Caio Dias Valentim. The
binary identification problem for weighted trees. Theor. Comput. Sci., 459:100–112, 2012.

7 Constantinos Daskalakis, Richard M. Karp, Elchanan Mossel, Samantha Riesenfeld, and
Elad Verbin. Sorting and selection in posets. SIAM J. Comput., 40(3):597–622, 2011.

8 Dariusz Dereniowski. Edge ranking and searching in partial orders. Discrete Applied Math-
ematics, 156(13):2493–2500, 2008.

9 Dingzhu Du and Frank K. Hwang. Combinatorial Group Testing and its Applications.
World Scientific, Singapore, 1993.

10 Ehsan Emamjomeh-Zadeh, David Kempe, and Vikrant Singhal. Deterministic and probabil-
istic binary search in graphs. In Proceedings of the 48th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages
519–532, 2016.

11 Uriel Feige, Prabhakar Raghavan, David Peleg, and Eli Upfal. Computing with noisy
information. SIAM J. Comput., 23(5):1001–1018, 1994.

12 Ehud Fonio, Yael Heyman, Lucas Boczkowski, Aviram Gelblum, Adrian Kosowski, Amos
Korman, and Ofer Feinerman. A locally-blazed ant trail achieves efficient collective navig-
ation despite limited information. eLife, page 23 pages, 2016.

13 Ananth V. Iyer, H. Donald Ratliff, and Gopalakrishnan Vijayan. Optimal node ranking of
trees. Inf. Process. Lett., 28(5):225–229, 1988.

14 C. Jordan. Sur les assemblages de lignes. Journal f"ur die reine und angewandte Mathematik,
70:195–190, 1869.

15 Eduardo Sany Laber, Ruy Luiz Milidiú, and Artur Alves Pessoa. On binary searching
with non-uniform costs. In Proceedings of the Twelfth Annual Symposium on Discrete
Algorithms, January 7-9, 2001, Washington, DC, USA., pages 855–864, 2001.

16 Tak Wah Lam and Fung Ling Yue. Edge ranking of graphs is hard. Discrete Applied
Mathematics, 85(1):71–86, 1998.

17 Tak Wah Lam and Fung Ling Yue. Optimal edge ranking of trees in linear time. Algorith-
mica, 30(1):12–33, 2001.

18 Nathan Linial and Michael E. Saks. Searching ordered structures. J. Algorithms, 6(1):86–
103, 1985.

19 Shay Mozes, Krzysztof Onak, and Oren Weimann. Finding an optimal tree searching
strategy in linear time. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2008, San Francisco, California, USA, January 20-22, 2008,
pages 1096–1105, 2008.

20 Nils J. Nilsson. Problem-Solving Methods in Artificial Intelligence. McGraw-Hill Pub. Co.,
1971.

MFCS 2017

20:14 Binary Search in Graphs Revisited

21 Robert Nowak. Noisy generalized binary search. In Y. Bengio, D. Schuurmans, J. D. Laf-
ferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing
Systems 22, pages 1366–1374. Curran Associates, Inc., 2009.

22 Krzysztof Onak and Pawel Parys. Generalization of binary search: Searching in trees and
forest-like partial orders. In 47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2006), 21-24 October 2006, Berkeley, California, USA, Proceedings, pages
379–388, 2006.

23 Judea Pearl. Heuristics - intelligent search strategies for computer problem solving. Addison-
Wesley series in artificial intelligence. Addison-Wesley, 1984.

24 Andrzej Pelc. Searching games with errors - fifty years of coping with liars. Theor. Comput.
Sci., 270(1-2):71–109, 2002.

25 Alfred Renyi. On a problem in information theory. Magyar Tud. Akad. Mat. Kutato Int.
Kozl, 6(B):505–516, 1961.

26 Alejandro A. Sch"affer. Optimal node ranking of trees in linear time. Information Processing
Letters, 33(2):91–96, 1989.

27 Stanislaw Ulam. Adventures of a Mathematician. University of California Press, 1991.

A Formal Semantics of Influence in Bayesian
Reasoning
Bart Jacobs1 and Fabio Zanasi2

1 Radboud Universiteit, Nijmegen, The Netherlands
2 University College London, London, United Kingdom

Abstract
This paper proposes a formal definition of influence in Bayesian reasoning, based on the notions of
state (as probability distribution), predicate, validity and conditioning. Our approach highlights
how conditioning a joint entwined/entangled state with a predicate on one of its components has
‘crossover’ influence on the other components. We use the total variation metric on probability
distributions to quantitatively measure such influence. These insights are applied to give a
rigorous explanation of the fundamental concept of d-separation in Bayesian networks.

1998 ACM Subject Classification Probabilistic computation, F. 1.2

Keywords and phrases probability distribution, Bayesian network, influence

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.21

1 Introduction

A key feature of Bayesian (probabilistic) reasoning is that an observation leads to an update
of knowledge. This is best seen in Bayesian networks: in these graph-like models, dependency
relations between events are visually depicted as arcs between nodes. Information about a
node-event A will update knowledge of all the nodes connected by an arc to A. However,
influence may act also in more indirect ways, classified by Pearl [13] as the following “d-
separation” scenarios:
(i) in a serial connection

�� ��A →
�� ��B →

�� ��C , event A influences C through B (and viceversa),
but knowledge of B “blocks” this mutual influence – one also says that B d-separates A
and C.

(ii) in a fork connection
�� ��A ←

�� ��B →
�� ��C , information on A will influence C and viceversa,

but this flow is blocked once B is known.
(iii) in a collider situation

�� ��A →
�� ��B ←

�� ��C , any evidence about B (and its descendants)
will make A and C depend on each other.

In these three scenarios one may observe many phenomena at work which are usually
explained informally in terms of influence, dependence, blocking and evidence. But what
is the formal semantics underpinning these concepts? The basic language of conditional
probability, based on the reading of Pr(A|B) as “the probability of A given B”, appears to be
unsuitable for such an account. For instance, it cannot express that, in the collider situation,
any evidence on the occurrence of B will make A and C dependent, whereas the blocking of
the first two scenarios only occurs when B is known with certainty (probability 1).

This paper proposes a rigorous formal treatment of influence in Bayesian reasoning,
yielding an expressive and firmly established language for describing the above scenarios. Our
methodology draws inspiration from the area of programming language semantics, and in
particular from Effectus theory [4, 2], a comprehensive logical framework for probabilistic and
quantum computation. At the foundation of our approach there is a conceptual distinction

© Bart Jacobs and Fabio Zanasi;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 21; pp. 21:1–21:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.21
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

21:2 A Formal Semantics of Influence in Bayesian Reasoning

between the knowledge of an event, called a state, and an observation/evidence of such
event, called a predicate. Concretely, a state on a ‘sample’ space X will be a (finite) discrete
probability distributions ω on X, whereas a (fuzzy) predicate p on X is a function X → [0, 1].
The ‘knowledge update’ is then given by a conditioned distribution, which we write as ω|p,
pronounced as: ω given p. Moreover, our approach includes predicate and state transformers,
adding expressive power to the language.

Our first contribution (§ 3) is a semantic description of d-separation in the serial (i) and
fork connection (ii): we reduce these scenarios into formal statements, whose proofs are made
straightforward by our formalism. Here the phenomenon at stake is influence blocking, for
which the basic language of states and predicates suffices. However, the collider scenario (iii),
in which influence is not blocked but rather enabled, demands a deeper analysis.

This leads to our second contribution (§ 4), namely the concept of state entwinedness.
Intuitively, for a joint state/distribution being entwined means, by analogy with the quantum
world, that its components are entangled or, in the Bayesian jargon, they model dependent
events. In order to capture the collider situation, the key observation is that the join (tensor
product) of non-entwined states (say, in (iii), the join of A and C) may become entwined
after conditioning (information about B); from that moment on, any new information on
one component of the joint state will have influence also on the other component.

As a third contribution (§ 5), we introduce a formal, quantitative definition of such influ-
ence: we call it crossover influence, as it measures the non-local action between components
of a joint states. We also define a notion of direct influence, which measures the local action of
a predicate (an information update) on a certain state. Both definitions take as a parameter
a notion of ‘distance’ between states: for our scenarios we pick the total variation metric on
probability distributions, which coincides with the Kantorovich metric [17] on discrete metric
spaces (sets). We make no claim on total variation being ‘canonical’ in the sense of [10]. Our
emphasis is rather on the abstract definition of influence: this is independent of the choice
of the underlying metric, which is not itself an essential part of our analysis, see also § 7.
As far as we know, probabilistic influence has not been formalised and investigated in this
quantitative form before.

We conclude our developments with a reprise of the collider scenario (§ 6), which we
are now able to adequately describe using the toolkit introduced in § 4 and § 5. Our
analysis clarifies that the commonly used description in the literature (see e.g. [14, 8, 15])
for describing the serial (i) and fork (ii) scenarios only works for very special ‘singleton’
predicates – which we call Dirac predicates, whereas in the collider scenario (iii) any predicate
on B creates dependence (entwinedness) between A and C.

2 Background: states, predicates, and conditional probability

In this background section we introduce the notation, terminology and basic definitions for
several constructions in (finite) discrete probability. There is a categorical formalisation
using monads behind this, see e.g. [5], but we prefer to keep constructions more concrete.

States, predicates and validity. A (finite, discrete) distribution over a ‘sample’ set A is a
weighted combination of elements of A, where weights are probabilities from the unit interval
[0, 1] that add up to 1. We call such a distribution a state, as it expresses knowledge the
occurrence of elements of A. As mentioned in §1, we pursue an analogy with quantum states,
emphasised by the use of the ‘ket’ notation: a state ω is written as ω = r1 |a1〉+ · · ·+ rn |an〉,
where ai ∈ A, ri ∈ [0, 1] and

∑
i ri = 1. Also, D(A) is the set of states/distributions on

B. Jacobs and F. Zanasi 21:3

A. We will sometimes treat ω ∈ D(A) equivalently as a function ω : A → [0, 1] with finite
support supp(ω) = {a ∈ A | ω(a) 6= 0} and with

∑
a∈A ω(a) = 1.

An event is a subset E ⊆ A of the sample space. We prefer to use a more general ‘fuzzy’
kind of predicate, namely functions p : A→ [0, 1]. In this discrete case, states (distributions)
are predicates, but not the other way around. Events can be identified with ‘sharp’ predicates
taking values in the subset of booleans {0, 1} ⊆ [0, 1]. For x ∈ A, we write ∂x for the (sharp)
Dirac predicate over x, defined as ∂x(a) = 1 if x = a and ∂x(a) = 0 otherwise.

For predicates p, q ∈ [0, 1]A and scalar r ∈ [0, 1] we define p & q as a 7→ p(a) · q(a) and
r · p as a 7→ r · p(a). States and predicates are most effectively reasoned about using the
language of Kleisli categories. We call a function of shape f : A→ D(B) a ‘Kleisli’ map from
A to B and write its type as A → B. Kleisli maps can be understood as channels, or as
stochastic matrices, especially when A,B are finite sets. The (Kleisli) composition of maps
f : A→ B and g : B → C is written as g • f : A→ C. It is essentially matrix multiplication:(

g • f
)
(a) =

∑
c∈C

(∑
b∈B f(a)(b) · g(b)(c)

)∣∣c〉. (1)

We write K̀ (D) for the Kleisli category whose objects are sets, and whose arrows from A to
B are the Kleisli maps A→ B. The identity map A→ A in K̀ (D) is the function a 7→ 1 |a〉.
Note that arrows 1→ B in K̀ (D) identify elements of D(B), i.e. the states on B, and arrows
B → 2 are elements of [0, 1]B , i.e. the predicates on B.

Each (ordinary) function g : A→ B gives a trivial (diagonal) matrix map ‹g› : A→ B

via ‹g›(a) = 1 |g(a)〉. Then: ‹h› • ‹g› = ‹h ◦ g›.
We will see later, in Example 3, how Bayesian networks can be seen as graphs of Kleisli

maps in K̀ (D). For this interpretation, it is of importance that K̀ (D) forms a monoidal
category. The monoidal product ⊗ is defined on objects as the cartesian product × of sets,
with tensor unit the one-element set 1. On Kleisli maps f : A→ X and g : B → Y the map
f ⊗ g : A⊗B → X ⊗ Y is defined as (f ⊗ g)(a, b)(x, y) = f(a)(x) · g(b)(y).

I Definition 1. Let ω ∈ D(A) be a state and p ∈ [0, 1]A be a predicate, both on the same
set A. We write ω |= p for the validity or expected value of p in state ω. This validity is a
number in the unit interval [0, 1] defined as:

ω |= p :=
∑

a∈A ω(a) · p(a) =
(
A

p→ 2
)
•
(
1 ω→ A

)
. (2)

If this validity is non-zero, it yields a conditioning operation on ω. We write ω|p or for the
conditional state “ω given p”, defined as formal convex sum:

ω|p :=
∑
a∈A

ω(a) · p(a)
ω |= p

∣∣a〉. (3)

I Lemma 2 (From [5]).
(a) p & ∂x = p(x) · ∂x and ω |= ∂x = ω(x) and ω|∂x

= 1 |x〉;
(b) ω|r·p = ω|p for r 6= 0 and ω|p&∂x = 1 |x〉 when p(x) 6= 0 and ω(x) 6= 0;

(c) Bayes’ rule holds for fuzzy predicates: ω|p |= q = ω |= p & q

ω |= p
.

I Example 3. As a running example we will use the situation of a disease that can be caused
by environmental factors or by genetic heredity. The presence of the disease in a patient will
determine whether she manifests symptoms and also whether she tests positively. The test
outcome will also influence whether she receives health care. We express these data with a
Bayesian network, consisting of a graph together with conditional probability tables.

MFCS 2017

21:4 A Formal Semantics of Influence in Bayesian Reasoning

�� ��Genetic heredity
))

�� ��Test
.. �� ��Health Care�� ��Disease

11

%%�

�
	Environmental

factors

22 �� ��Symptoms

Pr (G) = 1/50

Pr (E) = 1/10

D Pr (T)
t 9/10

f 1/20

D Pr (S)
t 9/10

f 1/15

G E Pr (D)
t t 9/10

t f 8/10

f t 4/10

f f 0

T Pr (C)
t 4/5

f 1/10

(4)

As illustrated in [7] (cf. also [3]), there is a canonical way to interpret our Bayesian network (4)
as an arrow in the Kleisli category K̀ (D). Each node N of the graph, say with k incoming
edges from nodes N1, N2, . . . , Nk, is associated with an arrow N : 2k → 2 in K̀ (D); as a
stochastic matrix, N is defined by the probability table of the node N . It will be convenient
to write 2N := {n, n⊥} for the two-element target set of the node-arrow N , where n represents
occurrence and n⊥ non-occurrence of the event N . For instance, the arrow D : 2G ⊗ 2E → 2D

for the disease node is defined by the channel 2G × 2E → D(2D)

(g, e) 7→ 9
10 |d〉+ 1

10 |d
⊥〉 (g, e⊥) 7→ 8

10 |d〉+ 2
10 |d

⊥〉
(g⊥, e) 7→ 4

10 |d〉+ 6
10 |d

⊥〉 (g⊥, e⊥) 7→ 1 |d⊥〉 .

Another example is the initial map G : 1→ 2G for the genetic heredity node, which amounts
to the distribution 1/50 |g〉 + 49/50 |g⊥〉 in D(2G) ∼= [0, 1]. In order to recover the whole
network (4), one pastes node-arrows together using the monoidal structure of K̀ (D). Nodes
in (4) that have multiple outgoing edges are modeled by composing the corresponding
arrow 2k → 2 with the pairing map ∆: 2→ 2⊗ 2 defined by x 7→ 1 |(x, x)〉. The Bayesian
network (4) in its entirety is then expressed as the following arrow in K̀ (D).

1 G⊗E //// 2G ⊗ 2E

D //// 2D

∆ //// 2D ⊗ 2D

T⊗S //// 2T ⊗ 2S

C⊗id //// 2C ⊗ 2S (5)

Inference via predicate/state transformers. Associated with a Kleisli map f : A → B

there are state transformer and predicate transformer maps f∗ and f∗. For a state ω ∈ D(A)
and a predicate p ∈ [0, 1]B we define f∗(ω) ∈ D(B) and f∗(p) ∈ [0, 1]A as:

f∗(ω) =
∑
b∈B

(∑
a∈A f(a)(b) · ω(a)

)∣∣b〉 f∗(p)(a) =
∑
b∈B

f(a)(b) · p(b). (6)

Notice that f∗ works forwardly, transforming a state on A into a state on B, whereas f∗
works backwardly, transforming a predicate on B into a predicate on A. One can understand
these definitions in terms of Kleisli composition: f∗(ω) = f • ω and f∗(p) = p • f . We
collect a few basic results from [5].

I Lemma 4.
(a) For a Kleisli map f : A→ B, a state ω ∈ D(A) and a predicate

p ∈ [0, 1]B, f∗(ω) |= p = p • f • ω = ω |= f∗(p).
(b) Predicate transformers f∗ preserve 1, 0, negation (−)⊥ and scalar multiplication r · (−).
(c) For an ordinary function g : A→ B we have ‹g›∗(ω)|p = ‹g›∗(ω|‹g›∗(p)).

Using transformers and conditioning one can formulate Bayesian inference (learning). We
illustrate the relevant constructions with an example and refer to [7] for more details.

I Example 5 (Backward inference.). A typical learning task wrt. a Bayesian network is
backward inference: how the occurrence of a certain event changes the likelihood of its causes.
A formalisation of backward inference is proposed in [7] as “predicate transformation followed

B. Jacobs and F. Zanasi 21:5

by conditioning”. We illustrate this for Example 3, focusing on the part of the graph that
describes the influence of having the disease on receiving health care. First, we compute our
a priori knowledge on the likelihood of a disease. In the formalisation (5), this is the Kleisli
arrow D • (G⊗ E) : 1→ 2D, i.e. a state on 2D.

G⊗ E = 0.002 |g, e〉+ 0.018 |g, e⊥〉+ 0.098 |g⊥, e〉+ 0.882 |g⊥, e⊥〉
D • (G⊗ E) = 0.055 |d〉+ 0.945 |d⊥〉

(7)

The event of a positive test is interpreted as the Dirac predicate ∂t ∈ [0, 1]2T on 2T , i.e. it
maps t to 1 and t⊥ to 0. We can now ask a backward inference question: if the patient tested
positive, what is the likelihood that she had the disease? The answer is enclosed in the state
(D • (G⊗E))|T∗(∂t) : 1→ 2D, obtained by first using T : 2D → 2T to transform the predicate
∂t on 2T into a predicate T ∗(∂t) on 2D, and then conditioning the state D • (G⊗ E) over
T ∗(∂t). The latter predicate maps d to 9/10 and d⊥ to 1/20. Next,

D • (G⊗ E) |= T ∗(∂t) = 0.097 |d〉+ 0.903 |d⊥〉
(D • (G⊗ E))|T∗(∂t) =

∑
x∈2D

D•(G⊗E)(x)·T∗(∂t)(x)
D•(G⊗E)|=T∗(∂t) |x〉

= 0.055·9/10
0.097 |d〉+ 0.945·1/20

0.097 |d⊥〉 = 0.51 |d〉+ 0.49 |d⊥〉 .

Thus evidence of a positive test raises the chances of a disease from 0.055 to 0.51.

Forward inference. A second kind of learning task is forward inference: how the occurrence
of an event changes the likelihood of its effects. Again following [7], forward inference is
formalised as “conditioning and then state transformation”. To illustrate this in our leading
example, consider a predicate p on 2G given by g 7→ 88% and g⊥ 7→ 0.1%: it expresses that
medical records of a patient show high likelihood of a genetic transmission of the disease.
Our forward inference question is: “how does the knowledge update given by predicate p
influence the positivity of the test?” For the answer, one first extends p to a (weakened)
predicate p′ on 2G ⊗ 2E, then conditions G⊗E over p′. Finally, one applies T • D as state
transformer to (G⊗ E)|p′ . Conditioning over p′ makes a positive test much more likely:

(T • D)∗(G⊗ E) = 0.1 |t〉+ 0.9 |t⊥〉 (T • D)∗((G⊗ E)|p′) = 0.505 |t〉+ 0.495 |t⊥〉 .

3 Influence in d-separation

This section applies the language introduced in § 2 to give a precise explanation of the
fundamental concept of ‘d-separation’ in Bayesian networks, which is used as a criterion
for independence, via connections between nodes. These connections can be of three forms,
namely ‘serial’, ‘fork’, and ‘collider’. As we shall see, the language introduced so far is only
adapted to describe the first two scenarios. The third scenario needs a richer formalism,
which justifies the developments in the next sections.

3.1 Serial connections�� ��A
f //

�� ��B
g //

�� ��C (8)

Consider a ‘serial connection’ Bayesian network as on the right. Clearly, what we know
about A influences our knowledge about C, and vice-versa. In the context of d-separation
one considers the special cases when there is evidence about the state of B, so that the

MFCS 2017

21:6 A Formal Semantics of Influence in Bayesian Reasoning

mutual influencing between A and B is blocked. We first quote how this is formulated in
standard references (names of the nodes in the second quote are adapted to make them
consistent with diagram (8)).
(i) [8, §1.2]: Obviously, evidence on A will influence the certainty of B, which then influences

the certainty of C. Similarly, evidence on C will influence the certainty on A through B.
On the other hand, if the state of B is known, then the channel is blocked, and A and
C become independent.

(ii) [14, §1.2.3]: Figuratively, conditioning on B appears to “block” the flow of information
along the path, since learning about A has no effect on the probability of C, given B.
These descriptions are rather informal. (i) speaks about (mutual) independence, and (ii)

only about having no effect in the forward direction. We will make precise what is going
on. Consider the same diagram (8), but now with f, g interpreted as maps in the Kleisli
category K̀ (D) and with predicates as below. The three predicates are inhabitants p ∈ [0, 1]A,
∂x ∈ [0, 1]B , q ∈ [0, 1]C .

A
f // //

p
����

B
g ////

∂x ����

C
q
����

2 2 2

(9)

I Proposition 6 (Blocking I). Consider the serial connection (9), with Dirac evidence ∂x on
the middle node B, for some fixed x ∈ B. Then there is no influence from A to C, nor from
C to A, in the sense that for each distribution/state ω ∈ D(A),
(a) for any predicate p on A with ω |= p 6= 0, there is an equality of states on C:

g∗
(
f∗(ω)|∂x

)
= g∗

(
f∗(ω|p)|∂x

)
.

(b) for any predicate q on C there is an equality of states on A:

ω|f∗(∂x) = ω|f∗(∂x&g∗(q)).

We recall how to read the equation in point (a): given a state ω on A, we can transform
it to a state f∗(ω) on B. We can also first condition ω to ω|p and then push forward to
f∗(ω|p) on B. These different states f∗(ω) and f∗(ω|p) become equal when we condition with
the Dirac predicate ∂x, and then push them forward to C via g∗. Thus, the influence of p is
‘annihilated’ or ‘blocked’ via the knowledge x ∈ B used in conditioning with ∂x.

Proof. For the first point it suffices to prove f∗(ω)|∂x
= f∗(ω|p)|∂x

. But this equation follows
directly from Lemma 2 (a) since both sides are equal to 1 |x〉.

For the second point we have f∗(∂x & g∗(q)) = f∗(g∗(q)(x) · ∂x) by Lemma 2(a), which
is then equal to g∗(q)(x) · f∗(∂x) by Lemma 4(b). Finally, by Lemma 2(b), ω|f∗(∂x&g∗(q)) =
ω|g∗(q)(x)·f∗(∂x) = ω|f∗(∂x). J

I Example 7.
2D

T // // 2T

C ////

∂t
����

2C

1

OO
ω

OO

2

(10)

Nodes ‘Disease’, ‘Test’ and ‘Health Care’ in the network of Example 3 form a serial
connection, with Kleisli interpretation given by solid arrows as in (10) below. Clearly,
new information about the Disease will impact the likelihood of receiving Health Care,

B. Jacobs and F. Zanasi 21:7

and viceversa, via the intermediate Test node. We examined these phenomena as forward
and backward inference in Example 5, following [7]. We now show that, as prescribed by
d-separation, mutual influence may be blocked: a positive test will determine the availability
of health care, disregarding whether the patient actually has the disease or not. Viceversa,
a positive test will nullify any influence of receiving health care on having the disease, as
health care is entirely determined by the test outcome. The dotted arrows in (10) describe a
state ω = 1

100 |d〉+ 99
100 |d

⊥〉 on 2D, giving a 1% disease probability, and the Dirac predicate
∂t ∈ [0, 1]2T , asserting the positivity of the test. For the transformed predicate T ∗(∂x) on 2D

we have: T ∗(∂t)(d) = 9
10

T ∗(∂t)(d⊥) = 1
20

ω |= T ∗(∂t) = 117
2000 ω|T∗(∂t) = 18

117 |d〉+ 99
117 |d

⊥〉 .

The latter distribution ω|T∗(∂t) equals ω|T∗(∂t&C∗(q)) for each predicate q ∈ [0, 1]2C on 2C,
by Proposition 6 ((b)).

I Remark. We emphasise that, if we replace the predicate ∂t on 2D by a non-Dirac predicate
p ∈ [0, 1]2D , then there is no blocking, in general. For instance, take: p(t) = 1

3 , p(t
⊥) = 1

4 ,
q(c) = 1

5 and q(c⊥) = 1. Then we compute a difference between the following states on 2D.

ω|T∗(p) = 0.013 |d〉+ 0.987 |d⊥〉 ω|T∗(p&c∗(q)) = 0.006 |d〉+ 0.994 |d⊥〉

Hence, influence from right to left in (10) does exist for non-sharp predicates.

3.2 Fork connections
Next we consider a “fork” Bayesian network with predicates p, ∂x, q, for a given element
x ∈ A, as below. The informal description of this situation is: influence can pass between
the children B and C via A, unless the state of A is known, as formulated e.g. in [8].

A

f

�� ��

g

����

∂x
����
2

2 B
poooo C

q //// 2

(11)

I Example 8. The Bayesian network of Example 3 contains a fork, given by ‘Disease’, ‘Test’
and ‘Symptoms’. If a patient tests positively, it gets more likely that she has the disease, and
thus shows symptoms. However, if one gets to know with certainty that she has the disease,
then any evidence about the test will not change the likelihood of showing symptoms.

I Proposition 9 (Blocking II). In the fork network (11), with Dirac evidence on the middle
node A, there is no influence from B to C, nor from C to B. This lack of influence from B

to C is expressed via the equation:

g∗
(
ω|∂x

)
= g∗

(
ω|f∗(p)&∂x

) (12)

for each state ω on A and predicate p on B, and x ∈ A. The other direction is analogous.

Proof. The state transformer g∗ is irrelevant, as ω|∂x = 1 |x〉 = ω|f∗(p)&∂x
. The first equation

is in point (a) in Lemma 2, and the second one in point (b). J

MFCS 2017

21:8 A Formal Semantics of Influence in Bayesian Reasoning

3.3 Collider connections
The last d-separation scenario is the one of a collider:�� ��A

!!

�� ��C

}}�� ��B

which becomes in K̀ (D),
with the addition of

a predicate q,

A⊗ C
f ����
B

q //// 2.
(13)

In [14] one can read about this situation: “if the two extreme variables are (marginally)
independent, they will become dependent (i.e. connected through unblocked path) once we
condition on the middle variable (i.e. the common effect) or any of its descendants.”

In our formalisms, this explanation unravels as follows. We fix states σ ∈ D(A) and
τ ∈ D(C), giving rise to a product state σ⊗ τ ∈ D(A⊗C). If we have evidence q : B → 2 on
B, then we can pull it back to evidence f∗(q) : A⊗ C → 2. Now, in order to complete our
formalisation, we would like to express that σ and τ are initially independent of each other
when joint in σ ⊗ τ , but they get correlated after conditioning (σ ⊗ τ)|f∗(q). This correlation
should be witnessed by the fact that from now on any predicate on the A-component σ will
also have influence on the C-component τ , and viceversa. However, our formalisms of § 2
still lacks the means of expressing such ‘crossover’ properties, which echo the entanglement
phenomena commonly studied in quantum theory. We devote the next two sections to
rigorously describe them within our approach, and return to the collider scenario in § 6.

4 Joint states and entwinedness

We now commence the formal investigation of correlation phenomena which will lead to the
notion of crossover influence. We give an elementary illustration first.

I Example 10. Consider two diseases A1 and A2 which may occur together, as given by the
prior joint probability distribution: ω = 1

6 |a1a2〉+ 1
4 |a1a

⊥
2 〉+ 1

3 |a
⊥
1 a2〉+ 1

4 |a
⊥
1 a
⊥
2 〉. Assume

that there is a test for disease A1 with sensitivity 90% positive when a patient has the disease
A1, and 5% positive when the patient does not. It turns out the prior probability of A2 is 1

2 ,
but decreases to 40

97 after a A1-positive test. We shall see how this works in Example 15.

For two states/distributions σ ∈ D(A1) and τ ∈ D(A2) we can form the joint ‘product’
distribution σ⊗τ ∈ D(A1⊗A2) as (σ⊗τ)(a1, a2) = σ(a1) ·τ(a2), as already used in (7). The
two original states σ and τ can be recovered as marginals of this product state: M1(σ⊗τ) = σ

and M2(σ⊗τ) = τ . Marginalisation (of states) and weakening (of predicates) are special cases
of state and predicate transformation, namely for the (Kleisli) projection maps πi : A1⊗A2 →
Ai, given by πi(a1, a2) = 1 |ai〉. Marginalisation moves a ‘joint’ state on a product to one of
the components, and weakening moves a predicate on a component to the product. These
two operations play a special role in the sequel, and therefore we introduce explicit notation
M and

M

. First, for a joint state ω ∈ D(A1 ⊗A2) we have first and second marginalisation
Mi(ω) = (πi)∗(ω) ∈ D(Ai) determined by (6) as:

M1(ω)(a1) =
∑

a2∈A2
ω(a1, a2) M2(ω)(a2) =

∑
aa∈A1

ω(a1, a2). (14)

Similarly we have weakening operations

M

i(pi) = (πi)∗(pi) ∈ [0, 1]A1⊗A2 for predicates
pi ∈ [0, 1]Ai given by:

M

1(p1)(a1, a2) = p1(a1)

M

2(p2)(a1, a2) = p2(a2). (15)

B. Jacobs and F. Zanasi 21:9

Also, for two predicates pi ∈ [0, 1]Ai , we introduce their parallel conjunction p1 � p2 ∈
[0, 1]A1×A2 , mapping (a1, a2) to p1(a1) · p2(a2). The following definition describes the
interaction – dependence, in Bayesian jargon – between the components of a joint state.

I Definition 11. A joint state ω ∈ D(A1 ⊗A2) is called non-entwined if it is the product of
its marginals: ω = M1(ω)⊗M2(ω). It is called entwined otherwise.

I Lemma 12.
(a) M1(ω) |= p = ω |=

M

1(p) and M2(ω) |= p = ω |=

M

2(p).
(b)

M

1(p) = p� 1 and

M

2(q) = 1� q and p� q =

M

1(p) &

M

2(q).
(c) (σ ⊗ τ) |= (p� q) = (σ |= p) · (τ |= q) and (σ ⊗ τ)|p�q = (σ|p)⊗ (τ |q).

The next result plays an important role in the sequel. The first equation below says that
if one takes the marginal of a joint state conditioned with a weakened predicate, then one
may as well condition the marginal directly. This holds if the weakening and marginalisation
use the same component. But it fails if the components are different, see the subsequent
inequality 6= below. The latter fact is remarkable, because it involves a form of influence
between components. This is also called ‘signalling’ in the quantum world, but apparently
already appears in the current probabilistic setting – only for entwinted states.

I Proposition 13. Let p ∈ [0, 1]A be a predicate on a set A.
(a) For an arbitrary joint state ω ∈ D(A⊗B),

M1
(
ω| M

1(p)
)

= M1(ω)|p but in general M2
(
ω| M

1(p)
)
6= M2(ω).

(b) For the special case of a (non-entwined) product state σ ⊗ τ ∈ D(A⊗B),

M1
(
(σ ⊗ τ)| M

1(p)
)

= σ|p M2
(
(σ ⊗ τ)| M

1(p)
)

= τ.

Proof. We only prove the equality in point (a), and refer to Example 14 (b) for the inequality
in point (b), where a counterexample is given.

M1
(
ω| M

1(p)
)
(a) (14)=

∑
b ω| M

1(p)(a, b)
(3)=
∑

b

ω(a, b) ·

M

1(p)(a, b)
ω |=

M

1(p)
(15)=

∑
b ω(a, b) · p(a)
ω |=

M

1(p)
Lem.12(a)= M1(ω)(a) · p(a)

M1(ω) |= p
(3)= M1(ω)|p(a). J

We illustrate two significant related phenomena via an example.

I Example 14. Given sets X = {x, y} and A = {a, b}, one can prove that a state ω =
r1 |x, a〉+r2 |x, b〉+r3 |y, a〉+r4 |y, b〉 ∈ D(X⊗A), where r1 +r2 +r3 +r4 = 1, is non-entwined
if and only if r1 · r4 = r2 · r3. This fact also holds in the quantum case, see e.g. [12, §1.5]. It
plays a role in the next two illustrations.
(a) Conditioning creates entwinedness. Recall from Example 3 the joint state G⊗ E on

2G⊗2E, defined as in (7). Consider now a predicate p ∈ [0, 1]2D defined by d 7→ 85% and
d⊥ 7→ 20%. It models, for instance, the information that pallor appears as a symptom in
85% of patients with the disease, but also healthy patients may be pale for other reasons,
20% of the times. Using D as a predicate transformer, we can form the conditioned
state ω = (G⊗E)|D∗(p) = 0.007 |g, e〉+ 0.055 |g, e⊥〉+ 0.191 |g⊥, e〉+ 0.747 |g⊥, e⊥〉. This
state is now entwined, see the above characterisation of non-entwinedness.

MFCS 2017

21:10 A Formal Semantics of Influence in Bayesian Reasoning

(b) Influence between marginals of entwined states. Let’s now start with an entwined state
σ = 1

3 |g, e〉+
1
4 |g, e

⊥〉+ 1
6 |g

⊥, e〉+ 1
4 |g

⊥, e⊥〉 ∈ D(2G⊗2E) and a predicate q = ∂g ∈ [0, 1]2G .
By weakening we get

M

1(q) = q • π1 ∈ [0, 1]2G⊗2E . Then: σ |=

M

1(q) = 1
3 ·1+ 1

4 ·1 = 7
12 ,

so that:

σ| M

1(q) = 1/3
7/12
|g, e〉+ 1/4

7/12
|g, e⊥〉 = 4

7 |g, e〉+ 3
7 |g, e

⊥〉 .

Below, the second marginal of the original state σ differs from the second marginal of
this conditioned state, illustrating the inequality 6= in Proposition 13 (a).

M2(σ) = 1
2 |e〉+ 1

2 |e
⊥〉 whereas M2

(
σ| M

1(q)
)

= 4
7 |e〉+ 3

7 |e
⊥〉 .

I Example 15. We conclude with the formal description of the two-disease scenario with
which we started this section (Example 10). The test is a map T : 2A1 → 2T given by
T (a1) = 9

10 |t〉+ 1
10 |t

⊥〉 and T (a⊥1) = 1
20 |t〉+ 19

20 |t
⊥〉. The impact of a positive test on the

disease A2 is given by the marginal of the conditional: M2(ω| M

1(T∗(∂t))) = 40
97 |a2〉+ 57

97 |a
⊥
2 〉.

5 A quantitative definition of influence

Last section showed how evidence on one component of an entwined state may influence the
other component. But how much did it change the latter component with respect to our
prior belief? This section addresses such aspect by introducing a quantitative semantics for
our influence vocabulary. We begin by recalling the total variation metric on distributions.

I Definition 16. Let σ, τ ∈ D(X) be two distributions on a set X. Their total variation
distance d(σ, τ) is defined as the following number in the unit interval [0, 1].

d(σ, τ) = 1
2
∑
x∈X

∣∣σ(x)− τ(x)
∣∣.

I Lemma 17. Let f : X → Y be a Kleisli map. The associated state transformer f∗ : D(X)→
D(Y) from (6) is non-expansive: d(f∗(σ), f∗(τ)) ≤ d(σ, τ). This yields a functor K̀ (D)→
Met1, where Met1 is the category of 1-bounded metric spaces and non-expansive maps.

Proof.
d(f∗(σ), f∗(τ)) = 1

2
∑

y∈Y

∣∣ f∗(σ)(y)− f∗(τ)(y)
∣∣

(6)= 1
2
∑

y∈Y

∣∣ ∑
x∈X f(x)(y) · σ(x)−

∑
x∈X f(x)(y) · τ(x)

∣∣
≤ 1

2
∑

x∈X

∑
y∈Y f(x)(y) ·

∣∣σ(x)− τ(x)
∣∣

= 1
2
∑

x∈X 1 ·
∣∣σ(x)− τ(x)

∣∣ = d(σ, τ). J

We refer to [6] for more information about total variation (and Kantorovich) distance
and the distribution monad D, and turn to our formal definition of influence. First we define
it in direct form, as a number indicating how much a predicate p influences a state σ via
conditioning σ|p, given by the (total variation) distance between σ and σ|p. This seems fairly
simple. But, as we have seen in Section 4, there may also be indirect, ‘crossover’ influence
between the components of a joint entwined state: this is the content of our second definition.

I Definition 18. Let p ∈ [0, 1]A be a predicate on a set A with discrete metric.
1. For a state σ ∈ D(A) on A the direct influence of p on σ is defined as:

Id(p, σ) := d
(
σ, σ|p

)
provided σ |= p 6= 0.

B. Jacobs and F. Zanasi 21:11

2. For a joint state ω ∈ D(A⊗B) the crossover influence of p on ω is:

Ic(p, ω) := d
(
M2(ω),M2(ω| M

1(p))
)

provided ω |=

M

1(p) 6= 0.

In general we say that a predicate has no (direct or crossover) influence on a state if the
corresponding influence function (Id or Ic) has outcome zero.

I Example 19. We give an example of direct influence, postponing a detailed illustration of
crossover influence to the collider scenario in Section 6. Recall the Kleisli map (5) modeling
the Bayesian network of Example 3. We fix three different states on 2D = {d, d⊥}:

ω = 4
5 |d〉+ 1

5 |d
⊥〉 ρ = 1

2 |d〉+ 1
2 |d

⊥〉 σ = 1
5 |d〉+ 4

5 |d
⊥〉 .

Intuitively, in state ω it is likely that the patient has the disease, in state σ it is rather
unlikely, and ρ sits in the middle. Consider the Dirac predicate ∂t ∈ [0, 1]2T expressing
positivity of the test: we first use the predicate transformer T ∗ associated with the Kleilsi
map T : 2D → 2T to obtain a predicate T ∗(∂t) ∈ [0, 1]2D ; subsequently, we compute the
influence of T ∗(∂t) on the above three states. This is done via a script.

Id

(
T ∗(∂t), ω

)
= 0.19 Id

(
T ∗(∂t), ρ

)
= 0.45 Id

(
T ∗(∂t), σ

)
= 0.62

Influence measures how radically the positivity of the test challenges our belief on the disease:
a positive test does not come at surprise in state ω, but it is more unexpected in state σ.

I Example 20. Clearly, Id(1, ω) = 0, for the truth predicate 1, since ω|1 = ω. Is there also
an example where the (direct and crossover) influence reaches the maximal distance 1? We
show how to approximate it. Take A = {a, b} with predicate p(a) = 1, p(b) = 0 and state
σ = ε |a〉+ (1− ε) |b〉. The direct influence Id(p, σ) goes to 1 as ε→ 0. Similarly, by taking
ω = ε |aa〉+ (1− ε) |bb〉 ∈ D(A×A) we get Ic(p, ω)→ 1 as ε→ 0 for crossover influence.

We now establish some facts on crossover influence: (1) it only makes sense if the state
is entwined, since for a product state the crossover influence is zero; (2) weakening and
marginalisation must work in different components, since otherwise we have direct influence;
(3) crossover influences is always less than direct influence. In the context of Definition 18:

I Lemma 21.
1. Ic(p, σ ⊗ τ) = 0;
2. d

(
M1(ω),M1(ω| M

1(p))
)

= Id(p,M1(ω));
3. Ic(p, ω) ≤ Id(

M

1(p), ω)
4. For each function g : X → Y , considered as a Kleisli map ‹g› : X → D(Y), we have:
Id(p, ‹g›∗(σ)) ≤ Id(‹g›∗(p), σ), where σ ∈ D(X).

Proof. The first two points follow directly from Proposition 13 (b) and (a). The inequality
in point (3) from the fact that marginalisation is a special form of state transformation,
which, as we know from Lemma 17, is non-expansive:

Ic(p, ω) = d
(
M2(ω),M2(ω| M

1(p))
)

= d
(
(π2)∗(ω), (π2)∗(ω| M

1(p))
)

≤ d
(
ω, ω| M

1(p)
)

= Id(

M

1(p), ω).

Finally, for point (4) we use both Lemma 4 (c) and Lemma 17 in:

Id(p, ‹g›∗(ω)) = d
(
‹g›∗(ω), ‹g›∗(ω)|p

)
= d

(
‹g›∗(ω), ‹g›∗(ω|‹g›∗(p))

)
≤ d

(
ω, ω|‹g›∗(p)

)
= Id(‹g›∗(p), ω). J

MFCS 2017

21:12 A Formal Semantics of Influence in Bayesian Reasoning

I Remark. Crossover and direct influence are instances of a more general definition of influence
of a predicate p ∈ [0, 1]Aj on the i-th marginal Ai of a joint state ω ∈ D(A1 ⊗ . . .⊗An). For
n = 2 and i 6= j, this corresponds to crossover influence, whereas for n = i = j = 1 it would
be direct influence. We chose not to work within this uniform approach as we believe that it
is more insightful to think of the two notions of Definition 18 as conceptually distinct.

As observed in §3, the blocking action of Dirac predicates plays a key role in d-separation.
We can use Definition 18 to express that no predicate p has any influence on a Dirac-
conditioned state ω|∂x – by Lemma 2, (ω|∂x)|p = (ω|p)|∂x = 1 |x〉 = ω|∂x , so Id(p, ω|∂x) = 0.

I Example 22. For instance, we can reformulate the fork scenario as follows. Because
conditioning is commutative, (12) is the same as: ω|∂x

=
(
ω|∂x

)
|f∗(p). Thus Proposition 9

says that Id(f∗(p), ω|∂x) = 0, i.e. f∗(p) has no influence on ω|∂x .
In the same vein, one may also revisit Example 8, an instance of the serial connection

scenario: in short, from (5), use states D, T • D and S • T • D to construct a joint state on
2D ⊗ 2T ⊗ 2S; check that a ‘positive test’ predicate ∂t ∈ [0, 1]2T has crossover influence on
the marginal 2S, then prove that a ‘disease’ predicate ∂d ∈ [0, 1]2D blocks such influence.

6 Influence in d-separation (reprise)

We conclude with a return on the collider scenario, left unfinished at the end of § 3. With
the notation introduced therein, we now explain the collider situation in Diagram (13): the
initial joint (product) state σ⊗ τ is non-entwined, but it becomes entwined after conditioning
with evidence q on B, as in (σ ⊗ τ)|f∗(q). Now any new evidence p ∈ [0, 1]A on A may have
crossover influence on C – cf. Example 14 (b). It can be explicitly quantified by computing
Ic

(
p, (σ ⊗ τ)|f∗(q)

)
.

A conceptual insight stemming from our analysis is the asymmetry between blocking and
enabling influence: while in the serial and fork scenarios only Dirac predicates are able to
block, in a collider any predicate may enable. We give a concrete example below.

I Example 23. The Bayesian network of Example 3 includes a collider, given by nodes
‘Genetic Heredity’ and ‘Environmental Factors’ both pointing to ‘Disease’. The two possible
causes for the disease are represented as a joint state G⊗E on 2G ⊗ 2E, see (7). A priori,
they are unrelated. For instance, a Dirac predicate ∂g⊥ ∈ [0, 1]2G that excludes any genetic
disorder of the patient has no effect on the chances that she has been exposed to the
environmental factors: formally, the crossover influence Ic(∂g⊥ , G⊗ E) is 0, as guaranteed
by Lemma 21.1. However, let’s include the information that pallor is a symptom of the
disease, modeled as a predicate p ∈ [0, 1]2D as in Example 14(a): it turns G ⊗ E into an
entwined state (G ⊗ E)|D∗(p). In this changed scenario, d-separation tells that ruling out
genetic heredity (predicate ∂g⊥) does influence the belief that environment was the cause.
We can formally expressed it with crossover influence:

Ic(∂g⊥ , G⊗ E) = 0 Ic(∂g⊥ , (G⊗ E)|D∗(p)) = 0.006.

Note that a Dirac predicate ∂d ∈ [0, 1]2D expressing certainty of the disease entwines G and
E much more: indeed Ic(∂g⊥ , (G⊗ E)|D∗(∂d)) = 0.26 > Ic(∂g⊥ , (G⊗ E)|D∗(p)).

7 Discussion

Our ambition in this paper was to develop a framework where grounding concepts of Bayesian
reasoning (influence, dependence, blocking, evidence, . . .) are given a clear, completely
formal meaning, building on [7], and can be reasoned about in an abstract and flexible

B. Jacobs and F. Zanasi 21:13

manner. As a proof of concept, we analysed d-separation: the intention was to show how
event interactions with a subtle and potentially ambiguous natural language description can
be reduced to elementary formulas of our language, with a simple and transparent proof.

We based our approach on Kleisli categories, in harmony with the increasing importance of
algebraic methods from program semantics in the analysis of probabilistic systems [11, 16, 10].
The highlight of our developments is the notion of crossover influence, which we believe may
foster research in two directions. First, it draws a parallelism with non-locality phenomena
of quantum theory, see also [6]: we plan investigate the meaning of our definitions in that
setting, exploiting the formal bridge offered by Effectus theory [4, 2]. Second, our definition
is abstract enough to accommodate different choices for the underlying notion of distance
between states. The total variation metric suits the applications of this paper, but other
choices are also worth investigating: we think in particular of the Kantorovich metric [17],
for when the sample set has a non-discrete metric, and quantitative analyses of information
leakage [1]. Also connections with Kullback-Leibler divergence [9], focussing on loss of
information, in Shannon style, and to mutual information, remain to be investigated.

A related point concerns the relationship between the total variation distance and Bayesian
influence. In our choice, we simply aimed at the most basic additive distance which does
not (unlike Kantorovich) builds on a pre-existing metric, as our sample sets have none.
Admittedly, the suitability of total variation is only empirically justified by examples. In
future work we aim at a more satisfactory investigation: recent advances on an axiomatic
treatment of metrics [10] appear to be very suitable for the purpose.

References
1 M. Alvim, K. Chatzikokolakis, C. Palamidessi, and G. Smith. Measuring information

leakage using generalized gain functions. In Computer Security Foundations Symposium
(CSF 2012), pages 265–279, 2012.

2 K. Cho, B. Jacobs, A. Westerbaan, and B. Westerbaan. An introduction to effectus theory.
see arxiv.org/abs/1512.05813, 2015.

3 B. Fong. Causal theories: A categorical perspective on Bayesian networks. Master’s thesis,
Univ. of Oxford, 2012. see arxiv.org/abs/1301.6201.

4 B. Jacobs. New directions in categorical logic, for classical, probabilistic and quantum logic.
Logical Methods in Comp. Sci., 11(3):1–76, 2015.

5 B. Jacobs. From probability monads to commutative effectuses. Journ. of Logical and
Algebraic Methods in Programming, 156, 2016. See DOI:10.1016/j.jlamp.2016.11.006.

6 B. Jacobs. A note on distances between probabilistic and quantum distributions. In A. Silva,
editor,Math. Found. of Programming Semantics, Elect. Notes in Theor. Comp. Sci. Elsevier,
Amsterdam, 2017.

7 B. Jacobs and F. Zanasi. A predicate/state transformer semantics for Bayesian learning. In
L. Birkedal, editor, Math. Found. of Programming Semantics, number 325 in Elect. Notes
in Theor. Comp. Sci., pages 185–200. Elsevier, Amsterdam, 2016.

8 F. Jensen. Bayesian Networks and Decision Graphs. Statistics for Engineering and Inform-
ation Science. Springer, 2001.

9 S. Kullback. Information Theory and Statistics. John Wiley & Sons, 1959.
10 R. Mardare, P. Panangaden, and G. Plotkin. Quantitative algebraic reasoning. In Logic in

Computer Science, LICS ’16, pages 700–709. IEEE, Computer Science Press, 2016.
11 A. McIver, C. Morgan, and T. Rabehaja. Abstract hidden Markov models: A monadic

account of quantitative information flow. In Logic in Computer Science, pages 597–608.
IEEE, Computer Science Press, 2015.

12 N.D. Mermin. Quantum Computer Science: An Introduction. Cambridge Univ. Press, 2007.

MFCS 2017

arxiv.org/abs/1512.05813
arxiv.org/abs/1301.6201

21:14 A Formal Semantics of Influence in Bayesian Reasoning

13 J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.

14 J. Pearl. Causality. Models, Reasoning, and Inference. Cambridge Univ. Press, 2nd ed.
edition, 2009.

15 S. Russel and P. Norvig. Artificial Intelligence. A Modern Approach. Prentice Hall, Engle-
wood Cliffs, NJ, 2003.

16 S. Staton, H. Yang, C. Heunen, O. Kammar, and F. Wood. Semantics for probabilistic
programming: higher-order functions, continuous distributions, and soft constraints. In
Logic in Computer Science, LICS ’16, pages 525–534, 2016.

17 C. Villani. Optimal Transport – Old and New. Springer Berlin Heidelberg, 2009.

The Complexity of SORE-definability Problems
Ping Lu∗1, Zhilin Wu†2, and Haiming Chen‡3

1 BDBC, Beihang University, Beijing, China
luping@buaa.edu.cn

2 State Key Laboratory of Computer Science, Institute of Software, Chinese
Academy of Sciences, Beijing, China
wuzl@ios.ac.cn

3 State Key Laboratory of Computer Science, Institute of Software, Chinese
Academy of Sciences, Beijing, China
chm@ios.ac.cn

Abstract
Single occurrence regular expressions (SORE) are a special kind of deterministic regular expres-
sions, which are extensively used in the schema languages DTD and XSD for XML documents.
In this paper, with motivations from the simplification of XML schemas, we consider the SORE-
definability problem: Given a regular expression, decide whether it has an equivalent SORE.
We investigate extensively the complexity of the SORE-definability problem: We consider both
(standard) regular expressions and regular expressions with counting, and distinguish between
the alphabets of size at least two and unary alphabets. In all cases, we obtain tight complexity
bounds. In addition, we consider another variant of this problem, the bounded SORE-definability
problem, which is to decide, given a regular expression E and a number M (encoded in unary
or binary), whether there is an SORE, which is equivalent to E on the set of words of length at
most M . We show that in several cases, there is an exponential decrease in the complexity when
switching from the SORE-definability problem to its bounded variant.

1998 ACM Subject Classification F.4.3 Formal Languages

Keywords and phrases Single occurrence regular expressions, Definability, Complexity

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.22

1 Introduction

Background. Deterministic regular expressions are a special kind of regular expressions,
which are mainly used in DTD and XML Schema [11]. Intuitively, deterministic regular
expressions require that when reading from left to right a word in the language, each symbol
in the word can directly match the symbol in the expression without knowing the next symbol
or the length of the word [35, 1]. For example, (a + b)a∗ is deterministic. Since for each
word w in L((a+ b)a∗), if the first symbol in w is a, then it matches the first a in (a+ b)a∗,
and the other occurrences of a match the second one. On the other hand, a∗(a+ b) is not
deterministic. Because given a word w = aa, without knowing the length of the word, we do
not know whether the first a in w should match the first a in a∗(a+ b) or the second one.

∗ Ping Lu is supported by the NSFC grant under No. 61472405. Ping Lu is also partially funded by
Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University.

† Zhilin Wu is supported by the the NSFC grants under No. 61472474 and 61572478.
‡ Haiming Chen is supported by the NSFC grant under No. 61472405.

© Ping Lu, Zhilin Wu, and Haiming Chen;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 22; pp. 22:1–22:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.22
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

22:2 The Complexity of SORE-definability Problems

Although deterministic regular expressions ensure the effective processing of XML docu-
ments [11, 16], it is not an easy task to design schema for XML documents with deterministic
regular expressions. The major obstacle is that they are defined in a semantic manner, and
do not have syntax rules to guide the design [1]. Considerable efforts have been made to solve
this problem [2, 3, 4, 13, 23, 21, 7]. Among these is the introduction of single occurrence
regular expressions (SORE) [2, 3, 4, 13]. SORE are regular expressions where each alphabet
symbol appears at most once [2]. For example, E = abc is an SORE, since there is only one
of a, b, and c in E. While E = aa∗b is not, because the symbol a appears twice in E.

Motivation. XML schemas defined with SORE are desirable, since they are very simple and
intuitive to comprehend, and it is easy to check the conformance of XML documents with
respect to them. As a result, though SORE constitute a restricted class of regular expressions,
it turns out that deterministic regular expressions used in DTDs of XML documents from
the practice are mostly SORE [29]. In view of this, XML schema designers may tempt to
know whether the schema they proposed can in fact be changed into an equivalent, but
simpler, schema defined with SORE. This brings the SORE-definability problem: Given a
regular expression, decide whether there is an SORE defining the same language.

In this paper, we start an extensive investigation on the complexity of the SORE-
definability problem: We consider both (standard) regular expressions and regular expressions
with counting, and distinguish between the alphabets of size at least two and unary alphabets.
In all cases, we obtain tight complexity bounds.

In addition, we consider another variant of the SORE-definability problem, the bounded
SORE-definability problem, which is to decide, given a regular expression E (without or with
counting) and a number M (encoded in unary or binary), whether there is an SORE, which
is equivalent to E on the set of words of length at most M . The motivation of this problem
comes from the observation that in practice, there may exist some additional information
about the number of children that a node in XML documents can have, and this information
can be utilised to ease the design of XML schemas. Given a node n, suppose that its content
model (the format of its child elements) is defined by a regular expression E. Although L(E),
the language defined by E, might be not deterministic (thus not in SORE), if there is a bound
M on the number of children of n, then we may still construct a SORE E1 such that E and
E1 are equivalent over the set of words up to length M . In this way, we can obtain a regular
expression E1 with a simpler structure to define its content model. Moreover, E1 covers all
the possible XML documents. Checking the existence of SORE E1 such that E =<=M E1 is
the bounded-definability problem. In addition, the bounded-definability problem is related
to the bounded nonuniversality problem investigated in [10]. The bounded nonuniversality
problem is to decide for a given nondeterministic finite-state automaton A and a number M
encoded in unary, whether L(A)∩Σ≤M 6= Σ≤M . Note that this problem can be rephrased as
L(A) 6=≤M Σ∗, where Σ = {a1, . . . , an} and Σ∗ is the abbreviation of (a1 + . . .+ an)∗, which
is obviously an SORE.

Contributions. The results obtained in this work are summarised in Table 1. In the table,
R stands for the set of (standard) regular expressions, and R(#) stands for the set of regular
expressions with counting. We highlight some of them below.
(1) We first show that the SORE-definability problem is PSPACE-complete for regular

expressions, and EXPSPACE-complete for regular expressions with counting.
(2) We then consider the special case of unary alphabets. We show that the SORE-definability

problem becomes coNP-complete for regular expressions and Πp
2-complete for regular

Ping Lu, Zhilin Wu, and Haiming Chen 22:3

Table 1 The results of this paper: An overview.

The SORE-definability problem
|Σ| = 1 |Σ| ≥ 2

R coNP-c (Thm 6) PSPACE-c (Thm 4)
R(#) Πp

2 -c (Thm 7) EXPSPACE-c (Thm 5)

The bounded SORE-definability problem

R
M is unary PTIME (Thm 15) coNP-c (Cor 14)
M is binary coNP-c (Cor 19) PSPACE-c (Cor 17)

R(#) M is unary PTIME (Thm 15) coNP-c (Thm 13)
M is binary Πp

2 -c (Cor 18) coNEXPTIME-c (Thm 16)

expressions with counting. Moreover, by using the same idea of the lower bound proof, we
can show that the definability problem of deterministic regular expressions is Πp

2 -complete
for regular expressions with counting, which solves an open problem in [27].

(3) For the bounded SORE-definability problem, a bit surprisingly, we show that the
complexity is coNP-complete for both regular expressions and regular expressions with
counting, if the length bound M is encoded in unary. On the other hand, if M is
encoded in binary, the complexity is PSPACE-complete for regular expressions and
coNEXPTIME-complete for regular expressions with counting. In addition, when unary
alphabets are considered and M is encoded in unary, the bounded SORE-definability
problem can be solved in polynomial time, even for regular expressions with counting.
These results show that if the length boundM is encoded in unary, there is an exponential
decrease when switching from the SORE-definability problem to its bounded variant.

Related work. Single occurrence regular expressions were introduced in [2, 3, 4]. Most
works on SORE focus on inferring an SORE from a set of sample words. The basic idea
of these works is that given a set of sample words, we first construct a single occurrence
automaton (SOA) A, then derive an SORE E from A. The main technical difficulty is how to
construct E from A. To this end, Bex et al. [3, 4] developed an O(|A|5) algorithm. Recently,
Freydenberger et al. [13] reduced the complexity of the construction to linear time.

There are also works investigating how to automatically construct deterministic regular
expressions from (non-deterministic) regular expressions given by users. This problem entails
the definability problem of deterministic regular expressions: Given a regular expression,
decide whether there exists an equivalent deterministic regular expression. It was shown in
[1, 12, 26] that this problem is PSPACE-complete. For regular expressions with counting,
there are two notations of determinism, i.e., weak and strong determinism (see [14]). The
definability problem of weakly (resp. strongly) deterministic regular expressions with counting
can also be defined similarly. It was shown in [24] that the definability problem of weakly
deterministic regular expressions with counting is in 2-EXPSPACE when the inputs are
regular expressions, and in 3-EXPSPACE when the inputs are regular expressions with
counting, whereas the exact complexity of these problems are still open.

Researchers also investigated how to decide whether a given regular expression is de-
terministic [5, 6, 23, 21, 7, 16] (Note that this problem is different from the definability
problem of deterministic regular expressions in the sense that we do not check the existence
of an equivalent albeit potentially different deterministic regular expression). Remarkably, it

MFCS 2017

22:4 The Complexity of SORE-definability Problems

was shown in [16] that the problem of whether a regular expression is deterministic can be
decided in linear time. In addition, in [16], it was also shown that the problem of whether
a regular expression with counting is weakly deterministic can be decided with the same
complexity bound. On the other hand, the work [8] provided a linear time algorithm to decide
whether a regular expression with counting is strongly deterministic. Moreover, in [18, 19],
efficient matching algorithms were provided for strongly deterministic regular expressions
with counting by using finite automata with counters.

Outline. This paper is structured as follows. Section 2 fixes some notations. Section 3
is devoted to the SORE-definability problem. The bounded SORE-definability problem is
investigated in Section 4. We conclude this paper in Section 5.

2 Preliminaries

For a natural number n ∈ N, let [n] denote {1, · · · , n}. In addition, for two natural numbers
m,n ∈ N such that m ≤ n, let [m,n] denote the set {m,m+ 1, · · · , n}.

An alphabet Σ is a finite set of symbols {a1, a2, . . . , an}. We will use a, b, · · · to denote
symbols from Σ. A word over Σ is a sequence of symbols from Σ. We will use u, v, w, · · · to
denote words and ε to denote the empty word. A language over Σ is a set of words on Σ.
For two languages L1 and L2, we use L1 · L2 to denote the language {uv | u ∈ L1, v ∈ L2}.
In addition, for a language L, we define L0 = {ε}, and Ln+1 = L · Ln for each natural
number n. We also use L∗ to denote

⋃
n∈N

Ln. A (standard) regular expression over Σ is

inductively defined as follows: ε and a are regular expressions for any a ∈ Σ; for any regular
expressions E1 and E2, the disjunction E1 + E2, the concatenation E1 · E2 (or E1E2), and
the star E∗1 are also regular expressions. The semantics of a regular expression E is given by
a language L(E) defined as follows: L(ε) = {ε}, L(a) = {a}, L(E1 + E2) = L(E1) ∪ L(E2),
L(E1 · E2) = L(E1) · L(E2), and L(E∗1) = (L(E1))∗. Let R denote the set of all regular
expressions. For a regular expression E, let ΣE denote the set of all symbols from Σ that
appear in E.

Next, we define deterministic regular expressions. Before that, we introduce some
notations. Given a regular expression E, we replace every symbol a in E by a subscripted
symbol ai such that ai appears only once. Let E denote the resulting expression obtained by
this replacement. For instance, let E = (ε+a) ·a∗, then E = (ε+a1) ·a∗2. A regular expression
E is deterministic iff the following condition holds: for every two words uxw, uyv ∈ L(E),
if x = ai and y = aj , then i = j. A regular language L is deterministic, if there exists a
deterministic regular expression E such that L(E) = L. For E = (ε+ a) · a∗, consider two
words a1a2, a2 ∈ L(E). Let u = ε, x = a1, w = a2, y = a2, and v = ε, then uxw, uyv ∈ L(E),
x = a1, y = a2, but 1 6= 2. By the definition, (ε + a) · a∗ is not deterministic. But the
language L((ε+ a) · a∗) is deterministic, since L((ε+ a) · a∗) = L(a∗) and a∗ is deterministic.

Next, we define the Glushkov automata of regular expressions [15, 30]. Given a regular
expression E, we first define the following sets: first(E) = {a | aw1 ∈ L(E)}, follow(E, a) =
{b | w1abw2 ∈ L(E)}, and last(E) = {a | w1a ∈ L(E)}. Intuitively, first(E) comprises
the first symbols of words in L(E), follow(E, a) is the set of symbols, which can appear
immediately after a in a word from L(E), and last(E) contains the last symbols of words in
L(E). Then the Glushkov automaton of E, denoted by GE = (QE ∪ {qI},Σ, δE , qI , FE), is
constructed as follows:
1. QE is the set of symbols in E, and qI is the initial state;
2. For any a ∈ ΣE , let δE(qI , a) = {ai | ai ∈ first(E)};

Ping Lu, Zhilin Wu, and Haiming Chen 22:5

3. For any a, b ∈ ΣE , let δE(ai, b) = {bj | bj ∈ follow(E, ai)};

4. FE =
{
{ai | ai ∈ last(E)} ∪ {qI} if ε ∈ L(E),
{ai | ai ∈ last(E)} otherwise.

Given a regular expression E, the Glushkov automaton GE can be constructed in
polynomial time [6]. See Example 1 in the next section for an example of Glushkov automata.

Single occurrence regular expressions (SORE)[3, 4] are a special kind of deterministic
regular expressions, which require that every symbol in the alphabet appears at most once.
Moreover, SORE use the following operators: the disjunction (+), the concatenation (·),
the iteration (+), and the optional (?), where the iteration E+ and the optional E? are the
abbreviations of E · E∗ and ε + E, respectively. Since L(E∗) = L((E+)?), SORE do not
use the star operation. For example, a+bc is an SORE, but aa+ is not, since the symbol
a appears twice. Additionally, we require that the iteration (resp. the optional) cannot
be nested in an SORE, that is, the expressions of the form (E?)? or (E+)+ are forbidden.
We also forbid the expressions of the form ((E+)?)+ or ((E?)+)?. These constraints ensure
that for a fixed alphabet Σ, there are only a fixed number of SORE over Σ. Nevertheless,
these constraints do not affect the expressive power of SORE. For an SORE, its Glushkov
automaton can also be constructed in polynomial time [2].

A single occurrence automaton (SOA) S = (Q,Σ, δ, qI , F) over an alphabet Σ is defined
as follows [13]: Q ⊆ Σ ∪ {qI}, where qI is the initial state; δ : Q× Σ→ Q is the transition
function such that whenever δ(q1, b) = q2, we have q2 = b; and F ⊆ Q is the set of final
states. Although SOA defined here are slightly different from those in [13], one can easily
add a sink state to each SOA defined in this paper to obtain an SOA in [13]. Later on, we
will ignore this difference and apply the algorithms in [13] directly on SOA in this paper.

A regular expression with counting is an extension of regular expressions, which addi-
tionally allows using the counting modalities E[m,n] or E[m,∞]. For a regular expression
with counting E, the language L(E[m,n]) =

⋃
i∈[m,n]

(L(E))i. The language L(E[m,∞]) can be

defined similarly. Let R(#) denote the set of regular expressions with counting.

3 The SORE-definability problem

In this section, we study the complexity of the SORE-definability problem: Given a regular
expression E, decide whether there exists an SORE Ec such that L(Ec) = L(E). We first
consider the general case of non-unary alphabets, then the special case of unary alphabets.

3.1 Non-unary alphabets
We start with regular expressions and consider regular expressions with counting later on1.

To solve the SORE-definability problem, our main idea is to construct for a regular
expression E, an SORE Ec such that L(E) = L(Ec) iff there exists an SORE E1 satisfying
that L(E) = L(E1). With such an SORE Ec, we can solve the SORE-definability problem
by checking whether L(E) = L(Ec).

The construction of the SORE Ec is divided into two steps: We first construct an SOA
SE from E, then an SORE Ec from SE .

Given a regular expression E, let GE = (QE ∪ {qI},Σ, δE , qI , FE) be the Glushkov
automaton of E, we construct the SOA SE = (ΣE ∪ {qI},ΣE , δ

′
E , qI , F

′
E) as follows:

1 Several results in this section are based on Chapter 7 of the PhD. thesis of Ping Lu (cf. [25]).

MFCS 2017

22:6 The Complexity of SORE-definability Problems

qI a1

b2

a3 a4 c5

d6

qI a

b

c

d

GE SE

a

b

a

a

b

a

a

b

a

a

c

d

a

c

d

a

c

da
c

d

a

b

a

c

db

b

a

a

c

d
a

c

d

Figure 1 GE and SE .

1. For any a ∈ ΣE , let δ′E(qI , a) = {a | ∃i. ai ∈ δE(qI , a)};
2. For any a, b ∈ ΣE , let δ′E(a, b) = {b | ∃i, j. bj ∈ δE(ai, b)};

3. F ′E =
{
{a | ∃i. ai ∈ FE} ∪ {qI} if qI ∈ FE ,

{a | ∃i. ai ∈ FE} otherwise.

Intuitively, the SOA SE is constructed from GE by merging for each a ∈ ΣE , all the
states ai of GE into one state a and modifying the transition relation correspondingly.

I Example 1. Let E = (a+ b)∗a(a+ c+ d)∗. Then E = (a1 + b2)∗a3(a4 + c5 + d6)∗. The
Glushkov automaton GE and the SOA SE constructed from GE are given in Figure 1. Note
that the states a1, a3, and a4 in GE are merged into one state a in SE , and the other states
remain the same (modulo names).

The SOA SE enjoys the following property.

I Lemma 2. Given a regular expression E, L(E) can be defined by an SOA iff L(GE) =
L(SE).

To construct the desired SORE Ec, we apply the algorithm REWRITE in [3, 4] or
Soa2Sore in [13] to SE , and get an SORE Ec enjoying the following property: SE can be
represented by an SORE iff L(SE) = L(Ec). From Lemma 2, we deduce the following fact.

I Proposition 3. L(E) can be defined by an SORE iff L(E) = L(Ec).

The arguments for Proposition 3 proceed as follows: The “if” direction is trivial. For the
“only if” direction, suppose that L(E) is defined by an SORE E1. Then it can also be defined
by an SOA, since the Glushkov automaton of E1 is an SOA. By Lemma 2, we must have that
L(E1) = L(E) = L(GE) = L(SE). Hence, SE is represented by the SORE E1. From the
property of Ec, we know that L(SE) = L(Ec). We conclude that L(E) = L(SE) = L(Ec).

Given a regular expression E, by using Proposition 3, we solve the SORE-definability
problem of E as follows:
(1) Construct the SOA SE ;
(2) Construct the candidate SORE Ec;
(3) Check whether L(E) = L(Ec). If so, return true; otherwise, return false.

The correctness of the algorithm follows from Proposition 3. In the following, we analyze
the complexity of this algorithm. From the results in [6, 3, 4, 13], we know that steps (1) and
(2) can be done in polynomial time. Since the equivalence problem of regular expressions
is PSPACE-complete [31], we know that step (3) can be fulfilled in polynomial space. It
follows that the SORE-definability problem of regular expressions is in PSPACE. For the
lower bound, we apply a reduction from the complement of the acceptance problem of
polynomial-space bounded Turing machines. Then we get the following result.

Ping Lu, Zhilin Wu, and Haiming Chen 22:7

I Theorem 4. The SORE-definability problem is PSPACE-complete for regular expressions.

When E is a regular expression in R(#), i.e., a regular expression with counting, we
can expand E into a (standard) regular expression E′, and then use the above algorithm to
decide the SORE-definability problem. Since expanding E into E′ takes exponential time,
and the equivalence problem of regular expressions is PSPACE-complete [31], we conclude
that the SORE-definability problem of R(#) is in EXPSPACE. For the EXPSPACE
lower bound, we prove it by a reduction from the universality problem of regular expressions
in R(#), which is known to be EXPSPACE-complete [31].

I Theorem 5. The SORE-definability problem is EXPSPACE-complete for R(#).

3.2 Unary alphabets
In this section, we mainly consider the complexity of the SORE-definability problem for
unary alphabets. As a by-product, we also solve an open problem in [27].

Let Σ = {a}. One can verify that an SORE E1 over Σ must satisfy one of the following
constraints: L(E1) = L(ε), L(E1) = L(a), L(E1) = L(a?), L(E1) = L(a+), or L(E1) =
L((a+)?). Then to check whether L(E) can be defined by an SORE, we only need to check
whether L(E) = L(ε), L(E) = L(a), L(E) = L(a?), L(E) = L(a+), or L(E) = L((a+)?).
Since the equivalence problems of regular expressions and regular expressions with counting
over a unary alphabet are coNP-complete [34] and Πp

2-complete [34, 20] respectively, we
get the coNP and Πp

2 upper bounds respectively for their SORE-definability problems over
a unary alphabet. Moreover, we show the corresponding lower bounds by a reduction from
the universality problem of regular expressions over a unary alphabet and the connectedness
problem of integer expressions respectively, which are known to be coNP-complete [34] and
Πp

2-complete [36, 33] respectively. Therefore, we get the following results.

I Theorem 6. Over a unary alphabet, the SORE-definability problem is coNP-complete for
regular expressions.

I Theorem 7. Over a unary alphabet, the SORE-definability problem is Πp
2-complete for

R(#).

The work in [27] showed that the definability problem of deterministic regular expressions
over a unary alphabet is in Πp

2 for R(#), but left the lower bound open. By using a reduction
similar to the proof of the lower bound in Theorem 7, we can solve the open problem and
get the following result.

I Theorem 8. Over a unary alphabet, the definability problem of deterministic regular
expressions is Πp

2-complete for R(#).

Although the lower bound in Theorem 7 can also be proved by using the construction
in [9], that construction cannot be used to prove the lower bound in Theorem 8, since the
language defined by the regular expression constructed in [9] is already deterministic.

4 The Bounded SORE-definability problem

In this section, we will study the complexity of the bounded SORE-definability problem:
Given a regular expression E (without or with counting) and a number M , whether there
exists an SORE E1 such that L(E) =≤M L(E1), i.e., for every word w such that |w| ≤M ,

MFCS 2017

22:8 The Complexity of SORE-definability Problems

w ∈ L(E) iff w ∈ L(E1). As mentioned in the introduction, if the content model E in a
DTD or XML Schema does not denote a deterministic regular language, if there is a bound
M on the maximum number of children of nodes in XML documents, then we only need to
give a deterministic content model E1 to ensure that the language L(E1) is equivalent to
L(E) within the bound M .

We assume that in the bounded SORE-definability problem, the given regular expression
(without or with counting) E and the number M satisfy that M ≥ 2 · |ΣE |. This assumption
is essential for the results in this section and it is open whether this assumption can be lifted.

Similar to the SORE-definability problem, the decision procedure for the bounded SORE-
definability problem proceeds as follows:
1. At first, an SOA SE is constructed from E such that L(E) =≤M L(SE) iff there exists

an SOA A such that L(A) =≤M L(E).
2. Then by using the algorithm Soa2Sore in [13], an SORE Ec is constructed from SE such

that L(E) =≤M L(Ec) iff there exists an SORE E′ such that L(E) =≤M L(E′).
3. Finally, decide whether L(E) =≤M L(Ec).

In the following, we will first show how to construct SE from E and Ec from SE in
Section 4.1, then based on these constructions, we derive the complexity results of the
bounded SORE-definability problem in Section 4.2.

4.1 The construction of SE and Ec

In this section, we assume that E is in R(#) and demonstrate how to construct an SOA
SE and an SORE Ec from E. The construction for regular expressions without counting is
relatively easy and taken as a special case.

For the construction of SE , one naive approach is to expand the expression E into a regular
expression (without counting) E′, and construct SE′ from E′. But since the expansion of E
incurs an exponential blow-up, we would not be able to achieve the tight complexity bounds
(see, e.g., Theorem 13 in Section 4.2). In the following, we show how we can circumvent the
exponential blow-up and construct a desired SOA SE in polynomial time.

I Lemma 9. Given a regular expression E in R(#) and a number M encoded in binary, an
SOA SE satisfying the following constraint can be computed in polynomial time: L(SE) =≤M

L(E) iff there exists an SOA A such that L(A) =≤M L(E).

Before presenting the construction of SE , we introduce some additional notations. Let us
assume that M > 0 in the following. For an expression E in R(#) and a natural number M ,
we define firstM (E) = {a ∈ ΣE | ∃w1. aw1 ∈ L(E) ∩ (ΣE)≤M}, followM (E) = {(a, b) ∈
ΣE × ΣE | ∃w1, w2. w1abw2 ∈ L(E) ∩ (ΣE)≤M}, and lastM (E) = {a ∈ ΣE | ∃w1. w1a ∈
L(E) ∩ (ΣE)≤M}.

For an expression E in R(#) and a natural number M , we construct an SOA SE =
(ΣE ∪ {qI},ΣE , δ

′
E , qI , F

′
E) satisfying the following constraints:

{a ∈ ΣE | δ′E(qI , a) = a} = firstM (E);
{(a, b) ∈ ΣE × ΣE | δ′E(a, b) = b} = followM (E);
if ε ∈ L(E), then F ′E = lastM (E) ∪ {qI}; otherwise, F ′E = lastM (E).

Therefore, the construction of SE is equivalent to the computations of firstM (E),
followM (E) and lastM (E), which, we will show, can be done in polynomial time.

For the computations of firstM (E), followM (E) and lastM (E), for each subexpression
E′ of E, we will compute an up-to-M counting abstraction of E′ over ΣE , denoted by
AbsΣE ,M (E′) = (x, T, F, L), in polynomial time, such that

Ping Lu, Zhilin Wu, and Haiming Chen 22:9

x ∈ {true, false} denotes whether ε ∈ L(E′);
T is a function from ΣE × ΣE to [M] ∪ {∞} such that T (a, b) = min({|w| | w ∈
L(E′) ∩ (ΣE)≤M , w = w1abw2 for some w1, w2}), where min(∅) =∞ by convention;
F is a function from ΣE to [M] ∪ {∞} such that F (a) = min({|w| | w ∈ L(E′) ∩
(ΣE)≤M , w = aw1 for some w1});
L is a function from ΣE to [M] ∪ {∞} such that L(a) = min({|w| | w ∈ L(E′) ∩
(ΣE)≤M , w = w1a for some w1}).

Moreover, given AbsΣE ,M (E′) = (x, T, F, L), we define Nmin(AbsΣE ,M (E′)) as the minimum
length of the words in L(E′) ∩ (ΣE)≤M , that is, if x = true, then Nmin(AbsΣE ,M (E′)) = 0;
otherwise, Nmin(AbsΣE ,M (E′)) = min(rng(T) ∪ rng(F) ∪ rng(L)), where rng(T) denotes the
range of T , similarly for rng(F) and rng(L). It is assumed that n <∞ for each n ∈ [M].

Evidently, given AbsΣE ,M (E) = (x, T, F, L), we have that firstM (E) = {a ∈ ΣE | F (a) 6=
∞}, followM (E) = {(a, b) ∈ ΣE×ΣE | T (a, b) 6=∞} and lastM (E) = {a ∈ ΣE | L(a) 6=∞}.

Next, we show how to compute AbsΣE ,M (E′) from E′ by a structural induction on E′.
(1) E′ = ε. In this case, AbsΣE ,M (E′) = (true, T∞, F∞, L∞), where T∞ denotes the func-

tion where T∞(a, b) =∞ for each a, b ∈ ΣE .
(2) E′ = a for any a ∈ ΣE. In this case, AbsΣE ,M (E′) = (false, T∞, a→ 1, a→ 1), where

a→ 1 denotes the function that maps a to 1 and maps all the other symbols from ΣE to
∞.

(3) E′ = E′
1 + E′

2. In this case, suppose that AbsΣE ,M (E′i) = (xi, Ti, Fi, Li) for i = 1, 2,
then AbsΣE ,M (E′) = (x, T, F, L), where
x = x1 ∨ x2 (x is the disjunction of x1 and x2);
for each (a, b) ∈ ΣE × ΣE , T (a, b) = min({T1(a, b), T2(a, b)});
for each a ∈ ΣE , F (a) = min({F1(a), F2(a)});
for each a ∈ ΣE , L(a) = min({L1(a), L2(a)}).

(4) E′ = E′
1E′

2. In this case, suppose that AbsΣE ,M (E′i) = (xi, Ti, Ei, Li) for i = 1, 2, then
AbsΣE ,M (E′) = (x, T, F, L), where
x = x1 ∧ x2 (x is the conjunction of x1 and x2);
for each (a, b) ∈ ΣE × ΣE , let

T (a, b) = min

[M]
⋂ {T1(a, b) + Nmin(AbsΣE ,M (E′

2))}
∪ {T2(a, b) + Nmin(AbsΣE ,M (E′

1))}
∪ {L1(a) + F2(b)}

 ,

note that here we assume ∞+∞ =∞+ n = n+∞ =∞ for every natural number n;
for each a ∈ ΣE , let

F (a) = min
(

[M]
⋂(
{F1(a) + Nmin(AbsΣE ,M (E′

2))} ∪ {F2(a) | x1 = true}
))

;

for each a ∈ ΣE , let

L(a) = min
(

[M]
⋂(
{L2(a) + Nmin(AbsΣE ,M (E′

1))} ∪ {L1(a) | x2 = true}
))

.

(5) E′ = (E′
1)[m,n] or E′ = (E′

1)[m,∞]. Since the analysis of E′ = (E′1)[m,∞] is almost the
same as E′ = (E′1)[m,n], we only show the analysis of E′ = (E′1)[m,n]. Let AbsΣE ,M (E′1) =
(x1, T1, F1, L1). Then AbsΣE ,M (E′) = (x, T, F, L), where

if m ≥ 2, then
x = x1,

MFCS 2017

22:10 The Complexity of SORE-definability Problems

qI a

b

c

d

a

b

c

dc

d

a

ba

b

Figure 2 The SOA SE .

for each (a, b) ∈ ΣE × ΣE , let

T (a, b) = min
(

[M]
⋂(

{T1(a, b) + (m− 1)Nmin(AbsΣE ,M (E′
1))} ∪

{L1(a) + F1(b) + (m− 2)Nmin(AbsΣE ,M (E′
1))}

))
,

note that here we assume that 0×∞ = 0 and n×∞ =∞ for each n > 0,
for each a ∈ ΣE , let

F (a) = min
(

[M]
⋂
{F1(a) + (m− 1)Nmin(AbsΣE ,M (E′

1))}
)

,

for each a ∈ ΣE , let

L(a) = min
(

[M]
⋂
{L1(a) + (m− 1)Nmin(AbsΣE ,M (E′

1))}
)

;

if m = 1 and n = 1, then AbsΣE ,M ((E′1)[m,n]) = AbsΣE ,M (E′1);
if m = 1 and n ≥ 2, then AbsΣE ,M ((E′1)[m,n]) = AbsΣE ,M (E′1 + (E′1)[m+1,n]), which
can be computed from AbsΣE ,M (E′1) and AbsΣE ,M ((E′1)[m+1,n]) by the aforementioned
construction for the + operator (note that (E′1)[m+1,n] satisfies that m+ 1 ≥ 2);
if m = 0 and n = 0, then AbsΣE ,M ((E′1)[m,n]) = AbsΣE ,M (ε);
if m = 0 and n ≥ 1, then AbsΣE ,M ((E′1)[m,n]) = AbsΣE ,M (ε+ (E′1)[m+1,n]) (note that
(E′1)[m+1,n] satisfies that m+ 1 ≥ 1).

The above computation of AbsΣE ,M (E) can be done in polynomial time, since
each AbsΣE ,M (E′) occupies only polynomial space and the computation takes at most
O(|E|) steps.

I Example 10. We will use the following example to show all the constructions. Let
E = ((a + b) · (c + d) · (ε + (ae)[5,5]))[2,∞] and M = 9. The computation of AbsΣE ,M (E′)
is shown in Table 2, where T stands for true, F stands for false, and the pairs (a, b)
such that T (a, b) = ∞ are omitted, similarly for F and L. Consider the computation of
AbsΣE ,M ((ae)[5,5]). It is easy to verify that AbsΣE ,M (ae) = (false, {(a, e)→2}, a→2, e→2).
Since M = 9, and ae is the shortest word in L(ae), we have that 2 + (m − 1) × 2 =
2 + 4 × 2 = 10 > M . Therefore, AbsΣE ,M ((ae)[5,5]) = (false, T∞, T∞, T∞), which means
that any word in L((ae)[5,5]) cannot be a sub-word of w in L(E) such that |w| ≤ M .
Let AbsΣE ,M (E) = (x, T, F, L). Then followM (E) = {(a′, b′) ∈ ΣE × ΣE | T (a′, b′) 6=
∞} = {(a, c), (b, c), (a, d), (b, d), (c, a), (d, a), (c, b), (d, b)}. Similarly, firstM (E) = {a′ ∈ ΣE |
F (a′) 6= ∞} = {a, b}, and lastM (E) = {a′ ∈ ΣE | L(a′) 6= ∞} = {c, d}. From the sets
firstM , followM , and lastM , we construct an SOA SE illustrated in Figure 2.

By using SE , we can construct the candidate SORE Ec for E in Example 12.

Computation of Ec. Again, we use the algorithm Soa2Sore [13] mentioned in Section 3
to compute an SORE Ec from SE in polynomial time. As a result of the assumption that
M ≥ 2 · |ΣE |, the SORE Ec enjoys the following property.

Ping Lu, Zhilin Wu, and Haiming Chen 22:11

Table 2 The computation of AbsΣE ,M (E′).

E′ AbsΣE ,M (E′) E′ AbsΣE ,M (E′)

a (F, T∞, a→ 1, a→ 1) c + d (F, T∞,
{

c→1
d→1

}
,
{

c→1
d→1

}
)

b (F, T∞, b→ 1, b→ 1) ae (F, {(a, e)→2}, a→2, e→2)

c (F, T∞, c→ 1, c→ 1) (a + b)(c + d) (F,

{
(a,c)→2
(b,c)→2
(a,d)→2
(b,d)→2

}
,
{

a→2
b→2

}
,{

c→2
d→2

}
)

d (F, T∞, d→ 1, d→ 1) (ae)[5,5] (F, T∞, T∞, T∞)
e (F, T∞, e→ 1, e→ 1) ε + (ae)[5,5] (T, T∞, T∞, T∞)

a+b (F, T∞,
{

a→1
b→1

}
,
{

a→1
b→1

}
) (a+b)(c+d)(ε+(ae)[5,5]) (F,

{
(a,c)→2
(b,c)→2
(a,d)→2
(b,d)→2

}
,
{

a→2
b→2

}
,{

c→2
d→2

}
)

((a + b)(c + d)(ε + (ae)[5,5]))[2,∞] (F,
{

(a,c)→4
(b,c)→4
(a,d)→4
(b,d)→4

(c,a)→4
(d,a)→4
(c,b)→4
(d,b)→4

}
,
{

a→4
b→4

}
,
{

c→4
d→4

}
)

I Proposition 11. L(E) =≤M L(Ec) iff there exists an SORE E′ such that L(E) =≤M L(E′).

The arguments for Proposition 11 proceed as follows: The “only if” direction is trivial.
For the “if” direction, suppose that there exists an SORE E′ such that L(E) =≤M L(E′).
Then from the fact that L(E′) can be defined by an SOA, according to Lemma 9, we know
that L(SE) =≤M L(E). Therefore, we have L(SE) =≤M L(E′). From the assumption
M ≥ 2 · |ΣE |, we can further show that L(SE) = L(E′). Moreover, in [13], it was proved
that the SORE Ec satisfies the “SORE-descriptive” property, i.e. there does not exist an
SORE E′′ such that L(SE) ⊆ L(E′′) ⊂ L(Ec). Therefore, we must have L(SE) = L(Ec).
From L(SE) =≤M L(E), we conclude that L(E) =≤M L(Ec).

I Example 12. Let us continue Example 10. By using the algorithm Soa2Sore in [13], from
the SOA SE in Figure 2, we obtain the following SORE: ((a + b)(c + d))+. It is easy to
verify that L(E) =≤9 L(((a+ b)(c+ d))+). Then E can be represented by an SORE within
the bound M = 9. On the other hand, by the results in Section 3, we can check that L(E)
cannot be defined by an SORE.

4.2 The Complexity
In this section, we establish the complexity results of the bounded SORE-definability problem.
Given a regular expression E in R(#) and a number M , by using Proposition 11, we can
develop the following algorithm to decide the bounded SORE-definability problem:
(1) Compute the set AbsΣE ,M (E);
(2) Construct firstM (E), followM (E), lastM (E), and the candidate SORE Ec;
(3) Check whether L(E) =≤M L(Ec). If so, return true; otherwise, return false.

The correctness of this algorithm follows from Proposition 11. In the following, we analyse
the complexity of the algorithm. From the computations of AbsΣE ,M (E), firstM , followM ,
lastM , and Ec in Section 4.1, we know that steps (1) and (2) can be done in polynomial
time. For step (3), we distinguish between the unary and binary encoding of M .
M is encoded in unary.
Since M is encoded in unary, to check whether L(E) =≤M L(Ec), we first guess a word
w such that |w| ≤ M , then check whether w ∈ (L(E) \ L(Ec)) or w ∈ (L(Ec) \ L(E)).

MFCS 2017

22:12 The Complexity of SORE-definability Problems

Since checking whether w ∈ L(E) and w ∈ L(Ec) is in PTIME [22], we deduce that the
bounded SORE-definability problem for R(#) is in coNP. By a reduction from the bounded
universality problem, which is known to be coNP-complete [10], we also show that the
bounded SORE-definability problem for R(#) is coNP-hard.

I Theorem 13. The bounded SORE-definability problem is coNP-complete for R(#) and
natural numbers M encoded in unary.

One may wonder whether the bounded SORE-definability problem would be easier to
solve, if E is a regular expression. The answer to this question is negative, since the expression
constructed in the lower-bound proof of Theorem 13 is already a regular expression.

I Corollary 14. The bounded SORE-definability problem is coNP-complete for regular ex-
pressions and natural numbers M encoded in unary.

If |ΣE | = 1, then (ΣE)≤M contains at most M + 1 words. Therefore, in this case, when
M is encoded in unary, step (3) can be done in PTIME and we have the following result.

I Theorem 15. The bounded SORE-definability problem is in PTIME for unary regular
expressions in R(#) and natural numbers M encoded in unary.

From the aforementioned results and the ones in Section 3, we can see that if M is
encoded in unary, then there is an exponential decrease in the complexity when switching
from the SORE-definability problem to its bounded variant. For instance, for R(#), the
SORE-definability problem is EXPSPACE-complete, while the bounded SORE-definability
problem is coNP-complete if M is encoded in unary.
M is encoded in binary.
As mentioned above, AbsΣE ,M (E) can be computed in polynomial time even if M is encoded
in binary. Nevertheless, since M is encoded in binary, the complexity of step (3) may increase
exponentially.

Similar to the algorithm for Theorem 13, step (3) can also be done by guessing a word
w such that |w| ≤ M . Since M is encoded in binary, w can be exponentially large. Then
checking whether w ∈ L(E) and w ∈ L(Ec) can be done in exponential time and we get
a coNEXPTIME upper bound for bounded SORE-definability problem problem of R(#).
For the coNEXPTIME lower bound, we get a reduction from the complement of the
acceptance problem of nondeterministic exponential-time Turing machines. Therefore, we
obtain the following result.

I Theorem 16. The bounded SORE-definability problem is coNEXPTIME-complete for
R(#) and natural numbers M encoded in binary.

Next, we consider the case when E is a regular expression. Step (1) and (2) can still
be done in polynomial time. To check whether L(E) =≤M L(Ec), we can construct two
NFA from E and Ec respectively, guess a word w such that |w| ≤M , and check whether
w ∈ L(E) \ L(Ec) or w ∈ L(Ec) \ L(E). The nondeterministic algorithm uses polynomial
space. By Savitch’s Theorem [32], we conclude that the bounded SORE-definability problem
for regular expressions is in PSPACE. For the lower bound, we can directly use the same
reduction in Theorem 4, and let M = 2|E|. The correctness follows from the following
arguments: Since the number of states of the minimum DFA for E is at most M [17], it is
easy to check that there exists an SORE E1 such that L(E) =≤M L(E1) iff there exists an
SORE E2 such that L(E) = L(E2).

Ping Lu, Zhilin Wu, and Haiming Chen 22:13

I Corollary 17. The bounded SORE-definability problem is PSPACE-complete for regular
expressions and natural numbers M encoded in binary.

It is interesting to observe that the complexities of the SORE-definability problem and
its bounded variant are the same for regular expressions, while the complexities of the two
problems are different for R(#). This distinction is attributed to the following facts: (1)
given a regular expression E, L(E) = Σ∗E , if and only if, L(E) =≤2|E| Σ∗E ; while (2) given
E ∈ R(#), L(E) = Σ∗E , if and only if, L(E) =≤22|E| Σ∗E [31]. That is, to decide whether
L(E) = Σ∗E for E ∈ R(#), we have to check double-exponentially many words in L(E), while
for regular expressions, we only need to check exponentially many words. So the bounded
SORE-definability problem is simpler than the SORE-definability problem for R(#).

Given a regular expression E in R(#) over a unary alphabet, since the minimum DFA
for E has at most M = 22·|E|+4 + 1 states [27], we have the following results.

I Corollary 18. Over a unary alphabet, the bounded SORE-definability problem is Πp
2-

complete for R(#) and natural numbers M encoded in binary.

I Corollary 19. Over a unary alphabet, the bounded SORE-definability problem is coNP-
complete for regular expressions and natural numbers M encoded in binary.

5 Conclusion

In this paper, we study the complexity of the SORE-definability problem as well as its
bounded variant. The results of the paper were summarised in Table 1. As a by-product
of the results obtained in this paper, we also solved an open problem in [27] and showed
that over a unary alphabet, the definability problem of deterministic regular expressions is
Πp

2-complete for regular expressions with counting.
There are several directions for the future work. An obvious question left open in this

paper is whether the assumption M ≥ 2 · |ΣE | for the bounded SORE-definability problem
can be lifted. Without this assumption, given an SOA A, it is unclear whether it is still in
PTIME to decide whether there exists an SORE E1 such that L(E1) =≤M L(A). Another
interesting question is to investigate the definability problem for single occurrence regular
expressions with counting (SORE(#)). The main technical challenge is how to obtain a
candidate SORE(#). Similarly, one can also consider the CHARE-definability problem (see
[3, 28] for the definition of CHARE).

References
1 Geert Jan Bex, Wouter Gelade, Wim Martens, and Frank Neven. Simplifying XML Schema:

effortless handling of nondeterministic regular expressions. In SIGMOD, pages 731–744.
ACM, 2009.

2 Geert Jan Bex, Wouter Gelade, Frank Neven, and Stijn Vansummeren. Learning determin-
istic regular expressions for the inference of schemas from XML data. ACM Transactions
on the Web, 4(4):14, 2010.

3 Geert Jan Bex, Frank Neven, Thomas Schwentick, and Karl Tuyls. Inference of concise
DTDs from XML data. In VLDB, pages 115–126, 2006.

4 Geert Jan Bex, Frank Neven, Thomas Schwentick, and Stijn Vansummeren. Inference of
concise regular expressions and DTDs. ACM Transactions on Database Systems, 35(2):11,
2010.

5 Anne Brüggemann-Klein. Regular expressions into finite automata. Theoretical Computer
Science, 120(2):197–213, 1993.

MFCS 2017

22:14 The Complexity of SORE-definability Problems

6 Anne Brüggemann-Klein and Derick Wood. One-unambiguous regular languages. Inform-
ation and Computation, 140(2):229–253, 1998.

7 Haiming Chen and Ping Lu. Assisting the design of XML Schema: diagnosing nondetermin-
istic content models. In Web Technologies and Applications, pages 301–312. Springer, 2011.

8 Haiming Chen and Ping Lu. Checking determinism of regular expressions with counting.
Information and Computation, 241:302–320, 2015.

9 Dmitry Chistikov and Rupak Majumdar. Unary pushdown automata and straight-line
programs. In ICALP, pages 146–157. Springer, 2014.

10 Sang Cho and Dung T Huynh. The parallel complexity of finite-state automata problems.
Information and Computation, 97(1):1–22, 1992.

11 World Wide Web Consortium. http://www.w3.org/wiki/UniqueParticleAttribution.
12 Wojciech Czerwiński, Claire David, Katja Losemann, and Wim Martens. Deciding defin-

ability by deterministic regular expressions. In FOSSACS, pages 289–304, 2013.
13 Dominik D Freydenberger and Timo Kötzing. Fast learning of restricted regular expressions

and DTDs. Theory of Computing Systems, 57(4):1114–1158, 2015.
14 Wouter Gelade, Marc Gyssens, and Wim Martens. Regular expressions with counting:

Weak versus strong determinism. SIAM Journal on Computing, 41(1):160–190, 2012.
15 Victor Mikhaylovich Glushkov. The abstract theory of automata. Russian Mathematical

Surveys, 16(5):1, 1961.
16 Benoît Groz, Sebastian Maneth, and Sławek Staworko. Deterministic regular expressions

in linear time. In PODS, pages 49–60. ACM, 2012.
17 John E Hopcroft and Jeffrey D Ullman. Introduction to automata theory, languages, and

computation, first edition. Pearson, 1979.
18 Dag Hovland. Regular expressions with numerical constraints and automata with counters.

In ICTAC, pages 231–245, 2009.
19 Dag Hovland. The membership problem for regular expressions with unordered concaten-

ation and numerical constraints. In LATA, pages 313–324, 2012.
20 Dung T Huynh. Deciding the inequivalence of context-free grammars with 1-letter terminal

alphabet is Σp
2-complete. Theoretical Computer Science, 33(2-3):305–326, 1984.

21 Pekka Kilpeläinen. Checking determinism of XML Schema content models in optimal time.
Information Systems, 36(3):596–617, 2011.

22 Pekka Kilpeläinen and Rauno Tuhkanen. Regular Expressions with Numerical Occurrence
Indicators-preliminary results. In SPLST, pages 163–173, 2003.

23 Pekka Kilpeläinen and Rauno Tuhkanen. One-unambiguity of regular expressions with
numeric occurrence indicators. Information and Computation, 205(6):890–916, 2007.

24 Markus Latte and Matthias Niewerth. Definability by Weakly Deterministic Regular Ex-
pressions with Counters is Decidable. In MFCS, pages 369–381, 2015.

25 Ping Lu. Research on deterministic regular languages (in Chinese). PhD thesis, University
of Chinese Academy of Sciences, May 2014.

26 Ping Lu, Joachim Bremer, and Haiming Chen. Deciding Determinism of Regular Languages.
Theory of Computing Systems, 57(1):97–139, 2015.

27 Ping Lu, Feifei Peng, Haiming Chen, and Lixiao Zheng. Deciding determinism of unary
languages. Information and Computation, 245:181–196, 2015.

28 Wim Martens, Frank Neven, and Thomas Schwentick. Complexity of decision problems for
XML schemas and chain regular expressions. SIAM Journal on Computing, 39(4):1486–
1530, 2009.

29 Wim Martens, Frank Neven, Thomas Schwentick, and Geert Jan Bex. Expressiveness and
complexity of XML Schema. ACM Transactions on Database Systems, 31(3):770–813, 2006.

30 Robert McNaughton and Hisao Yamada. Regular expressions and state graphs for auto-
mata. IEEE Transactions on Electronic Computers, 1(EC-9):39–47, 1960.

http://www.w3.org/wiki/UniqueParticleAttribution

Ping Lu, Zhilin Wu, and Haiming Chen 22:15

31 Albert R Meyer and Larry J Stockmeyer. The equivalence problem for regular expressions
with squaring requires exponential space. In SWAT (FOCS), pages 125–129, 1972.

32 Walter J Savitch. Relationships between nondeterministic and deterministic tape complex-
ities. Journal of computer and system sciences, 4(2):177–192, 1970.

33 Marcus Schaefer and Christopher Umans. Completeness in the polynomial-time hierarchy:
A compendium. SIGACT news, 33(3):32–49, 2002.

34 Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring exponential time:
Preliminary report. In STOC, pages 1–9, 1973.

35 Eric van der Vlist. XML Schema. O’Reilly Media, Inc., 2002.
36 Klaus W Wagner. The complexity of combinatorial problems with succinct input repres-

entation. Acta Informatica, 23(3):325–356, 1986.

MFCS 2017

TC0 Circuits for Algorithmic Problems in
Nilpotent Groups
Alexei Myasnikov1 and Armin Weiß2

1 Stevens Institute of Technology, Hoboken, NJ, USA
2 Universität Stuttgart, Germany

Abstract
Recently, Macdonald et. al. showed that many algorithmic problems for finitely generated nilpo-
tent groups including computation of normal forms, the subgroup membership problem, the con-
jugacy problem, and computation of subgroup presentations can be done in LOGSPACE. Here
we follow their approach and show that all these problems are complete for the uniform circuit
class TC0 – uniformly for all r-generated nilpotent groups of class at most c for fixed r and c.

Moreover, if we allow a certain binary representation of the inputs, then the word problem
and computation of normal forms is still in uniform TC0, while all the other problems we examine
are shown to be TC0-Turing reducible to the problem of computing greatest common divisors
and expressing them as linear combinations.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.0 Discrete
Mathematics

Keywords and phrases nilpotent groups, TC0, abelian groups, word problem, conjugacy problem,
subgroup membership problem, greatest common divisors

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.23

1 Introduction

The word problem (given a word over the generators, does it represent the identity?) is
one of the fundamental algorithmic problems in group theory introduced by Dehn in 1911
[3]. While for general finitely presented groups all these problems are undecidable [22, 2],
for many particular classes of groups decidability results have been established – not just
for the word problem but also for a wide range of other problems. Finitely generated
nilpotent groups are a class where many algorithmic problems are (efficiently) decidable (with
some exceptions like the problem of solving equations – see e. g. [6]). In 1958, Mal’cev [17]
established decidability of the word and subgroup membership problem by investigating
finite approximations of nilpotent groups. In 1965, Blackburn [1] showed decidability of the
conjugacy problem. However, these methods did not allow any efficient (e. g. polynomial
time) algorithms. Nevertheless, in 1966 Mostowski provided “practical” algorithms for the
word problem and several other problems [18]. In terms of complexity, a major step was the
result by Lipton and Zalcstein [15] that the word problem of linear groups is in LOGSPACE.
Together with the fact that finitely generated nilpotent groups are linear (see e. g. [7, 10])
this gives a LOGSPACE solution to the word problem of nilpotent groups, which was later
improved to uniform TC0 by Robinson [23]. A typical algorithmic approach to nilpotent
groups is using so-called Mal’cev (or Hall–Mal’cev) bases (see e. g. [7, 10]), which allow
to carry out group operations by evaluating polynomials (see Lemma 2). This approach
was systematically used in [11] and [18] or – in the more general setting of polycyclic
presentations – in [24] for solving (among others) the subgroup membership and conjugacy

© Alexei Myasnikov and Armin Weiß;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 23; pp. 23:1–23:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 TC0 Circuits for Algorithmic Problems in Nilpotent Groups

problem of polycyclic groups. Recently in [19, 20] polynomial time bounds for the equalizer
and subgroup membership problems in nilpotent groups have been given. Finally, in [16] the
following problems were shown to be in LOGSPACE using the Mal’cev basis approach. Here,
Nc,r denotes the class of nilpotent groups of nilpotency class at most c generated by at most
r elements.

The word problem: given G ∈ Nc,r and g ∈ G, is g = 1 in G?
Given G ∈ Nc,r and g ∈ G, compute the (Mal’cev) normal form of g.
The subgroup membership problem: Given G ∈ Nc,r and g, h1, . . . , hn ∈ G, decide whether
g ∈ 〈h1, . . . , hn〉 and, if so, express g as a word over the subgroup generators h1, . . . , hn
(in [16] only the decision version was shown to be in LOGSPACE – for expressing g as a
word over the original subgroup generators a polynomial time bound was given).
Given G,H ∈ Nc,r andK = 〈g1, . . . , gn〉 ≤ G, together with a homomorphism ϕ : K → H

specified by ϕ(gi) = hi, and some h ∈ Im(ϕ), compute a generating set for ker(ϕ) and
find g ∈ G such that ϕ(g) = h.
Given G ∈ Nc,r and K = 〈g1, . . . , gn〉 ≤ G, compute a presentation for K.
Given G ∈ Nc,r and g ∈ G, compute a generating set for the centralizer of g.
The conjugacy problem: Given G ∈ Nc,r and g, h ∈ G, decide whether or not there exists
u ∈ G such that u−1gu = h and if so find such an element u.

Notice that these problems are not only of interest in themselves, but also might serve as
building blocks for solving the same problems in polycyclic groups – which are of particular
interest because of their possible application in non-commutative cryptography [4]. In this
work we follow [16] and extend these results in several ways:

We give a complexity bound of uniform TC0 for all the above problems.
In order to derive this bound, we show that the extended gcd problem with unary
coefficients is in TC0.
Our description of circuits is for the uniform setting where G ∈ Nc,r is part of the input
(in [16] the uniform setting is also considered; however, only in some short remarks).
Since nilpotent groups have polynomial growth, it is natural to allow compressed inputs:
we give a uniform TC0 solution for the word problem allowing words with binary exponents
as input – this contrasts with the situation with straight-line programs (i. e., context-
free grammars which produces precisely one word – another method of exponential
compression) as input: then the word problem is hard for C=L [12]. Thus, the difficulty of
the word problem with straight-line programs is not due to their compression but rather
due to the difficulty of evaluating a straight-line program.
We show that the other of the above problems are uniform-TC0-Turing-reducible to the
extended gcd problem (compute the greatest common divisor and express it as a linear
combination) when the inputs (both the ambient group and the subgroup etc.) are given
as words with binary exponents.

Thus, in the unary case we settle the complexity of the above problems completely. Moreover,
it also seems rather unlikely that the subgroup membership problem can be solved without
computing gcds – in this case our results on binary inputs would be also optimal. Altogether,
our results mean that many algorithmic problems are no more complicated in nilpotent
groups than in abelian groups. Notice that while in [16] explicit length bounds on the outputs
for all these problems are proven, we obtain polynomial length bounds simply by the fact
that everything can be computed in uniform TC0 (for which in the following we only write
TC0). Throughout the paper we follow the outline of [16]. For a concise presentation, we
copy many definitions from [16]. Most of our theorems involve two statements: one for unary
encoded inputs and one for binary encoded inputs. In order to have a concise presentation,
we always put them in one statement. We only consider finitely generated nilpotent groups
without mentioning that further.

A. Myasnikov and A. Weiß 23:3

Outline. We start with basic definitions on complexity as well as on nilpotent groups. In
Section 2 we describe how subgroups of nilpotent groups can be represented and develop
a “nice” presentation for all groups in Nc,r. Section 3 deals with the word problem and
computation of normal forms. Based on this we introduce the so-called matrix reduction
and solve the subgroup membership problem. Finally, in Section 5 we present our result for
the remaining of the above problems – the proofs are essentially repeated applications of the
matrix reduction. Due to space constraints many of the proofs are omitted – they can be
found in the full version on arXiv [21].

1.1 Preliminaries on Complexity
For a finite alphabet Σ, the set of words over Σ is denoted by Σ∗. Computation or decision
problems are given by functions f : ∆∗ → Σ∗ for some finite alphabets ∆ and Σ. A decision
problem (= formal language) L is identified with its characteristic function χL : ∆∗ → {0, 1}
with χL(x) = 1 if, and only if, x ∈ L. (In particular, the word and conjugacy problems can
be seen as functions Σ∗ → {0, 1}.) We use circuit complexity as described in [25].

Circuit Classes. The class TC0 is defined as the class of functions computed by families of
circuits of constant depth and polynomial size with unbounded fan-in Boolean gates (and,
or, not) and majority gates. A majority gate (denoted by Maj) returns 1 if the number of 1s
in its input is greater or equal to the number of 0s. In the following we always assume that
the alphabets ∆ and Σ are encoded over the binary alphabet {0, 1} such that each letter
uses the same number of bits. We say a function f is TC0-computable if f ∈ TC0.

In the following, we only consider Dlogtime-uniform circuit families and we simply
write TC0 as shorthand for Dlogtime-uniform TC0. Dlogtime-uniform means that there is a
deterministic Turing machine which decides in time O(logn) on input of two gate numbers
(given in binary) and the string 1n whether there is a wire between the two gates in the
n-input circuit and also computes of which type some gates is. Note that the binary encoding
of the gate numbers requires only O(logn) bits – thus, the Turing machine is allowed to use
time linear in the length of the encodings of the gates. For more details on these definitions
we refer to [25]. We have the inclusions AC0 $ TC0 ⊆ LOGSPACE ⊆ P (note that even
TC0 ⊆ P is not known to be strict).

Reductions. A function f is TC0-Turing-reducible to a function g if there is a Dlogtime-
uniform family of TC0 circuits computing f which, in addition to the Boolean and majority
gates, also may use oracle gates for g (i. e., gates which on input x output g(x)). This is
expressed by f ∈ TC0(g). Note that if f1, . . . , fk are in TC0, then TC0(f1, . . . , fk) = TC0.

In particular, if f and g are TC0-computable functions, then also the composition g ◦ f is
TC0-computable. We will extensively make use of this observation – which will also guarantee
the polynomial size bound on the outputs of our circuits without additional calculations.

We will also use another fact frequently without giving further reference: on input of two
alphabets Σ and ∆ (coded over the binary alphabet), a list of pairs (a, va) with a ∈ Σ and
va ∈ ∆∗ such that each a ∈ Σ occurs in precisely one pair, and a word w ∈ Σ∗, the image
ϕ(w) under the homomorphism ϕ defined by ϕ(a) = va can be computed in TC0 [13].

Encoding numbers: unary vs. binary. There are essentially two ways of representing integer
numbers: the usual way as a binary number where a string a0 · · · an with ai ∈ {0, 1} represents∑
ai2n−i, and as a unary number where k ∈ N is represented by 1k = 11 · · · 1︸ ︷︷ ︸

k

(respectively
by 0n−k1k if n is the number of input bits).

MFCS 2017

23:4 TC0 Circuits for Algorithmic Problems in Nilpotent Groups

We will state most results in this paper with both representations. The unary representa-
tion corresponds to group elements given as words over the generators, whereas the binary
encoding will be used if inputs are given in a compressed form.

Arithmetic in TC0. Iterated Addition (resp. Iterated Multiplication) are the
following computation problems: On input of n binary integers a1, . . . , an each having n bits
(i. e., the input length is N = n2), compute the binary representation of the sum

∑n
i=1 ai

(resp. product
∏n
i=1 ai). For Integer Division the input are two binary n-bit integers a, b;

the binary representation of the integer c = ba/bc has to be computed. The first statement
of Theorem 1 is a standard fact, see [25]; the other statements are due to Hesse, [8, 9].

I Theorem 1 ([8, 9, 25]). The problems Iterated Addition, Iterated Multiplication,
Integer Division are all in TC0 no matter whether inputs are given in unary or binary.

Note that if the numbers a and b are encoded in unary (as strings 1a and 1b), division can
be seen to be in TC0 very easily: just try for all 0 ≤ c ≤ a whether 0 ≤ a− bc < b.

Representing groups for algorithmic problems. We consider finitely generated groups G
together with finite generating sets A. Group elements are represented as words over the
generators and their inverses (i. e., as elements of (A ∪ A−1)∗). We make no distinction
between words and the group elements they represent. Whenever it might be unclear whether
we mean equality of words or of group elements, we write “g = h in G” for equality in G.

Words over the generators ±1 of Z correspond to unary representation of integers. As
a generalization of binary encoded integers, we introduce the following notion: a word
with binary exponents is a sequence w1, . . . , wn where the wi are from a fixed generating
set of the group together with a sequence of exponents x1, . . . , xn where the xi ∈ Z are
encoded in binary. The word with binary exponents represents the word (or group element)
w = wx1

1 · · ·wxnn . Note that in a fixed nilpotent group every word of length n can be rewritten
as a word with binary exponents using O(logn) bits (this fact is well-known and also a
consequence of Theorem 5 below); thus, words with binary exponents are a natural way of
representing inputs for algorithmic problems in nilpotent groups.

1.2 Preliminaries on Nilpotent groups and Mal’cev coordinates
Let G be a group. For x, y ∈ G we write [x, y] = x−1y−1xy for the commutator of x and y.
For subgroups H1, H2 ≤ G, we have [H1, H2] = 〈{[h1, h2] | h1 ∈ H1, h2 ∈ H2}〉. A group G
is called nilpotent if it has a finite central series, i.e.

G = G1 ≥ G2 ≥ · · · ≥ Gc ≥ Gc+1 = 1 (1)

such that [G,Gi] ≤ Gi+1 for all i = 1, . . . , c. If G is finitely generated, so are the abelian quo-
tients Gi/Gi+1, 1 ≤ i ≤ c. Let ai1, . . . , aimi be a basis of Gi/Gi+1, i.e. a generating set such
that Gi/Gi+1 has a presentation

〈
ai1, . . . , aimi

∣∣aeijij , [aik, ai`], for j ∈ Ti, k, ` ∈ {1, . . . ,mi}
〉

, where Ti ⊆ {1, . . . ,mi} (here T stands for torsion) and eij ∈ Z>0 (be aware that we ex-
plicitly allow eij = 1, which is necessary for our definition of quotient presentations in
Section 2). Formally, we put eij =∞ for j /∈ Ti. We call A = (a11, a12, . . . , acmc) a Mal’cev
basis associated to the central series (1). Sometimes we use A interchangeably also for the
set A = {a11, a12, . . . , acmc}.

For convenience, we will also use a simplified notation, in which the generators aij and
exponents eij are renumbered by replacing each subscript ij with j+

∑̀
<j

m`, so the generating

A. Myasnikov and A. Weiß 23:5

sequence A can be written as A = (a1, . . . , am). We allow the expression ij to stand for
j +

∑̀
<j

m` in other notations as well. We also denote T = {i | ei < ∞}. By the choice of

{a1, . . . , am}, every element g ∈ G may be written uniquely in the form g = aα1
1 · · · aαmm ,

where αi ∈ Z and 0 ≤ αi < ei whenever i ∈ T . The m-tuple (α1, . . . , αm) is called the
coordinate vector or Mal’cev coordinates of g and is denoted Coord(g), and the expression
aα1

1 · · · aαmm is called the (Mal’cev) normal form of g. We also denote αi = Coordi(g).
To a Mal’cev basis A we associate a presentation of G as follows. For each 1 ≤ i ≤ m, let

ni be such that ai ∈ Gni Gni+1. If i ∈ T , then aeii ∈ Gni+1, hence a relation

aeii = aµi`` · · · a
µim
m (2)

holds in G for µij ∈ Z and ` > i such that a`, . . . , am ∈ Gni+1. We call this the power
relation for ai. Let 1 ≤ i < j ≤ m. Since the series (1) is central, relations of the form

ajai = aiaja
αij`
` · · · aαijmm a−1

j ai = aia
−1
j a

βij`
` · · · aβijmm (3)

hold in G for αijk, βijk ∈ Z and l > j such that a`, . . . , am ∈ Gnj+1. Now, G is the group
with generators {a1, . . . , am} subject to the relation of the the form (2)–(3).

A presentation with relations of the form (2)–(3) for all i resp. i and j is called a nilpotent
presentation. Indeed, any presentation of this form will define a nilpotent group. It is called
consistent if the order of ai modulo 〈ai+1, . . . , am〉 is precisely ei for all i. While presentations
of this form need not, in general, be consistent, those derived from a central series of a group
G as above are consistent. Given a consistent nilpotent presentation, there is an easy way to
solve the word problem: simply apply the rules of the form (3) to move all occurrences of
a±1

1 in the input word to the left, then apply the power relations (2) to reduce their number
modulo e1; finally, continue with a2 and so on.

Multiplication functions. An crucial feature of the coordinate vectors for nilpotent groups
is that the coordinates of a product (aα1

1 · · · aαmm)(aβ1
1 · · · aβmm) may be computed as a “nice”

function (polynomial if T = ∅) of the integers α1, . . . , αm, β1, . . . , βm.

I Lemma 2 ([7, 10]). Let G be a nilpotent group with Mal’cev basis a1, . . . , am and T = ∅.
There exist p1, . . . , pm ∈ Z[x1, . . . , xm, y1, . . . , ym] and q1, . . . , qm ∈ Z[x1, . . . , xm, z] such
that for g, h ∈ G with Coord(g) = (γ1, . . . , γm) and Coord(h) = (δ1, . . . , δm) and l ∈ Z we
have
(i) Coordi(gh) = pi(γ1, . . . , γm, δ1, . . . , δm),
(ii) Coordi(gl) = qi(γ1, . . . , γm, l),
(iii) Coord1(gh) = γ1 + δ1 and Coord1(gl) = lγ1.

Notice that an explicit algorithm to construct the polynomials pi, qi is given in [14]. For
further background on nilpotent groups we refer to [7, 10].

2 Presentation of subgroups

Before we start with algorithmic problems, we introduce a canonical way how to represent
subgroups of nilpotent groups. This is important for two reasons: first, of course we need it
to solve the subgroup membership problem, and, second, for the uniform setting it allows us
to represent nilpotent groups as free nilpotent group modulo a kernel which is represented as
a subgroup. Let h1, . . . , hn be elements of G given in normal form by hi = aαi11 · · · aαimm , for

MFCS 2017

23:6 TC0 Circuits for Algorithmic Problems in Nilpotent Groups

i = 1, . . . , n, and let H = 〈h1, . . . , hn〉. We associate the matrix of coordinates

A =

 α11 · · · α1m
...

. . .
...

αn1 · · · αnm

 , (4)

to the tuple (h1, . . . , hn) and conversely, to any n×m integer matrix, we associate an n-tuple
of elements of G, whose Mal’cev coordinates are given as the rows of the matrix, and the
subgroup H generated by the tuple. For each i = 1, . . . , n where row i is non-zero, let πi be
the column of the first non-zero entry (‘pivot’) in row i. The sequence (h1, . . . , hn) is said
to be in standard form if the matrix of coordinates A is in row-echelon form and its pivot
columns are maximally reduced, more specifically, if A satisfies the following properties:
(i) all rows of A are non-zero (i.e. no hi is trivial),
(ii) π1 < π2 < · · · < πs (where s is the number of pivots),
(iii) αiπi > 0, for all i = 1, . . . , n,
(iv) 0 ≤ αkπi < αiπi , for all 1 ≤ k < i ≤ s
(v) if πi ∈ T , then αiπi divides eπi , for i = 1, . . . , s.
The sequence (resp. matrix) is called full if in addition
(vi) H ∩ 〈ai, ai+1, . . . , am〉 is generated by {hj | πj ≥ i}, for all 1 ≤ i ≤ m.
Note that {hj | πj ≥ i} consists of those elements having 0 in their first i− 1 coordinates. It
is an easy exercise (see also [16]) to show that 6 holds for a given i if and only if

for all 1 ≤ k < j ≤ s with πk < i, h−1
k hjhk and hkhjh−1

k are elements of 〈hl | l > k 〉, and
for all 1 ≤ k ≤ s with πk < i and πk ∈ T , h

eπk/αkπk
k ∈ 〈hl | l > k 〉.

We will use full sequences and the associated matrices in full form interchangeably without
mentioning it explicitly. For simplicity we assume that the inputs of algorithms are given as
matrices. The importance of full sequences is described in the following lemma – a proof can
be found in [24] Propositions 9.5.2 and 9.5.3.

I Lemma 3 ([16, Lem. 3.1]). Let H ≤ G. There is a unique full sequence U = (h1, . . . , hs)
that generates H. We have s ≤ m and H = {hβ1

1 · · ·hβss |βi ∈ Z and 0 ≤ βi < eπi if πi ∈ T }.

Thus, computing a full sequence will be the essential tool for solving the subgroup membership
problem. Before we focus on subgroup membership, we will first solve the word problem and
introduce how the nilpotent group can be part of the input.

Quotient Mal’cev presentations. Let c, r ∈ N be fixed. The free nilpotent group Fc,r of
class c and rank r is defined as Fc,r = 〈 a1, . . . , ar | [x1, . . . , xc+1] = 1 for x1, . . . , xc+1 ∈ Fc,r 〉
where [x1, . . . , xc+1] = [[x1, . . . , xc], xc+1], i. e., Fc,r is the r-generated group only subject to
the relations that weight c+ 1 commutators are trivial. Throughout, we fix a Mal’cev basis
A = (a1, . . . , am) (which we call the standard Mal’cev basis) associated to the lower central
series of Fc,r such that the associated nilpotent presentation consists only of relations of
the form (3) (i. e., T = ∅ – such a presentation exists since Fc,r is torsion-free), a1, . . . , ar
generates Fc,r, and all other Mal’cev generators are iterated commutators of a1, . . . , ar.

Denote by Nc,r the set of r-generated nilpotent groups of class at most c. Every group
G ∈ Nc,r is a quotient of the free nilpotent group Fc,r, i. e., G = Fc,r/N for some normal
subgroup N ≤ Fc,r. Assume that T = (h1, . . . , hs) is a full sequence generating N . Adding
T to the set of relators of the free nilpotent group yields a new nilpotent presentation.
This presentation will be called quotient presentation of G. For inputs of algorithms, we
assume that a quotient presentation is always given as its matrix of coordinates in full form.

A. Myasnikov and A. Weiß 23:7

Depending whether the entries of the matrix are encoded in unary or binary, we call the
quotient presentation be given in unary or binary.

I Lemma 4 ([16, Prop. 5.1]). Let c and r be fixed integers and let A = (a1, . . . , am) be the
standard Mal’cev basis of Fc,r. Moreover, denote by S the set of relators of Fc,r with respect
to A. Let G ∈ Nc,r with G = Fc,r/N and let T be the full-form sequence for the subgroup N
of Fc,r. Then, 〈A | S ∪ T 〉 is a consistent nilpotent presentation of G.

For a proof of Lemma 4 see [21]. For the following we always assume that a quotient
presentation is part of the input, but c and r are fixed. Later, we will show how to compute
quotient presentations from an arbitrary presentation.

I Remark. Lemma 4 ensures that each group element has a unique normal form with respect
to the quotient presentation; thus, it guarantees that all our manipulations of Mal’cev
coordinates are well-defined.

3 Word problem and computation of Mal’cev coordinates

In this section we deal with the word problem of nilpotent groups, which is well-known to be
in TC0 [23]. Here, we generalize this result by allowing words with binary exponents (recall
that word with binary exponents is a sequence w = wx1

1 · · ·wxnn where wi ∈ {a1, . . . , am}
and the xi ∈ Z). By using words with binary exponents the input can be compressed
exponentially – making the word problem, a priori, harder to solve. Nevertheless, it turns
out that the word problem still can be solved in TC0 when allowing the input to be given as
a word with binary exponents. Note that this contrasts with the situation where the input is
given as straight-line program (which like words with binary exponents allow an exponential
compression) – then the word problem is complete for the counting class C=L [12].

I Theorem 5. Let c, r ≥ 1 be fixed and let (a1, . . . , am) be the standard Mal’cev basis of Fc,r.
The following problem is TC0-complete: on input of G ∈ Nc,r given as a binary encoded
quotient presentation and a word with binary exponents w = wx1

1 · · ·wxnn , compute integers
y1, . . . , ym (in binary) such that w = ay1

1 · · · aymm in G and 0 ≤ yi < ei for i ∈ T . Moreover,
if the input is given in unary (both G and w), then the output is in unary.

Note that the statement for unary inputs is essentially the one of [23]. Be aware that in
the formulation of the theorem, T and ei for i ∈ T depend on the input group G. These
parameters can be read from the full matrix of coordinates representing G (recall that πi
denotes the column index of the i-th pivot): T = {πi | i ∈ {1, . . . , n}} (all columns which
have a pivot) and ei = αji if πj = i . As an immediate consequence of Theorem 5, we obtain:

I Corollary 6. Let c, r ≥ 1 be fixed. The uniform, binary version of the word problem for
groups in Nc,r is TC0-complete (where the input is given as in Theorem 5).

The proof of Theorem 5 follows the outline given in Section 1.2; however, we cannot apply
the rules (2)–(3) one by one. Instead we do only two steps for each generator: first apply all
possible rules (3) in one step and then apply the rules (2) in one step.

Proof of Theorem 5. The hardness part is clear since already the word problem of Z is
TC0-complete. For describing a TC0 circuit, we proceed by induction along the standard
Mal’cev basis (a1, . . . , am) of the free nilpotent group Fc,r. If w does not contain any letter
a1, we have y1 = 0 and we can compute yi for i > 1 by induction.

MFCS 2017

23:8 TC0 Circuits for Algorithmic Problems in Nilpotent Groups

Otherwise, we rewrite w as ay1
1 uv (with 0 ≤ y1 < e1 if 1 ∈ T) such that u and v are

words with binary exponents not containing any a1s. Once this is completed, uv can be
rewritten as ay2

2 · · · aymm by induction. For computing y1, u and v, we proceed in two steps:
First, we rewrite w as aỹ1

1 v with ỹ1 =
∑
wi=a1

xi (this is possible by Lemma 2 (iii)).
The exponent ỹ1 can be computed by iterated addition, which by Theorem 1 is in TC0 (in
the unary case ỹ1 can be written down in unary). Now, v consists of what remains from
w after a1 has been “eliminated”: for every position i in w with wi 6= a1, we compute
zi =

∑
j>i

wj=a1
xj using iterated addition. Let wi = ak. By Lemma 2 (i) there are fixed

polynomials pk,k+1, . . . , pk,m ∈ Z[x, y] such that in the free nilpotent group holds axka
y
1 =

ay1a
x
k a

pk,k+1(x,y)
k+1 · · · apk,m(x,y)

m for all x, y ∈ Z. Hence, in order to obtain w̃, it remains to
replace every wxii with wi = a1 by the empty word and every wxii with wi = ak 6= a1 by
axik a

pk,k+1(xi,zi)
k+1 · · · apk,m(xi,zi)

m , which is a word with binary exponents (resp. as a word of
polynomial length in the unary case), for k = 2, . . . ,m. The exponents can be computed
in TC0 by Theorem 1. Since the pk,i are bounded by polynomials, in the unary case,
axik a

pk,k+1(xi,zi)
k+1 · · · apk,m(xi,zi)

m can be written as a word without exponents.
The second step is only applied if 1 ∈ T (as explained above, this can be decided and

ei can be read directly from the quotient presentation by checking whether there is a pivot
in the first column) – otherwise y1 = ỹ1 and u is the empty word. We rewrite aỹ1

1 to ay1
1 u

with y1 = ỹ1 mod e1 and a word with binary exponents u not containing any a1. Again y1
can be computed in TC0 by Theorem 1. Let ae1

1 = aµ12
2 · · · aµ1m

m be the power relation for a1
(which can be read from the quotient presentation – it is just the row where the pivot is in
the first column) and write ỹ1 = s · e1 + y1. Now, u should be equal to (aµ12

2 · · · aµ1m
m)s in

Fc,r. We use the fixed polynomials qi ∈ Z[x1, . . . , xm, z] from Lemma 2 (ii) for Fc,r yielding
u = a

q2(0,µ12,...,µ1m,s)
2 · · · aqm(0,µ12,...,µ1m,s)

m (which, in the binary setting, is a word with binary
exponents, and in the unary setting a word without exponents of polynomial length). Now,
we have w = ay1

1 uv in G as desired. J

4 Matrix reduction and subgroup membership problem

Before we solve the subgroup membership problem, let us take a look at one essential step,
namely the problem of computing greatest common divisors. Indeed, consider the nilpotent
group Z and let a, b, c ∈ Z. Then c ∈ 〈a, b〉 if, and only if, gcd(a, b) | c.

Binary gcds. The extended gcd problem (ExtGCD) is the following problem: on input of
binary encoded numbers a1, . . . , an ∈ Z, compute x1, . . . , xn ∈ Z such that x1a1+· · ·+xnan =
gcd(a1, . . . , an). Clearly this can be done in P using the Euclidean algorithm, but it is not
known whether it is actually in NC. Since we need to compute greatest common divisors, we
will reduce the subgroup membership problem to the computation of gcds.

Unary gcds. Computing the gcd of numbers encoded in unary is straightforward in TC0 by
an exhaustive search. Also, for just two numbers a, b ∈ Z the gcd easily can be expressed as a
linear combination in TC0: there are x, y ≤ max {|a| , |b|} such that ax+ by = gcd(a, b). Now,
x, y can be computed in TC0 by simply checking all values with |x| , |y| ≤ max {|a| , |b|}. Sim-
ilarly, there are x1, . . . , xn ≤ |max{|a1|, . . . , |an|}| with x1a1 + · · ·+ xnan = gcd(a1, . . . , an).
However, for computing these xi, we cannot check all possible combinations of values in TC0

because there are |max{|a1|, . . . , |an|}|n (i. e., exponentially) many. Expressing the gcd as a
linear combination can be viewed as a linear equation with integral coefficients. Recently,
in [5, Thm. 3.14] it has been shown that, if all the coefficients are given in unary, it can be

A. Myasnikov and A. Weiß 23:9

decided in TC0 whether such an equation or a system of a fixed number of equations has
a solution. Since from the proof of [5, Thm. 3.14] it is not obvious how to find an actual
solution, we prove the following result in our full version on arXiv [21]:

I Proposition 7. The following problem is in TC0: Given integers a1, . . . , an in unary, com-
pute x1, . . . , xn ∈ Z (either in unary or binary) such that x1a1 + · · ·+xnan = gcd(a1, . . . , an)
and |xi| ≤ (n+ 1) (max{|a1|, . . . , |an|})2.

Matrix reduction. The matrix reduction procedure converts an arbitrary matrix of coordi-
nates into its full form and, thus, is an essential step for solving the subgroup membership
problem and several other problems. It was first described in [24] – however, without a
precise complexity estimate. In this section, we repeat the presentation from [16] and show
that for fixed c and r, it can be actually computed uniformly for groups in Nc,r in TC0 – in
the case that the inputs are given in unary (as words). If the inputs are represented as words
with binary exponents, then we still can show that it is TC0-Turing-reducible to ExtGCD.
In Section 2, we defined the matrix representation of subgroups of nilpotent groups. We
adopt all notation from Section 2.

As before, let c, r ∈ N be fixed and let (a1, . . . , am) be the standard Mal’cev basis of Fc,r.
Let G ∈ Nc,r be given as quotient presentation, i. e., as a matrix in full form (either with
unary or binary coefficients). We define the following operations on tuples (h1, . . . , hn) (our
subgroup generators) of elements of G and the corresponding operations on the associated
matrix, with the goal of converting (h1, . . . , hn) to a sequence in full form generating the
same subgroup H = 〈h1, . . . , hn〉:
1. Swap hi with hj . This corresponds to swapping row i with row j.
2. Replace hi by hihlj (i 6= j, l ∈ Z). This corresponds to replacing row i by Coord(hihlj).
3. Add or remove a trivial element from the tuple. This corresponds to adding or removing

a row of zeros; or (3’) a row of the form (0 . . . 0 ei αi+1 . . . αm), where i ∈ T and
a−eii = a

αi+1
i+1 · · · aαmm .

4. Replace hi with h−1
i . This corresponds to replacing row i by Coord(h−1

i).
5. Append an arbitrary product hl1i1 · · ·h

lk
ik

with i1, . . . , ik ∈ {1, . . . , n} and l1, . . . , lk ∈ Z to
the tuple: add a new row with Coord(hl1i1 · · ·h

lk
ik

).
Clearly, all these operations preserve H.

I Lemma 8. On input of a quotient presentation of G ∈ Nc,r in unary (resp. binary) and
a matrix of coordinates A given in unary (resp. binary), operations (1)–(5) can be done in
TC0. The output matrix will be also encoded in unary (resp. binary). For operations (2) and
(5), we require that the exponents l, l1, . . . , lk are given in unary (resp. binary).

Moreover, as long as the rows in the matrix which are changed are pairwise distinct, a
polynomial number of such steps can be done in parallel in TC0.

Proof. Operations (1) and (3), clearly can be done in TC0. Notice that operation (3’) means
simply that a row of the quotient presentation of G is appended to the matrix.

In the unary case, it follows directly from Theorem 5 that operations (2), (4), and (5) are
in TC0 because, since l, l1, . . . , lk are given in unary, the respective group elements can be
written down as words.

In the case of binary inputs, (5) works as follows ((2) and (4) analogously): by Lemma 2
(ii), there are functions q1, . . . , qm ∈ Z[x1, . . . , xm, z] such that for every h ∈ Fc,r with
Coord(h) = (γ1, . . . , γm) anda l ∈ Z, we have Coordi(hl) = qi(γ1, . . . , γm, l) in Fc,r. These
functions can be used to compute Coord(hljij) for j = 1, . . . , k. After that, hl1i1 · · ·h

lk
ik

can be
written down as word with binary exponents and Theorem 5 can be applied. J

MFCS 2017

23:10 TC0 Circuits for Algorithmic Problems in Nilpotent Groups

Using the row operations defined above, in [16] it is shown how to reduce any coordinate
matrix to its unique full form. Let us repeat these steps:

Let A0 be a matrix of coordinates, as in (4) in Section 2. Recall that πk denotes the
column index of the k-th pivot (of the full form of A0). We produce matrices A1, . . . , As,
where s is the number of pivots in the full form of A0, such that for every k = 1, . . . , s
the first πk columns of Ak form a matrix satisfying conditions 2-5 of being a full sequence,
condition 6 is satisfied for all i < πk+1, and As is the full form of A0. Here we formally
denote πs+1 = m + 1. Set π0 = 0 and assume that Ak−1 has been constructed for some
k ≥ 1. In the steps below we construct Ak. We let n and m denote the number of rows
and columns, respectively, of Ak−1. At all times during the computation, hi denotes the
group element corresponding to row i of Ak and αij denotes the (i, j)-entry of Ak, which is
Coordj(hi). These may change after every operation.
Step 1. Locate the column πk of the next pivot, which is the minimum integer πk−1 < πk ≤ m

such that αiπk 6= 0 for at least one k ≤ i ≤ n. If no such integer exists, then k−1 = s and
As is already constructed. Otherwise, set Ak to be a copy of Ak−1 and denote π = πk.
Compute a linear expression of d = gcd(αkπ , . . . , αnπ) = lkαkπ + · · ·+ lnαnπ . Let hn+1 =
hlkk · · ·hlnn and note that hn+1 has coordinates of the form Coord(hn+1) = (0, . . . , 0, d, . . .)
with d occurring in position π. Perform operation 5 to append hn+1 as row n+ 1 of Ak.

Step 2. For each i = k, . . . , n, perform operation 2 to replace row i by Coord(hi · h
−αiπ/d
n+1).

and for each i = 1, . . . , k − 1, use 2 to replace row i by Coord(hi · h
−bαiπ/dc
n+1). After that,

swap row k with row n + 1 using 1. At this point, properties 2-4 hold on the first k
columns of Ak.

Step 3. If π ∈ T , we additionally ensure condition 5 as follows. Perform row operation (3’),
with respect to π, to append a trivial element hn+2 with Coord(hn+2) = (0, . . . , 0, eπ , . . .)
to Ak. Let δ = gcd(d, eπ) and compute the linear expression δ = n1d + n2eπ , with
|n1|, |n2| ≤ max{d, eπ}. Let hn+3 = hn1

k h
n2
n+2 and append this row to Ak, as row n+ 3.

Note that Coord(hn+3) = (0, . . . , 0, δ, . . .), with δ in position π. Replace row k by
Coord(hk · h−d/δn+3) and row n + 2 by Coord(hn+2 · h

−eπ/δ
n+3), producing zeros in column

π in these rows. Swap row k with row n + 3. At this point, 2, 3, and 5 hold (for the
first πk columns) but 4 need not, since the pivot entry is now δ instead of d. For each
j = 1, . . . , k − 1, replace row j by Coord(hj · h

−bαjπ/δc
k), ensuring 4.

Step 4. Identify the next pivot πk+1 (like in Step 1). If πk is the last pivot, we set πk+1 =
m + 1. We now ensure condition 6 for i < πk+1. Observe that Steps 1-3 preserve
〈hj | πj ≥ i 〉 for all i < πk. Hence 6 holds in Ak for i < πk since it holds in Ak−1 for the
same range. Now consider i in the range πk ≤ i < πk+1. It suffices to establish (vi.i) for all
j > k and (vi.ii) for πk only. To obtain (vi.i), notice that h−1

k hjhk, hkhjh
−1
k ∈ 〈h` | ` > k 〉

if, and only if, [hj , h±1
k] ∈ 〈h` | ` > k 〉. Further, note that the subgroup generated by

Sj = {1, hj , [hj , hk], . . . , [hj , hk, . . . , hk]}, where hk appears m − πk times in the last
commutator, is closed under commutation with hk since if hk appears more than m− πk
times then the commutator is trivial. An inductive argument shows that the subgroup
〈Sj〉 coincides with 〈h−`k hjh

`
k | 0 ≤ ` ≤ m− πk〉. Similar observations can be made for

conjugation by h−1
k . Therefore, appending via operation 5 rows Coord(h−`k hjh

`
k) for all

1 ≤ |`| ≤ m − πk and all k < j ≤ n + 3 delivers (vi.i) for all j > k. Note that (vi.i)
remains true for i < πk.
To obtain (vi.ii), in the case πk ∈ T , we add row Coord(hek/αkπkk). Note that this element
commutes with hk and therefore (vi.i) is preserved.

Step 5. Using operation 3, eliminate all zero rows. The matrix Ak is now constructed.
We have to show that each step can be performed in TC0 given that all Mal’cev coordinates

A. Myasnikov and A. Weiß 23:11

are encoded in unary (resp. in TC0(ExtGCD) if Mal’cev coordinates are encoded in binary).
Since the total number of steps is constant (only depending on the nilpotency class and
number of generators), this gives a TC0 (resp. TC0(ExtGCD)) circuit for computing the
full form of a given subgroup.
Step 1. The next pivot can be found in TC0 since it is simply the next column in the matrix

with a non-zero entry, which can be found as a simple Boolean combination of test
whether the entries are zero. In the unary case, by Proposition 7, d = gcd(αkπ , . . . , αnπ)
can computed in TC0 together with lk, . . . , ln encoded in unary such that d = lkαkπ +
· · ·+ lnαnπ . Now, by Lemma 8, Step 1 can be done in TC0.
In the binary case, d and lk, . . . , ln can be computed using ExtGCD. Hence, by Lemma 8,
Step 1 can be done in TC0(ExtGCD).

Step 2. The numbers bαiπ/dc (either in unary or binary) can be computed in TC0 for all
i in parallel by Theorem 1. After that one operation (2) is applied to each row of the
matrix. By Lemma 8, this can be done in parallel for all rows in TC0. Finally, swapping
rows k and n+ 1 can be done in TC0.

Step 3. As explained in Section 3, T and ei for i ∈ T can be read directly from the
quotient presentation. Thus, it can be decided in TC0 whether Step 3 has to be executed.
Appending a new row is in TC0. Computing gcd(d, eπ) = d = n1dn2eπ is in TC0 by
Proposition 7 (in the unary case) and in TC0(ExtGCD) in the binary case. After that
one operation (5) is followed by two operations (2), one operation (1), and, finally, k − 1
times operation (2), which all can be done in TC0 again by Lemma 8.

Step 4. The next pivot can be found in TC0 as outlined in Step 1. After that, Step 4 consists
of an application of a constant number (only depending on the nilpotency class and
number of generators) of operations (5) and thus, by Lemma 8, is in TC0.

Step 5. Clearly that is in TC0.
Thus, we have completed the proof of our main result:

I Theorem 9. Let c, r ∈ N be fixed. The following problem is in TC0: given a unary encoded
quotient presentation of G ∈ Nc,r and h1, . . . , hn ∈ G, compute the full form of the associated
matrix of coordinates encoded in unary and hence the unique full-form sequence (g1, . . . , gs)
generating 〈h1, . . . , hn〉. Moreover, if the G and h1, . . . , hn are given in binary, then the
full-form sequence with binary coefficients can be computed in TC0(ExtGCD).

Subgroup membership problem. As an easy application of the matrix reduction we can
solve the subgroup membership problem in TC0 – for a proof details see [21].

I Corollary 10. Let c, r ∈ N be fixed. The following problem is in TC0 (resp. TC0(ExtGCD)
for binary inputs): given a quotient presentation of G ∈ Nc,r, elements h1, . . . , hn ∈ G and
h ∈ G, decide whether or not h is an element of the subgroup H = 〈h1, . . . , hn〉.

Moreover, if h ∈ H, the circuit computes the unique expression h = gγ1
1 · · · gγss where

(g1, . . . , gs) is the full-form sequence for H with the γi encoded in unary (resp. binary).
Alternatively, for unary inputs, the output can be given as word h = hε1

i1
· · ·hεtit where

ij ∈ {1, . . . , n} and εj = ±1.

Note that we do not know whether there is an analog of the second type of output for binary
inputs. A possible way of expressing the output would be as a word with binary exponents
over h1, . . . , hn. However, simply applying the same procedure as for unary inputs will not
lead to a word with binary exponents.

MFCS 2017

23:12 TC0 Circuits for Algorithmic Problems in Nilpotent Groups

Subgroup presentations. The full-form sequence associated to a subgroup H forms a
Mal’cev basis for H. This allows us to compute a consistent nilpotent presentation for H.
Note, however, that the resulting presentation is not a quotient presentation (although it can
be transformed into one, see Proposition 14) – partly this is due to the fact that, in general,
H /∈ Nc,r. The following is the TC0 version of [16, Thm. 3.11]:

I Corollary 11. Let c, r ∈ N be fixed. The following is in TC0 for unary inputs and in
TC0(ExtGCD) for binary inputs:

Input: a quotient presentation for G ∈ Nc,r and elements h1, . . . , hn ∈ G.
Output: a consistent nilpotent presentation for H = 〈h1, . . . , hn〉 given by a list of

generators (g1, . . . , gs) and numbers µij , αijk, βijk ∈ Z encoded in unary (resp. binary) for
1 ≤ i < j < k ≤ s representing the relations (2)-(3).

5 More algorithmic problems

The next two theorems are applications of Theorem 9. Their proofs (in [21]) follow essentially
the proofs of their counterparts Theorems 4.1 and 4.6 in [16].

I Theorem 12 (Kernels and preimages). Let c, r ∈ N be fixed. The following is in TC0 for
unary inputs and in TC0(ExtGCD) for binary inputs: On input of

G,H ∈ Nc,r given as quotient presentations,
a subgroup K = 〈g1, . . . , gn〉 ≤ G,
a list of elements h1, . . . , hn defining a homomorphism ϕ : K → H via ϕ(gi) = hi, and
optionally, an element h ∈ H guaranteed to be in the image of ϕ,

compute a generating set X for the kernel of ϕ, and an element g ∈ G such that ϕ(g) = h.
In case of unary inputs, X and g will be returned as words, and for binary inputs, as

words with binary exponents.

I Theorem 13 (Conjugacy Problem). Let c, r ∈ N be fixed. The following is in TC0 for
unary inputs and in TC0(ExtGCD) for binary inputs: On input of some G ∈ Nc,r given as
quotient presentation and elements g, h ∈ G, either produce some u ∈ G such that g = u−1hu,
or determine that no such element u exists. In case of unary inputs, u will be returned as a
word, for binary inputs, as a word with binary exponents.

Computing quotient presentations. The results in the previous sections always required
that the group is given as a quotient presentation. However, we can use Theorem 9 to
transform an arbitrary presentation with at most r generators of a group in Nc,r into a
quotient presentation. For a proof see [21].

I Proposition 14. Let c and r be fixed integers. The following is in TC0: given an arbitrary
finite presentation with generators a1, . . . , ar of a group G ∈ Nc,r (as a list of relators given
as words over {a1, . . . , ar}±1), compute a quotient presentation of G (encoded in unary) and
an explicit isomorphism. Moreover, if the relators are given as words with binary exponents,
then the binary encoded quotient presentation can be computed in TC0(ExtGCD).

I Remark. Because of Proposition 14, in all theorems above where the input is a quotient
presentation, we can also take an arbitrary r-generated presentation of a group in Nc,r as
input. However, be aware that for the word problem (Theorem 5 and Corollary 6) the
complexity changes from TC0 to TC0(ExtGCD) in the binary case.

A. Myasnikov and A. Weiß 23:13

Conclusion and Open Problems. We have seen that most problems which in [16] were
shown to be in LOGSPACE indeed are in TC0 even in the uniform setting where the number of
generators and nilpotency class is fixed. Moreover, their binary versions are in TC0(ExtGCD)
meaning that nilpotent groups are no more complicated than abelian groups in many
algorithmic aspects. This contrasts with the slightly larger class of polycyclic groups: there
the word problem is still in TC0 [23, 12], but the conjugacy problem is not even known to be
in NP. We conclude with some possible generalizations of our results:

Does a uniform version of Theorem 5 hold (i. e., is the uniform word problem still in TC0)
for fixed nilpotency class but an arbitrary number of generators? What happens to the
complexity if also the nilpotency class is part of the input? Note that in that case it is
even not clear whether the word problem is still in polynomial time.
Is there a way to solve the conjugacy problem for nilpotent groups with binary exponents
in TC0? Notice that we needed to compute gcds to solve the subgroup membership
problem. However, the conjugacy problem might be solved using another method.
What is the complexity of the uniform conjugacy problem with arbitrary nilpotency class?

References
1 Norman Blackburn. Conjugacy in nilpotent groups. Proceedings of the American Mathe-

matical Society, 16(1):143–148, 1965.
2 William W. Boone. The Word Problem. Ann. of Math., 70(2):207–265, 1959.
3 Max Dehn. Ueber unendliche diskontinuierliche Gruppen. Math. Ann., 71:116–144, 1911.
4 Bettina Eick and Delaram Kahrobaei. Polycyclic groups: A new platform for cryptology?

ArXiv Mathematics e-prints, 2004. arXiv:math/0411077.
5 Michael Elberfeld, Andreas Jakoby, and Till Tantau. Algorithmic meta theorems for cir-

cuit classes of constant and logarithmic depth. Electronic Colloquium on Computational
Complexity (ECCC), 18:128, 2011. URL: http://eccc.hpi-web.de/report/2011/128.

6 Alberd Garreta, Alexei Miasnikov, and Denis Ovchinnikov. Properties of random nilpotent
groups. ArXiv e-prints, December 2016. arXiv:1612.01242.

7 Philip Hall. The Edmonton notes on nilpotent groups. Queen Mary College Mathematics
Notes. Mathematics Department, Queen Mary College, London, 1969.

8 William Hesse. Division is in uniform TC0. In Fernando Orejas, Paul G. Spirakis, and Jan
van Leeuwen, editors, ICALP, volume 2076 of Lecture Notes in Computer Science, pages
104–114. Springer, 2001. doi:10.1007/3-540-48224-5_9.

9 William Hesse, Eric Allender, and David A. Mix Barrington. Uniform constant-depth
threshold circuits for division and iterated multiplication. Journal of Computer and System
Sciences, 65:695–716, 2002.

10 Mikhail I. Kargapolov and Ju. I. Merzljakov. Fundamentals of the theory of groups, vol-
ume 62 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1979. Translated
from the second Russian edition by Robert G. Burns.

11 Mikhail I. Kargapolov, Vladimir. N. Remeslennikov, N. S. Romanovskii, Vitaly A. Ro-
man’kov, and V. A. Čurkin. Algorithmic questions for σ-powered groups. Algebra i Logika,
8:643–659, 1969.

12 Daniel König and Markus Lohrey. Evaluating matrix circuits. In Computing and combi-
natorics, volume 9198 of Lecture Notes in Comput. Sci., pages 235–248. Springer, Cham,
2015. doi:10.1007/978-3-319-21398-9_19.

13 Klaus-Jörn Lange and Pierre McKenzie. On the complexity of free monoid morphisms.
In Kyung-Yong Chwa and Oscar H. Ibarra, editors, Algorithms and Computation, 9th
International Symposium, ISAAC’98, Taejon, Korea, December 14-16, 1998, Proceedings,

MFCS 2017

http://arxiv.org/abs/math/0411077
http://eccc.hpi-web.de/report/2011/128
http://arxiv.org/abs/1612.01242
http://dx.doi.org/10.1007/3-540-48224-5_9
http://dx.doi.org/10.1007/978-3-319-21398-9_19

23:14 TC0 Circuits for Algorithmic Problems in Nilpotent Groups

volume 1533 of Lecture Notes in Computer Science, pages 247–256. Springer, 1998. doi:
10.1007/3-540-49381-6_27.

14 Charles. R. Leedham-Green and Leonard H. Soicher. Symbolic collection using
Deep Thought. LMS J. Comput. Math., 1:9–24 (electronic), 1998. doi:10.1112/
S1461157000000127.

15 Richard J. Lipton and Yechezkel Zalcstein. Word problems solvable in logspace. J. ACM,
24(3):522–526, July 1977. doi:10.1145/322017.322031.

16 Jeremy MacDonald, Alexei G. Myasnikov, Andrey Nikolaev, and Svetla Vassileva. Logspace
and compressed-word computations in nilpotent groups. CoRR, abs/1503.03888, 2015.
URL: http://arxiv.org/abs/1503.03888.

17 Anatoly I. Mal’cev. On homomorphisms onto finite groups. Transl., Ser. 2, Am. Math.
Soc., 119:67–79, 1983. Translation from Uch. Zap. Ivanov. Gos. Pedagog Inst. 18, 49-60
(1958).

18 Andrzej Mostowski. Computational algorithms for deciding some problems for nilpotent
groups. Fundamenta Mathematicae, 59(2):137–152, 1966. URL: http://eudml.org/doc/
213887.

19 Alexei Myasnikov, Andrey Nikolaev, and Alexander Ushakov. The Post correspon-
dence problem in groups. J. Group Theory, 17(6):991–1008, 2014. doi:10.1515/
jgth-2014-0022.

20 Alexei Myasnikov, Andrey Nikolaev, and Alexander Ushakov. Non-commutative lattice
problems. J. Group Theory, 19(3):455–475, 2016. doi:10.1515/jgth-2016-0506.

21 Alexei G. Myasnikov and Armin Weiß. TCˆ0 circuits for algorithmic problems in nilpotent
groups. CoRR, abs/1702.06616, 2017. URL: http://arxiv.org/abs/1702.06616.

22 Pyotr S. Novikov. On the algorithmic unsolvability of the word problem in group theory.
Trudy Mat. Inst. Steklov, pages 1–143, 1955. In Russian.

23 David Robinson. Parallel Algorithms for Group Word Problems. PhD thesis, University of
California, San Diego, 1993.

24 Charles C. Sims. Computation with finitely presented groups, volume 48 of Encyclopedia
of Mathematics and its Applications. Cambridge University Press, Cambridge, 1994. doi:
10.1017/CBO9780511574702.

25 Heribert Vollmer. Introduction to Circuit Complexity. Springer, Berlin, 1999.

http://dx.doi.org/10.1007/3-540-49381-6_27
http://dx.doi.org/10.1007/3-540-49381-6_27
http://dx.doi.org/10.1112/S1461157000000127
http://dx.doi.org/10.1112/S1461157000000127
http://dx.doi.org/10.1145/322017.322031
http://arxiv.org/abs/1503.03888
http://eudml.org/doc/213887
http://eudml.org/doc/213887
http://dx.doi.org/10.1515/jgth-2014-0022
http://dx.doi.org/10.1515/jgth-2014-0022
http://dx.doi.org/10.1515/jgth-2016-0506
http://arxiv.org/abs/1702.06616
http://dx.doi.org/10.1017/CBO9780511574702
http://dx.doi.org/10.1017/CBO9780511574702

Better Complexity Bounds for Cost Register
Automata∗

Eric Allender1, Andreas Krebs2, and Pierre McKenzie3

1 Department of Computer Science, Rutgers University, Piscataway, NJ, USA
allender@cs.rutgers.edu

2 WSI, Universität Tübingen, Germany
mail@krebs-net.de

3 DIRO, Université de Montréal, Québec, Canada
mckenzie@iro.umontreal.ca

Abstract
Cost register automata (CRAs) are one-way finite automata whose transitions have the side effect
that a register is set to the result of applying a state-dependent semiring operation to a pair of
registers. Here it is shown that CRAs over the tropical semiring (N∪ {∞},min,+) can simulate
polynomial time computation, proving along the way that a naturally defined width-k circuit
value problem over the tropical semiring is P-complete. Then the copyless variant of the CRA,
requiring that semiring operations be applied to distinct registers, is shown no more powerful than
NC1 when the semiring is (Z,+,×) or (Γ∗ ∪ {⊥},max, concat). This relates questions left open
in recent work on the complexity of CRA-computable functions to long-standing class separation
conjectures in complexity theory, such as NC versus P and NC1 versus GapNC1.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases computational complexity, cost registers

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.24

1 Introduction

A weighted finite automaton on a given input computes the sum, over every computation path,
of the product, over the transitions encountered along that path, of the semiring elements
assigned to those transitions. Weighted automata have a long history and extensive theoretical
support (see [17]) but their utility for the purpose of computer-aided verification is limited.
This motivated Alur and his co-authors to introduce the streaming string transducer [3],
soon followed by the cost register automaton (CRA) [5].

CRAs are deterministic and are yet strictly more expressive than weighted automata [5].
A CRA computes a so-called regular function from strings to a cost domain. (This should
not be confused with Colcombet’s regular cost functions, which are intended to capture
asymptotic behavior [13].) A “copyless” variant (CCRA) of the CRA has the expressivity
of single-valued weighted automata [5, Thm 4]. Another variant of CRAs restricts the
multiplicative operation, by only allowing multiplication by constants; this model has the
full expressivity of weighted automata [5, Thm 9]. A theory of CRAs, largely concerned with
expressivity and decidability properties, was developed in a series of papers, including [5, 7, 6].

∗ Supported by NSF grant CCF-1555409 (Allender), by the DFG Emmy-Noether program KR 4042/2
(Krebs), and by the Natural Sciences and Engineering Research Council of Canada (McKenzie)

© Eric Allender, Andreas Krebs, and Pierre McKenzie;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 24; pp. 24:1–24:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.24
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

24:2 Better Complexity Bounds for Cost Register Automata

NC1; CCRA(Z, +) and CCRA(Γ∗, ◦)

CCRA(N, min, +) CCRA(Z, +,×)

#NC1
trop ◦ NC1

GapNC1; CRA(Z, +)

L
CCRA(Γ∗, max, ◦)

AC1CRA(N, min, +)

P

```
```

`̀

HH
H

HH
H

HH
H

HH
H

HH
HH

��
��

��
��

XX
XXX

XXX
X

```
``̀

(((
((((

Figure 1 Prior state of knowledge, from [1]. When a class of CRA functions and a complexity
class appear together, it means that containment of the CRA class in the complexity class is tight,
since some of the CRA functions are complete for the complexity class. (Definitions of the complexity
classes can be found in Section 2.)

None of the above work considered the computational complexity of the functions
expressed by CRAs. Yet the CRA model is interesting from that viewpoint because it
combines a parallelizable component (logarithmic depth boolean circuits indeed recognize
regular languages) with a less structured component that builds and evaluates expressions
over the cost domain. The three variants of the CRA discussed above (CRAs, CCRAs, and
CRAs with restricted multiplication) in fact are reminiscent of three variants of algebraic
circuits (general, tree-like, and skew). This raises the question of whether CRA variants over
various domains capture interesting complexity classes, such as the (functional) class P and
subclasses of NC. These considerations prompted Allender and Mertz to develop complexity
bounds for the functions computable by CRAs and CCRAs [1]. This line of inquiry for
various models was also pursued and extended in [22, 25, 24, 16, 15, 12].

The main results obtained by Allender and Mertz are depicted on Figure 1. Most results
involve the (weaker) CCRA model with integer arithmetic, but also with “tropical” arithmetic,
that is, over domains such as (N ∪ {infty},min,+) and (Γ∗,max, ◦). We note that tropical
semirings arise frequently in the study of weighted automata (see for instance [14, Sect. 1.1]
and [5, Thm 9]). Computationally, min and max are “forgetful” operations that should
intuitively lend themselves to simpler simulations.

Our contribution here is to improve some of the bounds from [1]. In particular, the
closing section of [1] listed the following four open questions:

Are there any CCRA functions over (Z,+,×) that are complete for GapNC1?
Are there any CCRA functions over the tropical semiring that are hard for #NC1

trop?
The gap between the upper and lower bounds for CCRA functions over (Γ∗,max, ◦) is
quite large (NC1 versus OptLogCFL ⊆ AC1). Can this be improved?
Is there an NC upper bound for CRA functions (without the copyless restriction) over
the tropical semiring?



E. Allender, A. Krebs, and P. McKenzie 24:3

We essentially answer all of these questions, modulo long-standing open questions in
complexity theory. We show that CCRA functions over each of (Z,+,×), (Γ∗,max, ◦), and
the tropical semiring are all computable in NC1. We thus give the improvement asked for in
the third question, and we show that the answers to the first two questions are equivalent to
NC1 = GapNC1 and NC1 = #NC1

trop, respectively. We also provide a negative answer to the
fourth question (assuming NC 6= P), by reducing a P-complete problem to the computation
of a CRA function over the tropical semiring. It follows from the latter that for any k larger
than a small constant, the width-k circuit value problem over structures such as (N,max,+)
and (N,min,+) is P-complete under AC0-Turing reductions. (See Section 2 for the precise
definition of the problem and then Corollary 5.) Figure 2 summarizes our results.

2 Preliminaries

We assume familiarity with some common complexity classes and with basic notions of circuit
complexity, such as can be found in any textbook on complexity theory.

Recall that a language A ⊆ {0, 1}∗ is accepted by a Boolean circuit family (Cn)∈N if
for all x it holds that x ∈ A iff C|x|(x) = 1. Circuit families encountered in this paper will
be uniform. Uniformity is a somewhat technical issue because of subtleties encountered at
low complexity levels. We will not be concerned with such subtleties, and thus we refer the
reader to a standard text (such as [29, Sect. 4.5]) for a precise definition of what it means
for a circuit family (Cn)n≥0 to be UE-uniform. (Informally, this notion of uniformity means
that there is a linear-time machine that takes inputs of the form (n, g, h, p) and determines
if p encodes a path from gate h to gate g in Cn, and also determines what type of gate g
and h are.) We will encounter the following circuit complexity classes.

NCi = {A : A is accepted by a UE-uniform family of circuits of bounded fan-in AND,
OR and NOT gates, having size nO(1) and depth O(logi n)}.
ACi = {A : A is accepted by a UE-uniform family of circuits of unbounded fan-in AND,
OR and NOT gates, having size nO(1) and depth O(logi n)}.
TCi = {A : A is accepted by a UE-uniform family of circuits of unbounded fan-in
MAJORITY gates, having size nO(1) and depth O(logi n)}.

We remark that, for constant-depth classes such as AC0 and TC0, UE-uniformity coincides
with UD-uniformity, which is also frequently called DLOGTIME-uniformity. (Again, we refer
the reader to [29] for more details on uniformity.)

Following the standard convention, we also use these same names to refer to the associated
classes of functions computed by the corresponding classes of circuits. For instance, a function
f : {0, 1}∗ → {0, 1}∗ is said to be in NC1 if there is UE-uniform family of circuits {Cn} of
bounded fan-in AND, OR and NOT gates, having size nO(1) and depth O(logn), where
Cn has several output gates, and on input x of length n, Cn outputs an encoding of f(x).
(We say that an “encoding” of the output is produced, to allow the possibility that there are
strings x and y of length n, such that f(x) and f(y) have different lengths.) It is easy to
observe that, if the length of f(x) is polynomial in |x|, then f is in NC1 if and only if the
language {(x, i, b) : the i-th symbol of f(x) is b} is in NC1. Similar observations hold for
other classes.

A structure (A,+,×) is a semiring if (A,+) is a commutative monoid with an additive
identity element 0, and (A,×) is a (not necessarily commutative) monoid with a multiplicative
identity element 1, such that, for all a, b, c, we have a × (b + c) = (a × b) + (a × c),
(b+ c)× a = (ba× ca), and 0× a = a× 0 = 0.

MFCS 2017



24:4 Better Complexity Bounds for Cost Register Automata

I Definition 1. An arithmetic circuit over a semiring (R,+,×) is a directed acyclic graph.
Each vertex of the graph is called a “gate”; each gate is labeled with a “type” from the set
{+,×, input, constant}, where each input gate is labeled by one of the inputs x1, . . . , xn, and
each constant gate is labeled with an element of R. (Input and constant gates have indegree
zero.) The is a unique sink called the “output gate”. The size of a circuit is the number of
gates, and the depth of the circuit is the length of the longest path in the circuit. We shall
also need to refer to the width of a circuit, and here we use the notion of circuit width that
was provided by Pippenger [27]: We will consider layered circuits, which means that the set
of gates is partitioned into layers, where wires connect only gates in adjacent layers. The
width of a circuit is the largest number of gates that occurs in any layer.

If an arithmetic circuit Cn over (R,+,×) has n input gates, then Cn computes a function
f : Rn → R in the obvious way.

I Definition 2. A straight-line program over a semiring R with registers {r1, . . . , rk} consists
of a sequence of statements of the form ri ← rj�rk where � is one of the semiring operations,
and each r` is a register, a value from R, or from the set of input variables. Straight-line
programs have been studied at least as far back as [23], and they are frequently used as an
alternative formulation of arithmetic circuits. Note that each line in a straight-line program
can be viewed as a gate in an arithmetic circuit.

I Definition 3. The width-k circuit value problem over a semiring R is that of determining,
given a width-k arithmetic circuit C over R (where C has no input gates, and hence all gates
with indegree zero are labeled by a constant in R), and given a pair (i, b) whether the i-th
bit of the binary representation of the output of C is b.

#NC1
S is the class of functions f :

⋃
n R

n → R for which there is a UE-uniform family
of arithmetic circuits {Cn} of logarithmic depth, such that Cn computes f on Rn.
By convention, when there is no subscript, #NC1 denotes #NC1

(N,+,×), with the additional
restriction that the functions in #NC1 are considered to have domain

⋃
n{0, 1}n. That

is, we restrict the inputs to the Boolean domain. (Boolean negation is also allowed at the
input gates.)
GapNC1 is defined as #NC1 − #NC1; that is: the class of all functions that can be
expressed as the difference of two #NC1 functions. It is the same as #NC1

Z restricted to
the Boolean domain. See [29, 2] for more on #NC1 and GapNC1.

The following inclusions are known:

NC0 ⊆ AC0 ⊆ TC0 ⊆ NC1 ⊆ #NC1 ⊆ GapNC1 ⊆ L ⊆ AC1 ⊆ P.

All inclusions are straightforward, except for GapNC1 ⊆ L [19].

2.1 Cost-register automata
A cost-register automaton (CRA) is a deterministic finite automaton (with a read-once input
tape) augmented with a fixed finite set of registers that store elements of some algebraic
domain A. At each step in its computation, the machine

consumes the next input symbol (call it a),
moves to a new state (based on a and the current state (call it q)),
based on q and a, updates each register ri using updates of the form ri ← f(r1, r2, . . . , rk),
where f is an expression built using the registers r1, . . . , rk using the operations of the
algebra A.



E. Allender, A. Krebs, and P. McKenzie 24:5

NC1; CCRA(Z, +), CCRA(Γ∗, ◦), CCRA(N, min, +), CCRA(Z, +,×), CCRA(Γ∗, max, ◦)

#NC1
trop ◦ NC1

GapNC1; CRA(Z, +)

L

AC1

P;CRA(N, min, +)

e
e
e
e
e
e
e
e

,
,
,
,
,
,,

HH
H
HH

H
HH

H
HH

H
HH

HH

�
��

�
��

��

Figure 2 Update of the preceding figure, showing the improved state of our knowledge re-
garding CRA(N, min, +) and the copyless CRA classes CCRA(N, min, +), CCRA(Z, +, ×), and
CCRA(Γ∗, max, ◦). All bounds listed are now tight.

There is also an “output” function µ defined on the set of states; µ is a partial function
– it is possible for µ(q) to be undefined. Otherwise, if µ(q) is defined, then µ(q) is some
expression of the form f(r1, r2, . . . , rk), and the output of the CRA on input x is µ(q) if the
computation ends with the machine in state q.

More formally, here is the definition as presented by Alur et al. [5].
A cost-register automaton M is a tuple (Σ, Q, q0, X, δ, ρ, µ), where
Σ is a finite input alphabet.
Q is a finite set of states.
q0 ∈ Q is the initial state.
X is a finite set of registers.
δ : Q× Σ→ Q is the state-transition function.
ρ : Q×Σ×X → E is the register update function (where E is a set of algebraic expressions
over the domain A and variable names for the registers in X).
µ : Q→ E is a (partial) final cost function.

A configuration of a CRA is a pair (q, ν), where ν maps each element of X to an algebraic
expression over A. The initial configuration is (q0, ν0), where ν0 assigns the value 0 to
each register (or some other “default” element of the underlying algebra). Given a string
w = a1 . . . an, the run of M on w is the sequence of configurations (q0, ν0), . . . (qn, νn) such
that, for each i ∈ {1, . . . , n} δ(qi−1, ai) = qi and, for each x ∈ X, νi(x) is the result of
composing the expression ρ(qi−1, ai, x) to the expressions in νi−1 (by substituting in the
expression νi−1(y) for each occurrence of the variable y ∈ X in ρ(qi−1, ai, x)). The output
of M on w is undefined if µ(qn) is undefined. Otherwise, it is the result of evaluating the
expression µ(qn) (by substituting in the expression νn(y) for each occurrence of the variable
y ∈ X in µ(qn)).

It is frequently useful to restrict the algebraic expressions that are allowed to appear in
the transition function ρ : Q× Σ×X → E. One restriction that is important in previous
work [5] is the “copyless” restriction.

MFCS 2017



24:6 Better Complexity Bounds for Cost Register Automata

A CRA is copyless if, for every register r ∈ X, for each q ∈ Q and each a ∈ Σ, the
variable “r” appears at most once in the multiset {ρ(q, a, s) : s ∈ X}. In other words, for a
given transition, no register can be used more than once in computing the new values for the
registers. Following [6], we refer to copyless CRAs as CCRAs. Over many algebras, unless
the copyless restriction is imposed, CRAs compute functions that can not be computed in
polynomial time. For instance, CRAs that can concatenate string-valued registers and CRAs
that can multiply integer-valued registers can perform “repeated squaring” and thereby
obtain results that require exponentially-many symbols to write down.

3 CRAs over the Tropical Semiring

CRAs without the copyless restriction over the tropical semiring still yield only functions
that are computable in polynomial time. The “repeated squaring” operation, when the
“multiplicative” operation is +, yields only numbers whose binary representation remains
linear in the length of the input. In this section, we show that some CRA functions over the
tropical semiring are hard for P.

The name “tropical semiring” is used to refer to several related algebras. Most often it
refers to (R∪ {∞},min,+) (that is, the “additive” operation is min, and the “multiplicative”
operation is +. However, frequently (R ∪ {−∞},max,+) is used instead. In discrete
applications, R is frequently replaced with Q, Z, or even N. For more details, we refer the
reader to [26]. We will not need to make any use of ∞ or −∞ in our hardness argument,
and we will prove P-hardness over N, which thus implies hardness for the other settings as
well. Our arguments will be slightly different for both the max and the min versions, and
thus we will consider both.

The standard reference for P-completeness, [18], credits Venkateswaran with the proof
that the Min-plus Circuit Value Problem is P-complete. This shows that evaluating straight-
line programs over (N,min,+) is a P-complete problem, as long as they are allowed to have
an unbounded number of registers.

Our focus will be more on straight-line programs with a bounded number of registers.
Ben-Or and Cleve [11] showed that straight-line programs with O(1) registers can simulate
arithmetic formulae, and Koucky [21] has shown that these models are in fact equivalent,
if the straight-line programs are restricted to compute only formal polynomials whose
degree is bounded by a polynomial in the number of variables. It is observed in [1] that
arithmetic formulae (that is, straight-line programs with O(1) registers and a polynomial
degree restriction) over the tropical semiring can be evaluated in logspace. Our P-completeness
result demonstrates that, in the absence of any degree restriction, restricting straight-line
programs over the tropical semiring to have only O(1) registers yields a model that is as
powerful as having an unlimited number of registers.

I Theorem 4. There is a function f computable by a CRA operating over the tropical
semiring (either (N ∪ {∞},min,+) or (N ∪ {−∞},max,+)) such that computing f is hard
for P under AC0-Turing reductions.

Proof. We will present a reduction from the P-complete problem Iterated Mod (problem
A.8.5 in [18]), which was shown to be P-complete under logspace reductions by Karloff and
Ruzzo [20]. The proof in [20] actually shows that the problem is complete under many-one
reductions computable by dlogtime-uniform AC0 circuits. (Incidentally, the proof sketch in
[18] has a minor error, in that some indices are listed in the wrong order. The reader is
advised to consult the original [20] proof.)



E. Allender, A. Krebs, and P. McKenzie 24:7

The input to the Iterated Mod problem is a list of natural numbers v,m1,m2, . . . ,mn,
and the question is to determine if ((· · · ((v mod m1) mod m2) · · · ) mod mn) = 0.

Let c be chosen so that 2c is greater than any of the numbers v,m1,m2, . . . ,mn. Then
the naïve division algorithm that one would use to compute v mod m can be seen to involve
computing the following sequence:

v0 = v

vi = vi−1 −max(0, vi−1 −m · 2c−i)
By induction, one can see that each vi ≡ v (mod m) and vi < m2c−i, and hence vc is the
remainder when one divides v by m.

Thus v mod m can be seen to be computed by the following straight-line program over Z
with operations +,−,max:

1: for i ≤ c do
2: shift_of_m ← m

3: for k ≤ c− i do
4: shift_of_m ← shift_of_m + shift_of_m
5: end for
6: {At end of this loop, shift_of_m = m2c−i}
7: temp← v−shift_of_m
8: temp← max(0, temp)
9: v ← v − temp
10: end for

Of course, by definition, straight-line programs contain no loop statements, but the
algorithm can be computed by a program described by an AC0-computable sequence of
symbols from the 5-letter alphabet {shift_of_m ← m, temp← v− shift_of_m, v ← v−temp,
shift_of_m ← shift_of_m + shift_of_m, temp← max(0, temp)}.

A number v, presented as a sequence of b binary digits vi, can be loaded into a register r
by initially setting r to 0, and then executing b instructions of the form r ← r+ r+ vi. Thus,
the naïve polynomial-time algorithm for computing Iterated Mod can be implemented via a
polynomial-size straight-line program over Z with operations +,−,max, by first inputting
the numbers v and m1, executing the algorithm above to compute v mod m1, then inputting
m2, repeating the procedure to compute ((v mod m1) mod m2), etc.

We observe next that max(a, b) = (−1) · min(−a,−b). Thus there is a polynomial-
size straight-line program over Z with operations +,−,min that outputs 0 if and only if
(v,m1, . . . ,mn) is a positive instance of Iterated Mod, where the process to input a number
in binary has each instruction r ← r + r + vi replaced by r ← r + r − vi. Similarly, in
the code to compute v mod m, each occurrence of the instruction temp← max(0, temp) is
replaced by temp← min(0, temp), and each occurrence of r ← v − s for {r, s} ⊆ {v, temp,
shift_of_m} is replaced by r ← s− v.

The next observation is that, given any straight-line program Q over Z, it is easy to build
a straight-line program Q′ over Z, such that each register of Q′ always holds a nonnegative
integer, and such that the value of each register r of Q at the end of the computation is
equal to the value of the difference r − r0 of Q′ at the end, where r0 is a new special register
of Q′. We accomplish this by initially setting r0 to 2c (using repeated addition), where 2c is
larger than any value that is stored by any register of Q during its computation. (This is
possible by taking c to be larger than the length of Q.) Then for every other register r 6= r0,
perform the operation r ← r0. Now we will maintain the invariant that the value of register
r of Q is obtained by subtracting r0 from the value of register r of Q′. This is accomplished

MFCS 2017



24:8 Better Complexity Bounds for Cost Register Automata

as follows: Replace any assignment r ← b where b is a constant, with r ← r0 + b. Replace
each operation r ← s− u by r ← s− u+ r0, and replace each operation r ← s+ u by the
operations: r ← s+ u; r′ ← s+ r0 (for every r′ 6= r); r0 ← r0 + r0.

The final step is to replace every straight-line program Q over (Z,max,+,−) or (Z,min,+,
-) where every register holds only nonnegative values by a new program Q′ over (N,max,+)
or (N,min,+), where the value of every register r of Q at the end is equal to the value of
the difference r − r−1 of registers of Q′, where r−1 is a new register of Q′. Initially, r−1 ← 0.
Operations that involve min or max need no modification. If Q has the operation r ← s+ u,
then Q′ has the operations r ← s+u; r′ ← s+r−1 (for every r′ 6= r); r−1 ← r−1 +r−1. (This
is exactly the same replacement as was used in the preceding paragraph.) Finally, if Q has
the operation r ← s−u, then Q′ has the operations: r ← s+ r−1; r−1 ← r−1 +u; r′ ← r′+u

for every r′ 6∈ {r, u} (including r′ = r−1); and then u← u+ u. A straightforward induction
shows that the invariant is maintained, that each register r of Q has the value r − r−1 of Q′.

Thus, given an instance y of Iterated Mod, an AC0 reduction can produce a straight-line
program Q over (N,min,+) or (N,max,+), such that y ∈ Iterated Mod iff the output register
of Q has a value equal to the value of r0.

Note that there is a CRA that takes as input strings over an alphabet whose symbols
encode straight-line program instructions with O(1) registers, and simulates the operation
of the straight-line program. The function f that is computed by this CRA is the function
whose existence is asserted in the statement of the theorem. J

I Corollary 5. Let R be the semiring (N∪ {∞},min,+) or (N∪ {−∞},max,+). There is a
constant c such that for every k ≥ c, the width-k circuit value problem over R is P-complete
under AC0-Turing reductions.

Proof. The P upper bounds are clear since each semiring operation is polynomial-time
computable. Hardness follows by appealing to the straight-line programs with a bounded
number of registers that are constructed in the proof of Theorem 4. A further AC0-Turing
reduction can transform a straight-line program that uses k registers into an arithmetic
circuit of width O(k). (Each layer in the arithmetic circuit contains a gate for each register,
as well as gates for each constant that is used in the next time step. If a register r is not
changed at time t, then the gate for register r in layer t is simply set to 0 + the value of
register r at in layer t− 1.) J

Completeness under AC0-many-one reductions (or even logspace many-one reductions) is
still open.

4 CCRAs over Commutative Semirings

In this section, we study two classes of functions defined by CCRAs operating over commut-
ative algebras with two operations satisfying the semiring axioms:

CRAs operating over the commutative ring (Z,+,×)
CRAs operating over the tropical semiring, that is, over the commutative semiring
(Z ∪ {∞},min,+).

I Theorem 6. Let (A,+,×) be a commutative semiring such that the functions

(x1, x2, . . . , xn) 7→
∑

i

xi and (x1, x2, . . . , xn) 7→
∏

i

xi

can be computed in NC1. Then CCRA(A) ⊆ NC1.



E. Allender, A. Krebs, and P. McKenzie 24:9

We remark that both the tropical semiring and the integers satisfy this hypothesis. We
refer the reader to [29, 19] for more details about the inclusions:

unbounded-fan-in min ∈ AC0.
unbounded-fan-in + ∈ TC0.
unbounded-fan-in × ∈ TC0.

Proof. Let M = (Q,Σ, δ, q0, X, ρ, µ) be a copyless CRA operating over A. Let M have k
registers r1, . . . , rk.

As in the proof of [1, Theorem 1], it is straightforward to see that the following functions
are computable in NC1:

(x, i) 7→ q, such that M is in state q after reading the prefix of x of length i. Note that
this also allows us to determine the state q that M is in while scanning the final symbol
of x, and thus we can determine whether the output µ(q) is defined.
(x, i) 7→ Gi, where Gi is a labeled directed bipartite graph on [2k]× [k], with the property
that there is an edge from j on the left-hand side to ` on the right hand side, if the register
update operation that takes place when M consumes the i-th input symbol includes the
update r` ← α ⊗ β where rj ∈ {α, β} and ⊗ ∈ {+,×}. In addition, vertex ` is labeled
with the operation ⊗. If one of {α, β} is a constant c (rather than being a register),
then label vertex k + ` in the left-hand column with the constant c, and add an edge
from vertex k + ` in the left-hand column to ` in the right-hand column. (To see that
this is computable in NC1, note that by the previous item, in NC1 we can determine the
state q that M is in as it consumes the i-th input symbol. Thus Gi is merely a graphical
representation of the register update function corresponding to state q.) Note that the
outdegree of each vertex in Gi is at most one, because M is copyless. (The indegree is at
most two.) To simplify the subsequent discussion, define Gn+1 to be the graph resulting
from the “register update function” r` ← µ(q) for 1 ≤ ` ≤ k, where q is the state that M
is in after scanning the final symbol xn.

Now consider the graph G that is obtained by concatenating the graphs Gi (by identifying
the left-hand side of Gi+1 with the first k vertices of the right-hand side of Gi for each
i). This graph shows how the registers at time i+ 1 depend on the registers at time i. G
is a constant-width graph, and it is known that reachability in constant-width graphs is
computable in NC1 [8, 9].

The proof of the theorem proceeds by induction on the number of registers k = |X|.
When k = 1, note that the graph G consists of a path of length n+ 1, where each vertex vi

on the path is connected to two vertices on the preceding level, one of which is a leaf. (Here,
we are ignoring degenerate cases, where the path back from the output node does not extend
all the way back to the start, but instead stops at some vertex vi where the corresponding
register assignment function sets the register to a constant. An NC1 computation can find
where the path actually does start.) That is, when k = 1, the graph G has width two. We
will thus really do our induction on the width of the graph G, starting with width two.

In TC0 ⊆ NC1, we can partition the index set I = {0, . . . , n + 1} into consecutive
subsequences S1, P1, S2, P2, . . . , Sm, Pm, where i ∈ Sj implies that vertex vi on the path is
labeled with +, and i ∈ Pj implies that vertex vi on the path is labeled with ×. (Assume
for convenience that the first operation on the path is + and the last one is ×; otherwise
add dummy initial and final operations that add 0 and multiply by 1, respectively.) That is,
i ∈ Sj implies that the i-th operation is of the form vi ← vi−1 + ci−1, and i ∈ Pj implies that
the i-th operation is of the form vi ← vi−1 × ci−1 for some sequence of constants c0, . . . , cn.

MFCS 2017



24:10 Better Complexity Bounds for Cost Register Automata

In NC1 we can compute the values sj =
∑

i∈Sj
ci−1 and pj =

∏
i∈Pj

ci−1. Thus the
output computed by M on x is

(. . . (((s1 × p1) + s2)× p2) . . .× pm) =
∑

j

sj

∏
`≥j

p`.

This expression can also be evaluated in NC1. This completes the proof of the basis case,
when k = 1.

Now assume that functions expressible in this way when the width of the graph G is at
most k can be evaluated in NC1. Consider the case when G has width k + 1, and assume
that vertex 1 in the final level is the vertex that evaluates to the value of the function. In
NC1 we can identify a path of longest length leading to the output. Let this path start in
level i0. Since there is no path from a vertex in any level i < i0 to the output, we can ignore
everything before level i0 and just deal with the part of G starting at level i0. Thus, for
simplicity, assume that i0 = 0. Let the vertices appearing on this path be v1, v2, . . . , vn+1,
where each vertex vi is labeled with the operation vi ← vi−1⊗i wi for some operation ⊗i and
some vertex wi. Let Hi be the subgraph consisting of all vertices that have a path to vertex
wi. Since the outdegree of each vertex in G is one, and since no wi appears on the path, it
follows that each Hi has width at most k, and thus the value computed by wi (which we
will also denote by wi) can be computed in NC1. (This is the only place where we use the
restriction that M is a copyless CRA.)

Now, as before partition this path into subsequences S1, P1, S2, P2, . . . , Sm, Pm, where
i ∈ Sj implies that the i-th operation is of the form vi ← vi−1 + wi−1, and i ∈ Pj implies
that the i-th operation is of the form vi ← vi−1 × wi−1 for some NC1-computable sequence
of values w0, . . . , wn.

Thus, as above, in NC1 we can compute the values sj =
∑

i∈Sj
wi−1 and pj =

∏
i∈Pj

wi−1.
Thus the output computed by M on x is

(. . . (((s1 × p1) + s2)× p2) . . .× pm) =
∑

j

sj

∏
`≥j

p`.

This expression can also be evaluated in NC1. J

5 CCRAs over Noncommutative Semirings

In this section, we show that the techniques of the preceding section can easily be adapted
to work for noncommutative semirings.

The canonical example of such a semiring is (Γ∗ ∪ {⊥},max, ◦). Here, the max operation
takes two strings x, y in Γ∗ as input, and produces as output the lexicographically-larger of
the two. (Lexicographic order on Γ∗ is defined as usual, where x < y if |x| < |y| or (|x| = |y|
and x precedes y, viewed as the representation of a number in |Γ|-ary notation). ⊥ is the
additive identity element. (One obtains a similar example of a noncommutative semiring, by
using min in place of max.)

It is useful to describe how elements of Γ∗ will be represented in an NC1 circuit, in a way
that allows efficient computation. For an input length n, let m = nO(1) be the maximum
number of symbols in any string that will need to be manipulated while processing inputs of
length n. Then a string y of length j will be represented as a sequence of logm+m log |Γ| bits,
where the first logm bits store the number j, followed by m blocks of length log |Γ|, where the
first j blocks store the symbols of y. Given a sequence of l1, r1, l2, r2, . . . , ls, rs represented in
this way, we need to can compute the representation of the string lsls−1 . . . l2l1r1r2 . . . rs−1rs.



E. Allender, A. Krebs, and P. McKenzie 24:11

It is easy to verify that this computation is in TC0, since the i-th symbol of the concatenated
string is equal to the j-th symbol of the `-th string in this list, where j and ` are easy to
compute by performing iterated addition on the lengths of the various strings, and comparing
the result with i. In the max, ◦ semiring, where concatenation is the “multiplicative” operation,
this corresponds to iterated product, and it is computable in TC0 ⊆ NC1.

I Theorem 7. Let (A,+,×) be a (possibly noncommutative) semiring such that the functions
(x1, x2, . . . , xn) 7→

∑
i xi and (x1, x2, . . . , xn) 7→

∏
i xi can be computed in NC1. Then

CCRA(A) ⊆ NC1.

Proof. The proof is a slight modification of the proof in the commutative case.
Given a CCRA M , we build the same graph G. Again, the proof proceeds by induction

on the width of G (related to the number of registers in M).
Let us consider the basis case, where G has width two.
In TC0 ⊆ NC1, we can partition the index set I = {0, . . . , n + 1} into consecutive

subsequences S1, P1, S2, P2, . . . , Sm, Pm, where i ∈ Sj implies that vertex vi on the path is
labeled with +, and i ∈ Pj implies that vertex vi on the path is labeled with ×. (Assume
for convenience that the first operation on the path is + and the last one is ×; otherwise
add dummy initial and final operations that add 0 and multiply by 1, respectively.) That is,
i ∈ Sj implies that the i-th operation is of the form vi ← vi−1 + ci−1, and i ∈ Pj implies
that the i-th operation is of the form vi ← vi−1× ci−1 or vi ← ci−1× vi−1 for some sequence
of constants c0, . . . , cn.

In NC1 we can compute the value sj =
∑

i∈Sj
ci−1. The product segments Pj require

just a bit more work. Let lj,1, lj,2, . . . , lj,mjl
be the list of indices, such that lj,s is the s-th

element of {i ∈ Pj : the multiplication operation at vi is of the form vi ← ci−1 × vi−1}, and
similarly let rj,1, rj,2, . . . , rj,mjr

be the list of indices, such that rj,s is the s-th element of
{i ∈ Pj : the multiplication operation at vi is of the form vi ← vi−1 × ci−1}.

Let

lj = clj,mjl
−1 × clj,mjl

−1−1 × . . . clj,2−1 × clj,1−1

and let

rj = crj,1−1 × crj,2−1 × crj,mjr
−1−1 × crj,mjr

−1.

Then if the value of the path when it enters segment Pj is y, it follows that the value
computed when the path leaves segment Pj is ljyrj . Note that this value can be computed
in NC1.

Thus the output computed by M on x is

l1 × ((l2 × (. . . (l2 × ((l1 × s1 × r1) + s2)× r2) . . .)× r2) + s1)× r1

which is equal to∑
j

(
∏
`≥j

lj)sj(
∏
`≥j

r`).

This expression can be evaluated in NC1. This completes the proof of the basis case, when G
has width two.

The proof for the inductive step is similar to the commutative case, combined with the
algorithm for the basis case. J

MFCS 2017



24:12 Better Complexity Bounds for Cost Register Automata

6 Conclusion

We have obtained a polynomial time lower bound, conditional on NC 6= P, for some functions
computed by CRAs over (N,min,+) and other tropical semirings. This was done by proving
that a straight-line program over such semirings using O(1) registers can solve a P-complete
problem. It followed that for some small k, the “width-k circuit value problem” over
(N,min,+) is P-complete. We have also shown that any function computed by a copyless
CRA over such semirings belongs to (functional) NC1.

An open question of interest would be to characterize the semirings (R,+,×) over which
the width-k circuit value problem is P-complete. Given the P-completeness of the circuit
value problem over the group A5 [10], one possible approach would be to try to map R onto
A5 in such a way that iterating the evaluation of a fixed semiring expression over R would
allow retrieving the result of a linear number of compositions of permutations from A5.

A future direction in the study of copyless CRAs might be to refine our NC1 analysis
by restricting the algebraic properties of the underlying finite automaton, along the lines
described in the context of ordinary finite automata (see Straubing [28] for a broader
perspective). The way to proceed is not immediately clear however since merely restricting
the finite automaton (say to an aperiodic automaton) would not reduce the strength of the
model unless the interplay between the registers is also restricted.

Acknowledgments. Some of this research was performed at the 29th McGill Invitational
Workshop on Computational Complexity, held at the Bellairs Research Institute of McGill
University, in February, 2017.

References

1 E. Allender and I. Mertz. Complexity of regular functions. Journal of Computer and
System Sciences, 2017. To appear; LATA 2015 Special Issue. Earlier version appeared in
Proc. 9th International Conference on Language and Automata Theory and Applications
(LATA’15), Springer Lecture Notes in Computer Science vol. 8977, pp. 449-460. doi:
10.1016/j.jcss.2016.10.005.

2 Eric Allender. Arithmetic circuits and counting complexity classes. In J. Krajíček, editor,
Complexity of Computations and Proofs, volume 13 of Quaderni di Matematica, pages 33–72.
Seconda Università di Napoli, 2004.

3 Rajeev Alur and Pavol Cerný. Streaming transducers for algorithmic verification of single-
pass list-processing programs. In 38th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL, pages 599–610, 2011. doi:10.1145/1926385.1926454.

4 Rajeev Alur, Loris D’Antoni, Jyotirmoy V. Deshmukh, Mukund Raghothaman, and Yifei
Yuan. Regular functions, cost register automata, and generalized min-cost problems. CoRR,
abs/1111.0670, 2011. URL: https://arxiv.org/abs/1111.0670.

5 Rajeev Alur, Loris D’Antoni, Jyotirmoy V. Deshmukh, Mukund Raghothaman, and Yifei
Yuan. Regular functions and cost register automata. In 28th Annual ACM/IEEE Sym-
posium on Logic in Computer Science (LICS), pages 13–22, 2013. See also the expanded
version, [4]. doi:10.1109/LICS.2013.65.

6 Rajeev Alur, Adam Freilich, and Mukund Raghothaman. Regular combinators for string
transformations. In Joint Meeting of the Twenty-Third EACSL Annual Conference on
Computer Science Logic and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic
in Computer Science, (CSL-LICS), page 9. ACM, 2014. doi:10.1145/2603088.2603151.

http://dx.doi.org/10.1016/j.jcss.2016.10.005
http://dx.doi.org/10.1016/j.jcss.2016.10.005
http://dx.doi.org/10.1145/1926385.1926454
https://arxiv.org/abs/1111.0670
http://dx.doi.org/10.1109/LICS.2013.65
http://dx.doi.org/10.1145/2603088.2603151


E. Allender, A. Krebs, and P. McKenzie 24:13

7 Rajeev Alur and Mukund Raghothaman. Decision problems for additive regular functions.
In Proc. 40th International Colloquium on Automata, Languages, and Programming (IC-
ALP), number 7966 in Lecture Notes in Computer Science, pages 37–48. Springer, 2013.
doi:10.1007/978-3-642-39212-2_7.

8 D. A. Barrington. Bounded-width polynomial-size branching programs recognize exactly
those languages in NC1. Journal of Computer and System Sciences, 38:150–164, 1989.
doi:10.1016/0022-0000(89)90037-8.

9 D. A. M. Barrington, C.-J. Lu, P. B. Miltersen, and S. Skyum. Searching constant width
mazes captures the AC0 hierarchy. In Proc. 15th International Symposium on Theoretical
Aspects of Computer Science (STACS), number 1373 in Lecture Notes in Computer Science,
pages 73–83. Springer, 1998. doi:10.1007/BFb0028542.

10 M. Beaudry, P. McKenzie, P. Péladeau, and D. Thérien. Finite monoids: from word
to circuit evaluation. SIAM Journal on Computing, 26:138–152, 1997. doi:10.1137/
S0097539793249530.

11 Michael Ben-Or and Richard Cleve. Computing algebraic formulas using a constant number
of registers. SIAM Journal on Computing, 21(1):54–58, 1992. doi:10.1137/0221006.

12 Michaël Cadilhac, Andreas Krebs, and Nutan Limaye. Value automata with filters. CoRR,
abs/1510.02393, 2015. URL: http://arxiv.org/abs/1510.02393.

13 Thomas Colcombet. The theory of stabilisation monoids and regular cost functions. In Auto-
mata, Languages and Programming, 36th Internatilonal Colloquium, ICALP 2009, Proceed-
ings, Part II, pages 139–150, 2009. doi:10.1007/978-3-642-02930-1_12.

14 Thomas Colcombet. Regular cost functions, part I: logic and algebra over words. Logical
Methods in Computer Science, 9(3), 2013. doi:10.2168/LMCS-9(3:3)2013.

15 Thomas Colcombet, Denis Kuperberg, Amaldev Manuel, and Szymon Toruńczyk. Cost
functions definable by min/max automata. In 33rd Symposium on Theoretical Aspects of
Computer Science, STACS 2016, February 17-20, 2016, Orléans, France, pages 29:1–29:13,
2016. doi:10.4230/LIPIcs.STACS.2016.29.

16 Laure Daviaud, Pierre-Alain Reynier, and Jean-Marc Talbot. A generalised twinning
property for minimisation of cost register automata. In Proceedings of the 31st Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS’16, New York, NY, USA,
July 5-8, 2016, pages 857–866, 2016. doi:10.1145/2933575.2934549.

17 Manfred Droste, Werner Kuich, and Heiko Vogler. Handbook of Weighted Automata.
Springer-Verlag New York Inc., 2009. doi:10.1007/978-3-642-01492-5.

18 Raymond Greenlaw, H James Hoover, and Walter L Ruzzo. Limits to parallel computation:
P-completeness theory. Oxford University Press, 1995.

19 William Hesse, Eric Allender, and David A. Mix Barrington. Uniform constant-depth
threshold circuits for division and iterated multiplication. Journal of Computer and System
Sciences, 65:695–716, 2002. doi:10.1016/S0022-0000(02)00025-9.

20 Howard J Karloff and Walter L Ruzzo. The iterated mod problem. Information and
Computation, 80(3):193–204, 1989. doi:10.1016/0890-5401(89)90008-4.

21 Michal Koucký. Unpublished manuscript, 2003.
22 Andreas Krebs, Nutan Limaye, and Michael Ludwig. Cost register automata for nes-

ted words. In Proc. 22nd International Computing and Combinatorics Conference -
(COCOON), number 9797 in LNCS, pages 587–598. Springer, 2016. doi:10.1007/
978-3-319-42634-1_47.

23 Nancy A Lynch. Straight-line program length as a parameter for complexity ana-
lysis. Journal of Computer and System Sciences, 21(3):251–280, 1980. doi:10.1016/
0022-0000(80)90024-0.

24 Filip Mazowiecki and Cristian Riveros. Maximal partition logic: Towards a logical char-
acterization of copyless cost register automata. In 24th EACSL Annual Conference on

MFCS 2017

http://dx.doi.org/10.1007/978-3-642-39212-2_7
http://dx.doi.org/10.1016/0022-0000(89)90037-8
http://dx.doi.org/10.1007/BFb0028542
http://dx.doi.org/10.1137/S0097539793249530
http://dx.doi.org/10.1137/S0097539793249530
http://dx.doi.org/10.1137/0221006
http://arxiv.org/abs/1510.02393
http://dx.doi.org/10.1007/978-3-642-02930-1_12
http://dx.doi.org/10.2168/LMCS-9(3:3)2013
http://dx.doi.org/10.4230/LIPIcs.STACS.2016.29
http://dx.doi.org/10.1145/2933575.2934549
http://dx.doi.org/10.1007/978-3-642-01492-5
http://dx.doi.org/10.1016/S0022-0000(02)00025-9
http://dx.doi.org/10.1016/0890-5401(89)90008-4
http://dx.doi.org/10.1007/978-3-319-42634-1_47
http://dx.doi.org/10.1007/978-3-319-42634-1_47
http://dx.doi.org/10.1016/0022-0000(80)90024-0
http://dx.doi.org/10.1016/0022-0000(80)90024-0


24:14 Better Complexity Bounds for Cost Register Automata

Computer Science Logic, CSL 2015, September 7-10, 2015, Berlin, Germany, pages 144–
159, 2015. doi:10.4230/LIPIcs.CSL.2015.144.

25 Filip Mazowiecki and Cristian Riveros. Copyless cost-register automata: Structure, express-
iveness, and closure properties. In 33rd Symposium on Theoretical Aspects of Computer
Science, STACS 2016, February 17-20, 2016, Orléans, France, pages 53:1–53:13, 2016.
doi:10.4230/LIPIcs.STACS.2016.53.

26 Jean-Eric Pin. Tropical semirings. Cambridge Univ. Press, Cambridge, 1998. doi:10.
1017/CBO9780511662508.004.

27 Nicholas Pippenger. On simultaneous resource bounds. In IEEE Symposium on Founda-
tions of Computer Science (FOCS), pages 307–311, 1979. doi:10.1109/SFCS.1979.29.

28 H. Straubing. Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, Boston,
1994. doi:10.1007/978-1-4612-0289-9.

29 H. Vollmer. Introduction to Circuit Complexity: A Uniform Approach. Springer-Verlag
New York Inc., 1999. doi:10.1007/978-3-662-03927-4.

http://dx.doi.org/10.4230/LIPIcs.CSL.2015.144
http://dx.doi.org/10.4230/LIPIcs.STACS.2016.53
http://dx.doi.org/10.1017/CBO9780511662508.004
http://dx.doi.org/10.1017/CBO9780511662508.004
http://dx.doi.org/10.1109/SFCS.1979.29
http://dx.doi.org/10.1007/978-1-4612-0289-9
http://dx.doi.org/10.1007/978-3-662-03927-4


Kernelization of the Subset General Position
Problem in Geometry
Jean-Daniel Boissonnat1, Kunal Dutta2, Arijit Ghosh3, and
Sudeshna Kolay4

1 INRIA Sophia Antipolis - Méditerranée, France
2 INRIA Sophia Antipolis - Méditerranée, France
3 Indian Statistical Institute, Kolkata, India
4 Eindhoven University of Technology, Eindhoven, The Netherlands

Abstract
In this paper, we consider variants of the Geometric Subset General Position problem. In
defining this problem, a geometric subsystem is specified, like a subsystem of lines, hyperplanes or
spheres. The input of the problem is a set of n points in Rd and a positive integer k. The objective
is to find a subset of at least k input points such that this subset is in general position with respect
to the specified subsystem. For example, a set of points is in general position with respect to
a subsystem of hyperplanes in Rd if no d + 1 points lie on the same hyperplane. In this paper,
we study the Hyperplane Subset General Position problem under two parameterizations.
When parameterized by k then we exhibit a polynomial kernelization for the problem. When
parameterized by h = n − k, or the dual parameter, then we exhibit polynomial kernels which
are also tight, under standard complexity theoretic assumptions. We can also exhibit similar
kernelization results for d-Polynomial Subset General Position, where a vector space of
polynomials of degree at most d are specified as the underlying subsystem such that the size of
the basis for this vector space is b. The objective is to find a set of at least k input points, or in the
dual delete at most h = n−k points, such that no b+1 points lie on the same polynomial. Notice
that this is a generalization of many well-studied geometric variants of the Set Cover problem,
such as Circle Subset General Position. We also study general projective variants of these
problems. These problems are also related to other geometric problems like Subset Delaunay
Triangulation problem.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Incidence Geometry, Kernel Lower bounds, Hyperplanes, Bounded de-
gree polynomials

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.25

1 Introduction

In the geometric subset general position problem, the input is a family of algebraic objects,
e.g. lines, circles, hyperplanes, zero set of quadratic functions, and a point set P in Rd. The
objective is to extract a large subset S of P such that the subset S is in general position with
respect to the geometric objects. The definition of general position is different for different
families of geometric objects. For the case of hyperplanes in Rd, a set S, assume |S| > d,
will be in general position with respect to the family of hyperplanes in Rd if no more than
d points of S lie on a hyperplane. For the case of spheres in Rd, a set S with |S| > d+ 1,
will be in general position with respect to the family of spheres in Rd if no more than d+ 1
points of S lie on a sphere. In this paper, we will assume that d is a constant.

© Jean-Daniel Boissonnat, Kunal Dutta, Arijit Ghosh, and Sudeshna Kolay;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 25; pp. 25:1–25:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.25
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


25:2 Kernelization of the Subset General Position Problem in Geometry

In computational geometry it is generally assumed that the point set is in general position,
such as no more than d points lie on a hyperplane in the case of convex hull computation or no
more than d+ 1 points lie on a sphere for Delaunay triangulation computation (see [6]). Also,
algebraic techniques like simulation of simplicity have been introduced to handle degenerate
cases in practice [10].

The problem of determining whether a given point set in Rd is in general position
with respect to family of spheres and family of hyperplanes has been extensively studied
in computational geometry. Edelsbrunner, O’Rourke and Seidel [11] gave an O(nd) (and
O(nd+1)) space and time complexity algorithm to determine if a point set is in general
position with respect to hyperplanes (resp. spheres) in Rd. Edelsbrunner and Guibas [8, 9]
later improved the space bound to O(n). Erickson and Seidel [12, 13] showed in the worst
case Ω(nd) (and Ω(nd+1)) sided queries are required to determine whether a set of n points
in Rd is in general position with respect to hyperplanes (resp. spheres). We have mentioned
a small sample of the papers on this topic and for a more complete picture of this area
and the more general problem of arrangement of hyperplanes please refer to the survey by
Agarwal and Sharir [1].

More recently, the problem of finding a maximum-cardinality subset of points in gen-
eral position has been studied in parameterized complexity, approximation algorithm, and
combinatorial geometry [14, 18, 4]. Payne et al. [18] and Cardinal [4] gave a non-trivial
lower bound on the size of a largest size subset in general position from a point set with
bounded coplanarity in R2 and Rd. A point set in R2 (and Rd) has bounded coplanarity
if the number of points from the set that lie on a given plane (or hyperplane) is bounded.
Cao [3] and Froese et al. [14] studied the geometric subset general position problem in R2

with respect to lines in R2 through the lens of parameterized complexity. Cao [3] also gave
an O(

√opt)-factor approximation algorithm for the general position subset selection problem
with respect to lines in R2.

In this paper we generalize the results of [14] by studying the kernelization aspect of the
following primal problem:

Hyperplane Subset General Position Parameter: k

Input: An n point set P in Rd, for a fixed constant d, and a positive integer k
Question: Is there a subset S ⊆ P of size at least k such that S is in general position
with respect to hyperplanes in Rd?

We will also study a more general version of the above problem for bounded degree
polynomial families (see Section 2 and 3):

d-Polynomial Sub. General Pos. Parameter: k

Input: A set P of n points in Rd, for a fixed constant d, a bounded degree polynomial
family F in Rd and a positive integer k
Question: Is there a subset S ⊆ P of size at least k such that S is in general position
with respect to F in Rd?

Therefore, the general position subset selection problems with respect to natural set
families like the vector space of spheres, ellipses, etc. are special cases of the d-Polynomial
Subset General Position problem. We also study the problems with respect to the dual
parameter h = n− k. That is, the problem of Hyperplane Subset General Position or
d-Polynomial Subset General Position still have the same input and aim for the same
decision problem. However, the parameter for the problem becomes h.

Note that both these problems are NP-hard following from the results of [14] on Subset
General Position in R2.



J.-D. Boissonnat, K. Dutta, A. Ghosh, and S. Kolay 25:3

Our contribution

In this paper, we exhibit polynomial kernels for Hyperplane Subset General Position
in Rd. This is a generalization to higher dimensions of the results on kernelization obtained
in [14], with more carefully designed reduction rules to take care of the higher dimension.
We further generalize the result with the help of a variant of the Veronese mapping, to
obtain polynomial kernels for d-Polynomial Subset General Position in Rt, where
the bounded degree polynomial family is a vector space of d-degree polynomials. Special
cases of the d-Polynomial Subset General Position problem include variants where
the polynomial family is that of spheres or quadratic surfaces. Also, Delaunay Subset
Selection is a special case of this problem. We further study the general projective variants
of these problems. These results are described in Section 3

We also give tight polynomial kernels for Hyperplane Subset General Position in
Rd parameterized by h, the dual parameter, as described in Section 4. In Section 4, we obtain
tight results for the number of elements in a polynomial kernel for Hyperplane Subset
General Position in Rd. These results are similar to those obtained in [15]. Finally, in
Section 5, we are able to generalize this result for certain variants of d-Polynomial Subset
General Position.

2 Preliminaries

Hypergraphs

A set of consecutive integers {1, 2, . . . n} will be written as [n] in short. A hypergraph G is a
set system where V (G) denotes the universe and E(G) denotes the family of sets. We refer
to the objects in the universe V (G) by either vertices or elements, and each subset of E(G)
as a hyperedge. For a hyperedge e ∈ E(G) the set of vertices belonging to e is denoted as
Ve. A d-uniform hypergraph is a hypergraph where each hyperedge has exactly d vertices.
Similarly, a d-hypergraph is a hypergraph where each hyperedge has at most d vertices. An
independent set in a hypergraph G is a subset I ⊆ V (G) such that there is no e ∈ E(G)
where all vertices in e belong to I. The d-Hypergraph Independent Set problem takes as
input a d-hypergraph and a positive integer k and determines whether the input hypergraph
has an independent set of size at least k.

The d-Hitting Set problem takes as input a d-hypergraph G and a positive integer
k and determines whether there is a set S ⊆ V (G) of size at most k such that for each
e ∈ E(G), Ve ∩ S 6= ∅. Such a set S is called a d-hitting set.

General position in Geometry

An i-flat in Rd is the affine hull of i + 1 affinely independent points. The dimension of a
(possibly infinite) set of points P , denoted as dim(P ), is the minimum i such that the entire
set P is contained in an i-flat of Rd [16]. We use the term hyperplanes interchangeably
for (d − 1)-flats. A set P of points in Rd is said to be in general position with respect to
hyperplanes, if for each i-flat, i ≤ d− 1, in Rd there are at most i+ 1 points from P lying on
the i-flat.

As described earlier, the Geometric Subset General Position problem, defined on
a subsystem of geometric objects, takes as input a set of points P and a positive integer k
and determines whether there is a subset of at least k points that are in general position
with respect to the specified subsystem of geometric objects. For example, Hyperplane
Subset General Position in Rd takes in a set of points in Rd and a positive integer k

MFCS 2017



25:4 Kernelization of the Subset General Position Problem in Geometry

and determines whether there is a subset of at least k points that are in general position
with respect to hyperplanes in Rd.

Similarly, we can define the notion of general position with respect to multivariate
polynomials. Given a set {X1, X2, . . . , Xt} of variables, a real multivariate polynomial
on these variables is of the form P (X1, . . . , Xt) =

∑
i1,i2,...,it

ai1i2...it
∏
j∈[t] X

ij
j where

[t] = {1, . . . , t} and ai1i2...it ∈ R. The set of all real multivariate polynomials in the variables
{X1, . . . , Xt} will be denoted by R[X1, X2, . . . , Xt]. The degree of such a polynomial
P (X1, . . . , Xt) is defined as deg(P ) := max{i1 + i2 + . . .+ it | ai1i2...it 6= 0}. A polynomial
is said to be a degree d polynomial is its degree is d.

In this paper, we are interested in the set/subsets of polynomials whose degree is bounded
by d, for some d ∈ N. In this context we define Polyd[X1, . . . , Xt] := {f(X1, . . . , Xt) ∈
R[X1, X2, . . . , Xt] | deg(f) ≤ d}. Observe that Polyd[X1, . . . , Xt] is a vector space
over R with the monomials

{
Xi1

1 . . . Xit
t | 0 ≤

∑t
j=1 ij ≤ d

}
as the basis. Notice that∣∣∣{Xi1

1 . . . Xit
t | 0 ≤

∑t
j=1 ij ≤ d

}∣∣∣ =
(
d+t
d

)
.

In d-Polynomial Subset General Position in Rt, a subspace F of Polyd[X1, . . . , Xt]
is given with a basis {f1(X), f2(X), . . . , fb(X), 1}, where X = (X1, . . . , Xt) and fi(X) ∈
Polyd[X1, . . . , Xt], and a set of n points from Rt. The objective is to find a subset of points
in general position with respect to the vector space of polynomials, i.e., no more than b

points from the subset satisfy any equation of the form f(X) :=
∑b
i=1 λifi(X) + λb+1 = 0,

where for each j ∈ {1, . . . , b}, λj ∈ R and not all the λj ’s can be zero simultaneously. Here
are some concrete examples of d-Polynomial Subset General Position.

I Example 1.
1. Hyperplanes in Rt are zero sets of linear combinations of polynomials {X1, . . . , Xt, 1}.
2. Union of spheres and hyperplanes in Rd are zero sets of linear combinations of polynomials{∑t

i=1 X
2
i , X1, . . . , Xt, 1

}
.

3. Polynomial surfaces with degree bounded by d are zero sets of Polyd[X1, . . . , Xt].
4. Quadratic surfaces are zero set of polynomials in Poly2[X1, . . . , Xt].

Veronese mapping

In this paper, one of our strategies for generalizing our results is to convert d-Polynomial
Subset General Position in Rt to Hyperplane Subset General Position in Rb
by using a variant of Veronese mapping [17] from Rt → Rb. The Veronese mapping of a
vector space F of d-degree polynomials will be as the following: ΦF : Rt → Rb, where for a
vector X = (X1, . . . , Xt), ΦF (X) = (f1(X), . . . , fb(X)). Observe that if p = (p1, . . . , pt)
satisfies the equation f(X) :=

∑b
i=1 λifi(X) + λb+1 = 0 then, for a vector of variables

Z = (Z1, . . . , Zb), ΦF (p) will also satisfy the linear equation
∑b
j=1 λjZj + λb+1 = 0. In

other words, for any set of points P in Rt and the vector space F , the incidences between
P and F and incidences between ΦF (P ) and Poly1[Z1, . . . , Zb] (these are hyperplanes in
Rb) are preserved under the mapping ΦF . Also, observe that there is a bijection between
polynomials in F and hyperplanes in Rb.

Parameterized Complexity

The instance of a parameterized problem/language is a pair containing the actual problem
instance of size n and a positive integer called a parameter, usually represented as k. The
problem is said to be in FPT if there exists an algorithm that solves the problem in f(k)nO(1)

time, where f is a computable function. The problem is said to admit a g(k)-sized kernel, if



J.-D. Boissonnat, K. Dutta, A. Ghosh, and S. Kolay 25:5

there exists an polynomial time algorithm that converts the actual instance to a reduced
instance of size g(k), while preserving the answer. When g is a polynomial function, then
the problem is said to admit a polynomial kernel. A reduction rule is a polynomial time
procedure that changes a given instance I1 of a problem Π to another instance I2 of the same
problem Π. We say that the reduction rule is safe when I1 is a Yes instance of Π if and only
if I2 is a Yes instance. Readers are requested to refer [5] for more details on Parameterized
Complexity.

Lower bounds in Parameterized Algorithms

There are several methods of showing lower bounds in parameterized complexity under
standard assumptions in complexity theory. One such technique is polynomial parameter
transformation. For two parameterized problems Π,Π′, a polynomial time algorithm A is
called a polynomial parameter transformation (or ppt) from Π to Π′ if, given an instance
(x, k) of Π, A outputs in polynomial time an instance (x′, k′) of Π′ such that (x, k) ∈ Π if and
only if (x′, k′) ∈ Π′ and k′ ≤ kO(1). By a result of [2], if Π,Π′ are two parameterized problems
such that Π is NP-hard, Π ∈ NP and there exists a polynomial parameter transformation
from Π to Π′, then, if Π does not admit a polynomial kernel neither does Π′.

We also require a lower bound technique given in [7]. This technique links kernelization
to oracle protocols.

IDefinition 2. [7] Given a language L, an oracle communication protocol for L is a two-player
communication protocol. The first player gets an input x and can only execute computations
taking time polynomial in |x|. The second player is computationally unbounded, but does
not know x. At the end of the protocol, the first player has to decide correctly whether
x ∈ L. The cost of the protocol is the number of bits of communication from the first player
to the second player.

I Proposition 3. [7] Let d ≥ 2 be an integer, and ε be a positive real number. If
co-NP * NP/poly, then there is no protocol of cost O(nd−ε) to decide whether a d-uniform
hypergraph on n vertices has a d-hitting set of at most k vertices, even when the first player
is co-nondeterministic.

As noted in [7], this implies that for any d ≥ 2 and any positive real number ε, if
co-NP * NP/poly, then there is no kernel of size kd−ε for d-Hitting Set. In general, a
lower bound for oracle communication protocols for a parameterized language L gives a lower
bound for kernelization for L.

Kernels: size vs. number of elements

In literature, a lower bound on the kernel means the lower bound on the size of the kernel,
but not necessarily on the number of input elements in the kernel. Kratsch et al. [15] were
one of the first to study lower bounds in terms of the number of input elements in the
kernel. They used the results of Dell and Melkebeek [7] along with results in two dimensional
geometry to build a new technique to show lower bounds for the number of input elements in
a kernel for a problem. In this paper, we have adhered to the general convention by saying
that a kernel has a lower bound on its size if it has a lower bound on its representation in
bits, while explicitly mentioning the cases where the kernel has a lower bound on the number
of input elements.

MFCS 2017



25:6 Kernelization of the Subset General Position Problem in Geometry

3 Kernel Upper Bounds for primal parameter

In this section, we consider the Hyperplane Subset General Position problem in Rd
parameterized by the primal parameter k. We describe a polynomial kernelization for this
problem. This method is similar to that described in [14]. However, there is an error in
the analysis of kernel size in [14]. Our proof, when restricted to the case of Line Subset
General Position problem gives the correct bound on the kernel. We will point out
the place where there is an error in [14], while describing our proof. Moreover, using the
well-known Veronese mapping, we can generalize this result to give polynomial kernels for
d-Polynomial Subset General Position in Rd parameterized by k.

3.1 Hyperplane case
First, we consider an easy variant of the Hyperplane Subset General Position problem
in Rd, where the input point set P is such that for every subset S of P of size less than
d, dim(S) = |S| − 1. In this case, the i-flats are said to be non-degenerate. In this case,
parameterization by k gives us a polynomial kernel by a generalization of the results obtained
in [14]. For the sake of completeness, we describe the kernelization. We apply a reduction
rule that bounds the coplanarity of hyperplanes in Rd.

I Reduction Rule 4. Given an instance (P, k) of Hyperplane Subset General Position
in Rd, if there is a hyperplane H with at least (d− 1)

(
k−d
d

)
+ d points then we delete all the

points in H ∩ P and set k = k − d.

I Lemma 5. Reduction Rule 4 is safe.

We apply this Reduction Rule exhaustively. In the end, we know that each hyperplane
can contain O(kd) input points. Together with the bound on coplanarity, we will also use
the following result by Cardinal et al. [4, Theorem 4.1] to get a kernel.

I Theorem 6 (Cardinal et al. [4]). Let P be a set of n points in Rd with at most ` cohyperplanar
points, where ` = O(

√
n). Then P contains a subset of size Ω

(
(n/ log l)1/d) of points in

general position.

I Theorem 7. Hyperplane Subset General Position in Rd, parameterized by k and
with an input point set where all lower dimensional flats are non-degenerate, has a O(k2d)
kernel.

Proof. We know from Theorem 6 that for a point set of size n and cohyperplanarity `, i.e.,
at most ` points from the point set can lie on a given hyperplane, such that ` ≤

√
n, there

is a point set in general position of size at least C( n
log ` )

1/d where C = C(d) is a constant.
Thus, when ` ≤

√
n, if C( n

log ` )
1/d > k, we correctly say Yes. Substituting ` by its upper

bound of O(kd), this equation is true when n ≥ Ω(kd+1). When n = O(kd+1), then anyway
we obtain a kernel of size O(kd+1). The remaining case is when ` >

√
n. Then, substituting

` by its upper bound of O(kd), we know that n = O(k2d). Thus, we obtain the required
polynomial kernel. J

Now we consider the general problem. To design a kernel for the general problem, point
subsets lying in lower dimensional flats also have to be kept in mind. The approach is to first
reduce the number of points that can lie in a lower dimensional flat before we can employ
a strategy similar to the kernelization of Theorem 7. First, we describe a reduction rule
such that in the reduced instance, the coplanarity of each i-flat with i ≤ d is bounded by a



J.-D. Boissonnat, K. Dutta, A. Ghosh, and S. Kolay 25:7

function of k. This reduction rule is similar to Reduction Rule 4, except that it has to take
care of point subsets lying in lower dimensional flats before it considers point subsets lying
in hyperplanes of Rd.

I Reduction Rule 8. Let (P, k) be an instance of Hyperplane Subset General Position
parameterized by k. Let i be the smallest integer between 2 and d, auch that there is an
(i− 1)-flat that contains at least c(d) · kid + 1 points. Then we delete all but c(d)kid points.
Here c(d) = 15(d− 1) is a constant.

I Lemma 9. Reduction Rule 8 is safe.

Proof sketch. We prove the correctness of the reduction rule by induction on i. In the base
case, suppose i = 2. Suppose there is a line L containing at least c(d)k4 + 1. Then by the
reduction rule, we construct an instance (P ′, k) such that P is modified to P ′ by deleting all
but c(d)k4 points. We show that P has a k-sized set in general position if and only if P ′ has
a k-sized set in general position. Since, P ′ ⊂ P , if P ′ has a k-sized set in general position, so
does P .

In the forward direction, suppose P has a k-sized set S in general position. Let PL
be the set of points in L ∩ P and P ′L be the set of points in L ∩ P ′. By definition of
general position, there are Σj≤d

(
k
j

)
flats of dimension at most d that can be formed by the

points in S. Consider the intersection of these flats with the line L. Each intersection is of
dimension at most 1. That is, if the intersection is not the line L itself, then it is a point
in L. Thus there are at most Σj≤d

(
k
j

)
points of intersection. Since, the set S is in general

position, at most two points from S lie on L. If there are no points or if all the points in
S ∩ L belong to P ′ then S is also a k-sized set in general position for the instance (P ′, k).
Otherwise, suppose there are at most t ≤ 2 points from PL \ P ′L. The number of intersection
points is at most Σj≤d

(
k
j

)
< c(d)k2d. Thus there is a set Ŝ = {pt|t ≤ 2} on L that are not

intersection points. Let S′ = S \ (P ∩L)∪ Ŝ. We show that S′ is also a set in general position.
Consider a flat defined by points from S′. If they do not contain points from Ŝ, then they
remain non-degenerate flats. Suppose a flat contains points from Ŝ. Also, for the sake of
contradiction, suppose the flat is degenerate. If the flat contains all the points in Ŝ then it
contains the line L and therefore the points from L ∩ P . Thus, in P the set S was not in
general position, which is a contradiction. Now, suppose the flat F contains a single point,
say p1, from Ŝ. Then the points from F ∩ S were in general position and therefore the flat
was either the line L or L ∩ F was an intersection point. This contradicts the fact that p1
belongs to F , as p1 is chosen to be a point that is not an intersection point. Thus, S′ ⊆ P ′
is in general position and of size k. Note that this means that after exhaustive application of
this rule all lines contain at most λ2 = c(d)k2d points.

The arguments of the other values of i are similar but with more case analysis. The full
proof can be found in the full version of this paper. J

This Reduction Rule is exhaustively applied and in the end the reduced instance is such
that for any hyperplane in Rd, the coplanarity is O(kd2). Now, we can exhibit a polynomial
kernel for Hyperplane Subset General Position in Rd parameterized by k. The proof
is same as that of Theorem 7, while taking into account that the collinearity bound in this
case is O(kd2).

I Theorem 10. Hyperplane Subset General Position in Rd parameterized by k has a
kernel of size O(k2d2).

Using the techniques in the proof of Theorem 10 we can also solve the projective version
of the general position problem. For a given point set P in Rd, S ⊆ P \ {0} is said to be in

MFCS 2017



25:8 Kernelization of the Subset General Position Problem in Geometry

projective general position if no more than d− 1 points from S lie on a hyperplane in Rd
that passes through the origin. The parameterized version of the problem is the following:

Projective Hyperplane Subset General Position Parameter: k

Input: An n point set P in Rd, for a fixed constant d, and a positive integer k
Question: Is there a subset S ⊆ P of size at least k such that S is in projective general
position?

Notice that this problem in R2 is polynomial time solvable, as the problem is equivalent
to asking whether the projection of the points on a unit sphere, centered at the origin, equals
to at least k points where no two lie on the same line through the origin.

We will apply the following reduction rule to reduce the coplanarity of the hyperplanes
passing through the origin.

I Reduction Rule 11. Let (P, k) be an instance of Projective Hyperplane Subset
General Position parameterized by k. Let i be the smallest integer between 2 and d− 1,
such that there is an (i− 1)-flat passing through the origin that contains at least c′(d) · kid + 1
points. Then we delete all but c′(d)ki(d−1) points. Here, as in the case with Reduction Rule 8,
c′(d) is a large constant depending linearly on d.

The correctness of this Reduction Rule is same as the inductive proof of Reduction Rule 8.
Applying the above reduction rule exhaustively, as was the case with Hyperplane Subset
General Position problem, we will get that any hyperplane passing through the origin
has O(k(d−1)2) input points on them. To get a polynomial kernel for the Projective
Hyperplane Subset General Position problem we will need the following analogue to
Theorem 6 with bounded coplanarity.

I Lemma 12 (Projective version of Theorem 6). Let P be a set of n points in Rd such that
for any hyperplane H passing through the origin, we have |H ∩ P | ≤ `, where ` = O(n1/3).

Then P contains a subset of size Ω
((

n2/3

log `

)1/(d−1)
)

of points in projective general position.

Proof. The proof of this lemma will use Theorem 6. Without loss of generality we will
assume that the hyperplane X1 = 1, intersects all the lines passing through the origin and
one point of P . Let L denotes the set of lines passing through the origin and one point of P .
Observe that since for any hyperplane H passing through the origin, |H ∩ P | ≤ `, therefore
|L| ≥ n

` . Let P ′ be the set points we get by intersecting lines in L with the hyperplane
X1 = 1. Again observe that |P ′| ≥ n

` , and for any (d − 2)-hyperplane H ′ contained in
the hyperplane X1 = 1, we have |H ′ ∩ P ′| ≤ `, otherwise we can get a hyperplane passing
through origin containing more than ` points from P . Using the fact that ` = O

(√
n/`
)

and Theorem 6, we get that P ′ contains a subset P ′1 of size Ω
((

n2/3

log `

)1/(d−1)
)

with no more

than ` points from P ′1 lying on any (d− 2)-dimensional subflat of the hyperplane X1 = 1.
For each point p′ ∈ P ′1, include in the set P1 a point p from the set P such that p and p′
are on the same line passing through the origin. By construction the set P1 is in projective

general position and |P1| = Ω
((

n2/3

log `

)1/(d−1)
)
. J

Now, using the fact that any hyperplane passing through the origin has O(k(d−1)2) input
points on them after application of Reduction Rule 11 and Lemma 12, we can prove the
following result in the same way we proved Theorem 10.



J.-D. Boissonnat, K. Dutta, A. Ghosh, and S. Kolay 25:9

I Theorem 13. Projective Hyperplane Subset General Position in Rd parameter-
ized by k has a kernel of size O(k3(d−1)2).

3.2 Bounded degree polynomials
The following lemma will show the direct connection between the d-Polynomial Subset
General Position problem and Hyperplane Subset General Position problem:

I Lemma 14. Let P be a set of points in Rt, and F be a subspace of Polyd[X1, . . . , Xt]
with a basis {f1(X), . . . , fb(X), 1}, where X = (X1, . . . , Xt).
1. If P is a set of ` points in general position with respect to the polynomial family F (defined

earlier in the section) then ΦF (P ) (ΦF is defined earlier in Section 2) is a set of ` points
in general position with respect to hyperplanes in Rb.

2. Let S = {q1, . . . , q`} ⊆ ΦF (P ) be a set of ` points in general position with respect to
hyperplanes in Rb. Then the set S′ = {p1, . . . , p`}, where pi ∈ Φ−1

F (qi) ∩ P , will be a set
of ` points in general position with respect to F .

Proof.
1. First, observe that it is enough to show that the map ΦF is injective on P . In general, the

map ΦF need not be an injective mapping on an arbitrary set of n points in Rt. However,
we show that Φ is injective when restricted to P if P is in general position with respect to
F . To reach a contradiction, let ΦF (p1) = ΦF (p2) where p1, p2 ( 6= p1) ∈ P . Let S ⊆ P
be of size b + 1 and p1, p2 ∈ S. Observe that the set ΦF (S) will have less than b + 1
points and this will imply that there exists a hyperplane

∑b
i=1 λiZi + λb+1 = 0 on which

the set ΦF (S) will lie. But this implies that the polynomial
∑b
i=1 λifi(X) + λb+1 = 0

will be satisfied by all the points in S. This is a contradiction to the fact that the point
set P is in general position.

2. This result follows directly from the construction of the mapping ΦF . J

With the above result and Theorem 10 we get the following theorem.

I Theorem 15. d-Polynomial Subset General Position in Rt parameterized by k, has
a polynomial kernel of size O(k2b2). Here b is the size of the basis generating the underlying
vector space of polynomials.

As in the case with Theorem 10 we can also get a projective version of Theorem 15. Let F
be a subspace of Polyd[X1, . . . , Xt] with basis {f1(X), . . . , fb(X)} where X = (X1, . . . , Xt)
and none of the polynomial functions fi(X) are constants. Then we can define projective
analog of the general position problem for polynomial families like F . For a given point set
P in Rt, a subset S of P will be in general position with respect to F if no more than b− 1
points from S lie on any f(X) ∈ F .

Using the same techniques as in the proof of Theorem 10 we will get the following result:

I Corollary 16. Projective Polynomial Subset General Position in Rt parameterized
by k has a kernel of size O(k3(b−1)2).

Upper bounds for non-vector space families

Observe that we may be interested in getting general position point set with respect to families
of polynomials that are not vector spaces of Polyd[X1, . . . , Xt]. For example, consider the
case of hyperplanes in Rt of the following type H :=

∑t−1
i=1 λiXi +Xt + β, where λi’s and β

MFCS 2017



25:10 Kernelization of the Subset General Position Problem in Geometry

are in R+. One might be interested in getting a general position set in Rt with respect to
these hyperplanes.

Note that our upper bound on the kernel size in the primal parameter extends to these
families as well.

I Corollary 17. Let F be a subfamily of Polyd[X1, . . . , Xt] such that there exists polyno-
mial functions f1(X), . . . , fb(X) in Polyd[X1, . . . , Xt] and for any f(X) ∈ F , f(X) =∑b

i=1 λifi(X) where the λi’s are in R. Subset general position problem with respect to F
parameterized by primal parameter k has a kernel of size O(k3(b−1)2).

4 Tight kernels for hyperplanes in dual parameter

In this Section, we show that Hyperplane Subset General Position in Rd, parameterized
by the dual parameter h, cannot have a kernel of size hd−ε if co-NP * NP/poly. We show
this result by the standard technique of polynomial parameter transformation. For a fixed d,
we reduce the d-Hitting Set problem on d-uniform graphs to the problem of Hyperplane
Subset General Position in Rd. By Proposition 3, this gives us a lower bound for
Hyperplane Subset General Position in Rd.

For the main result, we construct for each positive integer n and each d, a set of n points
in Rd with some special properties.

I Lemma 18. For every d-uniform hypergraph G in n vertices and m hyperedges, there is
a transformation to a set P ]B = {p1, p2, . . . , pn} ] {b1, b2, . . . , bm} of n+m points in Rd
that have the following properties:
1. The points {p1, p2, . . . , pn} are in general position.
2. Each vertex vi ∈ V (G) is mapped to the point pi ∈ P .
3. Each hyperedge ej ∈ E(G) is mapped to the point bj ∈ B.
4. For a hyperedge ej ∈ E(G), if there are d points {pi1 , pi2 , . . . , pid} ∈ P such that

bj , pi1 , pi2 , . . . , pid are cohyperplanar, then it must be the case that ej = {vi1 , vi2 , . . . , vid}.
5. For any set of i ≤ d points of B and d+ 1− i points of P cannot be cohyperplanar.
6. The points in B are in general position. In other words, no d + 1 points in B are

cohyperplanar.

Proof Idea. The main idea behind the proof is that the sets P and B satisfying the conditions
of Lemma 18 can be generated in a greedy manner from considering large grids. We will first
construct the point set P of n points in a greedy manner such that P comes from a large grid
and is in general position. After P is constructed, the set B is again greedily constructed,
this time using a lower dimensional grid lying in a particular hyperplane. J

This transformation from a graph to a point set leads to the following observation.

I Observation 19. Let G be a d-uniform hypergraph and P ]B be the set of points in Rd
corresponding to G. For any maximal set S of points in general position, there is a set of
size at least |S| that contains all the points in B.

This helps us to design a reduction from d-Hypergraph Independent Set to Hyper-
plane Subset General Position in Rd.

I Lemma 20. There is a many-one reduction from d-Hypergraph Independent Set on
d-uniform hypergraphs to Hyperplane Subset General Position in Rd.

Finally, we are ready to prove the main result.



J.-D. Boissonnat, K. Dutta, A. Ghosh, and S. Kolay 25:11

I Theorem 21. Hyperplane Subset General Position in Rd parameterized by the dual
parameter cannot have a kernel of size O(hd−ε) if co-NP * NP/poly.

Proof. We give a reduction from d-Hitting Set on d-uniform hypergraphs. Given an
instance (G, h) of d-Hitting Set on d-uniform hypergraphs, we consider the equivalent
d-Hypergraph Independent Set instance (G, |V (G)|−h). By Lemma 20, we construct an
instance (P ]B, |V (G)|+ |E(G)|−h). Note that the transformation is such that |P | = |V (G)|
and |B| = |E(G)|. Thus, G has a d-hitting set of size k if and only if G has an independent
set of size |V (G)| − h, which by Lemma 20 happens if and only if P ]B has a point subset
of size k′ = |P ]B| − h that is in general position with respect to hyperplanes in Rd. This
means that the dual parameter |P ] B| − k′ is equal to h, which is the d-hitting set size
in G. This implies the lower bound on the kernel size of Hyperplane Subset General
Position in Rd parameterized by the dual parameter. J

We obtain tight polynomial kernels from the following Proposition, derived from a folklore
result.

I Proposition 22. Hyperplane Subset General Position in Rd parameterized by the
dual parameter h has a kernel of size hd.

Proof. We state the folklore reduction from Hyperplane Subset General Position in
Rd to (d+ 1)-Hitting Set. Given an instance (P, h) of Hyperplane Subset General
Position in Rd, we construct the following instance (G, h) of (d+ 1)-Hitting Set. Corres-
ponding to each point in P we create a vertex in V (G). For any d+ 1 point in P that are
coplanar in Rd, we create a hyperedge with the corresponding vertices. Consider the vertices
in a hyperedge of G. At least one of the corresponding points has to be deleted in order to
construct a subset of P that is in general position with respect to hyperplanes in Rd. Thus,
the set of points deleted correspond to a hitting set of G. Therefore, the reduction is correct.

(d+ 1)-Hitting Set has a kernel where the universe size if O(hd) [19]. This gives us an
O(hd) kernel for Hyperplane Subset General Position in Rd parameterized by the
dual parameter. J

Lower bounds on elements in a kernel for hyperplanes in dual parameter

In this section, we show that by the method suggested by Dell and Melkebeek [7], we can
show a lower bound on the number of points in a polynomial kernel for Hyperplane Subset
General Position in Rd, for each fixed positive integer d. This result is a direct extension
of the results obtained in [15] and [14].

I Theorem 23. Hyperplane Subset General Position in Rd, parameterized by h,
cannot have a kernel with O(hd−ε) points if co-NP * NP/poly.

5 Bounded degree polynomials and the dual parameter

In this section we discuss about the generalization of Theorems 21 and 23. Note that, for
any given point set P with n points, both theorems can be proved for finding a point set of
size n− h, h being the dual parameter, if the construction of Lemma 18 can be replicated for
a particular family F . In particular, consider a family F of polynomials of degree at most
d with basis {f1(X), . . . , fb(X), 1}, where X = {X1, . . . , Xt}. Suppose for each b-uniform
hypergraph G with n vertices and m edges it is possible to make a transformation as follows:

MFCS 2017



25:12 Kernelization of the Subset General Position Problem in Geometry

1. The points {p1, p2, . . . , pn} are in general position with respect to F and have bounded
representation.

2. Each vertex vi ∈ V (G) is mapped to the point pi ∈ P .
3. Each hyperedge ej ∈ E(G) is mapped to the point bj ∈ B.
4. For a hyperedge ej ∈ E(G), if there are d points {pi1 , pi2 , . . . , pib} ∈ P such that

bj , pi1 , pi2 , . . . , pib lie on a polynomial from F , then it must be the case that ej =
{pi1 , pi2 , . . . , pib}.

5. For any set of i ≤ b points of B and b+ 1− i points of P cannot be on any polynomial of
F .

6. The points in B are in general position. In other words, no b+ 1 points in B can be on
any polynomial of F .

Let us call such a transformation a good transformation. Then with respect to such a family
F , equivalent tight kernelizations for the dual parameter can be given. When F is the family
of spheres, then such a construction is possible.

I Corollary 24. Given the family of spheres in Rd, for each (d+ 1)-uniform hypergraph with
n vertices and m points there is a good transformation to a set P ]B of n+m points.

Proof. The construction is similar as that of Lemma 18, as we again can construct the sets
greedily. The point set P can be extracted from a large enough grid as in the construction
given in Lemma 18. The construction of the points in B is also done inductively. Suppose
the points of a subset B′ ⊂ B have already been placed on rational points such that all the
necessary conditions are satisfied. Let be ∈ B \B′. Consider the sphere Se defined by the
d-sized point set Pe corresponding to the vertices of e ∈ E(G). Consider the family F of
spheres formed by (i) a set of any d points in P other than the set Pe, (ii) any d points from
B′, and (iii) a set S of d points with at least one point from P and at least one point from
B′. The intersection of this family of spheres with Se is a family F ′ of lower dimensional
spaces. Since the points in P have bounded representation, so do the intersection spaces.
It is possible to determine in polynomial time the arrangement of the lower dimensional
intersections on Se [1]. From this arrangement, we select a point with bounded representation
that does not belong to any of the lower dimensional flats in F ′ and set the point to be. The
set B′ ∪ be again satisfies all the necessary conditions. We continue till all the points in B
have been determined. Thus, we construct the required set P ]B. J

6 Open Problems

One of the major open questions in this area is regarding techniques for showing kernel lower
bounds with respect to the primal parameter. Currently, no non-trivial lower bound is known
for even Hyperplane Subset General Position in R2.

In Section 5, we gave tight lower bounds with respect to the dual parameter under
some restricted vector spaces of d-degree polynomials. It will be interesting to understand
the problem better for general vector spaces of d-degree polynomials. In fact, it might be
useful for both algorithmic as well as combinatorial studies to understand the Geometric
Subset General Position in both the primal and dual parameter for families of d-degree
polynomials that are not vector spaces or a subset of a vector space. We are interested in
studying families that fall outside these frameworks.

General position with respect to spheres is also connected to Delaunay Subset Selec-
tion problem where we are given a point set P ⊂ Rd as input and the problem is to extract
a maximum size subset S of P such that the Delaunay complex Del(S) is a triangulation



J.-D. Boissonnat, K. Dutta, A. Ghosh, and S. Kolay 25:13

of the convex hull conv(S) of S. Although the upper bounds for kernelization given in this
paper hold for this problem, lower bound questions remain open for both primal and dual
parameter.

References
1 Pankaj K Agarwal and Micha Sharir. Arrangements and their applications. Handbook of

Computational Geometry, pages 49–119, 2000.
2 Hans L. Bodlaender, Stéphan Thomassé, and Anders Yeo. Kernel bounds for disjoint cycles

and disjoint paths. Theor. Comput. Sci., 412(35):4570–4578, 2011.
3 C. Cao. Study on Two Optimization Problems: Line Cover and Maximum Genus Embed-

ding. Master’s thesis, Texas A&M University, May 2012.
4 Jean Cardinal, Csaba D. Tóth, and David R. Wood. General position subsets and

independent hyperplanes in d-space. Journal of Geometry, pages 1–11, 2016. doi:
10.1007/s00022-016-0323-5.

5 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

6 Mark De Berg, Marc Van Kreveld, Mark Overmars, and Otfried Cheong Schwarzkopf.
Computational geometry. In Computational geometry, pages 1–17. Springer, 2000.

7 Holger Dell and Dieter Van Melkebeek. Satisfiability allows no nontrivial sparsification
unless the polynomial-time hierarchy collapses. In Proceedings of the 42nd ACM Symposium
on Theory of Computing, pages 251–260. ACM, 2010.

8 Herbert Edelsbrunner and Leonidas J. Guibas. Topologically Sweeping an Arrangement.
J. Comput. Syst. Sci., 38(1):165–194, 1989.

9 Herbert Edelsbrunner and Leonidas J. Guibas. Corrigendum: Topologically Sweeping an
Arrangement. J. Comput. Syst. Sci., 42(2):249–251, 1991.

10 Herbert Edelsbrunner and Ernst Peter Mücke. Simulation of Simplicity: A Technique to
Cope with Degenerate Cases in Geometric Algorithms. ACM Transactions on Graphics,
9(1):66–104, 1990.

11 Herbert Edelsbrunner, Joseph O’Rourke, and Raimund Seidel. Constructing Arrangements
of Lines and Hyperplanes with Applications. SIAM J. Comput., 15(2):341–363, 1986.

12 Jeff Erickson and Raimund Seidel. Better Lower Bounds on Detecting Affine and Spherical
Degeneracies. Discrete & Computational Geometry, 13:41–57, 1995.

13 Jeff Erickson and Raimund Seidel. Erratum to Better Lower Bounds on Detecting Affine
and Spherical Degeneracies. Discrete & Computational Geometry, 18(2):239–240, 1997.

14 Vincent Froese, Iyad Kanj, André Nichterlein, and Rolf Niedermeier. Finding Points in
General Position. CCCG, pages 7–14, 2016.

15 Stefan Kratsch, Geevarghese Philip, and Saurabh Ray. Point Line Cover: The Easy Kernel
is Essentially Tight. ACM Trans. Algorithms, 12(3):40, 2016.

16 Stefan Langerman and Pat Morin. Covering things with things. Discrete & Computational
Geometry, 33(4):717–729, 2005.

17 Jiří Matoušek. Lectures on Discrete Geometry, volume 108. Springer New York, 2002.
18 Michael S Payne and David R Wood. On the general position subset selection problem.

SIAM Journal on Discrete Mathematics, 27(4):1727–1733, 2013.
19 René van Bevern. Towards optimal and expressive kernelization for d-hitting set. Algorith-

mica, 70(1):129–147, 2014.

MFCS 2017

http://dx.doi.org/10.1007/s00022-016-0323-5
http://dx.doi.org/10.1007/s00022-016-0323-5




Satisfiable Tseitin Formulas Are Hard for
Nondeterministic Read-Once Branching
Programs∗

Ludmila Glinskih1 and Dmitry Itsykson2

1 St. Petersburg Department of V.A. Steklov Institute of Mathematics of the
Russian Academy of Sciences and St. Petersburg Academic University, Russia
lglinskih@gmail.com

2 St. Petersburg Department of V.A. Steklov Institute of Mathematics of the
Russian Academy of Sciences, Russia
dmitrits@pdmi.ras.ru

Abstract
We consider satisfiable Tseitin formulas TSG,c based on d-regular expanders G with the absolute
value of the second largest eigenvalue less than d

3 . We prove that any nondeterministic read-once
branching program (1-NBP) representing TSG,c has size 2Ω(n), where n is the number of vertices
in G. It extends the recent result by Itsykson at el. [9] from OBDD to 1-NBP.

On the other hand it is easy to see that TSG,c can be represented as a read-2 branching
program (2-BP) of size O(n), as the negation of a nondeterministic read-once branching program
(1-coNBP) of size O(n) and as a CNF formula of size O(n). Thus TSG,c gives the best possible
separations (up to a constant in the exponent) between 1-NBP and 2-BP, 1-NBP and 1-coNBP
and between 1-NBP and CNF.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes - Relations among
complexity measures, F.2.2 Nonnumerical Algorithms and Problems - Complexity of proof pro-
cedures

Keywords and phrases Tseitin formula, read-once branching program, expander

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.26

1 Introduction

1.1 Satisfiable and unsatisfiable Tseitin formulas
A Tseitin formula TSG,c is defined for every undirected graph G(V,E) and labelling function
c : V → {0, 1}. We introduce a propositional variable for every edge of G. The Tseitin
formula TSG,c represents a linear system over the field GF(2) that for every vertex v ∈ V
states that the sum of all edges adjacent to v equals c(v).

A Tseitin formula is satisfiable if and only if the sum of values of the labeling function
for all vertices in every connected component is even [17]. The study of Tseitin formulas is
motivated by Proof Complexity. Proof Complexity basically deal with unsatisfiable Tseitin
formulas that roughly speaking encode that it is impossible that a graph has an odd number
of vertices with odd degree. It is important for Proof Complexity that propositional formulas
have small CNF representations; thus it is usually assumed that G has constant degree;

∗ The research was supported by Russian Science Foundation (Project 16-11-10123).

© Ludmila Glinskih and Dmitry Itsykson;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 26; pp. 26:1–26:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.26
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


26:2 Satisfiable Tseitin Formulas Are Hard for 1-NBP

for such graphs Tseitin formulas have CNF representations of size O(n) and it contains
O(n) variables where n is the number of vertices in G. Tseitin formulas were invented by
Tseitin in 1968 for the graph of n× n cellular square and were used for the proving of the
first superpolynomial lower bound for regular resolution. In 1987 Urquhart extended this
result and proved exponential lower bound on the complexity of resolution refutations of
Tseitin formulas based on expanders. Unsatisfiable Tseitin formulas are one of the basic
examples of hard formulas for many proof systems; in particular, Tseitin formulas are hard
for bounded depth Frege [3], [15], Polynomial Calculus over the field F with char(F) 6= 2,
tree-like Lovasz-Schrijver proof system [8], etc.

Satisfiable Tseitin formulas have been studied less intensively. In the recent paper by
Itsykson at el. [9] satisfiable Tseitin formulas appeared in the proof of an exponential lower
bound on the size of the derivation of unsatisfiable Tseitin formulas in the proof system
OBDD(join, reordering). An OBDD is a partial case of a read-once deterministic branching
program, where in every path from the source to a sink all variables appear in the same order.
The key step in the proof of the mentioned lower bound is the proof of an exponential lower
bound on the OBDD representation of satisfiable Tseitin formulas based on constant degree
expanders. The latter lower bound motivated us for the current research. There are known
examples of Boolean functions that are easy for read-once branching program but hard for
OBDD (see for example Theorem 6.1.2 in [18]). Is it possible to extend the mentioned lower
bound from OBDD to read-once branching program?

It is well known that the size of the shortest regular resolution proof of any unsatisfiable
CNF formula φ equals the size of the minimal read-once branching program for the following
search problem Searchφ: given an assignment of variables of φ, find a clause that is refuted
by this assignment [12]. Thus lower bounds for the size of resolution proofs of φ implies
lower bounds on the size of read-once branching program for Searchφ. However it is unclear
whether the sizes of read-once branching programs for Searchφ for unsatisfiable Tseitin
formula φ and for the evaluation of a satisfiable Tseitin formula are connected. The difference
is the following:
1. the first case is about unsatisfiable Tseitin formulas while the second case is about

satisfiable Tseitin formulas;
2. to find a clause that is refuted may be harder than just to say that the value of a function

is 0.

1.2 Results
In this paper we prove that every nondeterministic read-once branching program (1-NBP)
representing a satisfiable Tseitin formula TSG,c based on d-regular expander with the absolute
value of the second largest eigenvalue less than d

3 has size 2Ω(n), where n is the number of
vertices in G and d is a constant. As a corollary we get a lower bound 2Ω(n) on the size
of nondeterministic read-once branching programs for Tseitin formulas based on complete
graph Kn. All mentioned lower bounds are tight up to a constant in the exponent since every
satisfiable Tseitin formula based on graph with n vertices and m edges may be represented
as OBDD of size O(m2n) (see Proposition 3 below).

1.3 Comparison with other works
If we consider a Tseitin formula as a system of linear equations then every variable will
have exactly two occurrences. Therefore by straightforward transformation every satis-
fiable Tseitin formula TSG,c may be represented as read-2 deterministic branching program



L.Glinskih and D. Itsykson 26:3

(2-BP) of size O(m), where m is the number of edges in G. Thus satisfiable Tseitin formu-
las based on constant-degree expanders strongly exponentially separate 1-NBP and 2-BP.
And this separation is optimal up to a constant in the exponent. Consider a function
CLIQUE_ONLYn : {0, 1}n(n−1)/2 → {0, 1} that detect whether a undirected graph on n
vertices is exactly a clique on bn/2c vertices. Borodin, Razborov and Smolensky [4] proved
that any nondeterministic read-once branching program representing CLIQUE_ONLYn
has size 2Ω(n) (note that CLIQUE_ONLYn depends on Θ(n2) variables) while there is a
deterministic read-twice branching program of size poly(n). Thathachar [16] gave, for every
natural k, an explicit function that can be evaluated by deterministic read-(k + 1) branching
program of linear size but every nondeterministic read-k branching program for this function
has size at least 2Ω(n1/(k+1)). As far as we know, the best previously known gap between
sizes of 1-NBP and 2-BP was 2Ω(

√
n) and we improved it to 2Ω(n).

First explicit Boolean function with strongly exponential lower bound on the size of
1-NBP was constructed in [4], however this function was rather artificial. Duros at el. [7]
proved strongly exponential lower bounds on the size of 1-NBP for the function ⊕cl3,n that
computes the parity of the number of triangles in the graph (and this extends the result
of Babai at el.[2] from 1-BP to 1-NBP) and for the function ∆3,n that is true iff the input
graph does not contain triangles. So satisfiable Tseitin formulas based on constant-degree
expanders is one more natural example of functions that require strongly exponential 1-NBP.

A satisfiable Tseitin formula based on a d-regular graph on n vertices is a characteristic
function of an affine subspace of {0, 1}dn/2. Characteristic functions of affine (linear) subspaces
were already studied in the context of complexity of deterministic and nondeterministic
reak-k branching programs, namely characteristic functions of linear error-correcting codes
were studied by Okolnishnikova [14] and Jukna [10]. Jukna [10] proved lower bound 2Ω(

√
n)

on the size of nondeterministic read-k branching program for characteristic functions of
error-correcting codes C ⊆ {0, 1}n. Duris at el. [7] presented a probabilistic construction
of a linear code such that its characteristic function require 1-NBP of the size at least
2Ω(n). Jukna [10] noted that the negation of a characteristic function of an affine subspace
may be represented by linear size (in the size of linear system that defines this subspace)
nondeterministic read-once branching program. Indeed we just need to guess an equation
that is not satisfied and then check this equation. Duris at el. [7] also showed that the
characteristic function of a linear subspace of {0, 1}n (and hence it is also true for affine
subspaces) may be represented by a randomized read-once branching program with one-sided
error 2−r of size O(nr) for all natural r. As far as we know, satisfiable Tseitin formulas based
on explicit constant-degree expanders are the only example of explicit functions (randomized
construction was presented in [7]) that strongly exponentially separate nondeterministic
and co-nondeterministic read-once branching program. And also our separation between
nondeterministic and randomized read-once branching program seems to be the best known
for the explicit functions.

We finally note that Tseitin formulas based on constant degree graphs may be represented
as CNF formulas of size O(n), so we get a strongly exponential separation between sizes of
1-NBP and CNF.

2 Preliminaries

2.1 Branching programs
A deterministic branching program (BP) is a form of representation of Boolean functions. A
Boolean function {0, 1}n → {0, 1} is represented by a directed acyclic graph with exactly
one source and two sinks. All nodes except sinks are labeled with a variable; every internal

MFCS 2017



26:4 Satisfiable Tseitin Formulas Are Hard for 1-NBP

node has exactly two outgoing edges: one is labeled with 1 and the other is labeled with 0.
One of the sinks is labeled with 1 and the other is labeled with 0. The value of the function
for a given values of variables is evaluated as follows: we start a path from the source such
that for every node on its path we go along the edge that is labeled with the value of the
corresponding variable. This path will end in a sink. The label of this sink is the value of
the function.

A nondeterministic branching program (NBP) differs from a deterministic in the way
that we also allow guessing nodes that are unlabeled and have two outgoing unlabeled
edges. So nondeterministic branching program may have three type of nodes: guessing nodes,
nodes labeled with a variable (we call them just labeled nodes) and two sinks; the source
may be either a guessing node or labeled node. The result of a function represented by
a nondeterministic branching program equals 1, if there exists at least one path from the
source to the sink labeled with 1 such that for every node labeled with a variable on its path
we go along an edge that is labeled with the value of the corresponding variable, while for
guessing nodes we are allowed to choose any of two outgoing edges.

Note that deterministic branching programs constitute a special case of nondeterministic
branching programs.

A deterministic or nondeterministic branching program is (syntactic) read-k (k-BP or
k-NBP) if every path from the source to a sink contains at most k occurrences of every
variable.

An ordered binary decision diagram (OBDD) is a partial case of 1-BP, where on every
path from the source to a sink all variables appear in the same order.

2.2 Tseitin formulas
Let G(V,E) be an undirected graph without loops but possibly with multiple edges, c : V →
{0, 1} be a labeling function that matches every vertex with a boolean value. Let us match
every edge e ∈ E with a propositional variable xe. Tseitin formula TSG,c based on a graph
G and a labeling function c is the conjunction of the following conditions: for every vertex v
the sum of variables xe for all edges e that are incident to v equals c(v) modulo 2. More

formally:
∧
v∈V

( ∑
e is incident to v

xe = c(v) mod 2
)
.

If the maximal degree of a graph G is bounded by a constant d, then a sum modulo
2 can be written as a d-CNF formula with size at most O(2dd). Hence the size of CNF
representation of TSG,c does not exceed O(2ddn).

We will use the following criterion of the satisfiability of Tseitin formulas:

I Proposition 1 ([17]). A Tseitin formula TSG,c is satisfiable if and only if for every connected
component U the following holds:

∑
v∈U

c(v) = 0 mod 2.

I Remark. Note that a substitution of a value to a variable xe := α transforms Tseitin
formula TSG,c to a Tseitin formula TSG′,c′ , where graph G′ is obtained from the graph G by
deleting the edge e, c′ equals c in every vertex except two vertices that are incident to edge
e. On these two vertices the values of c and c′ differ by α. In particular it follows that if
TSG,c is satisfiable and an edge e is not a bridge in the graph G, then the formula TSG′,c′ is
also satisfiable by Proposition 1 since the parity of sum of labels in G′ in every connected
component is the same as in G.

I Lemma 2. Let G(V,E) be a graph with k connected components. If the Tseitin formula
TSG,c is satisfiable, then the number of its satisfying assignments equals 2|E|−|V |+k.



L.Glinskih and D. Itsykson 26:5

Proof. Let us fix some spanning forest F of the graph G; F contains exactly |V | − k edges.
Consider some partial substitution ρ to the edges of G that are not in F . By the Remark we
know that after the application of the partial substitution ρ to TSG,c we will get a satisfiable
Tseitin formula based on the graph F . Since F is a forest the resulting Tseitin formula has
exactly one satisfying assignment. Indeed a forest always has a vertex with degree 1 which
helps us unambiguously determine the value of the incident edge. After that we can delete
this edge from the forest and we will get a forest again; and so on. Hence the number of
satisfying assignment of TSG,c equals the number of different partial substitutions to the
edges that are not in F ; so the number of satisfying assignment equals 2|E|−|V |+k. J

I Proposition 3. Any satisfiable Tseitin formula based on a graph with n vertices and m
edges can be represented as OBDD of size O(m2n).

Proof. Let us fix some order on the edges of the graph. The described OBDD will have m
levels. Nodes on the i-th level are labeled with i-th edge of the graph.

Assume that we already ask for the value of the first i− 1 edges. For every vertex of the
graph we compute the sum modulo 2 of values of edges from these i− 1 that are incident
to the vertex. So we will have a vector of n parities. The i-th level of the OBDD contains
2n nodes corresponding to the all possible values of vector of parities that we get after the
reading of the first (i − 1) edges. Every node on the i-th level has two outgoing edges to
nodes on the (i+ 1)-th level corresponding to the way how values on the edges change the
parity of vertices. The node on the first level corresponding to all zero values of parities is the
source of the OBDD (all nodes that are not reachable from the source should be removed).
Outgoing edges for every node on the last level will go to a sink corresponding to the fact,
whether the labeling function of the Tseitin formula is consistent with the resulting values of
parities. J

I Proposition 4. 1) Every two satisfying assignments of a satisfiable Tseitin formula TSG,c
differ in at least two positions. 2) Every path from the source to the sink labeled with 1 in
1-NBP representing a satisfiable Tseitin formula TSG,c contains variables for all edges of G.

Proof. 1) If we change a value of any edge in a satisfying assignment of TSG,c, the parity
condition will be violated on two ends of this edge. 2) Assume that some acceptance path
does not contains a variable x. Then there are two satisfying assignments of TSG,c that differ
only in the value of the variable x; this contradicts item 1. J

2.3 Expanders
Let G(V,E) be an undirected graph without loops but possibly with multiple edges. G is an
algebraic (n, d, α)-expander if G is d-regular, |V | = n and the absolute value of the second
largest eigenvalue of the adjacency matrix of G is not greater than αd.

It is well known that for all 1 > α > 0 and all large enough constants d there exist
natural number n0 and a family {Gn}∞n=n0

of (n, d, α)-algebraic expanders. There are explicit
constructions such that Gn can be constructed in poly(n) time [13]. Also, it is known that a
random d-regular graph is an expander with high probability.

Let us denote by E(A,B) a multiset of edges that have one end in A and another end in
B. Note that in the case where both ends of an edge are simultaneously in A and in B, we
count this edge twice.

I Lemma 5 (Cheeger inequality [5]). Let G(V,E) be an (n, d, α)-expander. Then for all
A ⊆ V such that |A| ≤ n

2 the following inequality holds: |E(A, V \A)| ≥ 1−α
2 d|A|.

MFCS 2017



26:6 Satisfiable Tseitin Formulas Are Hard for 1-NBP

I Corollary 6. Every (n, d, α)-expander with 0 < α < 1 is connected.

Proof. If G is not connected, then we will get a contradiction with Lemma 5 if we choose A
to be a smallest connected component. J

I Lemma 7 (Expander mixing lemma [1]). Let G(V,E) be (n, d, α)-expander, A,B ⊆ V .
Then

∣∣∣|E(A,B)| − d|A||B|
n

∣∣∣ ≤ αd√|A||B|.
Using Lemma 7 we can improve the estimation of the number of edges that go from A to

the complement of A for small sets A.

I Proposition 8. For every (n, d, α)-expander for every A ⊆ V the following inequality holds:
|E(A, V \A)| ≥ d|A|(1− |A|n − α).

Proof. |E(A, V \ A)| = |E(A, V )| − |E(A,A)| = d · |A| − |E(A,A)| ≥ d · |A|(1 − |A|n − α).
The last inequality follows from Lemma 7. J

3 Lower bound

Our main goal is to prove the following theorem:

I Theorem 9. Let G(V,E) be an algebraic (n, d, α)-expander, where α < 1
3 . Let TSG,c be a

satisfiable Tseitin formula. Then the size of every 1-NBP that represents TSG,c is 2Ω(n).

Let us describe the plan of the proof. Consider a minimal 1-NBP that evaluates TSG,c.
For every node of this branching program, except the sink labeled with 0 there exists a path
to the sink labeled with 1. In the opposite case this node could be merged with a sink labeled
with 0 and it would decrease the size of the 1-NBP.

For nondeterministic branching program, by the length of a path we will mean the number
of labeled edges in it (i.e. we do not count outgoing edges from guessing nodes). For every
labeled node v in a branching program we define its level as the minimal length of paths
from the source to v. We choose a level l = Ω(n) and prove that the minimal 1-NBP contains
many label nodes on the level l. The proof consists of two parts:
1. We show that every minimal 1-NBP that evaluates TSG,c contains at least 2C1n paths of

length l from the source to a labeled node that correspond to different partial substitutions,
where C1 is a constant.

2. We show that in every minimal 1-NBP that evaluates TSG,c for every labeled node v
on the level l there are at most 2C2n different partial substitutions that correspond to
different paths from the source to the vertex v, where C2 < C1 is a constant.

These two propositions imply that the number of label nodes on the level l is at least
2(C1−C2)n.

3.1 Lower bound on the number of paths
In this section we perform the first part of the plan and estimate the number of paths of
length l from the source of the minimal 1-NBP that end in a labeled node and correspond to
different partial substitutions.

I Lemma 10. Let G(V,E) be a connected graph. Let k be the maximum number of connected
components that can be obtained after deleting of l edges from G. Then every minimal 1-NBP
evaluating a satisfiable Tseitin formula TSG,c contains at least 2l−(k−1) paths of length l from
the source that end in a labeled node and correspond to different partial substitutions.



L.Glinskih and D. Itsykson 26:7

Proof. By Lemma 2 the number of satisfying assignments of the formula TSG,c equals
2|E|−|V |+1.

For every satisfying assignment of TSG,c there exists a path in the minimal 1-NBP from
the source to the sink labeled with 1 of length |E| that is consistent with the assignment. By
Proposition 4 it is impossible that there are paths from the source to the sink labeled with 1
that are shorter than |E|. Let P be the set of paths from the source to the sink labeled with
1 such that for every satisfying assignment of TSG,c there are exactly one path in P that
represents this assignment.

We estimate the number of paths in P that define the same partial substitution ρ that
corresponds to the first l labeled edges of the path.

If we apply ρ to TSG,c we will get a Tseitin formula TSG′,c′ , where G′ is obtained from
G by deleting l edges corresponding to the path p (the labeling function also changes after
the application of ρ, see Remark 2.2 for details). All paths from P that are consistent
with ρ satisfy the formula TSG′,c′ . Recall that all paths from P correspond to different
satisfying assignments, hence the number of paths that are consistent with ρ is not greater
than the number of satisfying assignments of the formula TSG′,c′ . By Lemma 2 the number
of satisfying assignments of the formula TSG′,c′ equals 2|E|−l−|V |+m, where m is the number
of connected components in the graph G′. By the statement of the lemma m ≤ k, therefore
the number of satisfying assignments of TSG′,c′ is not greater than 2|E|−l−|V |+k. So we get
that every partial substitution of l variables may be a prefix of length l (we assume that
prefixes end in labeled nodes) of at most 2|E|−l−|V |+k paths from P . Hence there are at least

2|E|−|V |+1

2|E|−l−|V |+k = 2l−(k−1) different partial substitutions that correspond to prefixes of length l
of paths from P , and these prefixes we will consider as the paths which number we estimate
in the lemma. J

I Lemma 11. Every graph that can be obtained by deleting l ≤ n
4 edges from an algebraic

(n, d, α)-expander G contains at most 2l
d(1−α) + 1 connected components.

Proof.

I Claim 12. Let graph H(V,E) have n vertices and k connected components, where
1 < k ≤ n

4 + 1. Then there exists M ⊆ V such that M consists of the union of all vertices of
several connected components and k − 1 ≤ |M | ≤ n

2 .

Proof of Claim 12. We construct M iteratively. Assume that initially M is empty. Let us
sort all connected components in the increasing order of their sizes: s1, s2, . . . , sk. We add
connected components to M starting from the smallest one while the sum of the sizes of
these components is less than k − 1. Let i be the number of connected components that
we added to M . If |M | ≤ n

2 then we are already done. Assume that |M | > n
2 . Note that

|M \ si| < k− 1 by the construction of M . Hence |si| > n
2 − (k− 1) ≥ k− 1 since k− 1 ≤ n

4 .
If |si| ≤ n

2 then the we can take M = si. So we may assume that |si| > n/2, therefore si is
the biggest connected component and i = k. Since every connected component contains at
least one vertex the number of vertices in M \ si should be at least k − 1 that contradicts
the construction of M . J

Consider some subgraph H that may be obtained from G by deleting of at most l edges.
By Corollary 6 G is connected, hence H contains at most n

4 + 1 connected components.
Consider the set M from Claim 12. Let us estimate the number of edges that we need
to delete from G in order to separate M from other vertices of the graph. By Lemma 5
l ≥ |M |·d·(1−α)

2 ≥ (k−1)·d·(1−α)
2 . Hence k − 1 ≤ 2l

d·(1−α) . J

MFCS 2017



26:8 Satisfiable Tseitin Formulas Are Hard for 1-NBP

Altogether Lemma 10 and Lemma 11 imply the following lemma:

I Lemma 13. In every minimal 1-NBP that represents a satisfiable Tseitin formula based
on an (n, d, α)-expander for every l ≤ n

4 there are at least 2l
(

1− 2
d(1−α)

)
paths of length l from

the source to a labeled node that correspond to different partial substitutions.

3.2 Upper bound on the number of paths that end at the same vertex
In this section we estimate the maximum number of paths with length l that ends in a fixed
labeled node v and correspond to different partial substitutions. In particular we prove the
following lemma:

I Lemma 14. For every minimal 1-NBP that evaluates a satisfiable Tseitin formula TSG,c
based on an (n, d, α)-expander G for every β ∈ (0; 1) for every labeled node v of the 1-NBP
there are at most 2l

(
1− 1

d(α+β)

)
different partial substitutions that correspond to paths of length

l from the source to v, where l ≤ βn− 1.

Proof.

I Claim 15. Consider some labeled node v of the 1-NBP. Let p1 and p2 be two different
paths from the source to the node v. Then
1. the sets of variables that correspond to labeled nodes on the paths p1 and p2 are equal;
2. if we apply to TSG,c a partial substitution corresponding to p1, we get the same Tseitin

formula as if we apply to TSG,c a partial substitution corresponding to p2.

Proof of Claim 15. 1. Since v is a labeled node and the 1-NBP is minimal there is a path s
from v to the sink labeled with 1. Both paths p1s and p2s go from the source to the sink
labeled with 1. Every variable appears in both of these paths at most once. Let x be a
variable that appears in p1 but doesn’t appear in p2 then the substitution corresponding to
the path p2s satisfy TSG,c. By Proposition 4 p2 should contain the variable x.

2. By Remark 2.2 if we apply a partial substitution to a Tseitin formula we also get a
Tseitin formula. The sets of satisfying assignments of two different Tseitin formulas do not
intersect, because every satisfying assignment of variables unambiguously determines the
labeling function of Tseitin formula. Paths p1s and p2s satisfy the initial formula hence the
path s should satisfy both Tseitin formulas, the one corresponding to the path p1 and the
one corresponding to the path p2. Hence these two Tseitin formulas should be equal. J

Let v be some labeled node that has level l. By Claim 15 every path from the source to
the node v contains the same set of variables and if we apply to TSG,c any of the substitutions
corresponding to these paths we get the same Tseitin formula TSH,c′ . Consider some path
from the source to v of length l and denote the set of labels (i.e. variables) of the first l
labeled nodes on this path by I. By Claim 15 I does not depend on the choice of the path.
Let F be a set of edges that correspond to variables from I. Then I = {xe | e ∈ F} and H is
obtained from G by deleting of all edges from F .

We define a system of linear equations depending on variables from I. This system states
that the substitution to variables from I change labeling function from c to c′ as follows:

∧
u∈V

 ∑
e∈F :

e is incident to u

xe = c(u) + c′(u) mod 2

 (1)



L.Glinskih and D. Itsykson 26:9

For every path from the source to v a partial substitution corresponding to this path is a
solution of the system (1). The opposite is not always true since that it is not necessary that
a path corresponding to the solution of the system (1) exists in the branching program.

I Claim 16. The number of solutions of the system (1) is equal to 2l−t, where t is the
number of the edges in the spanning forest of a graph H(V, F ) that is obtained from G by
the deletion of all edges that are not in F .

Proof. Notice that the system (1) is precisely the Tseitin formula TSH,c+c′ based on the
graph H and labelling function c+ c′. We know that the system (1) has solutions, hence the
number of its solutions by Lemma 2 equals 2|F |−|V |+k, where k is the number of connected
components in H. The claim is proved since |F | = l and t = |V | − k. J

I Corollary 17. The number of different partial substitutions that correspond to paths going
from the source to v is at most 2l−t.

I Claim 18. Let G be an algebraic (n, d, α)-expander. Assume that we deleted all edges
from the graph except l edges, where l = βn− 1 and 0 < β < 1. Then the number of edges
in the spanning forest of the resulting graph H is at most l

d·(α+β) .

Proof. Consider any connected component C ⊆ V in the resulting graph H. Let m be the
number of edges and t be the number of vertices in C. We estimate the maximal number of
edges that connect two vertices from C in the original graph G.

Since G is an algebraic (n, d, α)-expander by Proposition 8 there are at least dt(1− t
n −α)

edges connecting vertices from C with vertices from V \ C in the graph G. Hence there are
at most dt−dt+ dt2

n +α·dt
2 =

dt2
n +α·dt

2 edges in G that connect two vertices from C.
Let us note that t ≤ m+ 1 ≤ l + 1 ≤ βn, hence m ≤ dt·(α+β)

2 . The latter implies that

t ≥ 2m
d · (α+ β) . (2)

Let ti and mi be the numbers of vertices and edges in the i-th connected component
respectively. Note that the size of the spanning forest in H equals

∑
i

(ti−1) =
∑

i:ti≥2
(ti−1) ≥∑

i:ti≥2

ti
2 . Note that all edges of H are in the components of size at least two.

By the inequality (2) we get
∑

i:ti≥2
ti ≥

∑
i:ti≥2

2mi
d·(α+β) = 2l

d·(α+β) . Hence the resulting size

of the spanning forest is at least l
d·(α+β) . J

Lemma 14 follows from Corollary 17 and Claim 18. J

3.3 Proof of Theorem 9
Proof of Theorem 9. Let β = min{ 1

4 ,
1−3α

3 } and l = βn− 1. Consider the minimal 1-NBP
for the Tseitin formula TSG,c.

By Lemma 13 there exist at least 2l
(

1− 2
d(1−α)

)
paths of length l from the source that end

in a labeled node that correspond to different partial substitutions. By Lemma 14 for every
labeled node v on the level l there are at most 2l

(
1− 1

d(α+β)

)
different partial substitutions

that correspond to paths from the source to v.
Hence there are at least 2

l
d ( 1

α+β−
2

1−α ) labeled nodes on the distance l from the source.
The latter is 2Ω(n) since β < 1−3α

2 . J

MFCS 2017



26:10 Satisfiable Tseitin Formulas Are Hard for 1-NBP

3.4 Tseitin formula for complete graph
I Corollary 19. Let TSKn,c be a satisfiable Tseitin formula, where Kn is a complete graph
on n vertices. Then the size of every 1-NBP for TSKn,c is 2Ω(n).

Proof. Consider a 1-NBP D that evaluates the formula TSKn,c. Consider a graph G on n
vertices that is an algebraic (n, d, α)-expander with α < 1

3 (note that G may have multiple
edges). Consider a partial substitution ρ that assigns 0 for every edge that is in Kn but is
not in G. Let D′ be a 1-NBP that represents the result of the application of ρ to D. It is
straightforward that the size of D′ is at most the size of D. D′ evaluates satisfiable Tseitin
formula TSG′,c, where G′ is a graph that differs from G only by the fact that G may contain
multiple edges (G′ does not contain multiple edges). I.e., between every two vertices in
the graph G′ there is an edge if and only if there is at least one edge between these two
vertices in G. Now we show how to obtain the diagram for TSG,c from the diagram D′. Let
graph G contain k edges between vertices u and v: e1, e2, . . . , ek. Note that k ≤ d. It is
well known that there exists a read-once deterministic branching program that evaluates
xe1 + xe2 + · · ·+ xek of size k + 2. Let us denote this branching program by R. We put the
source of R in the nodes labeled with variable xu,v; the sink labeled with 0 in R should be
identified with the end of the edge that correspond to the decision xu,v = 0. And similarly
we do with the sink labeled with 1. We do such substitutions for every pair of vertices that
has multiple edges. The resulting program will be read-once because the original diagram
was read-once. The size of the resulting program is at most d times greater than the size of
the original branching program. By Theorem 9 the size of the resulting program is 2Ω(n)

hence the size of D is 2Ω(n). J

3.5 Lower bound for arbitrary graphs
Let for connected graph G(V,E) the value kG(l) denote the maximal number of connected
components that can be obtained from G by deleting of l edges.

Lemma 10 and Corollary 17 imply:

I Corollary 20. For all connected graphs G(V,E) and arbitrary 1 ≤ l ≤ |E| the size of any
1-NBP evaluating a satisfiable Tseitin formula TSG,c is at least 2|V |−kG(l)−kG(|E|−l)+1.

Proof. Consider the minimal 1-NBP for the Tseitin formula TSG,c.
By Lemma 10 there exist at least 2l−kG(l)+1 paths of length l from the source that end in

a labeled node that correspond to different partial substitutions. By Corollary 17 for every
labeled node v on the level l there are at most 2l−|V |+kG(|E|−l) different partial substitutions
that correspond to paths from the source to v.

Hence there are at least 2|V |−kG(l)−kG(|E|−l)+1 labeled nodes on the distance l from the
source. J

In the proof of Theorem 9 we actually show that for (n, d, α)-expander with α < 1
3

kG(l) − kG(|E| − l) < (1 − ε)n for some l and some constant ε > 0. It implies that
Theorem 9 also holds for graphs that differ from (n, d, α) expander by at most εn/4 edges
since modification of εn/4 edges changes kG(l) + kG(|E| − l) by at most εn/2.

It was proved in the paper [9] that for all connected graphs G(V,E) and arbitrary
1 ≤ l ≤ |E| the size of OBDD evaluating a satisfiable Tseitin formula TSG,c is at least
2|V |−k′G(l), where k′G(l) is the maximum over all sets E′ ⊆ E of size l of the total number
of connected components in graphs G′ and G′′, where G′ is a graph with vertices V and
edges E′, G′′ is a graph with vertices V and edges E \ E′. It is straightforward that



L.Glinskih and D. Itsykson 26:11

kG(l) + kG(|E| − l) ≥ k′G(l). Thus theoretically the lower bound on the size of OBDD from
[9] may be slightly stronger then the lower bound from Corollary 20 for some specific graphs.

4 Futher research

Jukna [10] defined the notion of semantic nondeterministic read-k branching programs that
have weaker requirement about occurrences of variables. Namely on every consistent path
from the source to a sink labeled with 1 every variable should be tested in at most k times.
Jukna showed that semantic nondeterministic read-once branching programs are strictly
stronger than syntactic ones and formulated an open question to prove superpolynomial
lower bound on the size of semantic 1-NBP. Currently such lower bounds are known only
for explicit functions from Dn → {0, 1} with non-binary domains D of size at least 3 [6, 11].
Perhaps a satisfiable Tseitin formula is a good candidate for the binary case.

Acknowledgements. The authors are grateful to Mikhail Slabodkin and reviewers for useful
comments and to Alexander Knop and Dmitry Sokolov for fruitful discussions.

References
1 Noga Alon and Fan R. K. Chung. Explicit construction of linear sized tolerant networks.

Discrete Mathematics, 306(10-11):1068–1071, 2006. doi:10.1016/j.disc.2006.03.025.
2 L. Babai, P. Hajnal, E. Szemeredi, and G. Turan. A lower bound for read-once-only

branching programs. Journal of Computer and System Sciences, 35:153–162, 1987.
3 Eli Ben-Sasson. Hard examples for bounded depth Frege. In Proceedings on 34th Annual

ACM Symposium on Theory of Computing, May 19-21, 2002, Montréal, Québec, Canada,
pages 563–572, 2002. doi:10.1145/509907.509988.

4 Allan Borodin, Alexander A. Razborov, and Roman Smolensky. On lower bounds for
read-k-times branching programs. Computational Complexity, 3:1–18, 1993. doi:10.1007/
BF01200404.

5 J Cheeger. A lower bound for the smallest eigenvalue of the laplacian. Problems Anal.,
page 195, 1970.

6 Stephen A. Cook, Jeff Edmonds, Venkatesh Medabalimi, and Toniann Pitassi. Lower
bounds for nondeterministic semantic read-once branching programs. In 43rd International
Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016,
Rome, Italy, pages 36:1–36:13, 2016. doi:10.4230/LIPIcs.ICALP.2016.36.

7 Pavol Duris, Juraj Hromkovic, Stasys Jukna, Martin Sauerhoff, and Georg Schnitger. On
multi-partition communication complexity. Inf. Comput., 194(1):49–75, 2004. doi:10.
1016/j.ic.2004.05.002.

8 D.M. Itsykson and A.A. Kojevnikov. Lower bounds of static Lovasz-Schrijver calculus
proofs for Tseitin tautologies. Zapiski Nauchnykh Seminarov POMI, 340:10–32, 2006.

9 Dmitry Itsykson, Alexander Knop, Andrei Romashchenko, and Dmitry Sokolov. On obdd-
based algorithms and proof systems that dynamically change order of variables. In 34th
Symposium on Theoretical Aspects of Computer Science, STACS 2017, March 8-11, 2017,
Hannover, Germany, pages 43:1–43:14, 2017. doi:10.4230/LIPIcs.STACS.2017.43.

10 Stasys Jukna. A note on read-k times branching programs. ITA, 29(1):75–83, 1995.
11 Stasys Jukna. A nondeterministic space-time tradeoff for linear codes. Inf. Process. Lett.,

109(5):286–289, 2009. doi:10.1016/j.ipl.2008.11.001.
12 László Lovász, Moni Naor, Ilan Newman, and Avi Wigderson. Search Problems in

the Decision Tree Model. SIAM J. Discrete Math., 8(1):119–132, 1995. doi:10.1137/
S0895480192233867.

MFCS 2017

http://dx.doi.org/10.1016/j.disc.2006.03.025
http://dx.doi.org/10.1145/509907.509988
http://dx.doi.org/10.1007/BF01200404
http://dx.doi.org/10.1007/BF01200404
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.36
http://dx.doi.org/10.1016/j.ic.2004.05.002
http://dx.doi.org/10.1016/j.ic.2004.05.002
http://dx.doi.org/10.4230/LIPIcs.STACS.2017.43
http://dx.doi.org/10.1016/j.ipl.2008.11.001
http://dx.doi.org/10.1137/S0895480192233867
http://dx.doi.org/10.1137/S0895480192233867


26:12 Satisfiable Tseitin Formulas Are Hard for 1-NBP

13 A Lubotzky, R Phillips, and P Sarnak. Ramanujan graphs. Combinatorica, 8(3):261–277,
1988.

14 EA Okolnishnikova. On lower bounds for branching programs. Siberian Advances in Math-
ematics, 3(1):152–166, 1993.

15 Toniann Pitassi, Benjamin Rossman, Rocco A. Servedio, and Li-Yang Tan. Poly-logarithmic
Frege depth lower bounds via an expander switching lemma. In Proceedings of the 48th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA,
USA, June 18-21, 2016, pages 644–657, 2016. doi:10.1145/2897518.2897637.

16 Jayram S. Thathachar. On separating the read-k-times branching program hierarchy. In
Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing, Dallas,
Texas, USA, May 23-26, 1998, pages 653–662, 1998. doi:10.1145/276698.276881.

17 A. Urquhart. Hard examples for resolution. JACM, 34(1):209–219, 1987.
18 Ingo Wegener. Branching Programs and Binary Decision Diagrams. SIAM, 2000.

http://dx.doi.org/10.1145/2897518.2897637
http://dx.doi.org/10.1145/276698.276881


The Complexity of Quantified Constraints Using
the Algebraic Formulation
Catarina Carvalho1, Barnaby Martin2, and Dmitriy Zhuk3

1 School of Physics, Astronomy and Mathematics, University of Hertfordshire,
Hatfield, UK

2 School of Engineering and Computing Sciences, Durham University, UK
3 Moscow State University, Moscow, Russia

Abstract
Let A be an idempotent algebra on a finite domain. We combine results of Chen [7], Zhuk [20]
and Carvalho et al. [5] to argue that if A satisfies the polynomially generated powers property
(PGP), then QCSP(Inv(A)) is in NP. We then use the result of Zhuk to prove a converse, that
if Inv(A) satisfies the exponentially generated powers property (EGP), then QCSP(Inv(A)) is
co-NP-hard. Since Zhuk proved that only PGP and EGP are possible, we derive a full dichotomy
for the QCSP, justifying the moral correctness of what we term the Chen Conjecture (see [8]).

We examine in closer detail the situation for domains of size three. Over any finite domain,
the only type of PGP that can occur is switchability. Switchability was introduced by Chen in
[7] as a generalisation of the already-known Collapsibility [6]. For three-element domain algebras
A that are Switchable, we prove that for every finite subset ∆ of Inv(A), Pol(∆) is Collapsible.
The significance of this is that, for QCSP on finite structures (over three-element domain), all
QCSP tractability explained by Switchability is already explained by Collapsibility.

Finally, we present a three-element domain complexity classification vignette, using known
as well as derived results.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Quantified Constraints, Computational Complexity, Universal Algebra,
Constraint Satisfaction

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.27

1 Introduction

A large body of work exists from the past twenty years on applications of universal algebra
to the computational complexity of constraint satisfaction problems (CSPs) and a number
of celebrated results have been obtained through this method. One considers the problem
CSP(B) in which it is asked whether an input sentence ϕ holds on B, where ϕ is primitive
positive, that is using only ∃, ∧ and =. The CSP is one of a wide class of model-checking
problems obtained from restrictions of first-order logic. For almost every one of these classes,
we can give a complexity classification [14]: the two outstanding classes are CSPs and
its popular extension quantified CSPs (QCSPs) for positive Horn sentences – where ∀ is
also present – which is used in Artificial Intelligence to model non-monotone reasoning or
uncertainty [11].

The outstanding conjecture in the area is that all finite-domain CSPs are either in P or
are NP-complete, something surprising given these CSPs appear to form a large microcosm
of NP, and NP itself is unlikely to have this dichotomy property. This Feder-Vardi conjecture
[12], given more concretely in the algebraic language in [4], remains unsettled, but is now

© Catarina Carvalho, Barnaby Martin, and Dmitriy Zhuk;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 27; pp. 27:1–27:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.27
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


27:2 The Complexity of Quantified Constraints Using the Algebraic Formulation

known for large classes of structures. It is well-known that the complexity classification for
QCSPs embeds the classification for CSPs: if B + 1 is B with the addition of a new isolated
element not appearing in any relations, then CSP(B) and QCSP(B + 1) are polynomially
equivalent. Thus the classification for QCSPs may be considered a project at least as hard
as that for CSPs. The following is the merger of Conjectures 6 and 7 in [8] which we call the
Chen Conjecture.

I Conjecture 1 (Chen Conjecture). Let B be a finite relational structure expanded with all
constants. If Pol(B) has PGP, then QCSP(B) is in NP; otherwise QCSP(B) is Pspace-
complete.

In [8], Conjecture 6 gives the NP membership and Conjecture 7 the Pspace-completeness.
We now know from [20] and [5] that the NP membership of Conjecture 6 is indeed true. The
most interesting result of this paper is Theorem 2 below, but note that we permit infinite
signatures (languages) although our domains remain finite. This aspect of our work will be
discussed in detail later.

I Theorem 2 (Revised Chen Conjecture). Let A be an idempotent algebra on a finite domain A.
If A satisfies PGP, then QCSP(Inv(A)) is in NP. Otherwise, QCSP(Inv(A)) is co-NP-hard.

Zhuk has previously proved [20] that only the cases PGP and EGP may occur, even in the
non-idempotent case. With infinite languages, the NP-membership for Theorem 2 is no
longer immediate from [5], but requires a little extra work. We are also able to refute the
following form.

I Conjecture 3 (Alternative Chen Conjecture). Let A be an idempotent algebra on a finite
domain A. If A satisfies PGP, then for every finite subset ∆ ⊆ Inv(A), QCSP(∆) is in NP.
Otherwise, there exists a finite subset ∆ ⊆ Inv(A) so that QCSP(∆) is co-NP-hard.

In proving Theorem 2 we are saying that the complexity of QCSPs, with all constants
included, is classified modulo the complexity of CSPs.

I Corollary 4. Let A be an idempotent algebra on a finite domain A. Either QCSP(Inv(A))
is co-NP-hard or QCSP(Inv(A)) has the same complexity as CSP(Inv(A)).

In this manner, our result follows in the footsteps of the similar result for the Valued CSP,
which has also had its complexity classified modulo the CSP, as culminated in the paper [13].

For a finite-domain algebra A we associate a function fA : N→ N, giving the cardinality of
the minimal generating sets of the sequence A,A2,A3, . . . as fA(1), fA(2), fA(3), . . ., respect-
ively. A subset Λ of Am is a generating set for Am exactly if, for every (a1, . . . , am) ∈ Am,
there exists a k-ary term operation f of A and (b11, . . . , b1m), . . . , (bk1 , . . . , bkm) ∈ Λ so that
f(b11, . . . , bk1) = a1, . . . , f(b1m, . . . , bkm) = am. We may say A has the g-GP if fA(m) ≤ g(m)
for all m. The question then arises as to the growth rate of fA and specifically regarding the
behaviours constant, logarithmic, linear, polynomial and exponential. Wiegold proved in
[19] that if A is a finite semigroup then fA is either linear or exponential, with the former
prevailing precisely when A is a monoid. This dichotomy classification may be seen as a gap
theorem because no growth rates intermediate between linear and exponential may occur. We
say A enjoys the polynomially generated powers property (PGP) if there exists a polynomial
p so that fA = O(p) and the exponentially generated powers property (EGP) if there exists a
constant b so that fA = Ω(g) where g(i) = bi.

In Hubie Chen’s [7], a new link between algebra and QCSP was discovered. Chen’s
previous work in QCSP tractability largely involved the special notion of Collapsibility



C. Carvalho, B. Martin, and D. Zhuk 27:3

[6], but in [7] this was extended to a computationally effective version of the PGP. For a
finite-domain, idempotent algebra A, k-collapsibility may be seen as that special form of the
PGP in which the generating set for Am is constituted of all tuples (x1, . . . , xm) in which at
least m− k of these elements are equal. k-switchability may be seen as another special form
of the PGP in which the generating set for Am is constituted of all tuples (x1, . . . , xm) in
which there exists ai < . . . < ak′ , for k′ ≤ k, so that

(x1, . . . , xm) = (x1, . . . , xa1 , xa1+1, . . . , xa2 , xa2+1, . . . , . . . , xa′
k
, xa′

k
+1, . . . , xm),

where x1 = . . . = xa1−1, xa1 = . . . = xa2−1, . . . , xak′ = . . . = xam
. Thus, a1, a2, . . . , ak′ are

the indices where the tuple switches value. Note that these are not the original definitions,
which we will see shortly, but they are proved equivalent to the original definitions (at least
for finite signatures) in [5]. Moreover, these are the definitions that we will use. We say that
A is collapsible (switchable) if there exists k such that it is k-collapsible (k-switchable). We
note that Zhuk uses this definition of switchability in [20] in which he proved that the only
kind of PGP for finite-domain algebras is switchability.

Let us capitalise Collapsibility and Switchability to indicate Chen’s original definitions
from [7] are used, following an example for arithmetic versus Arithmetic by Raymond
Smullyan in [18]. There is the potential for confusion at the start of the sentence but, as was
the case with Smullyan, the two will transpire to be interchangeable throughout our discourse.
It is straightforward to see that k-Switchability implies k-switchability and k-Collapsibility
implies k-collapsibility. The converses, for finite signatures, also hold, but this requires
rather more work [5]. For any finite algebra, k-Collapsibility implies k-Switchability, and for
any 2-element algebra, k-Switchability implies k-Collapsibility. Chen originally introduced
Switchability because he found a 3-element algebra that enjoyed the PGP but was not
Collapsible [7]. He went on to prove that Switchability of A implies that the corresponding
QCSP is in P, what one might informally state as QCSP(Inv(A)) in P, where Inv(A) can
be seen as the structure over the same domain as A whose relations are precisely those
that are preserved by (invariant under) all the operations of A. However, the QCSP was
traditionally defined only on finite sets of relations (else the question arises as to encoding),
thus a more formal definition might be that, for any finite subset ∆ of Inv(A), QCSP(∆) is
in P. What we prove in this paper is that, as far as the QCSP is concerned, Switchability on
a three-element algebra A is something of a mirage. What we mean by this is that when
A is Switchable, for all finite subsets ∆ of Inv(A), already Pol(∆) is Collapsible. Thus, for
QCSP complexity for three-element structures, we do not need the additional notion of
Switchability to explain tractability, as Collapsibility will already suffice. Since these notions
were originally introduced in connection with the QCSP this is particularly surprising. Note
that the parameter k of Collapsibility is unbounded over these increasing finite subsets ∆
while the parameter of Switchability clearly remains bounded. In some way we are suggesting
that Switchability itself might be seen as a limit phenomenon of Collapsibility.

1.1 Infinite languages
Our use of infinite languages (i.e. signatures, since we work on a finite domain) is the
only controversial part of our discourse and merits special discussion. We wish to argue
that a necessary corollary of the algebraic approach to (Q)CSP is a reconciliation with
infinite languages. The traditional approach to consider arbitrary finite subsets of Inv(A) is
unsatisfactory in the sense that choosing this way to escape the – naturally infinite – set
Inv(A) is as arbitrary as the choice of encoding required for infinite languages. However,
the difficulty in that choice is of course the reason why this route is often eschewed. The

MFCS 2017



27:4 The Complexity of Quantified Constraints Using the Algebraic Formulation

first possibility that comes to mind for encoding a relation in Inv(A) is probably to list
its tuples, while the second is likely to be to describe the relation in some kind of “simple”
logic. Both these possibilities are discussed in [10], for the Boolean domain, where the
“simple” logic is the propositional calculus. For larger domains, this would be equivalent to
quantifier-free propositions over equality with constants. Both Conjunctive Normal Form
(CNF) and Disjunctive Normal Form (DNF) representations are considered in [10] and a
similar discussion in [2] exposes the advantages of the DNF encoding. The point here is that
testing non-emptiness of a relation encoded in CNF may already be NP-hard, while for DNF
this will be tractable. Since DNF has some benign properties, we might consider it a “nice,
simple” logic while for “simple” logic we encompass all quantifier-free sentences, that include
DNF and CNF as special cases. The reason we describe this as “simple” logic is to compare
against something stronger, say all first-order sentences over equality with constants. Here
recognising non-emptiness becomes Pspace-hard and since QCSPs already sit in Pspace, this
complexity is unreasonable.

For the QCSP over infinite languages Inv(A), Chen and Mayr [9] have declared for
our first, tuple-listing, encoding. In this paper we will choose the “simple” logic encoding,
occasionally giving more refined results for its “nice, simple” restriction to DNF. Our choice
of the “simple” logic encoding over the tuple-listing encoding will ultimately be justified by
the (Revised) Chen Conjecture holding for “simple” logic yet failing for tuple-listings. Note
that our demonstration of the (Revised) Chen Conjecture for infinite languages with the
“simple” logic encoding does not resolve the original Chen Conjecture for finite languages B
with constants because QCSP(Inv(Pol(B))) could conceivably have higher complexity than
QCSP(B) due to a succinct representation of relations in Inv(Pol(B)). Indeed, this belies
one justification for the preferential study of finite subsets of Inv(Pol(B)), since for finite
signature B we can then say QCSP(B) and QCSP(Inv(PolB)) must have the same complexity.
Note that for finite relational bases B′,B′′ of Inv(Pol(B)), QCSP(B′) and QCSP(B′′) must
have the same complexity. Further, we do not know of any concrete finite B with constants,
so that QCSP(Inv(Pol(B))) and QCSP(B) have different complexity.

Let us consider examples of our encodings. For the domain {1, 2, 3}, we may give a binary
relation either by the tuples {(1, 2), (2, 1), (2, 3), (3, 2), (1, 3), (3, 1), (1, 1)} or by the “simple”
logic formula (x 6= y ∨ x = 1). For the domain {0, 1}, we may give the ternary (not-all-equal)
relation by the tuples {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (1, 1, 0)} or by the “simple”
logic formula (x 6= y ∨ y 6= z). In both of these examples, the simple formula is also in DNF.

Nota Bene. The results of this paper apply for the “simple” logic encoding as well as the
“nice, simple” encoding in DNF except where specifically stated otherwise. These exceptions
are Proposition 13 and Corollary 14 (which uses the “nice, simple” DNF) and Proposition 16
(which uses the tuple encoding).

Related work. This paper is the merger of [16, 15], neither of which was submitted for
publication, considerably extended.

2 Preliminaries

Let [k] := {1, . . . , k}. A k-ary polymorphism of a relational structure B is a homomorphism
f from Bk to B. Let Pol(B) be the set of polymorphisms of B and let Inv(A) be the set
of relations on A which are invariant under (each of) the operations of some finite algebra
A. Pol(B) is an object known in Universal Algebra as a clone, which is a set of operations



C. Carvalho, B. Martin, and D. Zhuk 27:5

containing all projections and closed under composition (superposition). A term operation of
an algebra A is an operation which is a member of the clone generated by A.

We will conflate sets of operations over the same domain and algebras just as we do sets
of relations over the same domain and constraint languages (relational structures). Indeed,
the only technical difference between such objects is the movement away from an ordered
signature, which is not something we will ever need. A reduct of a relational structure B is a
relational structure B′ over the same domain obtained by forgetting some of the relations. If
∆ is some finite subset of Inv(A), then we may view ∆ a being a finite reduct of the structure
(associated with) Inv(A).

A k-ary operation f over A is a projection if f(x1, . . . , xk) = xi, for some i ∈ [k]. When
α, β are strict subsets of A so that α ∪ β = A, then a k-ary operation f on A is said
to be αβ-projective if there exists i ∈ [k] so that if xi ∈ α (respectively, xi ∈ β), then
f(x1, . . . , xk) ∈ α (respectively, f(x1, . . . , xk) ∈ β).

We recall QCSP(B), where B is some structure on a finite-domain, is a decision problem
with input φ, a pH-sentence (i.e. using just ∀, ∃, ∧ and =) involving (a finite set of) relations
of B, encoded in propositional logic with equality and constants. The yes-instances are
those φ for which B |= φ. If the input sentence is restricted to have alternation Πk then the
corresponding problem is designated Πk-CSP(B).

2.1 Games, adversaries and reactive composition
We now recall some terminology due to Chen [6, 7], for his natural adaptation of the model
checking game to the context of pH-sentences. We shall not need to explicitly play these
games but only to handle strategies for the existential player. This will enable us to give the
original definitions for Collapsibility and Switchability. An adversary B of length m ≥ 1 is an
m-ary relation over A. When B is precisely the set B1 ×B2 × . . .×Bm for some non-empty
subsets B1, B2, . . . , Bm of A, we speak of a rectangular adversary (we will sometimes specify
this as a tuple rather than a product). Let φ be a pH-sentence with universal variables
x1, . . . , xm and quantifier-free part ψ. We write A |= φ�B and say that the existential player
has a winning strategy in the (A, φ)-game against adversary B iff there exists a set of Skolem
functions {σx : ‘∃x’ ∈ φ} such that for any assignment π of the universally quantified variables
of φ to A, where

(
π(x1), . . . , π(xm)

)
∈ B, the map hπ is a homomorphism from Dψ (the

canonical database) to A, where

hπ(x) :=
{
π(x) , if x is a universal variable; and,
σx(π|Yx

) , otherwise.

(Here, Yx denotes the set of universal variables preceding x and π|Yx
the restriction of π

to Yx.) Clearly, A |= φ iff the existential player has a winning strategy in the (A, φ)-game
against the so-called full (rectangular) adversary A × A × . . . × A (which we will denote
hereafter by Am). We say that an adversary B of length m dominates an adversary B′ of
length m when B′ ⊆ B. Note that B′ ⊆ B and A |= φ�B implies A |= φ�B′ . We will also
consider sets of adversaries of the same length, denoted by uppercase Greek letters as in
Ωm (here the length is m); and, sequences thereof, which we denote with bold uppercase
Greek letters as in Ω =

(
Ωm
)
m∈N. We will write A |= φ�Ωm to denote that A |= φ�B holds

for every adversary B in Ωm.
We now introduce reactive composition as a means to obtain larger adversaries from

a number of smaller adversaries. Let f be a k-ary operation of A and A,B1, . . . ,Bk
be adversaries of length m. We say that A is reactively composable from the adversaries

MFCS 2017



27:6 The Complexity of Quantified Constraints Using the Algebraic Formulation

B1, . . . ,Bk via f , and we write A E f(B1, . . . ,Bk) iff there exist partial functions gji : Ai → A

for every i in [m] and every j in [k] such that, for every tuple (a1, . . . , am) in adversary A

the following holds.
for every j in [k], the values gj1(a1), gj2(a1, a2), . . . , gjm(a1, a2, . . . , am) are defined and the
tuple

(
gj1(a1), gj2(a1, a2), . . . , gjm(a1, a2, . . . , am)

)
is in adversary Bj ; and,

for every i in [m], ai = f
(
g1
i (a1, a2, . . . , ai), g2

i (a1, a2, . . . , ai), . . . , gki (a1, a2, . . . , ai)).
We write A E {B1, . . . ,Bk} if there exists a k-ary operation f such that A E f(B1, . . . ,Bk)
Reactive composition allows to interpolate complete Skolem functions from partial ones.

I Theorem 5 ([7, Theorem 7.6]). Let φ be a pH-sentence with m universal variables. Let A
be an adversary and Ωm a set of adversaries, both of length m.

If A |= φ�Ωm and A E Ωm then A |= φ�A.

As a concrete example of an interesting sequence of adversaries, consider the adversaries
for the notion of p-Collapsibility. Let p ≥ 0 be some fixed integer. For x in A, let Υm,p,x

be the set of all rectangular adversaries of length m with p co-ordinates that are the set A
and all the others that are the fixed singleton {x}. For B ⊆ A, let Υm,p,B be the union of
Υm,p,x for all x in B. Let Υp,B be the sequence of adversaries (Υm,p,B)m∈N. We will define
a structure A to be p-Collapsible from source B iff for every m and for all pH-sentence φ
with m universal variables, A |= φ�Υm,p,B

implies A |= φ.
For p-Switchability, the set of adversaries will be of the form Ξm,p, where each adversary

is built from the set of tuples that have some k′ < p switches at specific points 0 < a1 <

. . . < ak′ ≤ m.
For rectangular adversaries, such as Υm,p,x, reactive composition is rather simpler than

in the definition above, becoming just (ordinary) composition, as follows. A is composable
from the adversaries B1, . . . ,Bk via f if f(Bi1, . . . , Bki ) ⊇ Ai, where A = (A1, . . . , Am) and
each Bj = (B1

j , . . . , B
m
j ). Reactive composition plays a key role in the proof of our main

theorem but its use appears only in other papers that we will cite. Ordinary composition is
the only type of reactive composition that will be used in this paper.

3 The Chen Conjecture

3.1 NP-membership
We need to revisit the main result of [5] to show that it holds not just for finite signatures
but for infinite signatures also. In its original the following theorem discussed “projective
sequences of adversaries, none of which are degenerate”. This includes Switching adversaries
and we give it in this latter form. We furthermore remove some parts of the theorem that
are not currently relevant to us.

I Theorem 6 (In abstracto [5]). Let Ω =
(
Ωm

)
m∈N be the sequence of the set of all

(k-)Switching m-ary adversaries over the domain of A, a finite structure. The following are
equivalent.
(i) For every m ≥ 1, for every pH-sentence ψ with m universal variables, A |= ψ�Ωm

implies
A |= ψ.

(vi) For every m ≥ 1, Ωm generates Pol(A)m.

I Corollary 7 (In abstracto levavi). Let Ω =
(
Ωm

)
m∈N be the sequence of the set of all

(k-)Switching m-ary adversaries over the domain of A, a finite-domain structure with an
infinite signature. The following are equivalent.



C. Carvalho, B. Martin, and D. Zhuk 27:7

(i) For every m ≥ 1, for every pH-sentence ψ with m universal variables, A |= ψ�Ωm implies
A |= ψ.

(vi) For every m ≥ 1, Ωm generates Pol(A)m.

Proof. We know from Theorem 6 that the following are equivalent:
(i’) For every finite-signature reduct A′ of A and m ≥ 1, for every pH-sentence ψ with m

universal variables, A′ |= ψ�Ωm
implies A′ |= ψ.

(vi’) For every finite-signature reduct A′ of A and every m ≥ 1, Ωm generates Pol(A′)m.
Since it is clear that both (i)⇒ (i′) and (vi)⇒ (vi′), it remains to argue that (i′)⇒ (i) and
(vi′)⇒ (vi).

[(i′) ⇒ (i).] By contraposition, if (i) fails then it fails on some specific pH-sentence ψ
which only mentions a finite number of relations of A′. Thus (i′) also fails on some finite
reduct of A′ mentioning these relations.

[(vi′) ⇒ (vi).] Let m be given. Consider some chain of finite reducts A1, . . . ,Ai, . . .
of A so that each Ai is a reduct of Aj for i < j and every relation of A appears in some
Ai. We can assume from (vi)′ that Ωm generates Pol(Ai)m, for each i. However, since
the number of tuples (a1, . . . , am) and operations mapping Ωm pointwise to (a1, . . . , am),
witnessing generation in Pol(A′)m, is finite, the sequence of operations (f i1, . . . , f i|A|m) (where
f ij witnesses generation of the jth tuple in Am) witnessing these must have an infinitely
recurring element as i tends to infinity. One such recurring element we call (f1, . . . , f|A|m)
and this witnesses generation in Pol(A)m. J

Note that in (vi′)⇒ (vi) above we did not need to argue uniformly across the different
(a1, . . . , am) and it is enough to find an infinitely recurring operation for each of these
individually.

The following result is essentially a corollary of the works of Chen and Zhuk [7, 20] via [5].

I Theorem 8. Let A be an idempotent algebra on a finite domain A. If A satisfies PGP,
then QCSP(Inv(A)) reduces to a polynomial number of instances of CSP(Inv(A)) and is in
NP.

Proof. We know from Theorem 7 in [20] that A is Switchable, whereupon we apply Corollary 7,
(vi)⇒ (i). By considering instances whose universal variables involve only the polynomial
number of tuples from the Switching Adversary, one can see that QCSP(Inv(A)) reduces to a
polynomial number of instances of CSP(Inv(A)) and is therefore in NP. Further details of the
NP algorithm are given in Corollary 38 of [5] but the argument here follows exactly Section 7
from [7], in which it was originally proved that Switchability yields the corresponding QCSP
in NP. J

Note that Chen’s original definition of Switchability, based on adversaries and reactive
composability, plays a key role in the NP membership algorithm in Theorem 8. It is the
result from [5] that is required to reconcile the two definitions of switchability as equivalent,
and indeed Corollary 7 is needed in this process for infinite signatures. If we were to use
just our definition of switchability then it is only possible to prove, à la Proposition 3.3 in
[7], that the bounded alternation Πn-CSP(Inv(A)) is in NP. Thus, using just the methods
from [7] and [20], we cannot prove the Revised Chen Conjecture, but rather some bounded
alternation (re)revision.

MFCS 2017



27:8 The Complexity of Quantified Constraints Using the Algebraic Formulation

3.2 co-NP-hardness
Suppose there exist α, β strict subsets of A so that α ∪ β = A, define the relation
τk(x1, y1, z1 . . . , xk, yk, zk) by

τk(x1, y1, z1 . . . , xk, yk, zk) := ρ′(x1, y1, z1) ∨ . . . ∨ ρ′(xk, yk, zk),

where ρ′(x, y, z) = (α× α× α) ∪ (β × β × β). Strictly speaking, the α and β are parameters
of τk but we dispense with adding them to the notation since they will be fixed at any point
in which we invoke the τk. The purpose of the relations τk is to encode co-NP-hardness
through the complement of the problem (monotone) 3-not-all-equal-satisfiability (3NAESAT).
Let us introduce also the important relations σk(x1, y1, . . . , xk, yk) defined by

σk(x1, y1, . . . , xk, yk) := ρ(x1, y1) ∨ . . . ∨ ρ(xk, yk),

where ρ(x, y) = (α× α) ∪ (β × β).

I Lemma 9. The relation τk is pp-definable in σk.

Proof. We will argue that τk is definable by the conjunction Φ of 3k instances of σk that
each consider the ways in which two variables may be chosen from each of the (xi, yi, zi), i.e.
xi ∼ yi or yi ∼ zi or xi ∼ zi (where ∼ is infix for ρ). We need to show that this conjunction
Φ entails τk (the converse is trivial). We will assume for contradiction that Φ is satisfiable
but τk not. In the first instance of σk of Φ some atom must be true, and it will be of the
form xi ∼ yi or yi ∼ zi or xi ∼ zi. Once we have settled on one of these three, pi ∼ qi, then
we immediately satisfy 3k−1 of the conjunctions of Φ, leaving 2 · 3k−1 unsatisfied. Now we
can evaluate to true no more than one other among {xi ∼ yi, yi ∼ zi, xi ∼ zi} \ {pi ∼ qi},
without contradicting our assumptions. If we do evaluate this to true also, then we leave
3k−1 conjunctions unsatisfied. Thus we are now down to looking at variables with subscript
other than i and in this fashion we have made the space one smaller, in total k− 1. Now, we
will need to evaluate in Φ some other atom of the form xj ∼ yj or yj ∼ zj or xj ∼ zj , for
j 6= i. Once we have settled on at most two of these three then we immediately satisfy 3k−2

of the conjunctions remaining of Φ, leaving 3k−2 still unsatisfied. Iterating this thinking,
we arrive at a situation in which 1 clause is unsatisfied after we have gone through all k
subscripts, which is a contradiction. J

I Theorem 10. Let A be an idempotent algebra on a finite domain A. If A satisfies EGP,
then QCSP(Inv(A)) is co-NP-hard.

Proof. We know from Lemma 11 in [20] that there exist α, β strict subsets of A so that
α ∪ β = A and the relation σk is in Inv(A), for each k ∈ N. From Lemma 9, we know also
that τk is in Inv(A), for each k ∈ N.

We will next argue that τk enjoys a relatively small specification in DNF (at least,
polynomial in k). We first give such a specification for ρ′(x, y, z).

ρ′(x, y, z) :=
∨

a,a′,a′′∈α
x = a ∧ y = a′ ∧ z = a′′ ∨

∨
b,b′,b′′∈β

x = b ∧ y = b′ ∧ z = b′′

which is constant in size when A is fixed. Now it is clear from the definition that the size of
τn is polynomial in n.

We will now give a very simple reduction from the complement of 3NAESAT to
QCSP(Inv(A)). 3NAESAT is well-known to be NP-complete [17] and our result will follow.



C. Carvalho, B. Martin, and D. Zhuk 27:9

Take an instance φ of 3NAESAT which is the existential quantification of a conjunction
of k atoms NAE(x, y, z). Thus ¬φ is the universal quantification of a disjunction of k
atoms x = y = z. We build our instance ψ of QCSP(Inv(A)) from ¬φ by transforming the
quantifier-free part x1 = y1 = z1∨ . . .∨xk = yk = zk to τk = ρ′(x1, y1, z1)∨ . . .∨ρ′(xk, yk, zk).

(¬φ ∈ co-3NAESAT implies ψ ∈ QCSP(Inv(A)).) From an assignment to the universal
variables v1, . . . , vm of ψ to elements x1, . . . , xm of A, consider elements x′1, . . . , x′m ∈ {0, 1}
according to

xi ∈ α \ β implies x′i = 0,
xi ∈ β \ α implies x′i = 1, and
xi ∈ α ∩ β implies we don’t care, so w.l.o.g. say x′i = 0.

The disjunct that is satisfied in the quantifier-free part of ¬φ now gives the corresponding
disjunct that will be satisfied in τk.

(ψ ∈ QCSP(Inv(A)) implies ¬φ ∈ co-3NAESAT.) From an assignment to the universal
variables v1, . . . , vm of ¬φ to elements x1, . . . , xm of {0, 1}, consider elements x′1, . . . , x′m ∈ A
according to

xi = 0 implies x′i is some arbitrarily chosen element in α \ β, and
xi = 1 implies x′i is some arbitrarily chosen element in β \ α.

The disjunct that is satisfied in τk now gives the corresponding disjunct that will be satisfied
in the quantifier-free part of ¬φ. J

The demonstration of co-NP-hardness in the previous theorem was inspired by a similar proof
in [1]. Note that an alternative proof that τk is in Inv(A) is furnished by the observation that
it is preserved by all αβ-projections (see [20]). We note surprisingly that co-NP-hardness
in Theorem 10 is optimal, in the sense that some (but not all!) of the cases just proved
co-NP-hard are also in co-NP.

I Proposition 11. Let α, β strict subsets of A := {a1, . . . , an} so that α ∪ β = A and
α ∩ β 6= ∅. Then QCSP(A; {τk : k ∈ N}, a1, . . . , an) is in co-NP.

Proof. Assume |A| > 1, i.e. n > 1 (note that the proof is trivial otherwise). Let φ be an
input to QCSP(A; {τk : k ∈ N}, a1, . . . , an). We will now seek to eliminate atoms v = a

(a ∈ {a1, . . . , an}) from φ. Suppose φ has an atom v = a. If v is universally quantified, then
φ is false (since |A| > 1). Otherwise, either the atom v = a may be eliminated with the
variable v since v does not appear in a non-equality relation; or φ is false because there
is another atom v = a′ for a 6= a′; or v = a may be removed by substitution of a into all
non-equality instances of relations involving v. This preprocessing procedure is polynomial
and we will assume w.l.o.g. that φ contains no atoms v = a. We now argue that φ is a
yes-instance iff φ′ is a yes-instance, where φ′ is built from φ by instantiating all existentially
quantified variables as any a ∈ α ∩ β. The universal φ′ can be evaluated in co-NP (one may
prefer to imagine the complement as an existential ¬φ′ to be evaluated in NP) and the result
follows. J

In fact, this being an algebraic paper, we can even do better. Let B signify a set of relations
on a finite domain but not necessarily itself finite. For convenience, we will assume the set
of relations of B is closed under all co-ordinate projections and instantiations of constants.
Call B existentially trivial if there exists an element c ∈ B (which we call a canon) such
that for each k-ary relation R of B and each i ∈ [k], and for every x1, . . . , xk ∈ B, whenever
(x1, . . . , xi−1, xi, xi+1, . . . , xk) ∈ RB then also (x1, . . . , xi−1, c, xi+1, . . . , xk) ∈ RB. We want
to expand this class to almost existentially trivial by permitting conjunctions of the form
v = ai or v = v′ with relations that are existentially trivial.

MFCS 2017



27:10 The Complexity of Quantified Constraints Using the Algebraic Formulation

I Lemma 12. Let α, β be strict subsets of A := {a1, . . . , an} so that α∪β = A and α∩β 6= ∅.
The set of relations pp-definable in (A; {τk : k ∈ N}, a1, . . . , an) is almost existentially trivial.

Proof. Consider a formula with a pp-definition in (A; {τk : k ∈ N}, a1, . . . , an). We assume
that only free variables appear in equalities since otherwise we can remove these equalities by
substitution. Now existential quantifiers can be removed and their variables instantiated as
the canon c. Indeed, their atoms τn may now be removed since they will always be satisfied.
Thus we are left with a conjunction of equalities and atoms τn, and the result follows. J

I Proposition 13. If B is comprised exclusively of relations that are almost existentially
trivial, then QCSP(B) is in co-NP under the DNF encoding.

Proof. The argument here is quite similar to that of Proposition 11 except that there is
some additional preprocessing to find out variables that are forced in some relation to being a
single constant or pairs of variables within a relation that are forced to be equal. In the first
instance that some variable is forced to be constant in a k-ary relation, we should replace
with the (k − 1)-ary relation with the requisite forcing. In the second instance that a pair of
variables are forced equal then we replace again the k-ary relation with a (k− 1)-ary relation
as well as an equality. Note that projecting a relation to a single or two co-ordinates can be
done in polynomial time because the relations are encoded in DNF. After following these
rules to their conclusion one obtains a conjunction of equalities together with relations that
are existentially trivial. Now is the time to propagate variables to remove equalities (or
find that there is no solution). Finally, when only existentially trivial relations are left, all
remaining existential variables may be evaluated to the canon c. J

I Corollary 14. Let α, β be strict subsets of A := {a1, . . . , an} so that α ∪ β = A and
α ∩ β 6= ∅. Then QCSP(Inv(Pol(A; {τk : k ∈ N}, a, . . . , an))) is in co-NP under the DNF
encoding.

This last result, together with its supporting proposition, is the only time we seem to require
the “nice, simple” DNF encoding, rather than arbitrary propositional logic. We do not
require DNF for Proposition 11 as we have just a single relation in the signature for each
arity and this is easy to keep track of. We note that the set of relations {τk : k ∈ N} is not
maximal with the property that with the constants it forms a co-clone of existentially trivial
relations. One may add, for example, α× β ∪ β × α.

The following, together with our previous results, gives the refutation of the Alternative
Chen Conjecture.

I Proposition 15. Let α, β strict subsets of A := {a1, . . . , an} so that α ∪ β = A and
α∩ β 6= ∅. Then, for each finite signature reduct B of (A; {τk : k ∈ N}, a1, . . . , an), QCSP(B)
is in NL.

Proof. We will assume B contains all constants (since we prove this case gives a QCSP in
NL, it naturally follows that the same holds without constants). Take m so that, for each
τi ∈ B, i ≤ m. Recall from Lemma 9 that τi is pp-definable in σi. We will prove that the
structure B′ given by (A; {σk : k ≤ m}, a1, . . . , an) admits a (3m + 1)-ary near-unanimity
operation f as a polymorphism, whereupon it follows that B admits the same near-unanimity
polymorphism. We choose f so that all tuples whose map is not automatically defined by
the near-unanimity criterion map to some arbitrary a ∈ α ∩ β. To see this, imagine that this
f were not a polymorphism. Then some (3m+ 1) m-tuples in σi would be mapped to some
tuple not in σi which must be a tuple t of elements from α \β ∪β \α. Note that column-wise



C. Carvalho, B. Martin, and D. Zhuk 27:11

this map may only come from (3m+ 1)-tuples that have 3m instances of the same element.
By the pigeonhole principle, the tuple t must appear as one of the (3m+ 1) m-tuples in σi
and this is clearly a contradiction.

It follows from [6] that QCSP(B) reduces to a polynomially bounded ensemble of
(
n

3m
)
·

n · n3m instances CSP(B), and the result follows. J

3.3 The question of the tuple encoding
I Proposition 16. Let α := {0, 1} and β := {0, 2}. Then, QCSP({0, 1, 2}; {τk : k ∈
N}, 0, 1, 2) is in P under the tuple encoding.

Proof. Consider an instance φ of this QCSP of size n involving relation τm but no relation τk
for k > m. The number of tuples in τm is > 3m. Following Proposition 11 together with its
proof, we may assume that the instance is strictly universally quantified over a conjunction
of atoms (involving also constants). Now, a universally quantified conjunction is true iff the
conjunction of its universally quantified atoms is true. We can further say that there are at
most n atoms each of which involves at most 3m variables. Therefore there is an exhaustive
algorithm that takes at most O(n · 33m) steps with is O(n4). J

The proof of Proposition 16 suggests an alternative proof of Proposition 15, but placing
the corresponding QCSP in P instead of NL. Proposition 16 shows that Chen’s Conjecture
fails for the tuple encoding in the sense that it provides a language B, expanded with
constants, so that Pol(B) has EGP, yet QCSP(B) is in P under the tuple encoding. However,
it does not imply that the algebraic approach to QCSP violates Chen’s Conjecture under
the tuple encoding. This is because ({0, 1, 2}; {τk : k ∈ N}, 0, 1, 2) is not of the form
Inv(A) for some idempotent algebra A. For this stronger result, we would need to prove
QCSP(Inv(Pol({0, 1, 2}; {τk : k ∈ N}, 0, 1, 2))) is in P under the tuple encoding.

4 Switchability, Collapsability and the three-element case

An algebra A is a G-set if its domain is not one-element and every of its operations f is of
the form f(x1, . . . , xk) = π(xi) where i ∈ [k] and π is a permutation on A. An algebra A
contains a G-set as a factor if some homomorphic image of a subalgebra of A is a G-set. A
Gap Algebra [6] is a three-element idempotent algebra that omits a G-set as a factor and is
not Collapsible.

Our first task is the deduction of the following theorem, whose lengthy proof is omitted.
For each of the following two theorems, α and β are chosen such that α, β are strict subsets
of {0, 1, 2}, α ∪ β = {0, 1, 2} and α ∩ β 6= ∅.

I Theorem 17. Suppose A is a Gap Algebra that is not αβ-projective. Then, for every finite
subset of ∆ of Inv(A), Pol(∆) is Collapsible.

Our second task is the deduction of the following theorem, whose lengthy proof is omitted.

I Theorem 18. Suppose A is a 3-element idempotent algebra that is not αβ-projective,
containing a 2-element G-set as a subalgebra. Then, A is Collapsible.

I Corollary 19. Suppose A is a 3-element idempotent algebra that is not EGP, i.e. is
Switchable. Then, for every finite subset of ∆ of Inv(A), Pol(∆) is Collapsible.

Proof. Recall Lemma 11 in [20] that A has EGP iff there exists α and β such that α, β are
strict subsets of D, α ∪ β = D, and all operations of A are αβ-projective.

MFCS 2017



27:12 The Complexity of Quantified Constraints Using the Algebraic Formulation

If A does not contain a G-set as a factor, then A is a Gap Algebra and the result follows
from Theorem 17. Otherwise, A contains a G-set as a factor. If A contains a G-set as a
homomorphic image then A has EGP from [7]. Else, since A is 3-element, A contains a
2-element G-set as a subalgebra and we are in the situation of Theorem 18. J

5 A three-element vignette

We would love to be able to improve Theorem 2 to describe the boundary between those
cases that are co-NP-complete and those that are Pspace-complete, if indeed such a result is
true. However, even in the three-element case this appears challenging, but we are able to
provide a variant vignette, whose proof is omitted.

I Theorem 20. Let A be an idempotent algebra on a 3-element domain. Either
Πk-CSP(Inv(A)) is in NP, for all k; or
Πk-CSP(Inv(A)) is co-NP-complete, for all k; or
Πk-CSP(Inv(A)) is ΠP

2 -hard, for some k.

Note that the trichotomy of Theorem 20 does not hold for QCSP along the same boundary
for, respectively, NP, co-NP-complete and Pspace-complete. For the semilattice-without-unit
s it is known that Πk-CSP(Inv(s)) is co-NP-complete, for all k, while QCSP(Inv(s)) is
Pspace-complete [3].

6 Discussion

The major contribution of this paper is its discussion of the Chen Conjecture with two
infinite-signature variants one of which is proved to hold (with encoding in “simple logic”)
and one of which fails (with the tuple listing).

In addition to this, the contribution is largely mathematical, examining the relationship
between Switchability and Collapsibility in the three-element case. However, this mathemat-
ical study uncovers something of importance to the computer scientist who is not reconciled to
infinite signatures! Since here it demonstrates that all three-element domain NP-memberships
that may be shown by Switchability, may already be shown by Collapsibility.

The work associated with Theorem 17 is distinctly non-trivial and involves a new method,
whereas the work associated with Theorem 18 uses known methods and involves mostly
turning the handle with these. Similarly, the work involved with the three element vignette
uses known methods on top of our earlier new results.

The Chen Conjecture in its original form remains open. As does the general question (for
arbitrary finite domains) as to whether, if A is Switchable, all finite subsets B of Inv(A) are
so that Pol(B) is Collapsible. However, to now prove the Chen Conjecture it is sufficient to
prove, for any finite B expanded with all constants such that Pol(B) has EGP, that there
exists polynomially (in i) computable pp-definitions (over B) of the relations τi (where α
and β are suitably chosen to witness EGP). A first step towards this is to establish whether
there are even polynomially sized pp-definitions of these τi.

The appearance of a co-NP-complete QCSP is likely to be an anomaly of our introduction
of infinite signatures. Such a QCSP is unlikely to exist with a finite signature (at least,
nothing like this is hitherto known). Indeed, its presence might be used as an argument
against the acceptance of infinite signatures, if it is interpreted as an aberration. For the
reader in this mind, we ask to please review the earlier paean to infinite signatures.



C. Carvalho, B. Martin, and D. Zhuk 27:13

Acknowledgements. We thank Hubie Chen and Michał Wrona for many useful discussions,
as well as several anonymous referees for their advising on two previous drafts.

References
1 Manuel Bodirsky and Hubie Chen. Quantified equality constraints. SIAM J. Comput.,

39(8):3682–3699, 2010. doi:10.1137/080725209.
2 Manuel Bodirsky and Jan Kára. The complexity of equality constraint languages. Theory of

Computing Systems, 3(2):136–158, 2008. A conference version appeared in the proceedings
of CSR’06.

3 Ferdinand Börner, Andrei A. Bulatov, Hubie Chen, Peter Jeavons, and Andrei A. Krokhin.
The complexity of constraint satisfaction games and qcsp. Inf. Comput., 207(9):923–944,
2009. doi:10.1016/j.ic.2009.05.003.

4 A. Bulatov, A. Krokhin, and P. G. Jeavons. Classifying the complexity of constraints using
finite algebras. SIAM Journal on Computing, 34:720–742, 2005.

5 Catarina Carvalho, Florent R. Madelaine, and Barnaby Martin. From complexity to algebra
and back: digraph classes, collapsibility and the PGP. In 30th Annual IEEE Symposium
on Logic in Computer Science (LICS), 2015.

6 Hubie Chen. The complexity of quantified constraint satisfaction: Collapsibility, sink
algebras, and the three-element case. SIAM J. Comput., 37(5):1674–1701, 2008. doi:
10.1137/060668572.

7 Hubie Chen. Quantified constraint satisfaction and the polynomially generated powers
property. Algebra universalis, 65(3):213–241, 2011. An extended abstract appeared in
ICALP B 2008. doi:10.1007/s00012-011-0125-4.

8 Hubie Chen. Meditations on quantified constraint satisfaction. In Logic and Program
Semantics - Essays Dedicated to Dexter Kozen on the Occasion of His 60th Birthday, pages
35–49, 2012. doi:10.1007/978-3-642-29485-3_4.

9 Hubie Chen and Peter Mayr. Quantified constraint satisfaction on monoids, 2016.
10 Nadia Creignou, Sanjeev Khanna, and Madhu Sudan. Complexity Classifications of Boolean

Constraint Satisfaction Problems. SIAM Monographs on Discrete Mathematics and Applic-
ations 7, 2001.

11 Uwe Egly, Thomas Eiter, Hans Tompits, and Stefan Woltran. Solving advanced reasoning
tasks using quantified boolean formulas. In Proc. 17th Nat. Conf. on Artificial Intelligence
and 12th Conf. on Innovative Applications of Artificial Intelligence, pages 417–422. AAAI
Press/ The MIT Press, 2000.

12 T. Feder and M. Vardi. The computational structure of monotone monadic SNP and
constraint satisfaction: A study through Datalog and group theory. SIAM Journal on
Computing, 28:57–104, 1999.

13 Vladimir Kolmogorov, Andrei A. Krokhin, and Michal Rolinek. The complexity of general-
valued csps. In IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS
2015, Berkeley, CA, USA, 17-20 October, 2015, pages 1246–1258, 2015. doi:10.1109/
FOCS.2015.80.

14 Florent R. Madelaine and Barnaby Martin. On the complexity of the model checking
problem. CoRR, abs/1210.6893, 2012. Extended abstract appeared at LICS 2011 under
the name "A Tetrachotomy for Positive First-Order Logic without Equality". URL: http:
//arxiv.org/abs/1210.6893.

15 Barnaby Martin. On the chen conjecture regarding the complexity of qcsps. CoRR,
abs/1607.03819, 2016. URL: http://arxiv.org/abs/1607.03819.

16 Barnaby Martin and Dmitriy Zhuk. Switchability and collapsibility of gap algebras. CoRR,
abs/1510.06298, 2015. URL: http://arxiv.org/abs/1510.06298.

17 Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

MFCS 2017

http://dx.doi.org/10.1137/080725209
http://dx.doi.org/10.1016/j.ic.2009.05.003
http://dx.doi.org/10.1137/060668572
http://dx.doi.org/10.1137/060668572
http://dx.doi.org/10.1007/s00012-011-0125-4
http://dx.doi.org/10.1007/978-3-642-29485-3_4
http://dx.doi.org/10.1109/FOCS.2015.80
http://dx.doi.org/10.1109/FOCS.2015.80
http://arxiv.org/abs/1210.6893
http://arxiv.org/abs/1210.6893
http://arxiv.org/abs/1607.03819
http://arxiv.org/abs/1510.06298


27:14 The Complexity of Quantified Constraints Using the Algebraic Formulation

18 R.M. Smullyan. Godel’s Incompleteness Theorems. Oxford Logic Guides. Oxford University
Press, 1992. URL: https://books.google.co.uk/books?id=04zalcCdKZsC.

19 James Wiegold. Growth sequences of finite semigroups. Journal of the Australian Math-
ematical Society (Series A), 43:16–20, 8 1987. Communicated by H. Lausch. doi:
10.1017/S1446788700028925.

20 D. Zhuk. The Size of Generating Sets of Powers. ArXiv e-prints, April 2015. arXiv:
1504.02121.

https://books.google.co.uk/books?id=04zalcCdKZsC
http://dx.doi.org/10.1017/S1446788700028925
http://dx.doi.org/10.1017/S1446788700028925
http://arxiv.org/abs/1504.02121
http://arxiv.org/abs/1504.02121


Induced Embeddings into Hamming Graphs∗

Martin Milanič1, Peter Muršič2, and Marcelo Mydlarz3

1 University of Primorska, IAM and FAMNIT, Koper, Slovenia
martin.milanic@upr.si

2 MSIS Department and RUTCOR, Rutgers University, Piscataway, NJ, USA
mursic.peter@gmail.com

3 Instituto de Industria, Universidad Nacional de General Sarmiento,
Los Polvorines, Argentina and CONICET, Buenos Aires, Argentina
mmydlarz@ungs.edu.ar

Abstract
Let d be a positive integer. Can a given graph G be realized in Rd so that vertices are mapped
to distinct points, two vertices being adjacent if and only if the corresponding points lie on a
common line that is parallel to some axis? Graphs admitting such realizations have been studied
in the literature for decades under different names. Peterson asked in [Discrete Appl. Math., 2003]
about the complexity of the recognition problem. While the two-dimensional case corresponds
to the class of line graphs of bipartite graphs and is well-understood, the complexity question
has remained open for all higher dimensions.

In this paper, we answer this question. We establish the NP-completeness of the recognition
problem for any fixed dimension, even in the class of bipartite graphs. To do this, we strengthen
a characterization of induced subgraphs of 3-dimensional Hamming graphs due to Klavžar and
Peterin. We complement the hardness result by showing that for some important classes of perfect
graphs – including chordal graphs and distance-hereditary graphs – the minimum dimension of
the Euclidean space in which the graph can be realized, or the impossibility of doing so, can be
determined in linear time.

1998 ACM Subject Classification G.2.2 Graph Theory, F.2.2 Nonnumerical Algorithms and
Problems

Keywords and phrases gridline graph, Hamming graph, induced embedding, NP-completeness,
chordal graph

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.28

1 Introduction

The main question addressed in this paper is the following: How difficult is it to determine if
a given graph G can be realized in Rd so that vertices are mapped to distinct points and two
vertices are adjacent if and only if the corresponding points are on a common line that is
parallel to some axis? Let us refer to any such mapping as a d-realization of G and say that
a graph is d-realizable if it has a d-realization. The class of d-realizable graphs was studied
in the literature for decades, under diverse names such as arrow graphs (Cook, 1974 [13]),
(d− 1)-plane graphs and (d− 1)-line graphs of d-partite d-uniform hypergraphs (Bermond et
al., 1977 [3]; see also [29]), d-dimensional cellular graphs (Gurvich and Temkin, 1992 [25]),
d-dimensional chessboard graphs (Staton and Wingard, 1998 [50]), and d-dimensional gridline

∗ The authors acknowledge the financial support from the Slovenian Research Agency (research core
funding No. I0-0035 and P1-0285, projects N1-0032, J1-5433, J1-6720, J1-6743, and J1-7051).

© Martin Milanič, Peter Muršič, and Marcelo Mydlarz;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 28; pp. 28:1–28:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.28
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


28:2 Induced Embeddings into Hamming Graphs

graphs (Peterson, 2003 [46]). Recently, Sangha and Zito studied d-realizable graphs in the
more general context of the so-called Line-of-Sight (LoS) networks [49] and showed that
the independent set problem, known to be polynomially solvable in the class of 2-realizable
graphs, is NP-complete in the class of 3-realizable graphs. For the small-dimensional cases,
d ∈ {2, 3}, Peterson suggested an application of d-realizable graphs to robotics [46]: if the
movement of a robot is restricted to be along axis-parallel directions only and turns are
allowable only at certain points, then a shortest path in a d-realized graph gives the number
of turns required. Further possible applications of d-realizable graphs belong to the area of
wireless networks, via their connection with Line-of-Sight networks [23].

Despite many studies on d-realizable graphs in the literature, determining the computa-
tional complexity of recognizing d-realizable graphs has been elusive except for d ∈ {1, 2},
when d-realizable graphs coincide with complete graphs and with line graphs of bipartite
graphs, respectively (and can be recognized in polynomial time). The main aim of this paper
is to settle the question about recognition complexity of d-realizable graphs for d ≥ 3, asked
explicitly by Peterson in 2003 [46]. We show that for all d ≥ 3, determining if a given graph is
d-realizable is NP-complete, even for bipartite graphs. We also identify some tractable cases.
We characterize d-realizable graphs (for any positive integer d) in the class of HHD-free
graphs, a large class of perfect graphs containing chordal graphs and distance-hereditary
graphs. The characterization leads to a linear time recognition algorithm.

Our approach is based on the fact that a graph G is d-realizable if and only if G is an
induced subgraph of a Cartesian product of d complete graphs. Given two graphs G and
H, their Cartesian product is the graph G�H with vertex set V (G)× V (H) in which two
vertices (u1, u2) and (v1, v2) are adjacent if and only if either u1v1 ∈ E(G) and u2 = v2,
or u1 = v1 and u2v2 ∈ E(H). The Cartesian product is associative and commutative (in
the sense that G�H ∼= H�G where ∼= denotes the graph isomorphism relation). Another
name for Cartesian products of complete graphs is Hamming graphs; a Hamming graph is d-
dimensional if it is the Cartesian product of d nontrivial complete graphs. The 3-dimensional
Hamming graphs having all factors of the same size were studied in the literature under the
name cubic lattice graphs [37, 12, 11, 1, 16], hence, 3-realizable graphs are exactly the induced
subgraphs of cubic lattice graphs. Our results are based on a characterization of induced
subgraphs of d-dimensional Hamming graphs due to Klavžar and Peterin [33], expressed in
terms of the existence of a particular edge labeling. For the 3-dimensional case, we develop
a more specific characterization based on induced cycles of the graph and use it to prove
hardness of recognizing 3-realizable graphs via a reduction from the 3-edge-coloring problem
in cubic graphs. The hardness of the 3-dimensional case forms the basis for establishing
hardness for all higher dimensions.

Since a d-realizable graph is also (d+ 1)-realizable, the notion of d-realizability suggests a
natural graph parameter. The Cartesian dimension of a graph G = (V,E), denoted Cdim(G),
is defined as the minimum non-negative integer d such that G is d-realizable, if such an
integer exists, and ∞, otherwise. The infinite case can indeed occur, even some small graphs
– the diamond, the 5-cycle, and the complete bipartite graph K2,3, for example – cannot
be realized in any dimension. Note that Cdim(G), when finite and strictly positive, is the
minimum positive integer d such that G is an induced subgraph of the Cartesian product
of d complete graphs. This point of view adds the Cartesian dimension of a graph to the
list of graph dimensions studied in the literature related to various embeddings of graphs
into Cartesian product graphs [24, 20, 27, 34]. Other dimensions were studied related to the
strong product [22, 15, 32, 47] and the direct product of graphs [41, 48].



M. Milanič, P. Muršič, and M. Mydlarz 28:3

Related work. As already mentioned, concepts equivalent to d-realizable graphs were
studied in the literature in various contexts [13, 3, 29, 25, 50, 46, 49]. Much further work in
the literature deals exclusively with the two-dimensional case [26, 28, 14, 46, 2], which (as
we will discuss in Section 2) corresponds to the class of line graphs of bipartite graphs, one
of the basic building blocks in the structural decomposition of perfect graphs [10].

Among the many dimension parameters of graphs defined via product graphs, let us
mention two that seem to be most closely related to the Cartesian dimension. A d-realization
is said to be irredundant [34] (or: d-dimensionally spanning [49]) if for each i ∈ {1, . . . , d}
some pair of adjacent vertices of G is mapped to a pair of points spanning a line that is
parallel to the i-th coordinate axis. Based on this notion, Klavžar et al. [34] defined the
Hamming dimension of a graph G, denoted by Hdim(G), as the largest integer d such that
G has an irredundant d-realization, if such an integer exists, and ∞, otherwise. Note that
the Cartesian dimension can be defined analogously, with “smallest” instead of “largest”; in
particular, Cdim(G) ≤ Hdim(G). Strict inequality is possible (for example, if P4 denotes the
4-vertex path, then Cdim(P4) = 2 and Hdim(P4) = 3) and the two dimensions are finite on
the same set of graphs.

The second relevant dimension is a Dushnik-Miller type dimension of a graph, the so-called
product dimension. This parameter, denoted simply by dim(G), is defined analogously to
the Cartesian dimension but with respect to the direct product. Given two graphs G and H,
their direct product is the graph G×H with vertex set V (G)× V (H) in which two vertices
(u1, u2) and (v1, v2) are adjacent if and only if u1v1 ∈ E(G) and u2v2 ∈ E(H). The product
dimension was introduced by Nešetřil and Rödl in [41] and studied by Lovász et al. in [39]
and more recently by Chandran et al. [8]; see also [21]. Unlike the Cartesian dimension, the
product dimension is finite for all graphs. The problem of computing the product dimension
of a given graph was shown to be NP-hard [40], even in the special case of recognizing
three-dimensional instances [36]. The Cartesian and the product dimensions of graphs are
closely related in the two-dimensional case: since the Cartesian product of two complete
graphs is isomorphic to the complement of their direct product, we have Cdim(G) ≤ 2 if and
only if Hdim(G) ≤ 2, where G denotes the complement of G.

The Cartesian dimension of graphs introduced in this paper should not be confused with
any of the “Cartesian dimensions” of a graph studied by Burosch and Ceccherini [7]. They
are defined similarly to the Hamming dimension Hdim(G) from [34], but with respect to
various inclusion relations and with the relaxation that the factors are not restricted to be
complete.

Structure of the paper. In Section 2 we collect the necessary definitions, summarize some
characterizations of the two-dimensional case and a necessary condition for the general,
d-dimensional case. In Section 3 we review a characterization of induced subgraphs of
d-dimensional Hamming graphs due to Klavžar and Peterin and introduce two related results
regarding the three-dimensional case. We build on these results in Section 4, where the
NP-completeness of recognizing d-realizable graphs is established for all d ≥ 3. A linear time
algorithm for computing the Cartesian dimension of a given HHD-free graph is developed in
Section 5, after the general problem is reduced to the biconnected case. We conclude the
paper in Section 6. Due to space limitations, several proofs are omitted.

MFCS 2017



28:4 Induced Embeddings into Hamming Graphs

2 Preliminaries

All graphs considered in this paper will be finite, simple and undirected. By Kn, Pn, and
Cn we denote the complete graph, the path, and the cycle with n vertices. By Km,n we
denote the complete bipartite graph with parts of sizes m and n; the claw is the graph K1,3.
A clique (resp., independent set) in a graph G is a set of pairwise adjacent (resp., pairwise
non-adjacent) vertices. By α(G) we denote the independence number of G, that is, the
maximum size of an independent set in G. A triangle in G is a clique of size 3 in G. The
diamond is the graph obtained by removing an edge from a K4. For a vertex v in G, the
neighborhood of v is the set of vertices in G adjacent to v. It is denoted by NG(v) (or simply
by N(v) if the graph will be clear from the context). The degree of v (in G) is the size of
its neighborhood. A graph is cubic if all its vertices have degree 3. The girth of a graph G
is the length of the shortest cycle in G (and ∞ if G is acyclic). Given a graph G and a set
U ⊆ V (G), we denote by G[U ] the subgraph of G induced by U . Given a set of graphs F ,
a graph G is said to be F-free if no induced subgraph of G is isomorphic to a graph from
F . A cut vertex in a connected graph G is a vertex whose removal disconnects the graph.
Given a graph G, a block of G is a maximal connected subgraph of G without cut vertices.
A graph G is biconnected if G itself is its only block. The disjoint union of two graphs G and
H is denoted by G+H. For graph theoretic terms not defined here, see, e.g., [51].

Given a positive integer d, a d-realization of a graph G = (V,E) is an injective mapping
ϕG : V → Rd such that two vertices u, v ∈ V are adjacent if and only if ϕG(u) and ϕG(v)
differ in exactly one coordinate. A graph G is said to be d-realizable if it has a d-realization.
Note that G is d-realizable if and only if G has a d-realization ϕG : V → Nd. The Cartesian
dimension of a graph G = (V,E), denoted Cdim(G), is defined as the minimum non-negative
integer d such that G is d-realizable, if such an integer exists, and ∞, otherwise. (Note that
K1 is the only graph of Cartesian dimension 0.)

Clearly, the only graphs of Cartesian dimension 1 are complete graphs of order at least
two. Graphs of Cartesian dimension at most 2 coincide with line graphs of bipartite graphs,
for which various characterizations and linear time recognition algorithms are known. Recall
that a graph G is said to be bipartite it has a bipartition, that is, a pair (X,Y ) of disjoint
independent sets such that X ∪ Y = V (G). The line graph of a graph G is the graph
denoted by L(G) with vertex set E(G), in which two distinct vertices are adjacent if and
only if they have a common endpoint as edges in G. Line graphs of bipartite graphs were
studied in the literature under various names such as graphs of (0, 1)-matrices [28], matrix
graphs [14], two-dimensional chessboard graphs [50], (two-dimensional) gridline graphs [46],
cellular graphs [25], and rooks graphs [2]. The characterization of line graphs of bipartite
graphs in terms of forbidden induced subgraph was discovered and rediscovered many times:
by Chartrand in 1964 [9], by Hedetniemi in 1971 [28], by Harary and Holzman in 1974[26],
by Staton and Wingard in 1998 [50], and by Peterson in 2003 [46]. Furthermore, Staton and
Wingard [50] and Peterson [46] established the connection with the Cartesian dimension.
These characterizations are summarized in the following theorem.

I Theorem 1. For every graph G, the following conditions are equivalent:
1. Cdim(G) ≤ 2.
2. G is the line graph of a bipartite graph.
3. G is {claw, diamond, C5, C7, . . .}-free.

For any positive integer d, Staton and Wingard proved the following necessary condition
for a graph to be d-realizable.



M. Milanič, P. Muršič, and M. Mydlarz 28:5

I Theorem 2 (Staton and Wingard [50]). Every d-realizable graph is {K1,d+1, diamond,
K2,3, C5}-free.

Staton and Wingard asked whether for d ≥ 3, the list of forbidden induced subgraphs for
the class of d-realizable graphs given by Theorem 2 is complete. This is not the case: Peterson
constructed an infinite family of graphs that are minimally forbidden for d-realizability for
all d ≥ 3 [46, Figure 4] (see also [45]). However, the complete list of forbidden induced
subgraphs is not known for any d ≥ 3.

3 The Klavžar-Peterin characterization

In this section, we recall the characterization of induced subgraphs of d-dimensional Hamming
graphs due to Klavžar and Peterin [33] and strengthen it in the 3-dimensional case. The
characterization is expressed in terms of the existence of a particular edge labeling. Given
a graph G, a d-edge-labeling of G is a mapping from E(G) to some set L of labels, where
|L| = d (we often have L = {1, . . . , d}). Given a d-edge-labeling ` of G and a set F ⊆ E(G),
we say that F is `-monochromatic (or simply monochromatic if the labeling is clear from the
context) if the labeling is constant on F , that is, if e, e′ ∈ F implies `(e) = `(e′). We extend
the definition of monochromaticity to subgraphs of G in the obvious way. A (d-)edge-coloring
is a (d-)edge-labeling such that no two incident edges share the same label. In the case of
edge-colorings, labels may also be referred to as colors.

We say that a d-edge-labeling of G is a (d-)KP-labeling if it satisfies the following two
conditions:

Condition 1: every triangle is monochromatic.
Condition 2: for every pair of distinct non-adjacent vertices u, v, there exist different
labels i and j which both appear on every induced u, v-path.

Note that in a KP-labeling, every induced P3 will be 2-edge-colored due to Condition 2; in
particular, this implies that for triangle-free graphs, KP-labelings coincide with edge-colorings.

Since induced subgraphs of Hamming graphs are exactly the graphs of finite Cartesian
dimension, the result of Klavžar and Peterin given by [33, Theorem 3.3] can be equivalently
stated as follows.

I Theorem 3 (Klavžar and Peterin [33]). Let G be a connected graph. Then Cdim(G) <∞
if and only if G has a KP-labeling.

The proof of Theorem 3 given in [33] actually shows the following more specific equivalence:

I Theorem 4. For every connected graph G and a positive integer d, we have Cdim(G) ≤ d
if and only if G has a d-KP-labeling.

We can find d-realizations of two graphs G and H such that Cdim(G) ≤ Cdim(H) = d

when d > 1, using d-tuples over disjoint sets for the two graphs. The case d = 1 is exceptional:
by definition, two different 1-tuples result in a pair of adjacent vertices. Thus, as all graphs
of Cartesian dimension 1 are complete, the Cartesian dimension of any disconnected graph is
at least 2. We record these observations for later use.

I Observation 5. For every two graphs G and H, we have Cdim(G + H) =
max{Cdim(G),Cdim(H), 2}.

We now present two results for the 3-dimensional case. Both are related to the Klavžar-
Peterin characterization and will be needed in our hardness proof for recognizing 3-realizable

MFCS 2017



28:6 Induced Embeddings into Hamming Graphs

graphs developed in Section 5. First, we show that the defining properties of a 3-KP-labeling
are satisfied for a graph as soon as they are satisfied for the family of all its induced subgraphs
isomorphic to a cycle or to a P3.

I Theorem 6. Let G be a graph. A 3-edge-labeling of G is a KP-labeling if and only if it
satisfies the following two conditions:

Condition 3: for every induced cycle C of G, the restriction of the labeling to E(C) is
a KP-labeling of C.
Condition 4: no induced P3 is monochromatic.

Proof. The necessity of the two conditions is easy to see. If G is 3-KP-labeled and H is an
induced subgraph of G, then the restriction of the labeling to E(H) is a 3-KP-labeling of H,
hence Condition 3 is necessary. Condition 4 follows from Condition 2.

In order to prove sufficiency, note that Condition 3 immediately implies Condition 1. Now,
by way of contradiction suppose that there is a 3-edge-labeling ` : E(G)→ {1, 2, 3} satisfying
Conditions 3 and 4, but not Condition 2. Since G violates Condition 2, it contains two
different induced paths of length at least two, say P and Q, intersecting at their endpoints –
call these vertices u and v – such that no pair of different labels appears on both P and Q.
Due to Condition 4, on each of the paths P and Q at least two different labels appear. Since
no pair of different labels appears on both P and Q, we may assume that P and Q take –
alternatingly – labels 1, 2 and 1, 3, respectively. Moreover, assume that

(∗) P and Q were chosen so as to minimize |V (P )|+ |V (Q)|.

Given a path R and two of its vertices x and y, denote by Rxy the subpath of R between
x and y, and by V −xy

R the set V (R) \ {x, y}. We say that a path is k-labeled if exactly k
different labels appear on its edges.

We claim that V −uv
P ∩ V −uv

Q = ∅. Indeed, suppose for a contradiction that w ∈ V −uv
P ∩

V −uv
Q . Then, Puw and Quw would be both 2-labeled (u and w cannot be adjacent due to

(∗)), only agreeing on label 1; thus, Puw ∪Quw would be 3-labeled, contradicting (∗).
For t ∈ {u, v} and xy ∈ E(G) with (x, y) ∈ V −uv

P × V −uv
Q , a cycle C = Ptx-xy-Qyt such

that either Ptx-xy or xy-Qyt is an induced path will be called a PQ-cycle. Note that a
PQ-cycle cannot be 3-labeled: if – say – P ′ = Ptx-xy was an induced path, then P ′ and Qyt

would make evident a violation to (∗).
Condition 3 implies that the cycle C0 = P ∪Q cannot be induced. Let xy be a chord in

C0 ({x, y} ∩ {u, v} = ∅) such that x ∈ V (P ) is closest to u (where the distance is measured
within P ), and y is the neighbor of x in Q closest to v (where the distance is measured within
Q). Observe that each of C1 = Pux-xy-Qyu and C2 = Pvx-xy-Qyv is either a PQ-cycle or a
triangle, implying that neither of them is 3-labeled. Neither of them can be monochromatic
either: if – say – C1 was monochromatic then, as E(C0) ⊂ E(C1) ∪ E(C2) while C1 and C2
share the label of xy, it would follow that C2 was 3-labeled. Thus, C1 and C2 are 2-labeled.

As C1 and C2 are 2-labeled, they share exactly one label. By definition, any PQ-cycle
contains a P3 from either P or Q, hence (recalling that P and Q alternate labels 1, 2 and
1, 3, respectively), C1 and C2 share label 1. Such is then the label of xy. However, one of
the two edges incident to x in P is also labeled with 1, forming with xy a monochromatic
induced P3 (as part of either C1 or C2), which contradicts Condition 4. J

Next, we characterize 3-KP-labelings of cycles. By Condition 1 in the definition of a
KP-labeling, every 3-KP-labeling of a 3-cycle is constant. The next lemma analyzes longer
cycles.



M. Milanič, P. Muršič, and M. Mydlarz 28:7

x vxy

wxy

wyx

vyx y

Figure 1 A gadget replacing each edge xy.

I Lemma 7. Let C be a cycle of length at least 4. A 3-edge-coloring of C with colors 1, 2, 3
is a KP-labeling if and only if

either it is a 2-edge-coloring of C, or
possibly after permuting the labels 1, 2, 3, cycle C contains a cyclically ordered sequence
of 6 distinct (not necessarily consecutive) edges labeled 1, 2, 3, 1, 2, 3, respectively. We call
this the 123123-condition.

4 NP-completeness of testing realizability in d ≥ 3 dimensions

In this section, we show that for every d ≥ 3, determining whether Cdim(G) ≤ d is NP-
complete. First we establish the result for d = 3 and then derive from it the general
case.

I Theorem 8. Given a graph G, determining whether Cdim(G) ≤ 3 is NP-complete, even
for connected bipartite graphs of maximum degree at most 3.

Proof. A polynomially checkable certificate of the fact that Cdim(G) ≤ 3 is any 3-realization
of G of the form ϕG : V → N3. Therefore, the problem is in NP (on any class of input
graphs).

To show hardness, we make a reduction from the 3-edge-coloring problem in cubic graphs,
proved to be NP-complete by Holyer [30]. Let G be a cubic graph that is the input for the
3-edge-coloring problem. We may assume that G is connected. Construct a graph G′ from G

by replacing each edge xy of G with the structure shown in Fig. 1. Formally,

V (G′) = V (G) ∪
⋃

xy∈E(G)

{vxy, wxy, wyx, vyx} ,

E(G′) =
⋃

xy∈E(G)

{xvxy, vxywxy, vxywyx, vyxwxy, vyxwyx, yvyx} .

Letting V1 = V (G)∪
⋃

xy∈E(G){wxy, wyx} and V2 =
⋃

xy∈E(G){vxy, vyx}, we see that (V1, V2)
is a bipartition of G′. Thus, G′ is a bipartite graph with vertices of degrees 2 and 3 only.
We will show that G is 3-edge-colorable if and only if Cdim(G′) ≤ 3.

We first prove the (simpler) backward direction. Let Cdim(G′) ≤ 3. By Theorem 4,
G′ has a 3-KP-labeling. Then for each xy ∈ E(G) the 4-cycle C = vxy-wxy-vyx-wyx-vxy in
G′ must be 2-KP-labeled. This implies that the edges xvxy and yvyx must have the same
label `xy – the one not used in C. Since G′ is triangle-free, any KP-labeling of G′ is an
edge-coloring (otherwise, Condition 4 would be violated). Therefore, by labeling each edge
xy ∈ E(G) with `xy, we get a 3-edge-coloring of G.

Now suppose that G has a 3-edge-coloring using colors 1, 2, 3. For each edge xy of G
labeled i ∈ {1, 2, 3}, let {j, k} = {1, 2, 3} \ {i} and label the associated edges of G′ as follows:
edges xvxy and yvyx with i, edges vxywxy and vyxwyx with j, and edges vxywyx and vyxwxy

with k.

MFCS 2017



28:8 Induced Embeddings into Hamming Graphs

i i

j

j

j k

k j

j j

j j

k k

i

i

Figure 2 A gadget replacing each edge for proving hardness in cubic graphs.

We claim that the so obtained labeling of G′ is a KP-labeling. By Theorem 6, it suffices
to check that Conditions 3 and 4 are satisfied. The latter condition is obviously satisfied.

In order to verify that Condition 3 holds, note that G′ has two types of induced cycles:
4-cycles. They only appear in the gadget of Fig. 1; they are properly 2-edge-colored and
hence KP-labeled by Lemma 7.
Cycles of length greater than 4. Each such cycle C has length 4p for some p ≥ 3, and
arises from a (not necessarily induced) p-cycle C ′ in G. We will show that such cycles
satisfy the 123123-condition and apply Lemma 7. Let x1, x2, . . . , xp be a cyclic order of
vertices in C ′. Without loss of generality, let 1, 2, 3, 1 be the labels (in this order) on
some shortest path from x1 to x2 in C. Then, the sequence of labels on the edges of any
shortest path from x2 to x3 in C is one of the following: (2, 1, 3, 2), (2, 3, 1, 2), (3, 1, 2, 3),
or (3, 2, 1, 3). Thus, along cycle C we find 6 distinct edges labeled 1, 2, 3, 1, 2, 3 in order.
This shows that C satisfies the 123123-condition.

It follows that Condition 3 is satisfied, hence by Theorem 6 G′ has a 3-KP-labeling. By
Theorem 4, we conclude that Cdim(G′) ≤ 3. J

I Remark. A simple modification of the above construction, using a somewhat more involved
gadget, can be used to show NP-completeness of testing whether Cdim(G) ≤ 3 for cubic
(non-bipartite) graphs. We omit the details but show the gadget in Fig. 2 together with edge
labels indicating how to extend a 3-edge-coloring of G to a 3-KP-labeling of G′.

I Remark. Recall that Peterson constructed an infinite family of graphs that are minimally
forbidden for 3-realizability [46]. All those graphs are of girth 3. The above proof implies that
the landscape of forbidden induced subgraphs for 3-realizability is much more complicated,
consisting of graphs of arbitrarily large girth. To see this, note that for every positive
integer g, there exists a graph Fg of maximum degree at most 3 and of girth at least g with
Cdim(Fg) > 3. This follows from the proof of Theorem 8 and the fact that there exist cubic
graphs of arbitrarily large girth that are not 3-edge-colorable [35]. Since Cdim(Fg) > 3, graph
Fg contains a forbidden induced subgraph for 3-realizability, say F ′g. Since every acyclic
graph of maximum degree at most 3 is 3-realizable (this follows, e.g., from Corollary 15 in
Section 5.2), graph F ′g has a cycle and is therefore of (finite) girth at least g.

From Theorem 8 we derive hardness of recognizing graphs of any constant Cartesian
dimension.

I Theorem 9. For every d ≥ 3, determining whether a given graph G satisfies Cdim(G) ≤ d
is NP-complete, even for connected bipartite graphs.



M. Milanič, P. Muršič, and M. Mydlarz 28:9

Figure 3 The house (left), the smallest hole (middle), and the domino (right).

Proof idea. The base case, d = 3, is given by Theorem 8. The inductive step can be
established using the observation that for every connected bipartite graph G, the Cartesian
productG�K2 is also connected and bipartite, and satisfies Cdim(G�K2) = Cdim(G)+1. J

5 Tractable cases: chordal graphs and distance-hereditary graphs

Since bipartite graphs are perfect, Theorem 8 implies that the problem of recognizing graphs
of Cartesian dimension 3 is NP-complete in the class of perfect graphs. In this section, we
show that the problem can be solved in linear time in two well-studied classes of perfect graphs:
chordal graphs and distance-hereditary graphs. A graph G is chordal if it has no induced
cycle of length at least four and distance-hereditary if in every connected induced subgraph
of G, the distance between any pair of vertices is the same as in G. We characterize chordal
graphs and distance-hereditary graphs of given Cartesian dimension. The characterizations
will imply linear time algorithms for computing the Cartesian dimension of a given chordal
or distance-hereditary graph.

We develop a unified approach that will imply both results, by considering the class of
HHD-free graphs. We define a hole to be a cycle of length at least five.1 A graph G is said
to be HHD-free if it does not contain an induced subgraph isomorphic to the house, a hole,
or the domino (see Fig. 3).

HHD-free graphs were introduced by Olariu [44] as a class of perfect graph generalizing
both chordal and distance-hereditary graphs. They can be equivalently defined as the (5,2)-
chordal graphs, that is, graphs in which every cycle of length at least five has at least two chords
(see, e.g., [4]). Jamison and Olariu [31] characterized HHD-free graphs in terms of properties
of the Lexicographic Breadth First Search algorithm, and Nikolopoulos and Palios gave an
O(|V (G)||E(G)|) time recognition algorithm [43]. Many other studies looked into metric,
structural, and algorithmic properties of HHD-free graphs (see, e.g., [18, 6, 19, 42, 19, 17, 5]).

We characterize HHD-free graphs of a given Cartesian dimension and derive the corres-
ponding results for chordal and distance-hereditary graphs as corollaries. We do this by first
showing that the problem of computing the Cartesian dimension of an arbitrary graph can
be reduced to its blocks (Lemma 10), and by identifying two particularly nice cases of this
reduction (Lemmas 11 and 12). Next, we characterize biconnected HHD-free graphs of a
given Cartesian dimension. To this end, we apply the necessary conditions for graphs of
finite Cartesian dimension given by Theorem 2 to reduce the problem to the biconnected
{diamond, K2,3}-free HHD-free graphs, which we characterize in Lemma 13. Finally, the
simple structure of the biconnected {diamond, K2,3}-free HHD-free graphs (they can only be
complete or 4-cycles) is used to prove the desired characterization (Theorem 14) and a linear
time algorithm for computing the Cartesian dimension of an HHD-free graphs (Theorem 16).

1 We remark that the terminology on holes is not completely uniform in the graph theory literature. In
many papers, holes are defined as cycles of length at least four.

MFCS 2017



28:10 Induced Embeddings into Hamming Graphs

5.1 Reduction to blocks
For a graph G and a vertex v ∈ V (G), we set αG(v) = α(G[N(v)]) and α1(G) = max{αG(v) :
v ∈ V (G)}. Note that α1(G) is the maximum value of n such that K1,n is an induced
subgraph of G. Hence, by Theorem 2, every graph G has Cdim(G) ≥ α1(G). The following
lemma specifies the reduction for the problem of computing the Cartesian dimension of a
given graph to the biconnected case.

I Lemma 10. Let G be a connected graph with a cut vertex v, let V (G) = {v} ∪ V1 ∪ V2
where V1 and V2 are disjoint non-empty subsets of V (G) \ {v} such that no vertex from V1
is adjacent to a vertex in V2, and let Gi = G[{v} ∪ Vi] for i ∈ {1, 2}. Then, Cdim(G) =
max{Cdim(G1),Cdim(G2), αG(v)}.

Lemma 10 has two useful consequences. For a connected graph G, we denote by CG

the set of cut vertices of G and by BG the set of blocks of G. The block-cutpoint tree of a
connected graph G is the bipartite graph T with vertex set BG ∪ CG in which B ∈ BG is
adjacent to v ∈ CG if and only if v ∈ V (B). It is well known that T is a tree such that all
leaves of T are blocks of G (see, e.g., [51]). A class of graphs is hereditary if it is closed under
vertex deletion. We say that a graph G is maxstar-dimensional if Cdim(G) = α1(G).

I Lemma 11. Let G be a hereditary class of graphs such that every biconnected graph in G
is maxstar-dimensional. Then every connected graph in G is maxstar-dimensional.

Let us call a graph star-dimensional if Cdim(G) = αG(v) for every v ∈ V (G).

I Lemma 12. Let G be a hereditary class of graphs such that every biconnected graph in G
is star-dimensional. Then, every connected graph G ∈ G with a cut vertex satisfies

Cdim(G) = max
v∈CG

∑
B∈BG:v∈B

Cdim(B) .

5.2 Cartesian dimension of HHD-free graphs
The following lemma characterizes biconnected {diamond, K2,3}-free HHD-free graphs. In
the proof we will need the notion of a block graph, that is, a connected graph every block of
which is complete.

I Lemma 13. Let G be a biconnected {diamond, K2,3}-free HHD-free graph. Then, G is
either complete or a C4.

Proof. Let G be a biconnected {diamond, K2,3}-free HHD-free graph. Consider first the
case when G is chordal. Since connected diamond-free chordal graphs are exactly the block
graphs (see, e.g., [38]), G is a block graph. Thus, since G is biconnected, it is complete.

Suppose now that G is not chordal. Since G has no induced cycles of length 5 or more
but is not chordal, G has an induced C4, say C. We want to show that G = C. First, note
that every vertex of G not in C has at most one neighbor in C. Indeed, the neighborhood on
C of a vertex v ∈ V (G) \ V (C) consisting of at least three neighbors, exactly two neighbors
that are adjacent, or exactly two neighbors that are non-adjacent, would lead to an induced
subgraph of G isomorphic to an diamond, a house, or a K2,3, respectively.

Let (v1, v2, v3, v4) be a cyclic order of vertices along C and let U denote the set of vertices
in V (G) \ V (C) adjacent to a vertex of C. Since every vertex in U has exactly one neighbor
in C, the set U can be partitioned into pairwise disjoint sets, U = U1 ∪ U2 ∪ U3 ∪ U4, where
Ui is the set of vertices in U adjacent to vi. Note that since G is domino-free, no vertex in



M. Milanič, P. Muršič, and M. Mydlarz 28:11

Ui is adjacent to a vertex in Ui+1 (indices modulo 4). Moreover, since G is C5-free, no vertex
in Ui is adjacent to a vertex in Ui+2 (indices modulo 4). Thus, if i 6= j, then no vertex in Ui

is adjacent to a vertex in Uj .
Suppose for a contradiction that G 6= C. Since G is connected, the fact that G 6= C

implies that one of the sets Ui is non-empty, say (w.l.o.g.) U1 6= ∅. Let X = V (C) \ {v1}.
Since G is biconnected, it contains a U1, X-path avoiding v1. Let P be a shortest such path.
Let us enumerate the vertices of P along the path as w1, . . . , wk where w1 ∈ U1 and wk ∈ X,
more specifically, wk = vi for some (unique) i ∈ {2, 3, 4}. By minimality, P is an induced
path in G− v1; moreover, since there are no edges connecting a vertex in U1 with a vertex
in Uj for j 6= 1, we infer that k ≥ 4. By the minimality of P , no internal vertex of P is
in U1 ∪X, moreover, wk−1 ∈ Ui and V (P ) ∩ (U2 ∪ U3 ∪ U4) = {wk−1}. It follows that w1
and possibly wk are the only neighbors of v1 on P . Now, if i ∈ {2, 4}, then V (P ) ∪ {v1}
induces a cycle of length at least five in G, which is not possible. Similarly, if i = 3, then
V (P )∪ {v1, v2} induces a cycle of length at least six in G, again a contradiction. This shows
that G = C, as claimed, and completes the proof. J

It is not difficult to verify that every graph G ∈ {C4} ∪ {Kn : n ≥ 1} is star-dimensional,
with

Cdim(G) = α1(G) =


0, if G is a K1;
1, if G is a Kn with n ≥ 2;
2, if G is a C4.

By Lemma 13, every biconnected {diamond, K2,3}-free HHD-free graph is star-dimensional.
Recall that the inequality Cdim(G) ≥ α1(G) holds for every graph G, where α1(G) is the

maximum value of n such that K1,n is an induced subgraph of G. Lemmas 11 and 13 imply
that equality holds in the case of HHD-free graphs of finite Cartesian dimension.

I Theorem 14. For every connected HHD-free graph G,

Cdim(G) =
{
α1(G), if G is {diamond,K2,3}-free;
∞, otherwise.

Since the house, the domino, and each hole contain an induced cycle of length at least
four, every chordal graph is HHD-free. Every distance-hereditary graph is also HHD-free; in
fact, distance-hereditary graphs are known to be exactly the gem-free HHD-free graphs (see,
e.g. [4]), where the gem is the graph obtained from the four-vertex path by adding to it a
universal vertex. Theorem 14 therefore implies the following result.

I Corollary 15. If a connected graph G is chordal or distance-hereditary, then

Cdim(G) =
{
α1(G), if G is {diamond,K2,3}-free;
∞, otherwise.

Observation 5 and Lemma 12 imply a linear time algorithm for computing the Cartesian
dimension of a given HHD-free graph. We summarize its pseudocode in Algorithm 1 below
and prove its correctness in Theorem 16.

I Theorem 16. Algorithm 1 runs in time O(|V (G)|+ |E(G)|) and correctly computes the
Cartesian dimension of a given HHD-free graph G (in particular, G may be a chordal graph
or a distance-hereditary graph).

MFCS 2017



28:12 Induced Embeddings into Hamming Graphs

Algorithm 1: Computing the Cartesian dimension of an HHD-free graph
Input: An HHD-free graph G = (V,E).
Output: The value of Cdim(G).

1 compute the connected components G1, . . . , Gr of G;
2 if r > 1 then
3 run the algorithm recursively on each component of G;
4 return max{max1≤i≤r Cdim(Gi), 2};

// from now on, G is connected
5 compute T , the block-cutpoint tree of G, CG, the set of cut vertices of G, and BG,

the set of its blocks;
6 if G has a block that is not complete or a C4 then
7 return ∞;

// from now on, each block of G is either complete or a C4
8 foreach B ∈ BG do

9 Cdim(B)←


0, if |V (B)| = 1
1, if |V (B)| ≥ 2 and Bi is complete
2, if B is a C4;

10 if |BG| = 1 then
11 let B ∈ BG and return Cdim(B);
12 foreach v ∈ CG do
13 αG(v)←

∑
B∈BG:v∈B Cdim(B);

14 return maxv∈CG
αG(v);

I Remark. Lemma 10 determines how to efficiently combine KP-labelings of the blocks of a
given graph G into a KP-labeling of G. Moreover, the proof of [33, Theorem 3.3] shows that
a d-realization of a given d-KP-labeled graph can be computed in polynomial time. Hence,
there exists a polynomial time algorithm that takes as input an HHD-free graph G of finite
Cartesian dimension and outputs a d-realization of G where d = Cdim(G).

6 Conclusion

The main contribution of the present work is settling the computational complexity status of
recognizing d-realizable graphs for any d ≥ 3, answering thereby a question by Peterson from
2003. While the hardness result is valid already for the class of bipartite graphs, we identified
an important class of perfect graphs for which the problem is solvable in linear time – the
class of HHD-free graphs. Besides the question of identifying further graph classes where
the problem of d-realizability is (in)tractable, the main question left open by this work is to
determine the complexity status of the problem of deciding if a given graph G is d-realizable
for some d (or, equivalently, whether its Cartesian dimension is finite). It would also be
interesting to study in more detail the relation between the Cartesian and the Hamming
dimensions of a graph, as both parameters can be defined in terms of the set of integers d
such that the graph has an irredundant d-realization.

Acknowledgement. M. Mydlarz is grateful to Vašek Chvátal for insightful comments.



M. Milanič, P. Muršič, and M. Mydlarz 28:13

References
1 Martin Aigner. The uniqueness of the cubic lattice graph. J. Combinatorial Theory, 6:282–

297, 1969.
2 Lowell W. Beineke, Izak Broere, and Michael A. Henning. Queens graphs. Discrete Math.,

206(1-3):63–75, 1999.
3 Jean-Claude Bermond, Marie-Claude Heydemann, and Dominique Sotteau. Line graphs of

hypergraphs. I. Discrete Math., 18(3):235–241, 1977.
4 Andreas Brandstädt, Van Bang Le, and Jeremy P. Spinrad. Graph Classes: A Survey.

SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, 1999.

5 Andreas Brandstädt, Van Bang Le, and Thomas Szymczak. Duchet-type theorems for
powers of HHD-free graphs. Discrete Math., 177(1-3):9–16, 1997.

6 Hajo J. Broersma, Elias Dahlhaus, and Ton Kloks. Algorithms for the treewidth and min-
imum fill-in of HHD-free graphs. In Graph-theoretic concepts in computer science (Berlin,
1997), volume 1335 of Lecture Notes in Comput. Sci., pages 109–117. Springer, Berlin, 1997.

7 Gustav Burosch and Pier Vittorio Ceccherini. On the Cartesian dimensions of graphs. J.
Combin. Inform. System Sci., 19(1-2):35–45, 1994. International Conference on Graphs
and Hypergraphs (Varenna, 1991).

8 L. Sunil Chandran, Rogers Mathew, Deepak Rajendraprasad, and Roohani Sharma.
Product dimension of forests and bounded treewidth graphs. Electron. J. Combin.,
20(3):Paper 42, 14, 2013.

9 Gary Theodore Chartrand. GRAPHS AND THEIR ASSOCIATED LINE-GRAPHS.
ProQuest LLC, Ann Arbor, MI, 1964. Thesis (Ph.D.)–Michigan State University.

10 Maria Chudnovsky, Neil Robertson, Paul Seymour, and Robin Thomas. The strong perfect
graph theorem. Ann. of Math. (2), 164(1):51–229, 2006.

11 Curtis R. Cook. Further characterizations of cubic lattice graphs. Discrete Math., 4:129–
138, 1973.

12 Curtis R. Cook. A note on the exceptional graph of the cubic lattice graph characterization.
J. Combinatorial Theory Ser. B, 14:132–136, 1973.

13 Curtis R. Cook. Representations of graphs by n-tuples. In Proceedings of the Fifth South-
eastern Conference on Combinatorics, Graph Theory, and Computing (Florida Atlantic
Univ., Boca Raton, Fla., 1974), pages 303–316. Congressus Numerantium, No. X, Win-
nipeg, Man., 1974. Utilitas Math.

14 Curtis R. Cook, B. Devadas Acharya, and V. Mishra. Adjacency graphs. In Proceedings
of the Fifth Southeastern Conference on Combinatorics, Graph Theory and Computing
(Florida Atlantic Univ., Boca Raton, Fla., 1974), pages 317–331. Congressus Numerantium,
No. X. Utilitas Math., Winnipeg, Man., 1974.

15 Alexander K. Dewdney. The embedding dimension of a graph. Ars Combin., 9:77–90, 1980.
16 Thomas A. Dowling. Note on: “A characterization of cubic lattice graphs”. J. Combinatorial

Theory, 5:425–426, 1968.
17 Feodor F. Dragan and Falk Nicolai. LexBFS-orderings and powers of HHD-free graphs. Int.

J. Comput. Math., 71(1):35–56, 1999.
18 Feodor F. Dragan, Falk Nicolai, and Andreas Brandstädt. LexBFS-orderings and powers of

graphs. In Graph-theoretic concepts in computer science (Cadenabbia, 1996), volume 1197
of Lecture Notes in Comput. Sci., pages 166–180. Springer, Berlin, 1997.

19 Feodor F. Dragan, Falk Nicolai, and Andreas Brandstädt. Powers of HHD-free graphs. Int.
J. Comput. Math., 69(3-4):217–242, 1998.

20 David Eppstein. The lattice dimension of a graph. European J. Combin., 26(5):585–592,
2005.

MFCS 2017



28:14 Induced Embeddings into Hamming Graphs

21 Anthony B. Evans, Garth Isaak, and Darren A. Narayan. Representations of graphs mod-
ulo n. Discrete Math., 223(1-3):109–123, 2000.

22 Shannon L. Fitzpatrick and Richard J. Nowakowski. The strong isometric dimension of
finite reflexive graphs. Discuss. Math. Graph Theory, 20(1):23–38, 2000.

23 Alan Frieze, Jon Kleinberg, R. Ravi, and Warren Debany. Line-of-sight networks. Combin.
Probab. Comput., 18(1-2):145–163, 2009.

24 Ronald L. Graham and Peter M. Winkler. On isometric embeddings of graphs. Trans.
Amer. Math. Soc., 288(2):527–536, 1985.

25 Vladimir A. Gurvich and Mikhail A. Temkin. Cellular perfect graphs. Dokl. Akad. Nauk,
326(2):227–232, 1992.

26 F. Harary and C. Holzmann. Line graphs of bipartite graphs. Rev. Soc. Mat. Chile, 1:19–22,
1974.

27 Frank Harary. Cubical graphs and cubical dimensions. Comput. Math. Appl., 15(4):271–275,
1988.

28 Stephen T. Hedetniemi. Graphs of (0, 1)-matrices. In Recent Trends in Graph Theory
(Proc. Conf., New York, 1970), pages 157–171. Lecture Notes in Mathematics, Vol. 186.
Springer, Berlin, 1971.

29 Marie-Claude Heydemann and Dominique Sotteau. Line-graphs of hypergraphs. II. In Com-
binatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. I, volume 18 of Colloq.
Math. Soc. János Bolyai, pages 567–582. North-Holland, Amsterdam-New York, 1978.

30 Ian Holyer. The NP-completeness of edge-coloring. SIAM J. Comput., 10(4):718–720, 1981.
31 Beverly Jamison and Stephan Olariu. On the semi-perfect elimination. Adv. in Appl. Math.,

9(3):364–376, 1988.
32 Janja Jerebic and Sandi Klavžar. On induced and isometric embeddings of graphs into the

strong product of paths. Discrete Math., 306(13):1358–1363, 2006.
33 Sandi Klavžar and Iztok Peterin. Characterizing subgraphs of Hamming graphs. J. Graph

Theory, 49(4):302–312, 2005.
34 Sandi Klavžar, Iztok Peterin, and Sara Sabrina Zemljič. Hamming dimension of a graph—

the case of Sierpiński graphs. European J. Combin., 34(2):460–473, 2013.
35 Martin Kochol. Snarks without small cycles. J. Combin. Theory Ser. B, 67(1):34–47, 1996.
36 Luděk Kučera, Jaroslav Nešetřil, and Aleš Pultr. Complexity of dimension three and some

related edge-covering characteristics of graphs. Theoret. Comput. Sci., 11(1):93–106, 1980.
37 Renu Laskar. A characterization of cubic lattice graphs. J. Combinatorial Theory, 3:386–

401, 1967.
38 Van Bang Le and Nguyen Ngoc Tuy. The square of a block graph. Discrete Math.,

310(4):734–741, 2010.
39 László Lovász, Jaroslav Nešetřil, and Aleš Pultr. On a product dimension of graphs. J.

Combin. Theory Ser. B, 29(1):47–67, 1980.
40 J. Nešetřil and Aleš Pultr. A Dushnik-Miller type dimension of graphs and its complexity. In

Fundamentals of computation theory (Proc. Internat. Conf., Poznań-Kórnik, 1977), pages
482–493. Lecture Notes in Comput. Sci., Vol. 56. Springer, Berlin, 1977.

41 Jaroslav Nešetřil and Vojtěch Rödl. A simple proof of the Galvin-Ramsey property of the
class of all finite graphs and a dimension of a graph. Discrete Math., 23(1):49–55, 1978.

42 Stavros D. Nikolopoulos and Leonidas Palios. Recognizing HH-free, HHD-free, and Welsh-
Powell opposition graphs. Discrete Math. Theor. Comput. Sci., 8(1):65–82, 2006.

43 Stavros D. Nikolopoulos and Leonidas Palios. An O(nm)-time certifying algorithm for
recognizing HHD-free graphs. Theoret. Comput. Sci., 452:117–131, 2012.

44 Stephan Olariu. Results on perfect graphs. PhD thesis, School of Computer Science, McGill
University, Montreal, 1986.



M. Milanič, P. Muršič, and M. Mydlarz 28:15

45 Dale Peterson. Gridline graphs and higher dimensional extensions. Technical report, RUT-
COR, Rutgers University, 1995.

46 Dale Peterson. Gridline graphs: a review in two dimensions and an extension to higher
dimensions. Discrete Appl. Math., 126(2-3):223–239, 2003.

47 Svatopluk Poljak and Aleš Pultr. Representing graphs by means of strong and weak
products. Comment. Math. Univ. Carolin., 22(3):449–466, 1981.

48 Svatopluk Poljak, Vojtěch Rödl, and Aleš Pultr. On a product dimension of bipartite
graphs. J. Graph Theory, 7(4):475–486, 1983.

49 Pavan Sangha and Michele Zito. Finding large independent sets in line of sight networks.
In Daya Ram Gaur and N. S. Narayanaswamy, editors, Algorithms and Discrete Applied
Mathematics - Third International Conference, CALDAM 2017, Sancoale, Goa, India, Feb-
ruary 16-18, 2017, Proceedings, volume 10156 of Lecture Notes in Computer Science, pages
332–343. Springer, 2017.

50 William Staton and G. Clifton Wingard. On line graphs of bipartite graphs. Util. Math.,
53:183–187, 1998.

51 Douglas B. West. Introduction to Graph Theory. Prentice Hall, Inc., Upper Saddle River,
NJ, 1996.

MFCS 2017





Structured Connectivity Augmentation∗

Fedor V. Fomin1, Petr A. Golovach2, and Dimitrios M. Thilikos3

1 Department of Informatics, University of Bergen, Norway
2 Department of Informatics, University of Bergen, Norway
3 CNRS, LIRMM, Université de Montpellier, France and

National and Kapodistrian University of Athens, Greece

Abstract
We initiate the algorithmic study of the following “structured augmentation” question: is it
possible to increase the connectivity of a given graph G by superposing it with another given
graph H? More precisely, graph F is the superposition of G and H with respect to injective
mapping ϕ : V (H) → V (G) if every edge uv of F is either an edge of G, or ϕ−1(u)ϕ−1(v) is an
edge of H. Thus F contains both G and H as subgraphs, and the edge set of F is the union of
the edge sets of G and ϕ(H). We consider the following optimization problem. Given graphs G,
H, and a weight function ω assigning non-negative weights to pairs of vertices of V (G), the task
is to find ϕ of minimum weight ω(ϕ) =

∑
xy∈E(H) ω(ϕ(x)ϕ(y)) such that the edge connectivity

of the superposition F of G and H with respect to ϕ is higher than the edge connectivity of G.
Our main result is the following “dichotomy” complexity classification. We say that a class of
graphs C has bounded vertex-cover number, if there is a constant t depending on C only such that
the vertex-cover number of every graph from C does not exceed t. We show that for every class
of graphs C with bounded vertex-cover number, the problems of superposing into a connected
graph F and to 2-edge connected graph F , are solvable in polynomial time when H ∈ C. On
the other hand, for any hereditary class C with unbounded vertex-cover number, both problems
are NP-hard when H ∈ C. For the unweighted variants of structured augmentation problems, i.e.
the problems where the task is to identify whether there is a superposition of graphs of required
connectivity, we provide necessary and sufficient combinatorial conditions on the existence of
such superpositions. These conditions imply polynomial time algorithms solving the unweighted
variants of the problems.

1998 ACM Subject Classification G.2.2 Graph Theory, F.2.2 Nonnumerical Algorithms and
Problems

Keywords and phrases connectivity augmentation, graph superposition, complexity

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.29

1 Introduction

In connectivity augmentation problems, the input is a (multi) graph and the objective is to
increase edge or vertex connectivity by adding the minimum number (weight) of additional
edges, called links. This is a fundamental combinatorial problem with a number of important
applications, we refer to the books of Nagamochi and Ibaraki [12] and Frank [6] for a detailed
introduction to the topic. In this paper we initiate the study of a “structural” connectivity
augmentation problem, where the set of additional edges should satisfy some additional

∗ The two first authors were supported by the Research Council of Norway via the projects “CLASSIS” and
“MULTIVAL". The third author has been supported by project “DEMOGRAPH” (ANR-16-CE40-0028).
Emails of authors: {fedor.fomin, petr.golovach}@ii.uib.no, sedthilk@thilikos.info .

© Fedor V. Fomin, Petr A. Golovach, Dimitrios M. Thilikos;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 29; pp. 29:1–29:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.29
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


29:2 Structured Connectivity Augmentation

G H

v1

F

v2

v3

v4

u1

u2

u3

�' =

v1

v2

v3

v4

Figure 1 For injective mapping ϕ : V (H) → V (G) such that ϕ(u1) = v1, ϕ(u2) = v4, and
ϕ(u3) = v3, we have F = G⊕ϕ H.

constrains. For example, such constrains can be that all new edges should be visible from
one vertex, i.e. the new set of edges forms a star, forms a cycle, or can be controlled from a
small set of vertices, i.e. the graph formed by the additional edges has a small vertex cover.

It is convenient to model such an augmentation problem as a graph superposition problem.
Let G and H be simple graphs (i.e. graphs without loops and multiple edges), |V (G)| ≥
|V (H)|, and let ϕ : V (H) → V (G) be an injective mapping of the vertices of H to the set
of vertices of V (G). We say that a simple graph F is the superposition of G and H with
respect to ϕ and write F = G⊕ϕ H if V (F ) = V (G) and two distinct vertices u, v ∈ V (F )
are adjacent in F if and only if uv ∈ E(G) or u, v ∈ ϕ(V (H)) and ϕ−1(u)ϕ−1(v) ∈ E(H).
See Fig. 1 for an example. Thus graph F contains G and H as subgraphs, and the edge set
of F is the union of the edge sets of G and ϕ(H).

We study the algorithmic problem of increasing the edge-connectivity of graph G by
superposing it with a graph H. We are interested in the weighted variant of the problem,
where for every pair of vertices v and u of G, mapping the endpoints of an edge of H to u
and v has a specified weight ω(uv). We consider the following problem.

Input: Graphs G and H, a weight function ω :
(

V (G)
2

)
→ N0, and a nonnegative

integer W .
Task: Decide whether there is an injective mapping ϕ : V (H) → V (G) such

that graph F = G ⊕ϕ H is connected and the weight of the mapping
ω(ϕ) =

∑
xy∈E(H) ω(ϕ(x)ϕ(y)) ≤W .

Structured Connectivity Augmentation

We also study the problem of obtaining a 2-edge connected graph F by superposing
graphs G and H. More precisely, we consider the following problem.

Input: Connected graph G and a graph H, a weight function ω :
(

V (G)
2

)
→ N0 and

a nonnegative integer W .
Task: Decide whether there is an injective mapping ϕ : V (H)→ V (G) of weight

at most W such that F = G⊕ϕ H is 2-edge connected.

Structured 2-Connectivity Augmentation

Our results. Our main result is the following “dichotomy” complexity classification of
structured augmentation problems. We say that a class of graphs C has bounded vertex-cover
number, if there is a constant t depending on C only such that the vertex-cover number of
every graph from C does not exceed t. We show that for every class of graphs C with bounded



F. V. Fomin, P. A. Golovach, and D.M. Thilikos 29:3

vertex-cover number, Structured Connectivity Augmentation and Structured
2-Connectivity Augmentation are solvable in polynomial time when H ∈ C. We
complement this result by showing that for any hereditary class C with unbounded vertex-
cover number, both problems are NP-complete when H ∈ C. Thus for any hereditary class
C both problems with H ∈ C are NP-complete if and only if C has unbounded vertex-cover
number.

The running times of our algorithms solving Structured Connectivity Augmenta-
tion and Structured 2-Connectivity Augmentation are of the form |V (G)|O(f(t)) ·
logW , where f is some function and t is the vertex cover of H. Thus our algorithms are
not fixed-parameter tractable when t is the parameter. We show that from the perspective
of parameterized complexity, this situation is unavoidable. More precisely, we show that
both problems are W[1]-hard when parameterized by t. We refer to the book of Downey and
Fellows [2] for an introduction to parameterized complexity.

We also consider the unweighted variants of Structured Connectivity Augmenta-
tion and Structured 2-Connectivity Augmentation. In these cases, the weight is
ω(uv) = 0 for every pair of vertices of G andW = 0. The task is to identify whether there is a
superposition of graphs G and H of edge connectivity 1 or 2, correspondingly. Here we obtain
necessary and sufficient combinatorial conditions of the existence of an injective function
ϕ such that F = G ⊕ϕ H is edge k-connected provided that G is edge (k − 1)-connected,
k = 1, 2. These conditions imply polynomial time algorithms solving the unweighted variants
of the problems.

Due to space constraints some proof are either just sketched or omitted in this extended
abstract. The full details are available in [4].

Related work. The problem of increasing graph connectivity by adding additional edges is
the classic and well-studied problem. It was first studied by Eswaran and Tarjan [3] and
Plesnik [13] who showed that increasing the edge connectivity of a given graph to 2 by adding
minimum number of additional augmenting edges is polynomial time solvable. Subsequent
work in [14, 5] showed that this problem is also polynomial time solvable for any given
target value of edge connectivity to be achieved. However, if the set of augmenting edges
is restricted, that is, there are pairs of vertices in the graph which do not constitute a new
edge, or if the augmenting edges have (non-identical) weights on them, then the problem of
computing the minimum size (or weight) augmenting set is NP-complete [3]. Augmentation
problems with constraints like simplicity-preserving augmentations, augmentations with
partition constraints, or planarity requirements can be found in the literature, see the book
of Nagamochi and Ibaraki [12] for further references.

Strongly relevant to structural augmentation is the Minimum Star Augmentation
problem, see e.g. [12, Section 3.3.3] and [10]. Here one wants to increase the edge-connectivity
of a given graph by adding a new vertices and connecting it with a small number of edges
to the remaining vertices of the graph. In our setting this corresponds to the case of graph
G having an isolate vertex, and graph H being a star (a tree with vertex-cover number 1).
Tibor and Szigeti [10] studied a generalization of this problem where one wants to make a
graph edge r-connected by attaching p stars of specified degrees. In particular, they provided
combinatorial conditions which are necessary and sufficient for such an augmentation. Again,
this problem can be seen as a special case of structural augmentation, where graph G has p
isolated vertices and graph H is the union of stars of specified degrees.

MFCS 2017



29:4 Structured Connectivity Augmentation

2 Preliminaries

We consider only finite undirected graphs. For a graph G,
(
V (G)

2
)
denotes the set of unordered

pairs of distinct vertices of G. For uniformity, we denote the elements of
(
V (G)

2
)
in the same

way as edges, i.e., we write uv ∈
(
V (G)

2
)
. A subgraph H of G is spanning if V (H) = V (G).

For a graph G and a subset U ⊆ V (G) of vertices, we write G[U ] to denote the subgraph of
G induced by U . We write G − U to denote the graph G[V (G) \ U ]. Let S ⊆ E(G) for a
graph G. By G− S we denote by G− S the graph obtained by the deletion of the edges of
S. We write G− e instead of G− {e} for an edge e. For a vertex v, we denote by NG(v) the
(open) neighborhood of v, i.e., the set of vertices that are adjacent to v in G. Two nonadjacent
vertices u and v are (false) twins if NG(u) = NG(v). A set of edges with pairwise distinct
end-vertices is called a matching. A matching M is induced if the end-vertices of M are
pairwise nonadjacent. A vertex v is saturated in a matching M if v is incident to an edge of
M . We say that the disjoint union of copies of K2 is a matching graph. A graph class C is
said to be hereditary if for every G ∈ C and every induced subgraph H of G, H ∈ C. A set of
vertices X ⊆ V (G) is a vertex cover of a graph G if every edge of G has at least one of its
end-vertices in X. The minimum size of a vertex cover is called the vertex-cover number of
G and is denoted by β(G).

Let k be a positive integer. A graph G is (edge) k-connected if for every S ⊆ E(G) with
|S| ≤ k − 1, G − S is connected. Since we consider only edge connectivity, whenever we
say that a graph G is k-connected, we mean that G is edge k-connected. We assume that
every graph is 0-connected. A set of edges S ⊆ E(G) of a connected graph G is an edge
separator if G− S is disconnected. An edge e of a connected graph G is a bridge if {e} is a
separator. Clearly, a connected graph is 2-connected if and only if it has no bridge. Let B
be the set of bridges of a connected graph G. We call a component of G−B a biconnected
component of G. In other words, a biconnected component is an inclusion-wise maximal
induced 2-connected subgraph of G. We say that a biconnected component L of a graph G
is a pendant biconnected component (or simply a pendant) if a unique bridge of G is incident
to V (L). A biconnected component is trivial if it has a single vertex. For a graph G, we
denote by c(G) the number a components of G, and for a connected graph G, p(G) is the
number of pendants. We also denote by i(G) the number of isolated vertices of G.

Let S be an inclusion-wise minimal edge separator of a connected graph G. Then G− S
has exactly two components C1 and C2. Let G be a spanning subgraph of F . We say that
an edge e ∈ E(F ) \ E(G) covers a minimal separator S of G if e has its end-vertices in C1
and C2. The following observation about separators is useful.

I Observation 1. Let k ≥ 2 be an integer and let a (k− 1)-connected graph G be a spanning
subgraph of F . Then F is k-connected if and only if for each edge separator S of G with
|S| = k − 1, F has an edge that covers it.

We also need some additional terminology and folklore observations for the augmentation
of a connected graph to a 2-connected graph. Let G be a connected graph and let x and y be
distinct vertices of G. We say that a bridge uv of G belongs to an (x, y)-path P if uv ∈ E(P ).
Similarly, a biconnected component Q is crossed by P if V (Q) ∩ V (P ) 6= ∅. The following
observation show that the choice of an (x, y)-path is irrelevant if the biconnected components
containing the end-vertices are given.

I Observation 2. Let distinct {x1, y1} and {x1, y2} be pairs of distinct vertices of a connected
graph G such that x1, x2 are in the same biconnected component of G and, similarly, y1, y2



F. V. Fomin, P. A. Golovach, and D.M. Thilikos 29:5

are in the same biconnected component of G. Let also P1 and P2 be (x1, y1) and (x2, y2)-paths
respectively. Then the following holds:

a bridge uv of G belongs to P1 if and only if uv belongs to P2,
a biconnected component Q is crossed by P1 if and only if Q is crossed by P2.

I Observation 3. Let u and v be distinct nonadjacent vertices of a connected graph G and
let F be a graph obtained from G by the addition of the edge uv. Then uv covers all bridges
that belongs to a (u, v)-path P in G, and for the biconnected components Q1, . . . , Qs that are
crossed by P , F [V (Q1) ∪ . . . ∪ V (Qs)] is a biconnected component of F .

In the remaining part of the paper, we will be always assuming that in the instance of
the structured augmentation problem, we have
(i) |V (H)| ≤ |V (G)|;
(ii) Graph H has no isolated vertices.
Indeed, if |V (H)| > |V (G)|, then there is no superposition of G and H, and thus such an
instance is a no-instance. For (ii), it is sufficient to observe that mapping of isolated vertices
of H to vertices of G does not influence the connectivity of the superposition. Another
technical detail should be mentioned here. In Theorems 5 and 7, we evaluate the running
times of algorithms as a function of |V (G)| and the vertex cover number of H. In order to
do this, we should be able to recognize within this time the (trivial) no-instances, where
|V (H)| > |V (G)|. We can verify this condition in time |V (G)|O(1) just by refuting the
instances of size more than |V (G)|O(1) after reading the first |V (G)|O(1) bits.

3 Augmenting by graphs with small vertex cover

In this section we consider the situation when graph H is from a graph class C with
bounded vertex-cover number. In Subsection 3.1 we show that in this case Structured
Connectivity Augmentation and Structured 2-Connectivity Augmentation are
solvable in polynomial time. In Subsection 3.2 we show that this condition is tight by proving
that for any hereditary graph class C with unbounded vertex-cover number, both problems
are NP-hard. Due to space restrictions, we only sketch our results.

3.1 Algorithms
We start with a solution for Structured Connectivity Augmentation, which is simpler
than the solution for Structured 2-Connectivity Augmentation.

Structured Connectivity Augmentation. We need the following lemma.

I Lemma 4. Let G and H be graphs and let ϕ : V (H) → V (G) be an injection such that
F = G⊕ϕ H is connected. Let also X be a vertex cover of H of size t. Then there is a set
Y ⊆ V (H) \X of size at most 2(t − 1) such that for graph H ′ = H[X ∪ Y ] and mapping
ψ = ϕ|X∪Y , the vertices of ψ(X ∪Y ) are in the same connected component of F ′ = G⊕ψH ′.

Let us remind, that, given a positive integer t, a graph class C has vertex-cover number
at most t if every graph H ∈ C has a vertex cover of size at most t. We are ready to prove
the main theorem about Structured Connectivity Augmentation.

I Theorem 5. Let t be a positive integer and C be a graph class of vertex-cover number at
most t. Then for any H ∈ C, Structured Connectivity Augmentation is solvable in
time |V (G)|O(t) · logW .

MFCS 2017



29:6 Structured Connectivity Augmentation

Sketch of the proof. Let G and H ∈ C be graphs and let ω :
(
V (G)

2
)
→ N0 be a weight

function. We show that we can find in time |V (G)|O(t) · logW an injective mapping
ϕ : V (H)→ V (G) such that F = G⊕ϕ H is connected and ω(ϕ) =

∑
xy∈E(H) ω(ϕ(x)ϕ(y))

is minimum if ϕ exists.
Let us remind that without loss of generality, we can assume that |V (H)| ≤ |V (G)| and

H has no isolated vertices.
We start from finding a vertex cover X of size at most t in H. Since we aim for an

algorithm with running time |V (G)|O(t) · logW , vertex cover X can be found by brute-force
checking of all subsets of V (H) of size at most t. If we fail to find X of size at most t, it
means that H 6∈ C, in this case we return the answer NO and stop. Assume that X exists.

Suppose that there is an injective mapping ϕ : V (H)→ V (G) such that F = G⊕ϕ H is
connected and assume that for ϕ, ω(ϕ) is minimum. By Lemma 4, there is a set Y ⊆ V (H)\X
of size at most 2(t−1) such that for H ′ = H[X∪Y ] and ψ = ϕ|X∪Y , the vertices of ψ(X∪Y )
are in the same component of F ′ = G ⊕ψ H ′. Considering all possibilities, we guess Y in
time |V (H)|O(t).

Now we consider all possible injective mapping ψ : X ∪ Y → V (G) such that the vertices
of ψ(X ∪ Y ) are in the same connected component of F ′ = G⊕ψ H ′, where H ′ = H[X ∪ Y ].
Notice that there are at most |V (G)|3t−2 such mappings that can be generated in time
|V (G)|O(t). If we fail to find ψ, we reject the current choice of Y . Otherwise, for every ψ, we
try to extend it to an injection ϕ : V (H)→ V (G) such that F = G⊕ϕ H is connected, and
among all extensions we choose one that provides the minimum weight ω(ϕ).

Let Z = V (H) \ (X ∪ Y ). The vertices of ψ(X ∪ Y ) are in the same component of F ′.
Denote this component by F0 and denote by F1, . . . , Fr the other components of this graphs.
Recall that Z is an independent set of H and each vertex of Z has an incident edge with
one endpoint in X. It follows that for an injection ϕ : V (H)→ V (G) such that ψ = ϕ|X∪Y ,
F = G⊕ϕ H is connected if and only if for every i ∈ {1, . . . , r}, there is v ∈ V (Fi) such that
v ∈ ϕ(Z). Hence, if r > |Z|, we cannot extend ψ. In this case we discard the current choice
of ψ.

Assume from now that Y and ψ are fixed, F ′ = G⊕ψ H ′ is connected and r ≤ |Z|. For
z ∈ Z and v ∈ V (G) \ ψ(X ∪ Y ), we define the weight of mapping z to v as

w(z, v) =
∑

u∈NG(v)∩ψ(NH (z))

ω(uv),

that is, w(z, x) is the weight of edges that is added to the weight of mapping if we decide to
extend ψ by mapping z to v. Let W = max{w(z, v) | z ∈ Z, v ∈ V (G) \ ψ(X ∪ Y )}+ 1. We
construct the weighted auxiliary bipartite graph G with the bipartition (A,B) of its vertex
set and the weight function f : E(G)→ N0 as follows.

Set A = (V (F0) \ ψ(X ∪ Y )) ∪ V (F1) ∪ . . . ∪ V (Fr) = V (G) \ ψ(X ∪ Y ).
Construct a set of vertices S0 of size |V (F0)| − |X ∪ Y | and sets Si of size |V (Fi)| − 1 for
i ∈ {1, . . . , r}.
Set B = Z ∪ S0 ∪ . . . ∪ Sr.
For each z ∈ Z and v ∈ A, construct an edge zv and set f(zv) = w(z, v).
For each u ∈ S0 and v ∈ V (F0) \ ψ(X ∪ Y ), construct an edge uv and set f(uv) = W .
For each ∈ {1, . . . , r}, do the following: for each u ∈ Si and v ∈ V (Fi), construct an edge
uv and set f(uv) = W .

We find a matching M in G that saturates every vertex of A and has the minimum weight
using the Hungarian algorithm [7, 11] in time O(|V (G)|3 · logW ).



F. V. Fomin, P. A. Golovach, and D.M. Thilikos 29:7

Observe that a matching that saturates every vertex of A exists, because r ≤ Z. We
can construct such a matching by selecting one vertex in V (Fi) for each i ∈ {1, . . . , r}
and matching it with a vertex of Z. Then we complement this set of edges to a matching
saturating A by adding edges incident to S0∪ . . .∪Sr. For the matchingM that has minimum
weight, we can also observe the following.

First, note that

• every vertex of Z is saturated by M. (1)

Indeed, targeting towards a contradiction, assume that z ∈ Z is not saturated. Since
|V (H)| ≤ |V (G)|, there is uv ∈M such that u ∈ S0 ∪ . . . ∪ Sr and v ∈ A. We replace uv by
zv in M . Because f(uv) = W > w(zv), we obtain a matching with a smaller weight. This
contradicts the choice of M .

Next, we claim that

• there is zv ∈M such that z ∈ Z and v ∈ V (Fi). (2)

Indeed, this is because the vertices of V (Fi) are adjacent to |V (Fi)| − 1 vertices of Si and all
other their neighbors are in Z.

Finally, we have that among all matching saturating A, M is a matching satisfying (1)
and (2) such that for M ′ = {zv ∈ M | z ∈ Z}, f(M ′) is minimum. To see it, observe that
f(uv) = W for uv ∈M \M ′. Hence, f(M \M ′) = (|A|−|Z|)W , because |M \M ′| = |A|−|Z|
by (1). Therefore, f(M ′) = f(M)− f(M \M ′) = f(M)− (|A| − |Z|)W .

For every z ∈ Z, we define ϕ(z) = v, where zv ∈ M ′ and ϕ(x) = ψ(x) for x ∈ X ∪ Y .
Clearly, ϕ is an extension of ψ. By (1), ϕ is an injective mapping of V (H) to V (G). By
(2) and the choice of X and Y , we obtain that G ⊕ϕ H is connected. We claim that ϕ is
an extension of ψ such that F = G⊕ϕ H is connected that has the minimum total weight
ω(ϕ) =

∑
xy∈E(H) ω(ϕ(x)ϕ(y)).

Recall that we try all possible choices of Y and for every choice of Y , we consider all
possible choices of ψ. If we fail to find an injection ϕ : V (H) → V (G) such that ϕ is an
extension of ψ and F = G⊕ϕH is connected we return the answer NO. Otherwise, we return
ϕ that provides the minimum weight.

To complete the proof, observe that the total running time of the algorithm is |V (G)|O(t) ·
logW . J

Structured 2-Connectivity Augmentation. As it could be expected, the algorithm for
Structured 2-Connectivity Augmentation is more technical. We start with a lemma,
which is similar to Lemma 4. We show it by making use of Observations 1 and 3.

I Lemma 6. Let G and H be graphs such that G is connected, and let ϕ : V (H) → V (G)
be an injection such that F = G ⊕ϕ H is connected. Suppose that X is a vertex cover of
H and t = |X|. Then there is a set Y ⊆ V (H) \X of size at most 2(t − 1) such that for
H ′ = H[X ∪ Y ] and ψ = ϕ|X∪Y , the vertices of ψ(X ∪ Y ) are in the same biconnected
component of F ′ = G⊕ψ H ′.

I Theorem 7. Let t be a positive integer and C be a graph class of vertex-cover number at
most t. Then for any H ∈ C, Structured 2-Connectivity Augmentation is solvable in
time |V (G)|O(2t) logW .

Sketch of the proof. Let G and H be graphs such that G is connected and H ∈ C. Let
ω :
(
V (G)

2
)
→ N0 be a weight function. Similarly to the proof of Theorem 5 we show that we

can find in time |V (G)|O(2t) · logW the minimum value of ω(ϕ) =
∑
xy∈E(H) ω(ϕ(x)ϕ(y))

MFCS 2017



29:8 Structured Connectivity Augmentation

for an injective mapping ϕ : V (H) → V (G) such that F = G ⊕ϕ H is connected if such a
mapping ϕ exists.

The first steps of our algorithm are the same as in the proof of Theorem 5. Again, we
remind that |V (H)| ≤ |V (G)| and that H has no isolated vertices.

Next, we find a vertex cover X of minimum size in H of size at most t in time |V (G)|O(t).
If we fail to find X of size at most t, then H 6∈ C. We return NO and stop. From now on we
assume that X exists.

Suppose that there is an injective mapping ϕ : V (H) → V (G) such that F = G ⊕ϕ H
is 2-connected and assume that for ϕ, ω(ϕ) is minimum. By Lemma 6, there is a set
Y ⊆ V (H) \X of size at most 2(t− 1) such that for H ′ = H[X ∪ Y ] and ψ = ϕ|X∪Y , the
vertices of ψ(X ∪ Y ) are in the same biconnected component of F ′ = G⊕ψ H ′. Considering
all possibilities, we guess Y in time |V (H)|O(t).

Now we consider all possible injective mapping ψ : X ∪ Y → V (G) such that the vertices
of ψ(X ∪Y ) are in the same biconnected component of F ′ = G⊕ψH ′ where H ′ = H[X ∪Y ].
Notice that there at most |V (G)|3t−2 such mappings that can be generated in time |V (G)|O(t).
If we fail to find ψ, we reject the current choice of Y . Otherwise, for every ψ, we try to
extend it to an injection ϕ : V (H)→ V (G) such that F = G⊕ϕH is 2-connected, and among
all extensions we choose one that provides the minimum weight ω(ϕ).

Let Z = V (H)\(X∪Y ). The vertices of ψ(X∪Y ) are in the same biconnected component
of F ′. Denote this biconnected component by F0 and denote by F1, . . . , Fr the pendant
biconnected components of F ′ that are distinct from F0. Recall that Z is an independent set
of H and each vertex of Z has an incident edge with one endpoint in X. By Observation 1,
we obtain the following crucial property.

For an injection ϕ : V (H)→ V (G) such that ψ = ϕ|X∪Y , F = G⊕ϕ H is 2-connected if
and only if
(i) for every i ∈ {1, . . . , r}, there is v ∈ V (Fi) such that v ∈ ϕ(Z), and
(ii) if v is the unique element of V (Fi) ∩ ϕ(Z) and v is incident to a bridge vu of G, then

there is x ∈ X such that ϕ(x) 6= u and x is adjacent to ϕ−1(v) in H.
Similarly to the proof of Theorem 5, we solve auxiliary matching problems to find

the minimum weight of ϕ but now, due the condition (ii), the algorithm becomes more
complicated and we are using dynamic programming.

For z ∈ Z and v ∈ V (G) \ ψ(X ∪ Y ), we define the weight of mapping z to v as

w(z, v) =
∑

u∈NG(v)∩ψ(NH (z))

ω(uv), (3)

that is, w(z, x) is the weight of edges that is added to the weight of mapping if we decide to
extend ψ by mapping z to v. Our aim is to find the extension ϕ of ψ that satisfies (i) and (ii)
such that the total weight of the mapping of the vertices of Z to verices of V (G) \ ψ(X ∪ Y )
by ϕ is minimum.

Since X is a vertex cover of H of size t, the set Z can be partitioned into s ≤ 2t classes
of false twins Z1, . . . , Zs. Let pi = |Zi| for i ∈ {1, . . . , s}. We exploit the following property
of false twins in Z: if x, y ∈ Zi, then w(x, v) = w(y, v) for v ∈ V (G) \ ψ(X ∪ Y ).

For each s-tuple of integers (q1, . . . , qs) such that 0 ≤ qi ≤ pi, for i ∈ {1, . . . , s} and each
h ∈ {0, . . . , r}, we define

αh(q1, . . . , qs) = min
ξ

∑
z∈Z′

w(z, ξ(z)), (4)

where Z ′ ⊆ Z such that |Z ′ ∩ Zi| = qi for i ∈ {1, . . . , s} and the minimum is taken over all



F. V. Fomin, P. A. Golovach, and D.M. Thilikos 29:9

injective mappings ξ : Z ′ → (V (F0)\ψ(X ∪Y ))∪V (F1)∪ . . .∪V (Fh) such that the following
conditions are satisfied:
(a) for every i ∈ {1, . . . , h}, there is v ∈ V (Fi) such that v ∈ ξ(Z ′), and
(b) if v is a unique element of V (Fi) ∩ ξ(Z ′) for some i ∈ {1, . . . , h} and v is incident to a

bridge vu of G, then there is x ∈ X such that ψ(x) 6= u and x is adjacent to ξ−1(v) in
H.

If such a mapping ξ does not exist, then we assume that αh(q1, . . . , qs) = +∞. Recall that
if x, y ∈ Zi, then w(x, v) = w(y, v) for v ∈ V (G) \ ψ(X ∪ Y ). It implies that the function
αh(q1, . . . , qs) depends only on the values of q1, . . . , qs.

We claim that computing αr(p1, . . . , ps) is equivalent to finding an extension ϕ of ψ of
minimum weight such that F = G⊕ϕ H is 2-connected.

Assume that αr(p1, . . . , ps) < +∞. Notice that Z ′ = Z if qi = pi for i ∈ {1, . . . , s}.
Let ξ : Z → (V (F0) \ ψ(X ∪ Y )) ∪ V (F1) ∪ . . . ∪ V (Fh) be an injection that provides the
minimum in (4), that is, αr(p1, . . . , ps) =

∑
z∈Z w(zξ(z)). We define ϕ(z) = ξ(z) for z ∈ Z

and ϕ(x) = ψ(x) for x ∈ X ∪Y . Clearly, ϕ is an extension of ψ. Because ξ is an injection, we
have that ϕ is an injective mapping. Since ξ satisfies (a) and (b), we obtain that ϕ satisfies (i)
and (ii) and, therefore, F = G⊕ϕH is 2-connected. Let R =

∑
xy∈E(H), x,y∈X∪Y ω(ψ(x)ψ(y)).

Then using (3), we have that

ω(ϕ) =
∑

xy∈E(H)

ω(ϕ(x)ϕ(y))

=
∑

xy∈E(H), x,y∈X∪Y

ω(ϕ(x)ϕ(y)) +
∑

xz∈E(H), x∈X,z∈Z

ω(ϕ(x)ϕ(y))

=R+
∑
z∈Z

w(z, ϕ(z)) = R+
∑
z∈Z

w(z, ξ(z)) = R+ αr(p1, . . . , ps). (5)

Let ϕ′ : V (H)→ V (G) be an injection that extends ψ such that F ′ = G⊕ϕ′ H is 2-connected.
We define ξ′ : Z → (V (F0)\ψ(X∪Y ))∪V (F1)∪ . . .∪V (Fh) by setting ξ′(z) = ϕ′(z) for z ∈ Z.
Since ϕ′ is an injection, ξ′ is also an injection. Because F ′ is 2-connected, ϕ satisfies (i) and
(ii). This implies that ξ′ satisfies (a) and (b). Therefore,

∑
z∈Z w(z, ξ′(z)) ≥ αr(p1, . . . , ps).

Similarly to (5), we have that ω(ϕ′) = R +
∑
z∈Z w(z, ξ′(z)) ≥ R + αr(p1, . . . , ps). We

conclude that ϕ is an extension ϕ of ψ of minimum weight such that F = G ⊕ϕ H is
2-connected.

Suppose that αr(p1, . . . , ps) = +∞. It implies that there is no injection ξ : Z → (V (F0) \
ψ(X ∪ Y )) ∪ V (F1) ∪ . . . ∪ V (Fh) satisfying (a) and (b). But this immediately implies that
there is no injective extension ϕ of ψ satisfying (i) and (ii). This completes the proof of the
claim.

We use dynamic programming to compute αh consequently for h = 0, 1, . . . , r.
We start with computing α0(q1, . . . , qs) for each s-tuple (q1, . . . , qs). Notice that the

conditions (a) and (b) are irrelevant in this case, because they concern only h ≥ 1. We
construct the auxiliary complete bipartite graph G0 with the bipartition (V (F0)\ψ(X∪Y ), Z ′)
of its vertex set and define the weight of each edge zv for z ∈ Z ′ and v ∈ V (F0)\ψ(X ∪Y ) as
w(z, v). We find a matching M in G0 that saturates every vertex of Z ′ and has the minimum
weight using the Hungarian algorithm [7, 11] in time O(|V (G)|3 · logW ). If there is no
matching saturating Z ′, we set α0(q1, . . . , qs) = +∞. Otherwise, α0(q1, . . . , qs) = w(M). It
is straightforward to verify the correctness of computing α0(q1, . . . , qs) by the definition of
this function.

Assume that h ≥ 1 and we already computed the table of values of αh−1(q1, . . . , qs). We ex-
plain how to construct the table of values of αh−1(q1, . . . , qs). The the computation is based on

MFCS 2017



29:10 Structured Connectivity Augmentation

the observation that we can see an injective mapping
ξ : Z ′ → (V (F0) \ ψ(X ∪ Y )) ∪ V (F1) ∪ . . . ∪ V (Fh) as the union of two injections
ξ′ : Z ′′ → (V (F0)\ψ(X∪Y ))∪V (F1)∪. . .∪V (Fh−1) and λ : Z ′′′ → V (Fh) for the appropriate
partition (Z ′′, Z ′′′) of Z ′.

For each s-tuple of integers (q1, . . . , qs) such that 0 ≤ qi ≤ pi for i ∈ {1, . . . , s}, we define

α′h(q1, . . . , qs) = min
λ

∑
z∈Z′

w(z, ξ(z)), (6)

where Z ′ ⊆ Z such that |Z ′ ∩ Zi| = qi for i ∈ {1, . . . , s} and the minimum is taken over all
injective mappings λ : Z ′ → V (Fh) such that the following conditions are fulfilled:

(a∗) there is v ∈ V (Fh) such that v ∈ λ(Z ′), and
(b∗) if v is the unique element of V (Fh) ∩ λ(Z ′) and v is incident to a bridge vu of G, then

there is x ∈ X such that ψ(x) 6= u and x is adjacent to λ−1(v) in H.

If such a mapping λ does not exist, then we assume that α′h(q1, . . . , qs) = +∞. As for
αh(q1, . . . , qs), α′h(q1, . . . , qs) depends only on the values of q1, . . . , qs, because if x, y ∈ Zi,
then w(x, v) = w(y, v) for v ∈ V (G) \ ψ(X ∪ Y ).

Let uv be the unique bridge of G with v ∈ V (Fh). Suppose that for an s-tuple (q1, . . . , qs),
we obtain that |Z ′| = 1 and for the unique vertex z ∈ Z ′, z has a unique neighbor x ∈ X
in H and ψ(x) = u. Then we set α′h(q1, . . . , qs) = +∞ if |V (Fh)| = 1 and α′h(q1, . . . , qs) =
min{w(zv′) | v′ ∈ V (Fh) \ {v}} otherwise. For other s-tuples (q1, . . . , qs), we compute
α′h(q1, . . . , qs) as follows. We construct the auxiliary complete bipartite graph Gh with the
bipartition (V (Fh), Z ′) of its vertex set and define the weigh of each edge zv for z ∈ Z ′
and v ∈ V (F0) \ ψ(X ∪ Y ) as w(zv). We find a matching M in Gh that saturates every
vertex of Z ′ and has the minimum weight using the Hungarian algorithm [7, 11] in time
O(|V (G)|3 · logW ). If there is no matching saturating Z ′, we set α′h(q1, . . . , qs) = +∞.
Otherwise, α′h(q1, . . . , qs) = w(M). It is again straightforward to verify the correctness of
computing α′h(q1, . . . , qs) using the definition of this function.

Now, to compute αh(q1, . . . , qs), we use the equation:

αh(q1, . . . , qs) = min{αh−1(q′1, . . . , q′s) + α′h(q′′1 , . . . , q′′s )}, (7)

where the minimum is taken over all s-tuples (q′1, . . . , q′s) and (q′′1 , . . . , q′′s ) such that qi = q′i+q′′i
for i ∈ {1, . . . , s}.

To evaluate the running time, observe that there are at most |V (G)|s s-tuples (q1, . . . , qs).
Since s ≤ 2t, it implies that the table of values of α0(q1, . . . , qs) can be computed in time
|V (G)|O(2t) · logW . Similarly, the table of values of α′h(q1, . . . , qs) for each h ∈ {1, . . . , r} can
be computed in the same time. To compute αh(q1, . . . , qs) for a given s-tuple (q1, . . . , qs) using
(7), we have to consider at most |V (G)|s pairs of s-tuples (q′1, . . . , q′s) and (q′′1 , . . . , q′′s ). Hence,
we can compute the table of values αh(q1, . . . , qs) from the tables of values of αh−1(q1, . . . , qs)
and α′h(q1, . . . , qs) in time |V (G)|O(2t) · logW for each h ∈ {1, . . . , r}. We conclude that the
total running time is |V (G)|O(2t) · logW . J

3.2 Hardness of structured augmentation
In this section we show that Theorems 5 and 7 are tight in the sense that if the vertex-
cover number of graphs in a hereditary graph class C is unbounded, then both structured
augmentation problems are NP-complete. Our hardness proof actually holds for for any
k-edge connectivity augmentation. For a positive integer k, we define the following problem:



F. V. Fomin, P. A. Golovach, and D.M. Thilikos 29:11

Input: Graphs G and H such that G is edge (k − 1)-connected, a weight function
ω :
(

V (G)
2

)
→ N0 and a nonnegative integer W .

Task: Decide whether there is an injective ϕ : V (H) → V (G) such that F =
G ⊕ϕ H is edge k-connected and the weight of the mapping ω(ϕ) =∑

xy∈E(H) ω(ϕ(x)ϕ(y)) ≤W .

Structured k-Connectivity Augmentation

Let us note that for k = 1 this is Structured Connectivity Augmentation and for
k = 2 this is Structured 2-Connectivity Augmentation.

I Theorem 8. Let k be a positive integer. Let also C be a hereditary graph class. Then if the
vertex-cover number of C is unbounded, then Structured k-Connectivity Augmentation
is NP-complete for H ∈ C in the strong sense.

Also we observe that it is unlikely that we can avoid the dependency on t in the exponents
of polynomial bounding the running time when solving Structured k-Connectivity
Augmentation for H with β(H) ≤ t.

I Proposition 9. For every positive integer k, Structured k-Connectivity Augmenta-
tion is W[1]-hard when parameterized by β(H) even if the weight of every pair of vertices of
G is restricted to be ether 0 or 1.

This proposition implies that unless FPT =W[1], we cannot solve Structured k-
Connectivity Augmentation for k = 1, 2 in time f(β(H)) · |V (G)|O(1). Hence the
running time of the form |V (G)|f(t) of algorithms solving Structured k-Connectivity
Augmentation for graphs H with β(H) ≤ t is probably unavoidable.

4 Augmenting unweighted graphs

In this section we investigate unweighted Structured Connectivity Augmentation
and Structured 2-Connectivity Augmentation. Let us remind that in the unweighted
cases of the structured augmentation problems the task is to identify whether there is a
superposition of graphs G and H of edge connectivity 1 or 2, correspondingly. In other
words, we have the weight ω(uv) = 0 for every pair of vertices of G and W = 0. We obtain
structural characterizations of yes-instances for both problems.

For Structured Connectivity Augmentation, we show the following theorem.

I Theorem 10. Let G and H be graphs such that H has no isolated vertices and |V (H)| ≤
|V (G)|. Then there is an injective mapping ϕ : V (H) → V (G) such that F = G ⊕ϕ H is
connected if and only if c(G) ≤ |V (H)| − c(H) + 1 and one of the following holds:
(i) H is connected,
(ii) H is disconnected graph and i(G) ≤ |V (H)| − c(H).

Now we consider the case Structured 2-Connectivity Augmentation.

I Theorem 11. Let G and H be graphs such that G is connected, H has no isolated vertices
and |V (H)| ≤ |V (G)|. Then there is an injective mapping ϕ : V (H) → V (G) such that
F = G⊕ϕ H is 2-connected if and only if one of the following holds:
(i) G is 2-connected,
(ii) G is not 2-connected and p(G) ≤ |V (H)|,
unless G is a star K1,n where n is odd and H is a matching graph.

MFCS 2017



29:12 Structured Connectivity Augmentation

Theorems 10 and 11 immediately imply the next corollary.

I Corollary 12. Unweighted Structured 1-Connectivity Augmentation and Struc-
tured 2-Connectivity Augmentation are solvable in time O(|V (G)|+ |E(G)|+ |E(H)|).

5 Conclusion

We initiated the investigation of the structured connectivity augmentation problems where
the aim is to increase the edge connectivity of the input graphs by adding edges when
the added edges compose a given graph. In particular, we proved that Structured
Connectivity Augmentation and Structured 2-Connectivity Augmentation are
solvable in polynomial time when H is from a graph class C with bounded vertex-cover
number. It is natural to ask about increasing connectivity of a (k − 1)-connected graph to
a k-connected graph for every positive integer k. For the “traditional” edge connectivity
augmentation problem (see [6, 12]), the augmentation algorithms are based on the classic
work of Dinits, Karzanov, and Lomonosov [1] about the structure of minimum edge separators.
However, for the structural augmentation, the structure of the graph H is an obstacle for
implementing this approach directly. Due to this, we could not push further our approach to
establish the complexity of Structured k-Connectivity Augmentation for k > 2 when
H is of bounded vertex cover. This remains a natural open question. Recall that our hardness
results showing that it is NP-hard to increase the connectivity of a (k − 1)-connected graph
to a k-connected graph when H belongs to a class with unbounded vertex cover number are
proved for every k.

As the first step, it could be interesting to consider the variant of the problem for
multigraphs. In this case, we allow parallel edges and assume that for a mapping φ : V (H)→
V (G), the multiplicity of φ(x)φ(y) in G⊕φ H is the sum of the multiplicities of φ(x)φ(y) in
G and xy in H. Notice that all our algorithmic and hardness results can be restated for this
variant of the problem. Actually, some of the proofs for this variant of the problem become
even simpler.

The question of obtaining a k-connected graph for k ≥ 3 is also open for the unweighted
problem. Here we ask whether it is possible to derive structural necessary and sufficient
conditions for a (k− 1)-connected graph G and a graph H such that there exists an injective
mapping φ : V (H)→ V (G) such that G⊕φ H is k-connected.

Another direction of the research is to consider vertex connectivity. As it is indicated by
the existing results about vertex connectivity augmentation (see, e.g., [8, 9]), this variant of
the problem could be more complicated.

References
1 E. A. Dinic, A. V. Karzanov, and M. V. Lomonosov. The structure of a system of minimal

edge cuts of a graph. In Studies in discrete optimization (Russian), pages 290–306. Izdat.
“Nauka”, Moscow, 1976.

2 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

3 K. Eswaran and R. Tarjan. Augmentation problems. SIAM Journal on Computing,
5(4):653–665, 1976. doi:10.1137/0205044.

4 Petr A. Golovach Fedor V. Fomin and Dimitrios M. Thilikos. Structured connectivity
augmentation. CoRR, abs/1706.04255, 2017. URL: http://arxiv.org/abs/1706.04255.

5 András Frank. Augmenting graphs to meet edge-connectivity requirements. SIAM J. Dis-
crete Math., 5(1):25–53, 1992. doi:10.1137/0405003.

http://dx.doi.org/10.1007/978-1-4471-5559-1
http://dx.doi.org/10.1137/0205044
http://arxiv.org/abs/1706.04255
http://dx.doi.org/10.1137/0405003


F. V. Fomin, P. A. Golovach, and D.M. Thilikos 29:13

6 András Frank. Connections in combinatorial optimization, volume 38 of Oxford Lecture
Series in Mathematics and its Applications. Oxford University Press, Oxford, 2011.

7 Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. J. ACM, 34(3):596–615, 1987. doi:10.1145/28869.
28874.

8 Bill Jackson and Tibor Jordán. Independence free graphs and vertex connectivity augment-
ation. J. Comb. Theory, Ser. B, 94(1):31–77, 2005. doi:10.1016/j.jctb.2004.01.004.

9 Tibor Jordán. On the optimal vertex-connectivity augmentation. J. Comb. Theory, Ser.
B, 63(1):8–20, 1995. doi:10.1006/jctb.1995.1002.

10 Tibor Jordán and Zoltán Szigeti. Detachments preserving local edge-connectivity of graphs.
SIAM J. Discrete Math., 17(1):72–87, 2003. doi:10.1137/S0895480199363933.

11 H. W. Kuhn. The Hungarian method for the assignment problem. Naval Res. Logist.
Quart., 2:83–97, 1955. doi:10.1002/nav.3800020109.

12 Hiroshi Nagamochi and Toshihide Ibaraki. Algorithmic aspects of graph connectivity,
volume 123 of Encyclopedia of Mathematics and its Applications. Cambridge University
Press, Cambridge, 2008. doi:10.1017/CBO9780511721649.

13 Ján Plesník. Minimum block containing a given graph. Arch. Math. (Basel), 27(6):668–672,
1976. doi:10.1007/BF01224737.

14 Toshimasa Watanabe and Akira Nakamura. Edge-connectivity augmentation prob-
lems. Journal of Computer and System Sciences, 35(1):96–144, 1987. doi:10.1016/
0022-0000(87)90038-9.

MFCS 2017

http://dx.doi.org/10.1145/28869.28874
http://dx.doi.org/10.1145/28869.28874
http://dx.doi.org/10.1016/j.jctb.2004.01.004
http://dx.doi.org/10.1006/jctb.1995.1002
http://dx.doi.org/10.1137/S0895480199363933
http://dx.doi.org/10.1002/nav.3800020109
http://dx.doi.org/10.1017/CBO9780511721649
http://dx.doi.org/10.1007/BF01224737
http://dx.doi.org/10.1016/0022-0000(87)90038-9
http://dx.doi.org/10.1016/0022-0000(87)90038-9




Combinatorial Properties and Recognition of Unit
Square Visibility Graphs∗

Katrin Casel1, Henning Fernau2, Alexander Grigoriev3,
Markus L. Schmid4, and Sue Whitesides5

1 Fachbereich 4 – Abt. Informatikwissenschaften, Universität Trier, Germany
casel@uni-trier.de

2 Fachbereich 4 – Abt. Informatikwissenschaften, Universität Trier, Germany
fernau@uni-trier.de

3 School of Business and Economics, Maastricht University, The Netherlands
a.grigoriev@maastrichtuniversity.nl

4 Fachbereich 4 – Abt. Informatikwissenschaften, Universität Trier, Germany
mschmid@uni-trier.de

5 Department of Computer Science, University of Victoria, BC, Canada
sue@uvic.ca

Abstract
Unit square (grid) visibility graphs (USV and USGV, resp.) are described by axis-parallel vis-
ibility between unit squares placed (on integer grid coordinates) in the plane. We investigate
combinatorial properties of these graph classes and the hardness of variants of the recognition
problem, i. e., the problem of representing USGV with fixed visibilities within small area and, for
USV, the general recognition problem.

1998 ACM Subject Classification F.2.2 Computations on discrete structures

Keywords and phrases Visibility graphs, visibility layout, NP-completeness, exact algorithms

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.30

1 Introduction

A visibility representation of a graph G is a set R = {Ri | 1 ≤ i ≤ n} of geometric objects
(e. g., bars, rectangles, etc.) along with some kind of geometric visibility relation ∼ over
R (e. g., axis-parallel visibility), such that G = ({vi | 1 ≤ i ≤ n}, {{vi, vj} | Ri ∼ Rj}). In
this work, we focus on rectangle visibility graphs, which are represented by axis aligned
rectangles in the plane and vertical and horizontal axis parallel visibility between them. In
particular, we consider the more restricted variant of unit square visibility graphs (see [12]),
and, in addition, we consider the case where the unit squares are placed on an integer grid
(an alternative characterisation of the well-known class of graphs with rectilinear drawings).

The study of visibility representations is of interest, both for applications and for graph
classes, and has remained an active research area1 mainly because axis-aligned visibilities
give rise to graph and network visualizations that satisfy good readability criteria: straight

∗ We acknowledge the support of the first author by the Deutsche Forschungsgemeinschaft, grant FE
560/6-1, and the support of the last author by the NSERC Discovery Grant program of Canada.

1 The 24th International Symposium on Graph Drawing and Network Visualization (GD 2016) featured
an entire session on visibility representation (see [3, 10, 11, 24]), and the joint workshop day of the
Symposium on Computational Geometry (SoCG) and the ACM Symposium on Theory of Computing
(STOC) included a workshop on geometric representations of graphs in 2016.

© Katrin Casel, Henning Fernau, Alexander Grigoriev, Markus L. Schmid, and Sue Whitesides;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 30; pp. 30:1–30:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.30
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


30:2 Combinatorial Properties and Recognition of Unit Square Visibility Graphs

edges, and edges that cross only at right angles. These properties are highly desirable in
the design of layouts of circuits and communication paths. Indeed, the study of graphs
arising from vertical visibilities among disjoint, horizontal line segments (“bars”) in the plane
originated during the 1980’s in the context of VLSI design problems; see [16, 30, 29].

Because bar visibility graphs are necessarily planar, this model has been extended in
various ways in order to represent larger classes of graphs. Such extensions include new
definitions of visibility (e. g., sight lines that may penetrate up to k bars [13] or other geometric
objects [4]), vertex representations by other objects (e. g., rectangles, L-shapes [18], and sets
of up to t bars [23]), extensions to higher dimensional objects (see, e. g., [8] for visibility
representation in 3D by axis aligned horizontal rectangles with vertical visibilities, or [19],
which studies visibility representations by unit squares floating parallel to the x, y-plane and
lines of sight that are parallel to the z axis). The desire for polysemy, that is, the expression
of more than one graph by means of one underlying set of objects, has also provided impetus
in the study of visibility representations (see for example [6] and [28]).

Rectangle visibility graphs have the attractive property, for visualization purposes, that
they yield right angle crossing drawings (RAC graphs (see [15]), whose edges are drawn as
sequences of horizontal and vertical segments forming a polyline with orthogonal bends),
which have seen considerable interest in the graph drawing community. Unit square graphs
form a subfamily of L-visibility graphs (see [18]) and their grid variant a subfamily of RACs
with no bends (note that RAC recognition for 0-bends is NP-hard [2]).

Using visibilities among objects is but one example of the use of binary geometric relations
for this purpose; other geometric relations include intersection relations (e.g., of strings or
straight line segments in the plane, of boxes in arbitrary dimension), proximity relations
(e.g., of points in the plane), and contact relations. In the literature, for the resulting graph
classes, combinatorial aspects, relationships to other graph classes, as well as computational
aspects are studied (see [20] for a survey focusing on contact representations of rectangles).

Finally, we note that visibility properties among sets of objects have been studied in a
number of contexts, including motion planning and computer graphics. In [26] it is proposed
to find shortest paths for mobile robots moving in a cluttered environment by looking for
shortest paths in the visibility graph of the points located at the vertices of polygonal
obstacles. This led to a search for fast algorithms to compute visibility graphs of polygons,
as well as to a search for finding shortest paths without computing the entire visibility graph.

We extend the known combinatorial properties of unit square visibility graphs from [12],
and proof their recognition problem to be NP-hard (this requires a reduction that is highly
non-trivial on a technical level with the main difficulty to identify graph structures that can
be shown to be representable by unit square layouts in a unique way to gain sufficient control
for designing suitable gadgets). With respect to unit square grid visibility graphs, we extend
known combinatorial properties and consider variants of its recognition problem.

Due to space constraints, we only provide proof sketches (details can be found in [9]).

2 Preliminaries

A visibility layout, or simply layout, is a set R = {Ri | 1 ≤ i ≤ n} with n ∈ N, where
Ri are closed and pairwise disjoint axis-parallel rectangles in the plane; the position of
such a rectangle is the coordinate of its lower left corner. For every Ri, Rj ∈ R, a closed
non-degenerate axis-parallel rectangle S (i. e., a non-empty closed rectangle that is not a line
segment) is a visibility rectangle for Ri and Rj if one side of S is contained in Ri and the
opposite side in Rj . We define Ri→RRj (Ri ↓RRj), if there is a visibility rectangle S for Ri



K. Casel, H. Fernau, A. Grigoriev, M. L. Schmid, and S. Whitesides 30:3

and Rj , such that the left side (upper side) of S is contained in Ri, the right side (lower side)
of S is contained in Rj and S ∩Rk = ∅, for every Rk ∈ R\ {Ri, Rj}. Let ↔R and lR be the
symmetric closures of →R and ↓R, respectively. Finally, Ri∼RRj if Ri↔RRj or Ri lRRj
(∼R is the visibility relation (with respect to R)). If the layout R is clear from the context or
negligible, we drop the subscript R. We denote Ri∼Rj , Ri↔Rj and Ri→Rj also as Ri
sees Rj , Ri horizontally sees Rj and Ri sees Rj from the left, respectively, and analogous
terminology applies to vertical visibilities. For S, T ⊆ R, we use S→R T as shorthand form
for

∧
R∈S,R′∈T R→RR′.

A layout R = {Ri | 1 ≤ i ≤ n} represents the undirected graph G(R) = ({vi | 1 ≤ i ≤
n}, {{vi, vj} | 1 ≤ i, j ≤ n,Ri∼Rj}), which is then called a visibility graph, and the class of
visibility graphs is denoted by V. A graph is a weak visibility graph, if it can be obtained from
a visibility graph by deleting some edges and the corresponding class of graphs is denoted by
Vw. As a convention, for a visibility graph G = (V,E) and a layout representing it we denote
by Rv the rectangle for v ∈ V and define RV ′ = {Rx | x ∈ V ′} for every V ′ ⊆ V . We call
layouts R1 and R2 isomorphic if G(R1) and G(R2) are isomorphic. Furthermore, we call
R1 and R2 V-isomorphic if, for some x ∈ {→R1 ,→−1

R1
} and y ∈ {↓R1 , ↓

−1
R1
}, the relational

structure (R1,→R1 , ↓R1) is isomorphic to (R2, x, y) or (R2, y, x).2

Unit square visibility graphs (USV) and unit square grid visibility graphs (USGV) are
represented by unit square layouts, where every R ∈ R is the unit square, and unit square
grid layouts, where additionally the position of every R is from N× N.3 The weak classes
USVw and USGVw are defined accordingly.

For a graph G = (V,E), N(v) is the neighbourhood of v ∈ V , ~E denotes an oriented
version of E, i. e., E = {{u, v} | (u, v) ∈ ~E}, and f : ~E → E, (u, v) 7→ {u, v} is a bijection.
Let L,R and D,U be pairs of complementary values (for X ∈ {L,R,D,U}, X denotes its
complement). An LRDU-restriction (for G) is a labeling σ : ~E → {L,R,D,U} and it is valid if,
for every (u, v) ∈ ~E with σ((u, v)) = X and every w ∈ V \ {u, v}, σ((u,w)) 6= X 6= σ((w, v))
and σ((v, w)) 6= X 6= σ((w, u)). Obviously, LRDU-restrictions only exist for graphs with
maximum degree 4. A unit square grid visibility layout satisfies an LRDU-restriction σ if
σ((u, v)) = L implies Rv→Ru, σ((u, v)) = R implies Ru→Rv, σ((u, v)) = D implies Ru ↓Rv
and σ((u, v)) = U implies Rv ↓Ru. An HV-restriction (for G) is a labeling σ : E → {H,V}
and it is valid if, for every u ∈ V at most two incident edges are labeled H and at most two
incident edges are labeled V. A unit square grid visibility layout satisfies an HV-restriction
σ if σ({u, v}) = H implies Rv↔Ru and σ({u, v}) = V implies Rv lRu.

For a class G of undirected graphs, the recognition problem for G (denoted by Rec(G))
for short) is the problem to decide, for a given undirected graph G, whether or not G ∈ G.
In the following, we shall consider the problems Rec(USGV) and Rec(USV).

We briefly recall some established geometric graph representations relevant to this work.
A rectilinear drawing (see [17, 25]) of a graph G = (V,E) is a pair of mappings x, y : V → Z,
where, for every v ∈ V , x(v) and y(v) represent the x- and y-coordinates of v on the grid
and, for every edge {u, v} ∈ E, (x(u), y(u)) and (x(v), y(v)) are the endpoints of a horizontal
or vertical line segment that does not contain any (x(w), y(w)) with w ∈ V \ {u, v}. A graph
has resolution 2π

d if it has a drawing in which the degree of the angle between any two edges
incident to a common vertex is at least 2π

d . We call such graphs resolution- 2π
d graphs and

are mainly interested in the case d = 4, see [21]. For planar graphs, resolution- 2π
4 graphs are

2 By �−1, we denote the inverse of a binary relation �.
3 Note that in the grid case, if a unit square is positioned at (x, y), then this is the only unit square on

coordinates (x′, y′), x′ ∈ {x− 1, x, x + 1}, y′ ∈ {y − 1, y, y + 1}.

MFCS 2017



30:4 Combinatorial Properties and Recognition of Unit Square Visibility Graphs

just rectilinear graphs, see [7]. A bendless right angle crossing (BRAC) drawing of a graph is
a straight-line drawing in which every crossing of two edges is at right angles.4 Note that in
a BRAC-drawing or a resolution- 2π

4 drawing, edges are not necessarily axis-parallel (like it
is the case for visibility layouts and rectilinear drawings). A graph is called rectilinear or
BRAC graph if it has a rectilinear or BRAC-drawing, respectively.

3 Unit Square Grid Visibility Graphs

The readability of graph drawings is mainly affected by its angular resolution (angles formed
by consecutive edges incident to a common node) and its crossing resolution (angles formed
at edge crossings); see the discussion in [1]. In this regard, resolution-π2 graphs and BRAC
graphs have an angular resolution and crossing resolution of π2 , respectively, while rectilinear
drawings and unit square grid visibility layouts force both resolutions to be π

2 .
The question arises of how these classes relate to each other and in this regard, we first

note that USGV and rectilinear graphs coincide. More precisely, a unit square grid layout can
be transformed into a rectilinear drawing by replacing every unit square on position (x, y)
by a vertex on position (x, y) and translate the former visibilities into straight-line segments.
Transforming a rectilinear drawing into a unit square grid layout requires scaling it first by
factor 2 and then replacing each vertex on position (x, y) by a unit square on position (x, y)
(without scaling, sides or corners of unit squares may overlap). This only results in a weak
layout, since visibilities may be created that do not correspond to edges in the rectilinear
drawing. However, any weak unit square grid visibility graph can be transformed into a unit
square grid visibility graph (as formally stated below in Theorem 7).

Since all these graphs except the BRAC graphs have maximum degree 4, we only consider
degree-4 BRAC graphs. Obviously, resolution-π2 graphs and degree-4 BRAC graphs are both
superclasses of USGV (and rectilinear graphs). Witnessed by K3, the inclusion in degree-4
BRAC graphs is proper, while the analogous question w. r. t. resolution-π2 graphs is open.
Moreover, K3 is also an example of a degree-4 BRAC graph that is not a resolution-π2 graph;
whether there exist resolution-π2 graphs without a BRAC-drawing is open.

Due to the equivalence of USGV and rectilinear graphs, results for the latter graph class
carry over to the former. In this regard, we first mention that the NP-hardness proof of
recognizing resolution-π2 graphs from [21] actually produces drawings with axis-aligned edges;
thus, it also applies to rectilinear graphs (a similar reduction (for rectilinear graphs and
presented in more detail) is provided in [17]). As shown in [17], the recognition problem for
rectilinear graphs can be solved in time O(24k ·k2k ·n), where k is the number of vertices with
degree at least 3. In [25], it is shown that recognition remains NP-hard if we ask whether a
drawing exists that satisfies a given HV-restriction5 or a drawing that satisfies a given circular
order of incident edges. However, checking the existence of a rectilinear drawing satisfying a
given LRDU-restriction can be done in time O(|E| · |V |). Consequently, by trying all such
labellings, we can solve the recognition problem for rectilinear graphs in time 2O(n). In this
regard, it is worth noting that the hardness reduction from [17] can be easily modified, such
that it also provides lower complexity bounds subject to the Exponential-Time Hypothesis
(ETH), thereby demonstrating that the 2O(n) algorithm is optimal subject to ETH.

4 In the literature (e. g., [15]), the edges of a RAC-drawing are usually allowed to have bends; the
investigated questions are on finding RAC-drawings that minimise the number of bends and crossings.

5 The definition of HV- and LRDU-restriction given above naturally extends to rectilinear drawings.



K. Casel, H. Fernau, A. Grigoriev, M. L. Schmid, and S. Whitesides 30:5

7

8

1

6

23

5

4 7

8

1

6

2

5

4

3

(a) (b)

Figure 1 Necessarily non-planar visibility layout for a planar graph.

B5 6

E

3 C 4

1 A 2

7 8

9 D 10

11 F 12

Figure 2 Subdivisions of K3,3.

3.1 Combinatorial Properties of USGV
First, we shall see that the class USGV is downward closed w. r. t. the subgraph relation, i. e.,
if G ∈ USGV, then all its subgraphs are in USGV (intuitively speaking, deletion of edges can
be done by moving unit squares, while deletion of a vertex can be realised by deleting the
corresponding unit square and then removing unwanted edges introduced by this operation).
This observation will be a convenient tool for obtaining other combinatorial results.

I Lemma 1. Let G = (V,E) ∈ USGV, let v ∈ V and e ∈ E. Then (V,E \ {e}) ∈ USGV and
(V \ {v}, E) ∈ USGV.

It is straightforward to prove the following limitations of USGV.

I Lemma 2. Let G = (V,E) ∈ USGV. Then, (1) the maximum degree of G is 4, (2) for
every u, v ∈ V , |N(u) ∩N(v)| ≤ 2, and, (3) for every {u, v} ∈ E, N(u) ∩N(v) = ∅.

A consequence of Lemma 2 is that no graph from USGV contains K1,5, K2,3 or K3 as a
subgraph, since they violate the first, second and third condition of Lemma 2, respectively.
Obvious examples for graphs from USGV are subgraphs of a grid; as Lemma 1 shows, even
non-induced subgraphs of a grid. In this context, notice that the problem of deciding if a
given graph is such a partial grid graph is equivalent to deciding if it admits a unit-length
VLSI layout, which, even restricted to trees, is an NP-hard problem; see [5] for details. Yet,
USGV contains more, especially non-bipartite graphs, with the smallest example being C5.

Next, we discuss planarity with a focus on the relationship between the planarity of
graphs from USGV and planarity of their respective layouts (where a layout is called planar
if it does not contain any crossing visibilities). In this regard, we first note that the planarity
of a layout is obviously sufficient for the planarity of the represented graph. Moreover, it is
trivial to construct non-planar layouts that nevertheless represent planar graphs. Figure 1(a)
is an example of a planar unit square grid visibility graph, which can only be represented by
non-planar layouts (e. g., the one of Figure 1(b)):

I Proposition 3. There exists no planar unit square grid layout for the graph of Fig. 1(a).

It is tempting to assume that graphs in USGV are necessarily planar, but, as demonstrated
by Figure 2, USGV contains a subdivision of K3,3. Hence, with Kuratowski’s theorem, we
conclude:

MFCS 2017



30:6 Combinatorial Properties and Recognition of Unit Square Visibility Graphs

I Theorem 4. USGV contains non-planar graphs.

Next, we investigate possibilities to characterise USGV. In this regard, we first observe
that a characterisation by forbidden induced subgraphs is not possible (note that under the
assumption P 6= NP, this also follows from the hardness of recognition).

I Theorem 5. USGV does not admit a characterisation by a finite number of forbidden
induced subgraphs.

By Lemma 2, the classes of cycles, complete graphs and complete bipartite graphs within
USGV are easily characterised: Ci ∈ USGV if and only if i ≥ 4, Ki ∈ USGV if and only if
i ≤ 2, Ki,j ∈ USGV (with i ≤ j) if and only if (i = 1 and j ≤ 4) or (i = 2 and j = 2).
Furthermore, the trees in USGV have a simple characterisation as well:

I Theorem 6. A tree T is in USGV if and only if the maximum degree of T is at most four.

By definition, USGV ⊆ USGVw and every G′ ∈ USGVw can be obtained from some
G ∈ USGV by deleting some edges. Consequently, by Lemma 1, we conclude the following.

I Theorem 7. USGV = USGVw.

3.2 Area-Minimisation
The area-minimisation version of the recognition problem is to decide whether a given graph
has a drawing or layout of given width and height. The hardness of recognition for USGV
and also for HV-restricted USGV carries over to the area-minimisation version, since an
n-vertex graph has a layout if and only if it has a (2n− 1)× (2n− 1) layout. On the other
hand, in the LRDU-restricted rectilinear (or unit square grid) case, recognition can be solved
in polynomial time, so the authors of [25] provide a hardness reduction that proves the
area-minimisation recognition problem NP-complete even for LRDU-restricted rectilinear
graphs. However, this construction does not carry over to USGV, since the non-edges of a
rectilinear drawing translate into non-visibilities, which require space as well;6 moreover, it
does not even work for the weak case of USGV, due to the necessary scaling by factor 2 to
translate a rectilinear drawing into an equivalent weak unit square grid layout.

Next, we provide a reduction that shows the hardness of the area-minimisation version
of Rec(USGVw), which shall also imply several additional results. The problem 3-Partition
(3Part) is defined as follows: Given B ∈ N and a multi-set A = {a1, a2, . . . , a3m} ⊆ N with
B
4 < ai <

B
2 , 1 ≤ i ≤ 3m, and

∑3m
i=1 ai = mB, decide whether A can be partitioned into

m multi-sets A1, . . . , Am, such that
∑
a∈Aj

a = B, 1 ≤ j ≤ m (note that the restriction
B
4 < ai <

B
2 enforces |Aj | = 3, 1 ≤ j ≤ m). Given a 3Part instance, we construct a frame

graph (see Figure 3) Gf = (Vf , Ef ) with:

Vf ={ui,j , vi,j , wi,1, wi,2 | 1 ≤ i ≤ m, 0 ≤ j ≤ B} ∪ {um+1,0, vm+1,0, wm+1,1, wm+1,2} ,
Ef = {{ui,j , ui,j+1}, {vi,j , vi,j+1} | 1 ≤ i ≤ m, 0 ≤ j ≤ B − 1} ∪

{{ui,B , ui+1,0}, {vi,B , vi+1,0} | 1 ≤ i ≤ m} ∪ {{ui,j , vi,j} | 1 ≤ i ≤ m, 1 ≤ j ≤ B} ∪
{{ui,0, vi,0}, {vi,0, wi,1}, {wi,1, wi,2} | 1 ≤ i ≤ m+ 1} .

Next, we define a graph GA = (VA, EA) with VA = {bi,j , ci,j | 1 ≤ i ≤ 3m, 1 ≤ j ≤ ai}
and EA = {{bi,j , bi,j+1}, {ci,j , ci,j+1} | 1 ≤ i ≤ 3m, 1 ≤ j ≤ ai − 1} ∪ {{bi,j , ci,j} | 1 ≤ i ≤
3m, 1 ≤ j ≤ ai}. Finally, we let G = (V,E) with V = Vf ∪ VA and E = Ef ∪ EA.

6 In general, this space blow-up cannot be avoided, as witnessed by n isolated vertices which have a 1× n
rectilinear drawing, but a smallest unit square grid layout of size (2n− 1)× (2n− 1)



K. Casel, H. Fernau, A. Grigoriev, M. L. Schmid, and S. Whitesides 30:7

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

u-vertices:
v-vertices:

w-vertices:

Figure 3 Unit square grid layout for the graph Gf .

The idea is that Gf forms m size-B compartments and the graphs on bi,j , ci,j represent
the ai. In a layout respecting the size bounds, the way of allocating the graphs on bi,j , ci,j
to the compartments corresponds to a partition of A that is a solution for the 3Part-instance.

I Lemma 8. (B,A) is a positive 3Part-instance if and only if G has a (7×(2(mB+m+1)−1))
unit square grid layout.

Since the reduction defined above is polynomial in m and B, and 3Part is strongly
NP-complete (see [22, Theorem 4.4]), we can conclude the following:

I Theorem 9. The area-minimisation variant of Rec(USGVw) is NP-complete.

The area minimisation variant implicitly solves the general recognition problem, so the
question arises whether it is also hard to decide if a graph from USGVw (given as a layout)
can be represented by a layout satisfying given size bounds. Since our reduction always
produces a graph in USGVw (with an obvious layout), independent of the 3Part-instance, it
shows that the hardness remains if the input graph is given directly as a layout. Moreover,
the problem is still NP-complete for the LRDU-restricted variant (the LRDU-restriction then
simply enforces the structure shown in Figure 3).

The reduction also yields a (substantially simpler) alternative proof for the hardness of
the area-minimisation recognition problem for LRDU-restricted rectilinear graphs [25] (more
precisely, it can be shown that (B,A) is a positive 3Part-instance if and only if G has a
(4× (mB +m+ 1)) rectilinear drawing), and the hardness also carries over to the variant
where the input graph is already given as a rectilinear drawing.

We conclude this section by pointing out that it is open whether the LRDU-restricted
area-minimisation variant of Rec(USGV) can be solved in polynomial-time. Intuitively,
reducing the size of a rectilinear drawing is difficult, since space can be saved by placing
non-adjacent vertices on the same line, which is not possible for non-weak unit square grid
layouts. However, computing a size-minimal unit square grid layout includes finding out to
what extend the scaling by 2 is really necessary, which seems difficult as well.

4 Unit Square Visibility Graphs

Obviously, a larger class of graphs can be represented if the unit squares are not restricted
to integer coordinates (see Figure 4 for some examples). In [12], cycles, complete graphs,
complete bipartite graphs and trees in USV are characterised as follows: Ci ∈ USV, for every
i ∈ N, Ki ∈ USV if and only if i ≤ 4, Ki,j ∈ USV with i ≤ j if and only if (1 ≤ i ≤ 2 and
i ≤ j ≤ 6) or (i = 3 and 3 ≤ j ≤ 4),7 and a tree T is in USV if and only if it is the union
of two subdivided caterpillar forests with maximum degree 3 (note that [23] provides an
algorithm that efficiently checks this property).

7 For the more general question of representing bipartite graphs as rectangle visibility graphs, we refer
to [14]. In particular, a linear upper bound on the number of edges, compared to the number of vertices,
is known.

MFCS 2017



30:8 Combinatorial Properties and Recognition of Unit Square Visibility Graphs

(a) (b) (c) (d) (e)

Figure 4 Visibility layouts for K1,6, K2,6, K3,4, K4 and a K5 with one missing edge.

Next, we observe that every graph with at most 4 vertices is in USV, while K5 is not (it
is not hard to find layouts for graphs with at most 4 vertices; K5 /∈ USV is shown in [12]).

I Proposition 10. Every graph with at most 4 vertices is in USV.

A crucial difference between USGV and USV is that for the latter, the degree is not
bounded, as witnessed by layouts of the following form: . However, if a unit
square sees at least 7 other unit squares, then these must be placed in such a way that
visibilities or “paths” between some of them are enforced (note that any K1,n may exist as
induced subgraph, as can be demonstrated by modifying the above example layout such
that between each two consecutive neighbours another “visibility-blocking” unit square is
inserted). In [12], it is formally proven that in graphs from USV any vertex of degree at
least 7 must lie on a cycle. In particular, these observations point out that an analogue of
Lemma 1 is not possible for USV.

For the class of trees within USV, as long as we consider trees with maximum degree
strictly less or larger than 6, a much simpler characterisation (compared to the one mentioned
at the beginning of this section) applies:

I Theorem 11. Let T be a tree with maximum degree k. If k ≤ 5, then T ∈ USV, and if
k ≥ 7, then T /∈ USV.

Figure 5(a) shows an example of a tree from USV with maximum degree 6 and Fig-
ure 5(b) its representing layout. It can be easily verified that any node of degree 6 must be
represented V-isomorphically to Figure 4(a) (note that this also holds for nodes A and B
in Figures 5(a) and (b)). Figure 4(a) also demonstrates that not all trees with maximum
degree 6 can be represented: let R denote the square below the central square in the layout,
then it is impossible for R to see 5 additional unit squares that exclusively see R. On the
other hand, USV contains trees with arbitrarily many degree-6 vertices, e. g., trees of the
form depicted in Figure 5(c) (it is straightforward to see that they can be represented as the
union of two forests of caterpillars with maximum degree 3). This reasoning shows that not
all planar graphs are in USV, while it follows from [30] that all planar graphs are (non-unit
square) rectangle visibility graphs (also see [29]).

Finally, we note that USV is a proper subset of USVw (e. g., K1,7 is a separating example):

I Theorem 12. USV ( USVw.

4.1 The Recognition Problem
The recognition problem for USV consists in checking whether a given graph can be represented
by a unit square layout. We first observe that this problem is in NP (note that this is not
completely trivial, since we cannot naively guess a layout) and the main result of this section
shall be its hardness (see Theorem 20).



K. Casel, H. Fernau, A. Grigoriev, M. L. Schmid, and S. Whitesides 30:9

A

B

1

234

5

6

7 8 9

10

A1

2
3

4

5
B

6

7

8
9

10

(a) (b) (c)

Figure 5 Illustration for trees from USV with maximum degree 6.

c0 c1

c1
0

c2
0

c2

c1
1

c2
1

c2m−1 c2m

c1
2m−1

c2
1m−1

x1

x1
1

x2
1

xn−1 xn

x1
n

x2
n

xn+1

x1
n+1

x2
n+1

· · ·

· · ·

· · ·

· · ·

Figure 6 The backbone-gadget.

I Theorem 13. Rec(USV) ∈ NP.

We prove the NP-hardness by a reduction from NAE-3SAT, i. e., the not-all-equal 3-
satisfiability problem [27]. To this end, let F = {c1, . . . , cm} be a 3-CNF formula over the
variables x1, . . . , xn, such that no variable occurs more than once in any clause, and, for the
sake of convenience, let ci = {yi,1, yi,2, yi,3}, 1 ≤ i ≤ m.

The general idea of the reduction is as follows: We identify graph structures that can be
shown to have a (more or less) unique representation as a unit square layout. With these
main building blocks, we construct a sequence of clause and variable gadgets, called backbone
(see Figure 6), that can only be represented by a layout in a linear way, say horizontally.
Furthermore, every clause gadget is vertically connected to its three literals, two of which
are below and the other one above the backbone, or the other way around. The allocation of
literal vertices to a variable xi is done by a path of all literal vertices corresponding to xi
that is connected to the variable vertex for xi. Such paths must lie either completely above
or below the backbone. Interpreting the situation that a path lies above the backbone as
assigning true to the corresponding literal, yields a not-all-equal satisfying assignment, as it
is not possible that all the paths for a clause lie on the same side of the backbone.

We assume that each clause of F contains at most one negated variable, which is no
restriction to not-all-equal satisfiability as a clause over literals l1, l2, l3 is not-all-equal
satisfied by an assignment if and only if a clause over literals l̄1, l̄2, l̄3 is. Furthermore, we
also assume that every literal occurs at least three times in the formula. We first transform
F into F ′ = {c1, . . . , c2m}, where cm+i = ci for i = 1, . . . ,m. Then, we transform F ′ into a
graph G = (V,E) as follows. The set of vertices is defined by V = Vc ∪ Vx ∪ Vh, where

Vc = {cj , c1
j , c

2
j | 0 ≤ j ≤ 2m− 1} ∪ {c2m} ∪ {l1j , l2j , l3j | 1 ≤ j ≤ 2m} ,

Vx = {xi, x1
i , x

2
i | 1 ≤ i ≤ n+ 1} ∪ {ti,

→
ti,
←
ti, f

1
i ,
→

f1
i ,
←

f1
i , f

2
i ,
→

f2
i ,
←

f2
i | 1 ≤ i ≤ n} ,

Vh = {hrti , h
r
f1

i
, hrf2

i
| 1 ≤ i ≤ n, 0 ≤ r ≤ 4} .

Vertices cj and xi represent the corresponding clauses and variables and the vertices
crj , xri , r ∈ {1, 2} are used to enforce the backbone structure as described at the begin-
ning of this section. The corresponding edges are implicitly defined, by requiring, for
every 0 ≤ i ≤ 2m − 1 and 1 ≤ i ≤ n, the following groups of 4 vertices to form a K4:
{cj , c1

j , c
2
j , cj+1}, {xi, x1

i+1, x
2
i+1, xi+1}, and {c2m, x

1
1, x

2
1, x1}. Also, for every j ∈ {1, 2}, the

vertices cj0, c
j
1, . . . , c

j
2m−1, x

j
1, x

j
2, . . . , x

j
n+1 form a path in this order. Consequently, these

MFCS 2017



30:10 Combinatorial Properties and Recognition of Unit Square Visibility Graphs

cj

l1
j

l2
j

l3
j

cj

l1
j

l2
j

l3
j

xi

ti

f1
i

f2
i

xi

ti

f1
i

f2
i

→
ti

h1
ti h2

ti lr1
j1 lr2

j2 . . . l
rq

jq h0
ti ti h3

ti h4
ti

←
ti

xicj. . . . . . . . .

(a) (b) (c)

Figure 7 Possible placements of literal vertices, possible placements of assignment vertices, and
the clause path for xi.

vertices form the subgraph represented by the layout in Figure 6, which shall be the backbone.
Vertices ti, represent the literal xi, f1

i represent the literal xi in the first m clauses, and f2
i

represent the literal xi in the remaining clauses. Vertices l1j , l2j , l3j represent the literals of
clause cj . These roles are reflected with edges {xi, ti}, {xi, f1

i }, {xi, f2
i } for all 1 ≤ i ≤ n

and {cj , lrj} for all 1 ≤ j ≤ 2m and 1 ≤ r ≤ 3. The connection between literals and variable
assignments is build by turning lj,r with yj,r = xi into a path connected to ti; analogously,
lj,r with yj,r = xi in the first (the last, respectively) m clauses form a path connected to f1

i

(f2
i , respectively). More precisely, for every 1 ≤ j ≤ 2m, 1 ≤ i ≤ n and 1 ≤ r ≤ 3:
if yj,r = xi, there are edges {lrj ,

→
ti}, {lrj ,

←
ti},

if yj,r = xi and 1 ≤ j ≤ m, there are edges {lrj ,
→

f1
i }, {lrj ,

←

f1
i } and {lrj+m,

→

f2
i }, {lrj+m,

←

f2
i },

there are edges {ti,
→
ti}, {ti,

←
ti} and {

→
ti, h

p
ti},{

←
ti, h

p
ti} for all 0 ≤ p ≤ 4,

there are edges {fsi ,
→
fsi }, {fi,

←
fsi } and {

→
fsi , h

p
fs

i
},{

←
fsi , h

p
fs

i
} for all 0 ≤ p ≤ 4, s ∈ {1, 2},

Moreover, for every i, 1 ≤ i ≤ n,
if N(

→
ti) = {h1

ti , h
2
ti , l

r1
j1
, lr2
j2
, . . . , l

rq

jq
, h0
ti , ti, h

3
ti , h

4
ti} with j1 < j2 < . . . < jq, then these

vertices form a path in this order,
if N(

→
fsi ) = {h1

fs
i
, h2
fs

i
, lr1
j1
, lr2
j2
, . . . , l

rq

jq
, h0
fs

i
, fsi , h

3
fs

i
, h4
fs

i
} with j1 < j2 < . . . < jq and

s ∈ {1, 2}, then these vertices form a path in this order,

Next, we assume that the formula F ′ is not-all-equal satisfiable and show how a layout
for G can be constructed. First, we represent the backbone as illustrated in Figure 6. If
a variable xi is assigned the value true, then we place the unit squares R{xi,ti,f1

i
,f2

i
} as

illustrated on the left side of Figure 7(b), and otherwise as illustrated on the right side.
The edges for the vertices ti,

→
ti,
←
ti, h

r
ti , 0 ≤ r ≤ 4, and all lrj with yj,r = xi can be realised

as illustrated in Figure 7(c) (either placed above or below the backbone, according to the
position of Rti). An analogous construction applies to the unit squares for lrj with yj,r = xi,
with the only difference that we have two such paths (one for the first m clauses and one
for the remaining clauses) and that they both lie on the opposite side of the backbone with
respect to Rti . Moreover, in these paths, the Rlr

j
must be horizontally shifted such that they

can see their corresponding Rcj from above or from below, according to whether the path
lies above or below the backbone (as indicated in Figure 7(c)). As long as not all paths for
the three literals of the same clause lie all above or all below the backbone, this is possible
by arranging the unit squares as illustrated in Figure 7(a). However, if for some clause all
paths lie on the same side of the backbone, then the literals of the clause are either all set to
true or all set to false, which is a contradiction to the assumption that the assignment is
not-all-equal satisfiable. Consequently, we can represent G as described.

I Lemma 14. If F is not-all-equal satisfiable, then G ∈ USV.



K. Casel, H. Fernau, A. Grigoriev, M. L. Schmid, and S. Whitesides 30:11

R4

R2
R3R1

R1
R2

R4
R3

R1
R2

R4

R3

Figure 8 Re- presenting K4.

Proving that a layout for G translates into a satisfying not-all-equal assignment for F , is
much more involved. The general idea is to show that any layout for G must be V-isomorphic
to the layout constructed above. However, this cannot be done separately for the individual
gadgets, e. g., showing that the backbone must be represented as in Figure 6 (in fact, the
structure of the backbone alone does not enforce such a layout) and the literal vertices must
form a path as in Figure 7(c) and so on. Instead, the desired structure of the layout is only
enforced by a rather complicated interplay of the different parts of G.

A main building stone is that a K4 can only be represented in 3 different ways (up to
V-isomorphism), which are illustrated in Figure 8. This observation is important, since the
backbone is a sequence of K4.

I Lemma 15. Every layout for K4 is V-isomorphic to one of the three layouts of Figure 8.

We now assume that G can be represented by some layout R. For every j, 1 ≤ j ≤ m,
we define Lj = {l1j , l2j , l3j}, for every i, 1 ≤ i ≤ n, we define Ai = {ti, f1

i , f
2
i }, and, for every j,

1 ≤ j ≤ m−1, we define Clj = {cj , cj−1, c
1
j−1, c

2
j−1}, Crj = {cj , cj+1, c

1
j , c

2
j} and Cj = Clj ∪Crj .

We shall prove the desired structure of R by first considering the neighbourhood of cj ;
once we have fixed the layout for this subgraph, the structure of the whole layout can be
concluded inductively. The neighbourhood of cj consists of Clj and Crj (two K4 joined by cj)
and Lj , where all vertices of the two K4 (except cj) are not connected to any vertex of Lj .
Intuitively speaking, this independence between Lj and the K4 of the backbone will force
the backbone to expand along one dimension, say horizontally (as depicted in Figure 6),
while the visibilities between Lj and cj must then be vertical (as depicted in Figure 7(a)).
However, formally proving this turns out to be quite complicated.

The general proof idea is to somehow place the unit squares of RLj
in such a way that

they see Rcj without creating unwanted visibilities. Then, the areas of visibility for the
RLj

are blocked for any unit squares from the backbone-neighbourhood RCj
, since these

are independent of RLj
. For example, consider the situation depicted in Figure 9. Here,

placing unit squares from RCj
in the grey areas implies that they are within visibility of

some unit squares from RLj
. This leaves only few possibilities to place the unit squares from

RCj and by applying arguments of this type, it can be concluded, by exhaustively searching
all possibilities and under application of Lemma 15, that the only possible layouts have the
above described form.

However, this argument is flawed: it is possible to place a unit square Rx within the grey
areas, as long as the forbidden visibilities are blocked by other unit squares. This type of
blocking would require a path between x and cj or some vertex from Lj , respectively, which

MFCS 2017



30:12 Combinatorial Properties and Recognition of Unit Square Visibility Graphs

cj
l1j

l2j

l3j

Figure 9 Possible placement of literal vertices for cj .

does exist as structure in G. Consequently, in order to make the above described argument
applicable, we first have to show that the existence of such visibility-blocking unit squares
leads to a contradiction. This substantially increases the combinatorial depth of the already
technical proof idea described above.

For the next lemma, which is the main tool in proving how the neighbourhood of cj is
represented, we need some notation. Let Ri, Rj , Rk be unit squares. If some (or every)
visibility rectangle for Ri and Rk intersects Rj , then Rj is strictly between Ri and Rk (or Rj
blocks the view between Ri and Rk, respectively).

I Lemma 16. For all 1 ≤ i ≤ 2m and r ∈ {1, 2, 3} and every z ∈ N(ci)\{lri } there exists no
visibility rectangle for Rlr

i
and Rz that is not intersected by Rci

. In particular, this implies:
Rz is not strictly between Rci

and Rlr
i
, Rlr

i
is not strictly between Rci

and Rz, and, if Rci
is

strictly between Rlr
i
and Rz, then Rci

blocks the view between Rlr
i
and Rz.

By applying Lemma 16, we can now show that RCl
j
and RCr

j
cannot all see Rcj

from the
same side, which can then be used in order to prove that either all RLj

see Rcj
vertically or

all of them see Rcj horizontally:

I Lemma 17. For every j, 1 ≤ j ≤ 2m − 1 and y ∈ Cj \ {cj}, Rcj →RCj\{y,cj} is not
possible.

I Lemma 18. For every j, 1 ≤ j ≤ m, either Rcj
↔RLj

or Rcj
lRLj

.

We are now able to combine these lemmas in order to prove that a layout for G translates
into a not-all-equal satisfying assignment for the formula F . To this end, we first note that the
neighbourhood of a variable vertex xi has an identical structure as the neighbourhood of the
clause vertices, which implies that Lemmas 16, 17 and 18 also apply to this part of the graph.
By combining Lemmas 16 and 18, we can show that for each clause cj , either Rcj

↔RCj\{cj}
or Rcj

lRCj\{cj}. By Lemma 15, this means that the two corresponding induced K4 are
represented as shown in Figure 6, and, furthermore, an inductive application of Lemma 17
forces them to form the shown horizontal or vertical backbone. Due to Lemma 18, the literal
vertices and the assignment vertices corresponding to the same variable must all form a path
on the same side of the backbone. We can now assign xi the value true if and only if Rti is
below the backbone. As long as, for the variables occurring in some clause cj , Rf1

i
is on the

opposite side of Rti , clause cj is not-all-equal satisfied, because then literals are set to true
if and only if they are below the backbone and, due to Lemma 16, it is not possible that
they all lie on the same side. However, if Rf1

i
lies on the same side as Rti , which is possible,

then Rf2
i
, again due to Lemma 16, must lie on the opposite side of Rti and, by the same

argument, it follows that cj+m, which is a copy of cj , is not-all-equal satisfied (note that
every clause has at most one negated variable).

I Lemma 19. If G ∈ USV, then F is not-all-equal satisfiable.

I Theorem 20. Rec(USV) is NP-complete.



K. Casel, H. Fernau, A. Grigoriev, M. L. Schmid, and S. Whitesides 30:13

Since in our reduction the size of the graph is linear in the size of the formula, we can
also conclude ETH-lower bounds for Rec(USV).

5 Conclusions

The hardness of Rec(USVw) is still open (note that in our reduction, we heavily used the
argument that certain constellations yield forbidden edges, which falls apart in the weak case)
and we conjecture it to be NP-hard as well. Two open problems concerning graph classes
related to USGV are mentioned in Section 3: (1) are USGV and the class of resolution-π2
graphs identical, (2) are there resolution-π2 graphs without BRAC-drawing? Note that a
positive answer to (2) gives a negative answer to (1).

From a parameterised complexity point of view, our NP-completeness result shows that
the number of different rectangle shapes (considered as a parameter) has no influence on
the hardness of recognition. Another interesting parameter to explore would be the step
size of the grid, i. e., for k ∈ N, let USGVk be defined like USGV, but for a { `k | ` ∈ N}2

grid. We note that these classes form an infinite hierarchy between USGV = USGV1 and
USV =

⋃
k USGVk, and it is hard to define them in terms of extensions of rectilinear graphs.

Another interesting observation is that the hardness reduction for the recognition problem of
rectilinear graphs from [17], if interpreted as reduction for Rec(USGV), does not work for
USGV2. The classes USGVk might be practically more relevant, since placing objects in the
plane with discrete distances is more realistic.

Acknowledgements. We thank the organizers of the Lorentz Center workshop ‘Fixed
Parameter Computational Geometry’ in 2016 for the great atmosphere that stimulated this
project.

References
1 E. N. Argyriou, M. A. Bekos, and A. Symvonis. Maximizing the total resolution of graphs.

In U. Brandes and S. Cornelsen, editors, Graph Drawing, GD 2010, volume 6502 of LNCS,
pages 62–67. Springer, 2011.

2 E. N. Argyriou, M. A. Bekos, and A. Symvonis. The straight-line RAC drawing problem
is NP-hard. Journal of Graph Algorithms and Applications, 16(2):569–597, 2012.

3 A. Arleo, C. Binucci, E. Di Giacomo, W. S. Evans, L. Grilli, G. Liotta, H. Meijer, F. Montec-
chiani, S. Whitesides, and S. K. Wismath. Visibility representations of boxes in 2.5 dimen-
sions. In Y. Hu and M. Nöllenburg, editors, Graph Drawing and Network Visualization -
24th International Symposium, GD, volume 9801 of LNCS, pages 251–265. Springer, 2016.

4 M. Babbitt, J. Geneson, and T. Khovanova. On k-visibility graphs. Journal of Graph
Algorithms and Applications, 19(1):345–360, 2015.

5 S. N. Bhatt and S. S. Cosmadakis. The complexity of minimizing wire lengths in VLSI
layouts. Information Processing Letters, 25(4):263–267, 1987.

6 T. C. Biedl, G. Liotta, and F. Montecchiani. On visibility representations of non-planar
graphs. In S. P. Fekete and A. Lubiw, editors, 32nd International Symposium on Com-
putational Geometry, SoCG, volume 51 of LIPIcs, pages 19:1–19:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2016.

7 H. L. Bodlaender and G. Tel. A note on rectilinearity and angular resolution. Journal of
Graph Algorithms and Applications, 8:89–94, 2004.

8 P. Bose, H. Everett, S. P. Fekete, M. E. Houle, A. Lubiw, H. Meijer, K. Romanik, G. Rote,
T. C. Shermer, S. Whitesides, and C. Zelle. A visibility representation for graphs in three
dimensions. Journal of Graph Algorithms and Applications, 2(2), 1998.

MFCS 2017



30:14 Combinatorial Properties and Recognition of Unit Square Visibility Graphs

9 K. Casel, H. Fernau, A. Grigoriev, M L. Schmid, and S. Whitesides. Combinatorial proper-
ties and recognition of unit square visibility graphs, 2017. http://arxiv.org/abs/1706.
05906.

10 S. Chaplick, G. Guśpiel, G. Gutowski, T. Krawczyk, and G. Liotta. The partial visibility
representation extension problem. In Y. Hu and M. Nöllenburg, editors, Graph Drawing
and Network Visualization - 24th International Symposium, GD, volume 9801 of LNCS,
pages 266–279. Springer, 2016.

11 S. Chaplick, F. Lipp, J.-W. Park, and A. Wolff. Obstructing visibilities with one obstacle.
In Y. Hu and M. Nöllenburg, editors, Graph Drawing and Network Visualization - 24th
International Symposium, GD, volume 9801 of LNCS, pages 295–308. Springer, 2016.

12 A. M. Dean, J. A. Ellis-Monaghan, S. Hamilton, and G. Pangborn. Unit rectangle visibility
graphs. Electronic Journal of Combinatorics, 15, 2008.

13 A. M. Dean, W. S. Evans, E. Gethner, J. D. Laison, M. A. Safari, and W. T. Trotter. Bar
k-visibility graphs. Journal of Graph Algorithms and Applications, 11(1):45–59, 2007.

14 A. M. Dean and J. P. Hutchinson. Rectangle-visibility representations of bipartite graphs.
Discrete Applied Mathematics, 75(1):9–25, 1997.

15 W. Didimo, P. Eades, and G. Liotta. Drawing graphs with right angle crossings. Theoretical
Computer Science, 412(39):5156–5166, 2011.

16 P. Duchet, Y. Hamidoune, M. Las Vergnas, and H. Meyniel. Representing a planar graph
by vertical lines joining different levels. Discrete Mathematics, 46(3):319–321, 1983.

17 P. Eades, S.-H. Hong, and S.-H. Poon. On rectilinear drawing of graphs. In D. Eppstein and
E. R. Gansner, editors, Graph Drawing, 17th International Symposium, GD 2009, volume
5849 of LNCS, pages 232–243. Springer, 2010.

18 W. S. Evans, G. Liotta, and F. Montecchiani. Simultaneous visibility representations of
plane st-graphs using L-shapes. Theoretical Computer Science, 645:100–111, 2016.

19 S. P. Fekete, M. E. Houle, and S. Whitesides. New results on a visibility representation of
graphs in 3D. In F.-J. Brandenburg, editor, Graph Drawing, Symposium on Graph Drawing,
GD’95, volume 1027 of LNCS, pages 234–241. Springer, 1996.

20 S. Felsner. Rectangle and square representations of planar graphs. In J. Pach, editor, Thirty
Essays on Geometric Graph Theory, pages 213–248. Springer, New York, 2013.

21 M. Formann, T. Hagerup, J. Haralambides, M. Kaufmann, F. T. Leighton, A. Symvonis,
E. Welzl, and G. J. Woeginger. Drawing graphs in the plane with high resolution. In 31st
Annual Symposium on Foundations of Computer Science, FOCS, Volume I, pages 86–95.
IEEE Computer Society, 1990.

22 M. R. Garey and D. S. Johnson. Computers and Intractability. New York: Freeman, 1979.
23 E. Gaub, M. Rose, and P. S. Wenger. The unit bar visibility number of a graph. Journal

of Graph Algorithms and Applications, 20(2):269–297, 2016.
24 E. Di Giacomo, W. Didimo, W. S. Evans, G. Liotta, H. Meijer, F. Montecchiani, and

S. K. Wismath. Ortho-polygon visibility representations of embedded graphs. In Y. Hu
and M. Nöllenburg, editors, Graph Drawing and Network Visualization - 24th International
Symposium, GD, volume 9801 of LNCS, pages 280–294. Springer, 2016.

25 J. Maňuch, M. Patterson, S.-H. Poon, and C. Thachuk. Complexity of finding non-planar
rectilinear drawings of graphs. In U. Brandes and S. Cornelsen, editors, Graph Drawing -
18th International Symposium, GD 2010, volume 6502 of LNCS, pages 305–316. Springer,
2011.

26 N. J. Nilsson. A mobile automaton: An application of artificial intelligence techniques.
In D. E. Walker and L. M. Norton, editors, Proceedings of the 1st International Joint
Conference on Artificial Intelligence, IJCAI, pages 509–520. William Kaufmann, 1969.

27 T. J. Schaefer. The complexity of satisfiability problems. In Proc. 10th Ann. ACM Symp.
Theory of Computing STOC, pages 216–226. ACM Press, 1978.

http://arxiv.org/abs/1706.05906
http://arxiv.org/abs/1706.05906


K. Casel, H. Fernau, A. Grigoriev, M. L. Schmid, and S. Whitesides 30:15

28 I. Streinu and S. Whitesides. Rectangle visibility graphs: Characterization, construction,
and compaction. In H. Alt and M. Habib, editors, 20th Annual Symposium on Theoretical
Aspects of Computer Science, STACS, volume 2607 of LNCS, pages 26–37. Springer, 2003.

29 R. Tamassia and I. G. Tollis. A unified approach to visibility representations of planar
graphs. Discrete & Computational Geometry, 1(4):321–341, 1986.

30 S. K. Wismath. Characterizing bar line-of-sight graphs. In J. O’Rourke, editor, Proceedings
of the First Annual Symposium on Computational Geometry, pages 147–152. ACM, 1985.

MFCS 2017





Weighted Operator Precedence Languages∗

Manfred Droste1, Stefan Dück2, Dino Mandrioli3, and
Matteo Pradella4

1 Institute of Computer Science, Leipzig University, Germany
droste@informatik.uni-leipzig.de

2 Institute of Computer Science, Leipzig University, Germany
dueck@informatik.uni-leipzig.de

3 Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico
di Milano, Italy
dino.mandrioli@polimi.it

4 Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico
di Milano, Italy, and
IEIIT, Consiglio Nazionale delle Ricerche, via Ponzio 34/5, 20133 Milano, Italy
matteo.pradella@polimi.it

Abstract
In the last years renewed investigation of operator precedence languages (OPL) led to discover
important properties thereof: OPL are closed with respect to all major operations, are character-
ized, besides the original grammar family, in terms of an automata family (OPA) and an MSO
logic; furthermore they significantly generalize the well-known visibly pushdown languages (VPL).
In another area of research, quantitative models of systems are also greatly in demand. In this
paper, we lay the foundation to marry these two research fields. We introduce weighted operator
precedence automata and show how they are both strict extensions of OPA and weighted visibly
pushdown automata. We prove a Nivat-like result which shows that quantitative OPL can be
described by unweighted OPA and very particular weighted OPA. In a Büchi-like theorem, we
show that weighted OPA are expressively equivalent to a weighted MSO-logic for OPL.

1998 ACM Subject Classification F.1.1 Models of Computation, F.4.1 Mathematical Logic,
F.4.3 Formal Languages

Keywords and phrases Quantitative automata, operator precedence languages, input-driven lan-
guages, visibly pushdown languages, quantitative logic.

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.31

1 Introduction

In the long history of formal languages the family of regular languages (RL) has always played
a major role: thanks to its simplicity and naturalness, it enjoys many positive mathematical
properties which have been thoroughly exploited in disparate practical applications; among
them, those of main interest in this paper are the following:

RL have been characterized in terms of various mathematical logics. Originally, Büchi,
Elgot, and Trakhtenbrot [6, 18, 34] independently developed a monadic second order
(MSO) logic defining exactly the RL family. This work has been followed by many further
results; in particular those that exploited weaker but simpler logics such as first-order,

∗ This work was supported by Deutsche Forschungsgemeinschaft (DFG) Graduiertenkolleg 1763
(QuantLA).

© Manfred Droste, Stefan Dück, Dino Mandrioli, and Matteo Pradella;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 31; pp. 31:1–31:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.31
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


31:2 Weighted Operator Precedence Languages

propositional, and temporal ones culminated in the breakthrough of model checking to
support automatic verification [28, 19, 7].
Weighted RL have been introduced by Schützenberger in [32]: by assigning a weight in a
suitable algebra to each language word, we may specify several attributes of the word, e.g.,
relevance, probability, etc. Much research then followed and extended Schützenberger’s
original work in various directions, cf. the books [4, 17, 23, 31, 13].

Unfortunately, all families with greater expressive power than RL – typically context-free
languages (CFL), which are the most widely used family in practical applications – pay a
price in terms of algebraic and logic properties and, consequently, of possible tools supporting
their automatic analysis. For instance, for CFL, the containment problem is undecidable.

What was not possible for general CFL, however, has been possible for important
subclasses of this family, which together we call structured CFL. Informally, by this term we
denote those CFL where the syntactic tree-structure of their words is immediately “visible”
in the words themselves. Two first equivalent examples of such families are parenthesis
languages [27], which are generated by grammars whose right hand sides are enclosed within
pairs of parentheses, and tree-automata [33], which generalize finite state machines (FSM)
from the recognition of linear strings to tree-like structures. Among the many variations
of parenthesis languages the recent family of input-driven languages [29, 35], alias visibly
pushdown languages (VPL) [2], has received much attention in recent literature. For most of
these structured CFL, including VPL, the relevant algebraic properties of RL still hold [2].
One of the most noticeable results has been a characterization of VPL in terms of a MSO
logic that is a natural extension of Büchi’s original one for RL [24, 2].

This fact has suggested to extend the investigation of weighted RL to various cases of
structured languages. The result of such a fertile approach is a rich collection of weighted
logics, first studied by Droste and Gastin [11], associated with weighted tree automata [16]
and weighted extensions of VPA (the automata recognizing VPL) [26].

In an originally unrelated way operator precedence languages (OPL) have been defined
and studied in two phases temporally separated by four decades. In his seminal work [20]
Floyd was inspired by the precedence of multiplicative operations over additive ones in the
execution of arithmetic expressions and extended such a relation to the whole input alphabet
in such a way that it could drive a deterministic parsing algorithm that builds the syntax
tree of any word that reflects the word’s semantics; Fig. 1 and Section 2 give an intuition of
how an OP grammar generates arithmetic expressions and assigns them a natural structure.

OPL do not cover all deterministic CFL, but they enjoy a distinguishing property, not
possessed by general deterministic CFL, which we can intuitively describe as “OPL are input
driven but not visible”. They can be claimed as input-driven since the parsing actions on
their words – whether to push or pop – depend exclusively on the input alphabet and on the
relation defined thereon, but their structure is not visible in their words: e.g, they can include
unparenthesized expressions where the precedence of multiplicative operators over additive
ones is explicit in the syntax trees but hidden in their frontiers (see Fig. 1). Furthermore,
unlike other structured CFL, OPL include deterministic CFL that are not real-time [25].

This recent remark suggested to resume their investigation systematically at the light
of the recent technological advances and related challenges. Such a renewed investigation
led to prove their closure under all major language operations [8] and to characterize them,
besides Floyd’s original grammars, in terms of an appropriate class of pushdown automata
(OPA) and in terms of a MSO logic which is a fairly natural but not trivial extension of the
previous ones defined to characterize RL and VPL [25]. Thus, OPL enjoy the same nice
properties of RL and many structured CFL but considerably extend their applicability by
breaking the barrier of visibility and real-time push-down recognition.



M. Droste, S. Dück, D. Mandrioli, and M. Pradella 31:3

In this paper we join the two research fields above, namely we introduce weighted OPL
and show that they are able to model system behaviors that cannot be specified by means
of less powerful weighted formalisms such as weighted VPL. For instance, one might be
interested in the behavior of a system which handles calls and returns but is subject to some
emergency interrupts. Then it is important to evaluate how critically the occurrences of
interrupts affect the normal system behavior, e.g., by counting the number of pending calls
that have been preempted by an interrupt. As another example we consider a system logging
all hierarchical calls and returns over words where this structural information is hidden.
Depending on changing exterior factors like energy level, such a system could decide to log
the above information in a selective way.

Our main contributions in this paper are the following.
The model of weighted OPA, which have semiring weights at their transitions, significantly
increases the descriptive power of previous weighted extensions of VPA, and has desired
closure and robustness properties.
For arbitrary semirings, there is a relevant difference in the expressive power of the
model depending on whether it permits assigning weights to pop transitions or not. For
commutative semirings, however, weights on pop transitions do not increase the expressive
power of the automata. The difference in descriptive power between weighted OPA with
arbitrary weights and without weights at pop transitions is due to the fact that OPL may
be non-real-time and therefore OPA may execute several pop moves without advancing
their reading heads.
An extension of the classical result of Nivat [30] to weighted OPL. This robustness result
shows that the behaviors of weighted OPA without weights at pop transitions are exactly
those that can be constructed from weighted OPA with only one state, intersected with
OPL, and applying projections which preserve the structural information.
A weighted MSO logic and, for arbitrary semirings, a Büchi-Elgot-Trakhtenbrot-Theorem
proving its expressive equivalence to weighted OPA without weights at pop transitions.
As a corollary, for commutative semirings this weighted logic is equivalent to weighted
OPA including weights at pop transitions.

Various possibilities arise for future research concerning theory and applications of our new
model which will be discussed in the conclusion. The full version of this paper [10] provides
all omitted technicalities and more explanatory comments and examples.

2 Preliminaries

Consider the CFG of Fig. 1 (left) and the syntax tree (center) which makes the structure of its
frontier n+n× (n+n) visible. To drive a parsing algorithm in the deterministic construction
of the tree associated with the string, Floyd introduced three precedence relations, l (yields
precedence), .= (equal in precedence), m (takes precedence), (algorithmically derived from the
grammar) between terminal symbols (Fig. 1 right). They do not satisfy any order axioms
and are used to mark, respectively, the beginning, the internal elements, and the end of a
grammar right hand side in the substitution rules of a shift-reduce parsing algorithm. For a
complete description of Floyd’s parsing algorithms driven by these relations, see, e.g, [21].

In this paper, instead, we exploit the more recent characterization of OPL in terms of
recognizing automata [25], which are defined on a given alphabet and precedence matrix.
We define an OP alphabet as a pair (Σ,M), where Σ is an alphabet and M , the operator
precedence matrix (OPM), is a |Σ ∪ {#}|2 array describing for each ordered pair of symbols
at most one (operator precedence) relation, that is, every entry of M is either l, .=, m, or

MFCS 2017



31:4 Weighted Operator Precedence Languages

E → E + T | T
T → T × F | F
F → n | (E)

E

E

T

F

n

+ T

T

F

n

× F

( E

E

T

F

n

+ T

F

n

)

+ × ( ) n

+ m l l m l
× m m l m l
( l l l .= l
) m m m
n m m m

Figure 1 A grammar generating arithmetic expressions (left), an example derivation tree (center),
and the precedence matrix (right). E.g. M [1, 2] = l means that + yields precedence to ×.

empty (no relation). We use the symbol # to mark the beginning and the end of a word and
always let # l a and am # for all a ∈ Σ.

Let w = (a1...an) ∈ Σ+ be a non-empty word. We say a0 = an+1 = # and define
a new chain relation y on the set of all positions of #w#, inductively, as follows. Let
0 ≤ i < j ≤ n+1. We write iy j if there exists a sequence of positions i = k1 < ... < km = j,
m ≥ 3, such that ak1 l ak2

.= ...
.= akm−1 m akm and either ks + 1 = ks+1 or ks y ks+1 for

each s ∈ {1, ...,m− 1}. We say that w is compatible with M if for #w#, we have 0 y n+ 1.
We denote by (Σ+,M) the set of all non-empty words over Σ which are compatible with M .
For a complete OPM M , i.e. one without empty entries, this is Σ+.

The chain relation can be compared with the nesting or matching relation of [2], which is
also originating from additional information on the alphabet. However, instead of partitioning
the alphabet into three disjoint parts (calls, internals, and returns), we add a binary relation
for every pair of symbols denoting their precedence relation. Therefore, in contrast to the
nesting relation, the same symbol can be either call or return depending on its context, and
the same position can be part of multiple chain relations.

I Definition 1. A (nondeterministic) operator precedence automaton (OPA) A over an OP
alphabet (Σ,M) is a tuple A = (Q, I, F, δ), where δ = (δshift, δpush, δpop), consisting of

a finite set of states Q, the set of initial states I ⊆ Q, the set of final states F ⊆ Q, and
the transition relations δshift, δpush ⊆ Q× Σ×Q, and δpop ⊆ Q×Q×Q.

Let Γ = Σ×Q. A configuration of A is a triple C = 〈Π, q, w#〉, where Π ∈ ⊥Γ∗ represents a
stack, q ∈ Q the current state, and w the remaining input to read. A run of A on w = a1...an
is a finite sequence of configurations C0 ` ... ` Cm, such that every transition Ci ` Ci+1 has
one of the following forms, where a is the first component of the topmost symbol of the stack
Π, or # if the stack is ⊥, and b is the next symbol of the input to read:

push move : 〈Π, q, bx〉 ` 〈Π[b, q], r, x〉 if al b and (q, b, r) ∈ δpush,

shift move : 〈Π[a, p], q, bx〉 ` 〈Π[b, p], r, x〉 if a .= b and (q, b, r) ∈ δshift,

pop move : 〈Π[a, p], q, bx〉 ` 〈Π, r, bx〉 if am b and (q, p, r) ∈ δpop.

An accepting run of A on w is a run from 〈⊥, qI , w#〉 to 〈⊥, qF ,#〉, where qI ∈ I and qF ∈ F .
The language accepted by A, denoted L(A), consists of all words over (Σ+,M) which have
an accepting run on A. We say L ⊆ (Σ+,M) is an OPL if L is accepted by an OPA over
(Σ,M). As proven in [25], the deterministic variant of an OPA, using a single initial state
and transition functions instead of relations, is as expressive as nondeterministic OPA.



M. Droste, S. Dück, D. Mandrioli, and M. Pradella 31:5

01 2 3
n

(
0, 1

+,×
n

( 0, 1, 2, 3+,×

)

Figure 2 An OPA recognizing the language of the grammar of Fig. 1. The graphical notation is
imported from [25]: pushes are normal arrows, shifts are dashed, pops are double arrows.

An example automaton is depicted in Fig. 2: with the OPM of Fig. 1 (right), it accepts
the same language as the grammar of Fig. 1 (left).

I Definition 2. The logic MSO(Σ,M), short MSO, and its semantics is defined as in [25]

β ::= Laba(x) | x ≤ y | xy y | x ∈ X | ¬β | β ∨ β | ∃x.β | ∃X.β

where a ∈ Σ ∪ {#} and x, y,X are first resp. second order variables. The predicate Laba(x)
asserts that position x is labeled a. The semantics of y is defined by the chain relation.

I Theorem 3 ([25]). A language L over (Σ,M) is an OPL iff it is MSO-definable.

3 Weighted OPL and Their Relation to Weighted VPL

In this section, we introduce a weighted extension of OPA. We show that weighted OPL
include weighted visibly pushdown automata (VPL) and give examples showing how these
weighted automata can express behaviors which were not expressible before.

Let K = (K,+, ·, 0, 1) be a semiring, i.e., (K,+, 0) is a commutative monoid, (K, ·, 1) is a
monoid, (x+y) ·z = x ·z+y ·z, x · (y+z) = x ·y+x ·z, and 0 ·x = x ·0 = 0 for all x, y, z ∈ K.
K is called commutative if (K, ·, 1) is commutative. Important examples of commutative
semirings include the Boolean semiring B = ({0, 1},∨,∧, 0, 1), the semiring of the natural
numbers N = (N,+, ·, 0, 1), or the tropical semirings Rmax = (R∪{−∞},max,+,−∞, 0) and
Rmin = (R ∪ {∞},min,+,∞, 0). Significant non-commutative semirings are n× n-matrices
over semirings K with matrix addition and multiplication as usual (n ≥ 2), or the semiring
(P(Σ∗),∪, ·, ∅, {ε}) of languages over Σ.

I Definition 4. A weighted OPA (wOPA) A over an OP alphabet (Σ,M) and a semiring K
is a tuple A = (Q, I, F, δ,wt), where wt = (wtshift,wtpush,wtpop), consisting of

an OPA A′ = (Q, I, F, δ) over (Σ,M) and
the weight functions wtop : δop → K, op ∈ {shift,push,pop}.

We call a wOPA restricted, denoted by rwOPA, if wtpop(q, p, r) = 1 for each (q, p, r) ∈ δpop.

A configuration of a wOPA is a tuple 〈Π, q, w#, k〉, where (Π, q, w#) is a configuration of
the OPA A′ and k ∈ K. A run of A is defined as for OPA, where, additionally, the weight k
is updated by multiplying with the weight of the encountered transition, as follows.

〈Π, q, bx, k〉 ` 〈Π[b, q], r, x, k · wtpush(q, b, r)〉 if al b and (q, b, r) ∈ δpush,

〈Π[a, p], q, bx, k〉 ` 〈Π[b, p], r, x, k · wtshift(q, b, r)〉 if a .= b and (q, b, r) ∈ δshift,

〈Π[a, p], q, bx, k〉 ` 〈Π, r, bx, k · wtpop(q, p, r)〉 if am b and (q, p, r) ∈ δpop.

We call a run ρ accepting if it goes from 〈⊥, qI , w#, 1〉 to 〈⊥, qF ,#, k〉, where qI ∈ I and
qF ∈ F . For such an accepting run, the weight of ρ is defined as wt(ρ) = k. Finally, the
behavior of A is a function JAK : (Σ+,M)→ K, defined as

JAK(w) =
∑

ρ acc. run of A on w
wt(ρ) .

MFCS 2017



31:6 Weighted Operator Precedence Languages

q0 q1 q2

$(0), itr(0), call(0)

ret(0)

q0(0)
$(0)

call(1)
ret(−1)

itr(0)

q0(0), q1(0)
$(0)

$(0), call(0)
ret(0)

itr(0)

q0(0), q1(0), q2(0)

call ret itr $
call l .= m l
ret m m m l
itr m l l
$ m m m

Figure 3 The weighted OPA Aitr penalizing unmatched calls nondeterministically, and its
precedence matrix (right). Weights are given in parentheses at transitions. The weight semiring is
Zmax = (Z ∪ {−∞}, max, +,−∞, 0).

Every function S : (Σ+,M)→ K is called an OP-series (short: series, also weighted language).
A wOPA A accepts a series S if JAK = S. A series S is called recognizable or a wOPL if there
exists an wOPA A accepting it. S is strictly recognizable or an rwOPL if there exists an
rwOPA A accepting it.

I Example 5. Consider a system that manages calls and returns (in VPL terminology) in
a traditional LIFO policy but discards all pending calls if an interrupt (itr) occurs. Such
a system can be naturally modeled by suitable OPA that can formalize various types of
policies to manage interrupts [25]1. We can use weights to , for instance, count the number
of interrupted calls. A first simple wOPA could attach a negative weight to calls and a
compensating one to corresponding returns so that the final weight assigned to the string
would be “neutral” only if no call is discarded.

Consider now a more complex system where the penalties for unmatched calls may change
nondeterministically. Here, we assume words to be separated into different intervals by the
symbol $, of which one nondeterministically chosen represents, e.g., a critical operating time,
during which unmatched calls are penalized. The wOPA Aitr given in Fig. 3 formalizes such
a system by assigning to an input sequence a global weight that is the maximal number of
unmatched calls in one interval.
Aitr can be easily modified to formalize several variations of its policy: e.g., different

policies could be associated with different intervals, different weights could be assigned to
different types of calls and/or interrupts, different policies could also be defined by choosing
different semirings, etc. Note that Aitr is restricted.

I Example 6. The automaton Alog, depicted in Fig. 4, chooses non-deterministically between
logging everything and logging only ‘important’ information, e.g., only interrupts (this could
be a system dependent on energy, WiFi, etc.). Notice that in this case assigning nontrivial
weights to pop transitions is crucial. Let Σ = {call, ret, itr}, and define M as the obvious
projection of Aitr’s OPM. We employ the semiring (FinΣ′ ,∪, ◦, ∅, {ε}) of all finite languages
over Σ′ = {c, r, p, i}. Then, JAlogK(w) yields all possible logs on w.

The above example can be exploited to show by a pumping-like argument that wOPA are
more expressive than rwOPA. This is due to the fact that a number of consecutive pops can
attach to one position a product of size only bounded by the word-length and it is impossible
to attach these weights at other positions without destroying their sequential order.

I Proposition 7. There exist an OP alphabet (Σ,M), a semiring K, and a weighted language
S : (Σ+,M)→ K such that S is recognizable but not strictly recognizable.

1 A similar motivation inspired the recent extension of VPL as colored nested words by [1].



M. Droste, S. Dück, D. Mandrioli, and M. Pradella 31:7

q0 q1

call(c), itr(i) ret(r)

q0(p)

call(ε)

call(ε)

call(ε), itr(i)ret(ε)

q0(ε), q1(ε)

Figure 4 The wOPA Alog nondeterministically writes logs at different levels of detail.

Σcall Σret Σint

Σcall l .= l
Σret m m m
Σint m m m

E.g. w = a〈car〉, over Σint = {a}, Σcall = {〈c}, Σret = {r〉}

NWA: q0
a−−−−−−→ q1

〈c−−→ q2
a−−−−−−→ q3

r〉−−−−−−→ q4

OPA: q0
a−→ q′

1 ⇒ q1
〈c−−→ q2

a−→ q′
3 ⇒ q3

r〉
99K q′

4 ⇒ q4

Figure 5 The OPM M for VPL and an example of the translation of runs from NWA to OPA.

On the other hand, for commutative semirings rwOPA and wOPA are equally expressive.

I Theorem 8. Let A be a wOPA over an OP alphabet (Σ,M) and a commutative semiring
K. Then, there exists an rwOPA B over (Σ,M) and K with JAK = JBK.

Proof (Sketch). Let A = (Q, I, F, δ,wt) be a wOPA over (Σ,M) and K. We construct an
rwOPA B over (Σ,M) and K with the state set Q′ = Q×Q×Q and with the same behavior
as A as follows. In the first state component B simulates A. In the second and third state
component of Q′ the automaton B guesses the states q and r of the pop transition (q, p, r)
of A which corresponds to the next push transition following after this configuration. This
enables us to transfer the weight from the pop transition to the correct push transition. J

In the following, we show that rwOPL strictly include weighted visibly pushdown languages
(wVPL). VPL is the class of languages corresponding to nested words [2] and recognized
by visibly pushdown automata (VPA) or the expressively equivalent nested word automata
(NWA). Let Σ be a visibly pushdown alphabet consisting of calls, internals, and returns. In
[8], it was shown that for every VPA over Σ, there exists an equivalent OPA [25] over (Σ,M),
where M is the OPM defined in Fig. 5.

In [26, 15], weighted nested word automata (wNWA) were introduced. These add semiring
weights at every transition again depending on the information which symbols are calls,
internals, or returns. Since every nested word has a unique representation over a visibly
pushdown alphabet Σ, it can be interpreted as a compatible word of (Σ+,M). In particular,
we can interpret a wVPL, i.e., the language of a wNWA, as an OP-series (Σ+,M)→ K.

I Theorem 9. Let K be a semiring and M be the OPM of Fig. 5. Then for every wNWA A
as defined in [15], there exists an rwOPA B with JAK(w) = JBK(w) for all w ∈ (Σ+,M).

We give an intuition for this result as follows. Note that pushes, shifts, and pops significantly
differ from calls, internals, and returns. Indeed, a return of a NWA reads and ‘consumes’ a
symbol, while a pop of an OPA just pops the stack and leaves the next symbol untouched.
Studying the OPM M and the example runs of Fig. 5, we see that every symbol of Σret
forces a shift transition of an OPA immediately followed by a pop. This suggests a fairly
natural construction where we can simulate every weighted call by a weighted push, every

MFCS 2017



31:8 Weighted Operator Precedence Languages

weighted internal by a weighted push together with a pop and every weighted return by a
weighted shift together with a pop. Hence, we may omit weights at pop transitions.

Since OPA are strictly more expressive than VPA [8], this gives, together with Propo-
sition 7, a complete picture of the expressive power of these three classes of weighted
languages:

wVPL ( rwOPL ( wOPL .

Note that in the context of formal power series, wVPL strictly contain recognizable power
series and wOPL form a proper subset of the class of algebraic power series, i.e., series
recognized by weighted pushdown automata [23].

4 A Nivat Theorem

In this section, we show that strictly recognizable series are exactly those series which can be
derived from a restricted weighted OPA with only one state, intersected with an unweighted
OPL, and using an OPM-preserving projection of the alphabet.

In the following, we study closure properties of wOPL and rwOPL. As usual, we extend
the operations + and · to series by means of pointwise definitions.

I Proposition 10. Let S : (Σ+,M) → K be a recognizable (resp. strictly recognizable)

series and L ⊆ (Σ+,M) an OPL. Then, the series (S ∩ L)(w) =
{
S(w) , if w ∈ L
0 , otherwise

}
is

recognizable (resp. strictly recognizable).
Furthermore, if K is commutative, then the product of two recognizable (resp. strictly

recognizable) series over (Σ+,M) is again recognizable (resp. strictly recognizable).

Next, we show that recognizable series are closed under projections which preserve the
OPM. For two OP alphabets (Σ,M), (Γ,M ′), we write h : (Σ,M)→ (Γ,M ′) for a mapping
h : Σ→ Γ such that for all • ∈ {l, .=,m}, we have a • b if and only if h(a) • h(b). We can
extend h to a function h : (Σ+,M)→ (Γ+,M ′) by setting h(a1a2...an) = h(a1)h(a2)...h(an).
Let S : (Σ+,M)→ K be a series. We define h(S) : (Γ+,M ′)→ K for each v ∈ (Γ+,M ′) by

h(S)(v) =
∑

w∈(Σ+,M),h(w)=v

S(w) . (1)

I Proposition 11. Let K be a semiring, S : (Σ+,M) → K recognizable (resp. strictly
recognizable), and h : (Σ,M)→ (Γ,M ′). Then, h(S) : (Γ+,M ′)→ K is recognizable (resp.
strictly recognizable).

Let h be a map between two alphabets. Given h : Γ→ Σ and an OP alphabet (Σ,M), we
define h−1(M) by setting h−1(M)a′b′ = Mh(a′)h(b′) for all a′, b′ ∈ Γ. As h is OPM-preserving,
for every series S : (Σ+,M)→ K, we get a series h(S) : (Γ+, h−1(M))→ K, using the sum
over all pre-images as in formula (1).

Let N (Σ,M,K) comprise all series S : (Σ+,M)→ K for which there exist an alphabet
Γ, over (Γ, h−1(M)) such that S = h(JBK ∩ L).

Then, we can show that every rwOPL can be decomposed into the above introduced
fragments. Using this decomposition and the closure properties of Prop. 10 and Prop. 11, we
get the following Nivat-Theorem for weighted operator precedence automata.

I Theorem 12. Let K be a semiring and S : (Σ+,M)→ K be a series. Then S is strictly
recognizable if and only if S ∈ N (Σ,M,K).



M. Droste, S. Dück, D. Mandrioli, and M. Pradella 31:9

JβKV(w, σ) =
{

1 , if (w, σ) |= β

0 , otherwise J
⊕

x ϕKV(w, σ) =
∑
i∈|w|

JϕKV∪{x}(w, σ[x→ i])

JkKV(w, σ) = k for all k ∈ K J
⊕

X ϕKV(w, σ) =
∑
I⊆|w|

JϕKV∪{X}(w, σ[X → I])

Jϕ⊕ ψKV(w, σ) = JϕKV(w, σ) + JψKV(w, σ) J
∏
x ϕKV(w, σ) =

∏
i∈|w|

JϕKV∪{x}(w, σ[x→ i])

Jϕ⊗ ψKV(w, σ) = JϕKV(w, σ) · JψKV(w, σ)

Figure 6 Semantics of weighted MSO logic for OPL.

5 Weighted MSO-Logic for OPL

We use modified ideas from Droste and Gastin [11], also incorporating the distinction into
boolean formulas β and weighted formulas ϕ as in [5]. The boolean formulas model classical
unweighted features, whereas weighted formulas may deal with quantitative aspects.

I Definition 13. We define the weighted logic MSO(K, (Σ,M)), short MSO(K), as

β ::= Laba(x) | x ≤ y | xy y | x ∈ X | ¬β | β ∨ β | ∃x.β | ∃X.β
ϕ ::= β | k | ϕ⊕ ϕ | ϕ⊗ ϕ |

⊕
x ϕ |

⊕
X ϕ |

∏
x ϕ

where a ∈ Σ ∪ {#}, k ∈ K; x, y are first order variables; and X is a second order variable.

Let w ∈ (Σ+,M) and ϕ ∈ MSO(K). As usual, let [w] = {1, ..., |w|} and V be a finite set
of variables containing free(ϕ), all free variables of ϕ. A (V, w)-assignment σ is a function
assigning to every first order variable of V an element of [w] and to every second order variable
a subset of [w]. We define σ[x→ i] (and analogously σ[X → I]) as the (V∪{x}, w)-assignment
mapping x to i and coinciding with σ on all variables different from x.

By following classical approaches, we consider the extended alphabet ΣV = A× {0, 1}V
together with its natural OPM MV defined such that for all (a, s), (b, t) ∈ ΣV and all
• ∈ {l, .=,m}, we have (a, s) • (b, t) if and only if a • b. We represent the word w together
with the assignment σ as a word (w, σ) over (ΣV ,MV) such that 1 denotes every position
where x resp. X holds. A word over ΣV is called valid, if every first order variable is assigned
to exactly one position. Being valid is a property which can be checked by an OPA.

We define the semantics of ϕ ∈ MSO(K) as a function JϕKV : (Σ+
V ,MV)→ K inductively

for all valid (w, σ) ∈ (Σ+
V ,MV) in Fig. 6. For not valid (w, σ), we set JϕKV(w, σ) = 0. We

write JϕK for JϕKfree(ϕ).
We can show that semantics ϕV for different V are consistent with each other as long

as V contains all free variables of ϕ. If ϕ contains no free variables, ϕ is a sentence and
JϕK : (Σ+,M)→ K.

I Example 14. Let us go back to the automatonAitr depicted in Fig. 3. The following boolean
formula β defines three subsets of string positions, X0, X1, X2, representing, respectively, the
string portions where unmatched calls are not penalized, namely X0, X2, and the portion
where they are, namely X1:

β = x ∈ X0 ↔ ∃y∃z(y > x ∧ z > x ∧ Lab$(y) ∧ Lab$(z))
∧ x ∈ X1 ↔ ∃y∃z(y ≤ x ≤ z ∧ Lab$(y) ∧ Lab$(z) ∧ (x 6= y ∧ x 6= z → ¬Lab$(x)))
∧ x ∈ X2 ↔ ∃y∃z(y < x ∧ z < x ∧ Lab$(y) ∧ Lab$(z)) .

MFCS 2017



31:10 Weighted Operator Precedence Languages

Weight assignment is formalized by the formula ϕ which assigns weight 0 to calls, returns,
and interrupts outside portion X1; and weights 1,−1, 0 to calls, returns, and interrupts,
respectively, within portion X1:

ϕ = (¬((x ∈ X0 ∨ x ∈ X2) ∧ (Labcall(x) ∨ Labret(x) ∨ Labitr(x)))⊕ 0)
⊗ (¬(x ∈ X1 ∧ Labcall(x))⊕ 1)⊗ (¬(x ∈ X1 ∧ Labret(x))⊕−1)
⊗ (¬(x ∈ X1 ∧ Labitr(x))⊕ 0)⊗ (¬Lab$(x)⊕ 0) .

Then, the formula ψ =
∏
x(β ⊗ ϕ) defines the weight assigned by Aitr to an input string

through a single nondeterministic run and finally χ =
⊕

X0

⊕
X1

⊕
X2
ψ defines the global

weight of every string in an equivalent way as the one defined by Aitr.

As shown by [11] in the case of words, the full weighted logic is strictly more powerful than
weighted automata. A similar example also applies here. Therefore, in the following, we
restrict our logic in an appropriate way.

I Definition 15. The set of almost boolean formulas is the smallest set of all formulas of
MSO(K) containing all k ∈ K and all boolean formulas which is closed under ⊕ and ⊗.

Adapting ideas from [14], we can show by structural induction that almost boolean formulas
describe precisely a certain form of wOPA’s behaviors, called OPL step functions, which are
all series S that can be written as S =

∑n
i=1 ki1Li

, where Li are OPL forming a partition of
(Σ+,M) and ki ∈ K for each i ∈ {1, ..., n}. Furthermore, OPL step functions are recognizable
by rwOPA and are closed under the natural extension of the semiring’s + and · to series.

I Definition 16. We call ϕ ∈ MSO(K) restricted if for all subformulas ψ ⊗ θ of ϕ either ψ
is almost boolean or all semiring weights occurring in ψ and θ commute elementwise, and
additionally, for all subformulas

∏
x ψ of ϕ, ψ is almost boolean.

In Example 14, the formula β is boolean, the formula ϕ is almost boolean, and ψ and χ are
restricted. Notice that ψ and χ would be restricted even if K were not commutative.

I Proposition 17. Let ϕ and ψ be two formulas of MSO(K) such that JϕK and JψK are
recognizable (resp. strictly recognizable). Then we have

Jϕ⊕ ψK, J
∑
x ϕK, and J

∑
X ϕK are recognizable (resp. strictly recognizable).

Jϕ⊗ ψK is (resp. strictly) recognizable if ϕ⊗ ψ is a subformula of a restricted formula.
J
∏
x ϕK is strictly recognizable if ϕ is an almost boolean formula of MSO(K).

Proof (Sketch). Closure under ⊕ is dealt with by an usual disjoint union of two wOPA
(resp. rwOPA). Closure under restricted ⊗ is dealt with by Proposition 10. For the sum quan-
tification, we utilize Proposition 11. The closure under the restricted product quantification
is non-trivial, but can be proved by adapting previous techniques to OPL step functions. J

Then, by induction on the structure of a weighted formula and using Proposition 17, we get

I Proposition 18. For every restricted MSO(K)-sentence ϕ, there exists an rwOPA A with
JAK = JϕK.

Now, we show that the converse of Proposition 18 holds as well.

I Proposition 19. For every rwOPA A, there exists a restricted MSO(K)-sentence ϕ with
JAK = JϕK. If K is commutative, then for every wOPA A, there exists a restricted MSO(K)-
sentence ϕ with JAK = JϕK.



M. Droste, S. Dück, D. Mandrioli, and M. Pradella 31:11

◦ Xpop
3,1,3 ◦ Xpop

3,0,3

◦ Xpop
3,1,3 ◦ Xpop

3,3,3

◦ Xpop
1,0,1 ◦ Xpop

1,0,1 ◦ Xpop
3,2,3 ◦ Xpop

3,2,3

Xpush
0,n,1 Xpush

1,+,0 Xpush
0,n,1 Xpush

1,×,0 Xpush
0,(,2 Xpush

2,n,3 Xpush
3,+,2 Xpush

2,n,3 Xshift
3,),3

# n + n × ( n + n ) #
0 1 2 3 4 5 6 7 8 9 10

Figure 7 The string of Fig. 1 with the 2nd order variables evidenced for the automaton of Fig. 2.

Proof. The rationale adopted to build formula ϕ from A integrates the approach followed
in [11, 15] with the one of [25]. On the one hand we need second order variables suitable
to “carry” weights; on the other hand, unlike previous non-OP cases which are managed
through real-time automata, an OPA can perform several transitions while remaining in the
same position. Thus, we introduce the following second order variables: Xpush

p,a,q represents the
set of positions where A performs a push move from state p, reading symbol a and reaching
state q; Xshift

p,a,q has the same meaning as Xpush
p,a,q for a shift operation; and Xpop

p,q,r represents the
set of positions of the symbol that is on top of the stack when A performs a pop transition
from state p, with q on top of the stack, reaching r.

Let V consist of all Xpush
p,a,q, Xshift

p,a,q, and Xpop
p,q,r such that a ∈ Σ, p, q, r ∈ Q and (p, a, q) ∈

δpush, resp. δshift, resp. (p, q, r) ∈ δpop. We denote by X̄push, X̄shift, and X̄pop enumerations
over the respective set of second order variables. Using usual abbreviations for MSO-formulas
and some adapted shortcuts from [25] and [11], we define the following unweighted formula
ψ to characterize all accepted runs of A

ψ = Part(X̄push, X̄shift) ∧ Unique(X̄pop) ∧ InitFinal ∧ Trpush ∧ Trshift ∧ Trpop .

Here, the subformula Part will enforce the push and shift sets to be (together) a partition of
all positions, while the Unique will make sure that we mark every position with at most one
Xpop. InitFinal controls the initial and the acceptance condition and Trpush, Trshift, and
Trpop the respective transitions of the run according to their labels as follows.

Trpush = ∀x.
∧

p,q∈Q,a∈Σ

(
x ∈ Xpush

p,a,q →
[

Laba(x) ∧ ∃z.(z l x ∧ (Nextp(z, x) ∨ Succp(z, x)))
])

Trshift = ∀x.
∧

p,q∈Q,a∈Σ

(
x ∈ Xshift

p,a,q →
[

Laba(x) ∧ ∃z.(z .= x ∧ (Nextp(z, x) ∨ Succp(z, x)))
])

Trpop = ∀v.
∧

p,q∈Q

([∨
r∈Q

v ∈ Xpop
p,q,r

]
↔
[
∃x∃y∃z.(Treep,q(x, z, v, y))

])
.

The main idea is that for every xy y, we encode in Tree(x, z, v, y) the two other ‘critical’
positions for this chain, namely z, which is the (either direct or hierarchical) successor of x
in this chain and which is the position where we execute the push resulting from xl z; and
v, which is the ‘chain-predecessor’ of y and the position we mark with the respective Xpop

resulting from v m y. E.g., with reference to Fig. 1 and Fig. 7, we have Tree(4, 5, 9, 10).
Furthermore, Succq(x, y) holds for two successive positions where the OPA reaches state

q through a push or shift at position y, while Nextq(x, y) holds when a pop move reaches
state q while completing a chain xy y. Then Treep,q explicitly controls the current state
and the state on top of the stack when the pop move is executed as follows.

MFCS 2017



31:12 Weighted Operator Precedence Languages

Tree(x, z, v, y) := x y y ∧
(

(x + 1 = z ∨ x y z) ∧ ¬∃t(z < t < y ∧ x y t)∧
(v + 1 = y ∨ v y y) ∧ ¬∃t(x < t < v ∧ t y y)

)
Nextr(x, y) := ∃z∃v.

(
Tree(x, z, v, y) ∧

∨
p,q∈Q

v ∈ Xpop
p,q,r

)
Treei,j(x, z, v, y) := Tree(x, z, v, y) ∧ (Succi(v, y) ∨Nexti(v, y)) ∧ (Succi(x, z) ∨Nexti(x, z))

Notice that in the transition formulas, the partition (resp. uniqueness) axioms guarantee
that in every run, the left side of the implication (resp. equivalence) is satisfied for only one
triple (p, a, q), resp. (p, q, r). Thus, with arguments similar to [25], it can be shown that the
sentences satisfying ψ are exactly those accepted by the unweighted OPA subjacent to A.

Now, we add weights to ψ by defining the following restricted weighted formula

θ = ψ ⊗
∏
x ⊗
p,q∈Q

(
⊗
a∈Σ

(x ∈ Xpush
p,a,q ⊗ wtpush(p, a, q))⊕ (¬(x ∈ Xpush

p,a,q)⊗ 1)

⊗ ⊗
a∈Σ

(x ∈ Xshift
p,a,q ⊗ wtpush(p, a, q))⊕ (¬(x ∈ Xshift

p,a,q)⊗ 1)

⊗ ⊗
r∈Q

(x ∈ Xpop
p,q,r ⊗ wtpush(p, q, r))⊕ (¬(x ∈ Xpop

p,q,r)⊗ 1)
)
.

Here, the second part of θ multiplies up all weights of the encountered transitions. This is
the crucial part where we either need that K is commutative or all pop weights are trivial
because the product quantifier of θ assigns the pop weight at a different position than
the occurrence of the respective pop transition in the automaton. Using only one product
quantifier (weighted universal quantifier) this is unavoidable, since the number of pops at a
given position is only bounded by the word length.

Since the subformulas x ∈ X()
() ⊗ wt(...) of θ are almost boolean, the subformula

∏
x(...)

of θ is
∏
-restricted. Also, ψ is boolean and so θ is ⊗-restricted. Thus, θ is a restricted

formula. Finally, we define ϕ =
⊕

X1

⊕
X2
...
⊕

Xm
θ . This implies JϕK(w) = JAK(w), for all

w ∈ (Σ+,M). Therefore, ϕ is our required restricted sentence with JAK = JϕK. J

By Proposition 18 and Proposition 19, we obtain the main result of this section.

I Theorem 20. Let K be a semiring and S : (Σ+,M)→ K a series.
1. The following are equivalent:

(a) S = JAK for some rwOPA.
(b) S = JϕK for some restricted sentence ϕ of MSO(K).

2. Let K be commutative. Then, the following are equivalent:
(a) S = JAK for some wOPA.
(b) S = JϕK for some restricted sentence ϕ of MSO(K).

Theorem 20 shows that the typical logical characterization of weighted languages does not
generalize in the same way to the whole class wOPL: for non-rwOPL we need the extra
hypothesis that K be commutative. Notice, however, that rwOPL may execute unbounded
pop sequences; thus, they are powerful enough to include languages that are neither real-time
nor visible. This remark naturally raises new intriguing questions which we will briefly
address in the conclusion.

6 Conclusion

This paper moves a further step in the path of generalizing a series of results beyond the
barrier of regular and structured – or visible – CFL [27, 33, 2, 25]. We introduced and



M. Droste, S. Dück, D. Mandrioli, and M. Pradella 31:13

investigated weighted operator precedence automata and a corresponding weighted MSO
logic. In our main results we show, for any semiring, that wOPA without pop weights and a
restricted weighted MSO logic have the same expressive power. Furthermore, these behaviors
can also be described as homomorphic images of the behaviors of particularly simple wOPA
reduced to arbitrary unweighted OPA. If the semiring is commutative, these results apply
also to wOPA with arbitrary pop weights.

Theorem 20 also raises the problems to find, for arbitrary semirings and for wOPA with
pop weights, both an expressively equivalent weighted MSO logic and a Nivat-type result. In
[16], very similar problems arose for weighted automata on unranked trees and weighted MSO
logic. In [12], the authors showed that with another definition of the behavior of weighted
unranked tree automata, an equivalence result for the restricted weighted MSO logic could
be derived. Is there another definition of the behavior of wOPA (with pop weights) making
them expressively equivalent to our restricted weighted MSO logic?

In [25], OPL of infinite words were investigated and shown to be practically important,
so the problem arises to develop a theory of wOPA on infinite words. In order to define their
quantitative behaviors, one could try to use valuation monoids as in [14, 9].

Finally, a new investigation field can be opened by exploiting the natural suitability of
OPL towards parallel elaboration [3]. Computing weights, in fact, can be seen as a special
case of semantic elaboration which can be performed hand-in-hand with parsing. In this
case too, we can expect different challenges depending on whether the weight semiring is
commutative or not and/or weights are attached to pop transitions too, which would be the
natural way to follow the traditional semantic evaluation through synthesized attributes [22].

References
1 Rajeev Alur and Dana Fisman. Colored nested words. In Adrian Horia Dediu, Jan Janousek,

Carlos Martín-Vide, and Bianca Truthe, editors, Language and Automata Theory and Ap-
plications, LATA 2016, volume 9618 of LNCS, pages 143–155. Springer, 2016.

2 Rajeev Alur and Parthasarathy Madhusudan. Adding nesting structure to words. J. ACM,
56(3):16:1–16:43, 2009.

3 Alessandro Barenghi, Stefano Crespi Reghizzi, Dino Mandrioli, Federica Panella, and Mat-
teo Pradella. Parallel parsing made practical. Sci. Comput. Program., 112(3):195–226, 2015.
doi:10.1016/j.scico.2015.09.002.

4 Jean Berstel and Christophe Reutenauer. Rational Series and Their Languages, volume 12
of EATCS Monographs in Theoretical Computer Science. Springer, 1988.

5 Benedikt Bollig and Paul Gastin. Weighted versus probabilistic logics. In Volker Diekert
and Dirk Nowotka, editors, Developments in Language Theory, DLT 2009, volume 5583 of
LNCS, pages 18–38. Springer, 2009. doi:10.1007/978-3-642-02737-6_2.

6 J. Richard Büchi. Weak second-order arithmetic and finite automata. Z. Math. Logik und
Grundlagen Math., 6:66–92, 1960.

7 Christian Choffrut, Andreas Malcher, Carlo Mereghetti, and Beatrice Palano. First-order
logics: some characterizations and closure properties. Acta Inf., 49(4):225–248, 2012.

8 Stefano Crespi Reghizzi and Dino Mandrioli. Operator precedence and the visibly pushdown
property. J. Comput. Syst. Sci., 78(6):1837–1867, 2012.

9 Manfred Droste and Stefan Dück. Weighted automata and logics for infinite nested words.
Inf. Comput., 253:448–466, 2017. doi:10.1016/j.ic.2016.06.010.

10 Manfred Droste, Stefan Dück, Dino Mandrioli, and Matteo Pradella. Weighted operator
precedence languages. CoRR, abs/1702.04597, 2017. URL: http://arXiv.org/abs/1702.
04597.

MFCS 2017

http://dx.doi.org/10.1016/j.scico.2015.09.002
http://dx.doi.org/10.1007/978-3-642-02737-6_2
http://dx.doi.org/10.1016/j.ic.2016.06.010
http://arXiv.org/abs/1702.04597
http://arXiv.org/abs/1702.04597


31:14 Weighted Operator Precedence Languages

11 Manfred Droste and Paul Gastin. Weighted automata and weighted logics. Theor. Comput.
Sci., 380(1-2):69–86, 2007. extended abstract in ICALP 2005. doi:10.1016/j.tcs.2007.
02.055.

12 Manfred Droste, Doreen Heusel, and Heiko Vogler. Weighted unranked tree automata over
tree valuation monoids and their characterization by weighted logics. In Andreas Maletti,
editor, Conference Algebraic Informatics CAI 2015, volume 9270 of LNCS, pages 90–102.
Springer, 2015. doi:10.1007/978-3-319-23021-4_9.

13 Manfred Droste, Werner Kuich, and Heiko Vogler, editors. Handbook of Weighted Automata.
EATCS Monographs in Theoretical Computer Science. Springer, 2009.

14 Manfred Droste and Ingmar Meinecke. Weighted automata and weighted MSO logics for
average and long-time behaviors. Inf. Comput., 220:44–59, 2012. doi:10.1016/j.ic.2012.
10.001.

15 Manfred Droste and Bundit Pibaljommee. Weighted nested word automata and logics
over strong bimonoids. Int. J. Found. Comput. Sci., 25(5):641–666, 2014. doi:10.1142/
S0129054114500269.

16 Manfred Droste and Heiko Vogler. Weighted tree automata and weighted logics. Theor.
Comput. Sci., 366(3):228–247, 2006. doi:10.1016/j.tcs.2006.08.025.

17 Samuel Eilenberg. Automata, Languages, and Machines, volume 59-A of Pure and Applied
Mathematics. Academic Press, 1974.

18 Calvin C. Elgot. Decision problems of finite automata design and related arithmetics. Trans.
Am. Math. Soc., 98(1):21–52, 1961.

19 E. Allen Emerson. Temporal and modal logic. In Handbook of Theoretical Computer
Science, Volume B, pages 995–1072. MIT Press, 1990.

20 Robert W. Floyd. Syntactic analysis and operator precedence. J. ACM, 10(3):316–333,
1963.

21 D. Grune and C. J. Jacobs. Parsing techniques: a practical guide. Springer, New York,
2008.

22 Donald E. Knuth. Semantics of context-free languages. Mathematical Systems Theory,
2(2):127–145, 1968.

23 Werner Kuich and Arto Salomaa. Semirings, Automata, Languages, volume 6 of EATCS
Monographs in Theoretical Computer Science. Springer, 1986.

24 Clemens Lautemann, Thomas Schwentick, and Denis Thérien. Logics for context-free lan-
guages. In Leszek Pacholski and Jerzy Tiuryn, editors, Computer Science Logic, Selected
Papers, volume 933 of LNCS, pages 205–216. Springer, 1994.

25 Violetta Lonati, Dino Mandrioli, Federica Panella, and Matteo Pradella. Operator prece-
dence languages: Their automata-theoretic and logic characterization. SIAM J. Comput.,
44(4):1026–1088, 2015. doi:10.1137/140978818.

26 Christian Mathissen. Weighted logics for nested words and algebraic formal power series.
Logical Methods in Computer Science, 6(1), 2010. Selected papers of ICALP 2008.

27 Robert McNaughton. Parenthesis grammars. J. ACM, 14(3):490–500, 1967.
28 Robert McNaughton and Seymour Papert. Counter-free Automata. MIT Press, Cambridge,

USA, 1971.
29 Kurt Mehlhorn. Pebbling mountain ranges and its application of DCFL-recognition. In

Automata, Languages and Programming, ICALP 1980, volume 85 of LNCS, pages 422–435,
1980.

30 Maurice Nivat. Transductions des langages de Chomsky. Ann. de l’Inst. Fourier, 18:339–
455, 1968.

31 Arto Salomaa and Matti Soittola. Automata-Theoretic Aspects of Formal Power Series.
Texts and Monographs in Computer Science. Springer, 1978.

http://dx.doi.org/10.1016/j.tcs.2007.02.055
http://dx.doi.org/10.1016/j.tcs.2007.02.055
http://dx.doi.org/10.1007/978-3-319-23021-4_9
http://dx.doi.org/10.1016/j.ic.2012.10.001
http://dx.doi.org/10.1016/j.ic.2012.10.001
http://dx.doi.org/10.1142/S0129054114500269
http://dx.doi.org/10.1142/S0129054114500269
http://dx.doi.org/10.1016/j.tcs.2006.08.025
http://dx.doi.org/10.1137/140978818


M. Droste, S. Dück, D. Mandrioli, and M. Pradella 31:15

32 Marcel Paul Schützenberger. On the definition of a family of automata. Inf. Control,
4(2-3):245–270, 1961.

33 James Thatcher. Characterizing derivation trees of context-free grammars through a gen-
eralization of finite automata theory. Journ. of Comp. and Syst.Sc., 1:317–322, 1967.

34 Boris A. Trakhtenbrot. Finite automata and logic of monadic predicates (in Russian).
Doklady Akademii Nauk SSR, 140:326–329, 1961.

35 Burchard von Braunmühl and Rutger Verbeek. Input-driven languages are recognized in
log n space. In Proceedings of the Symposium on Fundamentals of Computation Theory,
volume 158 of LNCS, pages 40–51. Springer, 1983.

MFCS 2017





Model Checking and Validity in Propositional and
Modal Inclusion Logics∗

Lauri Hella1, Antti Kuusisto2, Arne Meier3, and Jonni Virtema4

1 University of Tampere, Finland
lauri.hella@uta.fi

2 University of Bremen, Germany
antti.j.kuusisto@gmail.com

3 Leibniz Universität Hannover, Germany
meier@thi.uni-hannover.de

4 University of Helsinki, Helsinki, Finland
jonni.virtema@helsinki.fi

Abstract
Propositional and modal inclusion logic are formalisms that belong to the family of logics based
on team semantics. This article investigates the model checking and validity problems of these
logics. We identify complexity bounds for both problems, covering both lax and strict team
semantics. By doing so, we come close to finalising the programme that ultimately aims to
classify the complexities of the basic reasoning problems for modal and propositional dependence,
independence, and inclusion logics.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases Inclusion Logic, Model Checking, Complexity

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.32

1 Introduction

Team semantics is the mathematical framework of modern logics of dependence and inde-
pendence, which, unlike Tarski semantics, is not based on singletons as satisfying elements
(e.g., first-order assignments or points of a Kripke structure) but on sets of such elements.
More precisely, a first-order team is a set of first-order assignments that have the same
domain of variables. As a result, a team can be interpreted as a database table, where
variables correspond to attributes and assignments to records. Team semantics originates
from the work of Hodges [17], where it was shown that Hintikka’s IF-logic can be based on a
compositional (as opposed to game-theoretic) semantics. In 2007, Väänänen [24] proposed a
fresh approach to logics of dependence and independence. Väänänen adopted team semantics
as a core notion for his dependence logic. Dependence logic extends first-order logic by atomic
statements such as the value of variable x is determined by the value of y. Such a statement
is not meaningful under a single assignment, however, when evaluated over a team, such a
statement corresponds precisely to functional dependence of database theory when the team
is interpreted as a database table.

∗ The second and the last author acknowledges support from Jenny and Antti Wihuri Foundation. The
last author is also supported by the grant 292767 of the Academy of Finland. The third author is
supported by the DFG grant ME 4279/1-1. We thank the anonymous referees for their comments.

© Lauri Hella, Antti Kuusisto, Arne Meier, and Jonni Virtema;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 32; pp. 32:1–32:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.32
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


32:2 Model Checking and Validity in Propositional and Modal Inclusion Logics

Besides functional dependence, there are many other important dependency notions used
in fields like statistics and database theory, which give rise to interesting logics based on team
semantics. The two most widely studied of these new logics are independence logic of Grädel
and Väänänen [10], and inclusion logic of Galliani [5]. Inclusion logic extends first-order logic
by atomic statements of the form x ⊆ y, which is satisfied in a team X if any value that
appears as a value for x in X also appears as a value of y in X. Dependence and independence
logics are equi-expressive with existential second-order logic and thus capture the complexity
class NP [24, 10]. Surprisingly, inclusion logic has the same expressive power as positive
greatest fixed point logic GFP+ [7]. Since on finite structures, GFP+ coincides with least fixed
point logic LFP, it follows from the Immermann-Vardi-Theorem that inclusion logic captures
the complexity class P on finite ordered structures. Interestingly under a semantical variant of
inclusion logic called strict semantics the expressive power of inclusion logic rises to existential
second-order logic [6]. Moreover, the fragment of inclusion logic (under strict semantics)
in which only k universally quantified variables may occur captures the complexity class
NTIMERAM(nk) (i.e., structures that can be recognised by a nondeterministic random access
machine in time O(nk)) [11]. The above characterisations exemplify that, indeed, inclusion
logic and its fragments have very compelling descriptive complexity-theoretic properties.

In this paper, we study propositional and modal inclusion logic under both the standard
semantics (i.e., lax semantics) and strict semantics. The research around propositional
and modal logics with team semantics has concentrated on classifying the complexity and
definability of the related logics. Due to very active research efforts, the complexity and
definability landscape of these logics is understood rather well; see the survey of Durand
et al. [4] and the references therein for an overview of the current state of the research.
In the context of propositional logic (modal logic, resp.) a team is a set of propositional
assignments with a common domain of variables (a subset of the domain a Kripke structure,
resp.). Extended propositional inclusion logic (extended modal inclusion logic, resp.) extends
propositional logic (modal logic, resp.) with propositional inclusion atoms ϕ ⊆ ψ, where ϕ
and ψ are formulae of propositional logic (modal logic, resp.). Inclusion logics have fascinating
properties also in the propositional setting. The following definability results hold for the
standard lax semantics. A class of team pointed Kripke models is definable in extended
modal inclusion logic iff (M, ∅) is in the class for every model M, the class is closed under
taking unions, and the class is closed under the so-called team k-bisimulation, for some finite
k [16]. From this, a corresponding characterisation for extended propositional inclusion logic
directly follows: a class of propositional teams is definable in extended propositional inclusion
logic iff the empty team is in the class, and the class is closed under taking unions. In [21, 22]
(global) model definability and frame definability of team based modal logics are studied. It
is shown that surprisingly, in both cases, (extended) modal inclusion logic collapses to modal
logic.

This paper investigates the complexity of the model checking and the validity problem
for propositional and modal inclusion logic. The complexity of the satisfiability problem of
modal inclusion logic was studied by Hella et al. [15]. The study on the validity problem
of propositional inclusion logic was initiated by Hannula et al. [12], where the focus was on
more expressive logics in the propositional setting. Consequently, the current paper directly
extends the research effort initiated in these papers. It is important to note that since the
logics studied in this paper are not closed under taking negations, the connection between
the satisfiability problem and the validity problem fails. In [12] it was shown that, under lax
semantics, the validity problem for propositional inclusion logic is coNP-complete. Here we
obtain an identical result for the strict semantics. However, surprisingly, for model checking



L. Hella, A. Kuusisto, A. Meier, and J. Virtema 32:3

the picture looks quite different. We establish that whereas the model checking problem
for propositional inclusion logic is P-complete under lax semantics, the problem becomes
NP-complete for the strict variant. Also surprisingly, for model checking in the modal setting,
we obtain the identical results (as in the propositional setting): modal inclusion logic is
P-complete under lax semantics and NP-complete under strict semantics. Nevertheless, for
the validity problem, the modal variants are much more complex than the propositional ones;
we establish coNEXP-hardness for both strict and lax semantics.

2 Propositional logics with team semantics

Let D be a finite, possibly empty set of proposition symbols. A function s : D → {0, 1} is
called an assignment. A set X of assignments s : D → {0, 1} is called a team. The set D is the
domain of X. We denote by 2D the set of all assignments s : D → {0, 1}. If ~p = (p1, . . . , pn)
is a tuple of propositions and s is an assignment, we write s(~p) for (s(p1), . . . , s(pn)).

Let Φ be a set of proposition symbols. The syntax of propositional logic PL(Φ) is given
by the following grammar: ϕ ::= p | ¬p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ), where p ∈ Φ.

We denote by |=PL the ordinary satisfaction relation of propositional logic defined via
assignments in the standard way. Next we give team semantics for propositional logic.

I Definition 1 (Lax team semantics). Let Φ be a set of atomic propositions and let X be a
team. The satisfaction relation X |= ϕ is defined as follows.

X |= p ⇔ ∀s ∈ X : s(p) = 1,
X |= ¬p ⇔ ∀s ∈ X : s(p) = 0.

X |= (ϕ ∧ ψ) ⇔ X |= ϕ and X |= ψ.

X |= (ϕ ∨ ψ) ⇔ Y |= ϕ and Z |= ψ, for some Y, Z such that Y ∪ Z = X.

The lax team semantics is considered to be the standard semantics for team-based logics.
In this paper, we also consider a variant of team semantics called the strict team semantics.
In strict team semantics, the above clause for disjunction is redefined as follows:

X |=str (ϕ∨ψ) ⇔ Y |= ϕ and Z |= ψ, for some Y, Z such that Y ∩ Z = ∅ and Y ∪ Z = X.

When L denotes a team-based propositional logic, we let Lstr denote the variant of the logic
with strict semantics. Moreover, in order to improve readability, for strict semantics we use
|=str instead of |=. As a result lax semantics is used unless otherwise specified. The next
proposition shows that the team semantics and the ordinary semantics for propositional logic
defined via assignments (denoted by |=PL) coincide.

I Proposition 2 ([24]). Let ϕ be a formula of propositional logic and let X be a propositional
team. Then X |= ϕ iff ∀s ∈ X : s |=PL ϕ.

The syntax of propositional inclusion logic PInc(Φ) is obtained by extending the syntax
of PL(Φ) by the grammar rule ϕ ::= ~p ⊆ ~q, where ~p and ~q are finite tuples of proposition
variables with the same length. The semantics for propositional inclusion atoms is defined as
follows:

X |= ~p ⊆ ~q iff ∀s ∈ X ∃t ∈ X : s(~p) = t(~q).

I Remark. Extended propositional inclusion logic is the variant of PInc in which inclusion
atoms of the form ~ϕ ⊆ ~ψ, where ~ϕ and ~ψ are tuples of PL-formulae, are allowed. Observe
that this extension does not increase the complexity of the logic and on that account, in this
paper, we only consider the non-extended variant.

MFCS 2017



32:4 Model Checking and Validity in Propositional and Modal Inclusion Logics

p q r

s1 1 0 0
s2 1 1 1
s3 0 1 0

M :
w1 w2 w3

s1 s2 s3

Figure 1 Assignments for teams in Example 4 and the Kripke model for Example 19.

Table 1 Complexity of the satisfiability, validity and model checking problems for propositional
logics under both systems of semantics. The shown complexity classes refer to completeness results.
† In [15] NEXP-completeness is claimed. However there is a mistake in the proof and the authors of
[15] now have a proof for EXP-completeness.

Satisfiability Validity Model checking

strict lax strict lax strict lax

PL NP [3, 19] coNP [3, 19] NC1 [1]
PInc EXP† EXP [15] coNP [Th. 6] coNP [12] NP [Th. 14] P [Th. 10]

Note that PInc is not a downward closed logic1. However, analogously to FO-inclusion-
logic [5], satisfaction of PInc-formulas is closed under taking unions.

I Proposition 3 (Closure under unions). Let ϕ ∈ PInc and let Xi, for i ∈ I, be teams. Suppose
that Xi |= ϕ for each i ∈ I. Then

⋃
i∈I Xi |= ϕ.

Similarly as in first-order team semantics [5], also for propositional logic the strict and
the lax semantics coincide; meaning that X |= ϕ iff X |=str ϕ for all X and ϕ. However this
does not hold for propositional inclusion logic, for the following example shows that PIncstr
is not union closed. Moreover, we will show that the two different semantics lead to different
complexities for the related model checking problems.

I Example 4. Let s1, s2, and s3 be as in Figure 1 and define ϕ :=
(
p∧(p ⊆ r)

)
∨
(
q∧(q ⊆ r)

)
.

Note that {s1, s2} |=str ϕ and {s2, s3} |=str ϕ, but {s1, s2, s3} 6|=str ϕ.

However, PIncstr satisfies a useful weaker form of union closure: it is straightforward to
prove by an induction on the formula structure that it is closed under unions of singleton
teams.

I Lemma 5. Let X be a team and ϕ ∈ PIncstr. If {s} |=str ϕ for every s ∈ X, then X |=str ϕ.

3 Complexity of propositional inclusion logic

We now define the model checking, satisfiability, and validity problems in the context of
team semantics. Let L be a propositional logic with team semantics. A formula ϕ ∈ L is
satisfiable, if there exists a non-empty team X such that X |= ϕ. A formula ϕ ∈ L is valid if
X |= ϕ holds for all teams X such that the propositions in ϕ are in the domain of X. The

1 A logic L is downward closed if “X |= ϕ and Y ⊆ X implies Y |= ϕ” holds for every formula ϕ ∈ L and
teams X and Y .



L. Hella, A. Kuusisto, A. Meier, and J. Virtema 32:5

satisfiability problem SAT(L) and the validity problem VAL(L) are defined in an obvious
way: Given a formula ϕ ∈ L, decide whether the formula is satisfiable (valid, respectively).
For the model checking problem MC(L) we consider combined complexity: Given a formula
ϕ ∈ L and a team X, decide whether X |= ϕ. See Table 1 for known complexity results for
PL and PInc, together with partial results of this paper.

It was shown by Hannula et al. [12] that the validity problem of PInc is coNP-complete.
Here we establish that the corresponding problem for PIncstr is also coNP-complete. Our
proof is similar to theirs [12], except that instead of union closure we use Lemma 5.

I Theorem 6. The validity problem for PIncstr is coNP-complete w.r.t. ≤log
m .

Proof Sketch. The coNP-hardness follows from the fact that PL is a sublogic of PIncstr and
since the validity problem of PL is coNP-hard. On the other hand, by Lemma 5, a formula
ϕ ∈ PIncstr is valid iff it is satisfied by all singleton teams {s}. It is easy to see that, over a
singleton team {s}, any inclusion atom is equivalent to a short PL-formula. Consequently,
there is a short PL-formula ϕ∗ which is valid iff ϕ is valid. Since VAL(PL) is in coNP, the
same holds for VAL(PIncstr). J

3.1 Model checking in lax semantics is P-complete
In this section we construct a reduction from the monotone circuit value problem to the
model checking problem of PInc. For a deep introduction to circuits see Vollmer [25].

I Definition 7. A monotone Boolean circuit with n input gates and one output gate
is a 3-tuple C = (V,E, α), where (V,E) is a finite, simple, directed, acyclic graph, and
α : V → {∨,∧, x1, . . . , xn} is a function such that the following conditions hold:
1. Every v ∈ V has in-degree 0 or 2.
2. There exists exactly one w ∈ V with out-degree 0. We call this node w the output gate of

C and denote it by gout.
3. If v ∈ V is a node with in-degree 0, then α(v) ∈ {x1, . . . , xn}.
4. If v ∈ V has in-degree 2, then α(v) ∈ {∨,∧}.
5. For each 1 ≤ i ≤ n, there exists exactly one v ∈ V with α(v) = xi.

Let C = (V,E, α) be a monotone Boolean circuit with n input gates and one output gate.
Any sequence b1, . . . , bn ∈ {0, 1} of bits of length n is called an input to the circuit C. A
function β : V → {0, 1} defined such that

β(v) :=


bi if α(v) = xi

min
(
β(v1), β(v2)

)
if α(v) = ∧, where v1 6= v2 and (v1, v), (v2, v) ∈ E,

max
(
β(v1), β(v2)

)
if α(v) = ∨, where v1 6= v2 and (v1, v), (v2, v) ∈ E.

is called the valuation of the circuit C under the input b1, . . . , bn. The output of the circuit
C is then defined to be β(gout).

The monotone circuit value problem (MCVP) is the following decision problem: Given a
monotone circuit C and an input b1, . . . , bn ∈ {0, 1}, is the output of the circuit 1?

I Proposition 8 ([9]). MCVP is P-complete w.r.t. ≤log
m reductions.

I Lemma 9. MC(PInc) under lax semantics is P-hard w.r.t. ≤log
m .

MFCS 2017



32:6 Model Checking and Validity in Propositional and Modal Inclusion Logics

Proof. We will establish a ≤log
m -reduction from MCVP to the model checking problem

of PInc under lax semantics. Since MCVP is P-complete, the claim follows. More pre-
cisely, we will show how to construct, for each monotone Boolean circuit C with n in-
put gates and for each input ~b for C, a team XC,~b and a PInc-formula ϕC such that
XC,~b |= ϕC iff the output of the circuit C with the input ~b is 1.

We use teams to encode valuations of the circuit. For each gate vi of a given circuit, we
identify an assignment si. The crude idea is that if si is in the team under consideration, the
value of the gate vi with respect to the given input is 1. The formula ϕC is used to quantify
a truth value for each Boolean gate of the circuit, and then for checking that the truth values
of the gates propagate correctly. We next define the construction formally.

Let C = (V,E, α) be a monotone Boolean circuit with n input gates and one output gate
and let ~b = (b1 . . . bn) ∈ {0, 1}n be an input to the circuit C. We define that V = {v0, . . . , vm}
and that v0 is the output gate of C. Define

τC := {p0, . . . , pm, p>, p⊥} ∪ {pk=i∨j | i < j, α(vk) = ∨, and (vi, vk), (vj , vk) ∈ E}.

For each i ≤ m, we define the assignment si : τC → {0, 1} as follows:

si(p) :=


1 if p = pi or p = p>,

1 if p = pk=i∨j or p = pk=j∨i for some j, k ≤ m,
0 otherwise.

Furthermore, we define s⊥(p) = 1 iff p = p⊥ or p = p>. We note that the assignment s⊥
will be the only assignment that maps p⊥ to 1. We make use of the fact that for each gate
vi of C, it holds that s⊥(pi) = 0. We define

XC,~b
:=
{
si | α(vi) ∈ {∧,∨}

}
∪
{
si | α(vi) ∈ {xi | bi = 1}

}
∪ {s⊥},

that is, XC,~b consists of assignments for each of the Boolean gates, assignments for those
input gates that are given 1 as an input, and of the auxiliary assignment s⊥.

Let X be any nonempty subteam of XC,~b such that s⊥ ∈ X. We have

X |= p> ⊆ p0 iff s0 ∈ X
X |= pi ⊆ pj iff (si ∈ X implies sj ∈ X) (1)
X |= pk ⊆ pk=i∨j iff (i < j, (vi, vk), (vj , vk) ∈ E,α(vk) = ∨

and sk ∈ X implies that si ∈ X or sj ∈ X)

Recall the intuition that si ∈ X should hold iff the value of the gate vi is 1. Define

ψout=1 := p> ⊆ p0,

ψ∧ :=
∧
{pi ⊆ pj | (vj , vi) ∈ E and α(pi) = ∧},

ψ∨ :=
∧
{pk ⊆ pk=i∨j | i < j, (vi, vk) ∈ E, (vj , vk) ∈ E, and α(vk) = ∨},

ϕC := ¬p⊥ ∨ (ψout=1 ∧ ψ∧ ∧ ψ∨).

Now observe that XC,~b |= ϕC iff the output of C with the input ~b is 1.
The idea of the reduction is the following: The disjunction in φC is used to guess a team

Y for the right disjunct that encodes the valuation β of the circuit C. The right disjunct
is then evaluated with respect to the team Y with the intended meaning that β(vi) = 1



L. Hella, A. Kuusisto, A. Meier, and J. Virtema 32:7

whenever si ∈ Y . Note that Y is always as required in (1). The formula ψout=1 is used
to state that β(v0) = 1, whereas the formulae ψ∧ and ψ∨ are used to propagate the truth
value 1 down the circuit. The assignment s⊥ and the proposition p⊥ are used as an auxiliary
to make sure that Y is nonempty and to deal with the propagation of the value 0 by the
subformulae of the form pi ⊆ pj . Finally, it is easy to check that the reduction can be
computed in logspace. J

For the proof of the above lemma it is not important that lax semantics is considered; the
same proof works also for the strict semantics. However, as we will show in the next section,
we can show a stronger result for the model checking problem of PIncstr; namely that it is
NP-hard. In Section 5.1 we will show that the model checking problem for modal inclusion
logic with lax semantics is in P (Lemma 21). Since PInc is essentially a fragment of this logic,
by combining Lemmas 9 and 21, we obtain the following theorem.

I Theorem 10. MC(PInc) under lax semantics is P-complete w.r.t. ≤log
m .

3.2 Model checking in strict semantics is NP-complete
In this section we reduce the set splitting problem, a well-known NP-complete problem, to
the model checking problem of PIncstr.

I Definition 11. The set splitting problem is the following decision problem:
Input: A family F of subsets of a finite set S.
Problem: Do there exist subsets S1 and S2 of S such that

1. S1 and S2 are a partition of S (i.e., S1 ∩ S2 = ∅ and S1 ∪ S2 = S),
2. for each A ∈ F , there exist a1, a2 ∈ A such that a1 ∈ S1 and a2 ∈ S2?

I Proposition 12 ([8]). The set splitting problem is NP-complete w.r.t. ≤log
m .

The following proof relies on the fact that strict semantics is considered. It cannot hold
for lax semantics unless P = NP.

I Lemma 13. MC(PIncstr) is NP-hard with respect to ≤log
m .

Proof. We give a reduction from the set splitting problem to the model checking problem of
PInc under strict semantics.

Let F be an instance of the set splitting problem. We stipulate that F = {B1, . . . , Bn}
and that

⋃
F = {a1, . . . , ak}, where n, k ∈ N. We will introduce fresh propositions pi and

qj for each point ai ∈
⋃
F and set Bj ∈ F . We will then encode the family of sets F by

assignments over these propositions; each assignment si will correspond to a unique point ai.
Formally, let τF denote the set {p1, . . . , pk, q1, . . . , qn, p>, pc, pd} of propositions. For each
i ∈ {1, . . . , k, c, d}, we define the assignment si : τF → {0, 1} as follows:

si(p) :=


1 if p = pi or p = p>,

1 if, for some j, p = qj and ai ∈ Bj ,
0 otherwise.

Define XF := {s1, . . . , sk, sc, sd}, that is, XF consists of assignments si corresponding to
each of the points ai ∈

⋃
F and of two auxiliary assignments sc and sd. Note that the only

assignment in XF that maps pc (pd, resp.) to 1 is sc (sd, resp.) and that every assignment

MFCS 2017



32:8 Model Checking and Validity in Propositional and Modal Inclusion Logics

maps p> to 1. Moreover, note that for 1 ≤ i ≤ k and 1 ≤ j ≤ n, si(qj) = 1 iff ai ∈ Bj . Now
define

ϕF :=
(
¬pc ∧

∧
i≤n

p> ⊆ qi
)
∨
(
¬pd ∧

∧
i≤n

p> ⊆ qi
)
.

We claim that XF |=str ϕF iff the output of the set splitting problem with input F is
“yes”. J

In Section 5.1 we establish that the model checking problem of modal inclusion logic with
strict semantics is in NP (Theorem 24). Since PIncstr is essentially a fragment of this logic,
together with Lemma 13, we obtain the following theorem.

I Theorem 14. MC(PIncstr) is NP-complete with respect to ≤log
m .

4 Modal logics with team semantics

Let Φ be a set of proposition symbols. The syntax of modal logic ML(Φ) is generated by
the following grammar: ϕ ::= p | ¬p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ♦ϕ | �ϕ,where p ∈ Φ. By ϕ⊥ we
denote the formula that is obtained from ¬ϕ by pushing all negation symbols to the atomic
level using the standard duality between ∧ (�) and ∨ (♦). A (Kripke) Φ-model is a tuple
M = (W,R, V ), where W , called the domain of M, is a non-empty set, R ⊆ W ×W is a
binary relation, and V : Φ→ P(W ) is a valuation of the proposition symbols. By |=ML we
denote the satisfaction relation of modal logic that is defined via pointed Φ-models in the
standard way. Any subset T of the domain of a Kripke model M is called a team of M.
Before we define team semantics for ML, we introduce some auxiliary notation.

I Definition 15. Let M = (W,R, V ) be a model and T and S teams of M. Define that

R[T ] := {w ∈W | ∃v ∈ T s.t. vRw} and R−1[T ] := {w ∈W | ∃v ∈ T s.t. wRv}.

For teams T and S of M, we write T [R]S if S ⊆ R[T ] and T ⊆ R−1[S].

Accordingly, T [R]S holds if and only if for every w ∈ T , there exists some v ∈ S such
that wRv, and for every v ∈ S, there exists some w ∈ T such that wRv. We are now ready
to define team semantics for ML.

I Definition 16 (Lax team semantics). Let M be a Kripke model and T a team of M. The
satisfaction relation M, T |= ϕ for ML(Φ) is defined as follows.

M, T |= p ⇔ w ∈ V (p) for every w ∈ T .
M, T |= ¬p ⇔ w 6∈ V (p) for every w ∈ T .

M, T |= (ϕ ∧ ψ) ⇔ M, T |= ϕ and M, T |= ψ.

M, T |= (ϕ ∨ ψ) ⇔ M, T1 |= ϕ and M, T2 |= ψ for some T1 and T2 s.t. T1 ∪ T2 = T .

M, T |= ♦ϕ ⇔ M, T ′ |= ϕ for some T ′ s.t. T [R]T ′.
M, T |= �ϕ ⇔ M, T ′ |= ϕ, where T ′ = R[T ].

Analogously to the propositional case, we also consider the strict variant of team semantics
for modal logic. In the strict team semantics, we have the following alternative semantic
definitions for the disjunction and diamond (where W denotes the domain of M).

M, T |=str (ϕ ∨ ψ) ⇔ M, T1 |= ϕ and M, T2 |= ψ

for some T1 and T2 such that T1 ∪ T2 = T and T1 ∩ T2 = ∅.
M, T |=str ♦ϕ ⇔ M, f(T ) |= ϕ for some f : T →W s.t. ∀w ∈ T : wRf(w).



L. Hella, A. Kuusisto, A. Meier, and J. Virtema 32:9

Table 2 Complexity of satisfiability, validity and model checking for modal logics under both
strict and lax semantics. The given complexity classes refer to completeness results and “-h.” denotes
hardness. The complexities for Minc and EMinc coincide, see Theorems 23, 24, and 26.
† In [15] NEXP-completeness is claimed. However there is a mistake in the proof and the authors of
[15] now have a proof for EXP-completeness.

Satisfiability Validity Model checking

strict lax strict lax strict lax

ML PSPACE [18] PSPACE [18] P [2, 23]
Minc EXP† EXP [15] coNEXP-h. [Th. 25] coNEXP-h. [Th. 25] NP [Th. 24] P [Th. 23]

When L is a team-based modal logic, we let Lstr to denote its variant with strict semantics.
As in the propositional case, for strict semantics we use |=str instead of |=. The formulae of
ML have the following flatness property.

I Proposition 17 (Flatness, see, e.g., [4]). Let M be a Kripke model and T be a team of M.
Then, for every formula ϕ of ML(Φ): M, T |= ϕ ⇔ ∀w ∈ T : M, w |=ML ϕ.

The syntax of modal inclusion logic Minc(Φ) and extended modal inclusion logic EMinc(Φ)
is obtained by extending the syntax of ML(Φ) by the following grammar rule for each n ∈ N:

ϕ ::= ϕ1, . . . , ϕn ⊆ ψ1, . . . , ψn,

where ϕ1, ψ1, . . . , ϕn, ψn ∈ ML(Φ). Additionally, for Minc(Φ), we require that ϕ1, ψ1, . . . ,
ϕn, ψn are proposition symbols. The semantics for these inclusion atoms is defined as follows:

M, T |= ϕ1, . . . , ϕn ⊆ ψ1, . . . , ψn ⇔ ∀w ∈ T∃v ∈ T :
∧

1≤i≤n
(M, {w} |= ϕi ⇔M, {v} |= ψi).

The following proposition is proven in the same way as the analogous results for first-order
inclusion logic [5]. A modal logic L is union closed if M, T |= ϕ and M, S |= ϕ implies that
M, T ∪ S |= ϕ, for every ϕ ∈ L.

I Proposition 18 (Union Closure). The logics ML, Minc, EMinc are union closed.

Analogously to the propositional case, it is easy to establish that for ML the strict and
the lax semantics coincide (for a proof in the first-order setting see [5]). Again, as in the
propositional case, this does not hold for Minc or EMinc. Note that since PIncstr is not union
closed, neither is Mincstr, nor EMincstr.

In contrary to the propositional case, Lemma 5 fails in the modal case as the following
example illustrates.

I Example 19. Let M be as depicted in the table of Figure 1 and let ϕ denote the PIncstr-
formula of Example 4. Now M, {wi} |=str �ϕ, for i ∈ {1, 2, 3}, but M, {w1, w2, w3} 6|=str �ϕ.

5 Model checking and validity in modal team semantics

The model checking, satisfiability, and validity problems in the context of team semantics of
modal logic are defined analogously to the propositional case. Let L(Φ) be a modal logic
with team semantics. A formula ϕ ∈ L(Φ) is satisfiable, if there exists a Kripke Φ-model

MFCS 2017



32:10 Model Checking and Validity in Propositional and Modal Inclusion Logics

M and a non-empty team T of M such that M, T |= ϕ. A formula ϕ ∈ L(Φ) is valid, if
M, T |= ϕ holds for every Φ-model M and every team T of M. The satisfiability problem
SAT(L) and the validity problem VAL(L) are defined in the obvious way: Given a formula
ϕ ∈ L, decide whether the formula is satisfiable (valid, respectively). For model checking
MC(L) we consider combined complexity: Given a formula ϕ ∈ L, a Kripke model M, and a
team T of M, decide whether M, T |= ϕ. See Table 2 for known complexity results on ML
and Minc, together with partial results of this paper.

5.1 Complexity of model checking
Let M be a Kripke model, T be a team of M, and ϕ be a formula of Minc. By maxsub(T, ϕ),
we denote the maximum subteam T ′ of T such that M, T ′ |= ϕ. Since Minc is union closed
(cf. Proposition 18), such a maximum subteam always exists.

For a proof of the following lemma, see the full version [14] of this article.

I Lemma 20. If ϕ is a proposition symbol, its negation, or an inclusion atom, then
maxsub(T, ϕ) can be computed in polynomial time with respect to |T |+ |ϕ|.

For the following lemma it is crucial that lax semantics is considered. The lemma cannot
hold for strict semantics unless P = NP.

I Lemma 21. MC(Minc) under lax semantics is in P.

Proof. We will present a labelling algorithm for model checking M, T |= ϕ. Let subOcc(ϕ)
denote the set of all occurrences of subformulae of ϕ. Below we denote occurrences as if they
were formulae, but we actually refer to some particular occurrence of the formula.

A function f : subOcc(ϕ)→ P(W ) is called a labelling function of ϕ in M. We will next
give an algorithm for computing a sequence f0, f1, f2, . . ., of such labelling functions.

Define f0(ψ) = W for each ψ ∈ subOcc(ϕ).
For odd i ∈ N, define fi(ψ) bottom up as follows:
1. For literal ψ, define fi(ψ) := maxsub(fi−1(ψ), ψ).
2. fi(ψ ∧ θ) := fi(ψ) ∩ fi(θ).
3. fi(ψ ∨ θ) := fi(ψ) ∪ fi(θ).
4. fi(♦ψ) := {w ∈ fi−1(♦ψ) | R[w] ∩ fi(ψ) 6= ∅}.
5. fi(�ψ) := {w ∈ fi−1(�ψ) | R[w] ⊆ fi(ψ)}.
For even i ∈ N larger than 0, define fi(ψ) top to bottom as follows:
1. Define fi(ϕ) := fi−1(ϕ) ∩ T .
2. If ψ = θ ∧ γ, define fi(θ) := fi(γ) := fi(θ ∧ γ).
3. If ψ = θ ∨ γ, define fi(θ) := fi−1(θ) ∩ fi(θ ∨ γ) and fi(γ) := fi−1(γ) ∩ fi(θ ∨ γ).
4. If ψ = ♦θ, define fi(θ) := fi−1(θ) ∩R[fi(♦θ)].
5. If ψ = �θ, define fi(θ) := fi−1(θ) ∩R[fi(�θ)].

By a straightforward induction on i, we can prove that fi+1(ψ) ⊆ fi(ψ) holds for every
ψ ∈ subOcc(ϕ). The only nontrivial induction step is that for fi+1(θ) and fi+1(γ), when
i+ 1 is even and ψ = θ ∧ γ. To deal with this step, observe that, by the definition of fi+1
and fi, we have fi+1(θ) = fi+1(γ) = fi+1(ψ) and fi(ψ) ⊆ fi(θ), fi(γ), and by the induction
hypothesis on ψ, we have fi+1(ψ) ⊆ fi(ψ).

It follows that there is an integer j ≤ 2 · |W | · |ϕ| such that fj+2 = fj+1 = fj . We
denote this fixed point fj of the sequence f0, f1, f2, . . . by f∞. By Lemma 20 the outcome of
maxsub(·, ·) is computable in polynomial time with respect to its input. That being, clearly
fi+1 can be computed from fi in polynomial time with respect to |W |+ |ϕ|. On that account
f∞ is also computable in polynomial time with respect to |W |+ |ϕ|.



L. Hella, A. Kuusisto, A. Meier, and J. Virtema 32:11

We will next prove by induction on ψ ∈ subOcc(ϕ) that M, f∞(ψ) |= ψ. Note first that
there is an odd integer i and an even integer j such that f∞ = fi = fj .

1. If ψ is a literal, the claim is true since f∞ = fi and fi(ψ) = maxsub(fi−1(ψ), ψ).
2. Assume next that ψ = θ ∧ γ, and the claim holds for θ and γ. Since f∞ = fj , we have

f∞(ψ) = f∞(θ) = f∞(γ), as a result, by induction hypothesis, M, f∞(ψ) |= θ ∧ γ.
3. In the case ψ = θ ∨ γ, we obtain the claim M, f∞(ψ) |= ψ by using the induction

hypothesis, and the observation that f∞(ψ) = fi(ψ) = fi(θ) ∪ fi(γ) = f∞(θ) ∪ f∞(γ).
4. Assume then that ψ = ♦θ. Since f∞ = fi, we have f∞(ψ) = {w ∈ fi−1(ψ) | R[w] ∩

f∞(θ) 6= ∅}, as a consequence f∞(ψ) ⊆ R−1[f∞(θ)]. On the other hand, since f∞ =
fj , we have f∞(θ) = fj−1(θ) ∩ R[f∞(ψ)], for this reason f∞(θ) ⊆ R[f∞(ψ)]. Thus
f∞(ψ)[R]f∞(θ), and using the induction hypothesis, we see that M, f∞(ψ) |= ψ.

5. Assume finally that ψ = �θ. Since f∞ = fi, we have R[f∞(ψ)] ⊆ f∞(θ). On the other
hand, since f∞ = fj , we have f∞(θ) ⊆ R[f∞(ψ)]. This shows that f∞(θ) = R[f∞(ψ)],
that being the case by the induction hypothesis, M, f∞(ψ) |= ψ.

In particular, if f∞(ϕ) = T , then M, T |= ϕ. Consequently, to complete the proof of
the lemma, it suffices to prove that the converse implication is true, as well. To prove this,
assume that M, T |= ϕ. Then for each ψ ∈ subOcc(ϕ), there is a team Tψ such that
1. Tϕ = T .
2. If ψ = θ ∧ γ, then Tψ = Tθ = Tγ .
3. If ψ = θ ∨ γ, then Tψ = Tθ ∪ Tγ .
4. If ψ = ♦θ, then Tψ[R]Tθ.
5. If ψ = �θ, then Tθ = R[Tψ].
6. If ψ is a literal, then M, Tψ |= ψ.

We prove by induction on i that Tψ ⊆ fi(ψ) for all ψ ∈ subOcc(ϕ). For i = 0, this is
obvious, since f0(ψ) = W for all ψ. Assume next that i+ 1 is odd and the claim is true for i.
We prove the claim Tψ ⊆ fi(ψ) by induction on ψ.
1. If ψ is a literal, then fi+1(ψ) = maxsub(fi(ψ), ψ). Since M, Tψ |= ψ, and by induction

hypothesis, Tψ ⊆ fi(ψ), the claim Tψ ⊆ fi+1(ψ) is true.
2. Assume that ψ = θ ∧ γ. By induction hypothesis on θ and γ, we have Tψ = Tθ ⊆ fi+1(θ)

and Tψ = Tγ ⊆ fi+1(γ). For this reason, we get Tψ ⊆ fi+1(θ) ∩ fi+1(γ) = fi+1(ψ).
3. The case ψ = θ ∨ γ is similar to the previous one; we omit the details.
4. If ψ = ♦θ, then fi+1(ψ) = {w ∈ fi(ψ) | R[w] ∩ fi+1(θ) 6= ∅}. By the two induction

hypotheses on i and θ, we have {w ∈ Tψ | R[w] ∩ Tθ 6= ∅} ⊆ fi+1(ψ). The claim follows
from this, since the condition R[w] ∩ Tθ 6= ∅ holds for all w ∈ Tψ.

5. The case ψ = �θ is again similar to the previous one, so we omit the details.

Assume then that i+ 1 is even and the claim is true for i. This time we prove the claim
Tψ ⊆ fi(ψ) by top to bottom induction on ψ.
1. By assumption, Tϕ = T , whence by induction hypothesis, Tϕ ⊆ fi(ϕ) ∩ T = fi+1(ϕ).
2. Assume that ψ = θ ∧ γ. By induction hypothesis on ψ, we have Tψ ⊆ fi+1(ψ). Since

Tψ = Tθ = Tγ and fi+1(ψ) = fi+1(θ) = fi+1(γ), this implies that Tθ ⊆ fi+1(θ) and
Tγ ⊆ fi+1(γ).

3. Assume that ψ = θ ∨ γ. Using the fact that Tθ ⊆ Tψ, and the two induction hypotheses
on i and ψ, we see that Tθ ⊆ fi(θ) ∩ Tψ ⊆ fi(θ) ∩ fi+1(ψ) = fi+1(θ). Similarly, we see
that Tγ ⊆ fi+1(γ).

MFCS 2017



32:12 Model Checking and Validity in Propositional and Modal Inclusion Logics

4. Assume that ψ = ♦θ. By the induction hypothesis on i, we have Tθ ⊆ fi(θ), and by the
induction hypothesis on ψ, we have Tθ ⊆ R[Tψ] ⊆ R[fi+1(ψ)]. Accordingly, we see that
Tθ ⊆ fi(θ) ∩R[fi+1(ψ)] = fi+1(θ).

5. The case ψ = �θ is similar to the previous one; we omit the details.

It follows now that T = Tϕ ⊆ f∞(ϕ). Since f∞(ϕ) ⊆ f2(ϕ) ⊆ T , we conclude that
f∞(ϕ) = T . This completes the proof of the implication M, T |= ϕ ⇒ f∞(ϕ) = T . J

The following lemma then follows, since in the context of model checking, we may replace
modal formulae that appear as parameters in inclusion atoms by fresh proposition symbols
with the same extension.

I Lemma 22. MC(EMinc) under lax semantics is in P.

By combining Lemmas 9, 21, and 22, we obtain the following theorem.

I Theorem 23. MC(Minc) and MC(EMinc) are P-complete w.r.t. ≤log
m .

I Theorem 24. MC(Mincstr) and MC(EMincstr) are NP-complete w.r.t. ≤log
m .

Proof. The NP-hardness follows from the propositional case, i.e., from Lemma 13.
In order to establish inclusion, we note that the obvious brute force algorithm for model

checking for EMinc works in NP: For disjunctions and diamonds, we use nondeterminism
to guess the correct partitions or successor teams, respectively. Conjunctions are dealt
with sequentially and for boxes the unique successor team can be computed by brute force
in quadratic time. Checking whether a team satisfies an inclusion atom or a (negated)
proposition symbol can be computed by brute force in polynomial time (this also follows
directly from Lemma 20). J

5.2 Complexity of validity
The following result involves a reduction from a complement problem of the validity problem
of dependency quantified Boolean formulas [20]. The details can be found in the full version
[14] of this article.

I Theorem 25. VAL(Minc) and VAL(Mincstr) are coNEXP-hard w.r.t. ≤log
m .

While the exact complexities of the problems VAL(Minc) and VAL(EMinc) remain open,
it is straightforward to establish that the complexities coincide. In the proof of the theorem
below, we introduce fresh proposition symbols for each modal formula that appears as a
parameter for an inclusion atom. We then replace these formulas by the fresh proposition
symbols and separately force, by using ML, that the extensions of the proposition symbols
and modal formulae are the same, respectively. See [14] for a detailed proof.

I Theorem 26. Let C be a complexity class that is closed under polynomial time reductions.
Then VAL(Minc) under lax (strict) semantics in complete for C if and only if VAL(EMinc)
under lax (strict) semantics in complete for C.

6 Conclusion

In this paper, we investigated the computational complexity of model checking and validity
for propositional and modal inclusion logic to complete the complexity landscape of these
problems in the mentioned logics. In particular, we gave emphasis to the subtle influence of



L. Hella, A. Kuusisto, A. Meier, and J. Virtema 32:13

which semantics is considered: strict or lax. The model checking problem for these logics
under strict semantics was shown to be NP-complete and under lax semantics P-complete.
The validity problem was shown to be coNP-complete for the propositional strict semantics
case, for the lax semantics coNP-completeness was established earlier by Hannula et al. [12].
For the modal case, we obtained a coNEXP lower bound under lax as well as strict semantics.
The upper bound is left open for further research. We however established that, if closed
under polynomial time reductions, the complexities of VAL(Minc) and VAL(EMinc), and
VAL(Mincstr) and VAL(EMincstr) coincide, respectively.

We conclude with an open problem. Let ML(∼) denote the extension of modal logic by
the contradictory negation ∼ with the following semantics: M, T |=∼ϕ iff M, T 6|= ϕ. What
is the complexity of VAL(ML(∼))? It is known that VAL(PL(∼)) is complete for alternating
exponential time with polynomially many alternations [13]; this is the best known lower
bound for VAL(ML(∼)). Decidability with non-elementary upper bound can be obtained,
e.g., by using team-bisimulation and Hintikka-types; no better upper bound is known.

References

1 S. R. Buss. The Boolean formula value problem is in ALOGTIME. In Proc. 19th STOC,
pages 123–131, 1987.

2 E. Clarke, E. A. Emerson, and A. Sistla. Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM ToPLS, 8(2):244–263, 1986.

3 S. A. Cook. The complexity of theorem proving procedures. In Proc. 3rd STOC, pages
151–158, 1971.

4 A. Durand, J. Kontinen, and H. Vollmer. Expressivity and complexity of dependence logic.
In S. Abramsky, J. Kontinen, J. Väänänen, and H. Vollmer, editors, Dependence Logic:
Theory and Applications, pages 5–32. Springer, 2016.

5 P. Galliani. Inclusion and exclusion dependencies in team semantics - on some logics of
imperfect information. Ann. Pure Appl. Logic, 163(1):68–84, 2012. doi:10.1016/j.apal.
2011.08.005.

6 P. Galliani, M. Hannula, and J. Kontinen. Hierarchies in independence logic. In Proc. 22nd
CSL, volume 23 of LIPIcs, pages 263–280, 2013.

7 P. Galliani and L. Hella. Inclusion logic and fixed point logic. In Proc. 22nd CSL, LIPIcs,
pages 281–295, 2013. doi:10.4230/LIPIcs.CSL.2013.281.

8 M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to the Theory of
NP-Completeness. Freeman, New York, 1979.

9 L. M. Goldschlager. The monotone and planar circuit value problems are log-space complete
for P. SIGACT News, 9:25–29, 1977.

10 E. Grädel and J. Väänänen. Dependence and independence. Studia Logica, 101(2):399–410,
2013.

11 M. Hannula and J. Kontinen. Hierarchies in independence and inclusion logic with strict
semantics. J. Log. Comput., 25(3):879–897, 2015. doi:10.1093/logcom/exu057.

12 M. Hannula, J. Kontinen, J. Virtema, and H. Vollmer. Complexity of propositional
independence and inclusion logic. In Proc. 40th MFCS, pages 269–280, 2015. doi:
10.1007/978-3-662-48057-1_21.

13 M. Hannula, J. Kontinen, J. Virtema, and H. Vollmer. Complexity of propositional logics
in team semantics. CoRR, extended version of [12], abs/1504.06135, 2015.

14 L. Hella, A. Kuusisto, A. Meier, and J. Virtema. Model checking and validity in proposi-
tional and modal inclusion logics. CoRR, abs/1609.06951, 2016.

MFCS 2017

http://dx.doi.org/10.1016/j.apal.2011.08.005
http://dx.doi.org/10.1016/j.apal.2011.08.005
http://dx.doi.org/10.4230/LIPIcs.CSL.2013.281
http://dx.doi.org/10.1093/logcom/exu057
http://dx.doi.org/10.1007/978-3-662-48057-1_21
http://dx.doi.org/10.1007/978-3-662-48057-1_21


32:14 Model Checking and Validity in Propositional and Modal Inclusion Logics

15 L. Hella, A. Kuusisto, A. Meier, and H. Vollmer. Modal inclusion logic: Being lax is
simpler than being strict. In Proc. 40th MFCS, pages 281–292, 2015. doi:10.1007/
978-3-662-48057-1_22.

16 L. Hella and J. Stumpf. The expressive power of modal logic with inclusion atoms. In Proc.
6th GandALF, pages 129–143, 2015. doi:10.4204/EPTCS.193.10.

17 W. Hodges. Compositional semantics for a language of imperfect information. Logic Journal
of the IGPL, 5(4):539–563, 1997.

18 R. Ladner. The computational complexity of provability in systems of modal propositional
logic. SIAM Journal on Computing, 6(3):467–480, 1977.

19 L. A. Levin. Universal sorting problems. Problems of Inform. Transm., 9:265–266, 1973.
20 G. Peterson, J. Reif, and S. Azhar. Lower bounds for multiplayer noncooperative games

of incomplete information. Computers & Math. with Applications, 41(7-8):957–992, 2001.
doi:10.1016/S0898-1221(00)00333-3.

21 K. Sano and J. Virtema. Characterizing frame definability in team semantics via the
universal modality. In Proc. of WoLLIC 2015, pages 140–155, 2015.

22 K. Sano and J. Virtema. Characterizing relative frame definability in team semantics via
the universal modality. In Proc. of WoLLIC 2016, pages 392–409, 2016.

23 P. Schnoebelen. The complexity of temporal logic model checking. In Proc. 4th AiML,
pages 393–436, 2002.

24 J. Väänänen. Dependence Logic. Cambridge University Press, 2007.
25 H. Vollmer. Introduction to Circuit Complexity – A Uniform Approach. Texts in Theoretical

Computer Science. Springer Verlag, Berlin Heidelberg, 1999.

http://dx.doi.org/10.1007/978-3-662-48057-1_22
http://dx.doi.org/10.1007/978-3-662-48057-1_22
http://dx.doi.org/10.4204/EPTCS.193.10
http://dx.doi.org/10.1016/S0898-1221(00)00333-3


Emptiness Problems for Integer Circuits
Dominik Barth1, Moritz Beck2, Titus Dose3, Christian Glaßer4,
Larissa Michler5, and Marc Technau6

1 Institute of Computer Science, University of Würzburg, Germany
2 Institute of Computer Science, University of Würzburg, Germany
3 Institute of Computer Science, University of Würzburg, Germany
4 Institute of Computer Science, University of Würzburg, Germany
5 Institute of Computer Science, University of Würzburg, Germany
6 Institute of Computer Science, University of Würzburg, Germany

Abstract
We study the computational complexity of emptiness problems for circuits over sets of natural
numbers with the operations union, intersection, complement, addition, and multiplication. For
most settings of allowed operations we precisely characterize the complexity in terms of com-
pleteness for classes like NL, NP, and PSPACE. The case where intersection, addition, and
multiplication is allowed turns out to be equivalent to the complement of polynomial identity
testing (PIT).

Our results imply the following improvements and insights on problems studied in earlier pa-
pers. We improve the bounds for the membership problem MC(∪,∩, ,+,×) studied by McKen-
zie and Wagner 2007 and for the equivalence problem EQ(∪,∩, ,+,×) studied by Glaßer et al.
2010. Moreover, it turns out that the following problems are equivalent to PIT, which shows
that the challenge to improve their bounds is just a reformulation of a major open problem in
algebraic computing complexity:

membership problem MC(∩,+,×) studied by McKenzie and Wagner 2007
integer membership problems MCZ(+,×) and MCZ(∩,+,×) studied by Travers 2006
equivalence problem EQ(+,×) studied by Glaßer et al. 2010

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases computational complexity, integer expressions, integer circuits, polyno-
mial identity testing

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.33

1 Introduction

Stockmeyer and Meyer [31] investigated membership and equivalence problems for integer
expressions, which are built up from single natural numbers using set operations ( ,∪,∩)
and pairwise addition (+). They also suggested to study expressions involving pairwise
multiplication (×). For example, the expression 1× 1 ∩ 1 describes the set of primes P.

The membership problem for expressions is the question of whether the set described
by a given expression contains some given natural number. The equivalence problem for
expressions asks whether two given expressions describe the same set. Restricting the set of
allowed operations results in problems of different complexities.

Wagner [33] introduced circuits over sets of natural numbers. These circuits describe
expressions in a succinct way. The input gates of such a circuit are labeled with natural
numbers, the inner gates compute set operations ( , ∪, ∩) and arithmetic operations (+, ×).
The following circuit has only 4 inner gates and describes the set of primes 1× 1 ∩ 1.

© Dominik Barth, Moritz Beck, Titus Dose, Christian Glaßer, Larissa Michler, and Marc Technau;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 33; pp. 33:1–33:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.33
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


33:2 Emptiness Problems for Integer Circuits

1 × ∩

A slightly larger circuit describes the set {n ∈ P | n − 2 ∈ P}, i.e., the set of those twin
primes p for which p− 2 is also prime. Hence the set described by this circuit is infinite if
and only if the twin prime conjecture holds.

1 × ∩

2 + ∩

Wagner [33], Yang [34], and McKenzie and Wagner [22] studied the complexity of membership
problems for circuits over natural numbers (MC): Here, for a given circuit C with numbers
assigned to the input gates, one has to decide whether a given number b belongs to the set
described by the circuit. Travers [32] and Breunig [6] considered membership problems for
circuits over integers (MCZ) and positive integers (MCN+), respectively. Glaßer et al [11]
investigated equivalence problems for circuits over sets of natural numbers (EQ), i.e., the
problem of deciding whether two given circuits compute the same set.

Satisfiability problems for circuits over sets of natural numbers, studied by Glaßer et al
[13], are a generalization of the membership problems investigated by McKenzie and Wagner
[22]: Here the circuits can have unassigned input gates. The question is, given a circuit
C with gates from O ⊆ {∪,∩, ,+,×}, and given a natural number b, does there exist an
assignment of natural numbers to the unassigned input gates such that b is contained in the
set described by the circuit?

Apart from the mentioned research on circuit problems there has been work on related
variants like functions computed by circuits [24] and constraint satisfaction problems over
natural numbers [12, 8].

In the present paper, we study emptiness problems for circuits over sets of natural numbers.
In contrast to membership and satisfiability problems, here the question is whether a given
circuit C with gates from O ⊆ {∪,∩, ,+,×} computes the empty set. We denote this
problem with EC(O). In extension of that, we also consider circuits with unassigned input
gates. For these we consider the problem Σ1-EC(O) (resp., Π1-EC(O)), which asks whether
the circuit computes the empty set for at least one assignment (resp., for all assignments).

Our contribution to emptiness problems. For most of the emptiness problems we precisely
characterize the complexity in terms of completeness for classes like NL, P, NP, PSPACE,
and coNEXP. In the remaining cases we obtain lower and upper bounds that do not match.
Our results are summarized in Table 1 in Section 6.

The case of EC(∩,+,×) is particularly interesting. We show that it is logspace many-one
equivalent to the complement of the polynomial identity testing (PIT), which asks whether
a polynomial (given as a circuit) is identically zero. The problems are similar, still the
proof of PIT ≤log

m EC(∩,+,×) has to address two essential differences: First, PIT contains a
universal quantifier (for all assignments the polynomial has to be zero), while EC(∩,+,×)
does not. Second, PIT is defined over Z, while EC(∩,+,×) is defined over N.

In several cases we obtain upper bounds for Σ1-EC(O) and Π1-EC(O) by observing that
if some assignment makes a circuit (non-)empty, then there exists a small such assignment.



D. Barth, M. Beck, T. Dose, C. Glaßer, L. Michler, and M. Technau 33:3

Depending on O we obtain this observation by one of the following techniques: The first
technique (e.g., used for Π1-EC(∩,+) ∈ coNP in Theorem 6) uses specific systems of linear
equations that consist of a large number of short equations. Such systems of equations have
small solutions by the theory of integer programming. The second technique (e.g., used for
EC(∩,+,×) ≡log

m Σ1-EC(∩,+,×) in Corollary 21) exploits the fact that the test of whether
a multivariate polynomial is identically zero is possible by evaluating this polynomial for a
fixed argument. The third technique (e.g., used for Σ1-EC(∪,∩, ,+) ∈ 2EXPSPACE and
Σ1-EC(∪,∩, ,×) ∈ 3EXPSPACE in Theorem 8) applies the decidability of Presburger and
Skolem arithmetic.

Regarding the most general case EC(∪,∩, ,+,×) we show that this problem is logspace
many-one equivalent to MC(∪,∩, ,+,×) and EQ(∪,∩, ,+,×), belongs to Rtt(Σ1), and is
≤log
m -hard for LNEXP. We leave open whether EC(∪,∩, ,+,×) is decidable and give evidence

for the difficulty of finding a decision algorithm.

Our contribution to questions from previous work. By the equivalence mentioned above,
our bounds for EC(∪,∩, ,+,×) improve the bounds for the problems MC(∪,∩, ,+,×) [22]
and EQ(∪,∩, ,+,×) [11] as follows. The lower bound is raised from NEXP to LNEXP and
the upper bound is slightly reduced from RT(Σ1) to Rtt(Σ1).

We prove that PIT is logspace many-one equivalent to MC(∩,+,×) studied in [22],
MCZ(+,×),MCZ(∩,+,×) studied in [32], and EQ(+,×) studied in [11]. This characterizes
the complexity of these problems and shows that the question for improved bounds is
equivalent to a well-studied, open problem in algebraic computing complexity.

Finally we show that EQ(∩,+,×) is ≤log
m -complete for the complement of the second

level of the Boolean hierarchy over PIT. This characterizes the complexity of this equivalence
problem and explains the difficulty of improving the known upper bound [11].

The intention of this article is to summarize results and to develop a feeling for the
proofs. The emphasis is on sketching several ideas at the expense of details. A comprehensive
presentation is provided in the technical report [4].

2 Preliminaries

Basic Notations. Let N (resp., Z) denote the set of natural numbers (resp., integers). N+

is the set of positive integers. For x ∈ Z the absolute value of x is denoted by abs(x), and
for a matrix of integers A = (ai,j) ∈ Zm×n for positive natural numbers m and n we define
||A||∞ = max{abs(ai,j) | 1 ≤ i ≤ m and 1 ≤ j ≤ n}.

L, NL, P, RP, BPP, NP, PSPACE, and NEXP denote standard complexity classes [23].
For a nondeterministic machine M , let accM (x) be the number of accepting paths of M
on input x. The class #L consists of all functions accM , where M is a nondeterministic
logarithmic-space-bounded machine. C=L is the class of problems A for which there exist
f, g ∈ #L such that for all inputs x it holds that x ∈ A⇔ f(x) = g(x). Further information
on counting classes can be found in [2].

Let Σi and Πi denote the levels of the arithmetical hierarchy. 2EXPSPACE, i.e., the class
of problems decidable by a deterministic algorithm in double exponential space 22nk

for some
k ∈ N, and 3EXPSPACE, which consists of the problems decidable in triple exponential
space. For complexity classes C let coC = {A | A ∈ C}. We denote by K the Σ1-complete
halting problem (for some fixed Gödelization).

Addition and multiplication are extended to sets of integers: Let A,B ⊆ Z. Then
A+B = {a+ b | a ∈ A, b ∈ B} and A×B = {a · b | a ∈ A, b ∈ B}.

MFCS 2017



33:4 Emptiness Problems for Integer Circuits

An oracle Turing machine is nonadaptive, if its queries are independent of the oracle
(i.e., for all x and all oracles B and B′, the computations MB(x) and MB′(x) have the
same sequence of queries). For sets A and B we say that A is Turing reducible to B

(A ≤T B), if there exists an oracle Turing machine M that accepts A with B as its oracle.
If M is nonadaptive, then A is truth-table reducible to B (A ≤tt B). A is logspace
Turing reducible to B (A ≤log

T B), if there exists a logarithmic-space-bounded oracle Turing
machine M (with one oracle tape) that accepts A with B as its oracle. If M ’s queries are
nonadaptive (i.e., independent of the oracle), then A is logspace truth-table reducible to B
(A ≤log

tt B). A is logspace disjunctive-truth-table reducible to B (A ≤log
dtt B), if there exists a

logspace computable function f such that for all x, f(x) = (y1, y2, . . . , yn) for some n ≥ 1
and χA(x) = max{χB(y1), χB(y2), . . . , χB(yn)}, where χS for a set S is the characteristic
function of S. A set A is logspace (resp., polynomial time) many-one reducible to B, in
notation A ≤log

m B (resp., A ≤p
m B), if there exists a logarithmic-space-computable (resp.,

polynomial-time-computable) function f such that χA(x) = χB(f(x)). For a complexity
class C we define Rtt(C) = {A | there is a C ∈ C with A ≤tt C}.

Definition of circuits. A circuit C = (V,E, gC) is a finite, directed, acyclic graph with
vertex set V ⊆ N and a designated vertex gC ∈ V . Here, graphs are allowed to have
multi-edges and are not required to be connected. We require that C is topologically ordered,
that is, if v, v′ ∈ V are vertices with v < v′, then there is no edge from v′ to v.

Let O ⊆ {∪,∩, ,+,×}. A partially assigned O-circuit (O-circuit for short) C =
(V,E, gC , α) is a circuit (V,E, gC) whose nodes are labeled by the labeling function α : V →
O ∪ N ∪ {�} such that each node has indegree ≤ 2, nodes with indegree 0 have labels
from N ∪ {�}, nodes with indegree 1 have label , and nodes with indegree 2 have labels
from O \ { }. In the context of circuits, nodes are also called gates. Input gates (i.e., gates
with indegree 0) with labels from N are called assigned input gates. Input gates with label �
are called unassigned. An O-circuit whose input gates are all assigned is called completely
assigned O-circuit. We use the term integer circuit for both partially assigned O-circuits and
completely assigned O-circuits.

There exists a deterministic logarithmic-space-bounded algorithm which on input of a
graph decides whether the input is a partially assigned O-circuit.

The set computed by a circuit. For an O-circuit C with unassigned input gates g1 <

· · · < gn and x1, . . . , xn ∈ N, let C(x1, . . . , xn) be the completely assigned O-circuit that is
obtained from C by modifying the labeling function α such that α(gi) = xi for i = 1, . . . , n.

For a completely assigned O-circuit C = (V,E, gC , α) we inductively define the set I(g;C)
computed by a gate g ∈ V by

I(g;C) =


{α(g)} ⊆ N if g has indegree 0 (g is an input gate),
N \ I(g′;C) if g = g′ (g is a complement gate),
I(g′;C)⊗ I(g′′;C) if g = g′ ⊗ g′′ (g is a gate of type ⊗ ∈ {∪,∩,+,×}).

The set computed by C is defined as I(C) = I(gC ;C).

Example. For unassigned inputs g0 and g1, consider the circuit C:



D. Barth, M. Beck, T. Dose, C. Glaßer, L. Michler, and M. Technau 33:5

g0

1

×
∩

g1

We write C = g0 × g1 ∩ 1 as an abbreviation. C(1, 1) computes the set of all primes, C(x, y)
for x = y ∈ P∪{0} computes the set {x}, and C(x, y) for all other (x, y) computes the empty
set.

I Definition 1. Let O ⊆ {∪,∩, ,+,×}. We define membership, emptiness, equivalence, and
satisfiability problems for circuits.

MC(O) df= {(C, b) | C is a completely assigned O-circuit and b ∈ I(C)}
Σ1-MC(O) df= {(C, b) | C is a partially assigned O-circuit with n unassigned inputs,

there exist x1, . . . , xn ∈ N s.t. b ∈ I(C(x1, . . . , xn))}
EQ(O) df= {(C1, C2) | C1, C2 are completely assigned O-circuits, I(C1) = I(C2)}1

EC(O) df= {C | C is a completely assigned O-circuit and I(C) = ∅}
Σ1-EC(O) df= {C | C is a partially assigned O-circuit with n unassigned inputs,

there exist x1, . . . , xn ∈ N s.t. I(C(x1, . . . , xn)) = ∅}
Π1-EC(O) df= {C | C is a partially assigned O-circuit with n unassigned inputs,

for all x1, . . . , xn ∈ N it holds I(C(x1, . . . , xn)) = ∅}
Σ1-NEC(O) df= Π1-EC(O)

The integer variants MCZ(O), ECZ(O), and Σ1-ECZ(O) are defined analogously (assigned
and unassigned inputs are from Z, the complement is defined with respect to Z). A systematic
study of the membership problems MCZ(O) was done by Travers [32].

We use the following abbreviations: we write n for the singleton {n}; we write C for
I(C), where C is a circuit; we write MC(∪,∩, ,+,×) for MC({∪,∩, ,+,×}) and the like.

3 Basic Results

We start with easy reductions between EC(O), Σ1-EC(O), Π1-EC(O), and MC(O).

I Lemma 2. Let O ⊆ {∪,∩, ,+,×} and E ∈ {EC,Σ1-EC,Π1-EC}.
1. If ∩ ∈ O, then MC(O) ≤log

m EC(O) and Σ1-MC(O) ≤log
m Σ1-NEC(O).

2. If × ∈ O, then EC(O) ≤log
m MC(O) and Σ1-NEC(O) ≤log

m Σ1-MC(O).
3. If O ⊆ {∪,+,×} or O ⊆ { }, then EC(O) = Σ1-EC(O) = Π1-EC(O) = ∅.
4. E({∪, } ∪ O) ≡log

m E({∩, } ∪ O) ≡log
m E({∪,∩, } ∪ O) for O ⊆ {+,×}.

5. E(O′) ≤log
m E(O) for O′ ⊆ O.

6. EC(O) ≤log
m Σ1-EC(O) and EC(O) ≤log

m Π1-EC(O).

The following bounds are obtained with minor effort from known results and Lemma 2.

I Theorem 3 ([22, 11, 13]).
1. EC(∪,∩,+,×) is ≤log

m -complete for coNEXP.
2. EC(∪,∩, ,+),EC(∪,∩, ,×) ∈ PSPACE.

1 In [11], equivalence problems for circuits are denoted by EC(O), which is in conflict with our notation
for emptiness problems. Therefore, we use the notation EQ(O) for equivalence problems.

MFCS 2017



33:6 Emptiness Problems for Integer Circuits

3. EC(∩,+) and EC(∩,×) are ≤log
m -hard for coC=L.

4. Π1-EC(∩,×) is ≤log
m -complete for coNP.

Circuits with solely set operations can express graph accessibility as well as evaluation
and satisfiability of Boolean circuits. This leads to the following results.

I Proposition 4.
1. EC(∩), Σ1-EC(∩), and Π1-EC(∩) are ≤log

m -complete for NL.
2. EC(∪,∩, ), EC(∪,∩), Σ1-EC(∪,∩), and Π1-EC(∪,∩) are ≤log

m -complete for P.
3. Σ1-EC(∪,∩, ) is ≤log

m -complete for NP and Π1-EC(∪,∩, ) is ≤log
m -complete for coNP.

4 Circuits with One Arithmetic Operation

4.1 Circuits without Complement
Here only those problems are relevant that admit intersection, since otherwise the circuits
compute non-empty sets.

By an induction on the structure of the circuit we obtain: C ∈ Σ1-EC(∩,+) if and only if
at least one of the circuits C(0, . . . , 0), C(1, 0, . . . , 0), C(0, 1, . . . , 0), . . . , C(0, 0, . . . , 1) belongs
to EC(∩,+). Hence Σ1-EC(∩,+) ≤log

dtt EC(∩,+). It is known that EC(∩,+) ∈ coC=L [11]
and coC=L is closed under ≤log

dtt [3]. This yields:

I Theorem 5. Σ1-EC(∩,+) ∈ coC=L.

We obtain several results that rely on an estimation by Schrijver [28] saying that systems
of linear equations consisting of arbitrarily many equations have solutions whose greatest
component is at most (32k)12n4 , where k is the greatest constant in the system and n the
number of variables. So there are “small solutions for huge systems of small equations”.

It is straightforward to see that the question of whether an {∩,+}-circuit C is in E(∩,+)
for E ∈ {EC,Σ1-EC,Π1-EC} can be answered by solving a system of linear equations in which
each unassigned input gate is represented by one variable and constants have polynomial
length in the size of the circuit. We extend this idea such that also emptiness problems that
allow unions can be reduced to similar problems regarding (sets of) equation systems. This
leads to the following results.

I Theorem 6. 1. Π1-EC(∩,+) is ≤log
m -complete for coNP.

2. EC(∪,∩,+) and EC(∪,∩,×) are ≤log
m -hard for PSPACE.

3. Σ1-EC(∪,∩,+),Π1-EC(∪,∩,+),Π1-EC(∪,∩,×) ∈ PSPACE.

The problems Σ1-EC and EC for the sets of operations {∩,×} and {∪,∩,×} will be
solved by a general tool given in Theorems 19, 20, and Corollary 21.

4.2 Circuits with Complement
4.2.1 Upper Bounds
Th(N; +,=) denotes the Presburger arithmetic, i.e., the first-order theory of N with addition.
Th(N;×,=,P ∪ {0, 1}) denotes the Skolem arithmetic with constants, i.e., the first-order
theory of N with multiplication and constants for 0, 1, and all primes.

I Theorem 7 ([9, 10, 14, 5]).
1. Th(N; +,=) ∈ 2EXPSPACE.
2. Th(N;×,=,P ∪ {0, 1}) ∈ 3EXPSPACE.



D. Barth, M. Beck, T. Dose, C. Glaßer, L. Michler, and M. Technau 33:7

The sets computed in the nodes of circuits over {∪,∩, ,+} and {∪,∩, ,×} can be expressed
by Presburger and Skolem formulas. These formulas can be constructed in polynomial time,
which allows to transfer the upper bounds of Presburger and Skolem arithmetic.

I Theorem 8.
1. Σ1-EC(∪,∩, ,+),Π1-EC(∪,∩, ,+) ∈ 2EXPSPACE.
2. Σ1-EC(∪,∩, ,×),Π1-EC(∪,∩, ,×) ∈ 3EXPSPACE.

4.2.2 Lower Bounds
All emptiness problems covered by Section 4.2 – in particular EC( ,+) and EC( ,×) –
are ≤log

m -hard for PSPACE. We show the same for MC( ,+) and MC( ,×) improving
unpublished results by Reinhardt, which were announced by McKenzie and Wagner [22] and
which state that these problems are ≤p

m-hard for PSPACE. This section mainly sketches our
proof for the ≤log

m -hardness of MC( ,+) for PSPACE. For that we define a further problem.

I Definition 9. A { ,+}-circuit over Nk is a completely assigned { ,+}-circuit C =
((V,E), gC , α) where all constants are elements of Nk. The set I(g;C) ⊆ Nk computed by a
node g is defined analogously to the one-dimensional case. Further let I(C) = I(gC ;C) and

MC+( ,+) = {(C, b) | C is a completely assigned { ,+}-circuit over Nk,
||c||∞ ≤ 1 for every input c, ||b||∞ ≤ 3, and b ∈ I(C)}.

The PSPACE-hardness of this problem is obtained by reducing CNF-QBF, which is the
problem of whether a given quantified Boolean formula F in conjunctive normal form is true.
It is known that CNF-QBF is ≤log

m -complete for PSPACE.
The proof of the following lemma is based on an unpublished proof by Reinhardt [25]

showing the ≤p
m-hardness of MC( ,×) for PSPACE.

I Lemma 10. MC+( ,+) is ≤log
m -hard for PSPACE.

From now on our proof differs from Reinhardt’s proof. Instead of showing directly
MC+( ,+) ≤p

m MC( ,×) via a simple reduction, we first prove MC+( ,+) ≤log
m MC( ,+)

and then show MC( ,+) ≤log
m EC( ,+) ≤log

m EC( ,×) ≤log
m MC( ,×).

To show MC+( ,+) ≤log
m MC( ,+) it is convenient to represent a vector of natural

numbers a = (a0, . . . , ak) as a natural number adn(a) =
∑k

i=0 ak−in
i for n ≥ 2. We denote

the function mapping (C, b) onto (C ′, adn(b)) by adn, where C ′ is the circuit obtained from
C by replacing each input x with adn(x).

Indeed, adn for sufficiently large n works as reduction if for example union and intersection
are allowed instead of complement. However, in our case we have (0, 1, 0) /∈ (0, 0, 0) + (0, 0, 1),
but ad8(0, 1, 0) = ad8(0, 0, 7) + ad8(0, 0, 1) ∈ ad8(0, 0, 0) + ad8(0, 0, 1). Such “overflows” are
the reason why adn is not a reduction MC+( ,+) ≤log

m MC( ,+) for any n.
To address this problem we implement an operation similar to the bitwise ‘or’ for

characteristic sequences: for two finite sets A and B (note that for problems of the form
“(C, b) ∈ MC+( ,+)?” it suffices to consider the first b+ 1 bits of characteristic sequences
of sets) let m = max(A ∪ B) and consider M = A+ {m− 1}+ 1 + B + {m− 1}+ 1 =
((A+{m})∪{0})+((B+{m})∪{0}). Observe thatM ∩{m, . . . , 2m} = {m+x | x ∈ A∪B},
which equals the union of A and B shifted by the offset m.

Now a circuit over Nk can be simulated by a circuit over N: Roughly speaking, we use
ad8 and after computing the operation of some node g, the numbers x with ||ad−1

8 (x)||>3
can be deleted from I(g) by adding them into I(g) via the ‘or’-operation mentioned above.
Every ‘or’-operation yields an offset which has to be taken into account. This leads to:

MFCS 2017



33:8 Emptiness Problems for Integer Circuits

I Theorem 11. MC( ,+) is ≤log
m -hard for PSPACE.

The following theorem is essentially due to Sigmund [30]. He provided the proof of the
second reduction and the main idea of the proof of the first one.

I Theorem 12. MC( ,+) ≤log
m EC( ,+) and EC( ,+) ≤log

m EC( ,×).

I Corollary 13. EC( ,+), EC( ,×), and MC( ,×) are ≤log
m -hard for PSPACE.

5 Circuits with both Arithmetic Operations

Besides proving bounds for emptiness problems with + and ×, we improve the known
lower and upper bounds for MC(∪,∩, ,+,×) [22] and EQ(∪,∩, ,+,×) [11]. Then we
provide arguments that suggest the difficulty of proving the decidability of EC( ,+,×)
and EC(∪,∩, ,+,×, ). Finally we draw connections to polynomial identity testing (PIT)
and show that the open questions for the complexities of MC(∩,+,×) [22], MCZ(∩,+,×),
MCZ(+,×) [32], and EQ(+,×) [11] are equivalent to the well-studied, open question for the
complexity of PIT.

5.1 Upper and Lower Bounds for Possibly Undecidable Problems
We obtain upper bounds by improving a known decision algorithm [11] and lower bounds
via the Matiyasevich-Robinson-Davis-Putnam theorem [21, 7].

I Theorem 14.
1. EC(∪,∩, ,+,×) ∈ Rtt(Σ1).
2. Σ1-EC(∪,∩, ,+,×) ∈ Σ2 and Π1-EC(∪,∩, ,+,×) ∈ Π2.
3. Π1-EC(∩,+,×) and Π1-EC(∪,∩,+,×) are ≤log

m -complete for Π1.
4. Σ1-MC( ,+,×) and Σ1-EC( ,+,×) are ≤log

m -hard for Σ1.
5. Π1-EC( ,+,×) is ≤log

m -hard for Π1.

5.2 Connecting Emptiness with Membership and Equivalence Problems
We show that with the operations , +, and × one can express a Boolean combination of
emptiness problems as a single emptiness problem. Therefore, truth-table reductions to
certain emptiness problems can be transformed into many-one reductions. This allows us to
show certain emptiness problems to be many-one equivalent to membership problems and
equivalence problems. As a byproduct we improve the known lower and upper bounds of
MC(∪,∩, ,+,×) [22] and EQ(∪,∩, ,+,×) [11].

I Proposition 15. The following holds if { ,+,×} ⊆ O.
1. If A ≤log

tt EC(O), then A ≤log
m EC(O). If A ≤tt EC(O), then A ≤m EC(O).

2. If EC(O) is ≤m-hard for Σ1, then it is ≤m-hard for Rtt(Σ1).
3. If EC(O) ∈ Σ1 ∪Π1, then EC(O) ∈ Σ0.

I Corollary 16.
1. MC(∪,∩, ,+,×) ≡log

m EQ(∪,∩, ,+,×) ≡log
m EC(∪,∩, ,+,×) ≡log

m EC(∪,∩, ,+,×).
2. Σ1-MC(∪,∩, ,+,×) ≡log

m Σ1-EC(∪,∩, ,+,×) ≡log
m Σ1-NEC(∪,∩, ,+,×).

3. EC(∪,∩, ,+,×),MC(∪,∩, ,+,×),EQ(∪,∩, ,+,×) ∈ Rtt(Σ1) and these problems are
≤log
m -hard for Rlog

T (NEXP) = LNEXP.
4. EC( ,+,×) is ≤m-hard for Σ1 if and only if it is ≤m-complete for Rtt(Σ1).
5. EC(∪,∩, ,+,×) is ≤m-hard for Σ1 if and only if it is ≤m-complete for Rtt(Σ1).



D. Barth, M. Beck, T. Dose, C. Glaßer, L. Michler, and M. Technau 33:9

For { ,+,×}-circuits there are further equivalences between membership and emptiness
problems.

I Proposition 17.
1. MC( ,+,×) ≡log

m EC( ,+,×) ≡log
m EC( ,+,×).

2. Σ1-MC( ,+,×) ≡log
m Σ1-EC( ,+,×) ≡log

m Σ1-NEC( ,+,×).

5.3 The Difficulty of EC(−, +,×) and EC(∪,∩,− , +,×)
In the Corollaries 13 and 16 we showed that EC( ,+,×) is ≤log

m -hard for PSPACE and
EC(∪,∩, ,+,×, ) is ≤log

m -hard for LNEXP. By Theorem 14, both problems belong to Rtt(Σ1).
It is an open question whether these problems are decidable. This subsection explains the
difficulty of finding decision algorithms for these problems.

Goldbach conjectured that every even integer greater than 2 is the sum of two primes. At
the time the conjecture was made 1 was considered to be prime, but later the opposite view
became accepted. Let P1 = P ∪ {1}. Below we formulate both variants, Goldbach’s original
conjecture (GC1) and the one that nowadays is called Goldbach’s conjecture (GC).

GC1 = ∀n ≥ 1 ∃p, q ∈ P1 [2n = p+ q]
GC = ∀n ≥ 2 ∃p, q ∈ P [2n = p+ q]

We define circuits that express the truth of these conjectures, where P1 stands for 1× 1,
P for 1× 1 ∩ 1, and {0, 1} for 0 + 1.

C1 = ((P1 + P1)× {0, 1}) + {0, 1}
C = P + P ∩ (2× {0, 1})

GC1 is true if any only if C1 ∈ EC( ,+,×). GC is true if and only if C ∈ EC(∪,∩, ,+,×, ).
This tells us: If one finds a decision algorithm for EC( ,+,×) or EC(∪,∩, ,+,×) and proves
its correctness, then in a sense this solves Goldbach’s conjecture, since the computation
of this algorithm is a proof or refutation. In particular, this would imply that Goldbach’s
conjecture is provable or refutable, which is unknown (cf. [17]). This underlines the difficulty
of finding decision algorithms for EC( ,+,×) and EC(∪,∩, ,+,×).

5.4 Connection between Emptiness and Σ1-Emptiness
We show that several emptiness problems are equivalent to their Σ1-emptiness variants. The
proof exploits the fact that the test of whether a multivariate polynomial with coefficients
bounded by some constant K is identically zero is possible by evaluating this polynomial
for one fixed argument only dependent on K and the total degree of the polynomial. The
following lemma shows that the test of whether multivariate polynomials are identically zero
reduces to the univariate case.

I Lemma 18 ([20]). Given a polynomial f(x1, . . . , xn) over R with total degree at most d,
the substitution xi 7→ x(d+1)i−1 has the property that f is identically zero on Rn if and only
if the obtained univariate polynomial is identically zero on R.

The lemma allows a reduction from Σ1-EC(∩,+,×) to EC(∩,+,×): Consider a circuit
C ∈ Σ1-EC(∩,+,×) with unassigned inputs u1, . . . , un and let z1, . . . , zn ∈ N such that
C(z1, . . . , zn) = ∅. So under this assignment there exists a ∩-gate g connected to the output
and computing ∅ such that no ancestor of g computes ∅. The unique number computed
in the left\right predecessor gl\gr of g (note that due to the absence of and ∪ each gate

MFCS 2017



33:10 Emptiness Problems for Integer Circuits

computes a set containing at most one element) can be written as a multivariate polynomial
pl\pr with variables u1, . . . , un. It holds that pl 6= pr, since g computes ∅. By Lemma 18,
the same holds for the univariate polynomials p′l\p′r obtained by the substitution. Note
that p′l(x) 6= p′r(x) for every large enough x. Moreover, there is a circuit computable in
logarithmic space that generates such an x. So the substitution rule provides the assignment
x(d+1)0

, x(d+1)1
, . . . , x(d+1)n−1 under which g and hence also C computes ∅. This yields the

following theorem.

I Theorem 19.
1. EC(∩,+,×) ≡log

m Σ1-EC(∩,+,×).
2. ECZ(∩,+,×) ≡log

m Σ1-ECZ(∩,+,×).
3. EC(∩,×) ≡log

m Σ1-EC(∩,×).

We generalize this argument to {∪,∩,+,×}-circuits by unfolding such circuits C to a
tree D, which exponentially increases the size, but not the depth. Then we observe that
C(z1, . . . , zn) = ∅ if and only if for all possibilities to prune D to some D′ such that each ∪-
gate has exactly one predecessor it holds that D′(z1, . . . , zn) = ∅. Since a ∪-gate with exactly
one predecessor acts like a wire, the D′ are {∩,+,×}-circuits. Hence C ∈ Σ1-EC(∪,∩,+,×)
if and only if for all D′ it holds that D′ ∈ Σ1-EC(∩,+,×). So we reached a situation similar
to Theorem 19.1 with the difference that D′ has exponential size and polynomial depth,
which translates to polynomials with an exponential number of monomials and polynomially
bounded degrees. Since the argument for Theorem 19 depends only on the polynomial’s
degree, but not on the number of monomials we obtain:

I Theorem 20.
1. EC(∪,∩,+,×) ≡log

m Σ1-EC(∪,∩,+,×).
2. EC(∪,∩,×) ≡log

m Σ1-EC(∪,∩,×).

From known results on MC(∩,+,×) and MC(∩,×) [22] and Theorem 6 we obtain:

I Corollary 21.
1. EC(∩,+,×) ≡log

m Σ1-EC(∩,+,×) ≡log
m MC(∩,+,×) ≡log

m EQ(+,×).
2. Σ1-EC(∩,+,×) ∈ RP.
3. Σ1-EC(∪,∩,+,×) is ≤log

m -complete for coNEXP.
4. Σ1-EC(∩,×) ∈ P.
5. EC(∩,×) ≡log

m Σ1-EC(∩,×) ≡log
m MC(∩,×).

6. Σ1-EC(∪,∩,×) is ≤log
m -complete for PSPACE.

The 5th statement shows that improving the non-matching bounds for EC(∩,×) is as
difficult as improving the bounds for MC(∩,×), which is an open problem from [22].

5.5 Connection to Polynomial Identity Testing
We extend the equivalence in statement 1 of Corollary 21 by ECZ(∩,+,×), Σ1-ECZ(∩,+,×),
MCZ(∩,+,×), MCZ(+,×), and PIT. The connection to PIT is interesting as it explains
the difficulty of several open questions, namely the non-matching lower and upper bounds
of MC(∩,+,×) in [22], MCZ(∩,+,×) and MCZ(+,×) in [32], and EQ(+,×) in [11]. In
addition, it settles the question for the complexity of EC(∩,+,×) and Σ1-EC(∩,+,×).

PIT (polynomial identity testing) is the following problem: For a given integer circuit
consisting of input gates associated with variables/constants from Z and internal gates for
addition/multiplication over Z, one has to decide whether the polynomial described by the



D. Barth, M. Beck, T. Dose, C. Glaßer, L. Michler, and M. Technau 33:11

circuit is identically zero or not. The term identically zero means that the polynomial must
be formally zero, i.e., if we write it as a linear combination of monomials with coefficients
from Z, then all coefficients are zero. For the ring Z this is equivalent to requiring that the
polynomial is zero on Zn, where n is the number of unassigned input gates. (For other rings
this makes a difference: for example over F2, the polynomial x2 + x is not identically zero,
although it is zero on F2.) Formally, we can define PIT as the following problem concerning
{+,×}-circuits over Z:

PIT df= { C | C is a {+,×}-circuit with unassigned inputs u1 < · · · < un such that
the assigned inputs have labels from Z and for all x1, . . . , xn ∈ Z it holds
that I(C(x1, . . . , xn)) = {0} }.

It is known that PIT ∈ coRP [15], but proving the exact complexity of PIT is considered
as one of the greatest challenges in algebraic computing complexity [26] and theoretical
computer science in general [29]. This fundamental problem has many applications, e.g.,
a deterministic primality test [1]. For further background on PIT we refer to the articles
[26, 29, 27, 19]. Let PIT denote the class of problems that are ≤log

m -reducible to PIT.

I Theorem 22. EC(∩,+,×) ≡log
m MC(∩,+,×) ≡log

m EQ(+,×) ≡log
m PIT ≡log

m ECZ(∩,+,×).

We sketch the proof: By Corollary 21, EC(∩,+,×) ≡log
m MC(∩,+,×) ≡log

m EQ(+,×). Theo-
rem 19 implies EQ(+,×) ≤log

m PIT ≤log
m Σ1-ECZ(∩,+,×) ≤log

m ECZ(∩,+,×). It remains to
show ECZ(∩,+,×) ≤log

m EC(∩,+,×).
We simulate a {∩,+,×}-circuit C over Z by a {∩,+,×}-circuit C ′ over N such that the

value v ∈ Z computed in gate i of C is represented in C ′ by two positive numbers ĩ+ v and
ĩ− v, where ĩ = 23i . This shift by ĩ allows {∩,+,×}-circuits over N to represent numbers
from Z. A technical elaboration shows that the circuits can also process numbers represented
in this way, i.e., there are subcircuits that simulate the operations ∩, +, and ×.

Together with the Theorems 19 and 22 we obtain:

I Corollary 23. The following problems are ≤log
m -equivalent to PIT:

EC(∩,+,×), Σ1-EC(∩,+,×), ECZ(∩,+,×), Σ1-ECZ(∩,+,×), MCZ(∩,+,×), MCZ(+,×).

The equivalence to PIT shows the difficulty of understanding the complexity of the
problems EC(∩,+,×) and Σ1-EC(∩,+,×) as well as the open problems from [22, 32, 11]
mentioned above. Kabanets and Impagliazzo [16] substantiate the hardness of obtaining
subexponential algorithms for PIT by showing that it implies that NEXP 6⊂ P/poly or the
permanent is not computable by polynomial size arithmetic circuits over Q with divisions.
Both statements are expected to be difficult to prove.

In view of Theorem 22 it seems unlikely that EQ(∩,+,×) is equivalent to PIT: A
straightforward proof shows that EQ(∩,+,×) is ≤log

m -complete for PIT ∨ coPIT = {L∪L′ |
L ∈ PIT , L′ ∈ coPIT }, which is the complement of the second level of the Boolean hierarchy
[18] over PIT . If EQ(∩,+,×)≡log

m PIT, then PIT =PIT ∨coPIT and hence PIT≡log
m PIT∈

RP⊆NP. Kabanets and Impagliazzo [16] show that PIT ∈ NP is unlikely, since it implies
NEXP∩coNEXP 6⊂ P/poly or the permanent is not computable by polynomial-size arithmetic
circuits over Q with divisions. This also explains the difficulty of improving the upper bound
for EQ(∩,+,×) from BPP [11] to coRP, since this implies PIT ≤log

m EQ(∩,+,×) ∈ coRP.

6 Conclusions and Open Questions

The results of this paper are summarized in Table 1. For most of the emptiness problems it
was possible to precisely characterize their complexity.

MFCS 2017



33:12 Emptiness Problems for Integer Circuits

Table 1 Upper bounds mean membership in the class, lower bounds stand for ≤log
m -hardness

for the class. Numbers refer to results in this paper. Gray cells do not contain references, since by
statement 5 of Lemma 2 these results are obtained from white cells. Subsets O that are missing in the
first column either correspond to trivial problems (statement 3 of Lemma 2) or can be transformed
by De Morgan’s law to an equivalent subset (statement 4 of Lemma 2). PIT is the class of problems
that are logspace many-one reducible to polynomial identity testing, which is a well-studied problem
in algebraic computing complexity. It is known that P ⊆ PIT ⊆ coRP and it is an open problem to
improve these bounds.

O EC l.b. EC u.b. Σ1-EC l.b. Σ1-EC u.b. Π1-EC l.b. Π1-EC u.b.

∩ NL, 4 NL NL NL, 4 NL NL, 4
∪ ∩ P, 4 P P P, 4 P P, 4
∩ + coC=L, 3 coC=L coC=L coC=L, 5 coNP, 6 coNP, 6
∩ × coC=L, 3 P coC=L P, 21 coNP, 3 coNP, 3

+ PSPACE, 13 PSPACE PSPACE 2EXPSPACE PSPACE 2EXPSPACE
× PSPACE, 13 PSPACE PSPACE 3EXPSPACE PSPACE 3EXPSPACE

∪ ∩ P P, 4 NP, 4 NP, 4 coNP, 4 coNP, 4
∪ ∩ + PSPACE, 6 PSPACE PSPACE PSPACE, 6 PSPACE PSPACE, 6
∪ ∩ × PSPACE, 6 PSPACE PSPACE PSPACE, 21 PSPACE PSPACE, 6
∩ + × coPIT , 22 coPIT coPIT coPIT , 23 Π1, 14 Π1

+ × PSPACE Rtt(Σ1) Σ1, 14 Σ2 Π1, 14 Π2

∪ ∩ + PSPACE PSPACE, 3 PSPACE 2EXPSPACE, 8 PSPACE 2EXPSPACE, 8
∪ ∩ × PSPACE PSPACE, 3 PSPACE 3EXPSPACE, 8 PSPACE 3EXPSPACE, 8
∪ ∩+× coNEXP, 3 coNEXP coNEXP coNEXP, 21 Π1 Π1, 14
∪ ∩ +× LNEXP, 16 Rtt(Σ1), 14 Σ1 Σ2, 14 Π1 Π2, 14

The results provide insights and improved complexity bounds for the following problems:
MC(∪,∩, ,+,×),MC(∩,+,×) studied in [22], MCZ(+,×),MCZ(∩,+,×) studied in [32],
and EQ(∪,∩, ,+,×),EQ(+,×),EQ(∩,+,×) studied in [11].

A challenging open problem is to improve the bounds for the problems EC( ,+,×) and
EC(∪,∩, ,+,×). Here the state of knowledge is as follows (cf. Propositions 15, 17, and
Corollary 16):
1. Both problems are equivalent to problems investigated in [22, 11]: EC( ,+,×) ≡log

m
MC( ,+,×) and EC(∪,∩, ,+,×) ≡log

m MC(∪,∩, ,+,×) ≡log
m EQ(∪,∩, ,+,×).

2. Finding a decision algorithm and proving its correctness is at least as difficult as showing
that Goldbach’s conjecture is provable or refutable, which is an open problem.

3. The problems are either decidable or outside Σ1 ∪Π1.
4. The problems are ≤m-hard for Σ1 if and only if they are ≤m-complete for Rtt(Σ1).

Another open problem is to improve the complexity bounds whenever we have one of the
classes 2EXPSPACE and 3EXPSPACE as upper bound. The latter are consequences of the
decidability of the Presburger and Skolem arithmetic. It is possible that more specific proof
techniques can improve these bounds. By Lemma 2, Π1-EC(∪,∩, ,×) is equivalent to the
complement of Σ1-MC(∪,∩, ,×), which has already been investigated in [13, 12].

A third open problem is to improve the bounds for EC(∩,×) and Σ1-EC(∩,×). Both
problems are equivalent to MC(∩,×), which has already been studied in [22].

Acknowledgements. We thank Klaus Reinhardt for sharing an unpublished proof for the
≤p
m-hardness of MC( ,×) for PSPACE, which we slightly adapted to show the ≤log

m -hardness
of MC+( ,+) for PSPACE (Lemma 10), and for helpful discussions on the ≤log

m -hardness



D. Barth, M. Beck, T. Dose, C. Glaßer, L. Michler, and M. Technau 33:13

of MC( ,+) for PSPACE (Theorem 11). Moreover, we thank Jakob Sigmund for helpful
discussions and contributions to the proof of Theorem 12.

References
1 M. Agrawal, N. Kayal, and N. Saxena. Primes is in P. Annals of Mathematics, 160:781–793,

2004.
2 E. Allender. Making computation count: Arithmetic circuits in the nineties. SIGACT

NEWS, 28(4):2–15, 1997.
3 E. Allender and M. Ogihara. Relationships among PL, #L, and the determinant. RAIRO

Theoretical Informatics and Applications, 30:1–21, 1996.
4 D. Barth, M. Beck, T. Dose, C. Glaßer, L. Michler, and M. Technau. Emptiness problems

for integer circuits. Technical Report 17-012, Electronic Colloquium on Computational
Complexity (ECCC), 2017.

5 A. Bès. A survey of arithmetical definability. Soc. Math. Belgique, pages 1–54, 2002.
6 H. Breunig. The complexity of membership problems for circuits over sets of positive

numbers. In International Symposium on Fundamentals of Computation Theory, volume
4639 of Lecture Notes in Computer Science, pages 125–136. Springer, 2007.

7 M. Davis, H. Putnam, and J. Robinson. The decision problem for exponential Diophantine
equations. Annals of Mathematics, 74(2):425–436, 1961.

8 T. Dose. Complexity of constraint satisfaction problems over finite subsets of natural
numbers. In 41st International Symposium on Mathematical Foundations of Computer
Science, volume 58 of Leibniz International Proceedings in Informatics, pages 32:1–32:13.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2016.

9 J. Ferrante and C. Rackoff. A decision procedure for the first order theory of real addition
with order. SIAM J. Comput., 4:69–76, 1975.

10 J. Ferrante and C. W. Rackoff. The Computational Complexity of Logical Theories, volume
718 of Lecture Notes in Mathematics. Springer Verlag, 1979.

11 C. Glaßer, K. Herr, C. Reitwießner, S. D. Travers, and M. Waldherr. Equivalence problems
for circuits over sets of natural numbers. Theory of Computing Systems, 46(1):80–103, 2010.

12 C. Glaßer, P. Jonsson, and B. Martin. Circuit satisfiability and constraint satisfaction
around skolem arithmetic. In 12th Conference on Computability in Europe, volume 9709
of Lecture Notes in Computer Science, pages 323–332. Springer, 2016.

13 C. Glaßer, C. Reitwießner, S. D. Travers, and M. Waldherr. Satisfiability of algebraic
circuits over sets of natural numbers. Discrete Applied Mathematics, 158(13):1394–1403,
2010.

14 E. Grädel. Dominoes and the complexity of subclasses of logical theories. Annals of Pure
and Applied Logic, 43(1):1–30, 1989.

15 O. Ibarra and S. Moran. Probabilistic algorithms for deciding equivalence of straight-line
programs. Journal of the ACM, 30(1):217–228, 1983.

16 V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means proving
circuit lower bounds. Computational Complexity, 13(1):1–46, 2004.

17 D. E. Knuth. All questions answered. Notices of the AMS, 49(3):318–324, 2002.
18 J. Köbler, U. Schöning, and K. W. Wagner. The difference and the truth-table hierarchies

for NP. RAIRO Inform. Théor., 21:419–435, 1987.
19 D. König and M. Lohrey. Parallel identity testing for skew circuits with big powers and

applications. CoRR, abs/1502.04545, 2015.
20 R. J. Lipton and N. K. Vishnoi. Deterministic identity testing for multivariate polynomials.

In Proceedings of the 14th Symposium on Discrete Algorithms, pages 756–760. ACM/SIAM,
2003.

MFCS 2017



33:14 Emptiness Problems for Integer Circuits

21 Y. V. Matiyasevich. Enumerable sets are diophantine. Doklady Akad. Nauk SSSR, 191:279–
282, 1970. Translation in Soviet Math. Doklady, 11:354–357, 1970.

22 P. McKenzie and K. W. Wagner. The complexity of membership problems for circuits over
sets of natural numbers. Computational Complexity, 16(3):211–244, 2007.

23 C. M. Papadimitriou. Computational complexity. Addison-Wesley, Reading, Massachusetts,
1994.

24 I. Pratt-Hartmann and I. Düntsch. Functions definable by arithmetic circuits. In Conference
on Mathematical Theory and Computational Practice, volume 5635 of Lecture Notes in
Computer Science, pages 409–418. Springer, 2009.

25 K. Reinhardt, 2016. Personal communication.
26 N. Saxena. Progress on polynomial identity testing. Electronic Colloquium on Computa-

tional Complexity (ECCC), 16:101, 2009.
27 N. Saxena. Progress on polynomial identity testing - II. Electronic Colloquium on Compu-

tational Complexity (ECCC), 20:186, 2013.
28 A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, Inc., New

York, NY, USA, 1986.
29 A. Shpilka and A. Yehudayoff. Arithmetic circuits: A survey of recent results and open

questions. Foundations and Trends in Theoretical Computer Science, 5(3-4):207–388, 2010.
30 J. Sigmund, 2016. Personal communication.
31 L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time: Preliminary

report. In Proceedings of the Fifth Annual ACM Symposium on Theory of Computing,
STOC’73, pages 1–9, New York, NY, USA, 1973. ACM.

32 S. D. Travers. The complexity of membership problems for circuits over sets of integers.
Theoretical Computer Science, 369(1-3):211–229, 2006.

33 K. Wagner. The complexity of problems concerning graphs with regularities (extended
abstract). In Proceedings of the Mathematical Foundations of Computer Science 1984,
pages 544–552, London, UK, UK, 1984. Springer-Verlag.

34 K. Yang. Integer circuit evaluation is PSPACE-complete. Journal of Computer and System
Sciences, 63(2):288–303, 2001. An extended abstract of appeared at CCC 2000.



Another Characterization of the Higher K-Trivials∗

Paul-Elliot Angles d’Auriac1 and Benoit Monin2

1 UPEC LACL, Creteil, France
panglesd@lacl.fr

2 UPEC LACL, Creteil, France
benoit.monin@computability.fr

Abstract
In algorithmic randomness, the class of K-trivial sets has proved itself to be remarkable, due to its
numerous different characterizations. We pursue in this paper some work already initiated on K-
trivials in the context of higher randomness. In particular we give here another characterization
of the non hyperarithmetic higher K-trivial sets.

1998 ACM Subject Classification Computability theory

Keywords and phrases Algorithmic randomness, higher computability, K-triviality, effective de-
scriptive set theory, Kolmogorov complexity

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.34

1 Introduction

Algorithmic randomness defines what it is for an infinite 0-1 valued sequence to be random.
It takes its roots deeply in computability : lots of definition and techniques from pure
computability are used in algorithmic randomness, as hierarchies, reducibilites and forcing
constructions. The research in this field led to the identification of many different randomness
notions, the most known being perhaps Martin-Löf randomness: a sequence is Martin-Löf
random if it is in no Π0

2 set
⋂
n Un where the Lebesgue measure of each Un is smaller than

2−n. The reader can refer to [21] and [8] for more details on algorithmic randomness. One of
the main research area is to study how the different classes of random sequences relate. For
a given such class of randoms, another important research area is to study the sets relative
to which this class does not change. This is called lowness for randomness. For example, the
class of K-trivials are exactly the low for Martin-Löf randomness. This class is defined as
the set of infinite sequences having minimal (up to a constant) Kolmogorov complexity on
their prefixes, that is the Kolmogorov complexity of a prefix should not be bigger than its
length 1. The class of K-trivials proved itself to be remarkable, due to its numerous very
different characterizations [20], [12], [6], [1], [9].

Another field has a lot of interactions with computability theory : descriptive set theory.
This field can be studied completely independently from recursion theory as in [14]. However,
the study of descriptive set theory in close relation with computability appeared to be a
fruitful approach. The mix of these two fields is called effective descriptive set theory and
can be used to prove lots of results from the classical version of descriptive set theory. This
is done mainly in [19]. Effective descriptive set theory also gave rise to higher computability.

∗ This work was partially supported by TARMAC.
1 Here it is important that we use the so called prefix-free Kolmogorov complexity, as it is the case in

general with algorithmic randomness.

© Paul-Elliot Angles d’Auriac and Benoit Monin;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 34; pp. 34:1–34:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.34
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


34:2 Another Characterization of the Higher K-Trivials

The notion of computation for this field comes from a very logical point of view, far from
any implementation. Nonetheless it is possible to give an intuition of higher computation
which is closer to what computer scientists are used to: one can view a higher computation
as a regular computation (by a Turing machine, say) where the steps of computation are
carried through the computable ordinals. This new way of computing has several things in
common with the classical one, and of course some differences (as the lack of continuity in a
computation) that may cause trouble when trying to lift some computability theorems from
the classical setting to the higher setting. The reader can refer to [22], [5] and [18] for more
details on higher recursion theory. The reader can also see [11] for more information about
what could be a Turing machine which keeps running over ordinal times of computation.

Algorithmic randomness naturally arises from mixing probability theory and computabil-
ity. Following the same ideas, researchers defined notions of higher randomness, obtained
analogously, but by considering higher computability instead of computability. After the
founder paper of the field [13], a lots of advances were made by several researchers ([4], [3], [2],
[10]). The reader can also refer to [5] and [18] for more details on higher randomness. One of
the notion which has previously been studied and which is the core subject of the paper, is
the notion of higher K-triviality, the direct higher analogue of K-triviality. In particular, we
give in this paper a characterization of the non-∆1

1 higher K-trivials, by proving that they
are exactly the sets that shrink the class WΠ1

1R to the class Π1
1-ML〈O〉 when relativizing

continuously. This characterization is specific to the higher setting: the randomness notions
that are equivalent to WΠ1

1R and Π1
1-ML〈O〉 in the lower setting, coincide.

2 Preliminaries

2.1 Notations

In this paper, we work in the space of infinite sequences of 0’s and 1’s, called the Cantor
space, denoted by 2ω. We call strings finite sequences of 0’s and 1’s and sequences or sets
elements of the Cantor space. For a sequence A we write A �n to denote the string equal
to the n first bits of A. The space of strings is denoted by 2<ω and the space of strings of
length smaller than n is denoted by 2<n. For a string σ, we denote the set of sequences
extending σ by [σ].

The topology on Cantor space is generated by the basic intervals [σ] = {X ∈ 2ω | X � σ}
for any string σ. For a set of strings W ⊆ 2<ω, we let [W ] =

⋃
σ∈W [σ]. A set of string W is

said to be prefix-free if no string in W is a prefix of another string in W .
For A ⊆ 2ω Lebesgue-measurable, λ(A) denotes the Lebesgue measure of A, which is the

unique Borel measure such that λ([σ]) = 2−|σ| for all strings σ.
We assume that the reader is familiar with basic notions of computability. For A,B ∈ 2ω

we write A ≤T B if A is Turing reducible to B. We denote by ∅′ the halting problem. We
also assume that the reader is familiar with the basics of effective descriptive set theory, in
particular with the notations Σ0

1,Π0
1,Σ0

2,Π0
2, etc...

We finally also assume that the reader is familiar with the notion of Kolmogorov complexity.
In this paper, we will only consider a prefix-free version of the Kolmogorov complexity (used
in the definition of K-triviality): using compressors M : 2<ω → 2<ω such that the domain of
M is prefix-free. It is an easy exercise to show that an optimal prefix-free compressor exists
(optimal up to a constant of course).



P-E. Angles d’Auriac and B. Monin 34:3

2.2 Background on algorithmic randomness
In 1966, Martin-Löf gave in [16] a definition capturing elements of the Cantor space that can
be considered ‘random’. Many nice properties of the Martin-Löf random sequences make this
notion of randomness one of the most interesting and one of the most studied.

Intuitively a random sequence should not have any atypical property. A property is here
considered atypical if the set of sequences sharing this property is of measure 0. It also makes
sense to consider only properties which can be described in some effective way (because any
X has the property of being in the set {X} and thus nothing would be random).

I Definition 1. An intersection of measurable sets
⋂
nAn is said to be effectively of measure

0 if the function which to n associates the measure of An is bounded by 2−n. A Martin-Löf
test, or an ML-test is a Π0

2 set
⋂
n Un effectively of measure 0. We say that X ∈ 2ω is

Martin-Löf random if it is in no Martin-Löf test. The class of Martin-Löf randoms is also
referred to as the class MLR.

The requirement for a Martin-Löf test to be effectively of measure 0 is important and
leads to very nice properties. In particular there exists a universal Martin-Löf test, i.e. a test
containing all the others (see [16]). This is not the case anymore if we drop the ‘effectively of
measure 0’ condition. Instead we get a notion known as weak-2-randomness.

I Definition 2. A Π0
2 nullset is called a weak-2 test or a W2 test. We say that X ∈ 2ω is

weakly-2-random if it is in no weak-2 test. The class of weakly-2-randoms is also referred to
as the class W2R.

As a randomness notion, weak-2-randomness is a strictly stronger than 1-randomness:
tests can capture more elements and thus there are fewer randoms. For any given randomness
notion, it makes sense to relativize it to any oracle:

I Definition 3. Let A ∈ 2ω. An MLA test is a Π0
2(A) set

⋂
nOn effectively of measure 0. We

say that X ∈ 2ω is MLRA if it is in no MLA test. Similarly a W2A test is a Π0
2(A) nullset,

and we say that X is W2RA if it is in no W2A test.

A nice characterization of W2R has been given from restricting the relativization MLR∅
′
:

we can only use ∅′ to find the indices of the open sets in a test.

I Definition 4. Let (We)e∈ω be an effective enumeration of the c.e. sets of strings. A ML〈∅′〉
test is a set

⋂
n[Wf(n)] with λ([Wf(n)]) ≤ 2−n were f : ω → ω is computable from ∅′. A set

is MLR〈∅′〉 if it is in no ML〈∅′〉 test.

Note that with the full relativization of an ML test to A, the oracle A itself is not needed
to find the index of the n-th Σ0

1(A) open set of the test: the use of A for that can be swallowed
in the process of enumerating each Σ0

1(A) component of the test.
Going back to the previous definition, we have the following easy theorem:

I Theorem 5 ([2], section 7). W2R = ML〈∅′〉.

Proof. Let’s start with W2R ⊆ ML〈∅′〉, given a ML〈∅′〉 test
⋂
n Uf(n), we will show that it

is included in a W2R test. We define V〈m,t〉 =
⋃
s≥t Ufs(m). As

⋂
n Vn =

⋂
n Uf(n), we have

that λ(
⋂
n Vn) = 0, so this is a W2R test.

Now, let
⋂
n Un be a Π0

2 nullset, one can use ∅′ to find uniformly in n the first m = f(n)
such that λ(Um) ≤ 2−n. J

The sets relative to which MLRA = MLR have been extensively studied, and have been
identified as the class of K-trivial sets.

MFCS 2017



34:4 Another Characterization of the Higher K-Trivials

I Definition 6. A set A ∈ 2ω is K-trivial if for any n, the prefix-free Kolmogorov complexity
of A�n is smaller than the prefix-free Kolmogorov complexity of n (up to a constant).

The reader can refer to [21] for more details on the K-trivials. They are also the sets
relative to which W2RA = W2R:

I Theorem 7 ([20], [15], [7]). The following are equivalent for a set A:
1. A is K-trivial
2. W2RA = W2R
3. MLRA = MLR

As we will see, this characterization fails in the higher setting, but it fails in a way that
will help us provide another characterization of the higher K-trivials.

2.3 Background on higher computability
We assume that the reader is familiar with the concepts of ∆1

1,Π1
1 and Σ1

1 subsets of ω and of
2ω. A known result is that an open set U is Π1

1 if and only if there exists a Π1
1 set of strings

W such that U = [W ]≺.
There is a strong analogy between classical concepts in computability (referred to as the

lower setting) and their analogue in higher computability (referred to as the higher setting).
For instance, ∆1

1 can be seen as a higher analogue of computable, and Π1
1 can be seen as

a higher analogue of computably enumerable, with the difference that the times at which
elements are enumerated are now computable ordinals.

We refer to the set of codes for computable ordinals (using whichever equivalent coding)
as Kleene’s O. As usual, the smallest non-computable ordinal is denoted by ωCK1 .

We recall here a few definitions about continuous higher Turing reductions. In [2]
(Definition 1.1) higher Turing reductions are defined to compute elements of 2ω. In [10]
(section 3.2) this definition is extended in a straightforward way, to compute elements of
(ωCK1 )ω. We also extend this definition here in a straightforward way, to compute elements
of (ωCK1 )ωCK

1 .
An absolutely formal definition of computations of functions from ωCK1 to ωCK1 should

either use the language of set theory and deals with actual ordinals, or use a unique notation
system for computable ordinals. There exists such a Π1

1 notation system O1 ⊆ ω (see [22] or
[18], 3.6.1) and up to this notation system, one can view a function from ωCK1 to ωCK1 as a
function from O1 to O1, and thus simply defined on integers.

I Definition 8 ([10] [2]). We say that A higher Turing computes (or higher computes)
f : ωCK1 7→ ωCK1 (respectively g : ω 7→ ωCK1 ) if there exists a Π1

1 set C ⊆ 2<ω × ωCK1 × ωCK1
(respectively C ⊆ 2<ω×ω×ωCK1 ) such that f(o1) = o2 iff ∃σ ≺ A (σ, o1, o2) ∈ C (respectively
g(n) = o iff ∃σ ≺ A (σ, n, o) ∈ C). We say that A higher Turing computes B ∈ 2ω if A
higher Turing computes the characteristic function of B.

In [2] it is shown that Kleene’s O higher Turing computes a set A ∈ 2ω iff O Turing
computes A.

2.4 Background on higher randomness
Higher randomness goes back to Martin-Löf who promoted the notion of ∆1

1-randomness
(already defined by Sacks [22]), defending the idea that it was the appropriate mathematical
concept of randomness [17]. Even if his first definition undoubtedly became the most



P-E. Angles d’Auriac and B. Monin 34:5

successful over the years, this other definition recently got a second wind on the initiative of
Hjorth and Nies who started to study the analogy between the usual notions of randomness
and their higher counterparts. In order to do so they created in [13] a higher analogue of
Martin-Löf randomness.

I Definition 9 (Hjorth, Nies). A Π1
1-Martin-Löf test, or a Π1

1-ML test, is given by an
effectively null intersection of open sets

⋂
n Un, each Un being Π1

1 uniformly in n. A sequence
X is Π1

1-Martin-Löf random if it is in no Π1
1-Martin-Löf test. The class of Π1

1-Martin-Löf
randoms is also referred to as the class Π1

1-MLR.

The higher analogue of weak-2-randomness has also been studied (see [4] [2]):

I Definition 10. We say that X is weakly-Π1
1-random if it belongs to no

⋂
n Un with each

Un open set Π1
1 uniformly in n and with λ(

⋂
n Un) = 0. The class of weakly-Π1

1-randoms is
also referred to as the class WΠ1

1R.

It is also possible to define an analogue of MLR〈∅′〉 in the higher setting, using Kleene’s
O in place of ∅′.

I Definition 11. Let (We)e∈ω be an enumeration of the Π1
1 sets of strings. A Π1

1-ML〈O〉
test is a set

⋂
n[Wf(n)] with λ([Wf(n)]) ≤ 2−n were f : ω → ω is Turing computable from

Kleene’s O. A set is Π1
1-MLR〈O〉 if it is in no Π1

1-ML〈O〉 test.

Theorem 5 does not lift to the higher setting. The proof in the lower setting uses what
has been defined in [2] to be a ‘time trick’: we use the fact that time and space are the
same objects: the natural numbers. In the higher setting, this is not anymore true as the
time goes along the ordinals. It is in fact possible to show that the class Π1

1-MLR〈O〉 is
strictly contained in the class WΠ1

1R. To be more specific, let us introduce maybe the
most important notion of higher randomness, first given by Sacks, and made possible by a
theorem of Lusin saying that even though Π1

1 sets are not necessarily Borel, they remain all
measurable.

I Definition 12 (Sacks). We say that X ∈ 2ω is Π1
1-Random if it is in no Π1

1 nullset.

We have the following:

I Theorem 13 ([2]). Π1
1-MLR〈O〉 ( Π1

1-Randoms ( WΠ1
1R ( Π1

1-MLR

We finally give another characterization of Π1
1-ML〈O〉, that has no counterpart in the

lower setting (with ML〈∅′〉 in place of Π1
1-ML〈O〉), and which will be useful in the paper.

I Property 14 ([2]). The following are equivalent for a sequence X ∈ 2ω :
1. X is Π1

1-ML〈O〉 random
2. X does not belong to any test (Us)s<ωCK

1
not necessarily nested where each Us is a Π1

1
open set uniformly in s, and such that λ(

⋂
s<ωCK

1
Us) = 0

2.5 Continuous relativization of higher randomness

It is also possible to define an analogue of K-triviality in the higher setting. The higher
K-trivials are defined analogously, but using a version of Kolmogorov complexity with
Π1

1-prefix-free compression machines.

MFCS 2017



34:6 Another Characterization of the Higher K-Trivials

I Definition 15 ([13]). We define:
The higher prefix-free Kolmogorov complexity is given by K(y) = min{|σ| : U(σ) = y}
for U the universal prefix-free Π1

1-machine given by U(0e1τ) = Me(τ) and (Me)e∈ω a
uniform enumeration of the Π1

1 prefix-free machines.
A is higher K-trivial if ∃b ∀n K(A � n) ≤ K(n) + b.

However, for the higher K-trivials to also be low for Π1
1-MLR, one has to be careful about

the way things are relativized to oracles. In higher computability we don’t have anymore
the continuity aspect of the lower setting : if B is ∆1

1(A), it does not mean that a finite
quantity of A suffices to know a finite quantity of B. However, we can force this state of
things, as done previously with the notion of higher Turing computations. We next define
what it means to relativize the notion of Π1

1 set, continuously to an oracle.

I Definition 16 ([2]). An oracle-continuous Π1
1 set of integers is given by a set W ⊆ 2<N×N.

For a string σ we write Wσ to denote the set {n : ∃τ ≺ σ, (τ, n) ∈ W}. For a sequence X
we write WX to denote the set {n : ∃τ ≺ X, (τ, n) ∈ W}. The set WX is then called an
X-continuous Π1

1 set of integers.
An open set U is X-continuously Π1

1 if there is an X-continuously Π1
1 set of strings W

such that U = [WX ].

We are now ready to define continuous relativization of randomness notions :

I Definition 17. If A is a set, we say that X is WΠ1
1RA if it is in no U =

⋂
n Un where

(Un)n∈ω is a uniform family of A-continuous Π1
1 open sets, such that λ(U) = 0. We say that

X is Π1
1-MLRA if it is in no

⋂
n Un where (Un)n∈ω is a uniform family of A-continuous Π1

1
open sets, such that λ(Un) ≤ 2−n.

We now have the following:

I Theorem 18 ([2]). The higher K-trivials are exactly the low for Π1
1-MLR, using continuous

relativization.

Unlike in the lower setting, the higher K-trivials are not anymore the low for WΠ1
1R. For

A ∆1
1 (a special case of being higher K-trivial), it is still obviously the case that WΠ1

1RA =
WΠ1

1R. But if A is K-trivial and not ∆1
1, we will actually see that WΠ1

1RA = Π1
1-ML〈O〉.

3 Another characterization of the higher K-trivials

3.1 Collapsing approximations
When trying to lift the ∆0

2 definitions from the lower to the higher setting, some new
possibilities appear. In the lower setting, for an approximation of A the set {At : t < s}
is always finite as s ranges over the natural numbers. So in particular it is closed. At the
contrary, when s is an ordinal, the set {At : t < s} may not have this property, which leads
us to define a different type of approximation, which depends on the topological properties
of {At : t < s}.

I Property/Definition 19 ([2]). .
1. A sequence A is higher ∆0

2 if it satisfies the following equivalent properties :
(a) A ≤T O
(b) There is a higher computable sequence (As)s<ωCK

1
with lims→ωCK

1
As = A

2. A computable approximation (As)s<ωCK
1

converging to A is said to be collapsing if for
every stage s, the set A is not in the closure of {At : t < s}.



P-E. Angles d’Auriac and B. Monin 34:7

Such approximations are called collapsing, because they can be used to “collapse” ωCK1
to a computable ordinal in a strong way: such approximations can be used to compute an
ω-sequence of computable ordinals, with ωCK1 as a supremum:

I Property 20 ([2]). Every sequence A with a collapsing approximation, higher Turing
computes a function f : ω → ωCK1 which is cofinal in ωCK1 .

In classical computability, given an effectively open set U , it is uniformly possible to
obtain a c.e. and prefix-free set W such that [W ] = U . However, in the setting of higher
computability, it can be proved that this is no more possible: there is a Π1

1 open set U such
that for every prefix-free Π1

1 set of strings W , U 6= [W ]. But working relative to some sets
that have a collapsing approximation allows us to use time tricks, and in a way brings us
“closer” to classical computability.

I Property 21 ([2],end of page 20). If A has a collapsing approximation (As)s<ωCK
1

, and U is
an oracle-continuous Π1

1 open set, then there exists an oracle-continuous Π1
1 setW ⊆ 2<ω×2<ω

such that UA = [WA] and for all B, the set WB is prefix-free.

Proof. We define an enumeration of a Π1
1 oracle-continuous set W . The enumeration of W

will compute throughout its stages a collapsing approximation (As)s<ωCK
1

of A. At stage s,
if As is not in the closure of {At}t<s, then let τ ≺ As be the smallest such that τ has never
been a prefix of some At for t < s. Then enumerate into W τ

s+1 all strings σ of length smaller
than or equal to |τ | such that [σ] ⊆ Uτs but [σ] is disjoint from [W τ

s ].
It is clear that [WA] ⊆ UA. Let us argue that UA ⊆ [WA]. Suppose σ ∈ UA. There are

sequences {τn}n∈ω and {sn}n∈ω such that for every n, the ordinal sn is the first for which
we have Asn �|τn|= A�|τn|= τn, and such that supn sn = ωCK1 .

Let n be the smallest such that |τn| > |τn−1| ≥ |σ| and such that σ ∈ Uτn
sn
. Then we

have by construction that σ ⊆ [W τn
sn+1]. Therefore [WA] = UA. Also by construction WB is

prefix-free for every B. J

3.2 Properties of higher K-Trivials
One key property of the higher K-trivial sequences is that they have a collapsing approximation
as long as they are not ∆1

1.

I Property 22 ([2]). Every higher K-trivial, but not ∆1
1, sequence has a collapsing approx-

imation.

I Corollary 23. If A is higher K-trivial but not ∆1
1, then:

A higher Turing computes a function f : ω → ωCK1 whose range is unbounded in ωCK1 ;
if U is an oracle-continuous Π1

1 open set, one can uniformly find a Π1
1 oracle-continuous

set of strings W such that UA = [WA] and ∀B ∈ 2ω, WB is prefix-free.

Proof of the corollary. By property 22, together with property 20 and 21. J

The proof that the low for Martin-Löf randoms are exactly the K-trivials requires a
big machinery. Using the fact that higher K-trivials have a collapsing approximation, it
is possible to transpose this proof and to show that the continuously low for Π1

1-MLR are
the higher K-trivials. The machinery developed in this proof can also be used to show a
slightly more general statement, known in the lower setting as the “Main Lemma”. One can
find a detailed proof and explanation of this result for the higher setting in [2]. We give
here a version of the Main Lemma which is closer to our need than the one in [2] (using
oracle-continuous open sets in place of oracle-continuous discrete semi-measures) :

MFCS 2017



34:8 Another Characterization of the Higher K-Trivials

I Theorem 24 (Main Lemma). If A is higher K-trivial, (As)s<ωCK
1

is any collapsing approx-
imation of A, and W is an oracle-continuous Π1

1 set of strings such that there exists c ∈ ω
such that for all X we have

∑
σ∈WX 2−|σ| ≤ c, then there exists a higher computable function

q : ωCK1 → ωCK1 such that:

S =
∑

r<ωCK
1

∑
σ∈Er

2−|σ| is finite

where

Er =
{
σ : σ ∈WA[q(r)] with use u, and

A[q(r)] � u 6= A[q(r + 1)] � u

}
.

Intuitively, if A is higher K-trivial, we can slow down its approximations in such a way
that not too much measure is added in the open set, with pieces of oracle that were believed
at some point to be prefixes of A but in fact are not: the total sum of ‘wrong’ measure added
this way over the times of computation can be made finite.

3.3 A higher K-trivial and not ∆1
1 implies Π1

1-ML〈O〉 = WΠ1
1RA

I Theorem 25. If A is higher K-Trivial and not ∆1
1, then WΠ1

1RA ⊆ Π1
1-MLR〈O〉.

Proof. Fix an A. By contrapositive, we prove that if X is captured by a Π1
1-ML〈O〉 test,

then it is also captured by a WΠ1
1RA test. We use the characterization 14 of Π1

1-ML〈O〉
tests, so let U =

⋂
s<ωCK

1
Us be such a test.

We make use of the corollary 23 that A higher computes a function f with cofinality
ωCK1 . Let g(〈m,n〉) be the m-th element of O≤f(n) ⊆ N (where O≤α is the set of codes for
computable ordinals smaller than α). Then g is also higher computable from A, and its
range is all the computable ordinals. Now, we consider

⋂
n Ug(n). As the range of g is ωCK1 ,

the intersection is equal to U , so its measure is 0 and as g is higher computable from A, this
set is a WΠ1

1RA test. J

The other inclusion will be a corollary of a more general theorem, whose proof follows
the same spirit than the proof in the lower setting that K-trivials are low for W2R.

I Theorem 26. Let A be higher K-trivial. Let G =
⋂
n Un where (Un)n∈ω is a uniform

family of Π1
1 open sets, continuously in A. Then there exists a set S =

⋂
s<ωCK

1
Vs where

(Vs)s<ωCK
1

is a uniformly Π1
1 family of open sets, such that λ(S) = λ(G) and S ⊇ G.

We will first prove the result for the simplest G, that is when the family is reduced to a
single open set U , and then extend this result to a uniform countable intersection of such
open sets.

I Lemma 27. Let A be higher K-trivial. Let G be a A-continuously Π1
1 open set. Then there

exists a set S =
⋂
s<ωCK

1
Vs where (Vs)s<ωCK

1
is a uniformly Π1

1 family of open sets, such
that λ(S) = λ(G) and S ⊇ G.

Proof. Using the property 21, there exists an oracle-continuous Π1
1 set of strings W such

that G = [WA], and such that WB is prefix-free for all B.
If A is ∆1

1 we are done. Otherwise, as it is higher K-trivial, it has a collapsing approxima-
tion, so we can try to use it to approximate G with Π1

1 open sets Vs. A first candidate for Vs
could be

⋃
s≤r<ωCK

1
WA[r], because every such Vs would contain G, but this approximation



P-E. Angles d’Auriac and B. Monin 34:9

is “too large”, because W and approximations of A can be such that WA[s] enumerates the
empty word for a family of s cofinal in ωCK1 .

The trick to prevent the measure to increase is to restrain the computation of WA[s]
only to some special stages and parts of the oracle, so that the weight of all errors is finite.
These stages are given by the Main Lemma : let q : ωCK1 → ωCK1 be the function given by
the Main Lemma, applied to W . We then have:∑

r<ωCK
1

∑
σ∈Er

2−|σ| is finite

where

Er =
{
σ : σ ∈WA[q(r)] with use u, and

A[q(r)] � u 6= A[q(r + 1)] � u

}
.

Now we define Vs by computing only over the special stages and prefixes, that is

σ ∈ Vs ⇔ ∃r ≥ s such that σ ∈WA[q(r)].

Every Vs contains G as any string σ enumerated in WA, with use u, will be in every
WA[q(r)] for r ≥ t such that A[q(t+ 1)] has settled on A � u.

Now consider the errors of the Vs, that is the strings σ enumerated in Vs but such that
[σ] 6⊆ G. There must exists an r ≥ s such that σ ∈ WA[q(r)] with use u, and such that
A[q(r)] � u 6= A[q(r + 1)] � u. Then σ ∈ Er for some r ≥ s. It follows that:

λ(Vs \G) ≤
∑

s≤r<ωCK
1

∑
σ∈Er

2−|σ|.

But as the total sum is finite, the partial sum goes to zero as s increases:

lim
s→ωCK

1

λ(Vs \G) = 0.

Finally with S =
⋂
s<ωCK

1
Vs, we have λ(S \ G) = 0 and S ⊇ G, which concludes the

proof of the lemma. J

proof of Theorem 26. It remains to prove using this lemma the more general case when
G =

⋂
n∈ω Un. We can apply what we just proved to R =

⋃
e∈ω 0e1[We] where (We)e∈ω is

an effective listing of the A-continuous Π1
1 sets. We then find T =

⋂
s<ωCK

1
Ts with T ⊇ R

and λ(T ) = λ(R).
Let f be a computable function such that Un = [Wf(n)]. Writing A|w = {X : wX ∈ A},

we let S =
⋂
n∈ω(T | 0f(n)1). Let us show that S works for our purpose. First S is a

Π1
1-ML〈O〉 test, by the characterization 14 of these tests, as

S =
⋂
n∈ω

 ⋂
s<ωCK

1

Ts

 | 0f(n)1

 =
⋂

ωs+n<ωCK
1

Ts | 0f(n)1.

Then S ⊇ G as for every n, we have T | 0f(n)1 ⊇ R | 0f(n)1 = [Wf(n)] = Un ⊇ G. Finally,
we show that λ(S \G) = 0. We have:

S −G =
⋂
n∈ω

S − [Wf(n)] ⊆
⋂
n∈ω

T | 0f(n)1− [Wf(n)].

But λ(T | 0f(n)1− [Wf(n)]) ≤ 2f(n)+1λ(T −R) = 0, so finally λ(S −G) = 0. J

MFCS 2017



34:10 Another Characterization of the Higher K-Trivials

I Corollary 28. If A is higher K-Trivial and not ∆1
1, then WΠ1

1RA ⊇ Π1
1-ML〈O〉.

Proof. We proceed by contrapositive, and show that every WΠ1
1RA test G is included in

a Π1
1-ML〈O〉 test. Given a WΠ1

1RA test, we just apply the theorem to this test and get
S =

⋂
s<ωCK

1
Vs such that S ⊇ G and λ(S) = λ(G) = 0, that is S is a Π1

1-ML〈O〉 test
containing G. J

3.4 Π1
1-ML〈O〉 = WΠ1

1RA implies A higher K-trivial and not ∆1
1

In this section, we will suppose that A is not higher K-trivial, and we will prove that under
this assumption there exists a WΠ1

1RA sequence that is not Π1
1-ML〈O〉 random. To do this

we need the existence of a particular set, that will allow us to build a specific sequence by
forcing.

This proof follows the lines of the proof of lowness for Π1
1-randomness [10]: if A is not

∆1
1 and not higher K-trivial, then there exists a Π1

1-ML test relative to A, which captures
a Π1

1-random. In [10] the proof has been done using full relativization and not continuous
relativization. Full relativization helps in particular to work with tests whose captured
sequences are closed under suppression of prefixes. It is not necessarily obvious using
continuous relativization that we can work with such tests. In particular, for some oracles
A it might be the case that there is no universal Π1

1-ML test continuously relativized to A.
Thus we first need to show the following lemma:

I Lemma 29. Let A be any set, and U a Π1
1-MLA test. Then there exists an Π1

1-MLA test
V such that if σX ∈ U then X ∈ V.

Proof. First we establish some notation. For A ⊆ 2ω, we write A−n for {X : ∃σ ∈ 2n, σX ∈
A} that is the set of strings of A, for which we remove the first n bits. We remark that
λ(A−n) ≤ 2nλ(A). Now say U =

⋂
n Un with λ(Um) ≤ 2−m and (Um) is uniformly Π1

1-open,
continuously in A. We define V =

⋂
n Vn by :

Vn = {X : ∃m > n,∃σ ∈ 2<m, σX ∈ U2m} =
⋃
m>n

⋃
i<m

(U2m)−i.

We now only need to verify that this proves the theorem. We need this set to be a
Π1

1-MLA test. It is easily a uniform intersection of Π1
1 open sets continuously in A, but we

need to check that it is effectively of measure 0. We have

λ(Vn) ≤
∑
m>n

∑
i<m

λ(U−i2m) ≤
∑
m>n

∑
i<m

2iλ(U2m)

by the remark after the definition of A−n, and then

λ(Vn) ≤
∑
m>n

∑
i<m

2i2−2m ≤
∑
m>n

2m2−2m ≤
∑
m>n

2−m ≤ 2−n.

So V is a test. J

I Remark. We did not proved that the test
⋂
Vn is closed under deletion of prefixes. It’s

own closure under deletion of prefixes may need to be bigger, but this state of things will be
enough for our needs.

Recall we will suppose in this part that A is not higher K-trivial. The next lemma makes
use of this fact to define a set that will be useful in our next construction.



P-E. Angles d’Auriac and B. Monin 34:11

I Lemma 30. If A is not higher K-trivial, then there exists a Π1
1-MLA test

⋂
n Un such that

for every n and every Π1
1 open set V with λ(V) < 1, we have Un ∩ Vc 6= ∅ (that is Un 6⊆ V).

Proof. By contrapositive, we will show that if the conclusion of the theorem does not
hold, then every Π1

1-MLA test is contained in a Π1
1-ML test. As the sequences which are

continuously low for Π1
1-MLR are exactly the higher K-trivials (Theorem 18), we can conclude

that A is higher K-trivial. Following this plan, our hypothesis becomes: “For every Π1
1-MLA

test ∩nUn there exists n and a Π1
1 open set V with λ(V) < 1 and such that Un ⊆ V.”

Our goal is to show that A is low for Π1
1-MLR. Let U =

⋂
Un be a Π1

1-MLA test. By the
previous lemma, we find a test Ũ =

⋂
Ũn containing all the suffixes of elements in U . Then

by the hypothesis, we find V ⊇
⋂
Ũn(⊇

⋂
Un) where V is Π1

1 open and λ(V) < 1. Let W
be such that V = [W ] and wg(W ) =

∑
σ∈W 2−|σ| < 1 − ε for some ε (we make W almost

prefix-free , that is wg(W ) ≤ λ(V) + ε′ for ε′ sufficiently small, as allowed by [18], Lemma
3.7.1). We define:

Vn = [Wn] = [{σ1σ2 · · ·σn : σi ∈W}].

We show that
⋂
Vn ⊇

⋂
Un and that it is a valid test. Let X ∈

⋂
Un −

⋂
Vn toward a

contradiction. There exists a n such that X ∈ Vn and X 6∈ Vn+1 (we must have X ∈ V1 by
definition of V1). As X ∈ Vn, there exists σ ∈ Wn such that X = σY . But as X ∈

⋂
Un,

Y ∈
⋂
Ũn ⊆ V, and there exists τ ∈ W such that Y = τZ. But then, στ ∈ Wn+1 and

X ∈ Vn+1, a contradiction.
It remains to prove that

⋂
Vn is a test which is the case if it is effectively of measure

0. To do so we can easily prove by induction that λ(Vn) ≤ wg(W )n. Indeed, λ(Vn+1) ≤∑
σ∈Wn

∑
τ∈W 2−|στ | ≤ (

∑
σ∈Wn 2−|σ|)(

∑
τ∈W 2−|τ |) = wg(W )n. Then λ(Vn+1) ≤ (1 −

ε)n+1.
We covered every Π1

1-MLA test with a test without oracle, so A is low for Π1
1-MLR, that

is, higher K-trivial. J

I Theorem 31. Suppose A is not higher K-trivial. Then, there is a Π1
1-ML〈O〉-random

which is not WΠ1
1RA.

Proof. Let us denote by RO (respectively RW) the set of Π1
1-ML〈O〉 (respectively WΠ1

1RA)
randoms. We are trying to prove that the set RO ∩ RW is not empty. We will build an
element inside this intersection by forcing. The main thing needed for the construction is to
clarify how we will layer these two sets.

First we have RO =
⋂
m

⋃
n Fm,n where the Fm,n are Σ1

1 closed sets, increasing over n.
Neither the intersection or the union need to be effective. Each union is in fact effective in
Kleene’s O (by definition of a Π1

1-ML〈O〉 test) and each intersection is effective in the double
jump of Kleene’s O (to select the functions Turing computable from Kleene’s O which are
totals and which pick the right indices for a Π1

1-ML〈O〉 test). Note that we can also require
without loss of generality that each Fm,n contains only Π1

1-ML randoms: to do so we simply
replace each Fm,n by the uniform union of its intersection with each Σ1

1 closed component in
the complement of a universal Π1

1-ML test.
Then RW is the union of all the WΠ1

1RA tests. In particular, it contains the test
⋂
n Un

given by the lemma 30: as A is not higher K-trivial, every Un intersects every Σ1
1 closed

set of positive measure. Furthermore if this closed set contains only Π1
1-ML randoms, this

intersection must be of positive measure (it is a fact that no Π1
1-ML random can be in a Σ1

1
closed set of measure 0).

In conclusion, it is sufficient to construct a Z such that Z ∈ Un for every n and
Z ∈

⋃
n Fm,n for every m. It is now clear how to do so by forcing with a decreasing

MFCS 2017



34:12 Another Characterization of the Higher K-Trivials

sequence of Σ1
1 closed sets of positive measure: We start with F0,0 which intersects with

positive measure some [σ0] ⊆ U0.
Suppose now by induction, that for some m we have closed sets Fi,ni

for i ≤ m and strings
σ1 ≺ · · · ≺ σm, such that λ(

⋂
i≤m Fi,ni

∩ [σm]) > 0 and such that [σm] ⊆
⋂
i≤m Ui. Let us

find nm+1 and σm+1 � σm with [σm+1] ⊆
⋂
i≤m+1 Ui such that λ(

⋂
i≤m+1 Fi,ni

∩ [σm]) > 0.
As
⋂
i≤m Fi,ni

∩ [σm] is a Σ1
1 closed set of positive measure, it intersects with positive

measure the set Um+1. Thus there exists σm+1 � σm with σm+1 ⊆
⋂
i≤m+1 Ui such that

λ(
⋂
i≤m Fi,ni

∩ [σm+1]) > 0. Now as λ(
⋃
n Fm+1,n) = 1, there is some nm+1 such that

λ(
⋂
i≤m+1 Fi,ni

∩ [σm+1]) > 0.
By construction, the unique sequence Z ∈

⋂
i[σi] is such that Z ∈

⋂
m

⋃
n Fm,n and

Z ∈
⋂
n Un which concludes the proof. J

References
1 Laurent Bienvenu, Adam R Day, Noam Greenberg, Antonín Kučera, Joseph S Miller, André

Nies, and Dan Turetsky. Computing k-trivial sets by incomplete random sets. The Bulletin
of Symbolic Logic, 20(01):80–90, 2014.

2 Laurent Bienvenu, Noam Greenberg, and Benoit Monin. Continuous higher randomness.
3 Chi Tat Chong, André Nies, and Liang Yu. Lowness of higher randomness notions. Israel

J. Math., 166(1):39–60, 2008.
4 Chi Tat Chong and Liang Yu. Randomness in the higher setting. Submitted.
5 Chi Tat Chong and Liang Yu. Recursion Theory: Computational Aspects of Definability,

volume 8. Walter de Gruyter GmbH & Co KG, 2015.
6 Adam R. Day and Joseph S. Miller. Cupping with random sets. Proc. Amer. Math. Soc.,

142(8):2871–2879, 2014. doi:10.1090/S0002-9939-2014-11997-6.
7 Rod Downey, Andre Nies, Rebecca Weber, and Liang Yu. Lowness and Π0

2 nullsets. J.
Symbolic Logic, 71(3):1044–1052, 09 2006. doi:10.2178/jsl/1154698590.

8 Rodney G. Downey and Denis R. Hirschfeldt. Algorithmic Randomness and Com-
plexity. Theory and Applications of Computability. Springer, 2010. doi:10.1007/
978-0-387-68441-3.

9 N. Greenberg, J. Miller, B. Monin, and D. Turetsky. Two more characterizations of k-
triviality. Notre Dame Journal of Formal Logic, To appear.

10 Noam Greenberg and Benoit Monin. Higher randomness and genericity.
11 Joel David Hamkins and Andy Lewis. Infinite time turing machines. The Journal of

Symbolic Logic, 65(02):567–604, 2000.
12 Denis Hirschfeldt, André Nies, and Frank Stephan. Using random sets as oracles. Journal

of the London Mathematical Society, 75(3):610–622, 2007.
13 Greg Hjorth and André Nies. Randomness via effective descriptive set theory. Journal of

the London Mathematical Society, 75(2):495–508, 2007.
14 Alexander S. Kechris. Classical Descriptive Set Theory. Graduate Texts in Mathematics.

Springer New York, 2012.
15 Bjørn Kjos-Hanssen, Joseph S Miller, and Reed Solomon. Lowness notions, measure and

domination. Journal of the London Mathematical Society, page jdr072, 2012.
16 Per Martin-Löf. The definition of random sequences. Information and Control, 9:602–619,

1966.
17 Per Martin-Löf. On the notion of randomness. Studies in Logic and the Foundations of

Mathematics, 60:73–78, 1970. doi:10.1016/S0049-237X(08)70741-9.
18 Benoit Monin. Higher computability and randomness. PhD thesis, Universite Paris Diderot,

2014.

http://dx.doi.org/10.1090/S0002-9939-2014-11997-6
http://dx.doi.org/10.2178/jsl/1154698590
http://dx.doi.org/10.1007/978-0-387-68441-3
http://dx.doi.org/10.1007/978-0-387-68441-3
http://dx.doi.org/10.1016/S0049-237X(08)70741-9


P-E. Angles d’Auriac and B. Monin 34:13

19 Yiannis Moschovakis. Descriptive Set Theory. Mathematical surveys and monographs.
American Mathematical Society, 2009.

20 André Nies. Lowness properties and randomness. Advances in Mathematics, 197(1):274–
305, 2005.

21 André Nies. Computability and Randomness. Oxford Logic Guides. Oxford University
Press, 2009.

22 Gerald E. Sacks. Higher recursion theory. Perspectives in mathematical logic. Springer-
Verlag, 1990.

MFCS 2017





The Quantum Monad on Relational Structures∗

Samson Abramsky1, Rui Soares Barbosa2, Nadish de Silva3, and
Octavio Zapata4

1 Department of Computer Science, University of Oxford, UK
samson.abramsky@cs.ox.ac.uk

2 Department of Computer Science, University of Oxford, UK
rui.soares.barbosa@cs.ox.ac.uk

3 Department of Computer Science, University College London, UK
nadish.desilva@utoronto.ca

4 Department of Computer Science, University College London, UK
ocbzapata@gmail.com

Abstract
Homomorphisms between relational structures play a central role in finite model theory, con-
straint satisfaction, and database theory. A central theme in quantum computation is to show
how quantum resources can be used to gain advantage in information processing tasks. In par-
ticular, non-local games have been used to exhibit quantum advantage in boolean constraint
satisfaction, and to obtain quantum versions of graph invariants such as the chromatic number.
We show how quantum strategies for homomorphism games between relational structures can
be viewed as Kleisli morphisms for a quantum monad on the (classical) category of relational
structures and homomorphisms. We use these results to exhibit a wide range of examples of
contextuality-powered quantum advantage, and to unify several apparently diverse strands of
previous work.

1998 ACM Subject Classification F.1.2 Modes of Computation, F.3.2 Semantics of Program-
ming Languages

Keywords and phrases non-local games, quantum computation, monads

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.35

1 Introduction

Finite relational structures and the homomorphisms between them form a mathematical
core common to finite model theory [25], constraint satisfaction [14], and relational database
theory [24]. Moreover, much of graph theory can be formulated in terms of the existence of
graph homomorphisms, as expounded e.g. in the influential text [17]. Thus, implicitly at least,
the mathematical setting for all these works is categories of σ-structures and homomorphisms,
for relational vocabularies σ.

What could it mean to quantize these structures? More precisely, with the advent of
quantum computing, we can now consider the consequences of using quantum resources for
carrying out various information-processing tasks. A major theme of current research is to

∗ This work was carried out in part while the authors visited the Simons Institute for the Theory of Com-
puting (supported by the Simons Foundation) at the University of California, Berkeley, as participants
of the Logical Structures in Computation programme. Support from the following is also gratefully
acknowledged: EPSRC – Engineering and Physical Sciences Research Council: EP/N018745/1 (SA,
RSB) and EP/N017935/1 (NdS), ‘Contextuality as a Resource in Quantum Computation’; CONACyT –
Consejo Nacional de Ciencia y Tecnología (OZ); and Cambridge Quantum Computing Ltd. (OZ).

© Samson Abramsky, Rui Soares Barbosa, Nadish de Silva, and Octavio Zapata;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-François Raskin; Article No. 35; pp. 35:1–35:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.35
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


35:2 The Quantum Monad on Relational Structures

delineate the scope of the quantum advantage which can be gained by the use of quantum
resources. How can this be related to these fundamental structures?

Our starting point is the notion of quantum graph homomorphism introduced in [27] as
a generalization of the notion of quantum chromatic number [11]. Consider the following
game, played by Alice and Bob cooperating against a Verifier. Their goal is to establish
the existence of a homomorphism G → H for given graphs G and H. Verifier provides
vertices v1, v2 ∈ V (G) to Alice and Bob respectively. They produce outputs w1, w2 ∈ V (H)
in response. No communication between Alice and Bob is permitted during the game. They
win if the following conditions hold: v1 = v2 ⇒ w1 = w2 and v1 ∼ v2 ⇒ w1 ∼ w2, where
we write ∼ for the adjacency relation.

If only classical resources are permitted, then the existence of a perfect strategy for Alice
and Bob — one in which they win with probability 1 — is equivalent to the existence of
a graph homomorphism in the standard sense. However, using quantum resources, in the
form of an entangled bipartite state where Alice and Bob can each perform measurements
on their part, there are perfect strategies in cases where no classical homomorphism exists,
thus exhibiting quantum advantage.

Alice–Bob games have also been studied for other tasks, notably for constraint systems.
Consider the following system of linear equations over Z2:

A ⊕ B ⊕ C = 0 D ⊕ E ⊕ F = 0 G ⊕ H ⊕ I = 0

A ⊕ D ⊕ G = 0 B ⊕ E ⊕ H = 0 C ⊕ F ⊕ I = 1

Of course, this system is not satisfiable in the standard sense, as we can see by summing
over the left- and right-hand sides. Now consider the following Alice–Bob game. The Verifier
sends Alice an equation, and Bob a variable. Alice returns an assignment to the variables in
the equation, and Bob returns an assignment for his variable. They win if Bob’s assignment
agrees with Alice’s, and moreover Alice’s assignment satisfies the given equation. Classically,
the existence of a perfect strategy is equivalent to the existence of a satisfying assignment for
the whole system. Using quantum resources, there is a perfect strategy for the above system,
which corresponds to Mermin’s “magic square” construction [29]. This can be generalized to
a notion of quantum perfect strategies for a broad class of constraint systems [13, 12], which
have strong connections both to the study of contextuality in quantum mechanics, and to a
number of challenging mathematical questions [36, 35]. Clearly, these games are analogous
to those for graph homomorphisms. What is the precise relationship?

In [27], generalizing results in [11], the existence of a quantum perfect strategy for
the homomorphism game from G to H is characterized in terms of the existence of a
family {Evw}v∈V (G),w∈V (H) of projectors in d-dimensional Hilbert space for some d, subject
to certain conditions. Analogous results for constraint systems are proved in [13]. This
characterization eliminates the two-person aspect of the game, and the shared state, leaving
a “projector-valued relation” as the witness for existence of a quantum perfect strategy.
We shall henceforth call these witnesses quantum graph homomorphisms. An important
further step is taken in [27]. A construction H 7→ MH on graphs is introduced, such that
the existence of a quantum graph homomorphism from G to H is equivalent to the existence
of a standard graph homomorphism G→ MH.

Our contribution begins at this point. We describe a general notion of non-local game for
witnessing homomorphisms between structures for any relational signature. We show that
the use of quantum resources in these games can be characterized by a notion of quantum
homomorphism. Moreover, quantum homomorphisms can in turn be characterized as the



S. Abramsky, R. S. Barbosa, N. de Silva, and O. Zapata 35:3

Kleisli morphisms for a quantum monad on the (classical) category of relational structures
and homomorphisms. This monad is graded [30] by the dimension of the Hilbert space.

Our account refines and generalizes the ideas from both [11, 27] and [13]. We characterize
quantum solutions for general constraint satisfaction problems, showing as a special case that
these subsume the binary constraint systems of [13]. We also show how quantum witnesses
for strong contextuality in the sense of [4] are characterized by quantum homomorphisms.

The precise relationship with the quantum graph homomorphisms of [27] turns out to be
more subtle. We show that their notion is characterized by a quantum solution in our sense
for a related boolean constraint system. Overall, we show that a wide range of notions of
quantum advantage is captured in a uniform way by the quantum monad, applied directly to
the standard classical structures.

For reasons of limited space, some background material on linear algebra and quantum
mechanics (e.g. the notions of POVM and PVM) and some proofs have been relegated to an
Appendix.

2 From quantum perfect strategies to quantum homomorphisms

We write [p] := {1, . . . , p}. We fix a finite relational vocabulary σ = {R1, . . . , Rp}, where
Ra has arity ka, a ∈ [p]. A σ-structure has the form A = (A,RA1 , . . . , RAp ), where A is a
non-empty set, and RAa ⊆ Aka , a ∈ [p]. A homomorphism of σ-structures f : A → B is a
function f : A → B such that, for all a ∈ [p] and x ∈ Aka , x ∈ RAa ⇒ f(x) ∈ RBa . Here
we use vector notation: x = (x1, . . . , xka

) and f(x) = (f(x1), . . . , f(xka
)). We denote the

category of σ-structures and homomorphisms by R(σ), and the full subcategory of finite
structures by Rf (σ).

We now consider the following game, played on finite structures A and B, in which Alice
and Bob cooperate to convince a Verifier that there is a homomorphism from A to B:

Alice and Bob are separated, and not allowed to communicate (exchange classical inform-
ation) while the game is played.
In a play of the game, the Verifier sends Alice an index a, and a tuple x ∈ RAa ; and Bob
an element x ∈ A.
Alice returns a tuple y ∈ Bka , and Bob returns an element y ∈ B.
Alice and Bob win that play if
(i) y ∈ RBa
(ii) x = xi ⇒ y = yi, i ∈ [ka].

Alice and Bob may use probabilistic strategies. A perfect strategy is one in which they win
with probability 1.

It is clear that if only classical resources are allowed, the existence of a perfect strategy is
equivalent to the existence of a homomorphism from A to B. The actual strategy played by
Alice and Bob may be pure or mixed, in the latter case using some shared randomness.

We now consider the use of quantum resources in the homomorphism game. We shall
only consider the case of finite-dimensional resources in this paper. Such resources have the
following general form:

There are finite-dimensional Hilbert spaces H and K, and a pure state ψ on H⊗ K. This
state is shared between Alice and Bob. The separation between Alice and Bob is reflected
in the fact that Alice can only perform operations on H, while Bob can only perform
operations on K.
For each a ∈ [p] and tuple x ∈ RAa , Alice has a POVM Eax = {Eax,y}y∈Bka .
For each x ∈ A, Bob has a POVM Fx = {Fx,y}y∈B

MFCS 2017



35:4 The Quantum Monad on Relational Structures

These resources are used as follows:
Given a and x, Alice measures Eax on her part of ψ.
Given x, Bob measures Fx on his part of ψ.
They obtain the joint outcome (y, y) with probability ψ∗(Eax,y ⊗Fx,y)ψ.

If with probability 1 the outcome (y, y) satisfies the winning conditions, then this is a
quantum perfect strategy.

We can write the winning conditions explicitly in terms of the quantum operations:

(QS1) ψ∗(Eax,y ⊗Fx,y)ψ = 0 if x = xi and y 6= yi

(QS2) ψ∗(Eax,y ⊗ I)ψ = 0 if y 6∈ RBa .

A first remark is that our assumption of the bipartite structure of the state space does
not in fact lose any generality. We could have asked simply that Bob’s operators commute
with those of Alice. However, since we are considering the finite-dimensional case, a result of
Tsirelson [37, 35] implies that this is equivalent to the tensor product formulation we have
used. Furthermore, using a pure state also does not lose any generality. Indeed, if we had a
mixed state ρ =

∑
i piψiψ

∗
i , with the trace replacing the inner products in (QS1) and (QS2),

then the linearity of the trace implies that we could just as well have used any of the pure
states ψi with the same measurements, and still satisfy the conditions.

We shall now show that in fact a quantum perfect strategy can without loss of generality
be assumed to have a very special form, which will lead us to the equivalence with quantum
homomorphisms. These results combine ingredients from [13] and [27, 11]. The proofs are
closest to those in [34], but are considerably simpler as well as more general.

For notational convenience, we shall focus on the case where the relational signature has a
single k-ary relation R. Thus a quantum perfect strategy for the homomorphism game from
A to B has the form (ψ, {Ex}x∈RA , {Fx}x∈A), where Ex = {Ex,y}y∈Bk and Fx = {Fx,y}y∈B
are POVMs satisfying the conditions (QS1) and (QS2).

Our first step is to show that ψ can be taken to have full Schmidt rank.

I Lemma 1. Given a quantum perfect strategy (ψ′, {E ′x}x∈RA , {F ′x}x∈A), we can find a
strategy (ψ, {Ex}x∈RA , {Fx}x∈A) where ψ ∈ Cd⊗Cd has the form

∑d
i=1 λiei⊗ ei with λi > 0

for all i.

Proof. Our proof will follow closely the first part of the proof of Theorem 6.5.1 in [34], so we
omit detailed calculations. We write the Schmidt decomposition of ψ′ as

∑d
i=1 λiαi ⊗ βi ∈

CdA ⊗ CdB , where {αi}, {βi} are orthonormal families of vectors, and λi > 0.
We define PA :=

∑d
i=1 eiα

∗
i , PB :=

∑d
i=1 eiβ

∗
i . Thus PA : CdA → Cd, and PB : CdB → Cd.

It is straightforward to verify that PAP ∗A = Id = PBP
∗
B. We have ψ := (PA ⊗ PB)ψ′, and

ψ′ = (P ∗A ⊗ P ∗B)ψ.
Similarly, we define Ex,y := PAE ′x,yP ∗A, and Fx,y := PAF ′x,yP ∗B. Again, it is straightfor-

ward to verify that this yields well-defined POVMs, and moreover that the probabilities
are preserved: ψ∗(Ex,y ⊗ Fx,y)ψ = ψ′∗(E ′x,y ⊗ F ′x,y)ψ′. Thus (ψ, {Ex}x∈RA , {Fx}x∈A) is a
quantum perfect strategy. J

The following simple general result will be useful.

I Lemma 2. Let A be a ∗-algebra, and a, b, d be self-adjoint elements of A, where d is also
invertible. Suppose that ad = adb = db. Then a and b are projectors, and they both commute
with d2. If A is a C∗-algebra, then a = b.



S. Abramsky, R. S. Barbosa, N. de Silva, and O. Zapata 35:5

Proof. First, a2d = adb = ad. Since d is invertible, this implies that a2 = a, so a is a projector.
Similarly, b2 = b. Moreover, since a, b and d are self-adjoint, db = ad ⇐⇒ bd = da. Hence
ad2 = dbd = d2a.

If A is a C∗-algebra, then it is standard that d commutes with every element which
commutes with d2 [9, 32], so da = ad = db, and since d is invertible, this yields a = b. J

We shall now show that under the assumption of full Schmidt rank, the measurements
are already remarkably constrained. We define E ix,y :=

∑
yi=y Ex,y.

I Lemma 3. Let (ψ, {Ex}, {Fx}) be a quantum perfect strategy in which ψ has full Schmidt
rank. Then for all x, i, y, E ix,y and Fx,y are projectors, and E ix,y = FTx,y whenever x = xi.

Proof. We write ψ as
∑d
i=1 λiei ⊗ ei, where λi > 0. The corresponding d × d diagonal

matrix D = diag{λi} is full rank, and hence invertible, and D∗ = D. Note that ψ = vec(D),
the vectorization of D. Using the standard equations (A ⊗ B)vec(D) = vec(ADBT ) and
vec(A)∗vec(B) = Tr(AB), we have

ψ∗(Ex,y ⊗Fx,y)ψ = 0 ⇐⇒ Tr(DEx,yDFTx,y) = 0 ⇐⇒ Tr(Ex,yDFTx,yD) = 0.

By Proposition 17, Tr(Ex,yDFTx,yD) = 0 ⇐⇒ Ex,yDFTx,yD = 0, and since D is invertible,
this is equivalent to Ex,yDFTx,y = 0. By condition (QS1), Ex,yDFTx,y = 0 when x = xi and
y 6= yi. This in turn implies that E ix,yDFTx,y′ = 0 when x = xi and y 6= y′.

Now fix x and x = xi. Let Ay := E ix,y, and By := FTx,y. We have
∑
y Ay = I =

∑
y By,

and AyDBy′ = 0 when y 6= y′. Hence AyD =
∑
y′ AyDBy′ = AyDBy =

∑
y′ Ay′DBy =

DBy. We can now apply Lemma 2, taking a = Ay, d = D, and b = By, to conclude that
E ix,y and Fx,y are projectors, and moreover that they commute with D2. We can use the last
part of Lemma 2 to conclude that E ix,y = FTx,y whenever x = xi. J

Finally, we show that the state can be chosen to be maximally entangled.

I Lemma 4. Let (ψ′, {Ex}, {Fx}) be a quantum perfect strategy where ψ′ =
∑d
i=1 λiei ⊗ ei

with λi > 0 for all i. Then (ψ, {Ex}, {Fx}) is a quantum perfect strategy, where ψ =
1/
√
d

∑d
i=1 ei ⊗ ei is the maximally entangled state.

Proof. Let D′ be the diagonal matrix associated with ψ′. Using Lemma 3,

ψ′∗(Ex,y ⊗Fx,y)ψ′ = 0 ⇐⇒ Ex,yD
′FTx,y = 0 ⇐⇒ Ex,yFTx,yD′ = 0 ⇐⇒ Ex,yFTx,y = 0,

since D′ commutes with FTx,y and is invertible. Similarly,

ψ′∗(Ex,y ⊗ I)ψ′ = 0 ⇐⇒ Ex,yD
′ = 0 ⇐⇒ Ex,y = 0.

These conditions will be preserved by any state ψ whose diagonal matrix is full rank and
commutes with the matrices Fx,y. This holds in particular for the maximally entangled state,
whose diagonal matrix has the form 1√

d
Id. J

We can now combine Lemmas 1, 3 and 4 to obtain the following result:

I Theorem 5. The existence of a quantum perfect strategy implies the existence of a strategy
(ψ, {Ex}, {Fx}) with the following properties:

The POVMs E ix and Fx are projective.
The state ψ is a maximally entangled state ψ = 1/

√
d

∑d
i=1 ei ⊗ ei.

If x = xi then E ix,y = FTx,y.
If x ∈ RA and y 6∈ RB, then Ex,y = 0.

MFCS 2017



35:6 The Quantum Monad on Relational Structures

It is worth noting that the procedure for obtaining the strategy in this special form has
three steps:

In Step 1, the state and strategies are projected down to the subspace corresponding to
the support of the Schmidt decomposition of the state. This step reduces the dimension
of the Hilbert space, and preserves the probabilities for the strategy exactly.
Step 2 does not change the strategy at all, but shows that it must already have strong
properties.
Step 3 changes the state but not the measurements. In general, the probabilities for the
strategy will be changed, but the possibilities are preserved exactly.

Thus in passing to the special form, the dimension is reduced; the process by which we obtain
projective measurements is not at all akin to dilation.

This theorem shows that all the information determining the strategy is in Alice’s
operators. Moreover, Alice’s operators must be chosen non-contextually, so that E ix,y is
independent of the context x. This means that we can define projectors Px,y := E ix,y whenever
x = xi. If xi = x = x′j , then we have E ix,y = FTx,y = Ejx′,y, so Px,y is well-defined.

Now, recall the notion of joint measurability: a family of POVMs {A1
y}y∈Y1 , . . . , {Aky}y∈Yk

is said to be jointly measurable if there is a POVM {By}y∈Y1×···×Yk
such that for all i,

Aiy =
∑

yi=y By. The following result is standard [16].

I Proposition 6. A family of projective measurements is jointly measurable by a POVM if
and only if they pairwise commute, and in this case the POVM is the product of the family,
and hence projective.

For each x ∈ RA, the projective measurements Pxi
= {Pxi,y} defined above are jointly

measured by Ex. Thus Ex is the projective measurement Px = {Px,y}y given by Px,y :=
Px1,y1 · · ·Pxk,yk

.
We shall now introduce the notion of quantum homomorphism between relational struc-

tures A and B. A quantum homomorphism is a family of projectors {Px,y}x∈A,y∈B in Proj(d)
for some d, satisfying the following conditions:

(QH1) For all x ∈ A,
∑
y∈B Px,y = I.

(QH2) For all x ∈ RA, x = xi, x′ = xj , and y, y′ ∈ B, [Px,y, Px′,y′ ] = 0. Thus we can
define a projective measurement Px = {Px,y}y, where Px,y := Px1,y1 · · ·Pxk,yk

.
(QH3) If x ∈ RA and y 6∈ RB, then Px,y = 0.

Note that (QH1) implies that for any x, Px,yPx,y′ = 0 whenever y 6= y′.
We write A q→ B for the existence of a quantum homomorphism from A to B.

I Theorem 7. For finite structures A, B, the following are equivalent:
1. There is a quantum perfect strategy for the homomorphism game from A to B.
2. A q→ B.

Proof. The implication from (1) to (2) follows directly from Theorem 5 and the subsequent
discussion. For the converse, given a quantum homomorphism {Px,y}x∈A,y∈B , we can define
Ex,y := Px,y, Fx,y := PTx,y, and use the maximally entangled state to obtain a quantum perfect
strategy. It is straightforward to verify that the homomorphism conditions (QH1)–(QH3)
imply the strategy conditions (QS1) and (QS2). J

As a final remark, although we have focussed on a single relation to simplify the notation,
our results go through for arbitrary relational signatures. Note that the general form of
condition (QH2) is that Px,y and Px′,y′ must commute whenever x and x′ are adjacent in
the Gaifman graph of A – that is, they both occur in some tuple of some relation.



S. Abramsky, R. S. Barbosa, N. de Silva, and O. Zapata 35:7

3 From quantum homomorphisms to the quantum monad

We now show how to characterize quantum homomorphisms as the Kleisli morphisms of
a monad Qd on the category of relational structures. This monad is graded [30] by the
dimension of the Hilbert space used as the quantum resource.

The monad will be defined on the category R(σ) of all σ-structures, since QdA will
always be infinite, even if A is finite. For the underlying universes of the structures, the
construction can be seen as a quantum variant of the discrete distribution monad [20], widely
used in coalgebra and semantics. It is well known that the distribution monad can be defined
over any commutative semiring, with the non-negative reals being used for the standard
case of probabilities [20, 4]. Here we shall use the projectors Proj(d) with d ranging over the
positive integers. For each d, Proj(d) is a partial commutative semiring, since we can only
add projectors if they are orthogonal, and only multiply them if they commute. We also
have the graded multiplication given by the tensor product: if P ∈ Proj(d) and Q ∈ Proj(d′),
then P ⊗Q ∈ Proj(dd′).

We fix a relational signature σ. For each positive integer d and σ-structure A, we define a
σ-structure QdA. The universe of this structure QdA is the set of all functions p : A→ Proj(d)
satisfying the normalization condition:

∑
x∈A p(x) = I. Note that normalization implies that

the projectors {p(x)}x∈A are pairwise orthogonal. Since we are in finite dimension d, this in
turn implies that p has finite support: p(x) = 0 for all but finitely many x. We can think of
QdA as the projector-valued distributions on A in dimension d. For each relation R of arity
k in σ, we define RQdA to be the set of all tuples (p1, . . . , pk) such that:

(QR1) For all i, j ∈ [k], x, x′ ∈ A: [pi(x), pj(x′)] = 0.
(QR2) For all x ∈ Ak, if x 6∈ RA, then p(x) = 0, where p(x) := p1(x1) · · · pk(xk).

Note that the first condition implies that the product of projectors in the second is a
well-defined projector.

I Proposition 8. Let A and B be finite σ-structures. There is a bijective correspondence
between quantum homomorphisms {Px,y}x∈A,y∈B from A to B in dimension d and standard
homomorphisms h : A → QdB.

Proof. Given a quantum homomorphism {Px,y}, define h : A → QdB by h(x) = p, where
p(y) := Px,y. (QH1) implies normalization. Given x ∈ RA, we have to show that p = h(x) ∈
RQdA. (QH2) implies that (QR1) is satisfied for pi(y), pj(y′), where pi = h(xi), pj = h(xj).
Similarly, (QH3) implies (QR2).

For the converse, given h : A → QdB, define Px,y := h(x)(y). Again, normalization
implies (QH1), (QR1) implies (QH2), and (QR2) implies (QH3). J

This correspondence is analogous to the familiar one between relations and set-valued
functions, which shows that the category of relations is the Kleisli category of the powerset
monad on Set.

Now we show that Qd extends to a functor on R(σ). Given a homomorphism h : A → B,
we define Qdh : QdA → QdB by Qdh(p)(y) :=

∑
h(x)=y p(x).

I Proposition 9. Qdh is a well-defined homomorphism. Moreover, Qd is functorial: Qdg ◦
Qdh = Qd(g ◦ h) and QdidA = idQdA.

Proof. The finite support and normalization conditions ensure that Qdh is well-defined.
Functoriality is proved exactly as for the distribution monad. We verify that Qdh is a homo-
morphism. Suppose that (p1, . . . , pk) ∈ RQdA. By (QR1), this implies that [pi(x), pj(x′)] = 0

MFCS 2017



35:8 The Quantum Monad on Relational Structures

for all i, j ∈ [k], x, x′ ∈ A. This implies that

[Qdh(pi)(y),Qdh(pj)(y′)] = [
∑

h(x)=y

pi(x),
∑

h(x′)=y′

pj(x′)] = 0

so Qdh(p) satisfies (QR1). For (QR2), if y 6∈ RB,

Qdh(p)(y) =
k∏
j=1

∑
h(xj) = yj

pj(xj) =
∑

h(x) = y

p(x) = 0,

by (QR2) for p ∈ RQdA, since y 6∈ RB and h(x) = y implies x 6∈ RA. Thus Qdh(p) ∈
RQdB. J

The unit of the monad ηA : A → Q1A sends x ∈ A to the “delta distribution” δx ∈ Q1A,
where δx(x) = I1, δx(x′) = 0 if x 6= x′. Verification that this is well-defined and yields a
natural transformation is straightforward.

We also have the graded monad multiplication: µd,d
′

A : QdQd′A → Qdd′A. This is defined
as follows: µd,d

′

A (P )(x) :=
∑
p∈Qd′A P (p) ⊗ p(x). We prove that this gives a well-defined

natural transformation in the Appendix. Thinking of ⊗ as the graded semiring multiplication
on projectors, we can see the correspondence to the distribution monad.

We recall that given a category C, the endofunctor category [C, C] is monoidal; a monad
on C is a monoid in this category [26]. Now let (M, ·, 1) be a monoid, which we can view
as a discrete category with a strict monoidal structure. An M -graded monad [30] on C is a
lax monoidal functor from M into [C, C]. Such a functor is given by the following data: an
assignment m 7→ Tm of an endofunctor on C to each element of M ; a natural transformation
η : Id .- T1 (the graded unit); and a natural transformation µm,m′ : TmTm′

.- Tm·m′

for all m, m′ (the graded multiplication). These are subject to coherence conditions, which
generalize the usual monad equations. We refer to [30] for details.

In our case, we use the monoid N+ of positive integers under multiplication.

I Theorem 10. The triple ({Qd}d, η, {µd,d
′}d,d′) is a N+-graded monad on R(σ).

The proof of this result involves verifying a number of equations, and is fairly lengthy
but straightforward. We provide details in the Appendix.

We are particularly interested in the Kleisli category for this graded monad. The objects
of this category are the same as those of R(σ). A morphism from A to B is a homomorphism
h : A → QdB. By Proposition 8, we know that Kleisli morphisms correspond exactly to
quantum homomorphisms.

The graded composition of Kleisli arrows h : A → QdB and k : B → Qd′C is the arrow
k • h : A → Qdd′C given by k • h := µd,d

′

B ◦Qdk ◦ h. An explicit description can be calculated
from the graded monad structure given above: (k • h)(x)(z) =

∑
y∈B h(x)(y) ⊗ k(y)(z).

If we write this in terms of the corresponding quantum homomorphisms {Px,y}x∈A,y∈B,
{Qy,z}y∈B,z∈C , we obtain {Rx,z}x∈A,z∈C given by the formula Rx,z =

∑
y∈B Px,y ⊗ Qy,z.

This recovers the concrete definition given for quantum graph homomorphisms in [27].

4 Quantum advantage via the quantum monad

We shall now show how the quantum monad provides a unified framework for express-
ing quantum advantage in a wide range of information processing tasks. We shall show
equivalences between:



S. Abramsky, R. S. Barbosa, N. de Silva, and O. Zapata 35:9

state-independent strong contextuality arguments
quantum advantage in constraint satisfaction
existence of quantum (but not classical) homomorphisms between relational structures.

4.1 Classical correspondences
We begin with the standard classical correspondence between constraint satisfaction problems
and the existence of homomorphisms. A CSP instance has the form K = (V,D,C) where
V is a set of variables, D is a domain of values1, and C is a set of constraints of the form
(x, r), where for some k, x ∈ V k, and r ⊆ Dk. We say that c = (x, r) is a k-ary constraint.
A solution of the CSP is a function s : V → D such that, for all (x, r) ∈ C, s(x) ∈ r, where
s(x) := (s(x1), . . . , s(xk)).

Given K = (V,D,C) we define two structures over the signature with a k-ary relation
symbol Rc for each k-ary constraint c. First, BK has as universeD, and for each c = (x, r) ∈ C,
RBK
c = r. Secondly, AK has universe V , and for each c = (x, r) ∈ C, RAK

c = {x}. The
following is immediate:

I Proposition 11. There is a one-to-one correspondence between solutions for K and homo-
morphisms AK → BK.

There is also a converse to this result. Given σ-structures A and B, we can define the
CSP KAB = (V,D,C), where V = A, D = B, and C = {(a, RB) | R ∈ σ, a ∈ RA}.

I Proposition 12. There is a one-to-one correspondence between homomorphisms A → B
and solutions for KAB .

We will now look at empirical models over measurement scenarios, introduced in [4]
as a general setting for studying contextuality, in quantum mechanics and beyond, with
non-locality as a special case.

A measurement scenario is a triple (X,M, O), where X is a set of measurement labels;M
is a family of subsets of X, where we think of C ∈M as a set of compatible measurements,
or a context; and O is a set of measurement outcomes. An empirical model e : (X,M, O) for
a scenario is a family e = {eC}C∈M of probability distributions eC ∈ Prob(OC) on the joint
outcomes of measuring all the variables in a context C. Such empirical models can arise
from observational data (hence the name), or be generated by measuring a quantum state in
contexts comprising jointly measurable observables. A hierarchy of notions of contextuality
can be defined in this general setting [4, 2]. We shall be concerned with strong contextuality.
We say that e : (X,M, O) is strongly contextual if there is no global assignment g : X → O

such that, for all C ∈M, eC(g|C) > 0. That is, there is no global assignment consistent with
the model in the sense of yielding possible outcomes (non-zero probability) in all contexts.
This form of contextuality is witnessed by the GHZ construction [15, 28], as well as by
Kochen–Specker paradoxes [22], and post-quantum devices such as the PR box [33].

Given e : (X,M, O), we fix an ordering on X, and define a CSP Ke = (X,O,C), where
C is the set of constraints ((x1, . . . , xk), r) such that x1 < · · · < xk, {x1, . . . , xk} ∈ C and
r = {s(x) | eC(s) > 0}.

I Proposition 13. There is a one-to-one correspondence between consistent global assignments
for e and solutions of Ke. Thus e is strongly contextual iff Ke has no (classical) solution.

1 One could have different domains associated with different variables. However, this is an inessential
generalization, which we omit to keep notation simple.

MFCS 2017



35:10 The Quantum Monad on Relational Structures

We thus have a three-way correspondence between CSPs, empirical models, and homo-
morphisms between relational structures.

4.2 Quantum solutions
We now consider how quantum resources enter the picture. Since we already have a notion
of quantum homomorphism for general relational structures, the correspondences established
in the previous subsection give us ready-made notions of quantum solutions for CSPs and
empirical models. We define a quantum solution for a CSP K = (V,D,C) to be a quantum
homomorphism AK

q→ BK, i.e. a Kleisli morphism AK → QdBK for some d. Similarly,
we define a quantum solution for an empirical model e : (X,M, O) to be a quantum
homomorphism AKe

q→ BKe
.

We shall now compare these notions to existing ones for empirical models and constraints.
These will turn out to be special cases.

Note first that given an empirical model e, the corresponding CSP Ke is determined
purely by the supports of the probability distributions eC , i.e. the possibilistic content of the
model. It is only this information which is relevant to strong contextuality. We can consider
a fine-grained notion of realization of a probabilistic empirical model, as in [4]. However,
if our focus is strong contextuality, it is natural to consider the notion of quantum witness
for an empirical model e : (X,M, O), given by a state ψ, and a PVM Px = {Px,o}o∈O for
each x ∈ X, such that [Px,o, Px′,o′ ] = 0 whenever x and x′ both occur in some C ∈ M.
These must then satisfy, for all C ∈ M and s ∈ OC , eC(s) = 0 ⇒ ψ∗Px,s(x)ψ = 0, where
Px,s(x) = Px1,s(x1) · · ·Pxk,s(xk). This provides a quantum witness for strong contextuality
if e is a strongly contextual empirical model. An example is provided by the GHZ state,
using X and Y measurements for each party [4]. An infinite family of such examples using
three-qubit states is described in [1].

We can also consider a stronger notion. A state-independent quantum witness for
e : (X,M, O) is given by a family of PVMs {Px}x∈X which, for any state ψ, yield a
quantum witness for e. The Mermin magic square and pentagram [29], and Kochen–Specker
constructions [22, 10], provide examples of state-independent quantum realizations of strong
contextuality. Note that in the state-independent case, we have the condition: eC(s) =
0 ⇒ Px,o = 0. Comparison with the definition of quantum homomorphism AKe

q→ BKe

immediately yields the following result:

I Proposition 14. For an empirical model e : (X,M, O) there is a one-to-one correspondence
between state-independent quantum witnesses for e and quantum solutions for Ke.

An interesting point arising from this result, taken together with the results from
Section 2, is that state-independent strong contextuality proofs can always be underwritten
by non-locality arguments. This can be seen as a general form of constructions for turning
Kochen–Specker contextuality proofs into Bell non-locality arguments [19]. Indeed, the role
of the entangled state and of Bob in the non-local game is to provide an operational or
physical underpinning for the compatibility or generalized no-signalling assumption which is
made for empirical models [4]. Can we find a similar underpinning in the state-dependent
case? We shall return to this point in the final section.

We now consider binary constraint systems (BCS), which have been extensively studied
[13, 12, 36, 21]. We shall follow the account in [13]. A BCS (V,C) is simply a boolean
CSP (V, {0, 1}, C). In this case, constraints can be written in the form c = (x, bc), where
bc : {0, 1}k → {0, 1} is a boolean function. Our general notion of quantum solution yields
in this case a family of PVMs Px = {Px,o}o∈{0,1} for x ∈ V , such that [Px,o, Px′,o′ ] = 0
whenever x and x′ both occur in some constraint, and Px,o = 0 for c = (x, bc) with bc(o) = 0.



S. Abramsky, R. S. Barbosa, N. de Silva, and O. Zapata 35:11

In [13], a notion of operator solution for a BCS is defined. This is an assignment of
a self-adjoint operator (aka observable) Ax to each variable x, such that: (1) each Ax is
binary, i.e. A2

x = I; (2) [Ax, Ax′ ] = 0 when x and x′ both occur in the same constraint. To
express constraints, the representation of boolean values b 7→ (−1)b, b ∈ {0, 1}, is used. It
is standard that each boolean function {−1,+1}k → {−1,+1} can be uniquely represented
by a real multilinear polynomial p(X1, . . . , Xk) [31]. Moreover, if the corresponding boolean
function in the {0, 1}-representation is b : {0, 1}k → {0, 1}, then for o ∈ {0, 1}k: (−1)b(o) =
p((−1)o1 , . . . , (−1)ok ). It is also standard that if we substitute pairwise commuting self-
adjoint operators A1, . . . , Ak for the variables X1, . . . , Xk, we obtain a self-adjoint operator
p(A1, . . . , Ak). The condition for an operator solution to satisfy the constraints is then
expressed as follows: for each constraint c = (x, bc), where bc is represented by the polynomial
pc(X1, . . . , Xk), we must have pc(A1, . . . , Ak) = −I.

To relate this notion of operator solution to our quantum solution, note that a binary
observable Ax with A2

x = I has a spectral decomposition Ax = Px,0 − Px,1, where Px,0,
Px,1 are projectors. Commutation of the observables for variables occurring in the same
context is equivalent to commutation of the corresponding projectors. Given a constraint
c = ((x1, . . . , xk), pc), since the observables Ax1 , . . . , Axk

pairwise commute, we obtain a
resolution of the identity

∑
o∈{0,1}k Px,o = I. Multiplying pc(A1, . . . , Ak) by this expression

yields

pc(A1, . . . , Ak) =
∑

o∈{0,1}k

pc((−1)o1 , . . . , (−1)ok )Px,o.

It follows that pc(A1, . . . , Ak) = −I iff for all o with bc(o) = 0, Px,o = 0. As an immediate
consequence, we have:
I Proposition 15. Given a BCS (V,C), there is a one-to-one correspondence between operator
solutions of the BCS and quantum solutions of the corresponding CSP.

4.3 Graphs
The results we have seen thus far show that our notion of quantum homomorphism subsumes
a number of existing notions in contextuality and non-local games. However, as we shall now
see, the situation in the setting which provided the original motivation for our approach,
namely graph homomorphisms, is somewhat more subtle.

Graphs arise as structures for the signature with a single binary relation. Simple graphs
are those where the relation is symmetric and irreflexive. If we specialize our definition of
quantum homomorphism to the case G q→ H between graphs G and H, this gives a family
{Px,y}x∈V (G),y∈V (H) of projectors satisfying the following conditions:

for all x, x′ ∈ V (G) and y, y′ ∈ V (H) with x ∼ x′, [Px,y, Px′,y′ ] = 0;
for all x, x′ ∈ V (G) and y, y′ ∈ V (H) with x ∼ x′ and y 6∼ y′, Px,yPx′,y′ = 0.

This definition differs from that introduced by Mančinska and Roberson [27] as a general-
ization of quantum graph colouring [11], in that the latter does not impose the first condition
forcing commutativity between the PVMs corresponding to adjacent vertices of G. We refer
to that as an MR quantum graph homomorphism in order to distinguish it from our notion.2

This reflects a difference in the Alice–Bob game used to motivate each definition. In the
game we consider, Alice receives an ordered edge of G as an input and Bob a vertex of G,

2 See also the locally commuting graph homomorphisms from [18], which require the commutativity
condition, but differ from ours by not restricting to finite-dimensional quantum resources.

MFCS 2017



35:12 The Quantum Monad on Relational Structures

and we require that Alice answers with an edge of H and Bob with a vertex of H in a fashion
consistent with Alice’s choice. By contrast, Mančinska and Roberson consider a symmetric
Alice–Bob game, where each player receives a vertex of G as input and outputs a vertex of
H, and their outputs are required to be the same when they receive the same vertex, and
required to form an edge of H whenever their inputs form an edge of G.

It is clear that a quantum homomorphism between graphs in the sense of this paper is
also an MR quantum graph homomorphism. But the precise relationship between the two
notions is yet to be understood in general: in particular, whether the existence of an MR
quantum graph homomorphism implies the existence of a quantum homomorphism in our
sense. However, by adapting a construction due to Ji [21], we can capture the existence
of MR quantum graph homomorphisms in terms of quantum homomorphisms of relational
structures, via a BCS.

Given graphs G and H, we define V = {rxy | x ∈ V (G), y ∈ V (H)}. For each x ∈ V (G),
we have a boolean constraint

∨
y rxy; a constraint ¬(rxy ∧ rxy′) when y 6= y′; and a constraint

¬(rxy ∧ rx′y′) whenever x ∼ x′ and y 6∼ y′. This defines a BCS (V,C).

I Theorem 16. Given graphs G and H, there is a one-to-one correspondence between MR
quantum graph homomorphisms from G to H and quantum homomorphisms AK

q→ BK for
the associated CSP K = (V, {0, 1}, C).

Proof. We recall that an MR quantum graph homomorphism is given by a family of
projectors {Px,y}x∈V (G),y∈V (H) such that (MR1)

∑
y Px,y = I, and (MR2) Px,yPx′,y′ = 0

whenever x ∼ x′ and y 6∼ y′. A quantum homomorphism AK
q→ BK is given by a family

of projectors {Qxy,o}, x ∈ V (G), y ∈ V (H), o ∈ {0, 1}, such that the following conditions
hold: (QH1) Qxy,0 +Qxy,1 = I; (QH2) Qxy,1Qxy′,1 = 0, (y 6= y′); (QH3) Qxy,1Qx′y′,1 = 0,
(x ∼ x′ ∧ y 6∼ y′); (QH4) Qxy1,0 · · ·Qxyk,0 = 0, V (H) = {y1, . . . , yk}. The commutativity
conditions which are additionally required are implied by the orthogonality conditions (QH2)
and (QH3).

Given an MR homomorphism {Px,y}, we define Qxy,1 := Px,y, Qxy,0 := I − Px,y. Clearly
(QH1) is satisfied. (MR1) implies (QH2), while (MR2) implies (QH3). Finally, using (QH2),
(I − Px,y1) · · · (I − Px,yk

) = I −
∑
y Px,y, and by (MR1), (QH4) holds.

Conversely, given a quantum homomorphism {Qxy,o}, we define Px,y := Qxy,1. (MR2)
follows from (QH3), while using (QH1), we can reverse the reasoning in the previous paragraph
to show that (QH4) implies (MR1). These passages are clearly mutually inverse, so the result
follows. J

It is noteworthy that our approach allows us to avoid ad hoc coding of constraints by
polynomials, as in [13, 21]. Instead, we quantize the standard classical notions in a uniform
way, using the quantum monad.

5 Outlook

This work suggests a number of directions for further study. We list a few:
A notion of quantum graph isomorphism, with an equivalent characterization via an
Alice–Bob game, has been studied in [8]. This can be generalized to relational structures.
How does this fit in our quantum monad framework?
Our approach captures quantum advantage provided by state-independent strong contex-
tuality. Does state-dependent contextuality admit a similar treatment?
Any strategy for an Alice–Bob game has a winning probability, which is related to the
contextual fraction [3]. Can our approach be adapted to deal with quantitative aspects?



S. Abramsky, R. S. Barbosa, N. de Silva, and O. Zapata 35:13

Homomorphisms are intimately related with the existential positive fragment. Can this
be extended to provide a notion of quantum validity for first-order formulae?
Can other concepts from finite model theory, such as pebble games, which admit a
comonadic formulation [7], be similarly quantized?
The algebras of the quantum monad can be described as convex structures with mixing
weighted by projectors rather than just numbers in [0, 1]. Is this viewpoint useful?

Acknowledgements. We would like to thank Jaroslav Nešetřil, Laura Mančinska, David
Roberson, and Simone Severini for helpful suggestions, comments, and discussions.

References
1 Samson Abramsky, Rui Soares Barbosa, Giovanni Carù, Nadish de Silva, Kohei Kishida,

and Shane Mansfield. Minimum quantum resources for strong non-locality, 2017. To appear
in Proceedings of the 12th Conference on the Theory of Quantum Computation, Commu-
nication and Cryptography (TQC 2017). Available as arXiv:1705.09312 [quant-ph].

2 Samson Abramsky, Rui Soares Barbosa, Kohei Kishida, Raymond Lal, and Shane Mansfield.
Contextuality, cohomology and paradox. In Stephan Kreutzer, editor, 24th EACSL Annual
Conference on Computer Science Logic (CSL 2015), volume 41 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 211–228. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, 2015. doi:10.4230/LIPIcs.CSL.2015.211.

3 Samson Abramsky, Rui Soares Barbosa, and Shane Mansfield. Contextual fraction as
a measure of contextuality, 2017. To appear in Physical Review Letters. Available as
arXiv:1705.07918 [quant-ph].

4 Samson Abramsky and Adam Brandenburger. The sheaf-theoretic structure of non-locality
and contextuality. New Journal of Physics, 13(11):113036, 2011. doi:10.1088/1367-2630/
13/11/113036.

5 Samson Abramsky and Bob Coecke. A categorical semantics of quantum protocols. In
Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LiCS
2004), pages 415–425, 2004. doi:10.1109/LICS.2004.1319636.

6 Samson Abramsky and Bob Coecke. Categorical quantum mechanics. In Kurt En-
gesser, Dov M. Gabbay, and Daniel Lehmann, editors, Handbook of quantum logic
and quantum structures: Quantum logic, pages 261–323. Elsevier, 2009. doi:10.1016/
B978-0-444-52869-8.50010-4.

7 Samson Abramsky, Anuj Dawar, and Pengming Wang. The pebbling comonad in finite
model theory, 2017. To appear in Proceedings of the 32nd Annual ACM/IEEE Symposium
on Logic in Computer Science (LiCS 2017). Available as arXiv:1704.05124 [cs.LO].

8 Albert Atserias, Laura Mančinska, David E Roberson, Robert Šámal, Simone Severini, and
Antonios Varvitsiotis. Quantum and non-signalling graph isomorphisms, 2016. Available
as arXiv:1611.09837 [quant-ph].

9 Bruce Blackadar. Operator algebras: Theory of C∗-algebras and von Neumann algebras,
volume 122 of Encyclopaedia of Mathematical Sciences. Springer, 2006. doi:10.1007/
3-540-28517-2.

10 Adán Cabello, José M. Estebaranz, and Guillermo García-Alcaine. Bell-Kochen-Specker
theorem: A proof with 18 vectors. Physics Letters A, 212(4):183–187, 1996. doi:10.1016/
0375-9601(96)00134-X.

11 Peter J. Cameron, Ashley Montanaro, Michael W. Newman, Simone Severini, and Andreas
Winter. On the quantum chromatic number of a graph. Electronic Journal of Combinat-
orics, 14(1):R81, 2007.

MFCS 2017

http://dx.doi.org/10.4230/LIPIcs.CSL.2015.211
http://dx.doi.org/10.1088/1367-2630/13/11/113036
http://dx.doi.org/10.1088/1367-2630/13/11/113036
http://dx.doi.org/10.1109/LICS.2004.1319636
http://dx.doi.org/10.1016/B978-0-444-52869-8.50010-4
http://dx.doi.org/10.1016/B978-0-444-52869-8.50010-4
http://dx.doi.org/10.1007/3-540-28517-2
http://dx.doi.org/10.1007/3-540-28517-2
http://dx.doi.org/10.1016/0375-9601(96)00134-X
http://dx.doi.org/10.1016/0375-9601(96)00134-X


35:14 The Quantum Monad on Relational Structures

12 Richard Cleve, Li Liu, and William Slofstra. Perfect commuting-operator strategies for
linear system games. Journal of Mathematical Physics, 58(1):012202, 2017. doi:10.1063/
1.4973422.

13 Richard Cleve and Rajat Mittal. Characterization of binary constraint system games. In
Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Proceed-
ings of the 41st International Colloquium on Automata, Languages, and Programming, Part
I (ICALP 2014), pages 320–331. Springer, 2014. doi:10.1007/978-3-662-43948-7_27.

14 Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: A study through Datalog and group theory. SIAM Journal on
Computing, 28(1):57–104, 1998. doi:10.1137/S0097539794266766.

15 Daniel M. Greenberger, Michael A. Horne, and Anton Zeilinger. Going beyond Bell’s
theorem. In Menas Kafatos, editor, Bell’s theorem, quantum theory, and conceptions of
the universe, volume 37 of Fundamental Theories of Physics, pages 69–72. Kluwer, 1989.
doi:10.1007/978-94-017-0849-4_10.

16 Teiko Heinosaari, Daniel Reitzner, and Peter Stano. Notes on joint measurability of
quantum observables. Foundations of Physics, 38(12):1133–1147, 2008. doi:10.1007/
s10701-008-9256-7.

17 Pavol Hell and Jaroslav Nešetřil. Graphs and homomorphisms, volume 28 of Oxford Lecture
Series in Mathematics and Its Applications. Oxford University Press, 2004. doi:10.1093/
acprof:oso/9780198528173.001.0001.

18 William Helton, Kyle P. Meyer, Vern I. Paulsen, and Matthew Satriano. Algebras, syn-
chronous games and chromatic numbers of graphs, 2017. Available as arXiv:1703.00960
[math.OA].

19 Peter Heywood and Michael L. G. Redhead. Nonlocality and the Kochen–Specker paradox.
Foundations of physics, 13(5):481–499, 1983. doi:10.1007/BF00729511.

20 Bart Jacobs. Convexity, duality and effects. In Cristian S. Calude and Vladimiro
Sassone, editors, Proceedings of 6th IFIP TC 1/WG 2.2 International Conference on
Theoretical Computer Science (TCS 2010), pages 1–19. Springer, 2010. doi:10.1007/
978-3-642-15240-5_1.

21 Zhengfeng Ji. Binary constraint system games and locally commutative reductions, 2013.
Available as arXiv:1310.3794 [quant-ph].

22 Simon Kochen and Ernst P. Specker. The problem of hidden variables in quantum mech-
anics. Journal of Mathematics and Mechanics, 17(1):59–87, 1967.

23 Anders Kock. Monads on symmetric monoidal closed categories. Archiv der Mathematik,
21(1):1–10, 1970. doi:10.1007/BF01220868.

24 Phokion G. Kolaitis and Moshe Y. Vardi. Conjunctive-query containment and constraint
satisfaction. Journal of Computer and System Sciences, 61(2):302–332, 2000. doi:10.
1006/jcss.2000.1713.

25 Leonid Libkin. Elements of finite model theory. Texts in Theoretical Computer Science.
Springer, 2004. doi:10.1007/978-3-662-07003-1.

26 Saunders Mac Lane. Categories for the working mathematician, volume 5 of Graduate Texts
in Mathematics. Springer, 1971. doi:10.1007/978-1-4757-4721-8.

27 Laura Mančinska and David E Roberson. Quantum homomorphisms. Journal of Combin-
atorial Theory, Series B, 118:228–267, 2016. doi:10.1016/j.jctb.2015.12.009.

28 N. David Mermin. Quantum mysteries revisited. American Journal of Physics, 58(8):731–
734, 1990. doi:10.1119/1.16503.

29 N. David Mermin. Simple unified form for the major no-hidden-variables theorems. Physical
Review Letters, 65(27):3373–3376, Dec 1990. doi:10.1103/PhysRevLett.65.3373.

30 Stefan Milius, Dirk Pattinson, and Lutz Schröder. Generic trace semantics and graded
monads. In Lawrence S. Moss and Pawel Sobocinski, editors, 6th Conference on Algebra

http://dx.doi.org/10.1063/1.4973422
http://dx.doi.org/10.1063/1.4973422
http://dx.doi.org/10.1007/978-3-662-43948-7_27
http://dx.doi.org/10.1137/S0097539794266766
http://dx.doi.org/10.1007/978-94-017-0849-4_10
http://dx.doi.org/10.1007/s10701-008-9256-7
http://dx.doi.org/10.1007/s10701-008-9256-7
http://dx.doi.org/10.1093/acprof:oso/9780198528173.001.0001
http://dx.doi.org/10.1093/acprof:oso/9780198528173.001.0001
http://dx.doi.org/10.1007/BF00729511
http://dx.doi.org/10.1007/978-3-642-15240-5_1
http://dx.doi.org/10.1007/978-3-642-15240-5_1
http://dx.doi.org/10.1007/BF01220868
http://dx.doi.org/10.1006/jcss.2000.1713
http://dx.doi.org/10.1006/jcss.2000.1713
http://dx.doi.org/10.1007/978-3-662-07003-1
http://dx.doi.org/10.1007/978-1-4757-4721-8
http://dx.doi.org/10.1016/j.jctb.2015.12.009
http://dx.doi.org/10.1119/1.16503
http://dx.doi.org/10.1103/PhysRevLett.65.3373


S. Abramsky, R. S. Barbosa, N. de Silva, and O. Zapata 35:15

and Coalgebra in Computer Science (CALCO 2015), volume 35 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 253–269. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, 2015. doi:10.4230/LIPIcs.CALCO.2015.253.

31 Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014. doi:
10.1017/CBO9781139814782.

32 Gert K. Pedersen. Analysis now, volume 118 of Graduate Texts in Mathematics. Springer,
1989. doi:10.1007/978-1-4612-1007-8.

33 Sandu Popescu and Daniel Rohrlich. Quantum nonlocality as an axiom. Foundations of
Physics, 24(3):379–385, 1994. doi:10.1007/BF02058098.

34 David E. Roberson. Variations on a theme: Graph homomorphisms. PhD thesis, University
of Waterloo, 2013.

35 Volkher B. Scholz and Reinhard F. Werner. Tsirelson’s problem, 2008. Available as
arXiv:0812.4305 [math-ph].

36 William Slofstra. Tsirelson’s problem and an embedding theorem for groups arising from
non-local games, 2016. Available as arXiv:1606.03140 [quant-ph].

37 Boris Tsirelson. Bell inequalities and operator algebras, 2006. Pre-print.

A Review of linear algebra and quantum mechanics background

Since we are working in finite dimensions, we will use standard matrix notation. Thus we
are dealing with d × d′ complex matrices. We write matrix transpose as AT . Apart from
the usual operations of matrix addition and multiplication, there is the adjoint A∗, which
is the conjugate transpose of A. Thus [ai,j ]∗ = [aj,i]. The zero matrix is 0, the identity
matrix in dimension d is I = Id.3 We view d′ × d complex matrices interchangably as linear
maps Cd → Cd′ , acting on “column vectors”, i.e. d× 1 matrices. We identify 1× 1 matrices
with scalars, i.e. complex numbers. The inner product of vectors x,y ∈ Cd is given by the
matrix product x∗y. The norm of a vector x is ‖x‖ :=

√
x∗x. The standard basis vectors in

dimension d are e1, . . . , ed, where ei has i’th component 1, and all other components 0.
A square matrix A is self-adjoint (aka Hermitian) if A∗ = A. It is positive semidefinite if

it self-adjoint, and x∗Ax ≥ 0 for all vectors x. If A is positive semidefinite, so is C∗AC for
any C. We have the order A ≤ B if B − A is positive semidefinite. The condition A ≥ 0
says exactly that A is positive semidefinite. The matrices A ≥ 0 form a convex cone. A is a
projector if A∗ = A = A2. We write Proj(d) for the set of d× d projectors. A fact we shall
use frequently is that for any family of projectors {Pi} in Proj(d),

∑
i Pi ≤ I iff PiPj = 0

whenever i 6= j.
If A = [ai,j ] is a m × n matrix and B a p × q matrix, then the Kronecker product

A⊗B := [ai,jB] is anmp×nq matrix, which represents the tensor product of the corresponding
linear maps. This operation is strictly associative, with unit 1 := [1]. The key equation
is the interchange law with matrix multiplication: (A ⊗ B)(C ⊗D) = AC ⊗ BD. This is
functoriality. The category of complex matrices is a strict monoidal category with respect
to this operation. Indeed, the category of complex matrices is equivalent to the category
of finite-dimensional Hilbert spaces at the level of dagger compact closed categories, the
basic setting for categorical quantum mechanics [5, 6]. The final operation we consider
is vectorization of a matrix: vec(A) turns a d × d′ matrix into a dd′-vector by stacking
the columns of A on top of each other. In terms of the closed structure on the category
of matrices, it is the name of the morphism A. The “cup” or unit of the compact closed

3 We will omit dimensional subscripts whenever we can get away with it.

MFCS 2017

http://dx.doi.org/10.4230/LIPIcs.CALCO.2015.253
http://dx.doi.org/10.1017/CBO9781139814782
http://dx.doi.org/10.1017/CBO9781139814782
http://dx.doi.org/10.1007/978-1-4612-1007-8
http://dx.doi.org/10.1007/BF02058098


35:16 The Quantum Monad on Relational Structures

structure is vec(I). We have the equation vec(A) = (I ⊗ A)vec(I), and the “sliding rule”:
(A⊗ I)vec(I) = (I ⊗AT )vec(I), from which we can derive the key equation for vectorization:
(A⊗B)vec(C) = vec(BCAT ). Diagrammatically, this is

A B

C = AT

C

B

A vector ψ ∈ CdA ⊗ CdB has a Schmidt decomposition ψ =
∑d
i=1 λiαi ⊗ βi, where d ≤

min(da, db), {αi} and {βi} are orthonormal sets of vectors in CdA and CdB respectively, and
λi > 0 for all i. This follows directly from Singular Value Decomposition. We refer to d as
the Schmidt rank of ψ.

The following result is standard, but we did not find an explicit reference so we include a
proof.
I Proposition 17. Let A and B be positive semidefinite matrices. Then Tr(AB) = 0 ⇐⇒
AB = 0.

Proof. Since A and B are positive semidefinite, they have positive semidefinite square
roots

√
A,
√
B, and Tr(AB) = Tr(

√
A
√
A
√
B
√
B) = Tr(

√
B
√
A
√
A
√
B) = Tr(C∗C), where

C :=
√
A
√
B. Since C∗C is positive semidefinite, Tr(C∗C) = 0 ⇐⇒ C∗C = 0 ⇐⇒ C = 0.

But C = 0 implies AB =
√
AC
√
B = 0. J

Now we briefly review the needed notions from quantum mechanics. A (pure) state in
dimension d is a vector of unit norm in Cd. A POVM (positive operator-valued measure) is
a family {Ai}i with Ai ≥ 0 for all i, and

∑
iAi = I. The indices i label the measurement

outcomes. Measuring a POVM {Ai}i on a state ψ yields outcome i with probability ψ∗Aiψ.
A POVM is projective (or a PVM) if Ai is a projector for all i. This implies that AiAj = 0 for
all i 6= j, i.e. the projectors are mutually orthogonal. The product of projectors is a projector
if and only if they commute, which is usually written as [P,Q] = 0, where [P,Q] := PQ−QP .

B Quantum monad

I Proposition 18. For each A, µd,d
′

A is a well-defined homomorphism, and yields a natural
transformation.

Proof. First, µd,d
′

A is a well-defined function, by finiteness of support. To show that it is a
homomorphism, consider (P1, ..., Pk) ∈ RQdQd′A. We must first show that for all z, z′ ∈ C,
and i, j, [pi(z), pj(z′)] = 0, where pi := µd,d

′

A (Pi), pj := µd,d
′

A (Pj). Using linearity, this
reduces to showing that Pi(p) ⊗ p(z) commutes with Pj(p′) ⊗ p′(z′) for all p, p′ ∈ Qd′ .
Applying (QR1) to Pi and Pj , we have that Pi(p) commutes with Pj(p′). If p(z) commutes
with p′(z′), we are done. If not, then we know that p cannot be adjacent to p′ in the
Gaifman graph of Qd′ . Hence for any expansion p = (p1, . . . , pk) with pi = p, pj = p′,



S. Abramsky, R. S. Barbosa, N. de Silva, and O. Zapata 35:17

p 6∈ RQd′A, so by (QR2) we must have P1(p1) · · ·Pk(pk) = 0. Using normalization, we have
Pi(p)Pj(p′) =

∑
pi=p,pj=p′ P1(p1) · · ·Pk(pk) = 0, and so

(Pi(p)⊗ p(z))(Pj(p′)⊗ p′(z′)) = 0 = (Pj(p′)⊗ p(z′))(Pi(p)⊗ p(z)).

Now let qi = µd,d
′

A (Pi), i = 1, . . . , k. To show that (QR2) holds for (q1, . . . , qk) reduces
similarly to showing that, if x 6∈ RA, then P1(p1) · · ·Pk(pk) ⊗ p1(x1) · · · pk(xk) = 0 for all
p1, . . . , pk. If p1(x1) · · · pk(xk) = 0 we are done; otherwise, since x 6∈ RA, we must have
p 6∈ RQd′A, and applying (QR2) to (P1, ..., Pk), we must have P1(p1) · · ·Pk(pk) = 0.

Naturality is commutativity of the following square.

QdQd′A
µd,d

′

A - Qdd′A

QdQd′B

QdQd′f

?

µd,d
′

B

- Qdd′B

Qdd′f

?

This is the following calculation:

Qdd′f ◦ µd,d
′

A (P )(y) =
∑

f(x)=y

∑
p

P (p)⊗ p(x)

=
∑
q

∑
Qd′f(p)=q

P (p)⊗ q(y)

=
∑
q

QdQd′(f)(P )(q)⊗ q(y)

= µd,d
′

B ◦ QdQd′f(P )(y).

The second step uses the fact that Qd′f(p) = q ⇐⇒ q(y) =
∑
f(x)=y p(x). J

The unit η : Id .- T1 and graded multiplication µm,m′ : TmTm′
.- Tm·m′ of a graded

M -monad are required to satisfy the following coherence conditions:

TmX
ηTmX - T1TmX TmTm′Tm′′X

Tmµ
m′,m′′

X - TmTm′·m′′X

TmT1X

TmηX

?

µm,1X

- TmX

µ1,m
X

?

===================
Tm·m′Tm′′X

µm,m
′

Tm′′X

?

µm·m
′,m′′

X

- Tm·m′·m′′X.

µm,m
′·m′′

X

?

We verify these for the quantum monad.

I Lemma 19. Let A be a structure and d ∈ N+. Then, the following diagram commutes:

QdA
ηQdA - Q1QdA

QdQ1A

QdηA

?

µd,1A

- QdA

µ1,d
A

?

=======================

MFCS 2017



35:18 The Quantum Monad on Relational Structures

Proof. Let p ∈ QdA and x ∈ A. The claim is that (µ1,d
A ◦ ηQdA)(p)(x) = p(x) = (µd,1A ◦

QdηA)(p)(x). The left-hand side of this equation expands to

µ1,d
A (ηQdA(p))(x) =

∑
p′∈QdA

ηQdA(p)(p′)⊗ p′(x) = p(x),

and the right-hand side to

µd,1A (QdηA(p))(x) =
∑

p′∈Q1A
QdηA(p)(p′)⊗ p′(x)

= QdηA(p)(δx)

=
∑

ηA(x′)=δx

ηA(p)(x′)

= p(x),

where δx : A→ {0, 1} is defined by δx(x′) := δx,x′ for all x′ ∈ A. J

I Lemma 20. Let A be a structure and a, b, c ∈ N+. Then, the following diagram commutes:

QaQbQcA
Qaµb,cA - QaQbcA

QabQcA

µa,bQcA

?

µab,cA

- QabcA

µa,bcA

?

Proof. Let P ∈ QaQbQcA and x ∈ A. The claim is that (µa,bcA ◦ Qaµb,cA )(P )(x) = (µab,cA ◦



S. Abramsky, R. S. Barbosa, N. de Silva, and O. Zapata 35:19

µa,bQcA)(P )(x). We have:

µa,bcA (Qaµb,cA (P ))(x)

=
∑

q∈QbcA
Qaµb,cA (P )(q)⊗ q(x)

=
∑

q∈QbcA

 ∑
µb,c

A (p′)=q

P (p′)

⊗ q(x)

=
∑

q∈QbcA

∑
µb,c

A (p′)=q

P (p′)⊗ µb,cA (p′)(x)

=
∑

q∈QbcA

∑
µb,c

A (p′)=q

P (p′)⊗

 ∑
p∈QcA

p′(p)⊗ p(x)


=

∑
q∈QbcA

∑
µb,c

A (p′)=q

∑
p∈QcA

P (p′)⊗ p′(p)⊗ p(x)

=
∑

p′∈Qb(QcA)

∑
p∈QcA

P (p′)⊗ p′(p)⊗ p(x)

=
∑

p∈QcA

 ∑
p′∈Qb(QcA)

P (p′)⊗ p′(p)

⊗ p(x)

=
∑

p∈QcA
µa,bQcA(P )(p)⊗ p(x)

= µab,cA (µa,bQcA(P ))(x)

J

Additional material on the quantum monad
We shall now show that the quantum monad is monoidal (or commutative) and affine [23].
This continues the analogy with the distribution monad, which is well known to have these
properties [20].

The category R(σ) has finite products, given by the usual cartesian product of structures.
The terminal object > is the one-element structure, with each relation interpreted as the
universal relation. Because of normalization, the following is immediate:
I Proposition 21. For all d, Qd> ∼= >. Thus the quantum monad is affine.

Now given structures A and B, we define a map md,d′

A,B : QdA×Qd′B → Qdd′(A×B) by
md,d′

A,B(p, q)(x, y) := p(x)⊗ q(y).

I Proposition 22. This is a well-defined homomorphism, and the family {md,d′

A,B} defines a
graded natural transformation satisfying the monoidal coherence conditions, thus witnessing
a commutative strength.

MFCS 2017





Towards a Polynomial Kernel for Directed
Feedback Vertex Set∗

Benjamin Bergougnoux1, Eduard Eiben2, Robert Ganian3,
Sebastian Ordyniak4, and M. S. Ramanujan5

1 Université Clermont Auvergne, LIMOS, CNRS, Aubière, France
benjamin.bergougnoux@uca.fr

2 Algorithms and Complexity Group, TU Wien, Vienna, Austria
eiben@ac.tuwien.ac.at

3 Algorithms and Complexity Group, TU Wien, Vienna, Austria
ganian@ac.tuwien.ac.at

4 Algorithms and Complexity Group, TU Wien, Vienna, Austria
ordyniak@ac.tuwien.ac.at

5 Algorithms and Complexity Group, TU Wien, Vienna, Austria
ramanujan@ac.tuwien.ac.at

Abstract
In the Directed Feedback Vertex Set (DFVS) problem, the input is a directed graph D
and an integer k. The objective is to determine whether there exists a set of at most k vertices
intersecting every directed cycle of D. DFVS was shown to be fixed-parameter tractable when
parameterized by solution size by Chen, Liu, Lu, O’Sullivan and Razgon [JACM 2008]; since
then, the existence of a polynomial kernel for this problem has become one of the largest open
problems in the area of parameterized algorithmics.

In this paper, we study DFVS parameterized by the feedback vertex set number of the under-
lying undirected graph. We provide two main contributions: a polynomial kernel for this problem
on general instances, and a linear kernel for the case where the input digraph is embeddable on
a surface of bounded genus.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases parameterized algorithms, kernelization, (directed) feedback vertex set

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.36

1 Introduction

Feedback Set problems are fundamental combinatorial optimization problems. Typically,
in these problems, we are given a graph G (directed or undirected) and a positive integer k,
and the objective is to select at most k vertices, edges or arcs to hit all cycles of the input
graph. Feedback Set problems are among Karp’s 21 NP-complete problems [27] and have
been a topic of active research from algorithmic [1, 2, 3, 6, 7, 8, 9, 10, 13, 14, 20, 23, 28,
25, 30, 32, 37] as well as structural points of view [19, 26, 29, 31, 33, 34, 35]. In particular,
such problems constitute one of the most important topics of research in parameterized
algorithms [6, 8, 9, 10, 13, 14, 28, 25, 30, 32, 37], spearheading the development of several

∗ Supported by the French Agency for Research under the GraphEN project (ANR-15-CE-0009) and by
the Austrian Science Fund (FWF), projects P26696 and W1255-N23. Robert Ganian is also affiliated
with FI MU, Brno, Czech Republic.

© Benjamin Bergougnoux, Eduard Eiben, Robert Ganian, Sebastian Ordyniak, and M. S. Ramanujan;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 36; pp. 36:1–36:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.36
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


36:2 Towards a Polynomial Kernel for Directed Feedback Vertex Set

new techniques. In this paper, we study the DFVS problem, where the objective is to find
a set of k vertices that intersects all directed cycles in a given digraph.

For over a decade resolving the fixed-parameter tractability of DFVS (whether there is
an algorithm running in time f(k)·nO(1) for some computable function f) was considered the
most important open problem in parameterized complexity. In fact, this problem was posed
as an open problem in the first few papers on fixed-parameter tractability (FPT) [16, 17].
The problem can be formally stated as follows.

Directed Feedback Vertex Set (DFVS)
Instance: A digraph D and a positive integer k.

Parameter: k

Question: Does there exist a vertex subset of size at most k that intersects
every cycle in D?

DFVS was shown to be fixed-parameter tractable in a breakthrough paper by
Chen, Liu, Lu, O’Sullivan and Razgon [9] in 2008.
One of the most natural follow-up questions once a problem has been classified as fixed-

parameter tractable is ‘does it admit a polynomial kernel?’. A polynomial kernel is essentially
a polynomial-time preprocessing algorithm that transforms the given instance of the problem
into an equivalent one whose size is bounded polynomially in the parameter. Following the
resolution of the fixed-parameter tractability of DFVS, the question of whether the problem
admits a polynomial kernel was raised and has since become one of the main open problems
in the area of parameterized complexity.

The most frequently used way of parameterizing problems, like in the case of DFVS,
is taking the solution size as the parameter. An alternate method of parameterization
is choosing a parameter that never exceeds the solution size but can potentially be much
smaller. A classical example of this approach is parameterizing the Vertex Cover problem
by the feedback vertex set (FVS) number. Clearly, the number of vertices required to make
a graph acyclic never exceeds the number of vertices needed to make the graph edgeless.
On the other hand, the feedback vertex set number could be arbitrarily smaller than the
size of the smallest vertex cover. This problem was first studied by Bodlaender and Jansen
[24], who showed that Vertex Cover parameterized by the feedback vertex number has a
polynomial kernel. This was later extended by Cygan et al. [12] who systematically studied
several generalizations of this problem and obtained several positive as well as negative
results with respect to the existence of polynomial kernels.

While this kind of an alternate parameterization is interesting for problems which are
known to have polynomial kernels when parameterized by the solution size, it is the exact
opposite approach which is useful when dealing with problems for which this question has
been answered negatively or remains open. This paper deals with such a parameterization
for DFVS as an intermediate step towards answering the main question, that of a polynomial
kernel for DFVS. To this end, we chose a natural parameter which is never less than the
solution size, in particular the feedback vertex set number of the undirected graph underlying
the given digraph. The problem we are interested in can formally be stated as follows.

Directed Feedback Vertex Set parameterized by FVS (DFVS[FVS])
Instance: A digraph D, an integer p, and a set F such that F is an UFVS of D.

Parameter: |F |
Question: Does there exist a vertex subset of size at most p that intersects

every cycle in D?



B. Bergougnoux, E. Eiben, R. Ganian, S. Ordyniak, and M. S. Ramanujan 36:3

Since every UFVS (undirected feedback vertex set) of D is also a DFVS (directed feed-
back vertex set) of D, we may assume without loss of generality that p ≤ |F | for every
instance of DFVS[FVS]. Furthermore, we use k to denote the size of F . Our first result is
a polynomial kernel for DFVS[FVS], formally stated below.

I Theorem 1. There is a kernel with O(k4) vertices for DFVS[FVS].

The overall approach for proving Theorem 1 is inspired by the result of Bodlaender
and Dijk [5] on kernelizing the undirected feedback vertex set problem. However, several
obstacles needed to be overcome for the techniques to be applicable in the directed setting.

Interestingly, the existence of a polynomial kernel for DFVS parameterized by the solu-
tion size remains open even in the restricted setting of planar graphs. While our Theorem 1
naturally also provides a polynomial kernel for DFVS[FVS] on planar graphs, as our second
main contribution we show that one can in fact obtain a significantly stronger result not
only on planar graphs, but on all graphs embeddable on orientable surfaces.

I Theorem 2. There is a kernel with O(k) vertices for DFVS[FVS] when the input digraph
is embeddable on a surface of constant genus.

We note that the existence of such a linear kernel can also be obtained from the Meta-
Kernelization framework [4] by observing that DFVS[FVS] has finite integer index. How-
ever, the framework is non-constructive; unlike our Theorem 2, it does not provide a concrete
kernelization algorithm for the problem.
Some proofs have been omitted due to space limitation.

2 Preliminaries

Graphs and Digraphs. We consider undirected and directed graphs that may contain self-
loops and multiple edges and mostly use standard notation that can be found, for instance,
in the textbook by Diestel [15]. For an undirected or directed graph D we denote by V (D)
its vertex set and by E(D) its edgeset (or arcset). For a set of vertices A ⊆ V (D), we
denote by D \A the (di-)graph obtained from D after deleting all vertices in A as well as all
arcs/edges incident to some vertex in V . Moreover, D[A] denotes the graph D \ (V (D) \A).
We say that a vertex u is a neighbor of a vertex v in D if {u, v} ∈ E(D) (in the case that
D is undirected) or at least one of (u, v) ∈ E(D) or (v, u) ∈ E(D) holds (in the case that
D is directed). We denote by ND(v) (or by N(D) if D is clear from the context) the set of
all neighbors of v in D and refer to |ND(v)| as the degree of v in D (if D is undirected) or
as the total degree of v in D (if D is directed). For a set of vertices A, we denote by ND(A)
the set (

⋃
a∈A ND(a)) \A.

In addition to the above, we also use standard notions such as in-neighbors and out-
neighbors, paths and directed paths as well as endpoints and internal vertices of such paths,
contractions, minors and others. We denote by N−D (u) and N+

D (u) the set of all in-neighbors
and out-neighbors of v in D, respectively; once again, we drop the subscript D if it can
be inferred from the context and for a vertex set A ⊆ V (D) we write N−D (A) and N+

D (A)
to denote the sets (

⋃
a∈A N

−
D (a)) \ A and (

⋃
a∈A N

+
D (a)) \ A, respectively. We denote by

D the undirected graph obtained from D after replacing every arc (u, v) ∈ E(D) with an
edge {u, v}; if there are arcs in both directions between u and v, then we say that there is
a bidirectional arc between u and v and D will contain two parallel u-v edges.

MFCS 2017



36:4 Towards a Polynomial Kernel for Directed Feedback Vertex Set

I Proposition 3 ([22]). The orientable and nonorientable genus, denoted by γ and γ̃, of
complete bipartite graphs is given by the following formulae:

γ(Km,n) =
⌈

(m− 2)(n− 2)
4

⌉
,m, n ≥ 2; γ̃(Km,n) =

⌈
(m− 2)(n− 2)

2

⌉
,m, n ≥ 2.

I Corollary 4. If G is a graph such that γ(G) ≤ g and γ̃(G) ≤ h for some constants g and
h, then G does not contain K3,4g+3 nor K3,2h+3 as a minor.

For a more detailed treatment of topological graph theory the reader is referred to [22].

Parameterized Algorithms and Kernelization. For a detailed illustration of the following
facts the reader is referred to [11, 18]. A parameterized problem is a language Π ⊆ Σ∗ × N,
where Σ is a finite alphabet; the second component k of instances (I, k) ∈ Σ∗ × N is called
the parameter. A parameterized problem Π is fixed-parameter tractable if it admits a fixed-
parameter algorithm, which decides instances (I, k) of Π in time f(k) · |I|O(1) for some
computable function f .

A kernelization for a parameterized problem Π is a polynomial-time algorithm that given
any instance (I, k) returns an instance (I ′, k′) such that (I, k) ∈ Π if and only if (I ′, k′) ∈ Π
and such that |I ′| + k′ ≤ f(k) for some computable function f . The function f is called
the size of the kernelization, and we have a polynomial kernelization if f(k) is polynomially
bounded in k. It is known that a parameterized problem is fixed-parameter tractable if and
only if it is decidable and has a kernelization. However, the kernels implied by this fact are
usually of superpolynomial size.

A reduction rule is an algorithm that takes as input an instance I = (D, p, F ) of
DFVS[FVS] and outputs an instance I ′ = (D′, p′, F ′) of the same problem. We say that
the reduction rule is sound if I is a yes-instance if and only if I ′ is a yes-instance. In order
to describe our kernelization algorithm, we present a series of reduction rules. We prove
the soundness of each reduction rule immediately after presenting its description, unless the
soundness is obvious. The reduction rules we present will be executed in the order in which
they appear. That is, if at any point we may apply Reduction Rule i as well as Reduction
Rule j where i < j, we will execute Reduction Rule i.

3 A Polynomial Kernel for DFVS[FVS]

Note that every FVS of D is also a DFVS of D. Given an instance D of DFVS, our
kernelization algorithm for DFVS parameterized by FVS first computes a 2-approximate
FVS S of D (using for instance the algorithm given in [1]) and then uses S to reduce the
instance in polynomial-time into an equivalent instance with at most O(|S|4) vertices.

Hence in the following we will assume that D is a directed graph and S is a FVS of D
of size k. Our first two reduction rules are sound because (a) neither sinks nor sources can
appear on a directed cycle and (b) if a vertex v has exactly one in-neighbor u in D then
every directed cycle containing v has to use the arc (u, v) (a symmetric statement holds for
vertices with exactly one out-neighbor).

I Reduction Rule 5. Delete all sources and sinks from D.

I Reduction Rule 6. Let l be an arbitrary vertex in D.
If N+(l) = {p}, then we contract the arc (l, p) into a new vertex l∗.
If N−(l) = {p}, then we contract the arc (p, l) into a new vertex l∗.



B. Bergougnoux, E. Eiben, R. Ganian, S. Ordyniak, and M. S. Ramanujan 36:5

After the exhaustive application of these two rules, we may assume without loss of
generality that the digraph D has no sinks or sources, and that every vertex has at least 2
in-neighbors and at least 2 out-neighbors. We now state one of our main reduction rules.

I Reduction Rule 7. Let u and v be two (not necessarily distinct) vertices in S such that
there are at least k + 1 internally vertex-disjoint directed u-v paths in D. Then,

if u 6= v and (u, v) /∈ E(D), we add an arc from u to v to D, or
if u = v, we remove u from D and decrease the parameter k by one.

Proof of soundness. Let u, v ∈ S be as above and let D′ be the digraph obtained from D

after applying the reduction rule. If u = v then clearly every DFVS for D of size at most k
contains u, which shows the soundness of the reduction rule.

If on the other hand u 6= v, we will show that a set S′ ⊆ V (D) = V (D′) of size at most
k is a DFVS for D if and only if it is also a DFVS for D′. The backward direction is trivial
because D is a subgraph of D′. For the forward direction let S′ be a DFVS for D of size at
most k and assume for a contradiction that S′ is not a DFVS for D′. Then D′ \S′ contains
a directed cycle C that contains the arc (u, v). Hence D′ \ S′ and thus also D \ S′ contains
a directed v-u path P . Moreover, since S′ has size at most k and there are at least k + 1
vertex-disjoint directed u-v paths in D, we conclude that there is a u-v path P ′ in D \ S′.
But then P ∪ P ′ must contain a directed cycle, which is also a directed cycle in D \ S′, a
contradiction to our assumption that S′ is a DFVS of D. J

We will use Reduction Rule 7 to reduce the number of vertices in D \ S that ‘directly
contribute’ to (pairs of) vertices in S. We formalize this idea in the following definition.

I Definition 8. Let (u, v) be an ordered pair of vertices in S. If u 6= v, then we refer to
(u, v) as a potential arc in D[S] and if additionally (u, v) /∈ D then we refer to (u, v) as a
non-arc. If on the other hand u = v, then we refer to (u, v) as a self-loop. We say that a
vertex v ∈ V (D) \ S contributes to a potential arc or self-loop (u,w), if (u, v) ∈ E(D) and
(v, w) ∈ E(D).

After the exhaustive application of Reduction Rule 7, we have the following structural
observation regarding the input.

I Observation 9. For every u ∈ S there are at most k internally vertex-disjoint u-u paths
in D; moreover for every two distinct vertices u and v in S with (u, v) /∈ E(D), there are
at most k vertex disjoint u-v paths in D. As a result, for every non-arc or self-loop (u, v),
there are at most k vertices that contribute to (u, v).

Since S has at most k vertices and at most k(k−1) ordered pairs of vertices, Observation 9
implies the following.

I Observation 10. There are at most k2(k − 1) vertices in D \ S that contribute to some
non-arc of D[S]. Moreover, there are at most k2 vertices in D \ S that contribute to some
self-loop of D[S].

Our next aim is to bound the number of vertices in A = D \ S in terms of k. Towards
achieving this we will distinguish these vertices in terms of their degree inD\S. We therefore
denote by A0, A1, A2, and A≥3 the sets of all vertices in A that have total degree 0, 1, 2,
and at least 3, respectively, in D \ S.

MFCS 2017



36:6 Towards a Polynomial Kernel for Directed Feedback Vertex Set

3.1 Bounding A0, A1 and A≥3.
Note that Observation 10 already provides a bound for the number of vertices in A0 that
contribute to some self-loop of D[S]. Hence, in order to bound A0, it is sufficient to provide
a bound for the remaining vertices, in the following denoted by A′0, in A0. In the following
let v be a vertex in A′0. Because of Rule 5 v must have at least one in-neighbor and one
out-neighbor in S. Consequently, v contributes to at least one potential arc of D[S].

I Reduction Rule 11. If v does not contribute to a non-arc of D[S], then we remove v
from D.

Proof of soundness. Let v be as above and let D′ be the directed graph obtained from D

after deleting v. We show that a set S′ ⊆ V (D) is a DFVS for D if and only if S′ is a DFVS
for D′. The forward direction of this claim is trivial because D′ is a subgraph of D. Towards
showing the backward direction let S′ be a DFVS for D′ and assume for a contradiction that
S′ is not a DFVS for D. Then there must exist a directed cycle C in D \ S′ that contains v
as well as two arcs (s, v) and (v, s′) for some s, s′ ∈ S. Because v does not contribute to a
self-loop of D[S], we have that s 6= s′. Because v does not contribute to a non-arc of D[S],
it follows that (s, s′) ∈ E(D). Hence the arc (s, s′) together with the directed path from s′

to s contained in C forms a directed cycle in D′ \S′, a contradiction to our assumption that
S′ is a DFVS for D′. J

After the exhaustive application of the above rule, we obtain that v contributes to some
non-arc of D[S] and hence together with Observation 10, we obtain the following.

I Observation 12. There are at most k2(k − 1) vertices in A′0.

Bounding A1. We now present the reduction rules we use to bound the size of A1, i.e.,
the number of leaves in A. Again it is sufficient to bound the number of vertices in A1 that
do not contribute to some self-loop of D[S], in the following denoted by A′1. Namely, we
will introduce reduction rule that ensure that every vertex in A′1 contributes to at least one
non-arc in D[S]. Together with Observation 10 this then bounds the size of A′1. Recall that
at this point every vertex in D has at least two in-neighbors and at least two out-neighbors
and since moreover every vertex in A′1 does not contribute to a self-loop, we obtain that
every vertex in A′1 has at least one in-neighbor and at least one out-neighbor in S that are
distinct. Hence we obtain:

I Observation 13. Every vertex in A′1 has at least one in-neighbor and at least one out-
neighbor in S and hence every vertex in A′1 contributes to a potential arc of D[S].

The next reduction rule reduces leaves that do not contribute to a non-arc of D[S].

I Reduction Rule 14. If l ∈ A′1 does not contribute to a non-arc of D[S], then:
if l is a source in D \ S, then we delete all arcs from l to vertices in S,
if l is a sink in D \ S, then we delete all arcs from vertices in S to l.

Note that after application of Rule 14, l will only have either in-neighbors or out-
neighbors in S and can hence be reduced further using Rule 6. Consequently, after the
exhaustive application of the above rules, we conclude that every vertex in A′1 contributes
to at least one non-arc of D[S]. Due to Observation 10 we conclude that there are at most
k2(k−1) vertices in A′1. Finally, since D \ S is a forest and the number of vertices of degree
at least 3 in a forest is at most equal to the number of leaves minus two, we get the following.



B. Bergougnoux, E. Eiben, R. Ganian, S. Ordyniak, and M. S. Ramanujan 36:7

I Observation 15. There are at most k3 − 2 vertices in A≥3.

Note that at this point, we have bounded the size of the sets A0, A1 and A≥3 and the only
set that remains is A2.

3.2 Bounding A2

Our next aim is to bound the number of vertices in A2.

I Definition 16. Let v be a vertex in A2. We say that v is a sink-vertex or a source-vertex
if the two arcs of D \ S incident on it are both incoming arcs or outgoing arcs respectively.
Otherwise we say that v is a balanced-vertex.

Note that due to Reduction Rule 6, there are no balanced vertices in D \ S which have
no neighbors in S. This is because otherwise, we would have already contracted one of the
two arcs incident to v in D \ S.

Therefore, at this point, we infer the following.

I Observation 17. Every vertex in A2 has at least one neighbor in S.

I Definition 18. Let P = (v1, . . . , vr) be a directed path of maximum length in D\S whose
internal vertices are in A2. Then we say that P is a path segment in D \ S. We say that P
is an outer path segment if at least one of its endpoints is not in A2, otherwise we say that
P is an inner path segment.

Note that path segments are by definition directed paths. Our strategy now is to obtain
a bound on the total number of path segments and then proceed to bound the length of
each path segment. We first bound the number of outer path segments in D \ S as follows.
Let G be the undirected graph obtained from D \ S after contracting all edges which are
incident to at least one vertex of degree 2 . Then the number of outer path segments in
D \ S is equal to two times the number of edges of G. Because G is a forest without degree
two vertices it holds that the number of edges of G is equal to the number of leaves plus
the number of non-leaves in G minus one. Hence the number of outer path segments is at
most 2(|A′1 ∪A≥3| − 1), which together with the already obtained bound on these sets and
Observation 15 allows us to infer the following.

IObservation 19. The number of outer path segments inD\S is at most 4k2(k−1)+2k2−6.

In order to bound the number of inner path segments, we need to introduce a new
reduction rule. We begin by defining the notion of a path segment ‘contributing’ to a
potential arc.

I Definition 20. We say that a path segment P = (v1, . . . , vr) contributes to a potential
arc (s, s′) of D[S] if there are i and j with 1 ≤ i ≤ j ≤ r such that (s, vi) ∈ E(D) and
(vj , s

′) ∈ E(D). Moreover, we say that P contributes to a self-loop if there are i and j with
1 ≤ i ≤ j ≤ r such that (s, vi) ∈ E(D) and (vj , s) ∈ E(D) for some s ∈ S.

I Reduction Rule 21. If an inner path segment does not contribute to a non-arc or to a
self-loop of D[S], then we remove all internal vertices of P .

After the exhaustive application of the above rule, we obtain:

I Observation 22. Every inner path segment contributes to at least one non-arc or self-loop
of D[S] .

MFCS 2017



36:8 Towards a Polynomial Kernel for Directed Feedback Vertex Set

Because every pair of inner path segments that contribute to some non-arc or self-loop
(s, s′) of D[S] increase the number of disjoint paths between s and s′ in D by at least
one, Observation 9 implies that for every non-arc or self-loop (s, s′) of D[S] there are at
most 2k inner path segments that contribute to (s, s′). Finally, because S has at most k
vertices and at most k(k − 1) ordered pairs of vertices, we conclude that there are at most
2k2(k− 1) + 2k2 inner path segments in D \ S. Having obtained a bound on the number of
inner path segments too, we conclude the following.

I Observation 23. The number of path segments in D \ S is at most 6k2(k− 1) + 4k2 − 6.

Our next aim is to provide a bound on the overall length of path segments and use it
to bound the size of A2. Towards this aim we introduce reduction rules that allow us to
bound the in-degree and the out-degree w.r.t. S of any vertex occurring internally in path
segments.

I Definition 24. Let s ∈ S and let P = (v1, . . . , vr) be an induced directed path in D \ S,
whose internal vertices are in A2 and that satisfies:

(s, v1) ∈ E(D) and (s, vr) ∈ E(D) and v1 is a balanced vertex in A2,
for every i with 1 < i < r, it holds that (s, vi) /∈ E(D).

If P satisfies the above properties we call P an out-segment for s. We say that P contributes
to a potential arc or self-loop (s, s′) in D[S] if there is an index i with 1 ≤ i < r such that
(vi, s

′) ∈ E(D) for some s′ ∈ S.

We now introduce a reduction rule that allows us to preprocess and reduce certain out-
segments.

I Reduction Rule 25. Let s ∈ S and let P = (v1, . . . , vr) be an out-segment for s. If P
does not contribute to any non-arc or self-loop of D[S], then we remove the arc (s, v1).

After the exhaustive application of the above rule, we obtain the following.

I Observation 26. For each s ∈ S, there are at most k2 out-segments for s.

Proof. Since Rule 25 does not apply, every out-segment for s contributes to at least one
non-arc or self-loop of D[S]. Furthermore, every out-segment for s that contributes to some
non-arc or self-loop (s, s′) of D[S] increases the number of internally vertex-disjoint paths
s-s′ paths in D by one. Observation 9 implies that for every non-arc or self-loop (s, s′) of
D[S], there are at most k out-segments for s in D \ (S ∪B) that contribute to (s, s′).

Finally, because every vertex s is contained in at most a single self-loop and in at most
k− 1 non-arcs of D[S], we infer that there are at most k(k− 1) +k out-segments for s. This
completes the proof of the observation. J

We are now ready to bound the size of the set A2.

I Observation 27. The number of vertices in A2 is at most 12k4 − 2k3 − 12k.

Proof. We begin by arguing that for every s ∈ S, s has at most 2k · (6k2(k− 1) + 4k2− 6 +
k(k − 1) + k) neighbors in A2. Since the number of out-neighbors of s in A2 is at most the
number of path segments (bounded by Observation 23) plus the number of out-segments for
s (bounded by Observation 26), we obtain an upper bound of 6k2(k − 1) + 4k2 − 6 + k2 on
the size of the out-neighborhood (and by symmetry, the in-neighborhood) of s in A2.

Consequently, the total number of neighbors of vertices in S to vertices in A2 and thus
(because of Observation 17) the total number of vertices in A2 is at most 2k · (6k2(k− 1) +
4k2 − 6 + k2). Finally, since the size of S is bounded by k, the observation follows. J



B. Bergougnoux, E. Eiben, R. Ganian, S. Ordyniak, and M. S. Ramanujan 36:9

We are now ready to prove a bound on the size of the kernel. Recall that thus far we
have obtained the following bounds:

there are at most k2 vertices in D\S contributing to a self-loop in D[S] (Observation 10),
|A′0| ≤ k2(k − 1) (Observation 12),
|A′1| ≤ k2(k − 1) (see paragraph before Observation 15),
|A2| ≤ 12k4 − 2k3 − 12k (Observation 27),
|A≥3| ≤ k3 − 2 (Observation 15),

It follows that the total number of vertices in the reduced graph is at most k2 + |A′0 ∪A′1 ∪
A2 ∪ A≥3 ∪ S| which is at most k2 + 2k2(k − 1) + k3 − 2 + 12k4 − 2k3 − 12k + k, thus
proving Theorem 1. This completes the description of our kernel for general instances of the
problem; we now proceed to the linear kernel on graphs of bounded genus.

4 A Linear Kernel for DFVS[FVS] on Bounded Genus graphs

Throughout this section we will use D to denote a directed graph of genus at most some
fixed bound g. We let S be a feedback vertex set of D and let c be a constant such that D
is a K3,c-minor-free graph, where c depends only on g as per Corollary 4. We begin with
the following lemma, which follows directly from [21, Lemma 4.3].

I Lemma 28. Let G = (X,Y,E) be a bipartite graph and c a constant such that G is
K3,c-minor-free. Then,

there are O(|X|) subsets X ′ ⊆ X such that X ′ = N(u) for some u ∈ Y and
for any subset X ′ ⊆ X such that |X ′| ≥ 3, the set Y ′ = {y ∈ Y : N(y) ⊇ X ′} has size at
most c− 1.

We mainly use this lemma to bound the number of connected components of D \ S, it
gives directly a bound on the number of connected components with at least 3 neighbors in
S, for the connected components with at most 2 neighbors in S, we need to introduce some
new reduction rules. We will need a few additional notions to provide a concise presentation
of the results in this section. A digraph H is called a road iff H is a path; the first and last
vertex on a road are called its endpoints, and all other vertices on a road are called internal
vertices. Moreover, for a directed graph G consider a connected component of G with vertex
set A such that G[A] is acyclic. Then G[A] (and, equivalently, the set A) is called an acyclic
component of G. Observe that there is a one-to-one correspondence between connected
components of D \ S and acyclic components of D \ S.

For each distinct x, y ∈ S, we denote by Cx,y the set of all acyclic components C of D \S
with N(C) = {x, y}. Finally, we use C→x,y to denote the subset of Cx,y of components C with
the property that D[C ∪ {x, y}]:

contains a directed path from x to y, but
contains neither an x-x directed path nor a y-y directed path intersecting C.

Observe that any road within D that is disjoint from a feedback vertex set of D may
contain exactly one arc between two adjacent vertices. Furthermore, in any instance where
Reduction Rule 5 is not applicable, the input digraph D itself does not contain an acyclic
component. That is, every connected component of D contains a directed cycle.

I Observation 29. If Reduction Rule 5 is not applicable and C is an acyclic component of
D \ S, then there is a directed N(C)-N(C) path in D[C ∪ N(C)] containing at least one
vertex of C.

MFCS 2017



36:10 Towards a Polynomial Kernel for Directed Feedback Vertex Set

Crucially, Observation 29 implies that for each component C in Cx,y, either D[C ∪ {x}]
(or D[C ∪ {y}] by symmetry) contains a cycle, or C ∈ C→x,y ∪ C→y,x.

I Reduction Rule 30. If C is an acyclic component of D \ S where ND(C) = {x} for some
x ∈ S and C ∪ {x} contains a cycle, then we remove D[C ∪ {x}] from D and reduce k by 1.

The soundness of the above rule follows from the fact that any DFVS which does not
contain x must necessarily intersect C, and hence there also exists a DFVS of at most the
same size which contains x but does not intersect C.

By expanding the above argument, we observe that if there exists a DFVS T containing
at least two vertices from Cx,y ∪ {x, y}, then the set T ′ = (T \ Cx,y)∪ {x, y} is also clearly a
solution of at most the same size as T . Hence every minimum DFVS contains at most two
vertices from Cx,y ∪ {x, y}. Consequently, if we have a minimum DFVS T and C1, C2, C3 ∈
Cx,y, then at least one of C1, C2 or C3 has an empty intersection with T . The soundness of
the following three Reduction Rules follows.

I Reduction Rule 31. If Cx,y contains at least 3 acyclic components C1, C2, C3 such that
D[C1 ∪x], D[C2 ∪x] and D[C3 ∪x] each contains a cycle, we remove x and decrease k by 1.

I Reduction Rule 32. If C→x,y ∩ C→y,x contains at least 4 components, then we remove all
components of C→x,y ∪ C→y,x from D and add the arcs (x, y) and (y, x) to D.

I Reduction Rule 33. If C→x,y contains at least 3 components and C→x,y \ C→y,x is not empty,
then we remove all components of C→x,y \ C→y,x from D and add the arc (x, y) to D.

I Lemma 34. After applying Reduction Rules 5 to 6 and Reduction Rules 30 to 33, the
resulting digraph is also K3,c-minor-free.

Proof. Since Reduction Rule 5, 30 and 31 only remove vertices, it clearly does not affect the
fact that D is K3,c-minor-free. Furthermore, the operations in Reduction Rule 6, 32 and 33
result in a graph D′ such that D′ is a minor of D. Hence, the graph resulting from these
reduction rules is also K3,c-minor-free. J

We now argue the main structural consequence of applying these reduction rules.

I Lemma 35. Suppose that Reduction Rule 5 and Reduction Rules 30 to 33 do not apply.
Then D \ S has O(|S|) acyclic components.

I Lemma 36. Let C be a connected component of D \ S, and ` be the number of neighbors
of C in S. If Reduction Rules 5 and 6 are not applicable, then D[C] has O(`) leaves.

Proof. Recall that when the first two reduction rules do not apply, every vertex in D is
incident to at least 4 arcs and thus every leaf of C is incident to at least 3 arcs with
endpoints in S. However, since there can be bidirectional arcs between C and S, every leaf
of C has at least 2 neighbors in S. From Lemma 28 it follows that there are only O(`)
vertices in C with at least 3 neighbors in S. Hence it suffices to obtain an O(`) bound on
the leaves of C with exactly two neighbors in S.

Recalling Lemma 28, we observe that each of the leaves of C has one of O(`) possible
neighborhoods in S. Let us fix two distinct vertices x and y inN(C). We will show that there
are at most c − 1 leaves of C with both x and y as neighbors. Suppose for a contradiction
that there is a set L of at least c leaves of D[C] which are adjacent to x and y. Since D[C]
is a tree and L is a subset of its leaves, the graph D[C \ L] is also a tree. If we contract
D[C \L] into a single vertex, say z, then the subgraph induced on the vertices in L∪{x, y, z}
would be isomorphic to K3,c, contradicting the fact that D is K3,c-minor-free. We conclude
that C can have at most c− 1 leaves with neighbors x and y, completing the proof. J



B. Bergougnoux, E. Eiben, R. Ganian, S. Ordyniak, and M. S. Ramanujan 36:11

I Lemma 37. If none of Reduction Rules 5, 6, 30-33 apply, then D \ S has at most O(|S|)
vertices of degree at least 3.

Proof. Let C be the set of all components of D \ S. Since none of the aforementioned
reduction rules apply, we can invoke Lemma 35 and Lemma 36. That is, we conclude that
there are only O(|S|) components in C and that the number of leaves in a component C ∈ C
is O(|N(C)|).

Since the number of leaves in a tree gives an upper bound on the number of vertices of
degree at least 3, this implies that the number of vertices of degree at least 3 in D[C] is also
bounded by O(|N(C)|). Thus it suffices to show that

∑
C∈C |N(C)| = O(|S|). However,∑

C∈C |N(C)| is the same as the number of edges in the graph G which we obtain from D by
contracting each component of C to a single vertex and removing all edges between vertices
in S. Since G is clearly a minor of D, it is also K3,c-minor-free and hence |E(G)| is at most
O(|V (G)|) = O(|S|+ |C|) = O(|S|), which concludes the proof. J

The main consequence of the above lemma is that we can now add all the vertices of
degree at least 3 to the set S in order to get a set S′ which is also a feedback vertex set of D
of size O(|S|) = O(k). At the same time, the graph D \ S′ is significantly more structured:
every connected component of this graph is in fact a path and this will play a crucial role
in the rest of this section. Since |S′| ∈ O(|S|), it suffices to obtain a reduced instance of size
linear in |S′|, and so for ease of presentation we will hereinafter set S := S′.

I Reduction Rule 38. If none of the Reduction Rules 5-6, 30-33 apply, then we add all
vertices of total degree three in D \ S to S.

Observe that after applying Reduction Rule 38, D\S is a set of roads. Furthermore, once
we ensure that D \ S is a set of roads, none of the reduction rules in this section will ever
create a new degree 3 vertex in D \ S. Hence we can exhaustively apply all the reduction
rules in this section once again to ensure that the number of roads in D \ S is O(|S|). In
the rest of the section, we present reduction rules to handle the roads in D \ S.

4.1 Dealing with roads
Our first step will be to transform our instance so that all roads in D \ S are even more
structured with respect to their adjacencies with S.

I Definition 39. A road P in D \ S is nice if |N(P ′) ∩ S| ≤ 2, where P ′ are the internal
vertices of P .

In other words, nice roads are roads whose internal vertices are all adjacent to at most
two specific vertices from S (other than the endpoints of the road); observe that this is
equivalent to requiring that |N(P ′)| ≤ 4, where P ′ is the set of internal vertices of the nice
road P .

In order to achieve this transformation, we will iteratively construct an auxiliary vertex
set Q to store certain vertices that form separators between nice road segments in D − S.
In the course of this procedure, we will also construct an injective mapping δ from Q to the
connected components of D \ (S ∪Q). We initialize by setting δ = Q = ∅.

I Reduction Rule 40. Let A be a connected component which is a road in D \ (S ∪ Q)
that is not nice. Moreover, let A′ be a maximal nice subroad of A which contains a leaf in
D \ (S∪Q) and let a′ be the unique neighbor of A′ in A. Then add a′ to Q and add a′ 7→ A′

to δ.

MFCS 2017



36:12 Towards a Polynomial Kernel for Directed Feedback Vertex Set

For each vertex q ∈ Q, let Rq = {q} ∪ δ(q). Observe that Rq is a road which contains at
least 3 neighbors in S. Furthermore, for any q, q′ ∈ Q our construction of δ ensures that Rq

and Rq′ are vertex-disjoint since δ(q) is a nice road in D \ (S ∪Q), for all q ∈ Q.

I Lemma 41. After the exhaustive application of Reduction Rule 40, we have |Q| = O(|S|).

The next rule is only applied once after the exhaustive application of Reduction Rule 40.
Note that it does not increase the parameter by more than a linear factor due to Lemma 41.

I Reduction Rule 42. Set S := S ∪Q.

Observe that after the exhaustive application of Reduction Rule 40 and the application
of Reduction Rule 42, each road in D − S is nice. Furthermore, the number of roads in
D − S is still linear in S, since removing |Q| vertices from a set of roads only increases the
number of roads in the set by at most |Q|. Our next task is to deal with nice roads, but we
first state a useful observation about general roads.

I Observation 43. Let P be a road in D\S and let P ′ be the internal vertices of P . For any
DFVS T of D, the set (T \P ′)∪N(P ′) is also a DFVS of D. In particular, every minimum
DFVS contains at most |N(P ′)| vertices of P ∪N(P ′).

I Reduction Rule 44. Let P be a nice road in D \ S, P ′ internal vertices of P , and x a
vertex in N(P ′) \V (P ). If D[P ′ ∪{x}] contains at least |N(P ′)| directed cycles intersecting
only in x, then we remove x from D and set k = k − 1.

For internal vertices of a road P , we define an equivalence relation ∼P such as a ∼P b if
and only if N+(a) \ V (P ) = N+(b) \ V (P ) and N−(a) \ V (P ) = N−(b) \ V (P ) (i.e., a and
b have same out- and in- neighborhoods outside of P ). We are now ready to state our final
reduction rule, which will later allow us to bound the length of each nice road by a constant.

I Reduction Rule 45. Let P be a nice road in D \ S, and let P ′ be internal vertices of P
with ` = |N(P ′)|. If P ′ contains a directed subpath Q = (q1, . . . , q`+2), such that qi ∼P qj

for all 1 ≤ i, j ≤ `+ 1, then we remove q` from D and add the arc (q`−1, q`+1).

We are now ready to complete the proof of our linear kernelization by bounding the size
of an instance after the exhaustive application of our reduction rules.

I Lemma 46. If none of Reduction Rules 5, 6 and 30-45 apply, then |D| = O(|S|).

Proof Sketch. Let P be the set of all acyclic component ofD\S. Recall that since Reduction
Rules 5, 6 and 30-42 do not apply, every acyclic component in P is a nice road in D and
there are at most |P| = O(|S|) such nice roads. Therefore, it suffices to show that there is a
constant d which bounds the size of any nice road P in P. This is achieved by the following
three-step process: (a) we bound the number of vertices with bidirectional arcs to (from) a
vertex from S, (b) we bound the number of sinks and sources on P , and (c) we bound the
number of remaining vertices in P , i.e., vertices on directed path segments between vertices
covered under points (a) and (b).

It is not difficult to show that points (a) and (b) follow from the exhaustive application
of Reduction Rule 44. For point (c), we first observe that each vertex on a directed path
must have precisely one in- and one out-neighbor in S, which means that there are only
2 ‘types’ of vertices on these directed path segments. Then Reduction Rule 44 allows us
to bound the number of alternations of types on a directed path, while Reduction Rule 45
provides a bound on the number of consecutive types on such paths. J



B. Bergougnoux, E. Eiben, R. Ganian, S. Ordyniak, and M. S. Ramanujan 36:13

5 Conclusions and Future Work

Our results provide a stepping stone towards resolving the existence of a polynomial kernel
for DFVS, and to the best of our knowledge also represent the first explicit kernelization
results for DFVS with respect to any natural parameter. They also open up several new
directions for future research. For instance, can we find reasonable parameters that lie
“between” DFVS number and FVS number, and would it be possible to generalize our
polynomial kernel to these? What about parameters which are incomparable to the FVS
number but also upper-bound the DFVS number? Can our linear kernel be lifted to graph
classes of bounded expansion or nowhere dense graphs? Can Theorem 1 be improved to
a cubic or quadratic kernel, for instance by using techniques similar to the improvement
obtained for the undirected setting by Thomasse [36]? Another related problem of interest
is whether DFVS can be solved in time 2O(k) · nO(1), which remains open even on planar
graphs.

References
1 Vineet Bafna, Piotr Berman, and Toshihiro Fujito. A 2-approximation algorithm for the

undirected feedback vertex set problem. SIAM J. Discrete Math., 12(3):289–297, 1999.
2 Reuven Bar-Yehuda, Dan Geiger, Joseph Naor, and Ron M. Roth. Approximation algo-

rithms for the feedback vertex set problem with applications to constraint satisfaction and
bayesian inference. SIAM J. Comput., 27(4):942–959, 1998.

3 Ann Becker and Dan Geiger. Optimization of pearl’s method of conditioning and greedy-like
approximation algorithms for the vertex feedback set problem. Artif. Intell., 83(1):167–188,
1996.

4 Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh,
and Dimitrios M. Thilikos. (meta) kernelization. J. ACM, 63(5):44:1–44:69, 2016.

5 Hans L. Bodlaender and Thomas C. van Dijk. A cubic kernel for feedback vertex set and
loop cutset. Theory Comput. Syst., 46(3):566–597, 2010.

6 Yixin Cao, Jianer Chen, and Yang Liu. On feedback vertex set new measure and new
structures. In Haim Kaplan, editor, Algorithm Theory - SWAT 2010, 12th Scandinavian
Symposium and Workshops on Algorithm Theory, Bergen, Norway, June 21-23, 2010. Pro-
ceedings, volume 6139 of Lecture Notes in Computer Science, pages 93–104. Springer, 2010.

7 Chandra Chekuri and Vivek Madan. Constant factor approximation for subset feedback
set problems via a new LP relaxation. In Robert Krauthgamer, editor, Proceedings of
the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016,
Arlington, VA, USA, January 10-12, 2016, pages 808–820. SIAM, 2016.

8 Jianer Chen, Fedor V. Fomin, Yang Liu, Songjian Lu, and Yngve Villanger. Improved
algorithms for feedback vertex set problems. J. Comput. Syst. Sci., 74(7):1188–1198, 2008.
doi:10.1016/j.jcss.2008.05.002.

9 Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon. A fixed-parameter
algorithm for the directed feedback vertex set problem. J. ACM, 55(5), 2008. doi:10.1145/
1411509.1411511.

10 Rajesh Hemant Chitnis, Marek Cygan, Mohammad Taghi Hajiaghayi, and Dániel Marx.
Directed subset feedback vertex set is fixed-parameter tractable. ACM Transactions on
Algorithms, 11(4):28, 2015.

11 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

12 Marek Cygan, Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh.
On the hardness of losing width. Theory Comput. Syst., 54(1):73–82, 2014.

MFCS 2017

http://dx.doi.org/10.1016/j.jcss.2008.05.002
http://dx.doi.org/10.1145/1411509.1411511
http://dx.doi.org/10.1145/1411509.1411511


36:14 Towards a Polynomial Kernel for Directed Feedback Vertex Set

13 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth
in single exponential time. In FOCS, pages 150–159, 2011.

14 Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wojtaszczyk. Subset
feedback vertex set is fixed-parameter tractable. SIAM J. Discrete Math., 27(1):290–309,
2013. doi:10.1137/110843071.

15 Reinhard Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer
Verlag, New York, 2nd edition, 2000.

16 Rodney G. Downey and Michael R. Fellows. Fixed-parameter intractability. In Proceedings
of the Seventh Annual Structure in Complexity Theory Conference, Boston, Massachusetts,
USA, June 22-25, 1992, pages 36–49, 1992.

17 Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness
I: basic results. SIAM J. Comput., 24(4):873–921, 1995.

18 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013.

19 P Erdős and L Pósa. On independent circuits contained in a graph. Canad. J. Math,
17:347–352, 1965.

20 Guy Even, Joseph Naor, Baruch Schieber, and Madhu Sudan. Approximating minimum
feedback sets and multicuts in directed graphs. Algorithmica, 20(2):151–174, 1998.

21 Jakub Gajarský, Petr Hlinený, Jan Obdrzálek, Sebastian Ordyniak, Felix Reidl, Peter Ross-
manith, Fernando Sánchez Villaamil, and Somnath Sikdar. Kernelization using structural
parameters on sparse graph classes. J. Comput. Syst. Sci., 84:219–242, 2017.

22 Jonathan L. Gross and Thomas W. Tucker. Topological Graph Theory. Wiley-Interscience,
New York, NY, USA, 1987.

23 Venkatesan Guruswami and Euiwoong Lee. Inapproximability of h-transversal/packing. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques, APPROX/RANDOM 2015, August 24-26, 2015, Princeton, NJ, USA, volume 40
of LIPIcs, pages 284–304. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

24 Bart M. P. Jansen and Hans L. Bodlaender. Vertex cover kernelization revisited - upper
and lower bounds for a refined parameter. Theory Comput. Syst., 53(2):263–299, 2013.

25 Naonori Kakimura, Ken-ichi Kawarabayashi, and Yusuke Kobayashi. Erdös-pósa property
and its algorithmic applications: parity constraints, subset feedback set, and subset packing.
In Yuval Rabani, editor, Proceedings of the Twenty-Third Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 1726–1736.
SIAM, 2012.

26 Naonori Kakimura, Ken-ichi Kawarabayashi, and Dániel Marx. Packing cycles through
prescribed vertices. J. Comb. Theory, Ser. B, 101(5):378–381, 2011.

27 Richard M. Karp. Reducibility among combinatorial problems. In Proceedings of a sympo-
sium on the Complexity of Computer Computations, held March 20-22, 1972, at the IBM
Thomas J. Watson Research Center, Yorktown Heights, New York., pages 85–103, 1972.
URL: http://www.cs.berkeley.edu/~luca/cs172/karp.pdf.

28 Ken-ichi Kawarabayashi and Yusuke Kobayashi. Fixed-parameter tractability for the sub-
set feedback set problem and the s-cycle packing problem. J. Comb. Theory, Ser. B,
102(4):1020–1034, 2012. doi:10.1016/j.jctb.2011.12.001.

29 Ken-ichi Kawarabayashi, Daniel Král’, Marek Krcál, and Stephan Kreutzer. Packing di-
rected cycles through a specified vertex set. In Proceedings of the Twenty-Fourth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana,
USA, January 6-8, 2013, pages 365–377, 2013.

30 Tomasz Kociumaka and Marcin Pilipczuk. Faster deterministic feedback vertex set. Inf.
Process. Lett., 114(10):556–560, 2014. doi:10.1016/j.ipl.2014.05.001.

http://dx.doi.org/10.1137/110843071
http://www.cs.berkeley.edu/~luca/cs172/karp.pdf
http://dx.doi.org/10.1016/j.jctb.2011.12.001
http://dx.doi.org/10.1016/j.ipl.2014.05.001


B. Bergougnoux, E. Eiben, R. Ganian, S. Ordyniak, and M. S. Ramanujan 36:15

31 M. Pontecorvi and Paul Wollan. Disjoint cycles intersecting a set of vertices. J. Comb.
Theory, Ser. B, 102(5):1134–1141, 2012.

32 Venkatesh Raman, Saket Saurabh, and C. R. Subramanian. Faster fixed parameter
tractable algorithms for finding feedback vertex sets. ACM Transactions on Algorithms,
2(3):403–415, 2006. doi:10.1145/1159892.1159898.

33 Bruce A. Reed, Neil Robertson, Paul D. Seymour, and Robin Thomas. Packing directed
circuits. Combinatorica, 16(4):535–554, 1996.

34 Paul D. Seymour. Packing directed circuits fractionally. Combinatorica, 15(2):281–288,
1995.

35 Paul D. Seymour. Packing circuits in eulerian digraphs. Combinatorica, 16(2):223–231,
1996.

36 Stéphan Thomassé. A 4k2 kernel for feedback vertex set. ACM Trans. Algorithms,
6(2):32:1–32:8, 2010.

37 Magnus Wahlström. Half-integrality, LP-branching and FPT algorithms. In Chandra
Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 1762–
1781. SIAM, 2014.

MFCS 2017

http://dx.doi.org/10.1145/1159892.1159898




Timed Network Games∗

Guy Avni1, Shibashis Guha2, and Orna Kupferman3

1 IST Austria, Klosterneuburg, Austria
2 Hebrew University of Jerusalem, Israel
3 Hebrew University of Jerusalem, Israel

Abstract
Network games are widely used as a model for selfish resource-allocation problems. In the clas-
sical model, each player selects a path connecting her source and target vertex. The cost of
traversing an edge depends on the number of players that traverse it. Thus, it abstracts the fact
that different users may use a resource at different times and for different durations, which plays
an important role in defining the costs of the users in reality. For example, when transmitting
packets in a communication network, routing traffic in a road network, or processing a task in a
production system, the traversal of the network involves an inherent delay, and so sharing and
congestion of resources crucially depends on time.

We study timed network games, which add a time component to network games. Each vertex
v in the network is associated with a cost function, mapping the load on v to the price that a
player pays for staying in v for one time unit with this load. In addition, each edge has a guard,
describing time intervals in which the edge can be traversed, forcing the players to spend time
on vertices. Unlike earlier work that add a time component to network games, the time in our
model is continuous and cannot be discretized. In particular, players have uncountably many
strategies, and a game may have uncountably many pure Nash equilibria. We study properties of
timed network games with cost-sharing or congestion cost functions: their stability, equilibrium
inefficiency, and complexity. In particular, we show that the answer to the question whether we
can restrict attention to boundary strategies, namely ones in which edges are traversed only at
the boundaries of guards, is mixed.

1998 ACM Subject Classification I.2.11 Distributed Artificial Intelligence – Multiagent systems,
G.2.2 Graph Theory – network problems, F.2 Analysis of Algorithm and Problem Complexity

Keywords and phrases Network Games, Timed Automata, Nash Equilibrium, Equilibrium Inef-
ficiency

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.37

1 Introduction

Network games (NGs, for short) [9, 37, 38] constitute a well studied model of non-cooperative
games. The game is played among selfish players on a network, which is a directed graph.
Each player has a source and a target vertex, and a strategy is a choice of a path that connects
these two vertices. The cost of a player is the sum of costs of the edges her path traverses,
where a cost of an edge depends on the load on it, namely the number of players using the
edge. We distinguish between two types of costs. In cost-sharing games (a.k.a. network

∗ The research leading to these results has received funding from the European Research Council under
the European Union’s Seventh Framework Programme (FP7/2007-2013, ERC grant no 278410) and the
Austrian Science Fund (FWF) under grants S11402-N23 (RiSE/SHiNE) and Z211-N23 (Wittgenstein
Award).

© Guy Avni, Shibashis Guha, and Orna Kupferman;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 37; pp. 37:1–37:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.37
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


37:2 Timed Network Games

formation games), each edge has a cost and the players that use it split the cost among them,
thus the load has a positive effect on cost. For example, when the costs correspond to prices,
users that share a resource also share its price. Then, in congestion games, the load has a
negative effect on cost: each edge has a non-decreasing latency function that maps the load
on the edge to its cost given this load. For example, when the network models a road system
and costs correspond to the traversal time, an increased load on an edge corresponds to a
traffic jam, increasing the cost of the players that use it.

One limitation of NGs is that the cost of using a resource abstracts the fact that different
users may use the resource at different times and for different durations. This is a real
limitation, as time plays an important role in many real-life settings. For example, in a
road or communication systems, congestion only affects cars or messages that use a road
or a channel simultaneously. We are interested in settings in which congestion affects the
QoS or the way a price is shared (rather than the travel time). For example, discomfort
increases in a crowded train or price is shared by the passengers in a taxi without affecting
the travel time. Similarly, in mobile networks, the call quality depends on the number of
subscribers using the network simultaneously. As a third example, when processing a task in
a production system, jobs move from one station to another. The way the cost of running
the stations is shared by the jobs that use it depends on the time spent in the stations and
on the synchronization among the jobs.

We introduce and study timed network games (TNGs, for short) – a new model that
adds a time component on NGs. Similar to NGs, the game is played on a network and the
players need to find a path from their source to target vertices. Rather than paying for the
traversal of edges, in TNGs the players pay for spending time in vertices. Each edge in the
network has a guard, which is a disjunction of time intervals that specifies when an edge can
be traversed. Traversing an edge is done instantaneously. So, a strategy for a player is a
timed path: a sequence of pairs 〈v, t〉 of a vertex v and the time t spent on v. When the path
traverses an edge in the network, the guard of the edge must be satisfied. For an integer
k ∈ IN, let [k] = {1, . . . , k}. Each vertex v has a cost function rv : [k]→ IR≥0 that assigns
the cost of using v for one time unit, given the load in v. A profile in a TNG is then a vector
of timed paths, namely the strategies of all players. Given a profile P , the cost of each player
is induced by the cost functions of the vertices visited in her timed path, the time spent at
each vertex, and the load on the vertices during these visits.

I Example 1. Consider an automobile service center with three stations: (s) tuning engine,
(a) tire and air check, and (w) dry and wet wash. The costs for operating the stations
per one time unit are 8, 4 and 6 respectively, and they are independent of the number of
cars served. Accordingly, cost is shared by the users. There are two billing counters, u1
and u2, for dropped-in and registered cars. The setting is modeled by the TNG below. As
described in the TNG, after spending some time in s, the cars can alternate between stations
w and a. Assume that there are two players, and consider the profile P in which the first
player chooses the timed path (s, 3), (a, 7), u1 and the second player chooses the timed path
(s, 3), (a, 4), (w, 3), u2. Player 1’s cost in P is 8/2 · 3 + 4/2 · 4 + 4 · 3 = 32 and Player 2’s cost
is 8/2 · 3 + 4/2 · 4 + 6 · 3 = 38. Another possible profile in this game is P ′, in which the
strategies of the two players are (s, 3), (w, 4), (a, 3), u1 and (s, 3), (w, 7), u2. Now, the costs
are 36 and 42, respectively.



G. Avni, S. Guha, and O. Kupferman 37:3

8

6

4

s

w

a

u1

u2

[3, 4]

[3, 4]

[6,7] [6,7]

[10, 10]

[10, 10]

There has been reference to time already in early work on flow networks [26]. Research
spans from pioneering and theoretical work on flow networks in which congestion leads to
queues (c.f., [41, 42]) to nowadays practical research on traffic engineering in software defined
networks [2]. These works, however, do not address the problem from a game-theoretic
perspective. To the best of our knowledge, the first works to consider network games with a
time component are [36] and [28]. In [36], the focus is still on flow networks, and it enriches
[41, 42] by viewing infinitesimal flow particles as selfish agents (see also [14]). Closer to our
work, network games with time components where studied in [28, 31, 35]. These models
differ from our model in two main aspects. First, the cost a player pays in these models is
the time it takes to reach its destination, and our cost represents the QoS. Second, time is
discrete in these models so the set of strategies the players choose is finite, whereas the source
of the difficulty of our model is the real-time and the fact that the players have uncountably
many strategies. The closest to our model is a model studied in [28], which studies a QoS
pricing but using discrete time.

Our model of TNGs is the first to add real-time considerations to the strategies of the
players. Indeed, a strategy for a player is not just the path of edges she is going to traverse,
but also the time spent in vertices, which can be any number in IR≥0. Thus, even if we restrict
attention to simple paths, each player has uncountably many strategies. This continuous
time and the richness of strategies that it brings with it is also a key difference between
TNGs and NGs. Our model is inspired by timed automata [5]. There too, time is continuous,
transitions between states are guarded by time constraints, and so is the time spent in a state.
There are typically uncountably many runs of a timed automaton, corresponding to the
uncountably many strategies a player typically has in our TNGs. The fact timed automata
handle continuous time makes them the prominent formalism for specifying real-time on-going
behaviors, and they are way more useful than formalisms in which time has been discretized
(c.f., temporal logic with discrete clocks [23], or the fictitious-clock approach of [27]). We
note that our TNGs correspond to a restricted class of timed automata, as our guards refer
to the global time and cannot express, for example, a bound on the time spent in a vertex.
In Section 7 we discuss the extension of our model to a richer one.

Note that, as in the time-dependent cost model of [28], load does not affect travel time
and only affects the cost. Unlike [28], in TNGs time is continuous, which enables TNGs
to model richer settings in practice. Note also that the cost function may model various
applications. Consider, for example, a communication network with servers that encode or
decode messages. A typical cost function for a server is the inverse of the quality of the
signal, which is related to the number of bits needed to encode a message. Assuming that a
server can handle a certain amount of data per unit time, this cost is the reciprocal of the
number of bits used to encode a message. If the server allows a 16-bit encoding of a message
when it serves less than 128 users simultaneously, and allows an 8-bit encoding when it serves
between 128 and 256 users simultaneously, then the cost function maps x to 1

16 , for x ≤ 128,
and to 1

8 , for 129 ≤ x ≤ 256, reflecting a better quality of the received message when load
goes below 128 [33].

MFCS 2017



37:4 Timed Network Games

The first question that arises in the context of games is the existence of stable outcomes
of the game. In the context of NGs, the most prominent stability concept is that of a (pure)
Nash equilibrium (NE, for short) – a profile such that no player can decrease her cost by
unilaterally deviating from her current strategy1. Decentralized decision-making may lead to
solutions that are sub-optimal from the point of view of society as a whole. The standard
measures to quantify the inefficiency incurred due to selfish behavior is the price of stability
(PoS) [9] and the price of anarchy (PoA) [30]. In both measures we compare against a social
optimum (SO, for short), namely a profile that minimizes the sum of costs of all players.
The PoS (PoA, respectively) is the best-case (worst-case) inefficiency of an NE; that is, the
ratio between the cost of a best (worst) NE and an SO. In Example 1, profile P is an SO,
and is also a (best) NE, while profile P ′ is a worst NE. Note that there can be uncountably
many NEs in the TNG in Example 1. Indeed, for all t ∈ [3, 4], the profile Pt with the
strategies (s, 3), (a, t), (w, 4 − t)(a, 3)u1 and (s, 3), (a, t), (w, 7 − t)u2, is an NE with costs
8/2 · 3 + 4/2 · t+ 6/2 · (4− t) + 4 · 3 = 36− t and 8/2 · 3 + 4/2 · t+ 6/2 · (4− t) + 6 · 3 = 42− t.

The picture of stability and equilibrium inefficiency for standard NGs is well understood.
Every NG has an NE, and in fact these games are potential games [37], thus every sequence
of best response moves, namely moves that the players perform in order to reduce their
costs, converges to an NE. For k-player cost-sharing NGs, the PoS and PoA are log k and k,
respectively [9]. For congestion games with affine cost functions, PoS ≈ 1.577 [21, 3] and
PoA = 5

2 [22].
The fact a TNG has uncountably many profiles makes the adoption of results known

for NGs questionable. Let us elaborate on this point. Consider a TNG T , and a finite set
T ⊆ IR≥0 of time points. Note that there are only finitely many T -profiles in T (that is,
profiles with T -strategies, in which all edges are taken at some time point in T ). We show
that once we restrict attention to T -profiles, we can construct an NG that is isomorphic
to T , in the sense that there is a cost-preserving bijection between profiles in the NG and
T -profiles in the TNG T . While this enables us to reduce questions about T -profiles in the
TNG to questions on NGs, it is not clear to which finite set T we can restrict attention.
In the setting of timed automata, much work has been done on obtaining decidability by
partitioning IR≥0 into finitely many regions. Essentially, all time points within a region are
bisimilar, in the sense that the actions the automaton may take inside all time points in a
region, coincide [5]. Our challenge here is similar: searching for a finite set of time points
that partitions IR≥0 to finitely many intervals.

Recall that the source for delays in TNGs are time guards on the edges, where each guard
is a disjunction of intervals [a, b], for a ≤ b ∈ Q≥0. We refer to the two end points of all
guards as boundaries. One can suspect that we can restrict attention to boundary strategies,
namely timed paths that traverse edges only at boundary time points, and boundary profiles
in which all the players choose boundary strategies. We show that the situation is mixed.
The good news follows from choosing T above to be the boundaries, thus we show that a
boundary NE and SO exist and an NE can be found by performing best-response moves
that use only boundary strategies. Unfortunately, however, one cannot restrict attention to
boundary profiles, as the best and worst NEs need not be boundary. We show a best and
worst NE is attained in TNGs, which is not a-priori guaranteed.

In terms of inefficiency, the reduction from TNGs to isomorphic NGs enables us to extend
upper bounds on the PoS and PoA from NGs to TNGs. The adoption of lower bounds

1 Throughout this paper, we consider pure strategies, as is the case for the vast literature on cost-sharing
games.



G. Avni, S. Guha, and O. Kupferman 37:5

requires a reduction in the other direction – from NGs to TNGs, which we can show only
for acyclic NGs. Consequently, we can apply only lower bounds known for acyclic NGs,
which forces us to either prove direct bounds or to tighten lower bounds known for NGs
to acyclic NGs. All in all, we are able to show that the PoS and PoA coincide for NGs
and TNGs, except for the lower bound on the PoS of congestion TNGs, which we leave
open. Finally, in terms of computational complexity, we prove that the problem of finding
an NE is PLS-complete [29] for TNGs, which coincides with the complexity bounds for NGs
[24, 40]. Proving membership in PLS follows easily from the reduction from TNGs to NGs.
Proving hardness is more complex. For congestion TNGs, we are able to rely on known
hardness results for congestion NGs, as they apply already for acyclic congestion NGs [1].
For cost-sharing TNGs we need a similar reduction from acyclic cost-sharing NGs, whose
precise complexity is an open problem. Accordingly, we first settle the latter problem and
prove that finding an NE in acyclic cost-sharing NG is PLS-hard, which allows us to prove
the hardness result for cost-sharing TNGs.

Due to lack of space, some proofs appear in the full version, which can be found in the
authors’ homepages.

2 Preliminaries

We describe a (closed) time interval by [m1,m2], for m1,m2 ∈ IR≥0. We refer to m1 and m2
as the start and the end interval boundaries, respectively. A guard is the constant true or a
disjunction of time intervals. A point in time t ∈ IR≥0 satisfies a guard g if g is true or g
includes a disjunct [m1,m2] such that m1 ≤ t ≤ m2.

A timed network (TN) is a tuple 〈V,E, {ge}e∈E〉, where V is a set of vertices, E ⊆
V × V is a set of directed edges, and for each edge e ∈ E, the guard ge specifies the
time intervals during which e may be traversed. A timed network game (TNG) is T =
〈k, V,E, {ge}e∈E , {rv}v∈V , 〈si, ui〉i∈[k]〉, where k is the number of players; 〈V,E, {ge}e∈E〉 is
a timed network; for v ∈ V , the cost function rv : [k] → IR≥0 maps the load on vertex v,
namely the number of players that simultaneously visit vertex v, to the cost each of them
pays for staying in v for one time unit with this load; and for i ∈ [k], the pair 〈si, ui〉 ∈ V ×V
describes the objective of Player i: choosing a timed path from si to ui. A timed network
game is symmetric if all the players have the same objective, i.e. the same source and target
pair. We use B(T ) to denote the set of interval boundaries appearing in the guards of T .

In order to satisfy her objective, Player i has to choose a path in T from si to ui as
well as the duration spent in each vertex in the path. Indeed, while edges are traversed
instantaneously, the guards on the edges force the players to spend time on vertices. Each
player then aims to minimize the cost of these stays. In order to formally define the strategies
of the players and their costs, we first need some definitions.

A timed path in the TNG T is a sequence π = 〈v0, t0〉, . . . , 〈vn−1, tn−1〉, vn ∈ (V×IR≥0)∗·V ,
such that for all 0 ≤ i < n, we have that 〈vj , vj+1〉 ∈ E; that is, v0, . . . , vn is a path in
the graph 〈V,E〉. Intuitively, for all 0 ≤ i < n, we have that tj describes the time spent
in the vertex vj before the path continues to vj+1. Let τ0 = t0 and τj = τj−1 + tj , for
0 < j < n. Note that τj =

∑j
l=0 tl. Thus, τj is the time that has elapsed since the traversal

of π starts and until π leaves the vertex vj . We sometimes refer to π also as the sequence
〈τ0, e1〉, . . . , 〈τn−1, en〉 ∈ (IR≥0 × E)∗, where for all 1 ≤ j ≤ n, we have that ej = 〈vj−1, vj〉
is the j-th edge in π and is taken at time τj−1. We say that the timed path π is legal if for
all 0 ≤ j < n, we have that τj satisfies the guard gej+1 .

A strategy for a player with an objective 〈s, u〉 is a legal timed path
π = 〈v0, t0〉, . . . , 〈vn−1, tn−1〉, vn such that v0 = s and vn = u. Consider a finite set T ⊆ IR≥0

MFCS 2017



37:6 Timed Network Games

of time points. We say that the strategy π is a T -strategy if all edges in π are taken at times
in T . Formally, for all 0 ≤ j < n, we have that τj ∈ T . A profile is a tuple P = 〈π1, . . . , πk〉
of strategies for the players. That is, for 1 ≤ i ≤ k, we have that πi is a strategy for Player i.
A profile is a T -profile if all its strategies are T -strategies. Of special interest are boundary
strategies and profiles, namely T -strategies and T -profiles for T = B(T ). Note that each
profile P has a finite minimal set T ⊆ IR≥0 such that P is a T -profile. We denote this set by
TP .

Given T ⊆ IR≥0, let tmax = max(T ). Also, for t ∈ T such that t 6= tmax, let nextT (t) be
the time point t′ ∈ T such that t < t′ and there is no t′′ ∈ T such that t < t′′ < t′. That is,
nextT (t) is the time point successor to t in T . We can partition the interval [0, tmax] to a set
Υ of sub-intervals [m1,m2] such that m1 and m2 are in T ∪ {0}, and m2 = nextT (m1). We
refer to the sub-intervals in Υ as periods. When T is TP for some profile P , then the set Υ
is the coarsest partition of [0, tmax] into periods such that no player crosses an edge within
each period. We denote this partition by ΥP .

Consider a T -profile P . For a player i ∈ [k] and a period γ ∈ ΥP , let visitsP (i, γ) be the
vertex that Player i visits during period γ. That is, if πi = 〈vi0, ti0〉, . . . , 〈vini−1, t

i
ni−1〉, vini

is
the legal timed path that is the strategy for Player i and γ = [m1,m2], then visitsP (i, γ)
is the vertex vij for the index 1 ≤ j < ni such that τ ij−1 ≤ m1 ≤ m2 ≤ τ ij . Note that
since P is a T -profile, then for each period γ = [m1,m2] ∈ ΥP , the number of players
that stay in each vertex v during γ is fixed. Let loadP (v, γ) denote this number. Formally
loadP (v, γ) = |{i : visitsP (i, γ) = v}|. Finally, for a period γ = [m1,m2], let |γ| = m2 −m1
be the duration of γ.

Recall that the cost function rv : [k] −→ IR≥0 maps the load of v to the cost of v per
time unit. Accordingly, if visitsP (i, γ) = v, then the cost of Player i in P over the period γ
is costγ,i(P ) = rv(loadP (v, γ)) · |γ|. We distinguish between two types of cost functions. We
say that in uniform cost-sharing games (CS-TNGs, for short), the players that visit a vertex
share its cost equally. Formally, each vertex v is associated with a rate bv ∈ IR≥0, and for
all l ≥ 1, we have rv(l) = bv

l . Note that increasing the load in uniform cost-sharing games
decreases the cost of the players. On the other hand, in congestion games (CON-TNGs, for
short), the cost functions are non-decreasing, thus increasing the load also increases the cost
for each player. The total cost of Player i in profile P is then costi(P ) =

∑
γ∈ΥP

costγ,i(P ).
The cost of the profile P , denoted cost(P ), is the total cost incurred by all the players, i.e.,
cost(P ) =

∑k
i=1 costi(P ).

Consider a TNG T . For a profile P and a strategy π of player i ∈ [k], let P [i← π] denote
the profile obtained from P by replacing the strategy for Player i by π. A profile P is said to
be a (pure) Nash equilibrium (NE) if none of the players in [k] can benefit from a unilateral
deviation from her strategy in P to another strategy. In other words, for every player i and
every strategy π that Player i can deviate to from her current strategy in P , it holds that
costi(P [i← π]) ≥ costi(P ). The set of NEs of the game T is denoted by NE(T ).

A social optimum (SO) of a game T is a profile that attains the infimum cost over all
profiles. We denote by SO(T ) the cost of an SO profile; i.e., SO(T ) = infP cost(P ). Note
that since a TNG may have infinitely many profiles, we should indeed take the infimum
(rather than minimum) over all profiles, and thus, an SO profile may not exist. As we
shall show, however, all TNGs have boundary SO profiles. An SO profile may be achieved
by a centralized authority and need not be an NE. The following parameters measure the
inefficiency caused as a result of the selfish interests of the players. First, the price of stability
(PoS) [8] of a timed network game T is the ratio between the infimum cost of an NE and the
cost of a social optimum of T . That is, PoS(T ) = inf P∈NE(T )cost(P )/SO(T ). Then, the



G. Avni, S. Guha, and O. Kupferman 37:7

price of anarchy (PoA) [34] of T is the ratio between the supremum cost of an NE and the
cost of a social optimum of T . That is, PoA(T ) = supP∈NE(T )cost(P )/SO(T ). Note that
here too, we have to use infimum and supremum rather than minimum and maximum, yet
we are going to show that best and worst NEs are always attained. For a family F of games,
we say that the PoA of F is at most x if for all games F in F , we have PoA(F ) ≤ x and is
at least x, if there exists a game F in F such that PoA(F ) = x, and similarly for PoS.

3 Reduction to and from Network Games

A network game (NG) is N = 〈k, V,E, {le}e∈E , 〈si, ui〉i∈[k]〉, and has a similar structure to a
TNG. A strategy of a player i ∈ [k] is a path from si to ui. The cost function le : [k]→ IR≥0
maps the load on edge e to the cost each player pays for using e. As is the case with TNGs,
one can consider both cost-sharing (CS-NGs) and congestion (CON-NGs) network games.
Consider a profile P = 〈σ1, σ2, . . . , σk〉 in the game. Since all the costs are positive, we can
restrict attention to strategies in which the paths chosen by the players are simple. Then, we
can also ignore the order between the edges in the paths and assume that for all i ∈ [k], we
have that σi ⊆ E is a set of edges that composes a path from si to ui.2 For an edge e ∈ E,
we denote by loadP (e), the number of players that use the edge e in P . Each player that
uses e then pays le(loadP (e)), and the cost of Player i in P is

∑
e∈σi

le(loadP (e)).
Given an NG N , a TNG T and a finite set T ⊂ IR≥0, we say that N and T are isomorphic

with respect to T if N and T have the same number of players and there exists a 1-to-1
cost-preserving correspondence between the profiles in N and the T -profiles in T . Formally,
there exists a bijection f from the set of T -profiles in T and the profiles in N such that for
every T -profile P in T and i ∈ [k], the costs of Player i in P and f(P ) coincide.

NGs have been extensively studied. In this section, we show that once we fix a set
T ⊆ IR≥0 of time points, we can reduce a TNG T with edges taken only at time points in T
to an NG. Formally, we have the following.

I Theorem 2. Given a TNG T and a finite set T ⊆ IR≥0, we can construct an NG N such
that N and T are isomorphic with respect to T . The size of N is polynomial in the size of T
and T , and it is constructed in polynomial time.

Proof. In TNGs, cost is associated with vertices and the time is spent in them, whereas
in NGs, cost is associated with the edges and there is no reference to time. Thus, the
construction translates the cost of staying in vertices during time intervals induced by T to
the cost of traversing edges.

Consider a TNG T = 〈k, V,E, {rv}v∈V , {ge}e∈E , (si, ui)i∈[k]〉 and the given set T . We
assume that 0 ∈ T . We construct an NG N = 〈k, V ′, E′, {le}e∈E′ , (〈si, 0〉, ui)i∈[k]〉, where
V ′ ⊆ (V × T ) ∪ {ui}i∈[k] and E′ ⊆ V ′ × V ′ is defined as follows (See an example in the full
version. For every vertex v ∈ V , we have the following edges in E′. Let τmax = max(T ).
1. For every τ 6= τmax ∈ T , let τ ′ = nextT (τ). Then, the edge e = ((v, τ), (v, τ ′)) is in E′,

corresponding to players staying in vertex v during the interval [τ, τ ′]. Accordingly, the
cost of e is such that for every m ∈ [k], we have le(m) = rv(m)(τ ′ − τ).

2. For every v′ 6= v with (v, v′) ∈ E and τ ∈ T such that τ satisfies g〈v,v′〉, we have an edge
e = ((v, τ), (v′, τ)) in E′. This edge corresponds to the edge (v, v′) in E. Recall that the

2 Note that the assumptions on each edge being visited at most once in strategies in NGs does not apply
to TNGs. Indeed, there, a player may benefit from visiting a vertex multiple times (see Example 1).

MFCS 2017



37:8 Timed Network Games

cost of crossing an edge in a TNG is 0. Accordingly, the cost of e is such that for every
m ∈ [k], we have le(m) = 0.

3. If v = ui for some i ∈ [k], then for all τ ∈ T , we have an edge e = ((v, τ), v) in E′, with
le′(m) = 0 for every m ≥ 1. In N , the target vertex for Player i is ui.

It is easy to see that the size of N is polynomial in T and T . In the full version, we prove
that N and T are indeed isomorphic with respect to T . That is, we show a bijection f from
the set of T -profiles in T and the profiles in N such that for every T -profile P in T and
i ∈ [k], the costs of Player i in P and f(P ) coincide. J

A reduction in the other direction, namely of NGs to TNGs, is not obvious, as the
dynamic of TNGs requires a synchronization among all the traversals in each of the edges.
We illustrate this in the full version of the paper. When, however, the NG is acyclic, we
can use a topological ordering on the edges and synchronize the traversals. Intuitively, each
edge in the NG induces a vertex in the TNG, and the guards are defined so that the vertex
associated with the j-th edge in the topological order is visited during the period [j − 1, j].
This can be easily forced by guarding the edges entering the vertex by [j − 1, j − 1] and
guarding these that leave it by [j, j]. See the full version for the proof.

I Theorem 3. Given an acyclic NG N , we can construct in polynomial time a TNG T that
is isomorphic to N with respect to B(T ) ∪ {0}. The size of T is polynomial in the size of N .

4 On Boundary Strategies and Profiles

Since a strategy for a player in a TNG is a timed path with time points in IR≥0, then each
player has uncountably many possible strategies, and hence it is possible to have uncountably
many profiles. In NGs, a strategy is a non-timed path from the source to the target. Even
there, in the non-timed setting, there may be infinitely many paths from the source to the
target. It is easy to see, however, that every strategy that is a non-simple path is dominated
by the strategy obtained by removing cycles, and thus one can restrict attention to the
finitely many profiles that consist of strategies that are simple paths. Our goal in this section
is to examine whether some similar restriction can be made in TNGs. Indeed, being able to
restrict attention to finitely many profiles would simplify our understanding of TNGs and
their analysis. A natural candidate is a restriction to boundary strategies, namely these in
which all edges are taken at interval boundaries. We show that while a boundary NE exists
in all TNGs, and that all TNGs have a boundary SO, there may be uncountably many NEs
that are not boundary. Moreover, there are TNGs in which the best and worst NEs are not
boundary.

We first need the following lemma.

I Lemma 4. Consider a TNG T and a finite set T ⊂ IR≥0 such that B(T ) ⊆ T . Let
π1, . . . , πk−1 be T -strategies of players 1, . . . , k − 1 respectively. There exists a T -strategy
πk of Player k such that for every strategy π′k of Player k that is not a T -strategy, we have
costk(〈π1, . . . , πk−1, πk〉) ≤ costk(〈π1, . . . , πk−1, π

′
k〉).

Intuitively, Lemma 4 states that if all players but one use boundary strategies, then a
best strategy for the k-th player can also be a boundary one. It implies that when we want
to prove that a certain boundary profile is an NE, we can restrict attention to deviations
that use boundary strategies.



G. Avni, S. Guha, and O. Kupferman 37:9

I Theorem 5. All TNGs have a boundary NE. Moreover, from every profile P , there is a
sequence of best-response moves that converges to an NE. When P is boundary, so is the
obtained NE.

Proof. Given a TNG T , let N be an NG that is isomorphic to T with respect to B(T ). Let
f be the bijection from the set of profiles in N to the set of B(T )-profiles in T such that for
every profile P in N and i ∈ [k], the costs of Player i in P and f(P ) coincide. By Theorem 2,
such an NG and bijection f exist. By [8, 24, 37], all NGs have an NE. Consider an NE PN
in N . In the full version we prove that f(PN ) is an NE in T .

For the second claim, the above considerations also imply that starting from a profile
P , we can restrict attention to best-response moves in which edges are taken in time points in
TP ∪B(T ), and reach the desired NE. In particular, when P is boundary, so is the obtained
NE. J

Recall that an SO profile attains the infimum cost over all profiles. We now show that
an SO profile always exists, and in fact there always exists a boundary SO. We show that
a boundary SO profile always exists. The idea is that if, in a profile P , an edge e is taken
at a non-boundary time τ , then it is possible to obtain a profile P ′ in which e is taken at a
boundary time and cost(P ′) ≤ cost(P ). We formalize this intuition in the full version.

I Theorem 6. All TNGs have a boundary SO.

We proceed to show that there are non-trivial TNGs that have uncountably many NEs,
which implies they also have uncountably many non-boundary NEs.

I Theorem 7. There exist CS-TNGs and CON-TNGs that have uncountably many NEs.

Proof. The CS-TNG from Example 1 has uncountably many NEs. In the full version, we
present and analyze in detail a different CS-TNG with uncountably many NEs.

We continue to CON-TNGs. Consider the TNG appearing in Figure 1. The objectives of
Players 1 and 2 is 〈a, d〉 and the objectives of Players 3 and 4 is 〈b, d〉. The cost functions
are written in the vertices. For y ∈ [0, 0.5], let Py be the profile in which Players 1 and 2
traverse the edge (a, b), and Players 3 and 4 traverse the edge (b, c), all at time y. In the full
version, we prove that for every y ∈ [0, 0.5], the profile Py is an NE. Since y can have any
value in [0, 0.5], we are done. J

Theorem 7 suggests that the values of a best and worst NEs should be defined by means
of infimum and supremum, and may not be attained. In the full version we prove that best
and worst NEs do exist. Essentially, it follows from the fact that our guards are closed
intervals, implying that the time points in an NE should satisfy a system of inequalities with
no strict inequalities. As bad news, we now show that while a boundary NE alway exists,
the best and worst NEs need not be boundary.

I Theorem 8. There exists a CS-TNG in which the best NE is not a boundary profile.

Proof. Consider the two-player TNG N that is played on the network depicted in Figure 2.
The objective of Player i is 〈s, ui〉. Player 1 has two boundary strategies: A, in which
she traverses the edge 〈s, a〉 at time 0, and B, in which she takes it at time 2. Note that
the suffixes of the strategies are fixed, as Player 1 must traverse the edge 〈a, u1〉 at time
3. Player 2 has three boundary strategies: Strategies A and B, in which she traverses
edge 〈s, a〉 at time 0 and 2, respectively, and Strategy C, in which she traverses the edge
〈s, b〉 at time 2. Again, the suffixes of the strategies A and B are fixed. In the full version,

MFCS 2017



37:10 Timed Network Games

2x + 9 5x 10

11.5

a b

g

c

d

[0,1] [0,1]

[0,0]

[1,1]

[1,1] [1,1]

Figure 1 A CON-TNG in which the worst NE is not boundary.

8

10

5 − ε

s a

u1

b u2

[0,
2]

[3, 3]

[2, 2]
[3, 3]

[3, 3]

Figure 2 A CS-TNG in which the best NE is not boundary.

we prove that 〈A,A〉 and 〈B,C〉 are the only boundary NEs with cost(〈A,A〉) = 30 and
cost(〈B,C〉) = 31− ε.

For x ∈ (0, 2), let Px be the profile in which both players traverse the edge 〈s, a〉 at time
2 − x. In the full version, we show that we can define ε and x so that Px is an NE with
cost(Px) < min{cost(〈A,A〉), cost(〈B,C〉)}. For example, by taking x = 0.25 and ε = 0.5 we
get an NE with cost(Px) = 26.5 J

I Theorem 9. There exists a CS-TNG in which the worst NE is not a boundary profile.

Proof. Consider the two-player TNG N that is played on the network depicted in Figure 3.
The objective of Player i is 〈s, ui〉. Player 1 has three boundary strategies: A, in which she
traverses the edge (v1, v2) at time 0; B, in which she takes it at time 2; and D, in which she
traverses the edge (v1, v5) at time 2.

Player 2 has four boundary strategies: A, in which she traverses edge (v1, v2) at time 0;
B, where she takes (v1, v2) at time 2; C, where she traverses the edge (v1, v4) at time 2; and
E, where she traverses the edge (s, v3). Note that strategy E has a fixed cost of 13.2.

In the full version, we prove that the only boundary profile that is an NE is the profile
〈D,C〉, whose cost is 26.3, and that the non-boundary profile P0.2 in which Players 1 and 2
traverse the edge (v1, v2) together at time 1.8 is an NE with cost 26.4, which is higher than
cost(〈D,C〉). J

I Theorem 10. There exists a CON-TNG in which the worst NE is not a boundary profile.

Proof. Recall the CON-TNG presented in Figure 1. In the proof of Theorem 7, we proved
that for all 0 ≤ y ≤ 0.5, the profile Py, in which Players 1 and 2 traverse the edge (a, b)
and Players 3 and 4 traverse the edge (b, c), all at time y, is an NE. We have cost1(Py) =
cost2(Py) = 13y+10·(1−y) = 3y+10, whereas cost3(Py) = cost4(Py) = 10y+10·(1−y) = 10.
Thus cost(Py) = 6y + 40.

Players 1 and 2 have three boundary strategies: A, in which they traverse the edge (a, b)
at time 0; B, in which they traverse the edge (a, b) at time 1; and C, in which they traverse
the edge (a, g) at time 0. Players 3 and 4 have three boundary strategies: D, in which they



G. Avni, S. Guha, and O. Kupferman 37:11

traverse the edge (b, c) at time 0, and E, in which they traverse the edge (b, c) at time 1,
and F , in which they traverse the edge (b, d) at time 1.

In the full version, we show that the boundary NEs with the highest cost are 〈C,B,E,E〉
and 〈C,B, F, F 〉 having a cost of 42.5. The cost of the profile P0.5 is 6 · 0.5 + 40 = 43. This
implies that the worst NE in the CON-TNG in Figure 1 is a non-boundary profile. J

We note that it might appear that whenever there exists a non-boundary NE in a TNG
T , there exist uncountably many NEs in T . This, however, is not the case as can be seen
in the TNG in Figure 3. As argued in the proof of Theorem 9, this TNG has only one
non-boundary NE. We also note that while we showed that the best and worst NEs in a
CS-TNG need not be boundary, for congestion games we only showed that the worst NE
need not be boundary. Thus, the problem of whether there is a CON-TNG in which the best
NE is not boundary is left open.

5 Equilibrium Inefficiency

As discussed in Section 1, decentralized decision-making often leads to solutions that are
sub-optimal from the point of view of the society as a whole. Recall that the measures PoS
and PoA measure the inefficiency caused by the selfish behavior of the players. It refers
to the ratio between the best (PoS) and worst (PoA) NEs and the SO. In this section we
discuss these measures for TNGs. For NGs, the PoS and PoA are well understood. In order
to use Theorem 2 and apply the results known for NGs to TNGs, we need to find a set of
time points with respect to which the models are isomorphic. As discussed in Section 4, the
natural candidate for this is the set of interval boundaries. While, however, we can restrict
attention to boundary strategies when we consider the SO, such a restriction is not sound
when we consider the infimum and supremum values of NEs. We show that our results in
Theorem 2 and Section 4 do imply the required upper bounds, and that the lower bounds
known for NGs can be extended to TNGs by carefully revising the examples known there.

I Theorem 11. The PoS and PoA for TNGs are upper-bounded by these for NGs. Thus, for
CS-TNGs with k players, the PoS is at most log k and the PoA is at most k. For CON-TNGs
with affine cost functions, the PoS is at most 1.577 and the PoA is at most 5

2 .

Proof. Consider a TNG T . Let P be an NE in T and let NP be the NG isomorphic to T
with respect to B(T )∪TP . Let f be a cost preserving bijection from the (B(T )∪TP )-profiles
of T and these of NP . As argued in the proof of Theorem 5, the profile f(P ) is an NE in
NP . It follows that the cost of an NE in T is upper and lower bounded by the cost of an
NE in an NG. Also, by Theorem 6, there exists a boundary SO in T , which, by Theorem 2,
corresponds to an SO in N . Thus, the ratio between an NE in T and the cost of its SO is
upper and lower bounded by this ratio in an NG. Since the above holds for all TNGs, we are
done. J

Adopting the lower bounds on PoS and PoA from NGs to TNGs is more difficult, as the
reduction from NGs to TNGs can be applied only to acyclic NGs. Fortunately, for CS-NGs,
matching lower bounds have been proven for acyclic networks. Hence, using considerations
that are similar to these in the proof of Theorem 11 (in fact, simpler ones, as there is no
need to refer to TP ), we can use the reduction described in Theorem 3 in order to conclude
the following.

I Theorem 12. The PoS and PoA for TNGs are lower-bounded by these for acyclic NGs.
Thus, for CS-TNGs with k players, the PoS is at least log k and the PoA is at least k.

MFCS 2017



37:12 Timed Network Games

0 8 10

5.9

13.2 4.4

s v1 v2

v5

u1

v3

v4 u2

[0, 0] [0, 2]
[2,

2] [3, 3]
[3, 3]

[0, 0]
[2, 2]

[1, 1]

[3, 3]

[3, 3]

Figure 3 A CS-TNG in which the worst NE is not boundary.

0

0

0

s1

s2

s3

2x
v1

[0]

x

v2

[1]

[1]

x

v3

[2]

[2]

[2]

2x
v4

[3]
[3]

3x
v5

[4]
[4]

x

v
′

1
[2]

x

v
′

2
[3]

x

v
′

3
[4]

2x

v
′

4
[5]

u1

u2

u3

[3]

[4]

[4]

[5]

[5]

[6]

Figure 4 A lower bound of PoA = 5·k
2(k−2)+3+5 for CON-TNGs.

For CON-TNG, the adoption of results from CON-NGs is more challenging, as known
lower bounds use cyclic network. We are still able to prove a lower bound for the PoA. A
bound for CON-NGs with linear cost function has been shown in [21]. In our case, we show
that the upper bound is matched asymptotically

I Theorem 13. There are CON-TNGs with linear cost functions such that for k=3 or more
players, the PoA is 5·k

2(k−2)+3+5 . Hence as k →∞, the PoA approaches 5
2 .

Proof. Consider the three-player CON-TNG appearing in Figure 4. The sources and targets
of the three players are s1, s2, s3 and u1, u2, u3, respectively. The cost of staying in the source
vertices is 0. For the rest of the vertices, the cost functions are as follows: rv1(x) = rv4(x) = 2x,
rv2(x) = rv3(x) = x, rv5(x) = 3x, rv′

1
(x) = rv′

2
(x) = rv′

3
(x) = x, and rv′

4
(x) = 2x.

Consider the profile P in which Player i, for all i ∈ {1, 2, 3}, visits the vertices vi, vi+1, v
′
i.

The profile P is an NE in which each player pays 5, so cost(P ) = 15. However, an SO is
obtained when each Player i moves from her source to target through vertices vi+2, v

′
i+1. In

this profile, the costs of the players are 2, 3, and 5. Thus PoA = 15
2+3+5 = 3

2 .
If there are k players, we consider the game with vertices v1, . . . , vk+2 and vertices

v′1, . . . , v
′
k+1. The cost functions are rv1(x) = rvk+1(x) = rv′

k+1
(x) = 2x, rvk+2(x) = 3x, while

for the remaining vertices v apart from the source and the target vertices, rv(x) = x. The
PoA is 5·k

2(k−2)+3+5 . Hence, PoA asymptotically reaches its upper bound as k tends to ∞. J

6 The Complexity of Finding an NE

The complexity class PLS contains local search problems with polynomial time searchable
neighborhoods [29]. Essentially, a problem is in PLS if there is a set of feasible solutions for
it such that it is possible to find, in polynomial time, an initial feasible solution and then



G. Avni, S. Guha, and O. Kupferman 37:13

iteratively improve it, with each improvement being performed in polynomial time, until a
local optimum is reached. See the full version for the formal definition.

In this section we prove that the problem of finding an NE is PLS-complete for TNGs,
which coincides with the complexity bounds for NGs [24, 40]. Proving membership in PLS
would follow easily from the reduction to NGs. Proving hardness is more involved: While
for CON-TNGs we are able to rely on previous results, corresponding to CS-TNGs, we first
solve the problem for acyclic CS-NGs. We start with the upper bound.

I Theorem 14. The problem of finding an NE in CS-TNGs and CON-TNGs is in PLS. For
symmetric TNGs, the problem can be solved in polynomial time.

Proof. For membership in PLS, we describe an algorithm to find an NE. Consider a TNG
T , and let N be the isomorphic NG with respect to B(T ). Recall that the size of N is
polynomial in the size of T . We run the PLS algorithm for finding an NE P in N . As in
Theorem 5, the profile f−1(P ) is an NE in T , thus we are done. When T is symmetric, so is
N . Since finding an NE in a symmetric NG can be done in polynomial time [24], the claim
follows. J

For PLS-hardness, we describe a reduction from the problem of finding a local MAX CUT
in a weighted network (LMC, for short) which is known to be PLS-complete [39]. In [1], a
polynomial-time reduction is shown from the LMC problem to the problem of finding an NE
in CON-NGs. The reduction involves two steps: from the LMC problem to the problem of
finding an NE in a class of games called quadratic threshold games, which in turn is reduced
to the problem of finding an NE in a CON-NG. The reduction in [1] always produces an
acyclic CON-NG. By Theorem 3, the latter can be reduced to an isomorphic CON-TNG. In
order to use a similar technique for CS-TNGs, we first establish PLS-hardness for acyclic
CS-NGs, which is an open problem. The proof uses a non-trivial reduction from the LMC
problem and can be found in the full version.

I Theorem 15. The problem of finding an NE in acyclic CS-NGs is PLS-hard.

We thus have a matching lower bound also for CS-TNGs leading to the following theorem.

I Theorem 16. The problems of finding an NE in CS-TNGs and CON-TNGs are PLS-
complete.

7 Discussion and Directions for Future Research

We introduced and studied timed network games, which are an extension of network games
with real-time considerations. TNGs are inspired by timed automata [5], which are automata
extended by a finite set of clocks. A clock is a variable that takes values in IR≥0 and whose
values increase as time passes. In the full version we study TNGs with clocks, in which, as
in timed automata, transitions are labeled by constraints on the clocks and clocks may be
reset when traversing a transition. For example, if we reset a clock x when we enter a vertex
v, then a guard x ≤ 5 in a transition that leaves v, bounds the time spent in v to be at
most 5 time units. The TNGs we study here are equivalent to a model with clocks that are
never reset. Indeed, then, all clocks maintain the time that has passed since the start of the
game, and guards impose bounds on this time. TNGs with clocks are already interesting in
the degenerate case when there is only one player, a.k.a. priced timed automata (PTA, for
short) [7, 13].

MFCS 2017



37:14 Timed Network Games

We describe here briefly our results for TNGs with clocks. Clearly, the negative results
we obtain here for TNGs without clocks follow to the general setting. Recall that a main
tool for obtaining positive results is a reduction between TNGs and NGs. The key to such a
reduction is a partition of IR≥0 into finitely many intervals, which involves two questions:
about the granularity to which we have to partition IR≥0, and about the maximal point in
time that is of interest. While the answer to the first question is not difficult also for TNGs
with clocks, the answer to the second question is difficult and interesting in its own right.
Our positive results are not obtained using such a reduction. In order to prove the existence
of an NE in every TNG with clocks, we show that such games are potential games and we
also find a lower bound on the decrease in potential in a best response. Note that only
showing that TNGs with clocks are potential games does not suffice to prove existence of an
NE as there are infinitely many profiles. We then turn to study computational-complexity
problems and show that the best-response problem is PSPACE-complete, which matches the
complexity of cost optimal reachability in PTAs [15]. Finally, we address the question above;
namely, we find bounds on the minimal time at which the players reach their destinations in
an NE and an SO.

This work belongs to a line of works that transfer concepts and ideas between the areas
of formal verification and algorithmic game theory: logics for specifying multi-agent systems
[6, 19], studies of equilibria in games related to synthesis and repair problems [18, 17, 25, 4],
and of non-zero-sum games in formal verification [20, 16]. This line of work also includes
an extension of NGs to objectives that are richer than reachability [12], NGs in which the
players select their paths dynamically [11], and efficient reasoning about NGs with huge
networks [32, 10].

Additional extensions of TNGs that we plan to study are the following: (1) Richer
objectives, where the vertices of the TNG are labeled by letters from an alphabet, allowing
objectives that describe on-going behaviors [12]. For example, an objective may require each
visit to vertex labeled send to be preceded by a vertex labeled encode. (2) A dynamic choice
of paths, where strategies do not specify the full path but rather map prefixes of paths of all
players to the next move [11]. For example, when the network models a network of roads
and the players are drivers, it makes sense to allow drivers to observe the congestion in the
network when reaching a junction (vertex) before choosing the next road (edge) in their
path. (3) A global-cost mechanism, in which the load on a resource refers to the total time
for which it is used, rather than to particular time instants.

References
1 H. Ackermann, H. Röglin, and B. Vöcking. On the impact of combinatorial structure on

congestion games. J. ACM, 55(6):25:1–25:22, December 2008.
2 S. Agarwal, M. S. Kodialam, and T. V. Lakshman. Traffic engineering in software defined

networks. In Proc. 32nd IEEE International Conference on Computer Communications,
pages 2211–2219, 2013.

3 S. Aland, D. Dumrauf, M. Gairing, B. Monien, and F. Schoppmann. Exact price of anarchy
for polynomial congestion games. SIAM J. Comput., 40(5):1211–1233, 2011.

4 S. Almagor, G. Avni, and O. Kupferman. Repairing multi-player games. In Proc. 26th Int.
Conf. on Concurrency Theory, volume 42 of LIPIcs, pages 325–339, 2015.

5 R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):183–
236, 1994.

6 R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic. Journal of
the ACM, 49(5):672–713, 2002.



G. Avni, S. Guha, and O. Kupferman 37:15

7 R. Alur, S. La Torre, and G. J. Pappas. Optimal paths in weighted timed automata.
Theoretical Computer Science, 318(3):297–322, June 2004.

8 E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos, T. Wexler, and T. Roughgarden. The
price of stability for network design with fair cost allocation. In Proc. 45th IEEE Symp. on
Foundations of Computer Science, pages 295–304. IEEE Computer Society, 2004.

9 E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos, T. Wexler, and T. Roughgarden.
The price of stability for network design with fair cost allocation. SIAM J. Comput.,
38(4):1602–1623, 2008.

10 G. Avni, S. Guha, and O. Kupferman. An abstraction-refinement methodology for reasoning
about network games. In Proceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, 2017.

11 G. Avni, T.A. Henzinger, and O. Kupferman. Dynamic resource allocation games. In Proc.
9th International Symposium on Algorithmic Game Theory, volume 9928 of Lecture Notes
in Computer Science, pages 153–166, 2016.

12 G. Avni, O. Kupferman, and T. Tamir. Network-formation games with regular objectives.
Information and Computation, 251:165–178, 2016.

13 G. Behrmann, A. A. Fehnker, T. Hune, K.G. Larsen, P. Pettersson, J. Romijn, and F. W.
Vaandrager. Minimum-cost reachability for priced timed automata. pages 147–161, London,
UK, 2001. Springer-Verlag.

14 U. Bhaskar, L. Fleischer, and E. Anshelevich. A stackelberg strategy for routing flow over
time. In Proc. of SODA, pages 192–201, 2011.

15 P. Bouyer, T. Brihaye, V. Bruyère, and J-F. Raskin. On the optimal reachability problem
of weighted timed automata. Formal Methods in System Design, 31(2):135–175, October
2007.

16 T. Brihaye, V. Bruyère, J. De Pril, and H. Gimbert. On subgame perfection in quantitative
reachability games. Logical Methods in Computer Science, 9(1), 2012.

17 K. Chatterjee. Nash equilibrium for upward-closed objectives. In Proc. 15th Annual Conf.
of the European Association for Computer Science Logic, volume 4207 of Lecture Notes in
Computer Science, pages 271–286. Springer, 2006.

18 K. Chatterjee, T. A. Henzinger, and M. Jurdzinski. Games with secure equilibria. Theor-
etical Computer Science, 365(1-2):67–82, 2006.

19 K. Chatterjee, T. A. Henzinger, and N. Piterman. Strategy logic. In Proc. 18th Int. Conf.
on Concurrency Theory, pages 59–73, 2007.

20 K. Chatterjee, R. Majumdar, and M. Jurdzinski. On Nash equilibria in stochastic games. In
Proc. 13th Annual Conf. of the European Association for Computer Science Logic, volume
3210 of Lecture Notes in Computer Science, pages 26–40. Springer, 2004.

21 G. Christodoulou and E. Koutsoupias. On the price of anarchy and stability of correlated
equilibria of linear congestion games. In ESA, pages 59–70, 2005.

22 G. Christodoulou and E. Koutsoupias. The price of anarchy of finite congestion games. In
Proc. 37th ACM Symp. on Theory of Computing, pages 67–73, 2005.

23 E.A. Emerson, A.K. Mok, A.P. Sistla, and J. Srinivasan. Quantitative temporal reasoning.
In Proc. 2nd Int. Conf. on Computer Aided Verification, volume 531 of Lecture Notes in
Computer Science, pages 136–145. Springer, 1990.

24 A. Fabrikant, C. Papadimitriou, and K. Talwar. The complexity of pure nash equilibria.
In Proc. 36th ACM Symp. on Theory of Computing, pages 604–612, 2004.

25 D. Fisman, O. Kupferman, and Y. Lustig. Rational synthesis. In Proc. 16th Int. Conf. on
Tools and Algorithms for the Construction and Analysis of Systems, volume 6015 of Lecture
Notes in Computer Science, pages 190–204. Springer, 2010.

26 L.R. Ford and D.R. Fulkerson. Flows in networks. Princeton Univ. Press, Princeton, 1962.

MFCS 2017



37:16 Timed Network Games

27 T.A. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks? In Proc. 19th
Int. Colloq. on Automata, Languages, and Programming, volume 623 of Lecture Notes in
Computer Science, pages 545–558. Springer, 1992.

28 M. Hoefer, V. S. Mirrokni, H. Röglin, and S. Teng. Competitive routing over time. Theor.
Comput. Sci., 412(39):5420–5432, 2011. doi:10.1016/j.tcs.2011.05.055.

29 D. S. Johnson, C. H. Papadimtriou, and M. Yannakakis. How easy is local search? Journal
of Computer and Systems Science, 37(1):79–100, August 1988.

30 E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. Computer Science Review,
3(2):65–69, 2009.

31 E. Koutsoupias and K. Papakonstantinopoulou. Contention issues in congestion games. In
Proceedings of the 39th International Colloquium Conference on Automata, Languages, and
Programming - Volume Part II, ICALP’12, pages 623–635. Springer-Verlag, 2012.

32 O. Kupferman and T. Tamir. Hierarchical network formation games. In Proc. 23rd Int.
Conf. on Tools and Algorithms for the Construction and Analysis of Systems, Lecture Notes
in Computer Science. Springer, 2017.

33 B. P. Lathi and R. Green. Essentials of digital signal processing. Cambridge University
Press, 2014.

34 C. H. Papadimitriou. Algorithms, games, and the internet. In Proc. 33rd ACM Symp. on
Theory of Computing, pages 749–753, 2001.

35 M. Penn, M. Polukarov, and M. Tennenholtz. Random order congestion games. Mathem-
atics of Operations Research, 34(3):706–725, 2009.

36 K. Ronald and S. Martin. Nash equilibria and the price of anarchy for flows over time.
Theoretical Computer Science, 49(1):71–97, 2011.

37 R. W. Rosenthal. A class of games possessing pure-strategy Nash equilibria. International
Journal of Game Theory, 2:65–67, 1973.

38 T. Roughgarden and E. Tardos. How bad is selfish routing? Journal of the ACM, 49(2):236–
259, 2002.

39 A. A. Schäffer and M. Yannakakis. Simple local search problems that are hard to solve.
SIAM J. Comput., 20(1):56–87, 1991.

40 V. Syrgkanis. The complexity of equilibria in cost sharing games. In WINE, volume 6484
of Lecture Notes in Computer Science, pages 366–377. Springer, 2010.

41 W. S. Vickrey. Congestion theory and transport investment. The American Economic
Review, 59(2):251–260, 1969.

42 S. Yagar. Dynamic traffic assignment by individual path minimization and queuing. Trans-
portation Research, 5(3):179–196, 1971.

http://dx.doi.org/10.1016/j.tcs.2011.05.055


Efficient Identity Testing and Polynomial
Factorization in Nonassociative Free Rings
Vikraman Arvind1, Rajit Datta2, Partha Mukhopadhyay3, and
S. Raja4

1 Institute of Mathematical Sciences (HBNI), Chennai, India
arvind@imsc.res.in

2 Chennai Mathematical Institute, Chennai, India
rajit@cmi.ac.in

3 Chennai Mathematical Institute, Chennai, India
partham@cmi.ac.in

4 Chennai Mathematical Institute, Chennai, India
sraja@cmi.ac.in

Abstract
In this paper we study arithmetic computations in the nonassociative, and noncommutative free
polynomial ring F{x1, x2, . . . , xn}. Prior to this work, nonassociative arithmetic computation
was considered by Hrubes, Wigderson, and Yehudayoff [7], and they showed lower bounds and
proved completeness results. We consider Polynomial Identity Testing (PIT) and polynomial
factorization over F{x1, x2, . . . , xn} and show the following results.
1. Given an arithmetic circuit C of size s computing a polynomial f ∈ F{x1, x2, . . . , xn} of

degree d, we give a deterministic poly(n, s, d) algorithm to decide if f is identically zero
polynomial or not. Our result is obtained by a suitable adaptation of the PIT algorithm of
Raz-Shpilka[13] for noncommutative ABPs.

2. Given an arithmetic circuit C of size s computing a polynomial f ∈ F{x1, x2, . . . , xn} of
degree d, we give an efficient deterministic algorithm to compute circuits for the irreducible
factors of f in time poly(n, s, d) when F = Q. Over finite fields of characteristic p, our
algorithm runs in time poly(n, s, d, p).

1998 ACM Subject Classification F.2.1 Computations on Polynomials

Keywords and phrases Circuits, Nonassociative, Noncommutative, Polynomial Identity Testing,
Factorization

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.38

1 Introduction

Noncommutative computation, introduced in complexity theory by Hyafil [8] and Nisan [12],
is an important subfield of algebraic complexity theory. The main algebraic structure of
interest is the free noncommutative ring F〈X〉 over a field F, where X = {x1, x2, · · · , xn}
is a set of free noncommuting variables. A central problem is Polynomial Identity Testing
which may be stated as follows:

Let f ∈ F〈X〉 be a polynomial represented by a noncommutative arithmetic circuit
C. The circuit C can either be given by a black box (using which we can evaluate C on
matrices with entries from F or an extension field), or the circuit may be explicitly given.
The algorithmic problem is to check if the polynomial computed by C is identically zero. We
recall the formal definition of a noncommutative arithmetic circuit.

© Vikraman Arvind, Rajit Datta, Partha Mukhopadhyay, and S. Raja;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 38; pp. 38:1–38:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.38
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


38:2 Efficient Identity Testing and Polynomial Factorization in Nonassociative Free Rings

I Definition 1. An arithmetic circuit C over a field F and indeterminates X =
{x1, x2, · · · , xn} is a directed acyclic graph (DAG) with each node of indegree zero labeled
by a variable or a scalar constant from F: the indegree 0 nodes are the input nodes of
the circuit. Each internal node of the DAG is of indegree two and is labeled by either a
+ or a × (indicating that it is a plus gate or multiply gate, respectively). Furthermore,
the two inputs to each × gate are designated as left and right inputs which prescribes the
order of multiplication at that gate. A gate of C is designated as output. Each internal
gate computes a polynomial (by adding or multiplying its input polynomials), where the
polynomial computed at an input node is just its label. The polynomial computed by the
circuit is the polynomial computed at its output gate.

When the multiplication operation of the circuit in Definition 1 is noncommutative, it
is called a noncommutative arithmetic circuit and it computes a polynomial in the free
noncommutative ring F〈X〉. Since cancellation of terms is restricted by noncommutativity,
intuitively it appears noncommutative polynomial identity testing would be easier than
polynomial identity testing in the commutative case. This intuition is supported by fact
that there is a deterministic polynomial-time white-box PIT algorithm for noncommutative
ABP [13]. In the commutative setting a deterministic polynomial-time PIT for ABPs would
be a major breakthrough.1 However, there is little progress towards obtaining an efficient
deterministic PIT for general noncommutative arithmetic circuits. For example, the problem
is open even for noncommutative skew circuits.

If associativity is also dropped then it turns out that PIT becomes easy, as we show in
this work. More precisely, we consider the free noncommutative and nonassociative ring of
polynomials F{X}, X = {x1, x2, . . . , xn}, where a polynomial is an F-linear combination
of monomials, and each monomial comes with a bracketing order of multiplication. For
example, in the nonassociative ring F{X} the monomial (x1(x2x1)) is different from monomial
((x1x2)x1), although in the associative ring F〈X〉 they clearly coincide.

When the multiplication operation is both noncommutative and nonassociative, it is
called a nonassociative noncommutative circuit and it computes a polynomial in the free
nonassociative noncommutative ring F{X}. Previously, the nonassociative arithmetic model
of computation was considered by Hrubes, Wigderson, and Yehudayoff [7]. They showed
completeness and explicit lower bound results for this model. We show the following result
about PIT.

Let f(x1, x2, . . . , xn) ∈ F{X} be a degree d polynomial given by an arithmetic circuit
of size s. Then in deterministic poly(s, n, d) time we can test if f is an identically zero
polynomial in F{X}.

I Remark. We note that our algorithm in the above result does not depend on the choice of
the field F. A recent result of Lagarde et al. [11] shows an exponential lower bound, and
a deterministic polynomial-time PIT algorithm over R for noncommutative circuits where
all parse trees in the circuit are isomorphic. We also note that in [4] an exponential lower
bound is shown for set-multilinear arithmetic circuits with the additional semantic constraint
that each monomial has a unique parse tree in the circuit (but different monomials can have
different parse trees).

Next, we consider polynomial factorization in the ring F{X}. Polynomial factorization is
very well-studied in the commutative ring F[X]: Given an arithmetic circuit C computing a
multivariate polynomial f ∈ F[X] of degree d, the problem is to efficiently compute circuits

1 The situation is similar even in the lower bound case where Nisan proved that noncommutative
determinant or permanent polynomial would require exponential-size algebraic branching program [12].



V. Arvind, R. Datta, P. Mukhopadhyay, and S. Raja 38:3

for the irreducible factors of f . A celebrated result of Kaltofen [9] solves the problem in
randomized poly(n, s, d) time. Whether there is a polynomial-time deterministic algorithm is
an outstanding open problem. Recently, it is shown (for fields of small characteristic and
characteristic zero) that the complexity of deterministic polynomial factorization problem
and the PIT problem are polynomially equivalent [10]. A natural question is to determine
the complexity of polynomial factorization in the noncommutative ring F〈X〉. The free
noncommutative ring F〈X〉 is not even a unique factorization domain [6]. However, unique
factorization holds for homogeneous polynomials in F〈X〉, and it is shown in [2] that for
homogeneous polynomials given by noncommutative circuits, the unique factorization into
irreducible factors can be computed in randomized polynomial time (essentially, by reduction
to the noncommutative PIT problem).

In this paper, we note that the ring F{X} is a unique factorization domain, and given a
polynomial in F{X} by a circuit, we show that circuits for all its irreducible factors can be
computed in deterministic polynomial time.

Let f(x1, x2, . . . , xn) ∈ F{X} be a degree d polynomial given by an arithmetic circuit
of size s. Then if F = Q, in deterministic poly(s, n, d) time we can output the circuits
for the irreducible factors of f . If F is a finite field such that char(F) = p, we obtain
a deterministic poly(s, n, d, p) time algorithm for computing circuits for the irreducible
factors of f .

1.1 Outline of the proofs
Identity Testing Result. The main ideas for our algorithm are based on the white-box
Raz-Shpilka PIT algorithm for noncommutative ABPs [13]. As in the Raz-Shpilka algorithm
[13], if the circuit computes a nonzero polynomial f ∈ F{X}, then our algorithm output a
certificate monomial m such that coefficient of m in f is nonzero.

We first sketch the main steps of the Raz-Shpilka algorithm. The Raz-Shpilka algorithm
processes the input ABP (assumed homogeneous) layer by layer. Suppose layer i of the
ABP has w nodes. The algorithm maintains a spanning set Bi of at most w many linearly
independent w-dimensional vectors of monomial coefficients. More precisely, each vector
vm ∈ Bi is the vector of coefficients of monomial m computed at each of the w nodes in layer
i. Furthermore, the coefficient vector at layer i of any monomial is in the span of Bi. The
construction of Bi+1 from Bi can be done efficiently. Clearly the identity testing problem
can be solved by checking if there is a nonzero vector in Bd, where d is the total number of
layers.

Now we sketch our PIT algorithm for polynomials over F{X} given by circuits. Let f be
the input polynomial given by the circuit C.

We encode monomials in the free nonassociative noncommutative ring F{X} as monomials
in the free noncommutative ring F〈X, (, )〉, such that the encoding preserves the multiplication
structure of F{X} (Observation 2). For 1 ≤ j ≤ d, we can efficiently find from C a
homogeneous circuit Cj that computes the degree j homogeneous part of C. Thus, it suffices
to test if Cj ≡ 0 for each j. Hence, it suffices to consider the case when f ∈ F{X} is
homogeneous and C is a homogeneous circuit computing f .

For j ≤ d let Gj denote the set of degree j gates of C. The algorithm maintains a set Bj
of |Gj-dimensional linearly independent vectors of monomial coefficients such that any degree
j monomial’s coefficient vector is in the linear span of Bj . Clearly, |Bj | ≤ |Gj |. We compute
Bj+1 from the sets {Bi : 1 ≤ i ≤ j}. For each vector in Bj we also keep the corresponding
monomial. In the nonassociative model a degree d monomial m = (m1m2) is generated in a
unique way. To check if the coefficient vector of m is in the span of Bd it suffices to consider

MFCS 2017



38:4 Efficient Identity Testing and Polynomial Factorization in Nonassociative Free Rings

vectors in the spans of Bd1 and Bd2 , where d1 = deg(m1) and d2 = deg(m2). This is a crucial
difference from a general noncommutative circuit and using this property we can compute
Bj+1.

Polynomial Factorization in F{X}. For a polynomial f ∈ F{X}, let fj denote the homo-
geneous degree j part of f . For a monomial m, let cm(f) denote the coefficient of m in f .
We will use the PIT algorithm as subroutine for the factoring algorithm. Arvind et al. [2]
have shown that given a monomial m and a homogeneous noncommutative circuit C, in
deterministic polynomial time circuits for the formal left and right derivatives of C with
respect to m can be efficiently computed. This result is another ingredient in our algorithm.

We sketch the easy case, when the given polynomial f of degree d has no constant term.
Applying our PIT algorithm to the homogeneous circuit Cd (computing fd) we find a nonzero
monomial m = (m1 m2) of degree d in fd along with its coefficient cm(f). Notice that for
any nontrivial factorization f = gh, m1 is a nonzero monomial in g and m2 is a nonzero
monomial in h. Suppose |m1| = d1 and |m2| = d2. Then the left derivative of Cd with respect
to m1 gives cm1(g) hd2 and the right derivative of Cd with respect to m2 gives cm2(h) gd1 .
We now use the circuits for these derivatives and the nonassociative structure, to find circuits
for different homogeneous parts of g and h. The details, including the general case when f
has a nonzero constant term, is in Section 4.

1.2 Organization
In Section 2 we describe some useful properties of nonassociative and noncommutative
polynomials. In Section 3 we give the PIT algorithm for F{X}. In Section 4 we describe the
factorization algorithm for F{X}. Finally, we list some open problems in Section 5.

2 Preliminaries

For an arithmetic circuit C, a parse tree for a monomial m is a multiplicative sub-circuit of
C rooted at the output gate defined by the following process starting from the output gate:

At each + gate retain exactly one of its input gates.
At each × gate retain both its input gates.
Retain all inputs that are reached by this process.
The resulting subcircuit is multiplicative and computes a monomial m (with some
coefficient).

For arithmetic circuits C computing polynomials in the free nonassociative noncommut-
ative ring F{X}, the same definition for the parse tree of a monomial applies. As explained
in the introduction, in this case each parse tree (generating some monomial) comes with
a bracketed structure for the multiplication. It is convenient to consider a polynomial in
F{x1, . . . , xn} as an element in the noncommutative ring F〈x1, . . . , xn, (, )〉 where we intro-
duce two auxiliary variables ( and ) (for left and right bracketing) to encode the parse tree
structure of any monomial. We illustrate the encoding by the following example.

Consider the monomial (which is essentially a binary tree with leaves labeled by variables)
in the nonassociative ring F{x, y} shown in Figure 1a. Its encoding as a bracketed string in
the free noncommutative ring F〈x, y, (, )〉 is (( x y ) y ) and its parse tree shown in Figure 1b.

Consider an arithmetic circuit C computing a polynomial f ∈ F{X}. The circuit C
can be efficiently transformed to a circuit C̃ that computes the corresponding polynomial
f̃ ∈ F〈X, (, )〉 by simply introducing the bracketing structure for each multiplication gate



V. Arvind, R. Datta, P. Mukhopadhyay, and S. Raja 38:5

×

×

x y

y

(a) A nonassociative and noncommutative
monomial xyy.

×

×

( ×

×

( x

×

y )

×

y )

(b) Corresponding monomial ((xy) y) ∈ F〈X〉.

Figure 1 Nonassociative & noncommutative monomial and its corresponding noncommutative
bracketed monomial.

+

×

f1 f2

×

g1 g2

×

h1 h2

(a) C computing a nonassociative,
noncommutative polynomial.

+

×

×

( f1

×

f2 )

×

×

( g1

×

g2 )

×

×

( h1

×

h2 )

(b) C̃ that computes the corresponding noncommutative
polynomial.

Figure 2 Nonassociative circuit and its corresponding noncommutative bracketed circuit.

of C in a bottom-up manner as indicated in the following example figures. Consider the
circuits described in Figures 2a and 2b where fi, gi, hi’s are polynomials computed by
subcircuits. Clearly the bracket variables preserve the parse tree structure. The following
fact is immediate.

IObservation 2. A nonassociative noncommutative circuit C computes a nonzero polynomial
f ∈ F{X} if and only if the corresponding noncommutative circuit C̃ computes a nonzero
polynomial f̃ ∈ F〈X, (, )〉.

We recall that the free noncommutative ring F〈X〉 is not a unique factorization domain
(UFD) [6] as shown by the following standard example : xyx+ x = x(yx+ 1) = (xy + 1)x.
In contrast, the nonassociative free ring F{X} is a UFD.

I Proposition 3. Over any field F, the ring F{X} is a unique factorization domain. More
precisely, any polynomial f ∈ F{X} can be expressed a product f = g1g2 · · · gr of irreducible
polynomials gi ∈ F{X}. The factorization is unique upto constant factors and reordering.

I Remark. Usually, even the ordering of the irreducible factors in the factorization is unique.

MFCS 2017



38:6 Efficient Identity Testing and Polynomial Factorization in Nonassociative Free Rings

Exceptions arise because of the equality (g + α)(g + β) = (g + β)(g + α) for any polynomial
g ∈ F{X} and α, β ∈ F.

We shall indirectly see a proof of this proposition in Section 4 where we describe the
algorithm for computing all irreducible factors.

Given a noncommutative circuit C computing a homogeneous polynomial in F〈X〉 and
a monomial m over X, one can talk of the left and right derivatives of C w.r.t m [2]. Let
f =

∑
m′ cm′(f)m′ for some f ∈ F〈X〉 and A be the subset of monomials m′ of f that have

m as prefix. Then the left derivative of f w.r.t. m is

∂`f

∂m
=

∑
m′∈A

cm′(f)m′′,

where m′ = m ·m′′ for m′ ∈ A. Similarly we can define the right derivative ∂rf
∂m . As shown

in [2], if f is given by a circuit C then in deterministic polynomial time we can compute
circuits for ∂`f

∂m and ∂rf
∂m . We briefly discuss this in the following lemma.

I Lemma 4. [2] Given a noncommutative circuit C of size s computing a homogeneous
polynomial f of degree d in F〈X〉 and monomial m, there is a deterministic poly(n, d, s) time
algorithm that computes circuits Cm,` and Cm,r for the left and right derivatives ∂`C

∂m and
∂rC
∂m , respectively.

Proof. We explain only the left partial derivative case. Let m be a degree d′ monomial and
f ∈ F〈X〉 be a homogeneous degree d polynomial f computed by circuit C. In [2],a small
substitution deterministic finite automaton A with d′+2 states is constructed that recognizes
all length d strings with prefix m and substitutes 1 for prefix m. The transition matrices
of this automaton can be represented by (d′ + 2)× (d′ + 2) matrices. From the evaluation
of circuit C on these transition matrices will recover the circuit for ∂`C

∂m in the (1, d′ + 1)th
entry of the output matrix. J

The left and right partial derivatives of inhomogeneous polynomials are similarly defined.
The same matrix substitution works for non-homogeneous polynomials as well [2]. As
discussed above, given a nonassociative arithmetic circuit C computing a polynomial f ∈
F{X}, we can transform C into a noncommutative circuit C̃ that computes a polynomial
f̃ ∈ F〈X, (, )〉. Suppose we want to compute the left partial derivative of f w.r.t. a monomial
m ∈ F{X}. Using the tree structure of m we transform it into a monomial m̃ ∈ F〈X, (, )〉
and then we can apply Lemma 4 to C̃ and m̃ to compute the required left partial derivative.
We can similarly compute the right partial derivative. We use this in Section 4.

We also note the following simple fact that the homogeneous parts of a polynomial
f ∈ F{X} given by a circuit C can be computed efficiently. We can apply the above
transformation to obtain circuit C̃ and use a standard lemma (see e.g., [14]) to compute the
homogeneous parts of C̃.

I Lemma 5. Given a noncommutative circuit C of size s computing a noncommutative
polynomial f of degree d in F〈X, (, )〉, one can compute homogeneous circuits Cj (where each
gate computes a homogeneous polynomial) for jth homogeneous part fj of f , where 0 ≤ j ≤ d,
deterministically in time poly(n, d, s).



V. Arvind, R. Datta, P. Mukhopadhyay, and S. Raja 38:7

3 Identity Testing in F{X}

In this section we describe our identity testing algorithm.

I Theorem 6. Let f(x1, x2, . . . , xn) ∈ F{X} be a degree d polynomial given by an arithmetic
circuit of size s. Then in deterministic poly(s, n, d) time we can test if f is an identically
zero polynomial in F{X}.

Proof. By Lemma 5 we can assume that the input is a homogeneous nonassociative circuit
C computing some homogeneous degree d polynomial in F{X} (i.e. every gate in C computes
a homogeneous polynomial). Also, all the × gates in C have fanin 2 and + gates have
unbounded fanin. We can assume the output gate is a + gate. We can also assume w.l.o.g.
that the + and × gates alternate in each input gate to output gate path in the circuit
(otherwise we introduce sum gates with fan-in 1).

The jth-layer of circuit C to be the set of all + gates in computing degree j homogeneous
polynomials. Let s+ be the total number of + gates in C. To each monomial m we can
associate a vector vm ∈ Fs+ of coefficients, where vm is indexed by the + gates in C, and
vm[g] is the coefficient of monomial m in the polynomial computed at the + gate g. We can
also write

vm[g] = cm(pg),

where pg is the polynomial computed at the sum gate g.
For the jth layer of + gates, we will maintain a maximal linearly independent set Bj

of vectors vm of monomials. These vectors correspond to degree j monomials. Although
vm ∈ Fs+ , notice that vm[g] = 0 at all + gates that do not compute a degree j polynomial.
Thus, |Bג| is bounded by the number of + gates in the jth layer. Hence, |Bג| ≤ s.

The sets Bj are computed inductively for increasing values of j. For the base case,
the set B1 can be easily constructed by direct computation. Inductively, suppose the sets
Bi : 1 ≤ i ≤ j − 1 are already constructed. We describe the construction of Bj . Computing
Bd and checking if there is a nonzero vector in it yields the identity testing algorithm.

We now describe the construction for the jth layer assuming we have basis Bj′ for every
j′ < j. Consider a × gate with its children computing homogeneous polynomials of degree d1
and d2 respectively. Notice that j = d1 + d2 and 0 < d1, d2 < j. Consider the monomial2 set

M = {m1m2 | vm1 ∈ Bd1 and vm2 ∈ Bd2}.

We construct vectors {vm | m ∈M} as follows.

vm1m2 [g] =
∑

(gd1 ,gd2 )

vm1 [gd1 ]vm2 [gd2 ],

where g is a + gate in the jth layer, gd1 is a + gate in the dth1 layer, gd2 is a + gate in the
dth2 layer, and there is a × gate which is input to g and computes the product of gd1 and gd2 .

Let Bd1,d2 denote a maximal linearly independent subset of {vm | m ∈M}. Then we let
Bd be a maximal linearly independent subset of⋃

d1+d2=d
Bd1,d2 .

2 We note that the nonassociative monomial m1m2 is a binary tree with the root having two children: the
left child is the root of the binary tree for m1 and the right child is the root of the binary tree for m2.

MFCS 2017



38:8 Efficient Identity Testing and Polynomial Factorization in Nonassociative Free Rings

I Claim 7. For every monomial m of degree j, vm is in the span of Bj.

Proof of Claim. Let m = m1m2 and the degree of m1 is d1 and the degree of m2 is d2
3.

By Induction Hypothesis vectors vm1 and vm2 are in the span of Bd1 and Bd2 respectively.
Hence, we can write

vm1 =
D1∑
i=1

αivmi
vmi
∈ Bd1 and vm2 =

D2∑
j=1

βjvm′j vm′j ∈ Bd2 ,

where |Bdj
| = Dj . Now, for a gate g in the jth layer, By Induction Hypothesis and by

construction we have

vm[g] =
∑

(gd1 ,gd2 )

vm1 [gd1 ]vm2 [gd2 ] =
∑

gd1 ,gd2

(
D1∑
i=1

αivmi [gd1 ])(
D2∑
j=1

βjvm′j [gd2 ])

=
D1∑
i=1

D2∑
j=1

αiβj
∑

gd1 ,gd2

vmi
[gd1 ]vm′j [gd2 ] =

D1∑
i=1

D2∑
j=1

αiβjvmim′j [g].

Thus vm is in the span of Bd1,d2 and hence in the span of Bj . This proves the claim.
The PIT algorithm only has to check if Bd has a nonzero vector. This proves the claim. J

Suppose the input nonassociative circuit C computing some degree d polynomial f ∈
F{X} is inhomogeneous. Then, using Lemma 5 we can first compute in polynomial time
homogeneous circuits Cj : 0 ≤ j ≤ d, where Cj computes the degree-j homogeneous part
fj . Then we run the above algorithm on each Cj to check whether f is identically zero. This
completes the proof of the theorem. J

4 Polynomial Factorization in F{X}

In this section we describe our polynomial-time white-box factorization algorithm for poly-
nomials in F{X}. More precisely, given as input a nonassociative circuit C computing
a polynomial f ∈ F{X}, the algorithm outputs circuits for all irreducible factors of f .
The algorithm uses as subroutine the PIT algorithm for polynomial in F{X} described in
Section 3.

To facilitate exposition, we completely describe a deterministic polynomial-time algorithm
that computes a nontrivial factorization f = g · h of f , by giving circuits for g and h, unless
f is irreducible. We will briefly outline how this extends to finding all irreducible factors
efficiently.

We start with a special case.

I Lemma 8. Let f ∈ F{X} be a degree d polynomial given by a circuit C of size s such that
the constant term in f is zero. Furthermore, suppose there is a factorization f = g · h such
that the constant terms in g and h are also zero. Then in deterministic poly(n, d, s) time we
can compute the circuits for polynomials g and h.

Proof. We first consider the even more restricted case when C computes a homogeneous
degree d polynomial f ∈ F{X}. For the purpose of computing partial derivatives, it is
convenient to transform C into the noncommutative circuit C̃, as explained in Section 2,

3 Here a crucial point is that for a nonassociative monomial of degree d, such a choice for d1 and d2 is
unique. This is a place where a general noncommutative circuit behaves very differently.



V. Arvind, R. Datta, P. Mukhopadhyay, and S. Raja 38:9

+

×

i d2

×

k l

×

i d2

Figure 3 Circuit Ci+d2 for fi+d2 .

which computes the fully bracketed polynomial f̃ ∈ F〈X, (, )〉. Using Theorem 6 we compute
a monomial m = (m1m2) where m1 and m2 are also fully bracketed. We can transform C̃ to
drop the outermost opening and closing brackets. Now, using Lemma 4, we compute the
resulting circuits left partial derivative w.r.t. m1 and right partial derivative w.r.t. m2. Call
these f̃1 and f̃2. We can check if f̃ = (f̃1f̃2): we first recover the corresponding nonassociative
circuits for f1 and f2 from the circuits for f̃1 and f̃2. Then we can apply the PIT algorithm
of Theorem 6 to check if f = f1f2. Clearly, f is irreducible iff f 6= f1f2. Continuing thus, we
can fully factorize f into its irreducible factors.

Now we prove the actual statement. Applying Lemma 5, we compute homogeneous
circuits Cj : 1 ≤ j ≤ d for the homogeneous degree j component fj of the polynomial f .
Clearly fd = gd1hd2 . We run the PIT algorithm of Theorem 6 on the circuit Cd to extract a
monomial m of degree d along with its coefficient cm(fd) in fd. Notice that the monomial
m is of the form m = (m1 m2). If g and h are nontrivial factors of f then m1 and m2 are
monomials in g and h respectively. Compute the circuits for the left and right derivatives
with respect to m1 and m2.

∂`Cd
∂m1

= cm1(gd1) · hd2 and ∂rCd
∂m2

= cm2(hd2) · gd1 .

In general the (i+ d2)th : i ≤ d− d2 homogeneous part of f can be expressed as

fi+d2 = gihd2 +
i+d2−1∑
t=i+1

gthd2 − (t−i).

We depict the circuit Ci+d2 for the polynomial fi+d2 in Figure 3. The top gate of the circuit
is a + gate. From Ci+d2 , we construct another circuit C ′i+d2

keeping only those × gates as
children whose left degree is i and right degree is d2. The resulting circuit is shown in Figure
4. The circuit C ′i+d2

must compute gihd2 . By taking the right partial of C ′i+d2
with respect

to m2, we obtain the circuit for cm2(hd2) gi.
We repeat the above construction for each i ∈ [d1] to obtain circuits for cm2(hd2)gi for

1 ≤ i ≤ d1. Similarly we can get the circuits for cm1(gd1)hi for each i ∈ [d2] using the left
derivatives with respect to the monomial m1.

By adding the above circuits we get the circuits Cg and Ch for cm2(hd2)g and cm1(gd1)h
respectively. We set Cg = cm2 (hd2 )

cm(f) g so that CgCh = f . Using PIT algorithm one can easily
check whether g and h are nontrivial factors. In that case we further recurse on g and h to
obtain their irreducible factors. J

Now we consider the general case when f and its factors g, h have arbitrary constant terms.
In the subsequent proofs we assume, for convenience, that deg(g) ≥ deg(h). The case when
deg(g) < deg(h) can be handled analogously. We first consider the case deg(g) = deg(h).

MFCS 2017



38:10 Efficient Identity Testing and Polynomial Factorization in Nonassociative Free Rings

+

×

i d2

×

i d2

Figure 4 C′
i+d2 keeps only degree (i, d2) type × gates.

I Lemma 9. For a degree d polynomial f ∈ F{X} given by a circuit C suppose f =
(g + α)(h + β), where g, h ∈ F{X} such that deg(g) = deg(h), and α, β ∈ F. Suppose
m = (m1m2) is a nonzero degree d monomial. Then, in deterministic polynomial time we
can compute circuits for the polynomials cm1(g) · h and cm2(h) · g, where cm1(g) and cm2(h)
are coefficient of m1 and m2 in g and h respectively.

Proof. We can write f = (g + α)(h + β) = g · h + β · g + α · h + α · β. Applying the PIT
algorithm of Theorem 6 on f , we compute a maximum degree monomial m = (m1m2).
Computing the left derivative of circuit C w.r.t. monomial m1, after removing the outermost
brackets, we obtain a circuit computing cm1(g)h+βcm1(g)+αcm1(h). Dropping the constant
term, we obtain a circuit computing polynomial cm1(g)h. Similarly, computing the right
derivative w.r.t m2 yields a circuit for cm2(h)g+ βcm2(g) +αcm2(h). Removing the constant
term we get a circuit for cm2(h)g. J

When deg(g) > deg(h) we can recover h+ β entirely (upto a scalar factor) and we need
to obtain the homogeneous parts of g separately.

I Lemma 10. Let f = (g + α) · (h + β) be a polynomial of degree d in F{X} given by a
circuit C. Suppose deg(g) > deg(h). Then, in deterministic polynomial time we can compute
the circuit C ′ for cm1(g)(h+ β).

Proof. Again, applying the PIT algorithm to f we obtain a nonzero degree d monomial
m = (m1 m2) of f . If f = (g+α)(h+β) then f = g ·h+αh+βg+αβ. As deg(g) > deg(h),
the left partial derivative of C with respect to m1 yields a circuit C ′ for cm1(g) (h+ β). J

Extracting the homogeneous components from the circuit C ′ given by Lemma 10, yields
circuits for {cm1(g)hi : i ∈ [d2]}. We also get the constant term cm1(g)β. Now we obtain
the homogeneous components of g as follows.

I Lemma 11. Suppose circuit C computes f , where f = (g+α) (h+β) of degree d, α, β ∈ F,
deg(g) = d1 and deg(h) = d2 such that d1 > d2.

Let m be a nonzero degree d monomial of f such that m = (m1 m2). Then circuits for
{cm2(h)gi : i ∈ [d1 − d2 + 1, d1]} can be computed in deterministic polynomial time.
The (d2 + i)th homogeneous part of f is given by fd2+i =

∑d2−1
j=0 gd2+i−j hj + gi hd2 for

1 ≤ i ≤ d1 − d2. From the circuit Cd2+i of fd2+i, we can efficiently compute circuits for
{cm2(hd2)gi : 1 ≤ i ≤ d1 − d2}.

Proof. For the first part, fix any i ∈ [d1−d2 +1, d1], and compute the homogeneous (i+d2)th
part fi+d2 of f by a circuit Ci+d2 . Similar to Lemma 8, we focus on the sub-circuits of Ci+d2

formed by × gate of the degree type (i, d2). Since i is at least d1 − d2 + 1, such gates can



V. Arvind, R. Datta, P. Mukhopadhyay, and S. Raja 38:11

compute the multiplication of a degree i polynomial with a degree d2 polynomial. Then, by
taking the right partial derivative with respect to m2 we recover the circuits for cm2(hd2) gi
for any i ∈ [d1 − d2 + 1, d1].

Next, the goal is to recover the circuits for gi (upto a scalar multiple), where 1 ≤ i ≤ d1−d2,
and also recover the constant terms α and β. When i ≤ d1− d2 a product gate of type (i, d2)
can entirely come from g which requires a different handling.

We explain only the case when i = d1 − d2 (the others are similar). For i = d1 − d2,
we have fd1 = βgd1 +

∑d2−1
j=1 gd1−j hj + gd1−d2 hd2 . By Lemma 10, we can compute a

circuit C ′ for cm1(g)(h+ β). Extracting the constant term yields cm1(g)β. From Lemma 11
we have a circuit C ′′ for cm2(h)gd1 . Multiplying these circuits, we obtain a circuit C∗ for
cm2(h)cm1(g)βgd1 . Since cm2(h)cm1(g) = cm(f), dividing C∗ by cm(f) yields a circuit for
βgd1 . Note that, by the first part of this lemma, we already have circuits for every term
gd1−j appearing in the above sum. Subtracting βgd1 +

∑d2−1
j=1 gd1−j hj from the circuit Cd1

for fd1 , yields a circuit for polynomial gd1−d2hd2 . Computing the right derivative of the
resulting circuit w.r.t m2 (Lemma 4) yields a circuit for cm2(h)gd1−d2 .

For general i ≤ d1−d2, when we need to compute gi, again we will have already computed
circuits for all gj , j > i. A suitable right derivative computation will yield a circuit for
cm2(h)gi. J

Lemmas 8, 9, 10, and 11 yield an efficient algorithm for computing circuits for the
two factors cm2(h)(

∑d1
i=1 gi) and cm1(g)(

∑d2
i=1 hi) when deg(g) ≥ deg(h). The case when

deg(g) < deg(h) is similarly handled using left partial derivatives in the above lemmas.
Now we explain how to compute the constant terms of the individual factors. We discuss

the case when α 6= 0. The other case is similar.
First we recall that given a monomial m and a noncommutative circuit C, the coefficient

of m in C can be computed in deterministic polynomial time [3]. We know that f0 = α ·β. We
compute the coefficient of the monomial m1 in the circuits for polynomials cm2(h)cm1(g)gh,
cm2(h)g, and cm1(g)h. Let these coefficients be a, b and c, respectively. Moreover, we know
that cm2(h)cm1(g) is the coefficient of monomial m = (m1 m2) in f . Let the coefficient of
m1 in f be γ. Let γ1 = cm1(g) and γ2 = cm2(h) and δ = cm1(g)cm2(h).

Now equating the coefficient of m1 from both side of the equation f = (g + α)(h + β)
and substituting β = f0

α , we get

γ = a

γ1γ2
+ αc

γ1
+ f0b

αγ2
= a

δ
+ αc

γ1
+ f0b

αγ2
.

Letting ξ = αγ2, this gives a quadratic equation in the unknown ξ.

cξ2 + (a− γδ)ξ + f0bδ = 0.

By solving the above quadratic equation we get two solutions A1 and A2 for ξ = αγ2.
Notice that βγ1 = δf0

ξ . As we have circuits for cm2(h)g = γ2g and for cm1(g)h = γ1h, we
obtain circuits for γ2(g + α) and γ1(h+ β) (two solutions, corresponding to A1 and A2). To
pick the right solution, we can run the PIT algorithm to check if γ1γ2f equals the product of
these two circuits that purportedly compute γ2(g + α) and γ1(h+ β).

Over Q we can just solve the quadratic equation in deterministic polynomial time
using standard method. If F = Fq for q = pr, we can factorize the quadratic equation in
deterministic time poly(p, r) [15]. Using randomness, one can solve this problem in time
poly(log p, r) using Berlekamp’s factoring algorithm [5]. This also completes the proof of the
following.

MFCS 2017



38:12 Efficient Identity Testing and Polynomial Factorization in Nonassociative Free Rings

I Theorem 12. Let f ∈ F{X} be a degree d polynomial given by a circuit of size s. If
F = Q, in deterministic poly(s, n, d) time we can compute a nontrivial factorization of f or
reports f is irreducible. If F is a finite field such that char(F) = p, we obtain a deterministic
poly(s, n, d, p) time algorithm that computes a nontrivial factorization of f or reports f is
irreducible.

Finally, we state the main result of this paper.

I Theorem 13. Let f ∈ F{X} be a degree d polynomial given by a circuit of size s. Then if
F = Q, in deterministic poly(s, n, d) time we can output the circuits for the irreducible factors
of f . If F is a finite field such that char(F) = p, we obtain a deterministic poly(s, n, d, p)
time algorithm for computing circuits for the irreducible factors of f .

I Remark. We could apply Theorem 12 repeatedly to find all irreducible factors of the
input f ∈ F{X}. However, the problem with that approach is that the circuits for g and
h we computed in the proof of Theorem 12, where f = gh is the factorization, is larger
than the input circuit C for f by a polynomial factor. Thus, repeated application would
incur a superpolynomial blow-up in circuit size. We can avoid that by computing the
required partial derivative of g as a suitable partial derivative of the circuit C directly.
This will keep the circuits polynomially bounded. This idea is from [2] where it is used for
homogeneous noncommutative polynomial factorization. Combined with Theorem 12 this
gives the polynomial-time algorithm of Theorem 13.

5 Conclusion

Motivated by the nonassociative circuit lower bound result shown in [7], we study PIT and
polynomial factorization in the free nonassociative noncommutative ring F{X} and obtain
efficient white-box algorithms for the problems.

Hrubes, Wigderson, and Yehudayoff [7] have also shown exponential circuit-size lower
bounds for nonassociative, commutative circuits. It would be interesting to obtain an
efficient polynomial identity testing algorithm for that circuit model too. Even a randomized
polynomial-time algorithm is not known.

Obtaining an efficient black-box PIT in the ring F{X} is also an interesting problem. Of
course, for such an algorithm the black-box can be evaluated on a suitable nonassociative
algebra. To the best of our knowledge, there seems to be no algorithmically useful analogue
of the Amitsur-Levitzki theorem [1].

References
1 Avraham Shimshon Amitsur and Jacob Levitzki. Minimal identities for algebras. Proceed-

ings of the American Mathematical Society, 1(4):449–463, 1950.
2 Vikraman Arvind, Pushkar S. Joglekar, and Gaurav Rattan. On the complexity of non-

commutative polynomial factorization. In Mathematical Foundations of Computer Science
2015 - 40th International Symposium, MFCS 2015, Milan, Italy, August 24-28, 2015, Pro-
ceedings, Part II, pages 38–49, 2015. doi:10.1007/978-3-662-48054-0_4.

3 Vikraman Arvind, Partha Mukhopadhyay, and Srikanth Srinivasan. New results on non-
commutative and commutative polynomial identity testing. Computational Complexity,
19(4):521–558, 2010. doi:10.1007/s00037-010-0299-8.

4 Vikraman Arvind and S. Raja. Some lower bound results for set-multilinear arithmetic
computations. Chicago J. Theor. Comput. Sci., 2016 (6), 2016.

http://dx.doi.org/10.1007/978-3-662-48054-0_4
http://dx.doi.org/10.1007/s00037-010-0299-8


V. Arvind, R. Datta, P. Mukhopadhyay, and S. Raja 38:13

5 E. R. Berlekamp. Factoring polynomials over large finite fields*. In Proceedings of the
Second ACM Symposium on Symbolic and Algebraic Manipulation, SYMSAC’71, pages
223–, New York, NY, USA, 1971. ACM. doi:10.1145/800204.806290.

6 P.M. Cohn. Noncommutative unique factorization domains. Transactions of the American
Math. Society, 109(2):313–331, 1963.

7 Pavel Hrubes, Avi Wigderson, and Amir Yehudayoff. Relationless completeness and sep-
arations. In Proceedings of the 25th Annual IEEE Conference on Computational Com-
plexity, CCC 2010, Cambridge, Massachusetts, June 9-12, 2010, pages 280–290, 2010.
doi:10.1109/CCC.2010.34.

8 Laurent Hyafil. The power of commutativity. In 18th Annual Symposium on Foundations
of Computer Science (FOCS), Providence, Rhode Island, USA, 31 October - 1 November
1977, pages 171–174, 1977. doi:10.1109/SFCS.1977.31.

9 Erich Kaltofen. Factorization of polynomials given by straight-line programs. Randomness
in Computation, vol. 5 of Advances in Computing Research:375–412, 1989.

10 Swastik Kopparty, Shubhangi Saraf, and Amir Shpilka. Equivalence of polynomial identity
testing and polynomial factorization. Computational Complexity, 24(2):295–331, 2015. doi:
10.1007/s00037-015-0102-y.

11 Guillaume Lagarde, Guillaume Malod, and Sylvain Perifel. Non-commutative computa-
tions: lower bounds and polynomial identity testing. Electronic Colloquium on Computa-
tional Complexity (ECCC), 23:94, 2016. URL: http://eccc.hpi-web.de/report/2016/
094.

12 Noam Nisan. Lower bounds for non-commutative computation (extended abstract). In
STOC, pages 410–418, 1991. doi:10.1145/103418.103462.

13 Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non-commutative
models. Computational Complexity, 14(1):1–19, 2005. doi:10.1007/s00037-005-0188-8.

14 Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and
open questions. Foundations and Trends in Theoretical Computer Science, 5(3-4):207–388,
2010. doi:10.1561/0400000039.

15 Joachim von zur Gathen and Victor Shoup. Computing frobenius maps and factoring
polynomials. Computational Complexity, 2:187–224, 1992.

MFCS 2017

http://dx.doi.org/10.1145/800204.806290
http://dx.doi.org/10.1109/CCC.2010.34
http://dx.doi.org/10.1109/SFCS.1977.31
http://dx.doi.org/10.1007/s00037-015-0102-y
http://dx.doi.org/10.1007/s00037-015-0102-y
http://eccc.hpi-web.de/report/2016/094
http://eccc.hpi-web.de/report/2016/094
http://dx.doi.org/10.1145/103418.103462
http://dx.doi.org/10.1007/s00037-005-0188-8
http://dx.doi.org/10.1561/0400000039




Faster Algorithms for Mean-Payoff Parity Games∗†

Krishnendu Chatterjee‡1, Monika Henzinger§2, and
Alexander Svozil¶3

1 IST Austria, Klosterneuburg, Austria
krish.chat@ist.ac.at

2 Faculty of Computer Science, University of Vienna, Austria
monika.henzinger@univie.ac.at

3 Faculty of Computer Science, University of Vienna, Austria
alexander.svozil@univie.ac.at

Abstract
Graph games provide the foundation for modeling and synthesis of reactive processes. Such
games are played over graphs where the vertices are controlled by two adversarial players. We
consider graph games where the objective of the first player is the conjunction of a qualitative
objective (specified as a parity condition) and a quantitative objective (specified as a mean-
payoff condition). There are two variants of the problem, namely, the threshold problem where
the quantitative goal is to ensure that the mean-payoff value is above a threshold, and the value
problem where the quantitative goal is to ensure the optimal mean-payoff value; in both cases
ensuring the qualitative parity objective. The previous best-known algorithms for game graphs
with n vertices, m edges, parity objectives with d priorities, and maximal absolute reward value
W for mean-payoff objectives, are as follows: O(nd+1 · m ·W ) for the threshold problem, and
O(nd+2 ·m ·W ) for the value problem. Our main contributions are faster algorithms, and the
running times of our algorithms are as follows: O(nd−1 ·m ·W ) for the threshold problem, and
O(nd · m ·W · log(n ·W )) for the value problem. For mean-payoff parity objectives with two
priorities, our algorithms match the best-known bounds of the algorithms for mean-payoff games
(without conjunction with parity objectives). Our results are relevant in synthesis of reactive
systems with both functional requirement (given as a qualitative objective) and performance
requirement (given as a quantitative objective).

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems – Computa-
tions on discrete structures, F.4.1 Mathematical logic – Temporal logic

Keywords and phrases graph games, mean-payoff parity, büchi

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.39

1 Introduction

Graph games. A graph game is played on a finite directed graph with two players, namely,
player 1 and player 2 (the adversary of player 1). The vertex set is partitioned into player-1

∗ Full version available at https://arxiv.org/abs/1706.06139.
† The authors are partially supported by the Vienna Science and Technology Fund (WWTF) grant

ICT15-003.
‡ K. C. is supported by the Austrian Science Fund (FWF) NFN Grant No S11407-N23 (RiSE/SHiNE)

and an ERC Start grant (279307: Graph Games).
§ The research leading to these results has received funding from the European Research Council under
the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement no.
340506.

¶ The research leading to these results has received funding from the European Research Council under
the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement no.
340506.

© Krishnendu Chatterjee, Monika Henzinger, and Alexander Svozil;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 39; pp. 39:1–39:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.39
https://arxiv.org/abs/1706.06139
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


39:2 Faster Algorithms for Mean-Payoff Parity Games

and player-2 vertices. At player-1 vertices, player 1 chooses a successor vertex; and at player-2
vertices, player 2 does likewise. The result of playing the game forever is an infinite path
through the graph. There has been a long history of using graph games for modeling and
synthesizing reactive processes [6, 17, 18]: a reactive system and its environment represent
the two players, whose states and transitions are specified by the vertices and edges of a
game graph. Consequently, graph games provide the theoretical foundation for modeling
and synthesizing reactive processes.

Qualitative and quantitative objectives. For reactive systems, the objective is given as a set
of desired paths (such as ω-regular specifications), or as a quantitative optimization objective
with a payoff function on the paths. The class of ω-regular specifications provide a robust
framework to express all commonly used specifications for reactive systems in verification
and synthesis. Parity objectives are a canonical way to express ω-regular objectives [19],
where an integer priority is assigned to every vertex, and a path satisfies the parity objective
for player 1 if the minimum priority visited infinitely often is even. One of the classical and
most well-studied quantitative objectives is the mean-payoff objective, where a reward is
associated with every edge, and the payoff of a path is the long-run average of the rewards of
the path.

Mean-payoff parity objectives. Traditionally the verification and the synthesis problems
were considered with qualitative objectives. However, recently combinations of qualitative
and quantitative objectives have received a lot of attention. Qualitative objectives such as
ω-regular objectives specify the functional requirements of reactive systems, whereas the
quantitative objectives specify resource consumption requirements (such as for embedded
systems or power-limited systems). Combining quantitative and qualitative objectives is
crucial in the design of reactive systems with both resource constraints and functional
requirements [8, 11, 3, 1]. For example, mean-payoff parity objectives are relevant in
synthesis of optimal performance lock-synchronization for programs [7], where one player is
the synchronizer, the opponent is the environment; the performance criteria is specified as
mean-payoff objective; and the functional requirement (e.g., data-race freedom or liveness)
as an ω-regular objective. Mean-payoff parity objectives have been used in several other
applications, e.g., define permissivity for parity games [4] and robustness in synthesis [2].

Threshold and value problems. For graph games with mean-payoff and parity objectives
there are two variants of the problem. First, the threshold problem, where a threshold ν
is given for the mean-payoff objective, and player 1 must ensure the parity objective and
that the mean-payoff is at least ν. Second, the value problem, where player 1 maximizes the
mean-payoff value while ensuring the parity objective. In the sequel of this section, we will
refer to graph games with mean-payoff and parity objectives as mean-payoff parity games.

Previous results. Mean-payoff parity games were first studied in [11], and algorithms for the
value problem were presented. It was shown in [9] that the decision problem for mean-payoff
parity games lies in NP ∩ coNP (similar to the status of mean-payoff games and parity games).
For game graphs with n vertices, m edges, parity objectives with d priorities, and maximal
absolute reward value W for the mean-payoff objective, the previous known algorithmic
bounds for mean-payoff parity games are as follows: For the threshold problem the results
of [9] give an O(nd+4 ·m · d ·W )-time algorithm. This algorithmic bound was improved in [4]
where an O(nd+2 ·m ·W )-time algorithm was presented for the value problem. The result
of [4] does not explicitly present any other better bound for the threshold problem. However,
the recursive algorithm of [4] uses value mean-payoff games as a sub-routine, and replacing



K. Chatterjee, M. Henzinger, and A. Svozil 39:3

value mean-payoff games with threshold mean-payoff games gives an O(n)-factor saving, and
yields an O(nd+1 ·m ·W )-time algorithm for the threshold problem for mean-payoff parity
games.

Contributions. In this work our main contributions are faster algorithms to solve mean-
payoff parity games. Previous and our results are summarized in Table 1.

1. Threshold problem. We present an O(nd−1 · m ·W )-time algorithm for the threshold
problem for mean-payoff parity games, improving the previous O(nd+1 ·m ·W ) bound.
The important special case of parity objectives with two priorities correspond to Büchi and
coBüchi objectives. Our bound for mean-payoff Büchi games and mean-payoff coBüchi
games is O(n · m ·W ), which matches the best-known bound to solve the threshold
problem for mean-payoff objectives [5], and improves the previous known O(n3 ·m ·W )
bound [4].

2. Value problem. We present anO(nd·m·W ·log(n·W ))-time algorithm for the value problem
for mean-payoff parity games, improving the previous O(nd+2 ·m ·W ) bound. Our bound
for mean-payoff Büchi games and mean-payoff coBüchi games is O(n2 ·m ·W · log(n ·W )),
which matches the bound of [5] to solve the value problem for mean-payoff objectives,
and improves the previous known O(n4 ·m ·W ) bound.

Technical contributions. Our main technical contributions are as follows:
1. First, for the threshold problem, we present a decremental algorithm for mean-payoff games

that supports a sequence of vertex-set deletions along with their player-2 reachability
set. We show that the total running time is O(n ·m ·W ), which matches the best-known
bound for the static algorithm to solve mean-payoff games. We show that using our
decremental algorithm we can solve the threshold problem for mean-payoff Büchi games
in time O(n ·m ·W ).

2. Second, for mean-payoff coBüchi games, the decremental approach does not work. We
present a new static algorithm for threshold mean-payoff games that identifies subsets
X of the winning set for player 1, where the time complexity is O(|X| ·m ·W ), i.e., it
replaces n with the size of the set identified. We show that with our new static algorithm
we can solve the threshold problem for mean-payoff coBüchi games in time O(n ·m ·W ).

3. Finally, we show for all mean-payoff parity objectives, given an algorithm for the threshold
problem, the value problem can be solved in time n · log(n ·W ) times the complexity of
the threshold problem.

Related works. The problem of graph games with mean-payoff parity objectives was first
studied in [11]. The NP ∩ coNP complexity bound was established in [9], and an improved
algorithm for the problem was given in [4]. The mean-payoff parity objectives has also
been considered in other stochastic setting such as Markov decision processes [10, 12] and
stochastic games [13]. The algorithmic approaches for stochastic games build on the results
for non-stochastic games. In this work, we present faster algorithms for mean-payoff parity
games.

2 Preliminaries

Graphs. A graph G = (V,E) consists of a finite set V of vertices and a finite set of edges
E ⊆ V ×V . Given a graph G = (V,E) and a subset U ⊆ V we denote by G � U = (V ′, E′) the
subgraph of G induced by U , i.e., V ′ = U , E′ = (U × U) ∩E. For v ∈ V we denote by In(v)
(resp., Out(v)) the set of incoming (resp., outgoing) vertices, i.e., In(v) = {v′ | (v′, v) ∈ E},
and Out(v) = {v′ | (v, v′) ∈ E}.

MFCS 2017



39:4 Faster Algorithms for Mean-Payoff Parity Games

Table 1 Algorithmic bounds for mean-payoff (MP) and parity objectives, and special cases:
threshold problem (left) and value problem (right).

MP-Büchi
MP-coBüchi
MP-parity

threshold problem
Previous Our

O(n3 ·m ·W ) O(n ·m ·W )
O(n3 ·m ·W ) O(n ·m ·W )
O(nd+1 ·m ·W ) O(nd−1 ·m ·W )

value problem
Previous Our

O(n4 ·m ·W ) O(n2 ·m ·W · log(nW ))
O(n4 ·m ·W ) O(n2 ·m ·W · log(nW ))
O(nd+2 ·m ·W ) O(nd ·m ·W · log(nW ))

Game graphs. A game graph Γ = (V,E, 〈V1, V2〉) is a graph whose vertex set is partitioned
into V1 and V2, (i.e., V = V1 ∪ V2 and V1 ∩ V2 = ∅). In a game graph every vertex v ∈ V
has a successor v′ ∈ V , i.e., Out(v) 6= ∅ for all v ∈ V . Given a game graph Γ and a set U
such that for all vertices u in U we have Out(u) ∩ U 6= ∅, we denote by Γ � U the subgame
induced by U .

Plays. Given a game graph Γ and a starting vertex v0, the game proceeds in rounds. In
each round, if the current vertex belongs to player 1, then player 1 chooses a successor vertex,
and player 2 does likewise if the current vertex belongs to player 2. The result is a play ρ
which is an infinite path from v0, i.e., ρ = v0v1 . . . , where every (vi, vi+1) ∈ E for all i ≥ 0.
We denote by Plays(Γ) the set of all plays of the game graph.

Strategies. Strategies are recipes to extend prefixes of plays by choosing the next vertex.
Formally, a strategy for player-1 is a function σ1 : V ∗ · V1 7→ V such that (v, σ1(ρ · v)) ∈ E
for all v ∈ V1 and all ρ ∈ V ∗. We define strategies σ2 for player 2 analogously. We
denote by Σ1 and Σ2 the set of all strategies for player 1 and player 2, respectively. Given
strategies σ1 and σ2 for player 1 and player 2, and a starting vertex v0, there is a unique play
ρ = v0v1 . . . such that for all i ≥ 0, (a) if vi ∈ V1 then vi+1 = σ1(v0 . . . vi); and (b) if vi ∈ V2
then vi+1 = σ2(v0 . . . vi). We denote the unique play as outcome(v0, σ1, σ2). A strategy is
memoryless if it is independent of the past and depends only on the current vertex, and
hence can be defined as a function σ1 : V1 7→ V and σ2 : V2 7→ V , respectively.

Objectives and parity objectives. An objective for a game graph Γ is a subset of the
possible plays, i.e., φ ⊆ Plays(Γ). Given a play ρ we denote by Inf (ρ) the set of vertices
that appear infinitely often in ρ. A parity objective is defined with a priority function p that
maps every vertex to a non-negative integer priority, and a play satisfies the parity objective
for player 1 if the minimum priority vertex that appear infinitely often is even. Formally, the
parity objective is ParityΓ(p) = {ρ ∈ Plays(Γ) | min{p(v) | v ∈ Inf (ρ)} is even}. The Büchi
and coBüchi objectives are special cases of parity objectives with two priorities only. We
have p : V 7→ {0, 1} for Büchi objectives and p : V 7→ {1, 2} for the coBüchi objectives.

Payoff functions. Consider a game graph Γ, and a weight function w : E 7→ Z that
maps every edge to an integer. The mean-payoff function maps every play to a real-
number and is defined as follows: For a play ρ = v0v1 . . . in Plays(Γ) we have MP(w, ρ) =
lim inf
n 7→∞

1
n ·
∑n−1
i=0 w(vi, vi+1). The mean-payoff parity function also maps every play to a

real-number or −∞ as follows: if the parity objective is satisfied, then the value is the
mean-payoff value, else it is −∞. Formally, for a play ρ, we have

MPPΓ(w, p, ρ) =
{

MPΓ(w, ρ) if ρ ∈ ParityΓ(p);
−∞ if ρ 6∈ ParityΓ(p).



K. Chatterjee, M. Henzinger, and A. Svozil 39:5

Threshold mean-payoff parity objectives. Given a threshold ν ∈ Q, the threshold mean-
payoff objective MeanPayoff Γ(ν) = {ρ ∈ Plays(Γ) | MP(ρ) ≥ ν} requires that the mean-
payoff value is at least ν. The threshold mean-payoff parity objective is a conjunction of a
parity objective and a threshold mean-payoff objective, i.e., ParityΓ(p) ∩MeanPayoff Γ(ν).

Winning strategies. Given an objective (such as parity, threshold mean-payoff, or threshold
mean-payoff parity) φ, a vertex v is winning for player 1, if there is a strategy σ1 such that
for all strategies σ2 of player 2, the play outcome(v, σ1, σ2) ∈ φ (i.e., the play satisfies the
objective). We denote by W1(φ) the set of winning vertices (or the winning region) for
player 1 for the objective φ. The notation W2(φ) for complementary objectives φ for player 2
is similar.

Value functions. Given a payoff function f (such as the mean-payoff function, or the
mean-payoff parity function), the value for player 1 is the maximal payoff that she can
guarantee against all strategies of player 2. Formally,

valΓ(f)(v) = sup
σ1∈Σ1

inf
σ2∈Σ2

f(outcome(v, σ1, σ2)).

Attractors. The player-1 attractor Attr1(S) of a given set S ⊆ V is the set of vertices from
which player-1 can force to reach a vertex in S. It is defined as the limit of the sequence
A0 = S;Ai+1 = Ai ∪ {v ∈ V1 | Out(v) ∩ Ai 6= ∅} ∪ {v ∈ V2 | Out(v) ⊆ Ai} for all i ≥ 0.
Th Player-2 attractor Attr2(S) is defined analogously exchanging the roles of player 1 and
player 2. The complement of an attractor induces a game graph, as in the complement every
vertex has an outgoing edge in the complement set.

Relevant parameters. In this work we will consider computing the winning region for
threshold mean-payoff parity objectives, and the value function for mean-payoff parity
objectives. We will consider the following relevant parameters: n denotes the number of
vertices, m denotes the number of edges, d denotes the number of priorities of the parity
function p, and W is the maximum absolute value of the weight function w.

3 Decremental Algorithm for Threshold Mean-Payoff Games

In this section we present a decremental algorithm for threshold mean-payoff games that
supports deleting a sequence of sets of vertices along with their player-2 attractors. The
overall running time of the algorithm is O(n ·m ·W ).

Key idea. A static algorithm based on the notion of progress measure for mean-payoff
games was presented in [5]. We show that the progress measure is monotonic wrt to the
deletion of vertices and their player-2 attractors. We use an amortized analysis to obtain the
running time of our algorithm.

Mean-payoff progress measure. Let Γ be a mean-payoff game with threshold ν. Progress
measure is a function f which maps every vertex in Γ to an element of the set CΓ = {i ∈ N |
i ≤ nW} ∪ {>}, i.e., f : V 7→ CΓ. Let (�, CΓ) be a total order, where x � y for x, y ∈ CΓ
holds iff x ≤ y ≤ nW or y = >. We define the operation 	 : CΓ × Z 7→ CΓ for all a ∈ CΓ
and b ∈ Z as follows:

a	 b =
{

max(0, a− b) if a 6= > and a− b ≤ nW ,
> otherwise.

MFCS 2017



39:6 Faster Algorithms for Mean-Payoff Parity Games

A player-1 vertex v is consistent if f(v) � f(v′) 	 w(v, v′) for any v′ ∈ Out(v). A player-
2 vertex v is consistent if f(v) � f(v′) 	 w(v, v′) for all v′ ∈ Out(v). Let v ∈ V then
lift(·, v) : [V 7→ CΓ] 7→ [V 7→ CΓ] is defined by lift(f, v) = g where:

g(u) =


f(u) if u 6= v,

min{f(v′)	 w(v, v′) | (v, v′) ∈ E} if u = v ∈ V1,

max{f(v′)	 w(v, v′) | (v, v′) ∈ E} if u = v ∈ V2.

Static Algorithm The static algorithm in [5] is an iterative algorithm which maintains and
returns a progress measure f and a list L of vertices which are not consistent. The initial
progress measure of every vertex is set to zero. Also, w(e) is set to w(e) − ν for all edges
e in E. The list L is initialized with the vertices which are not consistent considering the
initial progress measure. Then the following steps are executed in a while-loop:
1. Take out a vertex v of L.
2. Perform the lift-operation on the vertex, i.e., f ← lift(f, v).
3. If a vertex v′ in In(v) is not consistent, put v′ into L.
4. If L is empty, return f else proceed to the next iteration.
If every vertex is consistent, i.e., the list L is empty, the winning region of player 1 is the set
of vertices which are not set to > in f , i.e., W1(ν) = {v ∈ V | f(v) 6= >}.

Decremental input/output. Let Γ be a mean-payoff game with threshold ν. The input
to the decremental algorithm is a sequence of sets A1, A2, . . . , Ak, such that each Ai is a
player-2 attractor of a set Xi in the game Γi = Γ � (V \

⋃
j<iAj). The output requirement

is the player-1 winning set after the deletion of
⋃
j<iAj for i = 1, . . . , k, i.e., the output

requirement is the sequence Z1, Z2, . . . , Zk, where Zi = W1(φ) in Γi = Γ � (V \
⋃
j<iAj),

where φ = MeanPayoff Γi
(ν) is the threshold mean-payoff objective. In other words, we

repeatedly delete a vertex set Xi along with its player-2 attractor Ai from the current game
graph Γi, and require the winning set for player 1 as an output after each deletion.

Decremental algorithm. We maintain a progress measure fi, 1 ≤ i ≤ k, during the whole
sequence of deletions. The initial progress measure f1 for the mean-payoff game Γ with
threshold mean-payoff objective φ is calculated using the static algorithm. For all edges e in
E, we set w(e) = w(e)−ν. In iteration i with input Ai, in the game Γi with its corresponding
vertex set Vi the following steps are executed:
1. If a vertex in the set {v ∈ Vi \ Ai | ∃v′ : v′ ∈ Out(v) ∧ v′ ∈ Ai} is not consistent in fi

without the set Ai, put it in a list Li.
2. Delete the set Ai from Γi to receive Γi+1 (and thus Vi+1).
3. Execute steps (1)-(4) of the above described iterative algorithm from [5] initialized with

Γi+1, Li and fi restricted to the vertices in Vi+1.
4. Finally the winning region of player 1 can be extracted from the obtained progress

measure fi+1, i.e., W1(φ) = {v ∈ Vi+1 | f(v) 6= >}.

Correctness. Let Γ be a game graph, φ a threshold objective and A1, A2, . . . , Ak a sequence
of sets, such that each Ai is a player-2 attractor in the game Γi = Γ � (V \

⋃
j<iAj). To

show the correctness of the decremental algorithm we need to show that the condition that
the list L contains all vertices which are not consistent is an invariant of the decremental
algorithm at line 3. This property was proved for the static algorithm in [5].

I Lemma 1. The condition that Li contains all vertices which are not consistent with the
progress measure fi restricted to Vi+1 in Γi+1 is an invariant of the static algorithm called
in step 3 of the decremental algorithm for 1 ≤ i ≤ k − 1.



K. Chatterjee, M. Henzinger, and A. Svozil 39:7

Proof. The fact that the static algorithm correctly returns a progress measure with only
consistent vertices when the invariant holds was shown in [5]. It was also shown in [5] that
the invariant is maintained in the loop. It remains to show that the condition holds when
we call the static algorithm at step 3. For the base case, let i = 1. In the initial progress
measure f1 and the initial game graph Γ1, every vertex is consistent. By the definition of a
player-2 attractor, deleting the set A1 potentially removes edges (v, v′) where v is a player-1
vertex in V \A1 and v′ is in A1. (Note that v cannot be a player-2 vertex.) All of the vertices
not consistent anymore are added to Li in step 1 of the decremental algorithm. For the
inductive step let i = j. By induction hypothesis, all vertices which were not consistent with
the progress measures fh−1 restricted to Vh for 2 ≤ h ≤ j were added to the corresponding
lists. Thus by the correctness of the static algorithm, it correctly computes the new progress
measure fh for the game graph Γh where every vertex is consistent. Thus also every vertex
in the progress measure fj restricted to Vj is consistent. Again the player-2 attractor is
removed and vertices which are not consistent with progress measure fj restricted to Vj+1
are put into Lj by step 1 of the algorithm. J

Thus we proved that the static algorithm always correctly updates to the new progress
measure in each iteration. The winning region of player-1 is obtained by the returned
progress measure (step 4). The decremental algorithm thus correctly computes the sequence
Z1, Z2, . . . Zk, where Zi = W1(φ) in Γi.

Running Time. The calculation of the initial progress measure for the mean-payoff game Γ
with threshold ν is in time O(n ·m ·W ). The vertices which are not consistent anymore after
the deletion of Ai can be found in time O(m) (step 1). As at most n such sets Ai exist, the
running time is O(mn). In step 3 the static algorithm is executed with our current progress
measure fi: Every time a vertex v is picked from the list Li it costs O(|Out(v) + In(v)|) time
to use lift on it and to look for vertices in In(v) which are not consistent anymore (steps 1-3
in the static algorithm). This cost is charged to its incident edges. Note that deleting a set of
vertices and their corresponding player-2 attractor will only potentially increase the progress
measure of some player-1 vertices. As we can increase the progress measure of every vertex
only nW times before it is set to > where it is always consistent, we get the desired bound
of O(m · n ·W ).
Thus our decremental algorithm for threshold mean-payoff games works as desired and we
obtain the following result:

I Theorem 2. Given a game graph Γ, a threshold mean-payoff objective φ and a sequence
of sets A1, A2, . . . , Ak such that each Ai is a player-2 attractor of a set Xi in the game
Γi = Γ � (V \

⋃
j<iAj), the sequence Z1, Z2, . . . , Zk, where Zi = W1(φ) in Γi can be

computed in O(n ·m ·W ) time.

I Remark. Note that the running time analysis of our decremental algorithm crucially depends
on the monotonicity property of the progress measure. If edges are both added and deleted,
then the monotonicity property does not hold. Hence obtaining a fully dynamic algorithm
that supports both addition/deletion of vertices/edges with running time O(n ·m ·W ) is an
interesting open problem. However, we will show that for solving mean-payoff parity games,
the decremental algorithm plays a crucial part.

4 Threshold Mean-Payoff Parity Games

In this section we present algorithms for threshold mean-payoff parity games. Our most
interesting contributions are for the base case of mean-payoff Büchi- and mean-payoff coBüchi
objectives, and the general case follows a standard recursive argument.

MFCS 2017



39:8 Faster Algorithms for Mean-Payoff Parity Games

4.1 Threshold Mean-Payoff Büchi Games
In this section we consider threshold mean-payoff Büchi games.

Algorithm for threshold mean-payoff Büchi games. The basic algorithm is an iterative
algorithm that deletes player-2 attractors. The algorithm proceeds in iterations. In iteration
i, let Di be the set of vertices already deleted. Consider the subgame Γi = Γ � (V \ Di).
Then the following steps are executed:
1. Let V i = V \Di and Bi denote the set of Büchi vertices (or vertices with priority 0) in

Γi. Compute Yi = Attr1(Bi) the player-1 attractor to Bi in Γi.
2. Let Xi = V i \ Yi. If Xi is non-empty, remove Ai = Attr2(Xi) from the game graph, and

proceed to the next iteration.
3. Else V i = Yi. Let Ui = W1(φ) in Γi, where φ = MeanPayoff (ν), be the winning region

for the threshold mean-payoff objective in Γi. Let Xi = V i \ Ui. If Xi is non-empty,
remove Ai = Attr2(Xi) from the game graph, and proceed to the next iteration. If Xi is
empty, then the algorithm stops and all the remaining vertices are winning for player 1
for the threshold mean-payoff Büchi objective.

Correctness. Since the correctness argument has been used before [11], we only present a
brief sketch: The basic correctness argument is to show that all vertices removed over all
iterations do not belong to the winning set for player 1. In the end, for the remaining vertices,
player 1 can ensure to reach the Büchi vertices, and ensures the threshold mean-payoff
objectives. A strategy that plays for the threshold mean-payoff objectives longer and longer,
and in between visits the Büchi vertices, ensures that the threshold mean-payoff Büchi
objective is satisfied.

Running time analysis. We observe that the total running time to compute all attractors is
at most O(n ·m), since the algorithm runs for O(n) iterations and each attractor computation
is linear time. In step 3, the algorithm needs to compute the winning region for threshold
mean-payoff objective. The algorithm always removes a set Xi and its player-2 attractor
Ai, and requires the winning set for player 1. Thus we can use the decremental algorithm
from Section 3, which precisely supports these operations. Hence using Theorem 2 in the
algorithm for threshold mean-payoff Büchi games, we obtain the following result.

I Theorem 3. Given a game graph Γ and a threshold mean-payoff Büchi objective φ, the
winning set W1(φ) can be computed in O(m · n ·W ) time.

4.2 Threshold Mean-Payoff coBüchi Games
In this section we will present an O(n ·m ·W )-time algorithm for threshold mean-payoff
coBüchi games. We start with the description of the basic algorithm for threshold mean-payoff
coBüchi games.

Algorithm for threshold mean-payoff coBüchi games. The basic algorithm is an iterative
algorithm that deletes player-1 attractors. The algorithm proceeds in iteration. In iteration
i, let Di be the set of vertices already deleted. Consider the subgame Γi = Γ � (V \ Di).
Then the following steps are executed:
1. Let V i = V \Di and Ci denote the set of coBüchi vertices (or vertices with priority 1) in

Γi. Compute Yi = Attr2(Ci) the player-2 attractor to Ci in Γi.



K. Chatterjee, M. Henzinger, and A. Svozil 39:9

X1

Γ̂1 Γ̂2

1

deleted

added

A1

player-2 attr.(1)

player-2 attr.(2)

Figure 1 Pictorial illustration of threshold mean-payoff coBüchi games. The subgames Γ̂1 and
Γ̂2 are shown. We observe that Γ̂2 is obtained both by addition and deletion of game parts to Γ̂1.

2. Let Xi = V i \ Yi. Consider the subgame Γ̂i = Γi � Xi. Compute the winning region
Zi = W1(φ) for player 1 in Γ̂i, where φ = MeanPayoff (ν) is the threshold mean-payoff
objective.

3. If Zi is non-empty, remove Attr1(Zi) from Γi, and proceed to the next iteration. Else if
Zi is empty, then all remaining vertices are winning for player 2.

Correctness argument. Consider the subgame Γi. In each subgame Γ̂i of Γi all edges of
player 2 are intact, since it is obtained after removing a player-2 attractor Yi. Moreover,
there is no priority-1 vertex in Γ̂i. Hence ensuring the threshold mean-payoff objective in
Γ̂i for player 1 ensures satisfying the threshold mean-payoff coBüchi objective. Hence the
set Zi and its player-1 attractor belongs to the winning set of player 1 and can be removed.
Thus all vertices removed are part of the winning region for player 1. Upon termination, in
Γ̂i, player 1 cannot satisfy the threshold mean-payoff condition from any vertex. Consider a
player-2 strategy, where in Γ̂i player 2 falsifies the threshold mean-payoff condition, and in
Yi plays an attractor strategy to reach Ci (priority-1 vertices). Given such a strategy, either
(a) Yi is visited infinitely often, and then the coBüchi objective is violated; or (b) from some
point on the play stays in Γ̂i forever, and then the threshold mean-payoff objective is violated.
This shows the correctness of the algorithm. However, the running time of this algorithm is
not O(n ·m ·W ). We now present the key ideas to obtain an O(n ·m ·W )-time algorithm.

First intuition. Our first intuition is as follows. In step 2 of the above algorithm, instead
of obtaining the whole winning region W1(φ) in Γ̂i it suffices to identify a subset Xi of
the winning region (if it is non-empty) and remove its player-1 attractor. We call this the
modified algorithm for threshold mean-payoff coBüchi games. We first describe why we
cannot use the decremental approach in the following remark.

I Remark. Consider the subgames for which the threshold mean-payoff objective must be
solved. Consider Figure 1. The first player-2 attractor removal induces subgame Γ̂1. After
identifying a winning region X1 of Γ̂1 we remove its player-1 attractor A1. After removal
of A1, we consider the second player-2 attractor to the priority-1 vertices. The removal
of this attractor induces Γ̂2. We observe comparing Γ̂1 and Γ̂2 that certain vertices are
removed, whereas other vertices are added. Thus the subgames to be solved for threshold
mean-payoff objectives do not satisfy the condition of decremental or incremental algorithms
(see Remark 3).

MFCS 2017



39:10 Faster Algorithms for Mean-Payoff Parity Games

Second intuition. While we cannot use the decremental algorithm, we can solve the problem
in O(n ·m ·W ) time, if we have a modified static algorithm for threshold mean-payoff games,
with the following property: (a) it identifies a subset of the winning region X for player 1, if
the winning region is non-empty, in time O(|X| ·m ·W ); (b) if the winning region is empty,
it returns the empty set, and then it takes time O(n ·m ·W ). With such an algorithm we
analyze the running time of the above modified algorithm for threshold mean-payoff coBüchi
games. The total time required for all attractor computations is again O(n ·m). Otherwise,
we use the modified static algorithm to remove vertices of player-1 and to remove set of size
X we take O(|X| ·m ·W ) time, and thus we can charge each vertex O(m ·W ) time. Hence
the total time required is O(n ·m ·W ). In the rest of the section we present this modified
static algorithm for threshold mean-payoff games.

Problem Statement.

Input: Mean-payoff game Γ with threshold ν.
Question: If W1(MeanPayoff (ν)) is non-empty, return a nonempty set

X ⊆W1(MeanPayoff (ν)) in time O(|X| ·m ·W ),
else return ∅ in time O(n ·m ·W ).

Modified static algorithm for threshold mean-payoff games. The basic algorithm for
threshold mean-payoff games computes a progress measure, with a defined top element value
>. If the progress measure has the value > for a vertex, then the vertex is declared as
winning for player 2. With value > = n ·W , the correct winning region for both players can
be identified. Moreover, for a given value α for >, the progress measure algorithm requires
O(α ·m) time. Our modified static algorithm is based on the following idea:
1. Consider a value α ≤ n ·W for the top element. With this reduced value for the top

element, if a winning region is identified for player 1, then it is a subset of the whole
winning region for player 1.

2. We will iteratively double the value for the top element.
Given the above ideas our algorithm is an iterative algorithm defined as follows: Initialize
top value >0 = W . The i-th iteration is as follows:
1. Run the progress measure algorithm with top value >i.
2. If a winning region X for player is identified, return X.
3. Else >i+1 = 2 · >i (i.e., the top value is doubled).
4. If >i+1 ≥ 2 · n ·W , stop the algorithm and return ∅, else proceed to the next iteration.

Correctness and running time analysis. The key steps of the correctness argument and
the running time analysis are as follows:
1. The above algorithm is correct, since if it returns a set X then it is a subset of the winning

set for player 1.
2. If the algorithm returns a winning set with top value α, then the total running time till

this iteration is m · (α+α/2 +α/4 + · · · ), because the progress with top value α requires
time O(α ·m). Hence the total running time if a set X is returned with top value α is
O(α ·m).

3. Let Z be a set of vertices such that no player-2 vertex in Z has an edge out of Z, and
the whole subgame Γ � Z is winning for player 1. Then a winning strategy in Z ensures
that a progress measure with top value |Z| ·W would identify the set Z as a winning set.

4. From above it follows that if the winning set X is identified at top value α, but no winning
set was identified with top value α/2, then the size of the winning set is at least α/(2W ).



K. Chatterjee, M. Henzinger, and A. Svozil 39:11

5. It follows from above that if a set X is identified, then the total running time to obtain
set X is O(|X| ·m ·W ).

6. Moreover, the total running time of the algorithm when no set X is identified is in
O(n ·m ·W ), and in this case, the winning region is empty.

Thus we solved the modified static algorithm for threshold mean-payoff games as desired
and obtain the following result.

I Theorem 4. Given a mean-payoff game Γ and a threshold ν, let Z = W1(MeanPayoff (ν)).
If Z 6= ∅, then a non-empty set X ⊆ Z can be computed in time O(|X| ·m ·W ), else an
empty set is returned if Z = ∅, which takes time O(n ·m ·W ).

Using the above algorithm to compute the winning set for player 1 in the subgames, we
obtain an algorithm for threshold mean-payoff coBüchi games in time O(n ·m ·W ).

I Theorem 5. Given a game graph Γ and a threshold mean-payoff coBüchi objective φ, the
winning set W1(φ) can be computed in O(n ·m ·W ) time.

4.3 Threshold Mean-Payoff Parity Games
The algorithm for threshold mean-payoff parity games is the standard recursive algorithm [11]
(classical parity game-style algorithm) that generalizes the Büchi and coBüchi cases (which
are the base cases). The running time recurrence is as follows: T (n, d,m,w) = n(T (n, d−
1,m) +O(m)) +O(nmW ). Using our approach we obtain the following result.

I Theorem 6. Given a game graph Γ and a threshold mean-payoff parity objective φ, the
winning set W1(φ) can be computed in O(nd−1 ·m ·W ) time.

5 Optimal Values for Mean-payoff Parity Games

In this section we present an algorithm which computes the value function for mean-payoff
parity games. For mean-payoff games a dichotomic search approach was presented in [5]. We
show that such an approach can be generalized to mean-payoff parity games.

Range of Values for the Dichotomic Search. To describe the algorithm we recall a lemma
about the possible range of optimal values of a mean-payoff parity game. The lemma is an
easy consequence of the characterization of [11] that the mean-payoff parity value coincide
with the mean-payoff value, and the possible range of value for mean-payoff games.

I Lemma 7 ([11, 15, 16]). Let Γ be a mean-payoff parity game. For each vertex v ∈ V , the
optimal value valΓ(MPP)(v) is a rational number y

z such that 1 ≤ z ≤ n and |y| ≤ z ·W .

By Lemma 7 the value of each vertex v ∈ V , is contained in the following set of rationals

SΓ =
{
y

z

∣∣∣∣ y, z ∈ Z, 1 ≤ z ≤ n ∧ −z ·W ≤ y ≤ z ·W
}
.

I Definition 8. Let Γ be a mean-payoff parity game. We denote the set of vertices v ∈ V
such that valΓ(MPP)(v) ◦ µ where ◦ ∈ {<,≤,=,≥, >} with V ◦µΓ .

Key Observation. Let Γ = (V,E, 〈V1, V2〉, w, p) be a mean-payoff parity game. Let µ ∈
[−W,W ]. The sets V >µΓ , V =µ

Γ and V <µΓ can be computed using any algorithm for threshold
mean-payoff parity games twice (for example using Theorem 6). To calculate V ≥µΓ and
V <µΓ use the algorithm on Γ with the mean-payoff parity objective φ = ParityΓ(p) ∩

MFCS 2017



39:12 Faster Algorithms for Mean-Payoff Parity Games

MeanPayoff Γ(µ). Consider Γ′ = (V,E, 〈V2, V1〉, w′, p), where w′(e) = −w(e) for all edges
e ∈ E and player-1 and player-2 vertices are swapped. To calculate V ≤µΓ and V >µΓ use the
algorithm on Γ′ with mean-payoff parity objective φ = ParityΓ′(p) ∩MeanPayoff Γ′(−µ).
Given the sets V ≤µΓ , V >µΓ , V ≥µΓ and V <µΓ we can extract the sets V >µΓ , V =µ

Γ and V <µΓ .
All values µ′ in SΓ are of the form y

z . For those values we can determine whether v ∈ V ≥µ
′

Γ by
applying the algorithm for threshold mean-payoff parity games on Γ′ = (V,E, 〈V2, V1〉, w′, p)
where w′(e) = w(e) · z for all e ∈ E with the mean-payoff parity objectives φ = ParityΓ(p) ∩
MeanPayoff Γ(y). Note that in the worst case, the weight function w′ of Γ′ is in O(nW ).

Dichotomic Search. Let Γ be a mean-payoff parity game. The dichotomic search algorithm
is recursive algorithm initialized with Γ0 = Γ and S0 = SΓ. In recursive call i the following
steps are executed:
1. Let ri = min(Si) and si = max(Si).
2. Determine a1, the largest element in Si less than or equal to ri+si

2 and a2, the smallest
element in Si greater than or equal to ri+si

2 .
3. Determine the partitions V <a1

Γi
, V =a1

Γi
, V =a2

Γi
, V >a2

Γi
using the key observation.

4. For all v ∈ V =a1
Γi

set the value to a1, for all v ∈ V =a2
Γi

set the value to a2 and set the value
to −∞ for all vertices v which are not in any set calculated in step 3.

5. Recurse upon Γi � V <a1
Γi

and Γi � V >a2
Γi

.

Correctness. Let Γ be a mean-payoff parity game. We prove that the dichotomic search
algorithm correctly calculates valΓ(MPP)(v) for all v ∈ V . The algorithm is initialized with
Γ and SΓ. By Lemma 7 the values of the vertices v ∈ V are in the set SΓ. Because we
perform a binary search over the set SΓ we can guarantee the termination of the algorithm.
Notice that we need to show that the values calculated in the subgames constructed in step 4
are identical to the values in the original game. Then correctness follows immediately by our
key observation and because we perform a binary search over the set SΓ.

I Lemma 9. Given a mean-payoff parity game Γ and µ ∈ Q, let Γ′ = Γ � V >µΓ and
Γ′′ = Γ � V <µΓ . For all v ∈ V >µΓ , we have valΓ′(MPP)(v) = valΓ(MPP)(v) and for all
v ∈ V <µΓ , we have valΓ′′(MPP)(v) = valΓ(MPP)(v).

Proof. Let v ∈ V >µΓ be arbitrary. We will prove valΓ′(MPP)(v) = valΓ(MPP)(v) by showing
the following two cases:

valΓ′(MPP)(v) ≤ valΓ(MPP)(v): Note that there can be no player-2 vertex in V >µΓ with
an edge to V ≤µΓ . Thus we cut away only edges of player-1 vertices in Γ′. Consequently
player-1 has less choices in Γ′ than in Γ at each of her vertices. Thus valΓ′(MPP)(v) ≤
valΓ(MPP)(v) holds.
valΓ′(MPP)(v) ≥ valΓ(MPP)(v): Let σ1 be an optimal strategy for player 1 and let σ2 be
an optimal strategy for player 2 which both exist by [11]. We will show that σ1 produces
plays with vertices in V >µΓ only, if it starts from v. For the sake of contradiction assume
that a play ρ = outcome(v, σ1, σ2) contains a vertex v∗ ∈ V ≤µΓ . Notice that there are
no player-2 vertices in V >µΓ with edges to V ≤µΓ . Thus σ1 chose a successor vertex in
V ≤µΓ . But when ρ ends up in V ≤µΓ the optimal player-2 strategy σ2 can guarantee that
MPPΓ(w, p, ρ) ≤ µ by the definition of V ≤µΓ . There is a strategy to keep the value of
the play starting at v greater than µ by the definition of V >µΓ . Thus any play ρ leading
to V ≤µΓ by σ1 is not optimal which is a contradiction to our assumption. Consequently
valΓ′(MPP)(v) ≥ valΓ(MPP)(v) follows.

The fact that for all v ∈ V <µΓ , we have valΓ′′(MPP)(v) = valΓ(MPP)(v) follows by a
symmetric argument. J



K. Chatterjee, M. Henzinger, and A. Svozil 39:13

Running Time. The running time of the dichotomic search is O(n · log(nW ) · TH) where
TH is the running time of an algorithm for the threshold mean-payoff parity problem. The
additional factor n comes from rescaling the weights of the mean-payoff parity game Γ which
is described in the key observation. The factor O(log(nW )) is from using binary search on S
as |S| = O(n2 ·W ).

I Theorem 10. Given a game graph Γ and an algorithm that solves the threshold mean-payoff
parity problem in O(TH), the value function of Γ can be computed in time O(n · log(nW ) ·TH).

As a corollary of the above theorem and Theorem 6, the value function for mean-payoff
parity games can be computed in O(nd ·m ·W · log(nW )) time.

6 Conclusion

In this paper we present faster algorithms for mean-payoff parity games. Our most interesting
results are for mean-payoff Büchi and mean-payoff coBüchi games, which are the base cases.
For threshold mean-payoff Büchi and mean-payoff coBüchi games, our bound O(n ·m ·W )
matches the current best-known bound for mean-payoff games. For the value problem, we
show the dichotomic search approach of [5] for mean-payoff games can be generalized to
mean-payoff parity games. This gives an additional multiplicative factor of n · log(nW ) as
compared to the threshold problem. A recent work [14] shows that the value problem for
mean-payoff objective can be solved with a multiplicative factor n compared to the threshold
objective (i.e., it shaves of the log factor). An interesting question is whether the approach
of [14] can be generalized to mean-payoff parity games.

References
1 R. Bloem, K. Chatterjee, T. A. Henzinger, and B. Jobstmann. Better quality in synthesis

through quantitative objectives. In Proc. of CAV, LNCS 5643, pages 140–156. Springer,
2009.

2 Roderick Bloem, Krishnendu Chatterjee, Karin Greimel, Thomas A. Henzinger, Georg
Hofferek, Barbara Jobstmann, Bettina Könighofer, and Robert Könighofer. Synthesizing
robust systems. Acta Inf., 51(3-4):193–220, 2014.

3 P. Bouyer, U. Fahrenberg, K. G. Larsen, N. Markey, and J. Srba. Infinite runs in weighted
timed automata with energy constraints. In Proc. of FORMATS, LNCS 5215, pages 33–47.
Springer, 2008.

4 P. Bouyer, N. Markey, J. Olschewski, and M. Ummels. Measuring permissiveness in parity
games: Mean-payoff parity games revisited. In Proc. of ATVA, LNCS 6996, pages 135–149.
Springer, 2011.

5 L. Brim, J. Chaloupka, L. Doyen, R. Gentilini, and J. F. Raskin. Faster algorithms for
mean-payoff games. Form. Methods Syst. Des., 38(2):97–118, April 2011. doi:10.1007/
s10703-010-0105-x.

6 J. R. Büchi and L. H. Landweber. Solving sequential conditions by finite-state strategies.
Transactions of the AMS, 138:295–311, 1969.

7 P. Cerný, K. Chatterjee, T. A. Henzinger, A. Radhakrishna, and R. Singh. Quantitative
synthesis for concurrent programs. In Proc. of CAV, LNCS 6806, pages 243–259. Springer,
2011.

8 A. Chakrabarti, L. de Alfaro, T. A. Henzinger, and M. Stoelinga. Resource interfaces. In
Proc. of EMSOFT, LNCS 2855, pages 117–133. Springer, 2003.

9 K. Chatterjee and L. Doyen. Energy parity games. In Proc. of ICALP: Automata, Lan-
guages and Programming (B), LNCS 6199, pages 599–610. Springer, 2010.

10 K. Chatterjee and L. Doyen. Energy and mean-payoff parity Markov decision processes. In
Proc. of MFCS, LNCS 6907, pages 206–218. Springer, 2011.

MFCS 2017

http://dx.doi.org/10.1007/s10703-010-0105-x
http://dx.doi.org/10.1007/s10703-010-0105-x


39:14 Faster Algorithms for Mean-Payoff Parity Games

11 K. Chatterjee, T. A. Henzinger, and M. Jurdziński. Mean-payoff parity games. In Proc. of
LICS, pages 178–187. IEEE Computer Society, 2005.

12 Krishnendu Chatterjee and Laurent Doyen. Games and markov decision processes with
mean-payoff parity and energy parity objectives. In MEMICS, pages 37–46, 2011.

13 Krishnendu Chatterjee, Laurent Doyen, Hugo Gimbert, and Youssouf Oualhadj. Perfect-
information stochastic mean-payoff parity games. In FOSSACS, pages 210–225, 2014.

14 Carlo Comin and Romeo Rizzi. Improved pseudo-polynomial bound for the value problem
and optimal strategy synthesis in mean payoff games. Algorithmica, 77(4):995–1021, 2017.
doi:10.1007/s00453-016-0123-1.

15 A. Ehrenfeucht and J. Mycielski. Positional strategies for mean payoff games. International
Journal of Game Theory, 8(2):109–113, 1979. doi:10.1007/BF01768705.

16 Y. M. Lifshits and D. S. Pavlov. Potential theory for mean payoff games. Journal of
Mathematical Sciences, 145(3):4967–4974, 2007. doi:10.1007/s10958-007-0331-y.

17 A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. of POPL, pages
179–190. ACM Press, 1989.

18 P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete-event pro-
cesses. SIAM Journal of Control and Optimization, 25(1):206–230, 1987.

19 W. Thomas. Languages, automata, and logic. In Handbook of Formal Languages, volume
3, Beyond Words, chapter 7, pages 389–455. Springer, 1997.

http://dx.doi.org/10.1007/s00453-016-0123-1
http://dx.doi.org/10.1007/BF01768705
http://dx.doi.org/10.1007/s10958-007-0331-y


Attainable Values of Reset Thresholds

Michalina Dżyga1, Robert Ferens∗2, Vladimir V. Gusev†3, and
Marek Szykuła‡4

1 Institute of Computer Science, University of Wrocław, Joliot-Curie 15,
Wrocław, Poland
misia.sieradzka@interia.pl

2 Institute of Computer Science, University of Wrocław, Joliot-Curie 15,
Wrocław, Poland
robert.ferens@interia.pl

3 ICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve,
Belgium, and Institute of Natural Sciences and Mathematics, Ural Federal
University, Ekaterinburg, Russia
vl.gusev@gmail.com

4 Institute of Computer Science, University of Wrocław, Joliot-Curie 15,
Wrocław, Poland
msz@cs.uni.wroc.pl

Abstract
An automaton is synchronizing if there exists a word that sends all states of the automaton
to a single state. The reset threshold is the length of the shortest such word. We study the
set RTn of attainable reset thresholds by automata with n states. Relying on constructions
of digraphs with known local exponents we show that the intervals

[
1, (n2 − 3n+ 4)/2

]
and

[(p− 1)(q− 1), p(q− 2) +n− q+ 1], where 2 ≤ p < q ≤ n, p+ q > n, gcd(p, q) = 1, belong to RTn,
even if restrict our attention to strongly connected automata. Moreover, we prove that in this
case the smallest value that does not belong to RTn is at least n2−O(n1.7625 logn/ log logn). This
value is increased further assuming certain conjectures about the gaps between consecutive prime
numbers. We also show that any value smaller than n(n−1)

2 is attainable by an automaton with a
sink state and any value smaller than n2−O(n1.5) is attainable in general case. Furthermore, we
solve the problem of existence of slowly synchronizing automata over an arbitrarily large alphabet,
by presenting for every fixed size of the alphabet an infinite series of irreducibly synchronizing
automata with the reset threshold n2 −O(n).

1998 ACM Subject Classification F.1.1 Models of Computation, G.2.2 Graph Theory

Keywords and phrases Černý conjecture, exponent, primitive digraph, reset word, synchronizing
automaton

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.40

∗ R. Ferens was supported in part by the National Science Centre, Poland under project number
2014/15/B/ST6/00615.

† V. Gusev was supported by the French Community of Belgium, by the IAP network DYSCO, RFBR
grant no. 16-01-00795, Russian Ministry of Education and Science project no. 1.3253.2017, and the
Competitiveness Enhancement Program of Ural Federal University.

‡ M. Szykuła was supported in part by the National Science Centre, Poland under project number
2014/15/B/ST6/00615.

© Michalina Dżyga, Robert Ferens, Vladimir V. Gusev, and Marek Szykuła;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 40; pp. 40:1–40:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.40
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


40:2 Attainable Values of Reset Thresholds

1 Introduction

Let A = (Q,Σ, δ) be a deterministic complete finite (semi)automaton with the set of states
Q, the alphabet Σ, and the transition function δ : Q×Σ→ Q. We denote the image of a state
q under the action of a word w as q ·w. Automaton A is called synchronizing if there exist a
word w and a state f such that for every state q ∈ Q we have q · w = f . Every such word w
is called synchronizing (or reset) word for A . The length of the shortest synchronizing word
of A is called the reset threshold and is denoted by rt(A ). This notion can be extended
to subsets: for a subset S ⊆ Q, rt(A , S) is the length of the shortest word w such that
|δ(S,w)| = 1.

Synchronizing automata constitute a well-studied class of automata with applications to
group theory [4], coding theory [6, Chapter 10], industrial automation, matrix and control
theories [7], etc. A brief survey of the theory of synchronizing automata can be found
in [18, 33].

The reset threshold is one of the most important characteristics of a synchronizing
automaton. One can compute a synchronizing word following a greedy strategy in polynomial-
time, but finding the shortest such word is hard. The problem of deciding whether rt(A ) = k

for a given automaton A and an integer k encoded in binary is DP-complete [23]. Moreover,
unless P = NP, there is no polynomial-time algorithm computing the reset threshold with
the approximation error O(n1−ε) for a fixed ε > 0 [13]. Furthermore, widely used greedy
algorithms have approximation error Ω(n), where n is the number of states in a given
automaton [2].

One of the most famous open problems in automata theory is to determine general bounds
on the reset thresholds of automata with n states. The Černý conjecture states that the
reset threshold of an automaton is at most (n − 1)2 [10, 11]. Furthermore, this bound is
reached by the Černý automaton Cn with n states, see [33, p. 18]. Despite intensive efforts
of researchers and confirmation of this conjecture in various special classes of automata the
best upper bound obtained so far is (15617n3 + 7500n2 + 9375n− 31250)/93750 [29].

The difficulty of the Černý conjecture led to a large number of attempts to disprove it by
means of a counterexample obtained via computational experiments [31, 3, 20]. Although,
no counterexample was ever found, several interesting observations were made. For example,
it was noted that there are no synchronizing automata with n states and two letters with the
reset threshold in the range [n2 − 3n+ 5, (n− 1)2 − 1] for n = 7, . . . , 12. Afterwards, a few
more potential “gaps” were identified. It leads us in turn to the following general question
that we address in our paper:

What is the set RTn of possible reset thresholds
for synchronizing automata with n states?

Clearly, a complete answer to this question is out of reach for the state of the art techniques as
the Černý conjecture is merely about an upper bound on RTn. Nevertheless, it is possible to
describe certain values belonging to RTn by presenting synchronizing automata with known
reset thresholds. This problem is also not trivial as one has to prove that a constructed
automaton is not only synchronized by a word of the claimed length, but also demonstrate
that any shorter word is not synchronizing.

Additional interest to results of this kind comes from the following reasons. Concrete ex-
amples of synchronizing automata with known reset thresholds shed light on the phenomenon
of synchronization giving hints on potential proof of the Černý conjecture. Furthermore, the
availability of hands on examples is important for the evaluation of new ideas and algorithms.



M. Dżyga, R. Ferens, V. V. Gusev, and M. Szykuła 40:3

Synchronizing automata with the reset threshold close to (n− 1)2, so called slowly synchron-
izing automata, are especially important as they almost never appear in random samples of
synchronizing automata. Moreover, the ideas used in construction of synchronizing automata
with known reset thresholds could also lead to interesting connections between different fields.
For example, a new line of research devoted to the interplay between synchronizing automata
and primitive matrices was started in [3], see [14] for recent results. Part of our current work
can be seen as a continuation of this line of research.

Over the years a large number of synchronizing automata with known reset thresholds
were presented in the literature. It can be either sporadic examples possessing interesting
properties [31, 33] or infinite series of automata designed to give a lower bound on the largest
reset threshold among synchronizing automata belonging to a special class. For example,
constructions of automata with the sink state are given in [1, 24, 26], Eulerian automata
in [15, 30], automata with the reset threshold close to (n− 1)2 [3]. Multi-parametric series
of automata with the aim of covering RTn were presented in [16].

Our contributions. In the present paper we significantly expand the list of values known
to belong to RTn. Moreover, we present non-trivial lower bounds on the smallest value that
does not belong to RTn. Our approach can be summarized as follows. Recall that a subset
of states C of the automaton A is a sink if δ(q, `) ∈ C for every q ∈ C and ` ∈ Σ. A classical
observation states that a synchronizing automaton has the unique strongly connected sink
component C. Furthermore, the process of synchronization can be performed in the following
manner: initially, one applies a word u such that Q · u ⊆ C, i.e. the automaton is brought to
C, afterwards, one applies v such that |C · v| = 1. Therefore, we consider three natural cases.

Case (i) strongly connected automata. In Section 2 we construct synchronizing automata
belonging to this class with known reset thresholds based on examples of digraphs with
known local exponents [28]. We show that the intervals

[
1, (n2 − 3n+ 4)/2

]
and [(p− 1)(q−

1), p(q − 2) + n − q + 1], where 2 ≤ p < q ≤ n, p + q > n, gcd(p, q) = 1, belong to the set
of attainable reset thresholds by n-state automata. The method that we use to convert
digraphs into synchronizing automata is based on techniques recently introduced in [7, 14].

Let gtsc(n) be the smallest value that does not serve as the reset threshold of a strongly
connected automaton with n states. In Section 3 we show that gtsc(n) is at least n2 −
Õ(n1.7625), where Õ(f(n)) is the shorthand for O(f(n) logk(f(n)) for some k. Moreover, we
strengthen this bound conditioning on the validity of classical conjectures related to the
distribution of prime numbers. If the Riemann hypothesis is true, then gtsc(n) ≥ n2−Õ(n1.75).
If the Cramer’s conjecture is true, then gtsc(n) ≥ n2 − Õ(n1.5). Our proofs are based on
rigorous analysis of the overlaps of the aforementioned intervals. Similar intervals often
appear in index set problems about digraphs and Boolean matrices, so our techniques can be
applied to them as well [22].

Case (ii) automata with the sink state. The reset threshold of automata belonging to this
class is bounded by n(n−1)

2 , moreover, there exists a series of n-state automata reaching this
bound [26]. In Section 4 we generalize this series to prove that for every 1 ≤ ` ≤ n(n−1)

2
there exists an n-state automaton with sink and the reset threshold equal to `.

Case (iii) automata without restrictions. In Section 5 we utilize ideas of the previous
cases to show that for every 1 ≤ ` ≤ n2 − O(n1.5) there exists an n-state synchronizing
automaton with reset threshold equal to `. This result does not depend on the number
theoretic conjectures.

MFCS 2017



40:4 Attainable Values of Reset Thresholds

The number of letters of automata constructed in the previous cases grows with the
number of states. In Section 6 we aim to get a better understanding on how the number
of letters influences the set of possible reset thresholds. To avoid trivial cases we focus
on irreducibly synchronizing automata, i.e. automata that become non-synchronizing after
the removal of any letter. We resolve an open problem asking whether for each fixed size
of the alphabet there is a series of irreducibly synchronizing n-state automata with the
reset threshold n2 − O(n). Previously, such automata were known only over 2-letter and
3-letter alphabets [3, 21]. Namely, we construct infinite (in n and k) series of automata
Mn,k, M ′

n,k with n states and k letters such that rt(Mn,k) = n2 − (k + 3)n + 2k + 3 and
rt(M ′

n,k) = n2 − (k + 3)n+ 2k + 4. These examples can be also seen as a formal bound to
the following common empirical statement: synchronizing automata with large number of
letters have relatively small reset thresholds (due to a large number of possibilities at every
step of synchronization).

2 Strongly connected automata

A digraph G is primitive if there exists a positive integer t such that for every pair of vertices
u, v of G there exists a walk from u to v of length exactly t. The smallest such t is called the
exponent of G and denoted by exp(G). A survey of results about this classical notion can be
found in [9, Chapter 3.5].

The notion of local exponent was introduced in [8]. The local exponent of G at a vertex
u, denoted by expG(u) or exp(u), is the smallest t such that for every vertex v of G there is
a walk from u to v of length exactly t. Let V = {1, 2, . . . , n}. We will always assume that
the vertices are reordered so that expG(1) ≤ expG(2) ≤ . . . ≤ expG(n).

The behavior of the exponents and the local exponents of digraphs with n vertices gained
a lot of attention in literature. Let ESn(1) be the set of possible first local exponents of all
digraphs with n vertices, i.e. ESn(1) = {expG(1) | G = (V,E) , |V | = n ,G is primitive}.

I Theorem 1 ([28, Theorem 9]).

ESn(1) =
[
1, n

2 − 3n+ 4
2

] ∪ ⋃
(p,q)∈L(n)

[(p− 1)(q − 1), p(q − 2) + n− q + 1],

where L(n) = {(p, q) : 2 ≤ p < q ≤ n, p+ q > n, gcd(p, q) = 1}.

We will rely on Theorem 1 to construct synchronizing automata with known reset
thresholds. The proof of the following proposition is based on the “determinization” procedure
appearing in [7, 14, 17].

I Proposition 2. Let G(V,E) be a primitive n-vertex digraph. Then there exists a synchron-
izing n-state automaton A such that rt(A ) = expG(1).

Proof. The automaton A is constructed as follows. The set of states is equal to V =
{1, 2, . . . , n}. For every choice of states s1, s2, . . . , sn ∈ V such that (s1, 1), (s2, 2), . . . , (sn, n) ∈
E we add the letter (s1, . . . , sn) with the action δ(j, (s1, . . . , sn)) = sj for every j ∈ V .

We need to show that A is synchronizing and rt(A ) = expG(1). Since G is primitive
and every vertex is reachable from 1 in expG(1) steps there exists a sequence of n-tuples
(v(1)

1 = 1, v(1)
2 = 1, . . . , v(1)

n = 1), (v(2)
1 , v

(2)
2 , . . . , v

(2)
n ), . . . , (v(t)

1 = 1, v(t)
2 = 2, . . . , v(t)

n = n) of
length t = expG(1) and such that for every 2 ≤ i ≤ t, 1 ≤ j ≤ n we have (v(i−1)

j , v
(i)
j ) ∈ E.

Furthermore, we can assume that if v(i)
j = v

(i)
k for some i, j, k then v(`)

j = v
(`)
k for all ` ≤ i.



M. Dżyga, R. Ferens, V. V. Gusev, and M. Szykuła 40:5

Indeed, by substituting the value of v(`)
j to v

(`)
k for all ` ≤ i we will obtain a sequence

satisfying all of the aforementioned properties.
Observe now that for every i ≥ 2 there is a letter of A that maps the tuple (v(i)

1 , v
(i)
2 , . . . , v

(i)
n )

to (v(i−1)
1 , v

(i−1)
2 , . . . , v

(i−1)
n ), namely, any letter (s1, . . . , sn) satisfying s

v
(i)
j

= v
(i−1)
j for all

1 ≤ j ≤ n. Thus, the sequence of tuples can be seen as an application of a word w mapping
the set {1, 2, . . . n} to {1}. In other words, w is a synchronizing word of length expG(1).

It remains to note that rt(A ) ≥ expG(1). Indeed, every synchronizing word w mapping V
to {f} labels walks leading from every state to f ; moreover, the edges of A are the inverted
edges of G. Thus, every vertex of G is reachable from f in |w| steps. Since expG(1) is the
smallest number with this property, we have |w| ≥ expG(1). J

By combining Theorem 1 and Proposition 2 we obtain the main result of this section:

I Theorem 3. For every n, ESn(1) ⊂ RTn. Furthermore, it remains true even in the case
of strongly connected automata.

I Remark 4. Clearly, RTn 6⊂ ESn(1), since the largest local 1-exponent is at most n2−3n+3,
by Theorem 1 (originally [27, Theorem 2.1]), while the Černý series of automata has the
reset threshold equal to (n− 1)2.

Proposition 2 is also tightly connected to the Hybrid Černý-Road Coloring conjecture [3,
Conjecture 2]. Let G be a digraph with the set of edges E, and Σ be a finite alphabet. A
coloring of G is an arbitrary deterministic finite state automaton obtained by distributing
letters of Σ over the edges E. Note that G typically has a large number of colorings. The
celebrated Road Coloring Theorem states that every primitive digraph with out-degree k
has a synchronizing coloring with k letters [32]. The Hybrid Černý-Road Coloring conjecture
states that such synchronizing coloring can always be found with the reset threshold at most
n2 − 3n+ 3.

I Corollary 5. Let G be a primitive digraph with n vertices. There exists an alphabet Σ and a
coloring A of G with Σ such that A is a synchronizing automaton and rt(A ) ≤ n2 − 3n+ 3.
In other words, the Hybrid Černý-Road Coloring conjecture holds true if we are allowed to
use an alphabet of arbitrary size.

Proof. The proof of Proposition 2 describes a procedure to derive a synchronizing coloring
of ←−G – the digraph obtained by reversing all the edges of G, with the reset threshold equal to
expG(1). Since expG(1) is bounded by n2 − 3n+ 3 by Theorem 1, the corollary follows. J

3 Lower bounds on the smallest unattainable value

In this section we will derive a lower bound on the smallest value that is not a reset threshold
of a strongly connected n-state automaton. The proof of main theorem is based on the
following number theoretic result.

Let g(x) be the maximal difference (prime gap) between any prime number p ≤ x and
the next prime number. It is known that g(x) ≤ x0.525 when x is large enough [5].

Let ω(x) be the maximal number of distinct prime divisors of any number i ≤ x. It is
known that ω(x) ≤ 1.38402 log x/ log log x for x ≥ 3 [25].

I Theorem 6. For n large enough, the function

f(n) = 6n+ 4n · g(3
√
n) · ω(n) ·

(
g(3
√
n) · ω(n) + 6

√
n
)

MFCS 2017



40:6 Attainable Values of Reset Thresholds

satisfies the following equation:[⌈
n2

3

⌉
,
⌊
n2 − f(n)

⌋]
⊆

⋃
(p,q)∈L(n)

[(p− 1)(q − 1), (p− 1)(q − 1) + n− p],

where L(n) = {(p, q) | 2 ≤ p < q ≤ n, p+ q > n, gcd(p, q) = 1}.

I Corollary 7. Using the known upper bound g(x) ≤ x0.525 [5] we obtain

f(n) = O(n1.7625 logn/ log logn).

Moreover, if we assume the Riemann hypothesis, which implies g(x) ∈ O(
√
x log x) [12], we

get

f(n) = O(n1.75 log2 n/ log logn).

If we assume the Cramer’s conjecture g(x) ∈ O(log2 x) [12], we get

f(n) = O(n1.5 log3 n/ log logn).

Before proving Theorem 6 we will derive the main result of this section:

I Theorem 8. Let gtsc(n) ≥ 1 be the smallest unattainable value by the reset thresholds of
n-state strongly connected synchronizing automata. Then gtsc(n) grows at least as fast as
n2 −O(f(n)), where f(n) is the function from Corollary 7. In particular,

lim
n→∞

gtsc(n)/n2 = 1.

Proof. By Theorems 1 and 3 and Proposition 2 we know that for every integer in [1, (n2−3n+
4)/2] there exists an automaton with the reset threshold equal to it. Also, from Theorem 6 and
Corollary 7 we obtain the same result for the interval [

⌈
n2

3

⌉
, n2 −O(n1.7625 logn/ log logn)].

In other words, gtsc(n) is at least n2−O(f(n)). Since O(n1.7625 logn/ log logn) grows strictly
slower than n2, we have gtsc(n)/n2 tending to 1 when n→∞. J

I Remark 9. Theorem 6 establishes a lower bound on the least value that does not belong to
ESn as well.

Now we are going to prove Theorem 6. Let n be large enough. Let x be any integer from
[dn

2

3 e, bn
2−f(n)c]. We will show that x falls in the interval [(p−1)(q−1), (p−1)(q−1)+n−p]

of some (p, q) ∈ L(n). Let k be the smallest odd integer such that x ≤ k2.

(k − 2)2 < x ≤ k2.

We define

S = {p ∈ [3, n− k − 1] | (p is prime) ∧ p - (k + 1)}.

I Lemma 10. For every s ∈ S, each pair (p, q) = (k + 1− s, k + 1 + s) is in L(n).

Proof. It is enough to check all conditions for (p, q) in L(n). For the first condition p =
k+ 1− s ≥ k+ 1− (n− k− 1) = 2(k+ 1)−n ≥ 2

√
x−n. Because 3x ≥ n2 (so

√
x ≥ n/

√
3),

we have 2
√
x− n ≥ (2/

√
3− 1)n. So for n ≥ 13, we have p ≥ 2.

The condition p < q is obvious, and q = k + 1 + s ≤ k + 1 + n− k − 1 = n.



M. Dżyga, R. Ferens, V. V. Gusev, and M. Szykuła 40:7

The next condition states that p+ q > n and it is clear, since p+ q = 2(k + 1) ≥ 2
√
x ≥

2n/
√

3 > n.
Now we show that p and q are coprime. Let d be a non-trivial common divisor of p and

q. Then also d divides q − p = 2s. Since s is prime, d is either 2 or s. But q = k + 1 + s is
odd, since k + 1 is even and s is odd. Also s cannot divide q = k + 1 + s, since by definition
of s, s is not a divisor of k + 1. Thus, p and q are coprime. J

Let nextS(i) be the smallest number in S greater than i (if it exists). Let nextP (i) be
similarly defined for the set of prime numbers. For all i, we have nextP (i)− i ≤ g(i).

To simplify formulas we define:

bk(s) = (k − s)(k + s) = k2 − s2

ek(s) = (k − s)(k + s) + n− (k + 1) + s = k2 − s2 + n− (k + 1) + s

Ik(s) = [bk(s), ek(s)] = [k2 − s2, k2 − s2 + n− (k + 1) + s]

Notice that Ik(s) is the interval from Theorem 6 with (p, q) = (k + 1− s, k + 1 + s), which
according to Lemma 10 is a pair from L(n) for every s ∈ S.

Our plan is as follows. We will show the existence of smax ∈ S such that bk(smax) ≤ (k−2)2

and for every two consecutive elements s,nextS(s) ∈ S ∩ [3, smax ], the intervals Ik(s) and
Ik(nextS(s)) overlap. Since bk(smax) ≤ (k − 2)2 and k2 ≤ ek(nextS(0)), it will prove that
the intervals

Ik(nextS(0)), . . . , Ik(s), Ik(nextS(s)), . . . , Ik(smax)

cover all integers from [(k − 2)2, k2]. So in particular x will be covered.

I Lemma 11. For every ε ∈ [0, 1), when n is large enough, there is smax ∈ S satisfying
bk(smax) ≤ (k − 2)2 and 2

√
k − 1 ≤ smax ≤ (2 + ε)

√
k − 1.

Proof. Let smax be the smallest prime number ≥ 2
√
k − 1 and such that smax - k + 1.

We show that smax ∈ S. Let p be the first prime number ≥ 2
√
k − 1. If p 6= smax , then

p | k+ 1. But since p ≥ 2
√
k − 1 there is no other prime number p′ > p such that p′ | (k+ 1),

as otherwise p′ · p ≥ 4(k − 1) > k + 1 (for k ≥ 2). Hence, smax = nextP (p) > p. So for both
cases we get the upper bound:

smax ≤ nextP (nextP (2
√
k − 1))

≤ 2
√
k − 1 + 2g(2

√
k − 1 + g(2

√
k − 1)).

According to the bound g(n) < nθ for θ = 0.525 [5],

smax ≤ 2
√
k − 1 + 2(4

√
k − 1)θ

≤ 2
√
k − 1 + 2 · 4θ · (k − 1)θ/2

≤ 2
√
k − 1(1 + 4θ · (k − 1)(θ−1)/2).

Since k ≥ n/
√

3, we have

0 ≤ lim
k→∞

4θ(k − 1)0.5(θ−1) ≤ lim
n→∞

4θ(n/
√

3− 1)0.5(θ−1) = 0.

So for n large enough, we obtain the upper bound:

smax ≤ (2 + ε)
√
k − 1.

MFCS 2017



40:8 Attainable Values of Reset Thresholds

Observe that:

k2 = (k − 2)2 + 4k − 4
< x+ 6k
< n2 − f(n) + 6n
< n2 − 24n

√
n

< n2 − 24n
√
n+ (12

√
n)2,

and so k < n− 12
√
n. From this we obtain:

smax ≤ (2 + ε)
√
k − 1

< 3
√
n− 1

< 12
√
n− 1

≤ n− (n− 12
√
n)− 1

≤ n− k − 1.

Thus, smax ∈ [3, n− k − 1] and therefore is in S.
Finally, we have:

smax ≥ 2
√
k − 1

s2
max ≥ 4(k − 1)

k2 − s2
max ≤ k2 − 4k + 4

bk(smax) ≤ (k − 2)2.

J

I Lemma 12. For every s ∈ S ∩ [3, smax − 1], the intervals Ik(s) and Ik(nextS(s)) overlap,
that is, bk(s) ≤ ek(nextS(s)). Moreover k2 ≤ ek(nextS(0)).

Proof. We have nextS(s) ≤ smax , because smax ∈ S. Notice that

nextS(s) ≤ s+ g(smax) ·
(
ω(k + 1) + 1

)
, (1)

because the number of distinct prime odd divisors of k + 1 is at most ω(k + 1), and the gap
between every two consecutive of the prime divisors is bounded from above by g(smax).

Observe that:

(k + 1)2 < (k − 2)2 + 6k − 3
< x+ 6k
< n2 − f(n) + 6n
≤ n2 − 4n · g(3

√
n) · ω(n) ·

(
g(3
√
n) · ω(n) + 6

√
n
)

< n2 − 4n · g(3
√
n) · ω(n) ·

(
g(3
√
n) · ω(n) + 6

√
n
)
+

+
(

2 · g(3
√
n) · ω(n) ·

(
g(3
√
n) · ω(n) + 6

√
n
))2

,

and so

k + 1 < n− 2 · g(3
√
n) · ω(n) ·

(
g(3
√
n) · ω(n) + 6

√
n
)
. (2)



M. Dżyga, R. Ferens, V. V. Gusev, and M. Szykuła 40:9

Then we have:

ek
(
nextS(s)

)
− bk(s) = − nextS(s)2 + n− (k + 1) + nextS(s) + s2 (3)

> n− (k + 1) + s2 − nextS(s)2.

Using (1) we obtain:

ek
(
nextS(s)

)
− bk(s) > n− (k + 1) + s2 −

(
s+

(
ω(k + 1) + 1

)
g(smax)

)2

= n− (k + 1)− g(smax) ·
(
ω(k + 1) + 1

)(
g(smax) ·

(
ω(k + 1) + 1

)
+ 2s

)
using (2) we obtain:

≥ n−
(
n− 2 · g(3

√
n) · ω(n) ·

(
g(3
√
n) · ω(n) + 6

√
n
))

− g(smax) ·
(
ω(k + 1) + 1

)
·
(
g(smax) ·

(
ω(k + 1) + 1

)
+ 2s

)
≥ g(3

√
n) ·
√

2 · ω(n) ·
(
g(3
√
n) ·
√

2 · ω(n) + 6
√
n
)

(4)

− g(smax) ·
(
ω(k + 1) + 1

)
·
(
g(smax) ·

(
ω(k + 1) + 1

)
+ 2s

)
Observe that 3

√
n > (2 + ε)

√
k − 1 ≥ smax from Lemma 11. Also, since n > k + 1 (by (2)),

for n ≥ 30 we have ω(n) ≥ 3 and so
√

2 · ω(n) ≥ ω(k + 1) + 1. Because functions g and ω
are monotonic, we finally obtain that (4) ≥ 0.

Consider ek
(
nextS(0)

)
− k2. Then it is equal to (3) with s = 0. All the above inequalities

remains unchanged and then k2 ≤ ek(nextS(0)). J

Summarizing, for each x ∈ [n2/3, n2 − f(n)] we find some k such that x ∈ [(k − 2)2, k2].
From Lemma 11 we know that there exists smax ∈ S such that bk(smax) ≤ (k − 2)2. From
Lemma 12 we also get k2 ≤ ek

(
nextS(0)

)
, and the intervals for consecutive values from S

between nextS(0) and smax overlap. Hence, in particular, x belongs to some interval Ik(sx)
where sx ∈ S, nextS(0) ≤ sx ≤ smax . Lemma 10 ensures that the pair (k+ 1− sx, k+ 1 + sx)
belongs to L(n) from the Theorem 6, so x is covered.

4 Automata with a sink state

It is known that if a synchronizing automaton An has a sink state, then rt(An) ≤ (n−1)n
2 [26].

We show that reset thresholds of automata with a sink state cover all values in [1, . . . , (n−1)n
2 ],

at least if the size of the alphabet can be quadratic in n.
We construct a class of automata as follows. Let Tn(V,E) be an undirected tree with

n = |V | vertices and the root r. We construct A (Tn) = (V,E, δ), and the action of every
letter {v1, v2} is defined as follows:

δ(v, {v1, v2}) =


v1 if v = v2 and r /∈ {v1, v2},
v2 if v = v1 and r /∈ {v1, v2},
r if v, r ∈ {v1, v2},
v otherwise.

For v ∈ V let d(v) denote the distance in Tn from v to the root; hence d(r) = 0. For a
subset S ⊆ V we define:

U(Tn, S) =
∑
q∈S

d(q).

MFCS 2017



40:10 Attainable Values of Reset Thresholds

I Lemma 13. For every rooted tree Tn(V,E) and every subset S ⊆ V we have: rt(A (Tn), S) =
U(Tn, S).

Proof. The proof follows easily by induction on U(Tn, S). The case U(Tn, S) = 0 is trivial,
since it must be that S = {r}. Let U(Tn, S) ≥ 1 and assume that the claim holds for all
S′ such that U(Tn, S′) < U(Tn, S). Then observe that the action of any letter {v1, v2} ∈ E
increases the value of U(Tn, S) by 1, decreases the U(Tn, S) by 1, or does not change it.
Moreover, we can always find such {v1, v2} that decreases the value by 1, i.e. when v1 ∈ S
and v2 /∈ S, or v1 = r and v2 ∈ S. Thus the claim follows inductively and the automaton is
synchronizing. J

I Proposition 14. Given n ≥ 2, for every k ∈ [1, . . . , (n−1)n
2 ] there exists an automaton An

with a sink state and rt(A ) = k.

Proof. First, we consider the case of k ≥ n− 1. For each such k we construct a tree Tn(V,E)
with U(Tn, V ) = k and the claimed result follows by Lemma 13. We proceed by induction:
1. the star (E = {{v, r} | v ∈ V }) is suitable for the case of n− 1;
2. let Tn(V,E) be a tree such that U(Tn, V ) = k. If the height of Tn is equal to n− 1, then

Tn is a path graph and U(Tn, V ) = (n−1)n
2 . Thus, we can assume that the height of Tn is

smaller than n− 1. We construct a new tree T ′n(V ′, E) such that U(Tn, V ′) = k + 1 in
the following manner. Observe, that there exist two vertices v1, v2, both distinct from
the root, that are leaves; without loss of generality let d(v1) ≤ d(v2). We will remove v1,
which does not change d(v2). Afterwards, we can find a vertex v3 such that d(v3) = d(v1),
and attach v′1 to v3 as a leaf; thus d(v′1) = d(v2) + 1 and U(Tn, V ′) = k + 1.

Hence, we can construct the tree for any k starting from n− 1.
Finally, for k ∈ {1, . . . , n−2} let An(V,E, δ) be the automaton with V = {r, v1, . . . , vn−1},

E = {e1, . . . , ek} and the transitions defined by

δ(vi, ej) =
{
r if i = j or i > k,
vi otherwise.

Obviously, to synchronize An it is sufficient and necessary to use a word with every letter
from E. J

5 General case

Let Cm(Q,Σ, δC ) be the Černý automaton withm states [10]: Q = {q0, . . . , qm−1}, Σ = {a, b},
δC (qm−1, a) = q0 and δC (qi, a) = qi for i ≤ m− 2, and δC (qi, b) = (qi + 1) mod m.

Let Tm′(V,E) be a tree with m′ vertices and let A (Tm′) = (V,E, δA ) be the automaton
from Section 4.

Given Cm and A (Tm′) we construct the joint automaton Bn with n = m+m′− 1 states.
This is done by union of both automata, while identifying the sink state r of A (Tm′) with
state q0 of Cm and extending the actions of the letters for the states of the other automaton
to identity.

Formally, assume that the alphabets Σ and E are disjoint, r is the sink state of A (Tm′),
and let Bn = (Q ∪ V \ {r},Σ ∪ E, δ), where δ is defined as follows:

δ(q, a) =


δC (q, a) if q ∈ Q and a ∈ Σ,
δA (q, a) if q ∈ V \ {r}, a ∈ E, and δA (q, a) 6= r,
q0 if q ∈ V \ {r}, a ∈ E, and δA (q, a) = r,
q if q ∈ Q and a ∈ E, or q ∈ V \ {r} and a ∈ Σ.



M. Dżyga, R. Ferens, V. V. Gusev, and M. Szykuła 40:11

qm-2

qm-1

q0

q1

q2

. . .
b

b

b

b

b

a, b

. . .

. . . . . .

a1 a2

a3

a3

a4

a4

a5

a5

Figure 1 The automaton Bn from Section 5 formed from Cm and some A (Tm′ ). The omitted
transitions are self-loops.

The scheme of this construction is illustrated in Fig. 1.

I Lemma 15. For all m,m′ ≥ 1 we have

rt(Bn) = rt(Cm) + rt(A (Tm′)).

Proof. Note that in the degenerated case m′ = 1 this trivially holds, and suppose m′ ≥ 2.
To synchronize rt(Bn) is it enough to apply the word w′w, where w′ is a word synchron-

izing A (Tm′) and w is a word synchronizing Cm.
To show that this is a shortest possibility, let w be a synchronizing word for Bn. Then

w contain two disjoint subsequences of letters from Σ and from E, respectively. These
subsequences synchronizes respectively Cm and A (Tm′), which proves the lower bound. J

Arbitrary choice of m and m′ with the constraint n = m + m′ − 1 provides enough
flexibility that finally leads to

I Theorem 16. For every k ≤ n2 − O(n3/2) there exists a synchronizing automaton with
reset threshold k.

Proof. Since rt(Cm) = (m − 1)2 and rt(A (Tm′)) ∈
[
1, . . . , (m′−1)m′

2

]
by Proposition 14,

given m and m′ we can construct an automaton with any value of reset threshold in[
(m− 1)2 + 1, (m− 1)2 + (m′−1)m′

2

]
.

Since n = m+m′ − 1 (m′ = n−m+ 1) we can cover all intervals[
(m− 1)2 + 1, (m− 1)2 + (n−m)(n−m+ 1)

2

]
for all 1 ≤ m ≤ n. Let g, 2 ≤ g ≤ (n− 1)2, be the smallest number such that is not in the
interval for some m. Consider the interval lying just before g (g ≥ 2 so it exists), that is, let m

MFCS 2017



40:12 Attainable Values of Reset Thresholds

Mn,k :

qn-k-2

qn-k-1

q0

q1

q2

qn-k

qn-2

qn-1

. . .

. . .

a0

a0

a0

a0

a0 a0

a0

a1

a2

ak-1

ak, a0

a0

a0

M ′

n,k :

qn-k-2

qn-k-1

q0

q1

q2

qn-k

qn-2

qn-1

. . .

. . .

a0

a0

a0

a0

a0 a0

a0

a1

a2

ak-1

ak, a0

a0

a0
a1

Figure 2 Automata Mn,k and M ′
n,k. The omitted transitions are self-loops.

be the largest number such that g > (m−1)2+((n−m)(n−m+ 1)) /2. Then the interval for
m+1 must begin after g, so g < m2 +1. Hence (m−1)2 +((n−m)(n−m+ 1)) /2+1 ≤ m2,
which solved yields

m ≥
(
2n−

√
16n+ 9 + 5

)
/2 = n−O(

√
n).

So (m− 1)2 + (n−m)(n−m+ 1)/2 = n2 −O(n3/2). J

6 Irreducibly synchronizing automata with large reset thresholds

Let k ≥ 1 and n ≥ k + 3. Let Qn = q0, . . . , qn−1, and Σk = a0, . . . , ak. We define the
automaton Mn,k = (Qn,Σk, δn,k), illustrated in Fig. 2 (left), with the transition function
δn,k defined as follows:

δn,k(qi, a0) =


qi+1 if i ≤ n− k − 2
q0 if i = n− k − 1
qn−1 if n− k ≤ i ≤ n− 2
q1 if i = n− 1,

and for j ≥ 1

δn,k(qi, aj) =
{
qi+1 if i = n− k − 2 + j

qi otherwise.

We also define the variation M ′
n,k(Qn,Σk, δn,k), illustrated in Fig. 2 (right), of Mn,k,

where δ′n,k is defined as follows:

δ′n,k(qi, aj) =
{
qn−k−1 if i = n− k and j = 1
δn,k(qi, aj) otherwise.

I Theorem 17. The automaton Mn,k is irreducibly synchronizing and has reset threshold

n2 − (k + 3)n+ 2k + 3.

Proof (sketch). The word a1a2 · · · ak(an−k−1
0 a1 · · · ak)n−k−2a0 synchronizes Mn,k to the

state q1 and has length n2 − (k + 3)n+ 2k + 3.
To show that this is the reset threshold, we use the backward tracing technique (cf. [19,

Lemma 2], [21, 30]). The idea is to keep track, for i = 1, 2, . . ., of families Li of subsets of Qn



M. Dżyga, R. Ferens, V. V. Gusev, and M. Szykuła 40:13

that are preimages of a singleton under the action of a word of length i. Hence, Li contains
in particular all subsets that are compressible to a singleton by a word of length i. The
smallest i such that Qn ∈ Li is the length of the shortest reset words that synchronize to the
singletons from L0. Further, from each Li we can exclude visited subsets, which are those
being a proper subset of another subset from Li or being a subset (non necessarily proper)
of a subset from some L0, . . . , Li−1 ([19, Lemma 2]). J

I Theorem 18. The automaton M ′
n,k is irreducibly synchronizing and has reset threshold

n2 − (k + 3)n+ 2k + 4.

References
1 D. Ananichev. A new lower bound for reset threshold of synchronizing automata with sink

state. ArXiv e-prints, January 2017. arXiv:1701.07954.
2 D. S. Ananichev and V. V. Gusev. Approximation of reset thresholds with greedy al-

gorithms. Fundam. Inform., 145(3):221–227, 2016.
3 D. S. Ananichev, M. V. Volkov, and V. V. Gusev. Primitive digraphs with large exponents

and slowly synchronizing automata. Journal of Mathematical Sciences, 192(3):263–278,
2013.

4 J. Araújo, P. J. Cameron, and B. Steinberg. Between primitive and 2-transitive: Synchron-
ization and its friends. ArXiv e-prints, November 2015. arXiv:1511.03184.

5 R. C. Baker, G. Harman, and J. Pintz. The difference between consecutive primes, II.
Proceedings of the London Mathematical Society, 83(3):532–562, 2001.

6 J. Berstel, D. Perrin, and C. Reutenauer. Codes and Automata. Encyclopedia of Mathem-
atics an. Cambridge University Press, 2010.

7 V. D. Blondel, R. M. Jungers, and A. Olshevsky. On primitivity of sets of matrices. Auto-
matica, 61(C):80–88, 2015.

8 R. A. Brualdi and Bolian Liu. Generalized exponents of primitive directed graphs. Journal
of Graph Theory, 14(4):483–499, 1990.

9 R. A. Brualdi and H. Ryser. Combinatorial Matrix Theory. Cambridge University Press,
1991.

10 J. Černý. Poznámka k homogénnym experimentom s konečnými automatmi. Matematicko-
fyzikálny Časopis Slovenskej Akadémie Vied, 14(3):208–216, 1964. In Slovak.

11 J. Černý, A. Pirická, and B. Rosenauerová. On directable automata. Kybernetica, 7:289–
298, 1971.

12 H. Crámer. On the order of magnitude of the difference between consecutive prime numbers.
Acta Arithmetica, 2:23–46, 1936.

13 P. Gawrychowski and D. Straszak. Strong inapproximability of the shortest reset word.
In Mathematical Foundations of Computer Science, volume 9234 of LNCS, pages 243–255.
Springer, 2015.

14 B. Gerencsér, V. V. Gusev, and R. M. Jungers. Primitive sets of nonnegative matrices and
synchronizing automata. https://arxiv.org/abs/1602.07556, 2016.

15 V. Gusev. Lower Bounds for the Length of Reset Words in Eulerian Automata. Interna-
tional Journal of Foundations of Computer Science, 24(2), 2013.

16 V. V. Gusev and E. V. Pribavkina. Reset thresholds of automata with two cycle lengths.
International Journal of Foundations of Computer Science, 26(07):953–966, 2015.

17 M. Ito and K. Shikishima-Tsuji. Some results on directable automata. In J. Karhumäki,
H. Maurer, G. Păun, and G. Rozenberg, editors, Theory Is Forever: Essays Dedicated to
Arto Salomaa on the Occasion of His 70th Birthday, pages 125–133. Springer, 2004.

MFCS 2017

http://arxiv.org/abs/1701.07954
http://arxiv.org/abs/1511.03184
https://arxiv.org/abs/1602.07556


40:14 Attainable Values of Reset Thresholds

18 J. Kari and M. V. Volkov. Černý’s conjecture and the road coloring problem. In Handbook
of Automata. European Science Foundation, 2013.

19 A. Kisielewicz, J. Kowalski, and M. Szykuła. Computing the shortest reset words of syn-
chronizing automata. Journal of Combinatorial Optimization, 29(1):88–124, 2015.

20 A. Kisielewicz, J. Kowalski, and M. Szykuła. Experiments with Synchronizing Automata.
In Implementation and Application of Automata, volume 9705 of LNCS, pages 176–188.
Springer, 2016.

21 A. Kisielewicz and M. Szykuła. Synchronizing Automata with Extremal Properties. In
Mathematical Foundations of Computer Science, volume 9234 of LNCS, pages 331–343.
Springer, 2015.

22 Q. Li and J. Shao. The index set problem for boolean (or nonnegative) matrices. Discrete
Mathematics, 123(1):75–92, 1993.

23 J. Olschewski and M. Ummels. The complexity of finding reset words in finite automata.
In Mathematical Foundations of Computer Science, volume 6281 of LNCS, pages 568–579.
Springer, 2010.

24 E. V. Pribavkina. Slowly synchronizing automata with zero and noncomplete sets. Math-
ematical Notes, 90(3):411, 2011.

25 G. Robin. Estimation de la fonction de Tchebychef φ sur le k-iéme nombre premier et
grandes valeurs de la fonction ω(n) nombre de diviseurs premiers de n. Acta Arithmetica,
42(4):367–389, 1983.

26 I. K. Rystsov. Reset words for commutative and solvable automata. Theoretical Computer
Science, 172(1-2):273–279, 1997.

27 J. Shao, J. Wang, and G. Li. Generalized primitive exponents with the complete charac-
terizations of the extreme digraphs. Chinese J. Contemp. Math., 15(4):317–324, 1994.

28 J. Shen and S. Neufeld. Local exponents of primitive digraphs. Linear Algebra and its
Applications, 268:117–129, 1998.

29 M. Szykuła. Improving the upper bound on the length of the shortest reset words. ArXiv
e-prints, February 2017. arXiv:1702.05455.

30 M. Szykuła and V. Vorel. An Extremal Series of Eulerian Synchronizing Automata. In
Developments in Language Theory, LNCS, pages 380–392. Springer, 2016.

31 A. N. Trahtman. An efficient algorithm finds noticeable trends and examples concerning
the C̆erný conjecture. In Mathematical Foundations of Computer Science, volume 4162 of
LNCS, pages 789–800. Springer, 2006.

32 A. N. Trahtman. The Road Coloring Problem. Israel Journal of Mathematics, 172(1):51–60,
2009.

33 M. V. Volkov. Synchronizing automata and the C̆erný conjecture. In Language and Auto-
mata Theory and Applications, volume 5196 of LNCS, pages 11–27. Springer, 2008.

http://arxiv.org/abs/1702.05455


Lower Bounds and PIT for Non-Commutative
Arithmetic Circuits with Restricted Parse Trees∗

Guillaume Lagarde1, Nutan Limaye2, and Srikanth Srinivasan3

1 Univ Paris Diderot, Sorbonne Paris Cité, IRIF, UMR 7089 CNRS, Paris,
France
guillaume.lagarde@irif.fr

2 Department of Computer Science and Engineering, IIT Bombay, Mumbai,
India
nutan@cse.iitb.ac.in

3 Department of Mathematics, IIT Bombay, Mumbai, India
srikanth@math.iitb.ac.in

Abstract
We investigate the power of Non-commutative Arithmetic Circuits, which compute polynomials
over the free non-commutative polynomial ring F〈x1, . . . , xN 〉, where variables do not commute.
We consider circuits that are restricted in the ways in which they can compute monomials: this
can be seen as restricting the families of parse trees that appear in the circuit. Such restrictions
capture essentially all non-commutative circuit models for which lower bounds are known. We
prove several results about such circuits.
1. We show explicit exponential lower bounds for circuits with up to an exponential number of

parse trees, strengthening the work of Lagarde, Malod, and Perifel (ECCC 2016), who prove
such a result for Unique Parse Tree (UPT) circuits which have a single parse tree.

2. We show explicit exponential lower bounds for circuits whose parse trees are rotations of
a single tree. This simultaneously generalizes recent lower bounds of Limaye, Malod, and
Srinivasan (Theory of Computing 2016) and the above lower bounds of Lagarde et al., which
are known to be incomparable.

3. We make progress on a question of Nisan (STOC 1991) regarding separating the power of
Algebraic Branching Programs (ABPs) and Formulas in the non-commutative setting by
showing a tight lower bound of nΩ(log d) for any UPT formula computing the product of d
n× n matrices.
When d ≤ logn, we can also prove superpolynomial lower bounds for formulas with up to
2o(d) many parse trees (for computing the same polynomial). Improving this bound to allow
for 2O(d) trees would yield an unconditional separation between ABPs and Formulas.

4. We give deterministic white-box PIT algorithms for UPT circuits over any field (strengthening
a result of Lagarde et al. (2016)) and also for sums of a constant number of UPT circuits
with different parse trees.

1998 ACM Subject Classification F.1.2 Modes of Computation

Keywords and phrases Non-commutative Arithemetic circuits, Partial derivatives, restrictions

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.41

∗ A full version of the paper is available at https://eccc.weizmann.ac.il/report/2017/077/.

© Guillaume Lagarde, Nutan Limaye, and Srikanth Srinivasan;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 41; pp. 41:1–41:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.41
https://eccc.weizmann.ac.il/report/2017/077/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


41:2 Non-Commutative Arithmetic Circuits with Restricted Parse Trees

1 Introduction

In this paper, we study questions related to Arithmetic Circuits, which are computational
devices that use arithmetic operations (such as + and ×) to compute multivariate polynomials
over a field F. While the more standard work in this area deals with the commutative
polynomial ring F[x1, . . . , xN ], there is also a line of research, initiated by Hyafil [12] and
Nisan [21], that studies the complexity of computing polynomials from the non-commutative
polynomial ring F〈x1, . . . , xN 〉, where monomials are simply strings over the alphabet X =
{x1, . . . , xN}. The motivation for this is twofold: firstly, the study of polynomial computations
over non-commutative algebras (e.g. the algebra of matrices over F) naturally leads to such
questions [7, 6], and secondly, computing, say, the Permanent non-commutatively1 is at least
as hard as computing it in the commutative setting, and thus the lower bound question
should be easier to tackle in the non-commutative setting.

In an influential result, Nisan [21] justified this by proving exponential lower bounds
for non-commutative formulas, and more generally Algebraic Branching Programs (ABPs),
computing the Determinant and Permanent (and also other polynomials). The method
used by Nisan to prove this lower bound can also be seen as a precursor to the method of
Partial derivatives in Arithmetic circuit complexity (introduced by Nisan and Wigderson [22]),
variants of which have been used to prove a large body of lower bound results in the area
[22, 25, 9, 14, 16].

While lower bounds for general non-commutative circuits remain elusive, we do have
other lower bounds that strengthen Nisan’s result. Recently, Malod, along with two of the
authors of this paper showed [19] that Nisan’s method can be extended to prove lower bounds
for skew circuits, which are circuits where every ×-gate has at most one non-variable input.
Also, the first author, Malod and Perifel [18] proved lower bounds for another variant of
non-commutative circuits that they defined to be unambiguous circuits (which we describe
below). While these two results both strengthen Nisan’s result, they are incomparable to
each other, as shown in [18].

In this paper, we build on the above work to prove lower bounds that generalize these
results significantly and also make progress on other problems related to non-commutative
circuits. The circuits we consider are restricted in the ways they are allowed to compute
monomials. We do this by restricting the “parse trees” that are allowed to appear in the
circuits. Informally, the polynomial computed by any arithmetic circuit C can be written
down as an exponentially-large sum of subcircuits, each of which contains only multiplication
gates and hence computes a single monomial2; each such subcircuit gives rise to a tree, which
we call a parse tree of C (see [18] and references therein for the background of parse trees),
that tells us how the monomial was computed. For example, for the circuit C in Figure 1,
the monomial x1x2x3x4 may be computed in C as (x1 · x2) · (x3 · x4) or as (x1 · (x2 · x3) · x4),
each of which comes from a parse tree of C.

All the non-commutative circuit classes for which we know lower bounds can be defined
by restrictions on the parse trees that appear in them. ABPs are circuits where all parse
trees are left combs (i.e. a tree where every internal node has two children and the left child
is always a leaf); skew circuits are equivalent in power to circuits where the parse trees are
twisted combs (i.e. a tree where every internal node has two children and at least one of the

1 We can define the Permanent in the non-commutative polynomial ring by ordering the variables in each
monomial in the commutative permanent, say, in increasing order of the rows in which they appear.

2 different subcircuits could compute the same monomial



G. Lagarde, N. Limaye, and S. Srinivasan 41:3

+

x2 x3x1 x4

×x1 x4

× ×

+

x2 x3

×x1 x4

×

x1 x2 x3 x4

× ×

×

Figure 1 From left to right: a non-commutative arithmetic circuit C; two ways in which the
monomial x1x2x3x4 is computed in the circuit; the corresponding parse trees.

two children is always a leaf); and unambiguous circuits (that we will call Unique Parse Tree
(UPT) circuits below) are defined to be circuits that have only one parse tree. It is thus
natural to consider other restrictions on the structure of the parse trees that appear in a
circuit. We prove the following results about such circuits.

We prove lower bounds for circuits that only contain a few different parse trees. The
motivation for this is the lower bound of [18] for the case of circuits with a single parse
tree and a construction in [19] that shows that poly(N, d)-sized circuits with exp(Ω(d))
many parse trees3 evade all currently known techniques for proving lower bounds for
non-commutative circuits. We show explicit exponential lower bound for circuits with up
to exp(dΩ(1)) parse trees (Theorem 13).
We also consider structural restrictions on the collections of parse trees that appear in
our circuits. As mentioned above, skew circuits are circuits where all parse trees are
twisted combs, which can be seen as trees obtained by starting with a left comb (which
defines an ABP) and successively applying rotations to the internal nodes that swap the
children. We say that a circuit C is rotation Unique Parse tree (rotUPT) if there is a
single tree T such that all the parse trees of C can be obtained as rotations of T .4
We show an explicit exponential lower bound for rotUPT circuits (Theorem 17). Note
that this result simultaneously generalizes the skew circuit lower bound of Limaye et
al. [19] as well as the UPT circuit lower bound of Lagarde et al. [18].
We consider the problem of separating ABPs from formulas, which was posed by Nisan [21]
and is the non-commutative arithmetic analogue of separating NL from NC1. Equivalently,
this is the question of whether (an entry of) the product of d n× n matrices, all of whose
entries are distinct variables, can be computed by a poly(n, d)-sized non-commutative
formula. The standard divide-and-conquer approach yields, for every even ∆, a non-
commutative formula of depth ∆ and size nO(∆d2/∆) computing this polynomial and a
size nO(log d) formula in general. Further, these formulas can be seen to have a unique
parse tree (i.e. they are UPT).
We show that this upper bound is nearly tight for UPT formulas and every choice of
∆ by showing a lower bound of nΩ(∆d1/b∆/2c).5 (Theorem 18). In particular, our result
implies that any UPT formula for this polynomial must have size nΩ(log d). We can extend
this (Theorem 19) to prove a superpolynomial lower bound even in the case that the
formula has at most k parse trees, where k = 2o(d) (however, for this result, we need the
assumption that d ≤ logn).

3 A close look at the circuits in [19] indicates that just about all parse trees of fan-in 2 appear in these
circuits.

4 There can be exp(Ω(d)) of these, as in the case of skew circuits.
5 Our bounds are actually better stated in terms of the ×-depth of the formula.

MFCS 2017



41:4 Non-Commutative Arithmetic Circuits with Restricted Parse Trees

Finally, we consider the Polynomial Identity Testing (PIT) problem for non-commutative
circuits with restricted parse trees. Lagarde et al. [18] show that deterministic PIT
algorithms for UPT circuits can be obtained by adapting a PIT algorithm for ABPs due
to Arvind, Joglekar and Srinivasan [3]. However, this technique only works over fields of
characteristic zero. Here, we give a straightforward adaptation of an older PIT algorithm
of Raz and Shpilka [24] (also for non-commutative ABPs) to show that PIT for UPT
circuits can be solved in deterministic polynomial time over all fields (Theorem 20). We
also consider circuits that are sums of UPT circuits (with possibly different parse trees).
By using ideas from the work of Gurjar, Korwar, Saxena and Thierauf [10], we show
that PIT for a sum of constant number of UPT circuits can be solved in deterministic
polynomial time over any field (Theorem 21).

For lack of space, many of the proofs of the above statements have been omitted from
this extended abstract. We refer the reader to the full version [17] for detailed proofs.

Related work. Hrubeš, Wigderson and Yehudayoff [11] initiated a study of the asymptotics
of the classical sum-of-squares problem in mathematics and showed that a suitable result
in this direction would yield strong lower bounds against general non-commutative circuits.
While this line of work is currently the only feasible attack on the problem of general circuit
lower bounds, we do not yet have any lower bounds using this technique.

Nisan and Wigderson [22] prove results that imply6 some lower bounds for UPT formulas
computing iterated matrix product. For depth-3 formulas, they prove an optimal nd bound
on computing the product of d n× n matrices. For depths ∆ > 3 though, the lower bound is
only exp(Θ(d1/∆)) and thus does not yield anything non-trivial when ∆ approaches log d.
Indeed, the proof method of this result in [22] is not sensitive to the value of n and holds for
any n ≥ 2. Such a method cannot yield non-trivial lower bounds for general formulas since
we do have poly(d)-sized formulas in the setting when n = O(1).

The results of Kayal, Saha, and Saptharishi [15] and Fournier, Limaye, Malod, and
Srinivasan [8] together also prove a superpolynomial lower bound on the size of regular
formulas (defined by [15]) computing the product of d n× n matrices in the commutative
setting. While these formulas (in the non-commutative setting) are definitely UPT, the
converse is not true.

Arvind, Mukhopadhyay and Raja [4] and Arvind, Joglekar, Mukhopadhyay and Raja [2]
have some recent work on PIT algorithms for general non-commutative circuits that run in
time polylogarithmic in the degree of the circuit and polynomial in the size of the circuit.
Our results are incomparable with theirs, since our algorithms run in time polynomial in both
degree and size but are deterministic, whereas the algorithms of [4, 2] are faster (especially
in terms of degree) but randomized.

An earlier manuscript of Arvind and Raja [5] contains a claim that the PIT problem for
non-commutative skew circuits has a deterministic polynomial time algorithm, but the proof
is unfortunately flawed.7

Techniques. The techniques used to prove the lower bounds in this paper are generalizations
of the techniques of Hyafil [12] and Nisan [21]. Given a homogeneous polynomial f ∈ F〈X〉
of degree d, we associate with it an Nd/2×Nd/2 matrix whose rows and columns are labelled

6 The results of [22] in fact hold in the stronger commutative set-multilinear setting.
7 Private communication with the authors.



G. Lagarde, N. Limaye, and S. Srinivasan 41:5

by monomials (i.e. strings over X) m of degree d/2 each. Nisan [21] considers the matrix
M [f ] where the (m1,m2)th entry is the coefficient of the monomial m1m2 in f . In [19, 18],
along with our co-authors, we considered the more general family of matrices MY [f ] where
Y ⊆ [d] is of size d/2 and the (m1,m2)th entry of MY [f ] is the coefficient of the monomial
m such that the projection of m to the locations in Y gives m1 and the locations outside Y
give m2.

This is the general technique we use in this paper as well, though choosing the right Y
requires some work. In the lower bound for circuits with few parse trees, it is chosen at
random (in a similar spirit to a multilinear lower bound of Raz [23]). In the lower bound
for rotUPT circuits, it is chosen in a way that depends on the structure of the parse trees
in the circuit (combining the approaches of [19, 18]). In the separation of UPT formulas
from ABPs, it is applied (after a suitable restriction) in a way that keeps the iterated matrix
product polynomial high rank but reduces the rank of the UPT formula.

For the PIT algorithm for sums of UPT circuits, we use an observation of Gurjar et
al. [10] (also see [21, 24]) that any polynomial P that has a small ABP has a small set of
characterizing identitites such that Q = P iff Q satisfies these identities. We are able to show
(using a suitable decomposition lemma of [18]) that a similar fact is also true more generally
in the case that P has a small UPT circuit. If Q also has a small UPT circuit, then checking
these identities for Q reduces to a PIT circuit for a single UPT circuit, for which we already
have algorithms. In this way, given two UPT circuits (with different parse trees) computing
P,Q, we can check if P −Q = 0. Extending this idea exactly as in [10], we can efficiently
check if the sum of any small number of UPT circuits is 0.

2 Preliminaries

We refer the reader to the survey [26] for standard definitions regarding arithmetic circuits.

2.1 Non-commutative polynomials

Throughout, we use X = {x1, . . . , xN} to denote the set of variables. We work over the
non-commutative ring of polynomials F〈X〉 where monomials are strings over the alphabet X:
for example, x1x2 and x2x1 are distinct monomials in this ring. For d ∈ N, we useMd(X)
to denote the set of monomials (i.e. strings) over the variables in X of degree exactly d.

For i, j ∈ N, we define [i, j] to be the set {i, i+ 1, . . . , j} (the set is empty if i > j). We
also use the standard notation [i] to denote the set [1, i].

Given homogeneous polynomials g, h ∈ F〈X〉 of degrees dg and dh respectively and an
integer j ∈ [0, dh], we define the j-product of g and h – denoted g ×j h – as follows:

When g and h are monomials, then we can factor h uniquely as a product of two monomials
h1h2 such that deg(h1) = j and deg(h2) = dh − j. In this case, we define g ×j h to be
h1 · g · h2.
The map is extended bilinearly to general homogeneous polynomials g, h. Formally, let
g, h be general homogeneous polynomials, where g =

∑
` g`, h =

∑
i hi and g`, hi are

monomials of g, h respectively. For j ∈ [0, dh], each hi can be factored uniquely into
hi1 , hi2 such that deg(hi1) = j and deg(hi2) = dh − j. And g ×j h is defined to be∑
i

∑
` hi1g`hi2 .

Note that g ×0 h and g ×dh
h are just the products g · h and h · g respectively.

MFCS 2017



41:6 Non-Commutative Arithmetic Circuits with Restricted Parse Trees

2.2 The partial derivative matrix
Here we recall some definitions from [21] and [19]. Let Π denote a partition of [d] given by
an ordered pair (Y,Z), where Y ⊆ [d] and Z = [d] \ Y . In what follows we only use ordered
partitions of sets into two parts. We say that such a Π is balanced if |Y | = |Z| = d/2.

Given a monomial m of degree d and a set W ⊆ [d], we use mW to denote the monomial
of degree |W | obtained by keeping exactly the variables in the locations indexed by W .

I Definition 1 (Partial Derivative matrix). Let f ∈ F〈X〉 be a homogeneous polynomial of
degree d. Given a partition Π = (Y, Z) of [d], we define an N |Y | ×N |Z| matrix M [f,Π] with
entries from F as follows: the rows of M [f,Π] are labelled by monomials from M|Y |(X)
and the columns by elements of M|Z|(X). Let m′ ∈ M|Y |(X) and m′′ ∈ M|Z|(X); the
(m′,m′′)th entry of M [f,Π] is the coefficient in the polynomial f of the unique monomial m
such that mY = m′ and mZ = m′′.

We will use the rank of the matrix M [f,Π] – denoted rank(f,Π) – as a measure of the
complexity of f . Note that since the rank of the matrix is at most the number of rows, we
have for any f ∈ F〈X〉 rank(f,Π) ≤ N |Y |.

I Definition 2 (Relative Rank). Let f ∈ F〈X〉 be a homogeneous polynomial of degree d.
For any Y ⊆ [d], we define the relative rank of f w.r.t. Π = (Y,Z) – denoted rel-rank(f,Π) –
to be

rel-rank(f,Π) := rank(M [f,Π])
N |Y |

.

Fix a partition Π = (Y,Z) of [d] and two homogeneous polynomials g, h of degrees
dg and dh respectively. Let f = g ×j h for some j ∈ [0, dh]. This induces natur-
ally defined partitions Πg of [dg] and Πh of [dh] respectively in the following way. Let
Ig = [j + 1, j + dg] and Ih = [d] \ Ig. We define Πg = (Yg, Zg) such that Yg = {j ∈
[dg] | Y contains the jth smallest element of Ig}; Πh = (Yh, Zh) is defined similarly with
respect to Ih. Let |Yg|, |Zg|, |Yh|, |Zh| be denoted d′g, d′′g , d′h, d′′h respectively.

In the above setting, we have a simple description of the matrix M [f,Π] in terms of
M [g,Πg] and M [h,Πh]. We use the observation that monomials of degree |Y | = d′g + d′h are
in one-to-one correspondence with pairs (m′g,m′h) of degrees d′g and d′h respectively (and
similarly for monomials of degree |Z|). The following appears in [19].

I Lemma 3 (Tensor Lemma). Say f = g×jh as above. Then, M [f,Π] = M [g,Πg]⊗M [h,Πh].

I Corollary 4. Say f = g×j h as above. We have rank(f,Π) = rank(g,Πg) · rank(h,Πh). In
the special case that one of Yg, Zg, Yh, or Zh is empty, the tensor product is an outer product
of two vectors and hence rank(f,Π) ≤ 1.

We associate any partition Π = (Y, Z) with the string in {−1, 1}d that contains a −1
in exactly the locations indexed by Y . Given partitions Π1,Π2 ∈ {−1, 1}d, we now define
∆(Π1,Π2) to be the Hamming distance between the two strings or equivalently as |Y1∆Y2|
where Π1 = (Y1, Z1) and Π2 = (Y2, Z2).

I Proposition 5. Let f ∈ F〈X〉 be homogeneous of degree d and say Π ∈ {−1, 1}d. Then,
rank(f,Π) = rank(f,−Π).

Proof. Follows from the fact that M [f,−Π] is the transpose of M [f,Π]. J

I Lemma 6 (Distance lemma). Let f ∈ F〈X〉 be homogeneous of degree d and say Π1,Π2 ∈
{−1, 1}d. Then, rank(f,Π2) ≤ rank(f,Π1) ·N∆(Π1,Π2).

Proof. See the full version [17]. J



G. Lagarde, N. Limaye, and S. Srinivasan 41:7

2.3 Standard definitions related to non-commutative circuits
We consider noncommutative arithmetic circuits that compute polynomials over the ring
F〈X〉. These are arithmetic circuits where the children of each × gate are ordered and the
polynomial computed by a × gate is the product of the polynomials computed by its children,
where the product is computed in the given order. Further, unless mentioned otherwise, we
allow both + and × gates to have unbounded fan-in and the + gates to compute arbitrary
linear combinations of its inputs (the input wires to the + gate are labelled by the coefficients
of the linear combination). A noncommutative formula is a circuit where the underlying
directed acyclic graph is a rooted tree. The size of an arithmetic circuit or formula is the
number of edges or wires in the circuit (which can be assumed to be at least the number of
gates in the circuit).

We always assume that the output gate of the circuit is a + gate (possibly of fan-in 1)
and that input gates feed into + gates. We also assume that + and × gates alternate on any
path from the output gate to an input gate (some of these gates can have fan-in 1). Any
circuit can be converted to one of this form with at most a constant blow-up in size.

Throughout, our circuits and formulas will be homogeneous in the following sense. Define
the formal degree of a gate as follows: the formal degree of an input gate is 1, the formal
degree of a + gate is the maximum of the formal degrees of its children, and that of a × gate
is the sum of the formal degrees of its children. We say that a circuit is homogeneous if each
gate computes a homogeneous polynomial and any gate computing a non-zero polynomial
computes one of degree equal to the formal degree of the gate. Note, in particular, that every
input node is labelled by a variable only (and not by constants from F).

Homogeneity is not a strong assumption on the circuit: it is a standard fact that any
homogeneous polynomial of degree d computed by a non-commutative circuit of size s can
be computed by a homogeneous circuit of size O(sd2) [11].

We also consider homogeneous Algebraic Branching Programs (ABPs), defined by
Nisan [21] in the non-commutative context. We give here a slightly different definition
that is equivalent up to polynomial factors.

Assume that N = n2 · d for positive n, d ∈ N and let IMMn,d(X) denote the following
polynomial in N variables (see, e.g. [22]). Assume X is partitioned into d sets of variables
X1, . . . , Xd of size n2 each and let M1, . . . ,Md be n × n matrices such that the entries of
Mi (i ∈ [d]) are distinct variables in Xi. Let M = M1 ·M2 · · ·Md; each entry of M is a
homogeneous polynomial of degree d from F〈X〉. We define the polynomial IMMn,d to be
the sum of the diagonal entries of M .

A homogeneous ABP for a homogenous polynomial f ∈ F〈X〉 of degree d is a pair (n1, ρ)
where n1 ∈ N and ρ is a map from X ′ = {x′1, . . . , x′n2

1d
} to homogeneous linear functions

from F〈X〉 such that f can be obtained by substituting ρ(x′i) for each x′i in the polynomial
IMMn1,d(X ′). The parameter n1 is called the width of the ABP.

2.4 Non-commutative circuits with restricted parse trees
In this paper, we study restricted forms of non-commutative arithmetic circuits. The
restrictions are defined by the way the circuits are allowed to multiply variables to compute
a monomial. To make this precise we need the notion of a parse tree of a circuit, which has
been considered in many previous works [13, 1, 20, 18].

Fix a homogeneous non-commutative circuit C. A parse formula of C is a formula C ′
obtained by making copies of gates in C as follows:

Corresponding to the output + gate of C, we add an output + gate to C ′,

MFCS 2017



41:8 Non-Commutative Arithmetic Circuits with Restricted Parse Trees

+

x2 x3x1 x4

×x1 x4

× ×

+

23

7

x2 x3

×x1 x4

×

+ +

+

2

7

x1 x2 x3 x4

× ×

×

+ + + +

+

3 2

Figure 2 From left to right: a non-commutative arithmetic circuit; two parse formulas in the
circuit; the corresponding parse trees. (To simplify the picture, we have not depicted the edges that
carry the constant 1. Also we have not introduced + gates between the two layers of × gates; the
reader should assume that the edges between the two layers carry + gates of fan-in 1.)

For every + gate Φ′ added to C ′ corresponding to a + gate Φ in C, we choose exactly
one child Ψ of Φ in C and add a copy Ψ′ to C ′ as a child of Φ′. The constant along the
wire from Ψ′ to Φ′ remains the same as in C.
For every × gate Φ′ added to C ′ corresponding to a × gate Φ in C and every wire from
a child Ψ to Φ in C, we make a copy of Ψ′ to C ′ and make it a child of Φ.

Any such parse formula C ′ computes a monomial (with a suitable coefficient) and the
polynomial computed by C is the sum of all monomials computed by parse formulas C ′ of C.
We define val(C ′) to be the monomial computed by C ′.

A parse tree of C is a rooted, ordered tree obtained by taking a parse formula C ′ of C,
“short circuiting” the + nodes (i.e. we remove the + nodes and connect the edges that were
connected to it directly), and deleting all labels of the nodes and the edges of the tree. See
Figure 2 for an example. Note that in a homogeneous circuit C, each such tree has exactly d
leaves. We say that the tree T is the shape of the parse formula C ′.

The process that converts the parse formula C ′ to T associates each internal node of T
with a multiplication gate of C ′ and each leaf of T with an input gate of C ′.

Let T be a parse tree of a homogeneous circuit C with d leaves. Given a node v ∈ V (T ),
we define the deg(v) to be the number of leaves in the subtree rooted at v and pos(v) :=
(1+ the number of leaves preceding v in an in-order traversal of T ). The type of v is defined
to be type(v) := (deg(v), pos(v)). (The reason for this definition is that in any parse formula
C ′ of shape T , the monomial computed by the multiplication gate or input gate corresponding
to v in C ′ computes a monomial of degree deg(v) which sits at position pos(v) w.r.t. the
monomial computed by the circuit C ′.) We also use I(T ) to denote the set of internal nodes
of T and L(T ) to denote the set of leaves of T .

We use T (C) to denote the set of parse trees that can be obtained from parse formulas
of C. We say that a homogeneous non-commutative arithmetic circuit is a Unique Parse
Tree circuit (or UPT circuit) if |T (C)| = 1. More generally if |T (C)| ≤ k, we say that C is
k-PT. Finally, if T (C) ⊆ T for some family T of trees, we say that C is T -PT. Similarly, we
also define UPT formulas, k-PT formulas and T -PT formulas. If C be a UPT circuit with
T (C) = {T}, we say that T is the shape of the circuit C.

We say that a UPT circuit C is in normal form if we can associate with each gate Φ of
the circuit a node v(Φ) ∈ V (T ) such that the following holds: if Φ is an input gate, then
v(Φ) is a leaf; if Φ is a × gate with children Ψ1, . . . ,Ψt (in that order), then the nodes
v(Ψ1), . . . , v(Ψt) are the children of v(Φ) (in that order); and finally, if Φ is a + gate with
children Ψ1, . . . ,Ψt (which are all × or input gates since we assume that + and × gates are



G. Lagarde, N. Limaye, and S. Srinivasan 41:9

alternating along each input to output path), then v(Φ) = v(Ψ1) = · · · = v(Ψt). (Intuitively,
what this means is that in any unravelling of a parse formula containing a (multiplication or
input) gate Φ to get the parse tree T , the gate Φ always takes the position of node v(Φ).)

We state below some simple structural facts about UPT circuits. (See [17] for proof.)

I Proposition 7.
1. Let C be a UPT formula. Then C is in normal form.
2. For any UPT circuit C of size s and shape T , there is another UPT circuit C ′ of size

O(s2) and shape T in normal form computing the same polynomial as C. Further, given
C and T , such a C ′ can be constructed in time poly(s).

Let C be either a UPT formula or a UPT circuit of shape T in normal form. We say
that a + gate Φ in C is a (v,+) gate if v(Φ) = v. Similarly, we refer to a × gate Φ in C as
a (v,×) gate if v(Φ) = v. For simplicity of notation, we also refer to an input gate Φ as a
(v,×) gate if v(Φ) = v. Note that the output gate is a (v0,+) gate where v0 is the root of T .

We now observe that any UPT formula or circuit in normal form can be converted to
another (of a possibly different shape) where each multiplication gate has fan-in at most 2.

I Lemma 8. Let C be a normal form UPT circuit (resp. formula) of size s and shape T .
Then there is a tree T ′ and normal form UPT circuit (resp. formula) C ′ of size O(s) and
shape T ′ such that C ′ computes the same polynomial as C and every multiplication gate in
C ′ has fan-in at most 2. (This implies that every internal node of T ′ also has fan-in at
most 2.) Further, there is a deterministic polynomial-time algorithm, which when given C,
computes C ′ as above.

Proof. See the full version [17]. J

Let C be a UPT circuit of shape T computing a homogeneous polynomial f of degree
d. Given any node u ∈ V (T ), we define partition Πu of [d] so that Πu = (Yu, Zu) where
Yu = {pos(v) | v a leaf and descendant of u}.

We will need the following lemma of Lagarde et al. [18].

I Lemma 9 ([18]). Let C be a normal form UPT circuit of size s computing a homogeneous
polynomial f ∈ F〈X〉 of degree d. Assume that the fan-in of each multiplication gate is
bounded by 2. Then, for any u ∈ V (T ), rank(f,Πu) ≤ s, where Πu is as defined above.

2.5 A polynomial that is full rank w.r.t. all partitions
The following was shown in [19].

I Theorem 10. For any even d and any positive N ∈ N, there is a q0(N, d) such that the
following holds over any field of size at least q0(N, d). There is an explicit homogeneous
polynomial FN,d ∈ F〈X〉 of degree d such that for any balanced partition Π = (Y,Z) of [d],
rank(f,Π) = Nd/2 (equivalently, rel-rank(f,Π) = 1). Further, FN,d can be computed by an
explicit homogeneous non-commutative arithmetic circuit of size poly(N, d).

3 Lower bounds for k-PT circuits

In this section, we show that any k-PT circuit computing a polynomial of degree d where k
is subexponential in d cannot compute the polynomial FN,d from Theorem 10. We will show
that if both k and the size of the circuit are subexponential in d, then there is a Π such that
rel-rank(f,Π) < 1.

Our proof is based on the following lemmas.

MFCS 2017



41:10 Non-Commutative Arithmetic Circuits with Restricted Parse Trees

I Lemma 11. Let C be a k-PT circuit (resp. formula) of size s with T (C) = {T1, . . . , Tk}
computing f ∈ F〈X〉. Then there exist normal form UPT circuits (resp. formulas) C1, . . . , Ck
of size at most s2 each such that T (Ci) = {Ti} and f =

∑k
i=1 fi, where fi the polynomial

computed by Ci.

Proof. See the full version [17]. J

I Lemma 12. Let C be a UPT circuit in normal form over F〈X〉 of size s = N c and f a
homogeneous polynomial of degree d computed by C. Let Π be a uniformly random partition
of the variables of [d] into two sets. Then for any parameter b ∈ N,

Pr
Π

[
rank(f,Π) ≥ Nd/2−b

]
≤ exp(−Ω(d/(b+ c)2)).

Before proving Lemma 12, let us see that the above lemmas imply the following lower
bound for homogeneous non-commutative circuits with few parse trees. Note that when the
field F is large enough, this proves a lower bound for FN,d from Theorem 10.

I Theorem 13. Assume that N ≥ 2 is any constant and d an even integer parameter
that is growing. Let F ∈ F〈X〉 be any polynomial such that for each balanced partition Π,
rank(F,Π) = Nd/2. Then, for any constant ε ∈ (0, 1), any circuit that computes F and
satisfies |T (C)| = k ≤ 2d

1
3−ε

must have size at least 2d
1
3−

ε
2 .

Proof. Let C be any circuit of size s ≤ N c for c = d1/3−ε/2 with |T (C)| = k ≤ 2d1/3−ε and
computing f ∈ F〈X〉. We show that there is a balanced partition Π such that rank(f,Π) <
Nd/2. This will prove the theorem.

To show this, we proceed as follows. Using Lemma 11, we can write f =
∑
i∈[k] fi where

each fi ∈ F〈X〉 is computed by a normal form UPT circuit Ci of size at most s2 ≤ N2c.
Fix any i ∈ [k]. By Lemma 12, the number of partitions Π for which rank(fi,Π) ≥ N d

2−c

is at most 2d · exp(−Ω(d/c2)). In particular, since the number of balanced partitions is(
d
d/2
)

= Θ( 2d
√
d
), we see that for a random balanced partition Π,

Pr
Π balanced

[
rank(fi,Π) ≥ Nd/2−c

]
≤
√
d · exp(−Ω(d/c2)) ≤ exp(−d1/3).

Say fi is good for Π if rank(fi,Π) ≥ Nd/2−c. By the above, we have

Pr
Π balanced

[∃i ∈ [k] s.t. fi good for Π] ≤ k · exp(−d1/3) ≤ 2d
1/3−ε

· exp(−d1/3) < 1.

In particular, there is a balanced Π such that no fi is good for Π. Fix such a balanced
partition Π. By the subadditivity of rank, we have

rank(f,Π) ≤
∑
i∈[k]

rank(fi,Π) ≤ k ·Nd/2−c ≤ 2d
1/3−ε

·Nd/2−c

= Nd/2 · exp(O(d1/3−ε)− Ω(d1/3−ε/2)) < Nd/2.

This proves the theorem. J

Proof of Lemma 12 . Recall from Section 2.2 that we identify each partition Π with an
element of {−1, 1}d. Given partitions Π1,Π2 ∈ {−1, 1}d we use 〈Π1,Π2〉 to denote their inner
product: i.e., 〈Π1,Π2〉 :=

∑
i∈[d] Π1(i)Π2(i). Note that the Hamming distance ∆(Π1,Π2) is

∆(Π1,Π2) = d

2 −
1
2 〈Π1,Π2〉. (1)



G. Lagarde, N. Limaye, and S. Srinivasan 41:11

Let T (C) = {T}. Recall that |L(T )| = d and by Lemma 8, we can assume that the fan-in
of each internal node of T is bounded by 2. For any u ∈ I(T ) (recall I(T ) is the set of
internal nodes of T ), let L(u) denote the set of leaves of the subtree rooted at u. We identify
each leaf ` ∈ V (T ) with pos(`) ∈ [d]. For each u ∈ I(T ), we can define the partition Πu from
Section 2.4 by Πu(`) = −1 iff ` ∈ L(u).

For γ > 0, define a partition Π to be γ-correlated to T if for each u ∈ I(T ), we have∣∣∣∑`∈L(u) Π(`)
∣∣∣ ≤ γ.

Lemma 12 immediately follows from Claims 14 and 15, stated below.

I Claim 14. Let Π be any partition of [d] such that rank(f,Π) ≥ Nd/2−b. Then Π is
O(b+ c)-correlated to T .

Proof. We know from Lemma 9 and Proposition 5 that for each u ∈ I(T ), rank(f,Πu) and
rank(f,−Πu) are at most N c. If Π is a partition such that either ∆(Π,Πu) or ∆(Π,−Πu)
is strictly smaller than d

2 − (b + c) for some u ∈ I(T ), then by Lemma 6 we would have
rank(f,Π) < Nd/2−b.

Thus, if rank(f,Π) ≥ Nd/2−b, we must have min{∆(Π,Πu),∆(Π,−Πu)} ≥ d
2 − (b + c)

for each u ∈ I(T ). By (1), this means that for each u ∈ I(T ), |〈Π,Πu〉| ≤ γ for some
γ = O(b+ c).

Let v be the root of T . Note that Πv ∈ {−1, 1}d is the vector with all its entries being
−1. Hence, we have for any u ∈ I(T ),∣∣∣∣∣∣

∑
`∈L(u)

Π(`)

∣∣∣∣∣∣ =
∣∣∣∣〈Π, −(Πu + Πv)

2 〉
∣∣∣∣ ≤ 1

2(|〈Π,Πu〉|+ |〈Π,Πv〉|) ≤ O(γ).

This proves the claim. J

I Claim 15. Say Π ∈ {−1, 1}d is chosen uniformly at random and γ ≤
√
d. Then

PrΠ [Π is γ-correlated to T ] ≤ exp(−Ω( dγ2 )).

The following technical subclaim is useful for proving Claim 15. (See [17] for proof.)

I Subclaim 16. Assume that r, t ∈ N such that rt ≤ d/4. Then we can find a sequence
u1, . . . , ur ∈ I(T ) such that for each i ∈ [r] we have |L(ui) \

⋃i−1
j=1 L(uj)| ≥ t.

Proof of Claim 15. We apply Subclaim 16 with t = Θ(γ2) and r = Θ(d/γ2) to get a sequence
u1, . . . , ur ∈ I(T ) such that for each i ∈ [r], we have |L(ui) \

⋃i−1
j=1 L(uj)| ≥ t.

By the definition of γ-correlation, we have

Pr
Π

[Π γ-correlated to T ] ≤ Pr
Π

∀i ∈ [r],

∣∣∣∣∣∣
∑

`∈L(ui)

Π(`)

∣∣∣∣∣∣ ≤ γ


≤
∏
i∈[r]

Pr
Π

∣∣∣∣∣∣
∑

`∈L(ui)

Π(`)

∣∣∣∣∣∣ ≤ γ
∣∣∣∣∣∣ {Π(`) | ` ∈

⋃
j<i

L(uj)}

 (2)

Fix any i ∈ [r] and Π(`) for each ` ∈ L<i :=
⋃
j<i L(uj). The event |

∑
`∈L(ui) Π(`)| ≤ γ

is equivalent to
∑
`∈L(ui)\L<i

Π(`) ∈ I for some interval I of length 2γ = O(
√
t). This is the

probability that the sum of at least t {−1, 1}-valued random variables chosen i.u.a.r. lies in
an interval of length O(

√
t). By the Central Limit theorem, this is at most 1− Ω(1). By (2),

we get PrΠ [Π γ-correlated to T ] ≤ exp{−Ω(r)}, which proves the claim. J

MFCS 2017



41:12 Non-Commutative Arithmetic Circuits with Restricted Parse Trees

4 Other results

We refer the reader to the full version of the paper [17] for proofs of the results stated below.

Lower bounds for circuits with rotations of one parse tree. Given two parse trees T1 and
T2 with the same number of leaves, we say that T1 is a rotation of T2, denoted T1 ∼ T2, if
T1 can be obtained from T2 by repeatedly reordering the children of various nodes in T2.
Clearly, ∼ is an equivalence relation. We use [[T ]] to denote the equivalence class of tree T.
We say that a homogeneous circuit C is rotation UPT or rotUPT if there is a tree T such
that T (C) ⊆ [[T ]]. We can show the following result.

I Theorem 17. Let N, d ∈ N be parameters with d even. Let C be a rotUPT circuit of size s
computing a polynomial f ∈ F〈X〉 of degree d over N variables, then there exists a partition
Π = ΠC s.t. rel-rank(f,Π) is at most poly(s) ·N−Ω(d). In particular, if |F| > q0(N, d) where
q0(N, d) is as in Theorem 10, any rotUPT circuit for FN,d has size NΩ(d).

Separation between Few PT formulas and ABPs. We now state two lower bounds for
formulas against IMMn,d, yelding separations with ABPs.

We define the ×-depth of a formula to be the maximum number of ×-gates that one can
meet on a path from the root to a leaf. Note that if a formula has alternating + and × gates
on each path and has depth ∆′ and ×-depth ∆, then ∆′ ≥ ∆ ≥ d∆′

2 e. We will state our first
lower bound in terms of ×-depth.

I Theorem 18. Let F be a UPT formula of ×-depth ∆, size s, computing IMMn,d ∈ F〈X〉.
Then, s ≥ nΩ(∆d1/∆). In particular, any UPT formula for IMMn,d must have size nΩ(log d).

This lower bound is actually tight for every ×-depth ∆, since the standard divide and
conquer approach to computing IMMn,d gives in fact a UPT formula of size nO(∆d1/∆) and
×-depth ∆, for any ∆ ≤ log d.

We can also prove a lower bound on the size of k-PT formulas computing IMMn,d as long
as k is significantly smaller than 2d and d ≤ logn.

I Theorem 19. Let n, d be growing parameters with d ≤ logn. Then, any k-PT formula F
computing IMMn,d has size at least n` where ` = Ω(lg d− lg lg k). In particular, if k = 2o(d),
the size(F ) ≥ nω(1) and if k = 2d1−Ω(1) , then size(F ) ≥ nΩ(log d).

Deterministic PIT for UPT and k-PT circuits. We now state two results regarding de-
terministic whitebox PIT algorithms for UPT and k-PT circuits. The first result was already
known in characteristic 0 via the result of Lagarde et al. [18]. However, the algorithm we
give, adapting the work of Raz and Shpilka [24], works over fields of any characteristic and
runs in time polynomial in the size of the circuit. The second result uses additionally the
ideas of Gurjar et al. [10] to extend the above algorithm to a deterministic PIT for sums of k
UPT circuits; the algorithm runs in polynomial time as long as k is a constant.

I Theorem 20 (PIT for UPT circuits). Let N, s ∈ N be parameters. There is a deterministic
algorithm running in time poly(s) which, on input a UPT circuit C of size at most s over N
variables, checks if C computes the zero polynomial or not.

I Theorem 21 (PIT for sums of k UPT circuits). Let N, s, k ∈ N be parameters. There is a
deterministic algorithm running in time sO(2k) which, on input k UPT circuits C1, . . . , Ck
(of possibly differing shapes) each of of size at most s over N variables, checks if

∑k
i=0 Ci

computes the zero polynomial or not.



G. Lagarde, N. Limaye, and S. Srinivasan 41:13

References
1 Eric Allender, Jia Jiao, Meena Mahajan, and V. Vinay. Non-commutative arithmetic

circuits: Depth reduction and size lower bounds. Theor. Comput. Sci., 209(1-2):47–86,
1998. doi:10.1016/S0304-3975(97)00227-2.

2 Vikraman Arvind, Pushkar S. Joglekar, Partha Mukhopadhyay, and S Raja. Identity testing
for +-regular noncommutative arithmetic circuits. Electronic Colloquium on Computational
Complexity (ECCC), 23:193, 2016. URL: http://eccc.hpi-web.de/report/2016/193.

3 Vikraman Arvind, Pushkar S. Joglekar, and Srikanth Srinivasan. Arithmetic circuits
and the hadamard product of polynomials. In Ravi Kannan and K. Narayan Kumar,
editors, IARCS Annual Conference on Foundations of Software Technology and The-
oretical Computer Science, FSTTCS 2009, December 15-17, 2009, IIT Kanpur, India,
volume 4 of LIPIcs, pages 25–36. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2009. doi:10.4230/LIPIcs.FSTTCS.2009.2304.

4 Vikraman Arvind, Partha Mukhopadhyay, and S Raja. Randomized polynomial time iden-
tity testing for noncommutative circuits. Electronic Colloquium on Computational Com-
plexity (ECCC), 23:89, 2016. URL: http://eccc.hpi-web.de/report/2016/089.

5 Vikraman Arvind and S. Raja. The complexity of two register and skew arithmetic compu-
tation. Electronic Colloquium on Computational Complexity (ECCC), 21:28, 2014. URL:
http://eccc.hpi-web.de/report/2014/028.

6 Steve Chien, Lars Eilstrup Rasmussen, and Alistair Sinclair. Clifford algebras and ap-
proximating the permanent. J. Comput. Syst. Sci., 67(2):263–290, 2003. doi:10.1016/
S0022-0000(03)00010-2.

7 Steve Chien and Alistair Sinclair. Algebras with polynomial identities and computing the
determinant. In 45th Symposium on Foundations of Computer Science (FOCS 2004), 17-19
October 2004, Rome, Italy, Proceedings, pages 352–361, 2004. doi:10.1109/FOCS.2004.9.

8 Hervé Fournier, Nutan Limaye, Guillaume Malod, and Srikanth Srinivasan. Lower
bounds for depth-4 formulas computing iterated matrix multiplication. SIAM J. Comput.,
44(5):1173–1201, 2015. doi:10.1137/140990280.

9 Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Approaching
the chasm at depth four. In Proceedings of the Conference on Computational Complexity
(CCC), 2013.

10 Rohit Gurjar, Arpita Korwar, Nitin Saxena, and Thomas Thierauf. Deterministic identity
testing for sum of read-once oblivious arithmetic branching programs. In 30th Conference
on Computational Complexity, CCC 2015, June 17-19, 2015, Portland, Oregon, USA, pages
323–346, 2015. doi:10.4230/LIPIcs.CCC.2015.323.

11 Pavel Hrubeš, Avi Wigderson, and Amir Yehudayoff. Non-commutative circuits and the
sum-of-squares problem. Journal of the American Mathematical Society, 24(3):871–898,
2011.

12 Laurent Hyafil. The power of commutativity. In 18th Annual Symposium on Foundations of
Computer Science, Providence, Rhode Island, USA, 31 October - 1 November 1977, pages
171–174. IEEE Computer Society, 1977. doi:10.1109/SFCS.1977.31.

13 Mark Jerrum and Marc Snir. Some exact complexity results for straight-line computations
over semirings. J. ACM, 29(3):874–897, 1982. doi:10.1145/322326.322341.

14 Neeraj Kayal, Nutan Limaye, Chandan Saha, and Srikanth Srinivasan. An exponential
lower bound for homogeneous depth four arithmetic formulas. In 55th IEEE Annual Sym-
posium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October
18-21, 2014, pages 61–70, 2014. doi:10.1109/FOCS.2014.15.

15 Neeraj Kayal, Chandan Saha, and Ramprasad Saptharishi. A super-polynomial lower
bound for regular arithmetic formulas. In David B. Shmoys, editor, Symposium on Theory

MFCS 2017

http://dx.doi.org/10.1016/S0304-3975(97)00227-2
http://eccc.hpi-web.de/report/2016/193
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2009.2304
http://eccc.hpi-web.de/report/2016/089
http://eccc.hpi-web.de/report/2014/028
http://dx.doi.org/10.1016/S0022-0000(03)00010-2
http://dx.doi.org/10.1016/S0022-0000(03)00010-2
http://dx.doi.org/10.1109/FOCS.2004.9
http://dx.doi.org/10.1137/140990280
http://dx.doi.org/10.4230/LIPIcs.CCC.2015.323
http://dx.doi.org/10.1109/SFCS.1977.31
http://dx.doi.org/10.1145/322326.322341
http://dx.doi.org/10.1109/FOCS.2014.15


41:14 Non-Commutative Arithmetic Circuits with Restricted Parse Trees

of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 146–153.
ACM, 2014. doi:10.1145/2591796.2591847.

16 Mrinal Kumar and Shubhangi Saraf. On the power of homogeneous depth 4 arithmetic
circuits. In 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2014, Philadelphia, PA, USA, October 18-21, 2014, pages 364–373, 2014. doi:10.1109/
FOCS.2014.46.

17 Guillaume Lagarde, Nutan Limaye, and Srikanth Srinivasan. Lower bounds and PIT for
non-commutative arithmetic circuits with restricted parse trees. Electronic Colloquium on
Computational Complexity (ECCC), 24:77, 2017. URL: https://eccc.weizmann.ac.il/
report/2017/077.

18 Guillaume Lagarde, Guillaume Malod, and Sylvain Perifel. Non-commutative computa-
tions: lower bounds and polynomial identity testing. Electronic Colloquium on Computa-
tional Complexity (ECCC), 23:94, 2016. URL: http://eccc.hpi-web.de/report/2016/
094.

19 Nutan Limaye, Guillaume Malod, and Srikanth Srinivasan. Lower bounds for non-
commutative skew circuits. Theory of Computing, 12(1):1–38, 2016. doi:10.4086/toc.
2016.v012a012.

20 Guillaume Malod and Natacha Portier. Characterizing valiant’s algebraic complexity
classes. J. Complexity, 24(1):16–38, 2008. doi:10.1016/j.jco.2006.09.006.

21 Noam Nisan. Lower bounds for non-commutative computation (extended abstract). In
Cris Koutsougeras and Jeffrey Scott Vitter, editors, Proceedings of the 23rd Annual ACM
Symposium on Theory of Computing, May 5-8, 1991, New Orleans, Louisiana, USA, pages
410–418. ACM, 1991. doi:10.1145/103418.103462.

22 Noam Nisan and Avi Wigderson. Lower bounds on arithmetic circuits via partial derivatives.
Computational Complexity, 6(3):217–234, 1997. doi:10.1007/BF01294256.

23 Ran Raz. Multi-linear formulas for permanent and determinant are of super-polynomial
size. J. ACM, 56(2):8:1–8:17, 2009. doi:10.1145/1502793.1502797.

24 Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non-commutative
models. Computational Complexity, 14(1):1–19, 2005. doi:10.1007/s00037-005-0188-8.

25 Amir Shpilka and Avi Wigderson. Depth-3 arithmetic circuits over fields of characteristic
zero. Computational Complexity, 10(1):1–27, 2001. doi:10.1007/PL00001609.

26 Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and
open questions. Foundations and Trends in Theoretical Computer Science, 5(3-4):207–388,
2010. doi:10.1561/0400000039.

http://dx.doi.org/10.1145/2591796.2591847
http://dx.doi.org/10.1109/FOCS.2014.46
http://dx.doi.org/10.1109/FOCS.2014.46
https://eccc.weizmann.ac.il/report/2017/077
https://eccc.weizmann.ac.il/report/2017/077
http://eccc.hpi-web.de/report/2016/094
http://eccc.hpi-web.de/report/2016/094
http://dx.doi.org/10.4086/toc.2016.v012a012
http://dx.doi.org/10.4086/toc.2016.v012a012
http://dx.doi.org/10.1016/j.jco.2006.09.006
http://dx.doi.org/10.1145/103418.103462
http://dx.doi.org/10.1007/BF01294256
http://dx.doi.org/10.1145/1502793.1502797
http://dx.doi.org/10.1007/s00037-005-0188-8
http://dx.doi.org/10.1007/PL00001609
http://dx.doi.org/10.1561/0400000039


Approximation and Parameterized Algorithms for
Geometric Independent Set with Shrinking∗

Michał Pilipczuk†1, Erik Jan van Leeuwen2, and Andreas Wiese3

1 Institute of Informatics, University of Warsaw, Poland
michal.pilipczuk@mimuw.edu.pl

2 Department of Information and Computing Sciences, Utrecht University,
The Netherlands
e.j.vanleeuwen@uu.nl

3 Department of Industrial Engineering and Center for Mathematical Modeling,
Universidad de Chile, Chile
awiese@dii.uchile.cl

Abstract
Consider the Maximum Weight Independent Set problem for rectangles: given a family of
weighted axis-parallel rectangles in the plane, find a maximum-weight subset of non-overlapping
rectangles. The problem is notoriously hard both in the approximation and in the parameterized
setting. The best known polynomial-time approximation algorithms achieve super-constant ap-
proximation ratios [5, 7], even though there is a (1+ε)-approximation running in quasi-polynomial
time [2, 8]. When parameterized by the target size of the solution, the problem is W[1]-hard even
in the unweighted setting [12].

To achieve tractability, we study the following shrinking model: one is allowed to shrink each
input rectangle by a multiplicative factor 1 − δ for some fixed δ > 0, but the performance is
still compared against the optimal solution for the original, non-shrunk instance. We prove that
in this regime, the problem admits an EPTAS with running time f(ε, δ) · nO(1), and an FPT
algorithm with running time f(k, δ) · nO(1), in the setting where a maximum-weight solution
of size at most k is to be computed. This improves and significantly simplifies a PTAS given
earlier for this problem [1], and provides the first parameterized results for the shrinking model.
Furthermore, we explore kernelization in the shrinking model, by giving efficient kernelization
procedures for several variants of the problem when the input rectangles are squares.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Combinatorial optimization, Approximation algorithms, Fixed-parameter
algorithms

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.42

1 Introduction

In Maximum (Weight) Independent Set, given a graph, the goal is to select a set of
pairwise non-adjacent vertices with maximum cardinality or total weight. In its full generality,
the problem is NP-hard and intractable both in the approximation and in the parameterized

∗ A full version of the paper is available at https://arxiv.org/abs/1611.06501.
† The research of Mi. Pilipczuk is supported by Polish National Science Centre grant UMO-

2013/11/D/ST6/03073. Mi. Pilipczuk is also supported by the Foundation for Polish Science (FNP) via
the START stipend programme.

© Michał Pilipczuk, Erik Jan van Leeuwen, and Andreas Wiese;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 42; pp. 42:1–42:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.42
https://arxiv.org/abs/1611.06501
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


42:2 Geometric Independent Set with Shrinking

setting: it is NP-hard to approximate within ratio n1−ε for any ε > 0 [16], and it is W[1]-hard
when parameterized by the solution size [9]. Therefore, many restricted settings were studied.

One well-studied case is to consider a geometric setting where the input consists of
a family of geometric objects, and the goal is to select a maximum-weight subfamily of
pairwise non-overlapping objects. This case reduces to the graph setting by considering the
intersection graph of the objects. These graphs are highly structured, which gives hope for
better results than for general graphs.

This paper concentrates on the variant in which the input objects are axis-parallel
rectangles in the two-dimensional plane. In this variant, Maximum Weight Independent
Set admits much smaller approximation ratios than on general graphs. While no polynomial-
time constant-factor approximation algorithm is known in general, there is an O(log logn)-
approximation algorithm for unweighted rectangles [5], an O(logn/ log logn)-approximation
algorithm for weighted rectangles [7], and a PTAS for squares [6, 10]. If one allows quasi-
polynomial running time, then there is a (1 + ε)-approximation algorithm (a QPTAS) [3, 11].
It remains open whether this can be improved to a PTAS.

From the parameterized perspective, the problem remains W[1]-hard when parameterized
by the size k of the solution, even for unweighted unit squares [12]. Therefore, the existence
of an FPT algorithm with running time f(k) · nO(1) for a computable f is unlikely under
standard assumptions from parameterized complexity; this also excludes the existence of
an EPTAS for the problem [12]. However, the problem admits a faster-than-brute-force
parameterized algorithm with running time nO(

√
k), which is optimal under the Exponential

Time Hypothesis [13]. This algorithm works in the general setting of finding a maximum-
weight independent set of size k in a family of polygons in the plane.

Shrinking model. In order to circumvent some of the many challenges that arise when
designing approximation or parameterized algorithms for geometric Maximum Weight
Independent Set, we investigate the shrinking model introduced by Adamaszek et al. [1].
In this model, one is allowed to shrink each input object by a multiplicative factor 1− δ for
some fixed δ > 0, but the weight of the computed solution is still compared to the optimum
for the original, non-shrunk instance; we give a formal definition later. It is known that the
shrinking model allows for substantially better approximation algorithms than the general
setting: Adamaszek et al. [1] gave a PTAS for axis-parallel rectangles, which was later
generalized by Wiese to arbitrary convex polygons [15]. However, it has not been studied so
far whether shrinking also helps to design parameterized algorithms. One concrete question
would be whether Independent Set for axis-parallel rectangles remains W[1]-hard in the
shrinking model.

Our results. This paper addresses the parameterized complexity of Maximum Weight
Independent Set of Rectangles in the shrinking model, and answers the above questions.
On the way to our two main parameterized contributions, we also improve the PTAS by
Adamaszek et al. [1] to an EPTAS.

Our first main contribution is that Maximum Weight Independent Set of Rect-
angles is fixed-parameter tractable (FPT) in the shrinking model. Formally, for a shrinking
parameter δ, we can decide in (deterministic) time f(k, δ) · (nN)O(1) whether there is an
independent set of k (shrunk) rectangles, or the original family has no independent subfamily
of size k. Here, N is the total bit size of the input and f is some computable function.
The algorithm also works in the weighted setting, where we look for a maximum-weight
subset of at most k non-overlapping rectangles. The reason why we are able to circumvent



Mi. Pilipczuk, E.J. van Leeuwen, and A. Wiese 42:3

the W[1]-hardness for the standard model (i.e., without shrinking) is that the reduction
of Marx [12] relies on tiny differences in the coordinates of the rectangles. However, as
Adamaszek et al. [1] and this paper show, this aspect vanishes in the shrinking model.

The parameterized algorithm is actually a consequence of an EPTAS that we present for
Maximum Weight Independent Set of Rectangles. That is, we give an algorithm
with running time f(ε, δ) · (nN)O(1) that finds a subset of rectangles that do not overlap after
shrinking by factor 1− δ, and whose total weight is at least 1− ε times the optimum without
shrinking. Recall that the standard model does not admit an EPTAS, unless FPT = W[1] [12].

Our EPTAS is based on the same principles as the PTAS of Adamaszek et al. [1].
The idea is to assemble an optimum solution using a bottom-up dynamic-programming
approach pioneered by Erlebach et al. [10]. Each subproblem solved in the dynamic program
corresponds to the maximum weight of an independent set contained in a “box”, and the
computation of the optimum for each such box boils down to enumerating a limited number
of carefully chosen partitions of the box into smaller boxes. Intuitively, the ability to shrink
is used to make sure that rectangles fit nicely into the different boxes. The main challenge is
to ensure that these boxes can be assumed to be simple, and therefore only a limited number
of subproblems is necessary to assemble a near-optimum solution.

The crucial contribution in our approximation algorithm is that we show that rectangular
boxes suffice. In [1], most rectangles were shrunk in only one direction and therefore, the
boxes were axis-parallel polygons with at most g(ε, δ) sides each, for some function g. This
makes the dynamic program very complex, and yields a running time of (nN)g(ε,δ) due to
the sheer number of subproblems solved. In this paper, we fully exploit the properties of the
shrinking model and shrink each rectangle in two directions. This changes the analysis, but
the main advantage is that we only need to consider boxes that are rectangles (i.e., with
only four sides) in our dynamic program. This greatly simplifies the dynamic program, and
we show that we need to consider only f(ε, δ) · (nN)O(1) different subproblems. Hence, our
EPTAS is both substantially faster and significantly simpler than previous work.

Our second main contribution is showing that several important subcases of Maximum
Weight Independent Set of Rectangles with δ-shrinking admit polynomial kernels
when parameterized by k and δ. Intuitively, such a kernel is a polynomial-time computable
subfamily of the input rectangles of size bounded by a polynomial of k and δ that retains
an optimum solution after δ-shrinking; a formal definition is given in Section 4. For unit
squares of non-uniform weight, we construct a kernel of size O(k/δ2), while for squares of
non-uniform size, but of uniform weight, we construct a kernel of size O(k2 · log(1/δ)

δ3 ). As a
direct consequence, we obtain FPT algorithms for the considered variants with running time
(k/δ)O(

√
k) · (nN)O(1) by applying the nO(

√
k)-time algorithm of Marx and Pilipczuk [13] on

the kernels. This subexponential running time is far better than the running time of our FPT
algorithm for the general case.

Organization. In this extended abstract we sketch our EPTAS and present the main ideas
behind the kernelization results. A much broader discussion, including complete proofs of all
results, can be found in the full version available on the arXiv [14]. The proofs of claims
marked with ♠ appear in the full version [14].

2 Preliminaries

We essentially adopt the notation of Adamaszek et al. [1]. Suppose thatR = {R1, R2, . . . , Rn}
is a family of axis-parallel rectangles given in the input. Each rectangle Ri is described as
Ri = {(a, b) : x

(1)
i < a < x

(2)
i and y(1)

i < b < y
(2)
i }, where x

(1)
i < x

(2)
i and y

(1)
i < y

(2)
i

MFCS 2017



42:4 Geometric Independent Set with Shrinking

are integers. Thus, the input rectangles are assumed to be open, and their vertices are at
integral points. We assume that the family R is given in the input with all the coordinates
x

(1)
i , x

(2)
i , y

(1)
i , y

(2)
i encoded in binary; thus, the coordinates are at most exponential in the

total bit size of the input, denoted by N . For a rectangle Ri, we define its width gi = x
(2)
i −x

(1)
i

and height hi = y
(2)
i − y

(1)
i . Moreover, each rectangle Ri has an associated weight wi, which

is a nonnegative real. For a subset S ⊆ R, we denote w(S) =
∑
Ri∈S wi.

Fix a constant δ with 0 < δ < 1. For a rectangle Ri, its δ-shrinking R−δi is the rectangle
with x-coordinates x(1)

i + δ
2gi and x

(2)
i − δ

2gi, and y-coordinates y
(1)
i + δ

2hi and y
(2)
i − δ

2hi.
The δ-shrinking retains the weight wi of the original rectangle. For a subset S ⊆ R, we
denote S−δ = {R−δi : Ri ∈ S} to be the family of δ-shrinkings of rectangles from S.

A family of rectangles is independent (or is an independent set) if the rectangles are
pairwise non-overlapping. In the Maximum Weight Independent Set of Rectangles
problem (MWISR) we are given a family of axis-parallel rectangles R = {R1, R2, . . . , Rn},
and the goal is to find a subfamily of R that is independent and has maximum total weight.
This maximum weight will be denoted by OPT(R). In the parameterized setting, we are
additionally given an integer parameter k, and we look for a subfamily of R that has size at
most k, is independent, and has maximum possible weight subject to these conditions. This
maximum weight will be denoted by OPTk(R).

In the δ-shrinking setting, we relax the requirement of independence to just requiring the
disjointness of δ-shrinkings, but we still compare the weight of the output of our algorithm
with OPT(R), respectively with OPTk(R).

3 Main results

With the above definitions in mind, we can state formally our main results.

I Theorem 1 (FPT for MWISR with δ-shrinking). There is a deterministic algorithm
that, given a weighted family R of n axis-parallel rectangles with total encoding size N
and parameters k and δ, runs in time f(k, δ) · (nN)c for some computable function f and
constant c, and outputs a subfamily S ⊆ R such that |S| ≤ k, S−δ is independent, and
w(S) ≥ OPTk(R).

I Theorem 2 (EPTAS for MWISR with δ-shrinking). There is a deterministic algorithm
that, given a weighted family R of n axis-parallel rectangles with total encoding size N and
parameters δ, ε, runs in time f(ε, δ) · (nN)c for some computable function f and constant c,
and outputs a subfamily S ⊆ R such that S−δ is independent, and w(S) ≥ (1− ε)OPT(R).

In this section we sketch the proof of Theorem 2. Theorem 1 follows by a simple
adjustment of the reasoning, as explained in the full version of the paper [14].

Throughout the proof we fix the input family R = {R1, . . . , Rn}, and we denote OPT(R)
by OPT. We also fix the constants δ and ε, and w.l.o.g. we assume that 1/δ and 1/ε are even
integers larger than 4. For convenience, throughout the proof we aim at finding a solution S
with w(S) ≥ (1− d · ε)OPT for some constant d, for at the end we may rescale the parameter
ε to ε/d. By shifting all the rectangles, we may assume without loss of generality that they
all fit into the square [1, L]× [1, L], where L = (1/δε)` for some integer ` = O(N). That is,
all the coordinates x(1)

i , x
(2)
i , y

(1)
i , y

(2)
i are between 1 and L, so in particular the width and

the height of each rectangle is smaller than L.
We divide our reasoning into two steps. First, like in the PTAS of Adamaszek et al. [1],

in Section 3.1 we describe how to remove some rectangles from R using standard shifting
arguments so that OPT decreases only by an O(ε)-fraction, but the resulting family admits



Mi. Pilipczuk, E.J. van Leeuwen, and A. Wiese 42:5

some useful properties. Then, we shrink the rectangles in a similar way as in [1]; however, in
contrast to [1] we will shrink each rectangle in both directions which will be important in our
analysis. Second, we show that the properties of the obtained family enable us to compute
an optimum solution using dynamic programming; this algorithm is presented in Section 3.2.

3.1 Sparsifying the family
Intuitively, we will apply shifting techniques to extract some structure in the input family R
while losing only an O(ε)-fraction of OPT. The first goal is to classify the rectangles according
to their widths (respectively, heights) such that rectangles in the same class have similar
widths (respectively, heights), but between the classes the dimensions differ significantly.

IDefinition 3. A subfamilyR′ ⊆ R is well-separated if there exist two partitions (RV
1 , . . . ,RV

p )
and (RH

1 , . . . ,RH
p ) ofR′, with p ≤ `, as well as reals νt, µt for t = 1, 2, . . . , p, with the following

properties satisfied for each t ∈ {1, 2, . . . , p}:
νt ≤ gi < µt for each Ri ∈ RV

t ;
νt ≤ hi < µt for each Ri ∈ RH

t ;
νt/µt−1 = 1/δε (except for t = 1) and µt/νt = (1/δε)(1/ε)−1; and
ν1 ≤ 1, µp ≥ L, and all numbers νt and µt apart from ν1 are integers.

The partitions (RV
t )t=1,...,p and (RH

t )t=1,...,p are called the vertical and horizontal levels,
respectively, whereas the parameters (νt)t=1,...,p and (µt)t=1,...,p are the lower and upper
limits of the corresponding levels. Note that vertical levels partition R′ by width, while the
horizontal levels partition R′ by height.

We now prove that we can find a well-separated subfamily that loses only an O(ε)-
fraction of OPT using a standard shifting technique. Essentially the same step is used in the
PTAS of Adamaszek et al. [1] (see Lemma 6 therein). Henceforth we will use the notation
[q] = {0, 1, . . . , q − 1} for any positive integer q.

I Lemma 4. We can compute a collection of 1/ε subfamilies R′0, . . . ,R′1/ε−1 ⊆ R in polyno-
mial time such that each subfamily is well-separated, and there exists a b∗ ∈ [1/ε] for which
OPT(R′b∗) ≥ (1− 2ε)OPT.

Proof. Recall that the widths and heights of the rectangles from R are integers between 1
and L−1, where L = (1/δε)`. First, create a partition of the rectangles into vertical layers LV

j

for j = 1, 2, . . . , `, where layer LV
j consists of rectangles Ri for which (1/δε)j−1 ≤ gi < (1/δε)j .

In a symmetric manner, partition R into horizontal layers LH
j for j = 1, 2, . . . , `, where layer

LH
j consists of rectangles Ri for which (1/δε)j−1 ≤ hi < (1/δε)j .
For each offset b ∈ [1/ε] we construct a subfamily R′b from R by removing all rectangles

contained in those vertical layers LV
j and those horizontal layers LH

j , for which j ≡ b

mod (1/ε). It is easy to see that each subfamily R′b constructed in this manner is well-
separated: each vertical level RV

t ⊆ R′b consists of (1/ε) − 1 consecutive vertical layers
between two removed ones, with the exception of the first and the last level, for which
the start/end of the sequence of layers delimits the level. A symmetric analysis yields the
partition into horizontal levels. It is straightforward to compute in polynomial time the
partition into horizontal/vertical levels, as well as to choose their lower and upper limits.

Suppose that we choose b uniformly at random from the set [1/ε]. Fix any optimum
solution S in R, that is, an independent set of rectangles such that w(S) = OPT. Observe
that for any rectangle Ri ∈ S, the probability that the vertical layer it belongs to is removed
during the construction of R′b, is equal to ε. Similarly, the probability that the horizontal
layer to which Ri belongs is removed when constructing R′b, is also ε. Hence, Ri is not

MFCS 2017



42:6 Geometric Independent Set with Shrinking

included in R′b with probability at most 2ε. This means that the expected value of w(S \R′b),
the total weight of rectangles from S that did not survive in R′b, is at most 2ε ·OPT. Hence,
in expectation we have that w(S \ R′b) ≤ 2ε · OPT. Therefore, there exists a subfamily R′b∗
with b∗ ∈ [1/ε] such that OPT(R′b∗) ≥ (1− 2ε)OPT. J

We now execute the rest of the algorithm on R′b for each b ∈ [1/ε], and output the best
solution obtained overall. This increases the running time of the algorithm by a factor 1/ε.
From Lemma 4, however, we know that OPT(R′b) ≥ (1 − 2ε)OPT for b = b∗, and thus we
lose at most a factor (1− 2ε) in this way. From now on, let R′ = R′b for some b ∈ [1/ε].

Hierarchical grid structure. For any integer a, we describe a hierarchical grid structure and
remove rectangles along it. We then execute the rest of the algorithm for a bounded number
of values of a, losing at most an additional factor (1− 6ε) in this way. Given a value of a, the
grid structure is constructed as follows. We first divide the horizontal lines into p levels (p as
in Definition 3) corresponding to the horizontal levels RH

t . For level t, define the level-t unit
as ut = δνt/2. Thus, for t > 1, we have ut = µt−1/(2ε), and hence ut is an integer for t > 1,
since 1/ε is even. For each level t ∈ {1, 2, . . . , p} we define a set of horizontal grid lines GH

t ,
consisting of the horizontal lines with y-coordinates from the set {a+ b · ut : b ∈ Z}. In other
words, we take horizontal lines that are ut apart from each other, and we shift them so that
there is a line with y-coordinate a. We define vertical grid lines GV

t of levels t = 1, 2, . . . , p
in a symmetric manner, using the same shift parameter a and the same units for all levels.
Define the grid of level t to be Gt = GH

t ∪GV
t . Note that any line of Gt is also a line of Gt′

for all t′ < t. Thus, the grid of each level t′ refines the grid of each larger level t.
Before we proceed, we describe the intuition of the next step; this step is also present

in the PTAS of Adamaszek et al. [1] (see Lemma 7 therein). Rectangles belonging to RV
t′

for t′ ≥ t have width not smaller than νt. On the other hand, the lines of GV
t are spaced

at distance ut = δνt/2 apart, which means that there are Ω(1/δ) vertical grid lines of GV
t

crossing each rectangle of vertical level t or larger. Intuitively, GV
t provides a fine grid for

those vertical levels, so that their rectangles can be snapped to the lines of GV
t via shrinking

by a multiplicative factor of at most 1 − δ. On the other hand, the rectangles of vertical
levels t − 1 or smaller have widths not larger than µt+1 = νt · (δε). Hence, the grid lines
of GV

t are at much larger distance to each other than the maximum possible width of such
rectangles; more precisely, larger by a multiplicative factor at least 1/(2ε). Consequently, if
we were to choose a ∈ [L] uniformly at random, then the probability that a rectangle Ri will
be crossed by a vertical line of level larger than its vertical level, or a horizontal line of level
larger than its horizontal level, will be O(ε). If we exclude such rectangles, then we lose only
an O(ε)-fraction of OPT in expectation. We now formalize the above intuition and use it to
derive an existential statement and a deterministic algorithm.

We need the following definition. Let Ri ∈ R′, and suppose that Ri ∈ RV
s ∩RH

t . We say
that Ri is abusive if Ri is crossed by a vertical line of level larger than s, or Ri is crossed by
a horizontal line of level larger than t; see Figure 1. A family of rectangles without abusive
rectangles (with respect to the hierarchical grid structure for a) is called well-behaved (for a).

I Lemma 5. Let U :=
∑p
t=1 ut. We can compute a collection of (1/δε)1/ε subfamilies

R′′0 , . . . ,R′′(1/δε)1/ε−1 ⊆ R
′ in (1/δε)1/ε · (nN)O(1) time such that, for each c ∈ [(1/δε)1/ε], the

subfamily R′′c is well-separated and well-behaved for c · U , and there exists a c∗ ∈ [(1/δε)1/ε]
for which OPT(R′′c∗) ≥ (1− 6ε)OPT(R′).

Proof. For each c ∈ [(1/δε)1/ε], the family R′′c is obtained from R′ by removing all rectangles
that are abusive with respect to the hierarchical grid structure for a = c · U . Hence, R′′c is
well-behaved for c · U . Since we are only removing rectangles, R′′c is still well-separated.



Mi. Pilipczuk, E.J. van Leeuwen, and A. Wiese 42:7

us
us+1

Figure 1 The vertical grid. The dashed vertical lines are the vertical grid lines of GV
s , the bold

vertical lines are the lines in the set GV
s+1. All shown rectangles are from level RV

s . The crossed out
rectangles are abusive since they intersect lines from GV

s+1.

It remains to show the existence of c∗. Let Ri ∈ RV
s . As Ri ∈ RV

s , we have that
gi < µs = νs+1 · (δε) = us+1 · 2ε. Hence,

gi∑s
r=1 ur

≤ gi
us

<
us+1 · 2ε

us
= 2ε · (1/δε)1/ε. (1)

Note that this inequality holds regardless of the choice of a for the construction of the
hierarchical grid structure. Now consider the hierarchical grid structure for a = c · U for
some c ∈ [(1/δε)1/ε]. Rectangle Ri is crossed by a vertical line of level larger than s if and
only if it is crossed by a vertical line of level s + 1. Lines of GV

s+1 are spaced at distance
us+1 from each other, which means that Ri is crossed by a line of GV

s+1 if and only if the
remainder of c · U modulo us+1 is among a set Γi of gi − 1 consecutive remainders from
[us+1], being the remainders of the x-coordinates of vertical lines that cross Ri. By (1), Γi
contains at most 2ε · (1/δε)1/ε + 2 ≤ 3ε · (1/δε)1/ε multiples of

∑s
r=1 ur. On the other hand,

observe that 0 ≤ c ·
∑s
r=1 ur < us+1 for all c ∈ [(1/δε)1/ε], and that ur divides ur+1 for

each r. Hence, c · U gives remainder c ·
∑s
r=1 ur modulo us+1, which is always a multiple of∑s

r=1 ur. In particular, it follows that the multiples of
∑s
r=1 ur contained in Γi constitute

at most a 3ε-fraction of all the remainders modulo us+1 that c · U attains for c ∈ [(1/δε)1/ε].
Suppose now that c ∈ [(1/δε)1/ε] is chosen uniformly at random. Let Ri ∈ RV

s ∩RH
t . By

the previous observation, Ri is crossed by a vertical line of level larger than s with probability
at most 3ε. A similar analysis shows that Ri is crossed by a horizontal line of level larger
than t with probability at most 3ε. Therefore, Ri is abusive with probability at most 6ε, and
the total expected weight of the abusive rectangles in OPT(R′) with respect to a = c · U is
bounded by 6ε ·OPT(R′). Hence, the value c∗, as claimed in the lemma statement, exists. J

We now execute the rest of the algorithm on R′′c for each c ∈ [(1/δε)1/ε], and output the
best solution obtained overall. This increases the running time of the algorithm by a factor
(1/δε)1/ε. From Lemma 5, we know that OPT(R′′c ) ≥ (1− 6ε)OPT(R′) for c = c∗, and thus
we lose at most a factor (1− 6ε). From now on, let R′′ = R′′c for some c ∈ [(1/δε)1/ε].

Snapping by shrinking. When considering R′′, the lines of GV
t provide a fine division of

every rectangle from vertical level t or larger, while no rectangle of smaller vertical level is
crossed by them; symmetrically for horizontal grid lines. The idea now is to shrink each
rectangle Ri ∈ R′′ so that its vertical sides are aligned with some vertical grid lines of the
vertical level of Ri, while the horizontal sides are aligned with some horizontal grid lines of
the horizontal level of Ri. This is formalized in the next lemma, which is also similar to
Adamaszek et al. [1]. However, in this step there is a subtle but crucial difference. Consider a
rectangle Ri ∈ R′′, and suppose Ri ∈ RV

s ∩RH
t . In [1], Ri is shrunk in the vertical dimension

only if s ≥ t and in the horizontal dimension only if t ≥ s. Here we always do both, which
will be important for our dynamic programming.

MFCS 2017



42:8 Geometric Independent Set with Shrinking

I Lemma 6. In polynomial time we can compute a well-behaved family of axis-parallel
rectangles Q that contains one rectangle Qi for each Ri ∈ R′′, of the same weight wi as Ri
and satisfying the following conditions:

R−δi ⊆ Qi ⊆ Ri for each Ri ∈ R′′; and
if Ri ∈ RV

s ∩RH
t , then both vertical sides of Qi are contained in some vertical grid lines

of GV
s , and both horizontal sides of Qi are contained in some horizontal grid lines of GH

t .

Proof. Take any Ri ∈ R′′, and suppose Ri ∈ RV
s ∩RH

t . We define Qi as the rectangle cut
from the plane by the following four lines:

the left-most and the right-most vertical grid lines of GV
s that cross Ri;

the bottom-most and the top-most horizontal grid lines of GH
t that cross Ri.

Clearly, we have that Qi ⊆ Ri and the second condition of the statement is satisfied. We are
left with proving that R−δi ⊆ Qi.

Consider first the left side of Qi, which is contained in the left-most vertical grid line
of GV

s that crosses Ri. Since Ri ∈ RV
s , we have that gi ≥ νs, while the grid lines of GV

s

are spaced at distance ut = δνs/2 apart. This means that the left-most vertical grid line
crossing Ri has the x-coordinate not larger than x(1)

i + δνs/2, which in turn is not larger
than x(1)

i + δgi/2. This means that the left side of Qi is either to the left or at the same
x-coordinate as the left side of R−δi . An analogous reasoning can be applied to the other
three sides of Qi, thereby proving that R−δi ⊆ Qi.

Note that since Q is obtained only by shrinking rectangles from R′′, it is still the case
that no rectangle of Q is abusive. J

By Lemma 4 and Lemma 5, OPT(Q) ≥ OPT(R′′) ≥ (1 − 6ε)OPT(R′) ≥ (1 − 8ε)OPT
if R′ = R′b∗ and R′′ = R′′c∗ . Hence, the optimum solution for Q indeed has large enough
weight. Moreover, by the first condition of Lemma 6, for any independent set of rectangles
in Q, the corresponding rectangles in R−δ are also independent. Hence, any solution for
MWISR on Q projects to a solution of the same weight for MWISR with δ-shrinking on R.

From now on we focus on the familyQ. For each t ∈ {1, 2, . . . , p}, letQV
t = {Qi : Ri ∈ RV

t }
and QH

t = {Qi : Ri ∈ RH
t }.

3.2 Dynamic programming
We now present a dynamic programming algorithm that, given the family Q constructed in
the previous section, computes the value OPT(Q). An optimum solution can be recovered
from the run of the dynamic program using standard methods, and hence for simplicity we
omit this aspect in the description.

We describe the algorithm as backtracking with memoization. That is, subproblems are
solved by recursion, but once a subproblem has been solved once, the optimum value for
it is stored in a map (is memoized), and further calls to solving this subproblem will only
retrieve the memoized optimum value, rather than solve the subproblem again. Solving each
subproblem (excluding recursive subcalls) takes time f(δ, ε) · nO(1) for some computable
function f , and we argue that at most g(δ, ε) · (nN)O(1) subproblems are solved in total, for
some other computable function g. This ensures the promised running time of the algorithm.

We first define subproblems. A subproblem is a tuple I = (s, t, x1, x2, y1, y2), where the
meaning of the entries is as follows. The pair (s, t) ∈ {1, . . . , p} × {1, . . . , p} is the level of
the subproblem, which consists of the vertical level s and the horizontal level t. The numbers
x1, x2, y1, y2 are integers satisfying x1 < x2 ≤ x1 + (1/δε)1/ε and y1 < y2 ≤ y1 + (1/δε)1/ε.
Integers x1, x2 are the lower and upper vertical offsets, respectively, while y1, y2 are the



Mi. Pilipczuk, E.J. van Leeuwen, and A. Wiese 42:9

lower and upper horizontal offsets, respectively. The area covered by subproblem I =
(s, t, x1, x2, y1, y2) is the rectangle

AI = (a+ x1 · us, a+ x2 · us)× (a+ y1 · ut, a+ y2 · ut).

In other words, (x1, x2, y1, y2) define the offsets of the four grid lines – two from GV
s and two

from GH
t – that cut out AI from the plane.

For a subproblem I, let QI be the family of all rectangles from Q that are contained in
AI . The next check follows from a simple calculation of parameters.

I Lemma 7 (♠). If subproblem I has level (s, t), then QI ⊆
⋃
s′≤s, t′≤tQV

s′ ∩QH
t′ .

For a subproblem I, we define the value of I, denoted Value(I), as the maximum weight of
a subfamily of QI that is independent. We show that there is a subproblem that encompasses
the whole instance. Then, we show how to solve each subproblem I, that is, to compute
Value(I), using recursion.

I Lemma 8 (♠). There is a subproblem Iall of level (p, p), computable in constant time, such
that AIall ⊇ (1, L)× (1, L). Consequently, OPT(Q) = Value(Iall).

Next comes the crucial point: we show how to solve each subproblem I, that is, to
compute Value(I), using recursion.

I Lemma 9 (♠). A subproblem I of level (s, t) can be solved using f(δ, ε) calls to solving
subproblems of levels (s− 1, t), (s, t− 1), and (s− 1, t− 1), for some computable function f .
Moreover, the time needed for this computation, excluding the time spent in the recursive
calls, is at most f(δ, ε) · n.

Proof sketch. Consider all vertical lines of level s and all horizontal lines of level t that
cross the rectangle AI ; their number is bounded by (1/δε)1/ε. These lines partition AI into
at most (1/δε)2/ε smaller cells in a natural manner. Consider an independent set S ⊆ QI
such that w(S) = Value(I). By obtaining a well-behaved family and applying the snapping
procedure, we have the following structure; see Figure 2. Each rectangle from S of level (s, t)
just occupies a rectangle of cells, each of them entirely. Whenever a rectangle from S is of
level (s′, t) for some s′ < s, it is contained in a single column of cells, and its horizontal sides
are aligned with some horizontal lines of the grid of cells. A symmetrical claim holds for
rectangles from S of level (s, t′) for any t′ < t. Finally, any rectangle of S of level (s′, t′) for
s′ < s and t′ < t is contained in a single cell.

It can be then easily seen that the whole grid of cells admits a partition into “boxes” such
that each rectangle of S fits into a single box. Each box that is not contained in one column
or in one row must be filled with a single rectangle of level (s, t), and we can greedily take the
heaviest such rectangle. Each other box defines a subproblem of level (s′, t′) where s′ ≤ s,
t′ ≤ t, and one of these inequalities is strict. Hence, an optimum solution for such a box can
be computed using a recursive call. Therefore, the algorithm enumerates all partitions of the
cells into boxes, and for each of them computes a candidate value using recursive subcalls;
the value of I is the largest among the candidates. J

Finally, to bound the running time of the algorithm, we prove that there is only a small
number of subproblems I for which QI is nonempty. Obviously, only such subproblems are
necessary to solve, as the others have value 0.

I Lemma 10 (♠). The number of subproblems I for which QI is nonempty is at most
81 · (1/δε)4/ε · |Q|p2.

MFCS 2017



42:10 Geometric Independent Set with Shrinking

Figure 2 The partition of AI into large, horizontal, vertical, and small cells. The figure is a
slightly modified figure from [1].

Having gathered all the tools, we can describe the algorithm. To compute OPT(Q), it
is sufficient to compute Value(Iall) for the subproblem Iall given by Lemma 8. For this we
use backtracking with memoization. Starting from Iall, we recursively solve subproblems as
explained in Lemma 9. Whenever Value(I) has been computed for some subproblem I, then
this value is memoized in a map, and further calls to solving I will only return the value
retrieved from the map, instead of recomputing the value again. Furthermore, whenever we
attempt to compute Value(I) for a subproblem I for which QI is empty, we immediately
return 0 instead of applying the procedure of Lemma 9. Therefore, the total running time of
the algorithm is upper bounded by the number of subproblems I for which QI is nonempty,
times the time spent on internal computations for each of them, including checking whether
the respective family QI is empty and whether Value(I) has already been memoized. The
first factor is bounded by 81 · (1/δε)4/ε · |Q|p2 ≤ 81 · (1/δε)4/ε · nN2 due to Lemma 10. The
second factor is bounded by f(δ, ε) · nd for some constant d, due to Lemma 9. Hence, the
running time of the whole algorithm is f(δ, ε) · (nN)c for some computable function f and
constant c. As mentioned before, the algorithm can be trivially adjusted to also compute an
independent set of weight Value(Iall) by storing the value of each subproblem together with
some independent set that certifies this value.

Summarizing, the dynamic programming described above computes an independent
set in Q of weight OPT(Q) in time f(δ, ε) · (nN)c. As argued in the previous section,
such an independent set projects to an independent set of the same weight in R−δ, and
OPT(Q) ≥ (1− 8ε)OPT holds. This concludes the proof of Theorem 2.

4 Kernelization results

In this section we discuss kernelization for the case when the input family consists of squares.
We first clarify the definition of a kernel, and then present the results.

Definition of kernel. The classic definition of kernelization is tailored to decision problems.
Extending it to optimization problems in a weighted setting is often problematic, and making
it compatible with the δ-shrinking model complicate it even more. Hence, we explicitly define
kernelization for MWISR in the shrinking model, bearing in mind the main principle of
kernelization: solving the kernel should project to a solution for the original instance.



Mi. Pilipczuk, E.J. van Leeuwen, and A. Wiese 42:11

I Definition 11. Let k be a non-negative integer, let δ ∈ (0, 1), and let R be a family
of axis-parallel rectangles. Then, a kernel for (R, k, δ) is a polynomial-time computable
subfamily Q ⊆ R such that |Q| ≤ f(k, δ) for a computable function f , called the size of the
kernel, and:

OPTk(Q−δ) ≥ OPTk(R).

Thus, MWISR on R with the δ-shrinking relaxation may be solved by solving MWISR
on Q−δ (without the δ-shrinking relaxation). If one wishes to use an algorithm for the
shrinking relaxation on the kernel, then applying it to Q−δ with parameter δ will yield a
subfamily S of size k such that S−2δ is independent and w(S) ≥ OPTk(Q−δ) ≥ OPTk(R).
Hence, this solves the original problem for 2δ-shrinking and we can rescale δ accordingly.

Definition 11 lacks one aspect of the classic notion of kernelization. Namely, the weights
and the coordinates of the rectangles in the kernel are inherited from the original instance,
so their bit encoding may not be bounded in terms of k and δ. We prefer to work with Defin-
ition 11, because it focuses our efforts on the core combinatorial aspects of our kernelization
procedures. However, in the full version we argue that the sizes of the bit encodings of both
the weights and the coordinates essentially can be reduced to polynomials in k and 1/δ [14].

Results. The following theorem summarizes our kernelization results.

I Theorem 12 (♠). Given a non-negative integer k, δ ∈ (0, 1), and a family of axis-parallel
squares R, the following kernels for (R, k, δ) can be computed in polynomial time:
1. If R consists of unit squares of uniform weight, then there is a kernel of size ≤ 16k/δ2.
2. If R consists of unit squares of non-uniform weight, then there is a kernel of size ≤ 64k/δ2.
3. If R consists of squares of non-uniform size, but of uniform weight, then there is a kernel

of size O(k2 · log(1/δ)
δ3 ).

We now briefly sketch the main ideas. Consider first the simplest case of unit squares of
uniform weight. Suppose two squares Ri and Rj are very close to each other: their centers
are at distance less than δ/2 in the `∞-metric (we will say that Ri and Rj are (δ/2)-close).
Then it is not hard to prove that R−δj ⊆ Ri, so intuitively, in the δ-shrinking model Rj is
always a valid substitute for Ri. This allows for the following greedy strategy. Compute an
inclusion-wise maximal subfamily Q ⊆ R such that the centers of squares in Q are pairwise
at distance at least δ/2. By maximality, for every square Ri ∈ R, there is a square φ(Ri) ∈ Q
that is (δ/2)-close to Ri. By the observation above, the mapping φ maps every independent
set in R to a subset of Q of the same size that is independent after δ-shrinking. Consequently,
OPTk(Q−δ) ≥ OPTk(R) and we may work with Q instead. However, the fact that squares
of Q have centers pairwise far from each other immediately shows that the intersection graph
of Q−δ has maximum degree bounded by a function of 1/δ (similar to [4]). Then it is a
standard exercise to give a linear kernel for Independent Set.

For unit squares of non-uniform weight, we follow the same strategy, but we construct Q
greedily by iteratively taking the heaviest square and removing all squares that are (δ/2)-close
to it. This ensures that the substitute φ(Ri) is always at least as heavy as Ri. The maximum
degree of the intersection graph of Q−δ can be bounded in the same manner. There is
also a linear kernel for Maximum Weight Independent Set on bounded degree graphs,
following the observation: Iterate k times the procedure of picking the heaviest vertex and
removing all vertices at distance at most 2 from it. Then there is some maximum-weight
independent set of size at most k that is contained in the removed vertices.

MFCS 2017



42:12 Geometric Independent Set with Shrinking

Finally, in the case of squares of non-uniform size and uniform weight, the following
observation is crucial: if there are two squares Ri and Rj whose sizes differ by a multiplicative
factor at least 2/δ, then either one is contained in the other, or they become disjoint after
δ-shrinking. Observe that we may assume that the input does not contain any pair of squares
where one is contained in the other, since the smaller one can be always selected instead
of the larger. Hence, squares of very different sizes become disjoint after δ-shrinking. We
partition the squares into levels according to the magnitude of their side lengths, and apply
the following win-win approach. If many levels are non-empty, then we can find k of them
so that picking one square from each yields an independent set of size k after δ-shrinking.
Otherwise, only few levels are non-empty, and we can treat each level separately using
essentially the same methods as for unit squares.

We conclude by discussing some applications. By composing our kernelization algorithms
with the parameterized algorithm of Marx and Pilipczuk [13] for finding the heaviest k-
independent set of polygons in the plane, we obtain algorithms with running time (k/δ)O(

√
k) ·

(nN)O(1) for all the problems encompassed by Theorem 12; this is much faster than the
algorithm of Theorem 1. Also, some of our intermediate tools can be combined with the
results of Alber and Fiala [4], yielding algorithms with running time 2Oδ(

√
k) · (nN)O(1) for

unit squares of non-uniform weight. We also obtain a faster EPTAS than Theorem 2 for
squares of uniform size or uniform weight, for which the exponent depends only linearly on
1/ε. A precise description of these results can be found in the full version [14].

5 Conclusions

In this paper we have initiated the study of the shrinking model for parameterized geometric
Independent Set, by giving FPT algorithms and polynomial kernels for the most basic
variants. Most importantly, we have showcased that the shrinking model leads to robust
tractability of problems that without this relaxation are hard from the parameterized
perspective. We hope that this is the start of an interesting research direction, as our work
raises several concrete open problems. Can our FPT algorithm and EPTAS for axis-parallel
rectangles (Theorems 2 and 1) be generalized to arbitrary convex polygons, as is the case
for the PTAS [15]? Recall that it was important for our algorithm that via shrinking we
can align all edges of each rectangle with grid lines of suitable granularity. Then we could
partition the plane recursively along these grid lines. Such an alignment is no longer possible
for polygons, not even if each polygon is essentially a diagonal straight line segment. Instead,
the PTAS in [15] crucially relies on guessing separators described via Oε(1) input polygons
(and additionally Oε(1) grid lines). The total number of candidates for such separators is
nOε(1), which leads to the running time of nOε(1) of the algorithm. Further, is it possible to
improve the running time of our FPT algorithm to subexponential, that is, 2o(k) ·(nN)O(1) for
every fixed δ? What about polynomial kernels, i.e., kernelization procedures with polynomial
output guarantees, for more complex objects than squares? Here, it seems that our arguments
apply mutatis mutandis to e.g. (unit) disks instead of (unit) squares, but it is conceivable that
even the general setting of convex polygons can be treated, for an appropriate definition of
shrinking. Also, is there a polynomial kernel for squares of non-uniform size and non-uniform
weight? This is not addressed in its full generality by our kernelization algorithms. Finally,
can one give limits to tractability in the shrinking model, by showing W[1]-hardness or the
nonexistence of polynomial kernels?

Acknowledgements. The first author thanks Dániel Marx for discussions about the setting.



Mi. Pilipczuk, E.J. van Leeuwen, and A. Wiese 42:13

References
1 Anna Adamaszek, Parinya Chalermsook, and Andreas Wiese. How to Tame Rect-

angles: Solving Independent Set and Coloring of Rectangles via Shrinking. In Proc.
APPROX/RANDOM 2015, volume 40 of LIPIcs, pages 43–60. Schloss Dagstuhl, 2015.
doi:10.4230/LIPIcs.APPROX-RANDOM.2015.43.

2 Anna Adamaszek and Andreas Wiese. Approximation schemes for maximum weight in-
dependent set of rectangles. In Proc. FOCS 2013, pages 400–409. IEEE, 2013. doi:
10.1109/FOCS.2013.50.

3 Anna Adamaszek and Andreas Wiese. A QPTAS for maximum weight independent set
of polygons with polylogarithmically many vertices. In Proc. SODA 2014, pages 645–656.
SIAM, 2014. doi:10.1137/1.9781611973402.49.

4 Jochen Alber and Jiří Fiala. Geometric separation and exact solutions for the parameterized
independent set problem on disk graphs. J. Algorithms, 52(2):134–151, 2004. doi:10.1016/
j.jalgor.2003.10.001.

5 Parinya Chalermsook and Julia Chuzhoy. Maximum independent set of rectangles. In Proc.
SODA 2009, pages 892–901. SIAM, 2009.

6 Timothy M. Chan. Polynomial-time approximation schemes for packing and piercing fat ob-
jects. Journal of Algorithms, 46(2):178–189, 2003. doi:10.1016/S0196-6774(02)00294-8.

7 Timothy M. Chan and Sariel Har-Peled. Approximation algorithms for maximum inde-
pendent set of pseudo-disks. Discrete & Comp. Geometry, 48(2):373–392, 2012. doi:
10.1007/s00454-012-9417-5.

8 Julia Chuzhoy and Alina Ene. On approximating maximum independent set of rectangles.
In Proc. FOCS 2016, pages 820–829. IEEE, 2016. doi:10.1109/FOCS.2016.92.

9 Rod G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness
II: On completeness for W[1]. Theoretical Computer Science, 141(1):109–131, 1995. doi:
10.1016/0304-3975(94)00097-3.

10 Thomas Erlebach, Klaus Jansen, and Eike Seidel. Polynomial-time approximation schemes
for geometric intersection graphs. SIAM J. on Computing, 34(6):1302–1323, 2005. doi:
10.1137/S0097539702402676.

11 Sariel Har-Peled. Quasi-polynomial time approximation scheme for sparse subsets of poly-
gons. In Proc. SOCG 2014, pages 120–129. ACM, 2014. doi:10.1145/2582112.2582157.

12 Dániel Marx. Efficient approximation schemes for geometric problems? In Proc. ESA 2005,
volume 3669 of LNCS, pages 448–459. Springer, 2005. doi:10.1007/11561071_41.

13 Dániel Marx and Michał Pilipczuk. Optimal parameterized algorithms for planar facility
location problems using Voronoi diagrams. In Proc. ESA 2015, volume 9294 of LNCS,
pages 865–877. Springer, 2015. doi:10.1007/978-3-662-48350-3_72.

14 Michał Pilipczuk, Erik Jan van Leeuwen, and Andreas Wiese. Approximation and para-
meterized algorithms for geometric independent set with shrinking. CoRR, abs/1611.06501,
2016. arXiv:1611.06501.

15 Andreas Wiese. Independent set of convex polygons: From nε to 1 + ε via shrinking. In
Proc. LATIN 2016, volume 9644 of LNCS, pages 700–711. Springer, 2016. doi:10.1007/
978-3-662-49529-2_52.

16 David Zuckerman. Linear degree extractors and the inapproximability of max clique
and chromatic number. Theory of Computing, 3:103–128, 2007. doi:10.4086/toc.2007.
v003a006.

MFCS 2017

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.43
http://dx.doi.org/10.1109/FOCS.2013.50
http://dx.doi.org/10.1109/FOCS.2013.50
http://dx.doi.org/10.1137/1.9781611973402.49
http://dx.doi.org/10.1016/j.jalgor.2003.10.001
http://dx.doi.org/10.1016/j.jalgor.2003.10.001
http://dx.doi.org/10.1016/S0196-6774(02)00294-8
http://dx.doi.org/10.1007/s00454-012-9417-5
http://dx.doi.org/10.1007/s00454-012-9417-5
http://dx.doi.org/10.1109/FOCS.2016.92
http://dx.doi.org/10.1016/0304-3975(94)00097-3
http://dx.doi.org/10.1016/0304-3975(94)00097-3
http://dx.doi.org/10.1137/S0097539702402676
http://dx.doi.org/10.1137/S0097539702402676
http://dx.doi.org/10.1145/2582112.2582157
http://dx.doi.org/10.1007/11561071_41
http://dx.doi.org/10.1007/978-3-662-48350-3_72
http://arxiv.org/abs/1611.06501
http://dx.doi.org/10.1007/978-3-662-49529-2_52
http://dx.doi.org/10.1007/978-3-662-49529-2_52
http://dx.doi.org/10.4086/toc.2007.v003a006
http://dx.doi.org/10.4086/toc.2007.v003a006




Eilenberg Theorems for Free
Henning Urbat∗,1, Jiří Adámek∗,2, Liang-Ting Chen3, and
Stefan Milius†,4

1 Institut für Theoretische Informatik, Technische Universität Braunschweig,
Germany

2 Department of Mathematics, Faculty of Electrical Engineering, Czech
Technical University in Prague, Czech Republic

3 Department of Computer Science, Swansea University, United Kingdom
4 Lehrstuhl für Theoretische Informatik, Friedrich-Alexander-Universität

Erlangen-Nürnberg, Germany

Abstract
Eilenberg-type correspondences, relating varieties of languages (e.g., of finite words, infinite words,
or trees) to pseudovarieties of finite algebras, form the backbone of algebraic language theory.
We show that they all arise from the same recipe: one models languages and the algebras rec-
ognizing them by monads on an algebraic category, and applies a Stone-type duality. Our main
contribution is a variety theorem that covers e.g. Wilke’s and Pin’s work on ∞-languages, the
variety theorem for cost functions of Daviaud, Kuperberg, and Pin, and unifies the two categori-
cal approaches of Bojańczyk and of Adámek et al. In addition we derive new results, such as an
extension of the local variety theorem of Gehrke, Grigorieff, and Pin from finite to infinite words.

1998 ACM Subject Classification F.4.3 Formal Languages

Keywords and phrases Eilenberg’s theorem, variety of languages, pseudovariety, monad, duality

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.43

1 Introduction

Algebraic language theory studies the behaviors of machines by relating them to algebraic
structures. This has proved extremely fruitful. For example, regular languages can be
described as the languages recognized by finite monoids, and the decidability of star-freeness
rests on Schützenberger’s theorem [30]: a regular language is star-free iff it is recognized by
a finite aperiodic monoid. At the heart of algebraic language theory are results establishing
generic correspondences of this kind. The prototype is Eilenberg’s variety theorem [12], which
states that varieties of languages (classes of regular languages closed under boolean operations,
derivatives, and homomorphic preimages) correspond to pseudovarieties of monoids (classes
of finite monoids closed under quotients, submonoids, and finite products). This together
with Reiterman’s theorem [25], stating that pseudovarieties of monoids can be specified by
profinite equations, establishes a firm connection between automata, languages, and algebras.

Inspired by Eilenberg’s work, over the past four decades numerous further variety theorems
were discovered for regular languages [14,20,24,31], treating notions of varieties with modified
closure properties, but also for machine behaviors beyond finite words, including weighted
languages over a field [26], infinite words [21, 35], words on linear orderings [5, 6], ranked

∗ Supported by Deutsche Forschungsgemeinschaft (DFG) under project AD 187/2-1
† Supported by Deutsche Forschungsgemeinschaft (DFG) under project MI 717/5-1

© Henning Urbat, Jiří Adámek, Liang-Ting Chen, and Stefan Milius;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 43; pp. 43:1–43:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.43
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


43:2 Eilenberg Theorems for Free

trees [4], binary trees [29], and cost functions [11]. This plethora of structurally similar results
has raised interest in category-theoretic approaches which allow to derive all the above results
as special instances of only one general variety theorem. The first step in this direction was
achieved in our previous work [1–3, 10]: there we replaced monoids by monoid objects in
a category D of (ordered) algebras such as sets, posets, semilattices or vector spaces, and
proved a variety theorem for D-monoids that subsumes five different Eilenberg theorems
for regular languages [12, 20, 24, 26, 31]. Subsequently, Bojańczyk [8] took an orthogonal
approach: he keeps the category of sets but considers, in lieu of monoids, algebras for a
monad on sorted sets as recognizing structures, improving earlier generic results from [4,28].

In order to obtain the desired general variety theorem, a unification of the two approaches
is required. On the one hand, one needs to take the step from sets to more general categories
D to capture the proper notion of language recognition; for example, for the treatment of
weighted languages [26] one needs to work over the category of vector spaces. On the other
hand, to deal with machine behaviors beyond finite words, one has to replace monoids by other
algebraic structures. The main contribution of this paper is a variety theorem that achieves
the desired unification, and in addition directly encompasses many Eilenberg-type results
captured by neither of the previous generic results, including the work [5, 6, 11,21,29,35].

Traditionally, Eilenberg-like correspondences are proved in essentially the same four steps:

1. Identify an algebraic theory T such that the languages in mind are the ones recognized
by finite T-algebras. For example, for regular languages one takes the theory of monoids.

2. Describe the syntactic T-algebras, i.e. the minimal algebraic recognizers of languages.
3. Infer the form of the derivatives under which varieties of languages are closed.
4. Establish the Eilenberg correspondence between varieties of languages and pseudovarieties

of algebras by relating the languages of a variety to their corresponding syntactic algebras.
The key insight provided by our paper is that all steps can be simplified or even automated.

For Step 1, putting a common roof over Bojańczyk’s and our own previous work, we
consider an algebraic category D and algebras for a monad T on DS , the category of S-sorted
D-algebras for some finite set S of sorts. For example, to capture regular languages one takes
the free-monoid monad TΣ = Σ∗ on Set. For regular ∞-languages one takes the monad
T(Σ,Γ) = (Σ+,Σω + Σ∗ × Γ) on Set2 representing ω-semigroups. For weighted languages
over a finite field K, ones takes the free K-algebra monad T on the category of vector spaces.

For Steps 2 and 3, we develop our main technical tool, the concept of a unary presentation
of a monad. A unary presentation expresses in categorical terms how to present T-algebras
by unary operations; for example, a monoid M is presented by the translations x 7→ yx and
x 7→ xy for y ∈M . It turns out that unary presentations are, in a precise sense, necessary
and sufficient for constructing syntactic algebras (Theorem 4.7). This clarifies the role of
syntactic algebras in earlier work on Eilenberg-type theorems, and the nature of derivatives
appearing in varieties of languages. In our paper, syntactic algebras are not used for proving
the variety theorem: we rely solely on the more elementary concept of a unary presentation.

We emphasize that, in general, nontrivial work lies in finding a good unary presentation
for a monad T. However, our work here shows that then Steps 3 and 4 are entirely generic:
after choosing a unary presentation, we obtain a notion of variety of T-recognizable languages
(involving a notion of derivatives directly inferred from on the presentation) and the following

Variety Theorem. Varieties of T-recognizable languages are in bijective correspondence
with pseudovarieties of T-algebras.



H. Urbat, J. Adámek, L.-T. Chen, and S. Milius 43:3

The proof has two main ingredients. The first one is duality: besides D we also consider
a variety C that is dual to D on the level of finite algebras. Varieties of languages live in C,
while over DS we form pseudovarieties of T-algebras. This is much inspired by the work of
Gehrke, Grigorieff, and Pin [14] who interpreted the original Eilenberg theorem [12] in terms
of Stone duality (C = boolean algebras, D = sets). The second ingredient is the profinite
monad of T, introduced in [9]. It extends the classical construction of the free profinite
monoid, and allows for the introduction of topological methods to our setting. The key to our
approach is a categorical Reiterman theorem (Theorem 5.10) asserting that pseudovarieties of
T-algebras correspond to profinite equational theories. The Variety Theorem then boils down
to the fact that (i) varieties of T-recognizable languages dualize to profinite theories, and (ii)
by the Reiterman theorem, profinite theories correspond to pseudovarieties of T-algebras.

Our results establish a conceptual and highly parametric, yet easily applicable framework
for algebraic language theory. In fact, to derive an Eilenberg correspondence in our framework,
the traditional four steps indicated above are replaced by a simple three-step procedure:

1. Find a monad T whose finite algebras recognize the desired languages.
2. Choose a unary presentation for T.
3. Spell out what a variety of T-recognizable languages and a pseudovariety of T-algebras

is (by instantiating our general definitions), and invoke the Variety Theorem.
To illustrate the strength of this approach, we will show that roughly a dozen Eilenberg
theorems in the literature emerge as special instances. In addition, we get several new results
for free, e.g. an extension of the local variety theorem of [14] from finite to infinite words.

2 The Profinite Monad

We start by setting up our categorical framework for algebraic language theory. Recall that
for a finitary one-sorted signature Γ, a variety of algebras is a class of Γ-algebras presented
by equations between Γ-terms. A variety of ordered algebras is a class of ordered Γ-algebras
(i.e. Γ-algebras on a poset with monotone Γ-operations) presented by inequations between
Γ-terms. Morphisms of (ordered) Γ-algebras are (monotone) Γ-homomorphisms.

I Assumptions 2.1. Fix a variety C of algebras and a variety D of algebras/ordered algebras
such that (i) C and D are locally finite, i.e. all finitely generated algebras are finite; (ii) the
full subcategories Cf and Df on finite algebras are dually equivalent; (iii) the signature of C
contains a constant; (iv) epimorphisms in D are surjective. Further, fix a finite set S of sorts
and a monad T = (T, η, µ) on the product category DS with T preserving epimorphisms.

I Example 2.2. The following categories C and D satisfy our assumptions:

1. C = BA (boolean algebras) and D = Set: Stone duality [15] yields a dual equivalence
BAop

f ' Setf , mapping a finite boolean algebra to the set of its atoms.
2. C = DL01 (distributive lattices with 0, 1) and D = Pos (posets): Birkhoff duality [7]

gives a dual equivalence (DL01)opf ' Posf , mapping a finite distributive lattice to the
poset of its join-irreducible elements.

3. C = D = JSL0 (join-semilattices with 0): the self-duality (JSL0)opf ' (JSL0)f maps a
finite semilattice (X,∨, 0) to its opposite semilattice (X,∧, 1).

4. C = D = VecK (vector spaces over a finite field K): the familiar self-duality of (VecK)f
maps a finite (= finite-dimensional) vector space X to its dual space X∗ = VecK(X,K).

I Example 2.3. Our focus is on monads T whose algebras represent formal languages.

MFCS 2017



43:4 Eilenberg Theorems for Free

1. Let T∗ be the free-monoid monad on Set. Languages of finite words correspond to subsets
of T∗Σ = Σ∗. The category of T∗-algebras is isomorphic to the category of monoids.

2. Languages of finite and infinite words (∞-languages for short) are represented by the
monad T∞ on Set2 associated to the algebraic theory of ω-semigroups. Recall that an
ω-semigroup is a two-sorted set A = (A+, Aω) with a binary product A+ ×A+

·−→ A+, a
mixed binary product A+×Aω

·−→ Aω and an ω-ary product Aω+
π−−→ Aω satisfying (mixed)

associative laws [19]. The free ω-semigroup on a two-sorted set (Σ,Γ) is (Σ+,Σω +Σ∗×Γ)
with products given by concatenation of words. Thus T∞(Σ,Γ) = (Σ+,Σω + Σ∗ × Γ),
and ∞-languages over the alphabet Σ are two-sorted subsets of T∞(Σ, ∅) = (Σ+,Σω).

3. Weighted languages L : Σ∗ → K over a finite field K are represented by the free-K-algebra
monad TK on VecK . Thus for the space KΣ with finite basis Σ we have TK(KΣ) = K〈Σ〉,
the space of all polynomials

∑
i<n kiwi (ki ∈ K, wi ∈ Σ∗) in non-commuting variables.

Since K〈Σ〉 has the basis Σ∗, weighted languages correspond to linear maps TK(KΣ)→ K.

I Remark 2.4. We denote by Algf T and Alg T the categories of (finite) T-algebras. The
category DS has the factorization system of sortwise surjective morphisms and sortwise
injective/order-reflecting morphisms. This lifts to Alg T since T preserves surjections: every
T-homomorphism factors into a surjective T-homomorphism followed by an injective/order-
reflecting one. Quotients and subalgebras in Alg T are taken in this factorization system.

In the theory of regular languages, topology enters the stage via the Stone space Σ̂∗ of
profinite words, formed as the inverse (a.k.a. cofiltered) limit of all finite quotient monoids of
Σ∗. In [9] we generalized this construction from monoids to algebras for a monad as follows:

I Notation 2.5. For a variety D of algebras, let Stone(D) denote the category of Stone-
topological D-algebras; its objects are D-algebras endowed with a Stone topology and continu-
ous D-operations, and its morphisms are continuous D-morphisms. For a variety D of ordered
algebras, let Priest(D) be the category of ordered topological D-algebras with a Priestley
topology, and monotone continuous D-morphisms. Denote by D̂ the full subcategory of
Stone(D)/Priest(D) on profinite D-algebras, i.e. inverse limits of algebras in Df . Here we
view Df as a full subcategory of D̂ by equipping objects of Df with the discrete topology.

I Example 2.6. For the varieties D of Example 2.2, every algebra in Stone(D)/Priest(D)
is profinite: we have Ŝet = Stone (Stone spaces), P̂os = Priest (Priestley spaces), ĴSL0 =
Stone(JSL0) (Stone semilattices) and V̂ecK = Stone(VecK) (Stone vector spaces); see [15].

I Construction 2.7. For any object D ∈ DS
f form the poset Quof (TD) of all finite quotient

algebras e : TD � (A,α) of the free T-algebra TD = (TD, µD), ordered by e ≤ e′ iff e

factorizes through e′. Define the object T̂D in D̂S to be the inverse limit of the diagram
Quof (TD)→ D̂S mapping (e : TD � (A,α)) to A. We denote the limit projection associated
to e by e+ : T̂D � A. In particular, for any finite T-algebra (A,α) we have the projection
α+ : T̂A→ A, since α : TA� (A,α) is a surjective T-homomorphism by the T-algebra laws.

I Theorem 2.8 (see [9]). The object map D 7→ T̂D from DS
f to D̂S extends (by taking

inverse limits) to a functor T̂ : D̂S → D̂S. Further, T̂ can be equipped with the structure of a
monad T̂ = (T̂ , η̂, µ̂) called the profinite monad of T. Its unit η̂D and multiplication µ̂D for
D ∈ DS

f are uniquely determined by the commutativity of the diagrams

D
η̂D //

eηD $$

T̂D
e+
����

T̂ T̂D
µ̂Doo

T̂ e+����
A T̂A

α+
oooo

for all e : TD � (A,α) in Quof (TD). (1)



H. Urbat, J. Adámek, L.-T. Chen, and S. Milius 43:5

In categorical terms, T̂ is the codensity monad of the functor Algf T→ D̂, (A,α) 7→ A.

I Example 2.9. The monad T̂∗ on Stone assigns to each finite set Σ the Stone space Σ̂∗ of
profinite words. The monad T̂K on Stone(VecK) assigns to each finite vector space KΣ

the Stone vector space arising as the limit of all finite quotient spaces of K[Σ].

I Remark 2.10.

1. If (A,α) is a finite T-algebra, then (A,α+) is a T̂-algebra: putting e = α in (1) gives the
unit and associative law. By [9, Prop. 3.10] this yields an isomorphism Algf T ∼= Algf T̂
given by (A,α) 7→ (A,α+) and h 7→ h.

2. Let V : D̂S → DS denote the forgetful functor. If D ∈ D̂S
f (= DS

f ) we usually write D for
V D. By [9, Rem. B.6] there is a natural transformation ι : TV → V T̂ whose component
ιD : TV D → V T̂D for D ∈ DS

f is determined by V e+ · ιD = e for all e ∈ Quof (TD).

I Remark 2.11.

1. D̂ is the pro-completion (the free completion under inverse limits) of Df , see [15,
Rem. VI.2.4]. Further, since the variety C is locally finite, C is the ind-completion
(the free completion under filtered colimits) of Cf . Therefore the dual equivalence between
Cf and Df extends to a dual equivalence between C and D̂. We denote the equivalence
functors by P : D̂ '−→ Cop and P−1 : Cop '−→ D̂. For example, for C/D = BA/Set with
D̂ = Stone, this is the classical Stone duality [15]: P maps a Stone space to the boolean
algebra of clopens, and P−1 maps a boolean algebra to the Stone space of all ultrafilters.

2. Denote by |−| the forgetful functors of C and D̂ into Set and by 1C/1D the free one-
generated objects in C/D̂. The two finite objects OC := P1D and OD := P−11C play the
role of a dualizing object [15] of C and D̂. This means that there is a natural isomorphism
between the functors |−| · P op and D̂(−, OD) : D̂op → Set, given for any D ∈ D̂ by

|PD| ∼= C(1C, PD) ∼= D̂(P−1PD,P−11C) = D̂(P−1PD,OD) ∼= D̂(D,OD).

Similarly, |−| · P−1 ∼= C(−, OC). Thus OC and OD have essentially the same underlying
set, as |OD| ∼= D̂(1D, OD) ∼= |P1D| = |OC|. For our pairs C/D of Ex. 2.2, we get
OBA = {0 < 1}/OSet = {0, 1}, ODL01 = {0 < 1} = OPos, OJSL0 = {0 < 1}, OVecK

= K.
3. Subobjects in C are represented by monomorphisms, i.e. injective morphisms. Dually,

quotients in D̂ are represented by epimorphisms, which can be shown to be the surjective
morphisms. Thus quotients of T̂-algebras are represented by surjective T̂-homomorphisms.

3 Recognizable Languages

A language L ⊆ Σ∗ of finite words may be identified with its characteristic function
L : Σ∗ → {0, 1}. To model languages in our categorical setting, we replace the one-sorted
alphabet Σ by an S-sorted alphabet Σ in SetSf , and represent it in DS via the free object
⊀ ∈ DS

f generated by Σ (w.r.t. the forgetful functor |−| : DS → SetS). Note that ⊀ is finite
because D is locally finite. The output set {0, 1} is replaced by a finite “object of outputs” in
DS
f , viz. the object with OD ∈ Df in each sort. By abuse of notation, we denote this object

of DS
f also by OD. This leads to the following definition, unifying concepts from [2] and [8].

I Definition 3.1. A language over the alphabet Σ ∈ SetSf is a morphism L : T⊀→ OD in
DS . It is called T-recognizable if there exists a T-homomorphism h : T⊀→ (A,α) with finite
codomain and a morphism p : A→ OD in DS with L = p · h. In this case, we say that L is
recognized by h (via p). We denote by Rec(Σ) the set of all T-recognizable languages over Σ.

MFCS 2017



43:6 Eilenberg Theorems for Free

I Example 3.2.

1. T = T∗ on Set with OSet = {0, 1}: a language L : T∗Σ→ OSet corresponds to a language
L ⊆ Σ∗ of finite words. It is recognized by a monoid morphism h : Σ∗ → A iff L = h−1[Y ]
for some subset Y ⊆ A. Recognizable languages coincide with regular languages, i.e.
languages accepted by finite automata; see e.g. [22].

2. T = T∞ on Set2 with OSet = {0, 1}: since T∞(Σ, ∅) = (Σ+,Σω), a language L : T∞(Σ, ∅)
→ ({0, 1}, {0, 1}) corresponds to an ∞-language L ⊆ (Σ+,Σω). It is recognized by an
ω-semigroup morphism h : (Σ+,Σω) → A iff L = h−1[Y ] for some two-sorted subset
Y ⊆ A. Recognizable ∞-languages are the ones accepted by finite Büchi automata [19].

The topological perspective on regular languages rests on the important observation that
regular languages over Σ correspond to the clopen subsets of the Stone space Σ̂∗ of profinite
words, or equivalently to continuous maps from Σ̂∗ into the discrete space {0, 1}; see
e.g. [22, Prop. VI.3.12]. This generalizes from the monad T∗ on Set to arbitrary monads T:

I Theorem 3.3. T-recognizable languages over Σ ∈ SetSf correspond bijectively to morphisms

from T̂⊀ to OD in D̂S. The bijection is given by (T̂⊀ L̂−→ OD) 7→ (T⊀
ι⊀−→ V T̂⊀ V L̂−−→ OD).

I Remark 3.4 (C-algebraic structure on Rec(Σ)). By the above and Remark 2.11.2, we deduce

Rec(Σ) ∼= D̂S(T̂⊀, OD) =
∏
s

D̂((T̂⊀)s, OD) ∼=
∏
s

|P (T̂⊀)s|. (2)

Thus we can consider Rec(Σ) as an object of C isomorphic to
∏
s P (T̂⊀)s. One can show that

Rec(Σ) is a subobject of the product
∏
sO
|T⊀|s
C in C: the embedding Rec(Σ)�

∏
sO
|T⊀|s
C

maps a language L : T⊀ → OD to the S-tuple (|T⊀|s
|L|s−−→ |OD|

∼=−→ |OC|)s∈S , using the
bijection |OD| ∼= |OC| of Remark 2.11.2. Consequently the C-algebraic structure of Rec(Σ) is
determined by OC. For example, for C = BA with OBA = {0, 1}, the boolean structure on
Rec(Σ) is given by union, intersection and complement. Taking T = T∗ on Set, we recover
an important result of Pippenger [23]: the boolean algebra of regular languages over Σ is
dual to the Stone space Σ̂∗ of profinite words. In fact, in this case (2) yields Rec(Σ) ∼= P (Σ̂∗).

4 Unary Presentations

In this section we introduce unary presentations of T-algebras that later, in Section 6, will
serve as our key tool for defining the derivatives of a language. For motivation, let A be an
algebra over a finitary single-sorted signature Γ. By a standard result in universal algebra, an
equivalence relation ≡ on A is a Γ-congruence (i.e. stable under Γ-operations) iff it is stable
under elementary translations, i.e. a ≡ a′ implies u(a) ≡ u(a′) for all maps u : A→ A of the
form a 7→ γA(a0, . . . , ai, a, ai+1, . . . an), where γ ∈ Γ and a0, . . . an ∈ A. (For the sorted case,
see [17,18].) If Γ contains infinitary operations, this statement generally fails, but remains
valid if ≡ is refinable to a Γ-congruence of finite index; see Examples 4.3.3/5. Identifying
equivalence relations with quotients, we first state the concept of refinement categorically:

I Definition 4.1. Let (A,α) ∈ Alg T. A quotient e : A� B in DS is T-refinable if there is
a finite quotient e : (A,α)� (C, γ) in Alg T and a morphism p : C � B in DS with e = p · e.

Then the description of congruences via translations has the following categorical formulation:



H. Urbat, J. Adámek, L.-T. Chen, and S. Milius 43:7

I Definition 4.2. A unary operation on A ∈ DS is a morphism u : As → At in D, where
s, t ∈ S. A unary presentation of a T-algebra (A,α) is a set U of unary operations on A
such that, for any T-refinable quotient e : A� B in DS , the following are equivalent:
(U1) e carries a quotient of (A,α) in Alg T, i.e. there exists a T-algebra structure (B, β)

on B for which e : (A,α)� (B, β) is a T-homomorphism.
(U2) Each unary operation u : As → At in U admits a lifting along e, i.e. a morphism

uB : Bs → Bt in D with et · u = uB · es.

I Example 4.3.

1. T = T∗ on Set: every monoid M has a unary presentation given by the unary operations
x 7→ yx and x 7→ xy on M , where y ranges over all elements of M .

2. T = T∞ on Set2: every ω-semigroup A = (A+, Aω) has a unary presentation given by
the operations (i) x 7→ yx and x 7→ xy on A+, (ii) x 7→ xz and x 7→ xω = π(x, x, x, . . .)
from A+ to Aω, and (iii) z 7→ yz on Aω, where y ∈ A+ ∪ {1} and z ∈ Aω. The proof uses
Ramsey’s theorem and appears implicitly in the work of Wilke [35]; see also [19].

3. Let T be a monad on SetS . Every T-algebra (A,α) has a generic unary presentation given
as follows. Let 1s ∈ SetS be the S-sorted set with one element in sort s and otherwise
empty; thus a morphism 1s → A in SetS chooses an element of As. A polynomial over
A is a morphism p : 1t → T (A + 1s) with s, t ∈ S, i.e. a “term” of output sort t in a
variable of sort s. Denote by As

[p]−→ At the evaluation map that substitutes elements of
As for the variable. The maps [p] (where p ranges over polynomials over A) form a unary
presentation of (A,α). The proof rests on the fact that T-algebras can be viewed as
algebras over a (possibly large and infinitary) signature [16]. Note that for monoids and
ω-semigroups, the polynomial presentation is much larger than the one in Example 1/2;
e.g., for a monoid M it contains all operations x 7→ y0xy1x . . . xyn with y0, . . . , yn ∈M .
Polynomials appeared in [8] in the context of syntactic congruences; see Example 4.8.

4. In contrast to Example 4.3.3, in general not every T-algebra admits a unary presentation
if D 6= Set. Indeed, let D = Setc,d be the variety of sets with two constants c, d, and
Setc 6=d its full reflective subcategory on the terminal object 1 and allX ∈ D with cX 6= dX .
The right adjoint Setc 6=d� D induces a monad T on D with Alg T ∼= Setc 6=d. One can
show that the T-algebra corresponding to {x, c, d} ∈ Setc6=d has no unary presentation.

5. If T represents algebras with finitary operations, the equivalence (U1)⇔(U2) often holds
for arbitrary quotients e. However, the restriction to T-refinable quotients is crucial in
the presence of infinitary operations. For example, let T be the free Γ-algebra monad on
Set for the signature Γ with one ω-ary operation. Thus TX is the set of well-founded
Γ-trees (= ω-branching trees without infinite paths) with X-labeled leaves. Let X 6= ∅
and e : TX � {0, 1} be the map sending a tree t to 0 iff t has finite height. Then for the
polynomial presentation of T, see Ex. 4.3.3, the direction (U2)⇒(U1) does not hold for e.

Digression: Syntactic T-algebras
Languages are often analyzed by means of syntactic algebras, i.e. their minimal recognizing
algebras. This language-theoretic concept is closely related to our algebraic notion of a unary
presentation, as we now explain. The results of this subsection serve to put our concepts into
the context of classical algebraic language theory; they are, however, not used in the sequel
and may be skipped by readers interested only in the variety theorem and its applications.

I Definition 4.4. Let L : T⊀→ OD be recognizable. A syntactic T-algebra for L is a finite
T-algebra AL together with a surjective T-homomorphism eL : T⊀� AL (called a syntactic
morphism for L) such that (i) eL recognizes L, and (ii) eL factors through any surjective
T-homomorphism e : T⊀� A recognizing L, i.e. eL = h · e for some h : A� AL in Alg T.

MFCS 2017



43:8 Eilenberg Theorems for Free

I Example 4.5. Let T = T∗ on Set. The syntactic monoid [22] of a recognizable language
L : Σ∗ → {0, 1} is the quotient monoid eL : Σ∗ � Σ∗/≡L, where ≡L is the monoid congruence
on Σ∗ defined by x ≡L x′ iff L(yxz) = L(yx′z) for all y, z ∈ Σ∗.

The above definition of ≡L involves for each y, z ∈ Σ∗ the unary operation x 7→ yxz on Σ∗,
which can be expressed as the composite of the operations x 7→ yx and x 7→ xz appearing in
the unary presentation of Σ∗ in Example 4.3.1. This is no coincidence: one can always derive
a syntactic congruence from a unary presentation, and vice versa. For brevity, we discuss
only the case where D is a variety of algebras; see the full paper [34] for the ordered case.

I Notation 4.6. Let U be a set of unary operations on T⊀, and denote by U its closure under
composition and identity morphisms id : (T⊀)s → (T⊀)s. Given a language L : T⊀→ OD,
the S-sorted equivalence relation ≡U,L on |T⊀| is defined as follows: for x, x′ ∈ |T⊀|s, put

x ≡U,L x′ ⇔ Lt · u(x) = Lt · u(x′) for all sorts t and all u : (T⊀)s → (T⊀)t in U.

One readily verifies that ≡U,L is a congruence on T⊀ in DS , i.e. sortwise stable under all
D-operations. We denote the induced quotient in DS by eL : T⊀� T⊀/≡U,L.

I Theorem 4.7. For any set U of unary operations on T⊀, the following are equivalent:
(i) U is a unary presentation of T⊀.
(ii) Every recognizable language L : T⊀ → OD has a syntactic T-algebra, and eL : T⊀ �

T⊀/≡U,L carries a quotient of T⊀ in Alg T that forms a syntactic morphism for L.

I Example 4.8. Let U be the unary presentation of Σ∗ in Example 4.3.1. Then ≡U,L is
precisely the congruence ≡L of Example 4.5, and Theorem 4.7 shows that ≡L is a syntactic
congruence for L. Similarly, Example 4.3.2/3 and Theorem 4.7 give a description of the
syntactic ω-semigroup for any recognizable ∞-language [19], and of the syntactic T-algebra
for any monad T on SetS and any T-recognizable language [8]. We omit the details.

Theorem 4.7 explains why syntactic algebras are presented as a key technique in earlier work
on Eilenberg theorems: they implicitly contain unary presentations. However, the latter
are the “heart of the matter”, and it is easier to directly work with presentations in lieu of
syntactic algebras to derive Eilenberg-type theorems. We will demonstrate this in Section 7.

5 Pseudovarieties of T-algebras and Profinite Theories

In this section we investigate pseudovarieties of T-algebras and establish a categorical
Reiterman theorem: pseudovarieties correspond to profinite equational theories. The results
of the present section are largely independent of our Assumptions 2.1: they hold for any locally
finite variety D of (ordered) algebras and any monad T on DS that preserves surjections.

I Definition 5.1. A Σ-generated T-algebra is a quotient e : T⊀� A of T⊀ in Alg T. The
subdirect product of two quotients ei : T⊀ � Ai (i = 0, 1) is the image e : T⊀ � A of the
T-homomorphism 〈e0, e1〉 : T⊀→ A0 ×A1. We say that e1 is a quotient of e0 if e1 factors
through e0, i.e. e1 = q · e0 for some q. A local pseudovariety of Σ-generated T-algebras is a
class of Σ-generated finite T-algebras closed under subdirect products and quotients.

In order-theoretic terms, local pseudovarieties are precisely the ideals of the poset Quof (T⊀).

I Definition 5.2. A T̂-algebra is profinite if it is an inverse limit of finite T̂-algebras. By
a Σ-generated profinite T̂-algebra is meant a quotient ϕ : T̂⊀� P of T̂⊀ in Alg T̂ with P
profinite. Σ-generated profinite T̂-algebras are ordered by ϕ ≤ ϕ′ iff ϕ factors through ϕ′.



H. Urbat, J. Adámek, L.-T. Chen, and S. Milius 43:9

I Theorem 5.3 (Local Reiterman Theorem). For each Σ ∈ SetSf , the lattice of local pseu-
dovarieties of Σ-generated T-algebras (ordered by inclusion) is isomorphic to the lattice of
Σ-generated profinite T̂-algebras. The isomorphism maps a Σ-generated profinite T̂-algebra
ϕ : T̂⊀� P to the local pseudovariety of all finite quotients e : T⊀� A with e+ ≤ ϕ.

I Remark 5.4. Theorem 5.3 can be interpreted in terms of profinite (in-)equations. If D
is a variety of ordered algebras, a profinite inequation u ≤ v over Σ is a pair of elements
u, v ∈ |T̂⊀|s in some sort s. We say that a Σ-generated finite T-algebra e : T⊀� A satisfies
u ≤ v if e+(u) ≤ e+(v). Using 5.3 one can show that local pseudovarieties are precisely the
classes of Σ-generated finite T-algebras presentable by profinite inequations over Σ. Similarly,
if D is a variety of algebras, local pseudovarieties are presentable by profinite equations.

Eilenberg’s theorem considers regular languages over arbitrary alphabets. In contrast, in a
sorted setting one may need to make a choice of alphabets to capture the proper languages
(e.g. alphabets of the form (Σ, ∅) in 2.3.2). On the algebraic side, this requires us to restrict to
T-algebras with certain generators. From now on, let A ⊆ SetSf be a fixed class of alphabets.

I Definition 5.5. A T-algebra (A,α) is A-generated if there is a surjective T-homomorphism
e : T⊀� (A,α) with Σ ∈ A. A pseudovariety of T-algebras is a class V of A-generated finite
T-algebras closed under A-generated subalgebras of finite products (i.e. for A1, . . . , An ∈ V

and any A-generated subalgebra A�
∏n
i=1Ai, one has A ∈ V) and quotients.

N.B. We emphasize that, in contrast to Definition 5.1, an A-generated T-algebra (A,α) is
not equipped with a fixed quotient e : T⊀� (A,α). Only the existence of e is required.

I Example 5.6.

1. Every finite T-algebra (A,α) is SetSf -generated: since D is locally finite, there is a
surjective morphism e : ⊀ � A with Σ ∈ SetSf , so (A,α) is a quotient of T⊀ via
(T⊀ Te−−→ TA α−→ (A,α)). Consequently, for A = SetSf , a pseudovariety is a class of finite
T-algebras closed under quotients, subalgebras, and finite products. This concept was
studied in [9]. For the monad T∗ on Set we recover the original concept of Eilenberg [12]:
a class of finite monoids closed under quotients, submonoids, and finite products.

2. Let T = T∞ on Set2. As suggested by Example 2.3.2, we chooseA = { (Σ, ∅) : Σ ∈ Setf }.
A finite T∞-algebra (= finite ω-semigroup) A is A-generated iff it is complete, i.e. every
element a ∈ Aω can be expressed as an infinite product a = π(a0, a1, . . .) for some ai ∈ A+.
Clearly complete ω-semigroups are closed under finite products. Thus a pseudovariety of
T∞-algebras is a class of finite complete ω-semigroups closed under quotients, complete
ω-subsemigroups, and finite products. This concept is due to Wilke [35]; see also [19].

I Remark 5.7. Every T-homomorphism g : TD′ → TD with D,D′ ∈ DS
f extends uniquely

to a T̂-homomorphism ĝ : T̂D′ → T̂D with ιD · g = V ĝ · ιD′ (for ιD recall Remark 2.10.2).

I Definition 5.8. A profinite theory is a family % = ( %Σ : T̂⊀� PΣ )Σ∈A such that (i) %Σ
is a Σ-generated profinite T̂-algebra for each Σ ∈ A, and (ii) for every T-homomorphism
g : T�→ T⊀ with Σ,∆ ∈ A, there exists a T̂-homomorphism gP : P∆ → PΣ with %Σ · ĝ =
gP · %∆. Profinite theories are ordered by % ≤ %′ iff %Σ factors through %′Σ for each Σ ∈ A.

I Remark 5.9. Profinite theories generalize the varieties of filters of congruences introduced
by Almeida [4] for algebras over a finitary signature, and earlier by Thérien [32] for monoids.

MFCS 2017



43:10 Eilenberg Theorems for Free

I Theorem 5.10 (Reiterman Theorem). The lattice of pseudovarieties of T-algebras (ordered
by inclusion) is isomorphic to the lattice of profinite theories. The isomorphism maps a theory
(%Σ : T̂⊀� PΣ)Σ∈A to the class of all finite T-algebras arising as a quotient of some PΣ.

I Remark 5.11. Theorem 5.10 has again an interpretation in terms of profinite (in-)equations.
If D is a variety of ordered algebras, we say that a finite T-algebra (A,α) satisfies a profinite
inequation u ≤ v over Σ ∈ A if h(u) ≤ h(v) for all T̂-homomorphisms h : T̂⊀ → (A,α+).
Using 5.10 one can show that pseudovarieties are precisely the classes of A-generated finite
T-algebras presentable by profinite inequations over A. In the unordered case, one takes
profinite equations u = v. For A = SetSf , this was proved in [9, Thm. 4.12, Rem. 5.7].

6 The Variety Theorem

To investigate varieties of languages in our categorical setting, we need a notion of language
derivatives extending the classical concept. To this end, we make use of our Assumption
2.1(iii) that the variety C has a constant in the signature. Choosing a constant gives a natural
transformation from the constant functor C1C

on 1C to the identity functor IdC. It dualizes
to a natural transformation ⊥ : Id

D̂
→ COD

. The purpose of ⊥ is to model the empty set:

I Example 6.1. For our categories D of Example 2.2 and the corresponding objects OD (see
Remark 2.11.2) we choose ⊥ : D → OD for D ∈ D̂ to be the constant morphism with value 0.

I Definition 6.2. Let L : T⊀→ OD be a language. Then we define the following languages:

1. the preimage g−1L of L under a T-homomorphism g : T�→ T⊀ by T� g−→ T⊀ L−→ OD;
2. the derivative u−1L : T⊀→ OD of L w.r.t. a unary operation u : (T⊀)s → (T⊀)t by

(u−1L)s = (T⊀)s
u−−→ (T⊀)t

Lt−−→ OD ; (u−1L)r = (T⊀)r
ι⊀−−→ (V T̂⊀)r

V⊥−−−→ OD (r 6= s)

N.B. In the single-sorted case S = 1 the derivative u−1L is equal to L · u and the natural
transformation ⊥ is not used. Therefore Assumption 2.1(iii) can be dropped.

I Example 6.3.

1. T = T∗ on Set: consider the unary operations of Example 4.3.1 presenting Σ∗. The
induced derivatives of a language L ⊆ Σ∗ are exactly the classical ones, i.e. the languages
y−1L = {x ∈ Σ∗ : yx ∈ L } and Ly−1 = {x ∈ Σ∗ : xy ∈ L } for y ∈ Σ∗.

2. T = T∞ on Set2: consider the unary operations of Example 4.3.2 presenting T∞(Σ, ∅) =
(Σ+,Σω). The induced derivatives of L ⊆ Σ+ ∪ Σω are {x ∈ Σ+ : yx ∈ L }, {x ∈ Σ+ :
xy ∈ L }, {x ∈ Σ+ : xz ∈ L }, {x ∈ Σ+ : xω ∈ L }, and { z ∈ Σω : yz ∈ L }, where
y ∈ Σ∗ and z ∈ Σω. These are the derivatives for ∞-languages studied by Wilke [35].

3. Let T be any monad on SetS , and consider the unary operations [p] of Example 4.3.3
presenting TΣ. The induced derivatives of L ⊆ TΣ are the languages p−1L ⊆ TΣ
with (p−1L)s = {x ∈ (TΣ)s : [p](x) ∈ Lt } and (p−1L)r = ∅ for r 6= s, where p : 1t →
T (TΣ + 1s) is a polynomial. These polynomial derivatives were studied by Bojańczyk [8].

I Definition 6.4. Given an S-indexed family L = (Ls : T⊀→ OD )s∈S of languages over Σ,
the diagonal of L is the language ∆L over Σ with (∆L)s = Lss : (T⊀)s → OD for all s ∈ S.

I Notation 6.5. Recall that we work with a fixed class A ⊆ SetSf of alphabets. Fix for each
Σ ∈ A a unary presentation UΣ of the free T-algebra T⊀.



H. Urbat, J. Adámek, L.-T. Chen, and S. Milius 43:11

I Definition 6.6.

1. A local variety of languages over Σ ∈ A is a subobject WΣ ⊆ Rec(Σ) in C closed under
UΣ-derivatives (L ∈WΣ implies u−1L ∈WΣ for u ∈ UΣ) and diagonals.

2. A variety of languages is a family of local varieties (WΣ ⊆ Rec(Σ) )Σ∈A closed under
preimages, i.e. L ∈WΣ implies g−1L ∈W∆ for all Σ,∆ ∈ A and g : T�→ T⊀ in Alg T.

I Remark 6.7.

1. Using the isomorphism Rec(Σ) ∼=
∏
s P (T̂⊀)s of Remark 3.4, one can show that a

subobject WΣ ⊆ Rec(Σ) is closed under diagonals iff it has the form
∏
sms :

∏
s(W ′Σ)s�∏

s P (T̂⊀)s where ms : (W ′Σ)s� P (T̂⊀)s is a monomorphism in C.
2. There are two important cases where the closure under diagonals in Definition 6.6.1 is

trivially satisfied and thus can be dropped. First, if S = 1, clearly every subobject of
Rec(Σ) is closed under diagonals. Secondly, if C is one of the categories of Example 2.2 and
UΣ contains all identity morphisms, one can show that every subobject of Rec(Σ) closed
under UΣ-derivatives is closed under diagonals. This will hold in all our applications.

We are ready to state the main result of our paper, which holds under the Assumptions 2.1.

I Theorem 6.8 (Variety Theorem).
1. For each Σ ∈ A, local varieties of languages over Σ and local pseudovarieties of Σ-

generated T-algebras form isomorphic lattices.
2. Varieties of languages and pseudovarieties of T-algebras form isomorphic lattices. The

isomorphism maps a pseudovariety V to the variety of all languages recognized by some
algebra in V.

Proof sketch. Duality + Reiterman! For 1. one shows that a diagonal-closed subobject
WΣ ⊆ Rec(Σ), given by a monomorphism ( ms : (W ′Σ)s� P (T̂⊀)s )s∈S in CS by Rem. 6.7.1,
is closed under derivatives iff the dual epimorphism ( P−1ms : (T̂⊀)s � P−1(W ′Σ)s )s∈S in
D̂S carries a Σ-generated profinite T̂-algebra. Then the Local Reiterman Theorem 5.3 gives
the isomorphism. For 2. one shows that a family (WΣ )Σ∈A of local varieties is closed under
preimages iff its dual family in D̂S is a profinite theory, and uses the Reiterman Theorem. J

7 Applications

In this section, we derive some concrete variety theorems, including new results, as special
instances of Theorem 6.8. In each case, we follow the three-step plan from the introduction.

Languages of finite words. Eilenberg’s theorem [12] relates varieties of regular languages
to pseudovarieties of monoids. It was later extended to ordered monoids [20], idempotent
semirings [24] and K-algebras [26]. In [1,3,10] we unified all these results to an Eilenberg
theorem for D-monoids in a commutative variety D, based on the dual view of automata
as algebras and coalgebras. Recall that a variety D is commutative if for any A,B ∈ D the
hom-set D(A,B) carries a subalgebra of B|A| in D. A D-monoid is an object D ∈ D with a
monoid structure (|D|, •, 1) whose multiplication is a D-bimorphism, i.e. for every y ∈ |D|
the maps y • − : |D| → |D| and − • y : |D| → |D| carry endomorphisms on D. Monoids in
D = Set, Pos, JSL0, VecK are classical monoids, ordered monoids, idempotent semirings
and K-algebras, respectively. For any set Σ, the free D-monoid (⊀∗, •, ε) on ⊀ consists of the
free D-object ⊀∗ on Σ∗, the multiplication • extending the concatenation of words, and the
empty word ε. The variety theorem for D-monoids emerges from our three steps as follows:

MFCS 2017



43:12 Eilenberg Theorems for Free

1. Let TM be the free-monoid monad on D. Thus TM⊀ = ⊀∗ and Alg TM is isomorphic to
the category of D-monoids. A language L : ⊀∗ → OD is TM -recognizable iff its restriction
L@ : Σ∗ → |OD| is a regular behavior, i.e. a function computed by some finite automaton
with output set |OD|. If |OD| ∼= {0, 1} (e.g., for D = Set, Pos, JSL0), regular behaviors
are exactly the characteristic functions of regular languages over Σ.

2. Generalizing Example 4.3.1, the free D-monoid TM⊀ = ⊀∗ has the unary presentation
UΣ = {⊀∗ y•−−−→ ⊀∗, ⊀∗ −•y−−→ ⊀∗ : y ∈ Σ∗ }. Thus the UΣ-derivatives of a language
L : ⊀∗ → OD are (after identifying L with L@) the classical derivatives of Example 6.3.1.

3. LetA = Setf . Instantiating Definition 6.6 gives the notion of a variety of regular behaviors
in C: a family (WΣ ⊆ Rec(Σ))Σ∈A of regular behaviors closed under C-algebraic operations
(see Rem. 3.4), derivatives and preimages of D-monoid morphisms, i.e. g−1L ∈W∆ for
any L : ⊀∗ → OD in WΣ and any D-monoid morphism g : �∗ → ⊀∗. Theorem 6.8 gives

I Theorem 7.1 ([1,3,10]). Let C and D be varieties satisfying the Assumptions 2.1(i),(ii),(iv),
and suppose that the variety D is commutative. Then the lattice of (local) varieties of regular
behaviors in C is isomorphic to the lattice of (local) pseudovarieties of D-monoids.

Four special instances are listed below. The third column describes the C-algebraic operations
under which (local) varieties are closed, and the fourth one states what D-monoids are. All
correspondences are known in the literature, and are uniformly covered by Theorem 7.1.

C D (local) var. of behav. closed under ∼= (local) pseudovarieties of proved in
BA Set boolean operations monoids [12,14]
DL01 Pos finite union and finite intersection ordered monoids [14,20]
JSL0 JSL0 finite union idempotent semirings [24]
VecK VecK addition of weighted languages K-algebras [26]

Polynomial varieties. Next, we derive Bojańczyk’s polynomial variety theorem [8]. 1. Let
T be a monad on SetS . 2. Choose the polynomial presentation of TΣ. 3. Let A = SetSf .
Applying Def. 6.6, a polynomial variety of languages is a family of T-recognizable languages
closed under boolean operations, polynomial derivatives (see Ex. 6.2.3), and preimages of
T-homomorphisms. Thm. 6.8 gives Bojańczyk’s variety theorem [8] and a new local version:

I Theorem 7.2. The lattice of (local) polynomial varieties of T-recognizable languages is
isomorphic to the lattice of (local) pseudovarieties of T-algebras.

∞-languages. Finally, we derive two variety theorems for ∞-languages. For the first one,
1. let T = T∞ on Set2. 2. Choose A = { (Σ, ∅) : Σ ∈ Setf }, and for each Σ ∈ Setf the
unary presentation of T∞(Σ, ∅) = (Σ+,Σω) as in Example 4.3.2. 3. Def. 6.6 yields the notion
of a variety of ∞-languages: a family of∞-regular languages closed under boolean operations,
derivatives (see Example 6.3.2) and preimages of ω-semigroup morphisms. Theorem 6.8 gives

I Theorem 7.3. The lattice of (local) varieties of ∞-languages is isomorphic to the lattice
of (local) pseudovarieties of ω-semigroups.

The non-local part is due to Wilke [19, 35] and the local part is a new result, extending the
local variety theorem of [14] to infinite words. Similarly, we can obtain an ordered version
of Theorem 7.3: 1. take the monad T∞,≤ on Pos2 representing ordered ω-semigroups (i.e.
ω-semigroups on a poset with monotone products). 2. Choose A and the unary presentation



H. Urbat, J. Adámek, L.-T. Chen, and S. Milius 43:13

of T∞,≤(⊀, ∅) as above. 3. Since C = DL01, Def. 6.6 gives positive varieties of ∞-languages,
emerging from varieties by dropping closure under complement. Then Theorem 6.8 yields the
theorem below. Its non-local part is due to Pin [21], and the local part is again a new result.

I Theorem 7.4. The lattice of (local) positive varieties of ∞-languages is isomorphic to the
lattice of (local) pseudovarieties of ordered ω-semigroups.

The two above theorems do not follow from Theorem 7.1/7.2, which shows that our framework
has a wider scope than the earlier work in [1,3,8, 10]. For many more applications, including
variety theorems for tree languages [29] and cost functions [11], see the full paper [34].

8 Conclusions and Future Work

We presented a categorical framework for algebraic language theory that captures, as special
instances, the bulk of the Eilenberg theorems in the literature for pseudovarieties of finite
algebras and varieties of recognizable languages. Let us mention directions for future work.

First, we aim to investigate if it is possible to obtain a variety theorem for data languages
based on nominal Stone duality [13]. On a similar note, it would also be interesting to see
whether dualities modeling probabilistic phenomena (e.g. Gelfand or Kadison duality) lead
to a meaningful algebraic language theory for probabilistic automata and languages.

Secondly, although finite structures are of most relevance from the automata-theoretic
perspective, there has been some work on variety theorems with relaxed finiteness restrictions.
One example is Reutenauer’s theorem [26] for weighted languages over arbitrary fields K. To
cover this in our setting the results of Section 5 should be presented for (E ,M)-structured
categories D in lieu of varieties. This has been worked out in [33] and, independently, in the
recent preprint [27]. In the latter, also a formal “Eilenberg correspondence” is stated for dual
(E ,M)-categories. An important conceptual difference to our present work is that in loc. cit.
one uses discrete dualities (e.g. complete atomic boolean algebras/sets instead of boolean
algebras/Stone spaces) and that unary presentations do not appear. This makes the concept
of a variety of languages (called a coequational theory) and the Eilenberg correspondence
in [27] easy to state, but much harder to apply in practice. The results of [27] and of our
paper do not entail each other, and we leave it for future work to find a common roof.

References
1 J. Adámek, S. Milius, R. Myers, and H. Urbat. Generalized Eilenberg Theorem I: Local

Varieties of Languages. In A. Muscholl, editor, Proc. FoSSaCS’14, volume 8412 of LNCS,
pages 366–380. Springer, 2014. Full version: http://arxiv.org/pdf/1501.02834v1.pdf.

2 J. Adámek, S. Milius, and H. Urbat. Syntactic monoids in a category. In Proc. CALCO’15,
LIPIcs. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2015. Full version: http://
arxiv.org/abs/1504.02694.

3 J. Adámek, R. Myers, S. Milius, and H. Urbat. Varieties of languages in a category. In
30th Annual ACM/IEEE Symposium on Logic in Computer Science. IEEE, 2015.

4 J. Almeida. On pseudovarieties, varieties of languages, filters of congruences, pseudoidenti-
ties and related topics. Algebra Universalis, 27(3):333–350, 1990.

5 N. Bedon and O. Carton. An Eilenberg theorem for words on countable ordinals. In Proc.
LATIN’98, volume 1380 of LNCS, pages 53–64. Springer, 1998.

6 N. Bedon and C. Rispal. Schützenberger and Eilenberg theorems for words on linear
orderings. In Proc. DLT’05, volume 3572 of LNCS, pages 134–145. Springer, 2005.

7 G. Birkhoff. Rings of sets. Duke Mathematical Journal, 3(3):443–454, 1937.

MFCS 2017

http://arxiv.org/pdf/1501.02834v1.pdf
http://arxiv.org/abs/1504.02694
http://arxiv.org/abs/1504.02694


43:14 Eilenberg Theorems for Free

8 M. Bojańczyk. Recognisable languages over monads. In I. Potapov, editor, Proc. DLT’15,
volume 9168 of LNCS, pages 1–13. Springer, 2015. http://arxiv.org/abs/1502.04898.

9 L.-T. Chen, J. Adámek, S. Milius, and H. Urbat. Profinite monads, profinite equations
and Reiterman’s theorem. In B. Jacobs and C. Löding, editors, Proc. FoSSaCS’16, volume
9634 of LNCS. Springer, 2016. http://arxiv.org/abs/1511.02147.

10 L.-T. Chen and H. Urbat. A fibrational approach to automata theory. In L. S. Moss and
P. Sobocinski, editors, Proc. CALCO’15, LIPIcs. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, 2015.

11 L. Daviaud, D. Kuperberg, and J.-É. Pin. Varieties of cost functions. In N. Ollinger and
H. Vollmer, editors, Proc. STACS 2016, volume 47 of LIPIcs, pages 30:1–30:14. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2016.

12 S. Eilenberg. Automata, Languages, and Machines Vol. B. Academic Press, 1976.
13 M. J. Gabbay, T. Litak, and D. Petrişan. Stone duality for nominal boolean algebras with

new. In A. Corradini, B. Klin, and C. Cîrstea, editors, Proc. CALCO’11, volume 6859 of
LNCS, pages 192–207. Springer, 2011.

14 M. Gehrke, S. Grigorieff, and J.-É. Pin. Duality and equational theory of regular languages.
In L. Aceto and al., editors, Proc. ICALP’08, Part II, volume 5126 of LNCS, pages 246–257.
Springer, 2008.

15 P. T. Johnstone. Stone spaces. Cambridge University Press, 1982.
16 E. G. Manes. Algebraic Theories, volume 26 of Graduate Texts in Mathematics. Springer,

1976.
17 G. Matthiessen. Theorie der heterogenen Algebren. Technical report, Universität Bremen,

1976.
18 G. Matthiessen. A heterogeneous algebraic approach to some problems in automata theory,

many-valued logic and other topics. In Proc. Klagenfurt Conf., 1979.
19 D. Perrin and J.-É. Pin. Infinite Words. Elsevier, 2004.
20 J.-É. Pin. A variety theorem without complementation. Russ. Math., 39:80–90, 1995.
21 J.-É. Pin. Positive varieties and infinite words. In LATIN 98, volume 1380 of LNCS, pages

76–87. Springer, 1998.
22 J.-É. Pin. Mathematical foundations of automata theory. Available at http://www.liafa.

jussieu.fr/~jep/PDF/MPRI/MPRI.pdf, November 2016.
23 N. Pippenger. Regular languages and Stone duality. Th. Comp. Sys., 30(2):121–134, 1997.

URL: http://link.springer.com/10.1007/BF02679444, doi:10.1007/BF02679444.
24 L. Polák. Syntactic semiring of a language. In J. Sgall, A. Pultr, and P. Kolman, editors,

Proc. MFCS’01, volume 2136 of LNCS, pages 611–620. Springer, 2001.
25 J. Reiterman. The Birkhoff theorem for finite algebras. Algebra Universalis, 14(1):1–10,

1982.
26 C. Reutenauer. Séries formelles et algèbres syntactiques. J. Algebra, 66:448–483, 1980.
27 J. Salamánca. Unveiling Eilenberg-type Correspondences: Birkhoff’s Theorem for (finite)

Algebras + Duality. https://arxiv.org/abs/1702.02822, February 2017.
28 S. Salehi and M. Steinby. Varieties of many-sorted recognizable sets. TUCS Technical

Report 626, Turku Center for Computer Science, 2004.
29 S. Salehi and M. Steinby. Tree algebras and varieties of tree languages. Theor. Comput.

Sci., 377(1-3):1–24, 2007.
30 M. P. Schützenberger. On finite monoids having only trivial subgroups. Inform. and

Control, 8:190–194, 1965.
31 H. Straubing. On logical descriptions of regular languages. In S. Rajsbaum, editor, LATIN

2002 Theor. Informatics, volume 2286 of LNCS, pages 528–538. Springer, 2002.
32 D. Thérien. Classification of Regular Languages by Congruences. PhD thesis, University

of Waterloo, 1980.

http://arxiv.org/abs/1502.04898
http://arxiv.org/abs/1511.02147
http://www.liafa.jussieu.fr/~jep/PDF/MPRI/MPRI.pdf
http://www.liafa.jussieu.fr/~jep/PDF/MPRI/MPRI.pdf
http://link.springer.com/10.1007/BF02679444
http://dx.doi.org/10.1007/BF02679444
https://arxiv.org/abs/1702.02822


H. Urbat, J. Adámek, L.-T. Chen, and S. Milius 43:15

33 H. Urbat. A note on HSP theorems. https://www.tu-braunschweig.de/Medien-DB/iti/
hspnote.pdf.

34 H. Urbat, J. Adámek, L.-T. Chen, and S. Milius. Eilenberg Theorems for Free. https:
//arxiv.org/abs/1602.05831. February 2017.

35 T. Wilke. An Eilenberg theorem for ∞-languages. In Proc. ICALP’91, volume 510 of
LNCS, pages 588–599. Springer, 1991.

MFCS 2017

https://www.tu-braunschweig.de/Medien-DB/iti/hspnote.pdf
https://www.tu-braunschweig.de/Medien-DB/iti/hspnote.pdf
https://arxiv.org/abs/1602.05831
https://arxiv.org/abs/1602.05831




Membership Problem in GL(2,Z) Extended by
Singular Matrices∗

Igor Potapov1 and Pavel Semukhin2

1 Department of Computer Science, University of Liverpool, United Kingdom
potapov@liverpool.ac.uk

2 Department of Computer Science, University of Liverpool, United Kingdom
semukhin@liverpool.ac.uk

Abstract
We consider the membership problem for matrix semigroups, which is the problem to decide
whether a matrix belongs to a given finitely generated matrix semigroup.

In general, the decidability and complexity of this problem for two-dimensional matrix semig-
roups remains open. Recently there was a significant progress with this open problem by showing
that the membership is decidable for 2× 2 nonsingular integer matrices. In this paper we focus
on the membership for singular integer matrices and prove that this problem is decidable for 2×2
integer matrices whose determinants are equal to 0, 1, −1 (i.e. for matrices from GL(2,Z) and
any singular matrices). Our algorithm relies on a translation of numerical problems on matrices
into combinatorial problems on words and conversion of the membership problem into decision
problem on regular languages.

1998 ACM Subject Classification F.2.1 Numerical Algorithms and Problems, F.1.1 Models of
Computation

Keywords and phrases Matrix Semigroups, Membership Problem, General Linear Group,
Singular Matrices, Automata and Formal Languages

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.44

1 Introduction

Matrices and matrix products play a crucial role in the representation and analysis of various
computational processes such as linear recurrent sequences [13, 21, 22], arithmetic circuits
[11], hybrid and dynamical systems [20, 2], probabilistic and quantum automata [7], stochastic
games, broadcast protocols [10]. Many problems for matrices in dimension three and four
are undecidable, but the decidability and complexity of problems for two-dimensional matrix
semigroups remains open. One of such hard questions is the Membership problem.

Membership problem: Given a finite set of m×m matrices F = {M1,M2, . . . ,Mn} and
a matrix M . Determine whether there exist an integer k ≥ 1 and i1, i2, . . . , ik ∈ {1, . . . , n}
such that

Mi1 ·Mi2 · · ·Mik = M.

In other words, determine whether a matrix M belongs to the semigroup generated by F .

∗ This work was supported by EPSRC grant “Reachability problems for words, matrices and maps”
(EP/M00077X/1).

© Igor Potapov and Pavel Semukhin;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 44; pp. 44:1–44:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.44
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


44:2 Membership Problem in GL(2,Z) Extended by Singular Matrices

There are only few known decidability results for the membership problem when the
dimension is not bounded. In 1986 Kannan and Lipton [14] proved that the membership is
decidable in polynomial time for a semigroup generated by a single m×m matrix (known
as the Orbit problem). Later, in 1996 this decidability result was extended to a more
general case of commutative matrices [1]. A generalization of this result to a special class of
non-commutative matrices (a class of row-monomial matrices over a commutative semigroup
satisfying some natural effectiveness conditions) was shown in 2004 in [16]. On the other
hand, it is known that the membership is already undecidable for 3× 3 integer matrices with
determinant 0 (i.e. singular matrices), see [23]. As for the nonsingular case, it is known that
the membership is undecidable for 4× 4 integer matrices with determinant one, see [5]. A
more recent survey of undecidable problems can be found in [8].

Due to a severe lack of methods and techniques the status of decision problems for
2× 2 matrices (like membership, vector reachability, freeness) remains a long standing open
problem. Recently, a new approach of translating numerical problems on 2×2 integer matrices
into a variety of combinatorial and computational problems on words over group alphabet
and studying their transformations as specific rewriting systems have led to new results
on decidability and complexity. The main ingredient of the translation into combinatorial
problems on words is the well-known result that the groups SL(2,Z) and GL(2,Z) are finitely
generated. For example, SL(2,Z) can be generated by a pair of matrices

S =
[
0 −1
1 0

]
and R =

[
0 −1
1 1

]
with the following relations: S4 = I, R6 = I and S2 = R3. So, we can represent a matrix
M ∈ SL(2,Z) as a word in the alphabet {S,R}.

In particular, this symbolic representation was successfully used to show the decidability
of the membership problem for the semigroups of GL(2,Z) [9] in 2005 and of the mortality
problem for 2 × 2 integer matrices with determinants 0,±1 [19] in 2008. It also found
applications in the design of the polynomial time algorithm for the membership problem for
the modular group [12] in 2007. Furthermore, it was used to show NP-hardness for most of
the reachability problems in dimension two [6, 3] in 2012 and to prove decidability of the
vector/scalar reachability problems in SL(2,Z) [24] in 2016.

In 2017 a significant progress was made towards decidability of the membership problem
for 2× 2 integer matrices extending previously known result on GL(2,Z) [9]. In [25] the first
algorithm was discovered that can check the membership problem for a matrix semigroup
generated by nonsingular 2× 2 integer matrices. In this paper we show another extension of
[9] and prove that the membership problem is decidable for 2 × 2 integer matrices whose
determinants are equal to 0, 1, −1 (i.e. for matrices from GL(2,Z) and any singular matrices).
As a first step we give an alternative proof of the decidability of the mortality problem (i.e.
membership for the zero matrix) from [19], in which we will use the Smith normal forms of
matrices. In contrast to [19], our new approach allows us to generalize this proof to show
decidability of the membership problem for singular matrices. The algorithm is based on a
nontrivial combination of algebraic properties of GL(2,Z), automata theory and properties
of matrix products with singular matrices.

2 Preliminaries

The semigroup of 2×2 integer matrices is denoted by Z2×2. Let GL(2,Z) be the general linear
group of dimension 2 over Z, that is, the group of 2× 2 integer matrices whose determinant
is equal to ±1. We will use O to denote the zero 2× 2 matrix. A matrix is called singular if
its determinant is equal to zero and nonsingular otherwise.



I. Potapov and P. Semukhin 44:3

If F is a finite collection of matrices from Z2×2, then 〈F〉 denotes the semigroup generated
by F (including the identity matrix), that is, M ∈ 〈F〉 if and only if M = I or there are
matrices M1, . . . ,Mn ∈ F such that M = M1 · · ·Mn.

Consider the following matrices from GL(2,Z):

N =
[
1 0
0 −1

]
, S =

[
0 −1
1 0

]
, R =

[
0 −1
1 1

]
, X = −I =

[
−1 0
0 −1

]
.

Every word in the alphabet Σ = {N,S,R,X} corresponds to a matrix from GL(2,Z) in a
natural way. Namely, the letters N,S,R,X correspond to the matrices defined by the above
formulas, and a word w ∈ Σ∗ corresponds to the product of its letters. For example, the

word SR corresponds to the matrix
[
−1 −1
0 −1

]
.

It is well-known that GL(2,Z) is generated by the above matrices. So any M ∈ GL(2,Z)
can be presented by a word in the alphabet Σ = {N,S,R,X}. Such presentation is not
unique because of the identities like S2 = R3 = X. However for every matrix M ∈ GL(2,Z),
there is a unique canonical word that represents it, as described below.

I Definition 1. A word w ∈ Σ∗ is called a canonical word if it has the form

w = NδXγSβRα0SRα1SRα2 . . . SRαn−1SRαn ,

where β, δ, γ ∈ {0, 1}, α0, . . . , αn−1 ∈ {1, 2}, and αn ∈ {0, 1, 2}. In other words, w is
canonical if it does not contain subwords SS or RRR. Moreover, letter N may appear only
once in the first position, and letter X may appear only once either in the first position or
after N .

I Proposition 2 ([17, 18, 26, 25]). For every M ∈ GL(2,Z), there is a unique canonical
word w which represents M .

We will also use two additional matrices T =
[
1 1
0 1

]
, U =

[
1 0
1 1

]
and the following

identities: R = ST , T = XSR, T−1 = XR2S, U = XSR2 and U−1 = XRS .

I Definition 3. A subset S ⊆ GL(2,Z) is called regular or automatic if there is a regular
language L in alphabet Σ that describes S. That is, every word w ∈ L corresponds to a
matrix M from S, and for every matrix M ∈ S, there is a word w ∈ L that represents M .

I Definition 4. We call two words w1 and w2 from Σ∗ equivalent, denoted w1 ∼ w2, if they
represent the same matrix. Two languages L1 and L2 in the alphabet Σ are equivalent,
denoted L1 ∼ L2, if
(i) for each w1 ∈ L1, there exists w2 ∈ L2 such that w1 ∼ w2, and
(ii) for each w2 ∈ L2, there exists w1 ∈ L1 such that w2 ∼ w1.
In other words, L1 and L2 are equivalent if and only if they describe the same language.
Two finite automata A1 and A2 over alphabet Σ are equivalent, denoted A1 ∼ A2, if
L(A1) ∼ L(A2).

The next theorem will be a crucial ingredient of our decidability result.

I Theorem 5. Given two regular subsets S1 and S2 of GL(2,Z), it is decidable whether the
intersection S1 ∩ S2 is empty or not.

MFCS 2017



44:4 Membership Problem in GL(2,Z) Extended by Singular Matrices

Proof. The proof is based on the following result: for every finite automaton A over alphabet
Σ, there is an automaton Can(A) such that Can(A) accepts only canonical words and
Can(A) ∼ A, that is, Can(A) and A describe the same subset of GL(2,Z). The construction
of Can(A) can be found in [25], see also [9] for an alternative construction.

Now let L1 and L2 be regular languages that describe S1 and S2, respectively, and let A1
and A2 be finite automata such that L(A1) = L1 and L(A2) = L2. By Proposition 2, every
matrix from GL(2,Z) corresponds to a unique canonical word. Therefore, we obtain the
following equivalence: S1 ∩ S2 6= ∅ if and only if the languages of the automata Can(A1) and
Can(A2) have nonempty intersection. Since the emptiness problem for regular languages is
decidable, it is decidable whether S1 ∩ S2 is empty or not. J

Another important ingredient of our proof is the existence and uniqueness of the Smith
normal form of a matrix.

I Theorem 6 (Smith normal form [15]). For any matrix A ∈ Z2×2, there are matrices E,F

from GL(2,Z) such that A = E

[
t1 0
0 t2

]
F for some nonnegative integers t1 and t2 such that

t1 | t2. The diagonal matrix
[
t1 0
0 t2

]
, which is unique, is called the Smith normal form of

A. In fact, t1 is equal to the gcd of the coefficients of A. Moreover, E, F , t1, and t2 can be
computed in polynomial time.

Remark. If A ∈ Z2×2 is nonzero matrix with det(A) = 0, then the Smith normal form of

A is equal to
[
t 0
0 0

]
, where t is the gcd of the coefficients of A.

Using uniqueness of the Smith normal form we obtain the following corollary.

I Corollary 7. If E,F ∈ GL(2,Z), then E
[
1 0
0 0

]
F is not a zero matrix.

3 Main result

The main result of our paper is the following theorem.

I Theorem 8. Let M ∈ Z2×2 and let F = {A1, . . . , An, B1, . . . , Bm} be a collection of
matrices from Z2×2 such that Ai ∈ GL(2,Z) for i = 1, . . . , n, and Bj is a singular matrix
for j = 1, . . . ,m. Then it is decidable whether M ∈ 〈F〉.

Proof. First, note that if M ∈ 〈F〉, then M is either singular or M ∈ GL(2,Z). Therefore,
if |det(M)| > 1, then we know that M /∈ 〈F〉. On the other hand, if det(M) = ±1, i.e. if
M ∈ GL(2,Z), then M ∈ 〈F〉 if and only if M ∈ 〈A1, . . . , An〉. In other words, our problem
reduces to the membership problem in GL(2,Z), and the decidability of the membership in
GL(2,Z) was proven in [9].

Hence from now on we will assume that M is a singular matrix. First, we consider the
case when M is the zero matrix and after that we consider the case when M is a nonzero
singular matrix. The case whenM = O is also called the Mortality problem. The decidability
of the mortality problem for matrices with determinants 0 and ±1 was shown in [19]. In
Theorem 11 below we provide an alternative proof of this fact, which is based on the use of
the Smith normal form of a matrix. Another reason why we include the proof of Theorem 11
is that it presents a simplified version of a more complicated construction for a nonzero M .
Finally, in Theorem 13 we prove decidability of the membership problem for a nonzero
singular matrix M . J



I. Potapov and P. Semukhin 44:5

First, we prove Proposition 9 which will play an important role in the proofs of Theorems
11 and 13. Moreover, Proposition 9 and Corollary 10 reveal new structural properties of
certain subsets of GL(2,Z) in symbolic presentation.

I Proposition 9. For any fixed a ∈ Z, letM(a) =
{[
a b

c d

]
∈ GL(2,Z) : b, c, d ∈ Z

}
. Then

M(a) is a regular subset of GL(2,Z).

Proof. First, suppose that a = 0. Then

M(0) =
{[

0 −1
1 d

]
: d ∈ Z

}⋃{[
0 1
−1 d

]
: d ∈ Z

} ⋃
{[

0 1
1 d

]
: d ∈ Z

}⋃{[
0 −1
−1 d

]
: d ∈ Z

}
.

Note that
[
0 −1
1 d

]
= ST d,

[
0 1
−1 d

]
= −ST−d,

[
0 1
1 d

]
= SNT d,

[
0 −1
−1 d

]
= −SNT−d.

Hence we can express M(0) as

M(0) ={ST d : d ∈ Z} ∪ {−ST−d : d ∈ Z} ∪ {SNT d : d ∈ Z} ∪ {−SNT−d : d ∈ Z} =
{ST d : d ≥ 0} ∪ {S(T−1)d : d ≥ 0} ∪ {−S(T−1)d : d ≥ 0} ∪
{−ST d : d ≥ 0} ∪ {SNT d : d ≥ 0} ∪ {SN(T−1)d : d ≥ 0} ∪
{−SN(T−1)d : d ≥ 0} ∪ {−SNT d : d ≥ 0}.

Therefore, M(0) can be described by the following regular expression

S(XSR)∗ + S(XR2S)∗ + XS(XR2S)∗ + XS(XSR)∗+
SN (XSR)∗ + SN (XR2S)∗ + XSN (XR2S)∗ + XSN (XSR)∗.

Now suppose that a 6= 0. Consider a matrix A =
[
a b

c d

]
∈ GL(2,Z) and let b = b0 +ma

and c = c0 + na, where b0, c0 ∈ {0, . . . , |a| − 1} and m,n ∈ Z. Since A ∈ GL(2,Z), we have
ad− bc = ±1 or

d = bc± 1
a

= (b0 +ma)(c0 + na)± 1
a

= b0c0 ± 1
a

+mc0 + nb0 +mna.

Since d is an integer, b0c0±1
a must also be an integer. Note that

A =
[
a b

c d

]
=
[

a b0 +ma

c0 + na b0c0±1
a +mc0 + nb0 +mna

]
=
[

1 0
n 1

][
a b0
c0

b0c0±1
a

][
1 m

0 1

]
.

So, A = Un
[
a b0
c0

b0c0±1
a

]
Tm. Let N+(a) and N−(a) be the following finite sets

N+(a) = {(b0, c0) : b0, c0 ∈ {0, . . . , |a| − 1} and b0c0+1
a is an integer },

N−(a) = {(b0, c0) : b0, c0 ∈ {0, . . . , |a| − 1} and b0c0−1
a is an integer }.

Then

M(a) =
⋃

(b0,c0)∈N+(a)

{
Un
[
a b0
c0

b0c0+1
a

]
Tm : n,m ∈ Z

} ⋃
⋃

(b0,c0)∈N−(a)

{
Un
[
a b0
c0

b0c0−1
a

]
Tm : n,m ∈ Z

}
.

MFCS 2017



44:6 Membership Problem in GL(2,Z) Extended by Singular Matrices

For each (b0, c0) ∈ N+(a), let w+(b0, c0) be a word that represents the matrix
[
a b0
c0

b0c0+1
a

]
.

Note that for every (b0, c0) ∈ N+(a), we can present
{
Un
[
a b0
c0

b0c0+1
a

]
Tm : n,m ∈ Z

}
as a

union of four sets{
Un
[
a b0
c0

b0c0+1
a

]
Tm : n,m ≥ 0

} ⋃ {
(U−1)n

[
a b0
c0

b0c0+1
a

]
Tm : n,m ≥ 0

} ⋃
{
Un
[
a b0
c0

b0c0+1
a

]
(T−1)m : n,m ≥ 0

}⋃{
(U−1)n

[
a b0
c0

b0c0+1
a

]
(T−1)m : n,m ≥ 0

}
.

Hence it can be described by the following regular expression

(XSR2)∗w+(b0, c0)(XSR)∗ + (XRS)∗w+(b0, c0)(XSR)∗+
(XSR2)∗w+(b0, c0)(XR2S)∗ + (XRS)∗w+(b0, c0)(XR2S)∗.

Similarly, we have that for every (b0, c0) ∈ N−(a), the set
{
Un
[
a b0
c0

b0c0−1
a

]
Tm : n,m ∈ Z

}
can be described by a regular expression. Since M(a) is equal to a finite union of such sets,
we conclude that it is also regular. J

I Corollary 10. For every i = 1, 2, 3, 4 and any fixed a ∈ Z, the following subset of GL(2,Z)

is a regular set: Mi(a) =
{[
a1 a2
a3 a4

]
∈ GL(2,Z) : ai = a and aj ∈ Z for j 6= i

}
.

Proof. By definition, M1(a) = M(a), hence it is regular by Proposition 9. Now let L(a)

be a regular language that describes M(a) and let K =
[
0 1
1 0

]
. It is not hard to see that

M2(a) = M(a) ·K, M3(a) = K ·M(a) and M4(a) = K ·M(a) ·K. Note that matrix K

corresponds to the word NXS . Therefore, M2(a), M3(a) and M4(a) can be described by the
regular languages L(a)·{NXS}, {NXS}·L(a) and {NXS}·L(a)·{NXS}, respectively. J

3.1 Mortality problem
In this section we will give an alternative proof of the decidability of the mortality problem
from [19] which will be based on the use of the Smith normal form of a matrix.

I Theorem 11. The mortality problem for 2× 2 integer matrices with determinants 0,±1 is
decidable.

This theorem will be a consequence of Theorem 5 and Propositions 9 and 12.

I Proposition 12. Let F = {A1, . . . , An, B1, . . . , Bm} be a collection of matrices from Z2×2

such that Ai ∈ GL(2,Z) for i = 1, . . . , n, and det(Bj) = 0 for j = 1, . . . ,m. Then O ∈ 〈F〉
if and only if Bj = O for some j or there are indices i, j ∈ {1, . . . ,m} and a matrix
C ∈ 〈A1, . . . , An〉 such that BiCBj = O.

Proof. Suppose that Bj 6= O for every j. Under this assumption, if O ∈ 〈F〉 then there are
indices i1, . . . , is ∈ {1, . . . ,m} and matrices C1, . . . , Cs+1 ∈ 〈A1, . . . , An〉 such that

C1Bi1C2Bi2 · · ·CsBisCs+1 = O. (1)



I. Potapov and P. Semukhin 44:7

By Theorem 6, we can write each matrix Bir , for i = 1, . . . , s, as Bir = Er

[
tr 0
0 0

]
Fr, where

Er, Fr ∈ GL(2,Z) and tr > 0. Then (1) is equivalent to

C1E1

[
t1 0
0 0

]
F1C2E2

[
t2 0
0 0

]
F2 · · ·

· · ·Cs−1Es−1

[
ts−1 0

0 0

]
Fs−1CsEs

[
ts 0
0 0

]
FsCs+1 = O. (2)

Dividing (2) by the product t1t2 · · · ts−1ts, which is nonzero by our assumption, we obtain

C1E1

[
1 0
0 0

]
F1C2E2

[
1 0
0 0

]
F2 · · ·Cs−1Es−1

[
1 0
0 0

]
Fs−1CsEs

[
1 0
0 0

]
FsCs+1 = O. (3)

Suppose for each r = 2, . . . , s the matrix Fr−1CrEr have the form Fr−1CrEr =
[
ar br
cr dr

]
.

Note that
[
1 0
0 0

][
a b

c d

][
1 0
0 0

]
=
[
a 0
0 0

]
. Therefore, (3) is equivalent to

C1E1

[
a2a3 · · · as 0

0 0

]
FsCs+1 = O. (4)

Suppose that a2a3 · · · as 6= 0. In this case (4) is equivalent to

C1E1

[
1 0
0 0

]
FsCs+1 = O,

where C1E1 and FsCs+1 are matrices from GL(2,Z). This contradicts Corollary 7. Hence
a2a3 · · · as = 0, and therefore there is r ∈ {2, . . . , s} such that ar = 0. This implies that
Bir−1CrBir = O. Indeed,

Bir−1CrBir = Er−1

[
tr−1 0

0 0

]
Fr−1CrEr

[
tr 0
0 0

]
Fr.

By assumption, Fr−1CrEr =
[
ar br
cr dr

]
. Thus

Bir−1CrBir = tr−1trEr−1

[
1 0
0 0

][
ar br
cr dr

][
1 0
0 0

]
Fr = tr−1trEr−1

[
ar 0
0 0

]
Fr.

Since ar = 0, we have Bir−1CrBir = O.
The implication on the other direction is trivial. J

Proof of Theorem 11. Obviously, if Bj = O for some j = 1, . . . ,m, then O ∈ 〈F〉. There-
fore, from now on we assume that all Bj ’s are nonzero singular matrices. In this case
Proposition 12 implies that O ∈ 〈F〉 if and only if there are indices i, j ∈ {1, . . . ,m} and a
matrix C ∈ 〈A1, . . . , An〉 such that BiCBj = O. We now show that the latter property is
algorithmically decidable.

Let Bi = Ei

[
ti 0
0 0

]
Fi and Bj = Ej

[
tj 0
0 0

]
Fj be the Smith normal forms of Bi and Bj ,

respectively. Note that by our assumption ti, tj > 0. Let C be a matrix from 〈A1, . . . , An〉.
We have BiCBj = O if and only if

Ei

[
ti 0
0 0

]
FiCEj

[
tj 0
0 0

]
Fj = O or, equivalently, Ei

[
1 0
0 0

]
FiCEj

[
1 0
0 0

]
Fj = O.

MFCS 2017



44:8 Membership Problem in GL(2,Z) Extended by Singular Matrices

Let FiCEj =
[
a b

c d

]
for some a, b, c, d ∈ Z. Then the above equation is equivalent to

Ei

[
1 0
0 0

][
a b

c d

][
1 0
0 0

]
Fj = O or Ei

[
a 0
0 0

]
Fj = O. By Corollary 7, Ei

[
a 0
0 0

]
Fj = O

if and only if a = 0. So, we showed the following equivalence: BiCBj = O if and only if

FiCEj =
[
0 b

c d

]
for some b, c, d ∈ Z.

Let S1 and S2 be the following subsets of GL(2,Z): S1 = {FiCEj : C ∈ 〈A1, . . . , An〉}

and S2 =
{[

0 b

c d

]
∈ GL(2,Z) : b, c, d ∈ Z

}
. In this notations the above equivalence can

be written as follows: there is a matrix C ∈ 〈A1, . . . , An〉 such that BiCBj = O if and only
if S1 ∩ S2 6= ∅.

It is easy to see that S1 is a regular subset of GL(2,Z) as it can be described by the
regular expression ui(w1 + · · ·+wn)∗vj , where w1, . . . , wn are words representing the matrices
A1, . . . , An and ui, vj represent the matrices Fi, Ej , respectively. By Proposition 9, S2 is
also a regular subset of GL(2,Z). Using Theorem 5, we can decide whether S1 ∩ S2 6= ∅
and hence decide whether there is a matrix C ∈ 〈A1, . . . , An〉 such that BiCBj = O. This
finishes the proof of Theorem 11. J

3.2 Membership problem
We are now ready to consider the case when M is a nonzero singular matrix.

I Theorem 13. Let F = {A1, . . . , An, B1, . . . , Bm} be a finite collection of matrices such that
A1, . . . , An ∈ GL(2,Z) and B1, . . . , Bm are singular matrices from Z2×2. Also let M ∈ Z2×2

be a nonzero singular matrix. Then it is decidable whether M ∈ 〈F〉.

Proof. Let M = E

[
t 0
0 0

]
F be the Smith normal form of M , and for each j = 1, . . . ,m,

let Bj = Ej

[
tj 0
0 0

]
Fj be the Smith normal form of Bj . Since M is a nonzero matrix, we

may assume that for each j = 1, . . . ,m, Bj is also a nonzero matrix. Hence without loss of
generality we assume that t, t1, . . . , tm > 0.

We will construct a graph G(M,F), depending onM and F , which will have the following
property: M ∈ 〈F〉 if and only if there is a path in G(M,F) from an initial to a final node
of weight t.

Description of G(M,F). Graph G(M,F) has m nodes labelled by singular matrices
B1, . . . , Bm and two special nodes In and Fin, where In is the only initial node and Fin is
the only final node. The weights of the nodes are defined as follows.

I Definition 14. Recall that Ej
[
tj 0
0 0

]
Fj is the Smith normal form of Bj . Then the weight

of the node with label Bj is equal to tj .

Furthermore, we add edges to this graph according to the following rules.

I Definition 15.
1. For every integer u 6= 0 such that −t ≤ u ≤ t we add an edge from node Bi to node

Bj of weight u if and only if there is a matrix C ∈ 〈A1, . . . , An〉 such that FiCEj ∈{[
u b

c d

]
∈ GL(2,Z) : b, c, d ∈ Z

}
.



I. Potapov and P. Semukhin 44:9

2. We also add an edge of weight u from the initial node In to a node with label Bj if there

is a matrix C ∈ 〈A1, . . . , An〉 such that E−1CEj ∈
{[
u b

0 d

]
∈ GL(2,Z) : b, d ∈ Z

}
.

3. Finally, we add an edge of weight u from a node with label Bj to the final node Fin if there

is a matrix C ∈ 〈A1, . . . , An〉 such that FjCF−1 ∈
{[
u 0
c d

]
∈ GL(2,Z) : c, d ∈ Z

}
.

Note that the set {FiCEj : C ∈ 〈A1, . . . , An〉} is a regular subset of GL(2,Z) because it
can be described by the regular expression ui(w1 + · · ·+wn)∗vj , where w1, . . . , wn are words
representing the matrices A1, . . . , An and ui, vj represent the matrices Fi, Ej , respectively.

By Proposition 9,
{[
u b

c d

]
∈ GL(2,Z) : b, c, d ∈ Z

}
is also a regular subset of GL(2,Z).

Therefore, by Theorem 5, we can algorithmically decide if there is an edge from node Bi to
node Bj of weight u.

Moreover, the edges going out of In or ending in Fin can only have weights 1 or −1.
Again, using Proposition 9, Corollary 10 and Theorem 5, we can algorithmically decide if
there is an edge from In to Bj or from Bj to Fin of weight 1 or −1.

I Definition 16. The weight of a path in G(M,F) from In to Fin is equal to the product
of the weights of nodes and edges that occur in it. That is, the weight of a path

In u0−→ Bi0
u1−→ Bi1

u2−→ Bi2 · · · Bis−1
us−→ Bis

us+1−−−→ Fin

is equal to u0ti0u1ti1u2ti2 · · · tis−1ustisus+1.

In the following proposition we will show that the membership problem is equivalent to
the existence of a path in G(M,F ) with a given weight.

I Proposition 17. Let M = E

[
t 0
0 0

]
F be the Smith normal form of matrix M . Then

M ∈ 〈F〉 if and only if there is a path in G(M,F) from In to Fin of weight t.

Proof. Suppose

In u0−→ Bi0
u1−→ Bi1

u2−→ Bi2 · · · Bis−1
us−→ Bis

us+1−−−→ Fin

is a path in G(M,F) from In to Fin of weight t. Recall that for every r = 0, . . . , s, we have

Bir = Eir

[
tir 0
0 0

]
Fir . Hence t = u0ti0u1ti1u2ti2 · · · tis−1ustisus+1.

Since for every r = 1, . . . , s we have an edge Bir−1
ur−→ Bir of weight ur, there is a

matrix Cr ∈ 〈A1, . . . , An〉 such that Fir−1CrEir =
[
ur br
cr dr

]
for some br, cr, dr ∈ Z. Since

we have an edge In u0−→ Bi0 of weight u0, there is a matrix C0 ∈ 〈A1, . . . , An〉 such that

E−1C0Ei0 =
[
u0 b0
0 d0

]
for some b0, d0 ∈ Z. And since we have an edge Bis

us+1−−−→ Fin of

weight us+1, there is a matrix Cs+1 ∈ 〈A1, . . . , An〉 such that FisCs+1F
−1 =

[
us+1 0
cs+1 ds+1

]
for some cs+1, ds+1 ∈ Z.

MFCS 2017



44:10 Membership Problem in GL(2,Z) Extended by Singular Matrices

Hence we obtain the following equation

E−1C0Bi0C1Bi1C2Bi2 · · ·Bis−1CsBisCs+1F
−1 =

E−1C0Ei0

[
ti0 0
0 0

]
Fi0C1Ei1

[
ti1 0
0 0

]
Fi1C2Ei2

[
ti2 0
0 0

]
Fi2 · · ·

· · ·Eis−1

[
tis−1 0

0 0

]
Fis−1CsEis

[
tis 0
0 0

]
FisCs+1F

−1 =

ti0ti1ti2 · · · tis−1tis

[
u0 b0
0 d0

][
1 0
0 0

][
u1 b1
c1 d1

][
1 0
0 0

][
u2 b2
c2 d2

][
1 0
0 0

]
· · ·

· · ·
[
1 0
0 0

][
us bs
cs ds

][
1 0
0 0

][
us+1 0
cs+1 ds+1

]
=

ti0u1ti1u2ti2 · · · tis−1ustis

[
u0 b0
0 d0

][
1 0
0 0

][
us+1 0
cs+1 ds+1

]
=

ti0u1ti1u2ti2 · · · tis−1ustis

[
u0us+1 0

0 0

]
= u0ti0u1ti1 · · · tis−1ustisus+1

[
1 0
0 0

]
=
[
t 0
0 0

]
.

Therefore, C0Bi0C1Bi1C2Bi2 · · ·Bis−1CsBisCs+1 = E

[
t 0
0 0

]
F = M , and hence M ∈ 〈F〉.

Now suppose that M ∈ 〈F〉. It is not hard to see that there is a sequence of indices
i0, i1, . . . , is ∈ {1, . . . ,m}, and matrices C0, C1, . . . , Cs+1 ∈ 〈A1, . . . , An〉 such that

C0Bi0C1Bi1C2Bi2 · · ·Bis−1CsBisCs+1 = M. (5)

Recall that E
[
t 0
0 0

]
F is the Smith normal form of M , and Eir

[
tir 0
0 0

]
Fir is the Smith

normal form of Bir , for r = 0, . . . , s. So we can rewrite (5) as follows

E−1C0Ei0

[
ti0 0
0 0

]
Fi0C1Ei1

[
ti1 0
0 0

]
Fi1C2Ei2

[
ti2 0
0 0

]
Fi2 · · ·

· · ·Eis−1

[
tis−1 0

0 0

]
Fis−1CsEis

[
tis 0
0 0

]
FisCs+1F

−1 =
[
t 0
0 0

]
.

(6)

For r = 1, . . . , s, let Fir−1CrEir =
[
ur br
cr dr

]
. Then for every r = 1, . . . , s, there is an edge

Bir−1
ur−→ Bir in G(M,F) of weight ur. Furthermore, suppose that E−1C0Ei0 =

[
u0 b0
c0 d0

]
and FisCs+1F

−1 =
[
us+1 bs+1
cs+1 ds+1

]
. Then we can rewrite (6) as

[
u0 b0
c0 d0

][
ti0 0
0 0

][
u1 b1
c1 d1

][
ti1 0
0 0

][
u2 b2
c2 d2

][
ti2 0
0 0

]
· · ·

· · ·
[
tis−1 0

0 0

][
us bs
cs ds

][
tis 0
0 0

][
us+1 bs+1
cs+1 ds+1

]
=
[
t 0
0 0

]
or equivalently

ti0ti1ti2 · · · tis−1tis

[
u0 b0
c0 d0

][
1 0
0 0

][
u1 b1
c1 d1

][
1 0
0 0

][
u2 b2
c2 d2

][
1 0
0 0

]
· · ·

· · ·
[
1 0
0 0

][
us bs
cs ds

][
1 0
0 0

][
us+1 bs+1
cs+1 ds+1

]
=
[
t 0
0 0

]
.



I. Potapov and P. Semukhin 44:11

From this equation we obtain

ti0u1ti1u2ti2 · · · tis−1ustis

[
u0 b0
c0 d0

][
1 0
0 0

][
us+1 bs+1
cs+1 ds+1

]
=
[
t 0
0 0

]
or

ti0u1ti1u2ti2 · · · tis−1ustis

[
u0us+1 u0bs+1
c0us+1 c0bs+1

]
=
[
t 0
0 0

]
.

Therefore, we have that t = u0ti0u1ti1u2ti2 · · · tis−1ustisus+1 and u0bs+1 = c0us+1 = 0. By
assumption t 6= 0, and so u0 6= 0 and us+1 6= 0. Therefore, c0 = 0 and bs+1 = 0. Hence

we have that E−1C0Ei0 =
[
u0 b0
0 d0

]
and FisCs+1F

−1 =
[
us+1 0
cs+1 ds+1

]
, which means that

there is an edge In u0−→ Bi0 of weight u0 and an edge Bis
us+1−−−→ Fin of weight us+1. Thus

we showed that there is path

In u0−→ Bi0
u1−→ Bi1

u2−→ Bi2 · · · Bis−1
us−→ Bis

us+1−−−→ Fin

in G(M,F) from In to Fin of weight u0ti0u1ti1u2ti2 · · · tis−1ustisus+1 = t. J

The next proposition provides a bound on the length of a path in G(M,F) with weight t.

I Proposition 18. For any integer t > 0, if there is a path in G(M,F) from In to Fin of
weight t, then there is such path of length at most 2m log2 t+ 2m+ log2 t.

Proof. Suppose P is a path in G(M,F) from In to Fin of weight t. Then the number of
nodes and edges in P whose weight is greater than 1 or less than −1 is bounded by log2 t.

A simple cycle at node Bj is a closed path that starts and ends at Bj and in which no
vertex appears twice except for Bj itself.

Note that if P contains a simple cycle of weight 1, then it can be removed from P without
changing its weight. On the other hand, if P contains a simple cycle of weight −1, then
removing such cycle will change the sign of the weight of P .

Let W1 and W2 be a successive pair of nodes or edges in P with weight different from ±1.
Then any node and edge that appears in P strictly between W1 and W2 has weight equal
to ±1. By the above observation we can remove all cycles of weight 1 that occur between
W1 and W2 and leave at most one simple cycle of weight −1 between W1 and W2 in order to
preserve the sign of the weight of P . So we can replace the original path from W1 to W2 by
a new path with the same weight and length at most 2m.

Recall there are at most log2 t nodes and edges in P whose weight is different from ±1.
We now apply the above procedure to every pair W1 and W2 of successive nodes or edges in
P whose weight is different from ±1 including the cases when W1 = In or W2 = Fin. There
are at most log2 t+ 1 such successive pairs. Therefore, we replace the whole path P with
another path of the same weight and of length at most 2m(log2 t+ 1) + log2 t. Note that we
added log2 t in the end because every edge of weight different from ±1 contributes 1 to the
length of the path. J

Now we complete the proof of Theorem 13 using Propositions 17 and 18. Indeed,
by Propositions 17 to decide whether M ∈ 〈F〉, we need to check if there is a path in
G(M,F) from In to Fin of weight t. By Propositions 18 the length of such path is bounded
by 2m log2 t + 2m + log2 t. Hence we can check all paths in G(M,F) of length up to
2m log2 t+ 2m+ log2 t to see if there is one with weight t. J

MFCS 2017



44:12 Membership Problem in GL(2,Z) Extended by Singular Matrices

Conclusion and future work

The complexity of our algorithm is in EXPTIME. This is because a canonical word that
represents a given matrix M has length exponential in the binary presentation of M . Hence
the construction of regular languages in our proof takes exponential time. Moreover, the
number of paths in G(M,F) of length up to 2m log2 t+ 2m+ log2 t is exponential in m.

In [4] it has been shown that the identity problem in SL(2,Z) is NP-complete. We would
like to find out whether this construction can be combined with our result to show that the
membership in GL(2,Z) extended by singular matrices is also NP-complete.

In our previous work [25] we proved that the membership problem is decidable for 2× 2
nonsingular integer matrices. In this paper we considered matrices with determinants 0,±1.
So, the next natural step will be to study the decidability of the membership problem for all
2× 2 integer matrices, i.e. both singular and nonsingular ones.

References
1 László Babai, Robert Beals, Jin-yi Cai, Gábor Ivanyos, and Eugene M. Luks. Multiplicative

equations over commuting matrices. In Proceedings of the Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA’96, pages 498–507, Philadelphia, PA, USA, 1996.
Society for Industrial and Applied Mathematics.

2 Paul Bell and Igor Potapov. On undecidability bounds for matrix decision problems. The-
oretical Computer Science, 391(1-2):3–13, 2008.

3 Paul C. Bell, Mika Hirvensalo, and Igor Potapov. Mortality for 2x2 matrices is NP-hard. In
Branislav Rovan, Vladimiro Sassone, and Peter Widmayer, editors, Mathematical Founda-
tions of Computer Science 2012, volume 7464 of Lecture Notes in Computer Science, pages
148–159. Springer Berlin Heidelberg, 2012.

4 Paul C. Bell, Mika Hirvensalo, and Igor Potapov. The identity problem for matrix semig-
roups in SL2(Z) is NP-complete. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, Janu-
ary 16-19, pages 187–206, 2017. doi:10.1137/1.9781611974782.13.

5 Paul C. Bell and Igor Potapov. On the undecidability of the identity correspondence
problem and its applications for word and matrix semigroups. Int. J. Found. Comput. Sci.,
21(6):963–978, 2010.

6 Paul C. Bell and Igor Potapov. On the computational complexity of matrix semigroup
problems. Fundam. Inf., 116(1-4):1–13, January 2012.

7 Vincent D. Blondel, Emmanuel Jeandel, Pascal Koiran, and Natacha Portier. Decidable
and undecidable problems about quantum automata. SIAM J. Comput., 34(6):1464–1473,
June 2005.

8 Julien Cassaigne, Vesa Halava, Tero Harju, and François Nicolas. Tighter undecidability
bounds for matrix mortality, zero-in-the-corner problems, and more. CoRR, abs/1404.0644,
2014.

9 Christian Choffrut and Juhani Karhumaki. Some decision problems on integer matrices.
RAIRO-Theor. Inf. Appl., 39(1):125–131, 2005.

10 J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols. In Logic
in Computer Science, 1999. Proceedings. 14th Symposium on, pages 352–359, 1999.

11 Esther Galby, Joël Ouaknine, and James Worrell. On Matrix Powering in Low Dimensions.
In Ernst W. Mayr and Nicolas Ollinger, editors, 32nd International Symposium on The-
oretical Aspects of Computer Science (STACS 2015), volume 30 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 329–340, Dagstuhl, Germany, 2015. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

http://dx.doi.org/10.1137/1.9781611974782.13


I. Potapov and P. Semukhin 44:13

12 Yuri Gurevich and Paul Schupp. Membership problem for the modular group. SIAM J.
Comput., 37(2):425–459, May 2007.

13 Vesa Halava, Tero Harju, Mika Hirvensalo, and Juhani Karhumaki. Skolem’s problem - on
the border between decidability and undecidability. Technical Report 683, Turku Centre
for Computer Science, 2005.

14 R. Kannan and R. J. Lipton. Polynomial-time algorithm for the orbit problem. J. ACM,
33(4):808–821, August 1986. doi:10.1145/6490.6496.

15 Ravindran Kannan and Achim Bachem. Polynomial algorithms for computing the Smith
and Hermite normal forms of an integer matrix. SIAM J. Comput., 8(4):499–507, 1979.

16 Alexei Lisitsa and Igor Potapov. Membership and reachability problems for row-monomial
transformations. In Mathematical Foundations of Computer Science 2004, 29th Interna-
tional Symposium, MFCS 2004, Prague, Czech Republic, August 22-27, 2004, Proceedings,
pages 623–634, 2004.

17 Roger C. Lyndon and Paul E. Schupp. Combinatorial group theory. Springer-Verlag, Berlin-
New York, 1977. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 89.

18 Wilhelm Magnus, Abraham Karrass, and Donald Solitar. Combinatorial group theory.
Dover Publications, Inc., New York, revised edition, 1976. Presentations of groups in terms
of generators and relations.

19 C. Nuccio and Emanuele Rodaro. Mortality problem for 2×2 integer matrices. In SOFSEM
2008: Theory and Practice of Computer Science, 34th Conference on Current Trends in
Theory and Practice of Computer Science, Nový Smokovec, Slovakia, January 19-25, 2008,
Proceedings, pages 400–405, 2008. doi:10.1007/978-3-540-77566-9_34.

20 Joël Ouaknine, João Sousa Pinto, and James Worrell. On termination of integer linear
loops. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA’15, pages 957–969. SIAM, 2015.

21 Joël Ouaknine and James Worrell. On the positivity problem for simple linear recurrence
sequences,. In Automata, Languages, and Programming - 41st International Colloquium,
ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part II, pages 318–329,
2014.

22 Joël Ouaknine and James Worrell. Ultimate positivity is decidable for simple linear re-
currence sequences. In Automata, Languages, and Programming - 41st International Col-
loquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part II, pages
330–341, 2014.

23 M. S. Paterson. Unsolvability in 3×3 matrices. Studies in Applied Mathematics,
49(1):pp.105–107, 1970.

24 Igor Potapov and Pavel Semukhin. Vector reachability problem in SL(2,Z). In 41st In-
ternational Symposium on Mathematical Foundations of Computer Science, MFCS 2016,
August 22-26, 2016 - Kraków, Poland, pages 84:1–84:14, 2016. doi:10.4230/LIPIcs.MFCS.
2016.84.

25 Igor Potapov and Pavel Semukhin. Decidability of the membership problem for 2×2 integer
matrices. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 170–
186, 2017. doi:10.1137/1.9781611974782.12.

26 Robert A. Rankin. Modular forms and functions. Cambridge University Press, Cambridge-
New York-Melbourne, 1977.

MFCS 2017

http://dx.doi.org/10.1145/6490.6496
http://dx.doi.org/10.1007/978-3-540-77566-9_34
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.84
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.84
http://dx.doi.org/10.1137/1.9781611974782.12




Grammars for Indentation-Sensitive Parsing
Härmel Nestra

Institute of Computer Science, University of Tartu, Tartu, Estonia
harmel.nestra@ut.ee

Abstract
Adams’ extension of parsing expression grammars enables specifying indentation sensitivity using
two non-standard grammar constructs – indentation by a binary relation and alignment. This
paper is a theoretical study of Adams’ grammars. It proposes a step-by-step transformation
of well-formed Adams’ grammars for elimination of the alignment construct from the grammar.
The idea that alignment could be avoided was suggested by Adams but no process for achieving
this aim has been described before. This paper also establishes general conditions that binary
relations used in indentation constructs must satisfy in order to enable efficient parsing.

1998 ACM Subject Classification D.3.1 Formal Definitions and Theory, D.3.4 Processors,
F.4.2 Grammars and Other Rewriting Systems

Keywords and phrases Parsing expression grammars, indentation, grammar transformation

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.45

1 Introduction

Parsing expression grammars (PEG) introduced by Ford [6] serve as a modern framework
for specifying the syntax of programming languages and are an alternative to the classic
context-free grammars (CFG). The core difference between CFG and PEG is that descriptions
in CFG can be ambiguous while PEGs are inherently deterministic. A syntax specification
written in PEG can in principle be interpreted as a top-down parser for that syntax; in the
case of left recursion, this treatment is not straightforward but doable (see, e.g., [8]).

Formally, a PEG is a quadruple G = (N,T, δ, s) where:
N is a finite set of non-terminals;
T is a finite set of terminals;
δ is a function mapping each non-terminal to its replacement (corresponding to the set
of productions of CFG);
s is the start expression (corresponding to the start symbol of CFG).

So δ : N → EG and s ∈ EG, where the set EG of all parsing expressions writable in G is
defined inductively as follows:
1. ε ∈ EG (the empty string);
2. a ∈ EG for every a ∈ T (the terminals);
3. X ∈ EG for every X ∈ N (the non-terminals);
4. pq ∈ EG whenever p ∈ EG, q ∈ EG (concatenation)
5. p/q ∈ EG whenever p ∈ EG, q ∈ EG (choice);
6. !p ∈ EG whenever p ∈ EG (negation, or lookahead);
7. p∗ ∈ EG whenever p ∈ EG (repetition).

All constructs of PEG except for negation are direct analogues of constructs of the EBNF
form of CFG, but their semantics is always deterministic. So p∗ repeats parsing of p until
failure, and p/q always tries to parse p first, q is parsed only if p fails. For example, the
expression ab/a consumes the input string ab entirely while a/ab only consumes its first

© Härmel Nestra;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 45; pp. 45:1–45:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.45
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


45:2 Grammars for Indentation-Sensitive Parsing

character. The corresponding EBNF expressions ab | a and a | ab are equivalent, both can
match either a or ab from the input string. Negation !p tries to parse p and fails if p succeeds;
if p fails then !p succeeds with consuming no input. Other constructs of EBNF like non-null
repetition p+ and optional occurrence [p] can be introduced to PEG as syntactic sugar.

Languages like Python and Haskell allow the syntactic structure of programs to be
shown by indentation and alignment, instead of the more conventional braces and semicolons.
Handling indentation and alignment in Python has been specified in terms of extra tokens
INDENT and DEDENT that mark increasing and decreasing of indentation and must be
generated by the lexer. In Haskell, rules for handling indentation and alignment are more
sophisticated. Both these languages enable to locally use a different layout mode where
indentation does not matter, which additionally complicates the task of formal syntax
specification. Adams and Ağacan [3] proposed an extension of PEG notation for specifying
indentation sensitivity and argued that it considerably simplifies this task for Python, Haskell
and many other indentation-sensitive languages.

In this extension, expression p>, for example, denotes parsing of p while assuming a
greater indentation than that of the surrounding block. In general, parsing expressions may
be equipped with binary relations (as was > in the example) that must hold between the
baselines of the local and the current indentation block. In addition, ¦p¦ denotes parsing of
p while assuming the first token of the input being aligned, i.e., positioned on the current
indentation baseline. For example, the do expressions in Haskell can be specified by

<doexp> ::= do> (<istmts>/<stmts>)
<istmts> ::= (¦<stmt>¦+)>

<stmts> ::= {>(<stmt>(;<stmt>)∗[;]})~

Here, <istmts> and <stmts> stand for statement lists in the indentation and relaxed mode,
respectively. In the indentation mode, a statement list is indented (marked by > in the
second production) and all statements in it are aligned (marked by ¦ · ¦). In the relaxed mode,
however, relation ~ is used to indicate that the indentation baseline of the contents can be
anything. (Technically, ~ is the binary relation containing all pairs of natural numbers.)
Terminals do and { are also equipped with > to meet the Haskell requirement that subsequent
tokens of aligned blocks must be indented more than the first token.

Alignment construct provides fulcra for disambiguating the often large variety of indenta-
tion baseline candidates. Besides simplicity of this grammar extension and its use, a strength
of it lies in the fact that grammars can still serve as parsers.

The rest of the paper is organized as follows. Section 2 formally introduces additional
constructs of PEG for specifying code layout, defines their semantics and studies their
semantic properties. In Sect. 3, a semantics-preserving process of eliminating the alignment
construct from grammars is described. General criteria for deciding if parsing can handle a
relation efficiently are found in Sect. 4. Section 5 refers to related work and Sect. 6 concludes.

2 Indentation extension of PEG

Adams and Ağacan [3] extend PEGs with the indentation and alignment constructs. We
propose a slightly different extension with three rather than two extra constructs. Our
approach agrees with that implemented by Adams in his indentation package for Haskell [1],
whence calling the grammars in our approach Adams’ grammars is justified. All differences
between the definitions in this paper and in [3] are listed and discussed in Subsect. 2.4.

Let N denote the set of all natural numbers, and let B = {tt,ff } (the Boolean domain).
Denote by ℘(X) the set of all subsets of set X, and let <(X) denote the set of all binary



H. Nestra 45:3

relations on set X, i.e., <(X) = ℘(X ×X). Standard examples are >∈ <(N) (consisting
of all pairs (n,m) of natural numbers such that n > m) and 4 ∈ <(N) (the identity
relation consisting of all pairs of equal natural numbers); the indentation extension also
makes use of ~ ∈ <(N) (the relation containing all pairs of natural numbers). Whenever
ρ ∈ <(X) and Y ⊆ X, denote ρ(Y ) = {x ∈ X : ∃y ∈ Y.(y, x) ∈ ρ} (the image of Y under
relation ρ). The inverse relation of ρ is defined by ρ−1 = {(x, y) : (y, x) ∈ ρ}, and the
composition of relations σ and ρ by σ ◦ ρ = {(x, z) : ∃y.(x, y) ∈ σ ∧ (y, z) ∈ ρ}. Finally,
denote <+(X) =

{
ρ ∈ <(X) : ∀x ∈ X.ρ−1({x}) 6= ∅

}
= {ρ ∈ <(X) : ρ(X) = X}.

2.1 Adams’ grammars
Extend the definition of EG given in Sect. 1 with the following three additional clauses:

8. pρ ∈ EG for every p ∈ EG and ρ ∈ <(N) (indentation);
9. p

σ
∈ EG for every p ∈ EG and σ ∈ <(N) (token position);

10. ¦p¦ ∈ EG for every p ∈ EG (alignment).

Parsing of an expression pρ means parsing of p while assuming that the part of the input
string corresponding to p forms a new indentation block whose baseline is in relation ρ to
the baseline of the surrounding block. (Baselines are identified with column numbers.) The
position construct p

σ
, missing in [3], determines how tokens of the input can be situated w.r.t.

the current indentation baseline. Finally, parsing an expression ¦p¦ means parsing of p while
assuming the first token of the input being positioned on the current indentation baseline
(unlike the position operator, this construct does not affect processing the subsequent tokens).

Inspired by the indentation package [1], we call the relations that determine token
positioning w.r.t. the indentation baseline token modes. In the token mode > for example,
tokens may appear only to the right of the indentation baseline. Applying the position
operator with relation > to parts of Haskell grammar to be parsed in the indentation mode
avoids indenting every single terminal in the example in Sect. 1. Also, indenting terminals
with > is inadequate for do expressions occurring inside a block of relaxed mode but the
position construct can be easily used to change the token mode for such blocks (e.g., to ≥).

We call a PEG extended with these three constructs a PEG>. Recall from Sect. 1 that N
and T denote the set of non-terminal and terminal symbols of the grammar, respectively, and
δ : N → EG is the production function. Concerning the semantics of PEG>, each expression
parses an input string of terminals (w ∈ T ∗) in the context of a current set of indentation
baseline candidates (I ∈ ℘(N)) and a current alignment flag indicating whether the next
terminal should be aligned or not (b ∈ B), assuming a certain token mode (τ ∈ <(N)).
Parsing may succeed, fail, or diverge. If parsing succeeds, it returns as a result a new triple
containing the rest of the input w′, a new set I ′ of baseline candidates updated according to
the information gathered during parsing, and a new alignment flag b′. This result is denoted
by >(w′, I ′, b′). If parsing fails, there is no result in a triple form; failure is denoted by ⊥.

Triples of the form (w, I, b) ∈ T ∗×℘(N)×B are behaving as operation states of parsing, as
each parsing step may use these data and update them. We will write State = T ∗×℘(N)×B
(as we never deal with different terminal sets, dependence on T is not explicitly marked),
and denote by State + 1 the set of possible results of parsing, i.e., {>(s) : s ∈ State} ∪ {⊥}.

The assertion that parsing expression e in grammar G with input string w in the context
of I and b assuming token mode τ results in o ∈ State + 1 is denoted by e, τ `G (w, I, b)→ o.
The formal definition below must be interpreted inductively, i.e., an assertion of the form
G, τ `e s→ o is valid iff it has a finite derivation by the following ten rules:

MFCS 2017



45:4 Grammars for Indentation-Sensitive Parsing

1. ε, τ `G s→ >(s).
2. For every a ∈ T , a, τ `G (w, I, b)→ o holds in two cases:

If o = >(w′, I ′,ff ) for w′, I ′, i such that w = aiw′ (ai denotes a occurring at column i)
and either b = ff and i ∈ τ−1(I), I ′ = I ∩ τ({i}), or b = tt and i ∈ I, I ′ = {i};
If o = ⊥, and there are no w′ and i such that w = aiw′ with either b = ff and
i ∈ τ−1(I) or b = tt and i ∈ I.

3. For every X ∈ N , X, τ `G s→ o holds if δ(X), τ `G s→ o holds.
4. For every p, q ∈ EG, pq, τ `G s→ o holds in two cases:

If there exists a triple s′ such that p, τ `G s→ >(s′) and q, τ `G s′ → o;
If p, τ `G s→ ⊥ and o = ⊥.

5. For every p, q ∈ EG, p/q, τ `G s→ o holds in two cases:
If there exists a triple s′ such that p, τ `G s→ >(s′) and o = >(s′);
If p, τ `G s→ ⊥ and q, τ `G s→ o.

6. For every p ∈ EG, !p, τ `G s→ o holds in two cases:
If p, τ `G s→ ⊥ and o = >(s);
If there exists a triple s′ such that p, τ `G s→ >(s′) and o = ⊥.

7. For every p ∈ EG, p∗, τ `G s→ o holds in two cases:
If p, τ `G s→ ⊥ and o = >(s);
If there exists a triple s′ such that p, τ `G s→ >(s′) and p∗, τ `G s′ → o.

8. For every p ∈ EG and ρ ∈ <(N), pρ, τ `G (w, I, b)→ o holds in two cases:
If there exists a triple (w′, I ′, b′) such that p, τ `G (w, ρ−1(I), b)→ >(w′, I ′, b′) and
o = >(w′, I ∩ ρ(I ′), b′);
If p, τ `G (w, ρ−1(I), b)→ ⊥ and o = ⊥.

9. For every p ∈ EG and σ ∈ <(N), p
σ
, τ `G s→ o holds if p,σ `G s→ o holds.

10. For every p ∈ EG, ¦p¦, τ `G (w, I, b)→ o holds in two cases:
If there exists a triple (w′, I ′, b′) such that p, τ `G (w, I, tt) → >(w′, I ′, b′) and
o = >(w′, I ′, b ∧ b′);
If p, τ `G (w, I, tt)→ ⊥ and o = ⊥.

The idea behind the conditions i ∈ τ−1(I) and i ∈ I occurring in clause 2 is that any column i
where a token may appear is in relation τ with the current indentation baseline (known to
be in I) if the alignment flag is false, and coincides with the indentation baseline otherwise.
For the same reason, consuming a token in column i restricts the set of allowed indentations
to τ({i}) or {i} depending on the alignment flag. In both cases, the alignment flag is set to
ff . Similar principles lie behind the changes of the operation states in clauses 8 and 10.

For a toy example, consider parsing of ¦ab¦> with the operation state (a2b3,N,ff ) assuming
the token mode ≥. For that, we must parse ¦ab¦ with (a2b3,N \ {0} ,ff ) by clause 8 since
>−1 (N) = N \ {0}. For that in turn, we must parse ab with (a2b3,N \ {0} , tt) by clause
10. By clause 2, we have a,≥`G (a2b3,N \ {0} , tt) → >(b3, {2} ,ff ) (as 2 ∈ N \ {0}) and
b,≥`G (b3, {2} ,ff ) → >(ε, {2} ,ff ) (as (2, 3) ∈≥−1). Therefore, by clause 4, ab,≥`G

(a2b3,N \ {0} , tt)→ >(ε, {2} ,ff ). Finally, ¦ab¦,≥`G (a2b3,N \ {0} ,ff )→ >(ε, {2} ,ff ) and
¦ab¦>,≥`G (a2b3,N,ff ) → >(ε, {0, 1} ,ff ) by clauses 10 and 8. The set {0, 1} in the final
state shows that only 0 and 1 are still candidates for the indentation baseline outside the
parsed part of the input (before parsing, the candidate set was the whole N).

Note that this definition involves circular dependencies. For instance, if δ(X) = X for
some X ∈ N then X, τ `G s→ o if X, τ `G s→ o by clause 3. There is no result of parsing
in such cases (not even ⊥). We call this behaviour divergence.



H. Nestra 45:5

2.2 Properties of the semantics
Ford [6] proves that parsing in PEG is unambiguous, whereby the consumed part of an input
string always is its prefix. Theorem 2.1 below is an analogous result for PEG>. Besides the
uniqueness of the result of parsing, it states that if we only consider relations in <+(N) then
the whole operation state in our setting is in a certain sense decreasing during parsing.

Denote by ≥ the suffix order of strings (i.e., w ≥ w′ iff w = uw′ for some u ∈ T ∗) and by
w the implication order of truth values (i.e., tt A ff ). Denote by > the pointwise order on
operation states, i.e., (w, I, b) > (w′, I ′, b′) iff w ≥ w′, I ⊇ I ′ and b w b′.

I Theorem 2.1. Let G = (N,T, δ, s) be a PEG>, e ∈ EG, τ ∈ <+(N) and s ∈ State. Then
e, τ `G s→ o for at most one o, whereby o = >(s′) implies s > s′. Also if s = (w, I, b) and
s′ = (w′, I ′, b′) then s 6= s′ implies both w > w′ and b′ = ff , and I 6= ∅ implies I ′ 6= ∅.

Proof. By induction on the shape of the derivation tree of the assertion e, τ `G s→ o. J

Theorem 2.1 enables to observe a common pattern in the semantics of indentation and
alignment. Denoting by κ(p) either pρ or ¦p¦, both clauses 8 and 10 have the following form,
parametrized on two mappings α, γ : State → State:

For p ∈ EG, κ(p), τ `G s→ o holds in two cases:
If there exists a state s′ such that p, τ `G α(s)→ >(s′) and o = >(s ∧ γ(s′));
If p, τ `G α(s)→ ⊥ and o = ⊥.

The meanings of indentation and alignment constructs are distinguished solely by α

and γ. For many properties, proofs that rely on this abstract common definition can be
carried out, assuming that γ is monotone, preserves the largest element and follows together
with α the axiom x ∧ γ(y) ≤ γ(α(x) ∧ y). The class of all meet semilattices L with top
element, equipped with mappings α, γ satisfying these three conditions, contains identities
(i.e., semilattices L with α = γ = idL) and is closed under compositions (of different α,
γ defined on the same semilattice L) and under direct products. If ρ ∈ <+(N) then the
conditions hold for α1, γ1 : ℘(N)→ ℘(N) with α1(I) = ρ−1(I), γ1(I) = ρ(I), similarly in the
case if α2, γ2 : B→ B with α2(b) = tt, γ2(b) = b. Now the direct product of the identities of
T ∗ and B with (α1, γ1) on ℘(N) gives the indentation case, and the direct product of the
identities of T ∗ and ℘(N) and the Boolean lattice B with (α2, γ2) gives the alignment case.

If α, γ satisfy the conditions then γ(α(x)) ≥ x since x = x∧> = x∧γ(>) ≤ γ(α(x)∧>) =
γ(α(x)). Adding dual conditions (α monotone, α(⊥) = ⊥ and α(x)∨ y ≥ α(x∨ γ(y))) would
make (α, γ) a Galois’ connection. In our cases, the dual axioms do not hold.

2.3 Semantic equivalence
I Definition 2.2. Let G = (N,T, δ, s) be a PEG> and p, q ∈ EG. We say that p and q are
semantically equivalent in G and denote p ∼G q iff p, τ `G s → o ⇐⇒ q, τ `G s → o for
every τ ∈ <+(N), s ∈ State and o ∈ State + 1.

For example, one can easily prove that pε ∼G p ∼G εp, p(qr) ∼G (pq)r , p/(q/r) ∼G

(p/q)/r , p(q/r) ∼G pq/pr , p/q ∼G p/!pq for all p, q, r ∈ EG [6]. We are particularly
interested in equivalences involving the additional operators of PEG>. In Sect. 3, they will
be useful in eliminating alignment and position operators. The following Theorem 2.3 states
distributivity laws of the three new operators of PEG> w.r.t. other constructs:

MFCS 2017



45:6 Grammars for Indentation-Sensitive Parsing

I Theorem 2.3. Let G = (N,T, δ, s) be a PEG>. Then:
1. εσ ∼G ε, (pq)σ ∼G p

σ
q
σ
, (p/q)σ ∼G p

σ
/q
σ
, (!p)σ ∼G!p

σ
, (p∗)σ ∼G (p

σ
)∗, (pρ)σ ∼G

(p
σ
)ρ, ¦p¦

σ
∼G ¦p

σ
¦ for all σ ∈ <+(N);

2. ερ ∼G ε, (p/q)ρ ∼G pρ/qρ, (!p)ρ ∼G!pρ, (p
σ
)ρ ∼G (pρ)σ for all ρ ∈ <+(N);

3. ¦ε¦ ∼G ε, ¦p/q¦ ∼G ¦p¦/¦q¦, ¦!p¦ ∼G!¦p¦, ¦p
σ
¦ ∼G ¦p¦

σ
.

Proof. The equivalences in claim 1 hold as the token mode steadily distributes to each case
of the semantics definition. Those in claims 2 and 3 have straightforward proofs using the
joint form of the semantics of indentation and alignment and the axioms of α, γ. J

Note that indentation does not distribute with concatenation, i.e., (pq)ρ �G pρqρ.
This is because (pq)ρ assumes one indentation block with a baseline common to p and
q while pρqρ tolerates different baselines for p and q. For example, take p = a ∈ T ,
q = b ∈ T , let the token mode be 4 and the input state be (a1b2,N,ff ) (recall that ai means
terminal a occurring in column i). We have a,4 `G (a1b2,N \ {0} ,ff ) → >(b2, {1} ,ff )
and b,4 `G (b2, {1} ,ff )→ ⊥ (since (2, 1) /∈ 4), therefore ab,4 `G (a1b2,N \ {0} ,ff )→ ⊥
and (ab)>,4 `G (a1b2,N,ff ) → ⊥. On the other hand, a,4 `G (a1b2,N \ {0} ,ff ) →
>(b2, {1} ,ff ) implies a>,4 `G (a1b2,N,ff ) → >(b2, {0} ,ff ) (since N ∩ (> ({1})) = {0})
and, analogously, b>,4 `G (b2, {0} ,ff )→ >(ε, {0} ,ff ) (since >−1 ({0}) = N \ {0} 3 2 and
{0} ∩ (> ({2})) = {0}). Consequently, a>b>,4 `G (a1b2,N,ff )→ >(ε, {0} ,ff ).

We can however prove the following facts:

I Theorem 2.4. Let G = (N,T, δ, s) be a PEG>.
1. Identity indentation law: For all p ∈ EG, p4 ∼G p.
2. Composition law of indentations: For all p ∈ EG and ρ,σ ∈ <+(N), (pρ)σ ∼G pσ◦ρ.
3. Distributivity of indentation and alignment: For all p ∈ EG and ρ ∈ <+(N), ¦p¦ρ ∼G ¦pρ¦.
4. Idempotence of alignment: For all p ∈ EG, ¦¦p¦¦ ∼G ¦p¦.
5. Cancellation of outer token modes: For all p ∈ EG and σ, τ ∈ <(N), (p

σ
)τ ∼G p

σ
.

6. Terminal alignment property: For all a ∈ T , ¦a¦ ∼G a4.

Proof. Claim 1 follows easily from the semantics of indentation. By the conditions imposed
on α and γ, it follows that the composition of the effects of indentations or alignments
with respective mapping pairs (α1, γ1) and (α2, γ2) coincides with the effect of a prospective
construct of similar kind with mapping pair (α2 ◦α1, γ1 ◦γ2). Claims 2–4 follow directly from
this observation, as the composition of structures (α, γ) used for indentation and alignment
is commutative and the structure (α, γ) used for alignment is idempotent. Claim 5 is trivial.
Claim 6 follows from a straightforward case study. J

Theorems 2.3 and 2.4 enact bringing alignments through all syntactic constructs except
concatenation. Alignment does not distribute with concatenation, because in parsing of
an expression of the form ¦pq¦, the terminal to be aligned can be in the part of the input
consumed by p or (if parsing of p succeeds with consuming no input) by q. Alignment can
nevertheless be moved through concatenation if any successful parsing of the first expression
in the concatenation either never consumes any input or always consumes some input:

I Theorem 2.5. Let G = (N,T, δ, s) be a PEG> and p, q ∈ EG.
1. If p, τ `G s→ >(s′) implies s′ = s for all τ ∈ <+(N), s, s′ ∈ State, then ¦pq¦ ∼G ¦p¦¦q¦.
2. If p, τ `G s→ >(s′) implies s′ 6= s for all τ ∈ <+(N), s, s′ ∈ State, then ¦pq¦ ∼G ¦p¦q.

Proof. Straightforward case study. J



H. Nestra 45:7

Theorem 2.5 (1) holds also for indentation (instead of alignment), the same proof in
terms of α, γ is valid. Finally, the following theorem states that position and indentation of
terminals are equivalent if the alignment flag is false and the token mode is the identity:

I Theorem 2.6. Let G = (N,T, δ, s) be a PEG>. Let a ∈ T , σ ∈ <+(N) and w ∈ T ∗,
I ∈ ℘(N), o ∈ State + 1. Then aσ,4 `G (w, I,ff )→ o ⇐⇒ aσ,4 `G (w, I,ff )→ o.

Proof. Straightforward case study. J

2.4 Differences of our approach from previous work
Our specification of PEG>differs from the definition used by Adams and Ağacan [3] by three
essential aspects listed below. The last two discrepancies can be understood as bugs in the
original description that have been corrected in the Haskell indentation package by Adams
[1]. This package also provides means for locally changing the token mode. All in all, our
modifications fully agree with the indentation package.

1. The position operator p
σ
is missing in [3]. The treatment there assumes just one default

token mode applying to the whole grammar, whence token positions deviating from the
default must be specified using the indentation operator. The benefits of the position
operator were shortly discussed in Subsect. 2.1.

2. According to the grammar semantics provided in [3], the alignment flag is never changed
at the end of parsing of an expression of the form ¦p¦. This is not appropriate if p
succeeds without consuming any token, as the alignment flag would unexpectedly remain
true during parsing of the next token that is out of scope of the alignment operator. The
value the alignment flag had before starting parsing ¦p¦ should be restored in this case.
This is the purpose of conjunction in the alignment semantics described in this paper.

3. In [3], an alignment is interpreted w.r.t. the indentation baseline of the block that
corresponds to the parsing expression to which the alignment operator is applied.
Indentation operators occurring inside this expression and processed while the alignment
flag is true are neglected. In the semantics described in our paper, raising the alignment
flag does not suppress new indentations. Alignments are interpreted w.r.t. the indentation
baseline in force at the aligned token site. This seems more appropriate than the former
approach where the indentations cancelled because of an alignment do not apply even to
the subsequent non-aligned tokens. Distributivity of indentation and alignment fails in
the semantics of [3]. Note that alignment of a block nevertheless suppresses the influence
of position operators whose scope extend over the first token of the block.

Our grammar semantics has also two purely formal deviations from the semantics used
by Adams and Ağacan [3] and Ford [6].

1. We keep track of the rest of the input in the operation state while both [3, 6] expose the
consumed part of the input instead. This difference was introduced for simplicity and
to achieve uniform decreasing of operation states in Theorem 2.1.

2. We do not have explicit step counts. They were used in [6] to compose proofs by
induction. We provide analogous proofs by induction on the shape of derivation trees.

3 Elimination of alignment and position operators

Adams [2] describes alignment elimination in the context of CFGs. In [3], Adams and
Ağacan claim that alignment elimination process for PEGs is more difficult due to the
lookahead construct. To our knowledge, no concrete process of semantics-preserving alignment

MFCS 2017



45:8 Grammars for Indentation-Sensitive Parsing

elimination is described for PEGs before. We provide one below for well-formed grammars.
We rely on the existence of position operators in the grammar; this is not an issue since we
also show that position operators can be eliminated from alignment-free grammars.

We describe our process informally on an example; a general description together with
correctness theorems can be found in our online paper [9].

As the repetition operator can always be eliminated (by adding a new non-terminal Ap

with δ(Ap) = pAp/ε for each subexpression p that occurs under the star operator), we may
assume that the input grammar G is repetition-free. The process also assumes that G is
well-formed, all negations are applied to atomic expressions, and all choices are disjoint. A
choice expression p/q is called disjoint if parsing of p and q cannot succeed in the same
input state and token mode. Well-formedness is a decidable conservative approximation of
the predicate that is true iff parsing in G never diverges (it definitely excludes grammars
with left recursion but can exclude also some safe grammars). Well-formedness of PEGs was
introduced by Ford [6]. Extending the notion to expressions containing the extra operators of
PEG> is straightforward, details are provided in [9]. Achieving the other two preconditions
can be considered as a preparatory and previously studied (e.g. in [6] as stage 1 of negation
elimination) step of the process.

We will work on the example grammar G = (N,T, δ, s) where N = {A,B}, T = {a, b, c},
δ =

{
A 7→!!c/a/B,B 7→ b¦AA¦>

}
and s = A≥. This grammar is well-formed and choices in

the rule for A are disjoint (!!c, a and B can succeed only if the input string starts with c, a
or b, respectively). Not all negations are in front of atoms; this can be fixed by introducing
a new non-terminal C with rule C 7→!c and replacing the rule for A with A 7→!C/a/B.
Elimination of alignment and position operators from the grammar is done in 3 stages.

1. Transform G to an equivalent grammar G1 where for each expression of the form pq

occurring in δ or s, parsing of p either never succeeds without consuming some input or
can succeed only if consuming no input.
This “splitting” step enables to later bring alignments through concatenations (by
Theorem 2.5). It only modifies rules and the start expression. The new set of rules and
start expression could be

δ1 =
{
A 7→ a/B B 7→ b¦AA/A!!c/!!cA/!!c!!c¦>

}
, s1 = (A/!!c)≥

(in the version of the grammar with non-terminal C, there would be an additional rule
for C that never succeeds). The formal process described in [9] would give a somewhat
more complicated result but this simplified variant works fine and perfectly explains the
ideas. The alternative with negation is removed from the rule of A to allow parsing of
A succeed only if consuming some input (the same transformation would be performed
on other non-terminals if it was necessary). The removed alternative (which happens to
succeed only if consuming no input) is inserted into each concatenation of A, as well as
into the start expression. Basically the same transformation was used by Ford [6] on
stage 2 of his negation elimination process.

2. Using the semantic equivalences of Subsect. 2.3, move all alignments down to atoms.
Rewrite alignment of terminals in terms of the position operator and the identity relation.
For each existing non-terminal X, introduce a new non-terminal with a rule whose
right-hand side is obtained from ¦δ1(X)¦ by moving all alignments down to non-terminals,
and replace all aligned non-terminals with the corresponding new non-terminals.
In our example, we have to introduce two new non-terminals A′ and B′ with right-
hand sides obtained from ¦a/B¦ and ¦b¦AA/A!!c/!!cA/!!c!!c¦>¦, respectively. Using that



H. Nestra 45:9

¦AA¦ ∼ ¦A¦A, ¦A!!c¦ ∼ ¦A¦!!c, ¦!!cA¦ ∼ ¦!!c¦¦A¦ and ¦!!c!!c¦ ∼ ¦!!c¦¦!!c¦, we end up with

δ2 =
{
A 7→ a/B

A′ 7→ a4/B
′
B 7→ b(A′A/A′!!c/!!c4A′/!!c4!!c4)>

B′ 7→ b4(A′A/A′!!c/!!c4A′/!!c4!!c4)>

}
, s2 = (A/!!c)≥.

3. Using the semantic equivalences of Subsect. 2.3, move all position operators down to
atoms. For each non-terminal X and relation τ used by position operators, introduce
a new non-terminal with a rule whose right-hand side is obtained from (δ2(X))τ by
moving position operators down to atoms, and replace all non-terminals under position
operators with the corresponding new non-terminals. Replace position operators applied
to terminals with indentation, omit identity indentations.
In our example, ≥ is the only relation used by position operators. Hence we must
introduce one new non-terminal for each existing non-terminal. Denote them Â, B̂, Â′,
B̂′. As the old non-terminals will never be used when parsing the new start expression,
we can omit their rules. The rules of the new non-terminals and the start expression are

δ3 =
{
Â 7→ a≥/B̂

Â′ 7→ a/B̂′
B̂ 7→ b≥(Â′Â/Â′!!c≥/!!cÂ′/!!c!!c)>

B̂′ 7→ b(Â′Â/Â′!!c≥/!!cÂ′/!!c!!c)>

}
, s3 = Â/!!c≥.

Note how terminals that do not have to be aligned have indentation ≥ while terminals
to be aligned have no indentation. Parsings in the resulting grammar must run with the
alignment flag unset and assume the identity token mode.

At step 1, the sizes of the right-hand sides of the rules can grow exponentially though
the number of rules stays unchanged. Preprocessing the grammar via introducing new
non-terminals in such a way that all concatenations were applied to atoms (similarly to
Ford [6]) would hinder the growth, but the size in the worst case remains exponential. Steps
2 and 3 cause at most a linear growth of right-hand sides.

4 Which relations are good?

Speed of grammar-driven parsing of expressions that involve relations depends on the nature
of the relations. The representation of the baseline candidate sets in operation states plays a
particular role. Adams and Ağacan [3] prove that, during parsing of expressions that involve
only relations 4, >, ≥ and ~, all intermediate sets I occurring in operation states have
the form of a connected interval of natural numbers (possibly extending to infinity). This
enables to represent any set I by its minimum min I and supremum sup I (supremum means
maximum for finite sets and ∞ for infinite ones).

In practice, languages may require other indentation relations. Adams [2] mentions
{(i+ 2, i) : i ∈ N} needed for occam, the indentation package [1] implements constant
relations {(c, i) : i ∈ N}. Here we generalize the result of [3] by finding a criterion for deciding
which indentation relations preserve the interval form of the set of baseline candidates. The
result also applies to the relations used by position operators since they matter only during
parsing of terminals and the way they are used there is the same as in the case of indentation.

In this section, we denote lρ(i) = min(ρ({i})) and hρ(i) = sup(ρ({i})) for any ρ ∈ <(N)
and i ∈ N. Functions l and h are undefined on i if ρ({i}) = ∅. Intervals are sets of the form
{j ∈ N : n ≤ j ≤ o} for any n ∈ N, o ∈ N∪{∞}. For uniform treatment, ∅ is also considered
an interval (the case n > o in the definition). This has no bad consequences as the set of
baseline candidates is guaranteed to stay non-empty by Theorem 2.1.

MFCS 2017



45:10 Grammars for Indentation-Sensitive Parsing

4.1 Relations that keep indentation sets as intervals
When parsing of an expression of the form eρ starts, it must create a new set ρ−1(I) where I
is the current set of indentation baseline candidates. There are two obvious conditions that
must hold for ρ−1(I) being an interval whenever I is:
1. For each i ∈ N, ρ−1({i}) must be an interval, as I can be a one-element set.
2. For any i ∈ N, ρ−1({i}) ∪ ρ−1({i+ 1}) must be an interval, as I can be {i, i+ 1}.
One can easily prove by induction on the size of I that if a relation ρ satisfies conditions 1
and 2 then ρ−1(I) is an interval for any interval I. Note that condition 2 holds iff for any
two consecutive natural numbers i and j in any order, lρ−1(i) ≤ hρ−1(j) + 1.

At the end of parsing of an expression of the form eρ, a new set I ∩ ρ(I ′) must be created
to combine the information provided by the set I of baseline candidates for the surrounding
indentation and the set I ′ of baseline candidates for the local indentation. Hence I ∩ ρ(I ′)
must be an interval whenever I and I ′ are. Taking I = N and I ′ = {i} or I ′ = {i, i+ 1}, we
see as before that ρ({i}) and ρ({i, i+ 1}) must be intervals for every i ∈ N. Conversely, an
easy induction on the number of elements in I ′ shows that if all sets ρ({i}) and ρ({i, i+ 1})
are intervals then ρ(I ′) is an interval for any interval I ′. As the intersection of two intervals
is an interval, this condition is also sufficient for I ∩ ρ(I ′) being an interval.

To conclude, if for each used relation ρ, all sets of the form ρ−1({i}), ρ−1({i, i+ 1}),
ρ({i}) and ρ({i, i+ 1}) are intervals whereby ρ ∈ <+(N), then all sets of baseline candidates
occurring in the operation state are intervals during any parsing that starts with an interval
as the baseline set. By Theorem 4.2 below, the set ρ({i, i+ 1}) can be omitted from this
list, so three out of four conditions remain. For every relation ρ ∈ <+(N) that fails to meet
these three conditions, one can find a parsing expression e and an initial state such that
a non-interval set appears during parsing. Indeed, the set ρ−1(I) for an arbitrarily chosen
finite interval I = {i, i+ 1, . . . , i+ k} is evaluated during parsing of e = ¦a(bcρ)≥¦≥ on an
input string of the shape aibi+kw, and for any i ∈ N, if ρ({i}) is not an interval and hence
contains some n ∈ N then ρ({i}) is evaluated during parsing of e = (abρ)4 on the input anbi.

4.2 Implementation issues
By condition 1 at the beginning of Subsect. 4.1, any feasible relation ρ is uniquely determined
by the pair of functions (lρ−1 , hρ−1). Similarly, ρ is determined by (lρ, hρ) because of the
analogous condition for ρ({i}). Functions lρ−1 and hρ−1 are total as we assume ρ ∈ <+(N),
while lρ and hρ can be partial. For the four relations considered in [3] for instance,

(l4−1(i), h4−1(i)) = (i, i);
(l>−1(i), h>−1(i)) = (i+ 1,∞);
(l≥−1(i), h≥−1(i)) = (i,∞);
(l~−1(i), h~−1(i)) = (0,∞);

(l4(i), h4(i)) = (i, i);
(l>(i), h>(i)) = (0, i− 1) (provided i > 0);
(l≥(i), h≥(i)) = (0, i);
(l~(i), h~(i)) = (0,∞).

We recall two well-known notions.

I Definition 4.1. 1. Call a function f : N→ Z∪{∞} non-decreasing iff, for every i, j ∈ N,
i ≤ j implies f(i) ≤ f(j).

2. Call a function f : N→ Z∪ {∞} weakly unimodal iff there exists some m ∈ N such that,
for every i, j ∈ N, i ≤ j ≤ m implies f(i) ≤ f(j) and m ≤ i ≤ j implies f(i) ≥ f(j).

Unimodality of f means that the values of f are increasing until some argument m called
mode and decreasing after that. Weakness specifies that increasing and decreasing can be
non-strict (letting values at consecutive arguments equal). We will use also the corresponding



H. Nestra 45:11

...
...
...

...
...
...

...
...
...

...
...
...

...
...
...

...
...
...

n

h(n)

l(n)

Figure 1 Functions h with the weak unimodality and l with the reverse unimodality property

reverse properties that hold for f : N → Z iff −f has the original property. Thereby f is
called non-increasing iff −f is non-decreasing. Figure 1 depicts two functions l, h defined on
N such that l < h and both h and −l are weakly unimodal (blue filled and red empty bars
depict l and h, respectively).

I Theorem 4.2. Let ρ ∈ <+(N) satisfy conditions 1 and 2 at the beginning of Subsect. 4.1.
Then the following conditions are equivalent:

(*) For every i ∈ N, ρ({i}) is an interval;
(**) Each of hρ−1 and −lρ−1 is either non-decreasing or weakly unimodal;

(***) For every i ∈ N, both ρ({i}) and ρ({i, i+ 1}) are intervals.

Proof. Assume (*) and suppose that (**) does not hold. If hρ−1 is neither non-decreasing nor
weakly unimodal then there exist i, j, j′ ∈ N, j + 1 < j′ such that i ≤ min(hρ−1(j), hρ−1(j′))
and, for every j′′, if j < j′′ < j′ then hρ−1(j′′) < i. By condition 2 assumed by the
theorem, lρ−1(j) ≤ hρ−1(j + 1) + 1 ≤ i ≤ min(hρ−1(j), hρ−1(j′)) ≤ hρ−1(j) and similarly
lρ−1(j′) ≤ hρ−1(j′ − 1) + 1 ≤ i ≤ min(hρ−1(j), hρ−1(j′)) ≤ hρ−1(j′). Hence ρ({i}) contains
both j and j′ but none of the numbers between j and j′, which contradicts the fact that
ρ({i}) is an interval. The case with −lρ−1 being neither non-decreasing nor weakly unimodal
is handled analogously. Thus (*) implies (**).

Now assume (**). For every natural number i, denote Hi =
{
j ∈ N : hρ−1(j) ≥ i

}
and

Li =
{
j ∈ N : lρ−1(j) ≤ i

}
; then ρ({i}) = Hi ∩ Li. By (**), Hi and Li are intervals, hence

ρ({i}) is an interval for each i. Note that i < i′ implies Hi ⊇ Hi′ and Li ⊆ Li′ . Moreover,
Hi+1 ∪ Li = N: Indeed, j /∈ Li implies lρ−1(j) > i, meaning that hρ−1(j) ≥ lρ−1(j) ≥ i+ 1
whence j ∈ Hi+1. Clearly ρ({i, i+ 1}) = ρ({i}) ∪ ρ({i+ 1}) = (Hi ∩ Li) ∪ (Hi+1 ∩ Li+1).
To prove that ρ({i, i+ 1}) is an interval, suppose that j ∈ Hi ∩ Li, j′ ∈ Hi+1 ∩ Li+1 and
j < j′′ < j′ (the case j′ < j′′ < j is similar). As Hi+1 ⊆ Hi, both j and j′ belong to Hi.
Similarly as Li ⊆ Li+1, both j and j′ belong to Li+1. Consequently, also j′′ ∈ Hi ∩ Li+1
since both Hi and Li+1 are intervals. Now if j′′ ∈ Hi+1 then j′′ ∈ Hi+1∩Li+1 ⊆ ρ({i, i+ 1}),
and if j′′ ∈ Li then j′′ ∈ Hi ∩ Li ⊆ ρ({i, i+ 1}). Hence (**) implies (***).

Finally, (***) trivially implies (*). J

Knowing the modes of both hρ−1 and −lρ−1 (in the non-decreasing case with no upper
bound, ∞ can be used as the mode), ρ−1(I) can be computed by O(1) evaluations of lρ−1

and hρ−1 and O(1) comparisons of natural numbers for any interval I. Indeed, sup(ρ−1(I))

MFCS 2017



45:12 Grammars for Indentation-Sensitive Parsing

equals the value of hρ−1 at one of the endpoints of I or at the mode (if the mode belongs
to I), or is ∞ (if hρ−1 is non-decreasing and unbounded); min(ρ−1(I)) can be found similarly.

The set of natural numbers where hρ and lρ are defined is an interval. An argument
similar to the proof of part (*)⇒ (**) of Theorem 4.2 shows that each of hρ and −lρ is either
non-decreasing or weakly unimodal within its domain of definition. Hence by symmetry, it
is possible to compute ρ(I ′) for any interval I ′ by O(1) evaluations of lρ and hρ and O(1)
comparisons if the modes of both hρ and −lρ are known. Partiality of hρ and lρ is not an
issue since Theorem 2.1 guarantees that the set of indentation baseline candidates becomes
never empty. Obviously the intersection of known intervals I and ρ(I ′) is computable by
O(1) comparisons.

Consequently, by representing relations ρ with records that consist of functions lρ, hρ,
lρ−1 and hρ−1 together with the modes of −lρ, hρ, −lρ−1 and hρ−1 , every indentation causes
only an O(1) time overhead (if the values of the functions are computable in O(1) time). It
is reasonable to expect that the parser implementer provides the right representations for all
the relations in use as the number of these relations is normally quite small.

For the four relations in [3], the modes can be defined as follows (they are not unique as
the functions can increase or decrease non-strictly):

(m(−l4−1),m(h4−1)) = (0,∞);
(m(−l>−1),m(h>−1)) = (0, 0);
(m(−l≥−1),m(h≥−1)) = (0, 0);
(m(−l~−1),m(h~−1)) = (0, 0);

(m(−l4),m(h4)) = (0,∞);
(m(−l>),m(h>)) = (1,∞);
(m(−l≥),m(h≥)) = (0,∞);
(m(−l~),m(h~)) = (0, 0).

5 Related work

PEGs were first introduced and studied by Ford [6] who also showed them to be closely
related with the TS system [5] and TDPL [4], as well as to their generalized forms [5, 4].

Adams [2] and Adams and Ağacan [3] provide an excellent overview of previous approaches
to describing indentation-sensitive languages and attempts of building indentation features
into parser libraries. Our work is a theoretical study of the approach proposed in [3] while
some details of the semantics used in our paper were “corrected” in the lines of Adams’
indentation package for Haskell [1]. This package enables specifying indentation sensitivity
within the Parsec and Trifecta parser combinator libraries. A process of alignment operator
elimination is previously described for CFGs by Adams [2].

Matsumura and Kuramitsu [7] develop a very general extension of PEG that also enables
to specify indentation. Their framework is powerful but complicated. The approach proposed
in [3] and followed by us is in contrast with [7] by focusing on indentation and aiming to
maximal simplicity and convenience of usage.

6 Conclusion

We studied the extension of PEG proposed by Adams and Ağacan [3] for indentation-
sensitive parsing. This extension uses operators for marking indentation and alignment
besides the classic ones. Having added one more operator (position) for convenience, we
found a lot of useful semantic equivalences that are valid on expressions written in the
extended grammars. We applied these equivalences subsequently for defining a process that
algorithmically eliminates all alignment and position operators from well-formed grammars.

We analyzed practical limitations of the indentation extension of PEG from the aspect
of efficient expressibility and computability of the relations and sets needed during parsing.



H. Nestra 45:13

We found a wide class of relations that, provided the minimum and supremum of the set of
numbers related to any given number is computable in O(1) time, cause only O(1) overhead
at each parsing step.

Acknowledgements. I thank the anonymous reviewers whose comments helped to improve
the paper considerably.

References
1 Michael D. Adams. The indentation package. URL: http://hackage.haskell.org/

package/indentation.
2 Michael D. Adams. Principled parsing for indentation-sensitive languages: Revisiting

Landin’s offside rule. In Roberto Giacobazzi and Radhia Cousot, editors, The 40th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL’13, Rome, Italy - January 23 - 25, 2013, pages 511–522. ACM, 2013. doi:
10.1145/2429069.2429129.

3 Michael D. Adams and Ömer S. Ağacan. Indentation-sensitive parsing for Parsec. In
Wouter Swierstra, editor, Proceedings of the 2014 ACM SIGPLAN symposium on Haskell,
Gothenburg, Sweden, September 4-5, 2014, pages 121–132. ACM, 2014. doi:10.1145/
2633357.2633369.

4 Alfred V. Aho and Jeffrey D. Ullman. The Theory of Parsing, Translation, and Compiling.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1972.

5 Alexander Birman and Jeffrey D. Ullman. Parsing algorithms with backtrack. Information
and Control, 23(1):1–34, 1973. doi:10.1016/S0019-9958(73)90851-6.

6 Bryan Ford. Parsing expression grammars: A recognition-based syntactic foundation. In
Neil D. Jones and Xavier Leroy, editors, Proceedings of the 31st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2004, Venice, Italy, January
14-16, 2004, pages 111–122. ACM, 2004. doi:10.1145/964001.964011.

7 Tetsuro Matsumura and Kimio Kuramitsu. A declarative extension of parsing expression
grammars for recognizing most programming languages. JIP, 24(2):256–264, 2016. doi:
10.2197/ipsjjip.24.256.

8 Sérgio Medeiros, Fabio Mascarenhas, and Roberto Ierusalimschy. Left recursion in parsing
expression grammars. In Francisco Heron de Carvalho Junior and Luís Soares Barbosa,
editors, Programming Languages - 16th Brazilian Symposium, SBLP 2012, Natal, Brazil,
September 23-28, 2012. Proceedings, volume 7554 of Lecture Notes in Computer Science,
pages 27–41. Springer, 2012. doi:10.1007/978-3-642-33182-4_4.

9 Härmel Nestra. Alignment elimination from Adams’ grammars, 2017. arXiv:1706.06497.

MFCS 2017

http://hackage.haskell.org/package/indentation
http://hackage.haskell.org/package/indentation
http://dx.doi.org/10.1145/2429069.2429129
http://dx.doi.org/10.1145/2429069.2429129
http://dx.doi.org/10.1145/2633357.2633369
http://dx.doi.org/10.1145/2633357.2633369
http://dx.doi.org/10.1016/S0019-9958(73)90851-6
http://dx.doi.org/10.1145/964001.964011
http://dx.doi.org/10.2197/ipsjjip.24.256
http://dx.doi.org/10.2197/ipsjjip.24.256
http://dx.doi.org/10.1007/978-3-642-33182-4_4
http://arxiv.org/abs/1706.06497




The Power of Linear-Time Data Reduction for
Maximum Matching∗

George B. Mertzios†1, André Nichterlein‡2, and Rolf Niedermeier3

1 School of Engineering and Computing Sciences, Durham University, UK
george.mertzios@durham.ac.uk

2 School of Engineering and Computing Sciences, Durham University, UK, and
Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
andre.nichterlein@tu-berlin.de

3 Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
rolf.niedermeier@tu-berlin.de

Abstract
Finding maximum-cardinality matchings in undirected graphs is arguably one of the most cen-
tral graph primitives. For m-edge and n-vertex graphs, it is well-known to be solvable in
O(m

√
n) time; however, for several applications this running time is still too slow. We investigate

how linear-time (and almost linear-time) data reduction (used as preprocessing) can alleviate the
situation. More specifically, we focus on linear-time kernelization. We start a deeper and system-
atic study both for general graphs and for bipartite graphs. Our data reduction algorithms easily
comply (in form of preprocessing) with every solution strategy (exact, approximate, heuristic),
thus making them attractive in various settings.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Discrete
Mathematics: Graph Theory

Keywords and phrases Maximum-cardinality matching, bipartite graphs, linear-time algorithms,
kernelization, parameterized complexity analysis, FPT in P.

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.46

1 Introduction

“Matching is a powerful piece of algorithmic magic” [22]. In the maximum matching problem,
given an undirected graph, one has to compute a maximum set of nonoverlapping edges.
Maximum matching is arguably among the most fundamental graph-algorithmic primitives
allowing for a polynomial-time algorithm. More specifically, on an n-vertex and m-edge
graph a maximum matching can be found in O(m

√
n) time [20]. Improving this upper time

bound resisted decades of research. Recently, however, Duan and Pettie [9] presented a
linear-time algorithm that computes a (1− ε)-approximate maximum-weight matching, where
the running time dependency on ε is ε−1 log(ε−1). For the unweighted case, the O(m

√
n)

algorithm of Micali and Vazirani [20] implies a linear-time (1− ε)-approximation, where in
this case the running time dependency on ε is ε−1 [9]. We take a different route: First, we do
not give up the quest for optimal solutions. Second, we focus on efficient – more specifically,
linear-time executable – data reduction rules, that is, not solving an instance but significantly

∗ A full version with all proof details is available at https://arxiv.org/abs/1609.08879
† Partially supported by the EPSRC grant EP/P020372/1.
‡ Supported by a postdoc fellowship of DAAD while at Durham University.

© George B. Mertzios, André Nichterlein, and Rolf Niedermeier;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 46; pp. 46:1–46:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.46
https://arxiv.org/abs/1609.08879
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


46:2 The Power of Linear-Time Data Reduction for Maximum Matching

shrinking its size before actually solving the problem. Doing so, however, we focus here on
the unweighted case. In the context of decision problems and parameterized complexity
analysis this approach is known as kernelization.

The spirit behind our approach is thus closer to the identification of efficiently solvable
special cases of maximum matching. There is quite some body of work in this direction.
For instance, since an augmenting path can be found in linear time [11], the standard
augmenting path-based algorithm runs in O(s(n+m)) time, where s is the number of edges
in the maximum matching. Yuster [25] developed an O(rn2 logn)-time algorithm, where
r is the difference between maximum and minimum degree of the input graph. Moreover,
there are linear-time algorithms for computing maximum matchings in special graph classes,
including convex bipartite [23], strongly chordal [8], chordal bipartite [7], and cocomparability
graphs [19].

All this and the more general spirit of “parameterization for polynomial-time solvable
problems” [13] (also referred to as “FPT in P” or “FPTP” for short) forms the starting point
of our research. Remarkably, Fomin et al. [10] recently developed an algorithm to compute a
maximum matching in graphs of treewidth k in O(k4n logn) randomized time.

Following the paradigm of kernelization, that is, provably effective and efficient data
reduction, we provide a systematic exploration of the power of not only polynomial-time but
actually linear-time data reduction for maximum matching. Thus, our aim (fitting within
FPTP) is to devise problem kernels that are computable in linear time. In other words, the
fundamental question we pose is whether there is a very efficient preprocessing that provably
shrinks the input instance, where the effectiveness is measured by employing some parameters.
The philosophy behind this is that if we can design linear-time data reduction algorithms,
then we may employ them for free before afterwards employing any super-linear-time solving
algorithm. We believe that this sort of question deserves deeper investigation and we initiate
it based on the matching problem.

As kernelization is defined for decision problems, we use in the remainder of the paper
the decision version of maximum matching. In a nutshell, a kernelization of a decision
problem instance is an algorithm that produces an equivalent instance whose size can solely
be upper-bounded by a function in the parameter (preferably a polynomial). The focus on
decision problems is justified by the fact that all our results, although formulated for the
decision version, in a straightforward way extend to the corresponding optimization version.

(Maximum-Cardinality) Matching
Input: An undirected graph G = (V,E) and a nonnegative integer s.
Question: Is there a size s subset MG ⊆ E of nonoverlapping (i.e. disjoint) edges?

Note that for any polynomial-time solvable problem solving the given instance and returning
a trivial yes- or no-instance always produces a constant-size kernel in polynomial time. Hence,
we are looking for kernelization algorithms that are faster than the algorithms solving the
problem. The best we usually can hope for is linear time. For NP-hard problems, each
polynomial-time kernelization algorithm is faster than any solution algorithm, unless P = NP.
While the focus of classical kernelization for NP-hard problems is mostly on improving the
size of the kernel, we particularly emphasize that for polynomially solvable problems it now
becomes mandatory to also focus on the running time of the kernelization algorithm. Indeed,
we consider linear-time kernelization as the holy grail and this drives our research when
studying kernelization for Matching.

Our contributions. We present three kernels for Matching (see Table 1 for an overview).
All our parameterizations can be categorized as “distance to triviality” [6, 14, 18, 24]. They
are motivated as follows. First, note that it is important that the parameters we exploit can



G. B. Mertzios, A. Nichterlein, and R. Niedermeier 46:3

Table 1 Our kernelization results.

Parameter k running time kernel size

Results for Matching
Feedback edge number O(n + m) O(k) vertices and edges (Theorem 3)
Feedback vertex number O(kn) 2O(k) vertices and edges (Theorem 11)

Results for Bipartite Matching
Distance to chain graphs O(n + m) O(k3) vertices (Theorem 15)

be computed, or well approximated (within constant factors), in linear time regardless of
the parameter value. For instance, it is not known whether this is possible for treewidth.
Next, note that maximum-cardinality matchings can be trivially found in linear time on
trees (or forests). So we consider the edge deletion distance (feedback edge number) and
vertex deletion distance (feedback vertex number) to forests. Notably, there is a trivial linear-
time algorithm for computing the feedback edge number and there is a linear-time factor-4
approximation algorithm for the feedback vertex number [1]. We mention in passing that
the parameter vertex cover number, which is lower-bounded by the feedback vertex number,
has been frequently studied for kernelization [3, 4]. In particular, Gupta and Peng [15]
and Giannopoulou et al. [13] provided a linear-time computable quadratic-size kernel for
Matching with respect to the parameter solution size (or equivalently vertex cover number).
Coming to bipartite graphs, we parameterize by the vertex deletion distance to chain graphs
which is motivated as follows. First, chain graphs form one of the most obvious easy cases for
bipartite graphs where Matching can be solved in linear time [23]. Second, we show that
the vertex deletion distance of any bipartite graph to a chain graph can be 2-approximated
in linear time. Moreover, vertex deletion distance to chain graphs lower-bounds the vertex
cover number of a bipartite graph, and thus gives a stronger parameterization [18] than
vertex cover number.

An overview of our main results is given in Table 1. We study kernelization for Matching
parameterized by the feedback vertex number, that is, the vertex deletion distance to a forest
(see Section 2). As a warm-up we first show that a subset of our data reduction rules for the
“feedback vertex set kernel” also yields a linear-time computable linear-size kernel for the
typically much larger parameter feedback edge number (see Section 2.1). As for Bipartite
Matching no faster algorithm is known than on general graphs, we kernelize Bipartite
Matching with respect to the vertex deletion distance to chain graphs (see Section 3).

Seen from a high level, our two technical main results (Theorems 11 and 15, see Table 1)
employ the same algorithmic strategy, namely upper-bounding (as a function of the parameter)
the number of neighbors in the appropriate vertex deletion set X; that is, X being the
feedback vertex set or in the deletion set to chain graphs, respectively. To achieve this we
develop new “irrelevant edge techniques” tailored to these two kernelization problems. More
specifically, whenever a vertex v of the deletion set X has large degree, we efficiently detect
edges incident to v whose removal does not change the size of the maximum matching. Then
the remaining graph can be further shrunk by scenario-specific data reduction rules. While
this approach of removing irrelevant edges is natural, the technical details and the proofs of
correctness become quite technical and combinatorially challenging.

Note that there exists a trivial O(km)-time solving (not only kernelization) algorithm,
where k is the feedback vertex number. Our kernel has size 2O(k). Therefore, only if k =
o(logn) our kernelization algorithm provably shrinks the initial instance. However, our result

MFCS 2017



46:4 The Power of Linear-Time Data Reduction for Maximum Matching

is still relevant: First, our data reduction rules might assist in proving a polynomial upper
bound on the kernel size – so our result is a first step in this direction. Second, the running
time O(kn) of our kernelization algorithm is a kind of “half way” between O(km) (which
could be as bad as O(k2n)) and O(n+m) (which is best possible). Finally, note that this
work focuses on theoretical and worst-case analysis; in practice, our kernelization algorithm
might achieve much better upper bounds on real-world input instances.

As a technical side remark, we emphasize that in order to achieve a linear-time kernelization
algorithm, we often need to use suitable data structures and to carefully design the appropriate
data reduction rules to be exhaustively applicable in linear time, making this form of
“algorithm engineering” much more relevant than in the classical setting of mere polynomial-
time data reduction rules.

Notation and Observations. We use standard notation from graph theory. Merging two
vertices u and v means to first introduce a new vertex w with N(w) = N(u)∪N(v) and then
delete u and v. A feedback vertex (edge) set of a graph G is a set X of vertices (edges) such
that G−X is a tree or a forest. The feedback vertex (edge) number denotes the size of a
minimum feedback vertex (edge) set. All paths we consider are simple paths. Two paths in a
graph are called internally vertex-disjoint if they are either completely vertex-disjoint or they
overlap only in their endpoints. A matching in a graph is a set of pairwise disjoint edges.
Let G = (V,E) be a graph and let M ⊆ E be a matching in G. The degree of a vertex is
denoted by deg(v). A vertex v ∈ V is called matched with respect to M if there is an edge
in M containing v, otherwise v is called free with respect to M . If the matching M is clear
from the context, then we omit “with respect to M”. An alternating path with respect to M
is a path in G such that every second edge of the path is in M . An augmenting path is an
alternating path whose endpoints are free. It is well known that a matching M is maximum
if and only if there is no augmenting path for it. Let M ⊆ E and M ′ ⊆ E be two matchings
in G. We denote by G(M,M ′) := (V,M 4M ′) the graph containing only the edges in the
symmetric difference of M and M ′, that is, M 4M ′ := M ∪M ′ \ (M ∩M ′). Observe that
every vertex in G(M,M ′) has degree at most two.

I Observation 1. Let G = (V,E) be a graph with a maximum matching MG, let X ⊆ V

be a vertex subset of size k, and let MG−X be a maximum matching for G − X. Then,
|MG−X | ≤ |MG| ≤ |MG−X |+ k.

Kernelization. A parameterized problem is a set of instances (I, k) where I ∈ Σ∗ for a finite
alphabet Σ, and k ∈ N is the parameter. We say that two instances (I, k) and (I ′, k′) of
parameterized problems P and P ′ are equivalent if (I, k) is a yes-instance for P if and only if
(I ′, k′) is a yes-instance for P ′. A kernelization is an algorithm that, given an instance (I, k)
of a parameterized problem P , computes in polynomial time an equivalent instance (I ′, k′)
of P (the kernel) such that |I ′|+ k′ ≤ f(k) for some computable function f . We say that f
measures the size of the kernel, and if f(k) ∈ kO(1), we say that P admits a polynomial
kernel. Often, a kernel is achieved by applying polynomial-time executable data reduction
rules. We call a data reduction rule R correct if the new instance (I ′, k′) that results from
applying R to (I, k) is equivalent to (I, k). An instance is called reduced with respect to
some data reduction rule if further application of this rule has no effect on the instance.



G. B. Mertzios, A. Nichterlein, and R. Niedermeier 46:5

2 Kernelization for Matching on General Graphs

In this section we first present as a warm-up a simple, linear-size kernel for Matching
with respect to the parameter feedback edge number (see Section 2.1). Exploiting the data
reduction rules and ideas used for this kernel, we then present the main result of this section:
an exponential-size kernel for the typically much smaller parameter feedback vertex number
(see Section 2.2).

2.1 Warm-up: Parameter feedback edge number
We provide a linear-time computable linear-size kernel for Matching parameterized by the
feedback edge number, that is, the size of a minimum feedback edge set. Observe that a
minimum feedback edge set can be computed in linear time via a simple depth-first search or
breadth-first search. The kernel is based on the next two simple data reduction rules due to
Karp and Sipser [17]. They deal with vertices of degree at most two.

I Reduction Rule 2.1. Let v ∈ V . If deg(v) = 0, then delete v. If deg(v) = 1, then delete v
and its neighbor and decrease the solution size s by one (v is matched with its neighbor).

I Reduction Rule 2.2. Let v be a vertex of degree two and let u,w be its neighbors. Then
remove v, merge u and w, and decrease the solution size s by one.

Reduction Rules 2.1 and 2.2 are correct; however, it is not clear whether Reduction
Rule 2.2 can be exhaustively applied in linear time. Fortunately, for our purpose it suffices
to consider the following restricted version which we can exhaustively apply in linear time.

I Reduction Rule 2.3. Let v be a vertex of degree two and u,w be its neighbors with u and w
having degree at most two. Then remove v, merge u and w, and decrease s by one.

I Lemma 2. Reduction Rules 2.1 and 2.3 can be exhaustively applied in O(n+m) time.

I Theorem 3. Matching admits a linear-time computable linear-size kernel with respect to
the parameter feedback edge number k.

Proof. Apply Reduction Rules 2.1 and 2.3 exhaustively in linear time (Lemma 2). We
claim that the reduced graph G = (V,E) has less than 12k vertices and less than 13k
edges. Denote with X ⊆ E a feedback edge set for G, |X| ≤ k. Furthermore, denote
with V 1

G−X , V 2
G−X , and V ≥3

G−X the vertices that have degree one, two, and more than two in
the G−X. Thus, |V 1

G−X | ≤ 2k as each leaf in G−X has to be incident to an edge in X.
Next, since G −X is a forest (or tree), we have |V ≥3

G−X | < |V 1
G−X | and thus |V ≥3

G−X | < 2k.
Finally, each degree-two vertex in G needs at least one neighbor of degree at least three
since G is reduced with respect to Reduction Rule 2.3. Thus, the vertices in V 2

G−X are
either incident to an edge in X or adjacent to one of the at most |V ≥3

G−X |+ 2k vertices in G
that have degree at least three. Since the sum over all degrees of vertices in V ≥3

G−X is at
most

∑
v∈V

≥3
G−X

degG−X(v) ≤ 2|V ≥3
G−X | + |V 1

G−X | < 6k, it follows that |V 2
G−X | ≤ 8k. Thus,

the number of vertices in G is |V 1
G−X |+ |V 2

G−X |+ |V
≥3

G−X | ≤ 12k. Since G−X is a forest, it
follows that G has at most |V |+ k ≤ 13k edges. J

Applying the O(m
√
n)-time algorithm for Matching [20] on the kernel yields:

I Corollary 4. Matching can be solved in O(n+m+ k1.5) time, where k is the feedback
edge number.

MFCS 2017



46:6 The Power of Linear-Time Data Reduction for Maximum Matching

2.2 Parameter feedback vertex number
We next provide for Matching a kernel of size 2O(k) computable in O(kn) time where k is
the feedback vertex number. Using a known linear-time factor 4-approximation algorithm [1],
we can approximate feedback vertex set and use it in our kernelization algorithm.

Roughly speaking, our kernelization algorithm extends the linear-time computable kernel
with respect to the parameter feedback edge set. Thus, Reduction Rules 2.1 and 2.3 play an
important role in the kernelization. Compared to the other kernels presented in this paper,
the kernel presented here comes at the price of higher running time O(kn) and bigger kernel
size (exponential size). It remains open whether Matching parameterized by the feedback
vertex number admits a linear-time computable kernel (possibly of exponential size), and
whether it admits a polynomial kernel computable in O(kn) time.

Subsequently, we describe our kernelization algorithm which keeps in the kernel all vertices
in the given feedback vertex set X and shrinks the size of G − X. Before doing so, we
need some further notation. In this section, we assume that each tree is rooted at some
arbitrary (but fixed) vertex such that we can refer to the parent and children of a vertex.
A leaf in G−X is called a bottommost leaf either if it has no siblings or if all its siblings
are also leaves. (Here, bottommost refers to the subtree with the root being the parent
of the considered leaf.) The outline of the algorithm is as follows (we assume throughout
that k < logn since otherwise the input instance is already a kernel of size O(2k)):
1. Reduce G with respect to Reduction Rules 2.1 and 2.3.
2. Compute a maximum matching MG−X in G−X.
3. Modify MG−X in linear time such that only the leaves of G−X are free.
4. Bound the number of free leaves in G−X by k2.
5. Bound the number of bottommost leaves in G−X by O(k22k).
6. Bound the degree of each vertex in X by O(k22k). Then, use Reduction Rules 2.1 and 2.3

to provide the kernel of size 2O(k).
Whenever we reduce the graph at some step, we also show that the applied data reduction
is correct. That is, the given instance is a yes-instance if and only if the reduced one is a
yes-instance. The correctness of our kernelization algorithm then follows by the correctness
of each step. We discuss in the following some details of each step.

2.2.1 Steps 1 to 3
By Lemma 2 we can perform Step 1 in linear time. A maximum matching in Step 2 can be
computed by repeatedly matching a free leaf to its neighbor and by removing both vertices
from the graph (thus effectively applying Reduction Rule 2.1 to G−X). By Lemma 2, this
can be done in linear time. Step 3 can be done in O(n) time by traversing each tree in MG−X

in a BFS manner starting from the root: If a visited inner vertex v is free, then observe that
all children are matched since MG−X is maximum. Pick an arbitrary child u of v and match
it with v. The vertex w that was previously matched to u is now free and since it is a child
of u, it will be visited in the future. Observe that Steps 2 and 3 do not change the graph but
only the auxiliary matching MG−X , and thus these steps are correct.

2.2.2 Step 4
Recall that our goal is to upper-bound the number of edges between vertices of X and V \X,
since we can then use a simple analysis as for the parameter feedback edge set. Observe that
if a vertex x ∈ X has at least k neighbors in V \X that are free wrt. MG−X , then there
exists a maximum matching where x is matched to one of these k vertices since at most k− 1



G. B. Mertzios, A. Nichterlein, and R. Niedermeier 46:7

can be “blocked” by other matching edges. This means that we can delete all other edges
incident to x. Formalizing this idea, we obtain the following data reduction rule.

I Reduction Rule 2.4. Let G = (V,E) be a graph, let X ⊆ V be a subset of size k, and let
MG−X be a maximum matching for G−X. If there is a vertex x ∈ X with at least k free
neighbors Vx = {v1, . . . , vk} ⊆ V \X, then delete all edges from x to vertices in V \ Vx.

To finish Step 4, we exhaustively apply Reduction Rule 2.4 in linear time. Afterwards,
there are at most k2 free (wrt. to MG−X) leaves in G−X that have at least one neighbor
in X since each of the k vertices in X is adjacent to at most k free leaves. Thus, applying
Reduction Rule 2.1 we can remove the remaining free leaves that have no neighbor in X.
However, since for each degree-one vertex also its neighbor is removed, we might create new
free leaves and need to again apply Reduction Rule 2.4 and update the matching (see Step 3).
This process of alternating application of Reduction Rules 2.1 and 2.4 stops after at most
k rounds since the neighborhood of each vertex in X can be changed by Reduction Rule 2.4
at most once. This shows the running time O(k(n+m)). We next show how to improve this
to O(n+m) time and arrive at the final lemma of this subsection.

I Lemma 5. Given a matching instance (G, s) and a feedback vertex set X, one can compute
in linear time an instance (G′, s′) with feedback vertex set X and a maximum matchingMG′−X

in G′ −X such that the following holds.
There is a matching of size s in G if and only if there is a matching of size s′ in G′.
Each vertex that is free wrt. MG′−X is a leaf in G′ −X.
There are at most k2 free leaves in G′ −X.

2.2.3 Step 5
Step 5 reduces the graph in O(kn) time so that at most k2(2k + 1) bottommost leaves will
remain in the forest G−X. We restrict ourselves to consider leaves that are matched with
their parent vertex in MG−X and that do not have a sibling. Any sibling of a bottommost
leaf is by definition also a leaf. Thus, at most one of these leaves (the bottommost leaf or
its siblings) is matched with respect to MG−X and all other leaves are free. Recall that in
the previous step we upper-bounded the number of free leaves with respect to MG−X by k2.
Hence there are at most k2 bottommost leaves with siblings.

Our general strategy for this step is to extend the idea behind Reduction Rule 2.4: We
want to keep for each pair of vertices x, y ∈ X at most k different internally vertex-disjoint
augmenting paths from x to y. (For ease of notation we keep k paths although keeping k/2
is sufficient.) In this step, we only consider augmenting paths of the form x, u, v, y where v is
a bottommost leaf and u is v’s parent in G−X. Assume that the parent u of v is adjacent
to some vertex x ∈ X. Observe that in this case any augmenting path starting with the
two vertices x and u has to continue to v and end in a neighbor of v. Thus, the edge {x, u}
can be only used in augmenting paths of length three. Furthermore, all these length-three
augmenting paths are clearly internally vertex-disjoint. If we do not need the edge {x, u}
because we kept k augmenting paths from x already, then we can delete {x, u}. Furthermore,
if we deleted the last edge from u to X (or u had no neighbors in X in the beginning), then u
is a degree-two vertex in G and can be removed by applying Reduction Rule 2.2. As the
child v of u is a leaf in G−X, it follows that v has at most k + 1 neighbors in G. Thus, an
application of Reduction Rule 2.2 to remove u takes O(k) time.

Counting for each pair x ∈ N(u) ∩X and y ∈ N(v) ∩X one augmenting path gives in a
simple worst-case analysis O(k2) time per edge; this is too slow for our purposes. Instead, we

MFCS 2017



46:8 The Power of Linear-Time Data Reduction for Maximum Matching

count for each vertex x ∈ N(u) ∩X and for each set Y = N(v) ∩X one augmenting path.
In this way, we know that for each y ∈ Y there is one augmenting path from x to y, without
iterating through all y ∈ Y . We get an exponential factor in the bound of the bottommost
leaves since there are 2k subsets of X, but we can perform this step in O(kn) time as follows.

I Lemma 6. Let (G = (V,E), s) be a matching instance, let X ⊆ V be a feedback vertex set,
and let MG−X be a maximum matching for G−X with at most k2 free vertices in G−X that
are all leaves. Then, can compute in O(kn) time an instance (G′, s′) with feedback vertex
set X and a maximum matching MG′−X in G′ −X such that the following holds.

There is a matching of size s in G if and only if there is a matching of size s′ in G′.
There are at most k2(2k + 1) bottommost leaves in G′ −X.
There are at most k2 free vertices in G′ −X and they are all leaves.

2.2.4 Step 6
In this subsection, we provide the final step of our kernelization algorithm. Recall that in the
previous steps we have upper-bounded the number of bottommost leaves in G−X by O(k22k),
we computed a maximum matching MG−X for G − X such that at most k2 vertices are
free wrt. MG−X and all free vertices are leaves in G−X. Using this, we next show how to
reduce G to a graph of size O(k32k). To this end we need some further notation. A leaf
in G−X that is not bottommost is called a pendant. We define T to be the pendant-free tree
(forest) of G−X, that is, the tree (forest) obtained from G−X by removing all pendants.
The next observation shows that G−X is not much larger than T . Together with the second
observation, this allows us to restrict ourselves in the following on giving an upper bound on
the size of T .

I Observation 7. Let G−X be as described above with vertex set V \X and let T be the
pendant-free tree (forest) of G−X with vertex set VT . Then, |V \X| ≤ 2|VT |+ k2.

I Observation 8. Let F be a forest, let F ′ be the pendant-free forest of F , and let B be the
set of all bottommost leaves in F . Then, the set of leaves in F ′ is exactly B.

From Observation 8 it follows that the set B of bottommost leaves in G−X is exactly the set
of leaves in T . In the previous step we reduced the graph such that |B| ≤ k2(2k + 1). Thus,
T has at most k2(2k + 1) vertices of degree one and, since T is a tree (a forest), T also has at
most k2(2k +1) vertices of degree at least three. Let V 2

T be the vertices of degree two in T and
let V 6=2

T be the remaining vertices in T . From the above it follows that |V 6=2
T | ≤ 2k2(2k + 1).

Hence, it remains to bound the size of V 2
T . To this end, we will upper-bound the degree of

each vertex in X by O(k22k) and then use Reduction Rules 2.1 and 2.3. We will check for
each edge {x, v} ∈ E with x ∈ X and V \X whether we “need” it. This check will use the
idea from the previous subsection where each vertex in X needs to reach each subset Y ∈ X
at most k times via an augmenting path. Similarly as in the previous section, we want to
keep “enough” of these augmenting paths. However, this time the augmenting paths might
be long, while different augmenting paths might overlap. To still use the basic approach, we
use the following lemma stating that we can still somehow replace augmenting paths.

I Lemma 9. Let MG−X be a maximum matching in the forest G − X. Let Puv be an
augmenting path for MG−X in G from u to v. Let Pwx, Pwy, and Pwz be three internally
vertex-disjoint augmenting paths from w to x, y, and z, respectively, such that Puv intersects
all of them. Then, there exist two vertex-disjoint augmenting paths with endpoints u, v, w,
and one of the three vertices x, y, and z.



G. B. Mertzios, A. Nichterlein, and R. Niedermeier 46:9

Proof. Label the vertices in Puv alternating as odd or even with respect to Puv so that no
two consecutive vertices have the same label, u is odd, and v is even. Analogously, label
the vertices in Pwx, Pwy, and Pwz as odd and even with respect to Pwx, Pwy, and Pwz

respectively so that w is always odd. Since all these paths are augmenting, it follows that
each edge from an even vertex to its succeeding odd vertex is in the matching MG−X and
each edge from an odd vertex to its succeeding even vertex is not in the matching. Observe
that Puv intersects each of the other paths at least at two consecutive vertices, since every
second edge must be an edge in MG−X . Since G−X is a forest and all vertices in X are free
with respect to MG−X , it follows that the intersection of two augmenting paths is connected
and thus a path. Since Puv intersects the three augmenting paths from w, it follows that at
least two of these paths, say Pwx and Pwy, have a “fitting parity”, that is, in the intersections
of Puv with Pwx and with Pwy the even vertices with respect to Puv are either even or odd
with respect to both Pwx and Pwy.

Assume w.l.o.g. that in the intersections of the paths the vertices have the same label with
respect to the three paths (if the labels differ, then revert the ordering of the vertices in Puv,
that is, exchange the names of u and v and change all labels on Puv to its opposite). Denote
with v1

s and v1
t the first and the last vertex in the intersection of Puv and Pwx. Analogously,

denote with v2
s and v2

t the first and the last vertex in the intersection of Puv and Pwy. Assume
w.l.o.g. that Puv intersects first with Pwx and then with Pwy. Observe that v1

s and v2
s are

even vertices and v1
t and v2

t are odd vertices since the intersections have to start and end
with edges in MG−X . For an arbitrary path P and for two arbitrary vertices p1, p2 of P ,
denote by p1 −P − p2 the subpath of P from p1 to p2. Observe that u−Puv − v1

t −Pwx − x
and w − Pwy − v2

t − Puv − v are vertex-disjoint augmenting paths. J

Algorithm description. We now provide the algorithm for Step 6 (see Algorithm 1 for a
pseudocode). Algorithm 1 uses a table Tab which has an entry for each vertex x ∈ X and
each set Y ⊆ X. The table is filled in such a way that the algorithm detected for each y ∈ Y
at least Tab[x, Y ] internally vertex-disjoint augmenting paths from x to y. The main part of
the algorithm is the boolean function ‘Keep-Edge’ in Lines 13 to 22 which makes the decision
on whether to delete an edge {x, v} for v ∈ V \X and x ∈ X. The function works as follows
for edge {x, v}: Starting at v the graph will be explored along possible augmenting paths
until a “reason” for keeping the edge {x, v} is found or further exploration is possible.

If the vertex v is free wrt. MG−X , then {x, v} is an augmenting path and we keep {x, v}
(see Line 14). Observe that in Step 4 we upper-bounded the number of free vertices by k2

and all these vertices are leaves. Thus, we keep a bounded number of edges incident to x
because the corresponding augmenting paths can end at a free leaf. We provide the exact
bound below when discussing the size of the graph returned by Algorithm 1. In Line 14,
the algorithm stops exploring the graph and keeps the edge {x, v} if v has degree at least
three in T . The reason is to keep the graph exploration simple by following only paths in T .
This ensures that the running time for exploring the graph from x does not exceed O(n).
Since the number of vertices in T with degree at least three is bounded (see discussion after
Observation 8), it follows that only a bounded number of such edges {x, v} are kept.

If v is not free wrt. MG−X , then it is matched with some vertex w. If w is adjacent to
some leaf u in G−X that is free wrt. MG−X , then the path x, v, w, u is an augmenting path.
Thus, the algorithm keeps in this case the edge {x, v}, see Line 16. Again, since the number
of free leaves is bounded, only a bounded number of edges incident to x will be kept. If w
has degree at least three in T , then the algorithm stops the graph exploration here and keeps
the edge {x, v}, see Line 16. Again, this is to keep the running time at O(kn) overall.

MFCS 2017



46:10 The Power of Linear-Time Data Reduction for Maximum Matching

Algorithm 1: Algorithm for Step 6 of our kernelization.
Input: A matching instance (G = (V, E), s), a feedback vertex set X ⊆ V of size k for G

with k < log n and at most k2(2k + 1) bottommost leaves in G−X, and a
maximum matching MG−X for G−X with at most k2 free vertices in G−X that
are all leaves.

Output: An equivalent matching instance (G′, s′) such that G′ contains at most O(k32k)
vertices and edges.

1 Fix an arbitrary bijection f : 2X → {1, . . . , 2k}
2 foreach v ∈ V \X do
3 Set fX(v)← f(N(v) ∩X) // The number fX(v) < n can be read in constant time.
4 Initialize a table Tab of size k · 2k with Tab[x, f(Y )]← 0 for x ∈ X, ∅ ( Y ⊆ X

5 T ← pendant-free tree (forest) of G−X

6 V ≥3
T ← vertices in T with degree ≥ 3

7 foreach x ∈ X do
8 foreach v ∈ N(x) \X do
9 if Keep-Edge(x, v) = false then // Is {x, v} needed for an augmenting path?

10 delete {x, v}

11 exhaustively apply Reduction Rules 2.1 and 2.3
12 return (G, s).
13 Function Keep-Edge(x ∈ X, v ∈ V \X)
14 if v is free wrt. MG−X or v ∈ V ≥3

T then return true
15 w ← matched neighbor of v in MG−X

16 if w ∈ V ≥3
T or w is adjacent to free leaf in G−X then return true

17 if w has at least one neighbor in X and Tab[x, fX(w)] < 6k2 then
18 Tab[x, fX(w)]← Tab[x, fX(w)] + 1
19 return true
20 foreach neighbor u 6= v of w that is matched wrt. MG−X and fulfills {u, x} /∈ E do
21 if Keep-Edge(u, x) = true then return true
22 return false

Let Y ⊆ X denote the neighborhood of w in X. The partial augmenting path x, v, w can
be extended to each vertex in Y . Thus, if the algorithm did not yet find 6k2 paths from x

to vertices whose neighborhood in X is also Y , then the table entry Tab[x, fX(w)] (where
fX(w) encodes the set Y = N(w) ∩X) is increased by one and the edge {x, v} will be kept
(see Lines 18 and 19). The proof that 6k2 paths suffice is based on an exchange argument
using Lemma 9. If the algorithm already found 6k2 “augmenting paths” from x to Y , then
the neighborhood of w in X is irrelevant for x and the algorithm continues.

In Line 20, all above discussed cases to keep the edge {x, v} do not apply and the
algorithm extends the partial augmenting part x, v, w by considering the neighbors of w
except v. Since the algorithm dealt with possible extensions to vertices in X in Lines 17
to 19 and with extensions to free vertices in G − X in Line 14, it follows that the next
vertex on this path has to be a vertex u that is matched wrt. MG−X . Furthermore, since we
want to extend a partial augmenting path from x, we require that u is not adjacent to x as
otherwise x, u would be another, shorter partial augmenting path from x to u and we do not
need the currently stored partial augmenting path.

The next lemma shows that Algorithm 1 is correct and runs in O(kn) time.



G. B. Mertzios, A. Nichterlein, and R. Niedermeier 46:11

a1 a2 a3 a4 a5 a6 a7

b1b2b3b4b5b6b7

A

B

Figure 1 A chain graph. Note that the ordering of the vertices in A is going from left to right
while the ordering of the vertices in B is going from right to left. The reason for these two orderings
being drawn in different directions is that a maximum matching can be drawn as parallel edges, see
e. g. the bold edges.

I Lemma 10. Let (G = (V,E), s) be a matching instance, let X ⊆ V be a feedback vertex set
of size k with k < logn and at most k2(2k + 1) bottommost leaves in G−X, and let MG−X

be a maximum matching for G−X with at most k2 free vertices in G−X that are all leaves.
Then, Algorithm 1 computes in O(kn) time an equivalent instance (G′, s′) of size O(k32k).

Simply performing Steps 1 to 6 yields the following kernel.

I Theorem 11. Matching parameterized by the feedback vertex number k admits a kernel
of size 2O(k). It can be computed in O(kn) time.

Applying the O(m
√
n)-time algorithm for Matching [20] on the kernel yields:

I Corollary 12. Matching can be solved in O(kn + 2O(k)) time, where k is the feedback
vertex number.

3 Kernelization for Matching on Bipartite Graphs

In this section, we investigate the possibility of efficient and effective preprocessing for
Bipartite Matching. In particular, we show a linear-time computable polynomial-size
kernel with respect to the parameter distance k to chain graphs. In the first part of this
section, we provide the definition of chain graphs and describe how to compute the parameter.
In the second part, we discuss the kernelization algorithm.

Definition and computation of the parameter. We first define chain graphs and we show
that we can 4-approximate the parameter set in linear time.

I Definition 13 ([5]). Let G = (A,B,E) be a bipartite graph. Then G is a chain graph if
each of its two color classes A,B admits a linear order w.r.t. neighborhood inclusion.

I Lemma 14. There is a linear-time factor-4 approximation for the problem of deleting a
minimum number of vertices in a bipartite graph in order to obtain a chain graph.

Kernelization. Due to lack of space, we defer the details of our kernelization algorithm
to the full version and provide in the following a high-level overview. In contrast to the
kernelization in the previous section, here it is easy to bound the number of neighbors of each
vertex in the deletion set X but complicated to shrink the remaining graph. Let G = (A,B,E)
be the given bipartite graph and let X a vertex subset such that G−X is a chain graph.
First compute a maximum matching MG−X in G−X where the edges in MG−X are “parallel
to each other”, see Figure 1 for an illustration. Using Observation 1, we obtain the following.

MFCS 2017



46:12 The Power of Linear-Time Data Reduction for Maximum Matching

I Reduction Rule 3.1. If |MG−X | ≥ s, then return a trivial yes-instance; if s > |MG−X |+k,
then return a trivial no-instance.

The next step of our kernelization algorithm is to bound the degree of each vertex in X. It
suffices to keep for each x ∈ X its k neighbors with smallest degree in A and in B, respectively.
Due the small degree, such a vertex v is either free or matched to high-degree vertex u, see
Figure 1. The correctness proof in the latter case uses the observation that there are a lot
of possibilities to continue an augmenting path x, v, u as u has high degree. The reason for
keeping k neighbors for each x ∈ X is that at most k − 1 neighbors might be “matched”
(either directly or via an augmenting path) to other vertices in X.

After having bounded the degree of the vertices, we can show that for each vertex v in
G−X that is adjacent to a vertex in X we need to keep at most k neighbors right of v and k
neighbors left of v (with respect to the linear ordering in each color class). Proving that this
is indeed correct is the most technical part and relies heavily on the facts that G−X is a
chain graph and that the edges in MG−X are “parallel”.

Since for each of the k vertices in X we keep at most 2k neighbors in G −X, and for
each of these neighbors, we keep 2k vertices, we arrive at the following.

I Theorem 15. Matching on bipartite graphs admits a linear-time computable cubic-vertex
kernel with respect to the vertex deletion distance to chain graphs.

Applying the O(n2.5)-time algorithm for Bipartite Matching [16] on the kernel yields:

I Corollary 16. Matching can be solved in O(k7.5 + n + m) time, where k is the vertex
deletion distance to chain graphs.

Using the randomized O(nω)-time bipartite matching algorithm based on matrix multi-
plication [21], one would obtain a randomized algorithm with running time O(k3ω + n+m),
where ω < 2.373 is the matrix multiplication exponent.

4 Conclusion

We focused on kernelization results for Matching. In ongoing work, we are testing the
practical relevance of our data reduction rules. There remain numerous challenges for future
research as discussed in the second part of this concluding section. First, however, let us
discuss the closely related issue of FPTP algorithms for Matching. There is a generic
augmenting path-based approach to provide FPTP algorithms for Matching: One can find
an augmenting path in linear time [2, 12, 20]. So the solving FPTP algorithm for Matching
parameterized by some vertex deletion distance k works as follows:
1. Use a constant-factor linear-time (approximation) algorithm to compute a vertex set X

such that G−X is a “trivial” graph (where Matching is linear-time solvable).
2. Compute in linear time an initial maximum matching M in G−X.
3. Start with M as an initial matching in G and increase its size at most |X| = k times to

obtain in O(k · (n+m)) time a maximum matching for G.
From this we can directly derive that Matching can be solved in O(k(n+m)) time, where k is
one of the following parameters: feedback vertex number, feedback edge number, vertex cover
number. Moreover, Bipartite Matching can be solved in O(k(n+m)) time, where k is the
vertex deletion distance to chain graphs. Using our kernelization results, the multiplicative
dependence of the running time on parameter k can now be made an additive one. For
instance, in this way the running time for Bipartite Matching parameterized by vertex
deletion distance to chain graphs “improves” from O(k(n+m)) to O(k7.5 + n+m).



G. B. Mertzios, A. Nichterlein, and R. Niedermeier 46:13

We conclude with listing some questions and tasks for future research. Can the running
time of the kernelization with respect to feedback vertex set (see Section 2) be improved to
linear time? Moreover, can the exponential upper bound on the kernel size be decreased
to a polynomial upper bound? Is there a linear-time computable kernel for Matching
parameterized by the treewidth t (assuming that t is given)? This would complement the
recent randomized O(t4n logn) time algorithm [10]. Can one extend the kernel of Section 3
from Bipartite Matching to Matching parameterized by the distance to chain graphs?

References
1 Reuven Bar-Yehuda, Dan Geiger, Joseph Naor, and Ron M. Roth. Approximation al-

gorithms for the feedback vertex set problem with applications to constraint satisfac-
tion and Bayesian inference. SIAM Journal on Computing, 27(4):942–959, 1998. doi:
10.1137/S0097539796305109.

2 Norbert Blum. A new approach to maximum matching in general graphs. In Pro-
ceedings of the 17th International Colloquium on Automata, Languages, and Program-
ming (ICALP ’90), volume 443 of LNCS, pages 586–597. Springer, 1990. doi:10.1007/
BFb0032060.

3 Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Preprocessing for treewidth:
A combinatorial analysis through kernelization. SIAM Journal on Discrete Mathematics,
27(4):2108–2142, 2013. doi:10.1137/120903518.

4 Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernelization lower bounds
by cross-composition. SIAM Journal on Discrete Mathematics, 28(1):277–305, 2014. doi:
10.1137/120880240.

5 Andreas Brandstädt, Van Bang Le, and Jeremy P. Spinrad. Graph Classes: a Survey,
volume 3 of SIAM Monographs on Discrete Mathematics and Applications. SIAM, 1999.

6 Leizhen Cai. Parameterized complexity of Vertex Colouring. Discrete Applied Mathematics,
127(1):415–429, 2003. doi:10.1016/S0166-218X(02)00242-1.

7 Maw-Shang Chang. Algorithms for maximum matching and minimum fill-in on chordal
bipartite graphs. In Proceedings of the 7th International Symposium on Algorithms and
Computation (ISAAC ’96), volume 1178 of LNCS, pages 146–155. Springer, 1996. doi:
10.1007/BFb0009490.

8 Elias Dahlhaus and Marek Karpinski. Matching and multidimensional matching in chordal
and strongly chordal graphs. Discrete Applied Mathematics, 84(1–3):79–91, 1998. doi:
10.1016/S0166-218X(98)00006-7.

9 Ran Duan and Seth Pettie. Linear-time approximation for maximum weight matching.
Journal of the ACM, 61(1):1:1–1:23, 2014. doi:10.1145/2529989.

10 Fedor V. Fomin, Daniel Lokshtanov, Michal Pilipczuk, Saket Saurabh, and Marcin
Wrochna. Fully polynomial-time parameterized computations for graphs and matrices of
low treewidth. In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA ’17), pages 1419–1432. SIAM, 2017. doi:10.1137/1.9781611974782.92.

11 Harold N. Gabow and Robert Endre Tarjan. A linear-time algorithm for a special case
of disjoint set union. Journal of Computer and System Sciences, 30(2):209–221, 1985.
doi:10.1016/0022-0000(85)90014-5.

12 Harold N. Gabow and Robert Endre Tarjan. Faster scaling algorithms for general graph-
matching problems. Journal of the ACM, 38(4):815–853, 1991. doi:10.1145/115234.
115366.

13 Archontia C. Giannopoulou, George B. Mertzios, and Rolf Niedermeier. Polynomial fixed-
parameter algorithms: A case study for longest path on interval graphs. Theoretical Com-
puter Science, 2017. Available online. doi:10.1016/j.tcs.2017.05.017.

MFCS 2017

http://dx.doi.org/10.1137/S0097539796305109
http://dx.doi.org/10.1137/S0097539796305109
http://dx.doi.org/10.1007/BFb0032060
http://dx.doi.org/10.1007/BFb0032060
http://dx.doi.org/10.1137/120903518
http://dx.doi.org/10.1137/120880240
http://dx.doi.org/10.1137/120880240
http://dx.doi.org/10.1016/S0166-218X(02)00242-1
http://dx.doi.org/10.1007/BFb0009490
http://dx.doi.org/10.1007/BFb0009490
http://dx.doi.org/10.1016/S0166-218X(98)00006-7
http://dx.doi.org/10.1016/S0166-218X(98)00006-7
http://dx.doi.org/10.1145/2529989
http://dx.doi.org/10.1137/1.9781611974782.92
http://dx.doi.org/10.1016/0022-0000(85)90014-5
http://dx.doi.org/10.1145/115234.115366
http://dx.doi.org/10.1145/115234.115366
http://dx.doi.org/10.1016/j.tcs.2017.05.017


46:14 The Power of Linear-Time Data Reduction for Maximum Matching

14 Jiong Guo, Falk Hüffner, and Rolf Niedermeier. A structural view on parameterizing
problems: Distance from triviality. In Proceedings of the 1st International Workshop on
Parameterized and Exact Computation (IWPEC ’04), volume 3162 of LNCS, pages 162–173.
Springer, 2004. doi:10.1007/978-3-540-28639-4_15.

15 Manoj Gupta and Richard Peng. Fully dynamic (1+ e)-approximate matchings. In Proceed-
ings of the 54th Annual IEEE Symposium on Foundations of Computer Science (FOCS ’13),
pages 548–557. IEEE, 2013. doi:10.1109/FOCS.2013.65.

16 John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings in
bipartite graphs. SIAM Journal on Computing, 2(4):225–231, 1973. doi:10.1137/0202019.

17 Richard M. Karp and Michael Sipser. Maximum matchings in sparse random graphs. In
Proceedings of the 22nd Annual IEEE Symposium on Foundations of Computer Science
(FOCS ’81), pages 364–375. IEEE, 1981. doi:10.1109/SFCS.1981.21.

18 Christian Komusiewicz and Rolf Niedermeier. New races in parameterized algorith-
mics. In Proceedings of the 37th International Symposium on Mathematical Foundations
of Computer Science (MFCS ’12), volume 7464 of LNCS, pages 19–30. Springer, 2012.
doi:10.1007/978-3-642-32589-2_2.

19 George B. Mertzios, André Nichterlein, and Rolf Niedermeier. Linear-time algorithm for
maximum-cardinality matching on cocomparability graphs. CoRR, abs/1703.05598, 2017.

20 Silvio Micali and Vijay V. Vazirani. An O(
√
|V ||E|) algorithm for finding maximum match-

ing in general graphs. In Proceedings of the 21st Annual IEEE Symposium on Foundations
of Computer Science (FOCS ’80), pages 17–27. IEEE, 1980. doi:10.1109/SFCS.1980.12.

21 Marcin Mucha and Piotr Sankowski. Maximum matchings via Gaussian elimination. In
Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science
(FOCS ’04), pages 248–255. IEEE, 2004. doi:10.1109/FOCS.2004.40.

22 Steven S. Skiena. The Algorithm Design Manual. Springer, 2010.
23 G. Steiner and J. S. Yeomans. A linear time algorithm for maximum matchings in convex

bipartite graphs. Comput. Math. Appl., 31:91–96, 1996. doi:10.1016/0898-1221(96)
00079-X.

24 Ryan Williams, Carla P. Gomes, and Bart Selman. Backdoors to typical case complex-
ity. In Proceedings of the 18th International Joint Conference on Artificial Intelligence
(IJCAI ’03), pages 1173–1178. Morgan Kaufmann, 2003.

25 Raphael Yuster. Maximum matching in regular and almost regular graphs. Algorithmica,
66(1):87–92, 2013. doi:10.1007/s00453-012-9625-7.

http://dx.doi.org/10.1007/978-3-540-28639-4_15
http://dx.doi.org/10.1109/FOCS.2013.65
http://dx.doi.org/10.1137/0202019
http://dx.doi.org/10.1109/SFCS.1981.21
http://dx.doi.org/10.1007/978-3-642-32589-2_2
http://dx.doi.org/10.1109/SFCS.1980.12
http://dx.doi.org/10.1109/FOCS.2004.40
http://dx.doi.org/10.1016/0898-1221(96)00079-X
http://dx.doi.org/10.1016/0898-1221(96)00079-X
http://dx.doi.org/10.1007/s00453-012-9625-7


Two-Planar Graphs Are Quasiplanar
Michael Hoffmann1 and Csaba D. Tóth∗2

1 Department of Computer Science, ETH Zürich, CH-8092 Zürich, Switzerland
hoffmann@inf.ethz.ch

2 Department of Mathematics, Cal. State Northridge, Los Angeles, CA, and
Department of Computer Science, Tufts University, Medford, MA, USA
csaba.toth@csun.edu

Abstract
It is shown that every 2-planar graph is quasiplanar, that is, if a simple graph admits a drawing
in the plane such that every edge is crossed at most twice, then it also admits a drawing in which
no three edges pairwise cross. We further show that quasiplanarity is witnessed by a simple
topological drawing, that is, any two edges cross at most once and adjacent edges do not cross.

1998 ACM Subject Classification F.2.2 Geometrical problems, G.2.2 Graph algorithms

Keywords and phrases graph drawing, near-planar graph, simple topological plane graph

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.47

1 Introduction

For k ∈ N, a graph G = (V,E) is called k-planar if it admits a drawing in the plane such
that every edge is crossed at most k times (such a drawing is called a k-plane drawing of
G). Similarly, G is called k-quasiplanar if it admits a drawing in which no k edges pairwise
cross each other (a k-quasiplane drawing). A planar graph is 0-planar and 2-quasiplanar by
definition. A 3-quasiplanar graph is also called quasiplanar, for short. The relation between
k-planarity and `-quasiplanarity has been studied only recently. Angelini et al. [6] proved
that for k ≥ 3, every k-planar graph is (k + 1)-quasiplanar. However, the case k = 2 was left
open. In this note, we show that the result extends to k = 2, and prove the following.

I Theorem 1. Every 2-planar graph is quasiplanar.

The inclusion is proper because there exists a family of (simple) quasiplanar graphs on
n vertices with 6.5n−O(1) edges [3], whereas every 2-planar graph on n ≥ 3 vertices has
at most 5n − 10 edges [21]. Our proof is constructive, and allows transforming a 2-plane
drawing of an n-vertex graph into a quasiplane drawing in time polynomial in n.

Simple topological drawings. The concept of k-planarity and k-quasiplanarity assumes
that the drawings are topological graphs where the edges are represented by Jordan arcs, edges
may cross each other multiple times, and adjacent edges may cross. In a simple topological
graph, any two edges cross at most once, and no two adjacent edges cross. Excluding the
crossings between adjacent edges is a nontrivial condition [14]. For example, Brandenburg et
al. [8] showed that every graph that admits a 1-plane simple topological drawing also admits
a 1-plane straight-line drawing in which crossing edges meet at a right angle.

∗ Research by Tóth was supported in part by the NSF awards CFF-1422311 and CFF-1423615.

© Michael Hoffmann and Csaba D. Tóth;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 47; pp. 47:1–47:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.47
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


47:2 Two-Planar Graphs Are Quasiplanar

Angelini et al. [6] proved that for k ≥ 3, every k-planar graph admits a (k+ 1)-quasiplane
simple topological drawing. A careful analysis of our redrawing algorithm, which transforms
a 2-plane drawing of a graph into a quasiplane drawing, reveals that it produces a quasiplane
simple topological drawing. Thereby we obtain the following strengthening of Theorem 1.

I Theorem 2. Every 2-planar graph admits a quasiplane simple topological drawing.

Related work. Graph planarity is a fundamental concept and a plethora of results has
been obtained for planar graphs. The quest for generalizations has motivated the graph
minor theory [17]. In the same vein, various notions of near-planarity have been studied [19].
The proximity of a graph to planarity may be measured by global parameters, such as the
crossing number [22] or graph thickness and their variations [9, 10], or local parameters such
as the minimum k ∈ N0 for which the graph is k-planar or k-quasiplanar. The concept of
k-planarity plays a crucial role in proving the current best constants for the classic Crossing
Lemma [2, 5, 18], and k-quasiplanarity is closely related to Ramsey-type properties of the
intersection graph of Jordan arcs in the plane [4]. However, relations between the latter two
graph classes have been studied only recently [6].

k-planarity. Planar and 1-planar graphs are fairly well-understood [16]. The Crossing
Lemma implies that a k-planar graph on n vertices has at most 4.1

√
k · n edges, and this

bound is the best possible apart from constant factors [21]. Tight upper bounds of 4n− 8,
5n − 10, and 5.5n − 11 edges are known for k = 1, 2, and 3, respectively [18, 21], and an
upper bound of 6n − 12 edges is known for k = 4 [2]. For k = 1, 2, 3, so-called optimal
k-planar graphs (which have the maximum number of edges on n vertices) have recently
been completely characterized [7], however they have special properties that in general are
not shared by edge-maximal k-planar graphs.

k-quasiplanarity. Pach, Shahrokhi, and Szegedy [20] conjectured that for every k ∈ N, an
n-vertex k-quasiplanar graph has O(n) edges, where the constant of proportionality depends
on k. The conjecture has been verified for k ≤ 4 [1]. The current best upper bound that holds
for all k ∈ N is n(logn)O(log k) due to Fox and Pach [11]. Improvements are known in several
important special cases. Suk and Walczak [23] prove that every n-vertex k-quasiplanar
graph has O(2α(n)c

n logn) edges, where α(n) denotes the inverse Ackermann function and
c depends only on k, if any two edges intersect in O(1) points. They also show that every
n-vertex k-quasiplanar graph has at most O(n logn) edges if every two edges intersect at
most once. These bounds improve earlier work by Fox et al. [12, 13].

Organization. We prove Theorems 1 and 2 in Section 2: We describe a redrawing algorithm
in Section 2.1, parameterized by two functions, f and g, that are defined on pairwise crossing
triples of edges. In Section 2.3 we analyze local configurations that may produce a triple
of pairwise crossing edges after redrawing. In Sections 2.4 and 2.5, we choose suitable
functions f and g, and show that our rerouting algorithm with these parameters produces
a quasiplane drawing for a 2-planar graph. In Section 2.6, we extend the analysis of our
redrawing algorithm and show that it produces a simple topological quasiplane drawing. We
conclude in Section 3 with a review of open problems. Due to space limitations, many proofs
are omitted; they can be found in the full paper [15].



M. Hoffmann and Cs. D. Tóth 47:3

(a) tangled

h

(b) untangled

R(h)

(c) region

Figure 1 Tangled and untangled 3-crossings and their associated regions.

2 Proof of Theorem 1

Let G = (V,E) be a 2-planar graph. Assume without loss of generality that G is connected.
We need to show that G admits a quasiplane drawing. Note that this quasiplane drawing
to be constructed need not—and in general will not—be 2-plane. We may assume, without
loss of generality, that G is edge-maximal, in the sense that no new edge can be added (to
the abstract graph) without violating 2-planarity. Since G is 2-planar, it admits a 2-plane
drawing. We show that it also admits a simple topological 2-plane drawing.

I Lemma 3. Every 2-planar graph admits a 2-plane simple topological drawing. Specifically,
a 2-plane drawing of a graph G with the minimum number of crossings (among all 2-plane
drawings of G) is a simple topological graph.

Note that a 2-plane drawing may contain a 3-crossing, that is, a triple of pairwise
crossing edges. A 3-crossing in a drawing is untangled if the six endpoints of the edges lie
on the same face of the arrangement formed by the three edges; otherwise the 3-crossing is
tangled, see Figure 1a and 1b for an example. Angelini et al. showed [6, Lemma 2] that
every 2-planar graph admits a 2-plane drawing in which every 3-crossing is untangled. Their
proof starts from a 2-plane drawing and rearranges tangled 3-crossings without introducing
any new edge crossings. Therefore, in combination with our Lemma 3 we may start from
a 2-plane drawing D of G with the following properties: (i) every 3-crossing is untangled,
(ii) no two edges cross more than once, and (iii) no two adjacent edges cross.

If there is no 3-crossing in D, then G is quasiplanar by definition. Otherwise we construct
a quasiplane drawing D′ of G as described below.

Every 3-crossing in D spans a (topological) hexagon in the following sense. Let H be
the set of unordered triples of edges in E that form a 3-crossing in D. In every triple h ∈ H,
each edge crosses both other edges of the triple, and so it cannot cross any edge in E \ h.
Consequently, the triples in H are pairwise disjoint [6, Observation 1]. For each triple h ∈ H,
let V(h) denote the set that consists of the six endpoints of the three edges in h. Since h is
untangled in D, all six vertices of V(h) lie on a face fh of the arrangement induced by the
edges of h as drawn in D. Any two vertices of V(h) that are consecutive along the boundary
of fh can be connected by a Jordan arc that closely follows the boundary of fh and does not
cross any edges in D; see Figure 1c. Together these arcs form a closed Jordan curve, which
partitions the plane into two closed regions: let R(h) denote the region that contains the
edges of h, and let ∂R(h) denote the boundary of R(h). We think of ∂R(h) as both a closed
Jordan curve and as a graph that is a 6-cycle. As the triples in H are pairwise disjoint, we
may assume that the regions R(h), h ∈ H, have pairwise disjoint interiors.

I Observation 4. For every h ∈ H, every pair of consecutive vertices of the 6-cycle ∂R(h)
are connected by an edge in G, and this edge is crossing-free in D.

MFCS 2017



47:4 Two-Planar Graphs Are Quasiplanar

Proof. Let u, v ∈ V be two consecutive vertices of a 6-cycle ∂R(h) for some h ∈ H.
We show that uv is an edge in G. Indeed, if uv is not an edge of G, then we can augment

G with the edge e = uv, and insert it into the drawing D as a crossing-free Jordan arc along
∂R(h) to obtain a 2-plane drawing D′ of G∪ {e}. This contradicts our assumption that G is
edge-maximal and no edge can be added to G without violating 2-planarity.

We then show that e is crossing free in D. Indeed, if e crosses any other edge in D, we
can redraw e as a Jordan arc along ∂R(h), which is crossing-free. The resulting drawing D′
of G is 2-plane and has fewer crossings than D. This contradicts our assumption that D has
a minimum number of crossings among all 2-plane drawings of G. J

By Observation 4 any two consecutive vertices along ∂R(h) of a hexagon h ∈ H are
connected by an edge e in G. Note that this does not necessarily imply that e is drawn along
∂R(h) in D. It is possible that the cycle formed by the edge e in D and the copy of e drawn
along ∂R(h) (which is not part of D) contains other parts of the graph.

I Observation 5. (a) Two distinct hexagons in H share at most five vertices; and (b) three
distinct hexagons in H share at most two vertices.

Angelini et al. proved [6, Lemma 3 and 4] that there exists an injective map f : H → V

that maps every hexagon h ∈ H to a vertex v ∈ V(h). For each hexagon h ∈ H, exactly one
edge in h is incident to the vertex f(h). Let g(h) be one of the two edges in h not incident to
f(h). Then for any such choice g : H → E is an injective function (because the triples in H
are pairwise disjoint). We complete the construction using a rerouting algorithm that for each
hexagon h ∈ H, reroutes the edge g(h) “around” the vertex f(h). The algorithm—described
in detail below—is very similar to the one of Angelini et al., but with a few subtle changes
to make it work for 2-planar graphs, rather than k-planar graphs, for k ≥ 3.

2.1 Rerouting algorithm
We are given a 2-planar graph G = (V,E), and a 2-plane drawing D of G with properties
(i)–(iii), as described above. Let the functions f : H → V and g : H → E be given. (We will
determine suitable choices for f and g later.) The algorithm consists of two phases.

Phase 1. For each hexagon h ∈ H, we perform the following changes in D. Let h = {a, b, c}
such that the edge a is incident to f(h) and b = g(h) = uv, where u is adjacent to f(h) along
∂R(h). Keep the original drawing of the edges a and c. Then arrange (possibly redraw) the
edge b inside R(h) so that the oriented Jordan arc uv crosses a before c. Finally, redraw the
edge b = g(h) = uv to go around vertex f(h) as follows. See Figure 2.
1. Erase the portion of b in a small neighborhood of the crossing a ∩ b to split b into two

Jordan arcs: an arc γv from v to a point x close to a ∩ b, and another arc γu from x to u.
2. Keep γv as part of the new arc representing b, but discard γu and replace it by a new

Jordan arc from x to u. This arc first closely follows the edge a towards f(h), then
goes around the endpoint f(h) of a until it reaches the edge f(h)u (which exists by
Observation 4 and is crossing-free in D). The arc then closely follows the edge f(h)u
without crossing it to reach u.

As a result, edges a and b no longer cross and the 3-crossing induced by h is eliminated.
However, the rerouting may create new crossings between g(h) and edges incident to f(h)
(but not a and uf(h)). These new crossings are of no consequence, unless they create a
3-crossing. Hence we have to analyze under which circumstances 3-crossings can arise as a



M. Hoffmann and Cs. D. Tóth 47:5

f(h)

b=g(h)

u

v

a

c

(a)

f(h)

b=g(h)

u

v

a

c

(b)

f(h)

b=g(h)

u
v c a

(c)

f(h)

b=g(h)

c av
u

(d)

Figure 2 Rerouting g(h) around f(h); g(h) can be either of the two edges not incident to f(h).

f(h)

b=g(h)

u

v

a

c
h

(a)

f(h)

b=g(h)

c a

v
u

h

(b)

Figure 3 The hexagon h is a home for the two edges that are shown by a dashed red arc. These
edges (if present in G) can be safely drawn inside R(h).

result of the reroutings. But first we eliminate some potentially troublesome edge crossings
in a second phase of the algorithm.

For an edge e ∈ E a hexagon h ∈ H is a home for e if e is both incident to f(h) and
adjacent to g(h). If h is a home for e, then e can be drawn inside R(h) so that it has at most
one crossing, with the edge c ∈ h (see Figure 3).

Phase 2. As long as there exists an edge e ∈ E so that (1) e has a home h ∈ H, (2) there is
no home h′ ∈ H\ {h} of e so that e is drawn inside R(h′), and (3) e has at least one crossing
in the current drawing, we reroute e to be drawn inside R(h).

Note that each h ∈ H is a home for at most two edges and conversely an edge can have at
most two homes (one for each endpoint because f is injective). Also note that an edge may
be rerouted in both Phase 1 and Phase 2. This completes the description of the rerouting
algorithm. Let D(f, g) denote the drawing that results from applying both phases of the
rerouting algorithm to the original drawing D of G.

2.2 Properties of D(f, g)

The edges of G fall into three groups, depending on how they are represented in D(f, g) with
respect to D: (1) nonrerouted edges have not been rerouted in either phase and remain
the same as in D; (2) edges that have been rerouted in Phase 2 we call safe (regardless
of whether or not they have also been rerouted in Phase 1); and (3) edges that have been
rerouted in Phase 1 but not in Phase 2 we call critical. An edge is rerouted if it is either
safe or critical. Let us start by classifying the new crossings that are introduced by the
rerouting algorithm. Without loss of generality we may assume that in every hexagon h ∈ H

MFCS 2017



47:6 Two-Planar Graphs Are Quasiplanar

f(h1)

f(h2)

R(h1)

R(h2)

e1

e2

e3

(a) twin

R(h3)
R(h2)

f(h2) f(h1)

f(h3)

R(h1)

e1

e3e2

(b) fan

Figure 4 The redrawing may produce 3-crossings in form of twins or fans.

of D the edge g(h) intersects the other two edges of h in the order described in the first
paragraph of Phase 1 above. (If not, then redraw the edge g(h) within R(h) accordingly.)

I Lemma 6. Consider a crossing c of two edges e1 and e2 in D(f, g) that is not a crossing
in D. After possibly exchanging the roles of e1 and e2, the crossing c is of exactly one of
the following two types: (a) e1 is safe and drawn in R(h) for a home h ∈ H with e2 ∈ h
nonrerouted; or (b) e1 is critical and rerouted around an endpoint of e2.

I Lemma 7. Consider a safe edge e in D(f, g), and let h ∈ H denote the home of e so that
e = f(h)z, for z ∈ V(h), is drawn inside R(h). Then
(i) e is not part of a 3-crossing;
(ii) e does not cross any edge more than once; and
(iii) e crosses an adjacent edge e′ only if e′ is critical, incident to f(h), and rerouted around

z = f(h′), for some hexagon h′ ∈ H \ {h}, with g(h′) = e′.

I Lemma 8. No two adjacent critical edges cross in D(f, g).

We are ready to completely characterize the 3-crossings in D(f, g). The characterization
allows us to then eliminate these 3-crossings by selecting the functions f and g suitably.

I Definition 9. Let D(f, g) be a drawing of a graph G = (V,E) with functions f : H → V

and g : H → E as defined above. Three edges e1, e2, e3 ∈ E form a . . .
twin configuration in D(f, g) if they are in two distinct hexagons h1, h2 ∈ H, where
e1 = g(h1), e2 = g(h2) and e3 ∈ h2 \ {e2}, such that edge e1 is incident to f(h2), edge e3
is incident to f(h1) but not to f(h2), and e3 is drawn inside R(h2). See Figure 4a.
fan configuration in D(f, g) if they are in three pairwise distinct hexagons h1, h2, h3 ∈ H,
where e1 = g(h1), e2 = g(h2), and e3 = g(h3), such that edge e1 is incident to f(h2),
edge e2 is incident to f(h3), and edge e3 is incident to f(h1). See Figure 4b.

I Lemma 10. Every 3-crossing in D(f, g) forms a twin or a fan configuration.

Theorem 1 is an immediate corollary of the following lemma, which we prove in Section 2.5.

I Lemma 11. There exist functions f : H → V and g : H → E for which D(f, g) is a
quasiplane drawing of G.

2.3 Conflict digraph
We define a plane digraph K = (V,A) that represents the interactions between the hexagons
in H. The conflict graph depends on G, on the initial drawing D, and on the function



M. Hoffmann and Cs. D. Tóth 47:7

f(h1)

f(h2)

R(h1)

R(h2)

(a) twin

R(h1)R(h2)

R(h3)

f(h2) f(h3)

f(h1)

(b) fan

Figure 5 Twin and fan configurations induce cycles in the conflict graph.

f : H → V , but it does not depend on the function g. For every hexagon h ∈ H, we create
five directed edges that are all directed towards f(h) and drawn inside R(h). These edges
start from the five vertices on ∂R(h) other than f(h); see Figure 5. Note that two vertices in
V may be connected by two edges with opposite orientations lying in two different hexagons
(for instance, in a twin configuration as shown in Figure 5a). However, K contains neither
loops nor parallel edges with the same orientation because f is injective and so every vertex
can have incoming edges from at most one hexagon.

I Observation 12. Let K be the conflict graph for G = (V,E) and the drawing D(f, g).
(i) K is a directed plane graph.
(ii) At every vertex v ∈ V , the incoming edges in K are consecutive in the rotation order of

incident edges around v.
(iii) If e1 = v1v2, e2 = v2v3, and e3 = v3v1 form a fan configuration in D(f, g), then the

conflict digraph contains a 3-cycle (v1, v2, v3).
(iv) If e1 = g(h1), e2 = g(h2), and e3 ∈ h2 form a twin configuration in D(f, g), then the

conflict digraph contains a 2-cycle (f(h1), f(h2)).

Proof. (i) The edges of K lie in the regions R(h), h ∈ H. Since these regions are interior-
disjoint, edges from different regions do not cross. All edges in the same region R(h), h ∈ H,
are incident to f(h); so they do not cross, either. (ii) For each vertex v ∈ V , there is at
most one h ∈ H such that v = f(h). All incoming edges of v lie in the region R(h), and
all edges lying in R(h) are directed towards v = f(h) by construction. (iii–iv) Both claims
follow directly from the definition of fan and twin configurations and the definition of K. J

Relations between cycles in K. We observed that K is a plane digraph, where every twin
configuration induces a 2-cycle and every fan configuration induces a 3-cycle. So in order
to control the appearance of twin and fan configurations in the drawing D(f, g), we need
to understand the structure of 2- and 3-cycles in the conflict digraph K. In the following
paragraphs we introduce some terminology and prove some structural statements about
cycles in K.

For a cycle c in K, let int(c) denote the interior of c, let ext(c) denote the exterior of c,
let R(c) denote the closed bounded region bounded by c, and let V(c) denote the vertex
set of c. We use the notation i⊕ 1 := 1 + (i mod k) and i	 1 := 1 + ((k + i− 2) mod k) to
denote successors and predecessors, respectively, in a circular sequence of length k that is
indexed 1, . . . , k. Let c1 and c2 be two cycles in the conflict graph K. We say that c1 and c2
are interior-disjoint if int(c1) ∩ int(c2) = ∅. We say that c1 contains c2 if R(c2) ⊆ R(c1).
See Figure 6a for an example. In both cases, c1 and c2 may share vertices and edges, but
they may also be vertex-disjoint.

MFCS 2017



47:8 Two-Planar Graphs Are Quasiplanar

R(h2)

R(h1)

R(h3)

(a) A smooth 3-cycle contains a smooth 2-cycle.

R(h2)

R(h1)

R(h3)

p

(b) A nonsmooth 3-cycle.

Figure 6 Examples: smooth cycles and containment.

I Lemma 13. If a vertex v ∈ V is incident to two interior-disjoint cycles in K, then these
cycles have opposite orientations (clockwise vs. counterclockwise). Consequently, every vertex
v ∈ V is incident to at most two interior-disjoint cycles in K.

Ghosts. A cycle in the conflict digraph K is short if it has length two or three. We say
that a 3-cycle in K is a ghost if two of its vertices induce a 2-cycle in K. Let C be the set
of all short cycles in K that are not ghosts. Intuitively, we do not worry about a ghost cycle
c so much. It will turn out later that by taking care of the 2-cycle c′ that makes c a ghost,
we also take care of c at the same time.

I Lemma 14. A short cycle in K is uniquely determined by its vertex set.

I Lemma 15. Let c1, c2 ∈ C. If V(c1) ∩ int(c2) 6= ∅, then c2 contains c1.

Proof. Suppose to the contrary that there exist short cycles c1, c2 ∈ C such that v1 ∈
V(c1) ∩ int(c2) but c2 does not contain c1. Then some point along c1 lies in ext(c2). Since K
is a plane graph, an entire edge of c1 must lie in ext(c2). Denote this edge by (v2, v3). Recall
that c1 is short (that is, it has at most three vertices), consequently, c1 = (v1, v2, v3). Since
c1 has points in both int(c2) and ext(c2), the two cycles intersect in at least two points. In
a plane graph, the intersection of two cycles consists of vertices and edges. Consequently
V(c1) ∩V(c2) = {v2, v3}. Recall that c2 is also short, and so it has a directed edge between
any two of its vertices. However, (v2, v3) lies in ext(c2), so the reverse edge (v3, v2) is present
in c2. That is, {v2, v3} induces a 2-cycle in K. Hence both c1 and c2 are ghosts, contrary to
our assumption. J

Smooth cycles. In order to avoid twin and fan configurations in D(f, g), we would like to
choose an injective function f : H → V , with f(h) ∈ V(h), that avoids short cycles in K,
except for a special type of cycles (called smooth) to be defined next.

I Definition 16. Let c = (v1, . . . , vk) be a simple short cycle in the conflict graph K. Recall
that every edge in K lies in a region R(h), h ∈ H, and is directed to f(h). So the cycle c
corresponds to a cycle of hexagons (h1, . . . , hk), such that the vertex vi = f(hi) lies on the
boundary of hexagons hi and hi⊕1, for i = 1, . . . , k. We say that the hexagons h1, . . . , hk are
associated with c. The cycle c is smooth if none of the associated hexagons has a vertex in
int(c). (For example, the cycles in Figure 6a are smooth, but the 3-cycle in Figure 6b is not.)

Note that a smooth cycle in K may contain many vertices of various hexagons in its
interior; the restrictions apply only to those (two or three) hexagons that are associated with
the cycle. For instance, there could be several hexagons in the white regions between the
hexagons in Figure 6. Let Cs denote the set of all smooth cycles in C, that is, the set of all
short smooth nonghost cycles in K. In Section 2.4, we show how to choose f such that all
cycles in C are smooth, that is, C = Cs.



M. Hoffmann and Cs. D. Tóth 47:9

Properties of smooth cycles. The following three lemmata formulate some important
properties of smooth cycles that hold for any injective function f : H → V , where f(h) ∈ V(h)
for all h ∈ H.

I Lemma 17. Let c ∈ Cs and let u ∈ int(c) be a vertex of G. Then there is no edge (u, v) in
K for any v ∈ V(c).

Proof. Suppose for the sake of a contradiction that (u, v) is an edge of K with v ∈ V(c).
Let h be the hexagon with f(h) = v. All edges towards v are drawn inside h so that, in
particular, u ∈ V(h). As h is associated with c, this contradicts the assumption that c is
smooth. J

I Lemma 18. Let c1, c2 ∈ Cs so that c1 6= c2 and c2 contains c1. Then V(c1) ∩V(c2) = ∅.

Proof. Suppose to the contrary that there exists a vertex u ∈ V(c1) ∩V(c2). We claim that
V(c1)∩ int(c2) = ∅. To see this, consider a vertex v ∈ V(c1)∩ int(c2). Then following c1 from
v to u we find an edge (x, y) of K so that x ∈ int(c2) and y ∈ V(c2). However, such an edge
does not exist by Lemma 17. Hence there is no such vertex v and V(c1) ∩ int(c2) = ∅. Given
that c2 contains c1, it follows that V(c1) ⊆ V(c2).

If c1 is a 3-cycle, then so is c2 and Lemma 14 contradicts our assumption c1 6= c2. Hence
c1 is a 2-cycle and c2 is a 3-cycle. But then c2 is a ghost, in contradiction to c2 ∈ Cs. J

I Lemma 19. Any two cycles in Cs are interior-disjoint or vertex disjoint.

Proof. Let c1, c2 ∈ Cs with c1 6= c2. Suppose, to the contrary, that int(c1) ∩ int(c2) 6= ∅ and
V (c1) ∩ V (c2) 6= ∅. Without loss of generality, an edge (u1, u2) of c2 lies in the interior of c1.

We may assume that u1 and u2 are common vertices of c1 and c2. Indeed, if u1 and u2
were not common vertices of the cycles, then a vertex of c2 would lie in the interior of c1.
Then c1 contains c2 by Lemma 15, and V(c1) ∩V(c2) = ∅ by Lemma 18.

We may further assume that both c1 and c2 are 3-cycles. Indeed, if the vertex set of one
of them contains that of the other, then one of them is a 3-cycle and the other is a 2-cycle.
Since both c1 and c2 are present in C, one of them would be a ghost cycle in C, contradicting
the definition of C.

Since (u1, u2) is a directed edge of c2 that lies in the interior of c1, and c1 is a 3-cycle
that has an edge between any two of its vertices, the edge (u2, u1) is present in c1. This
implies that c3 = (u1, u2) is a 2-cycle in K. Therefore c3 ∈ C, and both c1 and c2 are ghost
cycles in C, contradicting the definition of C, C ⊇ Cs. This confirms that c1, c2 ∈ Cs, c1 6= c2,
are interior-disjoint or vertex disjoint, as claimed. J

2.4 Choosing the special vertices f(h)
As noted above, Angelini et al. proved [6, Lemmata 3 and 4] that there exists an injective
map f : H → V that maps every hexagon h ∈ H to a vertex v ∈ V(h). We review their
argument (using Hall’s matching theorem), and then strengthen the result to establish some
additional properties of the function f : H → V .

Hall’s condition. Let A ⊆ H be a subset of hexagons, and let V(A) ⊆ V be the set of
vertices incident to the hexagons in A. Following Angelini et al. [6, Lemma 4] we obtain
Hall’s condition via double counting.

I Lemma 20. For every subset A ⊆ H, we have |V(A)| ≥ 2|A|+ 2.

MFCS 2017



47:10 Two-Planar Graphs Are Quasiplanar

I Corollary 21. There exists an injective map f : H → V that maps every hexagon h ∈ H
to a vertex v ∈ V(h).

I Corollary 22. For every nonempty subset A ⊆ H, we have |V(A)| ≥ |A|+ 5.

Proof. If |A| = 1, then |A|+ 5 = 6 and a single hexagon has 6 distinct vertices. If |A| = 2,
then |A|+5 = 7; and two distinct hexagons have at least 7 distinct vertices by Observation 5a.
Otherwise |A| ≥ 3, and Lemma 20 yields |V(A)| ≥ 2|A|+ 2 ≥ |A|+ 5. J

I Lemma 23. There exists an injective function f : H → V such that f(h) ∈ V(h), for
every h ∈ H, and every cycle in C is smooth.

2.5 Choosing the special edges g(h)
Let f : H → V be a function as described in Lemma 23. That is, in the following we assume
C = Cs (all short nonghost cycles in K are smooth). We use Hall’s theorem to show that
there is a matching of the cycles in C to the vertices in V such that each cycle is matched to
an incident vertex. For a subset B ⊆ C, let V(B) denote the set of all vertices incident to
some cycle in B.

I Lemma 24. For every set B0 ⊆ C of pairwise interior-disjoint cycles, |B0| ≤ |V(B0)|.

Proof. We use double counting. Let I be the set of all pairs (v, c) ∈ V × B0 such that v is
incident to c. Every cycle is incident to ≥ 2 vertices, hence |I| ≥ 2|B0|. By Lemma 13, every
vertex is incident to at most two interior-disjoint cycles. Consequently, |I| ≤ 2|V(B0)|. The
combination of the upper and lower bounds for |I| yields |B0| ≤ |V(B0)|. J

I Lemma 25. For every set B ⊆ C of cycles, we have |B| ≤ |V(B)|.

I Lemma 26. There exists an injective function s : C → V that maps every cycle in C to
one of its vertices.

We are ready to define the function g : H → E, that maps every hexagon h ∈ H to one
of its edges.

I Lemma 27. There is a function g : H → E such that
for every h ∈ H, g(h) ∈ h and g(h) is not incident to f(h);
for every 2-cycle (f(h1), f(h2)) in K, the edges g(h1) and g(h2) do not cross in D(f, g);
for every 3-cycle (f(h1), f(h2), f(h3)) in K, at least two of the edges g(h1), g(h2), and
g(h3) do not cross in D(f, g).

Proof. By Lemma 26, there is an injective function s : C → V that maps every cycle c ∈ C
to one of its vertices. For each cycle c ∈ C, vertex s(c) is the endpoint of some directed
edge (q(c), s(c)) in the conflict graph. Consequently, there is a hexagon h ∈ H such that
s(c) = f(h) and q(c) ∈ V(h). We say that h is assigned to the cycle c. We distinguish two
types of hexagons, depending on whether or not they are assigned to a 2-cycle of C.

Hexagons that are not assigned to 2-cycles. For every hexagon h that is not assigned to
any cycle, choose g(h) to be an arbitrary edge in h that is not incident to the vertex f(h).
For every hexagon h that is assigned to a 3-cycle c ∈ C, choose g(h) to be the (unique) edge
in h that is incident to neither q(c) nor s(c). If c = (f(h1), f(h2), f(h3)) and without loss
of generality s(c) = f(h2), then g(h2) is not incident to f(h1) = q(c), consequently g(h1)
is disjoint from g(h2). (Note that g(h1) is not incident to f(h2) = s(c) because this would
induce a 2-cycle in K, making c a ghost.)



M. Hoffmann and Cs. D. Tóth 47:11

f(h1)

f(h2)

R(h2)
g(h1)

R(h1)
g(h2)

(a)

f(h1)

f(h2)

R(h2)
g(h1)

R(h1)

g(h2)

(b)

Figure 7 In Case 1 of Lemma 27, the edge g(h2) is incident to f(h1). We set g(h1) so that it is
incident to f(h2). Regardless of how f(h1)f(h2) is drawn, the edge separates g(h1) and g(h2) and
ensures that they are disjoint.

Hexagons assigned to 2-cycles. Consider a 2-cycle c ∈ C, and let h1 and h2 denote the
associated hexagons so that without loss of generality s(c) = f(h1). Suppose without loss of
generality that c is oriented clockwise. We distinguish three cases.

Case 1: g(h2) has already been selected and g(h2) is incident to f(h1). Then let g(h1) be
the unique edge in h1 incident to f(h2) (Figure 7). We claim that g(h1) and g(h2) do not cross
in D(f, g). As both edges are critical, by Lemma 6 they can only cross in the neighborhood
of f(h1) or f(h2). Let ai be the edge of hi incident to f(hi), for i ∈ {1, 2}. The edge
g(hi), for i ∈ {1, 2}, follows ai towards the neighborhood of f(hi) and then crosses the edges
incident to f(hi) following ai in clockwise order (the orientation of c) until reaching the edge
f(h1)f(h2). Then g(hi) follows f(h1)f(h2) to its other endpoint, without crossing the edge.
Therefore, the path formed by the edges a1, f(h1)f(h2), and a2 splits the neighborhoods of
f(h1) and f(h2) into two components so that g(h1) and g(h2) are in different components.
Thus g(h1) and g(h2) do not cross, as claimed.

Case 2: g(h2) has already been selected and g(h2) is not incident to f(h1). Then let g(h1)
be the unique edge in h1 incident to neither f(h1) nor f(h2) (Figure 8a). We claim that
g(h1) and g(h2) do not cross in D(f, g). As both edges are critical, by Lemma 6 they can
only cross in the neighborhood of f(h1) or f(h2). But as g(h1) is not incident to f(h2), there
is a neighborhood of f(h2) that is disjoint from g(h1), and so g(h1) and g(h2) do not cross
there. Similarly, there is a neighborhood of f(h1) that is disjoint from g(h2), and so g(h1)
and g(h2) do not cross there, either. Thus g(h1) and g(h2) do not cross in D(f, g).

Case 3: no hexagon h1 is assigned to a 2-cycle so that g(h2) has already been selected.
Then we are left with hexagons that correspond to 2-cycles and form cycles L = (h1, . . . , hk)
such that (f(hi), f(hi⊕1)) is a 2-cycle in C, for i = 1 . . . , k. These cycles are interior-disjoint
by Lemma 19, and any two consecutive cycles in L have opposite orientations by Lemma 13.
It follows that k is even.

Since every 2-cycle in L is smooth, the three vertices f(hi	1), f(hi), and f(vi⊕1) are
consecutive along ∂R(hi). For every odd i ∈ {1, . . . , k}, let g(hi) be the (unique) edge in hi
incident to f(hi	1) (and incident to neither f(hi) nor f(hi⊕1)). Similarly, for every even
i ∈ {1, . . . , k}, let g(hi) be the edge in hi incident to f(hi⊕1) (and incident to neither f(hi)
nor f(hi	1)). Refer to Figure 8b.

MFCS 2017



47:12 Two-Planar Graphs Are Quasiplanar

f(h1)

f(h2)

R(h2)g(h1)

R(h1)
g(h2) z

(a)

h2i−1h2i

h2i+1. . .

...

(b)

Figure 8 (a) In Case 2 of Lemma 27, the edge g(h2) is not incident to f(h1). We set g(h1) so
that it is not incident to f(h2), to ensure that g(h1) and g(h2) are disjoint. (b) In Case 3 we face a
cycle of 2-cycles. We consistently select edges to be rerouted in even (red edge) and odd (blue edge)
hexagons so that they are pairwise disjoint.

For every odd index i ∈ {1, . . . , k}, the rerouted edges g(hi) and g(hi⊕1) are incident to
neither f(hi⊕1) nor f(hi). Similarly, for every even index i ∈ {1, . . . , k}, the rerouted edges
g(hi) and g(hi⊕1) are incident to f(hi⊕1) and f(hi), respectively. In both cases, the rerouted
edges g(hi) and g(hi⊕1) are disjoint.

Ghost cycles. It remains to consider ghost cycles. Let c1 be a ghost cycle in K. Without
loss of generality, assume that c1 = (v1, v2, v3), where v1 = f(h1), v2 = f(h2), and v3 = f(h3),
and c2 = (v1, v2) is a 2-cycle in C. Recall that c2 is smooth (cf. Lemma 23). By construction,
g(h1) and g(h2) do not cross inD(f, g). Hence at least two of the edges in {g(h1), g(h2), g(h3)}
do not cross in D(f, g), as required. J

The combination of Lemma 10, Lemma 23, and Lemma 27 proves Lemma 11, which
completes the proof of Theorem 1.

2.6 Quasiplane simple topological drawings
The redrawing algorithm in Section 2.1 transformed a 2-plane drawing D with properties
(i)–(iii), and rerouted some of the edges in two phases to obtain a quasiplane drawing D(f, g).
In this section, we show that the algorithm produces a simple topological drawing, that is,
any two edges cross at most once, and no two adjacent edges cross.

I Theorem 2. Every 2-planar graph admits a quasiplane simple topological drawing.

3 Conclusions

We have proved that every 2-planar graph is quasiplanar (Theorem 1) by showing that a
2-plane topological graph can be transformed into a quasiplane topological graph, in which
no three edges pairwise cross. Theorem 2 strengthens the result to produce a quasiplane
simple topological graph (any two edges cross at most once and adjacent edges do not cross).

In Section 2.4, we have shown that we can choose one vertex f(h) for each hexagon
h ∈ H such that all 2- and 3-cycles in the conflict graph K have some special properties. It
is unclear, however, whether 2- and 3-cycles can be avoided altogether by a suitable choice of
the function f . We formulate an open problem to this effect: Given a set H of interior-disjoint
(topological) hexagons in the plane on a vertex set V , is there an injective function f : H → V



M. Hoffmann and Cs. D. Tóth 47:13

such that the conflict digraph K contains no 2-cycles (alternatively, neither 2- nor 3-cycles)?
Several fundamental problems remain open for k-quasiplanar graphs:

What is the computational complexity of recognizing k-quasiplanar graphs? Is there
a polynomial-time algorithm that decides whether a given graph is quasiplanar (or
k-quasiplanar for a given constant k)?
Is there a constant ck for every k ∈ N such that an n-vertex k-quasiplanar graph has at
most ckn edges [20]? Affirmative answers are known for k ≤ 4 only [1].
By Theorem 1 and the main result in [6], every k-planar graph is (k + 1)-quasiplanar,
where k ∈ N, k ≥ 2. Angelini et al. [6] ask whether this result can be improved for large k:
Denote by `(k) ∈ N the minimum integer such that every k-planar graph is `-quasiplanar.
Prove or disprove that `(k) = o(k).

Acknowledgements. This work began at the Fifth Annual Workshop on Geometry and
Graphs, March 6–10, 2017, at the Bellairs Research Institute of McGill University. We thank
the organizers and all participants for the productive and positive atmosphere.

References

1 Eyal Ackerman. On the maximum number of edges in topological graphs with no four
pairwise crossing edges. Discrete Comput. Geom., 41(3):365–375, 2009. doi:10.1007/
s00454-009-9143-9.

2 Eyal Ackerman. On topological graphs with at most four crossings per edge. CoRR,
abs/1509.01932:1–41, 2015. URL: https://arxiv.org/abs/1509.01932.

3 Eyal Ackerman and Gábor Tardos. On the maximum number of edges in quasi-planar
graphs. J. Combin. Theory Ser. A, 114(3):563–571, 2007. doi:10.1016/j.jcta.2006.08.
002.

4 Pankaj K. Agarwal, Boris Aronov, János Pach, Richard Pollack, and Micha Sharir. Quasi-
planar graphs have a linear number of edges. Combinatorica, 17:1–9, 1997. doi:10.1007/
BF01196127.

5 Miklós Ajtai, Václav Chvátal, Monroe Newborn, and Endre Szemerédi. Crossing-free sub-
graphs. Ann. Discrete Math., 12:9–12, 1982. doi:10.1016/S0304-0208(08)73484-4.

6 Patrizio Angelini, Michael A. Bekos, Franz J. Brandenburg, Giordano Da Lozzo, Giuseppe
Di Battista, Walter Didimo, Giuseppe Liotta, Fabrizio Montecchiani, and Ignaz Rutter.
On the relationship between k-planar and k-quasi planar graphs. In Proc. 43rd Internat.
Workshop Graph-Theoret. Concepts Comput. Sci., Lecture Notes Comput. Sci. Springer,
2017. to appear; preliminary version available at arXiv:1702.08716. URL: http://arxiv.
org/abs/1702.08716.

7 Michael Bekos, Michael Kaufmann, and Chrysanthi Raftopoulou. On optimal 2- and 3-
planar graphs. In Proc. 33rd Internat. Sympos. Comput. Geom., LIPIcs. Schloß Dagstuhl,
2017. to appear; preliminary version available at arXiv:1703.06526. URL: http://arxiv.
org/abs/1702.08716.

8 Franz J. Brandenburg, Walter Didimo, William S. Evans, Philipp Kindermann, Giuseppe
Liotta, and Fabrizio Montecchiani. Recognizing and drawing IC-planar graphs. Theoret.
Comput. Sci., 636:1–16, 2016. doi:10.1016/j.tcs.2016.04.026.

9 Christian A. Duncan. On graph thickness, geometric thickness, and separator theorems.
Comput. Geom. Theory Appl., 44(2):95–99, 2011. doi:10.1016/j.comgeo.2010.09.005.

10 David Eppstein, Philipp Kindermann, Stephen G. Kobourov, Giuseppe Liotta, Anna Lubiw,
Aude Maignan, Debajyoti Mondal, Hamideh Vosoughpour, Sue Whitesides, and Stephen K.

MFCS 2017

http://dx.doi.org/10.1007/s00454-009-9143-9
http://dx.doi.org/10.1007/s00454-009-9143-9
https://arxiv.org/abs/1509.01932
http://dx.doi.org/10.1016/j.jcta.2006.08.002
http://dx.doi.org/10.1016/j.jcta.2006.08.002
http://dx.doi.org/10.1007/BF01196127
http://dx.doi.org/10.1007/BF01196127
http://dx.doi.org/10.1016/S0304-0208(08)73484-4
http://arxiv.org/abs/1702.08716
http://arxiv.org/abs/1702.08716
http://arxiv.org/abs/1702.08716
http://arxiv.org/abs/1702.08716
http://dx.doi.org/10.1016/j.tcs.2016.04.026
http://dx.doi.org/10.1016/j.comgeo.2010.09.005


47:14 Two-Planar Graphs Are Quasiplanar

Wismath. On the planar split thickness of graphs. In Proc. 12th Latin Amer. Sympos. The-
oretical Informatics, volume 9644 of Lecture Notes Comput. Sci., pages 403–415. Springer,
2016. doi:10.1007/978-3-662-49529-2_30.

11 Jacob Fox and János Pach. Applications of a new separator theorem for string
graphs. Combinatorics, Probability and Computing, 23(1):66–74, 2012. doi:10.1017/
S0963548313000412.

12 Jacob Fox and János Pach. Coloring Kk-free intersection graphs of geometric objects in
the plane. European J. Combin., 33(5):853–866, 2012. doi:10.1016/j.ejc.2011.09.021.

13 Jacob Fox, János Pach, and Andrew Suk. The number of edges in k-quasi-planar graphs.
SIAM J. Discrete Math., 27(1):550–561, 2013. doi:10.1137/110858586.

14 Radoslav Fulek, Michael J. Pelsmajer, Marcus Schaefer, and Daniel Štefankovič. Adjacent
crossings do matter. J. Graph Algorithms Appl., 16(3):759–782, 2012. doi:10.7155/jgaa.
00266.

15 Michael Hoffmann and Csaba D. Tóth. Two-planar graphs are quasiplanar. CoRR,
abs/1705.05569:1–22, 2017. URL: https://arxiv.org/abs/1705.05569.

16 Stephen G. Kobourov, Giuseppe Liotta, and Fabrizio Montecchiani. An annotated bibli-
ography on 1-planarity. CoRR, abs/1703.02261:1–38, 2017. URL: https://arxiv.org/
abs/1703.02261.

17 László Lovász. Graph minor theory. Bulletin of the American Mathematical Society,
43(1):75–86, 2006. doi:10.1090/S0273-0979-05-01088-8.

18 János Pach, Radoš Radoičić, Gábor Tardos, and Géza Tóth. Improving the crossing lemma
by finding more crossings in sparse graphs. Discrete Comput. Geom., 36(4):527–552, 2006.
doi:10.1007/s00454-006-1264-9.

19 János Pach, Radoš Radoičić, and Géza Tóth. Relaxing planarity for topological graphs. In
More Graphs, Sets and Numbers, volume 15 of Bolyai Soc. Math. Studies, pages 285–300.
Springer, 2006. doi:10.1007/978-3-540-32439-3_12.

20 János Pach, Farhad Shahrokhi, and Mario Szegedy. Applications of the crossing number.
Algorithmica, 16(1):111–117, 1996. doi:10.1007/BF02086610.

21 János Pach and Géza Tóth. Graphs drawn with few crossings per edge. Combinatorica,
17(3):427–439, 1997. doi:10.1007/BF01215922.

22 Marcus Schaefer. The graph crossing number and its variants: a survey. Electronic J.
Combinatorics, #DS21:1–100, 2014. URL: http://www.combinatorics.org/ojs/index.
php/eljc/article/view/DS21.

23 Andrew Suk and Bartosz Walczak. New bounds on the maximum number of edges in
k-quasi-planar graphs. Comput. Geom. Theory Appl., 50:24–33, 2015. doi:10.1016/j.
comgeo.2015.06.001.

http://dx.doi.org/10.1007/978-3-662-49529-2_30
http://dx.doi.org/10.1017/S0963548313000412
http://dx.doi.org/10.1017/S0963548313000412
http://dx.doi.org/10.1016/j.ejc.2011.09.021
http://dx.doi.org/10.1137/110858586
http://dx.doi.org/10.7155/jgaa.00266
http://dx.doi.org/10.7155/jgaa.00266
https://arxiv.org/abs/1705.05569
https://arxiv.org/abs/1703.02261
https://arxiv.org/abs/1703.02261
http://dx.doi.org/10.1090/S0273-0979-05-01088-8
http://dx.doi.org/10.1007/s00454-006-1264-9
http://dx.doi.org/10.1007/978-3-540-32439-3_12
http://dx.doi.org/10.1007/BF02086610
http://dx.doi.org/10.1007/BF01215922
http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS21
http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS21
http://dx.doi.org/10.1016/j.comgeo.2015.06.001
http://dx.doi.org/10.1016/j.comgeo.2015.06.001


The Shortest Identities for Max-Plus Automata
with Two States∗

Laure Daviaud1 and Marianne Johnson2

1 MIMUW, University of Warsaw, Poland
ldaviaud@mimuw.edu.pl

2 School of Mathematics, University of Manchester, UK
Marianne.Johnson@manchester.ac.uk

Abstract
Max-plus automata are quantitative extensions of automata designed to associate an integer with
every non-empty word. A pair of distinct words is said to be an identity for a class of max-plus
automata if each of the automata in the class computes the same value on the two words. We
give the shortest identities holding for the class of max-plus automata with two states. For this,
we exhibit an interesting list of necessary conditions for an identity to hold. Moreover, this result
provides a counter-example of a conjecture of Izhakian, concerning the minimality of certain
identities.

1998 ACM Subject Classification F.4.3 Formal Languages

Keywords and phrases Max-plus automata, Weighted automata, Identities, Tropical matrices

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.48

1 Introduction

A natural question when dealing with computational models is to understand which pairs of
inputs can be separated by the model, i.e. lead to different results. Or conversely, which pairs
of distinct inputs will give the same computation. These pairs are called identities for the
model. Regarding finite automata, two words are said to be separated by a given automaton
if one is accepted and the other is rejected. When fixing an automaton, or even considering
the class of automata with at most a certain number of states, we know that some pairs
of distinct words are not separated. It is a simple argument of cardinality: the number of
automata with a bounded number of states is finite and each of them computes a boolean
value on a given word, while the number of words is infinite. However, when considering the
full class, for every pair of distinct words, it is easy to construct an automaton accepting one
and rejecting the other.

When dealing with quantitative extensions of automata, namely weighted automata, the
situation is much more intricate. Weighted automata were introduced by Schützenberger in
[12]. They compute functions from the set of words to the set of values of a semiring, allowing
one to model quantities such as costs, gains or probabilities. The question of separating
words (i.e. computing different values on the words) highly depends on the semiring. For
probabilistic automata, or automata on the usual semiring (R,+,×), it is known that there
is an automaton (with two states) which separates every pair of distinct words.

∗ This work was partially supported by the LIPA project, funded by the European Research Council
(ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement
No 683080).

© Laure Daviaud and Marianne Johnson;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 48; pp. 48:1–48:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.48
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


48:2 The Shortest Identities for Max-Plus Automata with Two States

In this paper we are interested in max-plus automata, which are weighted automata
over the tropical semiring that compute functions from the set of non-empty words to the
values of the semiring Zmax = (Z ∪ {−∞},max,+). From now on, for simplicity, we may
use the notation Zmax to denote the semiring or the set of its values Z ∪ {−∞}. We note
that some authors prefer to work with min-plus automata, which compute values in the
min-plus semiring Zmin = (Z∪{+∞},min,+). Since the two semirings (Zmax and Zmin) are
isomorphic, the results presented here can be easily translated to the min-plus case.

A max-plus automaton is a finite automaton whose transitions are weighted by integers.
An easy way to think about these weights is to consider them as amounts of money that you
win when you go through a transition. Along a run, you accumulate this money (you sum
the amounts; this sum is called the weight of the run), and your purpose is, given a word w,
to go from an initial state to a final state, by reading w and grabbing the maximal amount
of money you can. The value (or weight) associated with w is the maximum possible amount
that you could win by reading the word w. Max-plus automata are thus particularly suitable
to model gain maximisation, study the worst-case complexity of a program [2] or evaluate
performance of discrete event systems [4, 5]. Let us give two examples on the alphabet {a, b}
(where initial and final states are denoted by ingoing and outgoing arrows respectively):

a : 1

b : 1

A1
a : 0

a : 1

b : 0

b : 0

b : 0

A2

The automaton A1 associates with each word its length. The function computed by the
automaton A2 is more complicated and we begin by describing its behaviour in particular
cases. Consider a word of the form bak1bak2b · · · bak`b where all the ki are positive integers.
Then, the value computed by the automaton is the maximum of the sums ki1 +ki2 + · · ·+kim
where no two ij are consecutive, that is to say, ij+1 > ij + 2 for all j.

Two distinct words u and v are separated by a class of max-plus automata if there is
an automaton in the class that associates two different values on the two words, otherwise
they form an identity for the class, usually denoted u = v. But this question is much more
intricate than in the previous cases of boolean automata and automata weighted over the
usual semiring. We can show that a single max-plus automaton cannot separate all pairs of
distinct words. It is again a simple cardinality argument: if the weights of the transitions
of an automaton are between −m and m, then the value associated to a word of length n
is between −mn and mn, while the number of words of length n on a finite alphabet Σ is
|Σ|n. For n large enough, there must exist two distinct words having the same value. It is
also clear that given two distinct words, one can construct a max-plus automaton (with an
arbitrarily large number of states) separating them. A major open question is the following:

Given a bound d, does there exist an identity for the set
of max-plus automata with at most d states?

In that case, a simple cardinality argument fails. This question was first considered in [9]
where it was answered positively for d = 2. The known identity for two states consists of a
pair of words of length 20, but the problem seems very difficult to tackle in the general case.
Shitov [13] proposed an identity for d = 3 consisting of a pair of words of length 1795308.



L. Daviaud and M. Johnson 48:3

Currently no generalisation of these results seems conceivable, the ultimate (very far) goal
being to characterise the complete set of identities. This paper is motivated by the fact that
a better understanding of the identities in the case d = 2 is already a first step for a better
understanding of the general case.

Contribution. We focus on the class of max-plus automata with two states, denoted C. It
is easy to see that if u = v is an identity which holds in C then u and v have the same length
(see for example A1), defining the length of the identity. We give the unique two identities of
minimal length (17) which hold in C.

I Theorem 1. There are two identities (up to a renaming of the letters) of minimal length
which hold in the class of max-plus automata with two states:

a2b3a3babab3a2 = a2b3ababa3b3a2 and ab3a4baba2b3a = ab3a2baba4b3a

To achieve this goal, we give a rather short list of necessary conditions for an identity
to hold which together eliminate all the other possible candidates of length shorter than
18 (Proposition 10, Section 3). This list is short enough that it can be tested by computer.
We also prove that this list is minimal in the sense that each of the conditions eliminates at
least one pair of words, that cannot be eliminated using the other conditions alone. However,
this list is probably not complete, and future works will consist in trying to extend it to
fully characterise the identities holding in C. We then prove that the identities given in the
statement of Theorem 1 hold in C (Proposition 11, Section 4).

Link with matrices. This topic is closely related with the question of identities on semigroups
of matrices over the tropical semiring. We consider matrices with entries in Z ∪ {−∞} and
the product AB for two matrices A,B (provided the number of columns of A and the number
of rows of B coincide, denoted here d) is defined as (AB)i,j = max16k6d(Ai,k +Bk,j).

An identity u = v is said to be satisfied by a semigroup of matrices if for all substitutions
of the letters by matrices in the semigroup, the equality holds.

A max-plus automaton with d states can equivalently be represented by a semigroup of
matrices of dimension d: the states are numbered {1, . . . , d} and for each letter, a square
matrix µ(a) of dimension d is defined such that the (i, j)-coefficient contains the weight of
the transition from state i to state j labelled by a or −∞ if there is no such transition. Then
µ extends to give a semigroup morphism µ : Σ+ → Mn(Zmax). For a non-empty word w,
it is straightforward to verify that µ(w)i,j is the maximum of the weights of the runs from
state i to state j, labelled by w. An initial vector I (resp. final vector F ) with 1 row and
d columns (resp. d rows and 1 column) and entries in {0,−∞} is defined by Ii = 0 (resp.
Fi = 0) if and only if state i is initial (resp. final). The weight of a word w in A is exactly the
value given by Iµ(w)F ∈ Zmax (see for example [11] for more explanations). The max-plus
automaton A1 illustrated on the previous page is represented by µ(a) = (1), µ(b) = (1) and
I = F = (0), while A2 is represented by:

µ(a) =
(

0 −∞
−∞ 1

)
µ(b) =

(
0 0
0 −∞

)
I =

(
0 −∞

)
F =

(
0
−∞

)
Using this representation, it can be easily shown that u = v is an identity which holds

in C if and only if u = v holds for the semigroup of square matrices of dimension 2. Then
Theorem 1 implies the following theorem.

MFCS 2017



48:4 The Shortest Identities for Max-Plus Automata with Two States

I Theorem 2. There are two identities (up to a renaming of the letters) of minimal length
which hold in the semigroup of tropical square matrices of dimension 2:

a2b3a3babab3a2 = a2b3ababa3b3a2 and ab3a4baba2b3a = ab3a2baba4b3a

Using the fact that the identities which hold in the semigroup of tropical square matrices
of dimension 2 are the same as those which hold in the semigroup of tropical square matrices
of dimension 2 with real entries (as explained in Section 2 below), Theorem 2 gives a
counter-example to a conjecture of Izhakian concerning the structure of the identities of
minimal length. Indeed, in [8, Conjecture 5.1] he provides a method of constructing identities
satisfied by every subsemigroup of the semigroup of the tropical square matrices of dimension
d consisting of matrices with maximal (tropical) rank (see [8] for detailed definitions),
conjecturing that certain amongst these are of minimal length, but for d = 2, the shortest
identities produced by this method have length greater than 17.

Organisation of the paper. In Section 2, we give first properties. In particular, we make
some comments about working with weights in Z rather than N, Q or R, restricting the
automata to have only one initial and one final state and considering only 2-letter alphabets.
In Section 3, we give the list of conditions allowing us to eliminate all the pairs of words up
to length 17 except two (up to renaming of the letters). In Section 4, we prove that these
pairs do indeed form identities.

2 First properties

Given a word w and a letter a, we write |w| to denote the length of w and |w|a to denote
the number of occurrences of the letter a in w. If w = w0w1 · · ·w` with w0, w1, . . . , w`
letters, the positions of w are 0, 1, . . . ` and wi is said to be the letter at position i. In a
max-plus automaton A, a run labelled by w from a state p to a state q with weight α will be
denoted p w : α−−−→ q. We denote by [[A]] the function (from the set of non-empty words over a
finite alphabet Σ to Zmax) computed by A. Let us recall that C denotes the class of all the
max-plus automata with two states. More generally, for any positive integer d, we denote by
Cd the class of all the max-plus automata with d states (so that C2 = C). An identity over Σ,
that is to say a pair of two distinct non-empty words over Σ, denoted u = v, holds in Cd if
and only if for all A ∈ Cd, [[A]](u) = [[A]](v). For now, we fix an integer d > 2.

Content. If Σ = {a1, . . . an}, the content of a word w is the n-tuple (|w|a1 , . . . , |w|an
) of

the number of occurrences of each of the letters in w.

I Lemma 3. If u = v holds in Cd, then u and v have the same content. In particular u and
v have the same length.

Proof. The number of occurrences of a letter a can be computed by a max-plus automaton
with one state (both initial and final) with one transition for each letter of Σ, where the
transition labelled by a has weight 1 and all other transitions have weight 0. (Note that this
can be seen as a max-plus automaton with d states by simply adding states, and possibly
transitions with weight 0). Thus, if the content of u and v differs then there exist an
automaton in Cd computing two different values on these two words. J



L. Daviaud and M. Johnson 48:5

Initial and final states. In the rest of the paper, we will freely use the following fact:

I Lemma 4. An identity u = v holds in Cd if and only if it holds in the class of max-plus
automata with d states having exactly one initial and one final state.

Proof. Denote by C′d the class of max-plus automata with d states and exactly one initial
and one final state. Clearly, if u = v holds in Cd, it must also hold in C′d. Conversely, suppose
u = v holds in C′d and let A ∈ Cd. Consider now the set S of the max-plus automata in C′d
obtained from A with a unique initial state chosen from amongst the initial states of A and a
unique final state chosen from amongst the final states of A. Since u = v holds in C′d, we get:

[[A]](u) = max
B∈S

([[B]](u)) = max
B∈S

([[B]](v)) = [[A]](v)

and thus u = v holds in Cd. J

Weights. The set of identities which hold in Cd does not change when restricting the weights
to have values in N or when allowing them to take values in Q or R. Some directions are
clear by definitions. We give ideas for the others.

From Z to N. Consider an identity u = v which holds in the class of d-state max-plus
automata with weights in N. It follows from the proof of Lemma 3 that |u| = |v|. Now
let A ∈ Cd and consider the max-plus automaton Ak obtained from A by adding the same
integer k to the weight of all transitions in A. Since A has finitely many transitions it
is clear that we can choose k large enough so that Ak has weights in N. Then we get,
[[A]](u) = [[Ak]](u)− k|u| = [[Ak]](v)− k|v| = [[A]](v), from which it follows that u = v holds
for all A ∈ Cd.

From Q to Z. Consider an identity u = v that holds in Cd and let A be a d-state max-plus
automaton with weights in Q. By multiplying all the weights on the transitions of A by a
suitable non-zero integer k (e.g. the lcm of the denominators), we get a max-plus automaton
Ak with weights in Z, such that [[A]](u) = 1

k [[Ak]](u) = 1
k [[Ak]](v) = [[A]](v).

From R to Q. Consider an identity u = v that holds in the class of d-state max-plus
automata with weights in Q and let A be a d-state max-plus automaton with weights in R.
Let (Am)m∈N be a sequence of max-plus automata constructed from A by changing all the
real weights to rational weights in such a way that for every transition of A weighted by α,
the sequence of weights αm ∈ Q of the corresponding transitions in Am tends to α. Since
limits can be commuted with maximum and sum over finite sets, we have:

[[A]](u) = lim
m→∞

[[Am]](u) = lim
m→∞

[[Am]](v) = [[A]](v)

Finally, we show that we need only to consider full automata. An automaton is said to be
full if for every pair of states p, q and every letter a, there is a transition from p to q labelled
by a.

I Lemma 5. An identity u = v holds in Cd if and only if it holds in the subclass of Cd
consisting of full automata.

Proof. The if direction is clear by definition. For the converse direction, consider an identity
u = v which holds in the subclass of Cd consisting of full automata. Suppose for contradiction
that A ∈ Cd is an automaton falsifying the identity. For each integer k, construct the full
automaton Ak from A by adding in any missing transitions and weighting these by k. If
[[A]](u) = −∞ (meaning that there is no accepting run on u) then for all k, the accepting runs
on u in Ak necessarily take a transition weighted by k (we suppose that A has at least one

MFCS 2017



48:6 The Shortest Identities for Max-Plus Automata with Two States

initial and one final state). By assumption, [[A]](v) must be finite (otherwise A does not falsify
the identity) and by construction, necessarily for all k, [[Ak]](v) > [[A]](v) (since A is contained
in Ak). Let us denote by m the maximal weight on a transition of A. Then, consider k
less than [[A]](v) − (|u| − 1)m. We get [[Ak]](v) = [[Ak]](u) 6 k + (|u| − 1)m < [[A]](v),
which leads to a contradiction. The same reasoning holds if [[A]](v) = −∞. Otherwise,
if [[A]](u) and [[A]](v) are both finite, and by considering k large and negative enough,
[[A]](u) = [[Ak]](u) = [[Ak]](v) = [[A]](u), since each maximal accepting run will avoid the
transitions weighted by k. J

Number of letters. An identity on a 2-letter alphabet can be seen as an identity over a
larger alphabet and it is easy to see that for all k > 2 the identity holds in the class of
d-state max-plus automata over two letters if and only if it holds in the class of d-state
max-plus automata over k letters. Suppose now that u = v is an identity holding in Cd over
an alphabet Σ containing at least three letters. Since u and v are distinct, they must differ in
some position, i say. Suppose then that ui 6= vi. Now, consider ū and v̄ obtained from u and
v by replacing every letter, except vi, by ui. By construction ū and v̄ are distinct. We are
going to prove that ū = v̄ holds in the class of max-plus automata over Σ. Indeed, consider
a d-state max-plus automaton A over Σ. Construct first an automaton A′ obtained from
A by removing all the transitions not labelled by ui or vi. Then construct an automaton
B over Σ obtained from A′, by adding copies of the transitions labelled by ui for all the
other letters, except vi, i.e. for every transition p ui : α−−−−→ q, and every letter c 6= vi, add the
transition p c : α−−−→ q. Then,

[[A]](ū) = [[A′]](ū) since ū contains only ui’s and vi’s
= [[B]](ū) since ū contains only ui’s and vi’s
= [[B]](u) since every letter c 6= vi mimics ui in B
= [[B]](v) since u = v is an identity over Σ holding in Cd
= [[B]](v̄) since every letter c 6= vi mimics ui in B
= [[A]](v̄) since v̄ contains only ui’s and vi’s

Thus, if an identity over Σ holds in Cd then an identity of the same length using just two
letters must also hold in Cd. Since we are interested in minimal length identities, in the rest
of the paper we will consider only 2-letter alphabets.

3 Minimality

As explained at the end of the previous section, from now on we fix a 2-letter alphabet
Σ = {a, b}. In this section, we provide a list of conditions which must all be satisfied by
the identities holding in C. Thanks to this list and aided by a computer, we are left with
exactly two pairs of words (up to exchanging a and b) of length shorter than 18 which are
still candidates to be identities in C. In the next section, we prove that they are indeed
identities in C.

3.1 Triangular identities
A max-plus automaton with two states p and q is said to be triangular if there is no transition
either from p to q or from q to p. We denote by CT this class of automata. An identity
holding in C must also hold in CT . Identities holding in the class of triangular automata



L. Daviaud and M. Johnson 48:7

are much easier to study. They are fully characterised in [3], where it is proved that they
are exactly the identities holding in the bicyclic monoid. More generally, several works
[6, 7, 10, 1, 3] study identities holding in the class of triangular max-plus automata with d
states, which correspond to the semigroup of upper-triangular matrices, where it has been
proved that such an identity always exists.

Let us recall that if u = v holds in CT , then u and v have the same content (since the
automata constructed in Lemma 3 are indeed triangular).

Beginning and end of a word. The first (resp. second, last, penultimate) block of a word w
is the first (resp. second, last, penultimate) maximal block of the same consecutive letter of
w. For example, for w = a3b2a6b7a4b, these blocks are respectively a3, b2, b and a4.

I Lemma 6. If u = v is an identity holding in CT , then u and v have the same first, second,
last and penultimate blocks respectively.

Triangular identities. We give here a variant of a property in [3, Th 3.3 and Cor 3.4]. We
show that the identities u = v which hold in CT are exactly those such that u and v have
the same content, the same first and last blocks, and which hold in the class of max-plus
automata of one of the following shape, where α and β are integers either both positive or
both negative:

Aα,β
a : α

b : 0

a : 0

b : β

a : 0

Bα,β
a : α

b : 0

a : 0

b : β

b : 0

If an identity holds for the class of all the max-plus automata of the form Aα,β and
Bα,β for all integers α, β either both positive or both negative, the identity is said to be a
triangular identity.

Checking triangular identities. Checking if a given identity u = v is triangular can be done
by symbolic computation using the shape of the automata above. More precisely, for any
position i in a word w, we denote by w<i (resp. w>i) the prefix of w strictly before position
i (resp. the suffix of w strictly after position i). We get:

[[Aα,β ]](w) = max
wi=a

(α|w<i|a + β|w>i|b) and [[Bα,β ]](w) = max
wi=b

(α|w<i|a + β|w>i|b)

The identity u = v is triangular if and only if for all integers α, β of the same sign,
[[Aα,β ]](u) = [[Aα,β ]](v) and [[Bα,β ]](u) = [[Bα,β ]](v). It is proved in [3, Th 8.3] that it can be
checked in polynomial time with respect to the sum of the lengths of u and v (even for a
larger number of states). Another easy way to check a triangular identity in a reasonable
time for identities of small length is to note that the parameters can be bounded:

I Lemma 7. Given two words u and v of the same length `, [[Aα,β ]](u) = [[Aα,β ]](v) (resp.
[[Bα,β ]](u) = [[Bα,β ]](v)) holds for all integers α, β either both positive or both negative if and
only if it holds for all such α, β with |α|, |β| bounded by 2`2.

MFCS 2017



48:8 The Shortest Identities for Max-Plus Automata with Two States

3.2 Block-permutation

Two words u and v are said to be block-permuted if u and v are composed of the same
maximal blocks of the same consecutive letter but possibly in a different order. For example,
a3b2a4b and b2a3ba4 are block-permuted but a3b2a4b and a2baba4b are not.

I Lemma 8. If u = v is an identity which holds in C, then u and v are block-permuted.

Proof. Consider an identity u = v which holds in C. Suppose that u and v are not block-
permuted, and that the maximal blocks of occurrences of the letter a are different (the proof
for the letter b is similar). Let us write n1 > n2 > . . . > n` for the lengths (with multiplicities)
of the maximal blocks of consecutive a in u (resp. m1 > m2 > . . . > m`′ for v). By Lemma 3,
u and v have the same content and so there must exist an index i ∈ {1, . . . ,min(`, `′)} such
that nj = mj for all j < i, whilst ni 6= mi. Without loss of generality, suppose that ni > mi

and consider the following automaton where m = ni − 1.

p q

a : 0

b : 0

a : 1

b : −m

b : −m

b : 0

There are four options to read a word of the form bak (ignoring initial and final states for
the moment): (1) around p with weight 0, (2) from p to q with weight −m+ k, (3) around q
with weight −m+ k, or (4) from q to p with weight 0. Thus, if a maximal block of a is of
length greater than m (except possibly the first or the last one), it should be read around
q, otherwise, it should be read around p. By Lemma 6, u and v must have the same first
and last blocks. For each k = 1, . . . , `, let N(k) be the set of indices from 1 6 t 6 k such
that ant is not the first block of u and v, nor the last block of u and v. It is now easy to see
that the weight of u must be greater than or equal to

∑
j∈N(i)(nj −m), while the weight of

v is
∑
j∈N(i−1)(nj −m), which is smaller than the weight of u. Since this contradicts the

fact that u = v holds in C, we conclude that ni = mi for all i; or in other words, u and v are
block-permuted. J

I Corollary 9. If u = v is an identity that holds in C, then u and v each contain at least 7
maximal blocks of the same consecutive letter.

Proof. Consider an identity u = v with u = ak1bk2ak3bk4ak5bk6 . If it holds in C, then by
Lemma 6, v must start with ak1bk2 and end with ak5bk6 . Finally, by Lemma 8, necessarily u
and v are the same word. J

3.3 Counting and parity conditions

Finally the last conditions we consider involve a finite number of max-plus automata with
weights within {0, 1} dealing in some sense with parity and counting conditions.

(C1). The number of occurrences of the letter a in an even position. This value is computed
by the following automaton:



L. Daviaud and M. Johnson 48:9

a : 1, b : 0

a : 0, b : 0

Note that, if two words have the same content, then the equality of this parameter for the
two words implies the equality of all the other variants (number of b’s in an odd position...).
Indeed, the number of a’s in an odd position is equal to the difference between the total
number of a’s and the number of a’s in an even position. The number of b’s in an even
position is the difference between the total number of even positions and the number of a’s
in an even position.

(C2). The number of occurrences of the letter a after an even number of b, and the number of
occurrences of the letter b after an even number of a. These values are computed respectively
by the following automata:

a : 1 a : 0
b : 0

b : 0

b : 1 b : 0
a : 0

a : 0

As in the previous condition, providing two words have the same content, the equality
on these parameters implies the equality on the other variants (number of a’s after an odd
number of b’s, etc.). Indeed, the number of a’s after an odd number of b’s is equal to the
difference between the total number of a’s and the number of a’s after an even number of
b’s...

The two last conditions are more difficult to explain.

(C3). We consider the following automata, and in each case the automata obtained such
that exactly one of the states is both initial and final, as well as those obtained by exchanging
a and b.

a : 0
a : 0, b : 0

a : 0, b : 1

p q

a : 0
a : 0, b : 1

a : 0, b : 0

It can be checked that the words ab3ababa3b3a2 and ab3a3babab3a2 cannot be separated
by any of the previously discussed conditions. However the automaton on the right, taking
p to be both initial and final is able to do so, as we shall now show. The beginning of the
two words are read deterministically until reaching the factor a3. There, a non-deterministic
choice is made to optimise the weight obtained by reading the end of the word. This choice is
made at different positions in the two words leading to two different weights. More precisely,
the maximal run for the word ab3ababa3b3a2 is as follows:

p
ab3 : 1−−−−→ p

ababa : 0−−−−−−→ q
a2 : 0−−−−→ p︸ ︷︷ ︸

non-det choice

b3 : 2−−−−→ q
a2 : 0−−−−→ p

MFCS 2017



48:10 The Shortest Identities for Max-Plus Automata with Two States

while the one for ab3a3babab3a2 is as follows:

p
ab3 : 1−−−−→ p

a2 : 0−−−−→ q︸ ︷︷ ︸
non-det choice

ababa : 2−−−−−−→ p
b3 : 2−−−−→ q

a2 : 0−−−−→ p

(C4). We consider the following automata, and in each case the automata obtained such
that exactly one of the states is both initial and final, as well as those obtained by exchanging
a and b.

a : 0 a : 1
a : 0, b : 0

b : 1

p q

a : 1 a : 0
a : 0, b : 0

b : 1

The words ab2a2ba2ba4b3a and ab2a4ba2ba2b3a cannot be separated by any of the previ-
ously discussed conditions, whilst the automaton on the right, taking q to be both initial
and final is able to do so. The beginning of the two words are read deterministically until
reaching the factor a2 in the middle of the two words. This determinism forces to read the
two first blocks of a with weight 0, while the other ones will be read with weight 1. This
leads to different results because of the commutation of the blocks a2 and a4 in the two
words. More precisely, a maximal run for the word ab2a2ba2ba4b3a is as follows:

q
ab2a2b : 2−−−−−−→ p

a2 : 1−−−−→ q︸ ︷︷ ︸
non-det choice

b : 1−−−→ p
a4 : 4−−−−→ p

b3a : 1−−−−→ q

while the one for ab2a4ba2ba2b3a is as follows:

q
ab2a4b : 2−−−−−−→ p

a2 : 1−−−−→ q︸ ︷︷ ︸
non-det choice

b : 1−−−→ p
a2 : 2−−−−→ p

b3a : 1−−−−→ q

An identity u = v is said to satisfy (C1), (C2), (C3) or (C4) if the same values is
computed on u and v by the automata given above.

I Proposition 10. There are exactly four triangular identities u = v of length shorter than
18 satisfying (C1), (C2), (C3) and (C4) in which u and v are block-permuted and have
the same first and last blocks.

We have checked all these conditions assisted by a computer, with a program listing all
the pairs of words not eliminated by one of these conditions.

Moreover, this list of conditions is in some sense minimal since for each of them, there are
examples of pairs that are not eliminated when removing the condition from the list. These
examples are also exhibited by our program.

We remark that if the block-permutation condition holds then the only automata we
need to consider which involve weights not within {0, 1} are the ones corresponding to the
triangular conditions. This list of conditions is probably not sufficient to characterise fully the
identities which hold in C, however, one can ask if we can extend it and keep this distinction
between the triangular conditions with arbitrary weights and the other conditions involving
only weights in {0, 1}.

There are exactly four remaining candidates:

a2b3a3babab3a2 = a2b3ababa3b3a2, ab3a4baba2b3a = ab3a2baba4b3a

and the ones obtained by exchanging the roles of a and b. In the next section, we prove that
they indeed hold in C.



L. Daviaud and M. Johnson 48:11

4 The shortest identities

In this section, we conclude the proof of Theorem 1 by proving that the remaining candidate
identities hold in C. By exchanging the role of a and b, it is sufficient to prove the following
proposition:

I Proposition 11. The following two identities hold in C:

(I1) a2b3a3babab3a2 = a2b3ababa3b3a2 and (I2) ab3a4baba2b3a = ab3a2baba4b3a

For a word u = a0 · · · a` of length `+ 1, let us denote by ũ = a` · · · a0 the reverse of u.

I Lemma 12. Let u ∈ Σ+. If [[A]](u) > [[A]](ũ) for all A in C, then u = ũ is an identity
which holds in C.

Proof. Consider an automaton A in C. By hypothesis, [[A]](u) > [[A]](ũ). Construct now
B obtained from A by reversing the transitions, i.e. there is a transition p

c : α−−−→ q in
A if and only if there is a transition q

c : α−−−→ p in B. Moreover the initial (resp. final)
states of B are defined from the final (resp. initial) states of A. By this construction,
[[A]](ũ) = [[B]](u) > [[B]](ũ) = [[A]](u). Thus [[A]](ũ) = [[A]](u) for all A in C and hence u = ũ

holds in C. J

Remark that the two identities (I1) and (I2) are of the form u = ũ.

I Lemma 13. Given two words u and v of the same content, [[A]](u) > [[A]](v) for all A in
C if and only if [[B]](u) > [[B]](v) for all B of one of the following two forms, where α, β, γ,
δ, η are integers:

Aα,β,γ,δ,η
a : α a : 0

b : β b : 0

a : 0, b : δ

a : γ, b : η

Bα,β,γ,δ,η
a : α a : 0

b : β b : 0

a : 0, b : δ

a : γ, b : η

Proof. The if direction is clear by definition. Conversely, denote by C′ the class of automata
described in the statement of the proposition. Suppose that [[B]](u) > [[B]](v) for all B ∈ C′.
Consider A ∈ C. First, by the proof of Lemma 5, we can suppose that A is full and by
Lemma 4, that A has exactly one initial and one final state. Suppose that these two states
are different. If not, a similar reasoning will hold, involving Aα,β,γ,δ,η instead of Bα,β,γ,δ,η.
We represent A in the following picture:

p q

a : n a : m

b : n′ b : m′

a : k, b : k′

a : `, b : `′

First, construct A′ from A by removingm (resp. m′) from all the weights of the transitions
labelled by a (resp. b). Then construct B from A′ by removing k −m from the weights of

MFCS 2017



48:12 The Shortest Identities for Max-Plus Automata with Two States

the transitions labelled by a and b from p to q and adding k −m from the weights of the
transitions labelled by a and b from q to p. By construction, B is in C′. We get:

[[A]](u) = [[A′]](u) +m′|u|b +m|u|a by construction
= [[B]](u) + (k −m) +m′|u|b +m|u|a since p is initial and q final, thus on an

accepting run, the transitions from
p to q are taken (in total) exactly once
more than the transitions from q to p

> [[B]](v) + (k −m) +m′|v|b +m|v|a since B is in C′ and
u and v have the same content

> [[A′]](v) +m′|v|b +m|v|a for the same reason as above
> [[A]](v) by construction

J

Let us consider (I1) and denote u = a2b3a3babab3a2. By Lemmas 12 and 13, for proving
that (I1) holds in C, it is sufficient to prove that for all integers α, β, γ, δ, η, [[Aα,β,γ,δ,η]](u) >
[[Aα,β,γ,δ,η]](ũ) and [[Bα,β,γ,δ,η]](u) > [[Bα,β,γ,δ,η]](ũ). Consider Bα,β,γ,δ,η. Aided by computer,
we compute symbolically the values on u and on its reverse in Bα,β,γ,δ,η as a tropical
polynomial in α, β, γ, δ, η. Each monomial term corresponds to the weight of an accepting
(but not necessarily maximal weight) run. For example, the monomial term 8α + 8β
corresponds to an accepting run on u (when reading u around the initial state and going to
the final state on the last transition) and in fact on ũ also. We denote by Mu, Mũ and M
the set of monomials appearing only in the computation of u, only in the computation of ũ
or for both, respectively. We compute these three sets aided by a computer.

Finally, we prove that for each monomial inMũ and each choice of parameters α, β, γ, δ, η ∈
Z, there is a monomial in Mu ∪M which is greater on the values α, β, γ, δ, η. This concludes
the proof that [[Bα,β,γ,δ,η]](u) > [[Bα,β,γ,δ,η]](ũ) for all integers α, β, γ, δ, η. To do so, there
is no need to consider the monomials in Mũ in which neither γ nor η appears. Indeed, we
already checked in the previous section that (I1) satisfies the triangular conditions. Thus,
u = ũ holds for triangular automata. Consider B′α,β,δ constructed from Bα,β,γ,δ,η by removing
the transitions from the final state to the initial state. A monomial in Mũ in which neither
γ nor η appears corresponds to an accepting run in B′α,β,δ, and hence is bounded above
by B′α,β,δ(ũ) = B′α,β,δ(u), since this automaton is triangular. The latter is clearly bounded
above by Bα,β,γ,δ,η(u). So for all monomials in Mũ in which neither γ nor η and each choice
of parameters α, β, γ, δ, η ∈ Z, there is necessarily a monomial in Mu ∪M which is greater
on the values α, β, γ, δ, η. Finally, the set Mũ without these monomials is of reasonable size
and we are able to complete the computations by hand.

Similar computations hold for Aα,β,γ,δ,η and for (I2).

5 Conclusion

In this paper, we give the shortest identities which hold in the class of max-plus automata
with two states. We hope that a better understanding of this case is a first step towards
a better understanding of the general case. In particular, we give an interesting list of
conditions which are sufficient to achieve this goal. Future works will consist in trying to
understand better these conditions and how to extend this list to fully characterise the sets
of identities for max-plus automata with two states. In particular, we remark that under the



L. Daviaud and M. Johnson 48:13

block-permutation condition, the only automata we need to consider which involve weights
not within {0, 1} are the ones corresponding to the triangular conditions. We ask if we can
generalise this list of conditions to get the shortest identities for a larger number of states,
and keep this distinction between the triangular conditions with arbitrary weights and the
other conditions involving only weights in {0, 1}.

References
1 Y. Chen, X. Hu, Y. Luo, and O. Sapir. The finite basis problem for the monoid of two-

by-two upper triangular tropical matrices. Bull. Aust. Math. Soc., 94(1):54–64, 2016. doi:
10.1017/S0004972715001483.

2 T. Colcombet, L. Daviaud, and F. Zuleger. Size-change abstraction and max-plus automata.
In Erzsébet Csuhaj-Varjú, Martin Dietzfelbinger, and Zoltán Ésik, editors, Mathematical
Foundations of Computer Science 2014 - 39th International Symposium, MFCS 2014, Bud-
apest, Hungary, August 25-29, 2014. Proceedings, Part I, volume 8634 of Lecture Notes in
Computer Science, pages 208–219. Springer, 2014. doi:10.1007/978-3-662-44522-8_18.

3 L. Daviaud, M. Johnson, and M. Kambites. Identities in upper triangular tropical matrix
semigroups and the bicyclic monoid, 2017. preprint, http://arxiv.org/abs/1612.04219.

4 S. Gaubert. Performance evaluation of (max,+) automata. IEEE Trans. Automat. Control,
40(12):2014–2025, 1995. doi:10.1109/9.478227.

5 S. Gaubert and J. Mairesse. Modeling and analysis of timed Petri nets using heaps of
pieces. IEEE Trans. Automat. Control, 44(4):683–697, 1999. doi:10.1109/9.754807.

6 Z. Izhakian. Semigroup identities in the monoid of triangular tropical matrices. Semigroup
Forum, 88(1):145–161, 2014. doi:10.1007/s00233-013-9507-6.

7 Z. Izhakian. Erratum to: Semigroup identities in the monoid of triangular tropical matrices
[ MR3164156]. Semigroup Forum, 92(3):733, 2016. doi:10.1007/s00233-016-9790-0.

8 Z. Izhakian. Semigroup identities of tropical matrix semigroups of maximal rank. Semigroup
Forum, 92(3):712–732, 2016. doi:10.1007/s00233-015-9765-6.

9 Z. Izhakian and S. W. Margolis. Semigroup identities in the monoid of two-by-two tropical
matrices. Semigroup Forum, 80(2):191–218, 2010. doi:10.1007/s00233-009-9203-8.

10 J. Okniński. Identities of the semigroup of upper triangular tropical matrices. Comm.
Algebra, 43(10):4422–4426, 2015. doi:10.1080/00927872.2014.946141.

11 J. Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.
12 M. P. Schützenberger. On the definition of a family of automata. Information and Control,

4:245–270, 1961.
13 Y. Shitov. A semigroup identity for tropical 3×3 matrices, 2014. To appear in Ars Math-

ematica Contemporanea 14 (2018), 15–23.

MFCS 2017

http://dx.doi.org/10.1017/S0004972715001483
http://dx.doi.org/10.1017/S0004972715001483
http://dx.doi.org/10.1007/978-3-662-44522-8_18
http://dx.doi.org/10.1109/9.478227
http://dx.doi.org/10.1109/9.754807
http://dx.doi.org/10.1007/s00233-013-9507-6
http://dx.doi.org/10.1007/s00233-016-9790-0
http://dx.doi.org/10.1007/s00233-015-9765-6
http://dx.doi.org/10.1007/s00233-009-9203-8
http://dx.doi.org/10.1080/00927872.2014.946141




On the Upward/Downward Closures of Petri Nets∗

Mohamed Faouzi Atig1, Roland Meyer†2, Sebastian Muskalla3, and
Prakash Saivasan4

1 Uppsala University, Sweden
mohamed_faouzi.atig@it.uu.se

2 TU Braunschweig, Germany
roland.meyer@tu-bs.de

3 TU Braunschweig, Germany
s.muskalla@tu-bs.de

4 TU Braunschweig, Germany
p.saivasan@tu-bs.de

Abstract
We study the size and the complexity of computing finite state automata (FSA) representing and
approximating the downward and the upward closure of Petri net languages with coverability as
the acceptance condition. We show how to construct an FSA recognizing the upward closure
of a Petri net language in doubly-exponential time, and therefore the size is at most doubly
exponential. For downward closures, we prove that the size of the minimal automata can be
non-primitive recursive. In the case of BPP nets, a well-known subclass of Petri nets, we show
that an FSA accepting the downward/upward closure can be constructed in exponential time.
Furthermore, we consider the problem of checking whether a simple regular language is included
in the downward/upward closure of a Petri net/BPP net language. We show that this problem
is EXPSPACE-complete (resp. NP-complete) in the case of Petri nets (resp. BPP nets). Finally,
we show that it is decidable whether a Petri net language is upward/downward closed.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Petri nets, BPP nets, downward closure, upward closure

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.49

1 Introduction

Petri nets are a popular model of concurrent systems [14]. Petri net languages (with different
acceptance conditions) have been extensively studied during the last years, including deciding
their emptiness (which can be reduced to reachability) [31, 23, 25, 26], their regularity
[39, 11], their context-freeness [38, 27], and many other decision problems (e.g. [17, 2, 15]).
In this paper, we consider the class of Petri net languages with coverability as the acceptance
condition (i.e. the set of sequences of transition labels occurring in a computation reaching a
marking greater than or equal to a given final marking).

We address the problem of computing the downward and the upward closure of Petri net
languages. The downward closure of a language L, denoted by L↓ , is the set of all subwords,
all words that can be obtained from words in L by deleting letters. The upward closure of L,
denoted by L↑ , is the set of all superwords, all words that can be obtained from words in

∗ The full version is available as technical report [7].
† A part of this work was carried out when the author was at Aalto University.

© Mohamed Faouzi Atig, Roland Meyer, Sebastian Muskalla, and Prakash Saivasan;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 49; pp. 49:1–49:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.49
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


49:2 On the Upward/Downward Closures of Petri Nets

L by inserting letters. It is well-known that, for any language, the downward and upward
closure are regular and can be described by a simple regular expression (SRE). However, such
an expression is in general not computable, e.g. for example, it is not possible to compute
the downward closure of languages recognized by lossy channel systems [33].

In this paper, we first consider the problem of constructing a finite state automaton (FSA)
accepting the upward/downward closure of a Petri net language. We give an algorithm that
computes an FSA of doubly-exponential size for the upward closure in doubly-exponential
time. This is done by showing that every minimal word results from a computation of
length at most doubly exponential in the size of the input. Our algorithm is also optimal
since we present a family of Petri net languages for which the minimal finite state automata
representing their upward closure are of doubly-exponential size.

Our second contribution is a family of Petri net languages for which the size of the
minimal finite state automata representing the downward closure is non-primitive recursive:
The languages contain Ackermann many words. The downward closure of Petri net languages
has been shown to be effectively computable [17]. The algorithm is based on the Karp-Miller
tree [22], which has non-primitive recursive complexity.

Furthermore, we consider the SRE inclusion problem which asks whether the language of a
simple regular expression is included in the downward/upward closure of a Petri net language.
The idea behind SRE inclusion is to stratify the problem of computing the downward/upward
closure: Rather than having an algorithm computing all information about the language,
we imagine to have an oracle (e.g. an enumeration) making proposals for SREs that could
be included in the downward/upward closure. The task of the algorithm is merely to check
whether a proposed inclusion holds. We show that this problem is EXPSPACE-complete
in both cases. In the case of upward closures, we prove that SRE inclusion boils down to
checking whether the set of minimal words of the given SRE is included in the upward closure.
In the case of downward closures, we reduce the problem to the simultaneous unboundedness
problem for Petri nets, which is EXPSPACE-complete [11].

We also study the problem of checking whether a Petri net language actually is upward
or downward closed. This is interesting as it means that an automaton for the closure, which
we can compute with the aforementioned methods, is a precise representation of the system’s
behavior. We show that the problem of being upward/downward closed is decidable for
Petri nets. The result is a consequence of a more general decidability that we believe is of
independent interest. We show that checking whether a regular language is included in a
Petri net language (with coverability as the acceptance condition) is decidable. Here, we rely
on a decision procedure for trace inclusion due to Esparza et al. [21].

Finally, we consider BPP 1 nets [13], a subclass of Petri nets defined by a syntactic
restriction: Every transition is allowed to consume at most one token in total. We show
that we can compute finite state automata accepting the upward and the downward closure
of a BPP net language in exponential time. The size of the FSA is also exponential. Our
algorithms are optimal as we present a family of BPP net languages for which the minimal
FSA representing their upward/downward closure have exponential size. Furthermore, we
consider the SRE inclusion problem. We show that, in the case of BPP nets, it is NP-complete
for both, inclusion in the upward and in the downward closure. To prove the upper bound,
we reduce to the satisfiability problem for existential Presburger arithmetic (which is known
to be NP-complete [37]). The hardness is by a reduction from SAT to the emptiness of BPP
net languages, which in turn reduces to SRE inclusion.

1 BPP stands for basic parallel processes, a notion from process algebra.



M.F. Atig, R. Meyer, S. Muskalla, and P. Saivasan 49:3

Related Work. Several constructions have been proposed in the literature to compute
finite state automata recognizing the downward/upward closure. In the case of Petri net
languages (with various acceptance conditions including reachability), it has been shown
that the downward closure is effectively computable [17]. With the results in this paper, the
computation and the state complexity have to be non-primitive recursive. For the languages
generated by context-free grammars, effective computability of the downward closure is due
to [40, 16, 10, 8]. For the languages recognized by one-counter automata, a strict subclass
of the context-free languages, it has been shown how to compute in polynomial time a
finite state automaton accepting the downward/upward closure of the language [6]. The
effective computability of the downward closure has also been shown for stacked counter
automata [43]. In [42], Zetzsche provides a characterization for a class of languages to have an
effective downward closure. It has been used to prove the effective computability of downward
closures of higher-order pushdown automata and higher-order recursion schemes [18, 9]. The
downward closure of the languages of lossy channel systems is not computable [33].

The computability results discussed above have been used to prove the decidability of
verification problems and to develop approximation-based program analysis methods (see e.g.
[5, 4, 3, 24, 30, 44]). Throughout the paper, we will give hints to applications in verification.

2 Preliminaries

In this section, we fix some basic definitions and notations that will be used throughout the
paper. For every i, j ∈ N with i ≤ j, we use [i..j] to denote the set {k ∈ N | i ≤ k ≤ j} (resp.
[i..j[ for {k ∈ N | i ≤ k < j}). Let Σ be a finite alphabet. We use Σε to denote Σ∪ {ε}. The
length of a word u over Σ is denoted by |u|, where |ε| = 0. Let k ∈ N be a natural number,
we use Σk (resp. Σ≤k) to denote the set of all words of length equal (resp. smaller or equal)
to k. A language L over Σ is a (possibly infinite) set of finite words.

Let Γ be a subset of Σ. Given a word u ∈ Σ∗, we denote by πΓ(u) the projection of u
over Γ, i.e. the word obtained from u by erasing all the letters that are not in Γ.

The Parikh image of a word [34] counts the number of occurrences of all letters while
forgetting about their positioning. Formally, the function Ψ : Σ∗ 7→ NΣ takes a word w ∈ Σ∗
and gives the function Ψ(w) : Σ→ N defined by (Ψ(w))(a) =

∣∣π{a}(w)
∣∣ for all a ∈ Σ.

The subword relation � ⊆ Σ∗× Σ∗ [20] between words is defined as follows: A word
u = a1 . . . an is a subword of v, denoted u� v, if u can be obtained by deleting letters from
v or, equivalently, if v = v0a1v1 . . . anvn for some v0, . . . , vn ∈ Σ∗.

Let L be a language over Σ. The upward closure of L consists of all words that have a sub-
word in the language, L↑ = {v ∈ Σ∗ | ∃u ∈ L : u� v}. The downward closure of L contains
all words that are dominated by a word in the language, L↓ = {u ∈ Σ∗ | ∃v ∈ L : u� v}.
Higman showed that the subword relation is a well-quasi ordering [20], which means that
every set of words S ⊆ Σ∗ has a finite basis — a finite set of minimal elements v ∈ S such
that @u ∈ S : u 6= v, u� v. With finite bases, L ↑ and L ↓ are guaranteed to be regular
for every language L ⊆ Σ∗ [19]. Indeed, they can be expressed using the subclass of simple
regular languages defined by so-called simple regular expressions [1]. These SREs are choices
among products p, sre ::= p p sre + sre. Products interleave single letters a or (a+ ε) with
iterations over letters from subsets Γ ⊆ Σ of the alphabet: p ::= a p (a+ ε) p Γ∗ p p.p . The
syntactic size of an SRE sre is denoted by |sre| and defined as expected.

Finite State Automata. A finite state automaton (FSA) A is a tuple (Q,→, q0, Qf ,Σ)
where Q is a finite non-empty set of states, Σ is the finite input alphabet, → ⊆ Q×Σε×Q is
the non-deterministic transition relation, q0 ∈ Q is the initial state, and Qf ⊆ Q is the set of

MFCS 2017



49:4 On the Upward/Downward Closures of Petri Nets

final states. We represent a transition (q, a, q′) ∈→ by q a→A q
′ and generalize the relation to

words in the expected way. The language of finite words accepted by A is denoted by L(A).
The size of A, denoted |A|, is defined by |Q|+ |Σ|. An FSA is minimal for its language L(A)
if there is no FSA B with L(A) = L(B) with a strictly smaller number of states.

Petri Nets. A (labeled) Petri net is a tuple N = (Σ, P, T, F, λ) [36]. Here, Σ is a finite
alphabet, P a finite set of places, T a finite set of transitions, F : (P × T ) ∪ (T × P )→ N a
flow function, and λ : T 7→ Σε a labelling function. When convenient, we will assume that the
places are ordered, P = [1..`] for some ` ∈ N. For a place or transition x ∈ P ∪ T , we define
the preset to consist of the elements that have an arc to x, •x = {y ∈ P ∪ T | F (y, x) > 0}.
The postset is defined similarly, x• = {y ∈ P ∪ T | F (x, y) > 0}.

To define the semantics of Petri nets, we use markings M : P → N that assign to
each place a number of tokens. A marking M enables a transition t, denoted M [t〉, if
M(p) ≥ F (p, t) for all p ∈ P . A transition t that is enabled may be fired, leading to the
new marking M ′ defined by M ′(p) = M(p)− F (p, t) + F (t, p) for all p ∈ P , i.e. t consumes
F (p, t) many tokens and produces F (t, p) many tokens in p. We write the firing relation
as M [t〉M ′. A computation π = M0[t1〉M1 · · · [tm〉Mm consists of markings and transitions.
We extend the firing relation to transition sequences σ ∈ T ∗ in the straightforward manner
and also write π = M0[σ〉Mm. A marking M is reachable from an initial marking M0 if
M0[σ〉M for some σ ∈ T ∗. A marking M covers another marking Mf , denoted M ≥Mf , if
M(p) ≥Mf (p) for all p ∈ P . A marking Mf is coverable from M0 if there is a marking M
reachable from M0 that covers Mf , M0[σ〉M ≥Mf for some σ ∈ T ∗.

Given a Petri net N , an initial marking M0, and a final marking Mf , the associated
covering language is L(N,M0,Mf ) = {λ(σ) | σ ∈ T ∗, M0[σ〉M ≥Mf} , where the labeling
function λ is extended to sequences of transitions in the straightforward manner. Given a
natural number k ∈ N, we define Lk(N,M0,Mf ) =

{
λ(σ)

∣∣ σ ∈ T≤k, M0[σ〉M ≥Mf

}
to be

the set of words accepted by computations of length at most k.
Let max(F ) denote the maximum of the range of F . The size of the Petri net N is

|N | = |Σ|+·|P |·|T |·(1+dlog2(1+max(F ))e) , i.e. we assume that the flow function is encoded
in binary. Similarly, the size of a marking M is |M | = |P | · (1 + dlog2(1 + max(M))e) ,
where max(M) denotes the maximum of the range of M . We define the token count
tc(M) = Σp∈PM(p) of a marking M to be the sum of all tokens assigned by M .

A Petri net N is said to be a BPP net if every transition consumes at most one token
from one place (i.e. Σp∈PF (p, t) ≤ 1 for every t ∈ T ).

3 Upward Closures

We consider the problem of constructing a finite state automaton accepting the upward
closure of a Petri net and a BPP net language, respectively. The upward closure offers an
over-approximation of the system behavior that is useful for verification purposes [30].

Petri Nets. We prove a doubly-exponential upper bound on the size of the finite state
automaton representing the upward closure of a Petri net language. Then, we present a
family of Petri net languages for which the minimal finite state automata representing their
upward closure have a size doubly exponential in the size of the input.

Upper Bound. Fix the Petri net N = (Σ, P, T, F, λ) and let M0 and Mf be the initial and
the final marking of interest. Define n = |N |+ |M0|+ |Mf |.



M.F. Atig, R. Meyer, S. Muskalla, and P. Saivasan 49:5

I Theorem 1. One can construct an FSA of size O(22poly(n)) for L(N,M0,Mf )↑ .

The remainder of the section is devoted to proving the theorem. We will show that ev-
ery minimal word results from a computation of length at most O(22poly(n)). Let us call
such computations the minimal ones. Let k be a bound on the length of the minimal
computations. This means the language Lk(N,M0,Mf ) contains all minimal words of
L(N,M0,Mf ). Furthermore, Lk(N,M0,Mf ) ⊆ L(N,M0,Mf ) and therefore the equality
Lk(N,M0,Mf )↑ = L(N,M0,Mf )↑ holds. Now we can use the following lemma to construct
a finite automaton whose size is O(22poly(|n|)) and that accepts Lk(N,M0,Mf ). Without an
increase in size, this automaton can be modified to accept Lk(N,M0,Mf )↑ .

I Lemma 2. Consider N , M0, and Mf . For every k ∈ N, we can construct an FSA of size
O((k + 2)poly(n)) that accepts Lk(N,M0,Mf ), where n = |N |+ |M0|+ |Mf |.

It remains to show that every minimal word results from a computation of length at most
doubly exponential in the size of the input. This is the following proposition.

I Proposition 3. For every computation M0[σ〉M ≥ Mf , there is M0[σ′〉M ′ ≥ Mf with
λ(σ′)� λ(σ) and |σ′| ≤ 22cn log n , where c is a constant.

Our proof is an adaptation of Rackoff’s technique to show that coverability can be solved
in EXPSPACE [35]. Rackoff derives a bound (similar to ours) on the length of the shortest
computations that cover a given marking. Rackoff’s proof has been generalized to different
settings, e.g. to BVAS in [12]. Lemma 5.3 in [28] claims that Rackoff’s original proof already
implies Proposition 3. This is not true as we provide a counterexample in the full version of
this paper [7]. To handle labeled Petri nets, his proof needs two amendments. First, it is
not sufficient to consider the shortest covering computations. Instead, we have to consider
computations long enough to generate all minimal words. Second, Rackoff’s proof splits a
firing sequence into two parts and replaces the second part by a shorter one. In our case, we
need that the shorter word is a subword of the original one.

We now elaborate on Rackoff’s proof strategy and give the required definitions, then we
explain in more detail our adaptation, and finally give the technical details.

We assume that the places are ordered, i.e. P = [1..`]. Rackoff’s idea is to relax the
definition of the firing relation and allow for negative token counts on the last i + 1 to
` places. With a recurrence over the number of places, he then obtains a bound on the
length of the computations that keep the first i places positive. Formally, an unrestricted
marking of N is a function M : P → Z. An unrestricted marking M i-enables a transition
t ∈ T if M(j) ≥ F (j, t) for all j ∈ [1..i]. Firing t yields a new unrestricted marking M ′,
denoted M [t〉iM ′, with M ′(p) = M(p) − F (p, t) + F (t, p) for all p ∈ P . A computation
π = M0[t1〉iM1 . . . [tm〉iMm is i-bounded with i ∈ [1..`] if for each markingMk with k ∈ [0..m]
and each place j ∈ [1..i], we have Mk(j) ≥ 0. We assume a fixed marking Mf to be
covered. The computation π is i-covering (wrt. Mf ) if Mm(j) ≥ Mf (j) for all j ∈ [1..i].
Given two computations π1 = M0[t1〉i · · · [tk〉iMk and π2 = M ′0[t′1〉i · · · [t′s〉iM ′s such that
Mk(j) = M ′0(j) for all j ∈ [1..i], we define their i-concatenation π1 ·iπ2 to be the computation
M0[t1〉i · · · [tk〉iMk[t′1〉iM ′′k+1 · · · [t′s〉iM ′′k+s.

Rackoff’s result provides a bound on the length of the shortest i-covering computations.
Since we have to generate all minimal words, we will specify precisely which computations to
consider (not only the shortest ones). Moreover, Rackoff’s bound holds independent of the
initial marking. This is needed, because the proof of the main lemma splits a firing sequence
into two parts and then considers the starting marking of the second part as the new initial

MFCS 2017



49:6 On the Upward/Downward Closures of Petri Nets

marking. The sets we define in the following will depend on some unrestricted initial marking
M , but we then quantify over all possible markings to get rid of the dependency.

Let Paths(M, i) be the set of all paths of all i-covering and i-bounded computations
starting at M , i.e. Paths(M, i) = {σ ∈ T ∗ | π = M [σ〉iM ′, π is i-bounded and i-covering} .
Let Words(M, i) = {λ(σ) | σ ∈ Paths(M, i)} be the corresponding set of words, and let
Basis(M, i) = {w ∈Words(M, i) | w is�-minimal} be its minimal elements. The central
definitions is SPath(M, i), the set of shortest paths yielding the minimal words in Basis(M, i),

SPath(M, i) =
{
σ ∈ Paths(M, i)

∣∣∣∣ λ(σ) ∈ Basis(M, i),
@ σ′ ∈ Paths(M, i) : |σ′| < |σ|, λ(σ′) = λ(σ)

}
.

Define m(M, i) = max{|σ|+ 1 | σ ∈ SPath(M, i)} to be the length (+1) of the longest path
in SPath(M, i), or m(M, i) = 0 if SPath(M, i) is empty. Note that Basis(M, i) is finite and
therefore only finitely many different lengths occur for sequences in SPath, i.e. m(M, i) is
well-defined. To remove the dependency on M , define f(i) = max

{
m(M, i)

∣∣ M ∈ Z`
}
to

be the maximal length of an i-covering computation, where the maximum is taken over all
unrestricted initial markings. The well-definedness of f(i) is not clear yet and will be a
consequence of the next lemma. A bound on f(`) will give us a bound on the maximum
length of a computation accepting a minimal word from L(N,M0,Mf ). To derive the bound,
we prove that f(i+ 1) ≤ (2nf(i))i+1 + f(i) using Rackoff’s famous case distinction [35].

I Lemma 4. f(0) = 1 and f(i+ 1) ≤ (2nf(i))i+1 + f(i) for all i ∈ [0..`[.

Lower Bound. We present a family of Petri net languages for which the minimal finite
state automata representing the upward closure are of size doubly exponential in the size of
the input. We rely on a construction due to Lipton [29] that shows how to calculate in a
precise way (including zero tests) with values up to 22n in Petri nets.

I Lemma 5. For every number n ∈ N , we can construct a Petri net N(n) = ({a}, P, T, F, λ)
and markings M0,Mf of size polynomial in n such that L(N(n),M0,Mf ) =

{
a22n }

.

BPP Nets. We establish an exponential upper bound on the size of the finite automata
representing the upward closure of BPP net languages. Then, we present a family of BPP
net languages for which the minimal finite automata representing their upward closure are of
size at least exponential in the size of the input.

Upper Bound. Fix the BPP net N = (Σ, P, T, F, λ) and assume M0 and Mf to be the
initial and the final marking of interest. Let n = |N |+ |M0|+ |Mf |.

I Theorem 6. One can construct an FSA of size O(2poly(n)) for L(N,M0,Mf )↑ .

We will show that every minimal word results from a computation whose length is polynomially
dependent on the number of transitions and on the number of tokens in the final marking
(which may be exponential in the size of the input). Let k be a bound on the length of
the minimal computations. With the same argument as before and using Lemma 2, we can
construct a finite state automaton of size O(2poly(n)) that accepts Lk(N,M0,Mf )↑ .

I Proposition 7. Consider a BPP net N . For every computation M0[σ〉M ≥Mf there is
M0[σ′〉M ′ ≥Mf with λ(σ′)� λ(σ) and |σ′| ≤ tc(Mf )2|T |.



M.F. Atig, R. Meyer, S. Muskalla, and P. Saivasan 49:7

The key to proving the lemma is to consider a structure that makes the concurrency among
transitions in the BPP computation of interest explicit. Phrased differently, we give a true
concurrency semantics (also called partial order semantics and similar to Mazurkiewicz traces)
to BPP computations. Since BPPs do not synchronize, the computation yields a forest where
different branches represent causally independent transitions. To obtain a subcomputation
that covers the final marking, we select from the forest a set of leaves that corresponds
exactly to the final marking. We then show that the number of transitions in the minimal
forest that generates the selected set of leaves is polynomial in the number of tokens in the
final marking and in the number of transitions.

Lower Bound. We present a family of BPP net languages for which the minimal finite state
automata representing the upward closure are exponential in the size of the input. The idea
is to rely on the final marking, which is encoded in binary and hence can require 2n tokens.

I Lemma 8. For all numbers n ∈ N, we can construct a BPP net N(n) = ({a}, P, T, F, λ)
and markings M0,Mf of size polynomial in n such that L(N(n),M0,Mf ) = {a2n} .

4 Downward Closures

We consider the problem of constructing a finite state automaton accepting the downward
closure of a Petri net and a BPP net language, respectively. The downward closure often
has the property of being a precise description of the system behavior, namely as soon as
asynchronous communication comes into play: If the components are not tightly coupled,
they may overlook commands of the partner and see precisely the downward closure of the
other’s computation. As a result, having a representation of the downward closure gives the
possibility to design exact or under-approximate verification algorithms.

Petri Nets. The downward closure of Petri net languages has been shown to be effectively
computable in [17]. The algorithm is based on the Karp-Miller tree [22], which can be of
non-primitive recursive size. We now present a family of Petri net languages that are already
downward closed and for which the minimal finite automata have to be of non-primitive
recursive size in the size of the input. Our result relies on a construction due to Mayr and
Meyer [32]. It gives a family of Petri nets whose computations all terminate but, upon
halting, may have produced Ackermann many tokens on a distinguished place.

I Lemma 9. For all n, x ∈ N, there is a Petri net N(n) = ({a}, P, T, F, λ) and markings
M

(x)
0 ,Mf of size polynomial in n+ x such that L(N(n),M (x)

0 ,Mf ) =
{
ak | k ≤ Ackern(x)

}
.

Our lower bound is an immediate consequence of this lemma.

I Theorem 10. There is a family of Petri net languages for which the minimal finite
automata representing the downward closure are of non-primitive recursive size.

This hardness result relies on a weak computation mechanism of very large numbers that
is unlikely to show up in practical examples. The SRE inclusion problem studied in the
following section can be understood as a refined analysis of the computation problem for
downward closures.

BPP Nets. We prove an exponential upper bound on the size of the finite automata
representing the downward closure of BPP languages. Then, we present a family of BPP
languages for which the minimal finite automata representing their downward closure are
exponential in the size of the input BPP nets.

MFCS 2017



49:8 On the Upward/Downward Closures of Petri Nets

Upper Bound. Fix the BPP net N = (Σ, P, T, F, λ) and let M0 and Mf be the initial and
the final marking of interest. Let n = |N |+ |M0|+ |Mf |.

I Theorem 11. We can construct a finite automaton of size O(2poly(n)) for L(N,M0,Mf )↓ .

The key insight for simulating N by a finite automaton is the following: If during a firing
sequence a marking occurs that has more than c tokens (where c is specified below) in some
place p, then there has to be a pump, a subsequence of the firing sequence that can be
repeated to produce arbitrarily many tokens in p. The precise statement is this, where we
use m = max(F ) to refer to the maximal multiplicity of an edge.

I Lemma 12. Let M0[σ〉M such that for some place p ∈ P , we have M(p) > c with
c = tc(M0)(|P | ·m)(|T |+1) Then for each j ∈ N, there is M0[σj〉Mj such that (1) σ� σj,
(2) M ≤Mj, and (3) Mj(p) > j.

The automaton for L(N,M0,Mf )↓ is the state space of N with token values beyond c set
to ω. For every transition, we also have an ε-variant to obtain the downward closure. The
language of this automaton is the downward closure of the language of the given BPP net.

Lower Bound. Consider the family of BPP net languages from the Lemma 8:
L(N(n),M0,Mf ) = {a2n}, for all n ∈ N. Its downward closure is {ai | i ≤ 2n}. The
minimal finite state automata recognising the downward closure have at least 2n states.

5 SRE Inclusion in Downward Closure

The downward closure of a Petri net language is hard to compute. We therefore propose
to under-approximate it by an SRE as follows. Assumev we have a heuristic coming up
with a candidate SRE that is supposed to be an under-approximation in the sense that
its language is included in the downward closure of interest. The problem we study is the
algorithmic task of checking whether the inclusion indeed holds. If so, the SRE provides
reliable (must) information about the system’s behavior, behavior that is guaranteed to
occur. This information is useful for finding bugs.

SRE Inclusion in Downward Closure (SRED)
Given: A Petri net (N,M0,Mf ), an SRE sre.
Question: L(sre) ⊆ L(N,M0,Mf )↓?

Petri Nets.

I Theorem 13. SRED is EXPSPACE-complete for Petri nets.

Hardness is due to the hardness of coverability [29]. Indeed, marking Mf is coverable from
M0 in N iff L(N,M0,Mf ) 6= ∅ iff {ε} ⊆ L(N,M0,Mf ) ↓ . Note that {ε} = L(∅∗) and
therefore is a simple regular language.

For the upper bound, we take inspiration from a recent result of Zetzsche [42]. He has
shown that, for a large class of models, computing the downward closure is equivalent to
deciding an unboundedness problem. We use a variant of this problem that comes with
a complexity result. The simultaneous unboundedness problem for Petri nets (SUPPN) is,
given a Petri net N , an initial marking M0, and a subset X ⊆ P of places, decide whether
for each n ∈ N, there is a computation σn such that M0[σn〉Mσn with Mσn(p) ≥ n for all
places p ∈ X. In [11], Demri has shown that this problem is EXPSPACE-complete.



M.F. Atig, R. Meyer, S. Muskalla, and P. Saivasan 49:9

I Theorem 14 ([11]). SUPPN is EXPSPACE-complete.

We turn to the reduction of the inclusion problem SRED to the unboundedness problem
SUPPN. Since SREs are choices among products, an inclusion L(sre) ⊆ L(N,M0,Mf )↓
holds iff L(p) ⊆ L(N,M0,Mf )↓ holds for all products p in sre. Since the Petri net language
is downward closed, we can further simplify the products by removing choices. Fix a total
ordering on the alphabet Σ. Such an ordering can be represented by a word wΣ. We define
the linearization operation that takes a product and returns a regular expression:

lin(a+ ε) = a lin(a) = a

lin(Γ∗) = (πΓ(wΣ))∗ lin(p1p2) = lin(p1)lin(p2) .

For example, if Σ = {a, b, c} and we take wΣ = abc, then p = (a+ c)∗(a+ ε)(b+ c)∗ is turned
into lin(p) = (ac)∗a(bc)∗. The discussion justifies the following lemma.

I Lemma 15. L(sre) ⊆ L(N,M0,Mf ) ↓ if and only if for all products p in sre we have
L(lin(p)) ⊆ L(N,M0,Mf )↓ .

We will reduce L(lin(p)) ⊆ L(N,M0,Mf ) ↓ to SUPPN. To this end, we first understand
lin(p) as a Petri net Nlin(p). We modify this Petri net by adding one place pΓ for each block
(πΓ(wΣ))∗ = ai . . . aj . Each transition that repeats or leaves the block is modified to generate
a token in pΓ. As a result, pΓ counts how often the word πΓ(wΣ) has been executed.

The second step is to define an appropriate product of Nlin(p) with the Petri net of
interest. Intuitively, the product synchronizes with the downward closure of N .

I Definition 16. Consider two Petri nets Ni = (Σ, Pi, Ti, Fi, λ), i = 1, 2, with P1 ∩ P2 = ∅
and T1 ∩ T2 = ∅. Their right-synchronized product N1 m N2 is the labeled Petri net
N1 m N2 = (Σ, P1 ·∪P2, T1 ·∪T, F, λ), where for the transitions t1 ∈ T1, λ and F remain
unchanged. The new transitions are T = {merge(t1, t2) | t1 ∈ T1, t2 ∈ T2, λ1(t1) = λ2(t2)}
with λ(merge(t1, t2)) = λ1(t1) = λ2(t2) and similarly F (pi,merge(t1, t2)) = Fi(pi, ti),
F (merge(t1, t2), pi) = Fi(ti, pi) for pi ∈ Pi, i = 1, 2.

As indicated by the name right-synchronized, the transitions of N1 can be fired without
synchronization, while the transitions of N2 can only be fired if a transition of N1 with the
same label is fired simultaneously.

Consider a Petri net N with initial marking M0. We compute the right-synchronized
product N ′ = N mNlin(p), take the initial marking M ′0 that coincides with M0 but puts a
token on the initial place of Nlin(p), and focus on the counting places X = {pΓ | (πΓ(wΣ))∗}
is a block in p. The following correspondence holds.

I Lemma 17. L(lin(p)) ⊆ L(N,M0,M∅)↓ if and only if the places in X are simultaneously
unbounded in N ′ from M ′0. Here M∅ is the zero marking, i.e. M∅(p) = 0 for all p.

The lemma does not yet involve the final marking Mf . We modify N ′ and X such that
simultaneous unboundedness implies L(lin(p)) ⊆ L(N,M0,Mf )↓ . The idea is to introduce a
new place pf that can become unbounded only after Mf has been covered. We furthermore
add a transition tf that consumes Mf (p) tokens from each place p of N and produces one
token in pf . We add another transition tpump that consumes one token in pf and creates
two tokens in pf . Call the resulting net N ′′. The new initial marking M ′′0 coincides with M ′0
and assigns no token to pf .

Note that we do not enforce that tf is only fired after all the rest of the computation has
taken place. We can rearrange the transitions in any valid firing sequence of N ′′ to obtain a
sequence of the shape σ.tf k.tpump

k′ , where σ contains neither tf nor tpump.

MFCS 2017



49:10 On the Upward/Downward Closures of Petri Nets

I Lemma 18. L(lin(p)) ⊆ L(N,M0,Mf ) ↓ iff the places in X ∪ {pf} are simultaneously
unbounded in N ′′ from M ′′0 .

To conclude the proof of Theorem 13, it remains to argue that the generated instance for
SUPPN is polynomial in the input, i.e. in N , M0, Mf and p. The expression lin(p) is
certainly linear in p, and the net Nlin(p) is polynomial in lin(p). The blow-up caused by
the right-synchronized product is at most quadratic, and adding the transitions and the
places to deal with Mf is polynomial. The size of M ′′0 is polynomial in the size of M0 and p.
Altogether, the size of N ′′, X ∪ {pf}, and M ′′0 (which together form the generated instance
for SUPPN) is polynomial in the size of the original input.

BPP Nets. We show that the problem of deciding whether the language of an SRE is
included in the downward closure of a BPP net language is NP-complete.

I Theorem 19. SRED for BPP nets is NP-complete.

Hardness is by a reduction from SAT to BPP coverability, which in turn reduces to deciding
whether the language of an SRE is included in the downward closure of a BPP language.
For the reverse direction, we give a reduction to satisfiability of an existential formula in
Presburger arithmetic, the first-order theory of the natural numbers with addition, subtraction,
and order. An existential Presburger formula takes the form ∃x1 . . . ∃xn.ϕ where ϕ is a
quantifier-free formula. We shall also write positive Boolean combinations of existential
formulas. By an appropriate renaming of the quantified variables, any such formula can be
converted into an equivalent existential Presburger formula. We write ϕ(~x) to indicate that
(at most) the variables ~x = x1 . . . xk occur free in ϕ. Given a function M from ~x to N, the
meaning of M satisfies ϕ is as usual and we write M |= ϕ to denote this. We rely on the
following complexity result:

I Theorem 20 ([37]). Satisfiability in existential Presburger arithmetic is NP-complete.

Note that L(sre) ⊆ L(N,M0,Mf )↓ iff the inclusion holds for every product p in sre. Given
such a product, we construct a new BPP net N ′ and an existential Presburger formula ψ(P ′)
such that L(p) ⊆ L(N,M0,Mf )↓ iff there is a marking M ′ reachable in N ′ from a modified
initial marking M ′0 with M ′ |= ψ. This concludes the proof with the help of the following
characterization of reachability in BPP nets in terms of existential Presburger arithmetic.

I Theorem 21 ([41, 13]). Given a BPP net N = (Σ, P, T, F, λ) and an initial marking M0,
one can compute in polynomial time an existential Presburger formula Ψ(P ) so that for all
markings M : M |= Ψ(P ) if and only if M0[σ〉M for some σ ∈ T ∗.

Key to the construction of N ′ is a characterization of the computations that need to be
present in the BPP net for the inclusion L(p) ⊆ L(N,M0,Mf ) ↓ to hold. Wlog., in the
following we will assume that the product takes the shape

(a1 + ε)Σ∗1(a2 + ε) . . .Σ∗n−1(an + ε),

where Σ1, . . . ,Σn−1 ⊆ Σ and a1, . . . , an ∈ Σ. For this language to be included in
L(N,M0,Mf ) ↓ , the BPP should have a computation with parts σi containing ai and
parts ρi between the σi that contain all letters in Σi and that can be repeated. To formalize
the requirement, recall that we use wΣ for a total order on the alphabet and πΣi

(wΣ) for the
projection to Σi ⊆ Σ.

Moreover, we define M ≤c M ′, with c the constant defined in Lemma 12, if for all places
p ∈ P we have M ′(p) < c implies M(p) ≤M ′(p).



M.F. Atig, R. Meyer, S. Muskalla, and P. Saivasan 49:11

I Definition 22. Let p be a product. The BPP net N together with the markings M0,Mf

admits a p-witness if there are markings M1,M
′
1, . . . ,Mn,M

′
n and computations σi, ρi that

satisfy Mi[σi〉M ′i for all i ∈ [1..n], M ′i [ρi〉Mi+1 for all i ∈ [1..n[, and moreover: (1) ai� λ(σi),
for all i ∈ [1..n], (2) πΣi(wΣ)� λ(ρi) andM ′i ≤c Mi+1, for all i ∈ [1..n−1], and (3)M1 = M0
and Mf ≤c M ′n.

In a p-witness, (1) enforces that the ai occur in the desired order, and the first part of (2)
requires that πΣi

(wΣ) occurs in between. The second part of (2) means that each ρi (and
thus πΣi

(wΣ)) can be repeated. Property (3) enforces that the computation still starts in
the initial marking and can be extended to cover the final marking.

The following proposition reduces the problem SRED for BPP nets to checking whether
the BPP admits a p-witness.

I Proposition 23. L(p) ⊆ L(N,M0,Mf ) ↓ holds iff (N,M0,Mf ) admits a p-witness.

We now reduce the problem of finding such a p-witness to finding in another BPP net
N ′ = (∅, P ′, T ′, F ′, λ′) a reachable marking that satisfies a Presburger formula ΨM0

Mf
(P ′).

The task is to identify 2n markings that are related by 2n− 1 computations as required by a
p-witness. The idea is to create 2n− 1 replicas of the BPP net and run them independently
to guess the corresponding computations σi resp. ρi. The Presburger formula ΨM0

Mf
will

check that the target marking reached with σi coincides with the initial marking for ρi, and
the target marking reached with ρi is the initial marking of σi+1. To this end, the net N ′
remembers the initial marking that each replica started from in a full copy (per replica) of
the set of places of the BPP net. Furthermore ΨM0

Mf
checks that each ρi can be repeated by

ensuring that the final marking in the corresponding replica is larger than the initial marking.
As initial marking for N ′, we consider the marking M∅ with M∅(p) = 0 for all p.

I Proposition 24. There are σ′ and M ′ so that M∅[σ′〉M ′ in N ′ and M ′ |= ΨM0
Mf

if and
only if (N,M0,Mf ) admits a p-witness.

6 SRE Inclusion in Upward Closure

Rather than computing the upward closure of a Petri net language we now check whether a
given SRE under-approximates it. Formally, the problem is defined as follows.

SRE Inclusion in Upward Closure (SREU)
Given: A Petri net (N,M0,Mf ), SRE sre.
Question: L(sre) ⊆ L(N,M0,Mf )↑?

I Theorem 25. SREU is EXPSPACE-complete for Petri nets.

The EXPSPACE lower bound is immediate by hardness of coverability for Petri nets [29].
The upper bound is due to the following fact: We only need to check whether the set of
minimal words in the language of the given SRE is included in the upward closure of the
Petri net language. Since the number of minimal words in the SRE language is less than the
size of the SRE, and since checking whether a word is included in the upward closure of the
language of the Petri net N can be reduced in polynomial time to coverability in Petri nets
(which is well-known to be in EXPSPACE [35]), we obtain our EXPSPACE upper bound.

I Theorem 26. SREU is NP-complete for BPP nets.

MFCS 2017



49:12 On the Upward/Downward Closures of Petri Nets

The hardness is by a reduction of the coverability problem for BPP nets. For the upper bound,
the algorithm is similar to the one for checking the inclusion of an SRE in the downward
closure of a BPP language. Consider a product p of the given SRE. The inclusion L(p) ⊆
L(N,M0,Mf ) ↑ holds iff the minimal subwords min(p) = a1 . . . an belong to L(N,M0,Mf ) ↑.
Word a1 . . . an belongs to the upward closure iff one of its subwords is in L(N,M0,Mf ). We
reduce this check for an accepted subword to checking whether a reachable marking M in a
different net N ′ satisfies a Presburger formula Ψ.

7 Being Upward/Downward Closed

We now study the problem to decide whether a Petri net language actually is upward
or downward closed, i.e. whether the closure that we can compute is actually a precise
representation of the system’s behavior. Formally, the problem BUC is defined as follows:

Being upward closed (BUC)
Given: A Petri net (N,M0,Mf ).
Question: L(N,M0,Mf ) = L(N,M0,Mf )↑?

The problem of being downward closed (BDC) replaces ↑ by ↓ in the above definition.

I Theorem 27. BUC and BDC are decidable for Petri nets.

Note that L(N,M0,Mf ) ⊆ L(N,M0,Mf )↑ trivially holds. It remains to decide the converse.
First, we show how to decide L(A) ⊆ L(N,M0,Mf ) for any given FSA A. This regular
inclusion should be a problem of independent interest. Then, we can use the automaton
for the upward closure constructed by Theorem 1 (resp. the automaton for the downward
closure that can be constructed by [17]) to decide BUC (resp. BDC).

We rely on a result of Esparza et. al [21] that involves the traces of an FSA (resp. Petri net),
labelings of computations that start from the initial state (resp. initial marking), regardless
of whether they end in a final state (resp. covering marking). For a finite automaton A ,
we define T (A) =

{
w ∈ Σ∗ | qinit

w→ q for some q ∈ Q
}
. Similarly, for a Petri net, we define

T (N,M0) = {w ∈ Σ∗ | ∃σ ∈ T ∗ : λ(σ) = w,M0[σ〉M for some marking M} .

I Theorem 28 ([21]). The inclusion T (A) ⊆ T (N,M0) is decidable.

The algorithm constructs a computation tree of A and N . This tree determinizes N in that
it tracks sets of incomparable markings reachable with the same trace. The construction
terminates if either the set of markings becomes empty and the inclusion fails or (the
automaton deadlocks or) we find a set of markings that covers a predecessor and the inclusion
holds. The latter is guaranteed to happen due to the well-quasi ordering (wqo) of sets of
markings. This dependence on wqos does not allow us to derive a complexity result.

We now show how to reduce checking the inclusion L(A) ⊆ L(N,M0,Mf ) to deciding
an inclusion among trace languages. Theorem 28 can be used to decide this inclusion. Let
(N,M0,Mf ) be the Petri net of interest together with its initial and final marking, and let
A be the given FSA. As language L(N,M0,Mf ) is not prefix-closed in general, we consider
the zero marking M∅ as the new final marking. This yields a prefix-closed language with
T (N,M0) = L(N,M0,M∅), since now all valid firing sequences give a word in the language,
and prefixes of valid firing sequences are again valid firing sequences. We still need to take
the original final marking Mf into account. To do so, we modify the net by adding a new
transition that can only be fired after Mf has been covered.



M.F. Atig, R. Meyer, S. Muskalla, and P. Saivasan 49:13

Let a 6∈ Σ be a fresh letter. Let N.a be the Petri net that is obtained from N and the
given final marking Mf by adding a new transition tfinal that consumes Mf (p) many tokens
from every place p of N and that is labeled by a. For the automaton, we use a similar
trick. Let A.a be an automaton for L(A).a that is reduced so that the unique final state is
reachable from every state.

I Lemma 29. L(A) ⊆ L(N,M0,Mf ) holds iff T (A.a) ⊆ T (N.a,M0) holds.

The second inclusion is decidable using Theorem 28. This yields the desired result.

I Theorem 30. L(A) ⊆ L(N,M0,Mf ) is decidable.

References
1 P. A. Abdulla, A. Collomb-Annichini, A. Bouajjani, and B. Jonsson. Using forward reach-

ability analysis for verification of lossy channel systems. FMSD, 25(1), 2004.
2 P. A. Abdulla, G. Delzanno, and L. V. Begin. Comparing the expressive power of well-

structured transition systems. In CSL, LNCS. Springer, 2007.
3 M. F. Atig, A. Bouajjani, K. Narayan Kumar, and P. Saivasan. On bounded reachability

analysis of shared memory systems. In FSTTCS, LIPIcs. Dagstuhl, 2014.
4 M. F. Atig, A. Bouajjani, and S. Qadeer. Context-bounded analysis for concurrent programs

with dynamic creation of threads. LMCS, 7(4), 2011.
5 M. F. Atig, A. Bouajjani, and T. Touili. On the reachability analysis of acyclic networks

of pushdown systems. In CONCUR, LNCS. Springer, 2008.
6 M. F. Atig, D. Chistikov, P. Hofman, K. N. Kumar, P. Saivasan, and G. Zetzsche. Com-

plexity of regular abstractions of one-counter languages. In LICS, pages 207–216. ACM,
2016.

7 M. F. Atig, R. Meyer, S. Muskalla, and P. Saivasan. On the upward/downward closures of
petri nets. CoRR, abs/1701.02927, 2017. URL: http://arxiv.org/abs/1701.02927.

8 G. Bachmeier, M. Luttenberger, and M. Schlund. Finite automata for the sub- and su-
perword closure of CFLs: Descriptional and computational complexity. In LATA, LNCS.
Springer, 2015.

9 L. Clemente, P. Parys, S. Salvati, and I. Walukiewicz. The diagonal problem for higher-
order recursion schemes is decidable. In LICS, pages 96–105. ACM, 2016.

10 B. Courcelle. On constructing obstruction sets of words. Bulletin of the EATCS, 1991.
11 S. Demri. On selective unboundedness of VASS. JCSS, 79(5), 2013.
12 S. Demri, M. Jurdziński, O. Lachish, and R. Lazić. The covering and boundedness problems

for branching vector addition systems. Journal of Computer and System Sciences, 79(1):23–
38, 2013.

13 J. Esparza. Petri Nets, commutative context-free grammars, and basic parallel processes.
Fundam. Inf., 31(1), 1997.

14 J. Esparza and M. Nielsen. Decidability issues for Petri nets - a survey. Bulletin of the
EATCS, 52, 1994.

15 A. Finkel, G. Geeraerts, J. F. Raskin, and L. V. Begin. On the omega-language expressive
power of extended Petri nets. ENTCS, 2005.

16 H. Gruber, M. Holzer, and M. Kutrib. More on the size of Higman-Haines sets: Effective
constructions. In MCU, LNCS. Springer, 2007.

17 P. Habermehl, R. Meyer, and H. Wimmel. The downward-closure of Petri net languages.
In ICALP, LNCS. Springer, 2010.

18 M. Hague, J. Kochems, and C.-H. Luke Ong. Unboundedness and downward closures of
higher-order pushdown automata. In POPL. ACM, 2016.

MFCS 2017

http://arxiv.org/abs/1701.02927


49:14 On the Upward/Downward Closures of Petri Nets

19 L. H. Haines. On free monoids partially ordered by embedding. Journal of Combinatorial
Theory, 6(1), 1969.

20 G. Higman. Ordering by divisibility in abstract algebras. Proc. London Math. Soc. (3),
2(7), 1952.

21 P. Jančar, J. Esparza, and F. Moller. Petri nets and regular processes. J. Comput. Syst.
Sci., 59(3):476–503, December 1999.

22 R. M. Karp and R. E. Miller. Parallel program schemata. JCSS, 3(2):147–195, 1969.
23 S. R. Kosaraju. Decidability of reachability in vector addition systems (preliminary version).

In STOC. ACM, 1982.
24 S. La Torre, A. Muscholl, and I. Walukiewicz. Safety of parametrized asynchronous shared-

memory systems is almost always decidable. In CONCUR, LIPIcs. Dagstuhl, 2015.
25 J. L. Lambert. A structure to decide reachability in Petri nets. TCS, 99(1), 1992.
26 J. Leroux. Vector addition system reachability problem: a short self-contained proof. In

POPL. ACM, 2011.
27 J. Leroux, V. Penelle, and G. Sutre. On the context-freeness problem for vector addition

systems. In LICS. IEEE, 2013.
28 J. Leroux, M. Praveen, and G. Sutre. A relational trace logic for vector addition systems

with application to context-freeness. In CONCUR, pages 137–151. Springer, 2013.
29 R. J. Lipton. The reachability problem requires exponential space. Technical report, Yale

University, Department of Computer Science, 1976.
30 Z. Long, G. Calin, R. Majumdar, and R. Meyer. Language-theoretic abstraction refinement.

In FASE, LNCS. Springer, 2012. doi:10.1007/978-3-642-28872-2_25.
31 E. W. Mayr. An algorithm for the general Petri net reachability problem. SIAM J. Comp.,

13(3), 1984.
32 E. W. Mayr and A. R. Meyer. The complexity of the finite containment problem for Petri

nets. JACM, 28(3), 1981.
33 R. Mayr. Undecidable problems in unreliable computations. TCS, 1-3(297), 2003.
34 R. Parikh. On context-free languages. JACM, 13(4), 1966.
35 C. Rackoff. The covering and boundedness problems for vector addition systems. TCS,

6(2), 1978.
36 W. Reisig. Petri nets: An Introduction. Monographs in Theoretical Computer Science. An

EATCS Series. Springer, 1985.
37 B. Scarpellini. Complexity of subcases of Presburger arithmetic. Transactions of the AMS,

284(1), 1984.
38 S. R. Schwer. The context-freeness of the languages associated with vector addition systems

is decidable. TCS, 1992.
39 R. Valk and G. Vidal-Naquet. Petri nets and regular languages. JCSS, 23(3), 1981.
40 J. van Leeuwen. Effective constructions in well-partially-ordered free monoids. Discrete

Mathematics, 21(3), 1978.
41 K. N. Verma, H. Seidl, and T. Schwentick. On the complexity of equational Horn clauses.

In CADE, pages 337–352. Springer, 2005.
42 G. Zetzsche. An approach to computing downward closures. In ICALP, LNCS. Springer,

2015.
43 G. Zetzsche. Computing downward closures for stacked counter automata. In STACS,

LIPIcs. Dagstuhl, 2015.
44 G. Zetzsche. The complexity of downward closure comparisons. In ICALP, volume 55 of

LIPIcs, pages 123:1–123:14. Dagstuhl, 2016.

http://dx.doi.org/10.1007/978-3-642-28872-2_25


On Multidimensional and Monotone k-SUM
Chloe Ching-Yun Hsu1 and Chris Umans∗2

1 Department of Computing and Mathematical Sciences, California Institute of
Technology, Pasadena, USA
chhsu@caltech.edu

2 Department of Computing and Mathematical Sciences, California Institute of
Technology, Pasadena, USA
umans@cms.caltech.edu

Abstract
The well-known k-SUM conjecture is that integer k-SUM requires time Ω(ndk/2e−o(1)). Recent
work has studied multidimensional k-SUM in Fdp, where the best known algorithm takes time
Õ(ndk/2e). Bhattacharyya et al. [ICS 2011] proved a min(2Ω(d), nΩ(k)) lower bound for k-SUM
in Fdp under the Exponential Time Hypothesis. We give a more refined lower bound under the
standard k-SUM conjecture: for sufficiently large p, k-SUM in Fdp requires time Ω(nk/2−o(1)) if k
is even, and Ω(ndk/2e−2k log k

log p−o(1)) if k is odd.
For a special case of the multidimensional problem, bounded monotone d-dimensional 3SUM,

Chan and Lewenstein [STOC 2015] gave a surprising Õ(n2−2/(d+13)) algorithm using additive
combinatorics. We show this algorithm is essentially optimal. To be more precise, bounded
monotone d-dimensional 3SUM requires time Ω(n2− 4

d−o(1)) under the standard 3SUM conjecture,
and time Ω(n2− 2

d−o(1)) under the so-called strong 3SUM conjecture. Thus, even though one might
hope to further exploit the structural advantage of monotonicity, no substantial improvements
beyond those obtained by Chan and Lewenstein are possible for bounded monotone d-dimensional
3SUM.

1998 ACM Subject Classification F.2.1 Numerical Algorithms and Problems

Keywords and phrases 3SUM, kSUM, monotone 3SUM, strong 3SUM conjecture

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.50

1 Introduction

The k-SUM problem and the k-SUM conjecture are related to a large number of problems
in computational geometry [11], dynamic data structures, and graph theory. For example,
Pătraşcu [17] showed lower bounds for dynamic problems under the 3SUM conjecture, and
Kopelowitz, Pettie, and Porat [16] improved Pătraşcu’s framework to give better reductions
from 3SUM to SetIntersection, SetDisjointness, and triangle enumeration. Goldstein, Ko-
pelowitz, Lewenstein, and Porat [13] showed several reporting problems are 3SUM-hard.
Vassilevska and Williams [19], and Jafargholi and Viola [15] used 3SUM to study triangle
problems. Abboud and Lewi [1] proved tight lower and upper bounds for the exact-weight
subgraph finding problem under the k-SUM conjecture.

I Definition 1 (k-SUM). Given subsets A1, . . . , Ak of size n of an abelian group G, the
k-SUM problem asks whether there are a1 ∈ A1, . . . , ak ∈ Ak such that

∑k
i=1 ai = 0.

∗ Supported by NSF grant CCF-1423544 and a Simons Foundation Investigator grant.

© Chloe Ching-Yun Hsu and Christopher Umans;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 50; pp. 50:1–50:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.50
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


50:2 On Multidimensional and Monotone k-SUM

A simple meet-in-the-middle algorithm can solve k-SUM in time Õ(ndk/2e),1 and it is widely
believed that this is the optimal time up to polylogarithmic factors. This is known as the
k-SUM conjecture:

I Conjecture 2 (k-SUM Conjecture). For k ≥ 2, k-SUM in Z requires randomized time
Ω(ndk/2e−o(1)).

To support the k-SUM conjecture, Erickson [9] and Ailon and Chazelle [3] proved that
k-linear decision trees cannot solve k-SUM with fewer than ndk/2e queries. On the other
hand, Freund [10], and Gold and Sharir [12] recently gave O(n2 log logn/ logn) algorithms
for 3SUM. Hence, the standard 3SUM conjecture (Conjecture 7) is stated as an Ω(n2−o(1))
lower bound instead of Ω(n2).

Intriguingly, in non-uniform models, substantially lower complexities are known: Grønlund
and Pettie [14] showed that the decision tree complexity of 3SUM is O(n3/2 logn). Gold and
Sharir [12] showed that the randomized (2k − 2)-linear decision tree complexity of k-SUM is
O(nk/2) for any odd k ≥ 3.

1.1 Multidimensional k-SUM in Fd
p

One can also consider the k-SUM problem over domains other than Z. The focus of this
paper will be on the multidimensional case, where the domain is Fdp. The k-SUM problem in
Fdp is a problem of independent interest. For example, Jafargholi and Viola [15, 20] reduced
listing triangles to 3SUM in Fd2. In coding theory, k-SUM in Fdp is studied and known as
WeightDistribution [8].

Bhattacharyya et. al. [6] recently gave a min(2Ω(d), nΩ(k)) lower bound for k-SUM in
Fdp under the Exponential Time Hypothesis. Pătraşcu and Williams [18] proved that the
Exponential Time Hypothesis implies a weak version of the k-SUM conjecture - there is no
no(k) algorithm for k-SUM for all k. However, prior to this paper, no connection was known
between integer k-SUM and k-SUM in Fdp. In this paper, we use the k-SUM conjecture to
prove a more refined lower bound for k-SUM in Fdp:

I Theorem 3. Under the k-SUM conjecture, for any k ≥ 2, k-SUM in Fdp requires time
Ω(nk/2−o(1)) for even k, and time Ω(ndk/2e−2k log k

log p−o(1)) for odd k, when p is sufficiently
large.

Like the one-dimensional case, the fastest known algorithm for k-SUM in Fdp is the
meet-in-the-middle algorithm in time Õ(ndk/2e), which matches with the above conditional
lower bound for even k.

Our conditional lower bound is meaningful for each k ≥ 2, which is a stronger statement
than the asymptotic result by Bhattacharyya et. al.

1.2 Monotone d-dimensional 3SUM
Chan and Lewenstein [7] first studied bounded monotone d-dimensional 3SUM, motivated by
bounded monotone (min,+)-convolution and histogram indexing. Chan and Lewenstein gave
a remarkable Õ(n2− 2

d+13 ) algorithm with techniques from additive combinatorics. One of
our main result is to show this algorithm is essentially optimal under the 3SUM conjecture.

1 Õ(f(n)) is a notation for O(f(n)polylog(n)).



C. Hsu and C. Umans 50:3

I Definition 4 (Bounded Monotone d-dimensional 3SUM). A set A ⊂ Zd is monotone
increasing if it can be sorted as A = {a1, . . . , an} such that the j-th coordinates of a1, . . . , an
form a monotone increasing sequence for each j = 1, . . . , d. Given monotone sets A,B, S ⊂
[n]d, bounded monotone d-dimensional 3SUM asks if there exist a ∈ A, b ∈ B, s ∈ S such
that a+ b = s.2

Chan and Lewenstein’s subquadratic Õ(n2− 2
d+13 ) algorithm shows that bounded monotone

d-dimensional 3SUM is easier than integer 3SUM, but how much easier? Since monotonicity
is a strong restriction on the set structure, one may wonder whether further improvements
are possible. We show, under the 3SUM conjecture, the answer is no:

I Theorem 5. Under the standard 3SUM conjecture, bounded d-dimensional monotone
3SUM requires time Ω(n2− 4

d−o(1)).

One can also define a strong version of the 3SUM conjecture (see Conjecture 8) and this
yields a slightly stronger result:

I Theorem 6. Under the strong 3SUM conjecture, bounded d-dimensional monotone 3SUM
requires time Ω(n2− 2

d−o(1)).

In Chan and Lewenstein’s Õ(n2− 2
d+13 ) upper bound, the exponent 2− 2/(d+ 13) comes

from solving a quadratic equation capturing a fairly involved recurrence; it is surprising to
see essentially the same exponent arise for completely different reasons in our lower bound.

1.3 Standard vs Strong 3SUM Conjecture
In this section we discuss the so-called “strong” 3SUM conjecture. For clarity, we refer to
the well-known 3SUM conjecture (a special case of Conjecture 2) as the “standard” 3SUM
conjecture:

I Conjecture 7 (Standard 3SUM Conjecture). Integer 3SUM requires time Ω(n2−o(1)).

It is known that 3SUM on a set of n integers can be reduced to the bounded domain
of {−n3, . . . , n3} via a randomized reduction [5, 17]. The strong 3SUM conjecture further
restricts the domain to {−n2, . . . , n2}. It was first proposed by Amir, Chan, Lewenstein, and
Lewenstein to obtain better conditional lower bounds for jumbled indexing [4]. 3

I Conjecture 8 (Strong 3SUM Conjecture). 3SUM on a set of n integers in the domain of
{−n2, . . . , n2} requires time Ω(n2−o(1)).

As a context for the strong 3SUM conjecture, 3SUM in the domain of {−n2−δ, . . . , n2−δ}
can be solved in time Õ(n2−δ) by Fast Fourier Transform (FFT). However, it is a long-
standing open problem whether there is a truly subquadratic algorithm for 3SUM in the
domain of {−n2, . . . , n2}.

It is an open problem whether the strong 3SUM conjecture is equivalent to the standard
3SUM conjecture. In this paper, we prove a partial result along these lines in Theorem 9.
This result may be a folklore in some communities, but it seems that it has not been written
down, so we include a formal analysis for completeness.

2 [m] is a notation for {0, 1, . . . , m− 1}.
3 Recently, Goldstein, Kopelowitz, Lewenstein, and Porat [13] showed that the strong 3SUM conjecture is

not necessary for the hardness of jumbled indexing, and improved the result by basing on the standard
3SUM conjecture.

MFCS 2017



50:4 On Multidimensional and Monotone k-SUM

I Theorem 9. Under the standard 3SUM conjecture, 3SUM+ in the domain of
{−n2+δ, ..., n2+δ} requires time Ω(n2−o(1)) for any δ > 0.

Here, 3SUM+ is the extension of 3SUM that reports all a3 ∈ A3 such that a1 +a2 +a3 = 0
for some a1 ∈ A1, a2 ∈ A2, i.e. it outputs A3∩−(A1 +A2). As noted by Chan and Lewenstein
[7], all the known 3SUM algorithms actually solve 3SUM+, including Fast Fourier Transfrom
and Baren et al.’s slightly subquadratic O((n2/ log2 n)(log logn)2) algorithm [5].

If Theorem 9 still holds with δ = 0 and 3SUM in place of 3SUM+, then the strong 3SUM
conjecture would be equivalent to the standard 3SUM conjecture.

1.4 Organization
The next three sections contain the technical proofs of the main theorems. In Section 2, we
prove Theorem 3, the lower bound for k-SUM in Fdp under the k-SUM conjecture. Section
3 contains the proofs for Theorem 5 and Theorem 6, which are lower bounds for bounded
monotone 3SUM under the standard and strong 3SUM conjectures. In Section 4, we prove
Theorem 9.

2 Reductions Used for the Lower Bound for k-SUM in Fd
p

Underlying the lower bound for k-SUM in Fdp is a pair of reductions: a reduction from integer
k-SUM in Fdp to integer (k+ 1)-SUM, and a reduction from integer k-SUM to (k+ 1)-SUM in
Fdp. From the reductions, we deduce conditional lower bounds for k-SUM in Fdp, for bounded
monotone d-dimensional 3SUM, and for 3SUM+ in bounded domain {−n2+δ, ..., n2+δ}.

A natural idea for reduction is to use the bijection between Fdp and [pd] ⊂ Z, seeing
Fdp as a base-p representation of integers. However, the bijection is not an abelian group
homomorphism, due to the “carries” in integer addition and the mod p effect in Fdp-addition.
The main challenge is to simulate the carries while preserving the k-SUM structure.

Lemma 10 is the reduction from k-SUM in Fdp to integer (k + 1)-SUM. This is the easier
direction among the two reductions. We map a = (a0, ..., ad−1) ∈ Fdp 7→

∑d−1
i=0 ai(kp)i ∈ Z,

treating Fdp coordinates as digits in a base-kp number. Since the digits are blown up by
powers of kp, there are no “carries” in integer addition.

I Lemma 10. Given a k-SUM instance in Fdp on k sets A(1), · · · , A(k) of size n, it can be
reduced to an integer (k + 1)-SUM instance on k sets of size n and an additional set of size
kd.

Proof. Let g : Fdp → Z be the injective map a = (a0, ..., ad−1) 7→
∑d−1
i=0 ai(kp)i.

For any a(1), . . . , a(k) ∈ Fdp, the sum a(1) + · · · + a(k) is zero in Fdp if and only if the
i-th coordinate sum

∑k
j=1 a

(j)
i is a multiple of p for all 0 ≤ i < d. Since a(j)

i < p, we
know

∑k
j=1 a

(j)
i < kp. The above condition can be rewritten as

∑k
j=1 a

(j)
i = λip, where

λi ∈ {0, ..., k − 1}. This is further equivalent to

g(a(1)) + · · ·+ g(a(k)) =
d−1∑
i=0

λip(kp)i for some (λ1, . . . , λd) ∈ [k]d.

Therefore, the original k-SUM instance in Fdp can be reduced to the integer (k + 1)-SUM
instance on g(A(1)), . . . , g(A(k)), and an additional set {−

∑d−1
i=0 λip(kp)i : (λi) ∈ [k]d}. J

I Corollary 11. Given a k-SUM instance in Fdp on k sets of size n, it can be reduced to kd
instances of integer k-SUM.



C. Hsu and C. Umans 50:5

Proof. Using the reduction in Lemma 10, we can solve the (k + 1)-SUM instance by
enumerating the additional set of size kd. For each element a in the additional set of size kd,
subtract a from the first set, and solve the k-SUM instance on the first k sets. J

Since the proof only uses the additive structure of Fdp, Lemma 10 also holds more generally
for k-SUM instance in Zdq , where q is not necessarily a prime number. In fact, all proofs in
this section can be adapted to Zdq with some modification.

In the reverse direction, it is more challenging to design a reduction from integer to Fdp,
since the reduction needs to simulate integer addition carries with Fdp.

In the proof of Lemma 12, we start with the bijection between Fdp and [pd] ⊂ Z, viewing
Fdp as a base-p representation of integers. This provides a way to map integers to Fdp, but
unfortunately the map does not preserve the additive structure in k-SUM. To fix this problem,
the key observation is that the map does preserve the additive structure with respect to
k-SUM when all coordinates are between 0 and

⌊
p
k

⌋
. Points in {0, . . . ,

⌊
p
k

⌋
}d ⊂ Fdp behaves

nicely for our purpose. Therefore, we divide Fp into k chunks: {0, . . . ,
⌊
p
k

⌋
}, {
⌈
p
k

⌉
, . . . , 2

⌊
p
k

⌋
},

. . . , {λ
⌈
p
k

⌉
, . . . , (λ+ 1)

⌊
p
k

⌋
}, and so on. Accordingly, Fdp is divided into kd cubes {Sλ : λ =

(λ1, . . . , λd) ∈ [k]d}. For each cube, we shift it to align with the nice cube S0 = {0, . . . ,
⌊
p
k

⌋
}d

where the reduction preserves the additive structure, perform the reduction, and then shift it
back.

A similar technique was first used by Abboud, Lewi, and Williams [2] to reduce integer
k-SUM to k-VECTOR-SUM.

I Lemma 12. Assume p > k2. Given an integer k-SUM instance on k sets X(1), ..., X(k) of
size n in the bounded universe [m], it can be reduced to a (k + 1)-SUM instance in F2d

p on k
sets of size n and a set of size k2d, where d = logpm.

Proof. Let f : Fdp → {0, ...,m} be the bijection a = (a0, ..., ad−1) 7→
∑d−1
i=1 aip

i. Note this is
a bijection but does not preserve the additive structure.

Define µ : Fdp → [k]d as the following index function. For any a = (a0, ..., ad−1) ∈ Fdp,
µ(a) = (µ0, ..., µd−1), where µi is defined to be the integer such that µi

⌈
p
k

⌉
≤ ai < (µi+1)b pk c.

For any λ ∈ [k]d, define Sλ := {a ∈ Fdp : µ(a) = λ}. Define a = a−
⌊
p
k

⌋
· µ(a), then we

can write

a = a+
⌊p
k

⌋
· µ(a),

where a ∈ S0.

f(a) = f(a) +
d−1∑
i=1

µi(a)
⌊p
k

⌋
pi.

Observe that for any a(1), ..., a(k) ∈ S0, it is true that
∑k
j=1 f(a(j)) = f(

∑k
j=1 a

(j)). This
equality does not hold in general for elements outside S0.

Thus, for any a(1), ..., a(k) ∈ Fdp,

k∑
j=1

f(a(j)) =
k∑
j=1

f(a(j)) +
d∑
i=1

 k∑
j=1

µi(a(j))

⌊p
k

⌋
pi.

Fix λ(1), ..., λ(k) ∈ [k]d. For any (x1, ..., x(k)) where x(j) ∈ X(j) ∩ Sλ(j) , if we denote
a(j) = f−1(x(j)), then

k∑
j=1

x(j) =
k∑
j=1

f(a(j)) =
k∑
j=1

f(a(j))+
d∑
i=1

k∑
j=1

λ
(j)
i

⌊p
k

⌋
pi = f(

k∑
j=1

a(j))+
d∑
i=1

k∑
j=1

λ
(j)
i

⌊p
k

⌋
pi.

MFCS 2017



50:6 On Multidimensional and Monotone k-SUM

Thus,

k∑
j=1

x(j) = 0 ⇐⇒ f(
k∑
j=1

a(j)) +
d∑
i=1

k∑
j=1

λ
(j)
i

⌊p
k

⌋
pi = 0,

and

k∑
j=1

x(j) = 0 ⇐⇒
k∑
j=1

a(j) = f−1

− d∑
i=1

k∑
j=1

λ
(j)
i

⌊p
k

⌋
pi

 . (*)

Note that the right hand side only depends on λ(1), ..., λ(k), or more specifically
∑k
j=1 λ

(j)
i .

This gives a reduction from the integer k-SUM instance to a (k + 1)-SUM instance on k
sets of size n in Fdp × Zd of the form

A(j) = {(a, µ(a)) : f(a) ∈ X(j)},

and a set of size k2d consisting of elements in the form of

−

(
f−1(−

d∑
i=1

σi

⌊p
k

⌋
pi), σ

)
,

for all σ ∈ [k2]d ⊂ Zd. The range [k2]d is determined by the fact that since λ(j) ∈ [k]d for
each j, the sum σ is bounded above by k2 in each coordinate. The Zd component in Fdp ×Zd
is always bounded in [k2]d, so Fdp × Zd can be viewed as F2d

p when p > k2. J

The assumption p > k2 in Lemma 12 is adopted only to simplify some details at the
end when turning Fdp × [k2]d into F2d

p . When p ≤ k2, the same techniques apply with more
care in dealing with the [k2]d component. All previous parts before (*) in the proof hold for
p > k, so the following corollary only requires p > k.

I Corollary 13. Assume p > k. Given an integer k-SUM instance on k sets of size n in the
bounded universe [m], it can be reduced to k2d instances of k-SUM in Fdp on k sets of size n,
where d = logpm.

Proof. This follows from the reduction up to (*) in the proof of the previous theorem. J

2.1 Lower Bound for k-SUM in Fd
p

The following lower bound under the k-SUM conjecture follows from Lemma 12. For even
k, our result matches with the Õ(nk/2) upper bound. For odd k, our lower bound is
Ω(ndk/2e−2k log k

log p−o(1)), while the best known upper bound is Õ(ndk/2e). The conditional
lower bound converges to the upper bound as p→∞, which is expected since the group Fp
behaves “more and more like Z” as p increases.

The assumption that p is large enough such that p ≥ k2k is still a meaningful assumption,
because k2k is a constant for fixed k.

I Theorem 3. (Restated) For any k ≥ 2, assume p is sufficiently large such that p ≥ k2k.
Under the k-SUM conjecture, k-SUM in Fdp requires time Ω(nk/2−o(1)) for even k, and
Ω(ndk/2e−2k log k

log p−o(1)) for odd k, for d ≥ 2k logp n.



C. Hsu and C. Umans 50:7

Proof. Using a randomized reduction [5, 17], we can assume without loss of generality that
a given integer k-SUM instance is in the bounded domain [nk] = {0, . . . , nk − 1}.

Suppose k is even. By Lemma 12, any integer (k − 1)-SUM instance can be reduced to a
k-SUM instance in Fdp on k−1 sets of size n and a set of size (k−1)d, where d = 2 logp n(k−1).
(The d used here is 2d in Lemma 12.) Assuming p > k2k, then the size of the last set can be
bounded above by (k − 1)d ≤ kd = n2k log k

log p ≤ n. Hence, integer (k − 1)-SUM can be reduced
to k-SUM in Fdp on k sets of size n. If k-SUM in Fdp can be solved in time O(nk/2−ε), then
integer (k− 1)-SUM could be solved in time O(nk/2−ε) = O(nd

k−1
2 e−ε), violating the k-SUM

conjecture.
Suppose k is odd. By Corollary 13, integer k-SUM can be reduced to kd instances of

k-SUM in Fdp. If k-SUM in Fdp can be solved in time O(ndk/2e−2k log k
log p−ε), then integer (k− 1)-

SUM could be solved in time kd ×O(ndk/2e−2k log k
log p−ε). Since d = 2 logp n(k−1) ≤ 2k logn

log p , we
can bound kd by kd = nd

log k
logn ≤ n2k log k

log p . Therefore, integer (k − 1)-SUM could be solved in
time kd ×O(ndk/2e−2k log k

log p−ε) ≤ O(ndk/2e−ε), violating the k-SUM conjecture. J

In particular, under the 3SUM conjecture, 3SUM in Fdp requires time Ω(n2− 6
log3 p

−o(1)).
This implies that there does not exist an ε > 0 such that 3SUM in Fdp can be solved in
O(n2−ε) for all prime p, under the 3SUM conjecture. Combined with the reduction in Lemma
10, we obtain the following weak equivalence between integer k-SUM and k-SUM in Fdp.

I Theorem 14. For any k ≥ 2, integer k-SUM can be solved in O(ndk/2e−δ) time for some
δ > 0 if and only if there exists an ε > 0 such that k-SUM in Fdp can be solved in O(ndk/2e−ε)
for all sufficiently large prime p.

Proof. Suppose integer k-SUM can be solved in O(ndk/2e−δ) time for some 0 < δ < 1. Take
ε = δ/2, and take p large enough such that k log k

log p < δ/2. Using a randomized reduction,
we may assume without loss of generality that d ≤ k logp n. By Corollary 11, k-SUM in Fdp
can be reduced to kd instances of integer k-SUM, so k-SUM in Fdp can be solved in time
kd ·O(ndk/2e−δ) ≤ nk

log k
log p ·O(ndk/2e−δ) = O(ndk/2e−δ/2).

Conversely, suppose there exists an ε > 0 such that k-SUM in Fdp can be solved in
O(ndk/2e−ε) for all sufficiently large prime p. Then, there exists some p large enough
such that ε > 2k log k

log p . By the proof of Theorem 3, integer k-SUM can be solved in time
O(ndk/2e−ε+2k log k

log p ). J

3 Proof of Lower Bound for Monotone 3SUM in [n]d

In Definition 4, we defined bounded monotone d-dimensional 3SUM to be 3SUM on a
monotone set in [n]d, where n is the range of the coordinates. Alternatively, one could also
define bounded monotone 3SUM to be on a monotone set of size n. Note that a monotone
set in [n]d can have size at most dn, so the two definitions are equivalent up to a factor of d.

To prove the lower bound for bounded monotone 3SUM, we reduce from Convolution-
3SUM to bounded monotone 3SUM. The Convolution-3SUM problem is a more restricted
version of 3SUM:

I Definition 15 (Convolution-3SUM). Given an array A[1 . . . n], determine whether there
exist i 6= j with A[i] +A[j] = A[i+ j].

Pătraşcu [17] first proved that if 3SUM requires Ω(n2−o(1)) time, then so does Convolution-
3SUM. Kopelowitz, Pettie, and Porat [16] showed that the randomized complexities of 3SUM
and Convolution-3SUM differ by at most a logarithmic factor.

MFCS 2017



50:8 On Multidimensional and Monotone k-SUM

Note that the brute force algorithm for Convolution-3SUM runs in O(n2) time, as there
are only O(n2) possible pairs to try. Amir, Chan, Lewenstein, and Lewenstein [4] pointed out
a (randomized) reduction from Convolution-3SUM in any large domain to Convolution-3SUM
in {−n2, . . . , n2}.

The above results imply that the 3SUM conjecture is equivalent to the hardness of
Convolution-3SUM in {−n2, . . . , n2}, making Convolution-3SUM a useful tool for our purpose.
Amir, Chan, Lewenstein, and Lewenstein [4] also restated the strong 3SUM conjecture as:
Any algorithm for Convolution-3SUM in the domain of {−n, . . . , n} requires Ω(n2−o(1)) time.

Previously we defined k-SUM as determining whether there exists a1 + · · ·+ ak = 0 for
ai ∈ Ai. In this section, for convenience we use an equivalent formulation of 3SUM: given
sets A,B, S, determine whether there exist a ∈ A, b ∈ B, s ∈ S such that a + b = s. The
benefit is to avoid negative integer values. For 3SUM or Convolution-3SUM on A,B, S in
{−u, . . . , u}, add u to all values in A,B, and add 2u to all values in S. Therefore, it is
sufficient to work with Convolution-3SUM in [n2] instead of {−n2, . . . , n2}, and [n] instead
of {−n, . . . , n}.

Convolution-3SUM in [m] is a special case of 3SUM in [n]× [m], by mapping the array
indices to the first coordinate, i.e. integer ai in a Convolution-3SUM instance is mapped to
the pair (i, ai) ∈ [n]× [m]. We will use this notation for simplicity. Since array indices are
unique, no two values have the same first coordinate.

First, we reduce integer Convolution-3SUM to d-dimensional Convolution-3SUM, using
the same techniques as in Lemma 12 (the reduction from integer 3SUM to d-dimensional
3SUM). Here we replace Fdp with [p]d, but the proof is nearly identical to Lemma 12, so we
do not repeat it here.

I Lemma 16. For any given dimension d, Convolution-3SUM in [nc] can be reduced to 4d
instances of Convolution-3SUM in [nc/d]d.

Next we reduce from d-dimensional Convolution-3SUM to monotone d-dimensional
Convolution-3SUM, by blowing up the bounded domain.

I Lemma 17. Convolution-3SUM in [m]d can be reduced to Convolution-3SUM on monotone
sets in [nm]d.

Proof. Let f : [n]× [m]d → [n]× [nm]d be the map (a0, a1, ..., ad) 7→ (a0,ma0 + a1, ...,ma0 +
ad). Take A′ = f(A), B′ = f(B), S′ = f(S). Since f is linear in each coordinate, a+b+s = 0
implies f(a) + f(b) + f(s) = 0. Conversely, if f(a) + f(b) + f(s) = 0, the first coordinate
guarantees a0 + b0 + s0 = 0, and then it follows that ai + bi + si = 0 in each coordinate.

Since no two points in A (resp. B, S) share the same first coordinate, the new sets A′
(resp. B′, S′) are monotone if we order them in increasing a0 (resp. b0, s0), because the a0
dominates in ma0 + ai. J

The following lemma is the main technical lemma from which Theorem 5 and Theorem 6
easily follow.

I Lemma 18. Let c be a real constant between 1 ≤ c ≤ 2, let d > c be an integer, and let
δ > 0 be an arbitrarily small constant. Assume n is large enough such that n > 24d/δ. If
3SUM for monotone sets in [n]d can be solved in time O(n2−2c/d−δ), then Convolution-3SUM
in [nc] can be solved in time O(n2−δ/2).

Proof. Let γ = c
d < 1. By Lemma 16 and Lemma 17, Convolution-3SUM in [nc] can be

reduced to 4d instances of Convolution-3SUM on monotone sets in [n(1+γ)]d. By writing the



C. Hsu and C. Umans 50:9

array index as an additional dimension, i.e. mapping ai in a Convolution-3SUM instance
to (i, ai), each of the 4d Convolution-3SUM instances can be seen as (d + 1)-dimensional
monotone 3SUM in [n(1+γ)](d+1).

By assumption, 4d instances of (d+ 1)-dimensional monotone 3SUM in [n(1+γ)](d+1) can
be solved in time

4d ·O(n(1+γ)(2−2c/d−δ)) = O(n
d

log4 n
+(1+γ)(2(1−c/d)−δ)).

The exponent can be simplified as follows. When n > 24d/δ,

d

log4 n
+ (1 + γ)(2(1− c/d)− δ) = 2− δ − γδ − 2γ2 + d

log4 n
< 2− δ/2.

Thus, when n is sufficiently large, the 4d instances of (d+1)-dimensional monotone 3SUM
can be solved in time O(n2−δ/2). J

I Theorem 5. (Restated) Under the standard 3SUM conjecture, bounded d-dimensional
monotone 3SUM requires time Ω(n2− 4

d−o(1)).

Proof. This is a immediate corollary to Lemma 18 with c = 2. J

The lower bound can be improved to Ω(n2− 4
d+1−o(1)) specifically for c = 2 with a little

extra computation.
One can also define a strong version of the 3SUM conjecture (see Definition 8) and this

yields a slightly stronger result:

I Theorem 6. (Restated) Under the strong 3SUM conjecture, bounded d-dimensional mono-
tone 3SUM requires time Ω(n2− 2

d−o(1)).

Proof. This is a immediate corollary to Lemma 18 with c = 1. J

4 Strong 3SUM Conjecture vs 3SUM Conjecture

The 3SUM conjecture states that integer 3SUM requires time Ω(n2−o(1)), while the strong
3SUM conjecture states that integer 3SUM in the bounded domain of {−n2, . . . , n2} requires
time Ω(n2−o(1)). We would like to understand whether the 3SUM conjecture is equivalent to
the strong 3SUM conjecture. To add evidence to this, we prove a partial result that 3SUM+

in the domain of {−n2+δ, ..., n2+δ} is as hard as unbounded integer 3SUM, using ideas about
multidimensional 3SUM from previous sections.

I Lemma 19 (Lemma 1, [5]). Let A be a sorted list of n integers. For any fixed c ∈ A, we
can decide whether c is a hit (i.e., whether there exist a, b ∈ A such that a+ b = c) in O(n)
time.

The proof idea for Lemma 20 is similar to our reduction from multidimensional 3SUM to
integer 3SUM in Lemma 10. Instead of F3

p, we consider 3SUM in the group Fp1 × Fp2 × Fp3

for three different primes.

I Lemma 20. Let 0 < ε < 1. If 3SUM+ in [M ] can be solved in O(n2−ε) time, then for any
primes p1, p2, p3 such that p1p2p3 ≤ M

32 , 3SUM
+ in Fp1 × Fp2 × Fp3 can be solved in O(n2−ε)

time.

MFCS 2017



50:10 On Multidimensional and Monotone k-SUM

Proof. Let S ⊂ Fp1 × Fp2 × Fp3 be a subset of size n. Let ϕ : Fp1 × Fp2 × Fp3 × {0, 1}3 →
[32p1p2p3] ⊂ Z be the injective map

ϕ : (a1, a2, a3, t1, t2, t3) 7→ϕ (t1p1 + a1) · (16p2p3) + (t2p2 + a2) · (4p3) + (t3p3 + a3).

Let A be the image A := ϕ(S × {0, 1}3). The size of A is 8n.
It is easy to check ϕ(a1, a2, a3, t1, t2, t3) + ϕ(b1, b2, b3, r1, r2, r3) = ϕ(c1, c2, c3, w1, w2, w3)

implies (a1, a2, a3) + (b1, b2, b3) = (c1, c2, c3) in Fp1 × Fp2 × Fp3 .
Conversely, suppose (a1, a2, a3)+(b1, b2, b3) = (c1, c2, c3) in Fp1×Fp2×Fp3 . For i = 1, 2, 3,

since ai+bi = ci (mod pi), either ai+bi = ci or ai+bi = ci+pi. Thus, there exists w1, w2, w3 ∈
{0, 1} such that ϕ(a1, a2, a3, 0, 0, 0) + ϕ(b1, b2, b3, 0, 0, 0) = ϕ(c1, c2, c3, w1, w2, w3).

To solve 3SUM+ on S, first solve 3SUM+ on A, which reports all (A+A)∩A. The 3SUM+

instance on S then outputs all (c1, c2, c3) ∈ S such that ϕ(c1, c2, c3, w1, w2, w3) ∈ (A+A)∩A
for some w1, w2, w3 ∈ {0, 1}. The reduction takes O(n) time. J

I Lemma 21. Let a1, . . . , ak be k non-zero integers in the domain {−u, . . . , u}. For any
sufficiently large M ,

Pr
p1,p2,p3∈PM

[
#{i : ai ≡ 0 mod p1p2p3} < 24 log3(M) log3(u)

M3 k

]
≥ 2

3 .

Proof. Let Xi = 1 if ai ≡ 0 mod p1p2p3, and Xi = 0 otherwise. For each i = 1, . . . , k, the
number of distinct prime factors of ai is at most log u. By the Prime Number Theorem,
π(M) ∼ M

logM , where π(M) is the number of primes in {1, . . . ,M}. Hence, for M sufficiently
large, π(M) ≥ 1

2
M

logM , and

Pr
p∈PM

[ai ≡ 0 mod p] ≤ log u
1
2

M
logM

= 2logM log u
M

.

Since p1, p2, p3 are independently chosen primes,

E[Xi] = Pr
p1,p2,p3∈PM

[Xi = 1] =
3∏
j=1

Pr
pj∈PM

[ai ≡ 0 mod pj ] ≤
(

2 logM log u
M

)3
.

Let X =
∑
iXi = #{i : ai ≡ 0 mod p1p2p3}. By linearity of expectation,

E[X] =
∑
i

E[Xi] ≤ k ·
(

2 logM log u
M

)3
.

By Markov’s Inequality, Pr[X ≥ 3E[X]] ≤ 1
3 , as desired. J

I Lemma 22. For any 0 < δ < 1, suppose 3SUM+ in the bounded domain [n2+δ] can be
solved in O(n2−ε) time, then 3SUM can be solved in O(n1+δ +n2−ε +n2−δ log6(n)) time with
probability 2/3. (With probability 2/3, the algorithm answers yes or no correctly, otherwise
it outputs “Don’t Know”.)

Proof. Using a randomized reduction [5, 17], assume without loss of generality the given
3SUM instance is in the domain of [n3]. Also assume without loss of generality that the
given 3SUM instance is on the same set A, asking whether there exist a, b, c ∈ A such that
a+ b = c. Consider the following algorithm.
Step 1. Sort A. Choose 2nδ elements in A with uniform probability, and determine whether

each of them is a hit. If a hit is found among the 2nδ elements, output yes and terminate.
Otherwise, proceed to step 2. By Lemma 19, this step takes O(n1+δ) time.



C. Hsu and C. Umans 50:11

Step 2. Choose three primes p1, p2, p3 independently with uniform probability among all
primes less than n(2+δ)/3. Map A to a set in A′ in Fp1 × Fp2 × Fp3 by a 7→ (amod p1, a

mod p2, amod p3). By Lemma 20, under the given assumption, 3SUM+ on A′ can be
solved in O(n2−ε) time.

Step 3. If the 3SUM+ instance on A′ reports more than 648 log6(n)n1−δ hits, the algorithm
fails and outputs “Don’t Know”.

Step 4. If the 3SUM+ instance on A′ reports no more than 648n1−δ log6(n) hits, for each
pre-image of the hits, determine whether it is a hit in integer 3SUM. If a hit is found,
output yes. Otherwise, output no. By Lemma 19, this step runs in time O(n2−δ log6(n)).

The total runtime of the algorithm is O(n1+δ + n2−ε + n2−δ log6(n)). To analyze the
probability bound:

Suppose there are at least n1−δ hits in A, then each randomly chosen element in Step
1 is a hit with probability at least n−δ. Let X be the total number of hits among the 2nδ
randomly chosen elements in Step 1, and let µ = E[X]. Since µ ≥ 2, by Multiplicative
Chernoff Bound,

Pr[X = 0] ≤ Pr[X < (1− 1
2)µ] <

(
e−

1
2

(1− 1
2 )1− 1

2

)µ
= (2e)−

µ
2 ≤ 1

2e .

Thus, if the integer 3SUM instance on A has more than n1−δ hits, the algorithm correctly
outputs yes in Step 1 with probability at least 1− 1

2e ≥
2
3 .

Suppose the 3SUM instance on A has fewer than n1−δ hits. By applying Lemma 21 to all
non-zero ai + bj − ck (at most n3 triples), we know with probability at least 2/3, the number
of false positive triples is no more than

24n3 log3(n(2+δ)/3) log3(n3)
(n(2+δ)/3)3 ≤ 24(2 + δ)3 log6(n)n1−δ ≤ 648n1−δ log6(n).

Thus, the algorithm outputs yes/no correctly in Step 4 with probability at least 2/3, and
outputs “Don’t Know” in Step 3 with probability at most 1/3. J

I Theorem 9. (Restated) Under the standard 3SUM conjecture, 3SUM+ in the domain of
{−n2+δ, ..., n2+δ} requires time Ω(n2−o(1)) for any δ > 0.

Proof. This is an immediate corollary to Lemma 22. J

5 Conclusion and Open Problems

Under the standard k-SUM conjecture, we proved lower bounds for k-SUM in Fdp, for bounded
monotone d-dimensional 3SUM, and for 3SUM+ in the bounded domain of {−n2+δ, . . . , n2+δ}
for arbitrarily small δ.

One open problem is whether there is a lower bound for 3XOR (3SUM in Fd2) under the
3SUM conjecture. Our result is only meaningful for p that are sufficiently large as a function
of k. In particular, it does not assert anything for p = 2. 3XOR is related to other well known
problems such as listing triangles [15]. Not much is known about the complexity of 3XOR.
Even an O(n1.99) algorithm or an Ω(n1.01) lower bound for 3XOR would be significant.

Another open problem is to obtain a faster k-SUM algorithm in Fdp for odd k. Our
conditional lower bound for k-SUM in Fdp is tight for even k. However, for odd k, there
is a gap between the best known Õ(ndk/2e) algorithm and our Ω(ndk/2e−2k log k

log p−o(1)) lower
bound. From an optimistic perspective, for odd k, our results suggest that there may be

MFCS 2017



50:12 On Multidimensional and Monotone k-SUM

an O(ndk/2e−2k log k
log p ) algorithm for k-SUM in Fdp without violating the k-SUM conjecture. In

particular, there may be an O(n2− c
log p ) algorithm for 3SUM in Fdp, even under the 3SUM

conjecture.

References
1 Amir Abboud and Kevin Lewi. Exact weight subgraphs and the k-SUM conjecture. In In-

ternational Colloquium on Automata, Languages, and Programming, pages 1–12. Springer,
2013.

2 Amir Abboud, Kevin Lewi, and Ryan Williams. Losing weight by gaining edges. In
European Symposium on Algorithms, pages 1–12. Springer, 2014.

3 Nir Ailon and Bernard Chazelle. Lower bounds for linear degeneracy testing. Journal of
the ACM (JACM), 52(2):157–171, 2005.

4 Amihood Amir, Timothy M Chan, Moshe Lewenstein, and Noa Lewenstein. On hardness
of jumbled indexing. In Automata, Languages, and Programming, pages 114–125. Springer,
2014.

5 Ilya Baran, Erik D Demaine, and Mihai Pătraşcu. Subquadratic algorithms for 3SUM.
Algorithmica, 50(4):584–596, 2008.

6 Arnab Bhattacharyya, Piotr Indyk, David P Woodruff, and Ning Xie. The complexity of
linear dependence problems in vector spaces. In ICS, pages 496–508, 2011.

7 Timothy M Chan and Moshe Lewenstein. Clustered integer 3SUM via additive combin-
atorics. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of
Computing, pages 31–40. ACM, 2015.

8 Rod G Downey, Michael R Fellows, Alexander Vardy, and Geoff Whittle. The parametrized
complexity of some fundamental problems in coding theory. SIAM Journal on Computing,
29(2):545–570, 1999.

9 Jeff Erickson. Lower bounds for linear satisfiability problems. In Chicago Journal of
Theoretical Computer Science, volume 8, 1999.

10 Ari Freund. Improved subquadratic 3sum. Algorithmica, pages 1–19, 2015.
11 Anka Gajentaan and Mark H Overmars. On a class of O(n2) problems in computational

geometry. Computational Geometry, 5(3):165–185, 1995.
12 Omer Gold and Micha Sharir. Improved bounds for 3sum, k-sum, and linear degeneracy.

arXiv preprint arXiv:1512.05279, 2015.
13 Isaac Goldstein, Tsvi Kopelowitz, Moshe Lewenstein, and Ely Porat. How hard is it to find

(honest) witnesses? In LIPIcs-Leibniz International Proceedings in Informatics, volume 57.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

14 Allan Grønlund and Seth Pettie. Threesomes, degenerates, and love triangles. In Founda-
tions of Computer Science (FOCS), 2014 IEEE 55th Annual Symposium on, pages 621–630.
IEEE, 2014.

15 Zahra Jafargholi and Emanuele Viola. 3SUM, 3XOR, triangles. Algorithmica, 74(1):326–
343, 2016.

16 Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3sum conjec-
ture. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1272–1287. Society for Industrial and Applied Mathematics, 2016.

17 Mihai Pătraşcu. Towards polynomial lower bounds for dynamic problems. In Proceedings
of the Forty-Second ACM Symposium on Theory of computing, pages 603–610. ACM, 2010.

18 Mihai Pătraşcu and Ryan Williams. On the possibility of faster SAT algorithms. In
Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1065–1075. SIAM, 2010.



C. Hsu and C. Umans 50:13

19 Virginia Vassilevska and Ryan Williams. Finding, minimizing, and counting weighted sub-
graphs. In Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing,
pages 455–464. ACM, 2009.

20 Emanuele Viola. Reducing 3XOR to listing triangles, an exposition. In Electronic Col-
loquium on Computational Complexity (ECCC), volume 18, page 113, 2011.

MFCS 2017





Parameterized Complexity of the List Coloring
Reconfiguration Problem with Graph Parameters∗†

Tatsuhiko Hatanaka1, Takehiro Ito2, and Xiao Zhou3

1 Graduate School of Information Sciences, Tohoku University, Sendai, Japan
hatanaka@ecei.tohoku.ac.jp

2 Graduate School of Information Sciences, Tohoku University, Sendai, Japan
takehiro@ecei.tohoku.ac.jp

3 Graduate School of Information Sciences, Tohoku University, Sendai, Japan
zhou@ecei.tohoku.ac.jp

Abstract
Let G be a graph such that each vertex has its list of available colors, and assume that each list
is a subset of the common set consisting of k colors. For two given list colorings of G, we study
the problem of transforming one into the other by changing only one vertex color assignment at
a time, while at all times maintaining a list coloring. This problem is known to be PSPACE-
complete even for bounded bandwidth graphs and a fixed constant k. In this paper, we study
the fixed-parameter tractability of the problem when parameterized by several graph parameters.
We first give a fixed-parameter algorithm for the problem when parameterized by k and the
modular-width of an input graph. We next give a fixed-parameter algorithm for the shortest
variant which computes the length of a shortest transformation when parameterized by k and
the size of a minimum vertex cover of an input graph. As corollaries, we show that the problem
for cographs and the shortest variant for split graphs are fixed-parameter tractable even when
only k is taken as a parameter. On the other hand, we prove that the problem is W[1]-hard when
parameterized only by the size of a minimum vertex cover of an input graph.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases combinatorial reconfiguration, fixed-parameter tractability, graph al-
gorithm, list coloring, W[1]-hardness

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.51

1 Introduction

Recently, the framework of reconfiguration [14] has been extensively studied in the field of
theoretical computer science. This framework models several situations where we wish to
find a step-by-step transformation between two feasible solutions of a combinatorial (search)
problem such that all intermediate solutions are also feasible and each step respects a fixed
reconfiguration rule. This reconfiguration framework has been applied to several well-studied
combinatorial problems. (See a survey [18].)

∗ This work is partially supported by JST CREST Grant Number JPMJCR1402, and by JSPS KAKENHI
Grant Numbers JP16J02175, JP16K00003, and JP16K00004.

† A full version of the paper is available at https://arxiv.org/abs/1705.07551.

© Tatsuhiko Hatanaka, Takehiro Ito, and Xiao Zhou;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 51; pp. 51:1–51:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.51
https://arxiv.org/abs/1705.07551
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


51:2 Parameterized Complexity of the List Coloring Reconfiguration Problem

{c1 , c2 , c3}

{c3 , c4}

{c2 , c3}{c1 , c4}

c1

c3

c2c4

c3

c3

c2c4

c3

c3

c2c1

c3

c4

c2c1

(a) G , L (b)
f0 fr

Figure 1 A reconfiguration sequence between two L-colorings f0 and ft of G.

1.1 Our problem
In this paper, we study a reconfiguration problem for list (vertex) colorings in a graph, which
was introduced by Bonsma and Cereceda [3].

Let C = {c1, c2, . . . , ck} be the set of k colors, called the color set. A (proper) k-coloring
of a graph G = (V,E) is a mapping f : V → C such that f(v) 6= f(w) for every edge vw ∈ E.
In list coloring, each vertex v ∈ V has a set L(v) ⊆ C of colors, called the list of v; sometimes,
the list assignment L : V → 2C itself is called a list. Then, a k-coloring f of G is called an
L-coloring of G if f(v) ∈ L(v) holds for every vertex v ∈ V . Therefore, a k-coloring of G is
simply an L-coloring of G when L(v) = C holds for every vertex v of G, and hence L-coloring
is a generalization of k-coloring. Figure 1(b) illustrates four L-colorings of the same graph G
in Figure 1(a); the color assigned to each vertex is attached to the vertex.

In the reconfiguration framework, two L-colorings f and f ′ of a graph G = (V,E) are
said to be adjacent if |{v ∈ V : f(v) 6= f ′(v)}| = 1 holds, that is, f ′ can be obtained from f

by recoloring exactly one vertex. A sequence 〈f0, f1, . . . , f`〉 of L-colorings of G is called a
reconfiguration sequence between f0 and f` (of length `) if fi−1 and fi are adjacent for each
i ∈ {1, 2, . . . , `}. Two L-colorings f and f ′ are reconfigurable if there exists a reconfiguration
sequence between them. The list coloring reconfiguration problem is to determine
whether two given L-colorings f0 and ft are reconfigurable, or not. Figure 1 shows an
example of a yes-instance of list coloring reconfiguration, where the vertex whose
color assignment was changed from the previous one is depicted by a black circle.

1.2 Known and related results
List coloring reconfiguration is one of the most well-studied reconfiguration problems,
as well as coloring reconfiguration which is a special case of the problem such that
L(v) = {c1, c2, . . . , ck} holds for every vertex v. These problems have been studied intensively
from various viewpoints [1, 2, 3, 4, 6, 7, 9, 13, 15, 19] including the generalizations [5, 20].

Bonsma and Cereceda [3] proved that coloring reconfiguration is PSPACE-complete
even for bipartite graphs and any fixed constant k ≥ 4. On the other hand, Cereceda et
al. [7] gave a polynomial-time algorithm solving coloring reconfiguration for any graph
and k ≤ 3; the algorithm can be applied to list coloring reconfiguration, too. In
particular, the former result implies that there is no fixed-parameter algorithm for coloring
reconfiguration (and hence list coloring reconfiguration) when parameterized by
only k under the assumption of P 6= PSPACE.

Bonsma et al. [4] and Johnson et al. [15] independently developed a fixed-parameter
algorithm to solve coloring reconfiguration when parameterized by k+ `, where ` is the
upper bound on the length of reconfiguration sequences, and again their algorithms can be
applied to list coloring reconfiguration. In contrast, if coloring reconfiguration
is parameterized only by `, then it is W[1]-hard when k is an input [4] and does not admit a
polynomial kernelization when k is fixed unless the polynomial hierarchy collapses [15].



T. Hatanaka, T. Ito, and X. Zhou 51:3

[4, 17]

[20] [20]

[Ours]

[Ours] [Ours]

[4]

[14]

k (no parameter)

k +  k + cw

k + mw

k + vc

k + tw

k + bw

tractable

tractable for
shortest variant

intractable

 cw

mw

vc

tw

bw
intractable

(a) parameters with k (b) parameters without k

Figure 2 All results (including known ones) for list coloring reconfiguration from the
viewpoint of parameterized complexity, where cw, tw, bw, mw, and vc are the upper bounds on the
cliquewidth, treewidth, bandwidth, modular-width, and the size of a minimum vertex cover of an
input graph, respectively.

Hatanaka et al. [13] proved that list coloring reconfiguration is PSPACE-complete
even for complete split graphs, whose modular-width is zero. Wrochna [19] proved that list
coloring reconfiguration is PSPACE-complete even when k and the bandwidth of an
input graph are bounded by some constant; thus the treewidth and the cliquewidth of an
input graph are also bounded.

1.3 Our contribution
To the best of our knowledge, known algorithmic results mostly employed the length `

of reconfiguration sequences as a parameter [4, 15], and no fixed-parameter algorithm
is known when parameterized by graph parameters. Therefore, we study list coloring
reconfiguration when parameterized by several graph parameters, and paint an interesting
map of graph parameters which shows the boundary between fixed-parameter tractability
and intractability. Our map is Figure 2 which shows both known and our results, where an
arrow α→ β indicates that the parameter α is “stronger” than β, that is, β is bounded if α
is bounded. (For relationships of parameters, see, e.g., [10, 16].)

More specifically, we first give a fixed-parameter algorithm solving list coloring
reconfiguration when parameterized by k and the modular-width mw of an input graph.
(The definition of modular-width will be given in Section 2.1.) Note that, according to the
known results [3, 13], we cannot construct a fixed-parameter algorithm for general graphs
when only one of k and mw is taken as a parameter under the assumption of P 6= PSPACE.
However, as later shown in Corollary 4, our algorithm implies that the problem is fixed-
parameter tractable for cographs even when only k is taken as a parameter.

We then consider the shortest variant which computes the length of a shortest reconfig-
uration sequence (i.e., the minimum number of recoloring steps) for a yes-instance of list
coloring reconfiguration, and show that it admits a fixed-parameter algorithm when
parameterized by k and the size of a minimum vertex cover of an input graph. Moreover, as
a corollary, we show that the shortest variant is fixed-parameter tractable for split graphs
even when only k is taken as a parameter.

Finally, we prove that list coloring reconfiguration is W [1]-hard when parameter-
ized only by the size of a minimum vertex cover of an input graph.

Due to the page limitation, several proofs are omitted from this extended abstract.

MFCS 2017



51:4 Parameterized Complexity of the List Coloring Reconfiguration Problem

v1

v2

v5

v4

v3

v6

v7

v8

v10

v9

v11

(a) (b)

Figure 3 (a) An example of module and (b) a prime.

u1 u2

Q

u3 u4

v5

v4

v3

v6

v1

G1
G = Sub(Q ,{G1 , G2 , G3 , G4})

G2

G3

G4

v2

v1

v2

v5

v4

v3

v6

v7

v8

v10

v9

v11

v7

v8

v10

v9

v11

Figure 4 An example of substitution operation.

2 Preliminaries

We assume without loss of generality that graphs are simple and connected. Let G = (V,E)
be a graph with vertex set V and edge set E; we sometimes denote by V (G) and E(G) the
vertex set and the edge set of G, respectively. For a vertex v in G, we denote by N(G, v) the
neighborhood {w ∈ V : vw ∈ E} of v in G. For a vertex subset V ′ ⊆ V , we denote by G[V ′]
the subgraph of G induced by V ′, and denote G \ V ′ = G[V (G) \ V ′]. For a subgraph H of
G, we denote G \H = G \ V (H). Let ω(G) be the size of a maximum clique of G. We have
the following simple observation.

I Observation 1. Let G be a graph with a list L : V (G)→ 2C . If G has an L-coloring, then
ω(G) ≤ |C|.

A graph is split if its vertex set can be partitioned into a clique and an independent set.
A graph is a cograph (or a P4-free graph) if it contains no induced path with four vertices.

2.1 Modules and modular decomposition
A module of a graph G = (V,E) is a vertex subset M ⊆ V such that N(G, v) \ M =
N(G,w) \M for every two vertices v and w in M . In other words, the module M is a set of
vertices whose neighborhoods in G \M are the same. For example, the graph in Figure 3(a)
has a module M = {v3, v4} for which N(G, v3) \M = N(G, v4) \M = {v1, v2, v6} holds.
Note that the vertex set V of G, the set consisting of only a single vertex, and the empty set
∅ are all modules of G; they are called trivial. A graph G is a prime if all of its modules are
trivial; for an example, see Figure 3(b).



T. Hatanaka, T. Ito, and X. Zhou 51:5

v7

v8

v10

v9

v11

v1

x1 x2

x3 x4

x5

x6

x8 x9 x10 x11x7

x12 x14

x15

x16

x13

v2

v5

v4

v3

v6

12

1

2

11

5

3

4

7 9

8

14 6 15

CG (x12)

CG (x14)

(b) G = CG (T)(a) T

CG (x13)

CG (x15)

10

11

Figure 5 (a) A substitution tree T for (b) a graph G.

We now introduce the notion of modular decomposition, which was first presented by
Gallai in 1967 as a graph decomposition technique [11]. For a survey, see, e.g., [12].

We first define the substitution operation, which constructs one graph from more than one
graphs. Let Q be a graph, called a quotient graph, consisting of p (≥ 2) nodes u1, u2, . . . , up,
and let F = {G1, G2, . . . , Gp} be a family of vertex-disjoint graphs such that Gi corresponds
to ui for every i ∈ {1, 2, . . . , p}. The Q-substitution of F , denoted by Sub(Q,F), is the graph
which is obtained by taking a union of all graphs in F and then connecting every pair of
vertices v ∈ V (Gi) and w ∈ V (Gj) by an edge if and only if ui and uj are adjacent in Q.
That is, the vertex set of Sub(Q,F) is

⋃
{V (Gi) : Gi ∈ F}, and the edge set of Sub(Q,F)

is the union of
⋃
{E(Gi) : Gi ∈ F} and {vw : v ∈ V (Gi), w ∈ V (Gj), uiuj ∈ E(Q)}. (See

Figure 4 as an example.)
A substitution tree is a rooted tree T such that each non-leaf node x ∈ V (T ) is associated

with a quotient graph Q(x) and has |V (Q(x))| child nodes. For each node x ∈ V (T ),
we can recursively define the corresponding graph CG(x) as follows: If x is a leaf, CG(x)
consists of a single vertex. Otherwise, let y1, y2, . . . , yp be p = |V (Q(x))| children of x, then
CG(x) = Sub(Q(x), {CG(y1),CG(y2), . . . ,CG(yp)}). For the root r of T , CG(r) is called the
corresponding graph of T , and we denote CG(T ) := CG(r). We say that T is a substitution
tree for a graph G if CG(T ) = G, and refer to a node in T in order to distinguish it from a
vertex in G. Figure 5(a) illustrates a substitution tree for the graph G in Figure 5(b); each
leaf xi, i ∈ {1, 2, . . . , 11}, corresponds to the subgraph of G consisting of a single vertex vi.
We note that the vertex set V (CG(x)) of each corresponding graph CG(x), x ∈ V (T ), forms
a module of CG(T ).

A modular decomposition tree T (an MD-tree for short) for a graph G is a substitution
tree for G which satisfies the following three conditions:

Each node x ∈ V (T ) applies to one of the following three types:
a series node, whose quotient graph Q(x) is a complete graph;
a parallel node, whose quotient graph Q(x) is an edge-less graph; and
a prime node, whose quotient graph Q(x) is a prime with at least four vertices.

No edge connects two series nodes.
No edge connects two parallel nodes.

It is known that any graph G has a unique MD-tree with O(|V (G)|) nodes, and it can be
computed in time O(|V (G)|+ |E(G)|) [17]. We denote by MD(G) the unique MD-tree for a
graph G. The modular-width mw(G) of a graph G is the maximum number of children of

MFCS 2017



51:6 Parameterized Complexity of the List Coloring Reconfiguration Problem

a prime node in its MD-tree MD(G). The substitution tree T in Figure 5(a) is indeed the
MD-tree for the graph G in Figure 5(b), and hence mw(G) = 4; note that only x16 is a prime
node in T .

We now define a variant of MD-trees, which will make our proofs and analyses simpler. A
pseudo modular decomposition tree T (a PMD-tree for short) for a graph G is a substitution
tree for G which satisfies the following two conditions:

Each node x ∈ V (T ) applies to one of the following three types:
a 2-join node, whose quotient graph Q(x) is a complete graph with exactly two vertices;
a parallel node, whose quotient graph Q(x) is an edge-less graph; and
a prime node, whose quotient graph Q(x) is a prime with at least four vertices.

No edge connects two parallel nodes.

I Proposition 2. For any graph G, there exists a PMD-tree T with O(|V (G)|) nodes such
that each prime node x ∈ V (T ) has at most mw(G) children, and it can be constructed in
polynomial time.

We denote by PMD(G) a PMD-tree for G such that each prime node x ∈ V (T ) has at most
mw(G) children. The pseudo modular-width pmw(G) of a graph G is the maximum number
of children of a non-parallel node in its PMD-tree. Notice that pmw(G) = max{2,mw(G)}
holds.

2.2 Other notation
Let G = (V,E) be a graph, and let L : V → 2C be a list. For two L-colorings f and f ′ of G,
we define the difference dif(f, f ′) between f and f ′ as the set {v ∈ V : f(v) 6= f ′(v)}. Notice
that f and f ′ are adjacent if and only if |dif(f, f ′)| = 1.

We express an instance I of list coloring reconfiguration by a 4-tuple (G,L, f0, ft)
consisting of a graph G, a list L, and initial and target L-colorings f0 and ft of G.

Finally, we introduce a notion of “restriction” of mappings and instances. Consider an
arbitrary mapping µ : V (G)→ S, where G is a graph and S is any set. For a subgraph H of
G, we denote by µH the restriction of µ on V (H), that is, µH is a mapping from V (H) to S
such that µH(v) = µ(v) for each vertex v ∈ V (H). Let I = (G,L, f0, ft) be an instance of
list coloring reconfiguration. For a subgraph H of G, we define the restriction IH of
I (on H) as the instance (H,LH , fH

0 , fH
t ) of list coloring reconfiguration. Notice

that fH
0 and fH

t are proper LH -colorings of H.

3 Fixed-Parameter Algorithm for Bounded Modular-Width Graphs

The following is our main theorem of this section.

I Theorem 3. List coloring reconfiguration is fixed-parameter tractable when para-
meterized by k + mw, where k and mw are the upper bounds on the size of the color set and
the modular-width of an input graph, respectively.

Because it is known that any cograph has modular-width zero, we have the following
result as a corollary of Theorem 3.

I Corollary 4. List coloring reconfiguration is fixed-parameter tractable for cographs
when parameterized by the size k of the color set.



T. Hatanaka, T. Ito, and X. Zhou 51:7

{c1 , c2 , c3}

{c1 , c2 , c4} {c1 , c3}

H1 f0 fr
G , L

H2

{c2 , c3}

{c1 , c2}

{c1 , c2 , c3} {c1 , c2}

c1 c3

c2 c1

c2 c1

c1 c4 c2

c1 c2

c1 c2

c3

Figure 6 An instance I = (G, L, f0, ft) of list coloring reconfiguration, and two identical
subgraphs H1 and H2.

Recall that pmw(G) = max{2,mw(G)}, and hence pmw(G) ≤ mw(G) + 2. Therefore, as
a proof of Theorem 3, it suffices to give a fixed-parameter algorithm for list coloring
reconfiguration with respect to k + pmw, where pmw is an upper bound on pmw(G).

3.1 Reduction rule
In this subsection, we give a useful lemma, which compresses an input graph into a smaller
graph with keeping the reconfigurability.

Let I = (G,L, f0, ft) be an instance of list coloring reconfiguration. For each
vertex v ∈ V (G), we define a vertex assignment A(v) as a triple (L(v), f0(v), ft(v)) consisting
of a list, and initial and target color assignments of v. Let H1 and H2 be two induced
subgraphs of G such that |V (H1)| = |V (H2)| and V (H1) ∩ V (H2) = ∅. Then, H1 and H2
are identical (on I) if there exists a bijective function φ : V (H1) → V (H2) which satisfies
the following two conditions:
1. H1 and H2 are isomorphic under φ, that is, vw ∈ E(H1) if and only if φ(v)φ(w) ∈ E(H2).
2. For all vertices v ∈ V (H1),

a. N(G, v) \ V (H1) = N(G,φ(v)) \ V (H2); and
b. A(v) = A(φ(v)), that is, L(v) = L(φ(v)), f0(v) = f0(φ(v)) and ft(v) = ft(φ(v)).

We note that the condition 2-a implies that there is no edge between H1 and H2. Figure 6
shows an example of identical subgraphs H1 and H2 on I = (G,L, f0, ft), where the bijective
function maps each vertex in H1 to a vertex in H2 with the same shape.

We now prove the following key lemma, which holds for any graph.

I Lemma 5. (Reduction rule) Let I = (G,L, f0, ft) be an instance of list coloring
reconfiguration, and let H1 and H2 be two identical subgraphs of G. Then, IG\H2 is a
yes-instance if and only if I is.

3.2 Kernelization
Let I = (G,L, f0, ft) be an instance of list coloring reconfiguration. Suppose that
the color set C has at most k colors, G is a connected graph with pmw(G) ≤ pmw, and all
vertices of G are totally ordered according to an arbitrary binary relation ≺.

3.2.1 Sufficient condition for identical subgraphs
We first give a sufficient condition for which two nodes in a PMD-tree PMD(G) for G
correspond to identical subgraphs. Let x ∈ V (PMD(G)) be a node, let p := |V (CG(x))|, and
assume that all vertices in V (CG(x)) are labeled as v1, v2, . . . , vp according to ≺; that is,

MFCS 2017



51:8 Parameterized Complexity of the List Coloring Reconfiguration Problem

vi ≺ vj holds for each i, j with 1 ≤ i < j ≤ p. Let m ≥ p be some integer which will be
defined later. We now define an (m+ 1)×m matrixMm(x) as follows:

(Mm(x))i,j =


1 if i, j ≤ p and vivj ∈ E(CG(x));
0 if i, j ≤ p and vivj /∈ E(CG(x));
0 if p < i ≤ m or p < j ≤ m;
A(vj) if i = m+ 1 and j ≤ p;
∅ otherwise,

where (Mm(x))i,j denotes an (i, j)-element of Mm(x). Notice that Mm(x) contains the
adjacency matrix of CG(x) at its upper left p × p submatrix, and the bottommost row
represents the vertex assignment of each vertex in V (CG(x)). We call Mm(x) an m-ID-
matrix of x. For example, consider the node x13 in Figure 5(a). Then, p = 2, and a
4-ID-matrix of x13 is as follows:

M4(x13) =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

A(x3) A(x4) ∅ ∅


I Lemma 6. Let y1 and y2 be two children of a parallel node x in PMD(G), and let m be an
integer with m ≥ max{|V (CG(y1))|, |V (CG(y2))|}. IfMm(y1) =Mm(y2) holds, then CG(y1)
and CG(y2) are identical.

3.2.2 Kernelization algorithm
We now describe how to kernelize an input instance. Our algorithm traverses a PMD-tree
PMD(G) of G by a depth-first search in post-order starting from the root of PMD(G), that
is, the algorithm processes a node of PMD(G) after its all children are processed.

Let x ∈ V (PMD(G)) be a node which is currently visited. If x is a non-parallel node,
we do nothing. Otherwise (i.e., if x is a parallel node,) let Y be the set of all children of
x, and let m := maxy∈Y |V (CG(y))|. We first construct m-ID-matrices of all children of x.
If there exist two nodes y1 and y2 such thatMm(y1) =Mm(y2), then CG(y1) and CG(y2)
are identical; and hence we remove CG(y2) from G by Lemma 5. Then, we modify PMD(G)
in order to keep it still being a PMD-tree for the resulting graph as follows. We remove a
subtree rooted at y2 from PMD(G), and delete a node corresponding to y2 from a quotient
graph Q(x) of x. If this removal makes x having only one child y in the PMD-tree, we
contract the edge xy into a new node x′ such that Q(x′) = Q(x).

The running time of this kernelization can be estimated as follows. For each node
x ∈ V (PMD(G)), the construction of m-ID-matrices can be done in time O(|Y | · m2) =
O(|V (G)|3). We can check if Mm(y1) = Mm(y2) for each pair of children y1 and y2 of
x in time O(m2) = O(|V (G)|2). Moreover, a modification of PMD(G), which follows an
application of Lemma 5, can be done in polynomial time. Recall that the number of children
of x and the size of a PMD-tree PMD(G) are both bounded linearly in |V (G)|, and hence
our kernelization can be done in polynomial time.

3.2.3 Size of the kernelized instance
We finally prove that the size of the obtained instance I ′ = (G′, L′, f ′0, f ′t) depends only on
k+ pmw; recall that pmw is the upper bound on pmw(G). By Observation 1, we can assume



T. Hatanaka, T. Ito, and X. Zhou 51:9

that the maximum clique size ω(G′) is at most k. In addition, G′ is connected since G is
connected and an application of Lemma 5 does not affect the connectivity of the graph.
Therefore, it suffices to prove the following lemma.

I Lemma 7. The graph G′ has at most hk,pmw(ω(G′)) vertices, where hk,pmw(i) is recursively
defined for an integer i ≥ 1 as follows:

hk,pmw(i) =
{

1 if i = 1;
pmw · hk,pmw(i− 1) ·

√
2(hk,pmw(i−1))2

· (2k · k2)hk,pmw(i−1) otherwise.

In particular, hk,pmw(ω(G′)) depends only on k + pmw.

Finally, we prove Theorem 3. By the above discussions, we can compute the kernelized
instance I ′ = IG′ of list coloring reconfiguration in polynomial time. Because
the size of I ′ depends only on k + pmw, we can solve I ′ by enumerating all LG′-colorings.
The running time for this enumeration depends only on k + pmw, and hence we obtain a
fixed-parameter algorithm for list coloring reconfiguration.

This completes the proof of Theorem 3.

4 Shortest Variant

In this section, we study the shortest variant, list coloring shortest reconfiguration.
We note that the shortest length can be expressed by a polynomial number of bits, because
there are at most kn colorings for a graph with n vertices and k colors. Therefore, the answer
can be output in polynomial time. The following is our result.

I Theorem 8. List coloring shortest reconfiguration is fixed-parameter tractable
when parameterized by k + vc, where k and vc are the upper bounds on the sizes of the color
set and a minimum vertex cover of an input graph, respectively.

As a corollary, we have the following result.

I Corollary 9. List coloring shortest reconfiguration is fixed-parameter tractable
for split graphs when parameterized by the size k of the color set.

As a proof of Theorem 8, we give such a fixed-parameter algorithm. Our basic idea is
the same as the fixed-parameter algorithm in Section 3. However, in order to compute the
shortest length, we consider a more general “weighted” version of list coloring shortest
reconfiguration, which is defined as follows. Let I = (G,L, f0, ft) be an instance of
list coloring reconfiguration, and assume that each vertex v ∈ V (G) has a weight
w(v) ∈ N, where N is the set of all positive integers. For two adjacent L-colorings f and f ′ of
a graph G, we define the gap gapw(f, f ′) between f and f ′ as the weight w(v) of v, where v
is a unique vertex in dif(f, f ′). The length lenw(S) of a reconfiguration sequence S = 〈f0, f1,

. . . , f`〉 is defined as lenw(S) =
∑`

i=1 gapw(fi−1, fi). We denote by OPT(I, w) the minimum
length of a reconfiguration sequence between f0 and ft; we define OPT(I, w) = +∞ if I
is a no-instance of list coloring reconfiguration. Then, list coloring shortest
reconfiguration can be seen as computing OPT(I, w) for the case where every vertex has
weight one. Thus, to prove Theorem 8, it suffices to construct a fixed-parameter algorithm
for the weighted version when parameterized by k + vc.

As with Section 3, we again use the concept of kernelization to prove Theorem 8. More
precisely, for a given instance (I, w), we first construct an instance (I ′ = (G′, L′, f ′0, f ′t), w′) in

MFCS 2017



51:10 Parameterized Complexity of the List Coloring Reconfiguration Problem

polynomial time such that the size of I ′ depends only on k+vc, and OPT(I ′, w′) = OPT(I, w)
holds. Then, we can compute OPT(I ′, w′) by computing a (weighted) shortest path between
f ′0 and f ′t in an edge-weighted graph defined as follows: the vertex set consists of all L′-
colorings of G′, and each pair of adjacent L′-colorings are connected by an edge with a weight
corresponding to the gap between them.

4.1 Reduction rule for the weighted version
In this subsection, we give the counterpart of Lemma 5 for the weighted version.

Let (I = (G,L, f0, ft), w) be an instance of the weighted version, and assume that there
exist two identical subgraphs H1 and H2 of G, both of which consist of single vertices, say,
V (H1) = {v1} and V (H2) = {v2}. We now define a new instance (I ′, w′) as follows:
I ′ = IG\H2 ; and
w′(v1) = w(v1) + w(v2) and w′(v) = w(v) for any v ∈ V (G) \ {v1, v2}.

Intuitively, v2 is merged into v1 together with its weight. Then, we have the following lemma.

I Lemma 10. OPT(I, w) = OPT(I ′, w′).

4.2 Kernelization
Finally, we give a kernelization algorithm as follows.

Let (I = (G,L, f0, ft), w) be an instance of the weighted version such that G has a
vertex cover of size at most vc. Because such a vertex cover can be computed in time
O(2vc · |V (G)|) [8], we now assume that we are given a vertex cover VC of size at most vc.
Notice that VI := V \ VC forms an independent set of G. Suppose that there exist two
vertices v1, v2 ∈ VI such that N(G, v1) = N(G, v2) and A(v1) = A(v2) hold. Then, induced
subgraphs G[{v1}] and G[{v2}] are identical. Therefore, we can apply Lemma 10 to remove
v2 from G, and modify a weight function without changing the optimality. As a kernelization,
we repeatedly apply Lemma 10 for all such pairs of vertices in VI , which can be done in
polynomial time. Let G′ be the resulting subgraph of G, and let V ′I := V (G′) \ VC . Since VC

is of size at most vc, it suffices to prove the following lemma.

I Lemma 11. |V ′I | ≤ 2vc · 2k · k2.

This completes the proof of Theorem 8.

5 W[1]-Hardness

Because even the shortest variant is fixed-parameter tractable when parameterized by k+ vc,
one may expect that vc is a strong parameter and the problem is fixed-parameter tractable
with only vc. However, we prove the following theorem in this section.

I Theorem 12. List coloring reconfiguration is W [1]-hard when parameterized by
vc, where vc is the upper bound on the size of a minimum vertex cover of an input graph.

Recall that list coloring reconfiguration is PSPACE-complete even for a fixed constant
k ≥ 4. Therefore, the problem is intractable if we take only one parameter, either k or vc.

In order to prove Theorem 12, we give an FPT-reduction from the independent set
problem when parameterized by the solution size s, in which we are given a graph H and an
integer s ≥ 0, and asked whether H has an independent set of size at least s. This problem
is known to be W[1]-hard [8].



T. Hatanaka, T. Ito, and X. Zhou 51:11

{c*
, c1 , c1 , c1 , c1 , c1 }

u3 u4 u5

u1 u2

w1 w2

v1

v2

v3

{a , b} {a , b , c*}

(a) H , s = 3 (b) G , L

Vfor

1 2 3 4 5

{c*
, c2 , c2 , c2 , c2 , c2 }1 2 3 4 5

{c*
, c3 , c3 , c3 , c3 , c3 }1 2 3 4 5

Figure 7 (a) An instance H of independent set, and (b) the graph G and the list L. The
set Vfor contains vertices of (i, j; p, q)-forbidding gadgets for all (i, j) ∈ {(1, 2), (1, 3), (2, 3)} and
all (p, q) ∈ {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (1, 2), (2, 1), (1, 3), (3, 1), (1, 4), (4, 1), (2, 5), (5, 2)}; thus
|Vfor| = 39.

5.1 Construction

Let H be a graph with n vertices u1, u2, . . . , un, and s be an integer as an input for
independent set. Then, we construct the corresponding instance (G,L, f0, ft) of list
coloring reconfiguration as follows. (See also Figure 7.)

We first create s vertices v1, v2, . . . , vs, which are called selection vertices; let Vsel be the
set of all selection vertices. For each i ∈ {1, 2, . . . , s}, we set L(vi) = {c∗, c1

i , c
2
i , . . . , c

n
i }. In

our reduction, we will construct G and L so that assigning the color cp
i , p ∈ {1, 2, . . . , n}, to

vi ∈ Vsel corresponds to choosing the vertex up ∈ V (H) as a vertex in an independent set
of H. Then, in order to make a correspondence between a color assignment to Vsel and an
independent set of size s in H, we need to construct the following properties:

For each p ∈ {1, 2, . . . , n}, we use at most one color from {cp
1, c

p
2, . . . , c

p
s}; this ensures

that each vertex up ∈ V (H) can be chosen at most once in an independent set.
For each p, q ∈ {1, 2, . . . , n} with upuq ∈ E(H), we use at most one color from
{cp

1, c
p
2, . . . , c

p
s , c

q
1, c

q
2, . . . , c

q
s}; then, no two adjacent vertices in H are chosen in an inde-

pendent set.
To do this, we define an (i, j; p, q)-forbidding gadget for i, j ∈ {1, 2, . . . s} and p, q ∈
{1, 2, . . . , n}. The (i, j; p, q)-forbidding gadget is a vertex w which is adjacent to vi and
vj and has a list L(w) = {cq

i , c
p
j}. Observe that the vertex w forbids that vi and vj are

simultaneously colored with cp
i and cq

j , respectively. In order to satisfy the desired properties
above, we now add our gadgets as follows: for all i, j ∈ {1, 2, . . . s} with i < j,

add an (i, j; p, p)-forbidding gadget for every vertex up ∈ V (H); and
add (i, j; p, q)- and (i, j; q, p)-forbidding gadgets for every edge upuq ∈ E(H).

We denote by Vfor the set of all vertices in the forbidding gadgets. We finally create an edge
consisting of two vertices w1 and w2 such that L(w1) = {a, b} and L(w2) = {a, b, c∗}, and
connect w2 with all selection vertices in Vsel.

Finally, we construct two L-colorings f0 and ft of G as follows:
for each vi ∈ Vsel, f0(vi) = ft(vi) = c∗;
for each w ∈ Vfor, f0(w) and ft(w) are arbitrary chosen colors from L(w); and
f0(w1) = ft(w2) = a, and ft(w1) = f0(w2) = b.

Note that both f0 and ft are proper L-colorings of G. This completes the construction of
(G,L, f0, ft).

MFCS 2017



51:12 Parameterized Complexity of the List Coloring Reconfiguration Problem

5.2 Correctness of the reduction
In this subsection, we prove the following three statements:

(G,L, f0, ft) can be constructed in time polynomial in the size of H.
The upper bound vc on the size of a minimum vertex cover of G depends only on s.
H is a yes-instance of independent set if and only if (G,L, f0, ft) is a yes-instance of
list coloring reconfiguration.

In order to prove the first statement, it suffices to show that the size of (G,L, f0, ft) is
bounded polynomially in n = |V (H)|. From the construction, we have |V (G)| = |Vsel| +
|Vfor|+ |{w1, w2}| ≤ s+ s2× (|V (H)|+ 2|E(H)|) + 2 = O(n4). In addition, each list contains
O(n) colors. Therefore, the construction can be done in time O(nO(1)).

The second statement immediately follows from the fact that {w2} ∪ Vsel is a vertex cover
in G of size s+ 1; observe that G \ ({w2} ∪ Vsel) = G[{w1} ∪ Vfor] contains no edge.

Finally, we prove the third statement as follows.

I Lemma 13. H is a yes-instance of independent set if and only if (G,L, f0, ft) is a
yes-instance of list coloring reconfiguration.

This completes the proof of Theorem 12.

6 Conclusion

In this paper, we have studied list coloring reconfiguration from the viewpoint
of parameterized complexity, in particular, with several graph parameters. We painted
an interesting map of graph parameters in Figure 2 which shows the boundary between
fixed-parameter tractability and intractability.

References
1 Marthe Bonamy and Nicolas Bousquet. Recoloring bounded treewidth graphs. Electronic

Notes in Discrete Mathematics, 44:257–262, 2013. doi:10.1016/j.endm.2013.10.040.
2 Marthe Bonamy, Matthew Johnson, Ioannis Lignos, Viresh Patel, and Daniël Paulusma. Re-

configuration graphs for vertex colourings of chordal and chordal bipartite graphs. Journal
of Combinatorial Optimization, 27(1):132–143, 2014. doi:10.1007/s10878-012-9490-y.

3 Paul Bonsma and Luis Cereceda. Finding paths between graph colourings: PSPACE-
completeness and superpolynomial distances. Theoretical Computer Science, 410(50):5215–
5226, 2009. doi:10.1016/j.tcs.2009.08.023.

4 Paul Bonsma, Amer E. Mouawad, Naomi Nishimura, and Venkatesh Raman. The com-
plexity of bounded length graph recoloring and CSP reconfiguration. In Parameterized
and Exact Computation - 9th International Symposium, IPEC 2014, Wroclaw, Poland,
September 10-12, 2014. Revised Selected Papers, pages 110–121, 2014. doi:10.1007/
978-3-319-13524-3_10.

5 Richard C. Brewster, Sean McGuinness, Benjamin Moore, and Jonathan A. Noel. A di-
chotomy theorem for circular colouring reconfiguration. Theoretical Computer Science,
639:1–13, 2016. doi:10.1016/j.tcs.2016.05.015.

6 Luis Cereceda. Mixing Graph Colourings. PhD thesis, The London School of Economics
and Political Science, 2007.

7 Luis Cereceda, Jan van den Heuvel, and Matthew Johnson. Finding paths between 3-
colorings. Journal of Graph Theory, 67(1):69–82, 2011. doi:10.1002/jgt.20514.

8 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Springer-Verlag,
1999.

http://dx.doi.org/10.1016/j.endm.2013.10.040
http://dx.doi.org/10.1007/s10878-012-9490-y
http://dx.doi.org/10.1016/j.tcs.2009.08.023
http://dx.doi.org/10.1007/978-3-319-13524-3_10
http://dx.doi.org/10.1007/978-3-319-13524-3_10
http://dx.doi.org/10.1016/j.tcs.2016.05.015
http://dx.doi.org/10.1002/jgt.20514


T. Hatanaka, T. Ito, and X. Zhou 51:13

9 Martin Dyer, Abraham D. Flaxman, Alan M. Frieze, and Eric Vigoda. Randomly coloring
sparse random graphs with fewer colors than the maximum degree. Random Structures &
Algorithms, 29(4):450–465, 2006. doi:10.1002/rsa.20129.

10 Jakub Gajarský, Michael Lampis, and Sebastian Ordyniak. Parameterized algorithms for
modular-width. In Parameterized and Exact Computation - 8th International Symposium,
IPEC 2013, Sophia Antipolis, France, September 4-6, 2013, Revised Selected Papers, pages
163–176, 2013. doi:10.1007/978-3-319-03898-8_15.

11 Tibor Gallai. Transitiv orientierbare graphen. Acta Mathematica Academiae Scientiarum
Hungarica, 18(1):25–66, 1967. doi:10.1007/BF02020961.

12 Michel Habib and Christophe Paul. A survey of the algorithmic aspects of modular decom-
position. Computer Science Review, 4(1):41–59, 2010. doi:10.1016/j.cosrev.2010.01.
001.

13 Tatsuhiko Hatanaka, Takehiro Ito, and Xiao Zhou. The list coloring reconfiguration prob-
lem for bounded pathwidth graphs. IEICE Transactions on Fundamentals of Electron-
ics, Communications and Computer Sciences, E98.A(6):1168–1178, 2015. doi:10.1587/
transfun.E98.A.1168.

14 Takehiro Ito, Erik D. Demaine, Nicholas J.A. Harvey, Christos H. Papadimitriou, Martha
Sideri, Ryuhei Uehara, and Yushi Uno. On the complexity of reconfiguration problems. The-
oretical Computer Science, 412(12):1054–1065, 2011. doi:10.1016/j.tcs.2010.12.005.

15 Matthew Johnson, Dieter Kratsch, Stefan Kratsch, Viresh Patel, and Daniël Paulusma.
Finding shortest paths between graph colourings. Algorithmica, 75(2):295–321, 2016. doi:
10.1007/s00453-015-0009-7.

16 Sampath Kannan, Moni Naor, and Steven Rudich. Implicat representation of graphs. SIAM
Journal on Discrete Mathematics, 5(4):596–603, 1992. doi:10.1137/0405049.

17 Ross M. McConnell and Fabien de Montgolfier. Linear-time modular decomposition of
directed graphs. Discrete Applied Mathematics, 145(2):198–209, 2005. doi:10.1016/j.
dam.2004.02.017.

18 Jan van den Heuvel. The complexity of change. In Surveys in Combinatorics 2013, pages
127–160. 2013. doi:10.1017/CBO9781139506748.005.

19 Marcin Wrochna. Reconfiguration in bounded bandwidth and treedepth. CoRR,
abs/1405.0847, 2014.

20 Marcin Wrochna. Homomorphism reconfiguration via homotopy. In 32nd International
Symposium on Theoretical Aspects of Computer Science, STACS 2015, March 4-7, 2015,
Garching, Germany, pages 730–742, 2015. doi:10.4230/LIPIcs.STACS.2015.730.

MFCS 2017

http://dx.doi.org/10.1002/rsa.20129
http://dx.doi.org/10.1007/978-3-319-03898-8_15
http://dx.doi.org/10.1007/BF02020961
http://dx.doi.org/10.1016/j.cosrev.2010.01.001
http://dx.doi.org/10.1016/j.cosrev.2010.01.001
http://dx.doi.org/10.1587/transfun.E98.A.1168
http://dx.doi.org/10.1587/transfun.E98.A.1168
http://dx.doi.org/10.1016/j.tcs.2010.12.005
http://dx.doi.org/10.1007/s00453-015-0009-7
http://dx.doi.org/10.1007/s00453-015-0009-7
http://dx.doi.org/10.1137/0405049
http://dx.doi.org/10.1016/j.dam.2004.02.017
http://dx.doi.org/10.1016/j.dam.2004.02.017
http://dx.doi.org/10.1017/CBO9781139506748.005
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.730




Automata in the Category of Glued Vector
Spaces∗†

Thomas Colcombet1 and Daniela Petrişan2

1 CNRS, IRIF, Univ. Paris-Diderot, Paris 7, France
thomas.colcombet@irif.fr

2 CNRS, IRIF, Univ. Paris-Diderot, Paris 7, France
petrisan@irif.fr

Abstract
In this paper we adopt a category-theoretic approach to the conception of automata classes
enjoying minimization by design. The main instantiation of our construction is a new class of
automata that are hybrid between deterministic automata and automata weighted over a field.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases hybrid set-vector automata, automata minimization in a category

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.52

1 Introduction

In this paper we introduce a new automata model, hybrid set-vector automata, designed to
accept weighted languages over a field in a more efficient way than Schützenberger’s weighted
automata [13]. The space of states for these automata is not a vector space, but rather a
union of vector spaces “glued” together along subspaces. We call them hybrid automata,
since they naturally embed both deterministic finite state automata and finite automata
weighted over a field. In Section 2 we present at an informal level a motivating example and
the intuitions behind this construction, avoiding as much as possible category-theoretical
technicalities. We use this example to guide us throughout the rest of the paper.

A key property that the new automata model should satisfy is minimization. Since the
morphisms of “glued” vector spaces are rather complicated to describe, proving the existence
of minimal automata “by hand” is rather complicated. Therefore we opted for a more
systematic approach and adopted a category-theoretic perspective for designing new forms
of automata that enjoy minimization by design. In particular, we introduce the category of
“glued” vector spaces in which these automata should live and we analyse its properties that
render minimization possible.

Starting with the seminal papers of Arbib and Manes, see for example [3] and the references
therein, and of Goguen [10], it became well established that category theory offers a neat
understanding of several phenomena in automata theory. In particular, the key property of
minimization in different contexts, such as for deterministic automata (over finite words)

∗ This work was supported by the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No.670624), and by the DeLTA ANR project
(ANR-16-CE40-0007). The authors also thank the Simons Institute for the Theory of Computing where
this work has been partly developed.

† A version using the knowledge package is available at https://arxiv.org/abs/1711.06065.

© Thomas Colcombet and Daniela Petrişan;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 52; pp. 52:1–52:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.52
https://arxiv.org/abs/1711.06065
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


52:2 Automata in Glued Vector Spaces

and Schützenberger’s automata weighted over fields [13], arises from the same categorical
reasons (existence of some limits/colimits and an (epi,mono)-factorization system [3]).

There is a long tradition of seeing automata either as algebras or coalgebras for a functor.
However, in the case of deterministic automata, the algebraic view does not capture the
accepting states, while the coalgebraic view does not capture the initial state. In the
coalgebraic setting one needs to consider the so-called pointed coalgebras, see for example [1],
where minimal automata are modelled as well-pointed coalgebras. The dual perspective of
automata seen as both algebras or coalgebras, as well as the duality between reachability
and observability, has been explored more recently in papers such as [4, 5, 6].

Here we take yet another approach to defining automata in a category. The reader
acquainted with category theory will recognise that we see automata as functors from an
input category (that specifies the type of the machines under consideration, which in this
paper is restricted to word automata) to a category of output values. We show that the next
ingredients are sufficient to ensure minimization: the existence of an initial and of a final
automaton for a language, and a factorization system on the category in which we interpret
our automata.

For example, deterministic and weighted automata over a field are obtained by considering
as output categories the categories Set of sets and functions and Vec of vector spaces and
linear maps, respectively. Since Set and Vec have all limits and colimits, it is very easy to
prove the existence of initial and final automata accepting a given language. In both cases,
the minimal automaton for a language is obtained by taking an epi-mono factorization of
the unique arrow from the initial to the final automaton.

Notice that the initial and the final automata have infinite (-dimensional) state sets
(spaces). If the language at issue is regular, that is, if the unique map from the initial to the
final automaton factors through a finite (-dimensional) automaton then, automatically, the
minimal automaton will also be finite (-dimensional). However, this relies on very specific
properties of the categories of sets and vector spaces, namely on the fact that the full
subcategories Setfin of finite sets and Vecfin of finite dimensional vector spaces are closed in
Set, respectively in Vec, under both quotients and subobjects.

Coming back to hybrid set-vector automata, we define them as word automata interpreted
in an output category Glue(Vec) which we obtain as the completion of Vec under certain
colimits, and can be described at an informal level as “glueings” of arbitrary vector spaces.
The definition of this form of cocompletion Glue(C) of a category C is the subject of Section 4.

We are interested in those hybrid automata for which the state object admits a finitary
description, which intuitively can be described as finite glueings of finite dimensional spaces.
For this reason we will consider the subcategory Gluefin(Vecfin) of Glue(Vec). It turns out
that Gluefin(Vecfin) is closed under quotients in Glue(Vec) but, crucially, it is not closed
under subobjects. For example, a glueing of infinitely many one-dimensional spaces is a
subobject of a two-dimensional space, but only the latter is an object of Gluefin(Vecfin).

This is the motivation for introducing a notion of (ES ,MS)-factorization of a category C
through a subcategory S. This is a refinement of the classical notion of factorization system on
C and is used for isolating the semantical computations (in C) from the automata themselves
(with an object from S as “set of configurations”).1 We show how it provides a minimization
of “S-automata for representing C-languages”. A concrete instance of this is a factorization
system on Glue(Vec) through Gluefin(Vecfin), which plays a crucial role in proving the

1 This distinction is usually not necessary, and we are not aware of its existence in the literature. It is
crucial for us, thus we cannot use already existing results from the coalgebraic literature, e.g. [1].



T. Colcombet and D. Petrişan 52:3

existence of minimal Gluefin(Vecfin)-automata for recognizing weighted languages.
The rest of the paper is organised as follows. We first develop a motivating example of a

hybrid set-vector space automaton in Section 2. We then identify in Section 3 the category-
theoretic ingredients that are sufficient for a class of automata to enjoy minimization. We
then turn to our main contribution, namely the description and the study of the properties of
(finite-)mono-diagrams in a category, in Section 4. We conclude in Section 5 with a discussion
of some of the design choices we made in this paper.

2 The hybridisation of deterministic finite state and vector automata

In this section, we (rather informally) describe the motivating example of this paper: the
construction of a family of automata that naturally extends both deterministic finite state
automata and finite automata weighted over a field in the sense of Schützenberger (i.e.,
automata in the category of finite vector spaces). The intuition should then support the
categorical constructions that we develop in the subsequent sections.

Set automata (deterministic automata). Let us fix ourselves an alphabet A. A determin-
istic automaton (or set automaton) is a tuple

A = (Q, i, f, (δa)a∈A) ,

in which Q is a set of states, i is a map from a one element set 1 = {0} to Q (i.e. an
initial state), f is a map from Q to a two elements set 2 = {0, 1} (i.e. a set of accepting
states), and δa is a map from Q to itself for all letters a ∈ A. Given a word u = a1 . . . an, the
automaton accepts the map [[A]](u) : 1→ 2 defined as:

[[A]](u) = f ◦ δu ◦ i where δa1...an
= δan

◦ · · · ◦ δa1 .

We recognize here the standard definition of a deterministic automaton, in which a word u is
accepted if the map [[A]](u) is the constant 1, and rejected if it is the constant 0.

Vector space automata (automata weighted over a field). Now, we can use the same
definition of an automaton, this time with Q a vector space (over, say, the field R), i a linear
map from R to Q, f a linear map from Q to R (seen as a R-vector space as usual), and δa a
linear map from Q to itself. In other words, we have used the same definition, but this time
in the category of vector spaces. Given a word u, a vector space automaton A computes
[[A]](u) : R→ R as the composite described above. Since a linear map from R to R is only
determined by the image of 1, this automaton can be understood as associating to each input
word u the real number [[A]](u)(1). We will informally refer to such automata in this section
as vector space automata. Let us provide an example.

Leading example. For a word u ∈ {a, b, c}∗ let |u|a denote the number of occurrences of
the letter a in u. Let us compute the map F which, given a word u ∈ {a, b, c}∗, outputs 2|u|a
if it contains an even number of b’s and no c’s, and 0 in all other cases. This is achieved
with the vector space automaton Avec = (Qvec = R2, ivec, fvec, δvec) where for all x, y ∈ R,

ivec(x) = (x, 0) , δvec
a (x, y) = (2x, 2y) , δvec

b (x, y) = (y, x) ,
fvec(x, y) = x , δvec

c (x, y) = (0, 0) .

One easily checks that indeed [[Avec]](u)(1) = F (u) for all words u ∈ A∗.

MFCS 2017



52:4 Automata in Glued Vector Spaces

Can we do better? It is well known from Schützenberger’s seminal work that the vector
space automaton Avec is minimal, both in an algebraic sense (to be described later) as well
as at an intuitive level in the sense that no vector space automaton could recognize F with a
dimension one vector space as configuration space: Avec is “dimension minimal.”

However, let us think for one moment on how one would “implement” the function F
as an online device that would get letters as input, and would modify its internal state
accordingly. Would we implement concretely Avec directly? Probably not, since there is a
more economic2 way to obtain the same result: we can maintain 2m where m is the number
of a’s seen so far, together with one bit for remembering whether the number of b’s is even
or odd. Such an automaton would start with 1 in its unique real valued register. Each time
an a is met, the register is doubled, each time b is met, the bit is reversed, and when c is
met, the register is set to 0. At the end of the input word, the automaton would output 0
or the value of the register depending on the current value of the bit. If we consider the
configuration space that we use in this encoding, we use R ] R instead of R× R. Can we
define an automata model that would faithfully implement this example?

A first generalization: disjoint unions of vector spaces. A way to achieve this is to
interpret the generic notion of automata in the category of finite disjoint unions of vector
spaces (duvs). One way to define such a finite disjoint unions of vector spaces is to use a
finite set N of ‘indices’ p, q, r . . . , and to each index p associate a vector space Vp. The ‘space’
represented is then {(p,~v) | p ∈ N, ~v ∈ Vp}. A ‘map’ between duvs represented by (N,V )
and (N ′, V ′) is then a pair h : N → N ′ together with a linear map fp from Vp to V ′h(p) for
all p ∈ N . It can be seen as mapping each (p,~v) ∈ N × Vp to (h(p), fp(~v)). Call this a duvs
map. Such duvs maps are composed in a natural way. This defines a category, and hence
we can consider duvs automata which are automata with a duvs for its state space, and
transitions implemented by duvs maps.

For instance, we can pursue with the computation of F and provide a duvs automaton
Aduvs = (Qduvs, iduvs, fduvs, δduvs) where Qduvs = {(s, x) | s ∈ {even, odd}, x ∈ R} (consid-
ered as a disjoint union of vector spaces with indices even and odd and all associated vector
spaces Veven = Vodd = R). The maps can be conveniently defined as follows:

iduvs(x) = (even, x) δduvs
a (even, x) = (even, 2x) δduvs

a (odd, x) = (odd, 2x)
fduvs(even, x) = x δduvs

b (even, x) = (odd, x) δduvs
b (odd, x) = (even, x)

fduvs(odd, x) = 0 δduvs
c (even, x) = (even, 0) δduvs

c (odd, x) = (odd, 0)

This automaton computes the expected F . It is also obvious that such automata over finite
disjoint unions of vector spaces generalize both deterministic finite state automata (using only
0-dimensional vector spaces), and vector space automata (using only one index). However, is
it the joint generalization that we hoped for? The answer is no...

Minimization of duvs automata. We could think that the above automaton Aduvs is
minimal. However, it involved some arbitrary decisions when defining it. This can be seen in
the fact that when δduvs

c is applied, we chose to not change the index (and set to null the real
value): this is arbitrary, and we could have exchanged even and odd, or fixed it abitrarily to
even, or to odd. All these variants would be equally valid for computing F .

2 Under the reasonable assumption that maintaining a real is more costly than maintaining a bit.



T. Colcombet and D. Petrişan 52:5

It is a bit difficult at this stage to explain the non-minimality of these automata since
we did not introduce the proper notions yet. Let us try at a high level, invoking some
standard automata-theoretic concepts. The first remark is that every configuration in Qduvs

is ‘reachable’ in this automaton: indeed (even, x) = iduvs(x) and (odd, x) = δduvs
b ◦ iduvs(x) for

all x ∈ R. Hence there is no hope to improve the automaton Aduvs or one of its variants by
some form of ‘restriction to its reachable configurations’. Only ‘quotienting of configurations’
remains. However, one can show that none among Aduvs and the variants mentioned above is
the quotient of another. Keeping in mind the Myhill-Nerode equivalence, we should instead
merge the configurations (even, 0) and (odd, 0) since these are observationally equivalent:

fduvs ◦ δduvs
u (even, 0) = 0 = fduvs ◦ δduvs

u (odd, 0) for all words u ∈ A∗.

However, the quotient duvs obtained by merging (even, 0) and (odd, 0), albeit not very
intuitive, consists of one index associated to a two dimensional vector space, which is
essentially an indexed version of the vector space automaton Avec computed before. At this
stage, we understand that minimising in the category of duvs is not very helpful, as we do
not obtain the desired optimisation.

How to proceed from here. The only reasonable thing to do is indeed to merge (even, 0)
and (odd, 0), but we have to be more careful about the precise meaning of ‘quotient’. A
possibility is to add explicitly equivalence classes in the definition of the automaton. However,
category theory provides useful concepts and terminology for defining these objects: colimits,
and more precisely the free co-completion of a category. In the previous paragraph, we have
shown that the category of duvs – which is itself the free completion of Vec with respect to
finite coproducts – is not a good ambient category for our purposes. We need more colimits,
so that the notion of ‘quotient’ is further refined. At the other extreme, we could consider the
free completion with respect to all colimits, which, informally, consists of objects obtained
from the category using copying and gluing. We will explain later in Section 5 why we choose
to not use this completion. Intuitively, by adding all colimits we glue the vector spaces “too
much”, and not only we loose a geometric intuition of the objects we are dealing with, but
we may run into actual technical problems when it comes the existence of minimal automata.

Instead, we restrict our attention to a class of colimits (which strictly contains coproducts)
for which different spaces in the colimit can be “glued” together along subspaces, but which
do not contain implicit self folding (i.e., such that an element of a vector space is not glued
to a distinct element of the same vector space, directly or indirectly). E.g., we can describe
‘two one-dimensional spaces, the 0-dimensional subspaces of which are identified through a
linear bijection’. In this way we obtain the new category of glued vector spaces and hybrid
set-vector space automata, corresponding to Glue(Vec)-automata in the rest of the paper.

Generic arguments of colimits provide the language for describing these objects, but do
not solve the question of minimality. In particular, we are interested in automata whose space
of configurations is a finite colimit belonging to the class described above. The categorical
development in this work addresses the minimization problem for hybrid automata.

An intuition in the case of gluing of vector spaces. In the case of gluing of vector spaces,
it is possible to isolate a combinatorial statement that plays a crucial role in the existence of
minimal hybrid set-vector automata:

(a) Any subset of a finite-dimensional vector space admits a minimal cover as a finite
union of subspaces. (b) Furthermore, there is a unique such cover which is a union of
subspaces which are incomparable with respect to inclusion.

MFCS 2017



52:6 Automata in Glued Vector Spaces

For instance, in the original vector space automaton Avec, the states that are reachable
in fact all belong to R × {0} ∪ {0} × R, and this is the minimal cover as in (a) of these
reachable configurations. This subset of R2 has the structure of two R-spaces. These happen
to intersect at (0, 0), hence it is necessary to glue them at 0 to faithfully represent this set of
reachable configurations. Thanks to (b) this decomposition is canonical, and hence can be
used for describing the automaton.

3 Automata in a category

In this section, we provide the general definition for a (finite word) automaton in a category.
We also isolate properties guaranteeing the existence of minimal automata. Though presented
differently, the material in the first subsection is essentially a slight variation around the work
of Arbib and Manes [3], which introduced a notion of automaton in a category and, moreover,
highlighted the connection between factorization systems of the ambient category, duality
and minimization. In the remaining subsections we develop a refinement of this approach to
minimization, and introduce a notion of factorization system through a subcategory.

3.1 Automata in a category, initial automaton, final automaton
I Definition 3.1 (automata). Let C be a locally small category, I and F be objects of C, and
A be some alphabet. An automaton A in the category C (over the alphabet A), for short a
C, I, F -automaton (or simply C-automaton when I and F are obvious in the context), is a
tuple (Q, i, f, δ), where Q is an object in C (called the state object), i : I → Q and f : Q→ F

are morphisms in C (called initial and final morphisms), and δ : A→ C(Q,Q) is a function
associating to each letter a ∈ A a morphism δa : Q→ Q in C. We extend the function δ to A∗

as with δε being the identity morphism on Q and δwa = δa ◦ δw for all a ∈ A and w ∈ A∗.
A morphism of C, I, F -automata h : A → A′ is a morphism h : Q→ Q′ in C between the

state objects which commutes with the initial, final and transition morphisms:

Q Q Q Q

I F

Q′ Q′ Q′ Q′

h

δa

h h

f

h

i

i′

δ′a

f ′

(1)

I Example 3.2. The two guiding instantiation of this definition are as follows. When the
category C is Set, I = 1 and F = 2, we recover the standard notion of a deterministic and
complete automaton (over the alphabet A∗). In the second case, when C is Vec over a base
field K, I = K and F = K, we obtain K-weighted automata. Indeed, if Q is isomorphic to
Kn for some natural number n, then linear maps i : K→ Q are in one-to-one correspondence



T. Colcombet and D. Petrişan 52:7

with vectors Kn. The same holds for linear maps f : Q → K, hence i and f are simply
selecting an initial, respectively, a final vector.

I Definition 3.3 (languages and language accepted). A C, I, F -language (or C-language when I
and F are clear from the context) is a function L : A∗ → C(I, F ). We say that A accepts
the language L if L(w) = [[A]](w) := f ◦ δw ◦ i for all w ∈ A∗. Let AutoC(L) denote the
category of C, I, F -automata for L, that is, the category whose objects are C, I, F -automata
that accept the language L and whose arrows are morphisms of C, I, F -automata3.

I Lemma 3.4. If the coproduct
∐
w∈A∗ I exists in C, then AutoC(L) has an initial ob-

ject initC(L). If the product
∏
w∈A∗ F exists in C, then AutoC(L) has a final object finalC(L).

In the case of Set, these automata are well known. The first one has as states A∗, as
initial state ε, and when it reads a letter a, its maps w to wa. Its final map sends the
state w to L(w)(0). There exists one and exactly one morphism from this automaton to
each automata for the same language. The generalisation of this construction is that the
state space is the coproduct of A∗-many copies of I. The final automaton is known as the
automaton of ‘residuals’. Its set of states are the maps from A∗ to 2. The initial state is L
itself, and when reading a letter a, the state S is mapped to w 7→ S(aw). The final map
sends S to S(ε). The generalisation of this construction is that the state space is the product
of A∗-many copies of F .

3.2 Factorizations through a subcategory
It is important in the development of this paper to distinguish the category AutoC(L) in which
the initial and final automata for a language L exist (recall Lemma 3.4) and which contains
‘infinite automata’, from the subcategory, named AutoS(L) that is used for the concrete
automata (with state object in S) which are intended to be algorithmically manageable. In
this section, we provide the concept of factorizing through a subcategory, which articulates
the relation between these two categories.

I Definition 3.5 (factorization through a subcategory). Assume S is a subcategory of C. An
arrow f : X → Y in C is called S-small if it factors through some object S of S, that is, f is
the composite X S Yu v for some u : X → S and v : S → Y .

A factorization system through S on C (or simply a factorization system on C if C = S) is
a pair (ES ,MS) where ES and MS are classes of arrows in C so that the codomains of all
arrows in ES , the domains of all arrows in MS are in S, and the following conditions hold:
1. ES andMS are closed under composition with isomorphisms in S, on the right, respectively

left side.
2. All S-small arrows in C have an (ES ,MS)-factorization, that is, if f : X → Y factors

through an object of S, then there exists e ∈ ES and m ∈MS , such that f = m ◦ e.
3. The unique (ES ,MS)-diagonalization property holds: for each commutative diagram

X T

S Y

e

f g
u

m

(2)

3 If A accepts the language L and h : A → A′ is a morphism of C, I, F -automata, then A′ also accepts
the language L. Hence, AutoC(L) is a ‘connected component’ in the category of all C, I, F -automata.

MFCS 2017



52:8 Automata in Glued Vector Spaces

with e ∈ ES and m ∈ MS , there exists a unique diagonal, that is, a unique morphism
u : T → S such that u ◦ e = f and m ◦ u = g.

Using standard techniques, we can prove that whenever (ES ,MS) is a factorization system
through S on C, both classes ES and MS are closed under composition, their intersection
consists of precisely the isomorphisms in S, and, as expected, that (ES ,MS)-factorizations
of S-small morphisms are unique up to isomorphism.

I Example 3.6. Instantiating (C,S) to be (Set,Setfin) yields a natural factorization system
through Setfin on Set (as the restriction of the standard (epi,mono)-factorization system on Set
to Setfin-small morphisms, i.e., the maps of finite image). Over these categories Setfin-automata
are deterministic finite state automata inside the more general category of Set-automata
which are deterministic (potentially infinite) automata. The example (Vec,Vecfin) was already
mentioned. In this case, being Vecfin-small is equivalent to having finite rank.

Notice that for (C,S) = (Set,Setfin) or (Vec,Vecfin), the factorization systems through the
subcategories are obtained simply by restricting the factorization systems on Set, respectively
Vec. This is because, in these cases S is closed under quotients and subobjects in C. The
category Gluefin(Vecfin) used in this paper is closed under quotients, but in general not under
subobjects (and this is the important reason for this extension of the standard notion of
factorization). This is also a case in which there is a factorization system in the category C,
that coincide over S with factorizing through S, but for which factorizing in C of an S-small
morphism and factorizing it through S yield different results.

A factorization system on C lifts naturally to categories of C-valued functors. Automata
being very close in definition to such a functor category, factorization systems also lift to
them. Lemma 3.7 shows that this is also the case for factorization systems through S,
assuming of course that the input and output objects I and F belong to S.

I Lemma 3.7. Whenever (ES ,MS) is a factorization system through a category S then
(EAutoS(L),MAutoS(L)) is a factorization system through AutoS(L) for the category AutoC(L),
where EAutoS(L) (resp. MAutoS(L)) contains these AutoC(L)-morphisms that belong to ES
(resp. to MS) as C-morphisms.

3.3 Minimization through a subcategory
In this section, we show how the joint combination of having initial and final automata
for a language, as given by Lemma 3.4, together with a factorization system through a
subcategory S yields the existence of a minimal S-automaton for small C-languages.

We make the following assumptions: (ES ,MS) is a factorization system through S on C,
and L is a C-language accepted by some S-automaton such that there exist an initial initC(L)
C-automaton and a final C-automaton finalC(L) for L.

I Definition 3.8 (minimal automaton). The minimal C-automaton for L, denoted minS(L),
is the4 S-automaton for L obtained by (EAutoS(L),MAutoS(L))-factorization of the unique
AutoS(L)-small morphism from initC(L) to finalC(L).

I Theorem 3.9. For all S-automata A for L satisfying the above assumptions, we have

minS(L) ∼= obsS(reachS(A)) ∼= reachS(obsS(A)) ,

in which

4 It is unique up to isomorphism according to the diagonal property.



T. Colcombet and D. Petrişan 52:9

reachS(A) is the result of applying an (EAutoS(L),MAutoS(L))-factorization to the unique
AutoS(L)-morphism from initC(L) to A, and
obsS(A) is the result of applying an (EAutoS(L),MAutoS(L))-factorization to the unique
AutoS(L)-morphism from A to finalC(L).

This theorem does not only state the existence of a minimal automaton, it also makes
transparent how to make effective its construction: if one possesses both an implementation
of reachS and obsS , then their sequencing minimises an input automaton. From the above
theorem it immediately follows that minS(L) is both an EAutoS(L)-quotient of a MAutoS(L)-
subobject of A and a MAutoS(L)-subobject of an EAutoS(L)-quotient of A: the minimal
automaton divides every other automaton for the language.

Proof idea. The proof is contained in the following commutative diagram, in which �
denotes AutoC(L)-morphisms in EAutoS(L), and � AutoC(L)-morphisms in MAutoS(L):

A

initC(L) reachS(A) obsS(reachS(A)) finalC(L)

minS(L)

That obsS(reachS(A)) is an (EAutoS(L),MAutoS(L))-factorization of the unique AutoC(L)-
morphism from initC(L) to finalC(L) follows since EAutoS(L) is closed under composition.
By the unique diagonal property, it is isomorphic to minS(L). The case reachS(obsS(A)) is
symmetric. J

3.4 A special case of factorization through
So far, the description of factorization and minimization of automata is very generic. Hereafter,
the classes ES andMS are constructed along a particular principle which we describe now. In
the next sections we will instantiate this construction when S is the subcategory Gluefin(Vecfin)
of glued vector spaces.

In this section we fix an (E,M)-factorization system on C and a subcategory S ↪→ C.

I Definition 3.10. An S-extremal epimorphism5 in C is an arrow e : X → S in C, with S
an object in S, such that if e = m ◦ g where m is in M with domain in S, then m is an
isomorphism. We set MS to be the class of arrows in M with domain in S, and ES to be
the class of S-extremal epimorphisms.

I Definition 3.11. An MS-subobject in S of an object X of C is an equivalence class up
to isomorphism of a morphism S → X belonging to M , where S is an object of S. The
MS -subobject S → X is called proper if it is not an isomorphism.

I Lemma 3.12. Assume the following conditions hold:
1. all arrows in M are monomorphisms in C,
2. S is closed under E-quotients, i.e., if e : S → T is in E with S in S, then T is isomorphic

to an object of S,
3. the intersection of a nonempty set of MS-subobjects of an object X of C exists and is an

MS-subobject of X, and,

5 Note that S-extremal epimorphisms need not be epimorphisms in C.

MFCS 2017



52:10 Automata in Glued Vector Spaces

4. the pullback of an MS-subobject m : S → T of T along a morphism T ′ → T in S is an
MS-subobject of T ′.

Then (ES ,MS) is a factorization system through S on C.

The next lemma ensures that condition 3 of Lemma 3.12 can be replaced with the weaker
version involving only binary intersections of MS-subobjects, provided that any infinite
descending chain of MS -subobjects eventually stabilises (of course, up to isomorphism).

I Lemma 3.13. Assume that there are no infinite descending chains of proper MS-subobjects

X S1 S2 . . .

and furthermore that the intersection of any two MS-subobjects of an object X of C exists
and is an MS-subobject of X, then condition 3 in the hypothesis of Lemma 3.12 holds.

The proof simply uses finite partial intersections in order to create a strictly descending
chain of MS -subobjects. By assumption, this construction has to stop, and the last element
of the sequence happens to be the intersection of the entire family.6

4 Gluing of categories

We turn now to the central construction of this paper: given a category C and a subcategory S,
we construct a category Glue(C) of “gluings of objects in C” that has both C and Gluefin(S) –
the category of “finite gluings of objects in S” – as subcategories. Under proper assumptions
on C and S, the resulting pair (Glue(C), Gluefin(S)) satisfies the assumption required for
constructing minimisable automata for Glue(C)-languages. Taking C = Vec and S = Vecfin
we obtain the construction informally described in Section 2.

Throughout this section we assume that C is equipped with a (E,M)-factorization system
consisting of strong epimorphisms and monomorphisms.

4.1 The free gluing of a category

When C is small, it is well known that the Yoneda embedding of C into the category of
presheaves over C is a free completion of C under colimits of small diagrams. For a possibly
large category, one has to consider instead the category of small presheaves, i.e. small colimits
of representable ones, see for example [9]. For our purposes, we found more illuminating and
direct to use a syntactic way of describing the colimit completion of a category.

The category of diagrams. Assume C is a locally small category. The free colimit completion
of C is the category Diag(C) whose objects are diagrams F : D → C and morphisms between
two diagrams F : D → C and G : E → C will be given in Definition 4.1.

To this end we define an equivalence relation on arrows from an arbitrary object X of C to
the objects in the image of G. Assume e, e′ are objects in E . We consider the least equivalence
relation ∼G which contains all pairs (g, g′), where g : X → Ge, g′ : X → Ge′ are such that
there exists j : e→ e′ a map in E with Gj ◦ g = g′, i.e., the diagram below commutes.

6 The attentive reader will have recognised in this argument part of the reason why every subset of a
finite-dimensional vector space admits a minimal cover as a finite union of subspaces.



T. Colcombet and D. Petrişan 52:11

Ge

X

Ge′

Gj

g

g′

We denote by Ĝ(X) the equivalence classes of the relation ∼G.

I Definition 4.1. A morphism between diagrams F : D → C and G : E → C is a map f which
associates to each object d in D an equivalence class f(d) ∈ Ĝ(Fd), such that whenever
u : d→ d′ is a morphism in D and g : Fd′ → Ge is in the equivalence class f(d′), then g ◦ Fu
is in the equivalence class f(d).

The subcategory of gluings. We are now ready to define the category Glue(C), which is a
restriction of Diag(C) to M -diagrams (see below), that is, to diagrams that intuitively ‘do
not quotient’. Recall that C has a factorization system (E,M) in which E are the strong
epimorphisms and M are the monomorphisms.

I Definition 4.2 (glued category). An M-cocone over a diagram F : D → C is a cocone
(ud : Fd → X)d∈D such that all the structural components of the cocone ud are in M . An
M -diagram is a diagram that has an M -cocone.

The glued category Glue(C) is the subcategory of Diag(C) over the M -diagrams F : D → C.
Let Gluefin(C) the subcategory of Glue(C) that has as objects the finite diagrams of Glue(C).

Notice that, if F is such a diagram, then we can show that for each morphism v : d→ d′ in
D, we have that Fu : Fd→ Fd′ is in M (however this is not a characterisation). Also, if there
exists a universal cocone for an M -diagram, then this cocone is in particular an M -cocone.

I Lemma 4.3. If C is cocomplete, then Glue(C) is a full reflective subcategory of Diag(C),
and hence Glue(C) is a cocomplete category. If C is furthermore complete, then so is Glue(C).

In the automata theoretic application we have in mind, we use this category in order to
construct the initial and final automata for a language.

4.2 A factorization system through finite gluings
The category of most interest for us is the full subcategory Gluefin(S) of Glue(C) which
consists of the finite M -diagrams over S. In this section we construct in particular, under
suitable assumptions, a factorization system through Gluefin(S) on Glue(C), making use of
Lemma 3.12. For S = Vecfin, this is the category of ‘finite gluings of finite vector spaces’ that
we longly introduced in Section 2.

We define the following classes of morphisms in Glue(C).
EpiGlue(C) consists of the morphisms f : F→ G, where F : D → C and F : E → C, such that
for all e in E there exists a representative fd : Fd→ Ge′ in the equivalence class f(d) and
a morphism u : Ge→ Ge′, so that u ∼G idGe and u factors through the image of fd.
MonoGlue(C) consists of morphisms f : F→ G such that for all morphisms u : X → Fd and
v : X → Fd′ such that fd ◦ u ∼G fd′ ◦ v (for fd and fd′ in the equivalence classes f(d),
respectively f(d′)), we have that u ∼F v.

One can easily verify that the arrows in MonoGlue(C) are exactly the monomorphisms in
Glue(C).7 The next lemma establishes that under mild conditions on C we have a (strong
epi, mono) factorization system on Glue(C).

7 As a side remark, we should mention that these classes of arrows correspond precisely to the natural
transformations between the induced presheaves that are pointwise injective.

MFCS 2017



52:12 Automata in Glued Vector Spaces

I Lemma 4.4. Assume C has intersections. Then (EpiGlue(C),MonoGlue(C)) is a (strong epi,
mono) factorization system on Glue(C).

In what follows we say that a subcategory S of C is well-behaved if it satisfies the
hypothesis of Lemmas 3.12 and 3.13 with respect to the (strong epi, mono) factorization
system on C. (In fact condition 3 of Lemma 3.12 can be replaced by its binary version.)

I Theorem 4.5. Assume C has intersections and pullbacks. If the subcategory S of C is
well-behaved, then Gluefin(S) is a well-behaved subcategory of Glue(C).

Some ideas about the proof. This result is an application of Lemmas 3.12 and 3.13. The
central combinatorial aspect of this statement is that there exists no infinite strictly descending
chains of MonoGlue(C)-subobjects in Gluefin(S). For the sake of contradiction, let us consider
a descending sequence of diagrams from Gluefin(S):

F0 F1 F2 . . .
f1 f2 f3

We have to prove that it is ultimately constant (up to isomorphism). Let the diagrams
be Fi : Di → S for all i. The first step is to consider an aggregation of mono-diagrams,
that is, we construct a big diagram that aggregates all the Fi’s. At the level of objects this
diagram contains the disjoint unions of the Di’s. We call the objects originating from Di of
rank i. Secondly, we prove a global homogeneity property of F: given two arrows g : X → Fd,
g′ : X → Fd′ with d, d′ at the same rank i, then g ∼F g

′ if and only if g ∼Fi g
′. Finally

we prove the existence of an isomorphism gj from Fj−1 to Fj for some j by analysing the
structure of F and using König’s lemma. J

We come back to the leading example of Gluefin(Vecfin)-automata. Applying Theo-
rem 4.5 for (C,S) = (Vec,Vecfin) we obtain a factorization system through Gluefin(Vecfin) on
Glue(Vec). Using Lemma 4.3 and Theorem 3.9 we derive that hybrid set-vector automata
are minimisable.

I Corollary 4.6. For any Glue(Vec)-language accepted by some Gluefin(Vecfin)-automaton
there exists a minimal Gluefin(Vecfin)-automaton. In particular, any Vec-language accepted
by a Vecfin-automaton has a minimal Gluefin(Vecfin)-automaton.

For the language described in Section 2, and for which the minimal vector automaton
has a two-dimensional state space, we obtain a minimal Gluefin(Vecfin)-automaton obtained
by glueing two one-dimensional spaces at 0. Formally, this is an M -diagram F : D → Vecfin
where D is a three object poset {⊥, 0, 1} with ⊥ ≤ 0 and ⊥ ≤ 1. The functor F maps 0, 1
to one-dimensional spaces, ⊥ to the zero-dimensional space and the morphisms ⊥ ≤ 0 and
⊥ ≤ 1 to its inclusions in the respective one-dimensional spaces.

For another example, consider the language which to a word u ∈ a∗ associates the value
cos(α|u|) for some α which is not a rational multiple of π, and whose minimal vector space
automaton has a two-dimensional state space. If we used the factorization in Glue(Vec) we
would obtain a glueing of infinitely many one-dimensional subspaces (obtained by rotations
with angle α). Thus, it is crucial for our setting to use the factorization system through
Gluefin(Vecfin). In this case, the minimal Gluefin(Vecfin)-automaton also has just a two-
dimensional vector space of states.

5 Conclusion

We have introduced a new way to construct automata which, thanks to category-theoretic
insights, admits minimal automata ‘by design’. The introductory example of hybrid set-vector



T. Colcombet and D. Petrişan 52:13

automata is a convincing instance of this approach, which has both algorithmic merits (in
succinctness of the encoding of the state space) and theoretical merits (in that there exists
minimal automata). The closest work to our knowledge is the work of Lombardy and
Sakarovitch [12] which studies the sequentialisability of weighted automata; in the framework
of this paper, this is answering the question whether a vector space automaton is equivalent
to a hybrid set-vector automaton for which the state space consists of dimension 1 vector
spaces only, glued at 0 (the problem remains open).

At the categorical level, we should say a few words regarding our design choices. First why
not use more familiar co-completions such as the Ind-completion of the free co-completion?
The answer is that if we did so, we would not obtain the desired behaviour when we restrict
our attention to the ‘finite’ automata. For example finite filtered colimits are not very
interesting, while the freely added finite colimits of vector spaces are not closed under
quotients in the free co-completion, thus the work in the previous sections cannot be applied.

Another question one may ask is why we haven’t used coalgebras, as in [2] or in the work
of [1] on well-pointed coalgebras. First, the factorization through a subcategory, which plays
a crucial role in our work, is not developed in that setting. Secondly, we believe that the
functorial approach to automata, which neatly combines the dual narrative of automata
seen as both algebras and coalgebras is worth saying. As we show in [8], we can employ
this framework for minimizing subsequential transducers à la Choffrut [7] (by interpreting
them as automata in a Kleisli category). This is also an example in which the conditions
in Lemma 3.4 are not necessary. We believe, that at least in that situation the functorial
approach works slightly smoother than the coalgebraic one [11]. Also, by changing the input
category, we can further extend this work to capture tree automata or algebras (for instance
monoids).

In the particular model of hybrid set-vector automata the problem of effectiveness remains:
we have proved the existence of a minimal automaton for a language, but obtaining the
reachable configurations in an effective way is the subject of ongoing work.

References
1 Jirí Adámek, Stefan Milius, Lawrence S. Moss, and Lurdes Sousa. Well-pointed coalgebras.

Logical Methods in Computer Science, 9(3), 2013.
2 Jiří Adámek, Filippo Bonchi, Mathias Hülsbusch, Barbara König, Stefan Milius, and

Alexandra Silva. A coalgebraic perspective on minimization and determinization. In Pro-
ceedings of the 15th International Conference on Foundations of Software Science and Com-
putational Structures, FOSSACS’12, pages 58–73, Berlin, Heidelberg, 2012. Springer-Verlag.
doi:10.1007/978-3-642-28729-9_4.

3 Michael A. Arbib and Ernest G. Manes. Adjoint machines, state-behavior machines,
and duality. Journal of Pure and Applied Algebra, 6(3):313 – 344, 1975. doi:10.1016/
0022-4049(75)90028-6.

4 Nick Bezhanishvili, Clemens Kupke, and Prakash Panangaden. Minimization via Dual-
ity, pages 191–205. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. doi:10.1007/
978-3-642-32621-9_14.

5 Filippo Bonchi, Marcello Bonsangue, Michele Boreale, Jan Rutten, and Alexandra Silva. A
coalgebraic perspective on linear weighted automata. Inf. Comput., 211:77–105, February
2012. doi:10.1016/j.ic.2011.12.002.

6 Filippo Bonchi, Marcello M. Bonsangue, Helle Hvid Hansen, Prakash Panangaden, Jan J.
M. M. Rutten, and Alexandra Silva. Algebra-coalgebra duality in Brzozowski’s minimiza-
tion algorithm. ACM Trans. Comput. Log., 15(1):3:1–3:29, 2014.

MFCS 2017

http://dx.doi.org/10.1007/978-3-642-28729-9_4
http://dx.doi.org/10.1016/0022-4049(75)90028-6
http://dx.doi.org/10.1016/0022-4049(75)90028-6
http://dx.doi.org/10.1007/978-3-642-32621-9_14
http://dx.doi.org/10.1007/978-3-642-32621-9_14
http://dx.doi.org/10.1016/j.ic.2011.12.002


52:14 Automata in Glued Vector Spaces

7 Christian Choffrut. A generalization of Ginsburg and Rose’s characterization of G-S-M
mappings. In ICALP, volume 71 of Lecture Notes in Computer Science, pages 88–103.
Springer, 1979.

8 Thomas Colcombet and Daniela Petrişan. Automata minimization: a functorial approach.
CALCO, 72:8:1–8:15, 2017.

9 Brian J. Day and Stephen Lack. Limits of small functors. Journal of Pure and Applied
Algebra, 210(3):651 – 663, 2007. doi:10.1016/j.jpaa.2006.10.019.

10 J. A. Goguen. Minimal realization of machines in closed categories. Bull. Amer. Math. Soc.,
78(5):777–783, 09 1972. URL: http://projecteuclid.org/euclid.bams/1183533991.

11 Helle Hvid Hansen. Subsequential transducers: a coalgebraic perspective. Inf. Comput.,
208(12):1368–1397, 2010.

12 Sylvain Lombardy and Jacques Sakarovitch. Sequential? Theor. Comput. Sci., 356(1-
2):224–244, 2006. doi:10.1016/j.tcs.2006.01.028.

13 M.P. Schützenberger. On the definition of a family of automata. Information and Control,
4(2):245 – 270, 1961. doi:10.1016/S0019-9958(61)80020-X.

http://dx.doi.org/10.1016/j.jpaa.2006.10.019
http://projecteuclid.org/euclid.bams/1183533991
http://dx.doi.org/10.1016/j.tcs.2006.01.028
http://dx.doi.org/10.1016/S0019-9958(61)80020-X


The Equivalence, Unambiguity and Sequentiality
Problems of Finitely Ambiguous Max-Plus Tree
Automata are Decidable∗

Erik Paul

Institute of Computer Science, Leipzig University, Leipzig, Germany
epaul@informatik.uni-leipzig.de

Abstract
We show that the equivalence, unambiguity and sequentiality problems are decidable for finitely
ambiguous max-plus tree automata.

1998 ACM Subject Classification F.4.3 Formal Languages

Keywords and phrases Tree Automata, Max-Plus Automata, Equivalence, Unambiguity, Se-
quentiality, Decidability

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.53

1 Introduction

A max-plus automaton is a finite automaton with transition weights in the real numbers. To
each word, it assigns the maximum weight of all accepting paths on the word, where the
weight of a path is the sum of the path’s transition weights. Max-plus automata and their
min-plus counterparts are weighted automata [19, 18, 13, 2, 4] over the max-plus or min-plus
semiring. Under varying names, max-plus and min-plus automata have been studied and
employed many times in the literature. They can be used to determine the star height of a
language [7], to decide the finite power property [20, 21] and to model certain timed discrete
event systems [5, 6]. Additionally, they appear in the context of natural language processing
[14].

For practical applications, the decidable properties of an automaton model are usually of
great interest. Typical problems considered include the emptiness, universality, inclusion,
equivalence, sequentiality and unambiguity problems. We consider the last three of these
problems for finitely ambiguous automata, which are automata in which the number of
accepting paths for every word is bounded by a global constant. If there is at most one
accepting path for every word, the automaton is called unambiguous. It is called deterministic
or sequential if for each pair of a state and an input symbol, there is at most one valid
transition into a next state. It is known [11] that finitely ambiguous max-plus automata are
strictly more expressive than unambiguous max-plus automata, which in turn are strictly
more expressive than deterministic max-plus automata.

Let us quickly recall the considered problems and the related results. The equivalence
problem asks whether two automata are equivalent, which is the case if the weights assigned
by them coincide on all words. In general, the equivalence problem is undecidable [12] for
max-plus automata, but for finitely ambiguous max-plus automata it becomes decidable

∗ This work was supported by Deutsche Forschungsgemeinschaft (DFG), Graduiertenkolleg 1763
(QuantLA).

© Erik Paul;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 53; pp. 53:1–53:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.53
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


53:2 Equivalence, Unambiguity and Sequentiality of Finitely Ambiguous Max-Plus-WTA

[22, 9]. The sequentiality problem asks whether for a given automaton, there exists an
equivalent deterministic automaton. This was shown to be decidable by Mohri [14] for
unambiguous max-plus automata. Finally, the unambiguity problem asks whether for a given
automaton, there exists an equivalent unambiguous automaton. This problem is known to
be decidable for finitely ambiguous and even polynomially ambiguous max-plus automata
[11, 10]. In conjunction with Mohri’s results, it follows that the sequentiality problem is
decidable for these classes of automata as well.

In this paper, we show that these three problems are decidable for finitely ambiguous
max-plus tree automata, which are max-plus automata that operate on trees instead of words.
In the form of probabilistic context-free grammars, max-plus tree automata are commonly
employed in natural language processing [17]. Our approach to the decidability of the
equivalence problem uses ideas from [9]. We use a similar induction argument and also
reduce the equivalence problem to the same decidable problem, namely the decidability of
the existence of an integer solution for a system of linear inequalities [15]. On words, the
proof relies on the decomposition of words into subwords of bounded length, of which one
is removed in the induction step. This argument cannot be applied to trees as easily. A
tree can be decomposed into contexts of bounded height, but this requires contexts with
multiple variables. Removing such a context does usually not yield a tree. Consequently, our
induction is much more involved. We also point out and correct an important oversight in
the main theorem of [9].

The decidability of the unambiguity problem employs ideas from [11]. Here, we show
how the dominance property can be generalized to max-plus tree automata. To show the
decidability of the sequentiality problem, we first combine results from [3] and [14] to show
the decidability of this problem for unambiguous max-plus tree automata, and then combine
this result with the decidability of the unambiguity problem.

Our solution of the equivalence problem can be applied to weighted logics. In [16], a
fragment of a weighted logic is shown to have the same expressive power as finitely ambiguous
weighted tree automata. Over the max-plus semiring, equivalence is decidable for formulas
of this fragment due to our results.

2 Preliminaries

Let N = {0, 1, 2, . . .}. By N∗ we denote the set of all finite words over N. The empty word
is denoted by ε, and the length of a word w ∈ N∗ by |w|. The set N∗ is partially ordered
by the prefix relation ≤p and totally ordered with respect to the lexicographic ordering ≤l.
A ranked alphabet is a pair (Γ, rkΓ), often abbreviated by Γ, where Γ is a finite set and
rkΓ : Γ→ N. For every m ≥ 0 we define Γ(m) = rk−1

Γ (m) as the set of all symbols of rank m.
The rank rk(Γ) of Γ is defined as max{rkΓ(a) | a ∈ Γ}.

The set of (finite, labeled and ordered) Γ-trees, denoted by TΓ, is the set of all pairs t =
(pos(t), labelt), where pos(t) ⊂ N∗ is a finite non-empty prefix-closed set, labelt : pos(t)→ Γ
is a mapping and for every w ∈ pos(t) we have wi ∈ pos(t) iff 1 ≤ i ≤ rkΓ(labelt(w)). We
write t(w) for labelt(w). We also refer to the elements of pos(t) as nodes, to ε as the root of
t and to prefix-maximal nodes as leaves.

Now let s, t ∈ TΓ and w ∈ pos(t). The subtree of t at w, denoted by t�w, is a Γ-tree defined
as follows. We let pos(t�w) = {v ∈ N∗ | wv ∈ pos(t)} and for v ∈ pos(t�w), labelt�w

(v) =
t(wv). The substitution of s into w of t, denoted by t〈s→ w〉, is a Γ-tree defined as follows.
We let pos(t〈s → w〉) = {v ∈ pos(t) | w 6≤p v} ∪ {wv | v ∈ pos(s)}. For u ∈ pos(t〈s → w〉),
we let labelt〈s→w〉(u) = s(v) if u = wv, and otherwise labelt〈s→w〉(u) = t(u).



E. Paul 53:3

For a ∈ Γ(m) and trees t1, . . . , tm ∈ TΓ, we also write a(t1, . . . , tm) to denote the tree t
with pos(t) = {ε} ∪ {iw | i ∈ {1, . . . ,m}, w ∈ pos(ti)}, labelt(ε) = a and labelt(iw) = ti(w).

A commutative semiring is a tuple (K,⊕,�,0,1), abbreviated by K, with operations sum
⊕ and product � and constants 0 and 1 such that (K,⊕,0) and (K,�,1) are commutative
monoids, multiplication distributes over addition, and k� 0 = 0� k = 0 for every k ∈ K. In
this paper, we only consider the following two semirings.

The boolean semiring B = ({0, 1},∨,∧, 0, 1) with disjunction ∨ and conjunction ∧.
The max-plus semiring Rmax = (R ∪ {−∞},max,+,−∞, 0) where the sum and the
product operations are max and +, respectively, extended to R∪ {−∞} in the usual way.

A (formal) tree series is a mapping S : TΓ → K. The set of all tree series (over Γ and K)
is denoted by K〈〈TΓ〉〉. For two tree series S, T ∈ K〈〈TΓ〉〉, the sum S ⊕ T and the Hadamard
product S � T are defined pointwise.

Let (K,⊕,�,0,1) be a commutative semiring. A weighted bottom-up finite state tree
automaton (short: WTA) over K and Γ is a tuple A = (Q,Γ, µ, ν) where Q is a finite set (of
states), Γ is a ranked alphabet (of input symbols), µ :

⋃rk(Γ)
m=0 Q

m×Γ(m)×Q→ K (the weight
function) and ν : Q→ K (the function of final weights). We set ∆A =

⋃rk(Γ)
m=0 Q

m×Γ(m)×Q.
A tuple (~p, a, q) ∈ ∆A is called a transition and (~p, a, q) is called valid if µ(~p, a, q) 6= 0. A
state q ∈ Q is called final if ν(q) 6= 0.

We call a WTA over the max-plus semiring a max-plus-WTA and a WTA over the boolean
semiring a finite tree automaton (FTA). A WTA A = (Q,Γ, µ, ν) over B is also written as a
tuple A′ = (Q,Γ, δ, F ) where δ = {d ∈ ∆A | µ(d) = 1} and F = {q ∈ Q | ν(q) = 1}.

For t ∈ TΓ, a mapping r : pos(t)→ Q is called a quasi-run of A on t. For a quasi-run r
on t and w ∈ pos(t) with t(w) = a ∈ Γ(m), the tuple t(t, r, w) = (r(w1), . . . , r(wm), a, r(w))
is called the transition at w. The quasi-run r is called a (valid) run if for every w ∈ pos(t)
the transition t(t, r, w) is valid with respect to A. We call a run r accepting if r(ε) is final.
By RunA(t) and AccA(t) we denote the sets of all runs and all accepting runs of A on t,
respectively. For r ∈ RunA(t) the weight of r is defined by wtA(t, r) =

⊙
w∈pos(t) µ(t(t, r, w)).

The tree series accepted by A, denoted by JAK ∈ K〈〈TΓ〉〉, is the tree series defined for every
t ∈ TΓ by JAK(t) =

⊕
r∈AccA(t) wtA(t, r)� ν(r(ε)) where the sum over the empty set is 0 by

convention. The support of A is the set supp(A) = {t ∈ TΓ | JAK(t) 6= 0}.
The support of an FTA A is also called the language accepted by A and denoted by L(A).

A subset L ⊆ TΓ is called recognizable if there exists an FTA A with L = L(A).
A WTA A is called deterministic if for every m ≥ 0, a ∈ Γ(m) and ~p ∈ Qm there exists

at most one q ∈ Q with µ(~p, a, q) 6= 0. We call A finitely ambiguous or M -ambiguous if
|AccA(t)| ≤M for some M ≥ 1 and every t ∈ TΓ. A 1-ambiguous WTA is also called unam-
biguous. We recall that for every recognizable language L ⊆ TΓ, there exists a deterministic
FTA A with L(A) = L.

An automaton A is called trim if (i) for every q ∈ Q there exist t ∈ TΓ, r ∈ AccA(t) and
w ∈ pos(t) such that q = r(w) and (ii) for every valid d ∈ ∆A there exist t ∈ TΓ, r ∈ AccA(t)
and w ∈ pos(t) such that d = t(t, r, w). The trim part of A is the automaton obtained by
removing all states q ∈ Q which do not satisfy (i) and setting µ(d) = 0 for all valid d ∈ ∆A
which do not satisfy (ii). This process obviously has no influence on JAK.

3 The Equivalence Problem

For two max-plus-WTA A1 and A2 over an alphabet Γ, we say that A1 dominates A2,
denoted by A1 ≥ A2, if for all trees t ∈ TΓ we have JA1K(t) ≥ JA2K(t). We say that A1 and
A2 are equivalent, denoted by A1 = A2, if for all t ∈ TΓ we have JA1K(t) = JA2K(t).

MFCS 2017



53:4 Equivalence, Unambiguity and Sequentiality of Finitely Ambiguous Max-Plus-WTA

The equivalence problem for max-plus (tree) automata asks whether for two given max-
plus (tree) automata A1 and A2, it holds that A1 = A2. For words, this problem was shown
to be undecidable in general [12], but it is decidable if both automata are finitely ambiguous
[9]. In this section, we prove that the equivalence problem is decidable for finitely ambiguous
max-plus-WTA. This section is based on ideas from [9].

I Theorem 1. The equivalence problem for finitely ambiguous weighted tree automata over
the max-plus semiring is decidable.

In fact, we will show that if A1 is a finitely ambiguous max-plus-WTA and A2 any
max-plus-WTA, then it is decidable whether A1 dominates A2.

I Theorem 2. Let A1 be a finitely ambiguous max-plus-WTA and A2 any max-plus-WTA.
It is decidable whether or not A1 ≥ A2.

If both automata in Theorem 2 are finitely ambiguous, we can reverse their roles.
Consequently, Theorem 1 is a corollary of Theorem 2. The remainder of this section is
dedicated to the proof of Theorem 2.

As a first step, we show in the following lemma that every finitely ambiguous max-plus-
WTA A can be “normalized” such that all trees, which have an accepting run in A, have the
same number of accepting runs.

I Lemma 3. Let A = (Q,Γ, µ, ν) be an M -ambiguous max-plus-WTA. Then there exists a
finitely ambiguous max-plus-WTA A′ with A = A′ and |AccA′(t)| ∈ {0,M} for all t ∈ TΓ.

For the rest of this section, fix an M -ambiguous max-plus-WTA A1 and a max-plus-WTA
A2. By Lemma 3, we can assume that for all t ∈ TΓ we have |AccA1(t)| ∈ {0,M}. Note that
A1 ≥ A2 can only hold if supp(A2) ⊆ supp(A1), which is decidable since the supports of A1
and A2 are recognizable languages. Therefore, in the forthcoming considerations we will
always assume that supp(A2) ⊆ supp(A1) holds. We write Ai = (Qi,Γ, µi, νi) for i = 1, 2.

For any tree in supp(A2), there are exactly M accepting runs of A1 on this tree. We
want to apply pumping type arguments to all of these runs and a given accepting run of A2
simultaneously. For this, we encode the runs of A1 and the given run of A2 directly into the
tree. Moreover, we want to decompose these trees, with all runs encoded, into smaller parts.
Formally, such a decomposition will be a tree of trees. To mark where these smaller trees
connect to each other, we use the new label �.

I Definition 4. For a set X and an alphabet Σ, we define for (a, x) ∈ Σ × X the rank
rkΣ×X(a, x) = rkΣ(a). We let Γ� = (Γ ∪ {�}, rkΓ ∪ {� 7→ 0}), where � is a new symbol. Let
Q = QM1 ×Q2 and let πQ, πΓ and πΓ� be the projections of Γ×Q and Γ� ×Q onto Q, Γ
and Γ�, respectively.

For a tree t ∈ TΓ�×Q, we define labelΓ�t = πΓ� ◦ labelt and labelit = πi ◦ πQ ◦ labelt where
πi is the i-th projection on Q. For i ∈ {1, . . . ,M + 1}, we define

wti(t) =


∑

w∈pos(t)
labelΓ�t (w)6=�

µ1(t((pos(t), labelΓ�t ), labelit, w)) if 1 ≤ i ≤M∑
w∈pos(t)

labelΓ�t (w)6=�
µ2(t((pos(t), labelΓ�t ), labelit, w)) if i = M + 1.

A tree t ∈ TΓ×Q is called accepting if label1t , . . . , labelMt are pairwise distinct accepting runs
of A1 on (pos(t), labelΓ�t ) and labelM+1

t is an accepting run of A2 on (pos(t), labelΓ�t ).



E. Paul 53:5

(a, q0, p0)

(a, q1, p1)

(b, q0, p0) (b, q2, p2)

(c, q1, p1)

(b, q0, p0)

(a, q0, p0)

(a, q1, p1)

(�, q0, p0) (�, q2, p2)

(�, q1, p1)

(b, q2, p2)(b, q0, p0) (c, q1, p1)

(b, q0, p0)

Figure 1 A tree in TΓ×Q (M = 1) and a possible cycle decomposition with f defined as f(ε) = 1
and f(1) = f(2) = f(3) = 0.

Let t ∈ TΓ�×Q, n = |{w ∈ pos(t) | labelΓ�t (w) = �}| be the number of �-leaves in t and
{w1, . . . , wn} a lexicographically ordered enumeration of these leaves, i.e. w1 ≤l . . . ≤l wn.
For 1 ≤ i ≤ n, we define Wi(t) = wi. The set

Ξ = {t ∈ TΓ�×Q | ∀w ∈ pos(t) : |w| ≤ |Q| and labelΓ�t (ε) 6= �}

forms a ranked alphabet where for t as above we define rkΞ(t) = n. We recall that |w|
denotes the length of w and |Q| the cardinality of Q.

Every tree over Ξ corresponds to a unique tree over Γ×Q. This inclusion J : TΞ ↪→ TΓ×Q
is formally given as follows. For t ∈ TΞ with pos(t) = {ε} we let J (t) = t(ε). Otherwise let
m = rkΞ(t(ε)) and J (t) = t(ε)〈J (t�1)→W1(t(ε))〉 . . . 〈J (t�m)→Wm(t(ε))〉.

A tree t ∈ TΞ is called matching if for all w ∈ pos(t) and i ∈ {1, . . . , rkΞ(t(w))} we have
πQ(t(w)(Wi(t(w))) = πQ(t(wi)(ε)), i.e. the “state labels” of the �-letters match with the
state labels of the root at the corresponding child.

I Definition 5. Let t ∈ TΓ×Q. A cycle decomposition of t is a pair D = (t, f), where t ∈ TΞ
and f : pos(t)→ N is a mapping, satisfying the following.
1. We have J (t) = t and t is matching.
2. For all w ∈ pos(t) we have f(w) ≤ rkΞ(t(w)).
3. If w ∈ pos(t) with f(w) > 0, then with v = Wf(w)(t(w)) we have πQ(t(w)(ε)) =

πQ(t(w)(v)). In other words, the state labels of the root of t(w) coincide with the state
labels of the f(w)-th �-leaf of t(w).

4. If f(w) = 0 for some w ∈ pos(t), then for all i > 0 with wi ∈ pos(t), we have f(wi) > 0.

We call w ∈ pos(t) a cycle if f(w) > 0 and otherwise a link. The set of all cycles of D is
denoted by Cyc(D). By Decomp(t) we denote the set of all cycle decompositions of t. For
w ∈ pos(t) we call the set AncD(w) = {v ∈ Cyc(D) | vi ≤p w for some i ≥ 1 with i 6= f(v)}
the ancestors of w, see also Figure 2. We have the following lemma.

I Lemma 6. For every t ∈ TΓ×Q, there exists a cycle decomposition (t, f) ∈ Decomp(t).

For w ∈ Cyc(D) we now define a new tree tD(w) over the alphabet Ξ ∪ {�}, where � has
rank 0. Intuitively, tD(w) is the subtree of t at w, with all cycles apart from w itself removed
and the subtree at wf(w) replaced by �, see also Figure 2.

MFCS 2017



53:6 Equivalence, Unambiguity and Sequentiality of Finitely Ambiguous Max-Plus-WTA

(c1, 2)

(l1, 0)

(c2, 2)

(l2, 0) (l3, 0) (l4, 0)

(c3, 1)

(l5, 0)

(l8, 0) (c4, 2)

(l6, 0) (l7, 0)

c1

l1

l3 l5

� l7

Figure 2 A cycle decomposition D with f included in the labels and the tree tD(ε). A c denotes
a cycle and an l a link. The position of l8 has no ancestors, l5 has only the ancestor c1, and l4 has
ancestors c1 and c2.

Formally, we construct the tree as follows. We write f into the labels of t, i.e. we
define t′ = (pos(t), labelt × f). By π1 and π2 we denote the projections of Ξ × N to the
respective entries. We let s = t′�w. Now, as long as there is v ∈ pos(s) with π2(s(v)) > 0
and v 6= ε, we redefine s = s〈s�vπ2(s(v)) → v〉. Finally, we let s′ = (pos(s), π1 ◦ labels) and
tD(w) = s′〈� → f(w)〉. Note that tD(w) is matching.

For i ∈ {1, . . . ,M + 1} and w ∈ Cyc(D) we define

wtDi (w) =
∑

v∈pos(tD(w))
labeltD(w)(v)6=�

wti(labeltD(w)(v))

bDi =
∑

v∈pos(t)
v/∈Cyc(D)

AncD(v)=∅

wti(t(v)) +
{
ν1(labelit(ε)(ε)) if 1 ≤ i ≤M
ν2(labelM+1

t(ε) (ε)) if i = M + 1.

We have the following lemma.

I Lemma 7. Let t ∈ TΓ×Q, s = (pos(t), labelΓ�t ), ri = labelit and D = (t, f) ∈ Decomp(t).
Let {w1, . . . , wn} be a lexicographically ordered enumeration of Cyc(D). Then

ν1(ri(ε)) + wtA1(s, ri) = bDi + wtDi (w1) + . . .+ wtDi (wn)
ν2(rM+1(ε)) + wtA2(s, rM+1) = bDM+1 + wtDM+1(w1) + . . .+ wtDM+1(wn)

for i ∈ {1, . . . ,M}.

Let {w1, . . . , wn} be a lexicographically ordered enumeration of Cyc(D). We consider the
system of linear inequalities

bDi + wtDi (w1)X1 + . . .+ wtDi (wn)Xn < bDM+1 + wtDM+1(w1)X1 + . . .+ wtDM+1(wn)Xn

0 < Xj

where i ranges over 1, . . . ,M and j over 1, . . . n. For a cycle decomposition D ∈ Decomp(t),
the system above is denoted by LIS(D).

I Lemma 8. Let t ∈ TΓ×Q be accepting and D = (t, f) ∈ Decomp(t). For every choice of
X1, . . . , Xn ∈ N, Xi ≥ 1, there is an accepting tree s ∈ TΓ×Q with

ν1(labelis(ε)) + wti(s) = bDi + wtDi (w1)X1 + . . .+ wtDi (wn)Xn

ν2(labelM+1
s (ε)) + wtM+1(s) = bDM+1 + wtDM+1(w1)X1 + . . .+ wtDM+1(wn)Xn

for every i ∈ {1, . . . ,M}.



E. Paul 53:7

Proof. For X1 = . . . = Xn = 1 we know by Lemma 7 that this is true for s = t. Otherwise
let w ∈ Cyc(D). We can “insert” the tree tD(w) into t at w as follows. Let s = t〈tD(w)→
wf(w)〉〈t�wf(w) → wf(w)f(w)〉. As w is a cycle, we know that s is matching and with
s = J (s) we have

νi(labelis(ε)) + wti(s) = νi(labelit(ε)) + wti(t) + wtDi (w)
= bDi + wtDi (w1) + . . .+ wtDi (wn) + wtDi (w)

where the last equality follows from Lemma 7. For every j ∈ {1, . . . , n} we apply this
procedure Xj − 1 times to wj to obtain s as needed. To see that s is indeed accepting, note
that label1t , . . . , labelMt are pairwise distinct. Since s is obtained from t by inserting subtrees,
label1s, . . . , labelMs must also be pairwise distinct. J

We are now ready to prove Theorem 2.

I Lemma 9. Let N =
∑|Q|
k=0 rk(Γ)k, Υ =

∑rk(Ξ)+1
k=1 (|Ξ|+ 1)k, Ω =

∑rk(Ξ)+2
k=1 (|Ξ|+ 1)k and

Θ = |Ξ|Ω(2Ω + 2). Then the following statements are equivalent.
(i) A1 ≥ A2.
(ii) For all accepting t ∈ TΓ×Q with |pos(t)| ≤ NΥ2Θ(2+rk(Ξ)) and all cycle decompositions

D ∈ Decomp(t), the system of linear inequalities LIS(D) does not possess an integer
solution.

(iii) For all accepting t ∈ TΓ×Q and all cycle decompositions D ∈ Decomp(t), the system of
linear inequalities LIS(D) does not possess an integer solution.

Property (ii) is clearly decidable. There are only finitely many trees to check, each tree has
only finitely many cycle decompositions, and the satisfiability of the corresponding linear
inequality systems with integers is decidable due to [15]. In particular, Theorem 2 holds.

Proof (sketch).
(i) ⇒ (iii). We prove this by contradiction and assume that (iii) does not hold. Then there
is an accepting t ∈ TΓ×Q and a cycle decomposition D ∈ Decomp(t) such that the system
of inequalities LIS(D) has an integer solution. By Lemma 8 we can find an accepting tree
s ∈ TΓ×Q with

ν1(labelis(ε)) + wti(s) = bDi + wtDi (w1)X1 + . . .+ wtDi (wn)Xn

ν2(labelM+1
s (ε)) + wtM+1(s) = bDM+1 + wtDM+1(w1)X1 + . . .+ wtDM+1(wn)Xn

for every i ∈ {1, . . . ,M}. Thus by Lemma 7 with s′ = (pos(t), labelΓ�s ) and ri = labelis for
i ∈ {1, . . . ,M + 1} we have ν1(ri(ε)) + wtA1(s′, ri) < ν2(rM+1(ε)) + wtA2(s′, rM+1) for all
i ∈ {1, . . . ,M}. Since A1 is M -ambiguous and r1, . . . , rM are pairwise distinct, this means
JA1K(s′) < JA2K(s′), i.e. (i) does not hold.

(iii) ⇒ (i). We show this by contradiction and assume that (i) does not hold. Then
there is some tree s ∈ supp(A2) with JA1K(s) < JA2K(s). Let AccA1(s) = {r1, . . . , rM}.
Since JA1K(s) < JA2K(s), there must be rM+1 ∈ AccA2(s) with ν1(ri(ε)) + wtA1(s, ri) <
ν2(rM+1(ε)) + wtA2(s, rM+1) for all i ∈ {1, . . . ,M}. Consider the accepting tree t =
(pos(s), (labels, r1, . . . , rM+1)) ∈ TΓ×Q and let D = (t, f) ∈ Decomp(t). Then according to
Lemma 7, the system LIS(D) clearly has the integer solution X1 = . . . = Xn = 1, i.e. (iii)
does not hold.

(ii) ⇔ (iii). The direction (iii) ⇒ (ii) is clear. We prove (ii) ⇒ (iii) by induction on the size
of the trees t. For “small” trees, it follows by assuming (ii) as true. For “large” trees t, we

MFCS 2017



53:8 Equivalence, Unambiguity and Sequentiality of Finitely Ambiguous Max-Plus-WTA

show that if for a cycle decomposition D = (t, f) the system LIS(D) has an integer solution,
then we can find a smaller tree and a cycle decomposition D′ of that tree for which LIS(D′)
also has an integer solution. This constitutes a contradiction to our induction hypothesis.

The main issue is how to construct this smaller tree. For words, it is easy. If a word is
sufficiently long, there are two cycles with the same label. We remove one of these cycles
from the word, thereby making the word shorter, and in LIS(D) add the coefficient for this
cycle to that of the other, identical cycle. It is clear that this is not possible for trees. By
removing any cycle w, we also remove all other cycles v with w ∈ AncD(v).

Our solution for this is as follows. Using the concept of ancestors, we construct a tree
hierarchy on the cycles of D. The “child cycles” of a given cycle w are all cycles for which w
is the prefix-largest ancestor. We call this tree T and consider two different cases. If T has
sufficiently many leaves, there are two different leaves pointing to the “same cycle”. More
precisely, we find w1 6= w2 in Cyc(D) with tD(w1) = tD(w2) and for all v ∈ Cyc(D) we have
w1 /∈ AncD(v) and w2 /∈ AncD(v). The leaves of T correspond to cycles which are save to
remove as they are not ancestors of any other cycles. We can therefore remove w2 and add
this cycle’s coefficient to that of w1.

However, T might not have sufficiently many leaves for this argumentation. But assuming
that the number of leaves stays below the bound Υ, sufficiently large trees T have arbitrarily
long successions of nodes w,w1, w12, . . . , w1n each having only one child. Now consider the
cycles v0, . . . , vn ∈ Cyc(D) which correspond to such a succession w,w1, . . . , w1n. We can
show that there is only a finite number of possible trees tD(vi) for these cycles. If n is large
enough, we can find i1 < i2 < i3 < i4 such that tD(vi1) = tD(vi2) = tD(vi3) = tD(vi4) and
in addition {tD(vi) | i1 ≤ i ≤ i2} = {tD(vi) | i3 ≤ i ≤ i4}. We can then “remove” all cycles
vi3 , . . . , vi4−1 by inserting the subtree of t at vi4 into the node vi3 . The coefficients for the
cycles removed in this way can then be added to the coefficients of the corresponding cycles
in vi1 , . . . , vi2 . J

On the Proof for the Word Case
For words, Theorem 1 was shown by Hashiguchi et al. There are two different versions of the
paper, namely [8, 9]. In both papers, it is first shown that for deterministic max-plus word
automata A1, . . . ,AM+1, it is decidable whether maxMi=1JAiK ≥ JAM+1K. The approach for
the generalization to finitely ambiguous automata is then different in both papers.

In [8], it is claimed that every finitely ambiguous max-plus word automaton can be
written as a pointwise maximum of finitely many deterministic max-plus automata. This
argumentation was withdrawn in [9] and the claim posed as an open problem. It does in fact
not hold as shown in [1].

In [9], the argumentation is done directly on the runs of the finitely ambiguous max-plus
automata. However, this causes problems when not all words have the same number of
accepting runs. The two automata in Figure 3 over the one-letter alphabet {a} constitute a
counter example to Theorem 5.6 in [9], which is similar to our Lemma 9.

One easily checks that A1 ≥ A2. There are two accepting runs of A1 on a3, namely
q1aq2aq3aq3 and q4aq5aq6aq6, and one of A2 on a3, namely p1ap2ap3ap3. The last a thus
induces a cycle in the sense of [9]. From this, the linear inequality system

2+ (−1) ·X < 1+ 0 ·X
−2+ 1 ·X < 1+ 0 ·X

0 ≤ X

is derived. It clearly has the solution X = 2. However, it is stated that from the satisfiability



E. Paul 53:9

q10 q2 q3 01 1

-1

q71 q8 q9 q10 q11 00 0 0 0

q40 q5 q6 0-1 -1

1A1

p11 p2 p3 00 0

0A2

Figure 3 The automata A1 and A2 over the alphabet {a} constitute a counter example to [9,
Theorem 5.6]. The transition letters are omitted.

of this inequality system with an integer value it follows that A1 ≥ A2 does not hold. The
problem here is that the word a4, which is supposed to “realize” the solution of the inequality
system, in fact possesses a third accepting run q7aq8aq9aq10aq11 which compensates the other
two runs.

The proof of Theorem 5.6 in [9] can easily be fixed by normalizing the automaton A1 as
we did in Lemma 3. If for some M ≥ 1 we have |AccA1(w)| ∈ {0,M} for every word w, all
arguments of the proof work as intended.

4 The Unambiguity Problem

The unambiguity problem asks whether for a given max-plus-WTA A there exists an
unambiguous max-plus-WTA A′ such that JAK = JA′K. In this section, we show that the
unambiguity problem is decidable for finitely ambiguous max-plus-WTA. We follow ideas
from [11, Section 5], where the decidability of this problem was shown for finitely ambiguous
max-plus word automata. The unambiguity problem is, in fact, even known to be decidable
for polynomially ambiguous max-plus word automata [10]. We leave the question open as to
whether the same holds true for polynomially ambiguous max-plus-WTA.

I Theorem 10. For a finitely ambiguous max-plus-WTA A it is decidable whether there
exists an unambiguous max-plus-WTA A′ with JAK = JA′K. If A′ exists, it can be effectively
constructed.

The rest of this section is dedicated to the proof of Theorem 10.
For an alphabet Γ, a tree over the alphabet Γ� = (Γ ∪ {�}, rkΓ ∪ {� 7→ 0}) is called a

Γ-context. For a max-plus-WTA A = (Q,Γ, µ, ν), a run of A on a Γ-context t is a run of the
max-plus-WTA A′ = (Q,Γ�, µ′, ν) on t, where µ′(�, q) = 0 for all q ∈ Q and µ′(d) = µ(d) for
d ∈ ∆A. We denote Run�A(t) = RunA′(t) and for r ∈ Run�A(t) write wt�A(t, r) = wtA′(t, r).

For s ∈ TΓ with |{w ∈ pos(s) | s(w) = �}| = 1 and r ∈ Run�A(s) such that for w0 ∈ pos(s)
with s(w0) = � we have r(ε) = r(w0) the pair (s, r) is called an A-circuit. We call (s, r)
small if |w| ≤ |Q| for all w ∈ pos(s).

Now let A be a finitely ambiguous max-plus-WTA. We decompose A into unambiguous
max-plus-WTA as follows.

MFCS 2017



53:10 Equivalence, Unambiguity and Sequentiality of Finitely Ambiguous Max-Plus-WTA

I Lemma 11 ([16]). Let A be a finitely ambiguous max-plus-WTA over Γ, then there exist
finitely many unambiguous max-plus-WTA A1, . . . ,AM over Γ with JAK = maxMi=1JAiK and
supp(A1) = . . . = supp(AM ).

Let A1, . . . ,AM be unambiguous max-plus-WTA with supp(A1) = . . . = supp(AM ) and
JAK = maxMi=1JAiK. We write Ai = (Qi,Γ, µi, νi) for i ∈ {1, . . . ,M}. The product automaton
of A1, . . . ,AM is the trimmed automaton B = (Q,Γ, µ, ν) over the product semiring (Rmax)M
defined as follows. We let Q = Q1 × . . . × QM and for a ∈ Γ with rkΓ(a) = m and
p0, . . . ,pm ∈ Q with pi = (pi1, . . . , piM ) we define with xj = µj(p1j , . . . , pmj , a, p0j) and
yj = νj(p0j)

µ(p1, . . . ,pm, a,p0) =
{

(x1, . . . , xM ) if (x1, . . . , xM ) ∈ RM

(−∞, . . . ,−∞) otherwise

ν(p0) =
{

(y1, . . . , yM ) if (y1, . . . , yM ) ∈ RM

(−∞, . . . ,−∞) otherwise.

Then B is unambiguous and for t ∈ TΓ we have JBK(t) = (JA1K(t), . . . , JAM K(t)).
For q,p ∈ Q, we write q � p if there exists t ∈ TΓ, r ∈ AccB(t) and w1, w2 ∈ pos(t) with

w1 ≤p w2 such that r(w1) = q and r(w2) = p. We write q ≈ p if q � p and p � q. By [q]
we denote the set of all p ∈ Q with q ≈ p.

I Definition 12. Let s ∈ TΓ� be a Γ-context, r ∈ Run�B(s) and write wt�B(s, r) = (θ1, . . . , θM ).
We define wti(s, r) = θi and wt(s, r) = maxMi=1 wti(s, r).

A coordinate i ∈ {1, . . . ,M} is called victorious if wti(s, r) = wt(s, r). The set of all
victorious coordinates of (s, r) is denoted by Vict(s, r). For q ∈ Q we define

Vict([q]) =
⋂

(s,r) small B-circuit
r(ε)∈[q]

Vict(s, r)

where the empty intersection is defined as {1, . . . ,M}. For P ⊆ Q, we let Vict(P ) =⋂
p∈P Vict([p]). We have the following lemma.

I Lemma 13. There is an unambiguous max-plus-WTA A′ with JAK = JA′K if and only if
for all t ∈ TΓ and all r ∈ AccB(t) we have Vict(r(pos(t))) 6= ∅. The latter property is called
the dominance property and is denoted by (P).

(P) is decidable as follows. We can consider Q as an (unranked) alphabet and construct an
FTA which accepts exactly the accepting runs of B, i.e. all pairs (pos(t), r) for some t ∈ TΓ
and r ∈ AccB(t). Also, for P ⊆ Q we can construct an FTA which accepts all trees in TQ in
which every p ∈ P occurs at least once as a label. By taking the intersection of these two
automata and checking for emptiness, we can decide for every P ⊆ Q whether there is any
t ∈ TΓ and r ∈ AccB(t) with P ⊆ r(pos(t)). Checking whether all P for which this is true
satisfy Vict(P ) 6= ∅ is equivalent to checking (P).

I Construction 14. Let N =
∑|Q|
i=0 rk(Γ)i, R =

⋃M
i=1(µi(∆Ai) ∪ νi(Qi)) and C = maxR−

min(R \ {−∞}). For x = (x1, . . . , xM ) ∈ RMmax we let x̌ = min{xi | 1 ≤ i ≤ M,xi 6= −∞}
and x = x− (x̌, . . . , x̌).

Assume that B satisfies (P). We construct an unambiguous max-plus-WTA A′ =
(Q′,Γ, µ′, ν′) with JAK = JA′K and Q′ ⊂ RMmax ×Q as follows.

Rule 1: For (a,q) ∈ ∆B ∩ (Γ × Q) with x = µ(a,q) ∈ RM , we let (x,q) ∈ Q′ and
µ′(a, (x,q)) = x̌.



E. Paul 53:11

Rule 2: Assume for (z1,p1), . . . , (zm,pm) ∈ Q′ that we have d = (p1, . . . ,pm, a,p0) ∈
∆B for some a ∈ Γ, p0 ∈ Q and x = µ(d) ∈ RM . We let t =

∑m
i=1 zi+x and define y ∈ RMmax

through

yi =
{
−∞ if ti < max{tj | 1 ≤ j ≤M} − (2N + 1)C
ti otherwise.

We let (y,p0) ∈ Q′ and µ′((z1,p1), . . . , (zm,pm), a, (y,p0)) = y̌.
Finally, assume (z,p) ∈ Q′ and x = ν(p) ∈ RM . Then we let ν′(z,p) = maxMi=1 zi + xi.

I Lemma 15. A′ is an unambiguous max-plus-WTA with JAK = JA′K.

Proof (sketch). A′ is unambiguous as there is a bijection between the accepting runs of B
and A′. The idea behind A′ is as follows. From a bottom-up perspective, A′ remembers in
each coordinate of z the weight which B would have assigned to the run in this coordinate
“so far”. Since this can become unbounded, we normalize the smallest coordinate to 0 in
each transition, make this coordinate’s weight the transition weight, and remember only the
difference to this weight in the remaining coordinates. Still, these differences can become
unbounded. Therefore, once the difference exceeds the bound (2N + 1)C, the coordinates
with small weights are discarded by being set to −∞.

We can show that the coordinate k which in B eventually yields the largest weight will
not be discarded. First, we can show that a victorious coordinate of a run will never be
smaller than the largest weight (over all coordinates) minus NC. Second, we can show that
if l is victorious, then the weight of coordinate k will never be smaller than the weight of l
minus NC +C. Our assumption is that (P) holds, so there exists some victorious coordinate
in every accepting run. Therefore, the weight of k will never be smaller than the largest
weight minus (2N + 1)C and is never discarded. J

We now prove that (P) is a necessary condition, i.e. that from the existence of an
unambiguous automaton A′ with JAK = JA′K it follows that B satisfies (P).

I Lemma 16. If there exists an unambiguous max-plus-WTA A′ = (Q′,Γ, µ′, ν′) with
JAK = JA′K then B satisfies (P).

Proof. Let t ∈ TΓ and r ∈ RunB(t). Let C = {(s, rs) small B-circuit | [rs(ε)]∩r(pos(t)) 6= ∅}.
Let p ∈ r(pos(t)), (s, rs) ∈ C and q = rs(ε) ∈ [p].

We can assume that q ∈ r(pos(t)) due to the following argument. Since to p � q � p, we
can find tpq, tqp ∈ TΓ, rp

q ∈ RunB(tpq) and rq
p ∈ RunB(tqp) such that rp

q(ε) = p, rq
p(ε) = q and

for some wq ∈ pos(tpq) and wp ∈ pos(tqp) we have rp
q(wq) = q and rq

p(wp) = p. Thus with
s′ = tpq〈tqp〈� → wp〉 → wq〉 we obtain a circuit (s′, rs′) with rs′(ε) = p and rs′(wq) = q. We
can insert (s′, rs′) into t and r to obtain a tree t′ and a run r′ ∈ AccB(t′) with q ∈ r′(pos(t′)).

Now let wq ∈ pos(t) with r(wq) = q and w ∈ pos(s) with s(w) = �. We let s1 = s and
for n ≥ 1 define sn+1 = s〈sn → w〉. Then from rs we obtain a circuit (s|Q′|, r|Q

′|
s ) which we

can insert at wq to obtain a tree t′ ∈ TΓ and a run r′ ∈ AccB(t′). We do this for all small
circuits in C simultaneously. We assume without loss of generality that after this the circuit
(s|Q′|, r|Q

′|
s ) is still at position wq. Since suppB = suppA′, we find a run r′′ ∈ AccA′(t′). By

pigeon hole principle, we find 0 ≤ i1 < i2 ≤ |Q′| with r′′(wqw
i1) = r′′(wqw

i2). From this,
we obtain an A′-circuit (si2−i1 , r̂) which corresponds to a B-circuit (si2−i1 , ri2−i1s ). We can
now insert si2−i1 at wq repeatedly to create copies of these circuits. Clearly, this works for
all small circuits in C.

MFCS 2017



53:12 Equivalence, Unambiguity and Sequentiality of Finitely Ambiguous Max-Plus-WTA

Let c1, . . . , cn be an enumeration of C. We write ci = (si, ri). By (ŝi, r̂i) and (ŝi, ři),
we denote the circuits in A′ and B, respectively, we obtain from ci in the way we obtained
(si2−i1 , r̂) and (si2−i1 , ri2−i1) from (s, rs). For v = (v1, . . . , vn) ∈ Nn, we denote by tv the
tree obtained by adding vi copies of ŝi to t for each i ∈ {1, . . . , n}. Since B and A′ are both
unambiguous, we can make the following observations.

For i ∈ {1, . . . , n} we let ρi = wtA′(ŝi, r̂i). Then for some constant ρ0 we have JA′K(tv) =
ρ0 + v1ρ1 + . . . + vnρn. Due to the definition of victorious coordinates, for every v′ =
(v2, . . . , vn) ∈ Nn−1 there is N (1)

v′ ∈ N such that for all v1 > N
(1)
v′ the tuple JBK(t(v1,...,vn))

has its maximum in entry j1 for some j1 ∈ Vict(ŝ1, ř1). Then with ρ(1)
i = wtj1(ŝi, ři) for

i ∈ {1, . . . , n} and some constant ρ(1)
0 we have for all v1 > N

(1)
v′ that JBK(tv) = ρ

(1)
0 + v1ρ

(1)
1 +

. . . + vnρ
(1)
n . By varying v, we see that from JA′K(tv) = JBK(tv) it follows that ρi = ρ

(1)
i

for all i ∈ {1, . . . , n}. We can do the same for the other circuits (ŝ2, ř2), . . . , (ŝn, řn) and
see that if ji ∈ Vict(ŝi, ři) for every i ∈ {1, . . . , n} then wtj1(ŝi, ři) = . . . = wtjn

(ŝi, ři)
for every i ∈ {1, . . . , n}. In particular, j1 ∈ Vict(ŝi, ři) for all i ∈ {1, . . . , n}. This means
j1 ∈ Vict(r(pos(t))) and B satisfies (P). J

5 The Sequentiality Problem

The sequentiality problem asks whether for a given max-plus-WTA A there exists a determ-
inistic max-plus-WTA A′ such that JAK = JA′K. The term “sequentiality” stems from the
fact that in the weighted setting, deterministic automata are also often called sequential.
In this section, we show that the sequentiality problem is decidable for finitely ambiguous
max-plus-WTA. For words, this is known due to [11].

Let A = (Q,Γ, µ, ν) be a max-plus-WTA. We say that A satisfies the twins property
[14, 3] if the following holds. Whenever for q, q′ ∈ Q there exist t ∈ TΓ, r, r′ ∈ RunA(t)
with r(ε) = q, r′(ε) = q′ and A-circuits (s, r1), (s, r2) with r1(ε) = q and r2(ε) = q′ then
wt�A(s, r1) = wt�A(s, r2).

I Lemma 17. Let A be a trim unambiguous max-plus-WTA. There exists a deterministic
max-plus-WTA A′ with JAK = JA′K if and only if A satisfies the twins property. If it exists,
it can be effectively constructed.

Proof (sketch). If A satisfies the twins property, we know due to [3, Lemma 5.10] that a
deterministic max-plus-WTA A′ with JA′K = JAK can be effectively constructed.

To show that the twins property is also a necessary condition, we can apply an idea
similar to the proof of [14, Theorem 9]. J

I Lemma 18 ([3, Theorem 5.17]). For an unambiguous max-plus-WTA A it is decidable
whether A satisfies the twins property.

I Theorem 19. For a finitely ambiguous max-plus-WTA A it is decidable whether there
exists a deterministic max-plus-WTA A′ with JAK = JA′K. If A′ exists, it can be effectively
constructed.

Proof. Let A be a finitely ambiguous max-plus-WTA. Due to Theorem 10 we can decide
whether there exists an equivalent unambiguous max-plus-WTA. If this is not the case, A
can also not be determinizable. Otherwise we can effectively construct an unambiguous
max-plus-WTA A′ with JAK = JA′K. Due to Lemma 18 we can decide whether A′ satisfies
the twins property, which according to Lemma 17 is equivalent to deciding whether A is
determinizable. J



E. Paul 53:13

References
1 Sebastian Bala and Artur Koniński. Unambiguous automata denoting finitely sequential

functions. In Adrian-Horia Dediu, Carlos Martín-Vide, and Bianca Truthe, editors, Proc.
LATA, volume 7810 of LNCS, pages 104–115. Springer, 2013.

2 Jean Berstel and Christophe Reutenauer. Rational Series and Their Languages. Springer,
1988.

3 Matthias Büchse, Jonathan May, and Heiko Vogler. Determinization of weighted tree
automata using factorizations. Journal of Automata, Languages and Combinatorics,
15(3/4):229–254, 2010.

4 Manfred Droste, Werner Kuich, and Heiko Vogler. Handbook of Weighted Automata.
Springer, 2009.

5 Stéphane Gaubert. Performance evaluation of (max,+) automata. IEEE T. Automat.
Contr., 40(12):2014–2025, 1995.

6 Stéphane Gaubert and Jean Mairesse. Modeling and analysis of timed Petri nets using
heaps of pieces. IEEE T. Automat. Contr., 44(4):683–697, 1999.

7 Kosaburo Hashiguchi. Algorithms for determining relative star height and star height. Inf.
Comput., 78(2):124–169, 1988.

8 Kosaburo Hashiguchi and Kenichi Ishiguro. Decidability of the equivalence problem for
finitely ambiguous finance automata. Sūri Kaiseki Kenkyūsho Kōkyūroku, 960:23–36, 1996.

9 Kosaburo Hashiguchi, Kenichi Ishiguro, and Shuji Jimbo. Decidability of the equivalence
problem for finitely ambiguous finance automata. IJAC, 12(3):445–461, 2002.

10 Daniel Kirsten and Sylvain Lombardy. Deciding unambiguity and sequentiality of polyno-
mially ambiguous min-plus automata. In Susanne Albers and Jean-Yves Marion Marion,
editors, Proc. STACS, volume 3 of LIPIcs, pages 589–600. LZI, 2009.

11 Ines Klimann, Sylvain Lombardy, Jean Mairesse, and Christophe Prieur. Deciding unam-
biguity and sequentiality from a finitely ambiguous max-plus automaton. Theor. Comput.
Sci., 327(3):349–373, 2004.

12 Daniel Krob. The equality problem for rational series with multiplicities in the tropical
semiring is undecidable. IJAC, 4(3):405–426, 1994.

13 Werner Kuich and Arto Salomaa. Semirings, Automata, Languages. Springer, 1986.
14 Mehryar Mohri. Finite-state transducers in language and speech processing. Comput.

Linguist., 23(2):269–311, 1997.
15 George L. Nemhauser and Laurence A. Wolsey. Integer and Combinatorial Optimization.

John Wiley & Sons, 1988.
16 Erik Paul. On finite and polynomial ambiguity of weighted tree automata. In Srečko Brlek

and Christophe Reutenauer, editors, Proc. DLT, volume 9840 of LNCS, pages 368–379.
Springer, 2016.

17 Slav Petrov. Latent variable grammars for natural language parsing. In Coarse-to-Fine
Natural Language Processing, chapter 2, pages 7–46. Springer, 2012.

18 Arto Salomaa and Matti Soittola. Automata-Theoretic Aspects of Formal Power Series.
Springer, 1978.

19 Marcel-Paul Schützenberger. On the definition of a family of automata. Inform. Control,
4(2–3):245 – 270, 1961.

20 Imre Simon. Limited subsets of a free monoid. In Proc. FOCS, pages 143–150. IEEE
Computer Society, 1978.

21 Imre Simon. Recognizable sets with multiplicities in the tropical semiring. In Michal
Chytil, Ladislav Janiga, and Václav Koubek, editors, Proc. MFCS, volume 324 of LNCS,
pages 107–120. Springer, 1988.

22 Andreas Weber. Finite-valued distance automata. Theor. Comput. Sci., 134(1):225–251,
1994.

MFCS 2017





New Insights on the (Non-)Hardness of Circuit
Minimization and Related Problems∗

Eric Allender1 and Shuichi Hirahara2

1 Department of Computer Science, Rutgers University, Piscataway, NJ, USA
allender@cs.rutgers.edu

2 Department of Computer Science, The University of Tokyo, Tokyo, Japan
hirahara@is.s.u-tokyo.ac.jp

Abstract
The Minimum Circuit Size Problem (MCSP) and a related problem (MKTP) that deals with
time-bounded Kolmogorov complexity are prominent candidates for NP-intermediate status. We
show that, under very modest cryptographic assumptions (such as the existence of one-way
functions), the problem of approximating the minimum circuit size (or time-bounded Kolmogorov
complexity) within a factor of n1−o(1) is indeed NP-intermediate. To the best of our knowledge,
these problems are the first natural NP-intermediate problems under the existence of an arbitrary
one-way function.

We also prove that MKTP is hard for the complexity class DET under non-uniform NC0 re-
ductions. This is surprising, since prior work on MCSP and MKTP had highlighted weaknesses
of “local” reductions such as ≤NC0

m . We exploit this local reduction to obtain several new con-
sequences:

MKTP is not in AC0[p].
Circuit size lower bounds are equivalent to hardness of a relativized version MKTPA of MKTP
under a class of uniform AC0 reductions, for a large class of sets A.
Hardness of MCSPA implies hardness of MKTPA for a wide class of sets A. This is the first
result directly relating the complexity of MCSPA and MKTPA, for any A.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases computational complexity, Kolmogorov complexity, circuit size

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.54

1 Introduction

The Minimum Circuit Size Problem (MCSP) has attracted intense study over the years,
because of its close connection with the natural proofs framework of Razborov and Rudich
[23], and because it is a prominent candidate for NP-intermediate status. It has been known
since [18] that NP-intermediate problems exist, if P 6= NP, but “natural” candidates for this
status are rare. Problems such as factoring and Graph Isomorphism are sometimes put
forward as candidates, but there are not strong complexity-theoretic arguments for why these
problems should not lie in P. We prove that a very weak cryptographic assumption implies
that a n1−o(1) approximation for MCSP is NP-intermediate.

∗ Supported by NSF grant CCF-1555409 (Allender) and JSPS KAKENHI Grant Numbers JP16J06743
(Hirahara). Proofs of some results have been omitted due to space limits; more details can be found at
[6].

© Eric Allender and Shuichi Hirahara;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 54; pp. 54:1–54:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.54
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


54:2 New Insights on the (Non-)Hardness of Circuit Minimization and Related Problems

MCSP is hard for SZK [4] under BPP reductions, but the situation is quite different,
when more restricted notions of reducibility are considered. Recent results [14, 19, 7] have
suggested that MCSP might not even be hard for P under logspace reductions (although the
evidence is still inconclusive).

The input to MCSP consists of a pair (T, s), where T is a bit string of length 2m
representing the truth-table of an m-variate Boolean function, and s ∈ N; (T, s) ∈ MCSP
if there is a circuit computing T having size at most s. Note that, for different models of
circuit (type of gates, allowable fan-in, etc.) and different measures of size (number of gates,
number of wires, size of the description of the circuit, etc.) the resulting MCSP problems
might have different complexity. No efficient reduction is known between different variants
of the problem. However, all prior work on MCSP (such as [16, 3, 9, 19, 4, 25, 7, 14]) applies
equally well to any of these variants. MCSP is also closely related to a type of time-bounded
Kolmogorov complexity known as KT, which was defined in [3]. The problem of determining
KT complexity, formalized as the language MKTP = {(x, s) : KT(x) ≤ s} has often been
viewed as just another equivalent “encoding” of MCSP in this prior work. (In particular, our
results mentioned in the paragraphs above apply also to MKTP.) Recently, however, some
reductions were presented that are not currently known to apply to MCSP [5].

In this section, we outline the ways in which this paper advances our understanding of
MCSP and related problems, while reviewing some of the relevant prior work.

Hardness is equivalent to circuit size lower bounds. Significant effort (e.g. [16, 19, 7, 14]))
has been made in order to explain why it is so difficult to show NP-hardness of MCSP or
MKTP. Most of the results along this line showed implications from hardness of MCSP to
circuit size lower bounds: If MCSP or MKTP is NP-hard under some restricted types of
reductions, then a circuit size lower bound (which is quite difficult to obtain via current
techniques of complexity theory) follows. For example, if MCSP or MKTP is hard for TC0

under Dlogtime-uniform ≤AC0

m reductions, then NP 6⊆ P/poly and DSPACE(n) 6⊆ io-SIZE(2εn)
[19, 7].

Murray and Williams [19] asked if, in general, circuit lower bounds imply hardness of the
circuit minimization problems. We answer their questions affirmatively in certain settings: A
stronger lower bound DSPACE(n) 6⊆ io-SIZEMKTP(2εn) implies that MKTP is hard for DET
under logspace-uniform ≤AC0

tt reductions (Theorem 11).
At this point, it is natural to ask if the circuit lower bounds are in fact equivalent to

hardness of MKTP. We indeed show that this is the case, when we consider the minimum
oracle circuit size problem. For an oracle A, MCSPA is the set of pairs (T, s) such that T is
computed by a size-s circuit that has “oracle gates” for A in addition to standard AND and
OR gates. The related MKTPA problem asks about the time-bounded Kolmogorov complexity
of a string, when the universal Turing machine has access to the oracle A. For many oracles
A that are hard for PH, we show that DSPACE(n) 6⊆ io-SIZEA(2εn) for some ε > 0 if and
only if MKTPA is hard for DET under a certain class of reducibilities (Theorem 12).

That is, it is impossible to prove hardness of MKTPA (under some reducibilities) without
proving circuit lower bounds, and vice versa. Our results clearly connect the fact that it
is difficult to obtain hardness of MKTPA with the fact that circuit size lower bounds are
difficult.

Hardness under local reductions, and unconditional lower bounds. Murray and Williams
[19] showed that MCSP and MKTP are not hard for TC0 under so-called local reductions
computable in time less than

√
n – and thus in particular they are not hard under NC0



E. Allender and S. Hirahara 54:3

reductions that are very uniform (i.e., there is no routine computable in time t(n) < n.5−ε

that, on input (n, i) outputs the O(1) queries upon which the i-th output bit of such an NC0

circuit depends). Murray and Williams speculated that this might be a promising first step
toward showing that MCSP is not hard for NP under Dlogtime-uniform AC0 reductions, since
it follows from [1] that any set that is hard for TC0 under P-uniform AC0 reductions is also
hard for TC0 under P-uniform NC0 reductions. Indeed, the results of Murray and Williams
led us to expect that MCSP and MKTP are not even hard for PARITY under non-uniform
NC0 reductions.

Contrary to these expectations, we show that MKTP is hard not only for TC0 but even
for the complexity class DET under non-uniform NC0 reductions (Theorem 9). Consequently,
MKTP is not in AC0[p] for any prime p.1 Note that it is still not known whether MCSP
or RKT = {x : KT(x) ≥ |x|} is in AC0[p]. It is known2 [3] that neither of these problems
is in AC0. Under a plausible derandomization hypothesis, this non-uniform reduction can
be converted into a logspace-uniform ≤AC0

tt reduction that is an AND of NC0-computable
queries. Thus “local” reductions are more effective for reductions to MKTP than may have
been suspected.

Implications among hardness conditions for MKTP and MCSP. No ≤P
T reductions are

known between MKTPA or MCSPA for any A. Although most previous complexity results
for one of the problems have applied immediately to the other, via essentially the same proof,
there has not been any proven relationship among the problems. For the first time, we show
that, for many oracles A, hardness for MCSPA implies hardness for MKTPA (Theorem 12).

A reduction that is not “oracle independent”. Hirahara and Watanabe [14] observed that
all of the then-known reductions to MCSP and MKTP were “oracle-independent”, in the
sense that, for any class C and reducibility ≤r, all proofs that MCSP (or MKTP) is hard
for C under ≤r also show that MCSPA (MKTPA) is also hard for C. They showed that
oracle-independent ≤P

T-reductions cannot show hardness for any class larger than P.
This motivates the search for reductions that are not oracle-independent. We give a

concrete example of a logspace-uniform ≤AC0

ctt reduction that (under a plausible complexity
assumption) reduces DET to MKTP. This is not an oracle independent reduction, since
MKTPQBF is not hard for DET under this same class of reductions (Corollary 13).

A clearer picture of how hardness “evolves”. It is instructive to contrast the evolution of
the class of problems reducible to MKTPA under different types of reductions, as A varies
from very easy (A = ∅) to complex (A = QBF). For this thought experiment, we assume the
very plausible hypothesis that DSPACE(n) 6⊆ io-SIZE(2εn). Restrictions of QBF give a useful
parameterization for the complexity of A. Consider A varying from being complete for each
level of PH (that is, quantified Boolean formulas with O(1) alternations between ∀ and ∃
quantifiers), to instances of QBF with log∗ n alternations, then to O(logn) alternations etc.,

1 Subsequent to our work, a stronger average-case lower bound against AC0[p] was proved [13]. The
techniques of [13] do not show how to reduce DET, or even smaller classes such as TC0, to MKTP. Thus
our work is incomparable to [13].

2 Somewhat remarkably, Oliveira and Santhanam [20] have independently shown that MCSP and MKTP
are hard for DET under non-uniform ≤TC0

tt reductions. Their proof relies on self-reducibility properties
of the determinant, whereas our proof relies on the fact that Graph Isomorphism is hard for DET [27].
Their results have the advantage that they apply to MCSP rather than merely to MKTP, but because it
is not known whether TC0 = P they do not obtain unconditional lower bounds, as in Corollary 10.

MFCS 2017



54:4 New Insights on the (Non-)Hardness of Circuit Minimization and Related Problems

through to 2
√

logn alternations, and until finally A = QBF. Since DSPACE(n) ⊆ PA/poly, at
some point in this evolution we have DSPACE(n) ⊆ io-SIZEA(2εn); it is plausible to assume
that this doesn’t happen until A has at least logn quantifier alternations, or more.

At all stages in this evolution SZK ⊆ BPPMKTPA [4], until at some point BPPMKTPA

expands to coincide with PSPACE [3]. Also, at all stages in this evolution DET ≤NC0

m -reduces
to MKTPA (and even when A = QBF we do not know, for instance, if NC3≤NC0

m -reduces to
MKTPA). Thus these reductions behave “monotonically”, in the sense that as the complexity
of A increases, the class of problems reducible to MKTPA does not shrink noticeably, and
sometimes appears to grow markedly.

The situation is much more intriguing when we consider the uniform class of ≤AC0

T
reductions that arise from derandomizing the nonuniform ≤NC0

m reductions from DET. At
the start, when A = ∅, we have DET reducing to MKTPA, and this is maintained until A
becomes complex enough so that DSPACE(n) ⊆ io-SIZEA(2εn). At this point, not only does
DET not reduce to MKTPA, but neither does PARITY! (See Theorem 12.)

This helps place the results of [7] in the proper context. In [7] strong evidence was
presented against MCSPQBF being hard for, say, P under ≤L

m reductions, and this was taken
as indirect evidence that MCSP itself should not be hard for P, since MCSP ∈ NP and thus
is much “easier” than the PSPACE-complete problem MCSPQBF. However, we expect that
MCSPA and MKTPA should behave somewhat similarly to each other, and it can happen that
a class can reduce to MKTP (Theorem 11) and not reduce to MKTPA for a more powerful
oracle A (Corollary 13).

Hardness of the Gap problem. Our new hardness results for MKTPA share with earlier
reductions the property that they hold even for “Gap” versions of the problem. That is, for
some ε > 0, the reduction works correctly for any solution to the promise problem with “yes”
instances {(x, s) : KTA(x) ≤ s} and “no” instances {(x, s) : KTA(x) > s+ |x|ε}. However,
we do not know if they carry over to instances with a wider “gap” between the Yes and No
instances; earlier hardness results such as those of [3, 9, 4, 25] hold for a much wider gap
(such as with the Yes instances having KT(x) < |x|ε, and the no instances with KT(x) ≥ |x|),
and this is one reason why they applied both to MKTP and to MCSP. Thus there is interest
in whether it is possible to reduce MCSP with small “gap” to MCSP with large “gap”. If this
were possible, then MCSP and MKTP would be interreducible in some sense.

Earlier work [7] had presented unconditional results, showing that “gap” versions of
MCSP could not be hard for TC0 under ≤AC0

m reductions, unless those reductions had large
“stretch” (mapping short inputs to long outputs). In [6], we show that BPP-Turing reductions
among gap MCSP problems require large stretch, unless MCSP ∈ BPP.

Natural NP-intermediate Problems. In Section 3 we also consider gap MCSP problems
where the “gap” is quite large (i.e., problems of approximating the minimum circuit size for a
truth table of size n within a factor of n1−o(1)). Problems of this sort are of interest, because
of the role they play in the natural proofs framework of [23], if one is trying to prove circuit
lower bounds of size 2o(n). Our Theorem 6 shows that these problems are NP-intermediate
in the sense that these do not lie in P/poly and are not NP-hard under P/poly reductions,
under modest cryptographic assumptions (weaker than assuming that factoring or discrete
log requires superpolynomial-size circuits, or assuming the existence of a one-way function).
To the best of our knowledge, these problems are the first natural NP-intermediate problems
under the existence of an arbitrary one-way function.

Our new insight on MCSP here is that, if the gap problems are NP-hard, then MCSP is



E. Allender and S. Hirahara 54:5

“strongly downward self-reducible”: that is, any instance of MCSP of size n can be reduced
to instances of size nε. In the past, many natural problems have been shown to be strongly
downward self-reducible (see [8]); Our contribution is to show that MCSP also has such a
property (under the assumption that the gap MCSP problems are NP-hard).

2 Preliminaries

We assume the reader is familiar with standard DTIME and DSPACE classes. We also occa-
sionally refer to classes defined by time-bounded alternating Turing machines: ATIME(t(n)),
or by simultaneously bounding time and the number of alternations between existential and
universal configurations: ATIME-ALT(t(n), a(n)).

We refer the reader to the text by Vollmer [29] for background and more complete
definitions of the standard circuit complexity complexity classes

NC0 ( AC0 ( AC0[p] ( TC0 ⊆ NC1 ⊆ P/poly,

as well as the standard complexity classes L ⊆ P ⊆ NP ⊆ PH ⊆ PSPACE. Between L and P
in this list, there is one more class that plays an important role for us: DET is the class of
problems that are reducible to the problem of computing the determinant of integer matrices,
by NC1-Turing reductions.

This brings us to the topic of reducibility. Let C be either a class of functions or a class of
circuits. We say that A≤CmB if there is a function f ∈ C (or f computed by a circuit family
in C, respectively) such that x ∈ A iff f(x) ∈ B. We will make use of ≤L

m,≤TC0

m ,≤AC0

m and
≤NC0

m reducibility. The more powerful notion of Turing reducibility also plays an important
role in this work. Here, C is a complexity class that admits a characterization in terms of
Turing machines or circuits, which can be augmented with an “oracle” mechanism, either
by providing a “query tape” or “oracle gates”. We say that A≤CTB if there is a oracle
machine in C (or a family of oracle circuits in C) accepting A, when given oracle B. We
make use of ≤P/poly

T ,≤BPP
T ,≤P

T,≤L
T and ≤AC0

T reducibility; instead of writing A≤P/poly
T B or

A≤BPP
T B, we will more frequently write A ∈ PB/poly or A ∈ BPPB . Turing reductions that

are “nonadaptive” – in the sense that the list of queries that are posed on input x does not
depend on the answers provided by the oracle – are called truth-table reductions. We make
use of ≤AC0

tt and ≤TC0

tt reducibility.
Kabanets and Cai [16] sparked renewed interest in MCSP and highlighted connections

between MCSP and more recent progress in derandomization. They introduced a class of
reductions to MCSP, which they called natural reductions. Recall that instances of MCSP
are of the form (T, s) where s is a “size parameter”. A ≤P

m reduction f is called natural if
f(x) is of the form f(x) = (f1(x), f2(|x|)). That is, the “size parameter” is the same, for all
inputs x of the same length.

Whenever circuit families are discussed (either when defining complexity classes, or
reducibilities), one needs to deal with the issue of uniformity. For example, the class AC0

(corresponding to families {Cn : n ∈ N} of unbounded fan-in AND, OR, and NOT gates
having size nO(1) and depth O(1)) comes in various flavors, depending on the complexity
of computing the mapping 1n 7→ Cn. When this is computable in polynomial time (or
logarithmic space), then one obtains P-uniform AC0 (logspace-uniform AC0, respectively).
If no restriction at all is imposed, then one obtains non-uniform AC0. As discussed in
[29], the more restrictive notion of Dlogtime-uniform AC0 is frequently considered to be
the “right” notion of uniformity to use when discussing small complexity classes such as
AC0,AC0[p] and TC0. If these classes are mentioned with no explicit mention of uniformity,

MFCS 2017



54:6 New Insights on the (Non-)Hardness of Circuit Minimization and Related Problems

then Dlogtime-uniformity is intended. For uniform NC1 the situation is somewhat more
complicated, as discussed in [29]; there is wide agreement that the “correct” definition
coincides with ATIME(O(logn)).

There are many ways to define time-bounded Kolmogorov complexity. The definition
KT(x) was proposed in [3], and has the advantage that it is polynomially-related to circuit
size (when a string x is viewed as the truth-table of a function). KT(x) is the minimum,
over all d and t, of |d|+ t, such that the universal Turing machine U , on input (d, i, b) can
determine in time t if the i-th bit of x is b. (More formal definitions can be found in [3].)

A promise problem consists of a pair of disjoint subsets (Y,N). A language A is a solution
to the promise problem (Y,N) if Y ⊆ A ⊆ N . A language B reduces to a promise problem
via a type of reducibility ≤r if B ≤r A for every set A that is a solution to the promise
problem.

3 GapMCSP

In this section, we consider the “gap” versions of MCSP and MKTP. We focus primarily on
MCSP, and for simplicity of exposition we consider the “size” of a circuit to be the number of
AND and OR gates of fan-in two. (NOT gates are “free”). The arguments can be adjusted
to consider other circuit models and other reasonable measures of “size” as well. Given a
truth-table T , let CC(T ) be the size of the smallest circuit computing T , using this notion of
“size”.

I Definition 1. For any function ε : N→ (0, 1), let GapεMCSP be the approximation problem
that, given a truth-table T , asks for outputting a value f(T ) ∈ N such that

CC(T ) ≤ f(T ) ≤ |T |1−ε(|T |) · CC(T ).

Note that this approximation problem can be formulated as the following promise problem.
(See also [11] for similar comments.)

I Fact 2. GapεMCSP is polynomial-time Turing equivalent to the following promise problem
(Y,N):

Y := { (T, s) | CC(T ) < s/|T |1−ε(|T |) },
N := { (T, s) | CC(T ) > s+ 1 },

where T is a truth-table and s ∈ N.

Note that GapεMCSP becomes easier when ε becomes smaller. If ε(n) = o(1), then
(using the promise problem formulation) it is easy to see that GapεMCSP has a solution
in DTIME(2no(1)), since the Yes instances have witnesses of length |T |o(1). However, it is
worth emphasizing that, even when ε(n) = o(1), GapεMCSP is a canonical example of a
combinatorial property that is useful in proving circuit size lower bounds of size 2o(n), in the
sense of [23]. Thus it is of interest that MCSP cannot reduce to GapεMCSP in this regime
under very general notions of reducibility, unless MCSP itself is easy.

I Theorem 3. For any polynomial-time-computable nonincreasing ε(n) = o(1), if MCSP ∈
BPPGapεMCSP then MCSP ∈ BPP.

A new idea is that GapεMCSP is “strongly downward self-reducible.” We will show that
any GapεMCSP instance of length n is reducible to n1−ε MCSP instances of length nε. To
this end, we will exploit the following simple fact.



E. Allender and S. Hirahara 54:7

I Lemma 4. For a function f : {0, 1}n → {0, 1}, a string x ∈ {0, 1}k and k ∈ N, let
fx : {0, 1}n−k → {0, 1} be a function defined as fx(y) := f(x, y). Then, the following holds:

max
x∈{0,1}k

CC(fx) ≤ CC(f) ≤ 2k ·
(

max
x∈{0,1}k

CC(fx) + 3
)
,

(In other words, maxx∈{0,1}k CC(fx) gives an approximation of CC(f) within a factor of 2k.)

Proof of Theorem 3. Let M be an oracle BPP Turing machine which reduces MCSP to
GapεMCSP. Let |T |c be an upper bound for the running time of M , given a truth-table T ,
and let |T | = 2n.

We recursively compute the circuit complexity of T by the following procedure: Run
M on input T . If M makes a query S to the GapεMCSP oracle, then divide S into
consecutive substrings S1, · · · , S2k of length |S| · 2−k such that S1 · S2 · · ·S2k = S (where k
is a parameter, chosen later, that depends on |S|), and compute the circuit complexity of
each Si recursively for each i ∈ [2k]. Then continue the simulation of M , using the value
2k ·

(
maxi∈[2k] CC(Si) + 3

)
as an approximation to CC(S).

We claim that the procedure above gives the correct answer. For simplicity, let us first
assume that the machine M has zero error probability. It suffices to claim that the simulation
of M is correct in the sense that every query of M is answered with a value that satisfies the
approximation criteria of GapεMCSP. Suppose that M makes a query S. By the assumption
on the running time of M , we have |S| ≤ |T |c = 2nc. By Lemma 4, we have

CC(S) ≤ 2k ·
(

max
i∈[2k]

CC(Si) + 3
)
≤ 2k · (CC(S) + 3) .

In particular, the estimated value satisfies the promise of GapεMCSP if 2k · (CC(S) + 3) ≤
|S|1−ε(|S|) ·CC(S). Since we may assume without loss of generality that CC(S) ≥ 3, it suffices
to make sure that 2k+1 ·CC(S) ≤ |S|1−ε(|S|) ·CC(S). Let |S| = 2m. Then, in order to satisfy
k + 1 ≤ (1− ε(|S|)) ·m, let us define k := (1− ε(|S|)) ·m− 1. For this particular choice of k,
the estimated value 2k ·

(
maxi∈[2k] CC(Si) + 3

)
of the circuit complexity of S satisfies the

promise of GapεMCSP, which implies that the reduction M computes the correct answer for
MCSP.

Now we analyze the time complexity of the algorithm. Each recursive step makes at
most 22cn many recursive calls, because there are potentially 2cn many queries S of M , each
of which may produce at most 2k ≤ 2cn recursive calls. The length of each truth-table Si
that arises in one of the recursive calls is |Si| = |S| · 2−k = 2m−k = 2ε(|S|)·m+1. We claim
that |Si| ≤ 21+(n/2) holds for sufficiently large n. Let us take n to be large enough so that
ε(2n/2) ≤ 1/2c. If m ≥ n/2, then |Si| ≤ 2ε(2m)·m+1 ≤ 2ε(2n/2)·cn+1 ≤ 21+(n/2). Otherwise,
since m ≤ n/2 and ε(|S|) < 1, we obtain |Si| ≤ 2ε(|S|)·m+1 ≤ 21+(n/2). Therefore, on inputs
of length 2n, each recursive call produces instances of length at most 21+(n/2). The overall
time complexity can be estimated as 2c′n · 2c′n/2 · 2c′n/4 · · · = 22c′n for some constant c′ (say,
c′ = 3c), which is a polynomial in the input length 2n.

We note that the analysis above works even for randomized reductions that may err with
exponentially small probability. Since we have proved that the algorithm runs in polynomial
time, the probability that the algorithm makes an error is at most a polynomial times an
exponentially small probability, which is still exponentially small probability (by the union
bound). J

I Remark. If we drop the assumption that ε(n) be computable, then the proof of Theorem 3
still shows that if MCSP ∈ PGapεMCSP/poly then MCSP ∈ P/poly.

MFCS 2017



54:8 New Insights on the (Non-)Hardness of Circuit Minimization and Related Problems

I Corollary 5. Let ε(n) = o(1). If GapεMCSP has no solution in P/poly then GapεMCSP is
not hard for NP (or even for MCSP) under ≤P/poly

T reductions, and is thus NP-intermediate.

Proof. This is immediate from the preceding remark. If MCSP ∈ PGapεMCSP/poly then
MCSP ∈ P/poly, which in turn implies that GapεMCSP has a solution in P/poly. J

In what follows, we show that the assumption of Corollary 5 is true under very modest
cryptographic assumptions. It is known that, for any constant ε > 0, GapεMCSP is SZK-hard
under ≤P/poly

T reductions [4]. Here, we show that if SZK is not in P/poly, then for some
ε(n) = o(1), GapεMCSP has no solution in P/poly. In fact, we can prove something stronger :
If auxiliary-input one-way functions exist, then GapεMCSP is not in P/poly. We now describe
auxiliary-input one-way functions.

Usually, the existence of cryptographically-secure one-way functions is considered to
be essential for meaningful cryptography. That is, one requires a function f computed in
polynomial time such that, for any algorithm A computed by polynomial-sized circuits,
Prx[f(A(f(x))) = f(x)] = 1/nω(1) where x is chosen uniformly at random from {0, 1}n. A
weaker notion that has been studied in connection with SZK goes by the name auxiliary-input
one-way functions. This is an indexed family of functions fy(x) = F (y, x), where |x| = p(|y|)
for some polynomial p, and F is computable in time polynomial in |y|, such that for some
infinite set I, for any algorithm3 A computed by polynomial-sized circuits, for all y ∈ I,
Prx[fy(A(fy(x))) = fy(x)] = 1/nω(1) where n = |y| and x is chosen uniformly at random
from {0, 1}p(n). It is known that there are promise problems in SZK that have no solution in
P/poly only if auxiliary-input one-way functions exist. (This is due to [22]; a good exposition
can be found in [28, Theorems 7.1 & 7.5], based on earlier work of [21].)

I Theorem 6. If auxiliary-input one-way functions exist, then there is a function ε(n) = o(1)
such that GapεMCSP is NP-intermediate. (Namely, GapεMCSP has no solution in P/poly
and GapεMCSP is not NP-hard under ≤P/poly

T reductions.)

I Remark. In particular, either one of the following implies that some GapεMCSP is NP-
intermediate, since each implies the existence of auxiliary-input one-way functions:
1. the existence of cryptographically-secure one-way functions.
2. SZK is not in P/poly.

4 Hardness for DET

In this section, we give some of our main contributions. We show that MKTP is hard for
DET under ≤NC0

m reductions (Theorem 9); prior to this, no variant of MCSP was known to be
hard for any complexity class under any type of many-one reducibility. The ≤NC0

m reduction
that we present is nonuniform; we show that hardness under uniform reductions is related to
lower bounds in circuit complexity, and in some cases we show that circuit lower bounds are
equivalent to hardness results under uniform notions of reducibility (Theorem 12). These
techniques yield the first results relating the complexity of MCSPA and MKTPA problems.

Here is the outline of this section. We will build on a randomized reduction of Allender,
Grochow and Moore [5]: They showed that there is a ZPP reduction from the rigid4 graph

3 We have chosen to define one-way functions in terms of security against non-uniform adversaries. It is
also common to use the weaker notion of security against probabilistic polynomial-time adversaries, as
in [28].

4 A graph is rigid if it has no nontrivial automorphisms.



E. Allender and S. Hirahara 54:9

isomorphism problem to MKTP. Here we show that the reduction is in fact an AC0 reduction
(Corollary 8). Combining Torán’s AC0 reduction [27] from DET to the rigid graph isomorphism
as well as the Gap theorem [2], we will show DET≤NC0

m MKTP (Theorem 9).
To show that circuit size lower bounds are equivalent to hardness under uniform AC0

reductions, we will derandomize the reduction of [5] (Theorem 11). To this end, we give an
AC0 reduction f from the rigid graph isomorphism problem to MKTP and an “encoder” e
that encodes random binary strings into a random permutation in Lemma 7 below.

I Lemma 7. Let A be any oracle. There is a function f computable in Dlogtime-uniform
AC0 and a function e computable in Dlogtime-uniform TC0 such that, for any two rigid
graphs G,H with n vertices:

Prr[f(G,H, e(r)) 6∈ MKTPA] > 1− 1
24n2 if G 6≡ H, and

Prr[f(G,H, e(r)) ∈ MKTPA] = 1 if G ≡ H.

I Corollary 8. Let A be any oracle. The rigid graph isomorphism problem is reducible to
MKTPA via a non-uniform ≤AC0

m reduction.

Proof. A standard counting argument shows that there is a value of e(r) that can be
hardwired into the reduction of Lemma 7 that works correctly for all pairs (G,H) of n-vertex
graphs. (Note that the input length is 2n2, and the error probability is at most 1/24n2 .) J

I Theorem 9. Let A be any oracle. DET is reducible to MKTPA via a non-uniform ≤NC0

m
reduction. Furthermore, this reduction is “natural” in the sense of [16].

Proof. Since DET is closed under ≤TC0

m reductions, it suffices to show that MKTPA is hard
under ≤AC0

m reductions, and then appeal to the “Gap” theorem of [2], to obtain hardness
under ≤NC0

m reducibility. Torán [27] shows that DET is AC0-reducible to GI, and the proofs of
Theorem 5.3 and Corollary 5.4 of [27] show that DET is AC0-reducible to GI via a reduction
that outputs only pairs of rigid graphs. Composing this reduction with the non-uniform
AC0 reduction given by Corollary 8 completes the argument. (Since DET is closed under
complement, there is also a non-uniform ≤AC0

m reduction to the complement of MKTPA.)
Since the same θ is used for all inputs of the same length, the reduction is “natural”. J

The lower bounds of Razborov and Smolensky [24, 26] yield the following corollary:

I Corollary 10. MKTPA is not in AC0[p] for any oracle A and any prime p.

(An alternate proof of this circuit lower bound can be obtained by applying the pseu-
dorandom generator of [10] that has sublinear stretch and is secure against AC0[p]. Neither
argument seems easy to extend, to provide a lower bound for MCSP.)

One may wonder if the non-uniform reduction can be made uniform under a derandom-
ization hypothesis. We do not know how to obtain a uniform ≤AC0

m reduction, but we can
come close, if A is not too complex. Recall the definition of ctt-reductions: B ≤Cctt C if there
is a function f ∈ C with the property that f(x) is a list f(x) = (y1, . . . , ym), and x ∈ B
if and only if yj ∈ C for all j. Furthermore, we say that f is a natural logspace-uniform
≤AC0

ctt -reduction to MKTP if each query yj has the same length (and this length depends only
on |x|), and also each yj is of the form (zj , θ) where the threshold θ depends only on |x|.

The following theorem can be viewed as a “partial converse” to results of [19, 7], which
say that problems in LTH ⊆ E require exponential size circuits if MCSP or MKTP is hard for
TC0 under Dlogtime-uniform ≤AC0

m reductions. That is, the earlier results show that very
uniform hardness results imply circuit lower bounds, whereas the next theorem shows that
somewhat stronger circuit lower bounds imply uniform hardness results (for a less-restrictive

MFCS 2017



54:10 New Insights on the (Non-)Hardness of Circuit Minimization and Related Problems

notion of uniformity, but hardness for a larger class). Later on, in Theorem 12, we present a
related condition on reductions to MKTPA that is equivalent to circuit lower bounds.

I Theorem 11. Let A be any oracle. If there is some ε > 0 such that DSPACE(n) 6⊆
io-SIZEMKTPA(2εn), then every language in DET reduces to MKTPA via a natural logspace-
uniform ≤AC0

ctt -reduction.

Proof. Let B ∈ DET. Thus there is an AC0 reduction g reducing B to the Rigid Graph
Isomorphism Problem [27]. Consider the following family of statistical tests Tx(r), indexed
by strings x:

On input r:
Compute z = f(g(x), e(r)), where f(G,H, e(r)) is the function from Lemma 7. Accept
iff (x ∈ B iff z ∈ MKTPA).

Since B ∈ DET ⊆ P, the test Tx(r) has a polynomial-size circuit with one MKTPA oracle
gate. (In fact, the statistical test is an NC2 circuit with one oracle gate.) If x ∈ B, then Tx
accepts every string r, whereas if x 6∈ B, Tx accepts most strings r.

Klivans and van Melkebeek [17] (building on the work of Impagliazzo and Wigderson
[15]) show that, if DSPACE(n) requires exponential-size circuits from a given class C, then
there is a hitting set generator computable in logspace that hits all large sets computable by
circuits from C having size nk. In particular, under the given assumption, there is a function
h computable in logspace such that h(0n) = (r1, r2, . . . , rnc) with the property that, for all
strings x of length n, there is an element of h(0n) that is accepted by Tx.

Now consider the logspace-uniform AC0 oracle circuit family, where the circuit for inputs
of length n has the strings e(h(0n)) = (e(r1), e(r2), . . . , e(rnc)) hardwired into it. The circuit
computes the queries f(g(x), e(ri)) for 1 ≤ i ≤ nc, and accepts if, for all i, f(g(x), e(ri)) ∈
MKTPA. Note that if x 6∈ B, then one of the ri is accepted by Tx, which means that
f(g(x), e(ri)) 6∈ MKTPA; if x ∈ B, then f(g(x), e(ri)) ∈ MKTPA for all i. This establishes
that the reduction is correct. J

Theorem 11 deals with the oracle problem MKTPA, but the most interesting case is the
case where A = ∅. The hypothesis is false when A = QBF, since the KTA measure is essentially
the same as the KS measure studied in [3], where it is shown that PSPACE = ZPPRKS , and
thus has polynomial-size MKTPQBF-circuits. Strikingly, not only is the hypothesis false in
this case – but the conclusion is false as well. (See Corollary 13.)

For certain oracles (and we discuss below how broad this class of oracles is), the existence
of uniform reductions is equivalent to certain circuit lower bounds.

I Theorem 12. Let MKTPA ∈ PA/poly. Then the following are equivalent:
PARITY reduces to MKTPA via a natural logspace-uniform ≤AC0

ctt -reduction.
For some ε > 0, DSPACE(n) 6⊆ io-SIZEA(2εn).
For some ε > 0, DSPACE(n) 6⊆ io-SIZEMKTPA(2εn).
DET reduces to MKTPA via a natural logspace-uniform ≤AC0

ctt -reduction.
Furthermore, if PARITY reduces to MCSPA via a natural logspace-uniform ≤AC0

ctt -reduction,
then all of the above hold.

Proof. First, we show that the first condition implies the second.
Let {Cn : n ∈ N} be a logspace-uniform family of oracle circuits computing PARITY,

consisting of AC0 circuitry feeding into oracle gates, which in turn are connected to an AND
gate as the output gate. Let the oracle gates in Cn be g1, g2, . . . , gnc . On any input string x,



E. Allender and S. Hirahara 54:11

let the value fed into gate gi on input x be (qi(x), θ), and recall that, since the reduction is
natural, the threshold θ depends only on n, and thus it is a constant in Cn.

Now, we appeal to [7, Claim 3.11], and conclude that each MKTPQBF oracle gate can be
replaced by a DNF formula of size at most nO(1)2O(θ2 log θ). Inserting these DNF formulae
into Cn (in place of each oracle gate) results in a circuit of size nO(1)2O(θ2 log θ) computing
PARITY. Let the depth of this circuit be some constant d. It follows from [12] that
nO(1)2O(θ2 log θ) ≥ 2Ω(n1/(d−1)), and hence that θ ≥ n1/4d.

Note that all of the oracle gates gi must output 1 on input 0n−11, and one of the oracle
gates gi0 must output 0 on input 0n. Thus we have KTA(qi0(0n)) ≥ θ ≥ n1/4d. It follows
from [3, Theorem 11] that the function with truth-table qi0(0n) has no circuit (with oracle
gates for A) of size less than (KTA(qi0(0n)))1/3 ≥ θ1/3 ≥ n1/12d.

Note that, in order to compute the j-th bit of some query qi(0n), it suffices to evaluate a
logspace-uniform AC0 circuit where all of the input bits are 0. Since this computation can
be done in logspace on input (0n1i0j), note that the language H = {(n, i, j) : the j-th bit
of query qi(0n) is 1} is in linear space. Let m = |(n, i, j)|, and let s(m) be the size of the
smallest circuit Dm computing H for inputs of length m. Hardwire the bits for n and also
set the bits for i to i0. The resulting circuit on |j| < m bits computes the function given by
qi0(0n), and it was observed above that this circuit has size at least n1/12d ≥ 2m/12d.

This establishes the first implication. (Note also that a similar argument yields the same
conclusion from the assumption that PARITY reduces to MCSPA via a natural logspace-
uniform ≤AC0

ctt -reduction.)
The assumption that MKTPA ∈ PA/poly suffices to show that the second condition implies

the third. More formally, we’ll consider the contrapositive. Assume that DSPACE(n) ⊆
io-SIZEMKTPA(2εn) for every ε > 0. An oracle gate for MKTPA on inputs of size m can be
replaced by a circuit (with oracle gates for A) of size mc for some constant c. Carrying out
this substitution in a circuit (with oracle gates for MKTPA) of size 2εn yields a circuit of size
at most 2εn + 2εn(2εn)c.

Let δ > 0. Then we can pick ε so that 2εn + 2εn(2εn)c < 2δn, thereby establishing that
DSPACE(n) ⊆ io-SIZEA(2δn) for every δ > 0. This establishes the second implication.

The 3rd condition implies the 4th by Theorem 11. The 4th obviously implies the 1st. J

To the best of our knowledge, this is the first theorem that has given conditions where
the existence of a reduction to MCSPA implies the existence of a reduction to MKTPA. We
know of no instance where the implication goes in the opposite direction.

At this point, we should consider the class of oracles for which Theorem 12 applies. That
is, what is the set of oracles A for which MKTPA ∈ PA/poly? First, we observe that this
condition holds for any PSPACE-complete set, which yields the following corollary:

I Corollary 13. PARITY does not reduce to either MKTPQBF or MCSPQBF via a natural
logspace-uniform ≤AC0

ctt -reduction.

Another example is A = {(M,x, 1m) : M is an alternating Turing machine that accepts
x, and runs in time at most m and makes at most logm alternations}. A is complete
for the class ATIME-ALT(nO(1), O(logn)) under ≤AC0

m reductions. Note that MKTPA ∈
ATIME-ALT(nO(1), O(logn)), and thus MKTPA ∈ PA. (Other examples can easily be created
in this way, using an even smaller number of alternations. Note that, for this oracle A, it
seems plausible that all four conditions in Theorem 12 hold.

Nonetheless, we grant that this seems to be a strong condition to place upon the oracle
A – and it has even stronger consequences than are listed in Theorem 12. For instance, note
that the proof that the first condition in Theorem 12 implies the second relies only on the

MFCS 2017



54:12 New Insights on the (Non-)Hardness of Circuit Minimization and Related Problems

fact that PARITY requires large AC0 circuits. Thus, an identical proof shows that these four
conditions are also equivalent to the condition that PARITY is reducible to MKTPA via a
natural ctt-reduction where the queries are computed by logspace-uniform AC0[7] circuits.
(One can substitute any other problem and class of mod circuits, where an exponential
lower bound follows from [24, 26].) In fact, as in [7, Lemma 3.10] we can apply random
restrictions in a logspace-uniform way (as described in [1]) and obtain a reduction from
PARITY to MKTPA where the queries are computed by logspace-uniform NC0 circuits! That
is, for example, MAJORITY is reducible to MKTPA via reductions of this sort computed by
logspace-uniform AC0[3] circuits iff PARITY is reducible to the same set via reductions where
the queries are computed by logspace-uniform NC0 circuits. We find these implications to be
surprising. The “gap” phenomenon that was described in [2] (showing that completeness
under one class of reductions is equivalent to completeness under a more restrictive class of
reductions) had not previously been observed to apply to AC0[p] reducibility.

We want to highlight some contrasts between Theorem 11 and Corollary 13. MKTPQBF is
hard for PSPACE under ZPP-Turing reductions [3], whereas MKTP is in NP. Thus MKTPQBF

appears to be much harder than MKTP. Yet, under a plausible hypothesis, MKTP is hard
for a well-studied subclass of P under a type of reducibility, where the “harder” problem
MKTPQBF cannot even be used as an oracle for PARITY under this same reducibility.

In other words, the (conditional) natural logspace-uniform ≤AC0

ctt reductions from problems
in DET to MKTP given in Theorem 11 are not “oracle independent” in the sense of [14].
Prior to this work, there had been no reduction to MCSP or MKTP that did not work for
every MCSPA or MKTPA, respectively.

Prior to this work, it appears that there was no evidence for any variant of MCSP
or MKTP being hard for a reasonable complexity class under ≤L

T reductions. All prior
reductions (such as those in [4, 3, 5]) had been probabilistic and/or non-uniform, or (even
under derandomization hypotheses) seemed difficult to implement in NC. We had viewed the
results of [7] as providing evidence that none of these variants would be hard for P under,
say, logspace reducibility. Now, we are no longer sure what to expect.

5 Conclusions and Open Questions

Conclusions. At a high level, we have advanced our understanding about MCSP and MKTP
in the following two respects:
1. On one hand, under a very weak cryptographic assumption, the problem of approximating

MCSP or MKTP is indeed NP-intermediate under general types of reductions when the
approximation factor is quite huge. This complements the work of [19] for very restricted
reductions.

2. On the other hand, if the gap is small, MKTP is DET-hard under nonuniform NC0

reductions (contrary to previous expectations). This suggests that nonuniform reductions
are crucial to understanding hardness of MCSP. While there are many results showing
that NP-hardness of MCSP under uniform reductions is as difficult as proving circuit
lower bounds, can one show that MCSP is NP-hard under P/poly reductions (without
proving circuit lower bounds)?

Open Questions. It should be possible to prove unconditionally that MCSP is not in AC0[2];
we conjecture that the hardness results we give for MKTP hold also for MCSP.

We suspect that it should be possible to prove more general results of the form “If MCSPA

is hard for class C, then so is MKTPA”. We view Theorem 12 to be just a first step in this



E. Allender and S. Hirahara 54:13

direction. One way to prove such a result would be to show that MCSPA reduces to MKTPA,
but (with a few exceptions such as A = QBF) no such reduction is known. Of course, the
case A = ∅ is the most interesting case.

Is MKTP hard for P? Or for some class between DET and P? Is it more than a coincidence
that DET arises both in this investigation of MKTP and in the work of [20] on MCSP?

Is there evidence that GapεMCSP has intermediate complexity when ε is a fixed constant,
similar to the evidence that we present for the case when ε(n) = o(1)?

Acknowledgments. We thank Ryan Williams, Rahul Santhanam, Salil Vadhan, Marina
Knittel, and Prashant Nalini Vasudevan for helpful discussions.

References
1 Manindra Agrawal. The isomorphism conjecture for constant depth reductions. Journal of

Computer and System Sciences, 77(1):3–13, 2011. doi:10.1145/28395.28404.
2 Manindra Agrawal, Eric Allender, and Steven Rudich. Reductions in circuit complexity:

An isomorphism theorem and a gap theorem. Journal of Computer and System Sciences,
57(2):127–143, 1998. doi:10.1006/jcss.1998.1583.

3 Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek, and Detlef Ron-
neburger. Power from random strings. SIAM Journal on Computing, 35:1467–1493, 2006.
doi:10.1137/050628994.

4 Eric Allender and Bireswar Das. Zero knowledge and circuit minimization. Information
and Computation, 2017. to appear. doi:10.1016/j.ic.2017.04.004.

5 Eric Allender, Joshua Grochow, and Cristopher Moore. Graph isomorphism and circuit
size. Technical Report TR15-162, Electronic Colloquium on Computational Complexity,
2015. URL: https://eccc.weizmann.ac.il/report/2015/162/.

6 Eric Allender and Shuichi Hirahara. New insights on the (non)-hardness of circuit minim-
ization and related problems. Technical Report TR17-073, Electronic Colloquium on Com-
putational Complexity, 2017. URL: https://eccc.weizmann.ac.il/report/2017/073/.

7 Eric Allender, Dhiraj Holden, and Valentine Kabanets. The minimum oracle cir-
cuit size problem. Computational Complexity, 26(2):469–496, 2017. doi:10.1007/
s00037-016-0124-0.

8 Eric Allender and Michal Koucký. Amplifying lower bounds by means of self-reducibility.
Journal of the ACM, 57:14:1–14:36, 2010. doi:10.1145/1706591.1706594.

9 Eric Allender, Michal Koucký, Detlef Ronneburger, and Sambuddha Roy. The pervasive
reach of resource-bounded Kolmogorov complexity in computational complexity theory.
Journal of Computer and System Sciences, 77:14–40, 2010. doi:10.1016/j.jcss.2010.
06.004.

10 Bill Fefferman, Ronen Shaltiel, Christopher Umans, and Emanuele Viola. On beating
the hybrid argument. Theory of Computing, 9:809–843, 2013. doi:10.4086/toc.2013.
v009a026.

11 Oded Goldreich. On promise problems: A survey. In Oded Goldreich, Arnold L. Rosenberg,
and Alan L. Selman, editors, Theoretical Computer Science, Essays in Memory of Shimon
Even, volume 3895 of Lecture Notes in Computer Science, pages 254–290. Springer, 2006.
doi:10.1007/11685654_12.

12 Johan Håstad. Computational Limitations for Small Depth Circuits. MIT Press, Cam-
bridge, MA, 1987.

13 Shuichi Hirahara and Rahul Santhanam. On the average-case complexity of mcsp and its
variants. In 32nd Conference on Computational Complexity, CCC, LIPIcs. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2017. to appear.

MFCS 2017

http://dx.doi.org/10.1145/28395.28404
http://dx.doi.org/10.1006/jcss.1998.1583
http://dx.doi.org/10.1137/050628994
http://dx.doi.org/10.1016/j.ic.2017.04.004
https://eccc.weizmann.ac.il/report/2015/162/
https://eccc.weizmann.ac.il/report/2017/073/
http://dx.doi.org/10.1007/s00037-016-0124-0
http://dx.doi.org/10.1007/s00037-016-0124-0
http://dx.doi.org/10.1145/1706591.1706594
http://dx.doi.org/10.1016/j.jcss.2010.06.004
http://dx.doi.org/10.1016/j.jcss.2010.06.004
http://dx.doi.org/10.4086/toc.2013.v009a026
http://dx.doi.org/10.4086/toc.2013.v009a026
http://dx.doi.org/10.1007/11685654_12


54:14 New Insights on the (Non-)Hardness of Circuit Minimization and Related Problems

14 Shuichi Hirahara and Osamu Watanabe. Limits of minimum circuit size problem as oracle.
In 31st Conference on Computational Complexity, CCC, LIPIcs, pages 18:1–10:20. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.CCC.2016.18.

15 Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits:
Derandomizing the XOR lemma. In STOC’97, pages 220–229, 1997. doi:10.1145/258533.
258590.

16 Valentine Kabanets and Jin-Yi Cai. Circuit minimization problem. In ACM Symposium
on Theory of Computing (STOC), pages 73–79, 2000. doi:10.1145/335305.335314.

17 Adam Klivans and Dieter van Melkebeek. Graph nonisomorphism has subexponential
size proofs unless the polynomial-time hierarchy collapses. SIAM Journal on Computing,
31(5):1501–1526, 2002. doi:10.1137/S0097539700389652.

18 Richard E. Ladner. On the structure of polynomial time reducibility. J. ACM, 22(1):155–
171, 1975. doi:10.1145/321864.321877.

19 Cody Murray and Ryan Williams. On the (non) NP-hardness of computing circuit complex-
ity. In 30th Conference on Computational Complexity, CCC, volume 33 of LIPIcs, pages
365–380. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. doi:10.4230/LIPIcs.
CCC.2015.365.

20 Igor Oliveira and Rahul Santhanam. Conspiracies between learning algorithms, circuit
lower bounds and pseudorandomness. In 32nd Conference on Computational Complexity,
CCC, LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. to appear.

21 Rafail Ostrovsky. One-way functions, hard on average problems, and statistical zero-
knowledge proofs. In IEEE Conference on Structure in Complexity Theory, pages 133–138.
IEEE Computer Society, 1991. doi:10.1109/SCT.1991.160253.

22 Rafail Ostrovsky and Avi Wigderson. One-way fuctions are essential for non-trivial zero-
knowledge. In Second Israel Symposium on Theory of Computing Systems (ISTCS), pages
3–17. IEEE Computer Society, 1993. doi:10.1109/ISTCS.1993.253489.

23 Alexander Razborov and Steven Rudich. Natural proofs. Journal of Computer and System
Sciences, 55:24–35, 1997. doi:10.1006/jcss.1997.1494.

24 Alexander A. Razborov. Lower bounds on the size of bounded depth networks over a
complete basis with logical addition. Matematicheskie Zametki, 41:598–607, 1987. In Rus-
sian. English translation in Mathematical Notes of the Academy of Sciences of the USSR
41:333–338, 1987.

25 Michael Rudow. Discrete logarithm and minimum circuit size. Technical Report TR16-
23, Electronic Colloquium on Computational Complexity, 2016. URL: https://eccc.
weizmann.ac.il/report/2016/108/.

26 Roman Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit
complexity. In Proceedings 19th Symposium on Theory of Computing, pages 77–8. ACM
Press, 1987. doi:10.1145/28395.28404.

27 Jacobo Torán. On the hardness of graph isomorphism. SIAM Journal on Computing,
33(5):1093–1108, 2004. doi:10.1137/S009753970241096X.

28 Salil P. Vadhan. An unconditional study of computational zero knowledge. SIAM Journal
on Computing, 36(4):1160–1214, 2006. doi:10.1137/S0097539705447207.

29 Heribert Vollmer. Introduction to Circuit Complexity: A Uniform Approach. Springer-
Verlag New York Inc., 1999. doi:10.1007/978-3-662-03927-4.

http://dx.doi.org/10.4230/LIPIcs.CCC.2016.18
http://dx.doi.org/10.1145/258533.258590
http://dx.doi.org/10.1145/258533.258590
http://dx.doi.org/10.1145/335305.335314
http://dx.doi.org/10.1137/S0097539700389652
http://dx.doi.org/10.1145/321864.321877
http://dx.doi.org/10.4230/LIPIcs.CCC.2015.365
http://dx.doi.org/10.4230/LIPIcs.CCC.2015.365
http://dx.doi.org/10.1109/SCT.1991.160253
http://dx.doi.org/10.1109/ISTCS.1993.253489
http://dx.doi.org/10.1006/jcss.1997.1494
https://eccc.weizmann.ac.il/report/2016/108/
https://eccc.weizmann.ac.il/report/2016/108/
http://dx.doi.org/10.1145/28395.28404
http://dx.doi.org/10.1137/S009753970241096X
http://dx.doi.org/10.1137/S0097539705447207
http://dx.doi.org/10.1007/978-3-662-03927-4


Strategy Complexity of Concurrent Safety Games∗

Krishnendu Chatterjee1, Kristoffer Arnsfelt Hansen2, and Rasmus
Ibsen-Jensen3

1 IST Austria, Klosterneuburg, Austria
krish@ist.ac.at

2 Aarhus University, Aarhus, Denmark
arnsfelt@cs.au.dk

3 IST Austria, Klosterneuburg, Austria
ribsen@ist.ac.at

Abstract
We consider two player, zero-sum, finite-state concurrent reachability games, played for an infinite
number of rounds, where in every round, each player simultaneously and independently of the
other players chooses an action, whereafter the successor state is determined by a probability
distribution given by the current state and the chosen actions. Player 1 wins iff a designated goal
state is eventually visited. We are interested in the complexity of stationary strategies measured
by their patience, which is defined as the inverse of the smallest non-zero probability employed.

Our main results are as follows: We show that: (i) the optimal bound on the patience of
optimal and ε-optimal strategies, for both players is doubly exponential; and (ii) even in games
with a single non-absorbing state exponential (in the number of actions) patience is necessary.

1998 ACM Subject Classification I.2.1 Games

Keywords and phrases Concurrent games, Reachability and safety, Patience of strategies

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.55

1 Introduction

Concurrent reachability games

Concurrent reachability games[8] are played on finite-state graphs by 2 players for an infinite
number of rounds. In every round, each player simultaneously and independently of the other
player chooses moves (or actions). The current state and the chosen moves of the players
determine a probability distribution over the successor state. The result of playing the game
(or a play) is an infinite sequence of states and actions. The play starts in a designated
start state. Player 1 wins the play iff the play ever enters a designated goal state. We say
that player 1 is the reachability player and player 2 the safety player. These games were
introduced in a seminal work by Shapley [23], and have been one of the most fundamental
and well-studied game models in stochastic graph games. Matrix games (or normal form
games) can model a wide range of problems with diverse applications, when there is a finite
number of interactions [19, 26]. Concurrent reachability games can be viewed as a finite set
of matrix games, such that the choices made in the current game determine which game is
played next, and is the appropriate model for many applications [11]. Moreover, in analysis
of reactive systems, concurrent games provide the appropriate model for reactive systems
with components that interact synchronously [6, 7, 1].

∗ Some proofs are missing. See full version https://arxiv.org/abs/1506.02434, [4]

© Krishnendu Chatterjee, Rasmus Ibsen-Jensen, and Kristoffer Arnsfelt Hansen;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 55; pp. 55:1–55:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.55
https://arxiv.org/abs/1506.02434
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


55:2 Strategy Complexity of Concurrent Safety Games

Relevance

Concurrent reachability games are relevant in many applications. For example, the synthesis
problem in control theory (e.g., discrete-event systems as considered in [22]) corresponds
to reactive synthesis of [21]. The synthesis problem for synchronous reactive systems is
appropriately modeled as concurrent games [6, 7, 8]. Other than control theory, concurrent
reachability games also provide the appropriate model to study several other interesting
problems, such as two-player poker games [18].

Properties of strategies

Given a concurrent reachability games, the player-1 value v1(s) of the game at a state s is
the limit probability with which he can guarantee that the play will eventually enter the
goal state against all strategies of player 2. The player-2 value v2(s) is analogously the
limit probability with which player 2 can ensure his own objective against all strategies of
player 1. Concurrent reachability games are determined [10], i.e., for each state s we have
v1(s) + v2(s) = 1. A strategy for a player, given a history (i.e., finite prefix of a play) specifies
a probability distribution over the actions. A stationary strategy does not depend on the
history, but only on the current state. For ε ≥ 0, a strategy is ε-optimal for a state s for
player i if it ensures his own objective with probability at least vi(s)− ε against all strategies
of the opponent. A 0-optimal strategy is an optimal strategy. In concurrent reachability
games, there exist stationary optimal strategies for the safety player [20, 14]; whereas in
contrast, for the reachability player, optimal strategies do not exist in general, however, for
every ε > 0 there exists stationary ε-optimal strategies [10].

The significance of patience and roundedness of strategies

The basic decision problem is as follows: given a concurrent reachability game and a rational
threshold λ, decide whether v1(s) ≥ λ. The basic decision problem is in PSPACE and
is square-root sum hard [9]1. Given the hardness of the basic decision problem, the next
most relevant computational problem is to compute an approximation of the value. The
computational complexity of the approximation problem is closely related to the size of the
description of ε-optimal strategies. Even for special cases of concurrent reachability game,
namely turn-based reachability games, where in each state at most one player can choose
between multiple moves, the best known complexity results are obtained by guessing an
optimal strategy and computing the value in the game obtained after fixing the guessed
strategy. A strategy has patience p if p is the inverse of the smallest non-zero probability
used by a distribution describing the strategy. A rational valued strategy has roundedness
q if q is the greatest denominator of the probabilities used by the distributions describing
the strategy. Note that if a strategy has roundedness q, then it also has patience at most
q. The description complexity of a stationary strategy can be bounded by the roundedness.
A stationary strategy with exponential roundedness, can be described using polynomially
many bits, whereas the explicit description of stationary strategies with doubly-exponential
patience is not polynomial. Thus obtaining upper bounds on the roundedness and lower
bounds on the patience is at the heart of the computational complexity analysis of concurrent
reachability games. Also see [27, 28, 24] for the significance of computing strategies in
concurrent stochastic games.

1 The square-root sum problem is an important problem from computational geometry, where given a
set of natural numbers n1, n2, . . . , nk, the question is whether the sum of the square roots exceed an
integer b. The problem is not known to be in NP.



K. Chatterjee, R. Ibsen-Jensen, and K. Arnsfelt Hansen 55:3

Previous results and our contributions

In this work we consider concurrent reachability games. We first describe the relevant
previous results and then our contributions.

Previous results

For concurrent reachability game, the optimal bound on patience and roundedness for
ε-optimal strategies for the reachability player, for ε > 0, is doubly exponential [13, 12].
The doubly-exponential lower bound is obtained by presenting a family of games (namely,
Purgatory) where the reachability player requires doubly-exponential patience (however, in
this game the patience of the safety player is 1) [13, 12]; whereas the doubly-exponential
upper bound is obtained by expressing the values in the existential theory of reals [13, 12].
In contrast to the reachability player that in general do not have optimal strategies, similar
to the safety player there are two related classes of concurrent stochastic games that admit
optimal stationary strategies, namely, discounted-sum, and ergodic concurrent games. For
both these classes the optimal bound on patience and roundedness for ε-optimal strategies,
for ε > 0, is exponential [5, 15]. The optimal bound on patience and roundedness for optimal
and ε-optimal strategies, for ε > 0, for the safety player has been an open problem.

Our contributions

Our main results are as follows:
1. Lower bound: general. We show that in concurrent reachability games, a lower bound on

patience of optimal and ε-optimal strategies, for ε > 0, for the safety player is doubly
exponential (in contrast to the above mentioned related classes of games that only require
exponential patience). We present a family of games (namely, Purgatory Duel) where
optimal and ε-optimal strategies, for ε > 0, for both players require doubly-exponential
patience.

2. Lower bound: three states. We show that even in concurrent reachability games with three
states of which two are absorbing (sink states with only self-loop transitions) the patience
required for optimal and ε-optimal strategies, for ε > 0, is exponential (in the number of
actions). An optimal (resp., ε-optimal, for ε > 0) strategy in a game with three states
(with two absorbing states) is basically an optimal (resp., ε-optimal) strategy of a matrix
game, where some entries of the matrix game depend on the value of the non-absorbing
state (as some transitions of the non-absorbing state can lead to itself). In standard
matrix games, the patience for ε-optimal strategies, for ε > 0, is only logarithmic [17];
and perhaps surprisingly in contrast we show that the patience for ε-optimal strategies
in concurrent reachability games with only three states is exponential (i.e., there is a
doubly-exponential increase from logarithmic to exponential).

3. Upper bound. We show that in concurrent reachability games, an upper bound on the
patience of optimal strategies and an upper bound on the patience and roundedness
of ε-optimal strategies, for ε > 0, is as follows: (a) doubly exponential in general; and
(b) exponential for the safety player if the number of value classes (i.e., the number of
different values in the game) is constant. Hence our upper bounds on roundedness match
our lower bound results for patience. Our results also imply that if the number of value
classes is constant, then the basic decision problem is in coNP.

In summary, we present a complete picture of the patience and roundedness required in
concurrent reachability games.

MFCS 2017



55:4 Strategy Complexity of Concurrent Safety Games

Table 1 Strategy complexity (i.e., patience and roundedness of ε-optimal strategies, for ε > 0) of
the reachability vs safety player depending on the number of value classes. Our results are bold
faced, and LB (resp., UB) denotes lower (resp., upper) bound on patience (resp., roundedness).

# Value classes Reachability Safety
1 Linear One
2 Double-exponential One
3 Double-exponential Exponential

LB, Theorem 13
Constant Double-exponential Exponential

UB, Theorem 14
General Double-exponential Double-exponential

LB, Theorem 12
UB, Theorem 14

Distinguishing aspects of safety and reachability

While the optimal bound on patience and roundedness we establish in concurrent reachab-
ility games for the safety player matches that for the reachability player, there are many
distinguishing aspects for safety as compared to reachability in terms of the number of value
classes (as shown in Table 1). For the reachability player, if there is one value class, then the
patience and roundedness required is linear: it follows from the results of [2] that if there
is one value class then all the values must be either 1 or 0; and if all states have value 0,
then any strategy is optimal, and if all states have value 1, then it follows from [8, 3] that
there is an almost-sure winning strategy (that ensures the objective with probability 1)
from all states and the optimal bound on patience and roundedness is linear. The family of
game graphs defined by Purgatory has two value classes, and the reachability player requires
doubly exponential patience and roundedness, even for two value classes. In contrast, if there
are (at most) two value classes, then again the values are 1 and 0; and in value class 1, the
safety player has an optimal strategy that is stationary and deterministic (i.e., a positional
strategy) and has patience and roundedness 1 [8], and in value class 0 any strategy is optimal.
While for two value classes, the patience and roundedness is 1 for the safety player, we
show that for three value classes (even for three states) the patience and roundedness is
exponential, and in general the patience and roundedness is doubly exponential (and such a
finer characterization does not exist for the reachability player).

Our main ideas

Our most interesting results are the doubly-exponential and exponential lower bound on the
patience and roundedness. We now present a brief overview about the lower bound example.

The game of Purgatory [13, 12] is a concurrent reachability game that was defined as an
example showing that the reachability player must, in order to play near optimally, use a
strategy with non-zero probabilities that are doubly exponentially small in the number of
states of the game (i.e., the patience is doubly exponential).

In this paper we present another example of a reachability game where this is the case for
the safety player as well. The game Purgatory consists of a (potentially infinite) sequence
of escape attempts. In an escape attempt one player is given the role of the escapee and
the other player is given the role as the guard. An escape attempt consists of at most N



K. Chatterjee, R. Ibsen-Jensen, and K. Arnsfelt Hansen 55:5

rounds. In each round, the guard selects and hides a number between 1 and m, and the
escapee must try to guess the number. If the escapee successfully guesses the number N
times, the game ends with the escapee as the winner. If the escapee incorrectly guesses a
number which is strictly larger than the hidden number, the game ends with the guard as
the winner. Otherwise, if the escapee incorrectly guesses a number which is strictly smaller
than the hidden number, the escape attempt is over and the game continues.

The game of Purgatory is such that the reachability player is always given the role of the
escapee, and the safety player is always given the role of the guard. If neither player wins
during an escape attempt (meaning there is an infinite number of escape attempts) the safety
player wins. Purgatory may be modeled as a concurrent reachability game consisting of N
non-absorbing positions in which each player has m actions. The value of each non-absorbing
position is 1. This means that the reachability player has, for any ε > 0, a stationary strategy
that wins from each non-absorbing position with probability at least 1 − ε [10], but such
strategies must have doubly-exponential patience. In fact for N sufficiently large and m ≥ 2,
such strategies must have patience at least 2mN/3 for ε = 1− 4m−N/2 [12]. For the safety
player however, the situation is simple: any strategy is optimal.

We introduce a game we call the Purgatory Duel in which the safety player must also use
strategies of doubly-exponential patience to play near optimally. The main idea of the game
is that it forces the safety player to behave as a reachability player. We can describe the new
game as a variation on the above description of the Purgatory game. The Purgatory Duel
consists also of a (potentially infinite) sequence of escape attempts. But now, before each
escape attempt the role of the escapee is given to each player with probability 1

2 , and in each
escape attempt the rules are as described above. The game remains asymmetric in the sense
that if neither player wins during an escape attempt, the safety player wins. The Purgatory
Duel may be modeled as a concurrent reachability game consisting of 2N + 1 non-absorbing
positions, in which each player has m actions, except for a single position where the players
each have just a single action.

Technical contributions

The key non-trivial aspects of our proof are as follows: first, is to come up with the family of
games, namely, Purgatory Duel, where the ε-optimal strategies, for ε ≥ 0, for the players
are symmetric, even though the objectives are complementary; and then the precise analysis
of the game needs to combine and extend several ideas, such as refined analysis of matrix
games, and analysis of perturbed Markov decision processes (MDPs) which are one-player
stochastic games.

Highlights

We highlight two features of our results, namely, the surprising aspects and the significance
(see Section Discussion and Conclusion of the full version for further details).
1. Surprising aspects. The first surprising aspect of our result is the doubly-exponential lower

bound for the safety player in concurrent reachability games. The properties of strategies
for the safety player in concurrent reachability games resemble concurrent discounted
games, as in both cases optimal stationary strategies exist, and locally optimal strategies
are optimal. We show that in contrast to concurrent discounted games where exponential
patience suffices for the safety player in concurrent reachability games doubly-exponential
patience is necessary. The second surprising aspect is the lower bound example itself.
The lower bound example is obtained as follows: (i) given Purgatory we first obtain

MFCS 2017



55:6 Strategy Complexity of Concurrent Safety Games

simplified Purgatory by changing the start state such that it deterministically goes to the
next state; (ii) we then consider its dual where the roles of the players are exchanged;
and (iii) Purgatory duel is obtained by merging the start states of simplified Purgatory
and its dual. Both in simplified Purgatory and its dual, there are only two value classes,
and positional optimal strategies exist for the safety player. Surprisingly we show that
a simple merge operation gives a game with linear number of value classes and the
patience increases from 1 to doubly-exponential. Finally, the properties of strategies for
the reachability- and safety-player in concurrent reachability games differ substantially.
An important aspect of our lower bound example is that we show how to modify an
example for the reachability player to obtain the result for safety player.

2. Significance. Our most important results are the lower bounds, and the main significance
is threefold. First, the most well-studied way to obtain computational complexity result
in games is to explicitly guess strategies, and then verify the game obtained fixing the
strategy. The lower bound for the reachability player by itself did not rule out that better
complexity results can be obtained through better strategy complexity for the safety player
(indeed, for constant number of value classes, we obtain a better complexity result than
known before due to the exponential bound on roundedness). Our doubly-exponential
lower bound shows that in general the method of explicitly guessing strategies would
require exponential space, and would not yield NP or coNP upper bounds. Second, one of
the most well-studied algorithm for games is the strategy-iteration algorithm. Our result
implies that any natural variant of the strategy-iteration algorithm for the safety player
that explicitly compute strategies require exponential space in the worst-case. Finally, in
games, strategies that are witness to the values and specify how to play the game, are as
important as values, and our results establish the precise strategy complexity (matching
upper bound of roundedness with lower bounds of patience).

Full-version: Proofs and non-zero-sum games.

In the full version [4], we give full proofs of all our lemmas and also consider non-zero-sum
and non-two-player concurrent games, but where each player has either a reachability or
safety objective (concurrent reachability games is then the special case of 1 player with a
reachability objective and 1 player with the complementary safety objective).

2 Definitions

Other number

Given a number i ∈ {1, 2} let î be the other number, i.e., if i = 1, then î = 2 and vice-versa.

Probability distributions

A probability distribution d over a finite set Z, is a map d : Z → [0, 1], such that
∑
z∈Z d(z) = 1.

Fix a probability distribution d over a set Z. The distribution d is pure (Dirac) if d(z) = 1
for some z ∈ Z and for convenience we overload the notation and let d = z. The support
Supp(d) is the subset Z ′ of Z, such that z ∈ Z ′ if and only if d(z) > 0. The distribution d
is totally mixed if Supp(d) = Z. The patience of d is maxz∈Supp(d)

1
d(z) , i.e., the inverse of

the minimum non-zero probability. The roundedness of d, if d(z) is a rational number for all
z ∈ Z, is the greatest denominator of d(z). Note that roundness of d is always at least the
patience of d. Given two elements z, z′ ∈ Z, the probability distribution d = U(z, z′) over Z
is such that d(z) = d(z′) = 1

2 . Let ∆(Z) be the set of all probability distributions over Z.



K. Chatterjee, R. Ibsen-Jensen, and K. Arnsfelt Hansen 55:7

Concurrent reachability games

A concurrent reachability game, consists of (1) a finite set of states S, of size N ; and (2) for
each state s ∈ S and each player i a set Ais of actions (and Ai =

⋃
sA

i
s is the set of all actions

for player i, for each i; and A =
⋃
iA

i is the set of all actions) such that Ais consists of at
most m actions; and (3) a stochastic transition function δ : S ×A1 ×A2 → ∆(S); and (4) a
designated goal state g ∈ S. A state s is deterministic if δ(s, a1, a2) is pure (deterministic), for
all ai ∈ Ais and for all i. A state s is called absorbing if Ais = {a} for all i and δ(s, a, a) = s.
The number δmin is the smallest non-zero transition probability.

How to play a concurrent reachability game

The game G, starting in state s, is played as follows: initially a pebble is placed on
v0 := s. In each time step T ≥ 0, the pebble is on some state vT and each player selects
(simultaneously and independently of the other players, like in the game rock-paper-scissors)
an action aiT+1 ∈ AivT

. Then, the game selects vT+1 according to the probability distribution
δ(vT , a1

T+1, a
2
T+1) and moves the pebble onto vT+1. The game then continues with time step

T + 1 (i.e., the game consists of infinitely many time steps). For a round T , let aT+1 be the
pair of choices of the actions for the players, i.e., aT+1,i is the choice of player i, for each i.
Round 0 is identified by v0 and round T > 0 is then identified by the pair (aT , vT ). A play Ps,
starting in state v0 = s, is then a sequence of rounds (v0, (a1, v1), (a2, v2), . . . , (aT , vT ), . . . ),
and for each ` a prefix of P `s of length ` is then (v0, (a1, v1), (a2, v2), . . . , (aT , vT ), . . . , (a`, v`)),
and we say that P `s ends in v`. Player 1 wins a play Ps iff vT = g for some T . Similarly,
player 2 wins a play Ps iff vT 6= g for all T We refer to player 1 as the reachability player
and player 2 as the safety player.

Strategies

Fix a player i. A strategy is a recipe to choose a probability distribution over actions given a
finite prefix of a play. Formally, a strategy σi for player i is a map from P `s , for a play Ps
of length ` starting at state s, to a distribution over Aiv`

. Player i follows a strategy σi, if
given the current prefix of a play is P `s , he selects a`+1 according to σi(P `s ), for all plays Ps
starting at s and all lengths `. A strategy σi for player i, is stationary, if for all ` and `′,
and all pair of plays Ps and P ′s′ , starting at states s and s′ respectively, such that P `s and
(P ′)`′s′ ends in the same state t, we have that σi(P `s ) = σi((P ′)`

′

s′); and we write σi(t) for the
unique distribution used for prefix of plays ending in t. The patience (resp., roundedness)
of a strategy σi is the supremum of the patience (resp. roundedness) of the distribution
σi(P `s ), over all plays Ps starting at state s, and all lengths `. Also, a strategy σi is pure
(resp., totally mixed) if σi(P `s ) is pure (resp., totally mixed), for all plays Ps starting at s
and all lengths `. A strategy is positional if it is pure and stationary. Let Σi be the set of all
strategies for player i.

Strategy profiles

A strategy profile σ = (σ1, σ2) is a pair of strategies, one for each player. A strategy profile σ
defines a unique probability measure on plays, denoted Prσ, when the players follow their
respective strategies [25]. We say that a strategy profile has a property (e.g., is stationary) if
each of the strategies in the profile has that property.

MFCS 2017



55:8 Strategy Complexity of Concurrent Safety Games

Values

Let u(G, s, σ) be the probability that player 1 wins the game G when the players follow σ

and the play starts in s (i.e., the utility or payoff for player 1). Also if the game G is clear
from context we drop it from the notation. Given a concurrent reachability game G, the
upper value val(G, s) (resp., lower value val(G, s)) of G starting in s is

val(G, s) = sup
σ1∈Σ1

inf
σ2∈Σ2

u(G, s, σ1, σ2) ; val(G, s) = inf
σ2∈Σ2

sup
σ1∈Σ1

u(G, s, σ1, σ2) .

As shown by [10] we have that val(G, s) := val(G, s) = val(G, s); which is called the value of
s. We will sometimes write val(s) for val(G, s) if G is clear from the context. We will also
write val for the vector where vals = val(s).

(ε-)optimal strategies for concurrent reachability games

For an ε ≥ 0, a strategy σ1 for player 1 (resp., σ2 for player 2) is called ε-optimal if for each
state s we have that val(s)−ε ≤ infσ2∈Σ2 u(s, σ1, σ2) (resp., val(s)+ε ≥ supσ1∈Σ1 u(s, σ1, σ2)).
For each i, a strategy σi for player i is called optimal if it is 0-optimal. There exist concurrent
reachability games in which player 1 does not have optimal strategies, see [10] for an example.
On the other hand in all concurrent reachability games G player 1 has a stationary ε-optimal
strategy for each ε > 0. In all concurrent reachability games player 2 has an optimal
stationary strategy (thus also an ε-optimal stationary strategy for all ε > 0) [20, 14]. Also,
given a stationary strategy σ1 for player 1 we have that there exists a positional strategy
σ2, such that u(s, σ1, σ2) = infσ′2∈Σ2 u(s, σ1, σ

′
2), i.e., we only need to consider positional

strategies for player 2. Similarly, we only need to consider positional strategies for player 1,
if we are given a stationary strategy for player 2.

Markov decision processes and Markov chains

For each player i, a Markov decision process (MDP) for player i is a concurrent game where
the size of Ajs is 1 for all s and j 6= i. A Markov chain is an MDP for each player (that is
the size of Ajs is 1 for all s and j). A closed recurrent set of a Markov chain G is a maximal
(i.e., no closed recurrent set is a subset of another) set S′ ⊆ S such that for all pairs of states
s, s′ ∈ S, the play starting at s reaches state s′ eventually with probability 1 (note that it
does not depend on the choices of the players as we have a Markov chain). For all starting
states, eventually a closed recurrent set is reached with probability 1, and then plays stay in
the closed reccurent set. Observe that fixing a stationary strategy for all but one player in a
concurrent game, the resulting game is an MDP for the remaining player. Hence, fixing a
stationary strategy for each player gives a Markov chain.

Game illustration

When we illustrate our games, we illustrate each state as a matrix, where the rows corresponds
to the actions of the reachability player, the columns corresponds to the actions of the safety
player. Thus, each entry e corresponds to an pair of actions (i, j) and a state s and we have
an edge to δ(s, i, j) from e.

3 Patience Lower Bound

In this section we will establish the doubly-exponential lower bound on patience for concurrent
reachability games. First we define the game family, namely, Purgatory Duel and we also
recall the family Purgatory.



K. Chatterjee, R. Ibsen-Jensen, and K. Arnsfelt Hansen 55:9

>

v1
2

v1
1

vs

v2
1

v2
2

⊥

(a) Illustration of the Purgatory Duel with m = n = 2.
The dashed edges have probability 1

2 each.

>

v2

v1

⊥

(b) Illustration of Purgatory with m =
n = 2.

Figure 1 Illustration of the games used for lower bounds.

The Purgatory Duel

In this paper we specifically focus on the following concurrent reachability game, the Purgatory
Duel, defined on a pair of parameters (n,m). The game consists of N = 2n+ 3 states, namely
{v1

1 , v
1
2 , . . . , v

1
n, v

2
1 , v

2
2 , . . . , v

2
n, vs,>,⊥} and all but vs are deterministic. To simplify the

definition of the game, let v1
0 = v2

n+1 = ⊥ and v2
0 = v1

n+1 = >. The states > and ⊥ are
absorbing. For each i ∈ {1, 2} and j ∈ {1, . . . , n}, the state vij is such that A1

vi
j

= A2
vi

j
=

{1, 2, . . . ,m} and for each a1, a2 we have that δ(vj , a1, a2) is (1) vs if a1 > a2, (2) vi0 if
a1 < a2 and (3) vij+1 if a1 = a2. Finally, A1

vs
= A2

vs
= {a} and δ(vs, a, a) = U(v1

1 , v
2
1). There

is an illustration of the Purgatory Duel with m = n = 2 in Figure 1a.

The game Purgatory

We will also use the game Purgatory as defined by [12] (and also in [13] for the case of m = 2).
Purgatory is similar to the Purgatory Duel and hence the similarity in names. Purgatory is
also defined on a pair of parameters (n,m). The game consists of N = n+ 2 states, namely,
{v1, v2, . . . , vn,>,⊥} and each state is deterministic. To simplify the definition of the game,

MFCS 2017



55:10 Strategy Complexity of Concurrent Safety Games

let vn+1 = >. For each j ∈ {1, . . . , n}, the state vj is such that A1
vj

= A2
vj

= {1, 2, . . . ,m}
and for each a1, a2 we have that δ(vj , a1, a2) is (1) v1 if a1 > a2, (2) ⊥ if a1 < a2 and (3) vj+1
if a1 = a2. The states > and ⊥ are absorbing. Furthermore, S1 = {>}. For an illustration
of Purgatory with m = n = 2 see Figure 1b.

3.1 The patience of optimal strategies
In this section we present an approximation of the values of the states and the patience of
the optimal strategies in the Purgatory Duel. We first show that the values of the states
(besides > and ⊥) are strictly between 0 and 1.

I Lemma 1. Each state v ∈ {v1
1 , v

1
2 , . . . , v

1
n, v

2
1 , v

2
2 , . . . , v

1
2 , vs} is such that val(v) ∈ [ 1

mn+2 , 1−
1

mn+2 ]

The proof of the above lemma is obtained by considering the strategy, for either player, that
plays uniformly at random all available actions at every state. Next we show that every
optimal stationary strategy for player 2 must be totally mixed.

I Lemma 2. Let σ2 be an optimal stationary strategy for player 2. The distribution σ2(vij)
is totally mixed and val(v1

j ) > val(vs) > val(v2
j ), for all i, j.

Next, we show that if either player follows a stationary strategy that is totally mixed on
at least one side (that is, if there is an i′, such that for each j the stationary strategy plays
totally mixed in vi′j ), then eventually either > or ⊥ is reached with probability 1. The proof
relies on the analysis of the Markov chain obtained given the strategies.

I Lemma 3. For any i and i′, let σi be a stationary strategy for player i, such that σi(vi
′

j )
is totally mixed for all j. Let σ̂

i
be some stationary strategy for the other player. Then, each

closed recurrent set in the Markov chain given by the game, σi, and σ̂i, consists of only the
state > or only the state ⊥.

The following definition basically “mirrors” a strategy σi for player i, for each i and gives
it to the other player. We show (in Lemma 5) that if σ2 is optimal for player 2, then the
mirror strategy is optimal for player 1. We also show that if σ2 is an ε-optimal strategy for
player 2, for 0 < ε < 1

3 , then so is the mirror strategy for player 1 (in Lemma 8).

I Definition 4 (Mirror strategy). Given a stationary strategy σi for player i, for either i, let
the mirror strategy σσi

î
for player î be the stationary strategy where σσi

î
(vî′j ) = σi(vi

′

j ) for
each i′ and j.

We next show that player 1 has optimal stationary strategies in the Purgatory Duel and
give expressions for the values.

I Lemma 5. Let σ2 be some optimal stationary strategy for player 2. Then the mirror
strategy σσ2

1 is optimal for player 1. We have val(vs) = 1
2 and val(vij) = 1− val(v̂ij), for all

i, j.

Finally, we give an approximation of the values of states in the Purgatory Duel and a
lower bound on the patience of any optimal strategy of 2(m−1)2mn−2 .

I Theorem 6. For each j in {1, . . . , n}, the value of state v1
j in the Purgatory Duel is less

than 1
2 + 2(1−m)·mn−j−1 and for any optimal stationary strategy σi for either player i, the

patience of σi(v1
j ) is at least 2(m−1)2mn−j−1 .



K. Chatterjee, R. Ibsen-Jensen, and K. Arnsfelt Hansen 55:11

3.2 The patience of ε-optimal strategies
In this section we consider the patience of ε-optimal strategies for 0 < ε < 1

3 . First we argue
that each such strategy for player 2 is totally mixed on one side.

I Lemma 7. For all 0 < ε < 1
2 , each ε-optimal stationary strategy σ2 for player 2 is such

that σ2(v2
j ) is totally mixed, for all j.

The idea is that against any strategy σ2 that does not play totally mixed in some v2
j , player 1

can ensure that if v2
1 is entered, then ⊥ is not reached before vs is entered again (by playing

1 in v2
j′ , for j′ < j and some action not played by σ2 in v2

j ). This allows player 1 to play a
near optimal strategy from Purgatory in the states v1

j′ , ensuring that > is eventually reached
with probability close to 1 from vs and showing that σ2 is far from optimal. We now show
that if we mirror an ε-optimal strategy, then we get an ε-optimal strategy.

I Lemma 8. For all 0 < ε < 1
3 , each ε-optimal stationary strategy σ2 for player 2 in the

Purgatory Duel, is such that the mirror strategy σσ2
1 is ε-optimal for player 1.

Next we give a definition and a lemma, which is similar to Lemma 6 in [16]. The purpose
of the lemma is to identify certain cases where one can change the transition function of an
MDP in a specific way and obtain a new MDP with larger values.

I Definition 9. Let G be an MDP for a safety player. A replacement set is a set of triples of
states, actions and distributions over the states Q = {(s1, a1, δ1), . . . , (s`, a`, δ`)}. Given the
replacement set Q, the MDP G[Q] is an MDP over the same states as G, with the same set
of safe states, and where the transition function δ′ is similar to δ, except that δ′(s, a) = δi if
s = si and a = ai for some i.

I Lemma 10. Let G be an MDP with a safety player. Consider some replacement set
Q = {(s1, a1, δ1), . . . , (s`, a`, δ`)}, such that for all t and i we have that

∑
s∈S(δ(si, ai)(s) ·

vts) ≤
∑
s∈S(δi(s) · vts). Let v′t be the value vector for G[Q] with finite horizon t. (1) For

all states s and time limits t we have that vts ≤ v′
t

s. (2) For all states s, we have that
val(G, s) ≤ val(G[Q], s).

The proof of the lemma is in the full version [4]. We next show that for player 1, the patience
of ε-optimal strategies is high.

I Lemma 11. For all 0 < ε < 1
3 , each ε-optimal stationary strategy σ1 for player 1 in the

Purgatory Duel has patience at least 2mΩ(n) . For N = 5 the patience is 2Ω(m).

The proof of the lemma is in the full version
We present the main theorem of this section. The proof follows easily from the previous

lemmas (and is presented in details in the full version [4]).

I Theorem 12. For all 0 < ε < 1
3 , every ε-optimal stationary strategy, for either player, in

the Purgatory Duel (that has N = 2n+ 3 states and at most m actions for each player at all
states) has patience 2mΩ(n) . For N = 5 the patience is 2Ω(m).

3.3 The patience lower bound for three states
We show that the patience of all ε-optimal strategies, for all 0 < ε < 1

3 , for both players
in a concurrent reachability game G with three states of which two are absorbing, and the
non-absorbing state has m actions for each player, can be as large as 2Ω(m). The key steps of

MFCS 2017



55:12 Strategy Complexity of Concurrent Safety Games

the proof are as follows: (1) First we consider the Purgatory duel with n = 1, and compress
it down to 3 states by considering two steps of the Purgatory Duel in a single step. This
gives us a game that has three states with one non-absorbing state (which we call 3-state
Purgatory Duel) where ε-optimal strategies for the players require exponential patience in
m. However, since two steps are simulated by a single step, this game increases the number
of actions M from m to m2. Hence, our patience bound for 3-state Purgatory Duel is only
2Ω(
√
M). (2) We then show that we can restrict the above game to 2m− 1 of the m2 actions

and still get the same patience as a function of m. We refer to this game as the restricted
3-state Purgatory Duel. Formally, we establish the following result.

I Theorem 13. For all 0 < ε < 1
3 , every ε-optimal stationary strategy, for either player, in

the restricted 3-state Purgatory Duel (that has three states, two of which are absorbing, and
the non-absorbing state has O(m) actions for each player) has patience 2Ω(m).

4 Patience Upper Bound

In this section we present the upper bounds. The values of concurrent reachability games
can be expressed in the existential theory of reals. Using a refined analysis we present a
formula where the number of variables depends only on the number of value classes, rather
than the number of states. Using techniques similarly to [13] (such as quantifier elimination,
sampling, and root separation for analysis of strategies in games), for concurrent reachability
games with K value classes, we show that there is an optimal stationary strategy for the
safety player where each probability is a real algebraic number, defined by a polynomial of
degree mO(K2) and the maximum coefficient bit-size is τmO(K2), where τ is the bit-size of
numbers in the input. We obtain the following theorem.

I Theorem 14. For all concurrent reachability games with at most K different value-
classes and probabilities that are rational numbers defined using at most τ bits, the following
hold:
1. For all ε > 0, there exists an ε-optimal stationary strategy with roundedness at most

1
ε lg 1

ε2NτmO(K2) .
2. For a fixed constant K, a state s and a number λ, given in binary, the problem of deciding

whether val(s) ≥ λ is in coNP.

References
1 R. Alur, T. Henzinger, and O. Kupferman. Alternating-time temporal logic. Journal of

the ACM, 49:672–713, 2002.
2 K. Chatterjee. Concurrent games with tail objectives. Theoretical Computer Science,

388:181–198, 2007.
3 K. Chatterjee, L. de Alfaro, and T. Henzinger. Qualitative concurrent parity games. ACM

ToCL, 2011.
4 K. Chatterjee, K. A. Hansen, and R. Ibsen-Jensen. Strategy complexity of concurrent

stochastic games with safety and reachability objectives. CoRR, abs/1506.02434, 2015.
5 K. Chatterjee and R. Ibsen-Jensen. The Complexity of Ergodic Mean-payoff Games. In

ICALP 2014, pages 122–133, 2014.
6 L. de Alfaro, T. Henzinger, and F. Mang. The control of synchronous systems. In CON-

CUR’00, LNCS 1877, pages 458–473. Springer, 2000.
7 L. de Alfaro, T. Henzinger, and F. Mang. The control of synchronous systems, Part II. In

CONCUR’01, LNCS 2154, pages 566–580. Springer, 2001.



K. Chatterjee, R. Ibsen-Jensen, and K. Arnsfelt Hansen 55:13

8 L. de Alfaro, T. A. Henzinger, and O. Kupferman. Concurrent reachability games. Theor.
Comput. Sci, 386(3):188–217, 2007.

9 K. Etessami and M. Yannakakis. Recursive concurrent stochastic games. In ICALP’06 (2),
LNCS 4052, Springer, pages 324–335, 2006.

10 H. Everett. Recursive games. In CTG, volume 39 of AMS, pages 47–78, 1957.
11 J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer-Verlag, 1997.
12 K. A. Hansen, R. Ibsen-Jensen, and P. B. Miltersen. The complexity of solving reachability

games using value and strategy iteration. In CSR, pages 77–90, 2011.
13 K. A. Hansen, M. Koucký, and P. B. Miltersen. Winning concurrent reachability games

requires doubly-exponential patience. In LICS, pages 332–341, 2009.
14 C. J. Himmelberg, T. Parthasarathy, T. E. S. Raghavan, and F. S. V. Vleck. Existence

of p-equilibrium and optimal stationary strategies in stochastic games. Proc. Amer. Math.
Soc., 60:245–251, 1976.

15 R. Ibsen-Jensen. Strategy complexity of two-player, zero-sum games. PhD thesis, Aarhus
University, 2013.

16 R. Ibsen-Jensen and P. B. Miltersen. Solving simple stochastic games with few coin toss
positions. In ESA, pages 636–647, 2012.

17 R. Lipton, E. Markakis, and A. Mehta. Playing large games using simple strategies. In EC
03: Electronic Commerce, pages 36–41. ACM Press, 2003.

18 P. B. Miltersen and T. B. Sørensen. A near-optimal strategy for a heads-up no-limit texas
hold’em poker tournament. In AAMAS’07, pages 191–197, 2007.

19 G. Owen. Game Theory. Academic Press, 1995.
20 T. Parthasarathy. Discounted and positive stochastic games. Bull. Amer. Math. Soc,

77:134–136, 1971.
21 A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. of POPL, pages

179–190. ACM Press, 1989.
22 P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete-event pro-

cesses. SIAM Journal of Control and Optimization, 25(1):206–230, 1987.
23 L. Shapley. Stochastic games. PNAS, 39:1095–1100, 1953.
24 E. Solan and N. Vieille. Computing uniformly optimal strategies in two-player stochastic

games. Economic Theory, 42(1):237–253, 2010.
25 M. Vardi. Automatic verification of probabilistic concurrent finite-state systems. In

FOCS’85, pages 327–338. IEEE, 1985.
26 J. von Neumann and O. Morgenstern. Theory of games and economic behavior. Princeton

University Press, 1947.
27 O. Vrieze and F. Thuijsman. On equilibria in repeated games with absorbing states. Inter-

national Journal of Game Theory, 18(3):293–310, 1989.
28 O. Vrieze and S. Tijs. Fictitious play applied to sequences of games and discounted

stochastic games. International Journal of Game Theory, 11(2):71–85, 1982.

MFCS 2017





A Characterisation of Π0
2 Regular Tree Languages

Filippo Cavallari∗1, Henryk Michalewski2, and Michał Skrzypczak†3

1 University of Lausanne, Department of Information Systems, Faculty of
Business and Economics, Lausanne, Switzerland and
University of Turin, Turin, Italy
filippo.cavallari@unito.it

2 University of Warsaw, Department of Mathematics, Informatics and
Mechanics, Warsaw, Poland
h.michalewski@mimuw.edu.pl

3 University of Warsaw, Institute of Informatics, Warsaw, Poland
m.skrzypczak@mimuw.edu.pl

Abstract
We show an algorithm that for a given regular tree language L decides if L ∈ Π0

2, that is if
L belongs to the second level of Borel Hierarchy. Moreover, if L ∈ Π0

2, then we construct
a weak alternating automaton of index (0, 2) which recognises L. We also prove that for a given
language L, L is definable by a weak alternating (1, 3)-automaton if and only if it is definable by
a weak non-deterministic (1, 3)-automaton.

1998 ACM Subject Classification F.4.3 Formal Languages

Keywords and phrases infinite trees, Rabin-Mostowski hierarchy, regular languages

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.56

1 Introduction

Automata on infinite trees and the corresponding Monadic Second Order Logic provide a rich
framework for expressing properties of regular languages of trees. Characterising natural
subclasses of regular tree languages can be considered one of the fundamental problems
related to automata on infinite trees. When we additionally require that the characterisation
should be of an algorithmic nature, the problem usually turns to be very difficult and so far
solved only in few instances.

I Problem 1 (The Characterisation Problem). For a given class of sets of trees C design
an algorithm which decides if a given regular tree language L belongs to C.

Let us consider the problem for the following classes of tree languages: 1) languages definable
in First Order Logic, 2) languages definable in Weak Monadic Second Order Logic, or 3) Borel
languages. Providing an effective characterisation for any of the above classes among all
regular languages of trees seems to be beyond the reach of currently available methods.
In all the above instances it would be desirable to prove a dichotomy simple versus difficult
languages; with difficult languages being characterised by existence of an embedding of
a standard difficult language. In this work we resolve the Characterisation Problem

∗ The first author has been supported by ERC Consolidator grant LIPA (683080).
† The second and third authors have been supported by Polish National Science Centre grants

2014/13/B/ST6/03595 and 2016/22/E/ST6/00041 respectively.

© Filippo Cavallari, Henryk Michalewski, and Michał Skrzypczak;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 56; pp. 56:1–56:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.56
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


56:2 A Characterisation of Π0
2 Regular Tree Languages

Σ0
1

Π0
1

Σ0
2

Π0
2

Σ0
3

Π0
3

∆0
1 ∆0

2 ∆0
3 · · ·

Σ1
1

Π1
1

Σ1
2

Π1
2

Σ1
3

Π1
3

∆1
2 ∆1

3· · · · · ·

Borel hierarchy projective hierarchy

Figure 1 Borel and projective hierarchies.

for the case of C = Π0
2, i.e. for the set of languages that belong to the second level of the

Borel hierarchy. A posteriori, it turns out that C is the class of languages recognisable by
weak alternating automata of index (0, 2), that is the class of parity automata that involve
priorities 0, 1, and 2; such that the transitions of the automaton are monotone wrt. priorities.

I Theorem 2. If L is a regular tree language then either:
L can be recognised by a weak alternating (0, 2)-automaton and so L ∈ Π0

2,
L cannot be recognised by a weak alternating (0, 2)-automaton, L /∈ Π0

2, and L is Σ0
2-hard.

Moreover, it can be effectively decided which of the cases holds. If L ∈ Π0
2 then a weak

alternating (0, 2)-automaton can effectively be constructed for L.

All regular languages of trees are Σ1
2 sets and from Rabin’s Complementation Theorem [20]

follows that every regular language of trees is in the class ∆1
2. In the case of weak alternating

automata (see e.g. [13]) one can provide a much more precise upper bound for the complexity:

I Lemma 3 (See e.g. [6]). If L is a language recognised by a weak alternating (0, n)-automaton
then L ∈ Π0

n.

Combining [24] and [6] we obtain that this is the optimal upper bound for the languages
definable in Weak Monadic Second Order Logic.

The Characterisation Problem seems to be settled only for few families C. The follow-
ing list summarises all the cases which according to authors’ knowledge have been considered
in the literature so far, with the unrestricted input of general regular tree languages:
1. The simple case of clopen sets considered a mathematical folklore.
2. The case of open and closed sets, see [1, page 1] or [14, page 83-84]
3. The case of Boolean combinations of open sets settled in [1] using sophisticated algebraic

methods.
4. The techniques of [1] were further reused in [7] to provide an effective characterisation of

the class ∆0
2. However, as it turned out, the application of the tools of [1] presented in that

paper was not correct and the proofs contain some missing arguments1; as a corollary of
the present article we also obtain another algorithm solving Problem 1 for the case C = ∆0

2.
Additionally, this paper provides a new automata theoretic observation: regular languages
in ∆0

2 belong to the respective delta class of the weak alternating index hierarchy: for
any regular language L in ∆0

2 there exist a weak alternating (0, 2)-automaton and a weak
alternating (1, 3)-automaton that recognise L.

1 The statement of Theorem 1 in [7] is correct but a critical combinatorial Proposition 5 requires a
different and a more sophisticated argument which will be presented in a journal version of that work.



F. Cavallari, H. Michalewski, and M. Skrzypczak 56:3

5. From [9] we know that regular tree languages occupy the first ω–levels of Kolmogorov’s
R-hierarchy.

The following problem that can be seen as a reversed version of Lemma 3 requires a
fine-grained analysis of Π0

n regular languages of trees:

I Problem 4. Given a regular tree language that belongs to Π0
n, does there exist a weak

alternating (0, n)-automaton that recognises it?

In the case of n = 1 the positive answer is considered folklore (it also follows from [1]),
however for every n > 1 the problem was open. Our article gives the positive answer for
the specific case when n = 2.

Related work

Characterising WMSO among Büchi automata. The proof presented in this paper is
inspired by a characterisation [23] of Borel languages (as well as recognisable by all weak
alternating automata) among the languages recognisable by Büchi automata. Although
the similar structure of the proof and the idea behind the characterisation game F , there
are certain differences between the two proofs. Firstly, the structure of the game F is much
simpler here than in [23]. Moreover, the construction of the automata GK from Section 6
requires certain new ideas because we deal with arbitrary parity automata (in [23] the input
is restricted to Büchi automata and the construction is just an unravelling of the respective
game G). In particular, in this work we introduce the concept of K-acceptance.

Deterministic and other special classes of languages. In absence of a method solving
Problem 1 for all regular languages, a number of attempts was made for special families
of regular languages [18, 17, 16, 8] that are recognised by automata with restricted forms
of non-determinism.

Cost-MSO and counter automata. Another take on characterising various classes of
languages via games can be found in [5, 4, 3]. The authors of this paper are not aware of
results directly applicable to weak alternating parity automata of index (1, 3). However, as
shown in this paper, weak non-deterministic parity automata of index (1, 3) are equivalent
with weak alternating parity automata of the same index. Therefore, it seems feasible
to obtain the automata-theoretic part (without the correspondence to topological classes)
of Theorem 2 using the tools presented in [5, 12, 4].

2 Basic notions

Trees. Let us fix a finite alphabet A, that is just a finite non-empty set of symbols
(e.g. A = {a, b}). We work on the space of labelled complete infinite binary trees over A.
An A-labelled tree t (shortly tree) is a function t : {L, R}∗ → A where the symbols L, R are
called directions. The set of all A-labelled trees is denoted by TrA.

Elements u ∈ {L, R}∗ are called nodes of a tree. The elements uL, uR are called children
of u. The empty sequence ε is called the root of a tree. A branch of a tree is just an infinite
sequence of directions β ∈ {L, R}ω. A node u is on a branch α if it is a prefix of α, i.e. u ≺ α.
In that case u = α�|u|. If u is a node of a tree then by t�u we indicate the tree t truncated in
u in the usual sense: t�u(w) def= t(uw).

MFCS 2017



56:4 A Characterisation of Π0
2 Regular Tree Languages

Topological complexity. In this work we use the standard topological notions for the space
of infinite trees, see [11, 26] . The relevant topological notions in the context of infinite trees
are described in Sections 1.6.1 and 1.6.2 of [22].

The space TrA with the standard product topology is known to be an uncountable Polish
space (homeomorphic with the Cantor set). Thus, all the standard notions of Descriptive
Set Theory naturally apply to trees.

Assume that χ is a topological space known from the context. By Σ0
1 (resp. Π0

1) we denote
the set of open (resp. closed) sets in χ. The classes Σ0

n+1 and Π0
n+1 are defined inductively:

Σ0
n+1 contains countable unions of sets in Π0

n; Π0
n+1 contains countable intersections of sets

in Σ0
n. In particular Σ0

2 are countable unions of closed sets; this class is often denoted Fσ.
Similarly, Π0

2 are countable intersections of open sets; often denoted Gδ.
For a class Γ of sets (e.g. Π0

2), we say that a set Y ⊆ χ is Γ-hard if for every set Y ′ ∈ χ′
that is in Γ there exists a continuous reduction f : χ′ → χ such that Y ′ = f−1[Y ]. A set Y
is Γ-complete if Y is Γ-hard and belongs to Γ.

Automata Theory. In this work we use both notions of non-deterministic and alternating
parity tree automata. Again, we refer the reader to [19, 25]. The notation we use comes
from Sections 1.3 and 1.4 of [22].

A parity tree automaton A is a tuple A = 〈AA, QA, qAI ,∆A,ΩA〉, where: AA is the alpha-
bet we are working on; QA is the set of states of the automaton A; qAI is a particular element
of QA and it is called the initial state; ∆A will be defined in a moment; and ΩA is a function
ΩA : QA → ω that assigns a priority to every state of the automaton. If the automaton is
known from the context then we omit the superscript A.

An automaton A is non-deterministic if ∆ ⊆ Q × A × Q × Q contains transitions of
the form (q, a, qL, qR). A non-deterministic automaton A accepts a tree t ∈ TrA if there exists
an accepting run ρ, i.e. a QA-labelled tree that is consistent with the transitions of A and
the parity condition is satisfied on every branch β of t: lim supn→∞ Ω

(
ρ(β�n)

)
is even.

An automaton A is alternating if ∆ is a function that assigns to each pair q ∈ Q, a ∈ A
a finite positive Boolean combination of pairs (d, q′) where d ∈ {L, R} is a direction and q′ ∈ Q
is the consecutive state. For instance ∆(q, a) can be of the form

(
(L, q′L) ∧ (L, q′′L )

)
∨ (R, q′′R ).

An alternating automaton A induces, for every tree t ∈ TrA, a parity game A(t) called
the acceptance game of A on t. A accepts t if ∃∃∃ has a winning strategy in the game A(t).

We require our automata to be complete, meaning that for every state q ∈ Q and letter
a ∈ A there needs to be some transition.

For both non-deterministic and alternating tree automata A we define the language of A
(denoted L(A)) as the set of all trees accepted by A. It is known that the expressive power
of non-deterministic and alternating automata is the same:

I Theorem 5 ([10]). Let L ⊆ TrA. There exists an alternating parity tree automaton A
such that L(A) = L if and only if there exists a non-deterministic parity tree automaton B
such that L(B) = L. Moreover, both translations are effective.

If for L ⊆ TrA there exists a non-deterministic (equivalently alternating) automaton A
such that L = L(A) then we say that L is regular. A parity automaton is weak if the values
of Ω are non-decreasing along transitions. The index of an automaton is the pair (i, j) where
i is the minimal and j is the maximal value of Ω on Q.



F. Cavallari, H. Michalewski, and M. Skrzypczak 56:5

3 Overview of the proof of Theorem 2

Let L be a regular language and let us fix once and for all two non-deterministic parity
tree automata A and B that recognise respectively: L(B) = L is the given language and
L(A) = Lc is its complement. The proof will consist of the following steps:

First we define a game F of infinite duration and perfect information. The game F is
played by two players: Eve (∃∃∃) and Adam (∀∀∀). Player ∃∃∃ constructs a tree t together with
three runs: one of the automaton A and two of the automaton B. The second of them is
influenced by ∀∀∀ who can ask ∃∃∃ to restart whenever he wants. The crucial property of the
game F is that it is played over a finite arena and the winning condition is ω-regular.
If ∃∃∃ wins F then her winning strategy can be used to prove that the language L(B) is
actually Σ0

2-hard. In particular it cannot be recognised by a weak alternating automaton
of index (0, 2). To prove this topological hardness we test the winning strategy of ∃∃∃
against a well-designed family of strategies of ∀∀∀. In terms of Descriptive Set Theory it can
be seen as finding an embedding of the Cantor set 2ω that intersects L(B) on rationals.
If ∀∀∀ wins F then we use his finite-memory winning strategy to construct a finite approx-
imation of the automaton B that is denoted GK0 . The construction ensures that GK0 is
a weak alternating automaton of index (0, 2) that recognises L(B).

4 The game F

We start by defining a game F of infinite duration that is based on the non-deterministic
parity tree automata A = 〈A,QA, qAI ,∆A,ΩA〉 and B = 〈A,QB, qBI ,∆B,ΩB〉 for Lc and L
respectively. The purpose of F is to satisfy the following two propositions.

I Proposition 6. If ∃∃∃ wins F then L(B) is Σ0
2-hard.

I Proposition 7. If ∀∀∀ wins F then L(B) is recognised by a weak alternating (0, 2)-automaton.

The above propositions together with Lemma 3 give a complete characterisation of
the topological complexity and the weak index of L(B).

Positions of F . The positions of F are of the form (p, q, s) ∈ QA×QB×QB where: p ∈ QA
is called an A-state, q ∈ QB is called a B-state, s ∈ QB is called an active state. The initial
position of F is (qAI , qBI , qBI ).

Rounds of F . Assume that a round of F starts in a position (p, q, s). The choices done by
the players are as follows:
1. ∀∀∀ can choose to restart by letting s′ = q or to stay by keeping s′ = s.
2. ∃∃∃ declares: (i) a letter a ∈ A; (ii) a transition (p, a, pL, pR) ∈ ∆A of A; (iii) a transition

(q, a, qL, qR) ∈ ∆B of B; (iv) another transition (s′, a, s′L, s′R) ∈ ∆B of B.
3. ∀∀∀ responds by selecting a direction d ∈ {L, R}.
After such a round the game proceeds to the position (pd, qd, s′d). Four example rounds of F
are presented in Figure 2.

If π is a finite or infinite play of F , a trace is a finite or infinite sequence of active states s
in consecutive rounds in which ∀∀∀ has not restarted. Thus, those active states come from
successive transitions of the automaton B.

MFCS 2017



56:6 A Characterisation of Π0
2 Regular Tree Languages

A-states p B-states q active states s

∀∀∀: stay

∃∃∃: b, . . .

∀∀∀: R

b b bRound 0

∀∀∀: restart

∃∃∃: a, . . .

∀∀∀: L

a a aRound 1

∀∀∀: stay

∃∃∃: a, . . .

∀∀∀: R

a a aRound 2

∀∀∀: restart

∃∃∃: b, . . .

∀∀∀: R

b b bRound 3

Figure 2 Four consecutive rounds of the game F . The black dots are the states of the automata
A and B. Each round consists of three choices: first ∀∀∀ either restarts or stays, then ∃∃∃ provides
a letter and three transitions (depicted by those Λ-shaped gadgets), finally ∀∀∀ chooses a direction.
The three boldfaced paths are three traces formed by the active states: the first one lasts in Round 0;
the second one in Rounds 1 and 2; the third one starts in Round 3.

Winning condition of F . Now we will define the winning condition for ∃∃∃ in F . It will depend
on a Boolean combination of the following three properties, speaking about the sequence
of rounds that were played:

(WR) ∀∀∀ has restarted infinitely many times.

(WA) The sequence of A-states p is accepting in A.

(WB) The sequence of active states s is accepting in B (i.e. it satisfies the parity condition).
A play of F is winning for ∃∃∃ if it satisfies

(
(WR) ∧ (WA)

)
∨
(
¬(WR) ∧ (WB)

)
. (1)



F. Cavallari, H. Michalewski, and M. Skrzypczak 56:7

In other words, there are two cases: If ∀∀∀ has restarted infinitely many times then ∃∃∃ wins iff
the sequence of visited A-states satisfies the parity condition. If ∀∀∀ has restarted only finitely
many times then ∃∃∃ wins iff the sequence of visited active states satisfies the parity condition.
Notice that a priori both (WA) and (WB) can happen simultaneously, because for example
there may exist two runs ρA and ρB of the automata A and B that both satisfy the parity
condition on some particular branch.

By the definition, the winning condition of F is an ω-regular property of sequences of
rounds. Additionally, there are only finitely many positions of F and each round allows
finitely many possible choices by the players. Therefore, we obtain the following fact.

I Fact 8 ([2]). The winner of F can be effectively found and he/she can win using a finite
memory winning strategy.

5 Proof of Proposition 6

In this section we prove that if ∃∃∃ wins F then L(B) is Σ0
2-hard. Let σ∃∃∃ be her winning

strategy. Let C ⊆ {0, 1}ω be the set of sequences containing only finitely many 1s.
It is known that C is Σ0

2-complete [26]. We will construct a continuous reduction from C

to L(B) and so we obtain that L(B) is Σ0
2-hard.

We will say that σ is a quasi-strategy of ∀∀∀ in F if σ specifies when to restart and leaves
undecided the choice of directions d. Notice that if σ is a quasi-strategy of ∀∀∀ then we
can construct a tree t consisting of the letters a played by σ∃∃∃ against σ: the letter t(u) is
the (|u|+1)th letter played by σ∃∃∃ against ∀∀∀ playing accordingly to σ and choosing successive
directions of u.

To each sequence α ∈ {0, 1}ω we will assign a quasi-strategy σα of ∀∀∀ in F . Consider
α ∈ {0, 1}ω and an Mth round of F for M = 0, 1, . . .

If α(M) = 0 then σα stays by keeping s′ = s.
If α(M) = 1 then σα restarts by putting s′ = q.

Let the tree tα be the effect of confronting the strategy σ∃∃∃ against the quasi-strategy σα.
Since the behaviour of the strategy σα in an Mth round of F depends only on the first M
bits of α, the function α 7→ tα is continuous. A routine verification (see below) shows that

α ∈ C ⇐⇒ tα ∈ L(B). (2)

When α ∈ C. First assume that α ∈ C, i.e. that there are only finitely many 1s in α. Let
M be the maximal number such that α(M − 1) = 1 (or M = 0 if there is no such M). Let
ρB be the run of B defined as follows:

For |u| ≤M let ρB(u) be the B-state q from the beginning of the |u|th round of the play
consistent with σ∃∃∃ and σα in which the sequence of directions chosen by ∀∀∀ was u.
For |u| > M let ρB(u) be the active state s from the beginning of the |u|th round of
the play consistent with σ∃∃∃ and σα in which the sequence of directions chosen by ∀∀∀ was u.

It is easy to see that ρB is in fact a run of B over tα. It remains to see that it is accepting.
Consider an infinite branch of tα. This branch corresponds to an infinite play of F consistent
with σ∃∃∃ and the quasi-strategy σα. Since in all the rounds after the Mth one, ∀∀∀ has stayed
by putting s′ = s, the states of ρB form an infinite trace in that play. Therefore, the condition
¬(WR) holds. As the play is won by ∃∃∃, also (WB) must hold. It means that the trace must
be accepting in B, thus the run ρB is accepting on our branch. This way we have proved
that ρB is accepting and tα ∈ L(B).

MFCS 2017



56:8 A Characterisation of Π0
2 Regular Tree Languages

position x:

state u(x):

priority Ω(u(x)):

witness:

0

q0

7

1

q1

6

2

q2

5

3

q3

1

4

q4

0

5

q5

3

6

q6

4

7

q7

5

8

q8

6

9

q9

1

10

q10

3

11

q11

2

x1=1 x2=3 x3=6 x4=10

max = 6 max = 4 max = 6

word u

Figure 3 A word u that is 4-accepting. The sequence x1, x2, x3, x4 witnesses that. If we loop u
between the positions 1 and 6, we get the sequence q0, q1, . . . , q6, q1, q2, . . . , q6, q1 . . . that satisfies
the parity condition.

When α /∈ C. Now assume that α /∈ C, i.e. that there are infinitely many 1s in α. Our aim
is to prove that the run ρA formed by the A-states p played by ∃∃∃ in all the plays consistent
with σ∃∃∃ and σα is accepting. Consider an infinite branch of tα and the corresponding play π
of F . Since infinitely many times ∀∀∀ has restarted, this play satisfies (WR). As the play is won
by ∃∃∃, also (WA) must hold. It means that the sequence of A-states p must be accepting in A.
Thus, we have proved that tα ∈ L(A) and therefore tα /∈ L(B). This concludes the proof
of Σ0

2-hardness of L(B).

6 Proof of Proposition 7

In this section we prove that if ∀∀∀ wins F then L(B) can be recognised by a weak alternating
parity automaton of index (0, 2). Since the winning condition of F is ω-regular, we can
assume that ∀∀∀ wins using a strategy σ∀∀∀ based on a finite-memory structure M . Our aim is
to construct an automaton recognising L(B).

K-accepting runs. We start by defining a notion of K-accepting sequences — sequences
of states of B that are similar to accepting ones. We will show that the strategy σ∀∀∀ must
avoid such sequences.

Let u be a finite or infinite sequence of states of B. Consider a number K ∈ ω. We say
that u is K-accepting if there exists a sequence of positions 0 ≤ x1 < x2 < . . . < xK < |u|
such that for every n = 1, 2, . . . ,K − 1 we have:

max
{

ΩB
(
u(x)

) ∣∣∣ xn ≤ x ≤ xn+1

}
is even. (3)

In other words, for n = 1, . . . ,K − 1, the maximal priority of states between positions xn
and xn+1 of u must be even. We call such a sequence of positions (x1, . . . , xK) a witness
of K-acceptance, see Figure 3.

The above definition is constructed in such a way to guarantee the following properties:
(P1) If u is K-accepting then it contains K positions such that each cycle built using

an interval between two of them gives us a sequence of states satisfying the parity
condition.

(P2) For every K, the set of all finite words that are K-accepting is regular. It is not obvious
how a regular expression for this language should look like, however, the definition of the
property of being K-accepting is clearly mso-definable, thus by the results of Rabin,
Scott [21], and Trakhtenbrot [27] (cf. e.g. [19]), we know that this language is regular.



F. Cavallari, H. Michalewski, and M. Skrzypczak 56:9

(P3) If u is K-accepting then every word of the form uw is also K-accepting.
(P4) If α ∈

(
QB
)ω satisfies the parity condition then for every K ∈ ω there exists a finite

prefix of α that is K-accepting.

I Lemma 9. There exists a value K0 ∈ ω such that if π is an infinite play of F consistent
with σ∀∀∀ then no trace of π is K0-accepting.

Proof. Let K0
def=
(∣∣QA∣∣× ∣∣QB∣∣× ∣∣QB∣∣)× ∣∣M ∣∣+ 1 where inside the brackets is the number

of positions of F and M is the memory structure of σ∀∀∀.
Assume for the sake of contradiction that there exists a play π that is consistent with

σ∀∀∀ and contains a K0-accepting trace. For a round number x ∈ ω during π let (vx,mx) be
the configuration of the game at the moment when x rounds were played: vx = (px, qx, sx)
for an A-state px, B-state qx, and active state sx; and mx is the current memory value of σ∀∀∀.

By the assumption we know that for some x < y < ω the sequence of active states
sx, sx+1, . . . , sy is a trace (i.e. there is no restart during these rounds) and it is K0-
accepting. Let x ≤ x1, . . . , xK0 ≤ y be a sequence of numbers of rounds that is a witness for
the K0-acceptance of this trace, see Equation (3).

Figure 4 provides an illustration for this construction. The upper picture presents a play π
seen in the product of the game F and the memory structure M used by σ∀∀∀. Small dots
mark positions before successive rounds of this play. The lower picture presents the play π
in a chronological way. The boldfaced vertical snake-like shape is a trace that is 5-accepting;
the rounded shapes indicate a witness of this fact: x1 = 2, x2 = 3, x3 = 6, x4 = 8, and
x5 = 10. Since 5 is bigger than the number of available pairs (v,m) we have a repetition:
(v3,m3) = (v8,m8). This allows us to construct a new play π′, by staying forever on the loop
between the rounds 3 and 8. The play π′ obtained this way contains an infinite trace that
satisfies the parity condition.

By the choice of K0 we know that for some 1 ≤ n < n′ ≤ K0 we have: vxn = vxn′ and
mxn

= mxn′ ; i.e. there must be a repetition of the position of F and the memory of σ∀∀∀
among the positions witnessing K0-acceptance of the trace.

Consider a play π′ of F which starts as π for the first xn rounds. Then π′ follows the loop
between the rounds xn + 1 and xn′ . Notice that π′ is in fact a play because vxn

= vxn′ .
Since we have chosen the positions xn, xn′ from a trace, this loop does not contain a restart.
Clearly π′ is consistent with σ∀∀∀ because the memory values mxn

and mxn′ are equal.
Because xn and xn′ are chosen from a witness of K0-acceptance of the trace, Property (P1)

implies that π′ contains an infinite accepting trace. Therefore, the play π′ satisfies
(
¬(WR)∧

(WB)
)
and thus is winning for ∃∃∃ in F , what contradicts the assumption that σ∀∀∀ was a winning

strategy of ∀∀∀. J

Construction of automata GK . Take a number K ∈ ω. We will now define a weak
alternating parity automaton GK of index (0, 2). The language L(GK) will be an over-
approximation of L(B). Later on we will prove that the strategy σ∀∀∀ witnesses the fact that
L(B) actually equals L(GK) for some K ∈ ω (in fact for K = K0 from Lemma 9).

The idea behind the automaton GK is the following: GK accepts a tree t if there exists
a run ρB0 of B over t such that for every node u of the tree, it is possible to find another run
of B over the subtree t�u starting from the state ρB0 (u) that is K-accepting on every branch
of this subtree.

Assume that D(K) = 〈QB, QD, qDI ,∆D, FD〉 is a deterministic automaton over finite
words (DFA) with the alphabet QB that recognises the language of K-accepting sequences
of states of B, see Property (P2).

MFCS 2017



56:10 A Characterisation of Π0
2 Regular Tree Languages

M

F

(v2,m2)

(v3,m3)

(v6,m6)

(v8,m8)

(v10,m10)

π

...

px qx sx mx

vx

x = 0 m0

...
...

...
...

m1x = 1

m2x = 2

m3x = 3

m4x = 4

m5x = 5

m6x = 6

m7x = 7

m8x = 8

m9x = 9

m10x = 10

m11x = 11

m12x = 12

m13x = 13

m14x = 14

Figure 4 An illustration to the proof of Lemma 9.

The states of GK are of the form (q, τ) where q ∈ QB is a state of B and τ ∈ {?} tQD is
either ? or a state of D(K).

The initial state of GK is (qBI , ?). The transitions of GK are built by the following
rules. Given a state (q, τ) and a letter a, the successive state and direction are constructed
in the following way (formally the following choices should be encoded as a finite positive
Boolean combination of the consecutive directions and states).
1. If τ = ? then ∀∀∀ can choose to start by letting τ ′ = qDI or to skip by keeping τ ′ = ?. If

τ ∈ QD then ∀∀∀ has no choice and in that case τ ′ = τ .



F. Cavallari, H. Michalewski, and M. Skrzypczak 56:11

2. If τ ′ ∈ QD then we let2 τ ′′ = ∆D(τ, q), otherwise τ ′′ = τ ′ = ? is unchanged.
3. ∃∃∃ proposes a transition of B of the form

(
q, a, qL, qR

)
.

4. ∀∀∀ chooses a direction d ∈ {L, R}.
After these choices are done, the automaton moves in the direction d to the state (qd, τ ′′). Let
the priority of a state (q, τ) of GK be: (i) If τ = ? then the priority is 0. (ii) If τ ∈ QD \ FD
then the priority is 1. (iii) If τ ∈ FD then the priority is 2.

Notice that because of the structure of the transitions of GK , the above defined condition
is a weak parity condition of index (0, 2). It is important to notice that Property (P3) implies
that once a state of priority 2 is reached then we never move to a state of priority 1.

I Lemma 10. For every K ∈ ω we have L(B) ⊆ L(GK).

Proof. Take a tree t ∈ L(B) and let ρB be an accepting run of B on t. Then clearly ∃∃∃
can win the acceptance game GK(t) by just playing consecutive transitions of ρB. When ∀∀∀
chooses at some point to start, ultimately a state with τ ∈ FD will be reached because of
Property (P4). Therefore, every play will be won by ∃∃∃. J

Equivalence. We will now conclude the proof of Proposition 7 using the following lemma.

I Lemma 11. For K0 from Lemma 9 we have L(GK0) = L(B).

Proof. Assume contrarily that L(GK0) 6= L(B). Lemma 10 says that L(B) ⊆ L(GK0), so
there must exists a tree t ∈ L(GK0) \ L(B). From that assumption we know that:

there exists an accepting run ρA of A over t,
∃∃∃ has a winning strategy δ∃∃∃ in the acceptance game GK0(t).

Our aim is to prove that ∃∃∃ can win in F against σ∀∀∀ by using a strategy σ∃∃∃ that is based
on ρA and δ∃∃∃. Let us define the strategy σ∃∃∃.

First, σ∃∃∃ plays the letters a and the transitions of A from the A-states p according to
the tree t and the run ρA. This way we guarantee that every play of this strategy will
satisfy (WA). Additionally σ∃∃∃ chooses the transitions of B from the B-states q according to
the strategy δ∃∃∃ simulating the situation that ∀∀∀ has never started. Thus, at every moment of
a play consistent with σ∃∃∃, there is a unique play of δ∃∃∃ ending in a node u and a state of GK0

of the form (q, ?) with u being the sequence of directions played so-far by ∀∀∀ in F and q being
the current B-state. What remains is the choice of transitions of B from the active states s.
For that, ∃∃∃ will keep track of a play of the acceptance game GK0(t) with τ ∈ QD. At the
initial position of F the play is the one which begins by ∀∀∀ starting (i.e. τ = qDI ). Whenever
∀∀∀ restarts in F , ∃∃∃ forgets about the previously tracked play of GK0(t) and begins to track
the play that comes with the current B-state q by simulating the situation in which ∀∀∀ has
just started in GK0(t).

Consider the play π that is consistent with both σ∃∃∃ and σ∀∀∀. We need to prove that π is
winning for ∃∃∃. As we have already observed, such a play satisfies (WA). We will prove that
it also satisfies (WR) by proving the following claim. This concludes the proof of Lemma 11
by giving a contradiction: σ∀∀∀ is a winning strategy of ∀∀∀ but π is a play consistent with σ∀∀∀
that is winning for ∃∃∃.

I Claim 12. In the play π Player ∀∀∀ must have restarted infinitely many times.

2 We follow the transition of D from τ over q: τ ∈ QD is a state of D and q ∈ QB is a letter read by D.

MFCS 2017



56:12 A Characterisation of Π0
2 Regular Tree Languages

Assume contrarily that from some point on ∀∀∀ has not restarted. Thus, π contains an infinite
trace on which ∃∃∃ has played successive transitions of B in the active states s according to
her strategy δ∃∃∃ in GK0(t). Since the strategy δ∃∃∃ is winning, some prefix of the considered
trace must be K0-accepting. This gives a contradiction with Lemma 9. J

7 Weak non-deterministic (1, 3)-automata

In this section we prove the following additional result that may be considered folklore,
although we have not found it in the literature. The construction is based on the standard
de-alternation techniques together with the idea from [15].

I Theorem 13. If L is a language that can be recognised by a weak alternating parity
automaton A of index (1, 3) then L can be recognised by a weak non-deterministic parity
automaton B of index (1, 3).

This observation was important to properly define the game F . However, somehow
surprisingly, it does not play any role in the final proof of Theorem 2.

The idea of the proof is as follows. Given a tree t ∈ TrA the automaton B will guess
a positional strategy of ∃∃∃ in the acceptance game A(t). Then it will verify that the guessed
strategy is in fact winning. Therefore, it will track all the possible choices performed by ∀∀∀
along all the branches of the tree t. Thus, the set of states of B is the power set P(QA). Notice
that the guessed strategy of ∃∃∃ is winning if for every branch of t the following conditions are
satisfied: (i) no state of A of priority 3 is ever reached, (ii) every play ultimately reaches a
state of priority 2.

An easy application of König’s lemma shows that the second condition above actually
implies that at some point no state of priority 1 can belong to the set of reachable states
of A. This way, the automaton B can be seen as a naïve power set construction over A. Such
a construction can be performed for any alternating automaton (even not weak), however,
in most of the cases the assignment of priorities to the states of the power set automaton is
not correct. The crucial ingredient of this construction relies on the fact that the weak parity
condition of index (1, 3) admits a correct priority assignment for the power set automaton.

8 Conclusions and further work

This work provides a relatively simple effective characterisation of the class of regular
languages in Π0

2. Additionally, it proves that the considered class of languages coincides with
the respective level of the alternating index hierarchy (i.e. weak alternating (0, 2)-automata).

The simplicity of involved techniques comes from certain specific properties of the
considered classes. Firstly, there are ω-regular languages that are complete for the class Π0

2.
In our case the examples are: the language C of infinite binary sequences containing infinitely
many 1s; and the property (WR) used in the winning condition of the game F . Secondly,
similarly to the case of Büchi languages, the class of weak alternating (1, 3)-automata admits
a dealternation technique, see Theorem 13. Although this dealternation result does not play
any role in the proof of Theorem 2, it was used in the design of the game F and stays behind
the fact that the game actually characterises the class of languages recognisable by weak
alternating (0, 2)-automata.

We plan to investigate generalisations of Theorem 2 to Π0
n for n ≥ 3. Since decidability

results related to the Characterisation Problem are not that easy to obtain, we propose
for further investigation the topological problems related to the Characterisation Problem
and Problem 4 formulated in Introduction.



F. Cavallari, H. Michalewski, and M. Skrzypczak 56:13

Moreover, our work gives a quite clear situation up to the second level of Borel Hierarchy
in terms of decidability and correspondence between the Borel index and the weak index,
but there are still some “holes” that have to be filled regarding e.g. Wadge Hierarchy:

I Problem 14. Find all Wadge degrees inhabited by regular ∆0
2 languages of trees.

From [6] it follows that every Wadge degree less than ωω is inhabited by a regular language.
We believe that this is the maximum regular languages can get:

I Conjecture 15. There is no regular tree language in ∆0
2 with Wadge degree above ωω.

References
1 Mikołaj Bojańczyk and Thomas Place. Regular languages of infinite trees that are Boolean

combinations of open sets. In ICALP, pages 104–115, 2012.
2 Julius Richard Büchi and Lawrence H. Landweber. Solving sequential conditions by finite-

state strategies. Transactions of the American Mathematical Society, 138:295–311, 1969.
3 Thomas Colcombet. Fonctions régulières de coût. Habilitation thesis, Université Paris

Diderot—Paris 7, 2013.
4 Thomas Colcombet, Denis Kuperberg, Christof Löding, and Michael Vanden Boom. De-

ciding the weak definability of Büchi definable tree languages. In CSL, pages 215–230,
2013.

5 Thomas Colcombet and Christof Löding. The non-deterministic Mostowski hierarchy and
distance-parity automata. In ICALP (2), pages 398–409, 2008.

6 Jacques Duparc and Filip Murlak. On the topological complexity of weakly recognizable
tree languages. Fundamentals of computation theory, 2007.

7 Alessandro Facchini and Henryk Michalewski. Deciding the Borel complexity of regular
tree languages. In CiE 2014, pages 163–172, 2014.

8 Alessandro Facchini, Filip Murlak, and Michał Skrzypczak. Index problems for game auto-
mata. ACM Trans. Comput. Log., 17(4):24:1–24:38, 2016.

9 Tomasz Gogacz, Henryk Michalewski, Matteo Mio, and Michał Skrzypczak. Measure prop-
erties of game tree languages. In MFCS, pages 303–314, 2014.

10 Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and
Infinite Games: A Guide to Current Research, volume 2500 of Lecture Notes in Computer
Science. Springer, 2002.

11 Alexander Kechris. Classical descriptive set theory. Springer-Verlag, New York, 1995.
12 Denis Kuperberg and Michael Vanden Boom. Quasi-weak cost automata: A new variant

of weakness. In FSTTCS, volume 13 of LIPIcs, pages 66–77, 2011.
13 Orna Kupferman and Moshe Y. Vardi. The weakness of self-complementation. In STACS,

pages 455–466, 1999.
14 Christof Löding. Logic and automata over infinite trees. Habilitation thesis, RWTH Aachen,

Germany, 2009.
15 Satoru Miyano and Takeshi Hayashi. Alternating finite automata on omega-words. Theor.

Comput. Sci., 32:321–330, 1984.
16 Filip Murlak. The Wadge hierarchy of deterministic tree languages. Logical Methods in

Computer Science, 4(4), 2008.
17 Damian Niwiński and Igor Walukiewicz. A gap property of deterministic tree languages.

Theor. Comput. Sci., 1(303):215–231, 2003.
18 Damian Niwiński and Igor Walukiewicz. Deciding nondeterministic hierarchy of determin-

istic tree automata. Electr. Notes Theor. Comput. Sci., 123:195–208, 2005.
19 Dominique Perrin and Jean-Éric Pin. Infinite Words: Automata, Semigroups, Logic and

Games. Elsevier, 2004.

MFCS 2017



56:14 A Characterisation of Π0
2 Regular Tree Languages

20 Michael Oser Rabin. Decidability of second-order theories and automata on infinite trees.
Trans. of the American Math. Soc., 141:1–35, 1969.

21 Michael Oser Rabin and Dana Scott. Finite automata and their decision problems. IBM
Journal of Research and Development, 3(2):114–125, April 1959.

22 Michał Skrzypczak. Descriptive Set Theoretic Methods in Automata Theory - Decidability
and Topological Complexity, volume 9802 of Lecture Notes in Computer Science. Springer,
2016.

23 Michał Skrzypczak and Igor Walukiewicz. Deciding the topological complexity of Büchi
languages. In ICALP (2), pages 99:1–99:13, 2016.

24 Jerzy Skurczyński. The Borel hierarchy is infinite in the class of regular sets of trees.
Theoretical Computer Science, 112(2):413–418, 1993.

25 Wolfgang Thomas. Languages, automata, and logic. In Handbook of Formal Languages,
pages 389–455. Springer, 1996.

26 Wolfgang Thomas and Helmut Lescow. Logical specifications of infinite computations. In
REX School/Symposium, pages 583–621, 1993.

27 Boris A. Trakhtenbrot. Finite automata and the monadic predicate calculus. Siberian
Mathematical Journal, 3(1):103–131, 1962.



On the Exact Amount of Missing Information
That Makes Finding Possible Winners Hard
Palash Dey1 and Neeldhara Misra∗2

1 Tata Institute of Fundamental Research, Mumbai, India
palash.dey@tifr.res.in

2 Indian Institute of Technology, Gandhinagar, India
neeldhara.m@iitgn.ac.in

Abstract
We consider election scenarios with incomplete information, a situation that arises often in prac-
tice. There are several models of incomplete information and accordingly, different notions of
outcomes of such elections. In one well-studied model of incompleteness, the votes are given by
partial orders over the candidates. In this context we can frame the problem of finding a possible
winner, which involves determining whether a given candidate wins in at least one completion of
a given set of partial votes for a specific voting rule.

The Possible Winner problem is well-known to be NP-complete in general, and it is in fact
known to be NP-complete for several voting rules where the number of undetermined pairs in every
vote is bounded only by some constant. In this paper, we address the question of determining
precisely the smallest number of undetermined pairs for which the Possible Winner problem
remains NP-complete. In particular, we find the exact values of t for which the Possible Winner
problem transitions to being NP-complete from being in P, where t is the maximum number of
undetermined pairs in every vote. We demonstrate tight results for a broad subclass of scoring
rules which includes all the commonly used scoring rules (such as plurality, veto, Borda, and
k-approval), Copelandα for every α ∈ [0, 1], maximin, and Bucklin voting rules. A somewhat
surprising aspect of our results is that for many of these rules, the Possible Winner problem
turns out to be hard even if every vote has at most one undetermined pair of candidates.

1998 ACM Subject Classification F.2.0 Analysis Of Algorithms And Problem Complexity -
General

Keywords and phrases Computational Social Choice, Dichotomy, NP-completeness, Maxflow,
Voting, Possible winner

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.57

1 Introduction

In many real life situations including multiagent systems, agents often need to aggregate
their preferences and agree upon a common decision (candidate). Voting is an immediate
natural tool in these situations. Common and classic applications of voting in multiagent
systems include collaborative filtering and recommender systems [26], spam detection [9],
computational biology [20], winner determination in sports competition [5] etc. We refer the
readers to [25] for an elaborate treatment of computational voting theory.

Usually, in a voting setting, it is assumed that the votes are complete orders over the
candidates. However, due to many reasons, for example, lack of knowledge of voters about

∗ The second author acknowledges support from the DST-INSPIRE faculty grant (IFA12-ENG-31).

© Palash Dey and Neeldhara Misra;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 57; pp. 57:1–57:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.57
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


57:2 On the Exact Amount of Missing Inf. that makes Finding Possible Winners Hard

some candidates, a voter may be indifferent between some pairs of candidates. Hence, it is
both natural and important to consider scenarios where votes are partial orders over the
candidates. When votes are only partial orders over the candidates, the winner cannot be
determined with certainty since it depends on how these partial orders are extended to
linear orders. This leads to a natural computational problem called the Possible Winner
problem [21]: given a set of partial votes P and a distinguished candidate c, is there a way
to extend the partial votes to complete votes where c wins? The Possible Winner problem
has been studied extensively in the literature [23, 27, 28, 29, 7, 8, 4, 1, 22, 18] following
its definition in [21]. Betzler et al. [6] and Baumeister et al. [2] show that the Possible
Winner winner problem is NP-complete for all scoring rules except for the plurality and
veto voting rules; the Possible Winner winner problem is in P for the plurality and veto
voting rules. The Possible Winner problem is known to be NP-complete for many common
voting rules, for example, a class of scoring rules, maximin, Copeland, Bucklin etc. even
when the maximum number of undetermined pairs of candidates in every vote is bounded
above by small constants [29]. Walsh showed that the Possible Winner problem can be
solved in polynomial time for all the voting rules mentioned above when we have a constant
number of candidates [28].

1.1 Our Contribution
Our main contribution lies in pinning down exactly the minimum number of undetermined
pairs allowed per vote so that the Possible Winner winner problem continues to be
NP-complete for a large class of scoring rules, Copelandα, maximin, and Bucklin voting rules.
To begin with, we describe our results for scoring rules. We work with a class of scoring rules
that we call smooth, which are essentially scoring rules where the score vector for (m+ 1)
candidates can be obtained by either duplicating an already duplicated score in the score
vector for m candidates, or by extending the score vector for m candidates at one of the
endpoints with an arbitrary new value. The smooth rules account for all commonly used
scoring rules (such as Borda, plurality, veto, k-approval). Using t to denote the maximum
number of undetermined pairs of candidates in every vote, we show the following (note that
the Possible Winner problem is in P for all scoring rules when t = 0):

The Possible Winner problem is NP-complete even when t = 1 for scoring rules which
have two distinct nonzero differences between consecutive coordinates in the score vector
(we call them differentiating) and in P when t = 1 for other scoring rules [Theorem 7].
Else the Possible Winner problem is NP-complete when t > 2 and in P when t 6 1 for
scoring rules that contain (α+ 1, α+ 1, α) for any α ∈ N [Theorem 8].
Else the Possible Winner problem is NP-complete when t > 3 and in P when t 6 2 for
scoring rules which contain (α+ 2, α+ 1, α+ 1, α) for any α ∈ N [Theorem 9].
The Possible Winner problem is NP-complete when t > 4 and in P when t 6 3 for
k-approval and k-veto voting rules for any k > 1 [Theorem 10].
The Possible Winner problem is NP-complete when t > m−1 and in P when t 6 m−2
for the scoring rule (2, 1, 1, . . . , 1, 0) [Theorem 10].

We summarize our results for the Copelandα, maximin, and Bucklin voting rules in
Table 1. We observe that the Possible Winner problem for the Copelandα voting rule
is NP-complete even when every vote has at most 2 undetermined pairs of candidates for
α ∈ {0, 1}. However, for α ∈ (0, 1), the Possible Winner problem for the Copelandα voting
rule is NP-complete even when every vote has at most 1 undetermined pairs of candidates.
Our results show that the Possible Winner winner problem continues to be NP-complete



N. Misra and P. Dey 57:3

Table 1 Summary and comparison of results from the literature for Copelandα, maximin, and
Bucklin voting rules. ?The result was proved for the simplified Bucklin voting rule but the proof can
be modified easily for the Bucklin voting rule.

Voting rules NP-complete Poly time Known from literature [29]

Copeland0,1 t > 2 [Theorem 11] t 6 1 [Theorem 12]

NP-complete for t > 8Copelandα
α ∈ (0, 1) t > 1 [Theorem 15] –

Maximin t > 2 [Theorem 17] t 6 1 [Theorem 18] NP-complete for t > 4

Bucklin t > 2 [Theorem 19] t 6 1 [Theorem 19] NP-complete for t > 16?

for all the common voting rules studied here (except k-approval) even when the number of
undetermined pairs of candidates per vote is at most 2. Other than finding the exact number
of undetermined pairs needed per vote to make the Possible Winner problem NP-complete
for common voting rules, we also note that all our proofs are much simpler and shorter than
most of the corresponding proofs from the literature subsuming the work in [29, 6, 2].

2 Preliminaries

Let us denote the set {1, 2, . . . , n} by [n] for any positive integer n. Let C = {c1, c2, . . . , cm} be
a set of candidates or alternatives and V = {v1, v2, . . . , vn} a set of voters. If not mentioned
otherwise, we denote the set of candidates by C, the set of voters by V, the number of
candidates by m, and the number of voters by n. Every voter vi has a preference or vote
�i which is a complete order over C. We denote the set of complete orders over C by L(C).
We call a tuple of n preferences (�1,�2, · · · ,�n) ∈ L(C)n an n-voter preference profile. An
election is defined as a set of candidates together with a voting profile. It is often convenient
to view a preference as a subset of C × C — a preference � corresponds to the subset
A = {(x, y) ∈ C ×C : x � y}. For a preference � and a subset A ⊆ C of candidates, we define
� (A) be the preference � restricted to A, that is � (A) =� ∩(A×A). Let ] denote the
disjoint union of sets. A map r : ]n,|C|∈N+L(C)n −→ 2C \ {∅} is called a voting rule. For a
voting rule r and a preference profile �= (�1, . . . ,�n), we say a candidate x wins uniquely if
r(�) = {x} and x co-wins if x ∈ r(�). For a vote �∈ L(C) and two candidates x, y ∈ C, we
say x is placed before y in � if x � y; otherwise we say x is placed after y in �. A candidate
is said to be at the ith position from the top (bottom) if there are (i− 1) candidates after
(before) it. For any two candidates x, y ∈ C with x 6= y in an election E , let us define the
margin DE(x, y) of x from y to be |{i : x �i y}| − |{i : y �i x}|. Examples of some common
voting rules are as follows.

Positional scoring rules. A collection (−→sm)m∈N+ of m-dimensional vectors −→sm =
(αm, αm−1, . . . , α1) ∈ Nm with αm > αm−1 > . . . > α1 and αm > α1 for every m ∈ N+

naturally defines a voting rule — a candidate gets score αi from a vote if it is placed at the
ith position from the bottom, and the score of a candidate is the sum of the scores it receives
from all the votes. The winners are the candidates with maximum score. Scoring rules
remain unchanged if we multiply every αi by any constant λ > 0 and/or add any constant
µ. Hence, we assume without loss of generality that for any score vector −→sm, there exists
a j such that αk = 0 for all k < j and the greatest common divisor of α1, . . . , αm is one.
Such a −→sm is called a normalized score vector. Without loss of generality, we will work with

MFCS 2017



57:4 On the Exact Amount of Missing Inf. that makes Finding Possible Winners Hard

normalized scoring rules only in this work. If αi is 0 for i ∈ [m− k] and 1 otherwise, then we
get the k-approval voting rule. For the k-veto voting rule, αi is 0 for i ∈ [k] and 1 otherwise.
1-approval is called the plurality voting rule and 1-veto is called the veto voting rule. We
note that our notation is slightly unconventional, this is in the interest of convenience in
some of the computations that we will encounter with score vectors.

Copelandα. Given α ∈ [0, 1], the Copelandα score of a candidate x is |{y 6= x : DE(x, y) >
0}|+ α|{y 6= x : DE(x, y) = 0}|. The winners are the candidates with maximum Copelandα
score. If not mentioned otherwise, we will assume α to be zero.

Maximin. The maximin score of a candidate x in an election E is miny 6=xDE(x, y). The
winners are the candidates with maximum maximin score.

Bucklin. Let ` be the minimum integer such that there exists at least one candidate x ∈ C
whom more than half of the voters place in their top ` positions. Then the Bucklin winner is
the candidate who is placed most number of times within top ` positions of the votes.

Elections with Incomplete Information A more general setting is an election where the
votes are only partial orders over candidates. A partial order is a relation that is reflexive,
antisymmetric, and transitive. A partial vote can be extended to possibly more than one
linear vote depending on how we fix the order for the unspecified pairs of candidates. Given
a partial vote �, we say that an extension �′ of � places the candidate c as high as possible
if a �′ c implies a �′′ c for every extension �′′ of �.

I Definition 1 (r–Possible Winner). Given a set of partial votes P over a set of candidates
C and a candidate c ∈ C, does there exist an extension P ′ of P such that c ∈ r(P ′)?

3 Results

For ease of exposition, we present all our results for the co-winner case. All our proofs extend
easily to the unique winner case too. We begin with our results for the scoring rules.

3.1 Scoring Rules
In this section, we establish a dichotomous result describing the status of the Possible
Winner problem for a large class of scoring rules when the number of undetermined pairs
in every vote is at most one, two, three, or four. We begin by introducing some terminology.
Instead of working directly with score vectors, it will sometimes be convenient for us to refer
to the “vector of differences”, which, for a score vector s with m coordinates, is a vector
d(s) with m− 1 coordinates with each entry being the difference between adjacent scores
corresponding to that location and the location left to it. This is formally stated below.

I Definition 2. Given a normalized score vector −→sm = (αm, αm−1, . . . , α1 = 0) ∈ Nm, the
associated difference vector d(−→sm) is given by (αm − αm−1, αm−1 − αm−2, . . . , α2 − α1) ∈
Nm−1. We also employ the following notation to refer to the smallest score difference among
all non-zero differences, and the largest score difference, respectively:

δ(−→sm) = min({αi − αi−1 | 2 6 i 6 m and αi − αi−1 > 0})
∆(−→sm) = max({αi − αi−1 | 2 6 i 6 m})



N. Misra and P. Dey 57:5

Note that for every non-trivial normalized score vector −→sm, ∆(−→sm) is always non-zero.
We now proceed to defining the notion of smooth scoring rules. Consider a score vector
−→sm = (αm, αm−1, . . . , α1). For 0 6 i 6 m, we say that −−−→sm+1 is obtained from sm by inserting
α just before position i from the right if:

−−−→sm+1 = (αm, αm−1, . . . , αi+1, α, αi, . . . , α2, α1) .

Note that if i = 0, we have −−−→sm+1 = (αm, αm−1, . . . , α1, α), and if i = m, then we have
−−−→sm+1 = (α, αm, αm−1, . . . , α1). For 0 6 i 6 m, we say that the position i is admissible if
i = 0, or i = m, or αi+1 = αi.

I Definition 3 (Smooth scoring rules). We say that a scoring rule s is smooth if there exists
some constant m0 ∈ N+ such that for all m > m0, the score vector −→sm can be obtained from
−−−→sm−1 by inserting an additional score value at any position i that is admissible.

Observe that the additional score value is forced to be equal to an existing score value
unless it is inserted at one of the endpoints. Intuitively speaking, a smooth scoring rule is
one where the score vector for m candidates can be obtained by either extending the one
for (m− 1) candidates at one of the ends, or by inserting a score between an adjacent pair
of ambivalent locations (i.e, consecutive scores in the score vector with the same value).
Although at a first glance it may seem that the class of smooth scoring rules involves an
evolution from a limited set of operations, we note that all of the common scoring rules,
such as plurality, veto, k-approval, Borda, and scoring rules of the form (2, 1, . . . , 1, 0), are
smooth. We now turn to some definitions that will help describe the cases that appear in
our classification result.

I Definition 4. Let s = (−→sm)m∈N+ be a scoring rule.
We say that s is a Borda-like scoring rule if there exists some m0 ∈ N+ for which we
have that ∆(−→sm) = δ(−→sm) for every m > m0.
Any rule that is not Borda-like is called a differentiating scoring rule.
For any vector t with ` coordinates, we say that s is t-difference-free if there exists some
n0 ∈ N+ such that for every m > n0, the vector t does not occur in d(−→sm). In other
words, the vector 〈d(−→sm)[i], . . . , d(−→sm)[i+ `− 1]〉 6= t for any 1 6 i 6 m− `.
For any vector t, we say that s is t-contaminated if it is not t-difference-free. We also say
that s is t-contaminated at m if the vector t occurs in d(−→sm).

We will frequently be dealing with Borda-like score vectors. To this end, the following
easy observation will be useful.

I Observation 5. If s = (−→sm)m∈N+ is a Borda-like scoring rule in its normalized form, then
there exists n0 ∈ N+ such that all the coordinates of d(−→sm) are either zero or one for all
m > n0.

It turns out that if a scoring rule is smooth, then its behavior with respect to some of the
properties above is fairly monotone. For instance, we have the following easy proposition. For
the interest of space, we omit proofs of some of our results including all our polynomial time
algorithms. For a few proofs, we only provide a sketch of the proof deferring the complete
proof to the appendix. We mark these results with ?. All our polynomial time algorithms
are based on reduction to the maximum flow problem in a graph. All the complete proofs
can be found here [12].

[?] Let s = (−→sm)m∈N+ be a smooth scoring rule that is not Borda-like. Then there exists
some n0 ∈ N+ such that ∆(−→sm) 6= δ(−→sm) for every m > n0.

MFCS 2017



57:6 On the Exact Amount of Missing Inf. that makes Finding Possible Winners Hard

We are now ready to state the first classification result of this section, for the scenario
where every vote has at most one missing pair. We use (3, B2)–SAT to prove some of our
hardness results. The (3, B2)–SAT problem is the 3-SAT problem restricted to formulas
in which each clause contains exactly three literals, and each variable occurs exactly twice
positively and twice negatively. We know that (3, B2)–SAT is NP-complete [3]. Let us first
present a structural result for scoring rules which we will use subsequently.

Suppose we have a set C = {c1, . . . , cm−1, g} of m candidates including a “dummy” can-
didate g. Then it is well known [1, 16, 14, 13, 15, 17, 11], that for a score vector (αm, . . . , α1)
and integers {kji }i∈[m−1],j∈[m−1], we can add votes polynomially many in

∑
i∈[m−1],j∈[m−1] k

j
i

so that the score of the candidate ci is λ +
∑
j∈[m−1] k

j
i (αj − αj+1) for some λ and the

score of g is less than λ. Since the greatest common divisor of non-zero differences of the
consecutive entries in a normalized score vector is one, we have the following.

I Lemma 6. Let C = {c1, . . . , cm} ∪D, (|D| > 0) be a set of candidates, and ~α a normalized
score vector of length |C|. Then for every X = (X1, . . . , Xm) ∈ Zm, there exists λ ∈ N and
a voting profile V such that the ~α-score of ci is λ+Xi for all 1 6 i 6 m, and the score of
candidates d ∈ D is less than λ. Moreover, the number of votes in V is O(poly(|C|·

∑m
i=1 |Xi|)).

I Theorem 7. [?] Let s be a smooth scoring rule. If s is differentiating, then the Possible
Winner problem is NP-complete, even if every vote has at most one undetermined pair of
candidates. Otherwise, that is, when s is Borda-like, the Possible Winner problem for s is
in P if every vote has at most one undetermined pair of candidates.

Proof. (Outline.) For the hardness result, we reduce from an instance of (3, B2)-SAT. Let
I be an instance of (3, B2)-SAT, over the variables V = {x1, . . . , xn} and with clauses
T = {c1, . . . , ct}. To construct the reduced instance I ′, we introduce two candidates for
every variable, and one candidate for every clause, one special candidate w, and a dummy
candidate g to achieve desirable score differences. Notationally, we will use bi (corresponding
to xi) and b′i (corresponding to x̄i) to refer to the candidates based on the variable xi and ej
to refer to the candidate based on the clause cj . To recap, the set of candidates are given by:

C = {bi, b′i | xi ∈ V} ∪ {ej | cj ∈ T } ∪ {w, g}.

Consider an arbitrary but fixed ordering over C, such as the lexicographic order. In
this proof, the notation

−→
C′ for any C′ ⊆ C will be used to denote the lexicographic ordering

restricted to the subset C′. Let m denote |C| = 2n+ t+ 2, and let −→sm = (αm, αm−1, . . . , α1) ∈
Nm. Since s is a smooth differentiating scoring rule, we have that there exist 1 6 p, q 6 m

such that |p− q| > 1 and αp − αp−1 > αq − αq−1 > 1.
We use D to refer to the larger of the two differences above, namely αp − αp−1 and d to

refer to αq − αq−1. We now turn to a description of the votes. Fix an arbitrary subset C1
of (m− p) candidates. For every variable xi ∈ V, we introduce the following complete and
partial votes.

pi := −→C1 � bi � b′i �
−−−→
C \ C1 and p′i := pi \ {(bi, b′i)}

We next fix an arbitrary subset C2 ⊂ C of (m − q) candidates. Consider a literal `
corresponding to the variable xi. We use `? to refer to the candidate bj if the literal is
positive and to refer to the candidate b′j if the literal is negated. For every clause cj ∈ T
given by cj = {`1, `2, `3}, we introduce the following complete and partial votes.

qj,1 := −→C2 � ej � `?1 �
−−−→
C \ C2 and q′j,1 := qj,1 \ {(ej , `?1)}



N. Misra and P. Dey 57:7

Table 2 Score of candidates from P ∪W.

s+(ej) = s+(w) + d ∀ 1 6 j 6 t s+(bi) = s+(w) + 1− d ∀ 1 6 i 6 n

s+(b′i) = s+(w) + 1− d−D ∀ 1 6 i 6 n s+(g) < s+(w)

qj,2 := −→C2 � ej � `?2 �
−−−→
C \ C2 and q′j,2 := qj,2 \ {(ej , `?2)}

qj,3 := −→C2 � ej � `?3 �
−−−→
C \ C2 and q′j,3 := qj,3 \ {(ej , `?3)}

Let us define the following sets of votes:

P =
(

n⋃
i=1

pi

)
∪

 ⋃
16j6t,16b63

qj,b

 and P ′ =
(

n⋃
i=1

p′i

)
∪

 ⋃
16j6t,16b63

q′j,b


There exists a set of complete votes W of size polynomial in m with the following

properties due to Lemma 6. Let s+ : C −→ N be a function mapping candidates to their
scores from the set of votes P ∪W. Then W can be constructed to ensure the scores as in
Table 2. We now define the instance I ′ of Possible Winner to be (C,P ′ ∪W, w). This
completes the description of the reduction. We now turn to a proof of the equivalence.
Before we begin making our arguments, observe that since w does not participate in any
undetermined pairs of the votes in P ′, it follows that the score of w continues to be s+(w) in
any completion of P ′. The intuition for the construction, described informally, is as follows.
The score of every “clause candidate” needs to decrease by d, which can be achieved by
pushing it down against its literal partner in the qj-votes. However, this comes at the cost of
increasing the score of the literals by 2d (since every literal appears in at most two clauses).
It turns out that this can be compensated appropriately by ensuring that the candidate
corresponding to the literal appears in the (p− 1)th position among the p-votes, which will
adjust for this increase. Therefore, the setting of the (b′i, bi) pairs in a successful completion
of pi can be read off as a signal for how the corresponding variable should be set by a
satisfying assignment. We defer the formal proof of equivalence of the two instances and the
polynomial time solvable case to the appendix. J

We make a couple of quick remarks before moving on to our next result. Observe that
any hardness result that holds for instances where every vote has at most k undetermined
pairs also holds for instances where every vote has at most k′ undetermined pairs with
k′ > k, by a standard special case argument. Therefore, the next question for us to address
is that of whether the Possible Winner problem is in P for all Borda-like scoring rules
when the number of undetermined pairs in every vote is at most two. We show that the
complexity of the Possible Winner problem for the Borda-like scoring rules crucially
depends on the presence (or absence) some particular patterns in the score vector. We
begin by stating a hardness result which uses a reduction from the well-known Three
Dimensional Matching problem [19].

To help us deal with the nature of the score vectors considered, we will use the following
proposition, which again reflects the monotonicity property alluded to earlier.

[?] Let s be a normalized smooth scoring rule that is not 〈1, 1〉-difference-free. Then there
exists some n0 ∈ N+ such that for every m > n0, s is 〈1, 1〉-contaminated at m.

We are now ready to state our next result, which shows that if there are at most 2
undetermined pairs of candidates in every vote, and we are dealing with a smooth Borda-like
scoring rule s, then the Possible Winner problem is NP-complete if s is 〈1, 1〉-contaminated,
and solvable in polynomial time otherwise.

MFCS 2017



57:8 On the Exact Amount of Missing Inf. that makes Finding Possible Winners Hard

I Theorem 8. [?] Let s be a smooth, Borda-like scoring rule. If s is 〈1, 1〉-contaminated, the
Possible Winner problem is NP-complete, even if every vote has at most 2 undetermined
pairs of candidates. On the other hand, if s is 〈1, 1〉-difference-free, then the Possible
Winner problem for s is in P if every vote has at most 2 undetermined pairs of candidates.

We now address the case involving at most three undetermined pairs in every vote. The
interesting scoring rules here are smooth Borda-like scoring rules that are 〈1, 1〉-difference-free.
It turns out that here, if the scoring rule is further 〈1, 0, 1〉-difference-free, then the problem
again admits a maxflow formulation. On the other hand, s is 〈1, 0, 1〉-contaminated at
m > N0 for some constant N0, then the Possible Winner problem is NP-complete even
with 3 undetermined pairs of candidates per vote.

I Theorem 9. [?] Let s be a smooth, Borda-like, 〈1, 1〉-difference-free scoring rule. If there
exists a constant N0 ∈ N+ such that s is 〈1, 0, 1〉-contaminated for all m > n0, then the
Possible Winner problem is NP-complete, even if every vote has at most 3 undetermined
pairs. On the other hand, if s is 〈1, 0, 1〉-difference-free, then the Possible Winner problem
for s is in P if every vote has at most 3 undetermined pairs.

I Remark. Note that unlike the previous two results, this statement is not a complete
classification, because we don’t have an appropriate analog of Propositions 3.1 and 3.1. Having
said that, our result holds for a more general class of scoring rules: those where s is 〈1, 0, 1〉-
contaminated at m “sufficiently” often, that is to say that if −→sm is 〈1, 0, 1〉-contaminated and
m′ > m is the smallest natural number for which −→sm is 〈1, 0, 1〉-contaminated, then m′ −m
is bounded by some polynomial function of m, by inserting appropriately many dummy
candidates using standard techniques.

We now turn to our final result for scoring rules. Let s be a smooth, Borda-like scoring
rule that is 〈1, 1〉-difference-free. Then we have the following. If s is 〈0, 1, 0〉-contaminated,
then the Possible Winner problem for s is NP-complete even when every vote has at
most 4 undetermined pairs of candidates. If s is 〈0, 1, 0〉-difference-free, then notice that
d(−→sm) for any suitably large m ∈ N+ can contain at most two ones (since s is also 〈1, 1〉-
difference-free). If the number of ones in d(−→sm) is one, then d(−→sm) either has a one on the
first or the last coordinate (recall that s is 〈0, 1, 0〉-difference-free), corresponding to the
plurality and veto voting rules, respectively. On the other hand, if the number of ones is two,
d(−→sm) = 〈1, 0, . . . , 0, 1〉, which is equivalent (in normal form) to the scoring rule (2, 1, . . . , 1, 0).
The Possible Winner problem is polynomial time solvable for plurality and veto voting
rules, and we show here that it is also polynomially solvable for the scoring rule (2, 1, . . . , 1, 0)
as long as the number of undetermined pairs of candidates in any vote is at most m− 1. We
note that the status for the Possible Winner problem for this rule was left unresolved in [6]
and was later resolved in [2]. If we allow for m or more undetermined pairs of candidates in
every vote, then we show that the Possible Winner problem is NP-complete. As before,
we will need the following property of 〈1, 0, 1〉-contaminated vectors.

[?] Let s be a normalized smooth scoring rule that is not 〈1, 0, 1〉-difference-free. Then
there exists some n0 ∈ N+ such that s is 〈0, 1, 0〉-contaminated at m for every m > n0.

We now state the final result in this section. It is easily checked that the result accounts
for all smooth, Borda-like scoring rules that are 〈1, 1〉-difference-free.

I Theorem 10. [?] Let s be a smooth, Borda-like scoring rule that is 〈1, 1〉-difference-free.
Then we have the following.
1. If s is 〈0, 1, 0〉-contaminated, then the Possible Winner problem for s is NP-complete

even when every vote has at most 4 undetermined pairs of candidates.



N. Misra and P. Dey 57:9

2. If s is equivalent to (2, 1, . . . , 1, 0), then Possible Winner is NP-complete even when
the number of undetermined pairs of candidates in every vote is at most m− 1.

3. If s is equivalent to (2, 1, . . . , 1, 0) and the number of undetermined pairs of candidates is
strictly less than m− 1, then Possible Winner is in P.

4. If s is neither 〈0, 1, 0〉-contaminated nor equivalent to (2, 1, . . . , 1, 0), then s is equivalent
to either the plurality or veto scoring rules and Possible Winner is in P for these cases.

3.2 Copelandα Voting Rule
We now turn to the Copelandα voting rule. We show in Theorem 11 below that the Possible
Winner problem is NP-complete for the Copelandα voting rule even when every vote has at
most 2 undetermined pairs of candidates for every α ∈ [0, 1].

I Theorem 11. [?] The Possible Winner problem is NP-complete for the Copelandα
voting rule even if the number of undetermined pairs of candidates in every vote is at most 2
for every α ∈ [0, 1].

We prove in Theorem 12 that the number of undetermined pairs of candidates in The-
orem 11 is tight for the Copeland0 and Copeland1 voting rules.

I Theorem 12. [?] The Possible Winner problem is in P for the Copeland0 and Copeland1

voting rules if the number of undetermined pairs of candidates in every vote is at most 1.

We show next that the Possible Winner problem is NP-complete for the Copelandα
voting rule even if the number of undetermined pairs of candidates in every vote is at most 1
for α ∈ (0, 1). We break the proof into two parts — Lemma 13 proves the result for every
α ∈ (0, 1/2] and Lemma 14 proves for every α ∈ [1/2, 1).

I Lemma 13. [?] The Possible Winner problem is NP-complete for the Copelandα voting
rule even if the number of undetermined pairs in every vote is at most 1 for every α ∈ (0, 1/2].

Proof. The Possible Winner problem for the Copelandα voting rule is clearly in NP. To
prove NP-hardness of Possible Winner, we reduce Possible Winner from (3, B2)–SAT.
Let I be an instance of (3, B2)–SAT, over the variables V = {x1, . . . , xn} and with clauses
T = {c1, . . . , cm}. We construct an instance I ′ of Possible Winner from I as follows.

Set of candidates: C = {xi, x̄i, di : i ∈ [n]}∪{ci : i ∈ [m]}∪{c}∪G, where G = {g1, . . . , gmn}.

For every i ∈ [n], let us define p1
xi
, p2
xi

: xi � di � others and p1
x̄i
, p2
x̄i

: x̄i � di � others.
Using p1

xi
, p2
xi
, p1
x̄i
, p2
x̄i
, we define the partial votes p1′

xi
, p2′
xi
, p1′
x̄i
, p2′
x̄i

as follows.

p1′
xi
, p2′
xi

: p1
xi
\ {(xi, di)} , p1′

x̄i
, p2′
x̄i

: p1
x̄i
\ {(x̄i, di)}

Let a clause cj involves the literals `1j , `2j , `3j . For every j ∈ [m], let us consider the
following votes qj(`1j ), qj(`2j ), qj(`3j ).

qj(`kj ) : cj � `kj � others,∀k ∈ {1, 2, 3}

Using qj(`1j ), qj(`2j ), qj(`3j ), we define the partial votes q′j(`1j ), q′j(`2j ), q′j(`3j ) as follows.

q′j(`kj ) : qj(`kj ) \ {(cj , `kj )},∀k ∈ {1, 2, 3}

Let us define

P = ∪i∈[n]{p1
xi
, p2
xi
, p1
x̄i
, p2
x̄i
} ∪j∈[m] {qj(`1j ), qj(`2j ), qj(`3j )}

MFCS 2017



57:10 On the Exact Amount of Missing Inf. that makes Finding Possible Winners Hard

Table 3 Summary of Copelandα scores of the candidates from P ∪Q. All the wins and defeats
in the table are by a margin of 2.

Candidates Copelandα score Winning against Losing against Tie with

c
(2n+m)α
+n+ 3mn/4

G′ ⊂ G, |G′| = n+ 3mn/4
G \G′, |G′| = n+ 3mn/4

di, ∀i ∈ [n]
xi, x̄i∀i ∈ [n]
cj∀j ∈ [m]

xi, ∀i ∈ [n] (2n+m)α
+n+ 3mn/4

G′′ ⊂ G, |G′′| = 3mn/4

di∀i ∈ [n] G \ (G′ ∪G′′)
c,G′ ⊂ G, |G′| = m

xj , ∀j ∈ [n] \ {i}
x̄j∀j ∈ [n]

x̄i, ∀i ∈ [n] (2n+m)α
+n+ 3mn/4

G′′ ⊂ G, |G′′| = 3mn/4

di∀i ∈ [n] G \ (G′ ∪G′′)
c,G′ ⊂ G, |G′| = m

x̄j , ∀j ∈ [n] \ {i}
xj∀j ∈ [n]

cj , ∀j ∈ [m] (2n+m− 1)α
+n+ 3mn/4 + 1

xi, x̄i∀i ∈ [n]
G′ ⊂ G, |G′| = 3mn/4− n+ 1

G \ (G′ ∪G′′)
di, ∀i ∈ [n]

c

cj∀j ∈ [m] \ {i}
G′′ ⊂ G, |G′′| = 2n− 1

di, i ∈ [n] (2n+m)α
+n+ 3mn/4− 1

c, cj , ∀j ∈ [m]
G′′ ⊂ G, |G′′| = 3mn/4−m+ n− 2

xi, x̄i∀i ∈ [n]
G \ (G′ ∪G′′) G′ ⊂ G, |G′| = 2n+m

gi, ∀i ∈ [mn] < 3mn/4 ∀j ∈ {i+ k : k ∈ [b(mn−1)/2c]

and

P ′ = ∪i∈[n]{p1′
xi
, p2′
xi
, p1′
x̄i
, p2′
x̄i
} ∪j∈[m] {q′j(`1j ), q′j(`2j ), q′j(`3j )}.

There exists a set of complete votes Q of size polynomial in n andm which realizes Table 3 [24].
All the wins and defeats in Table 3 are by a margin of 2. We now define the instance I ′ of
Possible Winner to be (C,P ′ ∪ Q, c). Notice that the number of undetermined pairs of
candidates in every vote in I ′ is at most 1. This finishes the description of the Possible
Winner instance. We defer the formal proof of equivalence of the two instances and the
polynomial time solvable case to the appendix. J

Next we present Lemma 14 which resolves the complexity of the Possible Winner
problem for the Copelandα voting rule for every α ∈ [1/2, 1) when every partial vote has at
most one undetermined pair of candidates.

I Lemma 14. [?] The Possible Winner problem is NP-complete for the Copelandα voting
rule even if the number of undetermined pairs in every vote is at most 1 for every α ∈ [1/2, 1).

We get the following result for the Copelandα voting rule from Theorem 13 and 14.

I Theorem 15. The Possible Winner problem is NP-complete for the Copelandα voting
rule even if the number of undetermined pairs of candidates in every vote is at most 1 for
every α ∈ (0, 1).

3.3 Maximin and Bucklin Voting Rules
To prove our hardness result for the maximin voting rule, we reduce the Possible Win-
ner problem from the d–Multicolored Independent Set problem which is defined as
below. d–Multicolored Independent Set is known to be NP-complete (for example,
see this [10]). We denote arbitrary instance of d–Multicolored Independent Set by(
V = ]ki=1Vk, E

)
.

I Definition 16 (d–Multicolored Independent Set). Given a d-regular graph G =
(V, E), an integer k, and a partition of the set of vertices V into k independent sets V1, . . . ,Vk,
that is V = ∪i∈[k]Vi and Vi is an independent set for every i ∈ [k], does there exists an
independent set S ⊂ V in G such that |S ∩ Vi| = 1 for every i ∈ [k].



N. Misra and P. Dey 57:11

Table 4 Pairwise margins of candidates from P ∪Q.

∀e ∈ E ,DP∪Q(e, c) = λ ∀i ∈ [k], ∀u ∈ Vi,DP∪Q(u, gi) = λ− 2d
∀i ∈ [k], ∀u ∈ Vi,DP∪Q(g′i, u) = λ+ 2d ∀i ∈ [k], e ∈ E ,DP∪Q(e, g′i) = λ

∀e = (ui, uj) ∈ E ,DP∪Q(ui, e) = DP∪Q(uj , e) = λ− 2

Table 5 Summary of initial Copeland scores of the candidates.

Candidate maximin score worst against Candidate maximin score worst against

c −λ e ∈ E (ui, uj) ∈ E −(λ− 2) ui, uj

u ∈ Vi −(λ+ 2d) g′i gi −(λ− 2d) u ∈ Vi
g′i −λ e ∈ E

Now we prove our hardness result for the Possible Winner problem for the maximin
voting rule in Theorem 17.

I Theorem 17. The Possible Winner problem is NP-complete for the maximin voting
rule even if the number of undetermined pairs of candidates in every vote is at most 2.

Proof. The Possible Winner problem for the maximin voting rule is clearly in NP. To prove
NP-hardness of Possible Winner, we reduce Possible Winner from d–Multicolored
Independent Set. Let I =

(
V = ∪ki=1Vk, E

)
be an arbitrary instance of d–Multicolored

Independent Set. We construct an instance I ′ of Possible Winner from I as follows.

Set of candidates: C = V ∪ E ∪ {c} ∪ {gi, g′i : i ∈ [k]}

For every u ∈ Vi and ` ∈ [d], let us consider the following vote pu.

p`u =
−−−−−−−−−−−→
(C \ {u, gi, g′i})u � gi � g′i � u,where

−−−−−−−−−−−→
(C \ {u, gi, g′i})u

is any fixed ordering of C \ {u, gi, g′i}

Using p`u, we define a partial vote p′`u as p′`u = p`u \ {(gi, u), (g′i, u)}. For every edge
e = (ui, uj) where ui ∈ Vi and uj ∈ Vj , let us consider the following votes pe,ui and pe,uj .

pe,ui
=
−−−−−−−−−−→
(C \ {ui, g′i, e}) � e � g′i � ui , pe,uj

=
−−−−−−−−−−→
(C \ {uj , g′j , e}) � e � g′j � uj

Using pe,ui
and pe,uj

, we define the partial votes p′e,ui
and p′e,uj

as follows.

p′e,ui
= pe,ui

\ {(e, ui), (g′i, ui)} , p′e,uj
= pe,uj

\ {(e, uj), (g′j , uj)}

Let us call pe = {pe,ui
, pe,uj

} and p′e = {p′e,ui
, p′e,uj

}. Let us define P = ∪u∈V,`∈[d]p
`
u∪e∈E

pe and P ′ = ∪u∈V,`∈[d]p
′`
u ∪e∈E p′e. There exists a set of complete votes Q of size polynomial

in |V| and |E| with the pairwise margins as in Table 4 [24]. Let λ > 3d be any positive even
integer.

For every pair of candidates (ci, cj) ∈ C × C whose pairwise margin is not defined above,
we define DP∪Q(ci, cj) = 0. We summarize the maximin score of every candidate in P ∪Q
in Table 5. We now define the instance I ′ of Possible Winner to be (C,P ′ ∪Q, c). Notice
that the number of undetermined pairs of candidates in every vote in I ′ is at most 2. This
finishes the description of the Possible Winner instance. We claim that I and I ′ are
equivalent.

MFCS 2017



57:12 On the Exact Amount of Missing Inf. that makes Finding Possible Winners Hard

In the forward direction, suppose that I be a Yes instance of d–Multicolored Inde-
pendent Set. Then there exists ui ∈ Vi for every i ∈ [k] such that U = {ui : i ∈ [k]} forms
an independent set. We extend the partial vote p′`u for every u ∈ Vi, i ∈ [k], ` ∈ [d] to p̄`u as
follows.

p̄`u =
{−−−−−−−−−−−→

(C \ {u, gi, g′i})u � u � gi � g′i u ∈ U
−−−−−−−−−−−→
(C \ {u, gi, g′i})u � gi � g′i � u u /∈ U

For every e = (ui, uj), we extend p′e,ui
and p′e,uj

to p̄e,ui and p̄e,uj . Since U is an
independent set, at least one of ui and uj does not belong to U . Without loss of generality,
let us assume ui /∈ U .

p̄e,ui
=
−−−−−−−−−−→
(C \ {ui, g′i, e}) � ui � e � g′i , p̄e,uj

=
−−−−−−−−−−→
(C \ {uj , g′j , e}) � e � g′j � uj

Let us call p̄e = {p̄e,ui , p̄e,uj}. We consider the extension of P to P̄ = ∪u∈V,`∈[d]p̄
`
u∪e∈E p̄e.

We claim that c is a co-winner in the profile P̄ ∪ Q since the maximin score of c, gi, g′i for
every i ∈ [k], u ∈ V, and e ∈ E in P̄ ∪ Q is −λ.

In the reverse direction suppose the Possible Winner instance I ′ be a Yes instance.
Then there exists an extension of the set of partial votes P ′ to a set of complete votes P̄ such
that c is a co-winner in P̄ ∪ Q. Let us call the extension of p′`u in P̄ p̄`u, p′e,ui

and p′e,uj
in P̄

p̄e,ui
and p̄e,uj

respectively. First we notice that the maximin score of c in P̄ ∪Q is −λ since
the relative ordering of c with respect to every other candidate is already fixed in P ′ ∪ Q.
Now we observe that, in P ∪Q, the maximin score of gi for every i ∈ [k] is −(λ− 2d). Hence,
for c to co-win, there must exists at least one u∗i ∈ Vi for every i ∈ [k] such that u∗i � gi � g′i
in p̄`u∗

i
for every ` ∈ [d]. We claim that U = {u∗i : i ∈ [k]} is an independent set in I. If not,

then suppose there exists an edge e between u∗i and u∗j for some i, j ∈ [k]. Now notice that,
for c to co-win either u∗i � e � g′i in p̄e,u∗

i
or u∗j � e � g′j in p̄e,u∗

j
. However, this makes the

maximin score of either u∗i or u∗j strictly more than −λ contradicting our assumption that c
co-wins the election. Hence, U forms an independent set in I. J

We next prove in Theorem 18 that the maximum number of undetermined pairs of
candidates in Theorem 17 is tight.

I Theorem 18. [?] The Possible Winner problem is in P for the maximin voting rule if
the number of undetermined pairs of candidates in every vote is at most 1.

Finally, we state our results for the Bucklin voting rule.

I Theorem 19. [?] The Possible Winner problem is NP-complete for the Bucklin voting
rule even if the number of undetermined pairs of candidates in every vote is at most 2, and
is in P if the number of undetermined pairs of candidates in every vote is at most 1.

4 Conclusion

We have demonstrated the exact minimum number of undetermined pairs allowed per vote
which keeps the Possible Winner winner problem NP-complete, and we were able to
address a large class of scoring rules, Copelandα, maximin, and Bucklin voting rules. Our
results generalize many of the known hardness results in the literature, and show that for
many voting rules, we need a surprisingly small number of undetermined pairs (often just
one or two) for the Possible Winner problem to be NP-complete. In the context of scoring
rules, it would be interesting to extend these tight results to the class of pure scoring rules,
and to extend Theorem 9 to account for all smooth scoring rules.



N. Misra and P. Dey 57:13

References
1 Dorothea Baumeister, Magnus Roos, and Jörg Rothe. Computational complexity of two

variants of the possible winner problem. In Proc. International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), pages 853–860, 2011.

2 Dorothea Baumeister and Jörg Rothe. Taking the final step to a full dichotomy of the
possible winner problem in pure scoring rules. Inf. Process. Lett., 112(5):186–190, 2012.
doi:10.1016/j.ipl.2011.11.016.

3 Piotr Berman, Marek Karpinski, and Alex D. Scott. Approximation hardness and satisfiabil-
ity of bounded occurrence instances of SAT. Electronic Colloquium on Computational Com-
plexity (ECCC), 10(022), 2003. URL: http://eccc.hpi-web.de/eccc-reports/2003/
TR03-022/index.html.

4 Nadja Betzler, Robert Bredereck, and Rolf Niedermeier. Partial kernelization for rank
aggregation: theory and experiments. In Proc. 5th International Symposium on Paramet-
erized and Exact Computation (IPEC), pages 26–37. Springer, 2010.

5 Nadja Betzler, Robert Bredereck, and Rolf Niedermeier. Theoretical and empirical eval-
uation of data reduction for exact kemeny rank aggregation. Autonomous Agents and
Multi-Agent Systems, 28(5):721–748, 2014. doi:10.1007/s10458-013-9236-y.

6 Nadja Betzler and Britta Dorn. Towards a dichotomy of finding possible winners in elections
based on scoring rules. In Proc. 34th Mathematical Foundations of Computer Science
(MFCS), pages 124–136. Springer, 2009.

7 Nadja Betzler, Susanne Hemmann, and Rolf Niedermeier. A Multivariate Complexity Ana-
lysis of Determining Possible Winners given Incomplete Votes. In Proc. 21st International
Joint Conference on Artificial Intelligence (IJCAI), volume 9, pages 53–58, 2009.

8 Yann Chevaleyre, Jérôme Lang, Nicolas Maudet, and Jérôme Monnot. Possible winners
when new candidates are added: The case of scoring rules. In Proc. 24th International
Conference on Artificial Intelligence (AAAI), 2010.

9 William W. Cohen, Robert E. Schapire, and Yoram Singer. Learning to order things. J.
Artif. Int. Res., 10(1):243–270, May 1999. URL: http://dl.acm.org/citation.cfm?id=
1622859.1622867.

10 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

11 Palash Dey. Resolving the complexity of some fundamental problems in computational
social choice. CoRR, abs/1703.08041, 2017. URL: http://arxiv.org/abs/1703.08041.

12 Palash Dey and Neeldhara Misra. On the exact amount of missing information that makes
finding possible winners hard. CoRR, abs/1610.08407, 2016. URL: http://arxiv.org/
abs/1610.08407.

13 Palash Dey, Neeldhara Misra, and Y. Narahari. Kernelization complexity of possible winner
and coalitional manipulation problems in voting. In Proc. 14th International Conference
on Autonomous Agents and Multiagent Systems, AAMAS 2015, Istanbul, Turkey, May 4-8,
2015, pages 87–96, 2015. URL: http://dl.acm.org/citation.cfm?id=2772894.

14 Palash Dey, Neeldhara Misra, and Y. Narahari. Complexity of manipulation with partial
information in voting. In Proc. 25th International Joint Conference on Artificial Intelli-
gence, IJCAI 2016, New York, USA, pages 229–235, 2016. URL: http://www.ijcai.org/
Abstract/16/040.

15 Palash Dey, Neeldhara Misra, and Y. Narahari. Frugal bribery in voting. In Proc.
30th AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Ari-
zona, USA., pages 2466–2472, 2016. URL: http://www.aaai.org/ocs/index.php/AAAI/
AAAI16/paper/view/12133.

MFCS 2017

http://dx.doi.org/10.1016/j.ipl.2011.11.016
http://eccc.hpi-web.de/eccc-reports/2003/TR03-022/index.html
http://eccc.hpi-web.de/eccc-reports/2003/TR03-022/index.html
http://dx.doi.org/10.1007/s10458-013-9236-y
http://dl.acm.org/citation.cfm?id=1622859.1622867
http://dl.acm.org/citation.cfm?id=1622859.1622867
http://dx.doi.org/10.1007/978-3-319-21275-3
http://arxiv.org/abs/1703.08041
http://arxiv.org/abs/1610.08407
http://arxiv.org/abs/1610.08407
http://dl.acm.org/citation.cfm?id=2772894
http://www.ijcai.org/Abstract/16/040
http://www.ijcai.org/Abstract/16/040
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12133
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12133


57:14 On the Exact Amount of Missing Inf. that makes Finding Possible Winners Hard

16 Palash Dey, Neeldhara Misra, and Y. Narahari. Kernelization complexity of possible winner
and coalitional manipulation problems in voting. Theor. Comput. Sci., 616:111–125, 2016.
doi:10.1016/j.tcs.2015.12.023.

17 Palash Dey, Neeldhara Misra, and Y. Narahari. Frugal bribery in voting. Theor. Comput.
Sci., 676:15–32, 2017. doi:10.1016/j.tcs.2017.02.031.

18 Piotr Faliszewski, Yannick Reisch, Jörg Rothe, and Lena Schend. Complexity of ma-
nipulation, bribery, and campaign management in bucklin and fallback voting. In Proc.
13th International Conference on Autonomous Agents and Multiagent Systems (AAMAS),
pages 1357–1358. International Foundation for Autonomous Agents and Multiagent Sys-
tems, 2014.

19 Michael R Garey and David S Johnson. Computers and Intractability, volume 174. freeman
New York, 1979.

20 Benjamin G. Jackson, Patrick S. Schnable, and Srinivas Aluru. Consensus genetic maps as
median orders from inconsistent sources. IEEE/ACM Trans. Comput. Biology Bioinform.,
5(2):161–171, 2008. doi:10.1145/1371585.1371586.

21 Kathrin Konczak and Jérôme Lang. Voting procedures with incomplete preferences. In
Proc. 19th International Joint Conference on Artificial Intelligence-05 Multidisciplinary
Workshop on Advances in Preference Handling, volume 20, 2005.

22 Jérôme Lang, Maria Silvia Pini, Francesca Rossi, Domenico Salvagnin, Kristen Brent Ven-
able, and Toby Walsh. Winner determination in voting trees with incomplete preferences
and weighted votes. Auton. Agent Multi Agent Syst., 25(1):130–157, 2012.

23 Jérôme Lang, Maria Silvia Pini, Francesca Rossi, Kristen Brent Venable, and Toby Walsh.
Winner determination in sequential majority voting. In Proc. 20th International Joint
Conference on Artificial Intelligence (IJCAI), volume 7, pages 1372–1377, 2007.

24 David C McGarvey. A theorem on the construction of voting paradoxes. Econometrica,
pages 608–610, 1953.

25 Hervé Moulin, Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D
Procaccia. Handbook of Computational Social Choice. Cambridge University Press, 2016.

26 David M. Pennock, Eric Horvitz, and C. Lee Giles. Social choice theory and recommender
systems: Analysis of the axiomatic foundations of collaborative filtering. In Proc. 17th
National Conference on Artificial Intelligence and 12th Conference on on Innovative Ap-
plications of Artificial Intelligence, July 30 - August 3, 2000, Austin, Texas, USA., pages
729–734, 2000. URL: http://www.aaai.org/Library/AAAI/2000/aaai00-112.php.

27 Maria Silvia Pini, Francesca Rossi, Kristen Brent Venable, and Toby Walsh. Incompleteness
and incomparability in preference aggregation. In Proc. 20th International Joint Conference
on Artificial Intelligence (IJCAI), volume 7, pages 1464–1469, 2007.

28 Toby Walsh. Uncertainty in preference elicitation and aggregation. In Proc. 22nd Interna-
tional Conference on Artificial Intelligence (AAAI), volume 22, page 3, 2007.

29 Lirong Xia and Vincent Conitzer. Determining possible and necessary winners under com-
mon voting rules given partial orders. J. Artif. Intell. Res., 41(2):25–67, 2011.

http://dx.doi.org/10.1016/j.tcs.2015.12.023
http://dx.doi.org/10.1016/j.tcs.2017.02.031
http://dx.doi.org/10.1145/1371585.1371586
http://www.aaai.org/Library/AAAI/2000/aaai00-112.php


Fractal Intersections and Products via Algorithmic
Dimension
Neil Lutz∗

Department of Computer and Information Science, University of Pennsylvania,
Philadelphia, PA, USA
neillutz@gmail.com

Abstract
Algorithmic dimensions quantify the algorithmic information density of individual points and
may be defined in terms of Kolmogorov complexity. This work uses these dimensions to bound
the classical Hausdorff and packing dimensions of intersections and Cartesian products of fractals
in Euclidean spaces. This approach shows that a known intersection formula for Borel sets holds
for arbitrary sets, and it significantly simplifies the proof of a known product formula. Both of
these formulas are prominent, fundamental results in fractal geometry that are taught in typical
undergraduate courses on the subject.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases algorithmic randomness, geometric measure theory, Hausdorff dimension,
Kolmogorov complexity

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.58

1 Introduction

Classical fractal dimensions, among which Hausdorff dimension [12] is the most important,
refine notions of measure to quantitatively classify sets of measure 0. In 2000, J. Lutz [15]
showed that Hausdorff dimension can be simply characterized using betting strategies called
gales, and that this characterization can be effectivized in order to quantitatively classify
non-random infinite data objects. This effective Hausdorff dimension and other, related
algorithmic dimensions have been applied to multiple areas of computer science and have
proven especially useful in algorithmic information theory [25].

The connection between algorithmic and classical dimensions has more recently been
exploited in the other direction, i.e., to apply algorithmic information theoretic methods and
intuition to classical fractal geometry (e.g., [29, 2]). A point-to-set principle of J. Lutz and
N. Lutz [16], stated here as Theorem 6, characterizes the classical Hausdorff dimension of
any set in Rn in terms of the algorithmic dimensions of its individual points.

In the same work, J. Lutz and N. Lutz showed that the point-to-set principle gives rise
to a new, pointwise technique for dimensional lower bounds, and, as a proof of concept,
used this technique to give an algorithmic information theoretic proof of Davies’s 1971 [7]
theorem stating that every Kakeya set in R2 has Hausdorff dimension 2. This bounding
technique has since been used by N. Lutz and Stull [18] to make new progress on a problem in
classical fractal geometry by deriving an improved lower bound on the Hausdorff dimension
of generalized Furstenberg sets, as defined by Molter and Rela [26].

∗ This research was done at Rutgers University and supported in part by National Science Foundation
Grant 1445755.

© Neil Lutz;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 58; pp. 58:1–58:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.58
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


58:2 Fractal Intersections and Products via Algorithmic Dimension

Figure 1 Let E and F both be Koch snowflakes, which have Hausdorff dimension log3 4 ≈ 1.26.
Left: Theorem 1 states that, for almost all translation parameters z ∈ R2, the Hausdorff dimension
of the intersection E ∩ (F + z) is at most 2 log3 4 − 2 ≈ 0.52. Right: For a measure zero set of
translations, the intersection may have Hausdorff dimension as large as that of the original sets.
Note that Koch curves are Borel sets, so the new generality introduced by Theorem 1 is not required
for this example.

The same algorithmic dimensional technique is applied here to bound the dimensions of
intersections and products of fractals. Most significantly, we extend the following intersection
formula, previously shown to hold when E and F are Borel sets [11], to arbitrary sets E and
F .1 This formula is illustrated in Figure 1.

I Theorem 1. For all E,F ⊆ Rn, and for (Lebesgue) almost all z ∈ Rn,

dimH(E ∩ (F + z)) ≤ max{0,dimH(E × F )− n} ,

where F + z = {x+ z : x ∈ F}.

Our approach also yields a simplified proof of the following known product formula for
general sets.

I Theorem 2 (Marstrand [19]). For all E ⊆ Rm and F ⊆ Rn,

dimH(E) + dimH(F ) ≤ dimH(E × F ) .

We use symmetric arguments to derive the known corresponding statements about packing
dimension [37, 10], a formulation of fractal dimension that was developed independently by
Tricot [37] and Sullivan [36] and is dual to Hausdorff dimension. These results are included
here to showcase the versatility of this technique and its ability to capture the exact duality
between Hausdorff and packing dimensions.

2 Classical Fractal Dimensions

We begin by stating classical, measure-theoretic definitions of the two most well-studied
notions of fractal dimension, Hausdorff dimension and packing dimension. These definitions
are included here for completeness but are not used directly in the remainder of this work;
we will instead apply equivalent characterizations in terms of algorithmic information, as
described in Section 3.

1 This result is closely related to the Marstrand Slicing Theorem, as stated in the excellent recent book
by Bishop and Peres [4]. The proof given there assumes that a set is Borel, but this assumption was
inadvertently omitted from the theorem statement [3].



N. Lutz 58:3

I Definition 2.1 (Hausdorff [12]). For E ⊆ Rn, let Uδ(E) be the collection of all countable
covers of E by sets of positive diameter at most δ, where the diameter of any set U ⊆ Rn is
given by

diam(U) = sup
x,y∈U

|x− y| .

For all s ≥ 0, let

Hs
δ (E) = inf

{∑
i∈N

diam(Ui)s : {Ui}i∈N ∈ Uδ(E)
}
.

The s-dimensional Hausdorff (outer) measure of E is

Hs(E) = lim
δ→0+

Hs
δ (E) ,

and the Hausdorff dimension of E is

dimH(E) = inf {s > 0 : Hs(E) = 0} = sup {s : Hs(E) =∞} .

Three desirable properties have made dimH the most standard notion of fractal dimension
since it was introduction by Hausdorff in 1919. First, it is defined on every set in Rn.
Second, it is monotone: if E ⊆ F , then dimH(E) ≤ dimH(F ). Third, it is countably stable:
if E =

⋃
i∈NEi, then dimH(E) = supi∈N dimH(Ei). These three properties also hold for

packing dimension, which was defined much later, independently by Tricot [37] and by
Sullivan [36].

I Definition 2.2 (Tricot [37], Sullivan [36]). For all x ∈ Rn and ρ > 0, let Bρ(x) denote the
open ball of radius ρ and center x. For all E ⊆ Rn, let Vδ(E) be the class of all countable
collections of pairwise disjoint open balls with centers in E and diameters at most δ. That is,
for every i ∈ N, we have Vi = Bρi

(xi) for some xi ∈ E and ρi ∈ [0, δ/2], and for every j 6= i,
Vi ∩ Vj = ∅. For all s ≥ 0, define

P sδ (E) = sup
{∑
i∈N

diam(Vi)s : {Vi}i∈N ∈ Vδ(E)
}
,

and let

P s0 (E) = lim
δ→0+

P sδ (E) .

The s-dimensional packing (outer) measure of E is

P s(E) = inf
{∑
i∈N

P s0 (Ei) : E ⊆
⋃
i∈N

Ei

}
,

and the packing dimension of E is

dimP (E) = inf {s : P s(E) = 0} = sup {s > 0 : P s(E) =∞} .

Notice that defining packing dimension in this way requires an extra step of optimization
compared to Hausdorff dimension. More properties and details about classical fractal
dimensions may be found in standard references such as [23, 11, 35].

MFCS 2017



58:4 Fractal Intersections and Products via Algorithmic Dimension

3 Algorithmic Fractal Dimensions

This section defines the effective Hausdorff and packing dimensions in terms of algorithmic
information, i.e., Kolmogorov complexity. We also define conditional dimensions and discuss
some properties of these dimensions, including their relationships to classical Hausdorff and
packing dimensions.

3.1 Kolmogorov Complexity
Kolmogorov complexity quantifies the incompressibility of finite data objects. It is most
often defined in the space {0, 1}∗ of binary strings, but it is readily extended to other
discrete domains. For the purposes of this work, the complexity of rational points is most
relevant. Hence, fix some standard binary encoding for n-tuples of rationals. The Kolmogorov
complexity of p is the length of the shortest binary program that outputs p. Formally, it is

K(p) = min
π∈{0,1}∗

{|π| : U(π) = p} ,

where U is a fixed universal prefix-free Turing machine and |π| is the length of π. This
quantity is also called the algorithmic information content of p. The conditional Kolmogorov
complexity of p given q ∈ Qn is the length of the shortest binary program that outputs p
when given q as an input:

K(p|q) = min
π∈{0,1}∗

{|π| : U(π, q) = p} .

The algorithmic mutual information between p ∈ Qm and q ∈ Qn measures, informally, the
amount that knowledge of q helps in the task of compressing p. Formally, it is

I(p : q) = K(p)−K(p|q) .

The quantities K(p), K(p|q), and I(p : q) may be considered algorithmic versions of entropy
H(X), conditional entropy H(X|Y ), and mutual information I(X;Y ), from classical (Shan-
non) information theory. See references [14, 27, 8] for more details on algorithmic information
and the connections between algorithmic and classical theories of information.

3.2 Effective Dimensions
Using approximation by rationals, Kolmogorov complexity may be further extended to
Euclidean spaces [17]. For every E ⊆ Rn, define

K(E) = min{K(p) : p ∈ E ∩Qn} ,

where the minimum is understood to be infinite if E ∩Qn is empty. This is the length of
the shortest program that outputs some rational point in E. The Kolmogorov complexity of
x ∈ Rn at precision r ∈ N is given by

Kr(x) = K(B2−r (x)) ,

the length of the shortest program that outputs any precision-r rational approximation of x.
Kr(x) may also be described as the algorithmic information content of x at precision r, and
similarly, Kr(x)/r is the algorithmic information density of x at precision r. This ratio does
not necessarily converge as r →∞, but it does have limiting bounds in [0, n]. These limits
are used to define effective dimensions.



N. Lutz 58:5

I Definition 3.1 ([15, 24, 1, 17]). Let x ∈ Rn.
1. The effective Hausdorff dimension of x is

dim(x) = lim inf
r→∞

Kr(x)
r

.

2. The effective packing dimension of x is

Dim(x) = lim sup
r→∞

Kr(x)
r

.

These dimensions were originally defined by J. Lutz [15] and Athreya, Hitchcock, J. Lutz,
and Mayordomo [1], respectively. The original definitions were in Cantor space and used gales,
which are betting strategies that generalize martingales, emphasizing the unpredictability of a
sequence instead of its incompressibility. The Kolmogorov complexity characterizations and
translation to Euclidean spaces are due to Mayordomo [24] and J. Lutz and Mayordomo [17].
Relationships between Hausdorff dimension and Kolmogorov complexity were also studied
earlier by Ryabko [30, 31, 32], Staiger [33, 34], and Cai and Hartmanis [5]; see Section 6
of [15] for a detailed discussion of this history.

We will use the fact that these dimensions are preserved by sufficiently well-behaved
functions, namely bi-Lipschitz computable bijections.

I Lemma 3 (Reimann [28], Case and J. Lutz [6]). If f : Rm → Rn is computable and
bi-Lipschitz, then dim(x) = dim(f(x)) and Dim(x) = Dim(f(x)) for all x ∈ Rm.

3.3 Conditional Dimensions
The information theoretic nature of Definition 3.1 has led to the development of algorithmic
dimensional quantities corresponding to the other algorithmic information theoretic quantities
defined above. As analogues to mutual information and conditional information, Case and J.
Lutz defined mutual dimensions [6], and J. Lutz and N. Lutz defined conditional dimensions.
This work will use the latter, which we now describe.

Given E ⊆ Rm and F ⊆ Rn, define

K(E|F ) = max
{

min{K(p|q) : p ∈ E ∩Qm} : q ∈ F ∩Qn
}
.

Then the conditional Kolmogorov complexity of x ∈ Rm at precision r ∈ N given y ∈ Rn at
precision s ∈ N is given by

Kr,s(x|y) = K(B2−r (x)|B2−s(y)) .

I Definition 3.2 (J. Lutz and N. Lutz [16]). Let x ∈ Rm and y ∈ Rn.
1. The lower conditional dimension of x given y is

dim(x : y) = lim inf
r→∞

Kr,r(x|y)
r

.

2. The upper conditional dimension of x given y is

Dim(x : y) = lim sup
r→∞

Kr,r(x|y)
r

.

That work also showed that the symmetry of algorithmic information holds in Euclidean
space, in the form

Kr(x, y) = Kr(x) +Kr,r(y|x) + o(r) .

This fact and elementary properties of limits inferior and superior immediately imply the
following chain rule for effective dimensions.

MFCS 2017



58:6 Fractal Intersections and Products via Algorithmic Dimension

I Theorem 4 (J. Lutz and N. Lutz [16]). For all x ∈ Rm and y ∈ Rn,

dim(x) + dim(y|x) ≤ dim(x, y)
≤ dim(x) + Dim(y|x)
≤ Dim(x, y)
≤ Dim(x) + Dim(y|x) .

3.4 Oracles and Relative Dimensions
By making the fixed universal machine U an oracle machine, the algorithmic information
quantities above may be defined relative to any oracle A ⊆ N. The definitions of KA(σ|τ),
KA(σ), KA

r (x), KA
r (x|y), dimA(x), DimA(x), dimA(x|y) and DimA(x|y) all exactly mirror

their unrelativized versions, except that U is permitted to query membership in A as a
computational step.

For y ∈ Rn, we write dimy(x) as shorthand for dimAy (x), where Ay ⊆ N encodes the
binary expansions of y’s coordinates in some standard way, and similarly for Dimy(x). Since
this kind of oracle access to y is at least as informative as any finite-precision estimate for
y (ignoring the small amount of information given by the precision parameter itself), these
relative dimensions are bounded above by conditional dimensions.

I Lemma 5 (J. Lutz and N. Lutz [16]). For all x ∈ Rm and y ∈ Rn,
1. dimy(x) ≤ dim(x|y),
2. Dimy(x) ≤ Dim(x|y).

3.5 Point-to-Set Principle
Effective Hausdorff dimension and effective packing dimension were conceived as constructive
versions of classical Hausdorff dimension and packing dimension [15, 1]. The following
point-to-set principle uses relativization to precisely characterize their relationships to their
non-algorithmic precursors.

I Theorem 6 (J. Lutz and N. Lutz [16]). For every E ⊆ Rn, the Hausdorff dimension and
packing dimension of E are
1. dimH(E) = min

A⊆N
sup
x∈E

dimA(x) ,

2. dimP (E) = min
A⊆N

sup
x∈E

DimA(x) .

Notice that, unlike the definitions of dimH(E) and dimP (E) given in Section 2, the above
characterizations are completely symmetrical.

Theorem 6 allows us to prove lower bounds on classical dimensions in a pointwise way.
To show a statement of the form dimH(E) ≥ α, it suffices to show, for a given oracle A
and every ε > 0, that there exists an x ∈ E satisfying dimA(x) ≥ α − ε. Unlike previous
applications of this bounding technique [16, 18], the proofs in Sections 4 and 5 do not directly
invoke Kolmogorov complexity; the only tools needed are Lemma 3, Theorem 4, Lemma 5,
and Theorem 6.

4 Intersections of Fractals

In this section we prove Theorem 1. We then use a symmetric argument to prove the
corresponding statement for packing dimension, which is known [10]. For the case where



N. Lutz 58:7

E,F ⊆ Rn are Borel sets, Theorem 1 was shown in its present form by Falconer [11].
Closely related results, which also place restrictions on E and F , were proven earlier by
Mattila [21, 22] and Kahane [13].

I Theorem 1. For all E,F ⊆ Rn, and for (Lebesgue) almost all z ∈ Rn,

dimH(E ∩ (F + z)) ≤ max{0,dimH(E × F )− n} , (1)

where F + z = {x+ z : x ∈ F}.

Proof. Let E,F ⊆ Rn and z ∈ Rn. If E ∩ (F + z) = ∅, then (1) holds trivially, so assume
that the intersection is nonempty. Theorem 6 guarantees that there is some oracle set A ⊆ N
satisfying

dimH(E × F ) = sup
(x,y)∈E×F

dimA(x, y) . (2)

It also guarantees, given any ε > 0, that there is an x ∈ E ∩ (F + z) such that

dimA,z(x) ≥ dimH(E ∩ (F + z))− ε . (3)

Since (x, x− z) ∈ E × F , we have

dimH(E × F ) ≥ dimA(x, x− z)
= dimA(x, z)
≥ dimA(z) + dimA(x|z)
≥ dimA(z) + dimA,z(x)
≥ dimA(z) + dimH(E ∩ (F + z))− ε .

The above lines follow from (2), Lemma 3, Theorem 4, Lemma 5, and (3), respectively.
Letting ε→ 0, we have

dimH(E ∩ (F + z)) ≤ dimH(E × F )− dimA(z) .

Thus, (a) holds whenever dimA(z) = n. In particular, it holds when z is Martin-Löf random
relative to A, i.e., for Lebesgue almost all z ∈ Rn [14, 20]. J

For the case that E and F are Borel sets, Falconer [11] notes that the intersection formula
is readily extended to rigid motions and similarities. The same argument applies in the
general case, so Theorem 1 has the following corollary.

I Corollary 7. Let E,F ⊆ Rn. Let G be the group of rigid motions or the group of similarities
on Rn. Then, for almost all σ ∈ G,

dimH(E ∩ σ(F )) ≤ max{0,dimH(E × F )− n} . (4)

Proof (Following Falconer [11]). For all rotations (and all scalings) of F , Theorem 1 tells
us that (4) holds for almost all translations. Thus, (4) holds for almost all rigid motions and
almost all similarities. J

A corresponding intersection formula for packing dimension has been shown for arbitrary
E,F ⊆ Rn by Falconer [10]. That proof is not difficult or long, but an algorithmic dimensional
proof is presented here as an instance where this technique applies symmetrically to both
Hausdorff and packing dimension.

MFCS 2017



58:8 Fractal Intersections and Products via Algorithmic Dimension

I Theorem 8 (Falconer [10]). For all E,F ⊆ Rn, and for (Lebesgue) almost all z ∈ Rn,

dimP (E ∩ (F + z)) ≤ max{0,dimP (E × F )− n} .

Proof. As in Theorem 1, we may assume that the intersection is nonempty. Apply Theorem 6
to choose an oracle set B ⊆ N such that

dimP (E × F ) = sup
(x,y)∈E×F

DimB(x, y) (5)

and, given ε > 0, a point y ∈ E ∩ (F + z) satisfying

DimB,z(y) ≥ dimP (E ∩ (F + z))− ε . (6)

Then (y, y − z) ∈ E × F , and we may proceed much as before:

dimP (E × F ) ≥ DimB(y, y − z)
= DimB(y, z)
≥ dimB(z) + DimB(y|z)
≥ dimB(z) + DimB,z(y)
≥ dimB(z) + dimP (E ∩ (F + z))− ε .

These lines follow from (5), Lemma 3, Theorem 4, Lemma 5, and (6). Again, dimB(z) = n

for almost every z ∈ Rn, so this completes the proof. J

5 Products of Fractals

In this section we prove four known product inequalities for fractal dimensions. Inequality (7),
which was stated in the introduction as Theorem 2, is due to Marstrand [19]. When E and
F are Borel sets, it is simple to prove (7) by using Frostman’s Lemma, but the argument
for general sets using net measures is considerably more difficult [23, 9]. The other three
inequalities are due to Tricot [37]. Reference [23] gives a more detailed account of this history.

I Theorem 9 (Marstrand [19], Tricot [37]). For all E ⊆ Rm and F ⊆ Rn,

dimH(E) + dimH(F ) ≤ dimH(E × F ) (7)
≤ dimH(E) + dimP (F ) (8)
≤ dimP (E × F ) (9)
≤ dimP (E) + dimP (F ) . (10)

Notice the superficial resemblance of this theorem to Theorem 4. This similarity is not a
coincidence; each inequality in Theorem 9 follows from the corresponding line in Theorem 4.
The arguments given here for (7–10) are each similar in length to the proof of (7) for Borel
sets. That is, they are quite short.

Proof. Theorem 6 guarantees, for every ε > 0, that there exist an oracle set A ⊆ N and
points x ∈ E and y ∈ F such that

dimH(E × F ) = sup
z∈E×F

dimA(z) , (11)

dimA(x) ≥ dimH(E)− ε ,
dimA,x(y) ≥ dimH(F )− ε .



N. Lutz 58:9

Then by (11), Theorem 4 relative to A, and Lemma 5 relative to A, we have

dimH(E × F ) ≥ dimA(x, y)
≥ dimA(x) + dimA(y|x)
≥ dimA(x) + dimA,x(y)
≥ dimH(E) + dimH(F )− 2ε ,

by our choice of x and y. Since ε > 0 was arbitrary, we conclude that (7) holds.
For (8), let ε > 0 and use both parts of Theorem 6 to find B,C ⊆ N, u ∈ E, and v ∈ F

such that

dimH(E) = sup
x∈E

dimB(x) ,

dimP (F ) = sup
y∈E

DimC(y) ,

dimB,C(u, v) ≥ dimH(E × F )− ε .

Since B and C minimize their respective expressions, we also have

dimH(E) = sup
x∈E

dimB,C(x) ,

dimP (F ) = sup
y∈E

DimB,C(y) .

Thus, we can apply Theorem 4 relative to B,C, after first noticing that conditioning on
another point never increases dimension.

dimH(E) + dimP (F ) ≥ dimB,C(u) + DimB,C(v)
≥ dimB,C(u|v) + DimB,C(v)
≥ dimB,C(u, v)
≥ dimH(E × F )− ε .

Again, ε was arbitrary, so (8) holds.
For (9) and (10), we use essentially the same arguments as above. By Theorem 6, there

are A′, B′ ⊆ N, x′, u′ ∈ E, y′, v′ ∈ F , and ε > 0 that satisfy

dimP (E × F ) = sup
z∈E×F

DimA′(z) ,

dimH(E) = sup
z∈E

DimB′(z) ,

dimA′(x′) ≥ dimH(E)− ε ,

DimA′,x′(y′) ≥ dimP (F )− ε ,

DimB′,C(u′, v′) ≥ dimP (E × F )− ε ,

where x and C are as above. We once again apply relativized versions of Theorem 4 and

MFCS 2017



58:10 Fractal Intersections and Products via Algorithmic Dimension

Lemma 5:

dimP (E) + dimP (F ) ≥ DimB′,C(u′) + DimB′,C(v′)

≥ DimB′,C(u′|v′) + DimB′,C(v′)

≥ DimB′,C(u′, v′)
≥ dimP (E × F )− ε

≥ DimA′(x′, y′)− ε

≥ dimA′(x′) + DimA′(y′|x′)− ε

≥ dimA′(x′) + DimA′,x′(y′)− ε
≥ dimH(E) + dimP (F )− 3ε .

Letting ε→ 0 completes the proof. J

6 Conclusion

The applications of theoretical computer science to pure mathematics in this paper yielded a
significant extension to a basic theorem on Hausdorff dimension, as well as a much simpler
argument for another such theorem. Understanding classical fractal dimensions as pointwise,
algorithmic information theoretic quantities enables reasoning about them in a way that
is both fine-grained and intuitive, and the proofs in this work are further evidence of the
power and versatility of bounding techniques using Theorem 6. In particular, Theorem 1
demonstrates that this approach can be used to strengthen the foundations of fractal geometry.
Therefore, in addition to further applications of these techniques, developing more refined
results on the relationship between classical geometric measure theory and Kolmogorov
complexity is an appealing direction for future investigations.

References
1 Krishna B. Athreya, John M. Hitchcock, Jack H. Lutz, and Elvira Mayordomo. Effective

strong dimension in algorithmic information and computational complexity. SIAM Journal
of Computing, 37(3):671–705, 2007. doi:10.1137/s0097539703446912.

2 Verónica Becher, Jan Reimann, and Theodore A. Slaman. Irrationality exponent, Hausdorff
dimension and effectivization. arXiv:1601.00153 [math.NT], 2016.

3 Christopher J. Bishop. Personal communication, April 27, 2017.
4 Christopher J. Bishop and Yuval Peres. Fractals in Probability and Analysis. Cambridge

University Press, 2017. doi:10.1017/9781316460238.
5 Jin-Yi Cai and Juris Hartmanis. On Hausdorff and topological dimensions of the Kol-

mogorov complexity of the real line. Journal of Computer and System Sciences, 49(3):605–
619, 1994. doi:10.1016/S0022-0000(05)80073-X.

6 Adam Case and Jack H. Lutz. Mutual dimension. ACM Transactions on Computation
Theory, 7(3):12, 2015. doi:10.1145/2786566.

7 R. O. Davies. Some remarks on the Kakeya problem. Proceedings of the Cambridge Philo-
sophical Society, 69:417–421, 1971. doi:10.1017/s0305004100046867.

8 Rod Downey and Denis Hirschfeldt. Algorithmic Randomness and Complexity. Springer-
Verlag, 2010. doi:10.1007/978-0-387-68441-3.

9 Kenneth J. Falconer. The Geometry of Fractal Sets. Cambridge University Press, 1985.
doi:10.1017/cbo9780511623738.

http://dx.doi.org/10.1137/s0097539703446912
http://dx.doi.org/10.1017/9781316460238
http://dx.doi.org/10.1016/S0022-0000(05)80073-X
http://dx.doi.org/10.1145/2786566
http://dx.doi.org/10.1017/s0305004100046867
http://dx.doi.org/10.1007/978-0-387-68441-3
http://dx.doi.org/10.1017/cbo9780511623738


N. Lutz 58:11

10 Kenneth J. Falconer. Sets with large intersection properties. Journal of the London Math-
ematical Society, 49(2):267–280, 1994. doi:10.1112/jlms/49.2.267.

11 Kenneth J. Falconer. Fractal Geometry: Mathematical Foundations and Applications. Wi-
ley, third edition, 2014. doi:10.1002/0470013850.

12 Felix Hausdorff. Dimension und äusseres Mass. Mathematische Annalen, 79:157–179, 1919.
doi:10.1007/978-3-642-59483-0_2.

13 Jean-Pierre Kahane. Sur la dimension des intersections. In Jorge Alberto Barroso, edi-
tor, Aspects of mathematics and its applications, North-Holland Mathematical Library, 34,
pages 419–430. Elsevier, 1986. doi:10.1016/s0924-6509(09)70272-7.

14 Ming Li and Paul M.B. Vitányi. An Introduction to Kolmogorov Complexity and Its Appli-
cations. Springer, third edition, 2008. doi:10.1007/978-0-387-49820-1.

15 Jack H. Lutz. The dimensions of individual strings and sequences. Information and Com-
putation, 187(1):49–79, 2003. doi:10.1016/s0890-5401(03)00187-1.

16 Jack H. Lutz and Neil Lutz. Algorithmic information, plane Kakeya sets, and conditional
dimension. In Proceedings of the 34th Symposium on Theoretical Aspects of Computer
Science, STACS 2017, March 8–11, 2017, Hannover, Germany, pages 53:1–53:13, 2017.
doi:10.4230/LIPIcs.STACS.2017.53.

17 Jack H. Lutz and Elvira Mayordomo. Dimensions of points in self-similar fractals. SIAM
Journal of Computing, 38(3):1080–1112, 2008. doi:10.1007/978-3-540-69733-6_22.

18 Neil Lutz and D. M. Stull. Bounding the dimension of points on a line. In TV Gopal, Ger-
hard Jaeger, and Silvia Steila, editors, Theory and Applications of Models of Computation:
14th Annual Conference, TAMC 2017, Bern, Switzerland, April 20-22, 2017, Proceedings,
pages 425–439, 2017. doi:10.1007/978-3-319-55911-7_31.

19 John M. Marstrand. Some fundamental geometrical properties of plane sets of fractional
dimensions. Proceedings of the London Mathematical Society, 4(3):257–302, 1954. doi:
10.1112/plms/s3-4.1.257.

20 Per Martin-Löf. The definition of random sequences. Information and Control, 9(6):602–
619, 1966. doi:10.1016/s0019-9958(66)80018-9.

21 Pertti Mattila. Hausdorff dimension and capacities of intersections of sets in n-space. Acta
Mathematica, 152:77–105, 1984. doi:10.1007/bf02392192.

22 Pertti Mattila. On the Hausdorff dimension and capacities of intersections. Mathematika,
32:213–217, 1985. doi:10.1112/s0025579300011001.

23 Pertti Mattila. Geometry of sets and measures in Euclidean spaces: fractals and rectifiabil-
ity. Cambridge University Press, 1995. doi:10.1017/cbo9780511623813.

24 Elvira Mayordomo. A Kolmogorov complexity characterization of constructive Hausdorff
dimension. Inf. Process. Lett., 84(1):1–3, 2002. doi:10.1016/s0020-0190(02)00343-5.

25 Elvira Mayordomo. Effective fractal dimension in algorithmic information theory. In
S. Barry Cooper, Benedikt Löwe, and Andrea Sorbi, editors, New Computational
Paradigms: Changing Conceptions of What is Computable, pages 259–285. Springer New
York, 2008. doi:10.1007/978-0-387-68546-5_12.

26 Ursula Molter and Ezequiel Rela. Furstenberg sets for a fractal set of directions. Pro-
ceedings of the American Mathematical Society, 140:2753–2765, 2012. doi:10.1090/
s0002-9939-2011-11111-0.

27 Andre Nies. Computability and Randomness. Oxford University Press, Inc., New York, NY,
USA, 2009. doi:10.1093/acprof:oso/9780199230761.001.0001.

28 Jan Reimann. Computability and fractal dimension. PhD thesis, Heidelberg University,
2004.

29 Jan Reimann. Effectively closed sets of measures and randomness. Annals of Pure and
Applied Logic, 156(1):170–182, 2008. doi:10.1016/j.apal.2008.06.015.

MFCS 2017

http://dx.doi.org/10.1112/jlms/49.2.267
http://dx.doi.org/10.1002/0470013850
http://dx.doi.org/10.1007/978-3-642-59483-0_2
http://dx.doi.org/10.1016/s0924-6509(09)70272-7
http://dx.doi.org/10.1007/978-0-387-49820-1
http://dx.doi.org/10.1016/s0890-5401(03)00187-1
http://dx.doi.org/10.4230/LIPIcs.STACS.2017.53
http://dx.doi.org/10.1007/978-3-540-69733-6_22
http://dx.doi.org/10.1007/978-3-319-55911-7_31
http://dx.doi.org/10.1112/plms/s3-4.1.257
http://dx.doi.org/10.1112/plms/s3-4.1.257
http://dx.doi.org/10.1016/s0019-9958(66)80018-9
http://dx.doi.org/10.1007/bf02392192
http://dx.doi.org/10.1112/s0025579300011001
http://dx.doi.org/10.1017/cbo9780511623813
http://dx.doi.org/10.1016/s0020-0190(02)00343-5
http://dx.doi.org/10.1007/978-0-387-68546-5_12
http://dx.doi.org/10.1090/s0002-9939-2011-11111-0
http://dx.doi.org/10.1090/s0002-9939-2011-11111-0
http://dx.doi.org/10.1093/acprof:oso/9780199230761.001.0001
http://dx.doi.org/10.1016/j.apal.2008.06.015


58:12 Fractal Intersections and Products via Algorithmic Dimension

30 Boris Ryabko. Noiseless coding of combinatorial sources. Problems of Information Trans-
mission, 22:170–179, 1986.

31 Boris Ryabko. Algorithmic approach to the prediction problem. Problems of Information
Transmission, 29:186–193, 1993.

32 Boris Ryabko. The complexity and effectiveness of prediction algorithms. Journal of
Complexity, 10(3):281–295, 1994. doi:10.1006/jcom.1994.1015.

33 Ludwig Staiger. Kolmogorov complexity and Hausdorff dimension. Information and Com-
putation, 103:159–194, 1989. doi:10.1007/3-540-51498-8_42.

34 Ludwig Staiger. A tight upper bound on Kolmogorov complexity and uniformly optimal pre-
diction. Theory of Computing Systems, 31:215–229, 1998. doi:10.1007/s002240000086.

35 Elias M. Stein and Rami Shakarchi. Real Analysis: Measure Theory, Integration, and
Hilbert Spaces. Princeton Lectures in Analysis. Princeton University Press, 2005.

36 Dennis Sullivan. Entropy, Hausdorff measures old and new, and limit sets of geometrically fi-
nite Kleinian groups. Acta Mathematica, 153(1):259–277, 1984. doi:10.1007/bf02392379.

37 Claude Tricot. Two definitions of fractional dimension. Mathematical Proceedings of the
Cambridge Philosophical Society, 91(1):57–74, 1982. doi:10.1017/s0305004100059119.

http://dx.doi.org/10.1006/jcom.1994.1015
http://dx.doi.org/10.1007/3-540-51498-8_42
http://dx.doi.org/10.1007/s002240000086
http://dx.doi.org/10.1007/bf02392379
http://dx.doi.org/10.1017/s0305004100059119


Domains for Higher-Order Games∗†

Matthew Hague1, Roland Meyer‡2, and Sebastian Muskalla3

1 Royal Holloway University of London, United Kingdom
matthew.hague@rhul.ac.uk

2 TU Braunschweig, Germany
roland.meyer@tu-braunschweig.de

3 TU Braunschweig, Germany
s.muskalla@tu-braunschweig.de

Abstract
We study two-player inclusion games played over word-generating higher-order recursion schemes.
While inclusion checks are known to capture verification problems, two-player games generalize
this relationship to program synthesis. In such games, non-terminals of the grammar are con-
trolled by opposing players. The goal of the existential player is to avoid producing a word that
lies outside of a regular language of safe words.

We contribute a new domain that provides a representation of the winning region of such
games. Our domain is based on (functions over) potentially infinite Boolean formulas with words
as atomic propositions. We develop an abstract interpretation framework that we instantiate
to abstract this domain into a domain where the propositions are replaced by states of a finite
automaton. This second domain is therefore finite and we obtain, via standard fixed-point
techniques, a direct algorithm for the analysis of two-player inclusion games. We show, via a
second instantiation of the framework, that our finite domain can be optimized, leading to a
(k + 1)EXP algorithm for order-k recursion schemes. We give a matching lower bound, showing
that our approach is optimal. Since our approach is based on standard Kleene iteration, existing
techniques and tools for fixed-point computations can be applied.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Higher-order recursion schemes, games, semantics, abstract interpreta-
tion, fixed points.

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.59

1 Introduction

Inclusion checking has recently received considerable attention [53, 22, 1, 2, 36]. One of the
reasons is a new verification loop, which invokes inclusion as a subroutine in an iterative
fashion. The loop has been proposed by Podelski et al. for the safety verification of recursive
programs [32], and then been generalized to parallel and parameterized programs [42, 20, 18]
and to liveness [19]. The idea of Podelski’s loop is to iteratively approximate unsound data
flow in the program of interest, and add the approximations to the specification. Consider
a program with control-flow language CF that is supposed to satisfy a safety specification

∗ The full version is available as technical report [28].
† This work was supported by the Engineering and Physical Sciences Research Council [EP/K009907/1].

The work instigated while some of the authors were visiting the Institute for Mathematical Sciences,
National University of Singapore in 2016. The visit was partially supported by the Institute.

‡ A part of the work was carried out when the author was at Aalto University.

© Matthew Hague, Roland Meyer, and Sebastian Muskalla;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 59; pp. 59:1–59:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.59
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


59:2 Domains for Higher-Order Games

given by a regular language R. If the check CF ⊆ R succeeds, then the program is correct
as the data flow only restricts the set of computations. If a computation w ∈ CF is found
that lies outside R, then it depends on the data flow whether the program is correct. If data
is handled correctly, w is a counterexample to R. Otherwise, w is generalized to a regular
language S of infeasible computations. We set R = R ∪ S and repeat the procedure.

Podelski’s loop has also been generalized to synthesis [35, 44]. In that setting, the program
is assumed to have two kinds of non-determinism. Some of the non-deterministic transitions
are understood to be controlled by the environment. They provide inputs that the system
has to react to, and are also referred to as demonic non-determinism. In contrast, the
so-called angelic non-determinism are the alternatives of the system to react to an input. The
synthesis problem is to devise a controller that resolves the angelic non-determinism in a way
that a given safety specification is met. Technically, the synthesis problem corresponds to a
two-player perfect information game, and the controller implements a winning strategy for
the system player. When generalizing Podelski’s loop to the synthesis problem, the inclusion
check thus amounts to solving a strategy-synthesis problem.

Our motivation is to synthesize functional programs with Podelski’s loop. We assume
the program to be given as a non-deterministic higher-order recursion scheme where the
non-terminals are assigned to two players. One player is the system player who tries to
enforce the derivation of words that belong to a given regular language. The other player is
the environment, trying to derive a word outside the language. The use of the corresponding
strategy-synthesis algorithm in Podelski’s loop comes with three characteristics: (1) The
algorithm is invoked iteratively, (2) the program is large and the specification is small,
and (3) the specification is non-deterministic. The first point means that the strategy
synthesis should not rely on costly precomputation. Moreover, it should have the chance to
terminate early. The second says that the cost of the computation should depend on the
size of the specification, not on the size of the program. Computations on the program, in
particular iterative ones, should be avoided. Together with the third characteristic, these two
consequences rule out reductions to reachability games. The required determinization would
mean a costly precomputation, and the reduction to reachability would mean a product
with the program. This discussion in particular forbids a reduction of the strategy-synthesis
problem to higher-order model checking [45], which indeed can be achieved (see the full
version [28] for a comparison to intersection types [41]). Instead, we need a strategy synthesis
that can directly deal with non-deterministic specifications.

We show that the winning region of a higher-order inclusion game wrt. a non-deterministic
right-hand side can be computed with a standard fixed-point iteration. Our contribution
is a domain suitable for this computation. The key idea is to use Boolean formulas whose
atomic propositions are the states of the targeted finite automaton. While a formula-based
domain has recently been proposed for context-free inclusion games [35] (and generalized
to infinite words [44]), the generalization to higher-order is new. Consider a non-terminal
that is ground and for which we have computed a formula. The Boolean structure reflects
the alternation among the players in the plays that start from this non-terminal. The words
generated along the plays are abstracted to sets of states from which these words can be
accepted. Determining the winner of the game is done by evaluating the formula when sets
of states containing the initial state are assigned the value true. To our surprise, the above
domain did not give the optimal complexity. Instead, it was possible to further optimize it by
resolving the determinization information. Intuitively, the existential player can also resolve
the non-determinism captured by a set. Crucially, our approach handles the non-determinism
of the specification inside the analysis, without preprocessing.



M. Hague, R. Meyer, and S. Muskalla 59:3

Besides offering the characteristics that are needed for Podelski’s loop, our development
also contributes to the research program of effective denotational semantics, as recently
proposed by Salvati and Walukiewicz [51] as well as Grellois and Melliès [24, 24], with [5, 48]
being early works in this field. The idea is to solve verification problems by computing
the semantics of a program in a suitable domain. Salvati and Walukiewicz studied the
expressiveness of greatest fixed-point semantics and their correspondence to automata [51],
and constructions of enriched Scott models for parity conditions [50, 49]. A similar line of
investigation has been followed in recent work by Grellois and Melliès [25, 26]. Hofmann
and Chen considered the verification of more restricted ω-path properties with a focus on
the domain [33]. They show that explicit automata constructions can be avoided and give a
domain that directly captures subsets (so-called patches) of the ω-language. The work has
been generalized to higher order [34]. Our contribution is related in that we focus on the
domain (suitable for capturing plays).

Besides the domain, the correctness proof may be of interest. We employ an exact
fixed-point transfer result as known from abstract interpretation. First, we give a semantic
characterization showing that the winning region can be captured by an infinite model
(a greatest fixed point). This domain has as elements (potentially infinite) sets of (finite)
Boolean formulas. The formulas capture plays (up to a certain depth) and the atomic
propositions are terminal words. The infinite set structure is to avoid infinite syntax. Then
we employ the exact fixed-point transfer result to replace the terminals by states and get rid
of the sets. The final step is another exact fixed-point transfer that justifies the optimization.
We give a matching lower bound. The problem is (k + 1)EXP-complete for order-k schemes.

Related Work. The relationship between recursion schemes and extensions of pushdown
automata has been well studied [16, 17, 37, 29]. This means algorithms for recursion schemes
can be transferred to extensions of pushdown automata and vice versa. In the sequel, we
will use pushdown automata to refer to pushdown automata and their family of extensions.

The decidability of Monadic Second Order Logic (MSO) over trees generated by recursion
schemes was first settled in the restricted case of safe schemes by Knapik et al. [37] and
independently by Caucal [14]. This result was generalized to all schemes by Ong [45]. Both
of these results consider deterministic schemes only.

Related results have also been obtained in the consideration of games played over the
configuration graphs of pushdown automata [52, 13, 38, 29]. Of particular interest are
saturation methods for pushdown games [7, 21, 12, 8, 30, 31, 9]. In these works, automata
representing sets of winning configurations are constructed using fixed-point computations.

A related approach pioneered by Kobayashi et al. operating directly on schemes is that
of intersection types [40, 41], where types embedding a property automaton are assigned to
terms of a scheme. Recently, saturation techniques were transferred to intersection types by
Broadbent and Kobayashi [10]. The typing algorithm is then a least fixed-point computation
analogous to an optimized version of our Kleene iteration, restricted to deterministic schemes.
This has led to one of the most competitive model-checking tools for schemes [39].

One may reduce our language inclusion problems to many of the above works. E.g. from
an inclusion game for schemes, we may build a game over an equivalent kind of pushdown
automaton and take the product with a determinization of the NFA. This obtains a reachability
game over a pushdown automaton that can be solved by any of the above methods. However,
such constructions are undesirable for iterative invocations as in Podelski’s loop.

We already discussed the relationship to model-theoretic verification algorithms. Abstract
interpretation has also been used by Ramsay [47], Salvati and Walukiewicz [50, 49], and

MFCS 2017



59:4 Domains for Higher-Order Games

Grellois and Melliès [24, 23] for verification. The former used a Galois connection between
safety properties (concrete) and equivalence classes of intersection types (abstract) to recreate
decidability results known in the literature. The latter two strands gives a semantics capable
of computing properties expressed in MSO. Indeed, abstract interpretation has long been
used for static analysis of higher-order programs [4].

2 Preliminaries

Complete Partial Orders. Let (D,≤) be a partial order with set D and (partial) ordering
≤ on D. We call (D,≤) pointed if there is a greatest element, called the top element and
denoted by > ∈ D. A descending chain in D is a sequence (di)i∈N of elements in D with
di ≥ di+1. We call (D,≤) ω-complete if every descending chain has a greatest lower bound,
called the meet or the infimum, and denoted by

d
i∈N di. If (D,≤) is pointed and ω-complete,

we call it a pointed ω-complete partial order (cppo). In the following, we will only consider
partial orders that are cppos. Note, cppo is usually used to refer to the dual concept, i.e.
partial orders with a least element and least upper bounds for ascending chains.

A function f : D → D is u-continuous if for all descending chains (di)i∈N we have
f(

d
i∈N di) =

d
i∈N f(di). We call a function f : D → D monotonic if for all d, d′ ∈ D, d ≤ d′

implies f(d) ≤ f(d′). Any function that is u-continuous is also monotonic. For a monotonic
function, > ≥ f(>) ≥ f2(>) = f(f(>)) ≥ f3(>) ≥ . . . is a descending chain.

If the function is u-continuous, then
d
i∈N f

i(>) is by Kleene’s theorem the greatest fixed
point of f , i.e. f(

d
i∈N f

i(>)) =
d
i∈N f

i(>) and
d
i∈N f

i(>) is larger than any other element
d with f(d) = d. We also say

d
i∈N f

i(>) is the greatest solution to the equation x = f(x).
A lattice satisfies the descending chain condition (DCC) if every descending chain has to

be stationary at some point. In this case
d
i∈N f

i(>) =
di0
i=0 f

i(>) for some index i0 in N.
With this, we can compute the greatest fixed point: Starting with >, we iteratively apply f
until the result does not change. This process is called Kleene iteration. Note that finite
cppos, i.e. with finitely many elements in D, trivially satisfy the descending chain condition.

Finite Automata. A non-deterministic finite automaton (NFA) is a tuple
A = (QNFA,Γ, δ, q0, Qf ) where QNFA is a finite set of states, Γ is a finite alphabet,
δ ⊆ QNFA × Γ×QNFA is a (non-deterministic) transition relation, q0 ∈ QNFA is the initial
state, and Qf ⊆ QNFA is a set of final states. We write q a→ q′ to denote (q, a, q′) ∈ δ.
Moreover, given a word w = a1 · · · a`, we write q w→ q′ whenever there is a sequence of
transitions, also called run, q1

a1→ q2
a2→ · · · a`→ q`+1 with q1 = q and q`+1 = q′. The run is

accepting if q = q0 and q′ ∈ Qf . The language of A is L(A) = {w | q0
w→ q ∈ Qf} .

3 Higher-Order Recursion Schemes

We introduce higher-order recursion schemes, schemes for short, following the presentation
in [27]. Schemes can be understood as grammars generating the computation trees of
programs in a functional language. As is common in functional languages, we need a
typing discipline. To avoid confusion with type-based approaches to higher-order model
checking [40, 46, 41], we refer to types as kinds. Kinds define the functionality of terms,
without specifying the data domain. Technically, the only data domain is the ground kind o,
from which (potentially higher-order) function kinds are derived by composition:

κ ::= o | (κ1 → κ2) .



M. Hague, R. Meyer, and S. Muskalla 59:5

We usually omit the brackets and assume that the arrow associates to the right. The
number of arguments to a kind is called the arity. The order defines the functionality of
the arguments: A first-order kind defines functions that act on values, a second-order kind
functions that expect functions as parameters. Formally, we have

arity(o) = 0, order(o) = 0,
arity(κ1 → κ2) = arity(κ2) + 1, order(κ1 → κ2) = max(order(κ1) + 1, order(κ2)) .

Let K be the set of all kinds. Higher-order recursion schemes assign kinds to symbols from
different alphabets, namely non-terminals, terminals, and variables. Let Γ be a set of such
kinded symbols. For each kind κ, we denote by Γκ the restriction of Γ to the symbols with
kind κ. The terms T κ(Γ) of kind κ over Γ are defined by simultaneous induction over all
kinds. They form the smallest set satisfying
1. Γκ ⊆ T κ(Γ),
2.

⋃
κ1
{t v | t ∈ T κ1→κ2(Γ), v ∈ T κ1(Γ)} ⊆ T κ2(Γ), and

3. {λx.t | x ∈ T κ1(Γ), t ∈ T κ2(Γ)} ⊆ T κ1→κ2(Γ).
If term t is of kind κ, we also write t : κ. We use T (Γ) for the set of all terms over Γ. We say
a term is λ-free if it contains no sub-term of the form λx.t. A term is variable-closed if all
occurring variables are bound by a preceding λ-expression.

I Definition 1. A higher-order recursion scheme, (scheme for short), is a tuple G =
(V,N, T,R, S), where V is a finite set of kinded symbols called variables, T is a finite set of
kinded symbols called terminals, and N is a finite set of kinded symbols called non-terminals
with S ∈ N the initial symbol. The sets V , T , and N are pairwise disjoint. The finite set R
consists of rewriting rules of the form F = λx1 . . . λxn.e, where F ∈ N is a non-terminal of
kind κ1 → . . . κn → o, x1, . . . , xn ∈ V are variables of the required kinds, and e is a λ-free,
variable-closed term of ground kind from T o(T ·∪N ·∪{x1 : κ1, . . . , xn : κn}).

The semantics of G is defined by rewriting subterms according to the rules in R. A context
is a term C[•] ∈ T (Γ ·∪{• : o}) in which • occurs exactly once. Given a context C[•] and a
term t : o, we obtain C[t] by replacing the unique occurrence of • in C[•] by t. With this,
t⇒G t′ if there is a context C[•], a rule F = λx1 . . . λxn.e, and a term F t1 . . . tn : o such
that t = C[F t1 . . . tn] and t′ = C[e[x1 7→ t1, . . . , xn 7→ tn]]. In other words, we replace one
occurrence of F in t by a right-hand side of a rewriting rule, while properly instantiating the
variables. We call such a replaceable F t1 . . . tn a reducible expression (redex). The rewriting
step is outermost to innermost (OI) if there is no redex that contains the rewritten one as a
proper subterm. The OI-language L(G) of G is the set of all (finite, ranked, labeled) trees T
over the terminal symbols that can be created from the initial symbol S via OI-rewriting
steps. We will restrict the rewriting relation to OI-rewritings in the rest of this paper. Note,
all words derivable by IO-rewriting are also derivable with OI-rewriting.

Word-Generating Schemes. We consider word-generating schemes, i.e. schemes with ter-
minals T ·∪{$ : o} where exactly one terminal symbol $ has kind o and all others are of kind
o→ o. The generated trees have the shape a1 (a2 (· · · (ak $))), which we understand as the
finite word a1a2 . . . ak ∈ T ∗. We also see L(G) as a language of finite words.

Determinism. The above schemes are non-deterministic in that several rules may rewrite
a non-terminal. We associate with a non-deterministic scheme G = (V,N, T,R, S) a deter-
ministic scheme Gdet with exactly one rule per non-terminal. Intuitively, Gdet makes the
non-determinism explicit with new terminal symbols.

MFCS 2017



59:6 Domains for Higher-Order Games

Formally, let F : κ be a non-terminal with rules F = t1 to F = t`. We may assume each
ti = λx1 . . . λxk.ei, where ei is λ-free. We introduce a new terminal symbol opF : o→ o→
. . .→ o of arity `. Let the set of all these terminals be T det = {opF | F ∈ N}. The set of rules
Rdet now consists of a single rule for each non-terminal, namely F = λx1 . . . λxk.opF e1 · · · e`.
The original rules in R are removed. This yields Gdet = (V,N, T ·∪T det , Rdet , S). The
advantage of resolving the non-determinism explicitly is that we can give a semantics to
non-deterministic choices that depends on the non-terminal instead of having to treat
non-determinism uniformly.

Semantics. Let G = (V,N, T,R, S) be a deterministic scheme. A model of G is a pair
M = (D, I), where D is a family of domains (D(κ))κ∈K that satisfies the following: D(o) is a
cppo and D(κ1 → κ2) = Cont(D(κ1),D(κ2)). Here, Cont(A,B) is the set of all u-continuous
functions from domain A to B. We comment on this cppo in a moment. The interpretation
I : T → D assigns to each terminal s : κ an element I(s) ∈ D(κ).

The ordering on functions is defined component-wise, f ≤κ1→κ2 g if (f x) ≤κ2 (g x)
for all x ∈ D(κ1). For each κ, we denote the top element of D(κ) by >κ. For the ground
kind, >o exists since D(κ) is a cppo, and >κ1→κ2 is the function that maps every argument
to >κ2 . The meet of a descending chain of functions (fi)i∈N is the function defined by
(
d
κ1→κ2

(fi)i∈N) x =
d
κ2

(fi x)i∈N. Note that the sequence on the right-hand side is a
descending chain.

The semantics of terms defined by a model is a function

MJ−K : T → (N ·∪V 9 D)→ D .

that assigns to each term built over the non-terminals and terminals again a function. This
function expects a valuation ν : N ·∪V 9 D and returns an element from the domain. A
valuation is a partial function that is defined on all non-terminals and the free variables.
We lift u to descending chains of valuations with (

d
i∈N νi)(y) =

d
i∈N(νi(y)) for y ∈ N ·∪V .

We obtain that the set of such valuations is a cppo where the greatest elements are those
valuations which assign the greatest elements of the appropriate domain to all arguments.

Since the right-hand sides of the rules in the scheme are variable-closed, we do not need a
variable valuation for them. We need the variable valuation, however, whenever we proceed
by induction on the structure of terms. The semantics is defined by such an induction:

MJsK ν = I(s) MJF K ν = ν(F ) MJt1 t2K ν = (MJt1K ν) (MJt2K ν)
MJxK ν = ν(x) MJλx : κ.t1K ν = d ∈ D(κ) 7→ MJt1K ν[x 7→ d] .

We show that MJtK is u-continuous for all terms t. This follows from continuity of the
functions in the domain, but requires some care when handling application.

I Proposition 2. For all t,MJtK is u-continuous (in ν) over the respective lattice.

GivenM, the rules F1 = t1, . . . , Fk = tk of the (deterministic) scheme give a function

rhsM : (N → D)→ (N → D) , where rhsM(ν)(Fj) =MJtjK ν .

Since the right-hand sides are variable-closed, theMJtjK are functions in the non-terminals.
Provided MJt1K to MJtkK are u-continuous (in the valuation of the non-terminals), the
function rhsM will be u-continuous. This allows us to apply Kleene iteration as follows. The
initial value is the greatest element σ0

M where σ0
M(Fj) = >j with >j the top element of

D(κj). The (i+ 1)th approximant is computed by evaluating the right-hand side at the ith



M. Hague, R. Meyer, and S. Muskalla 59:7

solution, σi+1
M = rhsM(σiM). The greatest fixed point is the tuple σM defined below. It can

be understood as the greatest solution to the equation ν = rhsM(ν). We call this greatest
solution σM the semantics of the scheme in the model.

σM =
l

i∈N
σiM =

l

i∈N
rhsiM(σ0

M)

4 Higher-Order Inclusion Games

Our goal is to solve higher-order games, whose arena is defined by a scheme. We assume that
the derivation process is controlled by two players. To this end, we divide the non-terminals
of a word-generating scheme into those owned by the existential player ♦ and those owned
by the universal player �. Whenever a non-terminal is to be replaced during the derivation,
it is the owner who chooses which rule to apply. The winning condition is given by an
automaton A, Player ♦ attempts to produce a word that is in L(A), while Player � attempts
to produce a word outside of L(A).

I Definition 3. A higher-order game is a triple G = (G,A,O) where G is a word-generating
scheme, A is an NFA, O : N → {♦,�} is a partitioning of the non-terminals of G.

A play of the game is a sequence of OI-rewriting steps. Since terms generate words, it is
unambiguous which term forms the next redex to be rewritten. In particular, all terms are
of the form a1(a2(· · · (ak(t)))), where t is either $ or a redex F t1 · · · tm. If O(F ) = ♦ then
Player ♦ chooses a rule F = λx1 . . . λxm.e to apply, else Player � chooses the rule. This
moves the play to a1 (a2 (· · · (ak e[x1 7→ t1, . . . , xm 7→ tm]))).

Each play begins at the initial non-terminal S, and continues either ad infinitum or until
a term a1 (a2 (· · · (ak $))), understood as the word w = a1 . . . ak, is produced. Infinite plays
do not produce a word and are won by Player ♦. Finite maximal plays produce such a
word w. Player ♦ wins whenever w ∈ L(A), Player � wins if w ∈ L(A). Since the winning
condition is Borel, either Player ♦ or Player � has a winning strategy [43].

The Winner of a Higher-Order Game (HOG)
Input: A higher-order game G.
Question: Does Player ♦ win G? If so, effectively represent Player ♦’s strategy.

Our contribution is a fixed-point algorithm to decide HOG. We derive it in three steps. First,
we develop a concrete model for higher-order games whose semantics captures the above
winning condition. Second, we introduce a framework that for two models and a mapping
between them guarantees that the mapping of the greatest fixed point with respect to the one
model is the greatest fixed point with respect to the other model. Finally, we introduce an
abstract model that uses a finite ground domain. The solution of HOG can be read off from
the semantics in the abstract model, which in turn can be computed via Kleene iteration.
Moreover, this semantics can be used to define Player ♦’s winning strategy. We instantiate
the framework for the concrete and abstract model to prove the soundness of the algorithm.

Concrete Semantics
Consider a HOG instance G = (G,A,O). Let Gdet be the determinized version of G. Our goal
is to define a modelMC = (DC , IC ) such that the semantics of Gdet in this model allows us
to decide HOG. Recall that we only have to define the ground domain. For composed kinds,
we use the functional lifting discussed in Section 3.

MFCS 2017



59:8 Domains for Higher-Order Games

Our idea is to associate to kind o the set of positive Boolean formulas where the atomic
propositions are words in T ∗. To be able to reuse the definition, we define formula domains
in more generality as follows.

Domains of Boolean Formulas. Given a (potentially infinite) set P of atomic propositions,
the positive Boolean formulas PBool(P ) over P are defined to contain true, every p from
P , and compositions of formulas via conjunction and disjunction. We work up to logical
equivalence, which means we treat φ1 and φ2 as equal as long as they are logically equivalent.

Unfortunately, if the set P is infinite, PBool(P ) is not a cppo, because the meet of a
descending chain of formulas might not be a finite formula. The idea of our domain is to
have conjunctions of infinitely many formulas. As is common in logic, we represent them as
infinite sets. Therefore, we consider the set of all sets of (finite) positive Boolean formulas
P(PBool(T ∗)) \ {∅} factorized modulo logical equivalence, denoted (P(PBool(T ∗)) \ {∅})/⇔.
To be precise, the sets may be finite or infinite, but they must be non-empty.

To define the factorization, let an assignment to the atomic propositions be given by a
subset of P ′ ⊆ P . The atomic proposition p is true if p ∈ P ′. An assignment satisfies a
Boolean formula, if the formula evaluates to true in that assignment. It satisfies a set of
Boolean formulas, if it satisfies all elements. Given two sets of formulas Φ1 and Φ2, we write
Φ1 ⇒ Φ2, if every assignment that satisfies Φ1 also satisfies Φ2. Two sets of formulas are
equivalent, denoted Φ1 ⇔ Φ2, if Φ1 ⇒ Φ2 and Φ2 ⇒ Φ1 holds.

The ordering on these factorized sets is implication (which by transitivity is independent
of the representative). The top element is the set {true}, which is implied by every set. The
conjunction of two sets is union. Note that it forms the meet in the partial order, and moreover
note that meets over arbitrary sets exist, in particular the domain is a cppo. We will also
need an operation of disjunction, which is defined by Φ1 ∨ Φ2 = {φ1 ∨ φ2 | φ1 ∈ Φ1, φ2 ∈ Φ2}.
We will also use disjunctions of higher (but finite) arity where convenient. Note that the
disjunction on finite formulas is guaranteed to result in a finite formula. Therefore, the above
is well-defined.

In our case, the assignment P ′ ⊆ T ∗ of interest is the language of the automaton A.
Player ♦ will win the game iff the concrete semantics assigns a set of formulas to S that is
satisfied by L(A).

The Concrete Domains and Interpretation of Terminals. From a ground domain, higher-
order domains are defined as continuous functions as in Section 3. Thus we only need

DC (o) = (P(PBool(T ∗)) \ {∅})/⇔ .

The endmarker $ yields the set of formulas {ε}, i.e. IC ($) = {ε}. A terminal a : o → o

prepends a to a given word w. That is IC (a) = prependa, where prependa distributes over
conjunction and disjunction:

prependa(φ) =


aw φ = w ,

prependa(φ1) op prependa(φ2) φ = φ1 op φ2 and op ∈ {∧,∨} ,
φ φ = true .

We apply prependa to sets of formulas by applying it to every element. Finally, IC (opF )
where opF has arity ` is an `-ary conjunction (resp. disjunction) if Player � (resp. ♦) owns F .

For MC = (DC , IC ) to be a model, we need our interpretation of terminals to be
u-continuous. This follows largely by the distributivity of our definitions.



M. Hague, R. Meyer, and S. Muskalla 59:9

I Lemma 4. For all non-ground terminals s, IC (s) is u-continuous.

I Example 5. Consider the higher-order game defined by the scheme S = H a $ | b $
and H = λf.λx.f (f x) | λf.λx.H (H f) x. Assume S is owned by Player ♦ and H is
owned by Player �. Let the automaton accept the language {b}. Player ♦ can choose
to rewrite S to b $ and therefore has a strategy to produce a word in the language. To
derive this information from the concrete semantics, we compute σMC (H). It is the function
mapping f ∈ Cont(DC (o),DC (o)) and d ∈ DC (o) to

⋃
k>0 f

2k(d). Note that the union is
the conjunction of sets of formulas, which is the interpretation of opH for the universal player.
Moreover, note that due to non-determinism we obtain all even numbers of applications of f ,
not only the powers of 2. With this, the semantics of the initial symbol is

σMC (S) =
⋃
k>0

prepend2k
a ({ε}) ∨ prependb({ε}) = {a2k ∨ b | k > 0}.

The assignment {b} given by the language of the NFA satisfies {a2k ∨ b | k > 0}. Indeed,
since b evaluates to true, every formula in the set evaluates to true.

Correctness of Semantics and Winning Strategies. We need to show that the concrete
semantics matches the original semantics of the game.

I Theorem 6. σMC (S) is satisfied by L(A) iff there is a winning strategy for Player ♦.

When σMC (S) is satisfied by L(A) the concrete semantics gives a winning strategy for ♦:
From a term t such thatMC JtK σMC is satisfied by L(A), Player ♦, when able to choose,
picks a rewrite rule that transforms t to t′, whereMC Jt′K σMC remains satisfied. The proof
of Theorem 6 shows this is always possible, and, moreover, Player � is unable to reach a term
for which satisfaction does not hold. This does not yet give an effective strategy since we
cannot computeMC JtK σMC . However, the abstract semantics will be computable, and can
be used in place of the concrete semantics by Player ♦ to implement the winning strategy.

The proof that σMC (S) being unsatisfied implies a winning strategy for Player � is more
involved and requires the definition of a correctness relation between semantics and terms
that is lifted to the level of functions, and shown to hold inductively.

5 Framework for Exact Fixed-Point Transfer

The concrete modelMC does not lead to an algorithm for solving HOG since its domains are
infinite. Here, we consider an abstract modelMA with finite domains. The soundness of the
resulting Kleene iteration relies on the two semantics being related by a precise abstraction α.
Since both semantics are defined by fixed points, this requires us to prove α(σMC ) = σMA .
In this section, we provide a general framework to this end.

Consider the deterministic scheme G together with two models (left and right)
Ml = (Dl, Il) and Mr = (Dr, Ir). Our goal is to relate the semantics in these mod-
els in the sense that σMr

= α(σMl
). Such exact fixed-point transfer results are well-known

in abstract interpretation. To generalize them to higher-order we give easy to instantiate
conditions on α,Ml, andMr that yield the above equality. Interestingly, exact fixed-point
transfer results seem to be rare for higher-order (e.g. [46]). Our development is inspired by
Abramsky’s lifting of abstraction functions to logical relations [3], which generalizes [11, 4].
These works focus on approximation and the compatibility we need for exactness is missing.
Our framework is easier to apply than [15, 6], which are again concerned with approximation
and do not offer (but may lead to) exact fixed-point transfer results.

MFCS 2017



59:10 Domains for Higher-Order Games

For the terminology, an abstraction is a function α : Dl(o)→ Dr(o). To lift the abstraction
to function domains, we define the notion of being compatible with α. Compatibility intuitively
states that the function on the concrete domain is not more precise than what the abstraction
function distinguishes. This allows us to define the abstraction of a function by applying
the function and abstracting the result, α(f) α(vl) = α(f vl). Compatibility ensures the
independence of the choice of vl.

By definition, all ground elements vl ∈ Dl(o) are compatible with α. For function domains,
compatibility and the abstraction are defined as follows.

I Definition 7. Assume α and the notion of compatibility are defined on Dl(κ1) and Dl(κ2).
Let >lκ (resp. >rκ) be the greatest element of Dl(κ) (resp. Dr(κ)) for each κ.
1. Function f ∈ Dl(κ1 → κ2) is compatible with α, if

a. for all compatible vl, v′l ∈ Dl(κ1) with α(vl) = α(v′l) we have α(f vl) = α(f v′l), and
b. for all compatible vl ∈ Dl(κ1) we have that f vl is compatible.

2. We define α(f) ∈ Dr(κ1 → κ2) as follows.
a. If f is compatible, we set α(f) vr = α(f vl), provided there is a compatible vl ∈ Dl(κ1)

with vr = α(vl), and α(f) vr = >rκ2
otherwise.

b. If f is not compatible, α(f) = >rκ1→κ2
.

We lift α to valuations ν : N ·∪V 9 Dl by α(ν)(F ) = α(ν(F )) and similar for x. We also
lift compatibility to valuations ν : N ·∪V 9 Dl by requiring ν(F ) to be compatible for all
F ∈ N and similar for x ∈ V .

The conditions needed for the exact fixed-point transfer are the following.

I Definition 8. Function α is precise forMl andMr, if
(P1) α(Dl(o)) = Dr(o),
(P2) α : Dl(o)→ Dr(o) is u-continuous,
(P3) α(>lo) = >ro,
(P4) α(Il(s)) = Ir(s) for all terminals s : o, and similarly α(Il(s) vl) = Ir(s) α(vl) for all

terminals s : κ1 → κ2 and all compatible vl ∈ Dl(κ1),
(P5) Il(s) vl is compatible for all terminals s : κ1 → κ2, and all compatible vl ∈ Dl(κ1).

(P1) is surjectivity of α. (P2) states that α is well-behaved wrt. u. (P3) says that the
greatest element is mapped as expected. Note that (P1)-(P3) are only posed for the ground
domain. One can prove that they generalize to function domains by the definition of function
abstraction. (P4) is that the interpretations of terminals inMC andMA are suitably related.
Finally (P5) is compatibility. (P4) and (P5) are generalized to terms in Lemma 9.

To prove α(σMl
) = σMr

, we need that rhsMr
is an exact abstract transformer of rhsMl

.
The following lemma states this for all terms t, in particular those that occur in the equations.
The generalization to product domains is immediate. Note that the result is limited to
compatible valuations, but this will be sufficient for our purposes. The proof proceeds by
induction on the structure of terms, while simultaneously provingMlJtK compatible with α.
With this result, we obtain the required exact fixed-point transfer for precise abstractions.

I Lemma 9. Assume (P1), (P4), and (P5) hold. For all terms t and all compatible ν, we
haveMlJtK ν compatible and α(MlJtK ν) =MrJtK α(ν).

I Theorem 10 (Exact Fixed-Point Transfer). Let G be a scheme with models Ml and Mr.
Let σl and σr be the corresponding semantics. If α : Dl → Dr is precise, we have σr = α(σl).



M. Hague, R. Meyer, and S. Muskalla 59:11

6 Domains for Higher-Order Games

We propose two domains, abstract and optimized, that allow us to solve HOG. The compu-
tation is a standard fixed-point iteration, and, in the optimized domain, this iteration has
optimal complexity. Correctness follows by instantiating the previous framework.

Abstract Semantics. Our goal is to define an abstract model for games that (1) suitably
relates to the concrete model from Section 4 and (2) is computable. By a suitable relation, we
mean the two models should relate via an abstraction function. Provided the conditions on
precision hold, correctness of the abstraction then follows from Theorem 10. Combined with
Theorem 6, this will allow us to solve HOG. Computable in particular means the domain
should be finite and the operations should be efficiently computable.

We define theMA = (DA, IA) as follows. Again, we resolve the non-determinism into
Boolean formulas. But rather than tracking the precise words generated by the scheme, we
only track the current set of states of the automaton. To achieve the surjectivity required
by precision, we restrict the powerset to those sets of states from which a word is accepted.
Let acc(w) = {q | q w→ qf ∈ Qf}. For a language L we have acc(L) = {acc(w) | w ∈ L}.
The abstract domain for terms of ground kind is DA(o) = PBool(acc(T ∗)). The lifting to
functions is as explained in Section 3. Satisfaction is now defined relative to a set Ω of
elements of P(QNFA) (cf. Section 4). With finitely many atomic propositions, there are only
finitely many formulas (up to logical equivalence). This means we no longer need sets of
formulas to represent infinite conjunctions, but can work with plain formulas. The ordering
is thus the ordinary implication with the meet being conjunction and top being true.

The interpretation of ground terms is IA($) = Qf and IA(a) = prea. Here prea is
the predecessor computation under label a, prea(Q) = {q′ ∈ QNFA | q′

a→ q ∈ Q}. It is
lifted to formulas by distributing it over conjunction and disjunction. The composition
operators are again interpreted as conjunctions and disjunctions, depending on the owner of
the non-terminal. Since we restrict the atomic propositions to acc(T ∗), we have to show that
the interpretations use only this restricted set. Proving IA(s) is u-continuous is standard.

I Lemma 11. The interpretations are defined on the abstract domain.

I Lemma 12. For all terminals s, IA(s) is u-continuous over the respective lattices.

Recall our concrete model isMC = (DC , IC ), where DC = P(PBool(T ∗)). To relate this
model toMA, we define the abstraction function α : DC (o)→ DA(o). It leaves the Boolean
structure of a formula unchanged but maps every word (which is an atomic proposition)
to the set of states from which this word is accepted. For a set of formulas, we take the
conjunction of the abstraction of the elements. This conjunction is finite as we work over a
finite domain, so there is no need to worry about infinite syntax. Technically, we define α on
PBool(T ∗) by α(Φ) =

∧
φ∈Φ α(φ) for a set of formulas Φ ∈ P(PBool(T ∗)), and

α(φ) =


acc(w) if φ = w,

α(φ1) op α(φ2) if φ = φ1 op φ2 and op ∈ {∧,∨},
φ if φ = true .

This definition is suitable in that α(σMC ) = σMA entails the following.

I Theorem 13. σMA(S) is satisfied by {Q ∈ acc(T ∗) | q0 ∈ Q} iff Player ♦ wins G.

To see that the theorem is a consequence of the exact fixed-point transfer, observe that
{Q ∈ acc(T ∗) | q0 ∈ Q} = acc(L(A)). Then, by σMA = α(σMC ) we have acc(L(A)) satisfies

MFCS 2017



59:12 Domains for Higher-Order Games

σMA(S) iff it also satisfies α(σMC (S)). This holds iff L(A) satisfies σMC (S) (a simple
induction over formulas). By Theorem 6, this occurs iff Player ♦ wins the game.

It remains to establish α(σMC ) = σMA . With the framework, the exact fixed-point
transfer follows from precision, Theorem 10. The proof of the following is routine.

I Proposition 14. α is precise. Hence, α(σMC ) = σMA .

Optimized Semantics. The above model yields a decision procedure for HOG via Kleene
iteration. Unfortunately, the complexity is one exponential too high: The height of the
domain for a symbol of order k in the abstract model is (k + 2)-times exponential, where the
height is the length of the longest strictly descending chain in the domain. This gives the
maximum number of steps of Kleene iteration needed to reach the fixed point.

We present an optimized version of our model that is able to close the gap: In this model,
the domain for an order-k symbol is only (k + 1)-times exponentially high. The idea is to
resolve the atomic propositions inMA, which are sets of states, into disjunctions among the
states. The reader familiar with inclusion algorithms will find this decomposition surprising.

We first define α : PBool(acc(T ∗)) → PBool(QNFA). The optimized domain will then
be based on the image of α. This guarantees surjectivity. For a set of states Q, we define
α(Q) =

∨
Q =

∨
q∈Q q. For a formula, the abstraction function is defined to distribute

over conjunction and disjunction. The optimized model is MO = (DO, IO) with ground
domain α(PBool(acc(T ∗))). The interpretation is IO($) =

∨
Qf . For a, we resolve the set

of predecessors into a disjunction, IO(a) q =
∨

prea({q}). The function distributes over
conjunction and disjunction. Finally, IO(opF ) is conjunction or disjunction of formulas,
depending on the owner of the non-terminal. Since we use a restricted domain, we have to
argue that the operations do not leave the domain. It is also straightforward to prove our
interpretation is u-continuous as required.

I Lemma 15. The interpretations are defined on the optimized domain.

I Lemma 16. For all terminals s, IO(s) is u-continuous over the respective lattices.

We again show precision, enabling the required exact fixed-point transfer.

I Proposition 17. α is precise. Hence, α(σMA) = σMO .

I Theorem 18. σMO (S) is satisfied by {q0} iff Player ♦ wins G.

It is sufficient to show σMA(S) is satisfied by {Q ∈ acc(T ∗) | q0 ∈ Q} iff σMO (S) is satisfied
by {q0}. Theorem 13 then yields the statement. Propositions Q in σMA(S) are resolved into
disjunctions

∨
Q in σMO (S). For such a proposition, we have Q ∈ {Q ∈ acc(T ∗) | q0 ∈ Q} iff∨

Q is satisfied by {q0}. This equivalence propagates to the formulas σMA(S) and σMO (S)
as the Boolean structure coincides. The latter follows from α(σMA(S)) = σMO (S).

Complexity. To solve HOG, we compute the semantics σMO and then evaluate σMO (S) at
the assignment {q0}. For the complexity, assume that the highest order of any non-terminal
in G is k. We show the number of iterations needed to compute the greatest fixed point is
at most (k + 1)-times exponential. We do this via a suitable upper bound on the length of
strictly descending chains in the domains assigned by DO.

I Proposition 19. The semantics σMO can be computed in (k + 1)EXP, where k is the
highest order of any non-terminal in the input scheme.



M. Hague, R. Meyer, and S. Muskalla 59:13

The lower bound is via a reduction from the word membership problem for alternating k-
iterated pushdown automata with polynomially-bounded auxiliary work-tape. This problem
was shown by Engelfriet to be (k + 1)EXP-hard. We can reduce this problem to HOG via
well-known translations between iterated stack automata and recursion schemes, using the
regular language specifying the winning condition to help simulate the work-tape.

I Proposition 20. Determining whether Player ♦ wins G is (k + 1)EXP-hard for k > 0.

Together, these results show the following corollary and final result.

I Corollary 21. HOG is (k + 1)EXP-complete for order-k schemes and k > 0.

References
1 P. A. Abdulla, Y. Chen, L. Clemente, L. Holík, C.-D. Hong, R. Mayr, and T. Vojnar. Sim-

ulation subsumption in Ramsey-based Büchi automata universality and inclusion testing.
In CAV, volume 6174 of LNCS, pages 132–147. Springer, 2010.

2 P. A. Abdulla, Y. Chen, L. Clemente, L. Holík, C.-D. Hong, R. Mayr, and T. Vojnar.
Advanced Ramsey-based Büchi automata inclusion testing. In CONCUR, volume 6901 of
LNCS, pages 187–202. Springer, 2011.

3 S. Abramsky. Abstract interpretation, logical relations and Kan extensions. J. Log. Comp.,
1(1):5–40, 1990.

4 S. Abramsky and C. Hankin. An introduction to abstract interpretation. In Abstract
Interpretation of declarative languages, volume 1, pages 63–102. Ellis Horwood, 1987.

5 K. Aehlig. A finite semantics of simply-typed lambda terms for infinite runs of automata.
LMCS, 3(3):1–23, 2007.

6 K. Backhouse and R. C. Backhouse. Safety of abstract interpretations for free, via logical
relations and Galois connections. Sci. Comp. Prog., 51(1-2):153–196, 2004.

7 A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata: Ap-
plication to model-checking. In CONCUR, volume 1243 of LNCS, pages 135–150. Springer,
1997.

8 A. Bouajjani and A. Meyer. Symbolic reachability analysis of higher-order context-free
processes. In FSTTCS, volume 3328 of LNCS, pages 135–147. Springer, 2004.

9 C. Broadbent, A. Carayol, M. Hague, and O. Serre. A saturation method for collapsible
pushdown systems. In ICALP, volume 7392 of LNCS, pages 165–176. Springer, 2012.

10 C. Broadbent and N. Kobayashi. Saturation-based model checking of higher-order recursion
schemes. In CSL, volume 23 of LIPIcs, pages 129–148. Dagstuhl, 2013.

11 G. L. Burn, C. Hankin, and S. Abramsky. Strictness analysis for higher-order functions.
Sci. Comp. Prog., 7(3):249–278, 1986.

12 T. Cachat. Symbolic strategy synthesis for games on pushdown graphs. In ICALP, volume
2380 of LNCS, pages 704–715. Springer, 2002.

13 T. Cachat. Higher order pushdown automata, the Caucal hierarchy of graphs and parity
games. In ICALP, volume 2719 of LNCS, pages 556–569. Springer, 2003.

14 D. Caucal. On infinite terms having a decidable monadic theory. In MFCS, volume 2420
of LNCS, pages 165–176. Springer, 2002.

15 P. Cousot and R. Cousot. Higher order abstract interpretation (and application to com-
portment analysis generalizing strictness, termination, projection, and PER analysis. In
ICCL, pages 95–112. IEEE, 1994.

16 W. Damm. The IO- and OI-hierarchies. Theor. Comp. Sci., 20:95–207, 1982.
17 W. Damm and A. Goerdt. An automata-theoretical characterization of the OI-hierarchy.

Inf. Comp., 71:1–32, 1986.

MFCS 2017



59:14 Domains for Higher-Order Games

18 A. Farzan, Z. Kincaid, and A. Podelski. Proof spaces for unbounded parallelism. In POPL,
pages 407–420. ACM, 2015.

19 A. Farzan, Z. Kincaid, and A. Podelski. Proving liveness of parameterized programs. In
LICS, pages 185–196. IEEE, 2016.

20 Azadeh Farzan, Zachary Kincaid, and Andreas Podelski. Proofs that count. In POPL,
pages 151–164. ACM, 2014.

21 A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to model checking
pushdown systems. ENTCS, 9:27–37, 1997.

22 S. Fogarty and M. Y. Vardi. Efficient Büchi universality checking. In TACAS, volume 6015
of LNCS, pages 205–220. Springer, 2010.

23 C. Grellois. Semantics of linear logic and higher-order model-checking. PhD thesis, Univer-
sité Paris Diderot (Paris 7), 2016.

24 C. Grellois and P.-A. Melliès. Finitary semantics of linear logic and higher-order model-
checking. In MFCS, volume 9234 of LNCS, pages 256–268. Springer, 2015.

25 C. Grellois and P.-A. Melliès. An infinitary model of linear logic. In FoSSaCS, volume 9034
of LNCS, pages 41–55. Springer, 2015.

26 C. Grellois and P.-A. Melliès. Relational semantics of linear logic and higher-order model
checking. In CSL, volume 41 of LIPIcs, pages 260–276. Dagstuhl, 2015.

27 A. Haddad. IO vs OI in higher-order recursion schemes. In FICS, volume 77 of EPTCS,
pages 23–30, 2012.

28 M. Hague, R. Meyer, and S. Muskalla. Domains for higher-order games. CoRR,
abs/1705.00355, 2017. URL: http://arxiv.org/abs/1705.00355.

29 M. Hague, A. S. Murawski, C.-H. L. Ong, and O. Serre. Collapsible pushdown automata
and recursion schemes. In LICS, pages 452–461. IEEE, 2008.

30 M. Hague and C.-H. L. Ong. Symbolic backwards-reachability analysis for higher-order
pushdown systems. In FoSSaCS, volume 4423 of LNCS, pages 213–227. Springer, 2007.

31 M. Hague and C.-H. L. Ong. Winning regions of pushdown parity games: A saturation
method. In CONCUR, volume 5710 of LNCS, pages 384–398. Springer, 2009.

32 M. Heizmann, J. Hoenicke, and A. Podelski. Nested interpolants. In POPL, pages 471–482.
ACM, 2010.

33 M. Hofmann and W. Chen. Abstract interpretation from Büchi automata. In CSL-LICS,
pages 51:1–51:10, 2014.

34 M. Hofmann and J. Ledent. A cartesian-closed category for higher-order model checking.
In LICS. IEEE, 2017. To appear.

35 L. Holík, R. Meyer, and S. Muskalla. Summaries for context-free games. In FSTTCS,
volume 65 of LIPIcs, pages 41:1–41:16. Dagstuhl, 2016.

36 Lukás Holík and Roland Meyer. Antichains for the verification of recursive programs. In
NETYS, volume 9466 of LNCS, pages 322–336. Springer, 2015.

37 T. Knapik, D. Niwinski, and P. Urzyczyn. Higher-order pushdown trees are easy. In
FoSSaCS, volume 2303 of LNCS, pages 205–222. Springer, 2002.

38 T. Knapik, D. Niwiński, P. Urzyczyn, and I. Walukiewicz. Unsafe grammars and panic
automata. In ICALP, volume 3580 of LNCS, pages 1450–1461. Springer, 2005.

39 N. Kobayashi. HorSat2: A model checker for HORS based on SATuration. A tool available
at http://www-kb.is.s.u-tokyo.ac.jp/~koba/horsat2/.

40 N. Kobayashi. Types and higher-order recursion schemes for verification of higher-order
programs. In POPL, pages 416–428. ACM, 2009.

41 N. Kobayashi and C.-H. L. Ong. A type system equivalent to the modal mu-calculus model
checking of higher-order recursion schemes. In LICS, pages 179–188. IEEE, 2009.

42 Z. Long, G. Calin, R. Majumdar, and R. Meyer. Language-theoretic abstraction refinement.
In FASE, volume 7212 of LNCS, pages 362–376. Springer, 2012.

http://arxiv.org/abs/1705.00355
http://www-kb.is.s.u-tokyo.ac.jp/~koba/horsat2/


M. Hague, R. Meyer, and S. Muskalla 59:15

43 D. A. Martin. Borel determinacy. Annals of Mathematics, 102(2):363–371, 1975. URL:
http://www.jstor.org/stable/1971035.

44 R. Meyer, S. Muskalla, and E. Neumann. Liveness verification and synthesis: New algo-
rithms for recursive programs. https://arxiv.org/abs/1701.02947.

45 C.-H. L. Ong. On model-checking trees generated by higher-order recursion schemes. In
LICS, pages 81–90. IEEE, 2006.

46 S. J. Ramsay. Intersection-Types and Higher-Order Model Checking. PhD thesis, Oxford
University, 2013.

47 S. J. Ramsay. Exact intersection type abstractions for safety checking of recursion schemes.
In PPDP, pages 175–186. ACM, 2014.

48 S. Salvati. Recognizability in the simply typed lambda-calculus. In WoLLIC, volume 5514
of LNCS, pages 48–60. Springer, 2009.

49 S. Salvati and I. Walukiewicz. A model for behavioural properties of higher-order programs.
In CSL, volume 41 of LIPIcs, pages 229–243. Dagstuhl, 2015.

50 S. Salvati and I. Walukiewicz. Typing weak MSOL properties. In FoSSaCS, volume 9034
of LNCS, pages 343–357. Springer, 2015.

51 S. Salvati and I. Walukiewicz. Using models to model-check recursive schemes. LMCS,
11(2):1–23, 2015.

52 I. Walukiewicz. Pushdown processes: Games and model-checking. Inf. Comp., 164(2):234–
263, 2001.

53 M. Wulf, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Antichains: A new algorithm
for checking universality of finite automata. In CAV, volume 4144 of LNCS, pages 17–30.
Springer, 2006.

MFCS 2017

http://www.jstor.org/stable/1971035
https://arxiv.org/abs/1701.02947




Fine-Grained Complexity of Rainbow Coloring and
Its Variants∗

Akanksha Agrawal

University of Bergen, Norway
akanksha.agrawal@uib.no

Abstract
Consider a graph G and an edge-coloring cR : E(G)→ [k]. A rainbow path between u, v ∈ V (G)
is a path P from u to v such that for all e, e′ ∈ E(P ), where e 6= e′ we have cR(e) 6= cR(e′).
In the Rainbow k-Coloring problem we are given a graph G, and the objective is to decide
if there exists cR : E(G) → [k] such that for all u, v ∈ V (G) there is a rainbow path between
u and v in G. Several variants of Rainbow k-Coloring have been studied, two of which are
defined as follows. The Subset Rainbow k-Coloring takes as an input a graph G and a set
S ⊆ V (G) × V (G), and the objective is to decide if there exists cR : E(G) → [k] such that for
all (u, v) ∈ S there is a rainbow path between u and v in G. The problem Steiner Rainbow
k-Coloring takes as an input a graph G and a set S ⊆ V (G), and the objective is to decide if
there exists cR : E(G) → [k] such that for all u, v ∈ S there is a rainbow path between u and v

in G. In an attempt to resolve open problems posed by Kowalik et al. (ESA 2016), we obtain
the following results.

For every k ≥ 3, Rainbow k-Coloring does not admit an algorithm running in time
2o(|E(G)|)nO(1), unless ETH fails.
For every k ≥ 3, Steiner Rainbow k-Coloring does not admit an algorithm running in
time 2o(|S|2)nO(1), unless ETH fails.
Subset Rainbow k-Coloring admits an algorithm running in time 2O(|S|)nO(1). This
also implies an algorithm running in time 2o(|S|2)nO(1) for Steiner Rainbow k-Coloring,
which matches the lower bound we obtain.

1998 ACM Subject Classification G.2.2 Graph Algorithms, I.1.2 Analysis of Algorithms

Keywords and phrases Rainbow Coloring, Lower bound, ETH, Fine-grained Complexity

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.60

1 Introduction

Graph connectivity is one of the fundamental properties in graph theory. Several connectivity
measures like k-vertex connectivity, k-edge connectivity, hamiltonicity, etc. have been studied
for graphs. Chartrand et al. [8] defined an interesting connectivity measure, called rainbow
connectivity, which is defined as follows. Let G be a graph and cR : E(G) → [k] be an
edge-coloring of G. A rainbow path between u, v ∈ V (G) is a path P from u to v such that
for all e, e′ ∈ E(P ), where e 6= e′ we have cR(e) 6= cR(e′). A graph with an edge-coloring is
rainbow-connected if for every pair of vertices there is a rainbow path between them. In the
Rainbow k-Coloring problem we are given a graph G, and the objective is to decide if
there exists an edge-coloring cR : E(G)→ [k] such that for all u, v ∈ V (G), there is a rainbow

∗ Due to space limitations most proofs have been omitted.
The research leading to these results received funding from the European Research Council under the
European Union’s Seventh Framework Programme (FP/2007-2013)/ ERC Grant Agreements no. 306992.

© Akanksha Agrawal;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 60; pp. 60:1–60:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.60
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


60:2 Fine-Grained Complexity of Rainbow Coloring and Its Variants

path between u and v in G. The problem has received attention both from graph theoretic
and algorithmic point of view, the details of which can be found, for instance in [9, 23, 24].

Rainbow k-Coloring problem is notoriously hard. It was conjectured by Caro et al. [4]
to be NP-complete already for k = 2. Indeed, by giving a polynomial time reduction from
3-SAT, this was confirmed by Chakraborty et al. [5]. Building on their results, Ananth et
al. [3] later showed that Rainbow k-Coloring remains NP-complete for every k ≥ 2. An
alternate hardness proof was also given by Le and Tuza [21]. For the complexity of the
problem on restricted graph classes, see e.g., [5, 6, 7, 8].

Impagliazzo et al. [16] introduced the Exponential time hypothesis (ETH), which has
been used as a basis for proving qualitative lower bounds for computational problems. The
ETH states that 3-SAT does not admit an algorithm running in time 2o(n)nO(1), where n is
the number of variables in the input 3-CNF formula. It has been shown that assuming ETH,
several NP-hard problems like Independent Set, Hitting set, and Chromatic Number
do not admit subexponential time algorithms (see the survey [25]).

Kowalik et al. [20] studied the fine-grained complexity of Rainbow k-Coloring and
some of its variants. In particular, they showed that Rainbow k-Coloring admits neither
an algorithm running in time 2o(|V (G)|3/2)|V (G)|O(1), nor an algorithm running in time
2o(|E(G)|/ log |E(G)|)|V (G)|O(1), unless ETH fails. They also studied a variant of Rainbow
k-Coloring, called Subset Rainbow k-Coloring (to be defined shortly), which was
introduced by Chakraborty et al. [5]. They showed that Subset Rainbow k-Coloring
does not admit an algorithm running in time 2o(|E(G)|)|V (G)|O(1) assuming ETH. In contrast,
they designed an FPT algorithm for the problem running in time |S|O(|S|)nO(1), where S is
a part of the input. For k = 2, they obtained a faster algorithm running in time 2O(|S|)nO(1).
Finally, they proposed yet another (parametric) variant of Rainbow k-Coloring, which
they called Steiner Rainbow k-Coloring. Their lower bound result for Rainbow k-
Coloring implies that Steiner Rainbow k-Coloring does not admit an algorithm
running in time 2o|S|3/2

nO(1). Moreover, their algorithm for Subset Rainbow k-Coloring
gives an algorithm for Steiner Rainbow k-Coloring running in time 2O(|S|2 log |S|)nO(1).

Our results. We attempt to tighten the gaps in the study of fine-grained complexity of
Rainbow k-Coloring and some of its variants, initiated by Kowalik et al. [20]. We now
describe our results in detail.

The first problem that we study is Steiner Rainbow k-Coloring, which is formally
defined below.

Steiner Rainbow k-Coloring Parameter: |S|
Input: A graph G and a vertex subset S ⊆ V (G).
Question: Does there exist an edge-coloring cR : E(G)→ [k] such that for every u, v ∈ S,
there is a rainbow path between u and v in G?
In Section 3, we show that for every k ≥ 3, Steiner Rainbow k-Coloring does not

admit an algorithm running in time 2o(|S|2)nO(1), under ETH. This resolves an open problem
posed by Kowalik et al. [20]. To prove the result, we give a reduction from k-Coloring on
graphs of maximum degree 2(k − 1) which does not admit an algorithm running in time
2o(n)nO(1), assuming ETH. Our reduction starts by computing a harmonious coloring of
the (bounded degree) input instance of k-Coloring, which forms an essential step in the
construction of S for the instance of Steiner Rainbow k-Coloring that we create. The
idea of using harmonious coloring for proving lower bounds of the form 2o(`2)nO(1) was used
by Agrawal et al. [1] to prove a lower bound for Split Contraction, when parameterized
by the vertex cover number `, of the input graph. Also, the idea of partitioning vertices



A. Agrawal 60:3

of the input graph based on some coloring scheme was used by Cygan et al. [10] to prove
ETH-based lower bounds for Graph Homomorphism and Subgraph Isomorphism.

The next problem we study is Rainbow k-Coloring, which is formally defined below.

Rainbow k-Coloring
Input: A graph G.
Question: Does there exist an edge-coloring cR : E(G) → [k] such that for every
u, v ∈ V (G), there is a rainbow path between u and v in G?

Kowalik et al. [20] conjectured that for every k ≥ 2, Rainbow k-Coloring does not
admit an algorithm running in time 2o(|E(G)|)nO(1), unless ETH fails. In Section 4, we resolve
this conjecture for every k ≥ 3. Again, we proceed with a reduction from k-Coloring on
bounded degree graphs. Although, the general scheme of reduction is the same as the one
we five for Steiner Rainbow k-Coloring, in this case the reduction is more involved.
Furthermore, we require to distinguish between the cases for k being odd and even in the
gadget construction. Also, to keep our gadgets simpler, we separate the case for k = 3 and
k > 3.

Finally, we study the complexity of Subset Rainbow k-Coloring, which is formally
defined below.

Subset Rainbow k-Coloring Parameter: |S|
Input: A graph G and a subset S ⊆ V (G)× V (G).
Output: An edge-coloring cR : E(G) → [k] such that for every (u, v) ∈ S, there is a
rainbow path between u and v in G, if it exists. Otherwise, return no.

In Section 5 we design an FPT algorithm running in time 2O(|S|)nO(1) for Subset
Rainbow k-Coloring, for every fixed k. This resolves the conjecture of Kowalik et al. [20]
regarding the existence of an algorithm running in time 2O(|S|)nO(1) for Subset Rainbow
k-Coloring, and is an improvement over their algorithm, which runs in time |S|O(|S|)nO(1),
for k ≥ 3. Our algorithm is based on the technique of color coding, which was introduced by
Alon et al. [2]. Observe that Steiner Rainbow k-Coloring is a special case of Subset
Rainbow k-Coloring. Hence, as a corollary we obtain an algorithm running in time
2O(|S|2)nO(1) for Steiner Rainbow k-Coloring, which matches the lower bound we prove
in Section 3.

2 Preliminaries

In this section, we state some basic definitions and introduce terminology from graph theory
and algorithms. We also establish some of the notation that will be used throughout.

We denote the set of natural numbers by N. For k ∈ N, by [k] we denote the set
{1, 2, . . . , k}. We use standard terminology from the book of Diestel [13] for the graph related
terminologies which are not explicitly defined here. We consider finite simple graphs. For a
graph G, by V (G) and E(G) we denote the vertex and edge sets of the graph G, respectively.
For v ∈ V (G), by NG(v) we denote the set {u ∈ V (G) | (v, u) ∈ E(G)}. We drop the
subscript G from NG(v) when the context is clear. For C, C ′ ⊆ V (G), we say that there is
an edge between C and C ′ in G if there exists u ∈ C and v ∈ C ′ such that (u, v) ∈ E(G).
A path P = (v1, v2, . . . , v`) is a graph with vertex and edge sets as {v1, v2, . . . , v`} and
{(vi, vi+1) | i ∈ [l − 1]}, respectively.

A harmonious coloring of a graph G is a vertex coloring ϕ : V (G)→ [k], with color classes
C1, C2, . . . , Ck such that for each i ∈ [k], Ci is an independent set in G and for all i, j ∈ [k],
where i 6= j there is at most one edge between Ci and Cj in G. We use the following result

MFCS 2017



60:4 Fine-Grained Complexity of Rainbow Coloring and Its Variants

for computing a harmonious coloring on bounded degree graphs.

I Proposition 1 ([11, 14, 22, 26]). Given a G with the degree of each vertex bounded by d,
where d is a fixed constant. A harmonious coloring of G can be computed in time O(nO(1))
using O(

√
n) colors with each color class having at most O(

√
n) vertices.

3 Lower bound for Steiner Rainbow k-Coloring

In this section, we show that for every k ≥ 3, Steiner Rainbow k-Coloring does not
admit an algorithm running in time 2o(|S|2)nO(1), unless ETH fails. Towards this we give
an appropriate reduction from k-Coloring on graphs of maximum degree 2(k − 1). We
note that k-Coloring does not admit an algorithm running in time 2o(n)nO(1) unless ETH
fails [17]. Moreover, assuming ETH, 3-Coloring does not admit an algorithm running
in time 2o(n)nO(1) on graphs of maximum degree 4 [18, 11]. This follows from the fact
that 3-Coloring does not admit such an algorithm, and a reduction from an instance G

of 3-Coloring to an equivalent instance G′ of 3-Coloring, where G′ is a graph with
maximum degree 4 with |V (G′)| ∈ O(|V (G)|) (see [15, Theorem 4.1]). In fact, we can show
that k-Coloring does not admit an algorithm running in time 2o(n)nO(1) on graphs of
maximum degree 2(k − 1) (folklore). This result can be obtained (inductively) by giving a
reduction from an instance G of (k − 1)-Coloring on graphs of degree at most 2(k − 2)
to an instance of k-Coloring on a graphs of bounded average degree (by adding global
vertex), and then using an approach similar to that in Theorem 4.1 in [15] we can obtain an
(equivalent) instance of k-Coloring where the degree of the graph is bounded by 2(k − 1).

Given an instance G of k-Coloring on n vertices and degree bounded by 2(k − 1), we
start by computing a harmonious coloring ϕ of G with t ∈ O(

√
n) color classes such that each

color class contains at most O(
√

n) vertices using Proposition 1. Let C1, C2, . . . , Ct be the
color classes of ϕ. Recall that for i, j ∈ [t] with i 6= j there is at most one edge between Ci

and Cj in G. Moreover, Ci is an independent set in G, where i ∈ [t]. We create an instance
G′ of k-Coloring which has a harmonious coloring ϕ′ with color classes C ′1, C ′2, . . . , C ′t
such that for all i, j ∈ [t], i 6= j we have exactly one edge between Ci and Cj . Initially,
we have G = G′ and C ′i = Ci, for all i ∈ [t]. For each i, j ∈ [t], i 6= j such that there is
no edge between Ci and Cj in G we add two new vertices aij and aji to V (G′) and add
the edge (aij , aji) to E(G′). Furthermore, we add aij to C ′i and aji to C ′ji. Observe that
|V (G′)| ∈ O(n), |E(G′)| ∈ O(n), and for each i ∈ [t], |C ′i| ∈ O(

√
n). Also, for each i, j ∈ [t],

i 6= j there is exactly one edge between C ′i and C ′j in G′. It is easy to see that G is a yes
instance of k-Coloring if and only if G′ is a yes instance of k-Coloring.

Hereafter, we will be working with the instance G′ of k-Coloring, together with its
harmonious coloring ϕ′ with color classes C ′1, C ′2, . . . , C ′t. Moreover, for i, j ∈ [t], i 6= j there
is exactly one edge between C ′i and C ′j in G′.

We now move to the description of creating an equivalent instance (G̃, S) of Steiner
Rainbow k-Coloring, where k ≥ 3. Initially, we have V (G̃) = V (G′). For (u, v) ∈ E(G′)
we add k − 3 new vertices xuv

1 , xuv
2 , . . . , xuv

k−3 to G̃ and add all the edges in the path
(u, xuv

1 , . . . , xuv
k−3, v) to E(G̃). Note that for k = 3 we do not any new vertex and directly

add the edge (u, v) to G̃. For each i ∈ [t] we add a vertex ci to G̃ and add all the edges in
{(ci, v) | v ∈ C ′i} to E(G̃). Finally, we set S = {ci | i ∈ [t]}. Notice that |S| ∈ O(

√
n). In the

following lemma we establish that G′ is a yes instance of k-Coloring if and only if (G̃, S)
is a yes instance of Steiner Rainbow k-Coloring.

I Lemma 2. G′ is a yes instance of k-Coloring if and only if (G̃, S) is a yes instance of
Steiner Rainbow k-Coloring.



A. Agrawal 60:5

Proof. In the forward direction, let G′ be a yes instance of k-Coloring, and c : V (G′)→ [k]
be one of its solution. We create a coloring cR : E(G̃) → [k] as follows. For i ∈ [t] and
v ∈ C ′i we set cR(ci, v) = c(v). For i, j ∈ [t], i 6= j let u, v be the (unique) vertices in C ′i
and C ′j such that (u, v) ∈ E(G′). We now describe the value of cR for edges in the path
P = (u, xuv

1 , . . . , xuv
k−3, v). Notice that |E(P )| = k − 2, and we arbitrarily assign distinct

integers in [k] \ {cR(ci, u), cR(cj , v)} to cR(e), where e ∈ E(P ). Since c is a proper coloring
of G′, cR(ci, u) = c(u) 6= c(v) = cR(cj , v). This together with the definition of cR for edges
in P implies that there is a rainbow path, namely (ci, u, xuv

1 , . . . , xuv
k−3, v, cj) in G̃ between ci

and cj . This concludes the proof in the forward direction.
In the reverse direction, let (G̃, S) be a yes instance of Steiner Rainbow k-Coloring,

and cR : E(G̃)→ [k] be one of its solution. We create a coloring c : V (G′)→ [k] as follows.
For i ∈ [t] and v ∈ C ′i, we let c(v) = cR(ci, v). We show that c is a solution to k-Coloring in
G′. Consider (u, v) ∈ E(G′), and let u ∈ C ′i and v ∈ C ′j . Note that we have i 6= j. Let P be a
rainbow path between ci and cj in G̃. By the construction of G̃, we have NG̃[ci]∩NG̃[cj ] = ∅.
Moreover, since P is a rainbow path, it can contain at most k edges. Recall that NG̃(ci) = C ′i,
NG̃(cj) = C ′j , and there is exactly one path with at most k − 2 edges between a vertex in C ′i
and a vertex in C ′j , namely (ci, u, xuv

1 , . . . , xuv
k−3, v, cj). This together with the construction

of c implies that c(u) 6= c(v). This concludes the proof. J

I Theorem 3. Steiner Rainbow k-Coloring does not admit an algorithm running in
time 2o(|S|2)nO(1), unless ETH fails. Here, n is the number of vertices in the input graph.

4 Lower bound for Rainbow k-Coloring

In this section, we show that for every k ≥ 3, Rainbow k-Coloring does not admit an
algorithm running in time 2o(|E(G)|)nO(1), unless ETH fails. We give different reductions for
the case when k = 3 (Section 4.1), k is an even number greater than 3 (Section 4.2), and k is
an odd number greater than 4 (Section 4.3). We note that although the approach used for
the proving lower bound for Rainbow 3-Coloring is extensible to Rainbow k-Coloring
when k is odd, it unnecessarily adds to complexity of the reduction. Moreover, the approach
we follow for showing the lower bound result for k > 3, where k is an odd number, introduces
some technical issues when we try to extend it for k = 3.

Towards proving our lower bound result, we give an appropriate reduction from k-
Coloring on graphs of maximum degree 2(k − 1), which does not admit an algorithm
running in time 2o(n)nO(1) unless ETH fails. The key idea behind the reduction is the same
as that presented in Section 3, but for this case it is more involved. Before moving on to the
description of the reductions we define a graph that will be useful in our reductions.

A clique sequence Zn,t = (Z1, Z2, . . . Zt) of order (n, t) is a graph defined as follows. We
have V (Zk,t) = ]i∈[t]Zi, where |Zi| = n for all i ∈ [t]. For each i ∈ [t], all the edges in
{(z, z′) | z, z′ ∈ Zi} are present in E(Zn,t), i.e. Zi is a clique. Furthermore, for all i ∈ [t− 1]
all the edges in {(z, z′) | z,∈ Zi, x′ ∈ Zi+1} are present in E(Zn,t).

4.1 Lower bound for Rainbow 3-Coloring
In this section, we show that Rainbow 3-Coloring does not admit an algorithm running
in time 2o(|E(G)|)nO(1), where n is the number of vertices in the input graph G.

Let G be an instance of 3-Coloring on n vertices with maximum degree bounded by 4.
We start by computing (in polynomial time) a harmonious coloring ϕ of G with t ∈ O(

√
n)

color classes such that each color class contains at most O(
√

n) vertices using Proposition 1.

MFCS 2017



60:6 Fine-Grained Complexity of Rainbow Coloring and Its Variants

Let C1, C2, . . . , Ct be the color classes of ϕ. From the discussion in Section 3, we assume
that for i, j ∈ [t], i 6= j there is exactly one edge between Ci and Cj in G. We construct an
instance G′ of Rainbow 3-Coloring as follows.

Color class gadget. Consider i ∈ [t]. The color class gadget Ci comprises of the set Ci,
two vertices ci, bi, and a clique Ui on 3 vertices with vertex set {ui

1, ui
2, ui

3}. We add all
the edges in {(v, ci), (v, bi), (v, ui

1), (v, ui
2), (v, ui

3) | v ∈ Ci} to E(Ci). Also, we add the
edge (bi, ci) to E(Ci).
Connection between color class gadgets. Consider i, j ∈ [t] such that i 6= j. We add all
the edges in {(bi, uj

`) | ` ∈ [3]} to E(G′). Furthermore, we add all the edges {(ui
`, uj

`′) |
`, `′ ∈ [3]} to E(G′). Note that {ui′

` | i′ ∈ [t], ` ∈ [3]} induces a clique in G′.
Encoding edges. For i, j ∈ [t], i 6= j we add the unique edge (u, v) between Ci and Cj

with u ∈ Ci and v ∈ Cj to G′. Note that this is same as adding all the edges in E(G) to
E(G′).

This finishes the description of the instance G′ of Rainbow 3-Coloring. We note that
some of the edges in G′ are not necessary for the correctness of the reduction. However, they
are added to reduce the number of pairs for which we need to argue about the existence
of a rainbow path. Before moving on to the proof of equivalence between these instances,
we create an edge-coloring cR : E(G′) → [3]. Here, we create cR based on a solution c

to 3-Coloring in G, assuming that G is a yes instance of 3-Coloring. We will follow
computation modulo k, and therefore color 0 is same as color k.

I Definition 4. Given a solution c to 3-Coloring in G, we construct cR : E(G′)→ [3] as
follows.
1. For i ∈ [t], and v ∈ Ci set cR(v, ci) = c(v), cR(v, bi) = c(v), and for ` ∈ [3], cR(v, ui

`) = `.
2. For i, j ∈ [t], i 6= j let (u, v) be the unique edge between Ci and Cj . We set cR(u, v) to

be the unique integer in [3] \ {c(u), c(v)}. Here, the uniqueness is guaranteed by the fact
that c is a proper 3-coloring of G, promising that c(u) 6= c(v).

3. For i ∈ [t] set cR(bi, ci) = 3, cR(ui
1, ui

2) = 3, cR(ui
2, ui

3) = 2, and cR(ui
3, ui

1) = 1.
4. For i, j ∈ [t], i 6= j and ` ∈ [3] set cR(bi, uj

`) = `− 1.
5. For i, j ∈ [t], i 6= j and ` ∈ [3] set cR(ui

`, uj
`) = `. Furthermore, for `′ ∈ [3] \ {`} we set

cR(ui
`, uj

`′) = ˆ̀, where ˆ̀ is the unique integer in [3] \ {`, `′}.

Next, we prove some lemmata that will be useful in establishing the equivalence between
the instance G of 3-Coloring and the instance G′ of Rainbow 3-Coloring.

I Lemma 5. For i, j ∈ [t], where i 6= j, let (u∗, v∗) be the unique edge between Ci and Cj

with u∗ ∈ Ci and v∗ ∈ Cj . There is exactly one path, namely (ci, u∗, v∗, cj) in G′, between ci

and cj that has at most 3 edges.

I Lemma 6. Let G be a yes instance of 3-Coloring, and c be one of its solution. Fur-
thermore, let cR : E(G′)→ [3] be the coloring given by Definition 4 for the coloring c of G.
Then for all i ∈ [t], and u, v ∈ Ci there is a rainbow path between u and v in G′.

I Lemma 7. Let G be a yes instance of 3-Coloring, and c be one of its solution. Fur-
thermore, let cR : E(G′)→ [3] be the coloring given by Definition 4 for the coloring c of G.
Then for all i, j ∈ [t], i 6= j for all u ∈ Ci and v ∈ Cj there is a rainbow path between u and v

in G′.

We now establish equivalence between the instance G of 3-Coloring and the instance
G′ of Rainbow 3-Coloring.



A. Agrawal 60:7

I Lemma 8. G is a yes instance of 3-Coloring if and only if G′ is a yes instance of
Rainbow 3-Coloring.

Proof. In the forward direction, let G be a yes instance of 3-Coloring, and c : V (G)→ [3]
be one of its solution. Let cR : E(G′) → [3] be the coloring given by Definition 4 for the
given coloring c of G. From Lemma 6 and 7 it follows that cR is a solution to Rainbow
3-Coloring in G′.

In the reverse direction, let G′ be a yes instance of Rainbow 3-Coloring, and cR :
E(G′) → [3] be one of its solution. We create a coloring c : V (G) → [3] as follows. For
i ∈ [t] and v ∈ Ci, we let c(v) = cR(ci, v). We show that c is a valid solution to 3-Coloring
in G. Consider (u, v) ∈ E(G), and let u ∈ Ci and v ∈ Cj . Note that we have i 6= j.
Let P be a rainbow path between ci and cj in G′. Note that P can have at most 3
edges. By Lemma 5 we know that P = (ci, u, v, cj), therefore by construction of c, we have
cR(ci, u) = c(u) 6= c(v) = cR(ci, v). This concludes the proof. J

I Theorem 9. Rainbow 3-Coloring does not admit an algorithm running in time
2o(|E(G)|)nO(1), unless ETH fails. Here, n is the number of vertices in the input graph.

4.2 Lower Bound for Rainbow k-Coloring, k > 3 and even
In this section, we show that Rainbow k-Coloring does not admit an algorithm running
in time 2o(|E(G)|)nO(1), for every even k where k > 3. Here, n is the number of vertices in
the input graph.

Let G be an instance of k-Coloring on n vertices with maximum degree bounded by
2(k − 1). Here, k > 3 and k is an even number. We start by computing (in polynomial
time) a harmonious coloring ϕ of G with t ∈ O(

√
n) color classes such that each color class

contains at most O(
√

n) vertices using Proposition 1. Let C1, C2, . . . , Ct be the color classes
of ϕ with exactly one edge between Ci and Cj in G, where i, j ∈ [t]. We modify the graph G

and its harmonious coloring ϕ, to obtain a more structured instance, which will be useful
later. For each i ∈ [t], we add k new vertices v∗i1, v∗i2, . . . , v∗ik to V (G), and add them to
Ci. We continue to call the modified graph as G and its harmonious coloring as ϕ with
color classes C1, C2, . . . , Ct. We note that {v∗ij | i ∈ [t], j ∈ [k]} induce an independent set in
G. The purpose of adding these k new vertices is to ensure that if G is a yes instance of
k-Coloring then there is a k-coloring c of G, such that for each i ∈ [t] and j ∈ [k], we have
c−1(j)∩Ci 6= ∅. This will be helpful in simplifying some of the arguments later. Observe that
the original instance is a yes instance of a k-Coloring is and only if the modified instance
is a yes instance of k-Coloring. Moreover, given a k-coloring of G (modified graph), in
polynomial time we can obtain another k-coloring c′ of G such that for all i ∈ [t], j ∈ [k]
we have c(v∗ij) = j. Also, we have |V (G)| ∈ O(n), and |E(G)| ∈ O(n), where n is the
number of vertices in the original instance. Hereafter, whenever we talk about a solution c

to k-Coloring in G (if it exists) we will assume (without explicitly mentioning) that for all
i ∈ [t] and p ∈ [k] we have Ci ∩ c−1(p) 6= ∅. We now move to the description of the reduction.

We proceed by describing color class gadget Ci, corresponding to the color class Ci, where
i ∈ [t], and gadgets to encode edges in G. Then we state the connection between various
color class gadgets and edge gadgets. We let k = 2`, where ` ∈ N and ` > 1. We create an
instance G′ of Rainbow k-Coloring as described below.

Color class gadget. Consider i ∈ [t]. The color class gadget Ci comprises of the set Ci, a
vertex ci, and a clique sequence Zi = (U i

1∪Di
1, . . . , U i

`−1∪Di
`−1) of order (2k, `−1). Here,

for each i ∈ [`− 1] we have |Ui| = |Di| = k. For r ∈ [`− 1] we let U i
r = {ui

rp | p ∈ [k]},

MFCS 2017



60:8 Fine-Grained Complexity of Rainbow Coloring and Its Variants

and Di
r = {di

rp | p ∈ [k]}. We add all the edges in {(ci, v) | v ∈ Ci} to E(Ci). Also, we
add all the edges in {(v, w) | v ∈ Ci, w ∈ U i

1 ∪Di
1} to E(Ci).

Connection between color class gadgets. For each i, j ∈ [t] where i 6= j, we add all the
edges in {(w, w′) | w ∈ U i

`−1 ∪Di
`−1, w′ ∈ U j

`−1 ∪Dj
`−1} to E(G′).

Edge gadget. Consider i, j ∈ [t] with i < j. Recall that there is exactly one edge between Ci

and Cj . Corresponding to this edge we create a path P = (xij
1 , . . . , xij

`−2, zij , xji
`−2, . . . , xji

1 )
on k − 3 vertices, and add it to G′. We note that whenever we say vertex zji it refers to
the vertex zij i.e. zij and zji denotes the same vertex.
Connection between color class gadgets and edge gadgets. Consider i, j ∈ [t], where i < j.
Let (u∗i , v∗j ) be the unique edge between Ci and Cj with u∗i ∈ Ci and v∗j ∈ Ci. We add
the edges (u∗i , xij

1 ), (xji
1 , v∗j ) to E(G′). Notice that when ` = 2 xij

1 does not exists. In this
case, we add the edges (u∗i , z), (z, v∗j ) to E(G′). For each r ∈ [`− 2] we add all the edges
in {(xij

r , w) | w ∈ U i
r ∪Di

r} to E(G′). Similarly, we add all the edges in {(xji
r , w) | w ∈

U j
r ∪Dj

r} to E(G′). Also, we add all the edges in {(zij , u) | u ∈ U i
`−1∪Di

`−1∪U j
`−1∪Dj

`−1}
to E(G′).

This finishes the construction of instance G′ of Rainbow k-Coloring for the given
instance G of k-Coloring. Before moving on to proving the equivalence between these
instances, we create an edge-coloring cR : E(G′) → [k]. Here, we create cR based on a
solution c to k-Coloring in G, assuming that is G a yes instance of k-Coloring. We will
follow computation modulo k (color 0 is same as color k).

I Definition 10. Given a solution c to k-Coloring in G, we construct cR : E(G′)→ [k] as
follows.
1. For i ∈ [t], and v ∈ Ci we set cR(v, ci) = c(v).
2. For i, j ∈ [t], i < j let (u∗i , v∗j ) be the unique edge between Ci and Cj . Consider the

path P = (u∗i , xij
1 , . . . xij

`−2, zij , xji
`−2, . . . xji

1 , v∗j ). We arbitrarily assign unique integers in
[k] \ {c(u∗i ), c(v∗j )} to cR(e), for each e ∈ E(P ).

3. For i ∈ [t], a vertex v ∈ Ci, and p ∈ [k] we set cR(v, ui
1p) = p− 1, and cR(v, di

1p) = p.
4. For i ∈ [t], r ∈ [`− 1], and p, q ∈ [k] we set cR(di

rp, ui
rq) = p.

5. For i, j ∈ [t], where i 6= j, r ∈ [` − 1], and p ∈ [k] we set cR(xij
r , ui

rp) = p, and
cR(xij

r , di
rp) = p + 1.

6. For i ∈ [t], r ∈ [`− 2], p, q ∈ [k] we set cR(di
(r+1)p, di

rq) = p, and cR(ui
rp, ui

(r+1)q) = p.
7. For i, j ∈ [t] where i 6= j, p, q ∈ [k] we set cR(ui

(`−1)p, dj
(`−1)q) = p, cR(ui

(`−1)p, zij) = p,
and cR(di

(`−1)p, zij) = p + 1.
8. For i ∈ [t], r ∈ [`− 2], p, q ∈ [k] we set cR(ui

rp, di
(r+1)q) = q and cR(ui

(r+1)p, di
rq) = p.

9. For all i ∈ [t], r ∈ [`− 1], p, q ∈ [k], where p 6= q we set cR(ui
rp, ui

rq) = k.
10. For all the remaining edges in E(G′), cR assigns it an integer in [k] arbitrarily.

Next, we prove some lemmata that will be useful in establishing equivalence between the
instance G of k-Coloring and the instance G′ of Rainbow k-Coloring.

I Lemma 11. For i, j ∈ [t], where i 6= j, let P be a path between ci and cj with at most k

edges in G′. If ` > 2 then P contains the edge (xij
`−2, zij). Otherwise, P contains the edge

(u, zij), where u is the unique vertex in Ci that in adjacent to a vertex in Cj.

I Lemma 12. For i, j ∈ [t], where i 6= j let (u∗, v∗) be the unique edge between Ci and Cj with
u∗ ∈ Ci and v∗ ∈ Cj . There is exactly one path, namely (ci, u∗, xij

1 , . . . , xij
`−2, zij , xji

`−2, . . . , xji
1

, v∗, cj) in G′ between ci and cj that has at most k edges.



A. Agrawal 60:9

I Lemma 13. Let G be a yes instance of k-Coloring, and c be one of its solution.
Furthermore, let cR : E(G′)→ [k] be the coloring given by Definition 10 for the coloring c

of G. For all i ∈ [t], and u, v ∈ V (Ci) ∪ {zij | j ∈ [k] \ {i}} ∪ {xij
r | j ∈ [t] \ {i}, r ∈ [`− 2]}

there is a rainbow path between u and v in G′.

I Lemma 14. Let G be a yes instance of k-Coloring, and c be one of its solution.
Furthermore, let cR : E(G′)→ [k] be the coloring given by Definition 10 for the coloring c of G.
For all i, j ∈ [t] where i 6= j, u ∈ V (Ci)∪{zij′ | j′ ∈ [k]\{i}}∪{xij′

r | j′ ∈ [t]\{i}, r ∈ [`−2]}
and v ∈ V (Cj)∪{zji′ | i′ ∈ [k] \ {j}}∪ {xji′

r | i′ ∈ [t] \ {j}, r ∈ [`− 2]} there is a rainbow path
between u and v in G′.

We now establish equivalence between the instance G of k-Coloring and the instance
G′ of Rainbow k-Coloring.

I Lemma 15. G′ is a yes instance of k-Coloring if and only if G′ is a yes instance of
Rainbow k-Coloring.

I Theorem 16. Rainbow k-Coloring does not admit an algorithm running in time
2o(|E(G)|)nO(1), unless ETH fails. Here, n is the number of vertices in the input graph, and k

is an even number greater than 3.

4.3 Lower Bound for Rainbow k-Coloring, k > 3 and odd
In this section, we show that Rainbow k-Coloring does not admit an algorithm running
in time 2o(|E(G)|)nO(1), for every odd k where k > 3. Here, n is the number of vertices in the
input graph.

Let G be an instance of k-Coloring on n vertices with maximum degree bounded by
2(k − 1). Here, k > 3 and k is an odd number. We start by computing (in polynomial
time) a harmonious coloring ϕ of G with t ∈ O(

√
n) color classes such that each color class

contains at most O(
√

n) vertices using Proposition refprop:compute-harmonious-coloring.
Let C1, C2, . . . , Ct be the color classes of ϕ. From the discussion in Section 3, we assume
that for i, j ∈ [t], i 6= j there is exactly one edge between Ci and Cj in G. As discussed
in Section 4.2, we modify the graph G and its harmonious coloring ϕ, to obtain a more
structured (equivalent) instance of k-Coloring. This is achieved by adding k new vertices
v∗i1, v∗i2, . . . , v∗ik to Ci (and G) for each i ∈ [t]. The purpose of adding these k new vertices is
to ensure that if G is a yes instance of k-Coloring then there is a k-coloring c of G, such
that for each i ∈ [t] and j ∈ [k], we have c−1(j) ∩Ci 6= ∅. Hereafter, whenever we talk about
a solution c to k-Coloring in G (if it exists) we will assume (without explicitly mentioning)
that for all i ∈ [t] and p ∈ [k] we have Ci ∩ c−1(p) 6= ∅.

We move to the description of the reduction. We first describe the color class gadget Ci,
corresponding to each color class Ci, where i ∈ [t], and gadgets to encode edges in G. We also
have a link vertex which is connected to all color class gadgets (but not all vertices). After
this, we state connections between color class gadgets and edge gadgets. We let k = 2` + 1,
where ` ∈ N and ` ≥ 2. We create an instance G′ of Rainbow k-Coloring as follows.

Color class gadget. Consider i ∈ [t]. The color class gadget Ci comprises of the set Ci, a
vertex ci, and a clique sequence Zi = (U i

1∪Di
1, . . . , U i

`−1∪Di
`−1) of order (2k, `−1). Here,

for each i ∈ [`− 1] we have |Ui| = |Di| = k. For r ∈ [` − 1] we let U i
r = {ui

rp | p ∈ [k]}
and Di

r = {di
rp | p ∈ [k]}. We add all the edges in {(ci, v) | v ∈ Ci} to E(Ci). Also, we

add all the edges in {(v, w) | v ∈ Ci, w ∈ U i
1 ∪Di

1} to E(Ci).
Link vertex and its connection to color class gadgets. We add a vertex z to G′. For each
i ∈ [t], we add all the edges in {(z, w) | w ∈ U i

`−1 ∪Di
`−1} to E(G′).

MFCS 2017



60:10 Fine-Grained Complexity of Rainbow Coloring and Its Variants

Edge gadget. Consider i, j ∈ [t] with i 6= j. Recall that there is exactly one edge between
Ci and Cj . Corresponding to this edge we create a path P = (xij

1 , . . . , xij
`−1, xji

`−1, . . . , xji
1 )

on k − 3 vertices, and add it to G′.
Connection between color class gadgets and edge gadgets. Consider i, j ∈ [t], where i 6= j.
Let (u∗i , v∗j ) be the unique edge between Ci and Cj with u∗i ∈ Ci and v∗j ∈ Ci. We add the
edges (u∗i , xij

1 ), (xji
1 , v∗j ) to E(G′). For each r ∈ [`− 1] we add all the edges in {(xij

r , w) |
w ∈ U i

r ∪Di
r} to E(G′). Similarly, we add all the edges in {(xji

r , w) | w ∈ U j
r ∪Dj

r} to
E(G′).

This finishes the construction of the instance G′ of Rainbow k-Coloring for the given
instance G of k-Coloring. Before moving on to proving the equivalence between these
instances, we create an edge-coloring cR : E(G′) → [k]. Here, we create cR based on a
solution c to k-Coloring in G, assuming that is G a yes instance of k-Coloring. We will
follow computation modulo k (color 0 is same as color k).

I Definition 17. Given a solution c to k-Coloring in G, we construct cR : E(G′)→ [k] as
follows.
1. For i ∈ [t], and v ∈ Ci we set cR(v, ci) = c(v).
2. For i, j ∈ [t], i 6= j let (u∗i , v∗j ) be the unique edge between Ci and Cj . Consider the

path P = (u∗i , xij
1 , . . . xij

`−1, xji
`−1, . . . xji

1 , v∗j ). We arbitrarily assign unique integers in
[k] \ {c(u∗i ), c(v∗j )} to cR(e), for each e ∈ E(P ).

3. For i ∈ [t], a vertex v ∈ Ci ∪ {xij
1 | j ∈ [t] \ {i}}, and p ∈ [k] we set cR(v, ui

1p) = p − 1,
and cR(v, di

1p) = p.
4. For i ∈ [t], r ∈ [`− 1], and p, q ∈ [k] we set cR(di

rp, ui
rq) = p.

5. For i, j ∈ [t], where i 6= j, r ∈ [` − 1], and p ∈ [k] we set cR(xij
r , ui

rp) = p, and
cR(xij

r , di
rp) = p + 1.

6. For i ∈ [t], r ∈ [`− 2], p, q ∈ [k] we set cR(di
(r+1)p, di

rq) = p, and cR(ui
rp, ui

(r+1)q) = p.
7. For i ∈ [t], p ∈ [k] we set cR(ui

(`−1)p, z) = p, and cR(di
(`−1)p, z) = p− 1.

8. For i ∈ [t], r ∈ [`− 2], p, q ∈ [k] we set cR(ui
rp, di

(r+1)q) = q and cR(ui
(r+1)p, di

rq) = p.
9. For all i ∈ [t], r ∈ [`], p, q ∈ [k], where p 6= q we set cR(ui

rp, ui
rq) = k.

10. For all the remaining edges in E(G′), cR assigns it an integer in [k] arbitrarily.

Next, we prove some lemmata that will be useful in establishing the equivalence between
the instance G of k-Coloring and the instance G′ of Rainbow k-Coloring.

I Lemma 18. For i, j ∈ [t], where i 6= j, let P be a path between ci and cj with at most k

edges in G′. Then (xij
`−1, xij

`−1) ∈ E(P ).

I Lemma 19. For i, j ∈ [t], where i 6= j let (u∗i , v∗j ) be the unique edge between Ci and Cj with
u∗i ∈ Ci and v∗j ∈ Cj . There is exactly one path, namely (ci, u∗i , xij

1 , . . . , xij
`−1, xji

`−1, . . . , xji
1 , v∗j

, cj) in G′ between ci and cj that has at most k edges.

I Lemma 20. Let G be a yes instance of k-Coloring, and c be one of its solution.
Furthermore, let cR : E(G′)→ [k] be the coloring given by Definition 17 for the coloring c of
G. For all i ∈ [t], and u, v ∈ V (Ci) ∪ {xij

r | j ∈ [t] \ {i}, r ∈ [`− 1]} ∪ {z} there is a rainbow
path between u and v in G′.

I Lemma 21. Let G be a yes instance of k-Coloring, and c be one of its solution.
Furthermore, let cR : E(G′) → [k] be the coloring given by Definition 17 for the coloring
c of G. For all i, j ∈ [t] where i 6= j, u ∈ V (Ci) ∪ {xij′

r | j′ ∈ [t] \ {i}, r ∈ [` − 1]} and
v ∈ Cj ∪ {xji′

r | i′ ∈ [t] \ {j}, r ∈ [`− 1]} there is a rainbow path between u and v in G′.



A. Agrawal 60:11

I Lemma 22. G′ is a yes instance of k-Coloring if and only if G′ is a yes instance of
Rainbow k-Coloring.

I Theorem 23. Rainbow k-Coloring does not admit an algorithm running in time
2o(|E(G)|)nO(1), unless ETH fails. Here, n is the number of vertices in the input graph, and k

is an odd number greater than 3.

5 FPT Algorithm for Subset Rainbow k-Coloring

In this section, we design an FPT algorithm running in time O(2|S|nO(1)) for Subset
Rainbow k-Coloring, when parameterized by |S|. Our algorithm is based on the technique
of color coding, which was first introduced by Alon et al. [2]. We first describe a randomized
algorithm for Subset Rainbow k-Coloring, which we derandomize using splitters.

The intuition behind the algorithm is as follows. Let (G, S) be an instance of Subset
Rainbow k-Coloring on n vertices and m edges. For a solution cR : E(G) → [k], to
Subset Rainbow k-Coloring in (G, S) the following holds. For each (u, v) ∈ S, there
exist a path P from u to v in G with at most k edges such that for all e, e′ ∈ E(P ), where
e 6= e′ we have cR(e) 6= cR(e′). Therefore, at most k|S| edges in G seems to be “important”
for us, i.e. if we color at most k|S| edges “nicely” then we would obtain the desired soultion.
To capture this, we start by randomly coloring edges in G, hoping that with sufficiently
high probability we obtain a coloring that colors the desired set of edges “nicely”. Once we
have obtained such a “nice” coloring, we employ the algorithm of Kowalik and Lauri [19] to
check if there is a rainbow path for each (u, v) ∈ S. We note that we use the algorithm given
by [19] instead of the one in [28] because the latter requires exponential space.

Algorithm Rand-SRC. Let c : E(G)→ [k] be a coloring of E(G), where each edge is colored
with one of the colors in [k] uniformly and independently at random. If for each (u, v) ∈ S,
there is rainbow path between u and v in G′ with edge-coloring c then the algorithm return
c as a solution to Subset Rainbow k-Coloring in (G, S). Otherwise, it returns no. We
note that for a given graph G with edge-coloring c, and vertices u and v, in time 2knO(1)

time we can check if there is a rainbow path between u and v in G′ by using the algorithm
given by Corollary 5 in [19]. This completes the description of the algorithm.

We now proceed to show how we can obtain an algorithm with constant success probability.

I Theorem 24. There is an algorithm that, given an instance (G, S) of Subset Rainbow
k-Coloring, in time 2O(|S|k log k)nO(1) either returns no or outputs a solution to Subset
Rainbow k-Coloring in (G, S). Moreover, if the input is a yes instance of Subset
Rainbow k-Coloring, then it returns a solution with positive constant probability.

We start by defining some terminologies which will be useful in derandomization of our
algorithm (see [12, 27]). An (n, p, `)-splitter F , is a family of functions from [n] to ` such
that for every S ⊆ [n] of size at most p there is a function f ∈ F such that f splits S evenly.
That is, for all i, j ∈ [`], |f−1(i)| and |f−1(j)| differs by at most 1. Observe that when
` ≥ p then for any S ⊆ [n] of size at most p and a function f ∈ F that splits S, we have
|f−1(i) ∩ S| ≤ 1, for all i ∈ [`]. An (n, `, `)-splitter is called as an (n, `)-perfect hash family.
Moreover, for any ` ≥ 1, we can construct an (n, `)-perfect hash family of size e``O(log `) log n

in time e``O(log `)n log n [27].
We next move to the description of derandomization of the algorithm presented in The-

orem 24. For the sake of simplicity in explanation, we associate each e ∈ E(G) with a unique
integer, say ie in [m], and whenever we refer to e as an integer, we actually refer to the integer

MFCS 2017



60:12 Fine-Grained Complexity of Rainbow Coloring and Its Variants

ie. We start by computing an (m, k|S|)-perfect hash family F of size ek|S|(k|S|)O(log k|S|) log m

in time ek|S|(k|S|)O(log k|S|)
m log m using the algorithm of Naor et al. [27]. We will create

a family of function F ′ from [m] to [k] of size ek|S|(k|S|)O(log k|S|)
kk|S| log m. Towards

this, consider an f ∈ F and a partition P = {P1, P2, . . . , Pk′} of [k|S|] into k′ sets, where
k′ ≤ k. We let fP to be the function obtained from f as follows. For each i ∈ [k′] we have
f−1
P (i) = ∪x∈Pi

f−1(x). For every such pair f and P, we add the function fP to the set F ′.
We will call such an F ′ as (m, k|S|, k)-unified perfect hash family. Observe that F ′ has size
at most ek|S|(k|S|)O(log k|S|)

kk|S| log m. We now describe the derandomized algorithm SRC,
which is a result of derandomization of Rand-SRC.

Algorithm SRC. Given an instance (G, S) of Subset Rainbow k-Coloring, the algorithm
start by computing an (m, k|S|, k)-unified perfect hash family F ′. If there exists c : E(G)→
[k], where c ∈ F ′ such that for each (u, v) ∈ S, there is rainbow path between u and v in G′

with the edge-coloring c then we return c as a solution to Subset Rainbow k-Coloring in
(G, S). Otherwise, we return that (G, S) is a no instance of Subset Rainbow k-Coloring.
We note that for a given graph G with edge-coloring c, and vertices u and v, in time 2knO(1)

time we can check if there is a rainbow path between u and v in G′ by using the algorithm
given by Corollary 5 in [19]. This completes the description of the algorithm.

I Theorem 25. Given an instance (G, k) of Subset Rainbow k-Coloring, the algorithm
SRC either correctly reports that (G, k) is a no instance of Subset Rainbow k-Coloring
or returns a solution to Subset Rainbow k-Coloring in (G, S). Moreover, SRC runs in
time 2O(|S|)nO(1), for every fixed k. Here, n = |V (G)|.

I Corollary 26. Steiner Rainbow k-Coloring admits an algorithm running in time
2O(|S|2)nO(1).

6 Conclusion

In this paper, we proved that for all k ≥ 3, Rainbow k-Coloring does not admit an
algorithm running in time 2o(|E(G)|)nO(1), unless ETH fails. This (partially) resolves the
conjecture of Kowalik et al. [20], which states that for every k ≥ 2, Rainbow k-Coloring
does not admit an algorithm running in time 2o(|E(G)|)nO(1). It would be an interesting
direction to study whether or not Rainbow k-Coloring admits an algorithm running
in time 2o(|E(G)|)nO(1), for k = 2. We also studied the problem Steiner Rainbow k-
Coloring, and proved that for every k ≥ 3 the problem does not admit an algorithm
running in time 2o(|S|2)nO(1), unless ETH fails. We complemented this by designing an
algorithm for Subset Rainbow k-Coloring running in time 2O(|S|)nO(1), which implies
an algorithm running in time 2O(|S|2)nO(1) for Steiner Rainbow k-Coloring. It would
be interesting to study whether or not Steiner Rainbow k-Coloring admits an algorithm
running in time 2o(|S|2)nO(1), for k = 2. Kowalik et al. [20] also conjectured that for every
k ≥ 2, Rainbow k-Coloring does not admit an algorithm running in time 2o(n2)nO(1),
which is another interesting direction of research.

Acknowledgements. The author is thankful to Saket Saurabh for helpful discussions.



A. Agrawal 60:13

References
1 Akanksha Agrawal, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Split contrac-

tion: The untold story. In 34th Symposium on Theoretical Aspects of Computer Science,
(STACS), pages 5:1–5:14, 2017.

2 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. Journal of the ACM (JACM),
42(4):844–856, 1995.

3 Prabhanjan Ananth, Meghana Nasre, and Kanthi K. Sarpatwar. Rainbow Connectivity:
Hardness and Tractability. In Foundations of Software Technology and Theoretical Com-
puter Science (FSTTCS), volume 13, pages 241–251, 2011.

4 Yair Caro, Arie Lev, Yehuda Roditty, Zsolt Tuza, and Raphael Yuster. On rainbow con-
nection. Electronic Journal of Combinatorics, 15(1):R57, 2008.

5 Sourav Chakraborty, Eldar Fischer, Arie Matsliah, and Raphael Yuster. Hardness and
algorithms for rainbow connection. Journal of Combinatorial Optimization, 21(3):330–347,
2011.

6 L. Sunil Chandran and Deepak Rajendraprasad. Rainbow colouring of split and threshold
graphs. In 18th Annual International Conference: Computing and Combinatorics, (CO-
COON), pages 181–192, 2012.

7 L. Sunil Chandran and Deepak Rajendraprasad. Inapproximability of rainbow colouring.
In IARCS Annual Conference on Foundations of Software Technology and Theoretical Com-
puter Science (FSTTCS), pages 153–162, 2013.

8 Gary Chartrand, Garry L Johns, Kathleen A McKeon, and Ping Zhang. Rainbow connec-
tion in graphs. Mathematica Bohemica, 133(1):85–98, 2008.

9 Gary Chartrand and Ping Zhang. Chromatic graph theory. CRC press, 2008.
10 Marek Cygan, Fedor V. Fomin, Alexander Golovnev, Alexander S. Kulikov, Ivan Mihajlin,

Jakub Pachocki, and Arkadiusz Socala. Tight bounds for graph homomorphism and sub-
graph isomorphism. In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete
Algorithms, (SODA), pages 1643–1649, 2016.

11 Marek Cygan, Fedor V. Fomin, Alexander Golovnev, Alexander S. Kulikov, Ivan Mihajlin,
Jakub Pachocki, and Arkadiusz Socala. Tight bounds for graph homomorphism and sub-
graph isomorphism. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1643–1649, 2016.

12 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

13 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

14 Keith Edwards. The harmonious chromatic number and the achromatic number. Surveys
in Combinatorics, pages 13–48, 1997.

15 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

16 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. Journal of
Computer and System Sciences, 62(2):367–375, 2001.

17 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.

18 Christian Komusiewicz. Tight running time lower bounds for vertex deletion problems.
arXiv preprint arXiv:1511.05449, 2015.

19 Lukasz Kowalik and Juho Lauri. On finding rainbow and colorful paths. Theoretical
Computer Science, 628(C):110–114, 2016.

20 Lukasz Kowalik, Juho Lauri, and Arkadiusz Socala. On the fine-grained complexity of
rainbow coloring. In 24th Annual European Symposium on Algorithms, (ESA), pages 58:1–
58:16, 2016.

MFCS 2017



60:14 Fine-Grained Complexity of Rainbow Coloring and Its Variants

21 V.B. Le and Z. Tuza. Finding Optimal Rainbow Connection is Hard. Preprints aus dem
Institut für Informatik / CS. Inst. für Informatik, 2009. URL: https://books.google.no/
books?id=0ErVPgAACAAJ.

22 Sin-Min Lee and John Mitchem. An upper bound for the harmonious chromatic number.
Journal of Graph Theory, 11(4):565–567, 1987.

23 Xueliang Li, Yongtang Shi, and Yuefang Sun. Rainbow connections of graphs: A survey.
Graphs and Combinatorics, 29(1):1–38, 2013.

24 Xueliang Li and Yuefang Sun. Rainbow connections of graphs. Springer Science & Business
Media, 2012.

25 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the expo-
nential time hypothesis. Bulletin of the EATCS, pages 41–71, 2011.

26 Colin McDiarmid and Luo Xinhua. Upper bounds for harmonious coloring. Journal of
Graph Theory, 15(6):629–636, 1991.

27 M. Naor, L. J. Schulman, and A. Srinivasan. Splitters and near-optimal derandomization.
In Proceedings of the 36th Annual Symposium on Foundations of Computer Science (FOCS),
pages 182–191, 1995.

28 Kei Uchizawa, Takanori Aoki, Takehiro Ito, Akira Suzuki, and Xiao Zhou. On the rainbow
connectivity of graphs: Complexity and fpt algorithms. Algorithmica, 67(2):161–179, 2013.

https://books.google.no/books?id=0ErVPgAACAAJ
https://books.google.no/books?id=0ErVPgAACAAJ


Faster Monte-Carlo Algorithms for Fixation
Probability of the Moran Process on Undirected
Graphs∗

Krishnendu Chatterjee1, Rasmus Ibsen-Jensen2, and
Martin A. Nowak3

1 IST Austria, Klosterneuburg, Austria
krish@ist.ac.at

2 IST Austria, Klosterneuburg, Austria
ribsen@ist.ac.at

3 Program for Evolutionary Dynamics, Harvard University, Cambridge, USA
martin_nowak@harvard.edu

Abstract
Evolutionary graph theory studies the evolutionary dynamics in a population structure given as
a connected graph. Each node of the graph represents an individual of the population, and edges
determine how offspring are placed. We consider the classical birth-death Moran process where
there are two types of individuals, namely, the residents with fitness 1 and mutants with fitness r.
The fitness indicates the reproductive strength. The evolutionary dynamics happens as follows:
in the initial step, in a population of all resident individuals a mutant is introduced, and then
at each step, an individual is chosen proportional to the fitness of its type to reproduce, and the
offspring replaces a neighbor uniformly at random. The process stops when all individuals are
either residents or mutants. The probability that all individuals in the end are mutants is called
the fixation probability, which is a key factor in the rate of evolution. We consider the problem
of approximating the fixation probability.

The class of algorithms that is extremely relevant for approximation of the fixation probab-
ilities is the Monte-Carlo simulation of the process. Previous results present a polynomial-time
Monte-Carlo algorithm for undirected graphs when r is given in unary. First, we present a simple
modification: instead of simulating each step, we discard ineffective steps, where no node changes
type (i.e., either residents replace residents, or mutants replace mutants). Using the above simple
modification and our result that the number of effective steps is concentrated around the expected
number of effective steps, we present faster polynomial-time Monte-Carlo algorithms for undir-
ected graphs. Our algorithms are always at least a factor O(n2/ logn) faster as compared to
the previous algorithms, where n is the number of nodes, and is polynomial even if r is given in
binary. We also present lower bounds showing that the upper bound on the expected number of
effective steps we present is asymptotically tight for undirected graphs.

1998 ACM Subject Classification J.1.1 Biology and genetics, E.1.3 Graphs and networks

Keywords and phrases Graph algorithms, Evolutionary biology, Monte-Carlo algorithms

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.61

∗ Some proofs are missing. See the full version [2]

© Krishnendu Chatterjee, Rasmus Ibsen-Jensen, and Martin A. Nowak;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 61; pp. 61:1–61:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.61
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


61:2 Faster Monte-Carlo Algorithms for Fixation Probability of the Moran Process

1 Introduction

In this work we present faster Monte-Carlo algorithms for approximation of the fixation
probability of the fundamental Moran process on population structures with symmetric
interactions. We start with the description of the problem.

Evolutionary dynamics. Evolutionary dynamics act on populations, where the composition
of the population changes over time due to mutation and selection. Mutation generates
new types and selection changes the relative abundance of different types. A fundamental
concept in evolutionary dynamics is the fixation probability of a new mutant [7, 11, 13, 14]:
Consider a population of n resident individuals, each with a fitness value 1. A single mutant
with non-negative fitness value r is introduced in the population as the initialization step.
Intuitively, the fitness represents the reproductive strength. In the classical Moran process
the following birth-death stochastic steps are repeated: At each time step, one individual is
chosen at random proportional to the fitness to reproduce and one other individual is chosen
uniformly at random for death. The offspring of the reproduced individual replaces the dead
individual. This stochastic process continues until either all individuals are mutants or all
individuals are residents. The fixation probability is the probability that the mutants take
over the population, which means all individuals are mutants. A standard calculation shows
that the fixation probability is given by (1 − (1/r))/(1 − (1/rn)). The correlation between
the relative fitness r of the mutant and the fixation probability is a measure of the effect of
natural selection. The rate of evolution, which is the rate at which subsequent mutations
accumulate in the population, is proportional to the fixation probability, the mutation rate,
and the population size n. Hence fixation probability is a fundamental concept in evolution.

Evolutionary graph theory. While the basic Moran process happens in well-mixed pop-
ulation (all individuals interact uniformly with all others), a fundamental extension is to
study the process on population structures. Evolutionary graph theory studies this phe-
nomenon. The individuals of the population occupy the nodes of a connected graph. The
links (edges) determine who interacts with whom. Basically, in the birth-death step, for
the death for replacement, a neighbor of the reproducing individual is chosen uniformly
at random. Evolutionary graph theory describes evolutionary dynamics in spatially struc-
tured population where most interactions and competitions occur mainly among neighbors
in physical space [12, 3, 8, 15]. Undirected graphs represent population structures where the
interactions are symmetric, whereas directed graphs allow for asymmetric interactions. The
fixation probability depends on the population structure [12, 1, 9, 4]. Thus, the fundamental
computational problem in evolutionary graph theory is as follows: given a population struc-
ture (i.e., a graph), the relative fitness r, and ε > 0, compute an ε-approximation of the
fixation probability.

Monte-Carlo algorithms. A particularly important class of algorithms for biologists is
the Monte-Carlo algorithms, because it is simple and easy to interpret. The Monte-Carlo
algorithm for the Moran process basically requires to simulate the process, and from the
statistics obtain an approximation of the fixation probability. Hence, the basic question
we address in this work is simple Monte-Carlo algorithms for approximating the fixation
probability. It was shown in [6] that simple simulation can take exponential time on directed
graphs and thus we focus on undirected graphs. The main previous algorithmic result in
this area [5] presents a polynomial-time Monte-Carlo algorithm for undirected graphs when
r is given in unary. The main result of [5] shows that for undirected graphs it suffices to run
each simulation for polynomially many steps.



K. Chatterjee, R. Ibsen-Jensen, and M.A. Nowak 61:3

Table 1 Comparison with previous work, for constant r > 1. We denote by n, ∆, τ , and ε,
the number of nodes, the maximum degree, the random variable for the fixation time, and the
approximation factor, respectively. The results in the column “All steps” is from [5], except that we
present the dependency on ∆, which was considered as n in [5]. The results of the column “Effective
steps” is the results of this paper

All steps Effective steps
#steps in expectation O(n2∆2) O(n∆)
Concentration bounds Pr[τ ≥ n2∆2rx

r−1 ] ≤ 1/x Pr[τ ≥ 6n∆x
min(r−1,1) ] ≤ 2−x

Sampling a step O(1) O(∆)
Fixation algo O(n6∆2ε−4) O(n2∆2ε−2(logn+ log ε−1))

Our contributions. In this work our main contributions are as follows:
1. Faster algorithm for undirected graphs First, we present a simple modification: instead

of simulating each step, we discard ineffective steps, where no node changes type (i.e.,
either residents replace residents, or mutants replace mutants). We then show that the
number of effective steps is concentrated around the expected number of effective steps.
The sampling of each effective step is more complicated though than sampling of each
step. We then present an efficient algorithm for sampling of the effective steps, which
requires O(m) preprocessing and then O(∆) time for sampling, where m is the number
of edges and ∆ is the maximum degree. Combining all our results we obtain faster
polynomial-time Monte-Carlo algorithms: Our algorithms are always at least a factor
n2/ logn times a constant (in most cases n3/ logn times a constant) faster as compared
to the previous algorithm, and is polynomial even if r is given in binary. We present
a comparison in Table 1, for constant r > 1 (since the previous algorithm is not in
polynomial time for r in binary). For a detailed comparison see the full version [2].

2. Lower bounds We also present lower bounds showing that the upper bound on the expec-
ted number of effective steps we present is asymptotically tight for undirected graphs.

Related complexity result. While in this work we consider evolutionary graph theory, a
related problem is evolutionary games on graphs (which studies the problem of frequency
dependent selection). The approximation problem for evolutionary games on graphs is
considerably harder (e.g., PSPACE-completeness results have been established) [10].

Technical contributions. Note that for the problem we consider the goal is not to design
complicated efficient algorithms, but simple algorithms that are efficient. By simple, we
mean something that is related to the process itself, as biologists understand and interpret
the Moran process well. Our main technical contribution is a simple idea to discard ineffect-
ive steps, which is intuitive, and we show that the simple modification leads to significantly
faster algorithms. We show a gain of factor O(n∆) due to the effective steps, then lose a
factor of O(∆) due to sampling, and our other improvements are due to better concentra-
tion results. We also present an interesting family of graphs for the lower bound examples.
Technical proofs omitted due to lack of space are in the full version [2].

2 Moran process on graphs

Connected graph and type function. We consider the population structure represented
as a connected graph. There is a connected graph G = (V,E), of n nodes and m edges, and
two types T = {t1, t2}. The two types represent residents and mutants, and in the technical

MFCS 2017



61:4 Faster Monte-Carlo Algorithms for Fixation Probability of the Moran Process

exposition we refer to them as t1 and t2 for elegant notation. We say that a node v is a
successor of a node u if (u, v) ∈ E. The graph is undirected if for all (u, v) ∈ E we also
have (v, u) ∈ E, otherwise it is directed. There is a type function f mapping each node v
to a type t ∈ T . Each type t is in turn associated with a positive integer w(t), the type’s
fitness denoting the corresponding reproductive strength. Without loss of generality, we will
assume that r = w(t1) ≥ w(t2) = 1, for some number r ( the process we consider does not
change under scaling, and r denotes relative fitness). Let W (f) =

∑
u∈V w(f(u)) be the

total fitness. For a node v let deg v be the degree of v in G. Also, let ∆ = maxv∈V deg v
be the maximum degree of a node. For a type t and type function f , let Vt,f be the nodes
mapped to t by f . Given a type t and a node v, let f [v → t] denote the following function:
f [v → t](u) = t if u = v and f(u) otherwise.

Moran process on graphs. We consider the following classical Moran birth-death process
where a dynamic evolution step of the process changes a type function from f to f ′ as follows:
1. First a node v is picked at random with probability proportional to w(f(v)), i.e. each

node v has probability of being picked equal to w(f(v))
W (f) .

2. Next, a successor u of v is picked uniformly at random.
3. The type of u is then changed to f(v). In other words, f ′ = f [u→ f(v)].

Fixation. A type t fixates in a type function f if f maps all nodes to t. Given a type
function f , repeated applications of the dynamic evolution step generate a sequence of type
functions f = f1, f2, . . . , f∞. Note that if a type has fixated (for some type t) in fi then it
has also fixated in fj for i < j. We say that a process has fixation time i if fi has fixated
but fi−1 has not. We say that an initial type function f has fixation probability p for a
type t, if the probability that t eventually fixates (over the probability measure on sequences
generated by repeated applications of the dynamic evolution step f)

Basic questions. We consider the following basic questions:
1. Fixation problem Given a type t, what is the fixation probability of t averaged over the

n initial type functions with a single node mapping to t?
2. Extinction problem Given a type t, what is the fixation probability of t averaged over the

n initial type functions with a single node not mapping to t?
3. Generalized fixation problem Given a graph, a type t and an type function f what is the

fixation probability of t in G, when the initial type function is f?

I Remark. Note that in the neutral case when r = 1, the fixation problem has answer 1/n
and extinction problem has answer 1− 1/n. Hence, in the rest of the paper we will consider
r > 1. Also, to keep the presentation focused, in the main article, we will consider fixation
and extinction of type t1. In the full version [2] we also present another algorithm for the
extinction of t2.

Results. We will focus on undirected graphs. For undirected graphs, we will give new
FPRAS (fully polynomial, randomized approximation scheme) for the fixation and the ex-
tinction problem, and a polynomial-time algorithm for an additive approximation of the
generalized fixation problem. There exists previous FPRAS for the fixation and extinction
problems [5]. Our upper bounds are at least a factor of O( n2

logn ) (most cases O( n3

logn )) better
and always in Poly(n, 1/ε), whereas the previous algorithms are not in polynomial time for
r given in binary.



K. Chatterjee, R. Ibsen-Jensen, and M.A. Nowak 61:5

3 Discarding ineffective steps

We consider undirected graphs. Previous work by Diaz et al. [5] showed that the expected
number of dynamic evolution steps till fixation is polynomial, and then used it to give a
polynomial-time Monte-Carlo algorithm. Our goal is to improve the quite high polynomial-
time complexity, while giving a Monte-Carlo algorithm. To achieve this we define the notion
of effective steps.

Effective steps. A dynamic evolution step, which changes the type function from f to f ′,
is effective if f 6= f ′ (and ineffective otherwise). The idea is that steps in which no node
changes type (because the two nodes selected in the dynamic evolution step already had the
same type) can be discarded, without changing which type fixates/gets eliminated.

Two challenges. The two challenges are as follows:
1. Number of steps The first challenge is to establish that the expected number of effective

steps is asymptotically smaller than the expected number of all steps. We will establish
a factor O(n∆) improvement (recall ∆ is the maximum degree).

2. Sampling Sampling an effective step is harder than sampling a normal step. Thus it is
not clear that considering effective steps leads to a faster algorithm. We consider the
problem of efficiently sampling an effective step in a later section, see Section 5. We show
that sampling an effective step can be done in O(∆) time (after O(m) preprocessing).

Notation. For a type function f , let Γv(f) be the subset of successors of v, such that
u ∈ Γv(f) iff f(v) 6= f(u). Also, let W ′(f) =

∑
u w(f(u)) · |Γu(f)|

degu .

Modified dynamic evolution step. Formally, we consider the following modified dynamic
evolution step (that changes the type function from f to f ′ and assumes that f does not
map all nodes to the same type):
1. First a node v is picked at random with probability proportional to p(v) = w(f(v))· |Γv(f)|

deg v

i.e. each node v has probability of being picked equal to p(v)
W ′(f) .

2. Next, a successor u of v is picked uniformly at random among Γv(f).
3. The type of u is then changed to f(v), i.e., f ′ = f [u→ f(v)].

In the following lemma we show that the modified dynamic evolution step corresponds
to the dynamic evolution step except for discarding steps in which no change was made.

I Lemma 1. Fix any type function f such that neither type has fixated. Let fd (resp., fm)
be the next type function under dynamic evolution step (resp., modified dynamic evolution
step). Then, Pr[f 6= fd] > 0 and for all type functions f ′ we have: Pr[f ′ = fd | f 6= fd] =
Pr[f ′ = fm].

Potential function ψ. Similar to [5] we consider the potential function ψ =
∑
v∈Vt1,f

1
deg v

(recall that Vt1,f is the set of nodes of type t1). We now lower bound the expected difference
in potential per modified evolutionary step.

I Lemma 2. Let f be a type function such that neither type has fixated. Apply a modified
dynamic evolution step on f to obtain f ′. Then,

E[ψ(f ′)− ψ(f)] ≥ r − 1
∆ · (r + 1) .

MFCS 2017



61:6 Faster Monte-Carlo Algorithms for Fixation Probability of the Moran Process

Proof. Observe that f differs from f ′ for exactly one node u. More precisely, let v be the
node picked in line 1 of the modified dynamic evolution step and let u be the node picked
in line 2. Then, f ′ = f [u→ f(v)]. The probability to select v is p(v)

W ′(f) . The probability to
then pick u is 1

|Γv(f)| .
We have that
If f(u) = t2 (and thus, since it got picked f(v) = t1), then ψ(f ′)− ψ(f) = 1

degu .
If f(u) = t1 (and thus, since it got picked f(v) = t2), then ψ(f ′)− ψ(f) = − 1

degu .
Below we use the following notations:

E12 = {(v, u) ∈ E | f(v) = t1 and f(u) = t2};E21 = {(v, u) ∈ E | f(v) = t2 and f(u) = t1}.

Thus,

E[ψ(f ′)− ψ(f)] =∑
(v,u)∈E12

(
p(v)
W ′(f) ·

1
|Γv(f)| ·

1
deg u

)
−

∑
(v,u)∈E21

(
p(v)
W ′(f) ·

1
|Γv(f)| ·

1
deg u

)

=
∑

(v,u)∈E12

(
w(f(v))

W ′(f) · (deg u) · (deg v)

)
−

∑
(v,u)∈E21

(
w(f(v))

W ′(f) · (deg u) · (deg v)

)
.

Using that the graph is undirected we get,

E[ψ(f)− ψ(f ′)] =
∑

(v,u)∈E12

(
w(f(v))− w(f(u))

W ′(f) · (deg u) · (deg v)

)

= 1
W ′(f)

∑
(v,u)∈E12

(
r − 1

min(deg u,deg v) ·max(deg u,deg v)

)
≥ r − 1

∆ ·W ′(f)
∑

(v,u)∈E12

1
min(deg u,deg v) = r − 1

∆ ·W ′(f) · S ,

where S =
∑

(v,u)∈E12
1

min(degu,deg v) . Note that in the second equality we use that for two
numbers a, b, their product is equal to min(a, b) ·max(a, b). By definition of W ′(f), we have

W ′(f) =
∑
u

w(f(u)) · |Γu(f)|
deg u =

∑
u

∑
v∈Γu(f)

w(f(u))
deg u =

∑
(v,u)∈E
f(u)6=f(v)

w(f(u))
deg u

=
∑

(v,u)∈E12

(
w(f(u))

deg u + w(f(v))
deg v

)
≤

∑
(v,u)∈E12

w(f(u)) + w(f(v))
min(deg u,deg v) = (r + 1) · S .

Thus, we see that E[ψ(f ′)− ψ(f)] ≥ r−1
∆·(r+1) , as desired. This completes the proof. J

I Lemma 3. Let r = x∆ for some number x > 0. Let f be a type function such that neither
type has fixated. Apply a modified dynamic evolution step on f to obtain f ′. The probability
that |Vt1,f ′ | = |Vt1,f |+ 1 is at least x

x+1 (otherwise, |Vt1,f ′ | = |Vt1,f | − 1).

I Lemma 4. Consider an upper bound `, for each starting type function, on the expected
number of (effective) steps to fixation. Then for any starting type function the probability
that fixation requires more than 2 · ` · x (effective) steps is at most 2−x.

We now present the main theorem of this section, which we obtain using the above
lemmas, and techniques from [5].



K. Chatterjee, R. Ibsen-Jensen, and M.A. Nowak 61:7

c2

c12

c22
c32

c42

c3

c13

c23

c33
c43

c1 v1 v2 v3 v4

v5v6v7v8v9

v10 v11 v12 v13 v14 v15

Figure 1 Example of a member of the family that attains the lower bound for undirected graphs.
(Specifically, it is G6,31)

I Theorem 5. Let t1 and t2 be the two types, such that r = w(t1) > w(t2) = 1. Let ∆ be
the maximum degree. Let k be the number of nodes of type t2 in the initial type function.
The following assertions hold:

Bounds dependent on r
1. Expected steps The process requires at most 3k∆/min(r − 1, 1) effective steps in

expectation, before fixation is reached.
2. Probability For any integer x ≥ 1, after 6xn∆/min(r − 1, 1) effective steps, the

probability that the process has not fixated is at most 2−x, irrespective of the initial
type function.

Bounds independent on r
1. Expected steps The process requires at most 2nk∆2 effective steps in expectation,

before fixation is reached.
2. Probability For any integer x ≥ 1, after 4xn2∆2 effective steps, the probability that

the process has not fixated is at most 2−x, irrespective of the initial type function.
Bounds for r ≥ 2∆
1. Expected steps The process requires at most 3k effective steps in expectation, before

fixation is reached.
2. Probability For any integer x ≥ 1, after 6xn effective steps, the probability that the

process has not fixated is at most 2−x, irrespective of the initial type function.

4 Lower bound for undirected graphs

In this section, we will argue that our bound on the expected number of effective steps is
essentially tight, for fixed r.

We construct our lower bound graph G∆,n, for given ∆, n (sufficiently large), but fixed
r > 1, as follows. We will argue that fixation of G∆,n takes Ω(k∆) effective steps, if there are
initially exactly k members of type t2. For simplicity, we consider ∆ > 2 and n > 4∆ (it is

MFCS 2017



61:8 Faster Monte-Carlo Algorithms for Fixation Probability of the Moran Process

easy to see using similar techniques that for lines, where ∆ = 2, the expected fixation time is
Ω(k) - basically because t1 is going to fixate with pr. ≈ 1−1/r, using a proof like Lemma 6,
and converting the k nodes of type t2 takes at least k efficient steps). There are two parts
to the graph: A line of ≈ n/2 nodes and a stars-on-a-cycle graph of ≈ n/2. There is 1 edge
from the one of the stars in the stars-on-a-cycle graph to the line. More formally, the graph
is as follows: Let x := bn/(2∆− 2)c. There are nodes VC = {c1, . . . , cx}, such that ci is
connected to ci−1 and ci+1 for 1 < i < x. Also, c1 is connected to cx. The nodes VC are
the centers of the stars in the stars-on-a-cycle graph. For each i, such that 2 ≤ i ≤ x, the
node ci is connected to a set of leaves V iC = {c1i , . . . , c∆−2

i }. The set VC ∪
⋃x
i=2 V

i
C forms the

stars-on-a-cycle graph. Note that c1 is only connected to c2 and cx in the stars-on-a-cycle
graph. We have that the stars-on-a-cycle graph consists of s = (x− 1) · (∆− 1) + 1 ≈ n/2
nodes. There are also nodes VL = {`1, . . . , `n−s}, such that node `i is connected to `i−1 and
`i+1 for 1 < i < n/2. The nodes VL forms the line and consists of n− s ≥ n/2 nodes. The
node c1 is connected to `1. There is an illustration of G6,31 in Figure 1.

We first argue that if at least one of V ′L = {`dn/4e, . . . , `n−s} is initially of type t1,
then with pr. lower bounded by a number depending only on r, type t1 fixates (note that
|V ′L| ≥ n/4 and thus, even if there is only a single node of type t1 initially placed uniformly
at random, it is in V ′L with pr. ≥ 1/4).

I Lemma 6. With pr. above 1−1/r
2 if at least one of V ′L is initially of type t1, then t1 fixates.

The proof is based on applying the gambler’s ruin twice. Once to find out that the pr. that
VL eventually becomes all t1 is above 1−1/r

2 (it is nearly 1 − 1/r in fact) and once to find
out that if VL is at some point all t1, then the pr. that t2 fixates is exponentially small with
base r and exponent n− s. See the full version [2] for the proof.

Whenever a node of V iC , for some i, changes type, we say that a leaf-step occurred. We
will next consider the pr. that an effective step is a leaf-step.

I Lemma 7. The pr. that an effective step is a leaf-step is at most r
∆ .

The proof is quite direct and considers that the probability that a leaf gets selected for
reproduction over a center node in the stars-on-a-cycle graph. See the full version [2] for the
proof.

We are now ready for the theorem.

I Theorem 8. Let r > 1 be some fixed constant. Consider ∆ > 2 (the maximum degree
of the graph), n > 4∆ (sufficiently big), and some k such that 0 < k < n. Then, if there
are initially k members of type t2 placed uniformly at random, the expected fixation time of
G∆,n is above k∆(1−1/r)

32r effective steps.

Proof. Even if k = n − 1, we have that with pr. at least 1
4 , the lone node of type t1 is

initially in V ′L. If so, by Lemma 6, type t1 is going to fixate with pr. at least 1−1/r
2 . Note

that even for ∆ = 3, at least n
4 nodes of the graphs are in V ′ :=

⋃x
i=2 V

i
C (i.e. the leaves of

the stars-on-a-cycle graph). In expectation k
4 nodes of V ′ are thus initially of type t2. For

fixation for t1 to occur, we must thus make that many leaf-steps. Any effective step is a
leaf-step with pr. at most r

∆ by Lemma 7. Hence, with pr. 1
4 ·

1−1/r
2 ( 1

4 is the probability that
at least one node of type t1 is in V ′L and 1−1/r

2 is a lower bound on the fixation probability
if a node of V ′L is of type t1) we must make k∆

4r effective steps before fixation in expectation,
implying that the expected fixation time is at least k∆(1−1/r)

32r effective steps. J



K. Chatterjee, R. Ibsen-Jensen, and M.A. Nowak 61:9

5 Sampling an effective step

In this section, we consider the problem of sampling an effective step. It is quite straightfor-
ward to do so in O(m) time. We will present a data-structure that after O(m) preprocessing
can sample and update the distribution in O(∆) time. For this result we assume that a
uniformly random number can be selected between 0 and x for any number x ≤ n · w(t) in
constant time, a model that was also implicitly assumed in previous works [5]1.

I Remark. If we consider a weaker model, that requires constant time for each random bit,
then we need O(logn) random bits in expectation and additional O(∆) amortized time, using
a similar data-structure (i.e., a total of O(∆ + logn) amortized time in expectation). The
argument for the weaker model is presented in the full version [2]. In this more restrictive
model [5] would use O(logn) time per step for sampling.

Sketch of data-structure. We first sketch a list data-structure that supports (1) inserting
elements; (2) removing elements; and (3) finding a random element; such that each operation
takes (amortized or expected) O(1) time. The idea based on dynamic arrays is as follows:
1. Insertion Inserting elements takes O(1) amortized time in a dynamic array, using the

standard construction.
2. Deletion Deleting elements is handled by changing the corresponding element to a

null-value and then rebuilding the array, without the null-values, if more than half the
elements have been deleted since the last rebuild. Again, this takes O(1) amortized time.

3. Find random element Repeatedly pick a uniformly random entry. If it is not null,
then output it. Since the array is at least half full, this takes in expectation at most 2
attempts and thus expected O(1) time.

At all times we keep a doubly linked list of empty slots, to find a slot for insertion in O(1)
time.

Data-structure. The idea is then as follows. We have 2∆ such list data-structures, one for
each pair of type and degree. We also have a weight associated to each list, which is the
sum of the weight of all nodes in the list, according to the modified dynamic evolution step.
When the current type function is f , we represent each node v as follows: The corresponding
list data-structure contains |Γv(f)| copies of v (and v keeps track of the locations in a doubly
linked list). Each node v also keeps track of Γv(f), using another list data-structure. It is
easy to construct the initial data-structure in O(m) time (note:

∑
v |Γv(f)| ≤ 2m).

Updating the data-structure. We can then update the data-structure when the current
type function f changes to f [u → t] (all updates have that form for some t and u), by
removing u from the list data-structure (f(u), deg u) containing it and adding it to (t,deg u).
Note that if we removed x′ copies of u from (f(u), deg u) we add deg u−x′ to (t,deg u). Also,
we update each neighbor v of u (by deleting or adding a copy to (f(v), deg v), depending on
whether f(v) = t). We also keep the weight corresponding to each list updated and Γv(f)
for all nodes v. This takes at most 4∆ data-structure insertions or deletions, and thus O(∆)
amortized time in total.

1 The construction of [5] was to store a list for t1 and a list for t2 and then first decide if a t1 or t2 node
would be selected in this step (based on r and the number of nodes of the different types) and then pick
a random such node. This works when all nodes of a type has the same weight but does not generalize
to the case when each node can have a distinct weight based on the nodes successors like here

MFCS 2017



61:10 Faster Monte-Carlo Algorithms for Fixation Probability of the Moran Process

Sampling an effective step. Let f be the current type function. First, pick a random list
L among the 2∆ lists, proportional to their weight. Then pick a random node v from L.
Then pick a node at random in Γv(f). This takes O(∆) time in expectation.

I Remark. Observe that picking a random list among the 2∆ lists, proportional to their
weight takes O(∆) time to do naively: E.g. consider some ordering of the lists and let wi
be the total weight of list i (we keep this updated so it can be found in constant time).
Pick a random number x between 1 and the total weight of all the lists (assumed to be
doable in constant time). Iterate over the lists in order and when looking at list i, check
if x <

∑i
j=1 wj . If so, pick list i, otherwise continue to list i + 1. By making a binary,

balanced tree over the lists (similar to what is used for the more restrictive model, see the
full version [2]), the time can be brought down to O(log ∆) for this step - however the naive
approach suffices for our application, because updates requires O(∆) time.

This leads to the following theorem.

I Theorem 9. An effective step can be sampled in (amortized and expected) O(∆) time after
O(m) preprocessing, if a uniformly random integer between 0 and x, for any 0 < x ≤ n·w(t),
can be found in constant time.

6 Algorithms for approximating fixation probability

We present the algorithms for solving the fixation, extinction, and generalized fixation prob-
lems.

The Meta-simulation algorithm. Similar to [5], the algorithms are instantiating the fol-
lowing meta-simulation algorithm, that takes a distribution over initial type functions D,
type t and natural numbers u and z as input:

Function MetaSimulation(t,z,u,D)
Let y ← 0;
for (i ∈ {1, . . . , z}) do

Initialize a new simulation I with initial type function f picked according to D;
Let j ← 0;
while (I has not fixated) do

if (j ≥ u) then
return Simulation took too long;

Set j ← j + 1;
Simulate an effective step in I;

if (t fixated in I) then
Set y ← y + 1;

return y/z;

Basic principle of simulation. Note that the meta-simulation algorithm uses O(uz∆) time
(by Theorem 9). In essence, the algorithm runs z simulations of the process and terminates
with “Simulation took too long” iff some simulation took over u steps. Hence, whenever the
algorithm returns a number it is the mean of z binary random variables, each equal to 1 with



K. Chatterjee, R. Ibsen-Jensen, and M.A. Nowak 61:11

probability Pr[Ft | Eu], where Ft is the event that t fixates and Eu is the event that fixation
happens before u effective steps, when the initial type function is picked according to D (we
note that the conditional part was overlooked in [5], moreover, instead of steps we consider
only effective steps). By ensuring that u is high enough and that the approximation is tight
enough (basically, that z is high enough), we can use Pr[Ft | Eu] as an approximation of
Pr[Ft], as shown in the following lemma.

I Lemma 10. Let 0 < ε < 1 be given. Let X , E be a pair of events and x a number, such
that Pr[E ] ≥ 1− ε·Pr[X ]

4 and that x ∈ [(1− ε/2) Pr[X | E ], (1 + ε/2) Pr[X | E ]]. Then

x ∈ [(1− ε) · Pr[X ], (1 + ε) · Pr[X ]] .

The value of u: uz,r. Consider some fixed value of z. The value of u is basically just picked
so high that Pr[Eu] ≥ 1− ε·Pr[Ft]

4 (so that we can apply Lemma 10) and such that after taking
union bound over the z trials, we have less than some constant probability of stopping. The
right value of u is thus sensitive to r, but in all cases at most O(n2∆2 max(log z, log ε−1)),
because of Theorem 5. More precisely, we let

uz,r =


30n ·max(log z, log ε−1) if r ≥ 2∆

30n∆
min(r−1,1) ·max(log z, log ε−1) if 1 + 1

n·∆ ≤ r < 2∆
20n2∆2 ·max(log z, log ε−1) if r < 1 + 1

n·∆ .

Algorithm Algo1. We consider the fixation problem for t1. Algorithm Algo1 is as follows:
1. Let D be the uniform distribution over the n type functions where exactly one node is t1.
2. Return MetaSimulation(t1,z,uz,r,D), for z = 48 · nε2 .

Algorithm Algo2. We consider the extinction problem for t1. Algorithm Algo2 is as follows:
1. Let D be the uniform distribution over the n type functions where exactly one node is t2.
2. Return MetaSimulation(t1,z,uz,r,D), for z = 24/ε2.

Algorithm Algo3. We consider the problem of (additively) approximating the fixation
probability given some type function f and type t. Algorithm Algo3 is as follows:
1. Let D be the distribution that assigns 1 to f .
2. Return MetaSimulation(t,z,uz,r,D), for z = 6/ε2.

I Theorem 11. Let G be a connected undirected graph of n nodes with the highest degree
∆, divided into two types of nodes t1, t2, such that r = w(t1) > w(t2) = 1. Given 1

2 > ε > 0,
let α = n2 ·∆ · ε−2 ·max(logn, log ε−1) and β = n ·∆ · ε−2 · log ε−1. Consider the running
times:

T (x) =


O(x) if r ≥ 2∆
O( x·∆

min(r−1,1) ) if 1 + 1
n·∆ ≤ r < 2∆

O(n ·∆2 · x) if 1 < r < 1 + 1
n·∆ .

Fixation (resp. Extinction) problem for t1 Algorithm Algo1 (resp. Algo2) is an
FPRAS algorithm, with running time T (α) (resp. T (β)), that with probability at least 3

4
outputs a number in [(1− ε) · ρ, (1 + ε) · ρ], where ρ is the solution of the fixation (resp.
extinction) problem for t1.

MFCS 2017



61:12 Faster Monte-Carlo Algorithms for Fixation Probability of the Moran Process

Generalized fixation problem Given an initial type function f and a type t, there is an
(additive approximation) algorithm, Algo3, with running time T (β), that with probability
at least 3

4 outputs a number in [ρ − ε, ρ + ε], where ρ is the solution of the generalized
fixation problem given f and t.

I Remark. There exists no known FPRAS for the generalized fixation problem and since
the fixation probability might be exponentially small such an algorithm might not exist. (It
is exponentially small for fixation of t2, even in the Moran process (that is, when the graph
is complete) when there initially is 1 node of type t2)

Alternative algorithm for extinction for t2. We also present an alternative algorithm for
extinction for t2 when r is big. This is completely different from the techniques of [5]. The
alternative algorithm is based on the following result where we show for big r that 1/r is a
good approximation of the extinction probability for t2, and thus the algorithm is polynomial
even for big r in binary.

I Theorem 12. Consider an undirected graph G and consider the extinction problem for t2
on G. If r ≥ max(∆2, n)/ε, then 1

r ∈ [(1 − ε) · ρ, (1 + ε) · ρ], where ρ is the solution of the
extinction problem for t2.

Proof sketch. We present a proof sketch, and details are in the full version [2]. We have
two cases:

By [5, Lemma 4], we have ρ ≥ 1
n+r . Thus, (1 + ε) · ρ ≥ 1

r , as desired, since n/ε ≤ r.
On the other hand, the probability of fixation for t2 in the first effective step is at most

1
r+1 <

1
r (we show this in the full version [2]). The probability that fixation happens for

t2 after the first effective step is at most ε/r because of the following reason: By Lemma 3,
the probability of increasing the number of members of t2 is at most p := 1

r/∆+1 and
otherwise it decrements. We then model the problem as a Markov chain M with state
space corresponding to the number of members of t1, using p as the probability to
decrease the current state. In M the starting state is state 2 (after the first effective
step, if fixation did not happen, then the number of members of t1 is 2). Using that
∆2/ε ≤ r, we see that the probability of absorption in state 0 of M from state 2 is less
than ε/r. Hence, ρ is at most (1 + ε)/r and (1− ε)ρ is thus less than 1/r. J

I Remark. While Theorem 12 is for undirected graphs, a variant (with larger r and which
requires the computation of the pr. that t1 goes extinct in the first step) can be established
even for directed graphs, see the full version [2].

Concluding remarks. In this work we present faster Monte-Carlo algorithms for approxim-
ating fixation probability for undirected graphs (see the full version [2] for detailed compar-
ison). An interesting open question is whether the fixation probability can be approximated
in polynomial time for directed graphs.

References
1 B. Adlam, K. Chatterjee, and M. A. Nowak. Amplifiers of selection. Proceedings of the

Royal Society of London A: Mathematical, Physical and Engineering Sciences, 471(2181),
2015. doi:10.1098/rspa.2015.0114.

2 Krishnendu Chatterjee, Rasmus Ibsen-Jensen, and Martin Nowak. Faster monte-carlo
algorithms for fixation probability of the moran process on undirected graphs. CoRR,
abs/1706.06931, 2017. URL: http://arxiv.org/abs/1706.06931.

http://dx.doi.org/10.1098/rspa.2015.0114
http://arxiv.org/abs/1706.06931


K. Chatterjee, R. Ibsen-Jensen, and M.A. Nowak 61:13

3 F. Débarre, C. Hauert, and M. Doebeli. Social evolution in structured populations. Nature
Communications, 2014.

4 Josep Díaz, Leslie Ann Goldberg, George B. Mertzios, David Richerby, Maria Serna, and
Paul G. Spirakis. On the fixation probability of superstars. Proceedings of the Royal Society
A: Mathematical, Physical and Engineering Science, 469(2156), 2013.

5 Josep Díaz, Leslie Ann Goldberg, George B. Mertzios, David Richerby, Maria Serna, and
Paul G. Spirakis. Approximating Fixation Probabilities in the Generalized Moran Process.
Algorithmica, 69(1):78–91, 2014 (Conference version SODA 2012).

6 Josep Díaz, Leslie Ann Goldberg, David Richerby, and Maria Serna. Absorption time of
the Moran process. Random Structures & Algorithms, 48(1):137–159, 2016.

7 W.J. Ewens. Mathematical Population Genetics 1: I. Theoretical Introduction. Interdis-
ciplinary Applied Mathematics. Springer, 2004.

8 Marcus Frean, Paul B. Rainey, and Arne Traulsen. The effect of population structure on
the rate of evolution. Proceedings of the Royal Society B: Biological Sciences, 280(1762),
2013.

9 Andreas Galanis, Andreas Göbel, Leslie Ann Goldberg, John Lapinskas, and David Rich-
erby. Amplifiers for the Moran Process. In 43rd International Colloquium on Automata,
Languages, and Programming (ICALP 2016), volume 55, pages 62:1–62:13, 2016.

10 Rasmus Ibsen-Jensen, Krishnendu Chatterjee, and Martin A Nowak. Computational
complexity of ecological and evolutionary spatial dynamics. Proceedings of the National
Academy of Sciences, 112(51):15636–15641, 2015.

11 Samuel Karlin and Howard M. Taylor. A First Course in Stochastic Processes, Second
Edition. Academic Press, 2 edition, April 1975.

12 Erez Lieberman, Christoph Hauert, and Martin A. Nowak. Evolutionary dynamics on
graphs. Nature, 433(7023):312–316, January 2005. doi:10.1038/nature03204.

13 P. A. P. Moran. The Statistical Processes of Evolutionary Theory. Oxford University Press,
Oxford, 1962.

14 Martin A. Nowak. Evolutionary Dynamics: Exploring the Equations of Life. Harvard
University Press, 2006.

15 Paulo Shakarian, Patrick Roos, and Anthony Johnson. A review of evolutionary graph
theory with applications to game theory. Biosystems, 107(2):66–80, 2012.

MFCS 2017

http://dx.doi.org/10.1038/nature03204




The 2CNF Boolean Formula Satisfiability Problem
and the Linear Space Hypothesis∗

Tomoyuki Yamakami

Faculty of Engineering, University of Fukui, Japan
TomoyukiYamakami@gmail.com

Abstract
We aim at investigating the solvability/insolvability of nondeterministic logarithmic-space (NL)
decision, search, and optimization problems parameterized by size parameters using simultane-
ously polynomial time and sub-linear space on multi-tape deterministic Turing machines. We
are particularly focused on a special NL-complete problem, 2SAT – the 2CNF Boolean for-
mula satisfiability problem – parameterized by the number of Boolean variables. It is shown
that 2SAT with n variables and m clauses can be solved simultaneously polynomial time and
(n/2c

√
logn) polylog(m+n) space for an absolute constant c > 0. This fact inspires us to propose

a new, practical working hypothesis, called the linear space hypothesis (LSH), which states that
2SAT3 – a restricted variant of 2SAT in which each variable of a given 2CNF formula appears as
literals in at most 3 clauses – cannot be solved simultaneously in polynomial time using strictly
“sub-linear” (i.e., nε polylog(n) for a certain constant ε ∈ (0, 1)) space. An immediate conse-
quence of this working hypothesis is L 6= NL. Moreover, we use our hypothesis as a plausible
basis to lead to the insolvability of various NL search problems as well as the nonapproximability
of NL optimization problems. For our investigation, since standard logarithmic-space reductions
may no longer preserve polynomial-time sub-linear-space complexity, we need to introduce a new,
practical notion of “short reduction.” It turns out that 2SAT3 is complete for a restricted version
of NL, called Syntactic NL or simply SNL, under such short reductions. This fact supports the
legitimacy of our working hypothesis.

1998 ACM Subject Classification F.1.1 Models of Computation, F.1.2 Modes of Computation,
F.1.3 Complexity Measures and Classes, F.4.3 Formal Languages, G.1.2 Approximation, G.1.6
Optimization

Keywords and phrases sub-linear space, linear space hypothesis, short reduction, Boolean for-
mula satisfiability problem, NL search, NL optimization, Syntactic NL

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.62

1 Background and Main Contributions

1.1 Motivational Discussion: Space Complexity of Parameterized 2SAT
Since Cook [4] demonstrated its NP-completeness, the Boolean formula satisfiability problem
(SAT) of determining whether a given Boolean formula is satisfied by a suitably-chosen
variable assignment has been studied extensively for more than 50 years. As its restricted
variant, the kCNF Boolean formula satisfiability problem (kSAT), for an integer index k ≥ 3,
whose input formulas are of k-conjunctive normal form (kCNF) has also been a centerpiece
of computational complexity theory. Since kSAT is complete for NP (nondeterministic

∗ This work was done in part at the University of Toronto between August 1, 2016 and March 30, 2017
and was supported by the Natural Sciences and Engineering Research Council of Canada.

© Tomoyuki Yamakami;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 62; pp. 62:1–62:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.62
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


62:2 2SAT and the Linear Space Hypothesis

polynomial time) [4], its solvability is linked to the computational complexity of all other
NP problems; for instance, if kSAT is solved in polynomial time, then so are all NP
problems. A recent study has been focused on the solvability of kSAT with n Boolean
variables and m clauses within “sub-exponential” (which means 2εnpoly(n + m) for an
absolute constant ε ∈ (0, 1) and a suitable polynomial poly(·)) runtime. In this line of study,
Impagliazzo, Paturi, and Zane [10] took a new approach toward kSAT and its search version,
Search-kSAT, parameterized by the number mvbl(x) of Boolean variables and the number
mcls(x) of clauses in a given kCNF formula x as natural “size parameters” (which were
called “complexity parameters” in [10]). To discuss such sub-exponential-time solvability
for a wide range of NP-complete problems, Impagliazzo et al. further devised a crucial
notion of sub-exponential-time reduction family (or SERF-reduction), which preserves the sub-
exponential-time complexity, and they cleverly demonstrated that the two size parameters,
mvbl(x) and mcls(x), make Search-kSAT SERF-equivalent (that is, the both are SERF-
reducible to each other). As a working hypothesis, Impagliazzo and Paturi [9] formally
proposed the exponential time hypothesis (ETH), which asserts the insolvability of kSAT
parameterized by mvbl(x) (succinctly denoted by (kSAT,mvbl)) in sub-exponential time for
all indices k ≥ 3. Their hypothesis is obviously a stronger assertion than P 6= NP and it has
then led to intriguing consequences, including finer lower bounds on the solvability of various
parameterized NP problems (see, e.g., a survey [14]).

Whereas ETH concerns with kSAT for k ≥ 3, we are focused on the remaining case of
k = 2. The decision problem 2SAT is known to be complete∗ for NL (nondeterministic
logarithmic space) under log-space reductions. Since 2SAT already enjoys a polynomial-
time algorithm (because NL ⊆ P), we are more concerned with how much memory space
such an algorithm requires to run. An elaborate algorithm solves 2SAT with n variables
and m clauses using simultaneously polynomial time and (n/2c

√
logn) polylog(m+ n) space

(Theorem 4.2), where c > 0 is a constant and polylog(·) is a suitable polylogarithmic function.
This space bound is slightly below n; however, it is not yet known that 2SAT parameterized
by mvbl(x) (or mcls(x)) can be solved in polynomial time using strictly “sub-linear” space.
Here, the informal term “sub-linear” for a size parameter m(x) refers to a function of the
form m(x)ε`(|x|) on input instances x for a certain absolute constant ε ∈ (0, 1) and an
appropriately-chosen polylogarithmic function `(n). Of course, this multiplicative factor
`(|x|) becomes redundant if m(x) is relatively large (for example, m(x) ≥ logk |x| for any
constant k > 0) and thus “sub-linear” turns out to be simply m(x)ε.

In parallel to a restriction of SAT to kSAT, for polynomial-time sub-linear-space solvability,
we further limit 2SAT to 2SATk, which consists of all satisfiable formulas in which each
variable appears as literals in at most k clauses. Notice that 2SATk for each k ≥ 3 is also
NL-complete (Proposition 4.1) as 2SAT is; in contrast, kSAT2 already falls into L for any
index k ≥ 2.

1.2 Sub-Linear Space and Short Reductions
All (parameterized) decision problems solvable in polynomial time using sub-linear space
form a new complexity class PsubLIN (whose prefix “P” refers to “polynomial time”), which
is located between L and P. This class PsubLIN naturally includes, for example, DCFL
(deterministic context-free) because Cook [5] earlier showed that every language in DCFL is

∗ This is because Jones, Lien, and Laaser [13] demonstrated the NL-completeness of the complement of
SAT (called UNSAT2 in [13]) and Immerman [8] and Szelepcsényi [18] proved the closure of NL under
complementation.



T. Yamakami 62:3

recognized in polynomial time using O(log2 n)-space, where n is input size. Unfortunately,
there is no separation known among L, NL, PsubLIN, and P.

It turns out that PsubLIN does not seem to be closed under standard log-space reductions;
thus, those reductions are no longer suitable tools to discuss the solvability of NL-complete
problems in polynomial time using sub-linear space. Therefore, we need to introduce a much
weaker form of reductions, called short reductions, which preserve polynomial-time, sub-
linear-space complexity. Intuitively speaking, a short reduction is a reduction between two
(parameterized) decision problems computed by a reduction machine (or a reduction function)
that can generate strings of size parameter proportional to or less than size parameter of
its input string. In particular, we will define three types of such short reductions in Section
3: short L-m-reducibility (≤sL

m ), short L-T-reducibility (≤sL
T ), and short sub-linear-space-T-

reducibility (≤sSLRF
T ).

As noted earlier, Impagliazzo et al. demonstrated in [10, Corollary 2] that (kSAT,mvbl) is
SERF-equivalent to (kSAT,mcls). Similarly, we can give a short reduction from 2SAT3 with
mvbl to 2SAT3 with mcls, and vice verse; in other words, (2SAT3,mvbl) and (2SAT3,mcls)
are equivalent under short L-T-reductions (Lemma 4.3(2)). On the contrary, such equivalence
is not known for 2SAT and this circumstance signifies the importance of 2SAT3.

Another importance of 2SAT3 can be demonstrated by showing that 2SAT3 is actually
one of the hardest problems in a natural subclass of NL, which we call Syntactic NL or
simply SNL. An SNL formula Ψ ≡ Ψ(x) is of the form ∃T∀i1 · · · ∀ir∀y1 · · · ∀ys∃z1 · · · ∃zt ψ,
starting with a second-order existential quantifier, followed by first-order quantifiers, with a
supporting semantic model. From this model, we define a certificate size mcert(x). Their
precise definitions will be given in Section 4. We say that Ψ syntactically expresses A if, for
every x, x ∈ A exactly when Ψ(x) is true. The notation SNL stands for the collection of
all (A,m), each of which is expressed syntactically by an appropriate SNL-formula Ψ and
satisfies m(x) = cmcert(x) for a certain constant c > 0.

I Theorem 1.1. (2SAT3,mvbl) is complete for SNL under short SLRF-T-reductions.

1.3 A New, Practical Working Hypothesis for 2SAT3

Since its introduction in 2001, ETH for kSAT (k ≥ 3) has served as a driving force to obtain
finer lower bounds on the sub-exponential-time computability of various parameterized
NP problems, since those bounds do not seem to be obtained directly from the popular
assumption of P 6= NP. In a similar vein, we wish to propose a new working hypothesis,
called the linear space hypothesis (LSH) for 2SAT3, in which no deterministic algorithm solves
(2SAT3,mvbl) simultaneously in polynomial time using sub-linear space. More precisely:

The Linear Space Hypothesis (LSH) for 2SAT3: For any choice of ε ∈ (0, 1)
and any polylogarithmic function `, no deterministic Turing machine solves 2SAT3
parameterized by mvbl simultaneously in polynomial time using mvbl(x)ε`(|x|) space,
where x refers to an input instance to 2SAT3.

We can replace mvbl in the above definition by mcls (see Section 4), and thus we often
omit it. Consider the case of L = NL. Since 2SAT3 belongs to L, it is also in PsubLIN. This
consequence contradicts LSH for 2SAT3. Therefore, we immediately obtain:

I Theorem 1.2. If LSH for 2SAT3 is true, then L 6= NL.

From Theorem 1.2, our working hypothesis LSH for 2SAT3 is expected to lead to finer,
better consequences than what the assumption L 6= NL can lead to.

MFCS 2017



62:4 2SAT and the Linear Space Hypothesis

Let δ3 denote the infimum of a real number ε ∈ [0, 1] for which there is a deterministic
Turing machine solving 2SAT3 simultaneously in polynomial time using at mostmvbl(x)ε`(|x|)
space on instances x for a certain fixed polylogarithmic function `. Here, we acknowledge
three possible cases: (i) δ3 = 0, (ii) 0 < δ3 < 1, and (iii) δ3 = 1, and one of them must be
true after all. The hypothesis LSH for 2SAT3 exactly matches (iii).

I Proposition 1.3. The working hypothesis LSH for 2SAT3 is true iff δ3 = 1 holds.

For any ≤r-reduction, the notation ≤r(SNL) refers to the collection of all (parameterized)
decision problems that can be reduced by ≤r-reductions to certain problems in SNL.

I Proposition 1.4. The following statements are all logically equivalent. (1) (2SAT3,mvbl) ∈
PsubLIN. (2) SNL ⊆ PsubLIN. (3) ≤sSLRF

T (SNL) ⊆ PsubLIN.

Proposition 1.4(3) can be compared to the fact that ≤L
m(SNL) = NL.

Furthermore, we seek two other characterizations of the hypothesis LSH for 2SAT3. The
first problem is a variant of a well-known NP-complete problem, called the {0, 1}-linear
programming problem (LP2). In what follows, a vector of dimension n means an n× 1 matrix
and a rational number is treated as a pair of appropriate integers.

(2,k)-Entry {0, 1}-Linear Programming Problem (LP2,k):
Instance: a rational m × n matrix A and a rational vector b of dimension n, where
m,n ≥ 1 and each row of A has at most two nonzero entries and each column of A has
at most k non-zero entries.
Question: is there any {0, 1}-vector x satisfying Ax ≥ b?

As natural size parameters mcol(x) and mrow(x), we take the numbers of columns and of
rows of A for instance x = (A, b) given to LP2,k, respectively.

Another problem to consider is a variant of the directed s-t connectivity problem†

(DSTCON) of asking whether a path between two given vertices exists in a directed graph.

Degree-k Directed s-t Connectivity Problem (kDSTCON):
Instance: a directed graph G = (V,E) of degree (i.e., indegree plus outdegree) at most
k, and two designated vertices s and t.
Question: is there any path from s to t in G?

For any instance x = (G, s, t) to kDSTCON, mver(x) and medg(x) respectively denote
the number of vertices and that of edges in G.

I Theorem 1.5. The following statements are logically equivalent: (1) LSH for 2SAT3, (2)
LSH for LP2,3 (with mrow or mcol), and (3) LSH for 3DSTCON (with mver or medg).

This theorem allows us to use LP2,3 and 3DSTCON for LSH as substitutes for 2SAT3.

1.4 Four Examples of How to Apply the Working Hypothesis
To demonstrate the usefulness of LSH for 2SAT3, we will seek four applications of LSH in the
fields of search problems and optimization problems. Although many NL decision problems
have been turned into NL search problems (whose precise definition is given in Section 6), not
all NL problems can be “straightforwardly” converted into a framework of NL search problems.
For example, 2SAT is NL-complete but the problem of finding a truth assignment (when

† This is also known as the graph accessibility problem and the graph reachability problem in the literature.



T. Yamakami 62:5

variables are ordered in an arbitrarily fixed way) that satisfies a given 2CNF formula does
not look like a legitimate form of NL search problem. In addition, its optimization version,
Max2SAT, is already complete for APX (polynomial-time approximable NP optimization)
instead of NLO (NL optimization class) under polynomial-time approximation-preserving
reductions (see [1]).

First, we will see two simple applications of LSH for 2SAT3 in the area of NL search
problems. Earlier, Jones et al. [13] discussed the NL-completeness of a decision problem
concerning one-way nondeterministic finite automata (or 1nfa’s). We modify this problem
into an associated search problem, called Search-1NFA, as given below.

1NFA Membership Search Problem (Search-1NFA):
Instance: a 1nfa M = (Q,Σ, δ, q0, F ) with no λ-moves, and a parameter 1n, where λ is
the empty string for n ∈ N.
Solution: an input string x of length n accepted by M (i.e., when x is written on M ’s
read-only input tape, M eventually enters a final state in F before or on reading the last
symbol of x).

As a meaningful size parameter mnfa, we set mnfa(x) = |Q||Σ|n for instance x = (M, 1n).

I Theorem 1.6. Assuming that LSH for 2SAT3, for every fixed value ε ∈ (0, 1/2), there is
no polynomial-time O(n1/2−ε)-space algorithm for (Search-1NFA,mnfa).

Jenner [11] presented a few variants of the well-known knapsack problem and showed
their NL-completeness. Here, we choose one of them that fit into the NL-search framework
by a small modification. Given a string x, a substring z of x is called unique if there exists a
unique pair u, v satisfying x = uzv. Write [n] for the set {1, 2, . . . , n}.

Unique Ordered Concatenation Knapsack Search Problem (Search-UOCK):
Instance: a string w and a sequence (w1, w2, . . . , wn) of strings over a certain fixed
alphabet Σ such that, for every i ∈ [n], if wi is a substring of w, then wi is unique.
Solution: a sequence (i1, i2, . . . , ik) of indices with k ≥ 1 such that 1 ≤ i1 < i2 < · · · <
ik ≤ n and w = wi1wi2 · · ·wik .

Our size parameter melm for Search-UOCK is the number of elements w1, w2, . . . , wn in
the above definition (namely, melm(x) = n for instance x).

I Theorem 1.7. If LSH for 2SAT3 holds, then, for any ε > 0, there is no polynomial-time
O(n1/2−ε)-space algorithm for (Search-UOCK,melm).

We then turn to the area of NL optimization problems (or NLO problems, in short)
[19, 20]. See Section 6 for their formal definition. We will consider a problem that belongs
to LSASNLO but does not seem to be solvable using log space. Here, LSASNLO is the
collection of NLO problems that have log-space approximation schemes, where a log-space
approximation scheme for an NLO problem P is a deterministic Turing machineM that takes
any input of the form (x, k) and outputs a solution y of P using space at most f(k) log |x|
for a certain log-space computable function f : N→ N for which the performance ratio R
satisfies R(x, y) ≤ 1 + 1

k . Such a solution y is called a (1 + 1
k )-approximate solution. Notice

that the performance ratio is a ratio between the value of an optimal solution and that of
M ’s output.

In 2007, Tantau [19] presented an NL maximization problem, called Max-HPP, which falls
into LSASNLO. This problem was later rephrased in [20, arXiv version] in terms of complete
graphs and it was shown to be computationally hard for LONLO (log-space computable NL
optimization) under approximation-preserving exact NC1-reduction.

MFCS 2017



62:6 2SAT and the Linear Space Hypothesis

Maximum Hot Potato Problem (Max-HPP):
Instance: an n× n matrix A whose entries are drawn from [n], a number d ∈ [n], and a
start index i1 ∈ [n], where n ∈ N+.
Solution: an index sequence S = (i1, i2, . . . , id) of length d with ij ∈ [n] for any j ∈ [d].
Measure: total weight w(S) =

∑d−1
j=1 Aijij+1 .

We use the number n of columns in a given matrix as size parameter mcol(A, d, i1).
We can show that, under the assumption of LSH for 2SAT3, (Max-HPP,mcol) cannot
have polynomial-time O(k1/3 logmcol(x))-space approximation schemes of finding (1 + 1

k )-
approximate solutions for instances x.

I Theorem 1.8. If LSH for 2SAT3 is true, then, for any ε > 0, there is no polynomial-time
O(k1/3 logmcol(x))-space algorithm finding (1+ 1

k )-approximate solutions of (Max-HPP,mcol),
where x is any instance and k is an approximation parameter.

The fourth example concerns with the computational complexity of transforming one
type of finite automata into another type. It is known that we can convert a 1nfa M to
an “equivalent” one-way deterministic finite automaton (or 1dfa) M ′ in the sense that both
M and M ′ recognize exactly the same language. In particular, we consider the case of
transforming an n-state unary 1nfa into its equivalent unary 1dfa, where a unary finite
automaton takes a single-letter input alphabet. A standard procedure of such transformation
requires polynomial-time and O(n) space (cf. [7]). Under LSH for 2SAT3, we can demonstrate
that this space bound cannot be made significantly smaller.

I Theorem 1.9. If LSH for 2SAT3 is true, then, for any constant ε ∈ (0, 1), there is no
polynomial-time O(nε)-space algorithm that takes an n-state unary 1nfa as input and produces
an equivalent unary 1dfa of O(n logn) states.

2 Basic Notions and Notation

Let N be the set of natural numbers (i.e., nonnegative integers) and set N+ = N − {0}.
Two notations R and R≥0 denote respectively the set of all real numbers and that of all
nonnegative real numbers. For any two integers m and n with m ≤ n, the notation [m,n]Z
denotes the set {m,m+ 1,m+ 2, . . . , n}, which is an integer interval between m and n. For
simplicity, when n ≥ 1, we write [n] for [1, n]Z.

In this paper, all polynomials are assumed to have nonnegative integer coefficients. All
logarithms are to base 2. A polylogarithmic (or polylog) function ` is a function mapping N
to R≥0 such that there exists a polynomial p for which `(n) = p(logn) holds for all n ∈ N,
provided that “log 0” is conventionally set to be 0.

In a course of our study on polynomial-time sub-linear-space computability, it is convenient
to expand the standard framework of decision problems to problems parameterized by properly
chosen “size parameters” (called “complexity parameters” in [10]), which serve as a basis
unit of the time/space complexity of an algorithm. In this respect, we follow a framework
of Impagliazzo et al. [10] to work with a flexible choice of size parameter. A standard size
parameter is the total length |x| of the binary representation of an input instance x and it is
often denoted by ||. More generally, a (log-space) size parameter m(x) for a problem P is a
function mapping Σ∗ (where Σ is an input alphabet) to N such that (1) m must be computed
using log space (that is, by a certain Turing machine that takes input x and outputs m(x) in
unary on an output tape using at most c log |x|+ d space for certain constants c, d > 0) and
(2) there exists a polynomial p satisfying m(x) ≤ p(|x|) for all instances x of P .



T. Yamakami 62:7

As key examples, for any graph-related problem (such as 3DSTCON), medg(x) and
mver(x) denote respectively the total number of edges and that of vertices in a given graph
instance x. Clearly, mver and medg are log-space computable. To emphasize the use of size
parameter m, we often write (P,m) in place of P . We say that a multi-tape Turing machine
M uses logarithmic space (or log space, in short) with respect to size parameter m if there
exist two absolute constants c, d ≥ 0 such that each of the work tapes (not including input
and output tapes) used by M on x are upper-bounded by c logm(x) + d on every input x.

Two specific notations L and NL respectively stand for the classes of all decision problems
solvable on multi-tape deterministic and nondeterministic Turing machines using log space.
It is known that the additional requirement of “polynomial runtime” does not change
these classes. More generally, PTIME,SPACE(s(n)) expresses a class composed of all
(parameterized) decision problems (P,m) solvable deterministically in polynomial time (in
|x|) using space at most s(m(x)) on any instance x given to P .

To define NL search and optimization problems in Section 6, it is convenient for us to
use a practical notion of “auxiliary Turing machine” (see, e.g., [20]). An auxiliary Turing
machine is a multi-tape deterministic Turing machine equipped with an extra read-only
auxiliary input tape, in which a tape head scans each auxiliary input symbol only once by
moving from the left to the right. Given two alphabets Σ and Γ, a (parameterized) decision
problem (P,m) with P ⊆ Σ∗ × Γ∗ is in auxL if there exist a polynomial p and an auxiliary
Turing machine M that takes a standard input x and an auxiliary input y of length p(|x|)
and decides whetherM accepts (x, y) or not in time polynomial in |x| using space logarithmic
in m(x). Its functional version is denoted by auxFL, provided that each underlying Turing
machine is equipped with an extra write-only output tape (in which a tape head moves to
the right whenever it writes a non-blank output symbol) and that the machine produces
output strings of at most polynomial length.

3 Sub-Linear Space and Short Reductions

Recall from [9, 10] that the term “sub-exponential” means 2εm(x) poly(|x|) for a certain
constant ε ∈ (0, 1). In contrast, our main subject is polynomial-time, sub-linear-space
computability, where the term “sub-linear” refers to functions of the form m(x)ε polylog(|x|)
on input instances x for a certain constant ε ∈ (0, 1) and a certain polylogarithmic function
polylog(n). As noted in Section 1.2, the multiplicative factor polylog(|x|) can be eliminated
whenever m(x) is relatively large.

First, we will provide basic definitions for (parameterized) decision problems. A decision
problem P parameterized by size parameter m is said to be solvable in polynomial time
using sub-linear space if, for a certain choice of constant ε ∈ (0, 1), there exist a deterministic
Turing machine Mε, a polynomial pε, and a polylogarithmic function `ε for which M solves
P simultaneously in at most pε(|x|) steps using space at most m(x)ε`ε(|x|) for all instances
x given to P .

The notation PsubLIN expresses the collection of all (parameterized) decision problems
(P,m) that are solvable in polynomial time using sub-linear space. In other words, PsubLIN =⋃
ε∈(0,1) PTIME,SPACE(m(x)ε`(|x|)) for input instances x, where m refers to an arbitrary

(log-space) size parameter and ` refers to any polylogarithmic function. It thus follows that
L ⊆ PsubLIN ⊆ P but none of these inclusions is known to be proper.

The notion of reducibility among decision problems is quite useful in measuring the relative
complexity of the problems. For the class PsubLIN, in particular, we need a restricted form
of reducibility, which we call “short” reducibility, satisfying a special property that any

MFCS 2017



62:8 2SAT and the Linear Space Hypothesis

outcome of the reduction is linearly upper-bounded in size by an input of the reduction. We
will define such restricted reductions for (parameterized) decision problems of our interest.

We begin with a description of L-m-reducibility for (parameterized) decision problems.
Given two (parameterized) decision problems (P1,m1) and (P2,m2), we say that (P1,m1) is
L-m-reducible to (P2,m2), denoted by (P1,m1) ≤L

m (P2,m2), if there is a function (f, ||) ∈ FL
(where || refers to the bit length) and two constants k1, k2 > 0 such that, for any input string
x, (i) x ∈ P1 iff f(x) ∈ P2 and (iii) m2(f(x)) ≤ m1(x)k1 + k1. Notice that all functions in
FL are, by their definition, polynomially bounded.

Concerning polynomial-time sub-linear-space solvability, we introduce a restricted variant
of this L-m-reducibility, which we call the short L-m-reducibility (or sL-m-reducibility, in
short), obtained by replacing the equality m2(f(x)) ≤ m1(x)k1 +k1 in the above definition of
≤L
m with m2(f(x)) ≤ k1m1(x) + k1. To express this new reducibility, we use a new notation

of ≤sL
m .
Since many-one reducibility is too restrictive to use, we need a stronger notion of Turing

reduction, which fits into a framework of polynomial-time, sub-linear-space computability.
Our reduction is actually a polynomial-time sub-linear-space reduction family (SLRF, in
short), performed by oracle Turing machines. A (parameterized) decision problem (P1,m1)
is SLRF-T-reducible to another one (P2,m2), denoted by (P1,m1) ≤SLRF

T (P2,m2), if, for
every fixed value ε > 0, there exist an oracle Turing machine Mε equipped with an extra
write-only query tape, a polynomial pε, a polylog function `ε, and three constants k1, k2 ≥ 1
such that, for every instance x to P1, (1) MP2

ε runs in at most pε(|x|) time using at most
m1(x)ε`ε(|x|) space, provided that its query tape is not subject to this space bound, (2) if
MP2
ε (x) makes a query to P2 with query word z written on the query tape, then z satisfies

both m2(z) ≤ m1(x)k1 + k1 and |z| ≤ |x|k2 + k2, and (3) after Mε makes a query, in a single
step, it automatically erases its query tape, it returns its tape head back to the initial cell,
and oracle P2 informs the machine of its answer by changing the machine’s inner state.

The short SLRF-T-reducibility (or sSLRF-T-reducibility, in short) is obtained from
the SLRF-reducibility by substituting m2(z) ≤ k1m1(x) + k1 for the above inequality
m2(z) ≤ m1(x)k1 + k1. The notation ≤sSLRF

T denotes this restricted reducibility. In the case
where Mε is limited to log-space usage, we use a different notation of ≤sL

T . Note that any
≤sSLRF
T -reduction is an ≤SLRF

T -reduction but the converse is not true because there is a pair
of problems reducible by ≤SLRF

T -reductions but not by ≤sSLRF
T -reductions.

For any reduction ≤r, a decision problem P is said to be ≤r-complete for a given class
C of problems if (1) P ∈ C and (2) every problem Q in C is ≤r-reducible to P . We use the
notation ≤r(C) to express the collection of all problems that are ≤r-reducible to certain
problems in C. When C is a singleton, say, C = {A}, we write ≤r(A) instead of ≤r({A}).

It follows that (P1,m1) ≤L
m (P2,m2) implies (P1,m1) ≤L

T (P2,m2), which further implies
(P1,m1) ≤SLRF

T (P2,m2). The same statement holds for ≤sL
m , ≤sL

T , and ≤sSLRF
T . Moreover,

(P1,m1) ≤sL
m (P2,m2) implies (P1,m1) ≤L

m (P2,m2). The same holds for ≤sSLRF
T and ≤SLRF

T .
Here are other basic properties of SLRF-T- and sSLRF-T-reductions.

I Lemma 3.1.
1. The reducibilities ≤SLRF

T and ≤sSLRF
T are reflexive and transitive.

2. The class PsubLIN is closed under ≤sSLRF
T -reductions.

3. There exist recursive decision problems X and Y such that X ≤SLRF
T Y but X 6≤sSLRF

T Y .
A similar statement holds also for ≤L

m and ≤sL
m .



T. Yamakami 62:9

4 The 2CNF Boolean Formula Satisfiability Problem and SNL

We will make a brief discussion on 2SAT (2CNF Boolean formulas satisfiability problem)
and the complexity class SNL. As noted in Section 1.1, 2SAT is NL-complete under L-m-
reductions.

In what follows, we are focused on two specific size parameters: mvbl(x) and mcls(x),
which respectively denote the numbers of propositional variables and clauses appearing in
formula-related instance x (not necessarily limited to instances of 2SAT).

We further restrict 2SAT by limiting the number of literals appearing in an input Boolean
formula as follows. Let k ∈ N+. We denote by 2SATk the collection of all formulas φ in
2SAT such that, for each variable v in φ, the number of occurrences of v and v is at most k.
Since 2SAT1 and 2SAT2 are solvable using only log space, we force our attention on the case
of k ≥ 3. From (2SAT, ||) ≤L

m (2SAT3, ||) with a help of the fact that 2SAT is NL-complete,
we can immediately obtain the following.

I Proposition 4.1. For each index k ≥ 3, 2SATk is NL-complete.

To solve 2SAT in polynomial time, we need slightly larger than sub-linear space.

I Theorem 4.2. For a certain constant c > 0 and a polylog function `(n), 2SAT with n
variables and m clauses can be solved in polynomial time using n1−c/

√
logn`(m+ n) space.

For any reduction ≤r defined in Section 3, we write (P1,m1) ≡r (P2,m2) if both
(P1,m1) ≤r (P2,m2) and (P2,m2) ≤r (P1,m1) hold.

I Lemma 4.3. Let m ∈ {mvbl,mcls} and k ≥ 3. (1) (2SATk,m) ≡sL
m (2SAT3,m) and (2)

(2SAT3,mvbl) ≡sL
m (2SAT3,mcls).

Contrary to Lemma 4.3(2), it is still unknown whether (2SAT,mvbl) ≡sL
T (2SAT,mcls).

Hereafter, we will define the notion of SNL formulas, which induce the complexity class
SNL. Let x = (S1, . . . , Sa, x1, . . . , xb) be any instance, including “sets” Si and “objects”
xj . An SNL formula Ψ is of the form ∃T∀i1 · · · ∀ir∀y1 · · · ∀ys∃z1 · · · ∃zt ψ, where ψ is a
quantifier-free formula, which is a Boolean combination of atomic formulas of the following
forms: T (i, v), (u1, . . . , uk) ∈ Sj , u = v, i ≤ j, and symb(v, i) = a (i.e., a is the ith symbol
of v), where T is a second-order predicate symbol, and i1, . . . , ir, y1, . . . , ys, z1 . . . , zt are
first-order variables, having the following semantic model for Ψ. In this model, T ranges over
a subset of [p(|x|)]×Ux (where Ux is a universe) with |Ux| ≤ cm(x), each ij ranges a number
in [pj(|x|)], each yj takes an element in another universe Ux,j with |Ux,j | ≤ cjm(x), and
each zj ranges over a set Zx,j of at most e elements (i.e., |Zxj | ≤ e) for absolute constants
c, cj , e ≥ 1 and polynomials p, pj , not depending on the choice of x. A certificate size mcert(x)
is defined to be |Ux| as our basis size parameter.

As a quick example, let us consider a (parameterized) decision problem (A,m) such that
there are a polynomial p, a constant c > 0, and a deterministic Turing machineM recognizing
A simultaneously in time at most p(|x|) using space at most log|Γ|m(x) + c for every instance
x to A, where Γ is a work-tape alphabet. We assume that M terminates in a configuration
in which the work tape is blank and all tape heads return to the initial position. For our
convenience, δ is extended to include a special transition from an accepting configuration
to itself. To express (A,m), we define an SNL-formula Ψ ≡ Ψ(x) as: ∃T [Func(T ) ∧
∃v0∃v1[T (1, v0)∧T (last(T ), v1)∧v1 ∈ ACCx∧∀i∀v∃w[T (i, v)→ (v, w) ∈ Tranδ∧T (i+1, w)]]]
with a semantic model supporting T ⊆ [p(|x|)] × Ux, i ∈ [p(|x|)], v0, x1, v, w,∈ Ux, where
Ux = Γlog|Γ|m(x)+c, ACCx is the set of a unique accepting configuration, last(T ) indicates

MFCS 2017



62:10 2SAT and the Linear Space Hypothesis

the largest index i that ensures ∃v[T (i, v)], Transδ expresses a δ-transition between two
configurations, and Func(T ) asserts that T represents a function f(i) = z satisfying T (i, z).
Note that |Ux| ≤ |Γ|c+1m(x). Hence, (A,m) belongs to SNL.

5 The Working Hypothesis LSH for 2SAT3

The exponential time hypothesis (ETH) has served as a driving force to obtain better lower
bounds on the computational complexity of various important problems (see, e.g., [14]).

In Theorem 4.2, we have seen that 2SAT with n variables and m clauses can be solved in
polynomial time using n1−c/

√
lognpolylog(m+n) space for a certain constant c > 0; however,

it is not yet known to be solved in polynomial time using sub-linear space. This circumstance
encourages us to propose (in Section 1.3) a practical working hypothesis – the linear space
hypothesis (LSH) for 2SAT3 – which asserts the insolvability of (2SAT3,mver) in polynomial
time using sub-linear space. The choice of mvbl does not matter; as shown in Lemma 4.3(2)
with a help of Lemma 3.1(2), we can replace mvbl in the definition of LSH by mcls. Theorem
1.5 has further given two alternative definitions to LSH in terms of LP2,3 and 3DSTCON.

As noted in Section 1.3, Theorem 1.2 states that the above working hypothesis leads to
L 6= NL. Moreover, Proposition 1.3 asserts that LSH for 2SAT3 is equivalent to δ3 = 1.

The working hypothesis LSH concerns with 2SAT3 but it also carries over to 2SAT.

I Lemma 5.1. Assuming that LSH for 2SAT3 is true, each of the following statements holds:
(1) ≤sSLRF

T (2SAT3,mvbl) * PsubLIN and (2) (2SAT,mvbl) /∈ PsubLIN.

As another consequence of LSH for 2SAT3, we can show the existence of a pair of problems
in the class ≤sSLRF

T (2SAT3,mvbl), which are incomparable with respect to ≤sSLRF
T -reductions.

This indicates that the class ≤sSLRF
T (2SAT3,mvbl) has a fine, complex structure with respect

to sSLRF-T-reducibility.

I Theorem 5.2. Assuming LSH for 2SAT3, there are two decision problems (A,mA) and
(B,mB) in ≤sSLRF

T (2SAT3,mvbl) such that (A,mA) 6≤sSLRF
T (B,mB) and (B,mB) 6≤sSLRF

T

(A,mA).

6 Proofs of the Four Examples of LSH Applications

In Section 1.4, we have described four examples of how to apply our working hypothesis LSH
for 2SAT3. Here, we will give three of their proofs.

First, we will briefly describe (parameterized) NL search problems. In general, a search
problem parameterized by (log-space) size parameter m is expressed as (I, SOL,m), where
I consists of (admissible) instances and SOL is a function from I to a set of strings (called
a solution space) such that, for any (x, y) ∈ I ◦ SOL, y ∈ SOL(x) implies |y| ≤ am(x) + b

for certain constants a, b > 0, where I ◦ SOL stands for {(x, y) | x ∈ I, y ∈ SOL(x)}. In
particular, when we use the standard “bit length” of instances, we omit “||” and write
(I, SOL) instead of (I, SOL, ||). Of all search problems, (parameterized) NL search problems
are (parameterized) search problems (I, SOL,m) for which I ∈ L and I ◦ SOL ∈ auxL.
Finally, we denote by Search-NL the collection of all (parameterized) NL search problems.

We say that a deterministic Turing machine M solves (I, SOL,m) if, for any instance
x ∈ I, M takes x as input and produces a solution in SOL(x) if SOL(x) 6= ∅, and produces
a designated symbol ⊥ (“no solution”) otherwise. Now, we recall from Section 1.4 a special



T. Yamakami 62:11

NL search problem, called Search-1NFA, in which we are asked to find an input of length n
accepted by a given λ-free 1nfa M . Theorem 1.6 states that no polynomial-time O(n1/2−ε)-
space algorithm solves (Search-1NFA,mnfa).

Proof of Theorem 1.6. Toward a contradiction, we assume that (Search-1NFA,mnfa) is
solved by a deterministic Turing machine M in time polynomial in |y| using space at most
cmnfa(y)1/2−ε on instances y, where c, ε > 0 are constants. Our aim is to show that
(3DSTCON,mver) can be solved in polynomial time using sub-linear space, because this
contradicts LSH for 3DSTCON, which is equivalent to LSH for 2SAT3 by Theorem 1.5(3).

Let x = (G, s, t) be any instance to 3DSTCON with G = (V,E) and s, t ∈ V . Let
n = |V |. Associated with this x, we define a 1nfa N = (Q,Σ, δ, q0, F ) as follows. First, let
Q = V and Σ = [0, 3]Z. Define q0 = s and F = {t}. For each v ∈ V , consider its neighbor
out(v) = {w ∈ V | (v, w) ∈ E}. We assume that all elements in out(v) are enumerated in a
fixed linear order as out(v) = {w1, w2, . . . , wk} with 0 ≤ k ≤ 3. The transition function δ is
defined as δ(v, i) = {wi} if 0 ≤ i ≤ k.

Supposedly, γ = (v1, v2, . . . , vd) is a path from s = v1 to t = vd in G. For each
index i ∈ [d], we choose an index `(vi) satisfying vi+1 = w`(vi) ∈ out(vi) and we then set
z = `(v1)`(v2) · · · `(vd−1)0n−d+1. When N reads z, it eventually enters vd, which is a halting
state, and therefore N accepts z. On the contrary, in the case where there is no path from s

to t in G, N never accepts any input. Therefore, it follows that (*) 3DSTCON has a path
from s to t iff N accepts z.

Finally, we set y = (N, 1n) as an instance to Search-1NFA parameterized by mnfa.
Note that mnfa(y) = |Q||Σ|n ≤ 4|V |2 = 4mver(z)2. By (*), 3DSTCON can be solved by
running M on y in polynomial time; moreover, the space required for this computation is
upper-bounded by cmnfa(y)1/2−ε ≤ 2cmver(x)1−2ε, which is obviously sub-linear. J

Another NL search problem, Search-UOCK, asks to find, for a given string w, an index
sequence (i1, . . . , ik) in increasing order that makes the concatenation wi1 · · ·wik equal to w
among {w1, w2, . . . , wn}. Here, we present the proof of Theorem 1.7.

Proof of Theorem 1.7. Let us assume that there is a polynomial-time cmelm(x)1/2−ε-space
algorithm A for (Search-UOCK,melm) on instances x for certain constants ε, c > 0. We will
use this A to solve (3DSTCON,mver) in polynomial time using sub-linear space.

Let x = (G, s, t) be any instance to 3DSTCON with G = (V,E). For simplicity of our
argument, let V = {1, 2, . . . , n}, s = 1, and t = n. Now, we define 〈i, j〉 = (i − 1)n + j

for each pair i, j ∈ [n]. First, we modify G into another graph G′ = (V ′, E′), where
V ′ = {〈i, j〉 | i, j ∈ [n]} and E′ = {(〈i, j〉, 〈i′, j′〉) ∈ V ′ × V ′ | i′ = i + 1, (j, j′) ∈ E}. Note
that |V ′| = n2 and |E′| = |V ||E| ≤ 3|V |2 = 3n2 since |E| ≤ 3|V |. Moreover, let s′ = 〈1, s〉
and t′ = 〈n, t〉. This new graph G′ satisfies the following property, called the topological
order : for any pair i, j ∈ V ′, (i, j) ∈ E′ implies i < j.

From (G′, s′, t′), we want to define w = bin(1)#bin(2)# · · ·#bin(n)#, where bin(i)
indicates the binary representation of a natural number i and # is a designated separator not in
{0, 1}. Moreover, for each edge (i, j) ∈ E′, we define wij = bin(i+1)#bin(i+2)# · · ·#bin(j)#.
It follows that, for each wij , if wij is a substring of w, then wij must be unique. Note that
z = (w,wij)(i,j)∈E′ is an instance to Search-1NFA with melm(z) = |E′| ≤ 3n2 = 3mver(x)2.

By running A on input z, we can solve (3DSTCON,medg) for instance x in time polynomial
in |x| using space at most cmelm(z)1/2−ε, which equals 3cmver(x)1−2ε. This contradicts LSH
for 3DSTCON, which implies LSH for 2SAT3 by Theorem 1.5(3). J

MFCS 2017



62:12 2SAT and the Linear Space Hypothesis

The next practical application of the working hypothesis LSH for 2SAT3 targets the area
of combinatorial NL optimization. An NL optimization problem (or an NLO problem) P
is a tuple (I, SOL,mes, goal) with I ∈ L, I ◦ SOL ∈ auxL, mes : I ◦ SOL→ N+ in auxFL,
and goal ∈ {max,min}. See [19, 20] for its precise definition. Let NLO stand for the class of
all NLO problems. An optimal solution y for instance x must satisfy mes(x, y) = mes∗(x),
where mes∗(x) = goaly∈SOL(x){mes(x, y)}. The performance ratio R of a solution y on an
instance x is R(x, y) = max{ mes

∗(x)
mes(x,y) ,

mes(x,y)
mes∗(x) }.

We say that an NLO problem P = (I, SOL,mes, goal) parameterized by size parameter
m is solvable using log space if there is a deterministic Turing machine that takes any instance
x ∈ I and outputs an optimal solution in SOL(x) using logarithmically many tape cells in
terms of size parameter m(x). We write LONLO to denote the class of all NLO problems
solvable in polynomial time.

An NPO problem P is said to be log-space γ-approximable if there is a log-space Turing
machine such that, for any instance x, if SOL(x) 6= ∅, then M outputs a solution in SOL(x)
with R(x,M(x)) ≤ γ; otherwise, M outputs ⊥ (“no solution”). The notation LSASNLO
denotes the class of NLO problems P for which there exists a log-space approximation scheme
for P , where a log-space approximation scheme for P is a deterministic Turing machine
M that takes inputs of the form (x, k) and outputs a solution y of P using space at most
f(k) log |x| for a certain log-space computable function f : N→ N such that the performance
ratio R satisfies R(x, y) ≤ 1 + 1/k. It follows that LONLO ⊆ LSASNLO ⊆ NLO. Here, we are
focused on problems in LSASNLO, that is, NLO problems having log-space approximation
schemes.

Let us recall an NLO problem, called Max-HPP, from Section 1.4. Theorem 1.8 states
that no polynomial-time O(k1/3 logmcol(x))-space algorithm that finds (1 + 1

k )-approximate
solutions solves (Max-HPP,mcol). To prove this theorem, we state a useful supporting
lemma. An optimization problem (I, SOL,mes, goal) parameterized by m is said to be
g(m(x))-bounded if mes(x, y) ≤ g(m(x)) holds for any (x, y) ∈ I ◦ SOL.

I Lemma 6.1. Let c ≥ 1. Every O(m(x)c)-bounded maximization problem in LSASNLO,
parameterized by log-space size parameter m(x), whose (1 + 1

k )-approximate solutions are
found using O(k

1
2c+1 logm(x)) space can be solved in polynomial time using O(m(x)1/2−ε)

space on instances x for a certain constant ε ∈ (0, 1/2).

Proof of Theorem 1.8. Let ε > 0. Note that (Max-HPP,mcol) is mcol(z)-bounded for any
instance z. Assume that there is a polynomial-time O(k1/3 logmcol(z))-space algorithm of
finding (1 + 1

k )-approximate solutions of Max-HPP on instances z. Lemma 6.1 then implies
that (Max-HPP,mcol) is solved by a certain deterministic Turing machine M in polynomial
time using space at most cmcol(z)1/2−ε on instances z for a certain constant c > 0. We want
to use this machine M to solve (3DSTCON,mver) in polynomial time using sub-linear space.

Let x = (G, s, t) be any instance given to 3DSTCON with G = (V,E) and n = |V | ≥ 2.
We define another graph G′ = (V ′, E′), where V ′ = {(i, v) | i ∈ [n], v ∈ V } and E′ =
{((i, u), (i + 1, v)) | i ∈ [n − 1], (u, v) ∈ E}. Note that |V ′| = n2. We set s′ = (1, s) and
t′ = (n, t). From this graph G′, we want to construct an instance z = (A,n, s′) to Max-HPP,
where A is a |V ′| × |V ′| matrix. By identifying vertices in V ′ with numbers in [n2], we set
As′t′ = At′s′ = Avv = 1 for any v ∈ V ′ − {t} and At′v = Avs′ = 1 for all v ∈ V ′. For any
other pair (u, v) ∈ V ′× V ′, if (u, v) ∈ E′, then we define Avw = n; otherwise, define Auv = 1.
Note that mcol(z) = n2 = mver(x)2.

If there is a path (v1, v2, . . . , vk) from s′ to t′ in G′, then we define vk+j = vk for all
indices j ∈ [n2 − k]. It then follows that

∑n2−1
i=1 Avivi+1 = (n2 − 1)n and clearly this is



T. Yamakami 62:13

optimal. On the contrary, let γ = (v1, v2, . . . , vn2) be an optimal solution with an optimal
value (n2 − 1)n. By the requirement of Max-HPP, v1 must be s′. Moreover, Avivi+1 = n

holds for each i ∈ [n2 − 1]. Hence, if we allow a self-loop at vertex t′ in G′, then γ forms a
path from s′. Since |V ′| = n2, γ must include t′. Hence, γ contains a subpath from s′ to t′
in G′.

We then run M on the input z to obtain an optimal index sequence γ. By the above
argument, if w(γ) = (n2−1)n, then a path from s to t exists; otherwise, there is no path from
s to t. SinceM uses at most cmcol(z)1/2−ε space, the space usage of the whole procedure is at
most cmcol(z)1/2−ε, which turns out to be cmver(x)1−2ε by mcol(z) = mver(x)2. Therefore,
3DSTCON is solvable in polynomial time using sub-linear space. This contradicts LSH for
3DSTCON, which is equivalent to LSH for 2SAT3 by Theorem 1.5(3). J

References
1 G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Pro-

tasi. Complexity and Approximation: Combinatorial Optimization Problems and Their
Approximability Properties, Springer-Verlag, 2003.

2 G. Barnes, J. F. Buss, W. L. Ruzzo, and B. Schieber. A sublinear space, polynomial time
algorithm for directed s-t connectivity. SIAM J. Comput. 27 (1998) 1273–1282.

3 C. Calabro, R. Impagliazzo, V. Kabanets, and R. Paturi. The complexity of unique k-SAT:
an isolation lemma for k-CNFs. J. Comput. System Sci. 74 (2008) 386–393.

4 S. A. Cook. The complexity of theorem-proving procedures. In the Proc. of STOC’71,
pp.151–158, 1971.

5 S. A. Cook. Deterministic CFL’s are accepted simultaneously in polynomial time and log
squared space. In the Proc. of STOC’79, pp.338–345, 1979.

6 J. L. Gross, J. Yellen, and P. Zhang. Handbook of Graph Theory. CRC Press, 2014.
7 J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and Com-

putation. Addison-Wesley, 1979.
8 N. Immerman. Nondeterministic space is closed under complement. SIAM J. Comput. 17

(1988) 935–938.
9 R. Impagliazzo and R. Paturi. On the complexity of k-SAT. J. Comput. System Sci. 62

(2001) 367–375.
10 R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential com-

plexity? J. Comput. System Sci. 63 (2001) 512–530.
11 B. Jenner. Knapsack problems for NL. Inform. Process. Lett. 54 (1995) 169–174.
12 N. D. Jones. Space-bounded reducibility among combinatorial problems. J. Comput. System

Sci. 11 (1975) 68–75.
13 N. D. Jones, Y. E. Lien, and W. T. Laaser. New problems complete for nondeterministic

log space. Math. Systems Theory 10 (1976) 1–17.
14 D. Lokshtanov, D. Marx, and S. Saurabh. Lower bounds based on the exponential time

hypothesis. Bulletin of the EATCS, No.105, pp.41–71, 2011.
15 O. Reingold. Undirected connectivity in log-space. J. ACM 55 (2008) article 17.
16 W. J. Savitch. Relationships between nondeterministic and deterministic tape complexities.

J. Comput. System Sci. 4 (1970) 177–192.
17 I. H. Sudborough. On tape-bounded complexity classes and multihead finite automata. J.

Comput. System Sci. 10 (1975) 62–76.
18 R. Szelepcsényi. The method of forced enumeration for nondeterministic automata. Acta

Inform. 26 (1988) 279–284.
19 T. Tantau. Logspace optimization problems and their approximation properties. Theory

Comput. Syst. 41 (2007) 327–350.

MFCS 2017



62:14 2SAT and the Linear Space Hypothesis

20 T. Yamakami. Uniform-circuit and logarithmic-space approximations of refined combina-
torial optimization problems. In the Proc. of COCOA 2013, LNCS, vol.8287, pp.318–329
(2013). A complete version is available at arXiv:1601.01118v1, January 2016.



Variations on Inductive-Recursive Definitions
Neil Ghani1, Conor McBride2, Fredrik Nordvall Forsberg3, and
Stephan Spahn4

1 University of Strathclyde, Glasgow, Scotland
2 University of Strathclyde, Glasgow, Scotland
3 University of Strathclyde, Glasgow, Scotland
4 Middlesex University, London, England

Abstract
Dybjer and Setzer introduced the definitional principle of inductive-recursively defined families
– i.e. of families (U : Set,T : U → D) such that the inductive definition of U may depend on the
recursively defined T – by defining a type DS D E of codes. Each c : DS D E defines a functor
J c K : Fam D → Fam E, and (U,T) = µJ c K : Fam D is exhibited as the initial algebra of J c K.

This paper considers the composition of DS-definable functors: Given F : Fam C → Fam D

and G : Fam D → Fam E, is G ◦ F : Fam C → Fam E DS-definable, if F and G are? We show
that this is the case if and only if powers of families are DS-definable, which seems unlikely. To
construct composition, we present two new systems UF and PN of codes for inductive-recursive
definitions, with UF ↪→ DS ↪→ PN. Both UF and PN are closed under composition. Since PN
defines a potentially larger class of functors, we show that there is a model where initial algebras
of PN-functors exist by adapting Dybjer-Setzer’s proof for DS.

1998 ACM Subject Classification F.3.3 Studies of Program Constructs, F.4.1. Mathematical
Logic

Keywords and phrases Type Theory, induction-recursion, initial-algebra semantics

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.63

1 Introduction

Codes for inductive-recursive definitions were introduced in a series of papers by Dybjer and
Setzer [6, 7, 8]. An initial motivation [5] was to give generic rules that can be specialised to
define most types occurring in Martin-Löf Type Theory [13], including inductive families
[4] and Tarski-style universes [14]. An inductive-recursive definition defines not only a type,
but more generally a family (U : Set,T : U → D) of types for some D : Set1, where the
inductive definition of U may depend on the recursively defined T; examples can be found in
Section 2. To represent such definitions, Dybjer and Setzer introduced a type DS D E of
codes representing functors Fam D → Fam E. The family (U,T) = µJ c K : Fam D arises as
the initial algebra of a functor J c K : Fam D → Fam D represented by a code c : DS D D.

Induction-recursion is important as it is the strongest form of inductive definition we
have, surpassing, for example, inductive definitions [10] and inductive families [2]. This paper
asks the following fundamental and significant question:

Is the theory of inductive-recursive definitions, as currently understood, optimal?

We still believe that conceiving of inductive-recursive definitions as initial algebras in the
category Fam D is the right thing to do. However, the current type of codes for generating
such functors may not actually be optimal for this purpose. We come to this conclusion
by considering the question of composition of codes. Given J c K : Fam C → Fam D and

© Neil Ghani, Conor McBride, Fredrik Nordvall Forsberg, and Stephan Spahn;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 63; pp. 63:1–63:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.63
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


63:2 Variations on Inductive-Recursive Definitions

J d K : Fam D → Fam E represented by Dybjer-Setzer codes c : DS C D and d : DS D E

respectively, is J d K ◦ J c K : Fam C → Fam E DS-definable, i.e. is there a code d • c : DS C E

such that J d • c K = J d K ◦ J c K? A positive answer would allow modularity in datatype
definitions, as one can then replace all inductive arguments (U, T ) in a datatype by F (U, T )
for any DS-definable functor F by composing with the code for F . For instance, a code for
an inductive definition of multiway trees, where each node has a list of subtrees, can be
constructed by composing a code for lists with itself. Other classes of data types such as
inductive definitions or inductive families are closed under composition [10] – it is a property
naturally to be expected from the viewpoint of initial algebra semantics.

It is currently unknown whether DS is closed under composition, although we suspect
that it is not. In support of this claim, we show that DS is closed under composition if and
only if powers A→ J c K of codes are definable (Section 2, where we also recall Dybjer and
Setzer’s codes). Since such a power operation is unlikely to exist, we are led to investigate
alternative systems of inductive-recursive definitions that are closed under composition.

We first introduce a system UF of uniform codes for inductive-recursive definitions, and
their decoding (Section 3). This system can be regarded as a subsystem of DS, and as
such, it is clear that UF-functors have initial algebras since DS-functors do. The novum
is that uniformity of codes can be exploited to define powers, which in turn means that a
composition operator for uniform codes is obtainable, i.e. we have isolated a subclass of
DS-functors that is closed under composition. Next we introduce another system PN of
polynomial codes, and their decoding (Section 4). Notably, PN contains a constructor for
the dependent product of codes which ensures that PN is closed under composition. PN
is a supersystem of DS and hence we cannot inherit initial algebras for PN from DS, but
must prove their existence directly: we do so by adapting Dybjer-Setzer’s proof to our more
general setting. The introduction of new alternative formulations of induction-recursion has
the potential to have significant impact if they – as we believe to be the case – have better
properties than the current one and hence come to supplant the current formulation.

Type-theoretic notation and assumptions. We work informally in a standard type theory
with dependent function spaces

(
x : A

)
→ B(x) (written A→ B if x does not occur in B),

dependent pair types
(
Σx : A

)
B(x) (written A× B if x does not occur in B), coproducts

A+B with injections inl and inr, and an identity type which we shall simply write as a = b.
Finite enumerations are denoted by {a1, a2, . . . , am}; instances include 0 = {}, 1 = {?} and
2 = {ff, tt}. We write anonymous functions as (a 7→ b), or (_ 7→ b) when the argument is
not used by the function. We assume two universes à la Russell Set : Set1, with A : Set
implying A : Set1. We assume function extensionality, i.e. that pointwise equal functions are
equal. This is essential in our development. For simplicity, we also assume uniqueness of
identity proofs, i.e. that if p : a = b and q : a = b, then p = q, but this assumption should
be avoidable with a little more work. In any case, both of these assumptions are valid in
extensional Type Theory [14], which readily has a set-theoretic interpretation. The content
of this paper (except for the set-theoretical model of PN) has been formalised in Agda1.

2 Dybjer-Setzer Codes DS for Inductive-Recursive Definitions

We recall the system of Dybjer-Setzer codes DS, how codes represent inductive-recursive
definitions, and finally prove powers to be necessary and sufficient for DS to be closed under
composition.

1 Available at http://personal.cis.strath.ac.uk/fredrik.nordvall-forsberg/variantsIR/.

http://personal.cis.strath.ac.uk/fredrik.nordvall-forsberg/variantsIR/


N. Ghani, C. McBride, F. Nordvall Forsberg, and S. Spahn 63:3

2.1 Definition of DS and its Decoding
For D, E : Set1, the type DS D E consists of codes that represent functors Fam D → Fam E

describing the constructors of inductive-recursive definitions.

I Definition 1. Given D,E : Set1, the large type DS D E : Set1 of Dybjer-Setzer codes is
inductively defined by the following generators:

ι : E → DS D E

σ :
(
A : Set

)
→ (A→ DS D E)→ DS D E

δ :
(
A : Set

)
→ ((A→ D)→ DS D E)→ DS D E

Here ι shall represent trivial functors, σ sums of functors, and δ dependent sums. See Dybjer
and Setzer [7] for a more in-depth explanation, and the examples below for intuition. Note
that Dybjer and Setzer only considered systems of the form DS D D, i.e. where E = D. For
our purposes the more general formulation will be clearer; it also accounts for the fact that
DS D E is functorial covariantly in E and contravariantly in D.

I Example 2 (W-types). By choosing D = E = 1, we can use DS 1 1 to represent inductive
definitions. Let us encode Martin-Löf’s type W S P : Set of wellfounded trees, where S : Set
encodes the possible shapes of the tree, and P : S → Set maps each shape to its branching
degree. This type is inductively defined by the constructor

sup :
(
s : S

)
→ (P (s)→W S P )→W S P

Here we see that sup takes one non-inductive argument s : S, followed by an inductive
argument P (s) → W S P , which depends on the first non-inductive one. We will see
shortly in Example 5 that W S P can be represented by the code cW S P : DS 1 1 with
cW S P = σ S (s 7→ δ P (s) (_ 7→ ι ?)) where σ is used for the non-inductive argument and δ
for the inductive one, finally finishing off with a trivial ι.

I Example 3 (A universe closed under W-types). We get considerably more power by choosing
D = E = Set. Now we can represent a universe containing 2 that is closed under W-types by
the code c2W : DS Set Set, where

c2W = σ {two,w} (two 7→ ι 2; w 7→ δ 1 (X 7→ (δ (X ?) (Y 7→ ι (W (X ?) Y )))))

First we offer a choice between two constructors: two and w using σ. In the two case, we use
an ι code to ensure the name two decodes to 2; in the w case, we ask for a name s for the
shapes of the W-type using δ 1, and for every element in the decoding of that name, we ask
for a name for the branching degrees using δ (X?) – here X : 1→ Set represents the decoding
of the name s. The rest of the code gets to depend on the decoding Y : X?→ Set of this
family, and we finish by declaring that this constructor decodes to W (X?) Y . Note that
this code can be written as a coproduct of codes c2 +DS cW: generally for c d : DS D E, we
define their coproduct c+DS d = σ 2 (ff 7→ c ; tt 7→ d). We will return to this in Example 11.

Decoding of Dybjer-Setzer codes as functors on families make the above intuitions precise.
For D : Set1, Fam D is the category where objects are families of Ds, i.e. pairs (A,P ) where
A : Set and P : A → D; a morphism (A,P ) → (B,Q) consists of a function f : A → B

together with a proof that Q(f(a)) = P (a) for each a : A. For future reference, we note
that Fam is a functor with action on morphisms Fam(h) (A,P ) = (A, h ◦ P ) and moreover
a monad with unit ηFam(e) = (1,_ 7→ e) and multiplication µFam : Fam (Fam D)→ Fam D

given by µFam(A,P ) = (
(
Σx : A

)
(P (x)0), (x, y) 7→ (P (x))1 y) where we have written P (x)0

and P (x)1 for the components of the family P (x) = (P (x)0, P (x)1).

MFCS 2017



63:4 Variations on Inductive-Recursive Definitions

I Definition 4. Let D,E : Set1 and c : DS D E. We define the decoding of c as the
functor J c K : Fam D → Fam E given by J c K(A,P ) = (J c K0(A,P ), J c K1(A,P )), where
J _ K0 : DS D E → Fam D → Set and J _ K1 :

(
c : DS D E

)
→

(
Z : Fam D

)
→ J c K0 Z → E

are defined by

J ι e K0 (U, T ) = 1 J ι e K1 (U, T ) ? = e

J σ A f K0 (U, T ) =
(
Σa : A

)
(J f a K0 (U, T )) J σ A f K1 (U, T ) (a, x) = J f a K1 (U, T ) x

J δ A F K0 (U, T ) = J δ A F K1 (U, T ) (g, x) =(
Σg : A→ U

)
(J F (T ◦ g) K0 (U, T )) J F (T ◦ g) K1 (U, T ) x

I Example 5. For decoding Example 2, note that Fam 1 ∼= Set since the second component
of such a family is trivial. Thus, if (W,T ) : Fam 1, then

J cW S P K0(W,T ) =
(
Σs : S

)(
(P (s)→W )× 1

)
(1)

such that indeed sup : J cW S P K0(W S P,_) → W S P (up to isomorphism), and initial
algebras of J cW S P K : Fam 1 → Fam 1 are W-types. Instead of leaving the fibres of the
family trivial, we can “upgrade” the given code to do something interesting in the whole
family. For instance, if we redefine cW S P : DS Set Set by

cW S P = σ S (s 7→ δ P (s) (Y 7→ ι
((
x : P (s)

)
→ Y x

)
))

the index type decoding (1) stays the same, but the decoding J cW S P K1(W,T ) applies T
everywhere in the given structure. In particular, if we choose S = N and P = Fin, where
Fin n is a finite type with n elements, then J cW N Fin K(W,T ) ∼= (ListW, [w1, . . . , wn] 7→
T w1 × . . .× T wn). We will see a use of this upgraded code later in Example 21.

I Example 6. Similarly, the decoding of the code c2W : DS Set Set from Example 3
satisfies J c2W K0(U, T ) ∼= 1 +

(
Σs : U

)
(T (s) → U) with J c2W K1(U, T ) (inl ?) = 2 and

J c2W K1(U, T ) (inr (s, p)) = W (T s) (T ◦ p) which are the equations for a universe closed
under W-types.

Dybjer and Setzer [7] also give rules ensuring that J c K : Fam D → Fam D has an initial
algebra (UJ c K,TJ c K) for every c : DS D D. We omit them here.

2.2 Composition of DS codes
We are now approaching the actual topic of the paper. Given DS-codes c : DS C D and
d : DS D E, is there a code d • c : DS C E such that J d • c K(U, T ) ∼= J d K(J c K(U, T ))? We
immediately notice that it is easy to define postcomposition of any code by a ι or a σ code:
the functor J ι e K ignores its argument, hence so must J (ι e) • c K, and for σ codes, we can
just proceed structurally. The δ case, however, requires more thought. Again, looking first
at the action on index types of the families, we find for the right hand side of the above
equation

J δ A F K0(J c K0Z) =
(
Σg : A→ J c K0Z

)(
J F

(
J c K1(Z) ◦ g

)
K0(J c KZ)

)
=

((
A −→Fam J c KZ

)
>>=Fam

(
g 7→ J F

(
J c K1(Z) ◦ g

)
K0(J c KZ)

))
0

where _ >>=Fam _ : Fam D → (D → Fam E) → Fam E is the bind of the Fam monad
defined by Z >>=Fam h = µFam (Fam(h)Z), and

_ −→Fam _ :
(
S : Set

)
→ Fam D → Fam (S → D)

S −→Fam (A,P ) = (S → A, g 7→ P ◦ g)



N. Ghani, C. McBride, F. Nordvall Forsberg, and S. Spahn 63:5

is a power in the category of elements
(
ΣD : Set1

)
(Fam D) of the functor Fam. This suggests

that to define (δ A F ) • c, we need to internalise >>=Fam and −→Fam in the system DS. The
first is readily achievable, because DS C is also a monad [11]:

I Proposition 7. There is an operation _ >>= _ : DS C D → (D → DS C E) → DS C E

such that J c >>= g KZ ∼= J c KZ >>=Fam (e 7→ J g e KZ) for every Z : Fam C, c : DS C D

and g : D → DS C E.

Thus it remains to define powers of codes. Here, however, we hit a wall trying to define
S −→ c by induction on c: to apply the inductive hypothesis on f a in the following S-fold
power of a σ code

S → J σ A f K0 Z = S →
(
Σa : A

)
(J f a K0 Z) ∼=

(
Σg : S → A

)((
x : S

)
→ J f (g x) K0 Z

)
we would need to generalise our construction to dependent products

(
x : S

)
→ c(x) where

c : S → DS D E. But, if we do so, we can no longer do an induction on c, and we are stuck.
Even worse, any definition of composition necessarily involves powers:

I Theorem 8. There is a composition operator for DS if and only if there is a power operator
for DS. Here, by composition and power operators we mean terms

_ •_ : DS D E → DS C D → DS C E

_ −→ _ :
(
S : Set

)
→ DS D E → DS D (S → E)

respectively such that J c • d KZ ∼= J c K(J d KZ) and J S −→ c KZ ∼= (S −→Fam J c KZ).

Proof. Given _ −→ _, we can define _ •_ by

(ι e) • d = ι e

(σ A f) • d = σ A (a 7→ (f a) • d)
(δ A F ) • d = (A −→ d) >>= (g 7→ (F g) • d)

using Proposition 7. Conversely, A −→ c := (δ A (h 7→ ι h)) • c is a power operator. J

Two natural options suggest themselves as solutions: (i) restrict codes to ensure that no
dependency arises in the definition of powers; (ii) devise a system with dependent products
of codes. In the next two sections, we investigate new systems of codes for both of these
solutions.

3 Uniform Codes UF for Inductive-Recursive Definitions

This section presents our first new system for induction-recursion with a native composition
operation. The system UF of uniform codes is a subsystem of DS (Proposition 14). Informally,
a uniform code is a DS code where, for every constructor in a term, all immediate subterms
have the same root-constructor. Thus (the shape of) σ A (a 7→ δ B(a) (h 7→ ι φ(a, h))) is
uniform, whereas σ A f +DS δ B G = σ 2 (tt 7→ σ A f ; ff 7→ δ B G) is not since one subcode
is a σ code while the other is a δ one. Uniform codes originated with Peter Hancock [12].

3.1 Definition of UF and its Decoding
Formally, we define a type of codes Uni D : Set1 determining the code shapes, simultaneously
with a function Info : Uni D → Set1, which assigns to each code the information available for
indexing codes depending on it, in a uniform way.

MFCS 2017



63:6 Variations on Inductive-Recursive Definitions

I Definition 9. Let D,E : Set1. The large type UF D E : Set1 of uniform codes for
induction-recursion is defined by UF D E :=

(
Σc : Uni D

)
(Info c→ E), where Uni D : Set1

and Info : Uni D → Set1 are mutually defined by

ιUF : Uni D Info ιUF = 1
σUF :

(
c : Uni D

)
→ (Info c→ Set)→ Uni D Info (σUF c A) =

(
Σγ : Info c

)
(A γ)

δUF :
(
c : Uni D

)
→ (Info c→ Set)→ Uni D Info (δUF c A) =

(
Σγ : Info c

)
(A γ → D)

It is easy to see that UF D _ is functorial by function composition (alternatively, it is
defined as the action of a container [1], and hence automatically functorial). This two-level
presentation of codes (Uni, Info) has similarities with the (SP,Arg) presentation of Dybjer-
Setzer codes in the original paper [6], where however SP was merely inductively defined,
whereas here (Uni, Info) is itself an inductive-recursive definition. A further difference is that
the definition of Uni is left-nested while SP as well as DS are right-nested in the sense of
Pollack [15]. This can be seen as the source of uniformity in the definition.

I Example 10 (W-types, again). In order to get a feel for uniform codes, we return to
the W-types of Example 2. A uniform code in UF 1 1 representing the W-type W S P is
cW S P,UF = δUF

(
σUF ιUF (_ 7→ S)

)
((_, s) 7→ P (s)) : Uni 1, together with the terminal map

Info cW S P,UF → 1. If we compare this to the Dybjer-Setzer code from Example 2, we see
that the order of the (non-base-case) constructors is reversed:

(δUF
(
σUF ιUF (_ 7→ S)

)
((_, s) 7→ P (s)) , _ 7→ ?) : UF 1 1
σ S (s 7→ δ P (s) (_ 7→ ι ?)) : DS 1 1

Also this code can be “upgraded” to a more interesting UF Set Set code applying a given
T everywhere. We get the same decoding as in Example 5 if we replace the trivial map
(_ 7→ ?) : Info cW S P,UF → 1 by the map (s, Y, ?) 7→

(
x : P (s)

)
→ Y x.

I Example 11 (A universe closed under W-types, again). Example 3 uses coproducts of DS
codes. Coproducts of uniform codes a priori do not always exist as the different summands
may have different shapes. However, we will prove coproducts of uniform codes to exist in
Section 3.3. Assuming, for now, the coproduct _ +UF _ : UF D E → UF D E → UF D E, we
construct the code c2,UF +UF cW,UF : UF Set Set from the following summands – again note
that the nesting is the other way around compared to the DS code in Example 3:

c2,UF = (ιUF, ? 7→ 2) : UF Set Set
cW,UF =

(
δUF

(
δUF ιUF (? 7→ 1)

)
((?, S) 7→ S ?), ((?, S), P ) 7→W (S ?) P

)
: UF Set Set

Decoding of uniform codes UF D E is again given by functors Fam D → Fam E. The
definition is very similar to the decoding of DS codes except that UF codes have two
components. We use the same notation J − K for decoding a uniform code as for decoding a
DS code; this convention is reasonable since we will give a semantics-preserving translation
from UF to DS in Section 3.2.

I Definition 12. Let c : Uni D and α : Info c → E. The uniform code (c, α) : UF D E

induces a functor J c, α K : Fam D → Fam E by J c, α KZ = Fam(α) (J c KUni Z, J c KInfo Z)
where J _ KUni : Uni D → Fam D → Set and J _ KInfo :

(
c : Uni D

)
→

(
Z : Fam D

)
→

J c KUni Z → Info c are simultaneously defined by induction on c:



N. Ghani, C. McBride, F. Nordvall Forsberg, and S. Spahn 63:7

J ιUF KUni (U, T ) = 1 J ιUF KInfo (U, T ) ? = ?

J σUF c A KUni (U, T ) = J σUF c A KInfo (U, T ) (x, a) =(
Σx : J c KUni (U, T )

)
(A(J c KInfo (U, T )x)) (J c KInfo (U, T ) x, a)

J δUF c A KUni (U, T ) = J δUF c A KInfo (U, T ) (x, g) =(
Σx : J c KUni (U, T )

)
(A(J c KInfo (U, T )x)→ U) (J c KInfo (U, T ) x, T ◦ g)

I Example 13. Decoding cW S P,UF from Example 10, we see that

J cW S P,UF KUni (U, T ) =
(
Σ(?, s) : 1× S

)
(P (s)→ U)

which is isomorphic to the domain of the W-type constructor sup, but this time nested the
other way compared to the decoding of cW S P in Example 5. By Theorem 18, we will have
J c+UF d K Z ∼= J c K Z + J d K Z, where the right hand side uses the coproduct of families.
Hence c2,UF +UF cW,UF from Example 11 decodes correctly.

3.2 Embedding of UF into DS
We embed UF into DS, i.e. we give a translation of codes which is semantics-preserving
in that the decoding of a code is isomorphic to the decoding of its translation. Since UF
codes are “backwards” compared to DS codes, this embedding resembles the well-known
accumulator based algorithm for reversing a list. Define accUFtoDS :

(
c : Uni D

)
→ (Info c→

DS D E)→ DS D E (the second argument is the accumulator) by

accUFtoDS ιUF F = F ?

accUFtoDS (σUF c A) F = accUFtoDS c (γ 7→ σ (A γ) (a 7→ F (γ, a)))
accUFtoDS (δUF c A) F = accUFtoDS c (γ 7→ δ (A γ) (h 7→ F (γ, h)))

and define UFtoDS : UF D E → DS D E by kicking things off with a ι:

UFtoDS (c, α) = accUFtoDS c (ι ◦ α) .

I Proposition 14. The translation UFtoDS is an embedding, i.e. for every c : UF D E and
Z : Fam D, we have J UFtoDS c K Z ∼= J c K Z.

3.3 Coproducts of Uniform Codes
The coproduct c +DS d := σ 2 (tt 7→ c; ff 7→ d) of two DS codes is not in general the
embedding of a uniform code, even if c and d are, as c and d may still have different shapes.
Hence we cannot immediately use the same construction to define coproducts of uniform
codes, but we note that whenever c and d do have the same shape, this construction still
works. Our plan for constructing coproducts of uniform codes is then to find equivalent
replacements of the summands, such that the new pair has a common shape, and then using
the standard coproduct. To this end, we introduce an N-indexed variant UF+ D E n =(
Σc : Uni+ D n

)
(Info+ c→ E) of UF for this section only. There are two differences between

UF+ and UF: firstly, UF+ is indexed by the length n of its codes, and secondly in UF+ the
δUF and σUF codes are replaced by a combined code

δσ :
(
c : Uni+ D n

)
→

(
A : Info+ c→ Set

)
→((

γ : Info+ c
)
→ A γ → Set

)
→ Uni+ D (suc n)

MFCS 2017



63:8 Variations on Inductive-Recursive Definitions

with Info+ (δσ c A B) =
(
Σγ : Info+ c

)(
Σx : A γ

)
(B γ x → D). The code δσ should

be thought of as a δUF code followed by a σUF code. We can recover “ordinary” σUF
and δUF by σ+ c A := δσ c A (_,_ 7→ 0) and δ+ c B := δσ c (_ 7→ 1)(γ,_ 7→ B γ).
We have just informally described translations forget : UF+ D E n → UF D E and
canon+ :

(
c : UF D E

)
→ UF+ D E (length c), where length counts the depth of the code c.

A decoding J − K+ can be defined for UF+ along the lines for the one for UF (alternatively,
Proposition 15(ii) below can be used as a definition).

I Proposition 15. Let D,E : Set1 and Z : Fam D. If c : UF D E and d : UF+ D E n, then
(i) J canon+ c K+ Z ∼= J c KZ; and (ii) J forget d KZ ∼= J d K+ Z.

This proposition can be summed up in the following commuting diagram:

UF D E

J − K ''

〈length,canon+〉
.. (

Σn : N
)
(UF+ D E n)

J − K+
uu

forget
mm

Fam D → Fam E

Next, note J δσ c 1 (_ 7→ 0) K+ Z ∼= J c K+ Z. Thus we can pad out c : UF+ D E n to
padk c : UF+ D E (n+ k + 1) without changing the meaning of the code:

I Lemma 16. Let k : N. There is an operation padk : UF+ D E n→ UF+ D E (n+ k + 1)
such that J padk c K+ Z ∼= J c K+ Z for every Z : Fam D.

Since all UF+ codes of the same length also are of the same shape, it is now easy to form
coproducts of such codes. Define _ ++ _ : UF+ D E n→ UF+ D E n→ UF+ D E (sucn)
by (c, α) ++ (d, β) = (c+Uni d, [α, β] ◦ (c+Info d)) where _ +Uni _ is defined by

ι+ +Uni ι+ = σ+ ι+ (_ 7→ 2)
(δσ c A B) +Uni (δσ d A′ B′) = δσ (c+Uni d) ([A,A′] ◦ (c+Info d)) ([B,B′] ◦ (c+Info d))

simultaneously with a map (c+Info d) : Info+ (c+Uni d)→ Info+ c+ Info+ d, whose definition
is similar. Note that we did not need to consider the definition of e.g. ι+ +Uni (δσ c A B) as
these summands cannot possibly have the same length.

I Lemma 17. For all c, d : UF+ D E n and Z : Fam D we have J c ++ d K+ Z ∼=
J c K+ Z + J d K+ Z, where the right hand side is a coproduct of families.

Putting everything together, we have:

I Theorem 18. Let D,E : Set1. Define _ +UF _ : UF D E → UF D E → UF D E by
c+UF d = forget (canon+ c++ canon+ d). Then J c+UF d K Z ∼= J c K Z + J d K Z.

3.4 Composition of uniform Codes
Recall Section 2.2, where composition of DS codes followed from a power operation which
– because of the dependency arising in its attempted construction – we could not define.
Fortunately, in UF, a power operator is definable! Composition is here – as for DS – facilitated
by a conjunction of the power operation and a bind operator. A full bind operation for UF
is not definable since the grafting of uniform trees into a uniform tree may not be uniform
since the trees may differ in height (i.e. UF is not a monad). However, for composition, it
suffices to graft trees of the same height. Define − >>=[− −→ −] :

(
c : Uni D

)
→ (Info c→



N. Ghani, C. McBride, F. Nordvall Forsberg, and S. Spahn 63:9

Set) → Uni D → Uni D, together with (c >>=[E −→ d])Info : Info (c >>=[E −→ d]) →(
Σx : Info c

)
(E x→ Info d), which explains the meaning of c >>=[E −→ d] at the level of Info.

We write >>=Info,0 and >>=Info,1 for the first and second projection of (c >>=[E −→ d])Info
respectively, inferring the other arguments from context:

c >>=[E −→ ιUF] = c

c >>=[E −→ σUF d A]
= σUF (c >>=[E −→ d])(γ 7→

(
e : E(>>=Info,0 γ)

)
→ A(>>=Info,1 γ e))

c >>=[E −→ δUF d A] =
= δUF (c >>=[E −→ d])(γ 7→

(
Σe : E(>>=Info,0 γ)

)
A(>>=Info,1 γ e))

(c >>=[E −→ ιUF])Info x = (x, (_ 7→ ?))
(c >>=[E −→ σUF d A])Info (x, g) = (>>=Info,0 x, e 7→ (>>=Info,0 x e, g e))
(c >>=[E −→ δUF d A])Info (x, g) = (>>=Info,0 x, e 7→ (>>=Info,0 x e, (a 7→ g (e, a)))

This definition is validated by the following proposition:

I Proposition 19. There is an equivalence

J c >>=[E −→ d], (d >>=[E −→ d])Info K ∼= (J c, id K) >>=Fam (e 7→ ((E e) −→Fam J d, id K))

I Remark. While is not possible to derive a bind operator from _ >>=[_ −→ _], we do
obtain a power operator with the right universal property by

A −→ (c, f) := (ιUF >>=[(_ 7→ A) −→ c], (γ 7→ f◦ >>=Info,1)) .

(This fact will not be needed in the proof of composition in Theorem 20.)

We can now define composition for UF codes in a fashion similar to Theorem 8, except that
we separate the action of the first component of a code and take care of the second component
in a second step:

I Theorem 20. The operations

_ •Uni _ : Uni D → UF C D → Uni C
(_ •Info _) :

(
c : Uni D

)
→

(
R : UF C D

)
→ Info (c •Uni R)→ Info c

simultaneously defined by

ιUF •Uni R = ιUF

(σUF c A) •Uni R = σUF (c •Uni R) (A ◦ (c •Info R))
(δUF c A) •Uni (d, β) = (c •Uni (d, β)) >>=[(A ◦ (c •Info (d, β))) −→ d]

(ιUF •Info R) x = x

((σUF c A) •Info R) (x, y) = ((c •Info R) x, y)
((δUF c A) •Info (d, β)) x = ((c •Info (d, β)) (>>=Info,0 x, β ◦ (>>=Info,1 x)))

make _ •_ : UF D E → UF C D → UF C E a composition operation for UF codes, where

(c, α) • (d, β) = (c •Uni (d, β), α ◦ (c •Info (d, β))) .

MFCS 2017



63:10 Variations on Inductive-Recursive Definitions

I Example 21. If we compose c2W from Example 11 with the “upgraded” code cW N Fin
from Example 10, we get a code for a universe where each constructor now takes a list of
inductive arguments, with decoding the product of the decodings. Up to an isomorphism
relating coproducts of compositions with compositions of coproducts, the resulting code is
c2W • cW N Fin ∼= c2,UF +UF c

′
W,UF, where c2,UF is as before, and

c′W,UF = (δUF (σUF cW N Fin ((?, n, Y ) 7→ (
(
x : Finn

)
→ Y x)→ N))

((?, n, Y, e) 7→
(
Σy :

(
x : Finn

)
→ Y x

)
Fin (e y)),

((?, n, Y, e,B) 7→
(
Σy :

(
x : Finn

)
→ Y x

)(
w : Fin (e y)

)
→ B (y, w))) .

4 Polynomial Codes PN for Inductive-Recursive Definitions

We saw in Section 2.2 that composition for Dybjer-Setzer codes requires a power operator.
However, simply adding a code for powers means that DS D _ is no longer a monad, and
the bind operation was crucial for constructing composition. Hence, further adjustments are
required. Following this line of thought results in a system including sums and type-indexed
products. For this reason, we call it polynomial inductive-recursive definitions, and denote it
by PN. It was originally invented by the second author in order to make induction-recursion
resemble the descriptions of datatypes in Chapman et al. [3]. Just like uniform codes,
polynomial codes are presented as a two-level definition which itself is an inductive-recursive
definition:

I Definition 22. Let D,E : Set1. The large type PN D E : Set1 of polynomial codes for
induction-recursion is defined by PN D E :=

(
Σc : Poly D

)
(Info c→ E), where Poly D : Set1

and Info : Poly D→ Set1 are mutually defined by

idPN : Poly D Info idPN = D

con : (A : Set)→ Poly D Info (con A) = A

sig : (S : Poly D)→ (Info S→ Poly D)→ Poly D Info (sig S F) =
(
Σx : Info S

)
(Info (F x))

pi : (A : Set)→ (A→ Poly D)→ Poly D Info (pi A F) =
(
x : A

)
→ Info (F x)

Warning: polynomial codes should not be confused with polynomial functors [9, 10]! We
use the same name Info as in uniform codes for the function computing the information
represented by a code. The code idPN represents the identity functor, con A the functor
constantly returning index type A, sig S F represents a dependent coproduct of functors,
and pi A F represents an A-indexed dependent product of functors. Observe that PND_ is
again, like UFD_, functorial by function composition.

I Example 23 (W-types, again). We revisit Examples 2 and 10. For S : Set, P : S → Set
the polynomial code for the W-type W S P is (cW S P,PN,_ 7→ ?) : PN 1 1 where cW S P,PN =
sig (con S)(s 7→ pi (P s) (_ 7→ idPN)). Again this can be upgraded to a PN Set Set
code, applying T : U → Set everywhere in the structure, by replacing the trivial map
(_ 7→ ?) : Info cW S P,PN → 1 by the map ((s, Y ) 7→

(
c : P (s)

)
→ Y x) : Info cW S P,PN → Set.

I Example 24 (A universe closed under W-types, again). We also revisit Example 3 again. A
polynomial code (c2W,PN, α) : PN Set Set for a universe containing 2, closed under W-types is
given by c2W,PN : Poly Set and α2W,PN : Info c2W,PN → Set where

c2W,PN = sig (con {two,w})(two 7→ con 1; w 7→ sig idPN (X 7→ pi X (_ 7→ idPN)))

and α2W,PN is defined by α2W,PN(two, x) = 2 and α2W,PN(w, (A,B)) = W S P .



N. Ghani, C. McBride, F. Nordvall Forsberg, and S. Spahn 63:11

I Remark. One obtains a weaker system by replacing the pi code by a code pow : Set →
Poly D → Poly D with Info (pow A c) = A→ Info c. In the full system, such a code can be
defined by pow A c := pi A (_ 7→ c). The weaker system also enjoys composition, and the
embedding of Dybjer-Setzer codes in Section 4.1 factors through the system with powers
only. Semantically, the stronger system is just as easy to handle (see Theorem 27 below).
Polynomial codes in PN D E decode to functors Fam D → Fam E in the following way:

I Definition 25. Let c : Poly D and α : Info c→ E. The polynomial code (c, α) : PN D E

induces a functor J c, α K : Fam D → Fam E by J c, α KZ = Fam(α) (J c K0 Z, J c Kinfo Z) where
J c K0 : Fam D → Set and J c Kinfo : (X : Fam D) → J c K0 X → Info c are simultaneously
defined by induction on c:

J idPN K0 (U, T ) = U J idPN Kinfo (U, T )x = T x

J conA K0 X = A J conA Kinfo X a = a

J sigS F K0 (U, T ) =
(
Σs : J S K0 (U, T )

)
(J F (J S Kinfo (U, T ) s) K0 (U, T ))

J sigS F Kinfo (U, T ) (s, x) = (J S Kinfo (U, T ) s, J F (J S Kinfo (U, T ) s) Kinfo (U, T )x)
J piAF K0 X =

(
x : A

)
→ J Fx K0 X J piAF Kinfo X g = (a 7→ J (Fa) Kinfo X (g a))

I Example 26. Decoding cW S P,PN from Example 23, we get

J cW S P,PN K0 (U, T ) =
(
Σs : S

)
(P (s)→ U)

this time matching the domain of the W-type constructor sup strictly. Similarly decoding
(c2W,PN, α2W,PN) from Example 24 we again get the same result as in Example 6.

Since we did not exhibit PN as a subsystem of DS, we cannot rely on Dybjer and Setzer’s
proof of soundness, i.e. that initial algebras of the corresponding functors exist in their model.
We can, however, extend their proof to polynomial codes2:

I Theorem 27. Working in ZFC, assume the existence of a Mahlo cardinal M and a 1-
inaccessible cardinal I above it. Then there is a set-theoretic model of Martin-Löf Type
Theory + PN where types A : Set are interpreted as sets in VM and large types D : Set1 are
interpreted as sets in VI (here Vα is the cumulative hierarchy). In this model, all functors
J c K : Fam D → Fam D arising from polynomial codes c : PN D D have initial algebras.

Note that the existence of large cardinals is only needed for the soundness proof, and not for
working within the theory itself. The same situation applies to Dybjer and Setzer’s DS.

4.1 Embedding of DS into PN
I Proposition 28. The map DStoPN : DS D E → PN D E given by DStoPN c = (toP c, toI c)
where toP : DS D E → Poly D and toI :

(
c : DS D E

)
→ Info (toP c)→ E are defined by

toP(ι e) = con 1 toI(ι e) ? = e

toP(σ Af) = sig (conA) (toP ◦ f) toI(σ Af) (a, x) = toI (f a)x
toP(δ AF ) = sig (piA (_ 7→ idPN)) (toP ◦ F ) toI(δ AF ) (g, x) = toI (F g)x

is semantics-preserving.

We conjecture that this embedding is strict, i.e. that there is a code c : PN D E with
J c K 6' J DStoPN d K for every d : DS D E for some D,E : Set1.

2 We require a little bit more from the metatheory: Dybjer and Setzer [8] require I to be 0-inaccessible
only. But existence of I is a mild assumption compared to the existence of M.

MFCS 2017



63:12 Variations on Inductive-Recursive Definitions

4.2 Composition of Polynomial Codes
Composition for PN codes can be defined following the same pattern as in Proposition 8,
where we constructed composition for DS codes using the assumption of a power operation,
and the fact that DS is a monad. The system PN has a power operation using the pi
constructor, and is a monad thanks to the sig constructor:

I Proposition 29. For each D : Set1, PN D is a monad, i.e. there are terms ηPN : E →
PN D E and µPN : PN D (PN D E)→ PN D E satisfying the monad laws. Furthermore, let
(U, T ) : Fam D. Then J ηPN(e) K(U, T ) = ηFam(e) for every e : E and , and J µPN(c) K(U, T ) =
µFam(Fam(J − K(U, T ))(J c K(U, T ))) for every c : PN D (PN D E).

Proof. We define ηPN(e) = (con 1,_ 7→ e) and µPN(c, α) = (sig c (fst ◦ α), (x, y) 7→
snd (α x) y). The equations in terms of the monad structure on Fam holds on the nose. J

Using the monad structure, we can define a “dependent bind” operation

_ >>=PN _ : PN C D → (
(
x : D

)
→ PN C (E x))→ PN C (

(
Σx : D

)
(E x))

c >>=PN h = µPN(PN(x 7→ PN(y 7→ (x, y))) (hx) c)

We also note that the pi constructor can be packaged up into the following “dependent power”
operation for S : Set and E : A→ Set1:

πPNA :
(
a : A

)
→ PN D (E a)→ PN D (

(
a : A

)
→ (E a))

πPN A f = (pi A (fst ◦ f), (g 7→ (a 7→ snd (fa) (ga))))

Using these ingredients, we can now define composition of PN codes:

I Theorem 30. For c : Poly D and α : Info c → E and R : PN C D, define (c, α) • R =
PN(α) (c/R) : PN C E, where _/_ :

(
c : Poly E

)
→ PN D E → PN D(Info c) is defined by

idPN/R = R (sig c f)/R = (c/R) >>=PN (p 7→ (f p)/R)
(con A)/R = (conA, id) (pi A f)/R = πPN A (a 7→ (fa)/R)

Then J R •Q K (U, T ) ∼= J R K (J Q K (U, T )).

I Example 31. Let us compose c2W,PN from Example 24 with the “upgraded” code cW N Fin,PN
from Example 23. This time we get the code sig (con {two,w}) f , where f two = con 1 and
f w = sig cW N Fin,PN ((n, Y ) 7→ pi (

(
x : Finn

)
→ (Y x)) (_ 7→ cW N Fin,PN)).

5 Conclusions

Inductive-recursive definitions arise as initial algebras of endofunctors on Fam D, but the
question of exactly which functors does not have a canonical answer. Dybjer and Setzer [7]
gave one axiomatisation DS, which was adequate in the sense that it covered all examples
“in the wild”, and all functors represented in it could be shown to have initial algebras (in a
sufficiently strong metatheory). We have presented two alternative axiomatisations UF and
PN that retain these properties, but in addition are closed under composition. This opens
up the field to find the optimal axiomatisation of inductive-recursive definitions. As a start,
we hope to show in future work that both inclusions UF ↪→ DS ↪→ PN are strict.

Acknowledgements. We would like to thank Peter Hancock and Anton Setzer for inspiration
and interesting discussions, and the reviewers for their suggestions and comments.



N. Ghani, C. McBride, F. Nordvall Forsberg, and S. Spahn 63:13

References
1 Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Containers: Constructing strictly

positive types. TCS, 342(1):3 – 27, 2005.
2 Thorsten Altenkirch, Neil Ghani, Peter Hancock, Conor McBride, and Peter Morris. In-

dexed containers. Journal Functional Programming, 25, 2015.
3 James Chapman, Pierre-Évariste Dagand, Conor McBride, and Peter Morris. The gentle

art of levitation. In ICFP 2010, pages 3–14, 2010.
4 Peter Dybjer. Inductive families. Formal aspects of computing, 6(4):440–465, 1994.
5 Peter Dybjer. A general formulation of simultaneous inductive-recursive definitions in type

theory. Journal of Symbolic Logic, 65(2), 2000.
6 Peter Dybjer and Anton Setzer. A finite axiomatization of inductive-recursive definitions.

In TLCA, pages 129–146. Springer Verlag, 1999.
7 Peter Dybjer and Anton Setzer. Induction–recursion and initial algebras. Annals of Pure

and Applied Logic, 124(1-3):1–47, 2003.
8 Peter Dybjer and Anton Setzer. Indexed induction–recursion. Journal of logic and algebraic

programming, 66(1):1–49, 2006.
9 Nicola Gambino and Martin Hyland. Wellfounded trees and dependent polynomial functors.

In Types for Proofs and Programs, pages 210–225, 2004.
10 Nicola Gambino and Joachim Kock. Polynomial functors and polynomial monads. Math-

ematical Proceedings of the Cambridge Philosophical Society, 154:153–192, 2013.
11 Neil Ghani and Peter Hancock. Containers, monads and induction recursion. Mathematical

Structures in Computer Science, 26(1):89–113, 2016.
12 Peter Hancock. Private communication.
13 Per Martin-Löf. An intuitionistic theory of types: predicative part. In H.E. Rose and J.C.

Shepherdson, editors, Logic Colloquium ’73, Proceedings of the Logic Colloquium, volume 80
of Studies in Logic and the Foundations of Mathematics, pages 73–118. North-Holland,
1975.

14 Per Martin-Löf. Intuitionistic type theory, volume 1 of Studies in Proof Theory. Bibliopolis,
1984.

15 Robert Pollack. Dependently typed records in type theory. Formal Aspects of Computing,
13(3):386–402, 2002.

MFCS 2017





One-Dimensional Logic over Trees∗

Emanuel Kieroński1 and Antti Kuusisto2

1 University of Wrocław, Poland
kiero@cs.uni.wroc.pl

2 University of Bremen, Germany
kuusisto@uni-bremen.de

Abstract
A one-dimensional fragment of first-order logic is obtained by restricting quantification to blocks
of existential quantifiers that leave at most one variable free. This fragment contains two-variable
logic, and it is known that over words both formalisms have the same complexity and expressive
power. Here we investigate the one-dimensional fragment over trees. We consider unranked un-
ordered trees accessible by one or both of the descendant and child relations, as well as ordered
trees equipped additionally with sibling relations. We show that over unordered trees the sat-
isfiability problem is ExpSpace-complete when only the descendant relation is available and
2-ExpTime-complete with both the descendant and child or with only the child relation. Over
ordered trees the problem remains 2-ExpTime-complete. Regarding expressivity, we show that
over ordered trees and over unordered trees accessible by both the descendant and child the
one-dimensional fragment is equivalent to the two-variable fragment with counting quantifiers.

1998 ACM Subject Classification F.4 Mathematical Logic and Formal Languages

Keywords and phrases satisfiability, expressivity, trees, fragments of first-order logic

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.64

1 Introduction

One-dimensional fragment of first-order logic, F1, is obtained by restricting quantification to
blocks of existential quantifiers that leave at most one variable free (as the logic is closed
under negation and boolean operations one may also use blocks of universal quantifiers). It
is not difficult to show that over general relational structures the satisfiability problem for F1
is undecidable [8]. In such situations, there are two standard ways of regaining decidability.
One can either try to impose some additional restrictions on the syntax of the considered
logic or to restrict attention to some specific classes of structures. Both approaches have
been tried in the context of F1.

A nice syntactic restriction of F1 which turns out to be decidable over general structures is
called a uniform one-dimensional fragment, UF1. It was introduced in [8] as a generalization
of the two-variable fragment of first-order logic, FO2, to contexts with relations of arity
higher than two, e.g., databases. The readers interested in this variant are referred to [8],
[11], [12] and a survey [14] which also reveals some connections with description logics.

Let us turn to the restricted classes of structures. There are two important first-choice
options, well motivated in various areas of computer science, namely the class of words
and the class of trees. F1 over words and ω-words is investigated in [10]. The satisfiability

∗ E.K. was supported by the Polish National Science Centre grant No. 2016/21/B/ST6/01444. A.K. was
supported by the ERC grant 647289 CODA.

© Emanuel Kieroński and Antti Kuusisto;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 64; pp. 64:1–64:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.64
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


64:2 One-Dimensional Logic over Trees

problem is shown to be NExpTime-complete, exactly as in the case of FO2 [7]. Moreover,
over words F1 and FO2 turn out to share the same expressive power. The advantage of
F1 over FO2 is that the former allows us to express some properties in a more natural
way (and seems to be more succinct, which is however not formally proved). There are a
few other related formalisms over words, worth mentioning here. In [7] it is shown that
FO2 is expressively equivalent to unary temporal logic, UTL, i.e., temporal logic with four
navigational operators: next state, somewhere in the future, previous state, somewhere in the
past. FO2, however, is exponentially more succinct than UTL. The satisfiability problem
for UTL is PSpace-complete. An extension of FO2 by counting quantifiers, C2, is shown
to be NExpTime-complete over words in [5]. In fact, it is not difficult to observe that
over words C2 has the same expressive power as plain FO2 (but, again, the former is more
succinct). Another interesting extension of FO2 over words, this time significantly increasing
its expressive power, is an extension by the between predicate recently studied by in [13]. Its
satisfiability problem is ExpSpace-complete.

Turning now to the class of trees, both FO2 and C2 retain a reasonable complexity, namely
their satisfiability problems over trees are ExpSpace-complete. See [2] for the analysis of
FO2 over trees and [1] for its extension covering C2. Regarding the expressive power, the
situation depends on the type of the trees considered. In the case of unordered trees FO2

cannot count and is less expressive than C2. Over ordered trees both formalisms are equally
expressive [1] and share the expressiveness with the navigational core of XPath temporal
logic (cf. [15]). The importance of FO2 and C2 over trees is also justified by the fact that
they are located close to the border between elementary and non-elementary, e.g., adding
the third variable makes the satisfiability problem very hard: still decidable, but as shown in
[18] necessarily with a non-elementary complexity.

In this paper we investigate the computational complexity and the expressive power of
F1 over trees. We consider finite unranked trees accessible by a few navigational signatures:
just the descendant relation; just the child relation; both the descendant and the child
relations; and, finally, the descendant relation, the child relation plus the next-sibling and
following-sibling relations. Concerning the complexity of satisfiability, it depends on whether
the child relation is present or not. With the child relation the satisfiability problem is
2-ExpTime-complete, and without it is ExpSpace-complete. To show the complexity results
we perform some surgery on models leading to small model properties, and then design
algorithms searching for such appropriate small models. Technically, we extend the approach
from [4] used there in the context of FO2. Roughly speaking we appropriately abstract
the information about a node by its profile (an analogous notion is called a full type in
[4]) and then we either contract nodes with the same profiles, or delete some nodes whose
sufficiently many profiles are realized in a (fragment) of a model. Worth mentioning is that
an orthogonal extension of the method from [4] is used in [1] in the context of C2. In both
cases the challenge is to carefully tune the notion of a profile (full type) in order to get the
optimal complexity. Regarding expressivity, we argue that over ordered trees with all of the
four navigational relations we consider, F1 is expressively equivalent to C2 and FO2. We also
show that over unordered trees equipped with both the descendant and the child relation F1
is still equivalent to C2 (but this time the latter is known to be more expressive than FO2).
While the former equivalence is rather easy to see (though slightly awkward to formally
show), the latter is less obvious and more difficult to prove. In our expressivity studies we
do not consider the cases of unordered trees accessible by only one of the descendant and the
child relations. However, we conjecture that also under these scenarios F1 is equivalent to
C2. We leave the related investigations for the full version of this paper.



E. Kieroński and A. Kuusisto 64:3

In the case of trees, as in the case of F1 over words, the advantage of F1 over FO2 and C2

is that it allows to specify some properties in a more natural and elegant way. If we want to
say that a tree contains some (especially not fully specified) pattern, consisting of more than
two elements, we can just quantify an appropriate number of positions, and say how they
should be labelled and related to each other. Expressing the same in FO2 (if possible), and
usually also in C2, will very likely require some heavy recycling of the two available variables
and a careful navigation over trees. Let us just recall a simple example from [10], which in fact
does not even use the navigational relations. The formula ∃xyz

∧n
i=1(Pi(x) ∨ Pi(y) ∧ Pi(z))

says that there are three points which together ensure that each unary properties P1, . . . , Pn
appears in a model. A reader is asked to check that complicated and long formulas arise
when we try to express the same in FO2 or even in C2 over (ordered or unordered) trees.

The rest of the paper is organized as follows. In Section 2 we define the logic and
structures we are interested in and introduce some tools which will be then used in the
following sections. In Section 3 we perform some surgery on trees, which then, in Section
4, allows us to establish the exact complexity bounds under all the considered navigational
scenarios. In Section 5 we consider expressivity issues, relating F1 over trees with C2, FO2

and GF2, and finally in Section 6 we conclude the paper.

2 Preliminaries

2.1 Trees and logics
We work with signatures of the form τ = τ0 ∪ τbin, where τ0 is a set of unary symbols and
τbin ⊆ {↓, ↓+,→,→+} is a set of navigational binary symbols. Over such signatures we
consider the one-dimensional fragment of first-order logic F1, that is the relational fragment
in which quantification is restricted to blocks of existential quantifiers that leave at most
one variable free. Formally, F1 over relational signature τ and some countably infinite set of
variables V ar is the smallest set such that:

Rx̄ ∈ F1 for all R ∈ τ and all tuples x̄ of variables from V ar of the appropriate length,
x = y ∈ F1 for all variables x, y ∈ V ar,
F1 is closed under ∨ and ¬,
if ϕ is an F1 formula with free variables x0, . . . , xk then formulas ∃x0, . . . , xkϕ and
∃x1, . . . , xkϕ belong to F1.

As usually, we can use standard abbreviations for other Boolean operations, like ∧,→,>,
etc., as well as for universal quantification. The length of a formula ϕ is measured in a
natural way, and denoted ‖ϕ‖. The width of a formula is the maximum of the numbers of
free variables in its subformulas.

For a given formula ϕ we denote by τ0(ϕ) the set of unary symbols that appear in ϕ. We
write F1[τbin] to denote that the only binary symbols that are allowed are those from τbin.

We are interested in finite unranked tree structures, in which the interpretation of symbols
from τbin is fixed: if available in the signature, ↓ is interpreted as the child relation, → as the
right sibling relation, and ↓+ and →+ as their respective transitive closures. If at least one of
→, →+ is interpreted in a tree then we say that this tree is ordered; in the opposite case we
say that the tree is unordered. In this paper we investigate the four navigational signatures,
namely, in the case of unordered trees, we consider accessing them only by the descendant
relation (F1[↓+]), only by the child relation (F1[↓]), and by both of them (F1[↓+, ↓]); in the
case of ordered trees we consider just the full signature (F1[↓, ↓+,→,→+]).

We use symbol T (possibly with sub- or superscripts) to denote tree structures. For a
given tree T we denote by T its universe. If a is a node of T then we denote by T↓a the subtree

MFCS 2017



64:4 One-Dimensional Logic over Trees

of T rooted at a, by T↑a the tree obtained from T by removing all subtrees rooted at the
children of a. Additionally, in the case of ordered trees we denote by T←a the substructure
(which usually is not a tree) of T generated by the nodes of subtrees rooted at a and all
its left siblings (nodes a′ such that T |= a′→+a), and, symmetrically, we denote by T→a the
substructure of T generated by the nodes of subtrees rooted at a and all its right siblings.

2.2 Normal form
We adapt here the well known Scott normal form for FO2 [16] to our purposes. We say that
an F1[τbin] formula ϕ is in normal form if ϕ has the following shape:∧

1≤i≤m∃

∀y0∃y1 . . . yki
ϕ∃
i ∧

∧
1≤i≤m∀

∀x1 . . . xliϕ
∀
i , (1)

where ϕ∃
i = ϕ∃

i (y0, y1, . . . , yki
) and ϕ∀

i = ϕ∀
i (x1, . . . , xli) are quantifier-free. Please note that

the width of ϕ is the maximum of the set {ki + 1}1≤i≤m∃ ∪ {lj}1≤j≤m∀ . The following
fact can be proved in a standard fashion, see, e.g., [6] for a more detailed exposition of the
technique.

I Lemma 1. For every F1[τbin] formula ϕ, one can compute in polynomial time an F1[τbin]
formula ϕ′ in normal form (over the signature extended by some fresh unary symbols) such
that for trees of size (number of nodes) equal at least to the width of ϕ: (i) any model of ϕ
can be expanded to a model of ϕ′ by appropriately interpreting fresh unary symbols; (ii) any
model of ϕ′ restricted to the signature of ϕ is a model of ϕ.

Proof. (Sketch) We successively replace innermost subformulas ψ of ϕ of the form ∃y1, . . . , yk
ϕ(y0, y1, . . . , yk) by atoms Pψ(y0), where Pψ is a fresh unary symbol, and axiomatize Pψ using
two normal form conjuncts: ∀y0∃y1, . . . , yk(Pψ(y0) → ϕ(y0, y1, . . . , yk)) and ∀y0, y1, . . . , yk
(¬ϕ(y0, y1, . . . , yk) ∨ Pψ(y0)). J

Lemma 1 allows us, when dealing with satisfiability or when analysing the size and shape
of models, to restrict attention to normal form formulas (models of size smaller than the
width of the considered formula can be easily treated separately).

2.3 Types and profiles
In this subsection we prepare some notions useful in the rest of this paper.

2.3.1 Types
For k ∈ N\{0} a k-type (or a type of size k) π over a signature τ = τ0∪ τbin is a set of literals
over variables x1, . . . , xk (often identified with a conjunction of its elements) such that

for each P ∈ τ0 and 1 ≤ i ≤ k either Pxi or ¬Pxi belongs to π
for each 
∈ τbin and 1 ≤ i, j,≤ k, i 6= j either xi 
 xj or ¬xi 
 xj belongs to π
for each 1 ≤ i < j ≤ k the inequality xi 6= xj belongs to π
π is satisfiable in a tree, i.e., there exists a tree T containing nodes a1, . . . , ak such that
T |= π(a1, . . . , ak)

In this paper we will only be interested in k-types over signatures containing ↓+. If for some
variable xi and all j 6= i we have that xi↓+xj ∈ π then we call xi the root of π. If for some
variable xi and all j 6= i either xj↓+xi ∈ π or xi↓+xj 6∈ π and xj↓+xi 6∈ π then we call xi a
leaf of π. Additionally for signatures containing horizontal relations: If for some variable xi



E. Kieroński and A. Kuusisto 64:5

and all j 6= i either xi→+xj ∈ π or there is h such that xi→+xh, xh↓+xj ∈ π then we call xi
the leftmost element of π. Analogously we define the rightmost element of π.

Note that a k-type may have at most one root, one leftmost element and one rightmost
element, but many leaves. A type is a k-type for some k ≥ 1.

We say that a tuple of distinct nodes a1 . . . , ak of a tree T realizes a k-type π if T |=
π[a1, . . . , ak]. In this case we write typeT(a1, . . . , ak) = π.

For a given k-type π and a sequence of variables xi1 , . . . , xik we denote by π(xi1 , . . . , xxk
)

the result of the simultaneous substitution xj ← xij in π. Note that in this operation
i1, . . . , ik is not required to be a permutation of 1, . . . , k.

2.3.2 Subtypes
Observe that a 1-type is completely determined by a subset of τ0. We denote by π�xi the
1-type obtained by restricting π to literals over xi and then replacing in them xi by x1. More
generally, for distinct indices i1, . . . , il ∈ {1, . . . , k} we denote by π�[xi1 . . . xil ] the l-type
obtained by restricting π to literals over xi1 , . . . , xil , and then replacing in them xij by xj
(for j = 1, . . . , l). We say that π�[xi1 . . . xil ] is a subtype of π; if i1 = 1 then such a subtype
is called an initial subtype of π. Initial subtypes may be formed with l = k and are called
rearrangement of π in this case. We say that a set C of types is closed under initial subtypes if
for any k-type π ∈ C and any distinct i2, . . . , il ∈ {2, . . . , k}, we have π�[x1, xi2 , . . . , xil ] ∈ C.

2.3.3 Profiles
Profiles are intended to abstract the information about a node in a tree. Namely, they
say what are the types of tuples (of some bounded size) containing the given element. For
convenience we will separately store the types of tuples built of the nodes above and below
the given element.

A k-profile over a signature τ (containing ↓+) is a tuple (α,A,B) such that:
α is a 1-type,
A is a set of types closed under initial subtypes, such that for all π ∈ A: (i) π is of size
at most k; (ii) π�x1 = α and (iii) x1 is a leaf of π,
B is a set of types closed under initial subtypes, such that for all π ∈ B: (i) π is of size at
most k; (ii) π�x1 = α and (iii) x1 is the root of π.

Given a profile θ we will sometimes refer to its components as θ.α, θ.A and θ.B.
In the case of the signature {↓, ↓+,→,→+} we also consider horizontal k-profiles, i.e.,

tuples of the form (α,A,B,AL,AR), extending k-profiles in such a way that:
AL is a set of types closed under the initial subtypes, such that for all π ∈ AL: (i) π is of
size at most k, (ii) π�x1 = α and (iii) x1 is the leftmost element of π,
AR is a set of types closed under the initial subtypes, such that for all π ∈ AL: (i) π is of
size at most k, (ii) π�x1 = α and (iii) x1 is the rightmost element of π,

By simple calculations we get:

I Claim 2. For any navigational signature τbin we have:
(i) The number of k-types over τ = τ0 ∪ τbin is bounded exponentially in |τ0| and k. In

particular, there are 2|τ0| 1-types.
(ii) The number of k-profiles and horizontal k-profiles over τ0 ∪ τbin are bounded doubly

exponentially in |τ0| and k.

MFCS 2017



64:6 One-Dimensional Logic over Trees

We denote by profTk (a) the k-profile realized by a in T, i.e., the profile (α,A,B) such that:
α is the 1-type of a,
A is the set of types of size at most k realized by tuples a1, a2, . . . , al ∈ T ↑a such that
a1 = a,
B is the set of types of size at most k realized by tuples a1, a2, . . . , al ∈ T ↓a such that
a1 = a.

An element a ∈ T realizes a horizontal k-profile (α,A,B,AL,AR) if it realizes (α,A,B) and
AL is the set of types of size at most k realized by tuples a1, a2, . . . , al ∈ T←a such that
a1 = a,
AR is the set of types of size at most k realized by tuples a1, a2, . . . , al ∈ T→a such that
a1 = a.

Note that in realized horizontal profiles it is also the case that both AL and AR are subsets
of A. Also all of A,B,AL,AR are closed under initial subsets.

In the sequel, whenever a formula ϕ ∈ F1[τbin] is fixed we silently assume that all k-
types, k-profiles, horizontal-k-profiles and all structures considered are over the signature
τbin ∪ τ0(ϕ).

Let us consider a k-profile θ = (α,A,B). We say that an l-type π (1 ≤ l ≤ k) is implicit
in θ if π is a member of A or B or if there are l1-type π1 ∈ A, l2-type π2 ∈ B, l1 + l2 − 1 = k,
such that π is the unique l-type containing π1 ∪ π2(x1, xl1+1, xl1+2, . . . , xl1+l2−1), Note that
if for some 2 ≤ i ≤ l1 we have xi↓+x1 ∈ π1 then xi↓+xj ∈ π for all j ≥ l1 and if xi↓+x1 6∈ π
then also xj↓+x1 6∈ π for all j ≥ l1. Intuitively, an l-type π is implicit in θ if in any tree in
which θ is realized by a node a there is a tuple of nodes starting with a realizing π.

Let ϕ be a normal form formula of width n. Given an n-profile θ one can easily see if its
any realization in any tree T have all the witnesses required by ∀∃...∃ conjuncts of ϕ, and if
each tuple of nodes of T containing a cannot violate any universal conjunct of ϕ. Formally,
we say that an n-profile θ is ϕ-admissible if
1. for every conjunct of ϕ of the form ∀y0∃y1 . . . yki

ϕ∃
i (y0, . . . , yki

) there is a k-type π
(k ≤ ki) implicit in θ and a function h : {y1, . . . , yki

} → {x1, . . . , xli}, such that π |=
ϕ∃i [y0/x1, y1/h(y1), . . . , yli/h(yki

)].
2. for every conjunct of ϕ of the form ∀y1 . . . yliϕ

∀
i (y1, . . . , yli) any k-type (k ≤ li) implicit

in θ and any function h : {y1, . . . , yli} → {x1, . . . , xk} having x1 in its image we have
π |= ϕ∀i [y1/h(y1), . . . , y1/h(y1), . . . , yli/h(yki

)]

It is then straightforward to see the following.

I Lemma 3. Let ϕ be a normal form formula of width n. Then T |= ϕ iff all n-profiles
realized in T are ϕ-admissible.

In our decision procedures we will sometimes check admissibility of profiles. Since the
number of types implicit in a profile is bounded polynomially this can be done (relatively)
easily.

I Claim 4. Given a normal form F1 formula ϕ of width n and an n-profile θ it can be
checked in nondeterministic polynomial time (in ‖ϕ‖ and |θ|) whether θ is ϕ-admissible.

In the next section we perform some surgery on models of a normal form formula ϕ.
Namely, we remove some nodes and sometimes change the connections among the remaining
nodes. Observing that the n-profiles of the surviving nodes are not changed we will then be
able to conclude (thanks to Lemma 3) that the resulting trees are still models of ϕ.



E. Kieroński and A. Kuusisto 64:7

3 Pruning trees

We now show that when looking for models of a formula ϕ one can restrict attention to
models with bounded depth and degree. We obtain an exponential bound on the depth in the
case of signatures not containing ↓, and a doubly exponential bound when ↓ is present. The
bound on the degree is exponential for unordered trees and doubly exponential for ordered
trees. We remark that all the above bounds are essentially optimal.

3.1 Bounded paths
The crucial observation here is that one can remove the fragment of a model between two
nodes having the same profile.

I Lemma 5. Let τbin be any of the navigational signatures {↓}, {↓+}, {↓, ↓+}, {↓, ↓+,→,→+}.
Let ϕ be a normal form F1[τbin] formula of width n. Let T |= ϕ and let a, b ∈ T be two
nodes such that T |= a↓+b and profTn(a) = profTn(b). Let T′ be the tree obtained from T by
replacing the subtree rooted at a by the subtree rooted at b. Then for any c ∈ T ′ we have that
profT

′

n (c) = profTn(c). In consequence T′ |= ϕ.

Proof. Consider the case when c belongs to T′↓b (possibly c = b). Since T′↓b = T↓b then in
particular T′↓c = T↓c and it is clear that profT

′

n (c).B = profTn(c).B.
To see that profT

′

n (c).A ⊆ profTn(c).A consider any π ∈ profT
′

n (c).A. Take a realization of
π in T′ starting with c. Let c, b1, . . . , bk, a1, . . . , al be a list of all nodes of this realization,
such that b1, . . . , bk ∈ T ′↓b and a1, . . . , al 6∈ T ′↓b . Let π0 = typeT′(c, b1, . . . , bk, a1, . . . , al).
Note that π0 is a rearrangement of π. Let π′0 = typeT′(b, a1, . . . , al). Note that π′0 =
typeT(a, a1, . . . , al) and thus π′0 ∈ profTn(a).A = profTn(b).A. It follows that π′0 is realized in
T by b, a′1, . . . , a′l for some a′1, . . . , a′l ∈ T

↑
b . Observe that typeT(c, b1, . . . , bk, a

′
1, . . . , a

′
l) = π0

and thus π0 ∈ profTn(c).A. As profTn(c).A is closed under initial subtypes (and thus also
rearrangements) it follows that π ∈ profTn(c).A

For the opposite direction, consider now any π ∈ profTn(c).A. Take a realization of π in
T starting with c. Let c, b1, . . . , bk, a1, . . . , al be a list of all nodes of this realization such
that b1, . . . , bk ∈ T ↓b and a1, . . . , al 6∈ T ↓b . Let π0 = typeT(c, b1, . . . , bk, a1, . . . , al) Let π′0 =
typeT(b, a1, . . . , al). Note that π′0 ∈ profTn(b).A = profTn(a).A and thus a, a′1, . . . , a′l realize π′0
in T′ for some a′1, . . . , a′l. Now typeT′(b, a′1, . . . , a′l) = π′0 and typeT′(c, b1, . . . , bk, a

′
1, . . . , a

′
l) =

π0. Thus π0 ∈ profTn(c).A and since π is a rearrangement of π0 then also π ∈ profTn(c).A.
The case when c ∈ T ′↑b can be analysed analogously. Since we have shown that all profiles

of nodes in T′ are realized in T it follows by Lemma 3 that T′ |= ϕ. J

Having proved Lemma 5 we can now obtain the desired bounds.

I Corollary 6.
(i) Every satisfiable F1[↓], F1[↓, ↓+] or F1[↓, ↓+,→,→+] normal form formula ϕ has a model

whose vertical root-to-leaf paths are bounded doubly exponentially in ‖ϕ‖ by a fixed
function fd.

(ii) Every satisfiable F1[↓+] normal form formula ϕ has a model whose vertical root-to-leaf
paths are bounded exponentially in ‖ϕ‖ by a fixed function fs.

Proof. Take a model T |= ϕ. If there are nodes a, b meeting conditions of Lemma 5 then
replace the subtree rooted at a by the subtree rooted at b. Repeat this operation until all
root-to-leaf paths realize only distinct n-profiles. Let T∗ be the eventually obtained tree. By
Lemma 5 we have T∗ |= ϕ. To see (i) just recall that by Claim 2 (ii) the number of distinct

MFCS 2017



64:8 One-Dimensional Logic over Trees

N

N

N

N

P
2n

Figure 1 Enforcing doubly exponential path in F1[↓].

n-profiles over {↓}, {↓, ↓+} or {↓, ↓+,→,→+} is bounded doubly exponentially in τ0(ϕ) and
n and thus also in ‖ϕ‖. For (ii) take any vertical root-to-leaf path p of T∗ and consider
any 1-type α realized on this path. Let a1, . . . , ak be the list of all nodes of p realizing α,
T∗ |= ai↓+aj for i < j. Let (α,Ai,Bi) be the n-profile (over {↓+}) of ai for 1 ≤ i ≤ k. We
observe that for i < j we have Ai ⊆ Aj and, Bi ⊇ Bj . Let us explain the former of these
two inclusions. Take any k-type π ∈ Ai and let ai, b2, . . . , bk be its realization. Note that
the nodes b2, . . . , bk are related by ↓+ to aj precisely as to ai. Thus aj , b2, . . . , bk realizes π
and thus π ∈ Aj . The latter inclusion can be shown analogously. Recall that by Claim 2
(i) |Ai| and |Bi| are bounded exponentially. Thus when moving along a1, . . . , ak each of the
components Ai and Bi can change at most exponentially many times, and in consequence,
k is bounded exponentially. Finally, noting that the number of 1-types is also bounded
exponentially we get the desired bound. J

The bounds in the both parts of the above corollary are essentially optimal. Exponentially
long paths over {↓+} can be easily enforced even in FO2 by organizing, by means of unary
predicates P0, . . . , Pn−1, a binary counter counting from 0 to 2n − 1 and requiring each node
storing a value smaller than 2n − 1 to have a descendant storing the value greater by one.
Let us see that the presence of ↓ allows to simply enforce doubly-exponential paths. We use
unary predicates N,P, P0, . . . , Pn−1, Q. See Fig. 1. The intended long path is the path of
elements in N . Every element in N is going to have 2n children marked by P , each of which
has a local position in the range [0, 2n − 1] encoded by means of P0, . . . , Pn−1. Reading the
truth-values of Q as binary digits we can assume that the collection of the P -children of a
node in N encodes its global position in the tree in the range [0, 22n − 1] (the i-th bit of this
global position is 1 iff at the element at local position i the value of Q is true). It is then
possible to say that each node in n whose global position is smaller than 22n − 1 has a child
in N with the global position greater by 1. We skip here the details.

3.2 Bounded degree
Our next aim is to show that also the degree of nodes can be bounded.

I Lemma 7.
(i) Let ϕ be a normal form F1[↓, ↓+,→,→+] formula. Let T |= ϕ. Then there exists a tree

T∗ |= ϕ obtained by removing some subtrees from T (and appropriately repairing the
sibling relations), in which the degree of every node is bounded doubly exponentially in
‖ϕ‖ by a fixed function f′d.

(ii) Let ϕ be a normal form F1[↓], F1[↓+] or F1[↓, ↓+]. Let T |= ϕ. Then there exists a tree
T∗ |= ϕ obtained by removing some subtrees from T, in which the degree of every node
is bounded exponentially in ‖ϕ‖ by a fixed function f′s.



E. Kieroński and A. Kuusisto 64:9

Proof. Let n be the width of ϕ.
(i) Consider any node a ∈ T . Let a1, . . . , ak be all the the children of a, listed from left

to right. If for some i < j the horizontal n-profiles of ai and aj are equal (note that i > 1
in this case) then we remove all the subtrees rooted at ai, . . . , aj−1 and join ai−1 with aj
by →. By arguments similar to those from the proof of Lemma 5 we can show that the
profiles of the surviving elements of T do not change. Repeating this process as long as
possible we eventually obtain a tree in which the number of children of a is bounded doubly
exponentially (by the number of distinct horizontal n-profiles). We then repeat the process
successively for all the nodes of T.

(ii) The B components of profiles do not behave monotonically along horizontal paths
(as they do along vertical paths), thus we cannot use horizontal k-profiles to get the desired
exponential bound on their length. We proceed in a slightly different manner. Consider any
node a ∈ T . Let ā = a1, . . . , ak be the list of the children of a. For 1 ≤ i ≤ k let types(ai) be
the set of types of size at most n realized in T↓ai

by tuples whose first element is ai. For each
type π ∈

⋃k
i=1 types(ai) mark n nodes in ā such that π ∈ types(ai) (or all such nodes if there

are less than n of them). This way we mark at most exponentially many children of a. Let
us remove all the subtrees rooted at unmarked nodes from ā and denote the obtained tree T′.
We claim the the n-profiles of all the elements surviving the surgery do not change. Consider
any c ∈ T ′. Noting that the elements of T′ are related to each other by the navigational
predicates ↓+, ↓ exactly as they are related in T we see that profT

′

n (c).A ⊆ profTn(c).A and
profT

′

n (c).B ⊆ profTn(c).B.
For ⊇ we distinguish two case: the one in which c is in T′

↑
a, and the other in which it is not.

Let us sketch the arguments for the latter (the former is similar). Since c retains its subtree
from T it is clear that profTn(c).B ⊆ profT

′

n (c).B. To see that profTn(c).A ⊆ profT
′

n (c).A
take any π ∈ profTn(c).A and its any realization c, b1, . . . , bl ∈ T . Split b1, . . . , bl into the
disjoint tuples of nodes: let the first tuple b̄0 contain the nodes from T↑a and the other tuples
b̄1, . . . , b̄s the nodes from the subtrees rooted at distinct nodes from ā (note that s < n).
The tuple b̄0 is retained in T′; the other tuples may be deleted, but due to our strategy of
marking important nodes in ā there exists a 1−1 function returning for a tuple b̄i a node
in ā surviving the surgery in whose subtree a tuple b̄′i of type equal to the type of b̄i exists.
Using the elements c, b̄0, b̄

′
1, . . . , b̄

′
s we can now form a realization of π in T′ (starting from c).

Thus π ∈ profT
′

n (c).A, which finishes the argument.
Again, repeating the described process for all nodes we eventually obtain a tree T∗ in

which the degree of every node is bounded exponentially and the n-profiles of all nodes
remain as in T, and thus are ϕ-admissible. In effect T∗ |= ϕ. J

The bounds on the degree of nodes in Lemma 7 are essentially optimal. In particular a
doubly exponential chain of siblings can be enforced by means of → and ↓ (or → and ↓+)
similarly to a doubly exponential vertical root-to-leaf path: every element of the chain is
required to have 2n children storing the binary digits of a doubly exponential counter; the
next sibling of a node a is forced to store the counter value greater by one than the value
stored at a.

4 Complexity of satisfiability

In this section, using the results from Section 3 we establish the precise complexity of the
satisfiability problem in all of the scenarios we consider.

MFCS 2017



64:10 One-Dimensional Logic over Trees

4.1 Only descendant relation
Let us start with the observation that in the case when only the descendant relation is present
in the navigational signature the complexity of F1 is equal to the complexity of FO2 and C2.

I Theorem 8. The satisfiability problem for F1[↓+] is ExpSpace-complete.

The lower bound is inherited from FO2[↓+], [2], which in turn refers to ExpSpace-
hardness of the so-called one-way two-variable guarded fragment, [9]. For the upper bound
we design an alternating exponential time procedure. The result then follows from the well
known fact that AExpTime=ExpSpace, [3]. The procedure first guesses the profile of the
root and then guesses the profiles of its children, checking if the information recorded in the
profiles is locally consistent, and if each guessed profile is ϕ-admissible. Further, it works
in a loop, universally moving to one of the children, guessing profiles of its children and
proceeding similarly.
Algorithm 1: Procedure F1[↓+]-sat-test

Input: an F1[↓+] normal form formula ϕ
let n be the width of ϕ
let maxdepth := fs(‖ϕ‖); let maxdegree := f′s(‖ϕ‖); % cf. Cor. 6 and Lem. 7
let level := 0;
guess an n-profile θ such that θ.A = {α}; % root
while level < maxdepth do

if θ is not ϕ-admissible then reject
guess an integer 0 ≤ k ≤ maxdegree; % the number of children
for 1 ≤ i ≤ k guess a profile θi;
if not locally-consistent(θ, θ1, . . . , θk) then reject;
if θ.B = {α} then accept % a leaf reached; it must be k = 0
level := level + 1;
universally choose 1 ≤ i ≤ k; let θ := θi;

endwhile
reject
endprocedure

The function locally-consistent checks whether, from a local point of view, a tree may
have a node realizing an n-profile θ whose children realize n-profiles θ1, . . . , θk. It checks if
θ.B is the set of types which can be obtained, informally speaking, by putting θ.α on top of
a disjoint union of types taken from distinct θi.B (possibly with their roots removed); and,
analogously, verifies some natural conditions on the A-components of θ and θi-s. We skip
the details of this function.

I Lemma 9. Procedure F1[↓+]-sat-test accepts its input ϕ iff ϕ is satisfiable.

Proof. Assume that ϕ is satisfiable. By Corollary 6 (ii) and Lemma 7 (ii) there exists a
small model T |= ϕ. The procedure accepts ϕ by making all its guesses in accordance to T,
i.e., in the first step it sets θ to be equal to the n-profile of the root of T and then in each
step it sets θi to be the n-profile of the i-th child of the previously considered element.

In the opposite direction, from an accepting (tree-)run t of the procedure we can naturally
construct a tree structure Tt, with 1-types of elements as guessed during the execution.
Our procedure guesses actually not only 1-types but full n-profiles of nodes. The function
locally-consistent guarantees that the n-profiles of nodes Tt are indeed as guessed. To see
this, we first prove by induction on the height of nodes that the B components of profiles are



E. Kieroński and A. Kuusisto 64:11

as required: the base step for leaves holds due to the acceptance condition of the procedure;
then we move towards the root using the conditions of the function locally-consistent. For
the A-components we proceed by induction on the depth of nodes: the base case holds for
the root by the requirement on the first profile from the procedure; then we move down the
tree using the conditions of the function locally-consistent and the already proved fact that
the B-component are as required.

Since the procedure checks if each of the guessed n-profiles is ϕ-admissible, then by
Lemma 3 we have that Tt |= ϕ. J

To finish the proof of Thm. 8 it remains to note that the values of maxdepth and
maxdegree ensure that the algorithm works indeed in (alternating) exponential time.

4.2 Descendant and child
We first note that when the child relation ↓ is available in the signature then, in contrast
to the case of FO2 and C2 the satisfiability problem becomes 2-ExpTime-hard. This can
be shown by a simple adaptation of the 2-ExpTime-hardness proof for the unary negation
fragment, UNFO, [17], which works in particular for UNFO[↓] over trees. Actually some
two-dimensional formulas appear in that proof, but their usage is not crucial and can be
easily avoided.

I Theorem 10. The satisfiability problem for F1[↓] is 2 -ExpTime-hard.

A matching upper bound for F1[↓, ↓+] is easy to obtain using the tools we have already
developed.

I Theorem 11. The satisfiability problem for F1[↓, ↓+] is 2 -ExpTime-complete.

Proof. The lower bound follows from Thm. 10. For the upper bound we just modify the
procedure F1[↓+]-sat-test from Section 4.1 in a natural way. By Corollary 6 (i) and
Lemma 7 (i) we know that satisfiable formulas have models with doubly exponentially
bounded paths and exponentially bounded degree of nodes. Thus we just change the initial
value of maxdepth to fd(‖ϕ‖) and adjust the function locally-consistent by taking into
account the presence of ↓ relation. The obtained procedure works in alternating exponential
space. Since AExpSpace = 2-ExpTime [3] we get the desired result. J

4.3 Ordered trees
We conclude this section observing that the satisfiability problem of F1 over ordered trees
remains in 2-ExpTime.

I Theorem 12. The satisfiability problem for F1[↓, ↓+,→,→+] is 2 -ExpTime-complete.

Proof. The lower bound follows from Thm. 10. For the upper bound we need another
modification of the procedure F1[↓+]-sat-test. As we want to fit in alternating exponential
space we cannot this time allow ourselves for guessing at once all the children of a node (as
there may be doubly exponentially many of them). Instead we start by guessing the leftmost
one, and then move to the right until we reach the rightmost one. During this horizontal
walk, at each node a we actually make a universal choice between continuing the walk to the
right and moving down to the first child of a. Further, instead of n-profiles of nodes we guess
horizontal-n-profiles of the form (α,A,B,AL,AR). The function locally-consistent takes
this into account; it can be naturally designed to ensure that the the nodes guessed in an

MFCS 2017



64:12 One-Dimensional Logic over Trees

accepting tree-run of the procedure indeed have the declared horizontal profiles. Note in
particular that knowing the components AL, AR and B of the horizontal profile of any child
of a one can compute the B component of the profile of a. We leave the technical details of
the required adaptation for the full version of the paper. J

5 Expressivity

We show that the expressive power of F1[τbin] is equal to the expressive power of C2[τbin] in
the case of ordered trees, τbin = {↓, ↓+,→,→+}, and in the case of unordered trees accessible
by both the descendant and the child relations, τbin = {↓, ↓+}. Translation from C2 to F1 is
easy. Consider, e.g., a subformula of the form ∃≥kyψ(x, y) and note that it can be written
as ∃y1, . . . , yk(

∧
i 6=j yi 6= yj ∧

∧
i ψ(x, yi)). Regarding the opposite direction, in the case of

the ordered trees the equivalence is not very surprising: the power of the full navigational
signature allows scanning trees in an ordered way and express the existence of patterns
described by F1 subformulas by a reuse of two variables. Actually, one can even directly
translate F1 to FO2 without counting in this case. The equivalence over unordered trees is
slightly harder and less obvious. The proof of the following theorem will be given in the full
version of this paper.

I Theorem 13. For any F1[↓, ↓+] (F1[↓, ↓+,→,→+]) sentence ϕ there is a C2[↓, ↓+] (C2[↓, ↓+,

→, →+]) sentence ϕ∗ such that for any tree T we have T |= ϕ iff T |= ϕ∗, and vice versa.

Let us also collect here the results comparing the expressive power over trees of F1, C2

and two other two-variable logics: the two-variable guarded fragment, GF2, and plain FO2.
By A ≺ B we denote that A is strictly less expressive than B (on the level of sentences), and
by A ≡ B we denote that A and B have the same expressive power.

I Corollary 14.
(i) Over τ = {↓, ↓+,→,→+} we have GF2[τ ] ≡ FO2[τ ] ≡ C2[τ ] ≡ F1[τ ].
(ii) If τ = {↓, ↓+} then GF2[τ ] ≺ FO2[τ ] ≺ C2[τ ] ≡ F1[τ ].

Regarding (i): the translation of FO2 to GF2 can be done similarly to the translation
of FO2 to a variant of Core XPath in [15], equivalence of C2 and FO2 is shown in [1] and
of C2 and F1 in Thm. 13. Regarding (ii): Let us assume that the signature contains no
unary predicates and for i ∈ N let Ti denote the tree consisting just of a root and its i
children. The C2 formula ∃x∃≥3y x↓+y distinguishes T3 and T2, while the FO2 formula
∃xy(¬x↓+y ∧ ¬y↓+x ∧ x 6= y) distinguishes T2 and T1. It is not difficult to see that FO2

cannot distinguish between T3 and T2 (use a simple 2-pebble game argument, cf. [1]) and
that GF2 cannot distinguish between T2 and T1 (use bisimulations).

6 Conclusion

We established the computational complexity of F1 over unordered trees, showing its Ex-
pSpace-completeness over trees accessible only by the descendant relation and 2-ExpTime-
completeness in the presence of the child relation. The 2-ExpTime-upper bound holds also
for ordered trees equipped additionally with the next-sibling and following-sibling relations.
Deriving the complexities for the remaining combinations of the considered navigational
symbols (e.g., F1[↓+,→]) is not difficult, and we will do it in the full version of this paper.

We also proved that under two of the considered navigational scenarios F1 is expressively
equivalent to C2. Extending the expressive power comparison between F1 and C2 (and other
logics) to the signatures containing just one of ↓, ↓+ is left as a future work.



E. Kieroński and A. Kuusisto 64:13

Another interesting open problem is to formally compare the succinctness of F1 versus
FO2 and C2 over trees (and over words).

We worked with unranked trees, but it is not difficult to adapt all the results for the case
of ranked trees. In particular the counters in the 2-ExpTime-lower bound proof (Thm. 10)
can be organized as binary subtrees instead of horizontal chains of siblings.

References
1 Bartosz Bednarczyk, Witold Charatonik, and Emanuel Kieronski. Extending two-variable

logic on trees. In Computer Science Logic, pages 11:1–11:20, 2017.
2 Saguy Benaim, Michael Benedikt, Witold Charatonik, Emanuel Kieronski, Rastislav Len-

hardt, Filip Mazowiecki, and James Worrell. Complexity of two-variable logic on finite
trees. ACM Trans. Comput. Log., 17(4):32:1–32:38, 2016.

3 Ashok K. Chandra, Dexter Kozen, and Larry J. Stockmeyer. Alternation. J. ACM,
28(1):114–133, 1981. doi:10.1145/322234.322243.

4 Witold Charatonik, Emanuel Kieronski, and Filip Mazowiecki. Satisfiability of the two-
variable fragment of first-order logic over trees. CoRR, abs/1304.7204, 2013.

5 Witold Charatonik and Piotr Witkowski. Two-variable logic with counting and a linear
order. In Computer Science Logic, pages 631–647, 2015.

6 Heinz-Dieter Ebbinghaus and Jörg Flum. Finite model theory. Perspectives in Mathemat-
ical Logic. Springer, 1995.

7 Kousha Etessami, Moshe Y. Vardi, and Thomas Wilke. First-order logic with two variables
and unary temporal logic. Inf. Comput., 179(2):279–295, 2002. doi:10.1006/inco.2001.
2953.

8 Lauri Hella and Antti Kuusisto. One-dimensional fragment of first-order logic. In Advances
in Modal Logic 10, pages 274–293, 2014.

9 Emanuel Kieronski. On the complexity of the two-variable guarded fragment with transitive
guards. Inf. Comput., 204(11):1663–1703, 2006.

10 Emanuel Kieronski. One-dimensional logic over words. In Computer Science Logic, pages
38:1–38:15, 2016.

11 Emanuel Kieronski and Antti Kuusisto. Complexity and expressivity of uniform one-
dimensional fragment with equality. In Mathematical Foundations of Computer Science,
Part I, pages 365–376, 2014.

12 Emanuel Kieronski and Antti Kuusisto. Uniform one-dimensional fragments with one equi-
valence relation. In Computer Science Logic, pages 597–615, 2015.

13 Andreas Krebs, Kamal Lodaya, Paritosh Pandya, and Howard Straubing. Two-variable
logic with a between predicate. In Logic in Computer Science, 2016.

14 Antti Kuusisto. On the uniform one-dimensional fragment. In Proceedings of Description
Logic Workshop, 2016.

15 Maarten Marx. First order paths in ordered trees. In International Conference on Database
Theory, pages 114–128, 2005.

16 Dana Scott. A decision method for validity of sentences in two variables. Journal Symbolic
Logic, 27:477, 1962.

17 Luc Segoufin and Balder ten Cate. Unary negation. Logical Methods in Computer Science,
9(3), 2013.

18 Larry J. Stockmeyer. The Complexity of Decision Problems in Automata Theory and Logic.
PhD thesis, MIT, Cambridge, Massachusetts, USA, 1974.

MFCS 2017

http://dx.doi.org/10.1145/322234.322243
http://dx.doi.org/10.1006/inco.2001.2953
http://dx.doi.org/10.1006/inco.2001.2953




An Improved FPT Algorithm for the Flip Distance
Problem∗

Shaohua Li1, Qilong Feng2, Xiangzhong Meng3, and Jianxin Wang4

1 School of Information Science and Engineering, Central South University,
Changsha, Hunan, P. R. China

2 School of Information Science and Engineering, Central South University,
Changsha, Hunan, P. R. China

3 School of Information Science and Engineering, Central South University,
Changsha, Hunan, P. R. China

4 School of Information Science and Engineering, Central South University,
Changsha, Hunan, P. R. China
jxwang@mail.csu.edu.cn

Abstract
Given a set P of points in the Euclidean plane and two triangulations of P, the flip distance
between these two triangulations is the minimum number of flips required to transform one
triangulation into the other. The Parameterized Flip Distance problem is to decide if the flip
distance between two given triangulations is equal to a given integer k. The previous best FPT
algorithm runs in time O∗(k ·ck) (c ≤ 2×1411), where each step has fourteen possible choices, and
the length of the action sequence is bounded by 11k. By applying the backtracking strategy and
analyzing the underlying property of the flip sequence, each step of our algorithm has only five
possible choices. Based on an auxiliary graph G, we prove that the length of the action sequence
for our algorithm is bounded by 2|G|. As a result, we present an FPT algorithm running in time
O∗(k · 32k).

1998 ACM Subject Classification F.2.2 Geometrical Problems and Computations, G.2.1 Com-
binatorial Algorithms

Keywords and phrases triangulation, flip distance, FPT algorithm

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.65

1 Introduction

Given a set P of n points in the Euclidean plane, a triangulation of P is a maximal planar
subdivision whose vertex set is P [10]. A flip operation to one diagonal e of a convex
quadrilateral in a triangulation is to remove e and insert the other diagonal into this
quadrilateral. Note that if the quadrilateral associated with e is not convex, the flip operation
is not allowed. The flip distance between two triangulations is the minimum number of flips
required to transform one triangulation into the other.

Triangulations play an important role in computational geometry, which are applied in
areas such as computer-aided geometric design and numerical analysis [11, 13, 21].

Given a point set P in the Euclidean plane, we can construct a graph GT (P) in which
every triangulation of P is represented by a vertex, and two vertices are adjacent if their

∗ This work is supported in part by the National Natural Science Foundation of China under Grants
(61420106009, 61232001, 61472449, 61672536, 61572414).

© Shaohua Li, Qilong Feng, Xiangzhong Meng, and Jianxin Wang;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 65; pp. 65:1–65:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.65
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


65:2 An Improved FPT Algorithm for the Flip Distance Problem

corresponding triangulations can be transformed into each other through one flip operation.
GT (P) is called the triangulations graph of P. Properties of the triangulations graph are
studied in the literature. Aichholzer et al. [1] showed that the lower bound of the number of
vertices of GT (P) is Ω(2.33n). Lawson and Charles [17] showed that the diameter of GT (P)
is O(n2). Hurtado et al. [14] proved that the bound is tight. Since GT (P) is connected [17],
any two triangulations of P can be transformed into each other through a certain number of
flips.

The Flip Distance problem consists in computing the flip distance between two trian-
gulations of P, which was proved to be NP-complete by Lubiw and Pathak [18]. Pilz [20]
showed that the Flip Distance problem is APX-hard. Aichholzer et al. [2] proved that the
Flip Distance problem is NP-complete on triangulations of simple polygons. However, the
complexity of the Flip Distance problem on triangulations of convex polygons has been
open for many years, which is equivalent to the problem of computing the rotation distance
between two rooted binary trees [23].

The Parameterized Flip Distance problem is: given two triangulations of a set of points
in the plane and an integer k, deciding if the flip distance between these two triangulations
is equal to k. For the Parameterized Flip Distance problem on triangulations of a convex
polygon, Lucas [19] gave a kernel of size 2k and an O∗(kk)-time algorithm. Kanj and Xia
[15] studied the Parameterized Flip Distance problem on triangulations of a set of points
in the plane, and presented an O∗(k · ck)-time algorithm (c ≤ 2 · 1411), which applies to
triangulations of general polygonal regions (even with holes or points inside it).

In this paper, we exploit the structure of the Parameterized Flip Distance problem
further. At first, we give a nondeterministic construction process to illustrate our idea. The
nondeterministic construction process contains only two types of actions, which are the
moving action as well as the flipping and backing action. There are 4 choices for the moving
action and one choice for the flipping and backing action. Given two triangulations and a
parameter k, we prove that either there exists a sequence of actions of length at most 2k,
following which we can transform one triangulation into the other, or we can reject this
instance. Thus we get an improved O∗(k · 32k)-time FPT algorithm, which also applies to
triangulations of general polygonal regions (even with holes or points inside it).

2 Preliminaries

In a triangulation T , a flip operation f to an edge e that is the diagonal of a convex
quadrilateral Q is to delete e and insert the other diagonal e′ into Q. We define e as the
underlying edge of f , denoted by ε(f), and e′ as the resulting edge of f , denoted by ϕ(f).
(For consistency and clarity, we continue to use some symbols and definitions from [15]).
Note that if e is not a diagonal of any convex quadrilateral in the triangulation, flipping
e is not allowed. Suppose that we perform a flip operation f on a triangulation T1 and
get a new triangulation T2. We say f transforms T1 into T2. T1 is called an underlying
triangulation of f , and T2 is called a resulting triangulation of f . Given a set P of n points
in the Euclidean plane, let Tstart and Tend be two triangulations of P, in which Tstart is
the initial triangulation and Tend is the objective triangulation. Let F = 〈f1, f2, ..., fr〉 be a
sequence of flips, and 〈T0, T1, ..., Tr〉 be a sequence of triangulations of P in which T0 = Tstart
and Tr = Tend. If Ti−1 is an underlying triangulation of fi, and Ti is a resulting triangulation
of fi for each i = 1, 2, ..., r, we say F transforms Tstart into Tend, or F is a valid sequence,
denoted by Tstart

F−→ Tend. The flip distance between Tstart and Tend is the length of a
shortest valid flip sequence.



S. Li, Q. Feng, X. Meng, and J. Wang 65:3

Now we give the formal definition of the Parameterized Flip Distance problem.

Parameterized Flip Distance
Input: Two triangulations Tstart and Tend of P and an integer k.
Question: Decide if the flip distance between Tstart and Tend is equal to k.

The triangulation on which we are performing a flip operation is called the current
triangulation. An edge e which belongs to the current triangulation but does not belong to
Tend is called a necessary edge in the current triangulation. It is easy to see that for any
necessary edge e, there must exist a flip operation f in a valid sequence such that e = ε(f).
Otherwise, we cannot get the objective triangulation Tend.

For a directed graph D, a maximal connected component of its underlying graph is called
a weakly connected component of D. We define the size of an undirected tree as the number
of its vertices.

A parameterized problem is a decision problem for which every instance is of the form
(x, k), where x is the input instance and k ∈ N is the parameter. A parameterized problem
is fixed-parameter tractable (FPT) if it can be solved by an algorithm (FPT algorithm) in
O(f(k)|x|O(1)) time, where f(k) is a computable function of k. In addition to computational
geometry, parameterized problems in other areas such as graph theory [8, 9, 12], computational
biology [3, 22] and MAX-SAT [6] are also studied extensively. For a further introduction to
parameterized algorithms, readers could refer to [4, 7].

3 The Improved Algorithm for the Parameterized Flip Distance
Problem

Given Tstart and Tend, let F = 〈f1, f2, ..., fr〉 be a valid sequence, that is, Tstart
F−→ Tend.

Definition 1 defines the adjacency of two flips in F .

I Definition 1. [15] Let fi and fj be two flips in F (1 ≤ i < j ≤ r). We define that flip fj
is adjacent to flip fi, denoted by fi → fj , if the following two conditions are satisfied:
(1) either ϕ(fi) = ε(fj), or ϕ(fi) and ε(fj) share a triangle in triangulation Tj−1;
(2) ϕ(fi) is not flipped between fi and fj , that is, there does not exist a flip fp in F , where

i < p < j, such that ϕ(fi) = ε(fp).

By Definition 1, we can construct a directed acyclic graph (DAG), denoted by DF . Every
node in DF represents a flip operation of F , and there is an arc from fi to fj if fj is adjacent
to fi. For convenience, we label the nodes in DF using labels of the corresponding flip
operations. In other words, we can see a node in DF as a flip operation and vice versa.

The following lemma shows that any topological sorting of DF is a valid sequence.

I Lemma 2. [15] Let T0 and Tr be two triangulations and F = 〈f1, f2, ..., fr〉 be a sequence
of flips such that T0

F−→ Tr. Let π(F ) be a permutation of the flips in F such that π(F ) is a
topological sorting of DF . Then π(F ) is a valid sequence of flips such that T0

π(F )−−−→ Tr.

Lemma 2 ensures that if we repeatedly remove a source node from DF and flip the
underlying edge of this node until DF becomes empty, we can get a valid sequence and the
objective triangulation Tend.

Here we introduce the definition of a walk.

I Definition 3. [16] A walk in a triangulation T (starting from an edge e ∈ T ) is a sequence
of edges of T beginning with e in which any two consecutive edges share a triangle in T .

MFCS 2017



65:4 An Improved FPT Algorithm for the Flip Distance Problem

According to Lemma 2, if there is a valid sequence F for the input instance, any topological
sorting of DF is also a valid sequence for the given instance. The difficulty is that F is
unknown. In order to find the topological sorting of DF , the algorithm in [15] takes a
nondeterministic walk to find an edge e which is the underlying edge of a source node, flips
this edge (removing the corresponding node from DF ), nondeterministically walks to an edge
which shares a triangle with e and recursively searches for an edge corresponding to a source
node. They deal with weakly connected components of DF one after one (refer to Corollary
4 in [15]), that is, their algorithm tries to find a solution F in which all flips belonging to the
same weakly connected component of DF appear consecutively. In order to keep searching
procedure within the current weakly connected component, they use a stack to preserve
the nodes (defined as connecting point in [15]) whose removal separates the current weakly
connected component into small weakly connected components. When removing all nodes of
a small component, their algorithm jumps to the connecting point at the top of the stack
and moves to deal with another small component.

We observe that it is not necessary to remove all nodes of a weakly connected component
before dealing with other weakly connected components, that is, our algorithm may find a
solution F in which the nodes belonging to the same weakly connected components appear
dispersedly. Thus we do not need a stack to preserve connecting points. Instead of five types
of actions in [15], we only need two types, that is, moving action as well as flipping and
backtracking action (see Section 3.2). Moreover, every time we find a source node, we remove
the node, flip the underlying edge and backtrack instead of searching for the next node in
four directions, thus reducing the number of choices for the actions. Another contribution of
this paper is that we construct an auxiliary graph G and prove that G is a forest. Since there
is a bijection between nondeterministic actions and nodes as well as edges of G, we prove
that there exists a sequence of actions of length at most 2|DF |, which is smaller than 11|DF |
in [15]. In addition, we make some optimization on the strategy of finding the objective
sequence. As a result, we improve the running time of the algorithm from O∗(k · ck) where
c ≤ 2 · 1411 to O∗(k · 32k).

3.1 Nondeterministic construction process
Now we give a description of our nondeterministic construction process NDTRV (see Fig. 1).
The construction is nondeterministic as it always guesses the optimal choice correctly when
running. The actual deterministic algorithm enumerates all possible choices to simulate
the nondeterministic actions (see Fig. 3). Readers could refer to [5] as an example of
nondeterministic algorithm. We present this construction process in order to depict the idea
behind our deterministic algorithm clearly and vividly.

Let Tstart be the initial triangulation, and Tend be the objective triangulation. Suppose
that F is a shortest valid sequence, that is, F has the shortest length among all valid
sequences. Let DF be the DAG constructed after F according to Definition 1. NDTRV
traverses DF , removes the vertices of DF in a topologically-sorted order and transforms
Tstart into Tend. Although DF is unknown, for further analysis, we assume that NDTRV
can remove and copy nodes in DF so that it can construct an auxiliary undirected graph
G and a list L based on DF during the traversal. In later analysis we show that G is a
forest, and there is a bijection between actions of NDTRV and nodes as well as edges of G.
Obviously G and L are unknown as well. We just show that if a shortest valid sequence F
exists, then DF exists. So do G, L and Q. We can see DF and G as conceptual or dummy
graphs. We construct G instead of analysing a subgraph of DF because one move action
(see Section 3.2) of NDTRV may correspond to one or two edges in DF (see Fig. 2), while
there is a one-to-one correspondence between move actions and edges in G .



S. Li, Q. Feng, X. Meng, and J. Wang 65:5

At the beginning of an iteration, NDTRV picks a necessary edge e = ε(fh) arbitrarily
and nondeterministically guesses a walk W to find the underlying edge of a source node fs.
Lemma 5 shows that there exists such a walk W whose length is bounded by the length
of a directed path B from fs to fh, and every edge e′ in W is the underlying edge of some
flip f ′ on B. NDTRV uses L to preserve a sequence of nodes Γ = 〈fs = v1, ..., fh = v`〉
on B, whose underlying edges are in W . Simultaneously NDTRV constructs a path S by
copying all nodes in Γ as well as adding an undirected edge between the copy of vi and vi+1
for i = 1, ..., `. S is defined as a searching path. The node fh is called a starting node. If
a starting node is precisely a source node in DF , the searching path consists only of the
copy of this starting node. When finding ε(fs), NDTRV removes fs from DF , flips ε(fs)
and moves back to the previous edge ε(v2) of ε(fs) in W . If v2 becomes a source node of
DF , NDTRV removes v2 from DF , flips ε(v2) and moves back to the previous edge ε(v3).
NDTRV repeats the above operations until finding a node vi in Γ which is not a source
node in DF . Then NDTRV uses vi as a new starting node, and recursively guesses a walk
nondeterministically from ε(vi) to find another edge which is the underlying edge of a source
node as above. NDTRV performs these operations until the initial starting node fh becomes
a source node in DF . Finally NDTRV removes fh and flips ε(fh), terminating this iteration.
NDTRV repeats the above iteration until Tstart is transformed into Tend. We give the
formal presentation of NDTRV in Fig. 1 and an example in Fig. 2.

3.2 Actions of the construction
Our construction process contains two types of actions operating on triangulations. The edge
which the algorithm is operating on is called the current edge. The current triangulation is
denoted by Tcurrent.
(i) Move to one edge that shares a triangle with the current edge in Tcurrent. We formalize

it as (move, e1 7→ e2), where e1 is the current edge and e2 shares a triangle with e1.
(ii) Flip the current edge and move back to the previous edge of the current edge in W . We

formalize it as (f, e4 7→ e3), where f is the flip performed on the current edge, e4 equals
ϕ(f) and e3 is the previous edge of ε(f) in the current walk W .
Since there are four edges that share a triangle with the current edge, there are at most

four directions for an action of type (i). However, there is only one choice for an action of
type (ii).

3.3 The sequence of actions
The following theorem is the main theorem for the deterministic algorithm FLIPDT, which
bounds the length of the sequence of actions by 2|V (DF )|.

I Theorem 4. There exists a sequence of actions of length at most 2|V (DF )| following which
we can perform a sequence of flips F ′ of length |V (DF )|, starting from a necessary edge in
Tstart, such that F ′ is a topological sorting of DF .

In order to prove theorem 4, we need to introduce some lemmas. We will give the proof
for Theorem 4 at the end of Section 3.3.

Lemma 5 shows the existence of a length-bounded walk to find an edge which is the
underlying edge of a source node.

I Lemma 5. [16] Suppose that a sequence of flips F− is performed such that every time we
flip an edge, we delete the corresponding source node in the DAG resulting from preceding

MFCS 2017



65:6 An Improved FPT Algorithm for the Flip Distance Problem

NDTRV(Tstart, Tend; DF )
Input: the initial triangulation Tstart and objective triangulation Tend. Assuming F is a

shortest sequence, DF is the corresponding DAG according to Definition 1.
/*G is an auxiliary undirected graph */
/*L is a list keeping track of searching paths for backtracking */
/*Q is a list preserving the sequence of nondeterministic actions */
/* Tcurrent is the current triangulation*/

a. Let V (G) and E(G) be empty sets, L and Q be empty lists;
b. Tcurrent = Tstart;
c. While Tcurrent 6= Tend do
c.1. Pick a necessary edge e = ε(fh) in Tcurrent arbitrarily;
c.2. Add a copy of fh into G;
c.3. Add fh into L;
c.4. TrackTree(Tcurrent, e, DF , G, L, Q);

TrackTree(Tcurrent, ε(fh), DF , G, L, Q) /*construct searching paths starting from ε(fh)*/
1. Nondeterministically guess a walk in Tcurrent from ε(fh) to find ε(fs) according to

Lemma 5, let Γ = 〈fs = v1, ..., fh = v`〉, where fs is a source node in DF , be a sequence
of nodes on the backbone B whose underlying edges are in the walk W such that ε(vi)
and ε(vi+1) are consecutive in W for i = 1, ..., `− 1;

2. Add a copy of v1,...,v`−1 into G respectively;
3. Connect the copies of v1,...,v` in G into a path;
4. Append v`−1,...,v1 to L; /*record current searching path*/
5. Append (move, ε(v`) 7→ ε(v`−1)),...,(move, ε(v2) 7→ ε(v1)) to Q; /*record actions*/
6. Remove fs = v1 from L;
7. Remove fs = v1 from DF ;
8. Flip ε(fs) in Tcurrent and move back to ε(v2);
9. Append (fs, ϕ(v1) 7→ ε(v2)) to Q; /*record actions*/
10. For i = 2 to ` do
10.1 Nondeterministically guess if vi is a source node in DF ;
10.2 If vi is a source node of DF then /*flip and move back*/
10.2.1 Remove vi from L;
10.2.2 Remove vi from DF ;
10.2.3 Flip ε(vi) in Tcurrent and move back to ε(vi+1);
10.2.4 Append (vi, ϕ(vi) 7→ ε(vi+1)) to Q;
10.3 Else /*construct searching paths from vi*/
10.3.1 TrackTree(Tcurrent, ε(vi), DF , G, L, Q);

Figure 1 Nondeterministic construction NDTRV

deleting operations. Let fh be a node in the remaining DAG such that ε(fh) is an edge in the
triangulation T resulting from performing the sequence of flips F−. There is a source node
fs in the remaining DAG satisfying:
(1) There is a walk W in T from ε(fh) to ε(fs).
(2) There is a directed path B from fs to fh in the remaining DAG that we refer to as the

backbone of the DAG.
(3) The length of W is at most that of B.
(4) Any edge in W is the underlying edge of a flip in B, that is, W = 〈ε(v1), ..., ε(v`)〉, where

v1 = fs, ..., v` = fh are nodes in B and there is a directed path Bi from vi to vi+1 for
i = 1, ..., `− 1 such that Bi ⊂ B. A searching path is an undirected path constructed by
copying v1, ..., v` and connecting the copies of v1, ..., v` into a path.

I Lemma 6. NDTRV transforms Tstart into Tend with the minimum number of flips and
stops in polynomial time if it correctly guesses every moving and flipping action.

Proof. Suppose that F is a shortest valid sequence. According to Lemma 5, every edge



S. Li, Q. Feng, X. Meng, and J. Wang 65:7

v9

v6

v2

v1

v5

v3

v4

v8

v7

v9

v6

v2

v1

v5

v3

v4

v8

v7

Figure 2 An example for constructing G. The graph on the left is the DAG. The graph on the
right is the auxiliary graph G constructed by NDTRV. ε(v6) is the first chosen necessary edge, and
ε(v9) is the second one. Edges with the same color belong to the same searching path. Searching
paths in the same connected component are constructed in the same iteration.

flipped in NDTRV is the underlying edge of a source node in the remaining graph of DF ,
and every node removed from the remaining graph of DF in NDTRV is a source node. If
Tcurrent is equal to Tend but DF is not empty, then there exists a valid sequence F ′ which is
shorter than F , contradicting that F is a shortest valid sequence. Thus NDTRV traverses
DF , removes all nodes of DF in a topologically-sorted order and transforms Tstart into Tend
with the minimum number of flips by Lemma 2. Since the diameter of a transformations
graph GT (P) is O(n2) [17], NDTRV stops in polynomial time. J

NDTRV constructs G, Q and L during its execution. Lemma 7, Lemma 8 and Lemma 9
show some properties of G, Q, L and DF .

I Lemma 7. At the end of NDTRV, the graph G consists of all searching paths constructed
during the execution of NDTRV. Moreover, the list Q contains a sequence of nondeterministic
actions starting from a necessary edge in Tstart following which we can perform a sequence
of flips F ′ of length |V (DF )| such that F ′ is a topological sorting of DF .

Proof. From the construction of G, we see that one node is added into G when it is in some
searching path. Moreover, we add an edge between two nodes in G if and only if they are
adjacent in a searching path. It follows that G consists of all searching paths constructed
during the execution of NDTRV.

By the proof of Lemma 6, NDTRV removes the nodes of DF in a topologically-sorted
order. Since Q records every action of NDTRV, if we perform the actions in Q, we get a
valid sequence F ′. This completes the proof. J

I Lemma 8. The following statements are true:
(1) At the end of any iteration of NDTRV, all nodes whose copies are in the searching

paths constructed in this iteration are removed from DF , and L becomes empty.
(2) During every step of NDTRV, there exists a directed path in the remaining graph of

DF passing through every node in L from the last node of L to the first node of L.
(3) All searching paths in G are edge-disjoint. Any two searching paths which belong to two

different iterations respectively are node-disjoint. Searching paths constructed in each
iteration form a tree respectively, namely a track tree. Moreover, G is a forest.

MFCS 2017



65:8 An Improved FPT Algorithm for the Flip Distance Problem

Proof. Suppose we are in the first iteration. We name the searching paths in this iteration
S1, ..., Sm by the order they are constructed. Suppose now we have constructed searching
paths S1, ..., Si and i < m. We prove that statements (2) and (3) hold for the first iteration
by induction on i. When i = 1, the statement is true because there is only one searching
path S1 forming a tree, and there is a directed path in the remaining graph of DF passing
through every node in L from the last to the first according to Lemma 5. Assume that the
statements are true for any i < m, that is, S1, ..., Si are edge-disjoint, and they form a tree.
Moreover, there exists a directed path P in the remaining graph of DF passing through every
node in L from the last to the first (inductive hypothesis). The next searching path we will
construct is Si+1. Note that before constructing Si+1, we may remove the last node of L
repeatedly from the remaining graph of DF and L if it is a source node in the remaining
graph of DF . Since every node we removed was the beginning node of the directed path P ,
there was still a directed path passing through every node in L from the last to the first.
Let fstart,i+1 be the starting node whose copy is in Si+1, which means that fstart,i+1 is the
last node in L, and fstart,i+1 is not a source node in the remaining graph of DF . By the
inductive hypothesis and the analysis above, there is a directed path P1 from fstart,i+1 to
fh which is the first node of L. Let f ′s be a source node in the remaining graph of DF such
that the copy of f ′s is in Si+1. By Lemma 5, there is a directed path P2 in the remaining
graph of DF passing through the nodes whose copies are in Si+1 from f ′s to fstart,i+1. We
argue that P1 has only one common node with P2, which is exactly fstart,i+1. Otherwise,
there is a directed cycle induced by some of the nodes on P1 and P2 in the remaining graph
of DF , contradicting the acyclicity of DF . It follows that there is a directed path in the
remaining graph of DF passing through every node in L from the last node of L to the first
node of L. Since Si+1 cannot contain any copies of the nodes that have been removed from
the remaining graph of DF and L, Si+1 has only one common node with the searching paths
S1,...,Si, namely the copy of fstart,i+1. It is implied that a node of DF cannot be added to
L more than once for the same reason. As a result, S1,...,Si and Si+1 are edge-disjoint, and
S1,...,Si+1 form a tree. The tree formed by S1,...,Sm is a track tree. This completes the
inductive proof.

We prove statement (1) in the first iteration by contradiction. Suppose that there exists
one or several nodes left in L at the end of an iteration, and w is the last one in L. Suppose
w was added to L when searching path Sp was constructed and TrackTree(vp) was called.
Let u be the node appended to L on its heel. Such a node u existed since w was not a source
node then. Otherwise w was removed, resulting in a contradiction as one node of DF cannot
be added to L more than once (according to the proof in the above paragraph). Since w is
the last one in L at the end of this iteration, u was removed, and NDTRV moved back to
ε(w). According to NDTRV, w has never become a source node in DF . Otherwise, w has
been removed from L, leading to a contradiction since one node of DF cannot be added to L
more than once. Thus TrackTree(w) was called. The terminal condition of TrackTree(w)
is that w becomes a source node in DF , and w is removed from L and DF . This implies that
this iteration does not end, a contradiction. It follows that L becomes empty at the end of
the first iteration. According to NDTRV, all nodes whose copies are in the searching paths
constructed in the first iteration are removed from DF .

We prove that statements (1), (2) and (3) hold for the whole procedure by induction. We
have proved that they are true for the first iteration. Suppose that there are t iterations in
the procedure, and statements (1), (2) and (3) hold for the first j iterations for any 1 ≤ j < t.
By the inductive hypothesis, at the end of the j-th iteration, L is empty. A node x whose
copy is in the searching paths constructed in the first j iterations can never appear in L in the



S. Li, Q. Feng, X. Meng, and J. Wang 65:9

(j + 1)-th iteration because it has been removed from DF . It follows that the searching paths
constructed in the (j + 1)-th iteration are node-disjoint with the searching paths constructed
in the first j iterations. Thus they are edge-disjoint. Since L is empty, it is not difficult to
see that the proof for the first iteration also holds for the (j + 1)-th iteration. It follows that
the searching paths constructed in the (j + 1)-th iteration form a tree that is node disjoint
with other j trees belonging to the first j iterations respectively, that is, these trees form a
forest all together. By Lemma 7, G consists of all searching paths constructed during the
execution of NDTRV. It follows that G is a forest. This completes the inductive proof for
the whole procedure. J

I Lemma 9. |V (G)| is equal to |V (DF )|.

Proof. According to NDTRV, a node v is added to L if and only if its copy is added to G,
and v is removed from L if and only if v is removed from DF . By the proof in Lemma 8, no
node in DF can be added to L more than once. By the proof of Lemma 6, all nodes of DF

are removed by NDTRV. It follows that all nodes in DF have exactly one copy in G. Thus
|V (G)| = |V (DF )|. J

We give the proof of Theorem 4 below.

Proof. (Theorem 4) In the procedure of constructing G in Fig. 1, we construct a list Q which
consists of actions of type (i) and (ii). We claim that Q is exactly the sequence satisfying
the requirement of this theorem. By Lemma 7, the number of actions of type (ii) in Q is
exactly |V (DF )| = |V (G)|. NDTRV adds an action of type (i) to Q if and only if it adds
an an edge to E(G). Moreover, Q and E(G) are both empty at the beginning of NDTRV.
It follows that there is a one-to-one correspondence between actions of type (i) in Q and
edges in G. By Lemma 8, G is a forest. As a result, |E(G)| ≤ |V (G)|, and the length of Q is
bounded by |E(G)|+ |V (G)| ≤ 2|V (G)| = 2|V (DF )|. J

3.4 The deterministic algorithm
Now we are ready to give the deterministic algorithm FLIPDT for the Parameterized Flip
Distance problem. The specific algorithm is presented in Fig. 3. As mentioned above, we
assume that NDTRV is always able to guess the optimal choice correctly. In fact, FLIPDT
achieves this by trying all possible sequences of actions and partitions of k. At the top level,
FLIPDT branches into all partitions of k, namely (k1, ..., kt) satisfying k1 + ...+ kt = k and
k1, ..., kt ≥ 1, in which ki (i = 1, ..., t) equals the size of the track tree Ai constructed during
the i-th iteration.

Suppose that FLIPDT is under some partition (k1, ..., kt). Let T 0
iteration = Tstart.

FLIPDT permutates all necessary edges in Tstart in the lexicographical order, and the
ordering is denoted by Olex. Here we number the given points of P in the Euclidean plane
from 1 to n arbitrarily and label one edge by a tuple consisting of two numbers of its
endpoints (the smaller number is ahead of the other one). Thus we can order the edges
lexicographically. FLIPDT performs t iterations. At the beginning of the i-th iteration,
i = 1, ..., t, we denote the current triangulation by T i−1

iteration. For i = 1, ..., t, T iiteration is also
the triangulation resulting from the execution of the i-th iteration. At the beginning of the
i-th iteration (i = 1, ..., t), FLIPDT repeatedly picks the next edge in Olex until finding a
necessary edge e belonging to T i−1

iteration (just pick the first edge in Olex in the first iteration).
Note that one edge in Olex may not be a necessary edge anymore with respect to T i−1

iteration.
Moreover, if FLIPDT reaches the end of Olex but does not find a necessary edge belonging

MFCS 2017



65:10 An Improved FPT Algorithm for the Flip Distance Problem

FLIPDT(Tstart, Tend, k)
Input: two triangulations Tstart and Tend of a point set P in the Euclidean plane and an

integer k.
Output: return YES if there exists a sequence of flips of length k that transforms Tstart

into Tend; otherwise return NO.

1. For each partition (k1, ..., kt) of k satisfying k1 + k2 + ... + kt = k and k1, ..., kt ≥ 1 do
1.1 Order all necessary edges in Tstart lexicographically and denote this ordering by Olex;
1.2 FDSearch(Tstart,1,(k1, ..., kt)); /*iteration 1 distributed with k1*/
2. Return NO;

FDSearch(T ,i,(k1, ..., kt)) /*the concrete branching procedure*/
Input: a triangulation T , an integer i denoting that the algorithm is at the i-th iteration and

a partition (k1, ..., kt) of k.
Output: return YES if the instance is accepted.

1. Repeatedly pick the next edge in Olex until finding a necessary edge e with respect to T
and Tend;

2. If it reaches the end of Olex but finds no necessary edge in T then
2.1 Update Olex by permutating all necessary edges in T i−1

iteration in lexicographical order,
and pick the first edge e in Olex;

3. For each possible sequence of actions seqi of length 2ki − 1 do
3.1 T ′ = Transform(T ,seqi,e);
3.2 If i < t then /*continue to the next iteration distributed with ki+1*/
3.2.1 FDSearch(T ′,i + 1,(k1, ..., kt));
3.3 Else if i = t and T ′ = Tend then /*compare T ′ with Tend*/
3.3.1 Return YES;

Transform(T ,s,e) /*subprocess for transforming triangulations*/
Input: a triangulation T , a sequence of actions s and a starting edges e.
Output: a new triangulation T ′.

1. Perform a sequence of actions s starting from e in T , getting a new triangulation T ′;
2. Return T ′;

Figure 3 The deterministic algorithm for the Flip Distance problem

to T i−1
iteration, it needs to update Olex by clearing Olex and permutating all necessary edges in

T i−1
iteration lexicographically, and choose the first edge in the updated ordering Olex. Then

FLIPDT branches into every possible sequence of actions seqi of length 2ki − 1. For each
enumeration of seqi, FLIPDT performs the actions of seqi on T i−1

iteration starting from e and
gets a new triangulation T iiteration. For every triangulation T iiteration resulting from seqi,
FLIPDT performs the (i+ 1)-th iteration on T iiteration. FLIPDT proceeds as above from
the first iteration to the last iteration. When FLIPDT finishes the last iteration, it judges
if the resulting triangulation T titeration is equal to Tend. If they are equal, the input instance
is a yes-instance. Otherwise, FLIPDT rejects this case and proceeds.

Now we analyse how to enumerate all possible sequences of length 2ki − 1. By the proof
of Lemma 8 and Theorem 4, the searching paths constructed during each iteration form a
track tree in which a node corresponds to an action of type (ii) while an edge corresponds to
an action of type (i). It follows that the number of actions of type (ii) is ki, and the number
of actions of type (i) is ki − 1 since the number of nodes equals the number of edges plus one
in a tree. According to NDTRV, the last action γ in seqi must be of type (ii), and in any
prefix of seqi − γ the number of actions of type (i) must not be less than that of type (ii).
Thus FLIPDT only needs to enumerate all sequences of length 2ki − 1 satisfying the above
constraints.

The following theorem proves the correctness of the algorithm FLIPDT.



S. Li, Q. Feng, X. Meng, and J. Wang 65:11

I Theorem 10. Let (Tstart, Tend, k) be an input instance. FLIPDT is correct and runs in
time O∗(k · 32k).

Proof. Suppose that (Tstart, Tend, k) is a yes-instance. There must exist a sequence of flips F
of length k such that Tstart

F−→ Tend. Thus DF exists according to Definition 1. By NDTRV,
Lemma 7 and Lemma 8, there exists an undirected graph G consisting of a set of node-disjoint
track trees A1, ..., At. Moreover, Theorem 4 shows that there exists a sequence of actions
Q following which we can perform all flips of DF in a topologically-sorted order. Due to
NDTRV, Q consists of several subsequences seq1, ..., seqt, in which seqi is constructed in the
i-th iteration and corresponds to the track tree Ai for i = 1, ..., t. Supposing the size of Ai is
λi for i = 1, ..., t satisfying λ1 + ...+λt = k, seqi contains λi actions of type (ii) corresponding
to the nodes of Ai as well as λi − 1 actions of type (i) corresponding to the edges of Ai.
FLIPDT guesses the size of every track tree by enumerating all possible partitions of k into
(k1, ..., kt) such that k1 + ...+ kt = k and k1, ..., kt ≥ 1. We say that ki is distributed to the
i-th iteration or the distribution for the i-th iteration is ki for i = 1, ..., t.

We claim that FLIPDT is able to perform a sequence Σ of actions which correctly guesses
every subsequence seq1, ..., seqt of the objective sequence Q, that is, Σ is a concatenation of
seq1, ..., seqt. Suppose that FLIPDT has completed i iterations. We prove this claim by
induction on i. At the first iteration, FLIPDT starts by picking the first necessary edge e1
in list Olex. In the first iteration of constructing Q, NDTRV starts by picking an arbitrary
necessary edge. Without loss of generality, it chooses e1 and construct seq1 starting from
e1. The length of seq1 is 2λ1 − 1. Since FLIPDT tries every distribution in {1, ..., k} for
the first iteration and 1 ≤ λ1 ≤ k, there is a correct guess of the distribution equal to λ1 for
this iteration. Under this correct guess, FLIPDT tries all possible sequences of actions of
length 2λ1 − 1 starting from e1. It follows that FLIPDT is able to perform a sequence that
is equals to seq1 in the first iteration resulting in a triangulation T1.

Suppose that the claim is true for any first i iterations (1 ≤ i < t). That is, under some
guess for the partition of k, λ1, ..., λi are distributed to the first i iterations respectively.
Moreover, FLIPDT has completed i iterations and performed a sequence of actions seqconcat,i,
which is equal to the concatenation of seq1, ..., seqi, resulting in a triangulation Ti. Based
on Ti and seqconcat,i, FLIPDT is ready to perform the (i+ 1)-th iteration. Suppose that
FLIPDT picks ei+1 from Olex. Let us see the construction of Q in NDTRV. Suppose
NDTRV has constructed the first i track trees A1, ..., Ai, and it is ready to begin a new
iteration by arbitrarily picking a necessary edge in the current triangulation. Since FLIPDT
correctly guessed and performed the first i subsequences of Q, Ti is exactly equal to the
current triangulation in NDTRV. Thus ei+1 is a candidate edge belonging to the set of
all selectable necessary edges for NDTRV in this iteration. Without loss of generality, it
chooses ei+1 and constructs seqi+1 of length 2λi+1 − 1 starting from ei+1. Since the sizes of
A1, ..., Ai are λ1, ..., λi respectively, we get that 1 ≤ λi+1 ≤ k− (λ1 + ...+λi). We argue that
FLIPDT is able to perform a sequence that is equal to the concatenation of seq1, ..., seqi+1.
Since the edges in Olex are ordered lexicographically and FLIPDT chooses necessary edges
in a fixed manner, FLIPDT is sure to choose ei+1 to begin the (i+ 1)-th iteration for every
guessed sequence in which the first i subsequences are equal to seq1,...,seqi respectively. Thus
FLIPDT actually tries every distribution in {1, ..., k − (λ1 + ... + λi}) for the (i + 1)-th
iteration starting from ei+1 based on Ti and seqconcat,i. It follows that there is a correct
guess of distribution for the (i+ 1)-th iteration which is equal to λi+1. Under this correct
guess of distribution, FLIPDT tries all possible sequences of length 2λi+1 − 1 starting from
ei+1 on Ti based on seqconcat,i, ensuring that one of them is equal to seqi+1. It follows that
the claim is true for the first i + 1 iterations. This completes the inductive proof for the
claim.

MFCS 2017



65:12 An Improved FPT Algorithm for the Flip Distance Problem

If (Tstart, Tend, k) is a yes-instance, the action sequence Q of length at most 2k exists and
the deterministic algorithm can find such a sequence. Otherwise, there is no valid sequence
F of length k. Thus there is no such action sequence Q. As a result, FLIPDT returns NO.
It is proved that FLIPDT decides the given instance (Tstart, Tend, k) correctly.

Finding and ordering all necessary edges in Tstart takes O(n+k log k) time, and FLIPDT
may update the ordering Olex at the beginning of each iteration. The number of partitions of
k is known as the composition number of k, which is 2k−1. Under each partition (k1, ..., kt)
of k and for each ki, i = 1, ..., t, we enumerate all possible subsequences of actions in
which there are ki actions of type (ii) and ki − 1 actions of type (i). It follows that the
number of all possible subsequences is bounded by

(2(ki−1)
ki−1

)
× 4ki−1 = O∗(16ki) since

there are four choices for action (i) and one choice for action (ii). Here we use Stirling’s
approximation n! ≈

√
2πn(n/e)n and get that

(2(ki−1)
ki−1

)
= O∗(4ki). It follows that there are

O∗(16k1)×O∗(16k2)× ...×O∗(16kt) = O∗(16k) cases under each partition. Since for each
case we can perform the sequence of actions in O(k) time, and the resulting triangulation
can be compared to Tend in O(k) time, the running time of the whole algorithm is bounded
by O∗(k · 2k−1 · (n+ k log k) + k · 2k−1 · 16k) = O∗(k · 32k).

According to the definition of the Flip Distance problem, we need to decide if we can find
a shorter valid flip sequence for the given triangulations Tstart and Tend. This is achieved
by calling FLIPDT on each instance (Tstart, Tend, k′) for k′ = 0, ..., k. The running time is
bounded by

∑k
k′=0 O

∗(k′ · 32k′) = O∗(k · 32k). J

4 Conclusion

In this paper we presented an FPT algorithm running in time O∗(k·32k) for the Parameterized
Flip Distance problem, improving the previous O∗(k · ck)-time (c ≤ 2× 1411) FPT algorithm
by Kanj and Xia [15]. An important related problem is computing the flip distance between
triangulations of a convex polygon, whose traditional complexity is still unknown. Although
our algorithm can be applied to the case of convex polygon, it seems that an O(ck) algorithm
with smaller c for this case probably exists due to its more restrictive geometric property.
In addition, whether there exists a polynomial kernel for the Parameterized Flip Distance
problem is also an attractive problem.

References
1 Oswin Aichholzer, Ferran Hurtado, and Marc Noy. A lower bound on the number of

triangulations of planar point sets. Computational Geometry, 29(2):135–145, 2004. doi:
10.1016/j.comgeo.2004.02.003.

2 Oswin Aichholzer, Wolfgang Mulzer, and Alexander Pilz. Flip distance between triangula-
tions of a simple polygon is NP-complete. Discrete & Computational Geometry, 54(2):368–
389, 2015. doi:10.1007/s00454-015-9709-7.

3 Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, Michael T. Hallett, and Har-
old T. Wareham. Parameterized complexity analysis in computational biology. Computer
Applications in the Biosciences, 11(1):49–57, 1995. doi:10.1093/bioinformatics/11.1.
49.

4 Jianer Chen. Parameterized computation and complexity: A new approach dealing with np-
hardness. J. Comput. Sci. Technol., 20(1):18–37, 2005. doi:10.1007/s11390-005-0003-7.

5 Jianer Chen, Donald K. Friesen, Weijia Jia, and Iyad A. Kanj. Using nondeterminism to
design efficient deterministic algorithms. Algorithmica, 40(2):83–97, 2004. doi:10.1007/
s00453-004-1096-z.

http://dx.doi.org/10.1016/j.comgeo.2004.02.003
http://dx.doi.org/10.1016/j.comgeo.2004.02.003
http://dx.doi.org/10.1007/s00454-015-9709-7
http://dx.doi.org/10.1093/bioinformatics/11.1.49
http://dx.doi.org/10.1093/bioinformatics/11.1.49
http://dx.doi.org/10.1007/s11390-005-0003-7
http://dx.doi.org/10.1007/s00453-004-1096-z
http://dx.doi.org/10.1007/s00453-004-1096-z


S. Li, Q. Feng, X. Meng, and J. Wang 65:13

6 Jianer Chen, Chao Xu, and Jianxin Wang. Dealing with 4-variables by resolution: An
improved maxsat algorithm. Theor. Comput. Sci., 670:33–44, 2017. doi:10.1016/j.tcs.
2017.01.020.

7 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

8 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van
Rooij, and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by
treewidth in single exponential time. In Proceedings of the 52nd Annual IEEE Symposium
on Foundations of Computer Science, FOCS, Palm Springs, USA, pages 150–159, 2011.
doi:10.1109/FOCS.2011.23.

9 Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wojtaszczyk. Subset
feedback vertex set is fixed-parameter tractable. SIAM J. Discrete Math., 27(1):290–309,
2013. doi:10.1137/110843071.

10 Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Computa-
tional geometry: algorithms and applications, 3rd Edition. Springer, 2008.

11 Gerald E. Farin. Curves and surfaces for computer-aided geometric design - a practical
guide (4. ed.). Computer science and scientific computing. Academic Press, 1997.

12 Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. Efficient computation of repres-
entative sets with applications in parameterized and exact algorithms. In Proceedings of
the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, Portland,
USA, pages 142–151, 2014. doi:10.1137/1.9781611973402.10.

13 Bernd Hamann. Modeling contours of trivariatc data. Mathematical Modeling and Numer-
ical Analysis, 26:51–75, 1992.

14 Ferran Hurtado, Marc Noy, and Jorge Urrutia. Flipping edges in triangulations. Discrete
& Computational Geometry, 22(3):333–346, 1999. doi:10.1007/PL00009464.

15 Iyad A. Kanj and Ge Xia. Flip Distance is in FPT time O(n + k · ck). In proceedings of
the 32nd International Symposium on Theoretical Aspects of Computer Science, STACS,
Garching, Germany, pages 500–512, 2015. doi:10.4230/LIPIcs.STACS.2015.500.

16 Iyad A. Kanj and Ge Xia. Computing the flip distance between triangulations. to appear
in Discrete & Computational Geometry, 2017.

17 Charles L. Lawson. Transforming triangulations. Discrete Mathematics, 3(4):365–372, 1972.
doi:10.1016/0012-365X(72)90093-3.

18 Anna Lubiw and Vinayak Pathak. Flip distance between two triangulations of a point set
is NP-complete. Computational Geometry, 49:17–23, 2015. doi:10.1016/j.comgeo.2014.
11.001.

19 Joan M. Lucas. An improved kernel size for rotation distance in binary trees. Information
Processing Letters, 110(12-13):481–484, 2010. doi:10.1016/j.ipl.2010.04.022.

20 Alexander Pilz. Flip distance between triangulations of a planar point set is APX-hard.
Computational Geometry, 47(5):589–604, 2014. doi:10.1016/j.comgeo.2014.01.001.

21 Larry L. Schumaker. Triangulations in CAGD. IEEE Computer Graphics and Applications,
13(1):47–52, 1993. doi:10.1109/38.180117.

22 Feng Shi, Jianxin Wang, Yufei Yang, Qilong Feng, Weilong Li, and Jianer Chen. A
fixed-parameter algorithm for the maximum agreement forest problem on multifurcat-
ing trees. SCIENCE CHINA Information Sciences, 59(1):1–14, 2016. doi:10.1007/
s11432-015-5355-1.

23 Daniel D. Sleator, Robert E. Tarjan, and William P. Thurston. Rotation distance, tri-
angulations, and hyperbolic geometry. In Proceedings of the 18th Annual ACM Sym-
posium on Theory of Computing, STOC, Berkeley, USA, pages 122–135, 1986. doi:
10.1145/12130.12143.

MFCS 2017

http://dx.doi.org/10.1016/j.tcs.2017.01.020
http://dx.doi.org/10.1016/j.tcs.2017.01.020
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1109/FOCS.2011.23
http://dx.doi.org/10.1137/110843071
http://dx.doi.org/10.1137/1.9781611973402.10
http://dx.doi.org/10.1007/PL00009464
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.500
http://dx.doi.org/10.1016/0012-365X(72)90093-3
http://dx.doi.org/10.1016/j.comgeo.2014.11.001
http://dx.doi.org/10.1016/j.comgeo.2014.11.001
http://dx.doi.org/10.1016/j.ipl.2010.04.022
http://dx.doi.org/10.1016/j.comgeo.2014.01.001
http://dx.doi.org/10.1109/38.180117
http://dx.doi.org/10.1007/s11432-015-5355-1
http://dx.doi.org/10.1007/s11432-015-5355-1
http://dx.doi.org/10.1145/12130.12143
http://dx.doi.org/10.1145/12130.12143




Reversible Kleene Lattices∗

Paul Brunet

University College London, United Kingdom
paul@brunet-zamansky.fr

Abstract
We investigate the equational theory of reversible Kleene lattices, that is algebras of languages
with the regular operations (union, composition and Kleene star), together with the intersection
and mirror image. Building on results by Andréka, Mikulás and Németi from 2011, we construct
the free representation of this algebra. We then provide an automaton model to compare rep-
resentations. These automata are adapted from Petri automata, which we introduced with Pous
in 2015 to tackle a similar problem for algebras of binary relations. This allows us to show that
testing the validity of equations in this algebra is decidable, and in fact ExpSpace-complete.

1998 ACM Subject Classification F.4.3 Formal Languages, F.1.1 Models of Computation, F.3.2
Semantics of Programming Languages.

Keywords and phrases Kleene algebra, Automata, Petri nets, Decidability, Complexity.

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.66

1 Introduction

We are interested in algebras of languages, equipped with the constants empty language (0),
unit language (1, the language containing only the empty word), the binary operations
of union (+), intersection (∩), and concatenation (·), and the unary operations of Kleene
star (_?) and mirror image, also called converse, (_N). We call these algebras reversible
Kleene lattices. Given a finite set of variables X, and two terms e, f built from variables and
the above operations, we say that the equation e = f (respectively inequation e ≤ f) is valid
if the corresponding equality (resp. containment) holds universally. A free representation is
a setM together with a map h from terms to elements ofM such that e = f is valid if and
only if h maps e and f to the same element ofM.

It is well known that to any term over this syntax, one can associate a regular language,
and that comparing regular languages is decidable. In fact, the problem of comparing regular
expressions with intersection with respect to regular language equivalence is ExpSpace-
complete [12]. The difference with the work presented here is that we are considering
equations which are stable under substitution. Formally, this means that we do not interpret
the letter a as the singleton language {a}, but rather as a universally quantified variable
ranging over all languages. What is remarkable however is that testing the validity of
equations in reversible Kleene lattices is still an ExpSpace-complete problem, as we show in
this paper. Several fragments of this algebra have been studied:
Kleene algebra (KA) [9]: if we restricts ourselves to the operators of regular expressions (0,

1, +, ·, and _?), then the free representation is the set of regular languages, with the
usual definition of the language of an expression. Testing the validity of equations in KA
is thus a PSpace-complete problem [19, 14].

∗ An extended version of this abstract is available at https://hal.archives-ouvertes.fr/
hal-01474911, [5].

© Paul Brunet;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 66; pp. 66:1–66:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.66
https://hal.archives-ouvertes.fr/hal-01474911
https://hal.archives-ouvertes.fr/hal-01474911
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


66:2 Reversible Kleene Lattices

Kleene algebra with converse (KAC) [3]: if we add to KA the converse operation, then
the free representation consists of regular expressions over a duplicated alphabet, with a
letter a′ denoting the converse of the letter a. The associated decision problem is still
in PSpace.

Identity-free Kleene lattices (KL−) [1]: this algebra stems from the operators 0, +, ·, ∩
and _+, where the latter is the non-zero iteration. Andréka Mikulás and Németi studied
this fragment, and showed that the free representation of this algebra consists of languages
of series-parallel graphs, downward closed with respect to some graph preorder. We
reformulated their results with Pous [6], and introduced a new class of automata, called
Petri automata, able to recognise these languages of graphs. In [6] we provided a decision
procedure to compare these automata, thus yielding an ExpSpace decision procedure for
the equational theory of this algebra. It is in fact ExpSpace-complete, thanks to some
simple adaptation of a result by Fürer [12].

The present work is then an extension of identity-free Kleene lattices, by adding unit and
mirror image. The addition of mirror image is fairly simple, relying mainly on ideas from [3].
However, the seemingly small addition of 1 yields some complications. In fact, in [1, 6] there
is a free representation of Kleene allegories, an algebra over the same signature as reversible
Kleene lattices, but whose intended model is binary relations rather than languages. In this
context, adding 1 means moving from series-parallel graphs to graphs of tree-width 2, which
might have cycles. This is a significant problem for automata based decision procedures.

In the context of languages, adding 1 yields other problems. However, the free repres-
entation we get for reversible Kleene lattices remains more tractable than that of Kleene
allegories. In particular we do not create cycles in series parallel graphs, but rather have to
collect additional information. Let us illustrate the kind of reasoning we develop to study
these algebras with the following inequation: c · (1 ∩ a) ≤ a · c. On the left hand side (LHS),
the term 1 ∩ a appears. This term is either equal to 1 if the empty word belongs to language
a, or 0 otherwise. In the first case, the LHS is equal to c and we have 1 ≤ a, meaning that
c = 1 · c ≤ a · c. In the second case the LHS is equal to 0, which is contained in a · c as well.
The key observation here is that the second case does not really matter: in a term build
out of concatenations, intersections, converse, variables and units, if 0 appears somewhere
then the term will always evaluate to 0 and thus be contained in any other term. The free
representations we develop for union-free terms consist of pairs of a representation of a 1-free
term and a set of language variables which are assumed to contain the empty word. This
allows us to make the reasoning we used above automatic.

Following an approach similar to [6], we construct in Section 2 the free representation of
reversible Kleene lattices, and introducing a new Petri net-based automata model we show
in Section 3 that testing the validity of equations is a decidable problem, and in fact an
ExpSpace-complete one. We conclude and list some perspectives in Section 4.

Basic definitions and notations

For a pair p = 〈x, y〉, we denote by π1 (p) = x the first projection, and by π2 (p) = y the
second projection. The set of functions from a set A to a set B is written A → B, and
the set of partial functions from A to B is written A ⇀ B. The number of elements of a
finite set A is written |A|. The empty word is denoted by ε, and the set of words over the
alphabet Σ is Σ?. If w = x1 . . . xn is a word of length n, w[i, j] is the word xi . . . xj if i 6 j,
and undefined otherwise. If f is a function from some set X to {0, . . . , n}, x, y are elements
of X, and if f (x) 6 f (y), we use the notation wf [x, y] for the word w[f (x) , f (y)].



P. Brunet 66:3

G (a) := a

G (a · b) := a b

G ((a · b) ∩ c) :=
a b

c

G (a · (b ∩ c)) := a b

c

Figure 1 Graphs associated to terms.

a b

a c

a
b

c

H :

G :

Figure 2 Graph homomorphism.

Let X be a finite set of variables, we define Ȧ := A∪{aN | a ∈ A} for every subset A ⊆ X.
The set Ẋ is called the duplicated alphabet, we let α, β range over Ẋ. Expressions over X
are given by the following grammar:

e, f ::= 0 | 1 | x | eN | e+ f | e · f | e ∩ f | e?. (x ∈ X)

The set of expressions over X is written E 〈X〉. The size of an expression e, written |e|, is
its number of symbols, i.e. the number of vertices in its syntax tree. Most of the time, we
will implicitly assume that the converse operator only appears as xN, with x ∈ X. This
is not restrictive, as every expression can be transformed linearly such that this property
holds. Given a second alphabet Σ, an interpretation is a map σ : X → P (Σ?) which
associates to every variable a a language σ (a). This map can be uniquely extended to a
homomorphism σ̂ : E 〈X〉 → P (Σ?) defined inductively:

σ̂ (0) = ∅ σ̂ (1) = {ε} σ̂ (a) = σ (a) σ̂ (eN) = σ̂ (e)N = {xn . . . x1 | x1 . . . xn ∈ σ̂ (e)}

σ̂ (e+ f) = σ̂ (e) ∪ σ̂ (f) σ̂ (e · f) = σ̂ (e) · σ̂ (f) σ̂ (e ∩ f) = σ̂ (e) ∩ σ̂ (f)

σ̂ (e?) = σ̂ (e)? = {w1 . . . wn | wi ∈ σ̂ (e)} .

We say that e = f (respectively e ≤ f) is valid, and write Lang |= e = f (resp. Lang |= e ≤ f),
when for every interpretation σ, we have σ̂ (e) = σ̂ (f) (resp. σ̂ (e) ⊆ σ̂ (f)).

It is interesting to note that as decision problems, the validity of equations and that of
inequations are equivalent. Indeed, the following equivalences hold:

Lang |= e = f ⇔ Lang |= e ≤ f ∧ Lang |= f ≤ e Lang |= e ≤ f ⇔ Lang |= e+ f = f.

2 The free representation of reversible Kleene lattices

2.1 Intuitions
First introduced in the context of relation algebra [2, 11], directed labelled 2-pointed graphs
can be used to describe the algebra of languages over the signature 〈·,∩〉. First, we associate
to every term u over this signature such a graph G (u). See Figure 1 for examples. The
set of such graphs is equipped with a preorder: G is smaller than H if there is a graph
homomorphism from H to G. Such a homomorphism is illustrated in Figure 2.

Already, this gives us a clue as to the (in)equational theory: the inequation u ≤ v is
valid if and only if G (u) is smaller than G (v). Moving to identity-free Kleene lattices, i.e. to

MFCS 2017



66:4 Reversible Kleene Lattices

a b

a c

a c

b

H :

G :

Figure 3 Weak graph morphism: 〈G, {a}〉 J 〈H, ∅〉

the signature 〈0,+, ·,∩,_+〉, we associate to every term e a set G (e) of such graphs, and
then take its downward closure G (e) ↓ with respect to the preorder. This yields the free
representation of this algebra: the equation e = f is valid if and only if G (e) ↓ = G (f) ↓.

To move from identity free Kleene lattices to reversible Kleene lattices, two steps are
necessary: we need to add the converse, and to add the constant 1. The first step is somewhat
straightforward, thanks to results by Ésik et al. [3]: they showed that the free representation
of the algebra of languages with the regular operations together with converse is simply the
set of regular languages over a duplicated alphabet, where we add for every letter a new
letter representing its converse. This approach works well in our setting, by considering
graphs labelled with the duplicated alphabet.

For the second step, we draw our inspiration from Lemma 3.4 in [1], that established
that every term in E 〈X〉 is equivalent to a finite sum of terms of the form (1 ∩ a ∩ b . . .) · e,
where a, b, · · · ∈ X are letters, and 1 does not appear in e. For every interpretation
σ : X → P (Σ?), if there is some variable x ∈ {a, b, . . . } such that ε /∈ σ (x), then the
interpretation of 1 ∩ a ∩ b ∩ . . . is ∅. Otherwise, if the empty word is in the interpretation of
each of the a, b, . . . , then the interpretation is {ε}. If we now look at the interpretation of
the whole term, this means that:

σ̂ ((1 ∩ a ∩ b ∩ . . .) · e) =
®
σ̂ (e) if ∀x ∈ {a, b, . . . } , ε ∈ σ (x) ;
∅ otherwise.

Consider now an inequation f1 ≤ f2, where fi = (1 ∩ ai,1 ∩ · · · ∩ ai,ni
) · ei for i ∈ {1, 2}. If

there exists a variable x ∈ {a2,1, . . . , a2,n2} \ {a1,1, . . . , a1,n1}, we can build an interpretation
σ such that (1) ε /∈ σ (x) and (2) σ̂ (f1) 6= ∅. The first condition ensures that the image of f2
will be ∅, hence the inequation is not valid. Thus for the inequation to be valid, we need
that {a2,1, . . . , a2,n2} ⊆ {a1,1, . . . , a1,n1}. Furthermore, for every σ such that there is an a1,i
whose interpretation does not contain the empty word, the image of f1 will be ∅, which is
trivially contained in the image of the f2. We reach the following equivalence: f1 ≤ f2 is
valid if and only if (1) {a2,1, . . . , a2,n2} ⊆ {a1,1, . . . , a1,n1} and (2) for every interpretation
σ such that the empty word is in the interpretation of every a1,j , we have σ̂ (e1) ⊆ σ̂ (e2).
This means that we need to compare 1-free expressions under the assumption that certain
variables contain the empty word.

This is the intuitions behind what we call weak graphs. Weak graphs are pairs of a graph
and a set of test variables. They are equipped with a preorder relation J, which relates
〈G,A〉 and 〈H,B〉 if B ⊆ A and there is a map ϕ from H to G such that every edge labelled
outside of A is preserved, but edges labelled with tests in A are either preserved or contracted.
Such a map is shown in Figure 3.

We then have theorems similar to those for identity free Kleene lattices and series
parallel graphs, in the sense that for every pair of terms u, v over the syntax 〈·,∩, 1,_N〉,
if we denote by WG (u) ,WG (v) their associated weak graphs, u ≤ v is valid if and only if



P. Brunet 66:5

WG (u) JWG (v). Furthermore, if we associate to every expression e in E 〈X〉 a downwards
closed set of weak graphs JJeK, the equation e = f is valid if and only if JJeK = JJfK.

2.2 Weak terms
We define the following two sets of terms over the alphabet X:
Ground terms: u, v ∈ GT 〈X〉 ::= 1 | a | aN | u · v | u ∩ v.
Simple ground terms: u, v ∈ GT− 〈X〉 ::= a | aN | u · v | u ∩ v.

We call the variables of the term u, and write var (u), the set of variables a ∈ X such that
a or aN appears in u. We call weak terms the elements of the set (GT− 〈X〉 ∪ {1})× P (X),
that is simple ground terms or 1 indexed with a set of test variables. The set of weak terms
is written WT 〈X〉. This set is equipped with two products, denoted by • and ‖, defined by:

1A • 1B := 1A∪B 1A • uB = uA • 1B := uA∪B uA • vB := (u · v)A∪B

1A ‖ 1B := 1A∪B 1A ‖ uB = uA ‖ 1B := 1A∪B∪var(u) uA ‖ vB := (u ∩ v)A∪B .

Given an interpretation σ : X → P (Σ?), the interpretation σ̃ (uA) of the weak term uA
is either ∅ if ∃a ∈ A : ε /∈ σ (a), or σ̂ (u) otherwise. We define a translation τ from ground
terms to weak terms:

τ (u · v) := τ (u) • τ (v) τ (u ∩ v) := τ (u) ‖ τ (v) ∀u ∈ {1} ∪ Ẋ, τ (u) := u∅.

This translation is faithful, in the sense that the following holds:

I Lemma 1. ∀u ∈ GT 〈X〉 ,∀σ : X → P (Σ?) , σ̂ (u) = σ̃ ◦ τ (u) .

Proof (Sketch). The proof relies on the fact that for every pair of weak terms x, y we have:

σ̃ (x • y) = σ̃ (x) · σ̃ (y) σ̃ (x ‖ y) = σ̃ (x) ∩ σ̃ (y) .

We then conclude by a simple induction on u. For concision, the full proof is omitted here. J

We can also define a converse translation κ : WT 〈X〉 → GT 〈X〉 which associate to a
weak term u{a1,...,an} the ground term (1 ∩ a1 ∩ · · · ∩ an) · u. It is immediate to check that
for every term x ∈WT 〈X〉 and every interpretation σ we have σ̃ (x) = σ̂ ◦ κ (x).

2.3 Weak graphs
A graph G in our setting is a tuple 〈VG, EG, iG, oG〉, where VG is a finite set of vertices,
EG ⊆ VG × Ẋ × VG is a set of labelled and directed edges, and iG, oG ∈ VG are two vertices,
called the input and output of the graph. Term graphs must further be series parallel[23],
iG must be the unique source vertex (i.e. with no incoming edge), and oG the unique sink
vertex (i.e. with no outgoing edge). We let G,H range over graphs. Term graphs can be
sequentially composed, by identifying the output of the first graph with the input of the
second one, or composed in parallel, by identifying the inputs of both graphs and identifying
theirs outputs. These two compositions are respectively denoted by ; and |. The set l (G) of
labels of a graph G is defined as the set of letters a ∈ X such that there is an edge in EG
labelled with either a or aN.

The graph of a simple ground term u, written G (u), is a term graph defined inductively:

G (α) :=
α

G (u · v) := G (u) ;G (v) G (u ∩ v) := G (u) | G (v) .

MFCS 2017



66:6 Reversible Kleene Lattices

We define the graph 1 as . Notice that it is not a term graph, as it is not
series parallel. We call weak graph a pair whose left part is either a term graph or 1, and
whose right part is a set of test variables. We denote the weak graph 〈G,A〉 by GA. For
every weak term x we associate a weak graph WG (x) as one would expect:

WG (1A) := 1A WG (uA) := G (u)A .

The weak graph GA is smaller than HB , written GA J HB , if B ⊆ A and there exists a
function ϕ : VH → VG such that ϕ (iH) = iG, ϕ (oH) = oG, and for every edge 〈x, α, y〉 in
EH , either 〈ϕ (x) , α, ϕ (y)〉 ∈ EG or α ∈ Ȧ and ϕ (x) = ϕ (y). The relation J is a preorder.
We will show in the next section that for any two ground terms u and v, the following holds:

Lang |= u ≤ v ⇔WG (τ (u)) JWG (τ (v)) .

The first important lemma is the following. It generalises [1, Lemma 2.5] by including 1
and _N, thus moving from series parallel graphs to weak graphs.

I Lemma 2. ∀u ∈WT 〈X〉, there exists a word wu and an interpretation σu such that for
every v ∈WT 〈X〉, wu ∈ σ̃u (v)⇔WG (u) JWG (v).

Proof. Let WG (u) = 〈〈Vu, Eu, iu, ou〉 , A〉. Let µ : Vu → {1, . . . , |Vu|} be a bijective map
such that 〈x, α, y〉 ∈ Eu ⇒ µ (x) < µ (y)1. In particular, µ (iu) = 1 and µ (ou) = |Vu|. Let
n = 2× (|Vu| − 1), and Σu an alphabet composed of n distinct letters x1, . . . , xn.

We define wu = x1x2 . . . xn, and f : Vu → {0, . . . , n} such that f (x) = 2 (µ (x)− 1).
Notice that f (iu) = 0 and f (ou) = n. We now define σu:

σu (a) :=


{
wfu[x, y]

∣∣ 〈x, a, y〉 ∈ Eu} ∪ ¶wfu[x, y]N
∣∣∣ 〈x, aN, y〉 ∈ Eu© ∪ {ε} if a ∈ A{

wfu[x, y]
∣∣ 〈x, a, y〉 ∈ Eu} ∪ ¶wfu[x, y]N

∣∣∣ 〈x, aN, y〉 ∈ Eu© if a /∈ A

Notice that for every α ∈ Ẋ, ε ∈ σ̂u (α)⇔ α ∈ Ȧ, and that if x 6= y then wfu[x, y] ∈ σ̂u (α) if
and only if 〈x, α, y〉 ∈ Eu.

Let v = tB ∈ WT 〈X〉. First, suppose that ∃a ∈ B \ A. We know that ε /∈ σu (a),
meaning that σ̃u (v) = ∅. We also know by definition of J that WG (u) 6JWG (v). Thus the
equivalence holds, as both sides are false. In the following, we thus assume that B ⊆ A.

If t = 1, then σ̃u (v) = {ε}. This means that wu ∈ σ̃u (v) if and only if wu = ε. By
definition, this is equivalent to n = 0, which is again equivalent to |Vu| = 1 thus to u = 1A.
We conclude this case by noticing that the only graph G such that GA J 1B is 1 itself.

The other case is when t is a simple ground term. Then an induction much like in the
proof of [1, Lemma 2.5] allows to conclude. We omit this part of the proof here. J

The other important lemma is a generalisation of [1, Lemma 2.3]. It will allow us to
factor any interpretation of u through the weak graph WG (u).

I Lemma 3. For every simple ground term u, every interpretation σ : X → P (Σ?), and
every word w ∈ Σ? of length n:

w ∈ σ̂ (u)⇔ ∃ϕ : Vu → {0, . . . , n} :
®
ϕ (iu) = 0 ∧ ϕ (ou) = n

〈x, α, y〉 ∈ Eu ⇒ wϕ[x, y] ∈ σ̂ (α) .

It can be proved by a simple induction on u; for concision, we omit this proof.

1 Remember that both term graphs and 1 are directed acyclic graphs.



P. Brunet 66:7

2.4 Freeness results
We can now establish our first freeness result:

I Theorem 4. ∀x, y ∈ GT 〈X〉, WG (τ (x)) JWG (τ (y))⇔ Lang |= x ≤ y.

Proof. The statement of the theorem is equivalent to the following, thanks in part to
Lemma 1: ∀x, y ∈ WT 〈X〉 ,WG (x) J WG (y) ⇔ ∀Σ,∀σ : X → P (Σ?) , σ̃ (x) ⊆ σ̃ (y). We
let x = uA and y = vB , and proceed to prove both implications.

Suppose WG (x) JWG (y), let σ be an interpretation, and w a word of length n. The
case of 1 being trivial, we consider here the case where both u and v are simple ground
terms. Assume w ∈ σ̃ (x), then we need to prove that w ∈ σ̃ (y). First notice that because
σ̃ (x) 6= ∅ it must be the case that ∀a ∈ A, ε ∈ σ (a). By Lemma 3, we have a function
ϕ : Vu → {0, . . . , n} such that ϕ (iu) = 0, ϕ (ou) = n, and 〈x, α, y〉 ∈ Eu ⇒ wϕ[x, y] ∈ σ̂ (α).
By definition of J, we also have a function ψ : Vv → Vu such that ψ (iv) = iu, ψ (ov) = ou,
and for every edge 〈x, α, y〉 in Ev, either 〈ψ (x) , α, ψ (y)〉 ∈ Eu or α ∈ Ȧ and ψ (x) = ψ (y).
We define Φ = ϕ ◦ ψ. Now we may check that Φ (iv) = ϕ (iu) = 0; Φ (ov) = ϕ (ov) = n; and
if 〈x, α, y〉 ∈ Ev, then either
〈ψ (x) , α, ψ (y)〉 ∈ Eu, which means wΦ[x, y] = wϕ[ψ (x) , ψ (y)] ∈ σ̂ (α);
or α ∈ Ȧ and ψ (x) = ψ (y), which entails wΦ[x, y] = ε ∈ σ̂ (α).

Using Lemma 3 again, we get that w ∈ σ̂ (v). Because B ⊆ A, we also have that σ̃ (y) = σ̂ (v).
Hence σ̃ (x) ⊆ σ̃ (y).

For the converse, we now assume that WG (x) 6JWG (y). Using Lemma 2, we know that
wx ∈ σ̃x (x) and that wx /∈ σ̃x (y). This proves that σ̃x (x) 6⊆ σ̃x (y). J

We define the set of weak terms JeK of an expression e by structural induction:

J0K := ∅ J1K := {1∅} JαK := {α∅} Je+ fK := JeK ∪ JfK

Je · fK := {u • v | u ∈ JeK ∧ v ∈ JfK} Je ∩ fK := {u ‖ v | u ∈ JeK ∧ v ∈ JfK}

Je?K := {u1 • · · · • un | n > 0 ∧ ∀0 6 i 6 n, ui ∈ JeK}

The downward closure JS of a set of weak terms S is the set of weak terms x such that there
exists a weak term y ∈ S satisfying WG (x) JWG (y). The function J is a closure operator.
The set of downward closed sets of weak terms is the free representation of reversible Kleene
lattices:

I Theorem 5. ∀e, f ∈ E 〈X〉: JJeK ⊆ JJfK⇔ Lang |= e ≤ f .

Proof. We use the fact that for every interpretation σ,

σ̂ (e) =
⋃
u∈JeK

σ̃ (u) =
⋃

u∈JJeK

σ̃ (u) .

This can be proved using [1, Lemma 2.1], and Lemmas 1 and 2 and Theorem 4.
Suppose JJeK ⊆ JJfK, and let σ be an interpretation.

σ̂ (e) =
⋃

u∈JJeK

σ̃ (u) ⊆
⋃

u∈JJfK

σ̃ (u) = σ̂ (f) .

For the converse, suppose JJeK 6⊆ JJfK. Because J is a closure operator, this means
JeK 6⊆ JJfK. Let u ∈ JeK \ JJfK. By Lemma 2, we have wu ∈ σ̃u (u) ⊆ σ̂u (e), but because
u /∈ JJfK, for every v ∈ JfK, we have WG (u) 6J WG (v) thus wu /∈ σ̃u (v). Hence wu is not
in the set

⋃
v∈JfK σ̃u (v) = σ̂u (f). J

MFCS 2017



66:8 Reversible Kleene Lattices

1

2

3
4

5
6∅

{a}

∅ ∅

a

b

c

c

a

Figure 4 Weak Petri automaton.

1

2

3
4 4

5
6∅

{a}

∅ ∅

a

b

c

c

a

Figure 5 A run R in the automaton of Figure 4.

a

b
c

c a

AR = {a} .

Figure 6 Trace of R.

3 Decidability and complexity

To decide the equational theory of identity-free Kleene lattices, we used Petri automata[6].
This was a new style of automaton, which was designed to recognise sets of series parallel
graphs. We modify this model slightly to recognise weak graphs, provide a construction
to build automata out of expressions, and an algorithm to decide language containment
(up-to closure by J) for these automata. This algorithm itself is inspired by the simulation
algorithm for simple Petri automata. We conclude this section by showing that the problem
is complete of the class ExpSpace.

3.1 Weak Petri automata
A weak Petri automaton is a Petri automaton [6, 4] whose transitions are labelled with sets
of letters2. Formally, an automaton A over the finite alphabet X is a triple 〈P, T, ι〉 where P
is a finite set of places, ι ∈ P is the initial place, and T ⊆ P (P )× P (X)× P

(
Ẋ × P

)
is a

set of transitions. Each transition t ∈ T is composed of three parts: its input ▹t ⊆ P , its set
of tests Êt ⊆ X, and its output t▹ ⊆ Ẋ × P . It will also be useful to write π2 (t▹) for the set
of output places of t, i.e.

{
p ∈ P

∣∣ ∃α ∈ Ẋ : 〈α, p〉 ∈ t▹
}
. The transition t is called final if

t▹ = ∅, and initial if ▹t = {ι}.
We will add a few constraints on this definition along the way, but we need more

definitions to state them. An example of such an automaton is depicted in Figure 4. The
graphical representation used here draws round vertices for places and rectangular vertices
for transitions, with the incoming and outgoing arcs to and from the transition corresponding
respectively to the inputs and outputs of said transition. The set of tests of a transition is
written inside the rectangle. The initial place is denoted by an unmarked incoming arc.

Runs and reachable states

We define the operational semantics of weak Petri automata. Let us fix for the remainder
of this section an automaton A = 〈P, T, ι〉. A state of this automaton is a set of places.
In a given state S ∈ P (P ), a transition t is enabled if ▹t ⊆ S. In this case, we may

2 In the following, we use the definitions from [4]. They differ slightly from those from [6], despite being
overall equivalent.



P. Brunet 66:9

fire t, leading to a new state S′ = (S \ ▹t) ∪ π2 (t▹). This will be denoted in the following
by S

t−−→A S
′. We extend this notation to sequences of transitions in the natural way:

if S0
t1−−→A S1 and S1

t2;...;tn−−−−−−→A Sn then we write S0
t1;t2;...;tn−−−−−−−→A Sn. In this case we say

that 〈S0, t1; t2; . . . ; tn, Sn〉 is a valid run, or simply run, from S0 to Sn. If S0 = {ι} then
the run is initial and if Sn is empty then it is final. A run which is both initial and final is
called accepting. An accepting run of the automaton from Figure 4 is depicted in Figure 5.
A state S is reachable in A if there is an initial run leading to S.

We may now state the first two constraints we impose on automata: if S is reachable
in A and S

t−−→A S
′, then (S \ ▹t) ∩ π2 (t▹) = ∅, and for each transition t ∈ T , and every

triple 〈p, α, β〉 ∈ P × Ẋ × Ẋ, we have: {〈α, p〉 , 〈β, p〉} ⊆ t▹ ⇒ α = β. These constraints
correspond to the classic Petri net property of safety, also called one-boundedness.
I Remark. These constraints are decidable: the set of transitions is finite, and because
reachable states are subsets of a fixed finite set, there are only finitely many. Thus checking
whether an automaton satisfies these two requirements only entails a finite number of tests.

We introduce some attributes of a run R: its input IR, its output OR, its excess ER, its
tests AR, and its internal labels ΛR. Let R = S0

t1−−→A S1 . . .
tn−−→A Sn be a valid run in

some automaton A. IR is the set of tokens (places) in S0 which are consumed during the
run; ER is the rest of the tokens from S0, those which are not moved; ΛR is the set of labels
appearing in some t▹i such that the associated token is consumed later on; AR is the union of
the sets of tests of R’s transitions; and OR is the set of outputs which are not consumed in
the remainder of the run. Formally:

IR := {p ∈ S0 | ∃i : p ∈ ▹ti} OR :=
¶
〈α, p〉

∣∣∣ ∃i : 〈α, p〉 ∈ t▹i ∧
Ä
∀j > i, p /∈ ▹tj

ä©
AR :=

⋃
i

Êti ER := S0 \ IR ΛR :=
¶
α
∣∣∣ ∃p,∃i < j : 〈α, p〉 ∈ t▹i ∧ p ∈ ▹tj

©
.

In the example run of Figure 5, we have IR = {1}, ER = ∅, OR = ∅, AR = {a},
and ΛR = {a, b, c}.

Traces

The trace language of an automaton can be obtained by extracting from every accepting run
a weak graph, called its trace. Consider an accepting run 〈{ι} , t0; . . . ; tn, ∅〉. The graph of
its trace is constructed by creating a vertex k for each transition tk of the run. We add an
edge 〈k, a, l〉 whenever there is some place q such that 〈a, q〉 ∈ t▹k, and tl is the first transition
after tk in the run with q among its inputs. The set of tests of the trace is AR. The trace of
the run in Figure 5 is presented in Figure 6. The definition we give below is a generalisation
for arbitrary valid runs, which coincides with the informal presentation we just gave on
accepting runs.

Let R = 〈S, t0; . . . ; tn, S′〉 be a run in A. For every k and p ∈ π2 (t▹k) \ S′, we define

ν (k, p) = min {l | l > k and p ∈ ▹tl} .

The trace of R, denoted by G (R), is the pair 〈GR, AR〉, where GR has vertices VR =
{0, . . . , n} ∪ S′ and edges defined by:

ER = {〈k, a, l〉 | 〈a, p〉 ∈ t▹k and (l = p ∧ p ∈ S′) ∨ (l = ν (k, p))} .

The language L (A) of an automaton A is the set of traces of accepting runs of A. In the
following, we will only consider automata such that if 〈G,A〉 ∈ L (A), then either G is either
isomorphic to 1 or is a term graph: that is, if GA is a weak graph.

MFCS 2017



66:10 Reversible Kleene Lattices

3.2 From expressions to automata
In this section, we show how to build inductively from an expression e an automaton Ae
whose language is L (Ae) =WG (JeK), following [4]. For 0, 1 and atoms, we give a graphical
description of the automata:

A0 := 0 A1 := 0 ∅ Aα := 10 ∅∅
α

For the inductive cases, let Ae = 〈Pe, Te, ιe〉 and Af = 〈Pf , Tf , ιf 〉, and suppose Pe ∩ Pf = ∅.
Intuitively, the automaton for e+ f is the union of Ae and Af , where we copy the initial

transitions of Af so that they start from ιe instead of ιf . Formally:

Ae+f = 〈Pe ∪ Pf , Te ∪ Tf ∪ T, ιe〉 , where T =
¶¨
{ιe} ,Êt, t▹∂ ∣∣∣ ¨{ιf} ,Êt, t▹∂ ∈ Tf© .

For the product, we want an automaton Ae·f such that L (Ae·f ) = L (Ae) • L (Af ). This
property is satisfied by the automaton 〈Pe ∪ Pf , T+

e ∪ Tf ∪ T, ιe〉 where T+
e is the set of

non-final transitions in Te, and T = {〈▹t, A ∪B, t▹〉 | 〈▹t, A, ∅〉 ∈ Te ∧ 〈{ιf} , B, t▹〉 ∈ Tf}.
Instead of defining directly an automaton for e?, we give an automaton for the non-zero it-

eration e+, and then define Ae? to be A1∪e+ . Using the last two constructs, the automaton Ae+

is easy to define: Ae+ = 〈Pe, Te ∪ {〈▹t, A ∪B, t▹〉 | 〈▹t, A, ∅〉 ∈ Te ∧ 〈{ιe} , B, t▹〉 ∈ Te} , ιe〉.
Finally, we then define Ae∩f to be the automaton 〈Pe ∪ Pf ∪ {ι} , T1 ∪ T2 ∪ T3 ∪ T4, ι〉,

where ι is a fresh place, and:
T1 is the set of non-initial, non-final transitions of Te and Tf ;
T2 is the set of triples

¨
{ι} ,Át1 ∪ Át2, t▹1 ∪ t▹2∂ such that t1 (resp. t2) is initial but not final

in Te (resp. Tf );
T3 is the set of triples

¨
▹t1 ∪ ▹t2,Át1 ∪ Át2, ∅∂ such that t1 (resp. t2) is final but not initial

in Te (resp. Tf );
T4 is the set of triples 〈{ι} , A, ∅〉 such that 1A ∈ Je ∩ fK.

This definition is effective, as the set of A ⊆ X such that 1A ∈ JeK can be computed in
space O

(
|e| × 2|X|

)
. Using the proofs for Petri automata as a guideline, it is a simple exercise

to check that the correctness of the construction, that is L (Ae) =WG (JeK).

3.3 Comparing automata
The algorithm to compare weak Petri automata relies on the notion of simulation. Similarly
to many finite transition systems, the language of an automaton A is included in that of the
automaton B if B can simulate A.

I Definition 6 (Simulation). Let A1 = 〈P1, T1, ι1〉 and A2 = 〈P2, T2, ι2〉 be two automata, we
say that A2 can simulate A1 if there exists a function 4 associating to every subset of X a
set of triples from P (P1)× P (X)× P (P2 ⇀ P1), such that: (We denote the fact that the
triple 〈S,B,E〉 is contained in the image by 4 of the set A by S 4BA E.)
(correspondence) if S 4BA E and η ∈ E then range (η) ⊆ S;
(initialisation) {ι1} 4∅A {[ι2 7→ ι1]};
(totality) if ∅ 4AA E then ∃η ∈ E : dom (η) = ∅;
(progress) if S 4BA E and S t−−→A1 S

′, then S′ 4B∪ÊtA E′, where E′ is the set of all η′ such
that there is a map η in E, and a run R in A2 from dom (η) to dom (η′) s.t.:

IR = {p | η (p) ∈ ▹t} ΛR ∪AR ⊆ Ȧ ∀ 〈α, p〉 ∈ OR, 〈α, η′ (p)〉 ∈ t▹

∀p ∈ ER, η (p) = η′ (p) .



P. Brunet 66:11

I Lemma 7. L (A1) ⊆ JL (A2) if and only if A2 can simulate A1.

Proof. We start by showing the right to left direction: suppose that A2 can simulate A1, as
witnessed by the function 4, and consider an accepting run R = 〈S0, t1; . . . ; tn;Sn〉 in A1:

S0 = {ι1} ∀1 6 i 6 n, Si−1
ti−−→A1 Si Sn = ∅.

We write Bi =
⋃
j<i
Átj . Using the relations 4Bi

AR
, we can find a sequence of Ei (for 0 6 i 6 n)

such that Si 4Bi

AR
Ei, E0 = {[ι2 7→ ι1]}, and there is some ηn ∈ En which has an empty

domain. Backtracking from this ηn using the progress condition allows us to find a sequence
of maps (ηi)06i6n, with domains (Ti)06i6n such that there are valid runs Ri in A2 from Ti−1
to Ti, and satisfying:

T0 = {ι2} Tn = ∅ IRi
= {p | ηi−1 (p) ∈ ▹ti} ΛRi

∪ARi
⊆ ȦR

∀ 〈α, p〉 ∈ ORi
, 〈α, ηi (p)〉 ∈ t▹i ∀p ∈ ERi

, ηi−1 (p) = ηi (p) .

We now build the run R′ by concatenating the Ris. We obtain an accepting run in A2, whose
set of tests is

⋃
iARi

⊆ AR. To any transition t′j in R′, the function ϕ associates the index i of
the run Ri from which this transition was extracted. The function ϕ witnesses G (R) J G (R′).

For the converse direction, we prove an intermediary result. Let R = 〈S0, t1; . . . ; tn, Sn〉
be an accepting run in A1 and R′ be an accepting run from A2 such that G (R) J G (R′),
with ϕ as the witnessing function. Notice that if the transition t′i is a cause of t′i+1 in R′
(i.e. they cannot be exchanged without changing the trace), either ϕ (i) = ϕ (i+ 1), or tϕ(i)
is a cause of tϕ(i+1) in R, thus ϕ (i) < ϕ (i+ 1). This means that we may permute transitions
in R′ without changing the trace, to obtain a run R′′ such that i < j ⇒ ϕ (i) 6 ϕ (j).

Now, the sets of transitions sharing the same value ϕ (i) are contiguous, meaning that
R′′ can be split as the sequence of sub-runs R1; . . . ;Rn, such that ϕ maps every transitions
in Ri to i. (It may be the case that some of these runs are empty.) As G (R) J G (R′′), we
know that AR′′ ⊆ AR, which means that ∀i, ARi ⊆ AR. Inside the run Ri, we know that the
internal edges of the graph of Ri are labelled with letters from AR, as both their extremities
are mapped to i. This means ΛRi ⊆ ȦR.

We know define the ηi. First, we set η0 (ι2) = ι1, and ∀p ∈ ERi
, ηi−1 (p) = ηi (p). If on

the other hand 〈α, p〉 ∈ ORi
, let k be the index in R′′ corresponding to the output state

of Ri, and j = νR′′ (p, k). As j cannot be in Ri, we know ϕ (j) > ϕ (k). Thus, in the graph
of R there is an edge 〈ϕ (k) , α, ϕ (j)〉. By definition of the graph of a run, there must be a
pair 〈α, q〉 ∈ t▹ϕ(k) such that νR (q, ϕ (k)) = ϕ (j). Then this q is a suitable choice for ηi (p).

It is then a simple matter of unfolding the definitions to check that:

IRi = {p | ηi−1 (p) ∈ ▹ti} ∀ 〈α, p〉 ∈ ORi , 〈α, ηi (p)〉 ∈ t▹i ∀p ∈ ERi , ηi−1 (p) = ηi (p) .

This means that whenever we have R and R′ accepting runs from respectively A1 and A2
s.t. G (R) J G (R′), we can find a sequence of ηi satisfying all four conditions of a simulation.
Thus, if L (A1) ⊆ JL (A2), for every reachable state S of A1, we set 4BA to relate S to the
set of all maps η such that there is an index i, an accepting run R in A1, and an accepting
run R′ of A2 satisfying (1) AR = A, (2)

⋃
j<i
Átj = B, (3) S = Si, (4) G (R) J G (R′) and

(5) the construction we just provided produces ηi = η. J

3.4 Complexity
I Corollary 8. The theory of reversible Kleene lattices is ExpSpace-complete.

MFCS 2017



66:12 Reversible Kleene Lattices

Proof. The equational theory of identity-free Kleene lattices being already ExpSpace-
complete [8, Proposition 10.2], we know the problem at hand to be ExpSpace-hard.

Let e, f ∈ E 〈X〉, we ask whether Lang |= e ≤ f . By Theorem 5, this reduces to testing
if JJeK ⊆ JJfK, which is equivalent to JeK ⊆ JJfK by the properties of the closure operator.
Using the construction in Section 3.2, this is amounts to checking if L (Ae) ⊆ JL (Af ). This
later question can be decided by looking for a simulation function, thanks to Lemma 7.

We now inspect the space complexity of this method. Let n,m, x be respectively the size
of e, the size of f and the size of the alphabet. By analysing each step in Section 3.2, we get
that the number of places of Ae is less than 2×n (similarly for Af ). The number of transitions
is harder to work out from the construction, but because T ⊆ P (P )×P (X)×P

(
Ẋ × P

)
,

we know it is bounded by 22n+x+2x×2n. Using Savitch’s theorem [22], we only need to show
that there is a non-deterministic semi-algorithm to refute the existence of a simulation, which
uses only exponential space in n,m and x. Here is such a procedure:
1. choose A ⊆ X;
2. start with S = {ι1}, B = ∅ and E = {[ι2 7→ ι1]};
3. if 〈S,B〉 = 〈∅, A〉 and E does not contain a map η whose domain is empty return False;
4. choose t ∈ T1 such that ▹t ⊆ π1 (S), fire t from S, and update B as Êt ∪B;
5. update E according to the progress condition in Definition 6;
6. go to step 3.
All of these computations can be performed using exponential space. For instance, S, being a
pair of a set of places in Ae and a set of letters, can be stored in space 2n log (2n)× x log (x),
and E only needs space (2n+ 1)2m × 2m log (2n+ 1). J

4 Conclusion

We showed that the free representation of reversible Kleene lattices consists of downward
closed sets of weak terms, or equivalently of downward closed sets of weak graphs. By
considering a suitable variation of Petri automata, and producing an algorithm to decide
language containment of these automata, we showed that testing the validity of equations in
reversible Kleene lattices is an ExpSpace-complete problem.

The results we obtained here could be naturally extended in a number of ways.
We would like to add to our model some features of programming languages which have
been studied independently, among which tests [16], and nominal structures [13, 18, 17, 7].
Although Kleene algebra is known not to be finitely axiomatisable [20], several authors
have proposed semi-axiomatisations [15, 9, 21]. A complete axiomatisation of Kleene
algebra with converse, relative to an axiomatisation of KA, is also known [10]. As far
as we know, no axiomatisation of reversible Kleene lattices exists. We believe the free
representation we defined in Section 2 could help establishing such an axiomatisation.
Since we provide here an algorithm, it would be interesting to implement it. Such a
procedure could fit in very well in a proof assistant such as Coq.

Although the weak Petri automata introduced in this paper were just a means to an end,
we are wondering whether this might be an interesting model of computation in itself. We
are confident that we could reuse to technology of boxes introduced in [8, 4] to get a Kleene
theorem for these automata. Their semantics could also be reformulated with transitions
labelled with weights chosen from a finite lattice (instead of sets of letters from the alphabet).



P. Brunet 66:13

References
1 Hajnal Andréka, Szabolcs Mikulás, and István Németi. The equational theory of Kleene

lattices. TCS, 412(52):7099–7108, 2011. doi:10.1016/j.tcs.2011.09.024.
2 Hajnal Andréka and Dmitry A. Bredikhin. The equational theory of union-free algebras of

relations. Alg. Univ., 33(4):516–532, 1995. doi:10.1007/BF01225472.
3 Stephen L. Bloom, Zoltán Ésik, and Gheorghe Stefanescu. Notes on equational theories of

relations. Alg. Univ., 33(1):98–126, 1995. doi:10.1007/BF01190768.
4 Paul Brunet. Algebras of Relations: From algorithms to formal proofs. PhD thesis, Uni-

versité de Lyon, 2016. URL: https://tel.archives-ouvertes.fr/tel-01455083v1.
5 Paul Brunet. Reversible Kleene lattices. extended abstract, 2017. URL: https://hal.

archives-ouvertes.fr/hal-01474911.
6 Paul Brunet and Damien Pous. Petri Automata for Kleene Allegories. In Proc. LICS, pages

68–79, July 2015. doi:10.1109/LICS.2015.17.
7 Paul Brunet and Damien Pous. A formal exploration of Nominal Kleene Algebra. In Proc.

MFCS, 2016. doi:10.4230/LIPIcs.MFCS.2016.22.
8 Paul Brunet and Damien Pous. Petri automata. Logical Methods in Computer Science,

2017. submitted. arXiv:1702.01804.
9 John H. Conway. Regular algebra and finite machines. Chapman and Hall Mathematics

Series, 1971.
10 Zoltán Ésik and Laszlo Bernátsky. Equational properties of Kleene algebras of relations

with conversion. TCS, 137(2):237–251, 1995. doi:10.1016/0304-3975(94)00041-G.
11 Peter J. Freyd and Andre Scedrov. Categories, Allegories. NH, 1990.
12 Martin Fürer. The complexity of the inequivalence problem for regular expressions with

intersection. In Proc. ICALP, pages 234–245, 1980. doi:10.1007/3-540-10003-2_74.
13 Murdoch J. Gabbay and Vincenzo Ciancia. Freshness and name-restriction in sets of

traces with names. In Proc. FoSSaCS, pages 365–380. Springer, 2011. doi:10.1007/
978-3-642-19805-2_25.

14 Stephen C. Kleene. Representation of Events in Nerve Nets and Finite Automata. Memor-
andum. Rand Corporation, 1951.

15 Dexter Kozen. A completeness theorem for Kleene Algebras and the algebra of regular
events. In Proc. LICS, pages 214–225. IEEE Computer Society, 1991. doi:10.1109/LICS.
1991.151646.

16 Dexter Kozen. Kleene algebra with tests. Transactions on Programming Languages and
Systems, 19(3):427–443, 1997. doi:10.1145/256167.256195.

17 Dexter Kozen, Konstantinos Mamouras, Daniela Petrisan, and Alexandra Silva. Nom-
inal Kleene coalgebra. In Proc. ICALP, pages 286–298. Springer, 2015. doi:10.1007/
978-3-662-47666-6_23.

18 Dexter Kozen, Konstantinos Mamouras, and Alexandra Silva. Completeness and in-
completeness in nominal Kleene algebra. In Proc. RAMiCS, pages 51–66, 2015. doi:
10.1007/978-3-319-24704-5_4.

19 Albert R. Meyer and Larry J. Stockmeyer. The equivalence problem for regular expressions
with squaring requires exponential space. In Proc. SWAT, pages 125–129, 1972. doi:
10.1109/SWAT.1972.29.

20 Volodimir N. Redko. On defining relations for the algebra of regular events. Ukrainskii
Matematicheskii Zhurnal, pages 120–126, 1964.

21 Arto Salomaa. Two complete axiom systems for the algebra of regular events. J. ACM,
13(1):158–169, 1966. doi:10.1145/321312.321326.

22 Walter J. Savitch. Relationships between nondeterministic and deterministic tape com-
plexities. Journal of computer and system sciences, 4(2):177–192, 1970. doi:10.1016/
S0022-0000(70)80006-X.

MFCS 2017

http://dx.doi.org/10.1016/j.tcs.2011.09.024
http://dx.doi.org/10.1007/BF01225472
http://dx.doi.org/10.1007/BF01190768
https://tel.archives-ouvertes.fr/tel-01455083v1
https://hal.archives-ouvertes.fr/hal-01474911
https://hal.archives-ouvertes.fr/hal-01474911
http://dx.doi.org/10.1109/LICS.2015.17
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.22
http://arxiv.org/abs/1702.01804
http://dx.doi.org/10.1016/0304-3975(94)00041-G
http://dx.doi.org/10.1007/3-540-10003-2_74
http://dx.doi.org/10.1007/978-3-642-19805-2_25
http://dx.doi.org/10.1007/978-3-642-19805-2_25
http://dx.doi.org/10.1109/LICS.1991.151646
http://dx.doi.org/10.1109/LICS.1991.151646
http://dx.doi.org/10.1145/256167.256195
http://dx.doi.org/10.1007/978-3-662-47666-6_23
http://dx.doi.org/10.1007/978-3-662-47666-6_23
http://dx.doi.org/10.1007/978-3-319-24704-5_4
http://dx.doi.org/10.1007/978-3-319-24704-5_4
http://dx.doi.org/10.1109/SWAT.1972.29
http://dx.doi.org/10.1109/SWAT.1972.29
http://dx.doi.org/10.1145/321312.321326
http://dx.doi.org/10.1016/S0022-0000(70)80006-X
http://dx.doi.org/10.1016/S0022-0000(70)80006-X


66:14 Reversible Kleene Lattices

23 Jacobo Valdes, Robert E. Tarjan, and Eugene L. Lawler. The recognition of series parallel
digraphs. In Proc. STOC, STOC ’79, pages 1–12. ACM, 1979. doi:10.1145/800135.
804393.

http://dx.doi.org/10.1145/800135.804393
http://dx.doi.org/10.1145/800135.804393


Lossy Kernels for Hitting Subgraphs∗

Eduard Eiben1, Danny Hermelin2, and M. S. Ramanujan3

1 Algorithms and Complexity Group, TU Wien, Vienna, Austria
eiben@ac.tuwien.ac.at

2 Industrial Engineering and Management, Ben Gurion University, Be’er Scheva,
Israel
hermelin@bgu.ac.il

3 Algorithms and Complexity Group, TU Wien, Vienna, Austria
ramanujan@ac.tuwien.ac.at

Abstract
In this paper, we study the Connected H-hitting Set and Dominating Set problems from
the perspective of approximate kernelization, a framework recently introduced by Lokshtanov et
al. [STOC 2017]. For the Connected H-hitting set problem, we obtain an α-approximate
kernel for every α > 1 and complement it with a lower bound for the natural weighted version. We
then perform a refined analysis of the tradeoff between the approximation factor and kernel size
for the Dominating Set problem on d-degenerate graphs, and provide an interpolation of ap-
proximate kernels between the known d2-approximate kernel of constant size and 1-approximate
kernel of size kO(d2).

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity, G.2.1
Combinatorics

Keywords and phrases parameterized algorithms, lossy kernelization, graph theory

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.67

1 Introduction

Polynomial time preprocessing is one of the widely used methods to tackle NP-hardness
in practice and the area of kernelization has been extremely successful in laying down a
mathematical framework for the design and rigorous analysis of preprocessing algorithms for
decision problems. We refer the reader to the survey articles by Kratsch [17] or Lokshtanov
et al. [18] for recent developments, or the textbooks [6, 11] for an introduction to the field.
The central notion in kernelization is that of a kernel, which is a preprocessing algorithm
that runs in polynomial time and transforms a ‘large’ instance of a decision problem into a
significantly smaller, but equivalent instance.

Unfortunately, the existing notion of kernels, having been built around decision problems,
does not combine well with approximation algorithms and heuristics. In particular, in order
for kernels to be useful, one is required to solve the preprocessed instance exactly. However,
this may not always be possible and the existing theory of kernelization says nothing about
being able to infer useful information from a good approximate solution for the preprocessed
instance. Lokshtanov et al. [19] attempted to address this limitation by introducing the notion
of α-approximate kernels. Informally speaking, an α-approximate kernel is a polynomial time
algorithm that given an instance (I, k) outputs an instance (I ′, k′) such that |I ′|+ k′ ≤ g(k)

∗ This work was partially supported by the Austrian Science Fund (FWF, projects P26696 and W1255-
N23).

© Eduard Eiben, Danny Hermelin, and M. S. Ramanujan;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 67; pp. 67:1–67:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.67
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


67:2 Lossy Kernels for Hitting Subgraphs

for some computable function g and any c-approximate solution to the instance (I ′, k′) can
be turned in polynomial time into a (c · α)-approximate solution to the original instance
(I, k). The function g is ideally polynomially bounded, in which case we call this algorithm,
an α-approximate polynomial kernel. We refer the reader to the section on Preliminaries for
a formal definition of the terms involved.

In their work, Lokshtanov et al. considered several problems which are known to not
admit a polynomial kernel and showed that they do have an α-approximate polynomial
kernel for every fixed α > 1. They also proposed a machinery for proving lower bounds and
managed to rule out even α-approximate kernels for some basic problems such as Longest
Path and Set Cover under standard complexity theoretic hypotheses.

One of the fundamental classes of problems known to exclude polynomial kernels is the
class of ‘subgraph hitting’ problems with a connectivity constraint. It is well-known that
placing connectivity constraints on certain subgraph hitting problems can have a dramatic
effect on their amenability to preprocessing. A case in point is the classic Vertex Cover
problem. This problem is known to admit a kernel with O(k) vertices [6]. However, the
Connected Vertex Cover problem is among the earliest problems to be shown to exclude
a polynomial kernel [10] and Lokshtanov et al. [19] showed that this problem admits an
α-approximate polynomial kernel for every α > 1. Their result motivates the need to obtain a
finer understanding of the role played by connectivity constraints in relation to preprocessing
for other subgraph hitting problems. Therefore, a systematic study of the approximate
kernelization of subgraph hitting problems with connectivity constraints is a natural strategy
towards achieving this goal.

Our Contributions. In this paper, we study the Connected H-Hitting Set (Conn-H-
HS) problem where the input is a graph G and an integer k and the objective is to check
whether there is a set S of at most k vertices such that G[S] is connected and G− S has no
vertex-induced subgraph isomorphic to a graph in the fixed finite family of graphs, H. It is
easy to see that this problem generalizes Connected Vertex Cover (set H = {K2}) and
hence it is unlikely to have a polynomial kernel. As a result, we consider the approximate
kernelization complexity of the optimization version of this problem and provide two results;
one positive and one negative. Our positive result generalizes the approximate kernel given by
Lokshtanov et al. for the Connected Vertex Cover problem and shows that Conn-H-HS
also admits an α-approximate polynomial kernel for every constant α > 1 and fixed H.

I Theorem 1. For every fixed ε > 0, there is a (1 + ε)-approximate polynomial kernel for
Connected H-hitting set.

Our negative result shows that this ability to obtain approximate kernels vanishes in the
presence of weights, even when the domain of the weight function is highly restricted. To
be precise, we study the Weighted Conn-H-HS problem where the input also includes a
weight function on the vertices and the objective now is to minimize the total weight of a
connected set of vertices hitting all vertex-induced subgraphs of G isomorphic to a graph in
H. We show that unless NP ⊆ coNP/Poly, this problem has no α-approximate polynomial
kernel for any constant α even when the domain of the weight function is restricted to {0, 1}.
The formal statement of this theorem requires certain terms which are as yet undefined and
we refer the reader to Section 3.2 for the statement.

In the second part of the paper, we initiate the fine-grained analysis of the accuracy-size
tradeoff encountered when designing approximate kernels for the Dominating Set problem
on the class of d-degenerate graphs. The Dominating Set problem is one of the most



E. Eiben, D. Hermelin, and M. S.Ramanujan 67:3

fundamental problems in algorithmic graph theory. In the decision version of this problem,
the input is a graph G, an integer k and the objective is to decide whether G has a set S
of at most k vertices which contains at least one neighbor of every vertex in V (G) \ S. It
is well-known that Dominating Set is W[2]-hard [6], implying that it cannot have any
kernel under standard complexity theoretic hypotheses. This fact motivated the study of
preprocessing for this basic problem on restricted graph classes, leading to a long and rich
literature [1, 2, 3, 7, 8, 12, 15, 20].

One of the more general graph classes on which Dominating Set is known to admit a
polynomial kernel, is the class of d-degenerate graphs, which contains several well-studied
graph classes such as planar graphs, graphs of bounded treewidth, graphs of bounded
arboricity, and graphs excluding a fixed (topological) minor. Alon and Gutner [2] initiated
the study of the parameterized complexity of Dominating Set on d-degenerate graphs
and Philip et al. [20] obtained a kernel of size kO(d2), which was the first polynomial kernel
for this problem on d-degenerate graphs. In fact, it follows from their proofs that this
kernel is in fact a 1-approximate kernel. At the other extreme, it follows from [16] that
there is a d2-approximate kernel of constant size. These two results motivate the natural
question: What is the precise tradeoff between accuracy and kernel size for Dominating Set
on d-degenerate graphs? We give a sequence of approximate kernels for this problem which
lie ‘between’ the two extremes and provide an interesting interpolation of kernels.

I Theorem 2. Dominating Set on d-degenerate graphs has a ddρe-approximate kernel of
size kO(dρ), for any fixed integer ρ ∈ {1, . . . , d}.

All approximate kernels obtained thus far (including that in the first part of our paper)
are focussed on problems which are known to not admit polynomial kernels. Our work on
Dominating Set on d-degenerate graphs thus initiates and motivates the fine-grained study
of approximate kernelization even for problems which have polynomial kernels. Therefore,
we believe that our result opens up a new line of investigation in the topic of approximate
kernelization.

2 Preliminaries

The notion of kernels is based on parameterized problems from the area of Parameterized
Complexity [6, 11]. Inputs of a parameterized problem are of the form (I, k) where I is a
bitstring encoding an instance and k is an integer called the parameter, and every input is
either a yes instance or a no instance. A kernel is a polynomial time algorithm that given an
instance (I, k) of a parameterized problem outputs an instance (I ′, k′) of the same problem
such that |I ′| + k′ ≤ g(k) for some computable function g and (I, k) is a yes instance if
and only if (I ′, k′) is a yes instance. We now recall the main definitions from [19] regarding
parameterized optimization problems and approximate kernels.

I Definition 3 ([19]). A parameterized optimization (minimization or maximization) problem
Π is a computable function Π : Σ∗ × N× Σ∗ → R ∪ {±∞}.

The instances of a parameterized optimization problem Π are pairs (I, k) ∈ Σ∗ × N, and a
solution to (I, k) is simply a string s ∈ Σ∗, such that |s| ≤ |I|+ k. The value of the solution
s is Π(I, k, s). Since the problems we deal with in this paper are all minimization problems,
we state some of the definitions only in terms of minimization problems when the definition
for maximization problems is analogous.

MFCS 2017



67:4 Lossy Kernels for Hitting Subgraphs

I Definition 4 ([19]). For a parameterized minimization problem Π, the optimum value of
an instance (I, k) ∈ Σ∗ × N is OPTΠ(I, k) = min s∈Σ∗

|s|≤|I|+k
Π(I, k, s).

I Definition 5 ([19]). Let α ≥ 1 be a real number and Π be a parameterized minimization
problem. An α-approximate polynomial time preprocessing algorithm A for Π is a pair of
polynomial time algorithms. The first one is called the reduction algorithm, and computes a
map RA : Σ∗ ×N→ Σ∗ ×N. Given as input an instance (I, k) of Π the reduction algorithm
outputs another instance (I ′, k′) = RA(I, k).

The second algorithm is called the solution lifting algorithm. This algorithm takes as input
an instance (I, k) ∈ Σ∗ ×N of Π, the output instance (I ′, k′) of the reduction algorithm, and
a solution s′ to the instance (I ′, k′). The solution lifting algorithm works in time polynomial
in |I|,k,|I ′|,k′ and s′, and outputs a solution s to (I, k) such that the following holds.

Π(I, k, s)
OPT (I, k) ≤ α ·

Π(I ′, k′, s′)
OPT (I ′, k′) .

The size of a polynomial time preprocessing algorithm A is a function sizeA : N → N
defined as follows.

sizeA(k) = sup{|I ′|+ k′ : (I ′, k′) = RA(I, k), I ∈ Σ∗}.

I Definition 6 ([19]). An α-approximate kernelization (or α-approximate kernel) for a
parameterized optimization problem Π, and real α ≥ 1, is an α-approximate polynomial time
preprocessing algorithm A for Π such that sizeA is upper bounded by a computable function
g : N→ N. We say that A is an α-approximate polynomial kernelization if g is a polynomial
function.

I Definition 7 ([19]). Let α ≥ 1 be a real number, and Π be a parameterized minimization
problem. An α-approximate polynomial time preprocessing algorithm for Π is said to be
strict if, for every instance (I, k), reduced instance (I ′, k′) = RA(I, k) and solution s′ to
(I ′, k′), the solution s to (I, k) output by the solution lifting algorithm when given s′ as input
satisfies the following.

Π(I, k, s)
OPT (I, k) ≤ max

{
Π(I ′, k′, s′)
OPT (I ′, k′) , α

}
The notion of strictness in the above direction allows one to ‘chain’ multiple α-approximate

preprocessing algorithms to obtain a single α-approximate preprocessing algorithm.

I Definition 8. A reduction rule is simply the reduction algorithm of a polynomial time
preprocessing algorithm. The reduction rule applies if the output instance of the reduction
algorithm is not the same as the input instance.

I Definition 9 ([19]). A reduction rule is α-safe for Π if it is the reduction algorithm of a
strict α-approximate polynomial time preprocessing algorithm for Π.

The notion of 1-safe reduction rules is crucial because numerous reduction rules used in
the domain of (standard) kernelization can be either easily, or with very little effort, proved
to be 1-safe. Therefore, when designing α-approximate kernels, it is a useful strategy to
examine existing 1-safe reduction rules and either utilize them directly or design a ‘relaxed’
version which one can then prove to be α-safe for some α > 1.



E. Eiben, D. Hermelin, and M. S.Ramanujan 67:5

I Definition 10 ([19]). Let α ≥ 1 be a real number. Let Π and Π′ be two parameterized
minimization problems. An α-approximate polynomial parameter transformation (α-appt for
short) A from Π to Π′ is a pair of polynomial time algorithms, called reduction algorithm RA
and solution lifting algorithm. Given as input an instance (I, k) of Π the reduction algorithm
outputs an instance (I ′, k′) of Π′ such that k′ = kO(1). The solution lifting algorithm takes
as input an instance (I, k) of Π, the output instance (I ′, k′) = RA(I, k) of Π′, and a solution
s′ to the instance I ′ and outputs a solution s to (I, k) such that

Π(I, k, s)
OPTΠ(I, k) ≤ α ·

Π′(I ′, k′, s′)
OPTΠ′(I ′, k′)

.

I Definition 11 ([19]). Let α ≥ 1 be a real number. Let Π and Π′ be two parameterized
minimization problems. An α-approximate compression from Π to Π′ is an α-appt A from Π
to Π′ such that sizeA(k) = sup{|I ′|+ k′ : (I ′, k′) = RA(I, k), I ∈ Σ∗}, is upper bounded by a
computable function g : N→ N, where RA is the reduction algorithm in A. We say that A
is an α-approximate polynomial compression if g is a polynomial function. When we simply
say that Π has an α-approximate compression, we mean that there is an α-approximate
compression from Π to some language Π′.
I Observation 12. Let α, β ≥ 1 be fixed real numbers and let Π and Π′ be parameterized
minimization problems. If there is an α-appt from Π to Π′ and Π′ has a β-approximate
polynomial compression, then Π has an (α · β)-approximate polynomial compression.

Steiner trees, set systems and degenerate graphs. Given a graph G, a set R ⊆ V (G)
whose vertices are called terminals, and a weight function w : E(G) → N, a Steiner
tree is a subtree T of G such that R ⊆ V (T ), and the cost of a tree T is defined as
w(T ) =

∑
e∈E(T ) w(e). A k-component is a tree with at most k leaves which all coincide

with a subset of terminals. A k-restricted Steiner tree T is a collection of k-components,
such that the union of these components is a Steiner tree T . The cost of T is the sum of the
costs of all the k-components in T .

Let F be a set system over the universe U . An element e ∈ U is said to hit a set A ∈ F ,
if e ∈ A. Moreover, we say that a set S ⊆ U hits a set A ∈ F if S ∩A 6= ∅. A set S ⊆ U is
a hitting set of F if it hits every set in F . We say that S ⊆ F is a set cover of (F ,U), if⋃
S∈S S = U . Note that if there exists a set cover of (F ,U), then there is one of size at most
|U|, as every vertex is in at least one set. Moreover, one can find a set cover of size at most
|U| by greedily adding, in every step, a new set that covers an as yet uncovered vertex.

Let H be a fixed finite set of finite graphs. We denote by dH the size of a largest
graph in H. For a graph G, we denote by FH(G) the following set system defined over
the universe V (G): FH(G) = {S ⊆ V (G) | G[S] is isomorphic to some H ∈ H}. That is,
FH(G) comprises precisely those subsets of V (G) which induce a subgraph of G isomorphic
to a graph in H. Observe that for a fixed family H and a graph G, the set FH(G) can be
computed in time O(|V (G)|dH). A set S ⊆ V (G) is called a H-hitting set of G if it is a
hitting set for the family FH(G). A graph G is said to be d-degenerate if every subgraph of
G has a vertex of degree at most d. It is well-known that a d-degenerate graph G has less
than d|V (G)| edges.

3 Approximate kernels for Connected H-hitting set

In this section, we present our positive and negative results on the Connected H-hitting
set problem and its weighted variant. In what follows, we fix a family H and assume without
loss of generality that for any distinct pair of graphs in H, neither is a subgraph of the other.

MFCS 2017



67:6 Lossy Kernels for Hitting Subgraphs

3.1 The α-approximate kernel for Connected H-hitting set
We begin by defining the parameterized optimization version of Conn-H-HS. This is a
minimization problem, where the optimization function is CHS : Σ∗ × N× Σ∗ → R ∪ {±∞}
and defined as follows.

CHS(G, k, S) =
{

∞ if S is not a connected H-hitting set in G,
min{|S|, k + 1} otherwise.

For the rest of Section 3.1, we define OPT(G, k) = minS⊆V (G) CHS(G, k, S).
We split our approximate kernel for Conn-H-HS into two steps. Let d denote the size of

the largest graph in H. First we compute a set D of size at most kO(d) such that if a set S
of size at most k is an H-hitting set in G[D], then S is an H-hitting set in G. In the second
step, we closely follow the idea of the approximate kernel for Steiner Tree (see [5, 19])
to bound the number of vertices outside D that we need to preserve to guarantee a ‘good’
connected set that hits all subgraphs in G[D] isomorphic to a graph in H.

Our starting point is the known kernel of size kO(d) for the (not necessarily connected)
H-Hitting Set problem [6]. This kernel uses the sunflower reduction rule which is based
on the classic sunflower lemma [14]. The sunflower reduction rule will also be a critical part
of our approximate kernel and we begin by recalling the formal definition of sunflowers. Let
F be a set system over the universe U and let s ∈ N. A set A1, . . . , As ∈ F is called an
s-sunflower if for every i, j such that 1 ≤ i < j ≤ s, Ai ∩Aj = ∩sr=1Ar.

I Proposition 13 ([14]). Let F be a set system and d the size of a largest set in F . If
|F| > d!(k + 1)d F , then F contains a (k + 2)-sunflower. Moreover, it can be found in time
polynomial in |F|, k, and d.

We now state and prove the following lemma, which is crucial for the correctness of the
sunflower reduction rule. Although the following lemma is well-known, we state it in a way
that is most convenient for our application.

I Lemma 14. Let U be a universe of elements, F1 ⊃ F2 ⊃ · · · ⊃ Fr be a family of set
systems over U and A1, . . . , Ar−1 ⊆ U such that for every i ∈ {1, . . . , r − 1} the following
holds: (a) Fi+1 = Fi \Ai and (b) Ai is contained in a (k + 2)-sunflower in Fi. Then, if a
set S ⊆ U of size at most k hits all sets in Fr, then S also hits all sets in F1.

We are now ready to formally describe the construction of the set D.

I Lemma 15. Fix H and let d = dH. There exists a polynomial time algorithm that takes
as input a graph G and integer k and outputs a set of vertices D ⊆ V (G) of size at most
d · d!(k + 1)d such that if a set S of size at most k is an H-hitting set in G[D], then S is an
H-hitting set in G.

Due to this lemma, once we compute the set D, the hitting part of the Conn-H-HS
problem is taken care of and it is the connectivity which results in the hardness of standard
kernelization. In other words, for every connected H-hitting set S of a graph G of size
at most k it follows from Lemma 15 that D ∩ S is also a H-hitting set of G and the only
role of vertices in S −D is to connect the set of vertices in D ∩ S. Such a situation could
be handled relatively easily in the case of Connected Vertex Cover (see [19]) since
the graph induced on V (G) \D is by definition an independent set. However, since we are
dealing with an arbitrary family H, we cannot rely on any structural consequences of a graph
excluding H; only the fact that the size of the largest graph in H is a fixed integer. A natural



E. Eiben, D. Hermelin, and M. S.Ramanujan 67:7

approach to providing connectivity between vertices in a graph is to construct a Steiner tree
over a particular set of terminals. Unfortunately, since we do not know the set S ∩D apriori,
one would have to try and compute an appropriate Steiner tree for every possible subset of
D of size at most k − 1, as the set of terminals. Since this would be too expensive for us,
we will try to preserve all necessary approximate Steiner trees. We begin by recalling the
following result of Borchers and Du [4].

I Proposition 16 ([4]). For every t ≥ 1, graph G, terminal set R, cost function w : E(G)→
N, and Steiner tree T , there is a t-restricted Steiner tree T of cost at most (1+ 1

blog2 tc
) ·w(T ).

It follows from the proof of Borchers and Du [4] that if for every subset of R of size at
most t, one were to preserve an optimal Steiner tree for this subset, then it is possible to
construct a t-restricted Steiner tree of R of cost at most that of the tree T in Proposition 16
(see also [5, 19]). This fact will be used crucially in our algorithm.

I Lemma 17. For every fixed ε > 0, there exists a polynomial time algorithm that takes
as an input a connected graph G and k and either correctly determines that G does not
contain a connected H-hitting set of size at most k or outputs an induced subgraph G′ of G of
size O(kd·2

1
ε +1) such that:(1) if S is a connected H-hitting set in G′, then S is a connected

H-hitting set in G and (2) OPT(G′, k) ≤ (1 + ε) ·OPT(G, k).

Proof. The algorithm first executes the algorithm of Lemma 15 to obtain a set of vertices D
of size at most d · d!(k+ 1)d such that if a set S of size at most k is an H-hitting set in G[D],
then S is an H-hitting set in G. We fix a constant t such that 1

blog2 tc
≤ ε. Now for every

subset R of D of size at most t we fix a cost function assigning 1 to every edge and compute
an optimal Steiner tree TR for the set of terminals R using, for example, the Dreyfus-Wagner
Algorithm [13]. It follows from [13] that this step takes time O(3t|E(G)||V (G)|), which is
polynomially bounded since ε is a fixed constant. If |V (TR)| ≤ k, then we mark the vertices
of TR. After we have computed TR for every subset R (of size at most t) of D, we remove all
unmarked vertices from G and denote the resulting graph by G′. We now claim that G′ is the
desired graph. It is easy to see that |V (G′)| ≤

∑t
i=1
(|D|
i

)
· k = O(kd·t+1). Moreover, every

connected H-hitting set in G′ is a H-hitting set in G[D] and hence it is also a connected
H-hitting set in G.

Note that if G′ contains two different connected components A,B, then a shortest path
with one endpoint in A ∩ D and the other in B ∩ D must have at least k + 1 vertices.
Otherwise, we would have marked such a path and A and B would not be distinct connected
components of G′. Therefore, if both A ∩D and B ∩D contain a subgraph isomorphic to a
graph in H, then every connected H-hitting set of G contains at least k + 1 vertices and we
may correctly return that G does not contain a connected H-hitting set of size at most k.

Otherwise, for at most one component C of G′, the graph G[C ∩D] contains an induced
subgraph isomorphic to a graph in H. Since every H-hitting set in G[D] is a H-hitting set in
G, it follows that every connected H-hitting set of G[C] is also a connected H-hitting set of
G. Therefore, we assume in the following that G′ is connected.

It remains for us to prove that OPT(G′, k) ≤ (1 + ε) ·OPT(G, k). Observe that by the
definition of the function OPT , it must be the case that OPT (G, k), OPT (G′, k) ≤ k + 1.
This is simply because CHS(G, k, V (G)) and CHS(G′, k, V (G′)) are both bounded by k + 1.
Now, if it is the case that OPT(G, k) = k+ 1, then OPT(G′, k) ≤ k+ 1 ≤ (1 + ε) ·OPT(G, k).

Therefore, we may assume that OPT(G, k) ≤ k. Let Q be an optimal connected H-
hitting set in G of size at most k. That is, CHS(G, k,Q) = OPT (G, k) = |Q|. We denote
QD = Q∩D and QR = Q\D. Clearly, QD is a H-hitting set in G[D] and by our construction

MFCS 2017



67:8 Lossy Kernels for Hitting Subgraphs

of D, it follows that QD is a H-hitting set in G. Hence, if we consider the Steiner tree
instance obtained by assigning every edge in G weight 1 and choosing QD as the set of
terminals, any spanning tree T of G[Q] must in fact be an optimal Steiner tree in G for the
aforementioned weight function and terminal set QD. We invoke Proposition 16 to infer
that there is a t-restricted Steiner tree T of cost at most (1 + 1

blog2 tc
) · (|Q| − 1). It remains

to argue that we can reconstruct such a t-restricted Steiner tree T for QD using only the
vertices in G′.

Consider a t-component C in T and let R be the set of terminals in C. Since R ⊆ QD, it
implies that G′ contains an optimal Steiner tree TR for R. Moreover, C is a Steiner tree with
R as the set terminals, hence |TR| ≤ |C| and we can replace C by TR in T . Exhaustively
repeating this argument we conclude that there is a t-restricted Steiner tree T ′ with set of
terminals QD of cost no more than (1 + 1

blog2 tc
) · (|T | − 1), such that all k-components in T ′

use only marked vertices. Furthermore, (see paragraph following Proposition 16), the union
of all t-components in T ′, denoted by

⋃
T ′, is indeed a Steiner tree. In particular,

⋃
T ′ is

connected and contains all vertices in QD. Therefore,
⋃
T ′ is a connected H-hitting set in G

of size at most (1 + 1
blog2 tc

) · (|Q| − 1) + 1 ≤ (1 + ε)|Q|. Since |Q| is by definition the same as
OPT(G, k), the lemma follows. J

I Theorem 1. For every fixed ε > 0, there is a (1 + ε)-approximate polynomial kernel for
Connected H-hitting set.

Proof. We begin by describing the reduction algorithm. We first invoke the algorithm of
Lemma 17. If this algorithm concludes that G does not contain a connected H-hitting set
of size at most k, then we return the instance (H, 0), where H ∈ H. Otherwise, if this
algorithm returns a graph G′, then the reduction algorithm returns the instance (G′, k).
From Lemma 17 it follows that the size of the reduced instance is O(kd·2

− 1
ε ).

We now describe the solution lifting algorithm as follows. Let S′ be the given solution
for (G′, k). If S′ is not a connected H-hitting set in G′, then the algorithm outputs ∅. If
S′ is a connected H-hitting set in G′, then the algorithm outputs S′, if |S′| ≤ k and V (G)
otherwise. We denote by S the output of the solution lifting algorithm.

We now prove that this reduction algorithm and the solution lifting algorithm together
constitute a (1+ ε)-approximate kernel. Note that if S′ is not a connected H-hitting set of G′,
then ∅ is also not a connected H-hitting set of G and CHS(G′, k′, S′) = CHS(G, k, ∅) =∞.
On the other hand, if OPT(G, k) = k + 1, then it follows from Lemma 17 and the definition
of the reduction algorithm that OPT(G′, k′) = k′ + 1. Therefore,

CHS(G, k, V (G))
OPT(G, k) = 1 ≤ (1 + ε) · CHS(G′, k′, S)

OPT(G′, k′) = (1 + ε)

Hence, we can assume that OPT(G, k) ≤ k and the reduction algorithm returned the instance
(G′, k) such that G′ is as in Lemma 17. Then either |S′| ≤ k and S = S′ or |S′| ≥ k + 1 and
S = V (G). However, in both cases it holds that CHS(G, k, S) = CHS(G′, k, S′). Moreover,
from Lemma 17 it follows that OPT(G′, k) ≤ (1 + ε) ·OPT(G, k), implying the theorem. J

3.2 The lower bound for Weighted Connected H-hitting set
In this section, we prove that in the presence of weights, the Connected H-hitting set
problem no longer admits an α-approximate kernel for any constant α. The parameterized
optimization version of Weighted Connected H-hitting set is formally defined via
the function W-CHS : Σ∗ × N × Σ∗ → R ∪ {±∞} as follows: W-CHS((G,w), k, S) = ∞



E. Eiben, D. Hermelin, and M. S.Ramanujan 67:9

x

VF

aH bH cH dH eH

vA vB vC vD vE vF

Ha Hb Hc Hd He

Figure 1 The graph output by our reduction algorithm starting from the SC/n instance
({A, B, C, D, E, F }, {a, b, c, d, e}) where the sets are defined as A = {a, c}, B = {b, d, e}, C = {a, c},
D = {b, d, e}, E = {a, d}, and F = {c, e}. Here, H contains only a triangle.

if S is not a connected H − hitting set of size at most k and W-CHS((G,w), k, S) = w(s)
otherwise.

We prove our lower bound by giving a polynomial time reduction from a parameterized
optimization version of the classic Set Cover problem such that an α-approximate polyno-
mial kernel for Weighted Connected H-hitting set would imply one for Set Cover,
which would contradict the lower bound in [19]. Note that since we are proving a lower
bound, it is sufficient to demonstrate one family H for which Weighted Conn-H-HS does
not admit approximate kernels. However, in the interest of extracting the strongest possible
consequence of our reduction, we introduce the following definition.

I Definition 18. Let H be a fixed finite family of finite graphs. We say that H is rigid if
there is a connected graph H in H and a vertex v ∈ V (H) such that no graph H ′ ∈ H is a
subgraph of H and no graph H ′ ∈ H is the disjoint union of connected components each of
which is isomorphic to H − v.

I Theorem 19. Let H be a fixed rigid family of graphs. Then, there is no α-approximate
polynomial compression for Weighted Conn-H-HS for any constant α unless NP ⊆
coNP/Poly even if the weight function is restricted to {0, 1}.

Proof. We prove the theorem by giving a 1-approximate polynomial parameter transform-
ation from SC/n to the Weighted Connected H-hitting set problem. Recall that a
polynomial parameter transformation consists of two algorithms, a reduction algorithm and a
solution lifting algorithm. We describe a reduction algorithm that takes as input an instance
(F ,U) of SC/n and outputs an instance (G, k,w) of Weighted Connected H-hitting
set such that k = 2|U|+ 1, |G| ≤ 1 + |F|+ dH|U|.

Reduction Algorithm. We construct G from (F ,U) as follows. The vertex set V (G) is
partitioned into sets {x} ] VU ] VF . Fix a graph H ∈ H which certifies the rigidity of H.
That is, there is a vertex h∗ ∈ V (H) such that no graph H ′ ∈ H is the disjoint union of
connected components each of which is isomorphic to H − h∗. The set VU induces in G, a
disjoint copy Hu of H for every element u ∈ U . We fix a special vertex uH ∈ Hu for every
u ∈ U . This vertex is the vertex of Hu corresponding to h∗. This is to ensure that after

MFCS 2017



67:10 Lossy Kernels for Hitting Subgraphs

deleting uH from each Hu, we do not still have a graph from H contained in G[VU ]. The set
VF contains a vertex vS for every set S ∈ F . Finally, x is a vertex disjoint from VU ∪ VF .
The edge set of G is defined as follows E(G) = {xvS |vS ∈ VF} ∪ {vSuH |u ∈ S} ∪u∈U E(Hu).
In other words, E(G) contains beside the edges for every copy of H, an edge between x and
every vertex in VF and then an edge between a vertex vS ∈ VF corresponding to the set S
and the previously fixed special vertex uH in the copy of H corresponding to an element
u, if and only if u ∈ S (see Figure 1). Finally, the weight function w : V (G) → {0, 1} is
defined as follows. We let w(v) = 0 if v ∈ {x} ∪ VU and w(v) = 1 otherwise. The weight of
a set Q ⊆ V (G) is defined as Σq∈Qw(q). This completes the description of the reduction
algorithm.

Solution Lifting Algorithm. The solution lifting algorithm is straightforward. Given a
solution string T for the instance (G, k,w), if T is not a connected H-hitting set of size at
most k, then we return a spurious solution string for the instance (F ,U). Otherwise, we
return the sets in F which correspond to VF ∩ T .

We are now ready to prove that this is a 1-approximate polynomial parameter transform-
ation. Observe that in order to do so, it is sufficient to prove the following claim.

I Claim 20. For every p ∈ N there is a set cover of (F ,U) of size p if and only if there is a
connected H-hitting set of G with at most k vertices and weight exactly p.

Proof. Suppose that S is a set cover of (F ,U). We can assume without loss of generality
that |S| ≤ |U|. We claim that T = {x} ∪ {vS |S ∈ S} ∪ {uH |u ∈ U} is a weighted connected
H-hitting set of G of weight |S|. As all vertices in VF have weight 1 and all other vertices
have weight 0, the weight of T is |S|. Moreover, all vertices in VF are adjacent to x and since
S is a set cover, every vertex uH is adjacent to a vertex vS for a set S ∈ S that contains
u. Finally every connected component of G− T is either a vertex or a graph isomorphic to
H − h∗. Since H is rigid, we conclude that G− T does not contain a graph in H. Since S
has size at most |U|, the size of T is bounded by 2|U|+ 1 which is precisely k.

In the converse direction suppose that T is a connected H-hitting set of G of weight
p. Since the only vertices with non-zero weights lie in VF and they all have weight 1, we
infer that |VF ∩ V (T )| = p. We claim that S = {S|vS ∈ V (T ) ∩ VF} is a set cover of (F ,U).
Observe that since T is a H-hitting set, it must be the case that for every u ∈ U , T contains a
vertex from Hu. Since T also contains at least one vertex of VF (under the simple assumption
that |U| > 1), and only uH is adjacent to a vertex outside Hu, it follows that uH ∈ V (T ).
Moreover, uH is adjacent only to vertices in Hu or in VF . Therefore, uH is adjacent to a
vertex vS ∈ VF ∩ V (T ) for a set S ∈ F . This implies that the element u is covered by the
set S ∈ S, completing the proof of the claim and the proof of the lemma. J

J

4 Interpolating kernels for Dominating Set on d-degenerate graphs

This section is devoted to Theorem 2, i.e., the approximate kernels interpolating between
two known kernels with respect to their accuracy-size tradeoff.

I Proposition 21. [20] Dominating Set has a kernel of size O((d+ 2)2(d+2)k2(d+1)2) on
d-degenerate graphs.



E. Eiben, D. Hermelin, and M. S.Ramanujan 67:11

I Definition 22. The parameterized optimization version of Dominating Set is defined
via the function DS : Σ∗ × N× Σ∗ → R ∪ {±∞} as follows:

DS(G, k, S) =
{

∞ if S is not a dominating set of G,
min{|S|, k + 1} otherwise.

For the rest of this section, we define OPT(G, k) = minD⊆V (G) DS(G, k,D).

The kernelization algorithm of Philip et al. [20] can be seen to be a strict 1-approximate
polynomial kernel and forms the starting point of our sequence of approximate kernels. We
give here a slightly different description of this kernel (in particular of its analysis) so as to
better serve our purposes. First of all, we will be working with a “colored" version of the
problem where the vertices of the input graph are partitioned into two sets – the set of red
vertices R and the set of blue vertices B – and the goal is to find a subset of at most k vertices
of any color that dominates all red vertices. That is, a set S ⊆ R ∪B with |S| ≤ k such that
for every v ∈ R we have N [v] ∩ S 6= ∅. Clearly every instance of Dominating Set can be
reduced to the colored variant by coloring all the vertices red. For presentation purposes,
we will refer to the colored version as Dominating Set and instances of this problem are
of the form (G,B,R, k) where B and R denote the set of blue and red vertices respectively.
The functions DS(G, k, S) and OPT(G, k) are now represented as DS(G,B,R, k, S) and
OPT(G,B,R, k) with the natural extended definitions. Furthermore, since edges between
vertices in B are irrelevant with respect to the domination of R, we may assume without loss
of generality that B is an independent set. Philip et al. [20] devised the following reduction
rule and their proof of correctness of the rule also shows that it is in fact 1-safe.

Let (G,B,R, k) be the given instance of Dominating Set. For i ∈ {0, . . . , d}: If there
exists a set of d + 1 − i vertices X ⊆ R ∪ B which have at least ki(d + 1) common red
neighbors Y ⊆ R, then remove the edges between X and Y , color all vertices in Y blue, and
add k + 1 new red vertices that are each connected to all vertices in X and no other vertex
in G. The parameter remains k.

Henceforth, we assume that Reduction Rule 4 does not apply on the given instance of
Dominating Set. Philip et al. [20] showed that if Reduction Rule 4 does not apply on the
instance (G,B,R, k), then every vertex in G has at most kd(d+ 1) red neighbors, leading to
the following observation.

I Lemma 23. If Reduction Rule 4 does not apply on the instance (G,B,R, k), then either
|R| ≤ kd+1(d+ 1) or OPT(G,B,R, k) = k + 1.

Due to Lemma 23, we may assume that |R| ≤ kd+1(d+ 1). The following standard twin
reduction rule can be easily seen to be 1-safe.

If b1, b2 ∈ B are two non-adjacent vertices such that N(b1) = N(b2), we remove b1 from
G.

In the following, for every i ∈ {0, . . . , d}, we let Bi denote the set of blue vertices which
have exactly i red neighbors and let B>d denote the set of blue vertices which have at least
d+ 1 red neighbors. We now prove the following bound on the size of each of these sets.

I Lemma 24. Let (G,B,R, k) be an instance of Dominating Set on which Reduction
Rule 4 and Reduction Rule 4 do not apply. Then, |B>d| ≤ d|R|, and |Bi| ≤ |R|i for each
i = 0, . . . , d.

Observe that since we have only applied 1-safe reduction rules, the instance obtained after
the exhaustive application of Reduction Rule 4 and Reduction Rule 4 is a strict 1-approximate

MFCS 2017



67:12 Lossy Kernels for Hitting Subgraphs

kernel and due to Lemma 24, the result is a strict 1-approximate kernel of size kO(d2). This
is the kernel of Philip et al. [20] and henceforth we refer to instances of Dominating Set
on which this preprocessing has been executed, as reduced instances and assume without
loss of generality that the input has size bounded by kO(d2). We will now introduce a ‘lossy
reduction rule’ to reduce the size of our kernel further at the cost of transforming it into a
ddρe-approximate kernel.

I Lemma 25. Let d, ρ ∈ N be fixed integers such that ρ < d. There is an algorithm that,
given a reduced instance (G,B,R, k) of Dominating Set runs in polynomial time and
returns an instance (G′, B′, R′, k) such that (a) |V (G′)| ≤ kO(ρd), (b) if S dominates R′ in
G′, then S dominates R in G and (c) OPT(G′, B′, R′, k) ≤ ddρe ·OPT(G,B,R, k).

Proof. Let B∗ denote an auxiliary set of blue vertices which is initially empty. For each
subset of ρ red vertices R0 ⊆ R we find a blue vertex b ∈ B (if one exists) with R0 ⊆ N(b),
and add it to our auxiliary set B∗. At the end of this procedure, we define the graph G′ to
be the subgraph of G induced by R∪B0 ∪ · · · ∪Bρ ∪B>d ∪B∗, B′ = B ∩V (G′), and R′ = R.

Recall that |R| = O(kd+1), and so there are
(|R|
ρ

)
= O(kρ(d+1)) subsets R0. Thus,

|B∗| = O(kρ(d+1)). Moreover, |B0 ∪ · · · ∪Bρ| = O(kdρ) according to Lemma 24. Therefore,
|V (G′)| is bounded by kO(ρd) as required and the time required to compute G′ is bounded
polynomially in |V (G)|. We now proceed to the remaining two statements. Since R′ = R

and G′ is a subgraph of G, it follows that any set S which dominates all vertices of R′ in G′,
also dominates all vertices of R in G. Hence, it only remains to prove the second statement.

Let S be an optimal solution for G. That is, OPT(G,B,R, k) = |S|. We now construct a
solution S′ for G′ as follows. We begin by setting S′ = S ∩ V (G′). Note that S′ includes all
vertices of R∩S since R ⊆ V (G)∩V (G′). Consider now a blue vertex b ∈ S \V (G′), and let
R(b) denote the set of red neighbors of b. Then ρ+ 1 ≤ |R(b)| ≤ d by the construction of G′.
Moreover, for any subset of ρ vertices in R(b), there is a vertex of B′ in V (G′) which dominates
these ρ vertices. Thus, we can replace b with at most ddρe vertices of B

′ in V (G′) and still
dominate R(b). Therefore, applying this switch for each b ∈ S \ V (G′), we obtain a solution
S′ for G′ with |S′| ≤ ddρe|S|. This implies that OPT(G′, B′, R′, k) ≤ ddρe ·OPT(G,B,R, k),
completing the proof of the lemma. J

From Lemma 25 it immediately follows that Dominating Set on d-degenerate graphs
has ddρe-approximate compression to the colored version of the problem. Theorem 2 then
follows by gadgeteering similar to that used by Philip et al. [20]. Note that any graph that
excludes Kh as a minor also excludes Kh as a topological minor (see [9] for a formal definition
of minors and topological minors). Furthermore, it is known that any graph that does not
contain Kh as a minor (topological minor) is d-degenerate where d = O(h2) (d = O(h

√
log h)

respectively) [2], giving us the following corollary.

I Corollary 26. Let ρ, h ∈ N. Then, Dominating Set on graphs excluding Kh as a minor
(topological minor) has a O(h

2

ρ )-approximate kernel (O(h
√

logh
ρ )-approximate kernel) of size

kO(ρh2) (kO(ρh
√

logh) respectively).

5 Conclusions

Our work on the Connected H-Hitting Set problem adds another interesting data point
to the study of preprocessing for problems with connectivity constraints. We have also
initiated the study of accuracy-size tradeoffs for problems which already have polynomial



E. Eiben, D. Hermelin, and M. S.Ramanujan 67:13

kernels, via the design of a sequence of kernels capturing the gradient of the kernel-size
with respect to the accuracy or approximation factor. Our results point to a few interesting
questions for future research.

Are there other connectivity-constrained problems which do not admit polynomial kernels
but admit α-approximate kernels?
Is it possible to obtain meta-theorems characterizing or providing at least a sufficiency
condition for connectivity-constrained problems to admit α-approximate kernels?
Is it possible to refine the interpolation (Theorem 2) by presenting a sequence of kernels
between the d2-approximate kernel of constant size and our d-approximate kernel of size
kO(d)?

References
1 Jochen Alber, Michael R. Fellows, and Rolf Niedermeier. Polynomial-time data reduction

for dominating set. J. ACM, 51(3):363–384, 2004.
2 Noga Alon and Shai Gutner. Linear time algorithms for finding a dominating set of

fixed size in degenerated graphs. Algorithmica, 54(4):544–556, 2009. doi:10.1007/
s00453-008-9204-0.

3 Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh,
and Dimitrios M. Thilikos. (meta) kernelization. J. ACM, 63(5):44:1–44:69, 2016.

4 Al Borchers and Ding-Zhu Du. The k-steiner ratio in graphs. In Frank Thomson Leighton
and Allan Borodin, editors, Proceedings of the Twenty-Seventh Annual ACM Symposium
on Theory of Computing, 29 May-1 June 1995, Las Vegas, Nevada, USA, pages 641–649.
ACM, 1995.

5 Jaroslaw Byrka, Fabrizio Grandoni, Thomas Rothvoß, and Laura Sanità. Steiner tree
approximation via iterative randomized rounding. J. ACM, 60(1):6:1–6:33, 2013.

6 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

7 Erik D. Demaine, Fedor V. Fomin, Mohammadtaghi Hajiaghayi, and Dimitrios M. Thilikos.
Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free
graphs. J. ACM, 52(6):866–893, 2005.

8 Erik D. Demaine and MohammadTaghi Hajiaghayi. The bidimensionality theory and its
algorithmic applications. The Computer Journal, 51(3):292–302, 2008.

9 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

10 Michael Dom, Daniel Lokshtanov, and Saket Saurabh. Kernelization lower bounds through
colors and ids. ACM Transactions on Algorithms, 11(2):13:1–13:20, 2014.

11 Rodney G Downey and Michael Ralph Fellows. Parameterized complexity. Springer Science
& Business Media, 2012.

12 Pål Grønås Drange, Markus Sortland Dregi, Fedor V. Fomin, Stephan Kreutzer, Daniel
Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, Felix Reidl, Fernando Sánchez Villaamil,
Saket Saurabh, Sebastian Siebertz, and Somnath Sikdar. Kernelization and sparseness: the
case of dominating set. In 33rd Symposium on Theoretical Aspects of Computer Science,
STACS 2016, February 17-20, 2016, Orléans, France, pages 31:1–31:14, 2016.

13 S. E. Dreyfus and R. A. Wagner. The steiner problem in graphs. Networks, 1(3):195–207,
1971.

14 P. Erdös and R. Rado. Intersection theorems for systems of sets. Journal of the London
Mathematical Society, s1-35(1):85–90, 1960.

15 Fedor V. Fomin and Dimitrios M. Thilikos. Dominating sets in planar graphs: Branch-
width and exponential speed-up. SIAM J. Comput., 36:281–309, 2006.

MFCS 2017

http://dx.doi.org/10.1007/s00453-008-9204-0
http://dx.doi.org/10.1007/s00453-008-9204-0


67:14 Lossy Kernels for Hitting Subgraphs

16 Mark Jones, Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, and Ondrej Suchý.
Parameterized complexity of directed steiner tree on sparse graphs. In Algorithms - ESA
2013 - 21st Annual European Symposium, Sophia Antipolis, France, September 2-4, 2013.
Proceedings, pages 671–682, 2013.

17 Stefan Kratsch. Recent developments in kernelization: A survey. Bulletin of the EATCS,
113, 2014.

18 Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Kernelization–preprocessing
with a guarantee. In The Multivariate Algorithmic Revolution and Beyond, pages 129–161.
Springer, 2012.

19 Daniel Lokshtanov, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh. Lossy kernel-
ization. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings of the
49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal,
QC, Canada, June 19-23, 2017, pages 224–237. ACM, 2017.

20 Geevarghese Philip, Venkatesh Raman, and Somnath Sikdar. Polynomial kernels for domin-
ating set in graphs of bounded degeneracy and beyond. ACM Trans. Algorithms, 9(1):11:1–
11:23, 2012.



Undecidable Problems for Probabilistic Network
Programming
David M. Kahn

Cornell University, Department of Computer Science, Ithaca NY, USA
dmk254@cornell.edu

Abstract
The software-defined networking language NetKAT is able to verify many useful properties of
networks automatically via a PSPACE decision procedure for program equality. However, for its
probabilistic extension ProbNetKAT, no such decision procedure is known. We show that several
potentially useful properties of ProbNetKAT are in fact undecidable, including emptiness of
support intersection and certain kinds of distribution bounds and program comparisons. We do so
by embedding the Post Correspondence Problem in ProbNetKAT via direct product expressions,
and by directly embedding probabilistic finite automata.

1998 ACM Subject Classification D.2.4 Software/Program Verification, D.3.1 Formal Defini-
tions and Theory, F.3.1 Specifying and Verifying and Reasoning about Programs, F.4.3 Formal
Languages

Keywords and phrases Software-defined networking, NetKAT, ProbNetKAT, Undecidability,
Probabilistic finite automata

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.68

1 Introduction

The NetKAT family of programming languages aims to simplify network programming and
its verification [1, 10]. The NetKAT languages do this is by centralizing network control in a
scheme known as software-defined networking, and by exploiting the algebraic structure of
Kleene algebra with tests. This leaves the language NetKAT sufficiently well-behaved so as
to admit a relatively fast (PSPACE-complete) decision procedure for program equivalence [5].
Several important networking problems, such as waypointing and reachability, are reducible
to program equivalence in NetKAT, so this decision procedure is quite useful for automated
verification of NetKAT programs.

NetKAT, however, has limitations. NetKAT is deterministic and cannot express probab-
ilistic concepts that often arise in networking, such as randomized routing algorithms and
connection failure chance [4]. The language ProbNetKAT answers this by conservatively
extending NetKAT with an operator for probabilistic choice. However, the addition of this
new operator further distances the language from the well-behavedness of a pure Kleene
algebra with tests. This opens up many new questions concerning decidability and deductive
completeness. If the benefits of the NetKAT framework are to be applied to probabilistic
networking, it is important to now determine what can or cannot be decided about Prob-
NetKAT. As of the time of this paper, few ProbNetKAT decidability results have been put
forward.

This paper introduces several properties of ProbNetKAT programs that are not decidable,
alongside some contexts in which they might arise. These undecideable properties include
emptiness of support intersection, support size, and certain kinds of program distribution
bounds and comparisons. We prove these problems undecidable through two different

© David M. Kahn;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 68; pp. 68:1–68:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.68
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


68:2 Undecidable Problems in ProbNetKAT

embeddings. First, the Post Correspondence Problem is embedded in ProbNetKAT via direct
product expressions, which are expressions in the direct product of regular expressions. And
second, probabilistic finite automata are then directly embedded in ProbNetKAT, and their
associated undecidable problems translated over.

2 Definition of ProbNetKAT

To understand ProbNetKAT, it is important to understand how NetKAT treats its packets,
the information that is passed around a network. A given packet π ∈ Pk is a collection of
fields of information, such that π(x) can be considered to be the value of field x. Each of
these fields may be assigned value using the ← operator, or tested using the = operator.
These tests act as filters, dropping all packets that do not satisfy them. Any such test can
also be complemented using the ¬ operator.

For bookkeeping purposes, these packets are understood to be arranged in histories,
π1 :: π2 :: ... :: πn, which are sequences of snapshots of a given packet over time, from
youngest to oldest. (Such a history is often shortened notationally to π1 :: σ.) The operation
which takes this snapshot is called dup, because it duplicates the latest packet, the head
packet π1, and appends it to the front of the sequence. Only the head packet ever actually
exists in the network in execution, but tracking the history that a given program would
generate for a packet allows for answering important questions about that packet, like where
it has been.

In addition to these basic operations of test and assignment, NetKAT also employs
the operators and constants of Kleene algebra. Kleene algebra’s addition is given with &
(parallel composition), its multiplication is given with ; (sequential composition), its asterate
is given with ∗ (iteration), its annihilator element 0 is given with drop (drops all packets),
and its identity element 1 is given with skip (does nothing). Together, these form a Kleene
algebra on the generating set of assignments and tests. This means, for instance, that & is
commutative. Interestingly, in most contexts, we interpret Kleene algebras as treating &
disjunctively, but in NetKAT, & is conjunctive. And, paired with the negation operator (¬),
these also can form a Boolean algebra on only tests (=). For a Boolean algebra, drop act as
0, skip acts as 1, & acts as disjunction, and ; acts as conjunction. This means, for instance,
that both ; and & are commutative on the tests.

This Kleene algebra structure paired with Boolean algebra comprises the Kleene algebra
with tests, or KAT, that NetKAT is named after. This algebra is sufficient to characterize
a lot of programmatic structure, allowing for manipulation of such structure into different
semantically equivalent forms. For instance, letting the term b below be such a Boolean
term, and letting p and q be general expressions, we can represent the programming idioms
of the while loop and if-then-else clause as below. The symbols used will be defined formally
shortly.

if b then p else q = b; p&¬b; q while b do p = (b; p)∗;¬b

The relevant syntax of NetKAT can therefore be given just by KAT expressions of the
above operators on an alphabet of tests, assignments, and dups, where tests are the Boolean
elements.

Before we provide the formal definition of the above pieces of NetKAT, it will be useful to
mention the Haskell language’s monad operators, return (η) and bind (>>=). Letting T (A)
be a type predicated on the type A (like a list of elements from A), the monad operators are
of the types >>=: T (A)→ (A→ T (B))→ T (B) and η : A→ T (A) for some types A and B.



D.M. Kahn 68:3

These operators allow the functional language of Haskell to translate functions on A into T (A)
in a useful way, called lifting. Bind and return satisfy the following axioms, corresponding to
something similar to left identity, right identity, and associativity, respectively.

η(x) >>= f = f(x) t >>= η = t t >>= (λx.f(x) >>= g) = (t >>= f) >>= g

Formally, a NetKAT program p or q is usually interpreted as a function that maps a
history in π :: σ ∈ H to a set of histories a ∈ 2H , with the semantics defined as follows [12].
These definitions will be presented alongside some monadic counterparts to better clarify
their structure and emphasize the ability to lift the operators to act on sets of histories. The
relevant monad for these operations is the powerset monad.

η(π :: σ) = {π :: σ} a >>= [[p]] =
⋃
h∈a

[[p]](h)

[[skip]](π :: σ) = {π :: σ} = η(π :: σ)
[[drop]](π :: σ) = ∅
[[x← n]](π :: σ) = {π[n/x] :: σ} = η(π[n/x] :: σ)

[[x = n]](π :: σ) =

{
{π :: σ} π(x) = n

∅ otherwise
=

{
η(π :: σ) π(x) = n

∅ otherwise

[[dup]](π :: σ) = {π :: π :: σ} = η(π :: π :: σ)

[[¬b]](π :: σ) = {π :: σ} − [[b]](π :: σ) =

{
∅ [[b]](π :: σ) = η(π :: σ)
η(π :: σ) otherwise

[[p&q]](π :: σ) = [[p]](π :: σ) ∪ [[q]](π :: σ) = [[p]](π :: σ)
>>= λs.([[q]](π :: σ) >>= λt.η(s) ∪ η(t)))

[[p; q]](π :: σ) =
⋃

h∈[[p]](π::σ)
[[q]](h) = [[p]](π :: σ) >>= [[q]]

[[p∗]](π :: σ) = [[skip&p∗; p]](π :: σ) = [[skip&p; p∗]](π :: σ)
=

⋃
n∈N

[[pn]](π :: σ)

To get ProbNetKAT, we start by lifting these operators with bind as λa.a >>= [[p]] to get
a new set of operators that allow us to interpret NetKAT programs as functions from sets
of histories to sets of histories. Then we add in the probabilistic choice operator ⊕, which,
with a given probability r, chooses to continue to the code on its left, and otherwise the code
on its right. Syntactically it may be used with the same generality as & or ;, such that all
take two ProbNetKAT programs and return one. The new operator’s randomness introduces
distributions on the output, so a ProbNetKAT program can be interpreted as a function that
maps a set of histories a ∈ 2H to a distribution on sets of histories µ. The semantics for the
this interpretation is defined below, where many of the definitions show the same structure
as in NetKAT. These semantics use the Dirac delta function δ for probability measure (which
yields a distribution that puts all weight on a single point) and the product measure ×. The
relevant monad here is the Giry monad.

δa(A) =
{

1 a ∈ A
0 else

η(a) = δa µ >>= [[p]] = λA.

∫
a∈2H

[[p]](a)(A) · µ(da)

MFCS 2017



68:4 Undecidable Problems in ProbNetKAT

[[skip]](a) = δa = η(a)
[[drop]](a) = δ∅ = η(∅)
[[x← n]](a) = δ{π[n/x]::σ|π::σ∈a} = η({π[n/x] :: σ|π :: σ ∈ a})
[[x = n]](a) = δ{π::σ∈a|π(x)=n} = η({π :: σ|π :: σ ∈ a ∧ π(x) = n})
[[dup]](a) = δ{π::π::σ |π::σ∈a} = η({π :: π :: σ |π :: σ ∈ a})
[[¬b]](a) = δ{π::σ∈a|π 6�b} = [[b]](a) >>= λs.η(a− s)
[[p&q]](a) = ([[p]](a)× [[q]](a))({(s, t)|s ∪ t ∈ a}) = [[p]](π :: σ)

>>= λs.([[q]](π :: σ)
>>= λt.η(s ∪ t)))

[[p; q]](a) = [[q]]([[p]](a)) = [[p]](π :: σ) >>= [[q]]
[[p⊕r q]](a) = r · [[p]](a) + (1− r) · [[q]](a)
[[p(0)]](a) = [[skip]](a)
[[p(n+1)]](a) = [[skip&p; p(n)]](a)
[[p∗]](a) =

⊔
n∈N

[[p(n)]](a) = [[skip&p; p∗]](a)

This maintains many, but not all, of the typical properties we expect a Kleene algebra
with tests to have. For instance, & is still commutative (thanks to the Frobenius theorem)
and so are the test operations, but [[skip&p∗; p]](π :: σ) is no longer an identity of p∗.

It will next be useful to define an extended form of some operators to act as short-hand
for writing them down multiple times. Let pi be a program predicated on the variable i, and
let I be a finite set of i values indexed 1 through n, and let ri be a probability predicated
on i.

;
i∈I
pi = pi1 ; pi2 ; ...; pin &

i∈I
pi = pi1&pi2&...&pin

⊕ri

i∈I
pi = pi1 ⊕r1 (pi2 ⊕r2/(1−r1) (...(pin ⊕rn/(1−

∑
1≤i<n

ri) drop)...))

This definition of sequential composition across multiple terms is only well-defined where
the pi are commutative. We will only be using it in commutative contexts like with test
terms, so it is sufficient for our purposes. The sequential composition of multiple choice is
designed such that each term pi is picked with the given probability ri. This requires that
the sum of the probabilities does not exceed 1.

It is also useful to replace the assignment operator← and test operator = with a complete
assignment operator ! and complete test operator ? defined below, where X is the set of all
fields in a packet. The complete assignment operator assigns all fields of a packet to match
those of another, turning the first packet into the second. The complete test operator tests
all fields of a packet against those of another, dropping the first if it does not perfectly match
the second.

[[π?]](a) = [[ ;
x∈X

x = π(x)]](a) [[π!]](a) = [[ ;
x∈X

x← π(x)]](a)

3 A Random Loop

Some of our results rely on a program structure that loops a random number of times before
exiting the loop. The following ProbNetKAT code achieves that purpose. Π will be a set of
packets where every packet has a boolean field x assigned to true. C will stand in for the
body of the loop, written to only use packets of Π. Assigning false to the Π packets’ field
x yields a new set of packets Ψ, in one-to-one correspondance. Because the following code



D.M. Kahn 68:5

results in the execution of C a number of times that is a geometric random variable with
parameter r, this code will be denoted [[CGr ]].

[[CGr ]] = [[(while x = true do {C ⊕r x← false});x← true]]

Suppose this program is given a set of histories with head packets in Π, and consider
dynamically each step the code takes. First it will enter a while loop conditioned on x being
true, so that while the packets are in Π, the loop continues. Thus, being in Ψ at the end of
the while loop acts as the marker to break the loop, and the loop will never execute its body
on packets from Ψ. In each iteration of the while loop, the code makes a probabilistic choice.
With probability r the code runs C, which, since C is designed to run only using packets
from Π, will go through C’s manipulations as expected, only extending the histories with
packets from Π, and thus exiting its code block with all head packets in Π. Otherwise, with
probability 1− r, the code maps the packets into Ψ, signalling the the end of the looping.
After exiting the while loop, the code ends by re-mapping all head packets back into Π.

Thus, the while loop either exits with probability 1− r, or it runs C on the current head
packets from Π and loops again. This is the structure of running Bernoulli trials until success,
so the number of times C is run is geometrically distributed with respect to r. Specifically,
the probability of running C n times is given by (1− r) ∗ rn. This accomplishes the desired
goal, as a geometric distribution assigns every natural number a positive probability, so C
could be run for any number of iterations.

4 Main Results

4.1 A Post-Correspondance Embedding
Direct Product Expressions (DPEs) For the first undecidable problem that will be presen-
ted, it is best to lay out an intermediate undecidable problem involving a variation on regular
expressions, which will be called DPEs as shorthand for "direct product expressions". DPEs,
rather than describing sets of the usual words from Σ∗ (the free monoid on a generating
alphabet Σ), instead describe words from direct product of n copies of Σ∗ in the category of
monoids, denoted (Σ∗)n. In this direct product, multiplication is defined component-wise,
such that (a1, a2, ..., an) · (b1, b2..., bn) = (a1 · b1, a2 · b2, ..., an · bn).

Consider the minimal generating set for (Σ∗)n, elements of which are tuples made entirely
of the identity element ε, except for one position in which sits an element of Σ. Call this
set Γ. For brevity, refer to the element of Γ containing a ∈ Σ in position i as a(i), and in
general, the tuple containing only ε except for w ∈ Σ∗ at index i as w(i).

Γ = {a(i)|a ∈ Σ ∧ 1 ≤ i ≤ n}

Now, Γ∗, being the free monoid generated by Γ, can be treated in the usual manner as
the alphabet for a regular expression. And because (Σ∗)n is also a monoid generated by
Γ, there exists a unique canonical epimorphism h : Γ∗ → (Σ∗)n that acts as an identity on
elements of Γ. This h is the map that performs component-wise multiplication, introducing
a sort of commutativity in its image such that, while a(1) · a(2) 6= a(2) · a(1), it is the case
that h(a(1) · a(2)) = (a, a) = h(a(2) · a(1)). It is in the image of this map h that we would like
to consider DPEs, though the regular expressions yielding the DPEs will be easier to write
out and work with here.

Addition on DPEs continues to remain a nondeterministic choice between terms, so that
the set of words matching (a, a) + (b, b) is just the set containing only (a, a) and (b, b). Note

MFCS 2017



68:6 Undecidable Problems in ProbNetKAT

that addition is therefore not componentwise and introduces a sort of choice dependence
between the choices made at different indices; (a, b) matches (a+b, a+b), but not (a, a)+(b, b).
Finally, the asterate is defined as per usual, with w∗ being the supremum of across all n of
wn, satisfying w∗ = 1 + w · w∗, for w a word in the direct product and 1 the multiplicative
identity. Informally, we can then see that a DPE looks like a set of regular expressions, each
on their own separate track corresponding to index, which can behave dependently on one
another. Expoitation of this dependency will yield the undecidability that we seek.

Certain properties of DPEs are decidable just as easily as regular expressions. Emptiness
can be decided simply by checking if the expression is ε. Membership of some word w can be
decided by considering each of the finite permutations of elements from Γ that map to w
under h, and checking membership of any of those in any regular expression that maps to
the DPE under h. The union of two DPEs x and y is also decidable, simply as x+ y.

Unlike regular expressions, however, the intersection of DPEs is not decidable, as can
be seen with an embedding of the Post-Correspondence Problem (PCP) below. It should
be noted that similar undecidable results concerning Kleene algebras with commutativity
conditions do already exist in the literature [8, 9]. However, the formulation of the proof
below in terms of DPEs is more direct and intuitive for application to ProbNetKAT, as
an indexed set of words looks quite similar to a set of histories marked by head packet. I
conjecture that the related undecidable results for such commutative Kleene algebras can be
embedded into ProbNetKAT similarly to the method shown.

I Theorem 1. For arbitrary DPEs A and B, A ∩B = ∅ is undecidable.

Proof. To show the undecideability of emptiness of intersection, we will start by defining
notation for summing in an expression across multiple terms. Let I be a finite, indexed set
of n with element m denoted im, and let eim be an expression predicated on element im.
Because addition of expressions is commutative and there are only finitely many terms, this
is well-defined.∑

i∈I
ei = ei1 + ei2 + ...+ ein

Now take an arbitrary instance of the PCP. The PCP is the following decision problem:
Given an indexed set of word pairs {(x1, y1), (x2, y2), ..., (xn, yn)} on an alphabet (given here
by Σ), does there exist a non-empty sequence of indices i1, i2, ..., im such that xi1 ·xi2 ·...·xim =
yi1 · yi2 · ... · yim?

We then provide the two regular X and Y below with n = 2, involving the left and right
sides of the PCP pairs. This uses the summation definition and 1 ≤ k ≤ n as shorthand for
k ∈ {m ∈ N|1 ≤ m ≤ n}.

X = [
∑

1≤k≤n
(xk)(1) · (yk)(2)] · [

∑
1≤k≤n

(xk)(1) · (yk)(2)]∗

Y = [
∑
a∈Σ

a(1) · a(2)] · [
∑
a∈Σ

a(1) · a(2)]∗

X generates every possible non-empty ordering of the word pairs from the PCP with each
side of the pairs at its own index, and Y generates every possible non-empty word in Σ∗
copied at each index.

Mapping these sets under h now actually separates the words and indices into their
designated positions, such that we are left with a pair of two words. For example, if (wo,w) and
(rd, ord) were PCP pairs, then we would see h((wo)(1) ·w(2) ·(rd)(1) ·(ord)(2)) = (word,word).



D.M. Kahn 68:7

In that way, the mapping of X under h to get the DPE A gives us every pair of words
generated by different sides of the PCP pairs with the same index sequence, and the mapping
of Y to get the DPE B gives us every pair of matching words. Thus, if we could decide if
there exists a word (s, t) in both A and B, we would know that the s and t are matching
words made from the same index sequence, comprising an affirmative solution to the PCP
problem. And if such a word did not exist, then there would be no solution, as every possible
word from every possible sequence of indices is represented. This therefore decides the PCP.
But, the PCP is undecidable, so the existence of any such word (s, t) in the intersection is
also undecidable. J

ProbNetKAT DPEs. Suppose one has two ProbNetKAT programs p and q and wishes to
decide if their support sets (where support is used in the discrete sense as the set given by
supp(µ) of points for which the distribution µ assigns positive mass). This could be used to
determine if q successfully avoids every set of paths through waypoints that p routes through,
regardless of the probability with which any permutation of waypoints is used. Perhaps
some of p’s route sets have been compromised, but exactly which ones are unknown. Or it
could serve as a preliminary test for equality of the programs’ distributions, as the decision
procedure for equality might be difficult, and is in fact unknown at the time of this writing;
certainly, if the supports are completely different, the distributions must also differ.

Or suppose that one wishes to check the size of the output set of a program on a given
input. Perhaps this would be to ensure that packets never get too congested by using too
few routes.

Unfortunately, the first of these problems is undecidable for fixed inputs with more than
one distinct head packet. This can be shown in a discrete distribution case by showing
that support intersection emptiness decides the emptiness of intersection of DPEs. The
same example can further be used to show that the second problem, determining output
size, is undecidable as well. These results do not reflect on the decidability of intersection
or output size of non-random NetKAT programs, however. NetKAT programs can in fact
be represented with regular sets of guarded strings [1] , so these two questions are easily
decidable in NetKAT.

To show this, we will construct an embedding for DPEs in ProbNetKAT. This embedding
will satisfy that w = (w1, w2, ...wn) is in a given DPE with alphabet Σ if and only if, given
the set {π1, π2...πn} to start, the corresponding ProbNetKAT program puts out the history
set {π1 :: w1, π2 :: w2, ...πn :: wn} with positive probability, where the set of packets Pk is
given by Σ ∪Π ∪Ψ, Π = {πi|1 ≤ i ≤ n}, and Ψ the appropriate packet set for the random
loop from earlier. The embedding g is defined inductively below on regular expressions over
a(i) ∈ Γ, which yield the appropriate DPEs under h.

g(ε) = [[skip]]

g(a(i)) = [[if πi? then a!; dup;πi! else skip]]

g(x · y) = g(y); g(x)

g(x+ y) = g(x)⊕ g(y)

g(x∗) = [[g(x)G0.5 ]]

I Theorem 2. The function g yields a valid embedding of DPEs into ProbNetKAT, i.e., for
a regular expression s on Γ, g satisfies that

(w1, ...wn) ∈ h(s)↔ g(s)({π1, ..., πn})({π1 :: w1, ..., πn :: wn}) > 0.

MFCS 2017



68:8 Undecidable Problems in ProbNetKAT

Proof. This follows routinely by induction on the structure of regular expressions. See the
appendix for the explicit proof. The trick is that each head packet acts as a label for its
history, denoting the index or track of the regular expression to which that history matches
in the DPE. J

I Theorem 3. For arbitrary a ∈ 2H and ProbNetKAT programs p and q, whether or not
supp([[p]](a)) ∩ supp([[q]](a)) = ∅ is undecidable.

Proof. Take the regular expressions X and Y from the section on DPEs. Because h(X)∩h(Y )
is undecidable (as was proved in the above section on DPEs), we find that
supp(g(X)({π1, π2})) ∩ supp(g(Y )({π1, π2})) = ∅ is also undecidable. This is an example of
the type of problem we wish to prove undecidable, so we are done. J

I Theorem 4. For arbitrary a ∈ 2H , n ∈ N, and ProbNetKAT program p, whether or not
∃b ∈ supp([[p]](a)) such that |b| = n is undecidable.

Proof. Take the regular expressions X and Y from the section on DPEs. Consider the
program given by [[g(X)&g(Y )]].

Recognize that the program made by g always outputs a set of size 2 given {π1, π2} as
input. No base operation of g changes the number of elements in the set it is given, so this
follows easily by induction. Then recall that the & operation essentially performs each of
its two arguments’ code independently, before taking the union of the results, respecting
probability. The union of the results of g(X) and g(Y ) on the input {π1, π2} is thus of size
2 with positive probability iff there is some output made by both programs with positive
probability, because the only way the union of two sets of the same finite size does not
go up in size is if the two sets are the same. This means if we could decide if no output
in the support was of size two, we could also decide the emptiness of support intersection.
Emptiness of support intersection is undecidable, so we also cannot decide if the program
[[g(X)&g(Y )]] given {π1, π2} has an output of size two in its support. J

I Theorem 5. For arbitrary a ∈ 2H , n ∈ N, and ProbNetKAT program p, whether or not
∃b ∈ supp([[p]](a)) such that |b| ≤ n is undecidable.

Proof. Consider the same set up as in theorem 4. Note again that the program made by g
always outputs a set of size 2 given {π1, π2} as input, and that the union of two sets is never
less than the size of the either set. Thus, all sets in the support of [[g(X)&g(Y )]]{π1, π2} are
of size 2 or more. If there was a set b in that support of size at most 2, it would in fact be of
size 2, and such a b of size 2 is of course size at most 2. Therefore, deciding if there is such b
of size at most 2 is precisely the same as deciding if there is such a b of size 2 exactly. It is
undecidable if there is such a set b of size 2, as proven in theorem 4, so it also undecideable
if there is a set of size at most 2. J

4.2 A PFA embedding
PFAs Probabilistic finite automata (PFAs), are the probabilistic extension of DFAs. Rather
than each transition deterministically moving from the current state to another state on a
given symbol, each transition moves to one of several states with specific probability. The
language, rather than being a set of strings, is a distribution on strings. This can be formally
defined with the tuple (Q,Σ,∆, q0, F ), where Q is a finite set of states, Σ is a finite set of
symbols, ∆ is a set of matrices, q0 is the starting state, and F represents the set of final
states. More specifically, ∆ is a set of square stochastic matrices ∆a indexed by states, such



D.M. Kahn 68:9

that for each a ∈ Σ, ∆a(x, y) is the probability that state x transitions to state y on input
symbol a. It will be useful as well to let q0 also stand in for the horizontal vector of zeroes
save for a one at index q0, and F stand in for the vertical vector of zeroes save for those
indices that are in F .

Using the notation that ∆w·w′ = ∆w ·∆w′ for w,w′ ∈ Σ∗, we can then define the word
distribution D(M) for a PFA M as the function from w ∈ Σ∗ to q0 ·∆w · F , which returns
the probability that w will be accepted. This can then be used to define the language of M
for a given threshold λ as follows.

Lλ(M) = {w ∈ Σ∗|D(M)(w) ≥ λ}

There are a few undecidable problems associated with PFAs from previous work on the
subject [6, 2], some of which are closely related. These include:

The emptiness problem: ∃w ∈ Σ∗.D(M)(w) ≥ λ
(Is the language empty for a given cutpoint?)
The strict emptiness problem: ∃w ∈ Σ∗.D(M)(w) > λ

(Is the strict variant of the language empty for a given cutpoint?)
The equality problem: ∃w ∈ Σ∗.D(M)(w) = 0.5
(Is there any word accepted exactly half the time?)
The isolation problem: ∃ε > 0.∀w ∈ Σ∗.|D(M)(w)− λ| ≥ ε
(Are there words that are accepted with probability arbitrarily close to a given value?)
The value 1 problem: ∃ε > 0.∀w ∈ Σ∗.D(M)(w) ≤ 1− ε
(Are there words that are accepted with arbitrarily high probability?)

Equivalence and certain kinds of approximations between PFAs, however, are decidable
[3, 7, 13]. This means equivalence and those approximations of PFAs will not be as useful here
for finding undecidable problems. Nor do they directly yield analagous decision procedures
for general ProbNetKAT programs, as the provided embedding does not fully encompass the
forms that ProbNetKAT programs can take.

ProbNetKAT PFAs. It is easy to create ProbNetKAT code that only does meaningful work
on certain input sets, like code that begins by dropping everything with a certain head packet.
This might arise in networking if some subset of the packets Pk are the only ones properly
formatted as request packets for the network, so any other packet is discarded. It is also easy
to create code that produces some output with some form of geometric distribution, as the
random loop does. For this reason, it would be useful to be able to compare a ProbNetKAT
program’s distribution on specific sets to a geometric distribution, to see whether or not they
are equal within a certain error, or whether one’s probabilities dominate the other’s.

One might also like to do the same sorts of comparisons between programs. Because
these are probabilistic algorithms, approximation within a certain error is often just as good
in application as actual equality. Determining whether one program’s distribution on certain
sets dominates another’s could be useful in a context where one is trying to improve successful
service probability. For such a case, suppose that one’s current neworking program drops
all packets (fails) with a positive probability, and that one wishes to improve it so that it
fails less often, but doesn’t lower the probability of any of its successful output. This would
be solved by determining if a candidate replacement program dominated the original on
non-empty outputs.

Unfortunately, because PFAs can be embedded in ProbNetKAT, these sorts of problems
are often undecidable. These problems also do not have any clear analogues in non-random
NetKAT, as they are intimately concerned with the properties of probability distributions.

MFCS 2017



68:10 Undecidable Problems in ProbNetKAT

The function g performs this embedding for a PFA M = (Q,Σ,∆, q0, F ). Define Pk =
Π ∪Ψ ∪ Σ, where Π = {πq|q ∈ Q}, Ψ as the image of Π under x ← false, 0 < r < 1, and
0 < s ≤ 1

|Σ| . Both Π and Ψ maintain their roles as given in section 3 for random looping.
We can then give g with the following, which works as will be described in theorem 6.

g(M) = [ &
q∈Q

if πq? then ⊕s
a∈Σ

a!; dup; (⊕∆a(q,t)
t∈Q

πt!) else drop]Gr ; ( &
f∈F

πf?);πq0 !

I Theorem 6. The function g yields a valid embedding of PFAs into ProbNetKAT, i.e., for
a PFA M , g satisfies that

g(M)({πq0})({πq0 :: rev(w)}) = (rs)|w| · (1− r) ·D(M)(w)

where rev(x) is the function that reverses x.

Proof. This validity of this statement can be seen by considering traversal through the code
dynamically. The head packet is used to record the state of the PFA, so it starts at the
packet corresponding to the starting state of the PFA, q0. The code then enters a random
loop. Each iteration of this loop starts by determining which state the configuration is in by
checking head packets, and picking a random letter/packet to add to the front of the history.
By putting letters on the front each time, the sequence of letters chosen is recorded as the
reverse of the packet history. If it randomly drops here instead of picking a letter, then every
branch of parallel execution will have dropped, so the code will output the empty set. If a
letter is picked and duped into the history, then, knowing which state the configuration is in
and which letter it chose, the code chooses a new head packet with probability in accordance
with ∆.

Thus each iteration of the loop corresponds to a transition in the PFA, and either
maintains a singleton set or drops to the empty set. For each iteration of the random loop
that doesn’t drop to the empty set, not only is the probability multiplied by r to continue,
but also by s to pick a letter, and further by the transition probability. If the sequence of
letters chosen after |w| iterations is the word w, then these transition probabilities multiply to
D(w) as in the PFA, for a total probability of (rs)|w|D(w) for having reached that iteration
with those choices. When the random loop finally exits, it does so with a probability 1− r,
for a total probability of (rs)|w|D(w) · (1− r).

After going through this loop some arbitrary number of times and finally exiting, the code
checks to see if the state is now a final state. If not, it drops, but if so, it standardizes the
head packet to that of the initial state. (Nothing here changes the probability.) Thus, any
non-empty outputs from the input {πq0} correspond to having reached a final state through
PFA transitions, and the history of the output is the reverse of the word that led there. J

I Theorem 7. For an aribtrary ProbNetKAT program p, a set of non-empty history sets
B, an arbitrary a ∈ 2H , arbitrary values u and v, and a function f taking a non-empty
set of histories to a linear combination of the contained histories’ lengths, whether or not
∃b ∈ B.[[p]](a)(b) ≥ u · vf(b), i.e., whether the distribution on non-empty outputs of p on input
a can be bounded by a geometric function of output history length, is undecidable.
Proof. Take the emptiness problem for PFAs on alphabet Σ. Translate it into ProbNetKAT
using g as follows, noting that the reverse of a word in w ∈ Σ∗ always exists and always is
the same length as w.

∃w ∈ Σ∗.D(M)(w) ≥ λ ⇐⇒ ∃w ∈ Σ∗.(rs)|w| · (1− r) ·D(M)(w) ≥ (rs)|w| · (1− r) · λ

⇐⇒ ∃w ∈ Σ∗.g(M)({πq0})({πq0 :: rev(w)}) ≥ (rs)|w| · (1− r) · λ

⇐⇒ ∃w ∈ Σ∗.g(M)({πq0})({πq0 :: w}) ≥ (rs)|w| · (1− r) · λ



D.M. Kahn 68:11

Because the emptiness problem for PFAs is undecidable, so is the statement on the final
line. Letting g(M) = p, a = {πq0}, B = {πq0 :: w|w ∈ Σ∗}, u = (1 − r)λ, v = rs, and
f(b) =

∑
h∈b |h|, we find that said statement is an example of the type of problem we are

trying to prove undecidable, so we are done. J

I Theorem 8. For an arbitrary ProbNetKAT programs p and q, an arbitrary a ∈ 2H , arbitrary
values u and v, and a function f taking a non-empty set of histories to a linear combination
of the contained histories’ lengths, whether or not ∃b ∈ B.|[[p]](a)(b)− [[q]](a)(b)| ≥ u · vf(b),
i.e., whether p’s distribution approximates q’s on non-empty outputs to within an error
exponentially decaying with history length, is undecidable.

Proof. Let q be the program [[drop]]. This program’s output distribution always assigns
probability 0 to non-empty sets.

∃b ∈ B.|[[p]](a)(b)− [[q]](a)(b)| ≥ u · vf(b) ⇐⇒ ∃b ∈ B.|[[p]](a)(b)− [[drop]](a)(b)| ≥ u · vf(b)

⇐⇒ ∃b ∈ B.|[[p]](a)(b)− 0| ≥ u · vf(b)

⇐⇒ ∃b ∈ B.[[p]](a)(b) ≥ u · vf(b)

The statement in the final line was shown undecidable in thoerem 7, so our desired
theorem is undecidable in the instance when q = [[drop]]. It is therefore undecidable. J

I Theorem 9. For an aribtrary ProbNetKAT program p, a set of non-empty history sets
B, an arbitrary a ∈ 2H , arbitrary values u and v, and a function f taking a non-empty
set of histories to a linear combination of the contained histories’ lengths, the following are
undecidable.
∃b ∈ B.[[p]](a)(b) > u · vf(b)

(Is p’s distribution on non-empty outputs bounded from above by a given geometric function
that changes with output history length?)
∃b ∈ B.[[p]](a)(b) = u · vf(b)

(Does p’s distribution on non-empty outputs ever coincide with a given geometric function
that changes with output history length?)
∃ε > 0.∀b ∈ B.|[[p]](a)(b)− u · vf(b)| ≥ u · vf(b) · ε
(Does p’s distribution on non-empty outputs get within an arbitrarily small scalar of a
given geometric function that changes with output history length?)
∃ε > 0.∀b ∈ B.[[p]](a)(b) ≤ u · vf(b) · (1− ε)
(Can p’s distribution on non-empty outputs be bounded from above by a scalar<1 of a
given geometric function that changes with output history length?)

Proof. Follow the same translation procedure as theorem 7. Starting from the strict emptiness
problem, equality problem, isolation problem, and value 1 problem for PFAs, respectively.
See the appendix for an explicit proof. J

I Theorem 10. For arbitrary ProbNetKAT programs p and q, a set of non-empty history
sets B, and arbitrary a ∈ 2H , the following are undecidable.
∃b ∈ B.[[p]](a)(b) ≥ [[q]](a)(b)
(Is p’s distribution on non-empty outputs bounded strictly from above (strongly dominated)
by q’s?)
∃b ∈ B.[[p]](a)(b) > [[q]](a)(b)
(Is p’s distribution on non-empty outputs bounded from above (weakly dominated) by q’s?)

MFCS 2017



68:12 Undecidable Problems in ProbNetKAT

∃b ∈ B.[[p]](a)(b) = [[q]](a)(b)
(Does p’s distribution on non-empty outputs ever coincide with q’s?)
∃ε > 0.∀b ∈ B.|[[p]](a)(b)− [[q]](a)(b)| ≥ [[q]](a)(b) · ε
(Does p’s distribution on non-empty outputs get within an arbitrarily small scalar of q’s?)
∃ε > 0.∀b ∈ B.[[p]](a)(b) ≤ [[q]](a)(b) · (1− ε)
(Can p’s distribution on non-empty outputs be bounded from above by a scalar<1 of q’s?)

Proof. Consider the following program p

[[p]] = [[(⊕s
a∈Σ

a!; dup)Gr ;πq0 !⊕λ drop]]

This program’s output distribution on input {πq0} is given for non-empty output sets by

[[p]]({πq0})({πq0 :: w}) = (rs)|w| · (1− r) · λ

This distribution is precisely the term that we showed was undecideably comparable to
arbitrary programs in theorems 7 and 9. Substituting that term, not with u · vf(b) as was
done in theorems 7 and 9, but rather with [[q]](a)(b), yields instances of each of the above
problems. As values were merely substituted for identical values, the statements are still
undecidable. Thus, each of the problems named are not generally decidable. J

5 Conclusion

By encoding the Post Correspondence Problem and various undecidable problems of probab-
ilistic finite automata, we have been able to show that various problems for ProbNetKAT
are undecidable. These include emptiness of support intersection, size of the output set,
dominance of distribution probabilities over other programs’, the satisfaction of geometric
distribution bounds, and more.

However, it is still open whether or not ProbNetKAT program equality is decidable.
NetKAT’s equality is decidable, and many useful networking problems like waypointing
are reducible to program equality. There is hope that the same power could be achieved
in ProbNetKAT. It is known that equality of ProbNetKAT programs is decidable if one
removes random choice (since that is just NetKAT), if one removes dup (which can be shown
with some linear algebra and Markov chains [11]), and if one removes the asterate (since
distributions become finite). It still remains to be seen if ProbNetKAT program equality
can be decided if all three are present. Unfortunately it may be the case that with all three
features, program equality becomes undecidable. In such an event, embeddings like those
shown here may be instrumental in proving undecidability.

Future work could also be done to determine if it is decidable whether one program
approximates another to within a constant error bound. Being probabilistic, this is often as
good as equality in application. We have shown here that it is undecidable on non-empty
outputs where the error decays exponentially with history length (theorem 8).

Acknowledgements. Thanks goes to Dexter Kozen for mentorship and support throughout
this project, Steffen Smolka for insightful discussions about ProbNetKAT and beyond, and
Eric Perdew for helpful revision. Additional thanks goes to the anonymous reviewers for
their valuable comments.



D.M. Kahn 68:13

References

1 Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter Kozen,
Cole Schlesinger, and David Walker. NetKAT: Semantic foundations for networks. In Proc.
41st ACM SIGPLAN-SIGACT Symp. Principles of Programming Languages (POPL’14),
pages 113–126, San Diego, California, USA, January 2014. ACM.

2 Vincent D Blondel, Vincent Canterini, et al. Undecidable problems for probabilistic auto-
mata of fixed dimension. Theory of Computing systems, 36(3):231–245, 2003.

3 Corinna Cortes, Mehryar Mohri, and Ashish Rastogi. On the Computation of Some Stand-
ard Distances Between Probabilistic Automata, pages 137–149. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2006. doi:10.1007/11812128_14.

4 Nate Foster, Dexter Kozen, Konstantinos Mamouras, Mark Reitblatt, and Alexandra Silva.
Probabilistic NetKAT. In Peter Thiemann, editor, 25th European Symposium on Program-
ming (ESOP 2016), volume 9632 of Lecture Notes in Computer Science, pages 282–309,
Eindhoven, The Netherlands, April 2016. Springer.

5 Nate Foster, Dexter Kozen, Matthew Milano, Alexandra Silva, and Laure Thompson. A
coalgebraic decision procedure for NetKAT. In Proc. 42nd ACM SIGPLAN-SIGACT Symp.
Principles of Programming Languages (POPL’15), pages 343–355, Mumbai, India, January
2015. ACM.

6 Hugo Gimbert and Youssouf Oualhadj. Probabilistic Automata on Finite Words: Decid-
able and Undecidable Problems, pages 527–538. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2010. URL: http://dx.doi.org/10.1007/978-3-642-14162-1_44, doi:10.1007/
978-3-642-14162-1_44.

7 Stefan Kiefer, Andrzej S. Murawski, Joël Ouaknine, Björn Wachter, and James Worrell.
On the Complexity of the Equivalence Problem for Probabilistic Automata, pages 467–481.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. doi:10.1007/978-3-642-28729-9_
31.

8 Dexter Kozen. Kleene algebra with tests and commutativity conditions. In T. Margaria and
B. Steffen, editors, Proc. Second Int. Workshop Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’96), volume 1055 of Lecture Notes in Computer Science,
pages 14–33, Passau, Germany, March 1996. Springer-Verlag.

9 Dexter Kozen. Kleene algebra with tests. Transactions on Programming Languages and
Systems, 19(3):427–443, May 1997.

10 Dexter Kozen. NetKAT: A formal system for the verification of networks. In Jacques
Garrigue, editor, Proc. 12th Asian Symposium on Programming Languages and Systems
(APLAS 2014), volume 8858 of Lecture Notes in Computer Science, Singapore, November
17–19 2014. Asian Association for Foundation of Software (AAFS), Springer.

11 Steffen Smolka, David Kahn, Praveen Kumar, and Nate Foster. Deciding probabilistic pro-
gram equivalence in NetKAT. http://www.cs.cornell.edu/~smolka/papers/mcnetkat.
pdf, 2017.

12 Steffen Smolka, Praveen Kumar, Nate Foster, Dexter Kozen, and Alexandra Silva. Cantor
meets Scott: Domain-theoretic foundations for probabilistic network programming. In Proc.
44th ACM SIGPLAN-SIGACT Symp. Principles of Programming Languages (POPL’17),
pages 557–571, Paris, France, January 2017. ACM.

13 Wen-Guey Tzeng. A polynomial-time algorithm for the equivalence of probabilistic auto-
mata. SIAM Journal on Computing, 21(2):216–227, 1992. doi:10.1137/0221017.

MFCS 2017

http://dx.doi.org/10.1007/11812128_14
http://dx.doi.org/10.1007/978-3-642-14162-1_44
http://dx.doi.org/10.1007/978-3-642-14162-1_44
http://dx.doi.org/10.1007/978-3-642-14162-1_44
http://dx.doi.org/10.1007/978-3-642-28729-9_31
http://dx.doi.org/10.1007/978-3-642-28729-9_31
http://www.cs.cornell.edu/~smolka/papers/mcnetkat.pdf
http://www.cs.cornell.edu/~smolka/papers/mcnetkat.pdf
http://dx.doi.org/10.1137/0221017


68:14 Undecidable Problems in ProbNetKAT

A Appendix

A.1 Theorem 2 in Detail
Theorem 2 The function g yields a valid embedding of DPEs into ProbNetKAT, i.e., for a
regular expression s on Γ, g satisfies that

w ∈ h(s)↔ g(s)({π1, ..., πn})({π1 :: w1, ..., πn :: wn}) > 0.

Proof. Define the predicate P (s) for regular expression s to denote that g validly embeds s.
We can then use induction on regular expressions to show that P holds for all expressions.

The base case expressions of our induction are the empty expression ε and each symbol
in the alphabet Σ.

To get the case of ε, note that the only element in the support of [[skip]]{π1, ..., πn} is
{π1, ..., πn} itself, which has no histories beyond the head packets. Any words made from
the histories must therefore be empty.

P (ε) :
w ∈ h(ε)↔ ∀i, wi = ε

↔ {π1, ..., πn} = {π1 :: w1, ..., πn :: wn}
↔ [[skip]]({π1, ..., πn})({π1 :: w1, ..., πn :: wn}) > 0
↔ g(ε)({π1, ..., πn})({π1 :: w1, ..., πn :: wn}) > 0

To get the case of the single symbol, note that the code again only leaves a single element
in the support:{π1, ..., πn} with a single new packet added to the history of a single head
packet. The only word made from such histories is thus that single symbol with the index of
the head packet it is behind.

P (a(i)) :
w ∈ h(a(i))↔ wi = a ∧ ∀j 6= i.wj = ε

↔ πi :: wi = πi :: a ∧ ∀j 6= i.πj :: wj = π

↔ [[ if πi? then a!; dup;πi! else skip]]({π1, ..., πn})({π1 :: w1, ..., πn :: wn}) > 0
↔ g(a(i))({π1, ..., πn})({π1 :: w1, ..., πn :: wn}) > 0

Now, assuming that the embedding is valid for smaller expressions x and y, we consider
the inductive steps for each of the operators: multiplication, addition, and asterate.

Note that adding new elements to the history stores them in the reverse order of their
addition, so we end up reversing the order of x and y terms. Further recall that the
computation done on a packet at a given point is determined solely by the head packet, not
the history, as no operation can read from the history. This allows us to prove the case of
multiplication as follows.

P (x · y) :
w ∈ h(x · y)↔ w ∈ h(x) · h(y)

↔ ∃u, v ∈ (Σ∗)n.u ∈ h(x) ∧ v ∈ h(y) ∧ u · v = w

↔ ∃u, v ∈ (Σ∗)n.g(x)({π1, ..., πn})({π1 :: u1, ..., πn :: un}) > 0
∧ g(y)({π1, ..., πn})({π1 :: v1, ..., πn :: vn}) > 0 ∧ u · v = w

↔ ∃u, v ∈ (Σ∗)n.[[g(y); g(x)]]({π1, ..., πn})({π1 :: u1 :: v1, ..., πn :: un :: vn}) > 0
∧ ∀i, ui · vi = wi

↔ [[g(y); g(x)]]({π1, ..., πn})({π1 :: w1, ..., πn :: wn}) > 0
↔ g(x · y)({π1, ..., πn})({π1 :: w1, ..., πn :: wn}) > 0



D.M. Kahn 68:15

The case of addition follows because scaling a probability by 0.5 does not change its
positivity.

P (x+ y) :
w ∈ h(x+ y)↔ w ∈ h(x) ∪ h(y)

↔ w ∈ h(x) ∨ w ∈ h(y)
↔ g(x)({π1, ..., πn})({π1 :: w1, ..., πn :: wn}) > 0
∨ g(y)({π1, ..., πn})({π1 :: w1, ..., πn :: wn}) > 0

↔ [[g(x)⊕0.5 g(y)]]({π1, ..., πn})({π1 :: w1, ..., πn :: wn}) > 0
↔ [[g(x+ y)]]({π1, ..., πn})({π1 :: w1, ..., πn :: wn}) > 0

Finally, the asterate case follows from recalling that the random loop is capable stopping
after any number of iterations, and always does so with a positive probability.

P (x∗) :

w ∈ h(x∗)↔ w ∈
⋃
n∈N

h(x)n

↔ ∃n ∈ N.w ∈ h(x)n

↔ ∃n ∈ N.[[g(x)n]]({π1, ..., πn})({π1 :: w1, ..., πn :: wn}) > 0

↔ [[g(x)G0.5 ]]({π1, ..., πn})({π1 :: w1, ..., πn :: wn}) > 0
↔ [[g(x∗)]]({π1, ..., πn})({π1 :: w1, ..., πn :: wn}) > 0

The validity of the embedding holds for all base elements and through all operations of
regular expressions on Γ. Thus, by induction, the validity of the embedding holds for all
regular expressions.

J

A.2 Theorem 9 in Detail
Theorem 9 For an aribtrary ProbNetKAT program p, a set of non-empty history sets B,
an arbitrary a ∈ 2H , arbitrary values u and v, and a function f taking a non-empty set
of histories to a linear combination of the contained histories’ lengths, the following are
undecidable.

∃b ∈ B.[[p]](a)(b) > u · vf(b)

(Is p’s distribution on non-empty outputs bounded from above by a given geometric
function that changes with output history length?)
∃b ∈ B.[[p]](a)(b) = u · vf(b)

(Does p’s distribution on non-empty outputs ever coincide with a given geometric function
that changes with output history length?)
∃ε > 0.∀b ∈ B.|[[p]](a)(b)− u · vf(b)| ≥ u · vf(b) · ε
(Does p’s distribution on non-empty outputs get within an arbitrarily small scalar of a
given geometric function that changes with output history length?)
∃ε > 0.∀b ∈ B.[[p]](a)(b) ≤ u · vf(b) · (1− ε)
(Can p’s distribution on non-empty outputs be bounded from above by a scalar<1 of a
given geometric function that changes with output history length?)

MFCS 2017



68:16 Undecidable Problems in ProbNetKAT

Proof. Take the strict emptiness problem for PFAs on alphabet Σ. Translate it into
ProbNetKAT using g as follows, noting that the reverse of a word in w ∈ Σ∗ always exists
and always is the same length as w.

∃w ∈ Σ∗.D(M)(w) > λ ⇐⇒ ∃w ∈ Σ∗.(rs)|w| · (1− r) ·D(M)(w) > (rs)|w| · (1− r) · λ

⇐⇒ ∃w ∈ Σ∗.g(M)({πq0})({πq0 :: rev(w)}) > (rs)|w| · (1− r) · λ

⇐⇒ ∃w ∈ Σ∗.g(M)({πq0})({πq0 :: w}) > (rs)|w| · (1− r) · λ

Because the strict emptiness problem for PFAs is undecidable, so is the statement on
the final line. Letting g(M) = p, a = {πq0}, B = {πq0 :: w|w ∈ Σ∗}, u = (1 − r)λ, v = rs,
and f(b) =

∑
h∈b |h|, we find that said statement is an example of the first type of problem

we are trying to prove undecidable, so we have proved that the first problem in the list is
undecidable.

Take the equality problem for PFAs on alphabet Σ. Translate it into ProbNetKAT using
g as follows.

∃w ∈ Σ∗.D(M)(w) = 0.5 ⇐⇒ ∃w ∈ Σ∗.(rs)|w| · (1− r) ·D(M)(w) = (rs)|w| · (1− r) · 0.5

⇐⇒ ∃w ∈ Σ∗.g(M)({πq0})({πq0 :: rev(w)}) = (rs)|w| · (1− r) · 0.5

⇐⇒ ∃w ∈ Σ∗.g(M)({πq0})({πq0 :: w}) = (rs)|w| · (1− r) · 0.5

Because the equality problem for PFAs is undecidable, so is the statement on the final
line. Letting g(M) = p, a = {πq0}, B = {πq0 :: w|w ∈ Σ∗}, u = (1 − r)/2, v = rs, and
f(b) =

∑
h∈b |h|, we find that said statement is an example of the second type of problem we

are trying to prove undecidable, so we have proved that the second problem in the list is
undecidable.

Take the isolation problem for PFAs on alphabet Σ. Pick an instance with a positive λ.
Translate it into ProbNetKAT using g as follows.

∃ε > 0.∀w ∈ Σ∗.|D(M)(w)− λ| ≥ ε

⇐⇒ ∃ε > 0.∀w ∈ Σ∗.(rs)|w| · (1− r) · |D(M)(w)− λ| ≥ (rs)|w| · (1− r) · ε

⇐⇒ ∃ε > 0.∀w ∈ Σ∗.|g(M)({πq0})({πq0 :: rev(w)})− (rs)|w| · (1− r) · λ| ≥ (rs)|w| · (1− r) · ε

⇐⇒ ∃ε > 0.∀w ∈ Σ∗.|g(M)({πq0})({πq0 :: w})− (rs)|w| · (1− r) · λ| ≥ (rs)|w| · (1− r) · ε

At this point, let u = (1− r)λ and v = rs. Continue by substituting these variables into
the final line, and note that for every ε/λ > 0 there exists ε′ = ε/λ > 0.

∃ε > 0.∀w ∈ Σ∗.|g(M)({πq0})({πq0 :: w})− (rs)|w| · (1− r) · λ| ≥ (rs)|w| · (1− r) · ε

⇐⇒ ∃ε > 0.∀w ∈ Σ∗.|g(M)({πq0})({πq0 :: w})− u · v|w|| ≥ u · v|w| · ε/λ

⇐⇒ ∃ε > 0.∀w ∈ Σ∗.|g(M)({πq0})({πq0 :: w})− u · v|w|| ≥ u · v|w| · ε

Because the isolation problem for PFAs is undecidable, so is the statement on the final
line. Letting g(M) = p, a = {πq0}, B = {πq0 :: w|w ∈ Σ∗}, and f(b) =

∑
h∈b |h|, we find that

said statement is an example of the third type of problem we are trying to prove undecidable,
so we have proved that the third problem in the list is undecidable.



D.M. Kahn 68:17

Take the value 1 problem for PFAs on alphabet Σ. Pick an instance with a positive λ.
Translate it into ProbNetKAT using g as follows.

∃ε > 0.∀w ∈ Σ∗.D(M)(w) ≤ 1− ε

⇐⇒ ∃ε > 0.∀w ∈ Σ∗.(rs)|w| · (1− r) ·D(M)(w) ≤ (rs)|w| · (1− r) · (1− ε)

⇐⇒ ∃ε > 0.∀w ∈ Σ∗.g(M)({πq0})({πq0 :: rev(w)}) ≤ (rs)|w| · (1− r) · (1− ε)

⇐⇒ ∃ε > 0.∀w ∈ Σ∗.g(M)({πq0})({πq0 :: w}) ≤ (rs)|w| · (1− r) · (1− ε)

Because the value 1 problem for PFAs is undecidable, so is the statement on the final
line. Letting g(M) = p, a = {πq0}, B = {πq0 :: w|w ∈ Σ∗}, u = (1 − r)λ, v = rs, and
f(b) =

∑
h∈b |h|, we find that said statement is an example of the final type of problem we

are trying to prove undecidable, so we are done. J

MFCS 2017





Computational Complexity of Graph Partition
underVertex-Compaction to an Irreflexive
Hexagon
Narayan Vikas

School of Computing Science, Simon Fraser University, Burnaby, BC, Canada
vikas@cs.sfu.ca

Abstract
In this paper, we solve a long-standing graph partition problem under vertex-compaction that has
been of interest since about 1999. The graph partition problem that we consider in this paper
is to decide whether or not it is possible to partition the vertices of a graph into six distinct
non-empty sets A, B, C, D, E, and F , such that the vertices in each set are independent, i.e.,
there is no edge within any set, and an edge is possible but not necessary only between the
pairs of sets A and B, B and C, C and D, D and E, E and F , and F and A, and there is no
edge between any other pair of sets. We study the problem as the vertex-compaction problem
for an irreflexive hexagon (6-cycle). Determining the computational complexity of this problem
has been a long-standing problem of interest since about 1999, especially after the results of
open problems obtained by the author on a related compaction problem appeared in 1999. We
show in this paper that the vertex-compaction problem for an irreflexive hexagon is NP-complete.
Our proof can be extended for larger even irreflexive cycles, showing that the vertex-compaction
problem for an irreflexive even k-cycle is NP-complete, for all even k ≥ 6.

1998 ACM Subject Classification Computations on Discrete Structures, Graph Algorithms

Keywords and phrases computational complexity, algorithms, graph, partition, colouring, ho-
momorphism, retraction, compaction, vertex-compaction

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.69

1 Introduction

The vertex-compaction problem and the compaction problem are special graph colouring
problems, and can also be viewed as graph partition problems. The colouring problem
is a classic problem in graph theory. The graph homomorphism problem, also called the
H-colouring problem, is a generalization of the colouring problem. The vertex-compaction
problem is the graph homomorphism problem with additional constraints. The compaction
problem is the vertex-compaction problem with additional constraints. We describe our
motivation and results after introducing the following definitions and problems.

1.1 Definitions
The pair of vertices of an edge in a graph are called the endpoints of the edge. An edge with
the same endpoints in a graph is called a loop. A vertex v of a graph is said to have a loop if
vv is an edge of the graph. A reflexive graph is a graph in which every vertex has a loop.
An irreflexive graph is a graph in which no vertex has a loop. Any graph, in general, is a
partially reflexive graph, in which its vertices may or may not have loops. Thus reflexive and
irreflexive graphs are special partially reflexive graphs. A bipartite graph G is a graph whose

© Narayan Vikas;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 69; pp. 69:1–69:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.69
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


69:2 Vertex-Compaction to an Irreflexive Hexagon

vertex set can be partitioned into two distinct subsets GA and GB , such that each edge of G

has one endpoint in GA and the other endpoint in GB ; we say that (GA, GB) is a bipartition
of G. Thus a bipartite graph is irreflexive by definition. If uv is an edge of a graph then
vu is also an edge of the graph, i.e., we assume graphs to be undirected graphs. A cycle of
length k is called a k-cycle, k ≥ 3. A hexagon will be used as a synonym for a 6-cycle. We
shall denote an irreflexive k-cycle by Ck.

Let G be a graph. We use V (G) and E(G) to denote the vertex set and the edge set
of G respectively. Given an induced subgraph H of G, we denote by G−H, the subgraph
obtained by deleting from G the vertices of H together with the edges incident with them;
thus G−H is a subgraph of G induced by V (G)− V (H). The vertices in a set I ⊆ V (G)
are said to be independent if there is no edge in the subgraph of G induced by I. When a
set S is an argument of a mapping f , we define f(S) = {f(s)|s ∈ S}. The distance between
a pair of vertices u and v in G, denoted as dG(u, v) or dG(v, u), is the length of a shortest
path from u to v in G, if u and v are connected in G; we define dG(u, v) (and dG(v, u)) to
be infinite, if u and v are disconnected in G. The diameter of G is the maximum distance
between any two vertices in G. The distance between two sets X and Y of vertices in G,
denoted as dG(X, Y ) or dG(Y, X), is the minimum distance between any vertex of X and
any vertex of Y in G, i.e., dG(X, Y ) = min{dG(x, y)|x ∈ X, y ∈ Y }, where min A gives the
minimum element in a set A. If a set has only one vertex, we may just write the vertex
instead of the set. In the following, let G and H be graphs.

A homomorphism f : G → H, of G to H, is a mapping f of the vertices of G to the
vertices of H, such that if g and g′ are adjacent vertices of G then f(g) and f(g′) are adjacent
vertices of H. If there exists a homomorphism of G to H then G is said to be homomorphic
to H. Note that if G is irreflexive then G is k-colourable if and only if G is homomorphic to
the irreflexive complete graph Kk having k vertices. Thus the concept of a homomorphism
generalises the concept of a k-colourability, and the H-colouring problem is to decide whether
or not G is homomorphic to H. The H-colouring problem is trivial and easily seen to be
polynomial time solvable if H is bipartite or H has a loop. For any fixed non-bipartite
irreflexive graph H, it is shown in [Hell and Nesetril, 1990] that the H-colouring problem is
NP-complete.

A compaction c : G→ H, of G to H, is a homomorphism of G to H, such that for every
vertex x of H, there exists a vertex v of G with c(v) = x, and for every edge hh′ of H, h 6= h′,
there exists an edge gg′ of G with c(g) = h and c(g′) = h′. Note that the first part of the
definition for a compaction (the requirement for every vertex x of H) follows from the second
part unless H has isolated vertices. If there exists a compaction of G to H then G is said
to compact to H. Given a compaction c : G→ H, if for a vertex v of G, we have c(v) = x,
where x is a vertex of H, then we say that the vertex v of G covers the vertex x of H under
c; and if for an edge gg′ of G, we have c({g, g′}) = {h, h′}, where hh′ is an edge of H, then
we say that the edge gg′ of G covers the edge hh′ of H under c (note in the definition of
compaction, it is not necessary that a loop of H be covered by any edge of G under c).

We notice that the notion of a homomorphic image described in [Harary, 1969] (also cf.
[Hell & Miller, 1979]) coincides with the notion of a compaction in case of irreflexive graphs
(i.e., when G and H are irreflexive in the above definition for compaction).

A vertex-compaction c : G → H, of G to H, is a homomorphism of G to H, such
that for every vertex x of H there exists a vertex v of G with c(v) = x. If there exists a
vertex-compaction of G to H then G is said to vertex-compact to H. We define vertex and
edge covering under a vertex-compaction c similarly as for a compaction. Note that every
compaction is also a vertex-compaction.



Narayan Vikas 69:3

A retraction r : G → H, of G to H, with H as an induced subgraph of G, is a
homomorphism of G to H, such that r(h) = h, for every vertex h of H. If there exists a
retraction of G to H then G is said to retract to H. Note that every retraction r : G→ H is
necessarily also a compaction, and hence a vertex-compaction.

1.2 Vertex-Compaction, Compaction, and Retraction Problems

The problem of deciding the existence of a vertex-compaction to a fixed graph H, called the
vertex-compaction problem for H, and denoted as VCOMP-H, asks whether or not an input
graph G vertex-compacts to H.

Our graph partition problem is to decide whether or not it is possible to partition the
vertices of a graph into six distinct non-empty sets A, B, C, D, E, and F , such that the
vertices in each of these sets are independent, and an edge is possible but not necessary only
between the pairs of sets A and B, B and C, C and D, D and E, E and F , and F and
A, and there is no edge between any other pair of sets. We note that our graph partition
problem is the problem VCOMP-C6.

The problem of deciding the existence of a compaction to a fixed graph H, called the
compaction problem for H, and denoted as COMP-H, asks whether or not an input graph G

compacts to H. The compaction problem is a well studied problem over last several years,
and includes some popular problems. Results on the compaction problem can be found in
[Vikas, 1999, 2002, 2003, 2004a, 2004b, 2004c, 2005, 2011, 2013].

Note that unlike the H-colouring problem, the problems VCOMP-H and COMP-H are
still interesting if H is bipartite or H has a loop. Some work on graph partition problems
have also been studied in [Feder, Hell, Klein, and Motwani, 1999, 2003] and [Hell, 2014].

The problem of deciding the existence of a retraction to a fixed graph H, called the
retraction problem for H, and denoted as RET-H, asks whether or not an input graph G,
containing H as an induced subgraph, retracts to H. Retraction problems have been of
continuing interest in graph theory for a long time and have been studied in various literature
including [Hell, 1972], [Hell, 1974], [Nowakowski and Rival, 1979], [Pesch and Poguntke, 1985],
[Bandelt, Dahlmann, and Schutte, 1987], [Hell and Rival, 1987], [Pesch, 1988], [Bandelt,
Farber, and Hell, 1993], [Feder and Hell, 1998], [Feder and Vardi, 1993, 1998], [Feder, Hell,
and Huang, 1999], [Vikas, 2004b, 2004c, 2005], etc.

1.3 Motivation and Results

It can be shown that for every fixed graph H, if the problem COMP-H is solvable in
polynomial time then the problem VCOMP-H is also solvable in polynomial time (similarly
as in [Vikas, 2004b]). Whether the converse is true is not known. The problem COMP-C6
is shown to be NP-complete in [Vikas, 1999, 2004a]. It turns out that the unique smallest
bipartite graph H for which COMP-H is NP-complete is C6 [Vikas, 2004a]. Therefore, with
respect to the preceding question on converse, we are motivated to specifically determine
the computational complexity of our partition problem VCOMP-C6, to see whether like
COMP-C6, it is also NP-complete in support of the converse. We show in this paper that
VCOMP-C6 is NP-complete. Determining the computational complexity of VCOMP-C6 has
been a long-standing problem of interest since about 1999, especially after results on the
computational complexity of COMP-C6 obtained by the author appeared in 1999 [Vikas,
1999]. Determining the computational complexity of COMP-C6 was also a long-standing
problem of interest since about 1988, solved by the author in [Vikas, 1999, 2004a]. Although

MFCS 2017



69:4 Vertex-Compaction to an Irreflexive Hexagon

the problem VCOMP-C6 is only a little variation of the problem COMP-C6, it turns out to
be another difficult problem to determine its computational complexity.

Similarly, our motivation for the partition problem COMP-C6 was with respect to the
retraction problem. It can be shown that for every fixed graph H, if the problem RET-H
is polynomial time solvable then the problem COMP-H is also polynomial time solvable
[Vikas, 2004b]. However, whether the converse is true is again not known. As discussed in
[Vikas, 1999, 2003], the question on converse was also asked by Peter Winkler in 1988 in
the context of reflexive graphs, and this was the general problem that motivated Winkler
for asking the computational complexity of COMP-H when H is a reflexive square, as the
unique smallest reflexive graph H for which RET-H is NP-complete is a reflexive square.
It has been shown in [Vikas, 1999, 2003] that when H is a reflexive square, COMP-H is
NP-complete. As discussed in [Vikas, 2004a], since the unique smallest bipartite graph H for
which RET-H is NP-complete is C6, we are therefore motivated, with respect to the above
question on converse, to know whether the problem COMP-C6 is also NP-complete like the
problem RET-C6 supporting the converse. As mentioned above, it is shown in [Vikas, 1999,
2004a] that COMP-C6 is NP-complete.

The problem RET-C6 is shown to be NP-complete in [Feder, Hell, and Huang, 1999], and
also independently by G. MacGillivray in 1988. Since C4 is a complete bipartite graph, it is
easy to see that RET-C4, and hence COMP-C4 and also VCOMP-C4, are all polynomial
time solvable. In fact, when H is a chordal bipartite graph (which includes C4), the problem
RET-H is polynomial time solvable [Bandelt, Dahlmann, and Schutte, 1987], and hence
COMP-H and VCOMP-H are also polynomial time solvable. Thus it follows that the unique
smallest bipartite graph H for which RET-H, COMP-H, and VCOMP-H are NP-complete is
C6.

It has been shown in [Hell and Nesetril, 1990] that the H-colouring problem is NP-
complete for any fixed irreflexive non-bipartite graph H. It follows that RET-H, COMP-H,
and VCOMP-H are also NP-complete for any non-bipartite irreflexive graph H, which
includes an irreflexive odd k-cycle, for all k ≥ 3.

As we mentioned earlier, the H-colouring problem is trivial and easily seen to be polynomial
time solvable when H is a bipartite graph. The natural question for bipartite graphs H, which
motivated Pavol Hell and Jaroslav Nesetril (personal communications) around 1988, was to
ask for the computational complexity of the H-colouring problem with added constraints,
namely the problem COMP-H, and in particular for the problem COMP-C6.

It can also be shown that for every fixed graph H, if the problem RET-H is polynomial
time solvable then the problem VCOMP-H is also polynomial time solvable (similarly as
in [Vikas, 2004b]), but whether the converse is true is not known. Hence, once again, in
relation to the converse and the problem RET-C6, we are motivated to know whether the
problem VCOMP-C6 is NP-complete.

The algorithms given in [Vikas, 2011, 2013] yield a polynomial time algorithm for VCOMP-
C6 for any input graph of diameter more than four, and it is suggested in [Vikas, 2011, 2013]
as a guidance that an input graph of diameter four could be a candidate for VCOMP-C6
to be possibly NP-complete. We are thus motivated to see whether VCOMP-C6 is indeed
NP-complete for an input graph of diameter four, guided by the algorithmic aspects of the
vertex-compaction problem studied in [Vikas, 2011, 2013]. The instance of the input graph
for which we show VCOMP-C6 to be NP-complete in this paper is indeed of diameter four.

Our proof and technique of construction for C6 can be extended for larger irreflexive
even cycles to show that VCOMP-Ck is NP-complete, for all even k ≥ 6. Our proof showing
NP-completeness of VCOMP-C6 directly uses graphs that we construct just by adding vertices



Narayan Vikas 69:5

4
h
5

hh
1

h

hh
0 3

2

Figure 1 Irreflexive Hexagon H

and edges. Our graphs therefore lay down the foundation for construction of graphs for the
case of a general irreflexive even k-cycle, by extending the paths constructed and adding
edges appropriately, showing NP-completeness of VCOMP-Ck, for all even k ≥ 6.

In Section 2, we present the proof showing NP-completeness of deciding the existence of
a vertex-compaction to an irreflexive hexagon, i.e., the problem VCOMP-C6. In Section 3,
we address how our NP-completeness proof of VCOMP-C6 can be extended for an irreflexive
even k-cycle, showing NP-completeness of VCOMP-Ck, for all even k ≥ 6.

2 Vertex-Compaction to an Irreflexive Hexagon

I Theorem 2.1. The problem of deciding the existence of a vertex-compaction to an irreflexive
hexagon is NP-complete.

Proof. Let H be the irreflexive hexagon h0h1h2h3h4h5h0 shown in Figure 1.
We shall prove that the problem of deciding the existence of a vertex-compaction to H,

i.e., the problem VCOMP-H, is NP-complete. Clearly, the problem VCOMP-H is in NP. We
give a polynomial transformation from the problem RET-H to VCOMP-H. As mentioned
earlier, it is known that the problem RET-H is NP-complete. Since only a bipartite graph
can be homomorphic to H, the problem RET-H remains to be NP-complete if the instance
of RET-H is restricted to be only a bipartite graph.

Let a bipartite graph G, containing H as an induced subgraph, be an instance of RET-H.
We construct in time polynomial in the size of G, a graph G′, containing G as an induced
subgraph, such that the following statements (i), (ii), and (iii) are equivalent:
(i) G retracts to H.
(ii) G′ retracts to H.
(iii) G′ vertex-compacts to H.
Since RET-H, with the instance restricted to be a bipartite graph, is NP-complete, this
shows that VCOMP-H is also NP-complete. We prove that (i) is equivalent to (ii), and (ii)
is equivalent to (iii), in two separate lemmas, Lemma 2.2 and Lemma 2.3, respectively.

One of the main challenges is to construct such a graph of diameter four. Let (GA, GB)
be a bipartition of G, and (HA, HB) be a bipartition of H, with HA ⊆ GA, and HB ⊆ GB.
We shall assume for convenience that h0 ∈ HB .

The construction of G′ is as follows. For each vertex a ∈ GA −HA, we add a new vertex
za adjacent to a and h1. For every pair of vertices a and b, with a ∈ GA−HA, b ∈ GB −HB ,
we add a new vertex zab adjacent to za and b. Thus for each a ∈ GA −HA, we have paths
azazabb, azazab′b′, for all b, b′ ∈ GB −HB . See Figure 2. In the figure, we have taken three
distinct vertices a, a′, and a′′ of GA−HA, and three distinct vertices b, b′, and b′′ of GB−HB .
Also, in the figures in this section, we are not depicting any edge that may be present between
a vertex of GA −HA and a vertex of GB −HB .

MFCS 2017



69:6 Vertex-Compaction to an Irreflexive Hexagon

z
ab b

z

z

ab’ b’

ab’’ b’’

a’

z

z

z

a’
z

a
z

a’b

a’b’

a’b’’

b

b’

b’’

a’’

a

z

z

z

z
a’’

a’’b

a’’b’

a’’b’’

b

b’

b’’

h
1

z

z

z

a

a’

a’’

Figure 2 Construction of G′, with za and zab, for every pair of vertices a and b, with a ∈ GA−HA,
b ∈ GB −HB

In the graph G′ constructed so far, the maximum distance between any pair of vertices
in V (G′)− V (H) is already four, i.e., dG′(v, v′) ≤ 4, with v, v′ ∈ V (G′)− V (H). This can
be observed due to the following paths and subpaths within those paths of length at most
four : azazabbza′b, zabzazab′b′za′b′ , azah1za′a′, bzabzazab′b′.

If we constructed the graph G′ including the vertices of H also, i.e., if we constructed G′

for every pair of vertices a and b, with a ∈ GA, b ∈ GB then the diameter of G′ would be
four.

We continue further with the construction of G′. For each vertex b ∈ GB −HB , we add
a new vertex xb adjacent to zab and h5, for all a ∈ GA −HA. For every pair of vertices a

and b, with a ∈ GA −HA, b ∈ GB −HB, we add a new vertex xba adjacent to xb and za.
Thus for each b ∈ GB −HB , we have paths zabxbxbaza, za′bxbxba′z′

a, for all a, a′ ∈ GA −HA.
See Figure 3.



Narayan Vikas 69:7

h

z

z

z

x
ab

a’b

a’’b

x
b

ba

x

x

ba’

ba’’

z

z

z

a

a’

a’’

x
b’

z

z

z

ab’

a’b’

a’’b’

x

x

x

b’a

b’a’

b’a’’

z

z

z

a

a’

a’’

z

z

z

x

x

x

x

b’’

ab’’

a’b’’

a’’b’’

b’’a

b’’a’

b’’a’’

z

z

z

a

a’

a’’

5

x

x

x

b

b’

b’’

Figure 3 Construction of G′, with xb and xba, for every pair of vertices a and b, with a ∈ GA−HA,
b ∈ GB −HB

The maximum distance between any pair of vertices in V (G′)− V (H) is still four. This
can be observed due to the following paths and subpaths within those paths of length at
most four : xbaxbxba′za′xb′a′ , xbaxbxba′za′za′b′ , xbaxbxba′za′a′, xbxbazazab′b′.

For each vertex a ∈ GA − HA (hence dG(h0, a) is odd as we are assuming that h0 ∈
HB ⊆ GB), we add to G new vertices ua

1 adjacent to h0; ua
2 adjacent to ua

1 , a, and h1; wa
1

adjacent to h3, ua
1 , and a; ya

1 adjacent to h1, ua
1 , and a; ya

2 adjacent to ya
1 , h4, wa

1 , and ua
2 .

See Figure 4. Note that there could be edges in G from a to some vertices of H but in
Figure 4, we are not depicting these edges.

For each vertex b ∈ GB − HB (hence dG(h0, b) is even), we add to G new vertices ub
1

adjacent to h0 and b; wb
1 adjacent to h3 and ub

1; wb
2 adjacent to wb

1, b, and h2; yb
1 adjacent to

h5, ub
1, and wb

2; yb
2 adjacent to yb

1, h2, wb
1, and b. See Figure 5. There could be edges in G

from b to some vertices of H but in Figure 5, we are not depicting these edges.

MFCS 2017



69:8 Vertex-Compaction to an Irreflexive Hexagon

4
h
5

a

auu a
2 1

w a
1y a

1

y a

2

hh
1

h

2

h
3

0
h

Figure 4 Construction of G′ for a vertex a in GA −HA

4
h
5

u
1

w
1

b

bb w b
2

y b
1

y b
2

hh
1

h

2

h
0

3
h

Figure 5 Construction of G′ for a vertex b in GB −HB

For every vertex a ∈ GA −HA, we further make za adjacent to ua
1 and ya

2 . For every pair
of vertices a and b, with a ∈ GA −HA, b ∈ GB −HB , we further also make zab adjacent to
wb

1 and yb
1.

For every vertex b ∈ GB −HB , we also further make xb adjacent to ub
1, yb

2, and wb
2. For

every pair of vertices a and b, with a ∈ GA−HA, b ∈ GB−HB , we further make xba adjacent
to wa

1 , ya
1 , and ua

2 . See Figure 6.
This completes the construction of G′. The diameter of the graph G′ is four. We now

prove the following two lemmas in order to prove the theorem.

I Lemma 2.2. G retracts to H if and only if G′ retracts to H.

Proof. If G′ retracts to H then it is clear that G also retracts to H, as G is a subgraph of
G′. Now suppose that G retracts to H, and let r : G → H be a retraction. We define a
retraction r′ : G′ → H as follows.

We define r′ for the vertices v of G (that are also vertices of G′) as
r′(v) = r(v).

We define r′ for the newly added vertices of G′, with a ∈ GA −HA, as follows.



Narayan Vikas 69:9

u a

y a

w a
1 1

y a
12

u a
2

a

x
ba

z
a ab

z
b

bu
1

y b
2

w b
2

w b
1

y b
1

x
b

Figure 6 Construction of G′ for a pair of vertices a and b, with a ∈ GA −HA, b ∈ GB −HB

If r(a) = h1 or h3, then we define
r′(ua

1) = h1, r′(ua
2) = h2,

r′(wa
1) = h2,

r′(ya
1 ) = h2, r′(ya

2 ) = h3,
r′(za) = h2.

If r(a) = h5, then we define
r′(ua

1) = h5, r′(ua
2) = h0,

r′(wa
1) = h4,

r′(ya
1 ) = h0, r′(ya

2 ) = h5,
r′(za) = h0.

We define r′ for the newly added vertices of G′, with b ∈ GB −HB , as follows.
If r(b) = h0 or h2, then we define

r′(ub
1) = h1,

r′(wb
1) = h2, r′(wb

2) = h1,
r′(yb

1) = h0, r′(yb
2) = h1,

r′(xb) = h0.
If r(b) = h4, then we define

r′(ub
1) = h5,

r′(wb
1) = h4, r′(wb

2) = h3,
r′(yb

1) = h4, r′(yb
2) = h3,

r′(xb) = h4.
We define r′ for the vertices zab and xba of G′, with a ∈ GA −HA, b ∈ GB −HB , as follows.
If r(a) = h1 or h3, and r(b) = h0 or h2, then we define

r′(zab) = h1, r′(xba) = h1.
If r(a) = h1 or h3, and r(b) = h4, then we define

r′(zab) = h3, r′(xba) = h3.
If r(a) = h5, and r(b) = h0 or h2, then we define

r′(zab) = h1, r′(xba) = h5.
If r(a) = h5, and r(b) = h4, then we define

r′(zab) = h5, r′(xba) = h5.

We now verify that r′ : G′ → H is indeed a homomorphism (and hence a retraction). We
do this by considering all the edges ab of G′, and proving that r′(a)r′(b) is an edge of H.
Before verifying, we point out that, as far as C6 is concerned, we could use the vertices ya

1

MFCS 2017



69:10 Vertex-Compaction to an Irreflexive Hexagon

and yb
1 instead of the vertices za and xb, respectively, but we have continued to keep za and

xb, as construction similar to them would be needed in the construction for larger cycles,
with a ∈ GA −HA, b ∈ GB −HB .

Consider first an edge gg′, with gg′ ∈ E(G). We have from our definition of r′ that
r′(g) = r(g) and r′(g′) = r(g′). Since r : G→ H is a homomorphism, r(g)r(g′) must be an
edge of H. Hence r′(g)r′(g′) = r(g)r(g′) is an edge of H.

Now consider the edges ua
1h0, ua

2h1, ub
1h0, wa

1h3, wb
1h3, wb

2h2, ya
1 h1, ya

2 h4, yb
1h5, yb

2h2,
zah1, and xbh5, with a ∈ GA − HA, b ∈ GB − HB. From the definition of r′, we have
r′(hi) = r(hi) = hi, for all i = 0, 1, 2, 3, 4, 5. Depending on the value of r(a), we note from
our definition of r′ that r′(ua

1) = h1 or h5, r′(ua
2) = h2 or h0, r′(wa

1) = h2 or h4, r′(ya
1 ) = h2 or

h0, r′(ya
2 ) = h3 or h5, and r′(za) = h2 or h0. Hence r′(ua

1)r′(h0), r′(ua
2)r′(h1), r′(wa

1)r′(h3),
r′(ya

1 )r′(h1), r′(ya
2 )r′(h4), and r′(za)r′(h1) are always edges of H. Similarly, depending on

the value of r(b), from our definition of r′, we have r′(ub
1) = h1 or h5, r′(wb

1) = h2 or
h4, r′(wb

2) = h1 or h3, r′(yb
1) = h0 or h4, r′(yb

2) = h1 or h3, and r′(xb) = h0 or h4. Thus
r′(ub

1)r′(h0), r′(wb
1)r′(h3), r′(wb

2)r′(h2), r′(yb
1)r′(h5), r′(yb

2)r′(h2), and r′(xb)r′(h5) are always
edges of H.

The remaining edges of G′ can also be verified. Since r′(h) = r(h) = h, for all h ∈ V (H),
the homomorphism r′ : G′ → H is a retraction. We have thus proved the lemma. J

I Lemma 2.3. G′ retracts to H if and only if G′ vertex-compacts to H.

Proof. If G′ retracts to H then by definition G′ vertex-compacts to H. Now suppose that
G′ vertex-compacts to H. We shall prove that G′ also retracts to H. Let c : G′ → H be
a vertex-compaction. We let U = {uv

1|v ∈ V (G − H)} ∪ {h1, h0, h5} and W = {wv
1 |v ∈

V (G−H)} ∪ {h2, h3, h4}.
Since h0 is adjacent to every other vertex in U , and G′ is bipartite, the subgraph of G′

induced by the vertices in U is of diameter two. Hence, the vertices of c(U) induce a path
of length one or two in H, as H is irreflexive. Thus c(U) has either two or three vertices.
Similarly, c(W ) has either two or three vertices. We shall prove that c(U) and c(W ) both
have three vertices.

Suppose that c(U) has only two vertices. Then we know that the vertices in c(U) are
adjacent in H. Without loss of generality, let c(U) = {h0, h1} and c(h0) = h0 (due to
symmetry of vertices in H). Hence c(U − {h0}) = {h1}. We note that dG′(U − {h0}, g) < 3,
for all g ∈ V (G′). Hence dG′(U −{h0}, g) < dH(c(U −{h0}) = h1, h4) = 3, for all g ∈ V (G′).
This implies that c(g) 6= h4, for all g ∈ V (G′), which is impossible, as c : G′ → H is
a vertex-compaction. Hence it must be that c(U) has three vertices. We also note that
dG′(W − {h3}, g) < 3, for all g ∈ V (G′), and hence, similarly, it must be that c(W ) also has
three vertices.

Thus c(U) and c(W ) both induce paths having three vertices in H. Without loss of
generality, let c(U) = {h1, h0, h5} (due to symmetry). This implies that c(h0) = h0. We
first prove that c(h3) = h3. We note that the diameter of G′ is 4, and hence our vertex-
compaction c : G′ → H must also be a compaction, as otherwise the diameter of G′ will
be greater than 4. Let some edge gg′ of G′ cover the edge h3h4 or h3h2 of H under c,
with c(g) = h3 and c(g′) = h4 or h2 (indeed there exists such an edge in G′, as the vertex-
compaction c is also a compaction). We note that h3 is at distance 2 from c(U) in H, as
dH(c(U), h3) = dH(h1, h3) = 2. Further, both h4 and h2 are at distance 1 from c(U) in H,
as dH(c(U), h4) = dH(h5, h4) = 1, and dH(c(U), h2) = dH(h1, h2) = 1. Thus it must be that
dG′(U, g) ≥ 2 and dG′(U, g′) ≥ 1. Since there is no vertex at distance more than 2 from U in
G′, we have dG′(U, g) = 2 and dG′(U, g′) = 1 or 2. Further, since G′ is bipartite, it must be
that dG′(U, g) = 2 and dG′(U, g′) = 1.



Narayan Vikas 69:11

We note that the only vertices that could possibly be at distance 1 from U in G′, as
possible candidates for g′, are : h2, h4, wa

1 , wb
1, ya

1 , yb
1, ua

2 , b, za, and xb, with a ∈ GA −HA,
b ∈ GB−HB . The only vertices that could possibly be at distance 2 from U in G′, as possible
candidates for g, are : h3, ya

2 , yb
2, wb

2, a, zab, and xba, with a ∈ GA − HA, b ∈ GB − HB.
Thus g and g′ are among these vertices.

Since c(h0) = h0 and H is bipartite, c(h3) 6= h4 or h2. Suppose that c(h3) 6= h3. Then
no edge of G′ with h3 as an endpoint covers the edge h3h4 or h3h2 of H under c. Hence
gg′ must be an edge among ya

2 wa
1 , yb

2wb
1, ya

2 ya
1 , yb

2yb
1, ya

2 za, ya
2 ua

2 , ya
2 h4, yb

2h2, yb
2b, yb

2xb, aya
1 ,

aua
2 , awa

1 , aza, wb
2wb

1, wb
2b, wb

2xb, wb
2yb

1, zabwb
1, zabyb

1, zabb, zabza, zabxb, xbaza, xbawa
1 , xbaya

1 ,
xbaua

2 , xbaxb, and possibly ab, with a ∈ GA −HA, b ∈ GB −HB, where the first vertex in
each of these edges stand for g and the second for g′, and in order to meet the rquirements of
the edge gg′, the first vertex in each of these edges is assumed to achieve distance 2 from U in
G′ and hence may map to h3 under c, and the second vertex in each of these edges is assumed
to achieve distance 1 from U in G′ and hence may map to h4 or h2 under c. We shall be
always mentioning these edges in this order. Further, if ah2 or ah4 is an edge of G, for some
vertex a ∈ GA −HA, then we need to include such an edge also for gg′. These edges for gg′

are all the possible edges of G′ that may cover the edge h3h4 or h3h2 of H under c assuming
that c(h3) 6= h3. Since c(h3) ∈ HA (as c(h0) = h0 ∈ HB) and c(h3) 6= h3, we have c(h3) = h1
or h5. The outline for proving that c(h3) 6= h3 is impossible is as follows. We suppose
that c(h3) = h1, and consider each of the possible edges for gg′ mentioned above, and show
that they do not cover the edge h3h4 under c (i.e., c({g, g′}) 6= {h3, h4}). Symmetrically, if
c(h3) = h5 then it can be shown that none of the possible edges for gg′ mentioned above can
cover the edge h3h2 under c (i.e., c({g, g′}) 6= {h3, h2}). Thus let c(h3) = h1.

Consider first the edges ya
2 wa

1 and yb
2wb

1, with a ∈ GA −HA, b ∈ GB −HB . We consider
them together as an edge yv

2wv
1 , with v ∈ V (G −H). Suppose that yv

2wv
1 covers the edge

h3h4 under c. Then c(yv
2) = h3 and c(wv

1) = h4. By assumption, we have c(h3) = h1. Since
wv

1 is adjacent to h3, this implies that c(wv
1) = h0 or h2. Thus c(wv

1) 6= h4, and we have a
contradiction.

Next consider the edges awa
1 , wb

2wb
1, and zabwb

1, with a ∈ GA−HA, b ∈ GB−HB . Similar
to the above, since c(wv

1) must be adjacent to c(h3) = h1, it is impossible that c(wv
1) = h4,

with v ∈ V (G−H), and hence the above edges cannot cover the edge h3h4 under c.
Now consider the edges ya

2 ya
1 and yb

2yb
1, with a ∈ GA −HA, b ∈ GB −HB. We consider

them together as an edge yv
2yv

1 , with v ∈ V (G − H). Suppose that yv
2yv

1 covers the edge
h3h4 under c. Then c(yv

2) = h3 and c(yv
1) = h4. Since c(uv

1) must be adjacent to both
c(h0) = h0 and c(yv

1) = h4, this implies that c(uv
1) = h5. Since c(wv

1) must be adjacent to
both c(uv

1) = h5 and c(yv
2) = h3, it must be that c(wv

1) = h4. This implies that yv
2wv

1 covers
the edge h3h4 under c, which we have already proved does not hold.

The remaining edges for gg′ can be verified also. Symmetrically, if c(h3) = h5 then no
possible edge for gg′ can cover the edge h3h2 under c. We thus establish that c(h3) = h3,
and hence c(W ) = {h2, h3, h4}.

We now prove that c(h1) 6= c(h5). Suppose to the contrary that c(h1) = c(h5). Since
c(h0) = h0, we have c(h1), c(h5) ∈ {h1, h5}. Without loss of generality, let c(h1) = c(h5) = h1
(due to symmetry). Since c(U) = {h1, h0, h5}, it must be that c(uv

1) = h5 for some vertex
v of G − H. Since c(wv

1), c(h2), and c(h4) must all be adjacent to c(h3) = h3, we have
c(wv

1), c(h2), c(h4) ∈ {h2, h4}. Since c(wv
1) must be adjacent to c(uv

1) = h5, it must be that
c(wv

1) 6= h2, and hence c(wv
1) = h4. Since c(h2) must be adjacent to c(h1) = h1, it must be

that c(h2) 6= h4, and hence c(h2) = h2. Since c(h4) must be adjacent to c(h5) = h1, it must
be that c(h4) 6= h4, and hence c(h4) = h2. Now c(ya

2 ) must be adjacent to c(h4) = h2 and

MFCS 2017



69:12 Vertex-Compaction to an Irreflexive Hexagon

c(wa
1) = h4, implying that c(ya

2 ) = h3, with a ∈ GA −HA. Also, c(yb
2) must be adjacent to

c(h2) = h2 and c(wb
1) = h4, implying that c(yb

2) = h3 also, with b ∈ GB − HB. Thus we
have, in general, c(yv

2) = h3. We also have that c(ya
1 ) must be adjacent to c(h1) = h1 and

c(ua
1) = h5, implying that c(ya

1 ) = h0, with a ∈ GA −HA. Also, we have that c(yb
1) must be

adjacent to c(h5) = h1 and c(ub
1) = h5, implying that c(yb

1) = h0 also, with b ∈ GB −HB.
Thus we have, in general, c(yv

1) = h0. This is impossible as c(yv
1) must be adjacent to

c(yv
2) = h3.
Thus c(h1) 6= c(h5), i.e., c({h1, h5}) = {h1, h5}. Without loss of generality, suppose

that c(h1) = h1 and c(h5) = h5 (due to symmetry). Since c(h3) = h3, we have c(h2), c(h4)
∈ {h2, h4}. Since c(h2) must be adjacent to c(h1) = h1, it must be that c(h2) 6= h4, and
hence c(h2) = h2. Since c(h4) must be adjacent to c(h5) = h5, it must be that c(h4) 6= h2,
and hence c(h4) = h4. We already have c(h0) = h0 and c(h3) = h3. Thus we have c(hi) = hi,
for all i = 0, 1, 2, 3, 4, 5. Hence c : G′ → H is a retraction, proving the lemma. J

We have thus proved Theorem 2.1. J

3 Vertex-Compaction to an Irreflexive k-Cycle

Our proof of Theorem 2.1 showing NP-completeness of VCOMP-C6 directly uses graphs
that we construct simply by adding vertices and edges. Our technique of construction of
graphs therefore lays down the foundation for construction of graphs for the case of a general
irreflexive even k-cycle, by extending the paths constructed and adding edges appropriately,
showing NP-completeness of VCOMP-Ck, for all even k ≥ 6.

In [Vikas, 1999, 2004a], it is shown that the problem COMP-Ck is NP-complete, for
all even k ≥ 6. The problem RET-Ck is shown to be NP-complete, for all even k ≥ 6, in
[Feder, Hell, and Huang, 1999], and independently by G. Macgillivray in 1988. To prove
NP-completeness of VCOMP-Ck, we give a transformation from RET-Ck to VCOMP-Ck,
for all even k ≥ 6. In our construction to prove NP-completeness of VCOMP-Ck, with even
k ≥ 6, we now have for example paths Zab, Xba, Ua, Ub, Wa, Wb, Ya, and Yb of appropriate
lengths instead of the vertices zab, xba, ua

1 , ua
2 , ub

1, wa
1 , wb

1, and wb
2 that we used in the

construction in the proof of Theorem 2.1 for proving NP-completeness of VCOMP-C6, and
we add edges chosen appropriately.

Considering k = 4, it is easy to see that the problems VCOMP-C4, COMP-C4, and
RET-C4 are polynomial time solvable, as C4 is a complete bipartite graph. We now consider
odd k ≥ 3. Note that a graph G is homomorphic to a graph H if and only if the disjoint
union G ∪H vertex-compacts, compacts, and retracts to H. Thus we have a polynomial
transformation from the H-colouring problem to the problems VCOMP-H, COMP-H, and
RET-H. The H-colouring problem is shown to be NP-complete for any fixed non-bipartite
irreflexive graph H in [Hell & Nesetril 1990]. Hence, it follows that the problems VCOMP-H,
COMP-H, and RET-H are also NP-complete when H is any non-bipartite irreflexive graph.
Thus, in particular, the problems VCOMP-Ck, COMP-Ck, and RET-Ck are NP-complete,
for all odd k ≥ 3.

References
1 H. J. Bandelt, A. Dahlmann, and H. Schutte, Absolute Retracts of Bipartite Graphs,

Discrete Applied Mathematics, 16, 191-215, 1987.
2 H. J. Bandelt, M. Farber, and P. Hell, Absolute Reflexive Retracts and Absolute Bipartite

Retracts, Discrete Applied Mathematics, 44, 9-20, 1993.



Narayan Vikas 69:13

3 T. Feder and P. Hell, List Homomorphisms to Reflexive Graphs, Journal of Combinatorial
Theory, Series B, 72, 236-250, 1998.

4 T. Feder, P. Hell, and J. Huang, List Homomorphisms and Circular Arc Graphs, Combin-
atorica, 19, 487-505, 1999.

5 T. Feder, P. Hell, S. Klein, and R. Motwani, Complexity of Graph Partition Problems,
in Proceedings of the 31st Annual ACM Symposium on Theory of Computing (STOC),
Atlanta, Georgia, 1999.

6 T. Feder, P. Hell, S. Klein, and R. Motwani, List Partitions, SIAM Journal on Discrete
Mathematics, 16, 449-478, 2003.

7 T. Feder and M. Y. Vardi (1993), Monotone Monadic SNP and Constraint Satisfaction,
in Proceedings of the 25th Annual ACM Symposium on Theory of Computing (STOC),
San Diego, California.

8 T. Feder and M. Y. Vardi, The Computational Structure of Monotone Monadic SNP and
Constraint Satisfaction: A Study through Datalog and Group Theory, SIAM Journal on
Computing, 28, 57-104, 1998.

9 F. Harary, Graph Theory, Addison-Wesley Publishing Company, Reading, Massachusetts,
1969.

10 P. Hell, Retractions de Graphes, Ph.D. Thesis, Universite de Montreal, 1972.
11 P. Hell, Retracts in Graphs, in Graphs and Combinatorics, Lecture Notes in Mathematics,

Springer-Verlag, 406, 291-301, 1974.
12 P. Hell, Graph Partitions with Prescribed Patterns, European Journal of Combinatorics,

35, 335-353, 2014.
13 P. Hell and D. J. Miller, Graphs with Forbidden Homomorphic Images, Annals of the

New York Academy of Sciences, 319, 270-280, 1979.
14 P. Hell and J. Nesetril, On the Complexity of H-colouring, Journal of Combinatorial

Theory, Series B, 48, 92-110, 1990.
15 P. Hell and I. Rival, Absolute Retracts and Varieties of Reflexive Graphs, Canadian

Journal of Mathematics, 39, 544-567, 1987.
16 R. Nowakowski and I. Rival, Fixed-Edge Theorem for Graphs with Loops, Journal of

Graph Theory, 3, 339-350, 1979.
17 E. Pesch, Retracts of Graphs, Mathematical Systems in Economics, 110, Frankfurt am

Main : Athenaum, 1988.
18 E. Pesch and W. Poguntke, A Characterization of Absolute Retracts of n-Chromatic

Graphs, Discrete Mathematics, 57, 99-104, 1985.
19 N. Vikas, Computational Complexity of Compaction to Cycles, Proceedings, Tenth An-

nual ACM-SIAM Symposium on Discrete Algorithms (SODA), 1999.
20 N. Vikas (2002), Connected and Loosely Connected List Homomorphisms, 28th Interna-

tional Workshop on Graph-Theoretic Concepts in Computer Science (WG), Cesky Krumlov,
Czech Republic, Lecture Notes in Computer Science, Springer-Verlag, Heidelberg, Germany,
2573, 399-412.

21 N. Vikas, Computational Complexity of Compaction to Reflexive Cycles, SIAM Journal
on Computing, 32, 253-280, 2003.

22 N. Vikas, Computational Complexity of Compaction to Irreflexive Cycles, Journal of
Computer and System Sciences, 68, 473-496, 2004a.

23 N. Vikas, Compaction, Retraction, and Constraint Satisfaction, SIAM Journal on Com-
puting, 33, 761-782, 2004b.

24 N. Vikas, Computational Complexity Classification of Partition under Compaction and
Retraction, Tenth Annual International Computing and Combinatorics Conference (CO-
COON), Jeju Island, Korea, Lecture Notes in Computer Science, 3106, Springer-Verlag,
Heidelberg, Germany, 380-391, 2004c.

MFCS 2017



69:14 Vertex-Compaction to an Irreflexive Hexagon

25 N. Vikas, A Complete and Equal Computational Complexity Classification of Compac-
tion and Retraction to All Graphs with at most Four Vertices, Journal of Computer and
System Sciences, 71, 406-439, 2005.

26 N. Vikas, Algorithms for Partition of Some Class of Graphs under Compaction, Seven-
teenth Annual International Computing and Combinatorics Conference (COCOON), Texas,
U.S.A., Lecture Notes in Computer Science, 6842, Springer-Verlag, Heidelberg, Germany,
319-330, 2011.

27 N. Vikas, Algorithms for Partition of Some Class of Graphs under Compaction and
Vertex-Compaction, Invited Paper, Algorithmica, 67, 180-206, 2013.



Recognizing Graphs Close to Bipartite Graphs∗

Marthe Bonamy1, Konrad K. Dabrowski2, Carl Feghali3,
Matthew Johnson4, and Daniël Paulusma5

1 CNRS, LaBRI, Université de Bordeaux, Bordeaux, France
marthe.bonamy@u-bordeaux.fr

2 Durham University, Durham, UK
konrad.dabrowski@durham.ac.uk

3 IRIF & Université Paris Diderot, Paris, France
feghali@irif.fr

4 Durham University, Durham, UK
matthew.johnson2@durham.ac.uk

5 Durham University, Durham, UK
daniel.paulusma@durham.ac.uk

Abstract
We continue research into a well-studied family of problems that ask if the vertices of a graph can
be partitioned into sets A and B, where A is an independent set and B induces a graph from some
specified graph class G. We let G be the class of k-degenerate graphs. The problem is known to
be polynomial-time solvable if k = 0 (bipartite graphs) and NP-complete if k = 1 (near-bipartite
graphs) even for graphs of diameter 4, as shown by Yang and Yuan, who also proved polynomial-
time solvability for graphs of diameter 2. We show that recognizing near-bipartite graphs of
diameter 3 is NP-complete resolving their open problem. To answer another open problem, we
consider graphs of maximum degree ∆ on n vertices. We show how to find A and B in O(n)
time for k = 1 and ∆ = 3, and in O(n2) time for k ≥ 2 and ∆ ≥ 4. These results also provide
an algorithmic version of a result of Catlin [1979] and enable us to complete the complexity
classification of another problem: finding a path in the vertex colouring reconfiguration graph
between two given k-colourings of a graph of bounded maximum degree.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases degenerate graphs, near-bipartite graphs, reconfiguration graphs

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.70

1 Introduction

We consider the problem of partitioning the vertex set of a graph into two sets A and B
where A is an independent set and B belongs to a specified graph class G. The classes G
we consider are those of k-degenerate graphs (a graph is k-degenerate if every induced
subgraph has a vertex of degree at most k). A 0-degenerate graph has no edges, so in this
case the problem is simply that of recognizing bipartite graphs. A graph is 1-degenerate
if and only if it is a forest; we say that a graph is near-bipartite if it can be decomposed
into an independent set and a forest. The problem of deciding whether or not a graph is
near-bipartite is NP-complete (see [6]). We consider this problem when the input is restricted,
but our main focus is the problem of finding the decomposition into an independent set and a

∗ This paper received support from EPSRC (EP/K025090/1), London Mathematical Society (41536), the
Leverhulme Trust (RPG-2016-258) and Fondation Sciences Mathématiques de Paris.

© Marthe Bonamy, Konrad K. Dabrowski, Carl Feghali, Matthew Johnson, and Daniël Paulusma;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 70; pp. 70:1–70:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.70
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


70:2 Recognizing Graphs Close to Bipartite Graphs

k-degenerate graph for graphs of bounded maximum degree. We also describe an application
to a graph reconfiguration problem.

Related Work. As noted above, recognizing near-bipartite graphs is known to be an NP-
complete problem. Yang and Yuan [29] proved that the problem remains NP-complete
even for graphs of maximum degree 4 and for graphs of diameter 4. They also showed
that it can be solved in polynomial time for graphs of maximum degree at most 3 and for
graphs of diameter at most 2. They left open the problem of determining its computational
complexity for graphs of diameter 3 (see also [4]). We note that the problem of recognizing
near-bipartite graphs has also been studied from the perspective of parameterized complexity
(in this setting the problem is known as Independent Feedback Vertex Set). With the
size of A as the parameter, FPT algorithms have been found for general graphs [26]. The
problem of finding a decomposition where the size of A is minimum has been shown to be
NP-hard even for planar bipartite graphs of maximum degree 4, but linear-time solvable
for graphs of bounded treewidth, chordal graphs and cographs [27] (it was already known
that near-bipartite cographs can be recognized in linear time [4]). Recently, we extended the
result of cographs to P5-free graphs, and we also proved that recognizing near-bipartite line
graphs of maximum degree 4 is NP-complete [2]. The variant where the maximum degree of
the forest induced by B is bounded by some constant has also been studied, in particular
from a structural point of view (see, for instance, [12]).

The Induced Forest 2-Partition problem is closely related to the problem of recogniz-
ing near-bipartite graphs. It asks whether the vertex set of a given graph can be decomposed
into two disjoint sets A and B, where both A and B induce forests. Wu, Yuan and Zhao [28]
proved that Induced Forest 2-Partition is NP-complete for graphs of maximum degree 5
and polynomial-time solvable for graphs of maximum degree at most 4. Brandstädt et al. [6]
proved NP-completeness of another closely related problem, namely that of deciding whether
the vertex set of a given graph can be decomposed into an independent set and a tree. Note
that both this problem and that of recognizing near-bipartite graphs can be seen as restricted
variants of the classical 3-Colouring problem,1 which is well known to be NP-complete [20].
In fact, for a fixed graph class G (that is, G is not part of the input), Brandstädt et al. [6]
considered the following more general problem:

Stable(G)
Instance: A graph G = (V, E).
Question: Can V be decomposed into two disjoint sets A and B, where A is an inde-

pendent set and B induces a graph in G?

Note that Stable(G) is equivalent to 3-Colouring if we choose G to be the class of
bipartite graphs. For a positive integer k, we denote the class of k-degenerate graphs
by Dk. Then Stable(D1) is the problem of finding near-bipartite graphs. If G is the class
of complete graphs, Stable(G) is the problem of recognizing split graphs, which can be
solved in polynomial time. Brandstädt et al. [6] proved that Stable(G) is NP-complete
when G is the class of trees or the class of trivially perfect graphs, and polynomial-time
solvable when G is the class of co-bipartite graphs, the class of split graphs, or the class of
threshold graphs. Moreover, Stable(G) has also been shown to be NP-complete when G is

1 For a fixed integer k ≥ 1, the k-Colouring problem asks whether a given graph is k-colourable, that
is, whether its vertices can be coloured with at most k colours such that no two adjacent vertices are
coloured alike. As trees and forests are 2-colourable, the observation follows.



M. Bonamy, K.K. Dabrowski, C. Feghali, M. Johnson, and D. Paulusma 70:3

the class of triangle-free graphs [7], the class of cographs [17], the class of graphs of maximum
degree 1 [22], or, more generally, the class of graphs that have any additive hereditary
property not equal to or divisible by the property of being edgeless [19], whereas it is also
polynomial-time solvable if G is the class of complete bipartite graphs [13] (see [5] for a faster
algorithm). The Stable(G) problem has also been studied for hereditary graph classes G
with subfactorial or factorial speed [11, 21] (the speed of a graph class is the function that
given an integer n returns the number of labelled graphs on n vertices in the class).

To obtain a more general problem than Stable(G), we can relax the condition on the
set A being independent. This leads to the (G1,G2)-Recognition problem, which asks
whether the vertex set of a graph can be decomposed into disjoint sets A and B, such
that A induces a graph in G1 and B induces a graph in G2. For instance, if G1 is the class of
cliques and G2 is the class of disjoint unions of cliques, the (G1,G2-Recognition problem is
equivalent to recognizing unipolar graphs (see [24] for a quadratic algorithm). Generalizing
Stable(G) also leads to a family of transversal problems, such as Feedback Vertex Set.
However, such problems are beyond the scope of our paper.

As Stable(Dk) is NP-complete for every k ≥ 1, its complexity has been determined for
special graph classes. Recall the aforementioned hardness and tractability results of Yang
and Yuan [29] on graph classes of bounded maximum degree and classes of bounded diameter
when k = 1. Brandstädt, Brito, Klein, Nogueira and Protti [4] proved that Stable(D1) is
NP-complete on perfect graphs and, as stated earlier, that it is polynomial-time solvable for
cographs. In particular, their hardness result for perfect graphs shows that the complexities
of Stable(D1) and 3-Colouring do not coincide, as k-Colouring is polynomial-time
solvable for perfect graphs even when the number of colours k is part of the input [16].

Our Results. In Section 2, we consider the Stable(D1) problem for graphs of bounded
diameter. Recall that Yang and Yuan [29] left one missing case: they proved that recognizing
near-bipartite graphs of diameter 4 is an NP-complete problem and that near-bipartite
graphs of diameter 2 can be recognized in polynomial time. We show that Stable(D1) is
NP-complete for graphs of diameter 3, which resolves their open problem.

In Section 3, we consider near-bipartite decompositions of subcubic graphs (that is, graphs
of maximum degree at most 3). By a result of Catlin and Lai [9], the only connected subcubic
graph that is not near-bipartite is K4 (see also Yang and Yuan [29]) and so near-bipartite
subcubic graphs can be recognized in polynomial time. However, the proofs of [9, 29] do not
lead to a linear-time algorithm for finding the desired partition (A,B); in particular, the
result of [9] would require solving an NP-complete problem, namely Independent Set for
cubic graphs [15]. We give a linear-time algorithm that finds such a partition.

We say a partition (A,B) of the vertex set of a graph is a k-degenerate decomposition
if A is independent and B induces a (k− 2)-degenerate graph (so Section 3 is concerned with
3-degenerate decompositions of graphs of maximum degree 3). In Section 4, we consider,
more generally, ∆-degenerate decompositions of graphs of maximum degree at most ∆ for
any ∆ ≥ 3. We give a quadratic-time algorithm to find such a decomposition in this general
case (contrast with the linear-time algorithm for the special case of ∆ = 3). By a result of
Matamala [23], the only connected graph with maximum degree at most ∆ that does not
have such a decomposition is K∆+1. Matamala’s result generalizes that of [9] and thus does
not imply a polynomial-time algorithm for finding such a decomposition. We show that our
algorithms for finding ∆-degenerate decompositions of graphs of maximum degree at most ∆
also provide an algorithmic version of a result of Catlin [8]. In Section 5, we show how
they can be applied to completely settle the complexity classification of a graph colouring
reconfiguration problem considered in [14]. In Section 6 we give directions for future work.

MFCS 2017



70:4 Recognizing Graphs Close to Bipartite Graphs

u

v1

v2 v3

(a) claw

u2

u3

v1

v2

u1

v3

(b) triangular prism

Figure 1 The claw and the triangular prism. A near-bipartite decomposition of the triangular
prism is indicated: the white vertices form an independent set and the black vertices induce a forest.

2 Graphs of Diameter 3

We present a hardness result (proof omitted) for the problem of deciding whether a graph of
diameter at most 3 has a near-bipartite decomposition. In [25], Mertzios and Spirakis proved
a remarkable result: 3-Colouring is NP-complete for graphs of diameter 3. The outline of
their proof is straightforward: a reduction from 3-Sat that constructs, for any instance φ, a
graph Hφ that is 3-colourable if and only if φ is satisfiable. It is possible to reduce 3-Sat
to Stable(D1) for graphs of diameter 3 using the same construction, thus showing that
Stable(D1) is also NP-complete on this class. That is Hφ is near-bipartite if and only if φ is
satisfiable. So Theorem 1 below is an observation about the proof of Mertzios and Spirakis.

I Theorem 1. Stable(D1) is NP-complete for graphs of diameter at most 3.

3 Subcubic Graphs

In this section we prove the following result.

I Theorem 2. Let G be a subcubic graph on n vertices, with no component isomorphic to K4.
Then a near-bipartite decomposition of G can be found in O(n) time.

Proof. We will repeatedly apply a set of rules to G. Each rule takes constant time to apply
and after each application of a rule, the resulting graph contains fewer vertices. The rules
are applied until the empty graph is obtained. We then reconstruct G from the empty graph
by working through the rules applied in reverse order. As we rebuild G in this way, we
find a near-bipartite decomposition of each obtained graph. We do this by describing how
to extend, in constant time, a near-bipartite decomposition of a graph before some rule is
undone to a near-bipartite decomposition of the resulting graph after that rule is undone. If
we can do this then we say that the rule is safe. We conclude that the total running time
of the algorithm is O(n). It only remains to describe the rules, show that it takes constant
time to do and undo each of them and prove that they are safe.

We need the following terminology. The claw is the graph with vertices u, v1, v2, v3 and
edges uv1, uv2, uv3; the vertex u is the centre of the claw (see Figure 1). The triangular prism
is the graph obtained from two triangles on vertices u1, u2, u3 and v1, v2, v3, respectively, by
adding the edges uivi for i ∈ {1, 2, 3} (see Figure 1). Two vertices are false twins if they have
the same neighbourhood (note that such vertices must be non-adjacent).

Let u be an arbitrary vertex of G. Our choice of u as an arbitrary vertex implies that u
can be found in constant time. We then use the first of the following rules that is applicable.

Rule 1. If u has degree at most 2, then remove u.



M. Bonamy, K.K. Dabrowski, C. Feghali, M. Johnson, and D. Paulusma 70:5

u

u1 u2

v1

w

v2 v3

(a) H1

u

u1 u2 u3

(b) H2

u

u1 u2 u3

(c) H3

Figure 2 The graphs used in Rule 8. A near-bipartite decomposition of each is indicated: the
white vertices form an independent set and the black vertices induce a forest.

Rule 2. If there is a vertex v of degree at most 2 that is at distance at most 3 from u, then
remove v.

Rule 3. If G contains an induced diamond D whose vertices are at distance at most 3 from u,
then remove the vertices of D.

Rule 4. If there is a pair of false twins u1, u2 each at distance at most 2 from u, then remove
u1, u2 and their common neighbours (note that u ∈ {u1, u2} is possible).

Rule 5. If u is in a connected component that is a triangular prism P , then remove the
vertices of P .

Rule 6. If Rules 1–5 do not apply but u is in a triangle T , then the neighbours of the vertices
in T that are outside T are pairwise distinct (since there is no induced diamond) and
at least two them, which we denote by x′, y′, are non-adjacent (otherwise u belongs
to a triangular prism). Remove the vertices of T and add an edge between x′ and y′.

Rule 7. If u is the centre of an induced claw but has a neighbour v that belongs to a triangle,
then apply one of the Rules 1–6 on v.

Rule 8. If the graph induced by the vertices at distance at most 3 from u contains the
graph H1, H2 or H3, depicted in Figure 2, with the vertex u in the position shown
in the figure, then remove the vertices of this graph Hi.

Rule 9. If Rules 1–8 do not apply but u is the centre of an induced claw and its three
neighbours u1, u2, u3 are also centres of induced claws, then remove u, u1, u2, u3
and for i ∈ {1, 2, 3} add an edge joining the two neighbours of ui distinct from u

and denote it by ei; we say that such an edge is new (note that such neighbours of
two distinct ui and uj may overlap).

Let us show that at least one of the rules is always applicable. Suppose that, on the contrary,
there is a vertex u of a subcubic graph for which no rule applies. Then u and its neighbours
each have degree 3 (Rules 1 and 2) and so each either belongs to a triangle or is the centre
of an induced claw. By Rule 6, u must be the centre of an induced claw and therefore, by
Rule 7, the same is also true for each neighbour of u. This implies that Rule 9 applies, a
contradiction.

Because G is subcubic, each of these rules takes constant time to verify and process. In
particular, in some rules we need to detect some induced subgraph of constant size that
contains u or replace u by some other vertex v. In all such cases we need to explore a
set of vertices of distance at most 4 from u. As G is subcubic, this set has size at most
1 + 3 + 32 + 33 + 34 = 121, so we can indeed do this in constant time.

It is clear that, as claimed, the application of a rule reduces the number of vertices and that if
we repeatedly choose an arbitrary vertex u and apply a rule, we eventually obtain the empty

MFCS 2017



70:6 Recognizing Graphs Close to Bipartite Graphs

x

w

y

v

x′ y′

(a) diamond

y

x

u

y′

x′

u′

(b) triangle

Figure 3 The diamond and triangle (solid edges and vertices) together with their neighbourhoods
in a cubic graph.

graph. We now consider undoing the applied rules in reverse order to rebuild G. As this is
done, we will irrevocably colour vertices with colour 1 or 2 in such a way that the vertices
coloured 1 will form an independent set and the vertices coloured 2 will induce a forest.
Thus a rule is safe if this colouring can be extended whenever that rule is undone. When we
reach G, the final colouring will correspond to the required near-bipartite decomposition.

We must prove each rule is safe. At each step of reconstructing G, we refer to the graph
before a rule is undone as the prior graph and to the graph after that rule is undone as the
subsequent graph. Note that the application of any of the Rules 1–9 again yields a subcubic
graph. By the result of Yang and Yuan [29], every connected subcubic graph is near-bipartite,
apart from K4. So we need to ensure that an application of a rule does not create a K4. This
cannot happen when we remove vertices, but we will need to consider it for Rules 6 and 9.

I Claim 3. Rules 1–5 are safe.

In Rules 1–5 we only delete vertices. Rule 1 is safe since if both neighbours of u are coloured 2,
then u can be coloured 1; otherwise u can be coloured 2. Similarly, we see that Rule 2 is
safe. To see that Rule 3 is safe, let D be the diamond with vertex labels as illustrated in
Figure 3, where u is one of v, w, x, y. If x′ and y′ are coloured 2, we colour x and y with 1
and v and w with 2. Otherwise we colour v with 1 and x, y and w with 2. We now show that
Rule 4 is safe. Let u1 and u2 be false twins (at distance at most 2 from u). As G is subcubic,
every vertex in N(u1) with a neighbour in N(u1) has no neighbours outside N(u1)∪{u1, u2}
and every vertex in N(u1) with no neighbour in N(u1) has at most one neighbour not equal
to u1 or u2. Moreover, as G is subcubic, N(u1) contains no cycle. Hence we can always
colour u1, u2 with 1 and the vertices of N(u1) with 2 regardless of the colours of vertices
outside N(u1) ∪ {u1, u2}. Indeed, every vertex of N(u1) will have at most one neighbour
that is not coloured 1, so cannot be in a cycle of vertices coloured 2 in the subsequent graph.
Rule 5 is also safe since P is 3-regular and hence would be a component of our subsequent
graph, so we can colour its vertices by assigning colour 1 to exactly one vertex from each of
the two triangles and colour 2 to its other vertices (see Figure 1). This completes the proof
of Claim 3.

I Claim 4. Rules 6 and 7 are safe.

First, let us demonstrate that Rule 6 is safe. If x′ and y′ are contained in a K4 of the prior
graph, then the subsequent graph contains a diamond whose vertices are at distance at most 3
from u. This contradicts Rule 3. Let T be the triangle with vertex labels as illustrated in
Figure 3. Suppose x′, y′ and u′ are coloured 2. Then we colour u with 1 and x and y with 2.
The vertices in the subsequent graph with colour 2 still induce a forest, as we have replaced
an edge in the forest by a path on four vertices. Suppose x′ and y′ are coloured 2 and u′ is



M. Bonamy, K.K. Dabrowski, C. Feghali, M. Johnson, and D. Paulusma 70:7

coloured 1. Then we colour x with 1, and y and u with 2. Otherwise, since x′ and y′ are
joined by an edge in the prior graph, we may assume that x′ has colour 1 and y′ has colour 2.
In this case we can colour y with 1, and x and u with 2. This completes the proof that
Rule 6 is safe. Since Rules 1–6 are safe, it follows that Rule 7 is also safe. This completes
the proof of Claim 4.

I Claim 5. Rule 8 is safe.

We now show that Rule 8 is safe. Suppose u is contained in H1. We use the vertex labels from
Figure 2. As Rule 1 could not be applied, we find that u has a third neighbour u3 distinct
from u1 and u2. Regardless of whether u3 is coloured 1 or 2, we colour u, u1, u2, v1, w
with 2 and v2, v3 with 1 to obtain a near-bipartite decomposition of G. We can also readily
colour the vertices of H2 or H3 should u be contained in one of them (note that since H2
and H3 are 3-regular, these graphs can only appear as components in our subsequent graph).
This completes the proof of Claim 5.

I Claim 6. Rule 9 is safe.

Suppose that the prior graph contains fewer than three new edges. Then we may assume
without loss of generality that e1 = e2. Then u1 and u2 are false twins at distance 1 from u

and we can apply Rule 4, a contradiction. So we may assume that the prior graph contains
exactly three new edges.

We claim that the application of Rule 9 does not yield a K4. For contradiction, suppose it
does. Let K be the created K4. Then at least one new edge is contained in K. If exactly one
new edge e is contained in K, then K − e is a diamond in the subsequent graph. Then we
could have applied Rule 3, a contradiction. If all three new edges are in K, then they must
induce either a path on four vertices or a triangle in the subsequent graph. In the first case
the subsequent graph is H2 and in the second case the subsequent graph is H3. In both cases
we would have applied Rule 8, a contradiction. Finally, suppose that K contains exactly two
new edges, say e1 and e2. If e1 and e2 do not share a vertex, then they cover the vertices
of K. Hence the end-vertices of e1 are false twins (at distance 2 from u) in the subsequent
graph, since they are both adjacent to u1 and to each end-vertex of e2. Then we could have
applied Rule 4, a contradiction. If e1 = v1v2 and e2 = v3v4 share a vertex, say v2 = v4,
then v1 and v3 are adjacent in the subsequent graph and the vertex w ∈ K \ {v1, v2, v3} is
adjacent only to v1, v2 and v3. Therefore Rule 8 could have been applied, a contradiction.

Thus an application of Rule 9 does not yield a K4, and we may colour u1, u2, u3 with 2
and u with 1. Indeed note that since if two end-vertices of a new edge are coloured 2, then
in the subsequent graph the vertices coloured 2 will still induce a forest, in which such a new
edge is replaced by a path of length 2. This completes the proof of Claim 6 and therefore
completes the proof of Theorem 2. J

4 Graphs of Bounded Maximum Degree

Let k ≥ 3 be an integer. Recall that a graph G has a k-degenerate decomposition if its
vertex set can be decomposed into sets A and B where A is an independent set and B

induces a (k−2)-degenerate graph. Note that 3-degenerate decompositions are near-bipartite
decompositions. We give an O(n2) algorithm for finding a ∆-degenerate decomposition of a
graph on n vertices of maximum degree at most ∆ for every ∆ ≥ 3 (note that for ∆ = 3 we
can also use Theorem 2).

For k ≥ 1, we say that an order v1, v2, . . . , vn of the vertices of a graph G is k-degenerate
if for all i ≥ 2, the vertex vi has at most k neighbours in {v1, . . . , vi−1}. It is clear that a

MFCS 2017



70:8 Recognizing Graphs Close to Bipartite Graphs

graph is k-degenerate if and only if it has a k-degenerate order. If O is a k-degenerate order
for G and W is a subset of the vertex set of G, then we let O|W be the restriction of O to W ,
and let G[W ] be the subgraph of G induced by W . For a set of vertices C, we denote the
neighbourhood of C by N(C) =

⋃
{N(u) | u ∈ C} \ C.

We need the following lemma, which is a refinement of Lemma 8 in [14] with the same
proof.

I Lemma 7. Let k ≥ 2. Let G be a (k − 1)-degenerate graph on n vertices. If a (k − 1)-
degenerate order O of G is given as input, a k-degenerate decomposition (A,B) of G can
be found in O(kn) time. In addition, we can ensure that O|B is a (k − 2)-degenerate order
of G[B], the set A is a maximal independent set and the first vertex in O belongs to A.

A pair of non-adjacent vertices {u, v} in a graph G is strong if u and v have a common
neighbour in each component of the graph G \ {u, v}. In particular, note that if u and v
have a common neighbour and G \ {u, v} is connected, then {u, v} is a strong pair. We need
the following two lemmas (we omit the proof of the first one).

I Lemma 8. Let k ≥ 3. Let G be a connected k-regular graph on n vertices that contains
a strong pair {u, v}. If {u, v} is given as input, a k-degenerate decomposition of G can be
found in O(kn) time.

I Lemma 9. Let k ≥ 3. Let G be a k-regular connected graph on n vertices, which contains
a set C of k + 1 vertices that induce a clique minus an edge uv. If C, u and v are given as
input, then a k-degenerate decomposition of G can be found in O(kn) time.

Proof. Let x be a vertex in C distinct from u and v. Let G′ be the graph obtained from G

by deleting C. Each of u and v has exactly one neighbour that does not belong to C and all
other vertices of C have no neighbours outside C. Let t be the neighbour of u not in C, and
let w be the neighbour of v not in C. We may assume that t is distinct from w, otherwise
we are done by Lemma 8. We can find a (k − 1)-degenerate order O of G′ in O(kn) time by
taking the vertices in the reverse of the order they are found in a breadth-first search from t,
and then, if t and w do not belong to the same component of G′, appending the vertices
in the reverse of the order they are found in a breadth-first search from w. By Lemma 7,
we can compute a k-degenerate decomposition (A,B) of G′ in O(kn) time such that O|B
is a (k − 2)-degenerate order of B. If both t and w belong to B, let A′ = A ∪ {u, v} and
B′ = B ∪ (C \ {u, v}) and, since (C \ {u, v}) is a clique on k− 1 vertices with no edge joining
it to B, if follows that (A′, B′) is a k-degenerate decomposition of G. Assume now without
loss of generality that t ∈ A (we make no assumption about whether w is also in A). Then
let A′ = A ∪ {x} and B′ = B ∪ (C \ {x}). Then A′ is an independent set. Recall that O|B
is a (k − 2)-degenerate order of B. We show that we can append the vertices of C \ {x} to
obtain a (k − 2)-degenerate order of B′. First add v, then the vertices of C \ {u, v, x} and
finally u. It is clear that no vertex has more than k − 2 neighbours earlier in the order. J

I Lemma 10. Let k ≥ 3. Let G be a k-regular connected graph on n vertices containing a
clique C on k vertices whose neighbourhood is of size 2. If C is given as input, a k-degenerate
decomposition of G can be found in O(kn) time.

Proof. Let u and v be vertices not in C such that for each vertex in C, its unique neighbour
not in C is either u or v. Neither u nor v can be adjacent to every vertex in C (as then
the other would be adjacent to none, contradicting the premise that the neighbourhood
has size 2). Since k ≥ 3, one of u and v has at least two neighbours in C. Consider the



M. Bonamy, K.K. Dabrowski, C. Feghali, M. Johnson, and D. Paulusma 70:9

graph G′ obtained from G by removing C and adding the edge uv (if it does not already
exist). Note that u and v each have degree at most k in G′ and at least one of them, say u,
has degree less than k. Therefore, we can find a (k − 1)-degenerate order O of G′ in O(kn)
time by taking the vertices in the order they are found in a breadth-first search from u. Thus
we can obtain a k-degenerate decomposition (A,B) of G′ by Lemma 7, such that O|B is a
(k−2)-degenerate order of G[B] and A is a maximal independent set. At least one of u and v
must belong to B. Assume without loss of generality that either v ∈ A, u ∈ B or both u
and v belong to B, and, in the latter case, assume that u has at least two neighbours in C.
Consider a neighbour t of u in C. We set A′ = A ∪ {t} and B′ = B ∪ (C \ {t}), and claim
that (A′, B′) is a k-degenerate decomposition of G. It is clear that A′ is an independent
set. Recall that O|B is a (k − 2)-degenerate order for G[B]. We must amend it to find a
(k− 2)-degenerate order for G[B′] that also includes the vertices of C \ {t}. We consider two
cases.

First suppose v ∈ A. Then append to O|B first the neighbours of u in C \ {t} and then
the neighbours of v. As the vertices of C \ {t} are adjacent to t the only one that could have
more than k − 2 vertices before it in the order is the one that appears last, but this is also
adjacent to v so we do indeed have a (k − 2)-degenerate order.

Now suppose v ∈ B. Then u has a neighbour in G′ that belongs to A (as A is a maximal
independent set). Hence u has at most k − 2 neighbours in B′. Append to O|B the vertices
of C \ {t}, ending with a neighbour of u (we know there is at least one), then move u to be
the final vertex in the order. Again the only vertex of C \ {t} that could have more than
k − 2 neighbours before it in the order is the one that appears last, and by choosing it to be
a neighbour of u and putting u later in the order we ensure that a (k − 2)-degenerate order
is obtained. J

Given a graph G, five of its vertices t, u, v, w, x and a set of vertices C, we say that C
induces a (u, v)-lock with special vertices (t, {w, x}) if t, w, x ∈ C and N(C) = {u, v}, and
both u and v are adjacent to t, each vertex in {w, x} is adjacent to precisely one vertex in
{u, v}, and G[C] contains all possible edges except for wt and xt. We say that C is a lock if
it is a (u, v)-lock with special vertices (t, {w, x}) for some choice of t, u, v, w, x.

I Lemma 11. Let k ≥ 3. Let G be a k-regular connected graph on n vertices containing a
(u, v)-lock C with special vertices (t, {w, x}). If C and u, v, t, w, x are given as input, then a
k-degenerate decomposition of G can be found in O(kn) time.

Proof. Since t has two neighbours outside C, it follows that C \ {t} is a clique on k vertices.
If w and x have the same neighbour in {u, v}, say u, then N(C \ {t}) = {t, u} and so we
are done by Lemma 10. We may therefore assume that w and x have distinct neighbours
in {u, v}. Let G′ be the graph obtained from G by deleting C \ {t} and note that G′ is
connected since t is adjacent to both u and v. Note that both u and v have degree k − 1
in G′. We can therefore find a (k − 1)-degenerate order O of G′ in O(kn) time by taking
the vertices in the reverse of the order they are found in a breadth-first search from u.
Furthermore, since the only neighbours of t in G′ are u and v, both of which have degree
k − 1, by moving t to the start of the order O, we obtain a another (k − 1)-degenerate
order O′. By Lemma 7, we can therefore find a k-degenerate decomposition (A,B) of G′
such that O′|B is a (k− 2)-degenerate order on B and t ∈ A. Thus both u and v belong to B.
We let A′ = A ∪ {w} and B′ = B ∪ (C \ {w, t}), and claim that (A′, B′) is a k-degenerate
decomposition of G. It is clear that A′ is an independent set. We have the (k− 2)-degenerate
order O′|B on B. We obtain a (k − 2)-degenerate order on B′ by appending to O′|B the
vertices of C \ {w, t} beginning with x. Indeed, the only neighbour of x that is earlier in the

MFCS 2017



70:10 Recognizing Graphs Close to Bipartite Graphs

Algorithm 1: Finding a k-degenerate decomposition for connected ∆-regular graphs.
Input :A connected ∆-regular graph G
Output :A k-degenerate decomposition of G

1 find a good pair u, v and let C be a component of G \ {u, v};
2 if u, v is a strong pair then apply Lemma 8;
3 else if the union of C and one or both of u and v is a clique on ∆ + 1 vertices minus

an edge then apply Lemma 9;
4 else if C is a clique on ∆ vertices whose neighbourhood is {u, v} then apply

Lemma 10;
5 else if C is a (u, v)-lock then apply Lemma 11;
6 else
7 find a good pair u′, v′ ∈ C such that either C ′ = G \ {u′, v′} is connected or

G \ {u′, v′} has a component C ′ that is strictly contained in C;
8 set u← u′, v ← v′, C ← C ′;
9 go to Line 2

10 end

order is its single neighbour in {u, v} (and note that 1 ≤ k − 2 since k ≥ 3). Furthermore,
since w, t ∈ A′, every vertex in C \ {w, t, x} has only k − 2 neighbours in B′. J

A pair of non-adjacent vertices u, v in a graph is a good pair if u and v have a common
neighbour. Note that if a good pair u, v is not strong, then G \ {u, v} must be disconnected.
We are now ready to state and prove the following result.

I Theorem 12. Let ∆ ≥ 3 and G be a graph on n vertices with maximum degree at most ∆.
If no component of G is isomorphic to K∆+1, then a ∆-degenerate decomposition of G can
be found in O(∆n2) time.

Proof. We may assume that G is connected, otherwise it can be considered componentwise.
If G is not ∆-regular, then it has a vertex u of degree at most ∆ − 1, so we can find a
(∆− 1)-degenerate order O of G in O(kn) time by taking the vertices in the reverse of the
order they are found in a breadth-first search from u. In this case, we are done by Lemma 7.
For ∆-regular graphs, we use the procedure shown in Algorithm 1. (Whenever we apply one
of the lemmas of this section, we set k = ∆. We note in passing that if we could assume
that G is biconnected, then we would immediately have, by [1, Lemma 3], that there is
always a good pair u, v such that G\{u, v} is connected. As we cannot make this assumption
however, we are not able to make use of this result.)

Let us make a few comments on this procedure. As G is regular, connected and not
complete, we can initially choose any vertex as u and find another vertex v to form a good pair
in O(∆2) = O(∆n) time. If we perform a breadth-first search (which takes O(n+m) = O(∆n)
time) from a neighbour of u that retreats from u or v whenever they are encountered, we
discover a component of G \ {u, v}. If the component contains a common neighbour of u
and v but is not equal to G \ {u, v}, we repeat starting from a neighbour of u or v that was
not discovered. Thus we discover in O(∆n) time that either u, v is a strong pair (if we find
all components of G \ {u, v} and they each contain a common neighbour of u and v), or
that it is not. We set C to be one of the components of G \ {u, v} arbitrarily. By Lemma 8,
we therefore conclude that Lines 1 and 2 take O(∆n) time. It is easy to check in O(∆n)
time whether we apply Lemmas 9–11 on Lines 3–5 and applying these lemmas takes O(∆n)



M. Bonamy, K.K. Dabrowski, C. Feghali, M. Johnson, and D. Paulusma 70:11

in each case. Now suppose that we do not apply any of these lemmas, in which case we
reach Line 7. We will show that we can find u′, v′ and, if necessary, C ′ in O(∆n) time. If
we find u′, v′ such that C ′ = G \ {u′, v′} is connected, then u′, v′ is a strong pair, so after
executing Line 9, the algorithm will stop on Line 2. In all other cases C ′ will be strictly
smaller than C. This means that we apply Line 9 at most O(n) times, implying that we
execute Lines 2–9 at most O(n) times. This will give an overall running time of O(∆n2). It
remains to show that if execution reaches Line 7 then we can find the required good pair
u′, v′ and the component C ′ in O(∆n) time.

Let us first show that C contains good pairs — that is, that it is not a clique. If C is a
clique, then it contains either ∆− 1 or ∆ vertices (as each vertex has degree ∆ in G and the
only other possible neighbours of vertices in C are u and v). If C has ∆− 1 vertices, then
each vertex of C must be adjacent to both u and v and we would have applied Lemma 9 on
Line 3, a contradiction. If C has ∆ vertices, then each vertex of C is adjacent to exactly one
of u and v (and neither u nor v can be adjacent to every vertex in C, as this would form
a K∆+1, contradicting the fact that G is connected), in which case we would have applied
Lemma 10 on Line 4, a contradiction. Therefore we may assume that C is not a clique.

We need describe how to choose a good pair u′, v′ in C. If we can show that u and v are
in the same component of G \ {u′, v′} (which must necessarily contain all of G \C), then we
are done as either G \ {u′, v′} is connected or there is another component C ′ of G \ {u′, v′}
which must be contained in C (and note that in this case C ′ can be found in O(∆n) time
using breadth-first search).

If u and v have a common neighbour outside C or at least three common neighbours
in C, then any good pair in C can be chosen as u′, v′ (as u and v will then be in the same
component of G \ {u′, v′}). If u and v have exactly two common neighbours t1, t2 that both
belong to C, then any good pair other than t1, t2 can be chosen as u′, v′. If t1, t2 is the only
good pair in C (so all other vertices in C are adjacent), then C is a clique minus an edge
and must contain ∆ vertices (t1, t2 and the ∆− 2 neighbours of t1 that are not in {u, v}).
Considering degree, any vertex in C other than t1 or t2 must be adjacent to exactly one of u
and v. If every vertex in C \ {t1, t2} is adjacent to, say u, then C ∪ {u} is a clique on ∆ + 1
vertices minus an edge and we would have applied Lemma 9 on Line 3, a contradiction. We
may therefore assume that at least one vertex in C \ {t1, t2} is adjacent to u and at least
one is adjacent to v, so there is a path from u to v avoiding t1 and t2, and G \ {t1, t2} is
connected, so we are done.

Finally, suppose that u and v have exactly one common neighbour t that belongs to C.
Then any good pair not including t can be chosen as u′, v′, as then u and v will be in the
same component of G \ {u′, v′}. Suppose, for contradiction, that no such pair exists. Then
C \ {t} is a clique. The vertex t has ∆− 2 neighbours in C \ {t}. Since ∆ ≥ 3, let z be one
of those neighbours. Since t is the only common neighbour of u and v, we have that z can
only be adjacent to at most one of u and v. Therefore, t has a neighbour non-adjacent to z,
so z must have a neighbour non-adjacent to t, which we denote w. As w is also adjacent to
at most one of u and v, it also has a neighbour x that is a non-neighbour of t (and cannot
be t itself). So C \ {t} contains at least ∆ vertices: the ∆− 2 neighbours of t plus w and x.
As C \ {t} induces a clique, it must have exactly ∆ vertices, since G cannot contain a K∆+1.
Thus the set C forms a lock, and so we would have applied Lemma 11 on Line 5. This
contradiction completes the proof. J

We note that Theorems 2 and 12 concern decompositions (A,B) of the vertex set of a
graph where A is independent and B induces a (∆− 2)-degenerate graph. As B therefore
cannot be a clique on ∆ vertices, we have the following corollary.

MFCS 2017



70:12 Recognizing Graphs Close to Bipartite Graphs

I Corollary 13. Let ∆ ≥ 3 and G be a graph on n vertices with maximum degree at most ∆.
If the clique number of G is at most ∆, a decomposition of the vertices of G into sets A
and B, where A is an independent set and B induces a graph that has clique number at
most ∆− 1, can be found in O(n) time if ∆ = 3 and O(∆n2) time for all ∆.

Catlin [8] proved that such decompositions exist, but his result did not imply the existence
of a polynomial-time algorithm to find the decomposition. We note that his result contains
the additional claim that A is maximum; we cannot hope for an algorithmic version, as
this would solve the NP-hard problem of finding a maximum independent set in a cubic
graph [15].

5 Reconfigurations of Vertex Colourings

Our interest in Stable(Dk) when k ≥ 2 case stems from an open problem in the area of
graph reconfigurations. For a graph G and integer k ≥ 1, the k-colouring reconfiguration
graph Rk(G) has the vertex set consisting all possible k-colourings of G and two vertices
of Rk(G) are adjacent if and only if the corresponding k-colourings differ on exactly one
vertex. A central problem in the area of reconfiguration is the Reachability problem. In
the context of k-colourings, this is the problem of finding a path (if one exists) in Rk(G)
between two given k-colourings α and β of a graph G. The complexity of this problem has
been studied for graphs G with maximum degree ∆ and any positive integer k. This problem
is PSPACE-hard for k ≥ 4, ∆ ≥ k [3], solvable in O(n+m) time on (general) graphs with n
vertices and m edges for k ≤ 3 [18] and solvable in O(n2) time for k ≥ 4, 0 ≤ ∆ ≤ k − 2 [10].
This leaves us with the case k ≥ 4, ∆ = k− 1. In [14, Theorem 6], three of the authors of the
current paper showed that this case can be solved in polynomial time as long as the input
graph G is not ∆-regular, that is, if not all vertices in G have maximum degree ∆. The case
where G is ∆-regular was left as an open problem, but using Theorem 12 we can now resolve
it by giving an O(n2)-time algorithm (assuming ∆ is fixed and not part of the input).

I Theorem 14. Fix ∆ ≥ 0. Let G be a connected graph on n vertices with maximum
degree ∆. The problem of finding a path (if one exists) between two k-colourings α and β
in Rk(G) is

O(n)-time solvable if 1 ≤ k ≤ 3;
O(n2)-time solvable if k ≥ 4 and 0 ≤ ∆ ≤ k − 1;
PSPACE-hard if k ≥ 4 and ∆ ≥ k.

6 Future Work

As well as showing that the problem of recognizing near-bipartite graphs of diameter 3 is
NP-complete, we have proven that for every integer ∆ ≥ 3, the Stable(D∆−2) problem is
polynomial-time solvable on graphs of maximum degree ∆. Is Stable(D∆−2) NP-complete
for graphs of maximum degree ∆ + 1? Recall that this is known to be the case for ∆ = 3, as
proven by Yang and Yuan [29]. Their proof can easily be adapted to prove that Stable(D∆−2)
is NP-complete for graphs of maximum degree 2∆− 2 for every ∆ ≥ 4.

References
1 Bradley Baetz and David R. Wood. Brooks’ vertex-colouring theorem in linear time. CoRR,

abs/1401.8023, 2014.



M. Bonamy, K.K. Dabrowski, C. Feghali, M. Johnson, and D. Paulusma 70:13

2 Marthe Bonamy, Konrad K. Dabrowski, Carl Feghali, Matthew Johnson, and Daniël
Paulusma. Independent feedback vertex set for P5-free graphs. Manuscript, 2017.

3 Paul S. Bonsma and Luis Cereceda. Finding paths between graph colourings: PSPACE-
completeness and superpolynomial distances. Theoretical Computer Science, 410(50):5215–
5226, 2009.

4 Andreas Brandstädt, Synara Brito, Sulamita Klein, Loana Tito Nogueira, and Fábio Protti.
Cycle transversals in perfect graphs and cographs. Theoretical Computer Science, 469:15–
23, 2013.

5 Andreas Brandstädt, Peter L. Hammer, Van Bang Le, and Vadim V. Lozin. Bisplit graphs.
Discrete Mathematics, 299(1–3):11–32, 2005.

6 Andreas Brandstädt, Van Bang Le, and Thomas Szymczak. The complexity of some prob-
lems related to graph 3-colorability. Discrete Applied Mathematics, 89(1–3):59–73, 1998.

7 Leizhen Cai and Derek G. Corneil. A generalization of perfect graphs – i-perfect graphs.
Journal of Graph Theory, 23(1):87–103, 1996.

8 Paul A. Catlin. Brooks’ graph-coloring theorem and the independence number. Journal of
Combinatorial Theory, Series B, 27(1):42–48, 1979.

9 Paul A. Catlin and Hong-Jian Lai. Vertex arboricity and maximum degree. Discrete
Mathematics, 141(1–3):37–46, 1995.

10 Luis Cereceda. Mixing graph colourings. PhD thesis, London School of Economics, 2007.
11 Konrad K. Dabrowski, Vadim V. Lozin, and Juraj Stacho. Stable-Π partitions of graphs.

Discrete Applied Mathematics, 182:104–114, 2015.
12 François Dross, Mickaël Montassier, and Alexandre Pinlou. Partitioning sparse graphs into

an independent set and a forest of bounded degree. CoRR, abs/1606.04394, 2016.
13 Tomás Feder, Pavol Hell, Sulamita Klein, and Rajeev Motwani. List partitions. SIAM

Journal on Discrete Mathematics, 16(3):449–478, 2003.
14 Carl Feghali, Matthew Johnson, and Daniël Paulusma. A reconfigurations analogue of

Brooks’ Theorem and its consequences. Journal of Graph Theory, 83(4):340–358, 2016.
15 Michael Randolph Garey, David S. Johnson, and Larry J. Stockmeyer. Some simplified

NP-complete graph problems. Theoretical Computer Science, 1(3):237–267, 1976.
16 Martin Grötschel, László Lovász, and Alexander Schrijver. Polynomial algorithms for per-

fect graphs. Annals of Discrete Mathematics, 21:325–356, 1984.
17 Chính T. Hoàng and Van Bang Le. On P4-transversals of perfect graphs. Discrete Math-

ematics, 216(1–3):195–210, 2000.
18 Matthew Johnson, Dieter Kratsch, Stefan Kratsch, Viresh Patel, and Daniël Paulusma.

Finding shortest paths between graph colourings. Algorithmica, 75(2):295–321, 2016.
19 Jan Kratochvíl and Ingo Schiermeyer. On the computational complexity of (O,P)-partition

problems. Discussiones Mathematicae Graph Theory, 17(2):253–258, 1997.
20 László Lovász. Coverings and coloring of hypergraphs. Congressus Numerantium, VIII:3–12,

1973.
21 Vadim V. Lozin. Between 2- and 3-colorability. Information Processing Letters, 94(4):179–

182, 2005.
22 Nadimpalli V. R. Mahadev and Uri N. Peled. Threshold graphs and related topics, volume 56

of Annals of Discrete Mathematics. North-Holland, Amsterdam, 1995.
23 Martín Matamala. Vertex partitions and maximum degenerate subgraphs. Journal of

Graph Theory, 55(3):227–232, 2007.
24 Colin McDiarmid and Nikola Yolov. Recognition of unipolar and generalised split graphs.

Algorithms, 8(1):46–59, 2015.
25 George B. Mertzios and Paul G. Spirakis. Algorithms and almost tight results for 3-

colorability of small diameter graphs. Algorithmica, 74(1):385–414, 2016.

MFCS 2017



70:14 Recognizing Graphs Close to Bipartite Graphs

26 Neeldhara Misra, Geevarghese Philip, Venkatesh Raman, and Saket Saurabh. On paramet-
erized independent feedback vertex set. Theoretical Computer Science, 461:65–75, 2012.

27 Yuma Tamura, Takehiro Ito, and Xiao Zhou. Algorithms for the independent feedback
vertex set problem. IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences, E98-A(6):1179–1188, 2015.

28 Yongqi Wu, Jinjiang Yuan, and Yongcheng Zhao. Partition a graph into two induced forests.
Journal of Mathematical Study, 29:1–6, 1996.

29 Aifeng Yang and Jinjiang Yuan. Partition the vertices of a graph into one independent set
and one acyclic set. Discrete Mathematics, 306(12):1207–1216, 2006.



Parameterized Algorithms and Kernels for
Rainbow Matching
Sushmita Gupta1, Sanjukta Roy2, Saket Saurabh3, and
Meirav Zehavi4

1 University of Bergen, Norway
Sushmita.Gupta@uib.no

2 The Institute of Mathematical Sciences, HBNI, Chennai, India
sanjukta@imsc.res.in

3 University of Bergen, Norway, and
The Institute of Mathematical Sciences, HBNI, Chennai, India
saket@imsc.res.in

4 University of Bergen, Norway
Meirav.Zehavi@uib.no

Abstract
In this paper, we study the NP-complete colorful variant of the classical Matching problem,
namely, the Rainbow Matching problem. Given an edge-colored graph G and a positive integer
k, this problem asks whether there exists a matching of size at least k such that all the edges in the
matching have distinct colors. We first develop a deterministic algorithm that solves Rainbow

Matching on paths in time O?(
(

1+
√

5
2

)k

) and polynomial space. This algorithm is based on
a curious combination of the method of bounded search trees and a “divide-and-conquer-like”
approach, where the branching process is guided by the maintenance of an auxiliary bipartite
graph where one side captures “divided-and-conquered” pieces of the path. Our second result
is a randomized algorithm that solves Rainbow Matching on general graphs in time O?(2k)
and polynomial-space. Here, we show how a result by Björklund et al. [JCSS, 2017] can be
invoked as a black box, wrapped by a probability-based analysis tailored to our problem. We
also complement our two main results by designing kernels for Rainbow Matching on general
and bounded-degree graphs.

Keywords and phrases Rainbow Matching, Parameterized Algorithm, Bounded Search Trees,
Divide-and-Conquer, 3-Set Packing, 3-Dimensional Matching

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.71

1 Introduction

The classical notion of matching has been extensively studied for several decades in the
area of Combinatorial Optimization [6, 14]. Given an undirected graph G, a set of edges
is called a matching if the edges are pairwise non-adjacent. That is, no two edges share a
common vertex. In the Maximum Matching problem, the objective is to find a matching
of maximum size. The first polynomial time algorithm for Maximum Matching was given
by Edmonds [6] in his classic paper Paths, Trees and Flowers. It is important to remark that
this is the paper which underlined the importance of study of polynomial time algorithms for
the first time. After a series of improvements, the current fastest algorithm for Maximum
Matching was given by Micali and Vazirani and it runs in time O(m

√
n) [15]. However,

finding a matching that satisfies some additional constraints often immediately becomes NP-
complete, where three notable examples are Minimum Maximal Matching [18], Induced

© Sushmita Gupta, Sanjukta Roy, Saket Saurabh, and Meirav Zehavi;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 71; pp. 71:1–71:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.71
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


71:2 Parameterized Algorithms and Kernels for Rainbow Matching

Matching [17] and Multiple Choice Matching [11]. In this paper, we study the NP-hard
variant of Maximum Matching called Multiple Choice Matching from the viewpoint
of parameterized complexity.

The Multiple Choice Matching problem, also called Rainbow Matching, is one of
the NP-hard variant of Maximum Matching mentioned in the classical book by Garey and
Johnson [9, Problem GT55]. In this work, we will stick to the name Rainbow Matching.
This problem is formally defined as follows.

Rainbow Matching Parameter: k

Input: An undirected graph G, a coloring function χ : E(G)→ {1, . . . , q} and a positive
integer k.
Question: Does there exist a matching of size at least k such that all the edges in the
matching have distinct colors?

A matching where all the edges have distinct colors will be called colorful matching. Itai et
al. [11] showed, already in 1978, that Rainbow Matching is NP-complete on (edge-colored)
bipartite graphs. Close to three decades later, Le and Pfender [13] revisited the computational
complexity of this problem. Specifically, they showed that the Rainbow Matching problem
is NP-complete even on (edge-colored) paths, complete graphs, P8-free trees in which every
color is used at most twice, P5-free linear forests in which every color is used at most twice,
and P4-free bipartite graphs in which every color is used at most twice. In this paper, we
consider this problem from the parameterized rather than classical complexity perspective.

A parameterization of a problem is the association of an integer k with each input instance,
which results in a parameterized problem. For our purposes, we need to recall three central
notions that define the parameterized complexity of a parameterized problem. The first one
is the notion of a kernel. Here, a parameterized problem is said to admit a kernel of size f(k)
for some function f that depends only on k if there exists a polynomial-time algorithm, called
a kernelization algorithm, that translates any input instance into an equivalent instance of
the same problem whose size is bounded by f(k) and such that the value of the parameter
does not increase. In case the function f is polynomial in k, the problem is said to admit
a polynomial kernel. Hence, kernelization is a mathematical concept that aims to analyze
the power of preprocessing procedures in a formal, rigorous manner. The second notion
that we use is the one of fixed-parameter tractability (FPT). Here, a parameterized problem
Π is said to be FPT if there is an algorithm that solves it in time f(k) · |I|O(1), where |I|
is the size of the input and f is a function that depends only on k. Such an algorithm
is called a parameterized algorithm. In other words, the notion of FPT signifies that it is
not necessary for the combinatorial explosion in the running time of an algorithm for Π to
depend on the input size, but it can be confined to the parameter k. Finally, we recall that
Parameterized Complexity also provides tools to refute the existence of polynomial kernels
and parameterized algorithms for certain problems (under plausible complexity-theoretic
assumptions). We refer the reader to the books [3, 5] for more information on these notions
in particular, and on Parameterized Complexity in general. The notation O?(·) is used to
hide factors polynomial in the input size.

1.1 Our Contribution

Our starting point is the FPT algorithm mentioned in the article of Le and Pfender [13]. This
algorithm is based on the connection between Rainbow Matching and 3-Set Packing. In
the 3-Set Packing problem, we are given a universe U , a set family F consisting of subsets



S. Gupta, S. Roy, S. Saurabh, and M. Zehavi 71:3

of U of size at most 3 and an integer k, and the objective is to check whether there exists a
subfamily F′ ⊆ F containing at least k pairwise-disjoint sets. Observe that given an instance
I = (G,χ, k) of Rainbow Matching, we can view I as an instance of 3-Set Packing by
setting U = V (G) ∪ {1, . . . , q}, and letting F contain every set {u, v, χ(e)} corresponding
to an edge e = uv ∈ E(G). Now, observe that (G,χ, k) is a yes-instance of Rainbow
Matching if and only if (U,F, k) is a yes-instance of 3-Set Packing. This immediately
implies that known algorithms for 3-Set Packing can be employed to solve Rainbow
Matching. In particular, using the known algorithms for 3-Set Packing, we obtain the
following algorithms for Rainbow Matching: (1) a deterministic algorithm running in time
O?(8.097k) [19]; (2) a randomized algorithm running in time O?(1.49533k) = O?(3.3434k) [2].

Rainbow Matching on Paths. Our first contribution concerns the Rainbow Matching
problem on paths. We obtain the following algorithm, which is faster than the one that we
design later for general graphs.

I Theorem 1. There exists a deterministic algorithm for Rainbow Matching on paths

that runs in time O?

((
1 +
√

5
2

)k
)

and uses polynomial space.

The proof of Theorem 1 is based on a combination of the classical method of bounded
search trees [3, 5, 7, 8] together with a “divide-and-conquer-like” approach. The algorithm
always maintains a family of vertex-disjoint paths S, and the objective is to find a colorful
matching of size k that uses exactly one edge from each path in S and k − |S| edges from
P . We call this variant of Rainbow Matching the Disjoint Set Rainbow Matching
problem. Observe that when S = ∅, then Disjoint Set Rainbow Matching is precisely
Rainbow Matching. To compactly represent potential partial solutions to our problem at
every step of the recursion, that is, partial witnesses that there may indeed exist a colorful
matching that uses exactly one edge from each path in S, our algorithm works as follows.
The algorithm uses an auxiliary bipartite graph where we maintain a partial solution to our
problem, in terms of a matching in this bipartite graph. This has the additional benefit that
the measure becomes very simple: we just measure the size left to cover, i.e. k − t, where
t = |S| denotes the size of the partial solution. (We remark that we are able to construct
a solution in the same time as it takes to solve the decision version of the Disjoint Set
Rainbow Matching problem.)

Rainbow Matching on General Graphs. Our second contribution is an algorithm on general
graphs that is better than the known algorithms for 3-Set Packing. In particular, we
obtain the following result.

I Theorem 2. There exists a randomized algorithm for Rainbow Matching with constant,
one-sided error that runs in time O?(2k) and uses polynomial space.1

The proof of Theorem 2 is based on the general method described in [2] for solving
various packing and matching problems. We tailor the analysis of Bjorklund et al. [2] to
the Rainbow Matching problem. This gives us the desired saving over the algorithm for
3-Set Packing.

1 Specifically, if the algorithm determines that an input instance is a yes-instance, then this answer is
necessarily correct.

MFCS 2017



71:4 Parameterized Algorithms and Kernels for Rainbow Matching

Kernelization. Finally, we turn to consider the question of kernelization. Here, we exploit
the connection between our problem and 3-Set Packing to design a kernelization algorithm.
We also design a smaller kernel for Rainbow Matching on paths, or more generally, for
graphs of bounded degree.

I Theorem 3. Rainbow Matching admits a kernel of size O(k3) on general graphs.
Moreover, it admits a kernel of size O(dk2) on graphs of maximum degree d.

1.2 Related Work

Le and Pfender [13] gave a factor ( 2
3 − ε) approximation algorithm for Rainbow Matching

on general graphs for every ε > 0. They also designed a few polynomial time algorithms
when the instances of Rainbow Matching are restricted to special graph classes. As stated
before, Le and Pfender [13] also related this problem to 3-Set Packing, and showed that
the problem is FPT. Moreover, they showed that the problem is FPT on P5 free forests
parameterized by the number of components. Colorful matchings have also been studied from
graph theoretic and combinatorial perspectives. For example, they are related to Ryser’s
famous conjecture regarding Latin transversal [16]. In the language of colorful matchings, the
conjecture says that every proper edge coloring of the complete bipartite graph K2n+1,2n+1
with 2n+ 1 colors contains a rainbow matching with 2n+ 1 edges. Additional examples are
studies of sufficient conditions for edge-colored graphs to guarantee the existence a colorful
matching of a certain size. Moreover, previous studied also examined what is the size of the
largest colorful matching in an edge-colored graph with additional restrictions. For more
information on these topics, we refer to [13] and references therein. Finally, let us mention
that colorful matchings belong to a family of problems called rainbow subgraph problems. A
rainbow subgraph of an edge-colored graph is a subgraph whose edges have distinct colors.
We refer to [12] for a survey containing results and questions regarding rainbow subgraps.

1.3 Preliminaries

Let [n] denote the set {1, . . . , n}. For a graph G, we let V (G) and E(G) denote its vertex
set and its edge set, respectively. For two vertices u, v ∈ V (G), we use uv to denote an edge
between u and v.

Reduction Rule. To design our kernelization algorithm, we rely on the notion of a reduction
rule. A reduction rule is a polynomial-time procedure that replaces an instance (I, k) of a
parameterized problem Π (where k is the parameter) by a new instance (I ′, k′) of Π. The
rule is said to be safe if (I, k) is a yes-instance if and only if (I ′, k′) is a yes-instance. As
customary in the field we allow reduction rule to return the answer yes or the answer no
(see [3, 5]).

2 Algorithm for Rainbow Matching on Paths

In this section we give a deterministic algorithm for Rainbow Matching on paths that is
faster than the algorithm we will present for Rainbow Matching on general graphs in the
next section. Towards that we will solve the following general problem, and from there solve
Rainbow Matching in paths.



S. Gupta, S. Roy, S. Saurabh, and M. Zehavi 71:5

Disjoint Set Rainbow Matching Parameter: k

Input: A path P with edge coloring χ : E(G)→ [q], a collection S of (vertex disjoint)
paths (vertex disjoint from P ) of arbitrary lengths, and a positive integer k.
Question: Does there exist a colorful matching of size k that uses exactly one edge
from each path in S and k − |S| edges from P?

Note that Rainbow Matching is a special case of Disjoint Set Rainbow Matching,
where P is the input graph (a path), S = ∅ and k is the parameter. Thus, solving Disjoint
Set Rainbow Matching will yield an algorithm for Rainbow Matching.

Overview. To solve Disjoint Set Rainbow Matching, whenever possible we apply
reduction rules, or solve the instance in polynomial time. In the absence of either of these,
the algorithm branches on an edge, based on whether it is part of the solution or not.

Measure. We associate the measure µ(P,S, k) = k − |S| to the instance (P,S, k). We will
use this measure to bound the number of nodes in the search tree. When the instance is
clear from the context, we will simply use µ.

Auxiliary bipartite graph. At every step of the search we maintain a bipartite graph B(S)
on the vertex set ([q],S) and edge set containing pairs cP ′ ∈ [q]×S such that color c appears
on an edge in the path P ′ in (the collection) S.

We first prove a lemma which allows us to solve the Disjoint Set Rainbow Matching
problem when the measure is at most one.

I Lemma 4. If µ(P,S, k) ≤ 1, then we can test if (P,S, k) is a yes-instance in polynomial
time.

Proof. We divide the proof based on whether µ(P,S, k) < 0 or µ(P,S, k) = 0 or µ(P,S, k) =
1. If µ(P,S, C, k) < 0, then k < |S| and so clearly no matching of size k can exist which
chooses exactly one edge from each path in S.

If µ(P,S, k) = 0, then k = |S|. Let Q1, . . . , Qk denote the paths in S. We will show that
there exists a colorful matching of size k that uses exactly one edge from each path in S if
and only if there is a matching in B(S) that saturates S. LetM be a colorful matching of
size k that uses exactly one edge from each path in S. Furthermore, for each i (1 ≤ i ≤ k) let
mi ∈M be the edge that is part of path Qi. Then {χ(mi)Qi | i ∈ [k]} forms a matching that
saturates S in B(S). In the reverse direction given a matchingM′ in B(S) that saturates
S, we obtain a colorful matchingM that uses exactly one edge from each path Qi in S, as
follows. SinceM′ saturates S we have that for every path Qi ∈ S there is an edge jQi for
some j ∈ [q]. This implies that there is an edge, say mi on Qi such that χ(mi) = j, i.e. mi

has color j. Since, the paths in S are pairwise vertex disjoint, the setM? = {mi | i ∈ [k]}
forms a matching in the graph P . Recall thatM′ is a matching in B(S) in which one of the
endpoints of the edges are from the set [q], thus, it follows thatM? is a colorful matching of
size k that uses exactly one edge from each path in S. Thus, implying that in this case we
can check whether or not (P,S, k) is a yes-instance in polynomial time by checking if the
bipartite graph B(S) has a matching that saturates S [10].

If µ(P,S, k) = 1, then k = |S|+ 1. In this case, we consider every edge e = uv on P . Let
us now consider a specific iteration concerning an edge e = uv on P . Then, we construct
B(S ∪ {uv}). Similar to the case of µ(P,S ∪ {uv}), k) = 0, we have now reduced the problem
into checking whether or not, there is a matching in B(S ∪ {uv})) that saturates S ∪ {uv}.

MFCS 2017



71:6 Parameterized Algorithms and Kernels for Rainbow Matching

This condition can be tested in polynomial time. If in at least one iteration, we found a
saturating matching then we have a yes-instance, and otherwise we have no-instance. This
completes the proof. J

Lemma 4 yields the following reduction rule.

I Reduction Rule 5. If µ(P,S, k) ≤ 1, then using Lemma 4 test whether or not (P,S, k) is
a yes-instance. If Lemma 4 returns yes, then return that (P,S, k) is a yes-instance; else,
return that (P,S, k) is a no-instance.

The safeness of Reduction Rule 5 follows from Lemma 4. The next reduction rule allows
us to identify a prefix of the path P such that there exists a colorful matching of size at least
k that contains exactly one edge from the prefix.

I Reduction Rule 6. In the instance (P,S, k), let P = v1, v2, . . . , vn−1, vn. Suppose that for
every index i ∈ [n− 1] the following property is true: when the subpaths Pi−1 = v1, . . . , vi−1
and P ′ = vi, vi+1 of P are added to S, the size of a maximum matching in the new bipartite
graph B(S ∪ {Pi−1, P

′}) (obtained after the addition of Pi−1 and P ′ to S, and suitable edges)
is at most |S|+ 1. Then, return that (P,S, C, k) is a no-instance.

Next we show that the correctness of Reduction Rule 6.

I Lemma 7. Reduction Rule 6 is safe.

Proof. For the sake of contradiction, we assume that (P,S, k) is a yes-instance. In this case
we will show that there exists an index i ∈ [n − 1] with the following property: when the
subpaths Pi−1 = v1, . . . , vi−1 and P ′ = vi, vi+1 of P are added to S, the size of a maximum
matching in the new bipartite graph B(S ∪ {Pi−1, P

′}) is |S|+ 2. This will be contradiction,
and thereby prove the lemma.

Since (P,S, k) is a yes-instance there exists a colorful matching of size k, denoted byM,
that uses k colors from [q], exactly one edge from each path in S, and k − |S| edges from
P . Thus, there is a maximum matching in the bipartite graph on B(S) that saturates every
vertex in the S-side. It is obtained by taking edges that connect a vertex in the S-side (i.e.
a path in the collection S) with the color that appears on the matching edge inM that is
part of the same path. We useM′ to denote this bipartite matching.

Let {ej1 , ej2 , . . . , ejk−|S|} denote the matching edges in M as they appear left to right
in P . For some i ≥ 3, let vivi+1 denote the edge ej2 (the matching edge with the second
smallest index in P ). It follows that edge ej1 appears in the subpath Pi−1 = v1, . . . , vi−1.
Note that the vertex χ(ej2) ∈ [q] is not saturated by M′ in B because ej2 is part of the
matching M while it is inside P . Similarly, the vertex χ(ej1) ∈ [q] is also not saturated
by M′ in B. Hence, when paths Pi−1 and P ′ are added to the bipartite graph, M′ can
be extended by exactly two more edges: edges between χ(ej1) and Pi−1 and χ(ej2) and P ′.
Thus, the new bipartite graph has a matching of size |S|+ 2. J

The safeness of Reduction Rule 6, leads us to the following conclusion.

I Lemma 8. If (P,S, k) is a yes-instance on which Reduction Rules 5 and 6 are not applicable,
then there exists an index i ∈ [n− 1] such that there exists a colorful matching of size k that
uses exactly one edge from the subpath Pi = v1, . . . , vi of P . Furthermore, such an index i
can be found in polynomial time.

Proof. Since Reduction Rules 5 and 6 are not applicable we have that µ(P,S, k) ≥ 2. This
implies that k ≥ |S|+ 2. Let i denote the smallest integer in [n− 1] for which the following
holds:



S. Gupta, S. Roy, S. Saurabh, and M. Zehavi 71:7

Property (??) when the subpaths Pi−1 = v1, . . . , vi−1 and P ′ = vi, vi+1 of P are added
to M, the size of a maximum matching in the new bipartite graph B(S ∪ {Pi−1, P

′})
(obtained after the addition of Pi−1 and P ′ to S, and suitable edges) is |S|+ 2.
Observe that since k ≥ |S|+ 2 ≥ 2, such an integer i must exist.

Note that any colorful matching of size k uses at most one edge from Pi, else, it contradicts
the fact that i is the smallest integer that satisfies Property (??). Also note that since we
have a colorful matching of size at least 2 in Pi+1, so i ≥ 3. However, since there always
exists a colorful matching of size k that uses one of the first two edges of the path P ; hence,
the matching must use one of the edges on Pi. This implies that there exists a colorful
matching of size k that uses exactly one edge on Pi. Clearly, we can find the smallest integer
described in the statement of the lemma in polynomial time. This concludes the proof. J

Lemma 8 yields a branching rule that can be described as follows. Let Pi be the subpath
of P (given by Lemma 8) such that there exists a colorful matching of size k that uses exactly
one edge from it. We recursively solve two subproblems one where we assume that edge
vivi+1 is in the colorful matching of size k we are constructing, and the other where we
assume that edge vivi+1 is not part of the solution we are constructing. Note that this rule
is exhaustive because an edge (in particular, vivi+1) can either belong to a matching, or it
does not.

Algorithm. Now we can describe the branching rule in details along with the recursive call
to a subproblem. Let I = (P = v1, . . . , vn,S, k) be the instance of Disjoint Set Rainbow
Matching, where none of the Reduction Rules 5 or 6 are applicable. Let Pi be the subpath
of P as described in Lemma 8.

Branch 1: (The edge vivi+1 belongs to a colorful matching of size k.)
We recursively solve the problem on the instance (P \ {v1, . . . , vi+1},S ∪ {Pi−1} ∪
{[vivi+1]}, k). Since the size of S increases by 2, the measure µ decreases by 2. Observe
that by Lemma 8 we know that there exists a colorful matching of size k that uses exactly
one edge from the subpath Pi. However, since we have assumed that the edge vivi+1
belongs to the colorful matching of size k, thus, edge vi−1vi cannot be part of the same
matching, and so one of the edges in Pi−1 must be part of the matching as well. Thus, in
this case we know that two of the edges in our matching are due to the edge vivi+1 and
the other is from Pi−1.

Branch 2: (The edge vivi+1 does not belong to a colorful matching of size k.)
In this case we recursively solve the problem on (P \ {v1, . . . , vi},S ∪ {Pi}, k). Since the
size of S increases by 1 and k remains the same, the measure µ decreases by 1. The
correctness of this step follows from Lemma 8.

If either of the branches returns “yes”, we return the same. Else, we return that the given
instance is a no-instance.

The resulting branching vector for this algorithm is (2, 1). Thus, solving the polynomial
x2 ≥ x+ 1 for a positive root yields x ≥ 1

2 (1 +
√

5) = 1.6181. This upper bounds the running
time of our algorithm. The correctness of the algorithm follows from Lemmas 4, 7 and 8.

Recall that as explained at the very onset of our discussion: Since Rainbow Matching
is a special case of Disjoint Set Rainbow Matching, hence our algorithm can solve
Rainbow Matching by using the algorithm for the latter on the instance (G,S = ∅, k).
This completes the proof of Theorem 1.

MFCS 2017



71:8 Parameterized Algorithms and Kernels for Rainbow Matching

3 FPT Algorithm for Rainbow Matching on General Graphs

This section is inspired by the proof of Theorem 4 in [2], which solves 3-Set Packing in time
O?(3.3434k). We show that by an analysis tailored to Rainbow Matching, we improve
upon the time complexity O?(3.3434k). More precisely, the objective of this section is to
prove Theorem 2.

Towards the proof of Theorem 2, we need to consider a problem called 3-Set Prepacking,
which was introduced in [2]. The input of this problem consists of an n-element universe
U , an n1-element subuniverse U1 ⊆ U , a family F of 3-sets, a positive integer k, and three
non-negative integers p0, p1 and p2 whose sum is k. The task is to determine whether there
exists a subfamily F ′ ⊆ F of size k such that the 3-sets in F ′ are pairwise-disjoint, and for
all i ∈ {0, 1, 2}, there exist exactly pi sets S in F ′ such that |S ∩ U1| = i. We would need to
rely on the following result.

I Proposition 9. There exists a randomized algorithm for 3-Set Prepacking with constant,
one-sided error that runs in time O?(23p0+2p1+p2) and uses polynomial space. Specifically,
if the algorithm determines that an input instance is a yes-instance, then this answer is
necessarily correct.

Let us denote the algorithm given by Proposition 9 by PrepackAlg. We present a reduction
from our problem to 3-Set Prepacking. For this purpose, we describe a procedure Reduce
that given an instance (G,χ : V (G)→ [q], k) of Rainbow Matching, constructs an instance
reduce(G,χ, k) = (U,U1,F , k, p0, p1, p2) of 3-Set Prepacking with the same parameter
k. Let us denote n1 = |V (G)| = n − q, where n would denote |U |. First, Reduce sets
U = V (G) ∪ [q], F = {{u, v, χ(uv)} : uv ∈ E(G)}, p0 = 0, p1 = 0 and p2 = k. Second,
Reduce sets U1 = V (G). Let us now argue that we obtain an equivalent instance.

I Lemma 10. Let (G,χ : V (G) → [q], k) be an instance of Rainbow Matching. Then,
reduce(G,χ, k) = (U,U1,F , k, p0, p1, p2) is a yes-instance of 3-Set Prepacking if and only
if (G,χ : V (G)→ [q], k) is a yes-instance of Rainbow Matching.

Proof. In the first direction suppose that reduce(G,χ, k) = (U,U1,F , k, p0, p1, p2) is a yes-
instance of 3-Set Prepacking. In particular, we then have that there exists a subfamily
F ′ ⊆ F of size k such that the 3-sets in F ′ are pairwise-disjoint. Let us denoteM = {uv ∈
E(G) : ∃S ∈ F ′ s.t. {u, v} ⊆ S}. Since |F ′| = k, we have that |M| = k, and since the 3-sets in
F ′ are pairwise-disjoint, we have thatM is a colorful matching. Thus, (G,χ : V (G)→ [q], k)
is a yes-instance of Rainbow Matching.

In the other direction suppose (G,χ : V (G) → [q], k) is a yes-instance of Rainbow
Matching. Then there exists a colorful matching M of size k. Let us denote F ′ =
{{u, v, χ(uv)}| uv ∈M}. Since the size ofM is k, we have that the size of F ′ is k and since
M is a colorful matching we have that the sets in F ′ are pairwise disjoint. Notice that every
set in F ′ exactly two elements from U1. Therefore, for all i ∈ {0, 1, 2}, there exist exactly pi

sets S in F ′ such that |S ∩ U1| = i. Thus, (U,U1,F , k, p0, p1, p2) is a yes-instance of 3-Set
Prepacking. J

Let us now prove Theorem 2.

Proof of Theorem 2. Given an instance (G,χ : V (G) → [q], k) of Rainbow Matching,
we construct the instance reduce(G,χ, k) = (U,U1,F , k, p0, p1, p2) of 3-Set Prepacking.
Then, we run the algorithm given by Proposition 9. We accept if and only if the algorithm
from Proposition 9 accepted. The correctness follows from Proposition 9 and Lemma 10.
Since, p0 = p1 = 0 and p2 = k, by Proposition 9, the total running time is O?(2k). J



S. Gupta, S. Roy, S. Saurabh, and M. Zehavi 71:9

4 Kernelization Algorithms

In this section we give a proof for Theorem 3. We first describe a kernel on general graphs.
The kernelization algorithm on general graphs is actually a known kernel for 3-Set Packing
given in [3, Theorem 12.20] (also see [1, 4]). The best known kernel for 3-Set Packing is
given by Abu-Khzam [1] and it has O(k2) elements and O(k3) sets. However, as we explain
now, we cannot use the kernel given by Abu-Khzam [1] directly for our purposes. This
is in contrast to the fact that one can use the best known parameterized algorithms for
3-Set Packing to design parameterized algorithms for Rainbow Matching. Given an
instance (G,χ, k) of Rainbow Matching, we can transform it to an instance (U,F, k) of
3-Set Packing as explained in the introduction. Now if we apply a kernelization algorithm
for 3-Set Packing, then it will return an equivalent instance (U ′,F′, k′) of 3-Set Packing
and not of Rainbow Matching. A priori, it is not clear how we can transform (U ′,F′, k′)
to an instance of Rainbow Matching without increasing the size bounds on the kernel we
obtain for Rainbow Matching. Thus, to design a kernelization algorithm for Rainbow
Matching we give a kernelization algorithm for 3-Set Packing such that it is easy to
transform an instance of the latter to an instance of Rainbow Matching. This kernel is
given here mainly for completeness.

4.1 Kernelization for Rainbow Matching on general graphs
Now we give the kernelization algorithm alluded to in the first part of Theorem 3. Towards
that we will use the sunflower lemma – a classical result of Erdős and Rado. We first define
the terminology used in the statement of the lemma. A sunflower with k petals and a core
Y is a collection of sets S1, . . . , Sk such that Si ∩ Sj = Y for all i 6= j; the sets Si \ Y are
petals and we require none of them to be empty. Note that a family of pairwise disjoint sets
is a sunflower (with an empty core).

I Proposition 11. [3, pg 38] (Sunflower lemma) Let A be a family of sets (without duplicates)
over a universe U , such that each set in A has cardinality exactly d. If |A| > d!(k − 1)d,
then A contains a sunflower with k petals and such a sunflower can be computed in time
polynomial in |A|, |U |, and k.

Proof of first part of Theorem 3. Given an instance (G,χ, k) of Rainbow Matching, we
view this as an instance J of 3-Set Packing as follows: U = V (G) ∪ {1, . . . , q} and F

consists of a set {u, v, χ(uv)} corresponding to every edge e = uv ∈ E(G).

I Reduction Rule 12. Let (U,F, k) be an instance of 3-Set Packing and suppose that F
contains a sunflower S = {S1, . . . , S3(k−1)+2} of cardinality 3k− 1 with core Y . Then, return
(U ′,F′, k), where U ′ =

⋃
X∈F′ X, and F′ = (F \ S1) is obtained by deleting a set S1 from F.

To show the correctness of Reduction Rule 12, we need to show the following lemma.

I Lemma 13. Reduction Rule 12 is safe.

Proof. We will prove that (U,F, k) is a yes-instance of 3-Set Packing if and only if (U ′,F′, k)
is a yes-instance of 3-Set Packing. It is clear that if (U ′,F′, k) is a yes-instance of 3-
Set Packing then so is (U,F, k); so the backward direction holds straightaway.

For the forward direction, we assume that we have a solution S to (U,F, k), i.e., a set of
k pairwise disjoint sets. If S does not contain S1, then it is also a solution for (U ′,F′, k). So
let us assume that S1 ∈ S. Observe that the number of elements appearing in the sets in S,
apart from those present in S1, is 3(k − 1). Also, note that no set in S \ {S1} intersects the

MFCS 2017



71:10 Parameterized Algorithms and Kernels for Rainbow Matching

core Y . Thus, the number of sets in the sunflower S that intersects the elements present
in the sets of S is upper bounded by 1 + 3(k − 1) (the first one for S1). This implies there
exists a set S? ∈ S that is pairwise disjoint with every set in S \ {S1}. Thus, (S \ {S1}) ∪ S?

is a solution of size k for (U ′,F′, k). This completes the proof. J

Now, we are ready to describe the kernelization algorithm. If the number of sets in F is
more than 6(3k− 2)3, then the kernelization algorithm applies the sunflower lemma to find a
sunflower of size 3k − 1, and applies Reduction Rule 12 on this sunflower.

The algorithm applies this procedure exhaustively, and obtains a new family of sets
F′ of size at most 6(3k − 2)3. This concludes the size bound on the family (U ′,F′, k) of
3-Set Packing. Observe that throughout the process, we have never reduced the size of
any set in the family and each set in the family still corresponds to an edge and its color.
Thus, given (U ′,F′, k), let W be the vertices present in U ′. Then we return (G[W ], χ′, k),
where edge coloring χ′ is the restriction of χ to the edges present in G[W ]. This concludes
the description of the kernelization algorithm. J

4.2 A Kernel on graphs of bounded degree
In this section we design a small kernel for Rainbow Matching on graphs of bounded
degree. Let (G,χ, k) be an instance of Rainbow Matching. Throughout this section we
assume that the maximum degree of G is upper bounded by a fixed constant d.

For i ∈ [q], let Ei = {e ∈ E(G) | χ(e) = i}. We call the set of edges Ei as a color class
with color i. Next we give reduction rule that bounds the size of each color class.

I Reduction Rule 14. If there exists i ∈ [q] such that |Ei| ≥ 2d(k − 1) + 1 then delete Ei

and reduce k by 1. That is, we obtain an instance (G′, χ′, k − 1). Here, G′ is obtained by
deleting all the edges in Ei and edge coloring χ′ is obtained by restricting χ to the edges in
G′.

I Lemma 15. Reduction Rule 14 is safe.

Proof. We will prove that G has a colorful matching of size k if and only if G′ has a colorful
matching of size k− 1. We first prove the forward direction. If G has a colorful matchingM
of size k that contains an edge uv ∈ Ei, thenM\{uv} is a colorful matching of size k− 1 in
the graph G′. IfM does not have an edge of color i, thenM itself is a colorful matching of
size at least k − 1 for G′.

For the backward direction, letM′ be a colorful matching of size k − 1 of G′. Observe
thatM′ has 2(k− 1) distinct vertices and each vertex has degree at most d. If every edge in
M′ has an endpoint that is adjacent to an edge in Ei, then the vertices inM′ can share at
most 2d(k − 1) vertices. That is, at most 2d(k − 1) edges from Ei can share vertices with
M′. Since, |Ei| ≥ 2d(k − 1) + 1, Ei has at least one edge that does not share a vertex with
M′. Let that edge be uv. Then, it follows thatM′ ∪ {uv} is a k size colorful matching of G,
and our proof is complete. J

We apply Reduction Rule 14 exhaustively. If the premise of the rule is not satisfied, then
for each color i, we have that |Ei| ≤ 2d(k − 1). Next we give a polynomial time procedure
that either outputs a colorful matching of size at least k or bounds the number of colors.

I Lemma 16. Let (G,χ, k) be an instance of Rainbow Matching for which Reduction
Rule 14 is not applicable. Then, in polynomial time either we can conclude that (G,χ, k) is a
yes-instance or the number of distinct colors in the instance is upper bounded by 2d(k − 1).



S. Gupta, S. Roy, S. Saurabh, and M. Zehavi 71:11

Proof. We iteratively try to build a colorful matching of size k. If we fail to do so, then it
will enable us to bound the number of color classes. LetM be an empty set. We repeat the
below procedure until the graph is empty.
1. Pick an edge uv of G arbitrarily, and add it to M. Let the edges incident on u have

colors c1
u, c

2
u, . . . , c

`
u and the edges incident on v have colors c1

v, c
2
v, . . . , c

p
v.

2. Delete all the edges in
⋃`

i=1 Eci
u
and

⋃p
i=1 Eci

v
. Let the resulting graph be also called G.

If we can continue the above process for k steps (i.e. |M| ≥ k) then M is a colorful
matching of size at least k. In this case we outputM as the desired colorful matching. To
see its correctness, observe that in every iteration we deleted the edges incident on both
the endpoints of the added toM. So, the edges we added toM are indeed pairwise vertex
disjoint. Also, note that we delete all the edges with colors that are used on the edges that
are incident to the edges that were added toM. Hence, the edges inM have distinct color.

Otherwise, our procedure ends within at most k − 1 steps, and so |M| ≤ k − 1. Now, let
us count the number of color classes we delete in each iteration. In other words, we count
the number of color classes that are deleted each time we add an edge to M . If all the edges
incident on u have distinct colors then ` ≤ d because degree of u is at most d. Similarly,
we are argue that p ≤ d. Together they imply that we delete at most 2d color classes in
each iteration. Hence, in at most k − 1 iterations we delete at most 2d(k − 1) color classes.
Following this we are left with an an empty graph. Thus, we have shown that in this case,
we can have at most 2d(k − 1) color classes. J

Lemmas 15 and 16 together prove second part of Theorem 3.

5 Conclusion, Discussion and Open Problems

In this paper, we considered Rainbow Matching from the viewpoint of parameterized com-
plexity, and designed faster parameterized algorithms as well as kernels for this problem. Rain-
bow Matching is easily seen as a generalization of another well studied problem in paramet-
erized algorithms, namely 3-Dimensional Matching, when we allow the input graph to be
a multigraph. In this problem, we are given a set family (U,F), together with a partition U =
]3

i=1Ui and a positive integer k. Here, every set F ∈ F has the property that for all i ∈ [3], |F∩
Ui| = 1. The question is whether there exists a subfamily F′ ⊆ F containing k pairwise-disjoint
sets. We first show that Rainbow Matching is indeed a generalization of 3-Dimensional
Matching. Towards proving this, we give a polynomial time parameter-preserving reduction
from 3−Dimensional Matching to Rainbow Matching. That is, we give the following
ppt reduction, 3−Dimensional Matching ≤ppt Rainbow Matching. Here, let us only
present a rough sketch of the proof. The idea of the construction is as follows. In the bipartite
graph of the constructed instance of Rainbow Matching, one side represents the elements
of U1, and the other side represents the elements of U2. Then, for every set {u1, u2, u3} in
F, where ui ∈ Ui for all i ∈ [3], we add an edge between u1 and u2 whose color is u3. It is
easy to see that a solution for the original problem instance can be directly translated to a
solution for the new problem instance, and vice versa. Moreover, the parameter k in both
instances is set to be the same.

We also saw that there is a ppt reduction from Rainbow Matching to 3-Set Packing
and thus we have the following chain of reductions.

3−Dimensional Matching ≤ppt Rainbow Matching ≤ppt 3−Set Packing.

MFCS 2017



71:12 Parameterized Algorithms and Kernels for Rainbow Matching

It is known that 3-Dimensional Matching admits a randomized algorithm with run-
ning time O?(2k) [2] and a deterministic algorithm with running time O?(2.59612k) =
O?(6.7398k) [19]. We gave in the introduction a deterministic algorithm for Rainbow
Matching that is the same as the one for 3-Set Packing. However, we remark that the
algorithm for 3-Dimensional Matching given in [19] can actually be used to solve Rain-
bow Matching in O?(6.7398k) time. Can we design a faster randomized or deterministic
algorithm for Rainbow Matching or even 3-Dimensional Matching?

We gave an O(k2) kernel on paths. Does there exist a linear kernel on paths? Could
we get improved kernel for Rainbow Matching on simple family of graphs such as trees,
graphs of constant treewidth or planar graphs. Could we show that O(k3) size bound on the
kernel for Rainbow Matching is optimal?

Finally, by a direct application of our randomized parameterized algorithm for Rainbow
Matching running in time O?(2k), we have that there exists a randomized algorithm for
Rainbow Matching running in time O?(2n/2) = O?(1.4143n). Here, n is the number of
vertices in the input graph and the n/2 is an upper bound on the maximum size of a colorful
matching in a graph. Using a simple dynamic programming algorithm, it is possible to
design a O?(2n) algorithm for Rainbow Matching. Designing a deterministic algorithm
for Rainbow Matching running in time (2− ε)n for some fixed ε > 0 is another interesting
open problem.

References
1 F. N. Abu-Khzam. An improved kernelization algorithm for r-set packing. Information

Processing Letters, 110:621–624, 2010.
2 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Narrow sieves for

parameterized paths and packings. Journal of Computer and System Sciences, 87:119–139,
2017.

3 M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
and S. Saurabh. Parameterized Algorithms. Springer, 2015.

4 H. Dell and D. Marx. Kernelization of packing problems. In SODA’12, 2012.
5 R. G. Downey and M. R. Fellows. Fundamentals of parameterized complexity. Springer,

2013.
6 Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17(3):449–467,

1965.
7 Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. A measure & conquer approach

for the analysis of exact algorithms. J. ACM, 56(5):25:1–25:32, 2009.
8 Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Texts in Theoretical

Computer Science. An EATCS Series. Springer, 2010.
9 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman, 1979.
10 J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum matchings in bipartite

graphs. SIAM J. Computing, 2:225–231, 1973.
11 Alon Itai, Michael Rodeh, and Steven L. Tanimoto. Some matching problems for bipartite

graphs. J. ACM, 25(4):517–525, 1978.
12 Mikio Kano and Xueliang Li. Monochromatic and heterochromatic subgraphs in edge-

colored graphs-a survey. Graphs and Combinatorics, 24(4):237–263, 2008.
13 Van Bang Le and Florian Pfender. Complexity results for rainbow matchings. Theor.

Comput. Sci., 524:27–33, 2014.
14 László Lovász and Michael D Plummer. Matching theory, volume 367. American Mathem-

atical Soc., 2009.



S. Gupta, S. Roy, S. Saurabh, and M. Zehavi 71:13

15 Silvio Micali and Vijay V. Vazirani. An O(
√
|V ||E|) algorithm for finding maximum match-

ing in general graphs. In 21st Annual Symposium on Foundations of Computer Science,
Syracuse, New York, USA, 13-15 October 1980, pages 17–27, 1980.

16 Herbert J Ryser. Neuere probleme der kombinatorik. Vorträge über Kombinatorik, Ober-
wolfach, pages 69–91, 1967.

17 Larry J. Stockmeyer and Vijay V. Vazirani. Np-completeness of some generalizations of
the maximum matching problem. Inf. Process. Lett., 15(1):14–19, 1982.

18 Mihalis Yannakakis and Fanica Gavril. Edge dominating sets in graphs. SIAM Journal on
Applied Mathematics, 38(3):364–372, 1980.

19 Meirav Zehavi. Mixing color coding-related techniques. In Algorithms - ESA 2015 - 23rd
Annual European Symposium, Patras, Greece, September 14-16, 2015, Proceedings, volume
9294 of Lecture Notes in Computer Science, pages 1037–1049, 2015.

MFCS 2017





Compositional Weak Metrics for Group Key
Update
Ruggero Lanotte1, Massimo Merro2, and Simone Tini3

1 Dipartimento di Scienze e Alta Tecnologia, Università dell’Insubria, Italy
ruggero.lanotte@uninsubria.it

2 Dipartimento di Informatica, Università degli Studi di Verona, Italy
massimo.merro@univr.it

3 Dipartimento di Scienze e Alta Tecnologia, Università dell’Insubria, Italy

Abstract
We investigate the compositionality of both weak bisimilarity metric and weak similarity quasi-
metric semantics with respect to a variety of standard operators, in the context of probabilistic
process algebra. We show how compositionality with respect to nondeterministic and probab-
ilistic choice requires to resort to rooted semantics. As a main application, we demonstrate
how our results can be successfully used to conduct compositional reasonings to estimate the
performances of group key update protocols in a multicast setting.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages

Keywords and phrases Behavioural metric, compositional reasoning, group key update

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.72

1 Introduction

Behavioural distances [35, 17, 14] allow us to compare the behaviour of probabilistic systems.
Basically, they are the quantitative analog of the classical notions of behavioural equivalence
and preorder. In the weak semantic approach, where non-observable actions are abstracted
away, weak bisimilarity metric [18] and its asymmetric counterpart, weak similarity quasi-
metric [30], have been proposed as the quantitative analog of weak probabilistic bisimilarity
and weak probabilistic similarity, respectively [5, 4].

In order to specify and verify systems in a compositional manner, it is necessary to
work with behavioural semantics which are preserved by all operators of the language. In
this light, different forms of compositionality have been proposed for strong bisimilarity
metrics by adopting different notions of uniform continuity [20]. Intuitively, a uniformly
continuous operator ensures that a small variation in the behaviour of a system component
leads to a smooth and bounded variation in the behaviour of the whole system (absence
of chaotic behaviour when system components and parameters are modified in a controlled
manner). More precisely, the uniform continuity of an n-ary process algebra operator f
ensures that, once fixed the maximal tolerable distance ε between processes f(s1, . . . , sn)
and f(s′1, . . . , s′n), there are values δi such that, whenever the distance between process
arguments si and s′i is below δi, for 1 ≤ i ≤ n, then the distance between f(s1, . . . , sn) and
f(s′1, . . . , s′n) is guaranteed to be below ε. The notions of uniform continuity considered in
[20] are: (i) non-extensiveness, requiring ε = max(δ1, . . . , δn), (ii) non-expansiveness, with
ε = δ1+ . . .+δn, and (iii) Lipschitz continuity, where ε = L · (δ1+ . . .+δn), for some L ∈ R≥1.

In this paper, we extend and generalise the work of [20] to rooted and asymmetric
semantics. In particular, for all standard operators of probabilistic process algebras, such as

© Ruggero Lanotte, Massimo Merro, and Simone Tini;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 72; pp. 72:1–72:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.72
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


72:2 Compositional Weak Metrics for Group Key Update

probabilistic CCS [24] and probabilistic CSP [24], we derive the notions of uniform continuity
which are satisfied by rooted bisimilarity metric and/or rooted similarity quasimetric. It
is well-known that weak probabilistic bisimilarity, unlike similarity, is not preserved by
nondeterministic choice. Thus, with no surprise, the nondeterministic choice operator is not
uniformly continuous with respect to weak bisimilarity metric, while it is uniformly continuous
with respect to weak similarity quasimetric. In this paper, we show that probabilistic
choice is uniformly continuous with respect to neither weak bisimilarity metric nor weak
similarity quasimetric. Thus, in order to recover uniform continuity, we work with rooted
(bi)similarities [36], where, in first step of the (bi)simulation game any strong transition must
be matched by the same strong transition.

As main case study, we consider an abstract specification of the group key update protocol.
In this protocol, whenever a principal joins or leaves the group, in order to guarantee
backward and forward confidentiality, it is necessary to generate and distribute a new group
key. However, this operation has a cost in terms of:
(i) the number of attacks aiming at compromising the group key,
(ii) the degradation of communication service,
(iii) battery consumption.
We show how our compositional theory can be used to estimate the distance between the
ideal protocol, where groups cannot dynamically change, and some variations of the protocol
obtained by playing with the following parameters:
(i) number of principals,
(ii) probability that principals leave the group,
(iii) probability that principals join the group.
The results of our analysis allow us to assert that the protocol under consideration has good
efficiency in groups with low dynamicity, regardless of the size of the group.

Outline. Section 2 provides background on probabilistic semantics. Section 3 contains the
main results on uniform continuity. Section 4 applies our theory to an abstract group key
update protocol. Section 5 concludes and discusses related and future work.

2 Preliminaries

Nondeterministic probabilistic labelled transition systems (pLTSs) [33] represent a very
general semantic model for probabilistic processes as they combine LTSs [26] and discrete
time Markov chains [34, 23], to model reactive behaviour, nondeterminism and probability.
The state space is given by a signature Σ consisting of both a set of operators and a rank
function r, where r(f) returns the arity of the operator f . The set T(Σ) of terms over Σ,
or processes, is the least set such that f(t1, . . . , tn) ∈ T(Σ) whenever f ∈ Σ, r(f) = n and
t1, . . . , tn ∈ T(Σ). Notice that T(Σ) 6= ∅ if and only if Σ contains constants, i.e., functions
with arity 0. We write ∆(T(Σ)) to denote the set of all probability distributions with finite
support over T(Σ), which are mappings π : T(Σ)→ [0, 1], with

∑
t∈T(Σ) π(t) = 1.

I Definition 1 (pLTS [33]). A nondeterministic probabilistic labelled transition system (pLTS)
is given by a triple P = (T(Σ), Act,−→) where:
(i) Σ is a signature,
(ii) Act is a countable set of actions, and
(iii) −→ ⊆ T(Σ)×Act×∆(T(Σ)) is a transition relation.



R. Lanotte, M. Merro, and S. Tini 72:3

As usual, we write t α−→ π for (t, α, π) ∈ −→. Let der(t, α) = {π ∈ ∆(T(Σ)) | t α−→ π} be
the set of the derivatives of t according to action α. We say that a pLTS P is image finite if
der(t, α) is finite for all t ∈ T(Σ) and α ∈ Act.

We consider a signature that contains many of the operators from probabilistic CCS and
probabilistic CSP specified via the SOS rules in Table 1–3. The operators we consider are:
1. constants 0 (idle process) and ε (skip process);
2. a family of n-ary probabilistic prefix operators α.([p1]_ ⊕ . . . ⊕ [pn]_) with α ∈ Act,

n ≥ 1, p1, . . . , pn ∈ (0, 1] and
∑n
i=1 pi = 1;

3. nondeterministic choice _ + _;
4. action restriction (ν α)_ with α ∈ Act \ {τ,

√
};

5. sequential composition _ ;_;
6. CSP-like parallel composition _ ‖B _, with B ⊆ Act \ {τ,

√
},

7. CCS-like parallel composition _ | _, which assumes a function − : Act \ {τ,
√
} →

Act \ {τ,
√
} with a = a,

8. probabilistic choice _ +p _;
9. finite iteration _n,
10. finite replication !n_,
11. infinite iteration _ω,
12. binary Kleene-star iteration _∗_,
13. infinite replication (bang) operator !_, and
14. probabilistic bang operator !p_.

All rules in Table 1–3 obey to the PGSOS format [9, 10]. We assume a set of actions
Act = A ∪ {τ,

√
}, with

√
denoting the successful termination action, and τ denoting non-

observable action. We let α, β, . . . range over Act and a, b, . . . over Act \ {τ}. The rules of
Table 1–3 assume a set of process variables, ranged over by x, y and a set of distribution
variables, ranged over by µ, ν, allowing us to generalise the notions of term and distribution
to open term and open distribution in the standard way. The rules are then defined by using
open transitions, such as x | y a−→ µ | ν, taking open terms to open distributions. The PGSOS
rules rely on some notations and operations on distributions. For t ∈ T(Σ), δ(t) denotes the
Dirac distribution, defined by (δ(t))(t) = 1. The convex combination

∑
i∈I piπi of a finite

set of distributions {πi}i∈I , with pi ∈ (0, 1] and
∑
i∈I pi = 1, is defined by (

∑
i∈I piπi)(t) =∑

i∈I(piπi(t)). We write π⊕pπ′ for pπ+(1−p)π′. For f ∈ Σ and πi ∈ ∆(T(Σ)), f(π1, . . . , πn)
denotes the product distribution defined by f(π1, . . . , πn)(f(t1, . . . , tn)) =

∏n
i=1 πi(ti). Notice

that all distributions defined in this inductive way have finite support.

I Definition 2 (PGSOS-TSS [6, 9]). A PGSOS-transition system specification (PGSOS-TSS)
is a triple T = (Σ, Act,R) where:
(i) Σ is a signature,
(ii) Act is a countable set of actions,
(iii) R is a countable set of PGSOS rules,
(iv) for each f ∈ Σ and α ∈ Act, the set of rules with conclusion of the form f(x1, . . . , xn) α−→

θ is finite.

We recall that closed substitutions map process variables to processes, and distribution
variables to distributions. Closed substitutions allows us to derive the supported model of a
TSS, namely a pLTS in which the transition relation −→ contains all and only those transitions
inductively derived by the SOS rules [7, 6, 9]. Item (4) in Definition 2 ensures that the
supported model of a TSS is always image finite.

MFCS 2017



72:4 Compositional Weak Metrics for Group Key Update

I Definition 3 (Disjoint extension [1]). Let T1 = (Σ1, A,R1) and T2 = (Σ2, A,R2) be two
PGSOS-TSSs. We say that T2 is a disjoint extension of T1, written T1 v T2, iff Σ1 ⊆ Σ2,
R1 ⊆ R2 and R2 introduces no new rule for any operator in Σ1.

2.1 Weak behavioural distances
In this section, we give the formal definitions of the weak behavioural distances of [18, 30].

The definition of weak transitions α=⇒, which abstract away non-observable actions, is
complicated by the fact that transitions take processes to distributions. Following [16],
we need to generalise transitions, so that they take sub-distributions to sub-distributions.
With an abuse of notation, we use π, π′ to range also over sub-distributions, admitting∑

t∈T(Σ) π(t) ≤ 1. For a term t and a distribution π, we write t τ̂−→ π if t τ−→ π or π = δ(t).

Then, for a ∈ A, we write t â−→ π if t a−→ π. Relation α̂−→ is extended to model transitions
from sub-distributions to sub-distributions. For a sub-distribution π =

∑
i∈I piδ(ti), we write

π
α̂−→ π′ if there is a set J ⊆ I with tj

α̂−→ πj for all j ∈ J , ti
α̂−→6 , for all i ∈ I \ J , and

π′ =
∑
j∈J pjπj . If α 6= τ then this definition entails that only some terms in the support of

π have the α̂−→ transition. Then, we define the weak transition relation τ̂=⇒ as the transitive
and reflexive closure of τ̂−→, i.e. τ̂=⇒= ( τ̂−→)∗, while for a ∈ A we let â=⇒ denote τ̂=⇒ â−→ τ̂=⇒.

Weak bisimilarity metric [18] (resp. weak similarity quasimetric [30]) is defined as a
pseudometric (resp. pseudoquasimetric) measuring the tolerance of the probabilistic weak
bisimilarity (resp. probabilistic weak similarity).

I Definition 4 (Pseudoquasimetrics and pseudometrics). A function d : T(Σ)× T(Σ)→ [0, 1]
is said to be a 1-bounded pseudoquasimetric when:
(i) d(t, t) = 0, for all t ∈ T(Σ), and
(ii) d(t, t′) ≤ d(t, t′′) + d(t′′, t′), for all t, t′, t′′ ∈ T(Σ).
If it is also symmetric, i.e. d(t, t′) = d(t′, t), for all t, t′ ∈ T(Σ), then it is said to be a
1-bounded pseudometric.

We need to lift these two definitions to (sub)distributions. To this end, as in [30], we rely
on the notions of matching [37] (also known as coupling) and Kantorovich lifting [25]. The
original formulation in [18] is technically different, but equivalent [15].

I Definition 5 (Matching). A matching for a pair of distributions (π, π′) is a distribution
ω in the product space T(Σ) × T(Σ) with

∑
t′∈T(Σ) ω(t, t′) = π(t), for t ∈ T(Σ), and∑

t∈T(Σ) ω(t, t′) = π′(t′), for t′ ∈ T(Σ). Let Ω(π, π′) be the set of all matchings for (π, π′).

I Definition 6 (Kantorovich lifting). Let d : T(Σ)× T(Σ)→ [0, 1] be a pseudo(quasi)metric.
The Kantorovich lifting of d is the function K(d) : ∆(T(Σ))×∆(T(Σ))→ [0, 1] defined as:

K(d)(π, π′) = minω∈Ω(π,π′)
∑
t,t′∈T(Σ) ω(t, t′) · d(t, t′).

Note that since we are considering only distributions with finite support, the minimum over
the set of matchings Ω(π, π′) is well defined.

Now, we are ready to define our behavioural distances. They are parametric on a discount
factor λ ∈ (0, 1] which mitigates the (bi)simulation tolerance on future activities [12, 17].

I Definition 7 (Weak behavioural distances). Let |π| be an abbreviation for
∑
t∈T(Σ) π(t).

We say that a pseudoquasimetric d : T(Σ)×T(Σ)→ [0, 1] is a weak simulation quasimetric if
for all s, t ∈ T(Σ), with d(s, t) < 1, whenever s α−→ πs there is a sub-distribution πt such that
t
α̂=⇒ πt and λ ·K(d)(πs, πt + (1− |πt|)0) ≤ d(s, t). Moreover, if d is a pseudometric, then d

is a weak bisimulation metric.



R. Lanotte, M. Merro, and S. Tini 72:5

In the previous definition, if |πt|< 1 then, with probability 1− |πt|, there is no way to simulate
the behaviour of any process different from 0 in the support of πs. We remark that the kernel
of a weak bisimulation pseudometric is a weak probabilistic bisimulation [18] and the kernel
of a weak simulation pseudoquasimetric is a weak probabilistic simulation [30].

Crucial results are the existence of both the minimal weak bisimulation metric [18],
called weak bisimilarity metric, and denoted with dm, and the minimal weak simulation
quasimetric [30], called weak similarity quasimetric, and denoted with dq.

3 Uniform continuity for rooted (quasi)metric semantics

In this section, we show that the operators in Table 1–3 allow for compositional reasoning
with respect to a rooted variant of our weak behavioural distances. We start by recalling the
notion of uniform continuity, whose intuitive meaning was discussed in the Introduction.

I Definition 8 (Modulus of continuity). Let T = (Σ, Act,R) be a TSS, f ∈ Σ an n-ary
operator, and d : T(Σ)×T(Σ)→ [0, 1] a function. A mapping ωf : [0, 1]n → [0, 1] is a modulus
of continuity for f with respect to d when:

d(f(s1, . . . , sn), f(t1, . . . , tn)) ≤ ωf (d(s1, t1), . . . , d(sn, tn)), for all processes si, ti ∈ T(Σ);
ωf is continuous at (0, . . . , 0), i.e. lim(ε1,...,εn)→(0,...,0) ω(ε1, . . . , εn) = ω(0, . . . , 0);
ωf (0, . . . , 0) = 0.

I Definition 9 (Uniformly continuous operator [20]). Let T = (Σ, A,R) be a TSS and
d : T(Σ)× T(Σ)→ [0, 1]. We say that an operator f ∈ Σ is:

uniformly continuous with respect to d if f admits some modulus of continuity wrt. d;
L-Lipschitz continuous with respect to d, for L ∈ R≥1, if ωf (ε1, . . . , εn) = L ·

∑n
i=1 εi is a

modulus of continuity for f with respect to d;
non-expansive with respect to d if f is 1-Lipschitz continuous with respect to d;
non-extensive with respect to d if ωf (ε1, . . . , εn) = maxni=1 εi is a modulus of continuity
for f with respect to d.

As expected, since τ -transitions may solve nondeterminism, dm is not uniformly continuous
with respect to +, thus requiring to introduce a rooted version for dm. For instance,
dm(τ.a.0, a.0) = 0 but dm(τ.a.0 + b.0, a.0 + b.0) = λ, thus implying that no modulus of
continuity for operator + with respect to dm can be defined. Interestingly, in the metric
context also the asymmetric simulation-like approach requires rootedness. Indeed, dq is
not continuous with respect to +p. For instance, dq(τ.a.b.0, a.b.0) = 0, but dq(τ.a.b.0 +p

a.0, a.b.0+pa.0) = λ2(1−p), thus implying that no modulus of continuity for +p wrt. dq can be
defined. In fact, transition τ.a.b.0+p a.0

τ−→ δ(a.b.0) can be simulated only by a.b.0+p a.0
τ=⇒

δ(a.b.0 +p a.0), then λK(dq)(δ(a.b.0), δ(a.b.0 +p a.0)) = λdq(a.b.0, a.b.0 +p a.0) = λ2(1− p).
Notice that we also have that dm(τ.a.b.0, a.b.0) = 0 and dm(τ.a.b.0 +p a.0, a.b.0 +p a.0) ≥
λ2(1− p). This implies that dm, like dq, is not uniformly continuous with respect to +p.

I Definition 10 (Rooted behavioural distances). We say that a pseudoquasimetric r : T(Σ)×
T(Σ)→ [0, 1] is a rooted simulation quasimetric if there exists a weak simulation quasimetric
d such that for all s, t ∈ T(Σ), with r(s, t) < 1, whenever s α−→ πs there is a distribution πt
such that t α−→ πt and λ ·K(d)(πs, πt) ≤ r(s, t). Moreover, if both r and d are pseudometrics,
then r is a rooted bisimulation metric.

MFCS 2017



72:6 Compositional Weak Metrics for Group Key Update

Table 1 Non-extensive operators

ε
√
−−→ δ(0) α.

n⊕
i=1

[pi]xi
α−→

n∑
i=1

piδ(xi)

x
α−→ µ

x+ y
α−→ µ

y
α−→ ν

x+ y
α−→ ν

x
α−→ µ y

α−→6
x+p y

α−→ µ

x
α−→6 y

α−→ ν

x+p y
α−→ ν

x
α−→ µ y

α−→ ν

x+p y
α−→ µ⊕p ν

x
α−→ µ and α 6∈ {β, β}

(ν β)x α−→ µ

I Theorem 11. There exists a rooted simulation quasimetric rq (resp. rooted bisimulation
metric rm) such that rq(s, t) ≤ r(s, t) (resp. rm(s, t) ≤ r(s, t)) for all rooted simulation
quasimetrics (resp. rooted bisimulation metrics) r and all processes s, t ∈ T(Σ).

We call rq rooted similarity quasimetric, and rm rooted bisimilarity metric.
In the following, for each operator, we compute a suitable upper bound on the rooted

simulation and bisimulation tolerance between processes composed by that operator, then
we use this bound to infer its compositionality property. Basically, our goal is to express a
bound on the rooted (bi)simulation tolerance between composed processes f(s1, . . . , sn) and
f(t1, . . . , tn) in terms of the tolerance between the components si and ti.

Non-extensive operators. Consider the TSS TNExt = (ΣNExt, Act,RNExt) given by the
rules RNExt in Table 1. We show that all operators in Table 1 are non-extensive.

I Proposition 12. Assume any TSS T = (Σ, A,R) with TNExt v T and si, ti ∈ T(Σ). For
j ∈ {q,m}, let us define rj

(s,t,t′) = min(rj(s, t), rj(s, t′)) and rj
(q,s,t,t′) = min(rj(s, t), q(rj(s, t))+

(1− q)rj(s, t′)). Then, we have:
(a) rj(α.

⊕n
i=1[pi]si, α.

⊕n
i=1[pi]ti) ≤ λ ·

∑n
i=1 pirj(si, ti) with j ∈ {q,m};

(b) rq(s1 + s2, t1 + t2) ≤ max(rq
(s1,t1,t2), r

q
(s2,t1,t2));

(c) rm(s1 + s2, t1 + t2) ≤ max(rm
(s1,t1,t2), r

m
(s2,t1,t2), r

m
(t1,s1,s2), r

m
(t2,s1,s2));

(d) rq(s1 +p s2, t1 +p t2) ≤ max(rq
(p,s1,t1,t2), r

q
((1−p),s2,t2,t1));

(e) rm(s1 +p s2, t1 +p t2) ≤ max(rm
(p,s1,t1,t2), r

m
((1−p),s2,t2,t1)), rm

(p,t1,s1,s2), r
m
((1−p),t2,s2,s1));

(f) rj((ν α) s, (ν α) t) ≤ rj(s, t) with j ∈ {q,m}.

As expected, the asymmetry leads to have upper bounds for rq below those for rm. For
instance, by Proposition 12.2 we get rq(a.0+a.0, a.0+b.0)≤max(min(0, 1),min(0, 1))=0, while
by Proposition 12.3 rm(a.0 +a.0, a.0 + b.0)≤max(min(0, 1),min(0, 1),min(0, 0),min(1, 1))=1.

Note that in Proposition 12 we have TNExt v T (Definition 3), namely processes si and
ti are obtained by using arbitrary operators, not necessarily only operators in ΣNExt. Thus,
these bounds hold independently from T . The following result follows from Proposition 12.

I Theorem 13. The operators in Table 1 are non-extensive with respect to rq and rm.

Non-expansive operators. We proceed to show that all operators in Table 2 are non-
expansive. Consider the TSS TNExp = (ΣNExp, Act,RNExp) with TNExt v TNExp and RNExp
containing the rules in Table 2, besides those in Table 1.



R. Lanotte, M. Merro, and S. Tini 72:7

Table 2 Non-expansive operators, where the operator | assumes a function − : Act \ {τ,
√
} →

Act \ {τ,
√
} with a = a, and the operator ||B is defined for B ⊆ Act \ {τ,

√
}

x
α−→ µ

x | y α−→ µ | δ(y)
y

α−→ ν

x | y α−→ δ(x) | ν
x

a−→ µ y
a−→ ν a ∈ Act \ {τ,

√
}

x | y τ−→ µ | ν

x
√
−−→ µ y

√
−−→ ν

x | y
√
−−→ δ(0)

x
α−→ µ a 6=

√

x; y α−→ µ; δ(y)
x
√
−−→ µ y

α−→ ν

x; y α−→ ν

x
√
−−→ µ y

√
−−→ ν

x ||B y
√
−−→ δ(0)

x
a−→ µ y

a−→ ν a ∈ B
x ||B y

a−→ µ ||B ν

x
α−→ µ α /∈ (B ∪ {

√
})

x ||B y
α−→ µ ||B δ(y)

y
α−→ ν α /∈ (B ∪ {

√
})

x ||B y
α−→ δ(x) ||B ν

I Proposition 14. Assume any TSS T = (Σ, A,R) with TNExp v T and si, ti ∈ T(Σ). For
j ∈ {q,m} we have:

(a) rj(s1; s2, t1; t2) ≤

{
1 if rj(s1, t1)=1
max{rj(s1, t1)+λ(1− rj(s1,t1)

λ
)rj(s2, t2) , rj(s2, t2)} if rj(s1, t1)∈[0, 1)

(b) rj(s1 | s2, t1 | t2) ≤ rj
synch

(c) rj(s1 ‖B s2, t1 ‖B t2) ≤

{
rj

synch if B 6= ∅
rj

asynch otherwise
with

rj
synch =

{
1 if rj(s1, t1) = 1 ∨ rj(s2, t2) = 1
rj(s1, t1) + rj(s2, t2)− rj(s1,t1)rj(s2,t2)

λ otherwise

rj
asynch =


1 if rj(s1, t1)=1 ∨ rj(s2, t2)=1
max{rj(s1, t1) + λ2rj(s2, t2)− λrj(s1, t1)rj(s2, t2),

rj(s2, t2) + λ2rj(s1, t1)− λrj(s1, t1)rj(s2, t2)} otherwise.

Let us explain first Proposition 14.1. If rj(s1, t1) = 1 then the maximal distance between
s1 and t1 extends to s1; s2 and t1; t2. If rj(s1, t1) < 1 then rj(s1; s2 , t1; t2) is the maximum
between the values given by the two different scenarios:
(i) the first one is that s1 and t1 evolve followed by s2 and t2, thus implying that we observe

the distance rj(s1, t1) between s1 and t1 plus the distance rj(s2, t2) between s2 and t2,
weighted by the likelihood that s1 and t1 exhibit the same behaviour, which is at most
(1− rj(s1, t1)/λ), and discounted by λ, since s2 and t2 are delayed by at least one step;

(ii) the second scenario is that s1 and t1 terminate immediately, so that we can observe only
the distance rj(s2, t2) between s2 and t2, with no discount.

Consider now Proposition 14.2. If rj(s1, t1) = 1 or rj(s2, t2) = 1 then the upper bound
is immediate. Otherwise, we obtain rj(s1 | s2, t1 | t2) by summing the distances rj(s1, t1)
and rj(s2, t2) and, then, by subtracting rj(s1,t1)rj(s2,t2)

λ , which allows us to weight one of
the two distances, say rj(s2, t2) by the likelihood that the other two processes exhibit the
same behaviour, namely (1− rj(s1,t1)

λ ). Finally, consider Proposition 14.3. If processes can
synchronise, then the upper bound is the same as Proposition 14.2. Otherwise, either s1 and
t1 evolve and s2 and t2 are delayed, or, symmetrically, s2 and t2 evolve and s1 and t1 are
delayed. The distance between the delayed processes is therefore discounted and we get a
bound slightly below that of Proposition 14.2.

MFCS 2017



72:8 Compositional Weak Metrics for Group Key Update

Table 3 Lipschitz continuous operators

x
a−→ µ a 6=

√

xn+1 a−→ µ; δ(xn)
x
√
−−→ µ

xn+1
√
−−→ µ x0

√
−−→ δ(0)

x
√
−−→ µ x

a−→ ν a 6=
√

n > m

xn
a−→ ν; δ(xm)

x
a−→ µ a 6=

√

!n+1x
a−→ µ ||∅ δ(!nx)

x
√
−−→ µ

!n+1x
√
−−→ µ !0x

√
−−→ δ(0)

x
a−→ µ a 6=

√

xω
a−→ µ; δ(xω)

x
a−→ µ a 6=

√

x∗y
a−→ µ; δ(x∗y)

y
a−→ ν

x∗y
a−→ ν

x
a−→ µ a 6=

√

!x a−→ µ ||| δ(!x)
x

a−→ µ a 6=
√

!px
a−→ µ⊕p (µ ||| δ(!px))

Notice that also the processes si and ti in Proposition 14 are obtained by using arbitrary
operators, not necessarily in ΣNExp. The following result follows from Proposition 14.

I Theorem 15. The operators in Table 2 are non-expansive with respect to rq and rm.

Clearly, the results in Proposition 14 can be generalised to more complex terms. For
instance, we give two generalizations of Proposition 14.2 that will be used in the case study
presented in the next section.

I Proposition 16. Assume processes s1, t1, . . . , sn, tn, with n ≥ 2. We have:

rm(s1| . . . |sn, t1| . . . |tn) ≤
∑

∅⊂I⊆{1,...,n}

(−1)|I|+1
∏
i∈I

rm(si, ti) .

I Proposition 17. Assume processes s1, t1, . . . , sn, tn, with n ≥ 2. If rm(si, ti) = r for all
i = 1, . . . n, then we have:

rm(s1| . . . |sn, t1| . . . |tn) ≤ −
n∑
i=1

(
n

i

)
(−r)i .

Lipschitz continuous operators. Now we show that all operators in Table 3 are Lipschitz
continuous. Consider the TSS TLC = (ΣLC, Act,RLC) with TNExp v TLC and RLC containing
the rules in Table 3, besides those in Table 1–2.

I Proposition 18. Assume any TSS T = (Σ, A,R) with TLC v T and s, si, t, ti ∈ T(Σ). For
j ∈ {q,m} we have:

(a) rj(sn, tn) ≤
{

rj(s, t) 1−(λ−rj(s,t))n

1−(λ−rj(s,t)) if rj(s, t) ∈ (0, 1)
rj(s, t) if rj(s, t) ∈ {0, 1}

(b) rj(!ns, !nt) ≤
{

rj(s, t) 1−(λ2−λrj(s,t))n

1−(λ2−λrj(s,t)) if rj(s, t) ∈ (0, 1)
rj(s, t) if rj(s, t) ∈ {0, 1}

(c) rj(sω, tω) ≤
{

rj(s, t) 1
1−(λ−rj(s,t)) if rj(s, t) ∈ (0, 1)

rj(s, t) if rj(s, t) ∈ {0, 1}

(d) rj(!s, !t) ≤
{

rj(s, t) 1
1−(λ2−λrj(s,t)) if rj(s, t) ∈ (0, 1)

rj(s, t) if rj(s, t) ∈ {0, 1}
(e) rj(s1

∗s2, t1
∗t2) ≤ max(rj(s1

ω, t1
ω), rj(s2, t2))

(f) rj(!ps, !pt) ≤
{

rj(s, t) 1
1−(1−p)(λ2−λrj(s,t)) if rj(s, t) ∈ (0, 1)

rj(s, t) if rj(s, t) ∈ {0, 1}.



R. Lanotte, M. Merro, and S. Tini 72:9

The bound in Proposition 18.1 is obtained by applying n − 1 times the bound in
Proposition 14 for operator _ ;_, the rationale being that the pLTS associated to sn

is isomorphic to that of process s; . . . ; s with n occurrences of s. Similarly, the bound in
Proposition 18.2 is obtained by applying n−1 times the bound in Proposition 14 for operator
_ ||∅_, the rationale being that !ns denotes a pLTS isomorphic to that of process s ||∅ . . . ||∅ s
with n occurrences of s. The bounds in Proposition 18.3 and Proposition 18.4 are obtained
by taking the limits for the bounds in Proposition 18.1 and Proposition 18.2, respectively.
Proposition 18.5 is obtained by observing that the (bi)simulation tolerance between processes
s1
∗s2 and t1

∗t2 is less than or equal to the maximum of the tolerance bound rj(s1
ω, t1

ω)
(infinite iteration of s1 and t1 such that s2 and t2 never evolve), and the tolerance bound
rj(s2, t2) (s2 and t2 evolve immediately). The case where s1 and t1 iterate n-times and then
s2 and t2 evolve leads always to a tolerance bound rj(s1

n, t1
n) + (λ− rj(s1, t1))nrj(s2, t2) ≤

max(rj(s1
ω, t1

ω), rj(s2, t2)). Finally, Proposition 18.6 can be understood by observing that !ps
behaves as !n+1s with probability p(1− p)n. Hence, by Proposition 18.2 we get rj(!ps, !pt) ≤∑∞
n=0 p(1− p)nrj(!n+1s, !n+1t) ≤

∑∞
n=0 p(1− p)nrj

!n+1 = rj(s, t)/(1− (1− p)(λ2 − λrj(s, t))).
Notice also that the processes s, t, si, ti in Proposition 18 are obtained by using arbitrary

operators, not necessarily in ΣLC. The following result follows from Proposition 18.

I Theorem 19. The operators
(i) finite iteration _n
(ii) finite replication !n_
(iii) probabilistic replication !p_
are Lipschitz continuous with respect to rq and rm for any λ ∈ (0, 1]. The operators
(i) infinite iteration _ω
(ii) nondeterministic Kleene-star iteration _∗_
(iii) infinite replication !_
are Lipschitz continuous with respect to rq and rm for any λ ∈ (0, 1).

Notice that discounting the distance observed at step n by λn is necessary to have composi-
tionality of the operators _ω, _∗_, and !_.

4 A case study: Group Key Update

A group key is a secret key shared by a group of principals to secure their multicast com-
munications. Group key update protocols were originally adopted to secure LANs [32].
Nowadays they are widely used in different contexts, such as: audio and video conferencing
in Computer Supported Co-operative Work (CSCW), Virtual Private Networks (VPN),
distributed databases, instant messaging applications, etc.

A crucial problem when dealing with key-secured communications is rekeying, i.e. the
process of distributing new keys to the principals. Rekeying is necessary when a member
joins the group, to prevent it to access the information exchanged in the past (backward
confidentiality), and when a member leaves the group, to prevent it to access future data
(forward confidentiality). Rekeying is managed either by a third trusted party or by a member
acting as group owner. In our example, we abstract from these two solutions by assuming a
unique key manager entity which takes care of rekeying.

We assume a set N of member IDs. For each members i ∈ N , the probabilities of
leaving and joining the group are l(i) and j(i), respectively. Furthermore, each member can
leave/join the group at most n times. Notice that high values of n, l(i) or j(i) cause frequent
rekeying, with obvious consequences on:

MFCS 2017



72:10 Compositional Weak Metrics for Group Key Update

Table 4 An abstract group key update protocol.

Group(l, j) = (ν (Act \ newK))
(
Manager |

∏
i∈N Member(i, l(i), j(i))

)
Manager = Connected |

(∑
I⊆N actI ; Mng(I)

)ω
Connected = actN ;

(∑
I⊆N syncI ; actI ; ε

)ω
Mng(I) =

(∑
i∈I leavei; newK; SendNewKey(I \ i); syncI\i; ε

)
+(∑

i∈(N\I) joini; newK; SendNewKey(I ∪ i); syncI∪i; ε
)

SendNewKey({i1, . . . , ik}) = (i1,Key); . . . ; (ik,Key); ε
Member(i, p, q) = State(i) |

(
MembIn(i, p) + MembOut(i, q)

)n
State(i) = ini;

(
in ∗i ; changei; out ∗i ; changei; ε

)∗
MembIn(i, p) = ini;

(
(i,Key) + τ ;

(
(leavei; changei; ε)⊕p ε

))
MembOut(i, q) = outi; τ ;

(
(joini; changei; (i,Key); ε)⊕q ε

)

(a) the number of attacks aiming at compromising the group key,
(b) degradation of communication service,
(c) battery consumption.
Thus, in the following, a group key protocol in which members never leave/join the group
(i.e. l(i) = j(i) = 0, for any i ∈ N ) will be called ideal.

Our goal is to show that the theory developed in the previous section represents an effective
instrument to estimate the distance between the ideal protocol and possible variations of the
protocol obtained by playing with the parameters n, l(i) and j(i), for i ∈ N .

Table 4 reports an abstract representation of the rekeying process in terms of our general
process algebra. Since cryptographic details are not relevant for our purposes, we protect
communications via the restriction operator (ν α)_. We observe only the signal newK
denoting the rekeying event. For simplicity, in the protocol, we will write I \ i instead of
I \ {i}, and I ∪ i instead of I ∪ {i}.

The process Group(l, j) represents a group, in its initial configuration, containing all
members in N , each of which can leave/enter the group at most n times. This process
consists of the parallel composition of the process Manager together with a process for each
member in N . The process Manager has two parallel components: (a) the process Connected,
which determines those members which are currently part of the group, and (b) a process
that upon reception of a signal actI , with I ⊆ N , it behaves as Mng(I), i.e. the process
managing the group with members in the set I. Initially, all members join the group. Thus,
Connected starts by activating the process Mng(N ). Then, whenever Connected receives a
signal syncI (from some Mng(J)) it activates Mng(I) by sending the signal actI . Notice that,
in this case, there is a member i such that either I = J \ {i}, because i has left the group, or
I = J ∪ {i}, because i has joined the group.

The process Mng(I) behaves as follows. Whenever it senses a signal leavei (resp. joini)
denoting that a connected member i ∈ I (resp. an unconnected member i ∈ N \ I) is leaving
(resp. joining) the group, it performs the following actions:
(i) it signals the generation of a new key,
(ii) it broadcasts the new key to all members in J = I \ i (resp. J = I ∪ i), namely the

members of the new group,
(iii) it communicates to Connected the new set of current members in the group via a signal

syncJ .



R. Lanotte, M. Merro, and S. Tini 72:11

The process Member(i, p, q) consists of the parallel composition of the process State(i),
which stores the state of member i, together with either the process MembIn(i, p), which
describes the behaviour of i when it is in the group, or the process MembOut(i, q), which
describes the behaviour of i when it is out of the group. The signal ini (resp. outi) is used
by State(i) to activate MembIn(i, p) (resp. MembOut(i, q)). Via process MembIn(i, p), the
member i may either receive the new key from the manager or leave the group with a
probability p. Similarly, via process MembOut(i, q), the member i may decide to join the
group with probability q. If i succeeds in joining the group then a new group key is sent to i
and all current members of the group. This completes the explanation of the protocol.

Now, let p denote the constant function p : N → [0, 1], with p(i) = p for all i ∈ N .
Similarly, we define q. Thus, Group(p,q) denotes the instance of the protocol where all
members have the same leave/join probability, whereas Group(0,0) denotes the ideal group,
where rekeying never occurs as the no principal leaves or join the group.

We start our analysis by providing an upper bound of the distance between the behaviours
of an arbitrary member i ∈ N , when varying leave/join probabilities. For that we need a
technical lemma to estimate the distance between two occurrences of probabilistic prefix
dealing with the same processes, but different probabilities.

I Lemma 20. For all s, t ∈ T(Σ) we have rm(a.(s⊕p t), a.(s⊕q t)) ≤ |p− q|.

I Proposition 21. Let p, q, p′, q′ ∈ [0, 1], then

rm(Member(i, p, q),Member(i, p′, q′)) ≤ max(|p− p′|, |q − q′|)1− (1− r)n

1 + r
.

Proof. By Lemma 20 and compositionality results in Proposition 12.1 and Prop. 12.2 we
get rm(MembIn(i, p),MembIn(i, p′)) ≤ |p − p′| and rm(MembOut(i, q),MembOut(i, q′)) ≤
|q− q′|. Then, the thesis follows by applying the compositionality results in Proposition 12.3,
Proposition 14.2, Proposition 18.1 J

We can generalise this result by taking into account all members in N .

I Proposition 22. Given arbitrary functions l, j, l′, j′ : N → [0, 1], we have:

rm(Group(l, j),Group(l′, j′)) ≤
∑

I⊆N ,I 6=∅

(−1)|I|+1
∏
i∈I

r(i)1− (1− r(i))n

1 + r(i)

with r(i) = max(|l(i)− l′(i)|, |j(i)− j′(i)|).

Proof. By Proposition 21, Proposition 16 and the compositionality results of Proposition 14.2
and Proposition 12.6. J

Proposition 22 estimates the distance between an arbitrary group and the ideal one.

I Corollary 23. For any l, j, r : N → [0, 1] such that r(i) = max(l(i), j(i)), we have:

rm(Group(0,0),Group(l, j)) ≤
∑

I⊆N ,I 6=∅

(−1)|I|+1
∏
i∈I

r(i)1− (1− r(i))n

1 + r(i) .

We can also compare two instances of the protocol when assuming homogeneous probab-
ilities (i.e. all members leaves/join the group with the same probabilities.)

MFCS 2017



72:12 Compositional Weak Metrics for Group Key Update

p

q

Figure 1 Upper bound to rm(Group(0,0),Group(p,q))

I Proposition 24. For arbitrary probabilities p, p′, q, q′ ∈ [0, 1] we have:

rm(Group(p,q),Group(p′,q′)) ≤ −
|N |∑
i=1

(
|N |
i

)(
−r1− (1− r)n

1 + r

)i
with r = max(|p− p′|, |q − q′|).

Proof. By Proposition 21, Proposition 17 and the compositionality results of Proposition 12.6
and Proposition 14.2. J

This allows us to compare a group with homogeneous probabilities with the ideal group.

I Corollary 25. For arbitrary probabilities p, q ∈ [0, 1] we have:

rm(Group(0,0),Group(p,q)) ≤ −
|N |∑
i=1

(
|N |
i

)(
−(max(p, q)1− (1− (max(p, q))n

1 + (max(p, q)

)i
.

For instance, assume an instance of the protocol with N = {1, . . . , 4} and n = 3. Then we
have rm(Group(0,0),Group(p,q)) ≤ 4r − 6r2 + 4r3 − r4, with r = max(p, q) 1−(1−max(p,q))3

1+max(p,q) .
The upper bound is reported in Fig. 1. Notice that the surface is symmetric, meaning that
the upper bounds for p ≥ q and q ≥ p coincide (because they depend on max(p, q)).

Figures 2 and 3 describe the evolution of the upper bound of rm(Group(0,0),Group(p,p)),
i.e. when leave and join probability are the same (p = q). In Figure 2 we fix 4 members
and we vary n in the set {3, 5, 7, 9, 11}. We can observe that rm(Group(0,0), Group(p,p))
grows with n, in particular for group with low values of p and q. In Figure 3, we fix n

equals to 3 and vary the number of members in the set {4, 5, 6, 7, 8}. We can observe that
rm(Group(0,0), Group(p,p)) grows with the size of the group, in particular in group with
high values of p (and q).

Summarising, we can assert that the protocol under analysis has good efficiency in groups
with low dynamicity, regardless of the size of the group.

5 Conclusions, related and future work

We showed that uniform continuity is an effective property to achieve compositional reasoning
with respect to rooted (quasi)metric semantics. We considered all standard operators of



R. Lanotte, M. Merro, and S. Tini 72:13

Figure 2 4 members and n ∈ {3, 5, 7, 9, 11}. Figure 3 n = 3 and 4 ≤ members ≤ 8.

probabilistic process algebra and provided suitable upper bounds on the distance between
processes composed by these operators. This allows us to infer their uniform continuity with
respect to both rooted bisimilarity metric and rooted similarity quasimetric. Interestingly,
the rootedness condition, introduced to deal with nondeterministic and probabilistic choice,
is crucial when dealing with similarity quasimetric. We exemplified how these semantic
theories can be used to pursue compositional reasoning over a non-trivial protocol.

The current paper is the ideal continuation of [20]. In that paper, the authors show that
uniform continuity captures the essential intuition of compositional reasoning when dealing
with probabilistic processes. The proposal of [20] generalises and extends earlier proposals in
[17, 2] to capture recursive operators. The focus of all these papers is on strong bisimulation
metrics. We remark that, following [35, 17, 14], we have considered (bi)simulation-inspired
(quasi)metric for the pLTS model. However, the literature offers also different approaches to
estimate the distance between processes. In [19] a spectrum of distances between processes
is obtained by applying the theory of quantitative Ehrenfeucht-Fraı̈ssé games to transition
systems. This theory allows to generate different notions of distance by means of different
generalisations of a suitable distance over traces. Paper [11] studies distances between
processes in the semantic model of Metric Transition Systems. In [3, 8] trace metrics for
the model of Markov Chains are defined as total variation distances on the cones generated
by the execution traces. In [29] the distance between systems is defined by means of a
probabilistic approximated bisimulation. This paper provides a technique to compute upper
bounds based on compositional algebraic laws.

As future work, we will extend the analysis of concrete process algebra operators to
general SOS rule and specification formats. A SOS rule and specification format ensuring
uniform continuity of operators with respect to strong bisimilarity metric has been proposed
in [21, 22], the idea being that process arguments of operators are copied only finitely many
times along their evolution. In order to achieve the same result in the weak case, it is
necessary to strengthen the format of [21] by preventing that process replication can arise
by τ -transitions. After that, we intend to extend our approach to the weak versions of
other notions of distance, such as convex bisimulation metric [13], trace metric [19], and
total-variation distance based metrics [31]. Finally, another possible research direction is
develop a timed-variant of our technique to deal with timed aspects of systems as in [27, 28].

Acknowledgements. We thank the anonymous reviewers for valuable comments.

MFCS 2017



72:14 Compositional Weak Metrics for Group Key Update

References

1 Luca Aceto, Bard Bloom, and Fritz W. Vaandrager. Turning SOS Rules into Equations.
Information & Computation, 111(1):1–52, 1994. doi:10.1006/inco.1994.1040.

2 Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, and Radu Mardare. Computing Beha-
vioral Distances, Compositionally. In 38th International Symposium on Mathematical
Foundations of Computer Science, volume 8087 of LNCS, pages 74–85. Springer, 2013.
doi:10.1007/978-3-642-40313-2_9.

3 Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, and Radu Mardare. Converging from
Branching to Linear Metrics on Markov Chains. In 12th International Colloquium on
Theoretical Aspects of Computing, volume 9399 of LNCS, pages 349–367. Springer, 2015.
doi:10.1007/978-3-319-25150-9_21.

4 Christel Baier, Holger Hermanns, and Joost-Pieter Katoen. Probabilistic Weak Simulation
is Decidable in Polynomial Time. Information Processing Letters, 89(3):123–130, 2004.
doi:10.1016/j.ipl.2003.10.001.

5 Christel Baier, Joost-Pieter Katoen, Holger Hermanns, and Boudewijn R. Haverkort. Sim-
ulation for Continuous-Time Markov Chains. In 13th International Conf. on Concurrency
Theory, volume 2421 of LNCS, pages 338–354, 2002. doi:10.1007/3-540-45694-5_23.

6 Falk Bartels. On Generalised Coinduction and Probabilistic Specification Formats. PhD
thesis, VU University Amsterdam, 2004.

7 Bard Bloom, Sorin Istrail, and Albert R. Meyer. Bisimulation Can’t Be Traced. Journal
of the ACM, 42:232–268, 1995. doi:10.1145/200836.200876.

8 Przemyslaw Daca, Thomas A. Henzinger, Jan Kretínský, and Tatjana Petrov. Linear Dis-
tances between Markov Chains. In 27th International Conference on Concurrency The-
ory, LIPIcs, pages 20:1–20:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.
doi:10.4230/LIPIcs.CONCUR.2016.20.

9 Pedro R. D’Argenio, Daniel Gebler, and Matias D. Lee. Axiomatizing Bisimulation Equi-
valences and Metrics from Probabilistic SOS Rules. In 17th International Conference on
Foundations of Software Science and Computation Structures, volume 8412 of LNCS, pages
289–303. Springer, 2014. doi:10.1007/978-3-642-54830-7_19.

10 Pedro R. D’Argenio, Daniel Gebler, and Matias D. Lee. A General SOS Theory for the
Specification of Probabilistic Transition Systems. Information & Computation, 249:76–109,
2016. doi:10.1016/j.ic.2016.03.009.

11 Luca de Alfaro, Marco Faella, and Mariëlle Stoelinga. Linear and Branching SystemMetrics.
IEEE Trans. Software Eng., 35(2):258–273, 2009. doi:10.1109/TSE.2008.106.

12 Luca de Alfaro, Thomas A. Henzinger, and Rupak Majumdar. Discounting the Future
in Systems Theory. In 30th Int. Colloquium on Automata, Languages and Programming,
volume 2719 of LNCS, pages 1022–1037. Springer, 2003. doi:10.1007/3-540-45061-0_79.

13 Luca de Alfaro, Rupak Majumdar, Vishwanath Raman, and Mariëlle Stoelinga. Game
Relations and Metrics. In 22nd IEEE Symposium on Logic in Computer Science, pages
99–108. IEEE Computer Society, 2007. doi:10.1109/LICS.2007.22.

14 Yuxin Deng, Tom Chothia, Catuscia Palamidessi, and Jun Pang. Metrics for Action-labelled
Quantitative Transition Systems. ENTCS, 153(2):79–96, 2006. doi:10.1016/j.entcs.
2005.10.033.

15 Yuxin Deng and Wenjie Du. The Kantorovich Metric in Computer Science: A Brief Survey.
ENTCS, 253(3):73–82, 2009. doi:10.1016/j.entcs.2009.10.006.

16 Yuxin Deng, Rob J. van Glabbeek, Matthew Hennessy, and Carroll Morgan. Characterising
Testing Preorders for Finite Probabilistic Processes. Logical Methods in Computer Science,
4(4), 2008. doi:10.2168/LMCS-4(4:4)2008.

http://dx.doi.org/10.1006/inco.1994.1040
http://dx.doi.org/10.1007/978-3-642-40313-2_9
http://dx.doi.org/10.1007/978-3-319-25150-9_21
http://dx.doi.org/10.1016/j.ipl.2003.10.001
http://dx.doi.org/10.1007/3-540-45694-5_23
http://dx.doi.org/10.1145/200836.200876
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.20
http://dx.doi.org/10.1007/978-3-642-54830-7_19
http://dx.doi.org/10.1016/j.ic.2016.03.009
http://dx.doi.org/10.1109/TSE.2008.106
http://dx.doi.org/10.1007/3-540-45061-0_79
http://dx.doi.org/10.1109/LICS.2007.22
http://dx.doi.org/10.1016/j.entcs.2005.10.033
http://dx.doi.org/10.1016/j.entcs.2005.10.033
http://dx.doi.org/10.1016/j.entcs.2009.10.006
http://dx.doi.org/10.2168/LMCS-4(4:4)2008


R. Lanotte, M. Merro, and S. Tini 72:15

17 Josée Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden. Metrics
for Labelled Markov Processes. Theoretical Computer Science, 318(3):323–354, 2004. doi:
10.1016/j.tcs.2003.09.013.

18 Josée Desharnais, Radha Jagadeesan, Vineet Gupta, and Prakash Panangaden. The Metric
Analogue of Weak Bisimulation for Probabilistic Processes. In 17th IEEE Symposium on
Logic in Computer Science, pages 413–422. IEEE Computer Society, 2002. doi:10.1109/
LICS.2002.1029849.

19 Uli Fahrenberg and Axel Legay. The Quantitative Linear-time-branching-time Spectrum.
Theoretical Computer Science, 538:54–69, 2014. doi:10.1016/j.tcs.2013.07.030.

20 Daniel Gebler, Kim G. Larsen, and Simone Tini. Compositional Bisimulation Metric Reas-
oning with Probabilistic Process Calculi. Logical Methods in Computer Science, 12(4), 2016.
doi:10.2168/LMCS-12(4:12)2016.

21 Daniel Gebler and Simone Tini. Fixed-point Characterization of Compositionality Proper-
ties of Probabilistic Processes Combinators. In Combined 21th International Workshop on
Expressiveness in Concurrency and 11th Workshop on Structural Operational Semantics,
volume 160 of EPTCS, pages 63–78. OPA, 2014. doi:10.4204/EPTCS.160.7.

22 Daniel Gebler and Simone Tini. SOS Specifications of Probabilistic Systems by Uniformly
Continuous Operators. In 26th Conference on Concurrency Theory, volume 42 of LIPIcs,
pages 155–168. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

23 Hans Hansson and Bengt Jonsson. A Logic for Reasoning about Time and Reliability.
Formal Aspects of Computing, 6(5):512–535, 1994. doi:10.1007/BF01211866.

24 Bengt Jonsson, Kim G. Larsen, and Wang Yi. Probabilistic Extensions of Process Algebras.
In Handbook of Process Algebra, pages 685–710. Elsevier, 2001.

25 Leonid V. Kantorovich. On the transfer of masses. Doklady Akademii Nauk, 37(2):227–229,
1942. Original article in Russian, translation in Management Science, 5 : 1− 4(1959).

26 Robert M. Keller. Formal Verification of Parallel Programs. Communications of the ACM,
19(7):371–384, 1976. doi:10.1145/360248.360251.

27 Ruggero Lanotte, Andrea Maggiolo-Schettini, and Angelo Troina. Time and Probability-
based Information Flow Analysis. IEEE Transactions on Software Engineering, 36(5):719–
734, 2010. doi:10.1109/TSE.2010.4.

28 Ruggero Lanotte, Andrea Maggiolo-Schettini, and Angelo Troina. Weak bisimulation for
Probabilistic Timed Automata. Theoretical Computer Science, 411(50):4291–4322, 2010.
doi:10.1016/j.tcs.2010.09.003.

29 Ruggero Lanotte and Massimo Merro. Semantic Analysis of Gossip Protocols for Wireless
Sensor Networks. In 22nd International Conference on Concurrency Theory, volume 6901
of LNCS, pages 156–170. Springer, 2011. doi:10.1007/978-3-642-23217-6_11.

30 Ruggero Lanotte, Massimo Merro, and Simone Tini. Weak Simulation Quasimetric in a
Gossip Scenario. In 37th IFIP WG 6.1 International Conference on Formal Techniques
for Distributed Objects, Components, and Systems, volume 10321 of LNCS, pages 139–155.
Springer, 2017. doi:10.1007/978-3-319-60225-7_10.

31 Matteo Mio. Upper-Expectation Bisimilarity and Łukasiewicz µ-Calculus. In 17th Interna-
tional Conference on Foundations of Software Science and Computation Structures, volume
8412 of LNCS, pages 335–350. Springer, 2014. doi:10.1007/978-3-642-54830-7_22.

32 Sandro Rafaeli and David Hutchison. A Survey of Key Management for Secure Group
Communication. ACM Comput. Surv., 35(3):309–329, 2003. doi:10.1145/937503.937506.

33 Roberto Segala. Modeling and Verification of Randomized Distributed Real-Time Systems.
PhD thesis, MIT, 1995.

34 William J. Stewart. Introduction to the Numerical Solution of Markov Chains. Princeton
University Press, 1994.

MFCS 2017

http://dx.doi.org/10.1016/j.tcs.2003.09.013
http://dx.doi.org/10.1016/j.tcs.2003.09.013
http://dx.doi.org/10.1109/LICS.2002.1029849
http://dx.doi.org/10.1109/LICS.2002.1029849
http://dx.doi.org/10.1016/j.tcs.2013.07.030
http://dx.doi.org/10.2168/LMCS-12(4:12)2016
http://dx.doi.org/10.4204/EPTCS.160.7
http://dx.doi.org/10.1007/BF01211866
http://dx.doi.org/10.1145/360248.360251
http://dx.doi.org/10.1109/TSE.2010.4
http://dx.doi.org/10.1016/j.tcs.2010.09.003
http://dx.doi.org/10.1007/978-3-642-23217-6_11
http://dx.doi.org/10.1007/978-3-319-60225-7_10
http://dx.doi.org/10.1007/978-3-642-54830-7_22
http://dx.doi.org/10.1145/937503.937506


72:16 Compositional Weak Metrics for Group Key Update

35 Frank van Breugel and J. Worrell. A Behavioural Pseudometric for Probabilistic Transition
Systems. Theor. Comput. Sci., 331(1):115–142, 2005. doi:10.1016/j.tcs.2006.05.021.

36 Rob J. van Glabbeek and Peter W. Weijland. Branching Time and Abstraction in Bisimula-
tion Semantics. Journal of the ACM, 43(3):555–600, 1996. doi:10.1145/233551.233556.

37 Cédric Villani. Optimal Transport: Old and New. Springer, 2009. doi:10.1007/
978-3-540-71050-9.

http://dx.doi.org/10.1016/j.tcs.2006.05.021
http://dx.doi.org/10.1145/233551.233556
http://dx.doi.org/10.1007/978-3-540-71050-9
http://dx.doi.org/10.1007/978-3-540-71050-9


Clique-Width for Graph Classes Closed under
Complementation∗

Alexandre Blanché1, Konrad K. Dabrowski2, Matthew Johnson3,
Vadim V. Lozin4, Daniël Paulusma5, and Viktor Zamaraev6

1 École normale supérieure de Rennes, Rennes, France
alexandre.blanche@ens-rennes.fr

2 Durham University, Durham, UK
konrad.dabrowski@durham.ac.uk

3 Durham University, Durham, UK
matthew.johnson2@durham.ac.uk

4 University of Warwick, Coventry, UK
v.lozin@warwick.ac.uk

5 Durham University, Durham, UK
daniel.paulusma@durham.ac.uk

6 University of Warwick, Coventry, UK
v.zamaraev@warwick.ac.uk

Abstract
Clique-width is an important graph parameter due to its algorithmic and structural properties.
A graph class is hereditary if it can be characterized by a (not necessarily finite) set H of
forbidden induced subgraphs. We initiate a systematic study into the boundedness of clique-
width of hereditary graph classes closed under complementation. First, we extend the known
classification for the |H| = 1 case by classifying the boundedness of clique-width for every set H
of self-complementary graphs. We then completely settle the |H| = 2 case. In particular, we
determine one new class of (H,H)-free graphs of bounded clique-width (as a side effect, this
leaves only six classes of (H1, H2)-free graphs, for which it is not known whether their clique-
width is bounded). Once we have obtained the classification of the |H| = 2 case, we research the
effect of forbidding self-complementary graphs on the boundedness of clique-width. Surprisingly,
we show that for a set F of self-complementary graphs on at least five vertices, the classification
of the boundedness of clique-width for ({H,H} ∪ F)-free graphs coincides with the one for the
|H| = 2 case if and only if F does not include the bull (the only non-empty self-complementary
graphs on fewer than five vertices are P1 and P4, and P4-free graphs have clique-width at most 2).
Finally, we discuss the consequences of our results for Colouring.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases clique-width, self-complementary graph, forbidden induced subgraph

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.73

1 Introduction

Many graph-theoretic problems that are computationally hard for general graphs may still be
solvable in polynomial time if the input graph can be decomposed into large parts of “similarly

∗ This paper received support from EPSRC (EP/K025090/1 and EP/L020408/1) and the Leverhulme
Trust (RPG-2016-258).

© Alexandre Blanché, Konrad K. Dabrowski, Matthew Johnson, Vadim V. Lozin, Daniël Paulusma,
and Viktor Zamaraev;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 73; pp. 73:1–73:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.73
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


73:2 Clique-Width for Graph Classes Closed under Complementation

behaving” vertices. Such decompositions may lead to an algorithmic speed up and are often
defined via some type of graph construction. One particular type is to use vertex labels and to
allow certain graph operations, which ensure that vertices labelled alike will always keep the
same label and thus behave identically. The clique-width cw(G) of a graph G is the minimum
number of different labels needed to construct G using four such operations (see Section 2
for details). Clique-width has been studied extensively both in algorithmic and structural
graph theory. The main reason for its popularity is that, indeed, many well-known NP-hard
problems [14, 25, 35, 40], such as Colouring and Hamilton Cycle, become polynomial-
time solvable on any graph class G of bounded clique-width, that is, for which there exists a
constant c, such that every graph in G has clique-width at most c. Graph Isomorphism
is also polynomial-time solvable on such graph classes [30]. Having bounded clique-width
is equivalent to having bounded rank-width [39] and having bounded NLC-width [33], two
other well-known width-parameters. However, despite these close relationships, clique-width
is a notoriously difficult graph parameter, and our understanding of it is still very limited.
For instance, no polynomial-time algorithms are known for computing the clique-width of
very restricted graph classes, such as unit interval graphs, or for deciding whether a graph
has clique-width at most 4.1 In order to get a better understanding of clique-width and to
identify new “islands of tractability” for central NP-hard problems, many graph classes of
bounded and unbounded clique-width have been identified; see, for instance, the Information
System on Graph Classes and their Inclusions [24], which keeps a record of such graph classes.
In this paper we study the following research question:

What kinds of properties of a graph class ensure that its clique-width is bounded?

We refer to the surveys [31, 34] for examples of such properties. Here, we consider graph
complements. The complement G of a graph G is the graph with vertex set VG and edge
set {uv | uv /∈ E(G)} and has clique-width cw(G) ≤ 2 cw(G) [15]. This result implies that a
graph class G has bounded clique-width if and only if the class consisting of all complements
of graphs in G has bounded clique-width. Due to this, we initiate a systematic study of the
boundedness of clique-width for graph classes G closed under complementation, that is, for
every graph G ∈ G, its complement G also belongs to G.

To get a handle on graph classes closed under complementation, we restrict ourselves to
graph classes that are not only closed under complementation but also under vertex deletion.
This is a natural assumption, as deleting a vertex does not increase the clique-width of
a graph. A graph class closed under vertex deletion is said to be hereditary and can be
characterized by a (not necessarily finite) set H of forbidden induced subgraphs. Over the
years many results on the (un)boundedness of clique-width of hereditary graph classes have
appeared. We briefly survey some of these results below.

A hereditary graph class of graphs is monogenic or H-free if it can be characterized by
one forbidden induced subgraph H, and bigenic or (H1, H2)-free if it can be characterized
by two forbidden induced subgraphs H1 and H2. It is well known (see [23]) that a class of
H-free graphs has bounded clique-width if and only if H is an induced subgraph of P4.2 By
combining known results [3, 5, 7, 8, 9, 10, 11, 17, 18, 21, 38] with new results for bigenic
graph classes, Dabrowski and Paulusma [23] classified the (un)boundedness of clique-width of
(H1, H2)-free graphs for all but 13 pairs (H1, H2) (up to an equivalence relation). Afterwards,

1 It is known that computing clique-width is NP-hard in general [27] and that deciding whether a graph
has clique-width at most 3 is polynomial-time solvable [13].

2 We refer to Section 2 for all the notation used in this section.



A. Blanché, K. K. Dabrowski, M. Johnson, V. Lozin, D. Paulusma, and V. Zamaraev 73:3

K1,3 K1,3 P1 + P4 P1 + P4 2P1 + P3 2P1 + P3 sP1 sP1

Figure 1 Graphs H for which the clique-width of (H, H)-free graphs is bounded (s = 5 is shown).

five new classes of (H1, H2)-free graphs were identified by Dross et al. [16] and recently,
another one was identified by Dabrowski et al. [19]. This means that only seven cases
(H1, H2) remained open. Other systematic studies were performed for H-free weakly chordal
graphs [5], H-free chordal graphs [5] (two open cases), H-free triangle-free graphs [19] (two
open cases), H-free bipartite graphs [22], H-free split graphs [4] (two open cases), and H-free
graphs where H is any set of 1-vertex extensions of the P4 [6] or any set of graphs on at most
four vertices [7]. Clique-width results or techniques for these graph classes impacted upon
each other and could also be used for obtaining new results for bigenic graph classes.

Our Contribution. Recall that we investigate the clique-width of hereditary graph classes
closed under complementation. A graph that contains no induced subgraph isomorphic to a
graph in a set H is said to be H-free. We first consider the |H| = 1 case. The class of H-free
graphs is closed under complementation if and only if H is a self-complementary graph, that
is, H = H. Self-complementary graphs have been extensively studied; see [26] for a survey.
From the aforementioned result for P4-free graphs, we find that the only self-complementary
graphs H for which the class of H-free graphs has bounded clique-width are H = P1 and
H = P4. In Section 3 we prove the following generalization of this result.

I Theorem 1. Let H be a set of non-empty self-complementary graphs. Then the class of
H-free graphs has bounded clique-width if and only if either P1 ∈ H or P4 ∈ H.

We now consider the |H| = 2 case. Let H = {H1, H2}. Due to Theorem 1 we may assume
H2 = H1 and H1 is not self-complementary. The class of (2P1 + P3, 2P1 + P3)-free graphs
was one of the seven remaining bigenic graph classes, and the only bigenic graph class closed
under complementation, for which boundedness of clique-width was open. We settle this case
by proving in Section 4 that the clique-width of this class is bounded. In the same section we
combine this new result with known results to prove the following theorem, which, together
with Theorem 1, shows to what extent the property of being closed under complementation
helps with bounding the clique-width for bigenic graph classes (see also Figure 1).

I Theorem 2. For a graph H, the class of (H,H)-free graphs has bounded clique-width if
and only if H or H is an induced subgraph of K1,3, P1 +P4, 2P1 +P3 or sP1 for some s ≥ 1.

For the |H| = 3 case, where {H1, H2, H3} = H, we observe that a class of (H1, H2, H3)-free
graphs is closed under complementation if and only if either every Hi is self-complementary,
or one Hi is self-complementary and the other two graphs Hj and Hk are complements of
each other. By Theorem 1, we only need to consider (H1, H1, H2)-free graphs, where H1
is not self-complementary, H2 is self-complementary, and neither H1 nor H2 is an induced
subgraph of P4. The next two smallest self-complementary graphs H2 are the C5 and the
bull (see also Figure 2). Observe that any self-complementary graph on n vertices must
contain 1

2
(

n
2
)
edges and this number must be an integer, so n = 4q or n = 4q + 1 for some

integer q ≥ 0. There are exactly ten non-isomorphic self-complementary graphs on eight
vertices [41] and we depict these in Figure 3.

MFCS 2017



73:4 Clique-Width for Graph Classes Closed under Complementation

P1 P4 C5 bull

Figure 2 The four non-empty self-complementary graphs on less than eight vertices [41].

X1 X2 X3 X4 X5

X6 X7 X8 X9 X10

Figure 3 The ten self-complementary graphs on eight vertices [41].

It is known that split graphs, or equivalently, (2P2, 2P2, C5)-free graphs have unbounded
clique-width [38]. In Section 5 we determine three new hereditary graph classes of unbounded
clique-width, which imply that the class of (H,H,C5)-free graphs has unbounded clique-width
if H ∈ {K1,3 +P1, 2P2, 3P1 +P2, S1,1,2}. By combining this with known results, we discovered
that the classification of boundedness of clique-width for (H,H,C5)-free graphs coincides
with the one of Theorem 2. This raised the question of whether the same is true for other sets
of self-complementary graphs F 6= {C5}. If F contains the bull, then the answer is negative:
by Theorem 2, the class of (S1,1,2, S1,1,2)-free graphs and the class of (2P2, C4)-free graphs
both have unbounded clique-width, but both the class of (S1,1,2, S1,1,2, bull)-free graphs and
even the class of (P5, P5, bull)-free graphs have bounded clique-width [6]. However, also in
Section 5, we prove that the bull is the only exception (apart from the trivial cases when
H ′ ∈ {P1, P4} which yield bounded clique-width of (H,H,H ′)-free graphs for any graph H).

I Theorem 3. Let F be a set of self-complementary graphs on at least five vertices not equal
to the bull. For a graph H, the class of ({H,H} ∪ F)-free graphs has bounded clique-width if
and only if H or H is an induced subgraph of K1,3, P1 +P4, 2P1 +P3 or sP1 for some s ≥ 1.

Consequences. Due to our result for (2P1 + P3, 2P1 + P3)-free graphs, we can update the
summary of [19] for the clique-width of bigenic graph classes and reduce the number of open
cases from seven to six.

I Open Problem 4. Have (H1, H2)-free graphs bounded or unbounded clique-width when:

(i) H1 = 3P1 and H2 ∈ {P1 + S1,1,3, S1,2,3};
(ii) H1 = 2P1 + P2 and H2 ∈ {P1 + P2 + P3, P1 + P5};
(iii) H1 = P1 + P4 and H2 ∈ {P1 + 2P2, P2 + P3}.



A. Blanché, K. K. Dabrowski, M. Johnson, V. Lozin, D. Paulusma, and V. Zamaraev 73:5

Another consequence of our result for (2P1 + P3, 2P1 + P3)-free graphs is that Colouring
is polynomial-time solvable for this graph class. This result was used by Blanché et al. [2]:

I Theorem 5 ([2]). Let H,H /∈ {(s + 1)P1 + P3, sP1 + P4 | s ≥ 2}. Then Colouring is
polynomial-time solvable for (H,H)-free graphs if H or H is an induced subgraph of K1,3,
P1 +P4, 2P1 +P3, P2 +P3, P5, or sP1 +P2 for some s ≥ 0 and it is NP-complete otherwise.

Comparing Theorems 2 and 5 shows that there are graph classes of unbounded clique-
width closed under complementation for which Colouring is polynomial-time solvable.
Nevertheless, on many graph classes, polynomial-time solvability of NP-hard problems stems
from the underlying property of having bounded clique-width. The present paper illustrates
this for the Colouring problem, since Theorem 28 implies that Colouring is solvable in
polynomial time on (2P1 + P3, 2P1 + P3)-free graphs. By updating the summary of [16] (see
also [29]), we find that there are twelve classes of (H1, H2)-free graphs, for which Colouring
could still potentially be solved in polynomial time by showing that their clique-width is
bounded.

Future Work. Apart from settling the classification of boundedness of clique-width for
(H1, H2)-free graphs by addressing Open Problem 4, we aim to continue our study of
boundedness of clique-width for graph classes closed under complementation. In particular,
to complete the classification for H-free graphs when |H| = 3, we still need to determine
those graphs H for which (H,H, bull)-free graphs have bounded clique-width (there are
several cases left).

2 Preliminaries

The disjoint union (V (G) ∪ V (H), E(G) ∪ E(H)) of two vertex-disjoint graphs G and H is
denoted by G+H and the disjoint union of r copies of a graph G is denoted by rG. For a
subset S ⊆ V (G), we let G[S] denote the subgraph of G induced by S. If S = {s1, . . . , sr}
then, to simplify notation, we may also write G[s1, . . . , sr] instead of G[{s1, . . . , sr}]. We
write G \ S = G[V (G) \ S]; if S = {v}, we may write G \ v instead. We write G′ ⊆i G to
indicate that G′ is an induced subgraph of G. The graphs Cr, Kr, K1,r−1 and Pr denote the
cycle, complete graph, star and path on r vertices, respectively. The graphs K3 and K1,3 are
also called the triangle and claw. The graph Sh,i,j , for 1 ≤ h ≤ i ≤ j, denotes the subdivided
claw, that is, the tree with only one vertex x of degree 3 and exactly three leaves, which are
of distance h, i and j from x, respectively. Observe S1,1,1 = K1,3. We let S be the class of
graphs each connected component of which is either a subdivided claw or a path.

For a set of graphs H, a graph G is H-free (or (H)-free) if it has no induced subgraph
isomorphic to a graph in H. If H = {H1, . . . ,Hp} for some integer p, then we may write
(H1, . . . ,Hp)-free instead of ({H1, . . . ,Hp})-free, or, if p = 1, we may simply write H1-free.
For a graph G = (V,E), the set N(u) = {v ∈ V | uv ∈ E} denotes the neighbourhood of
u ∈ V . A graph is bipartite if its vertex set can be partitioned into two (possibly empty)
independent sets. A graph is split if its vertex set can be partitioned into a (possibly empty)
independent set and a (possibly empty) clique. Split graphs have been characterized as
follows.

I Lemma 6 ([28]). A graph G is split if and only if it is (2P2, C4, C5)-free.

Let X be a set of vertices in a graph G = (V,E). A vertex y ∈ V \X is complete to X
if it is adjacent to every vertex of X and anti-complete to X if it is non-adjacent to every

MFCS 2017



73:6 Clique-Width for Graph Classes Closed under Complementation

vertex of X. Similarly, a set of vertices Y ⊆ V \X is complete (resp. anti-complete) to X if
every vertex in Y is complete (resp. anti-complete) to X. We say that the edges between
two disjoint sets of vertices X and Y form a matching (resp. co-matching) if each vertex
in X has at most one neighbour (resp. non-neighbour) in Y and vice versa (if each vertex
has exactly one such neighbour, we say that the matching is perfect). A vertex y ∈ V \X
distinguishes X if y has both a neighbour and a non-neighbour in X. The set X is a module
of G if no vertex in V \ X distinguishes X. A module X is non-trivial if 1 < |X| < |V |,
otherwise it is trivial. A graph is prime if it has only trivial modules.

To help reduce the amount of case analysis needed to prove Theorems 2 and 3, we will
use the following lemma (proof omitted).

I Lemma 7. Let H ∈ S. Then H is (K1,3 + P1, 2P2, 3P1 + P2, S1,1,2)-free if and only if H
is an induced subgraph of K1,3, P1 + P4, 2P1 + P3 or sP1 for some s ≥ 1.

The clique-width cw(G) of a graph G is the minimum number of labels needed to construct G
by using the following four operations:
1. creating a new graph consisting of a single vertex v with label i;
2. taking the disjoint union of two labelled graphs G1 and G2;
3. joining each vertex with label i to each vertex with label j (i 6= j);
4. renaming label i to j.
For an induced subgraph G′ (or vertex set X ⊆ V (G)) of a graph G, the subgraph com-
plementation operation replaces every edge present in G′ (resp. G[X]) by a non-edge, and
vice versa. For two disjoint vertex subsets S and T in G, the bipartite complementation
operation replaces every edge with one end-vertex in S and the other one in T by a non-edge
and vice versa. Let k ≥ 0 be a constant and let γ be some graph operation. A class G′ is
(k, γ)-obtained from a class G if:
1. every graph in G′ is obtained from a graph in G by performing γ at most k times, and
2. for every G ∈ G there exists at least one graph in G′ that is obtained from G by

performing γ at most k times.
We say that γ preserves boundedness of clique-width if for any finite constant k and any
graph class G, any graph class G′ that is (k, γ)-obtained from G has bounded clique-width if
and only if G has bounded clique-width.
Fact 1. Vertex deletion preserves boundedness of clique-width [36].
Fact 2. Subgraph complementation preserves boundedness of clique-width [34].
Fact 3. Bipartite complementation preserves boundedness of clique-width [34].

We need the following lemmas on clique-width, the first one of which is easy to show.

I Lemma 8. The clique-width of a graph of maximum degree at most 2 is at most 4.

I Lemma 9 ([23]). Let H be a graph. The class of H-free graphs has bounded clique-width
if and only if H ⊆i P4.

I Lemma 10 ([37]). Let {H1, . . . ,Hp} be a finite set of graphs. If Hi /∈ S for all i ∈ {1, . . . , p}
then the class of (H1, . . . ,Hp)-free graphs has unbounded clique-width.

I Lemma 11 ([15]). Let G be a graph and let P be the set of all induced subgraphs of G that
are prime. Then cw(G) = maxH∈P cw(H).



A. Blanché, K. K. Dabrowski, M. Johnson, V. Lozin, D. Paulusma, and V. Zamaraev 73:7

3 The Proof of Theorem 1

We use the following lemma (proof omitted), which we also need for Theorem 3.

I Lemma 12. If G is a (C4, C5,K4)-free self-complementary graph, then G ⊆i bull.

We are now ready to prove Theorem 1. Note that this theorem also holds if H is infinite.

I Theorem 1 (restated). Let H be a set of non-empty self-complementary graphs. Then the
class of H-free graphs has bounded clique-width if and only if either P1 ∈ H or P4 ∈ H.

Proof. Suppose there is a graph H ∈ H ∩ {P1, P4}. Then the class of H-free graphs is
a subclass of the class of P4-free graphs, which have bounded clique-width by Lemma 9.
Now suppose that H ∩ {P1, P4} = ∅. The only non-empty self-complementary graphs on at
most five vertices that are not equal to P1 and P4 are the bull and the C5 (see Figure 2).
By Lemma 12, it follows that every graph in H contains an induced subgraph isomorphic
to the bull, C4, C5 or K4. Therefore the class of H-free graphs contains the class of
(bull, C4, C5,K4)-free graphs, which has unbounded clique-width by Lemma 10. J

4 The Proof of Theorem 2

In this section we prove Theorem 2 by combining known results with the new result that
(2P1 + P3, 2P1 + P3)-free graphs have bounded clique-width. We prove this result in the
following way. We first prove two useful structural lemmas, namely Lemmas 13 and 14,
which we will use repeatedly throughout the proof. Next, we prove Lemmas 15 and 16, which
state that if a (2P1 + P3, 2P1 + P3)-free graph G contains an induced C5 or C6, respectively,
then G has bounded clique-width. We do this by partitioning the vertices outside this cycle
into sets, depending on their neighbourhood in the cycle. We then analyse the edges within
these sets and between pairs of such sets. After a lengthy case analysis, we find that G has
bounded clique-width in both these cases. By Fact 2 it only remains to analyse (2P1 + P3,

2P1 + P3)-free graphs that are also (C5, C6, C6)-free. Next, in Lemma 17, we show that if
such graphs are prime, then they are either K7-free or K7-free. In Lemma 27 we use the fact
that (2P1 + P3, 2P1 + P3)-free graphs are χ-bounded to deal with the case where a graph in
the class is K7-free. Finally, we combine all these results together to obtain the new result
(Theorem 28). We omit the proofs of Lemmas 13–16.

I Lemma 13. Let G be a (2P1 +P3, 2P1 + P3)-free graph whose vertex set can be partitioned
into two sets X and Y , each of which is a clique or an independent set. Then by deleting at
most one vertex from each of X and Y , it is possible to obtain subsets such that the edges
between them form a matching or a co-matching.

I Lemma 14. Let G be a (2P1 +P3, 2P1 + P3)-free graph whose vertex set can be partitioned
into a clique X and an independent set Y . Then by deleting at most three vertices from each
of X and Y , it is possible to obtain subsets that are either complete or anti-complete to each
other.

I Lemma 15. The class of (2P1 + P3, 2P1 + P3)-free graphs containing an induced C5 has
bounded clique-width.

I Lemma 16. The class of (2P1 + P3, 2P1 + P3)-free graphs containing an induced C6 has
bounded clique-width.

I Lemma 17. Every prime (2P1 + P3, 2P1 + P3, C6, C6)-free graph is K7-free or K7-free.

MFCS 2017



73:8 Clique-Width for Graph Classes Closed under Complementation

Proof. Let G be a prime (2P1 +P3, 2P1 + P3, C6, C6)-free graph. Suppose, for contradiction,
that G contains an induced K7 and an induced K7. We will show that in this case the
graph G is not prime. Note that any induced K7 and induced K7 in G can share at most
one vertex. We may therefore assume that G contains a clique C on at least six vertices and
a vertex-disjoint independent set I on at least six vertices. Furthermore, we may assume
that C is a maximum clique in G \ I and I is a maximum independent set in G \ C (if not,
then replace C or I with a bigger clique or independent set, respectively).

By Lemma 14, there exist sets R1 ⊂ C and R2 ⊂ I each of size at most 3 such that
C ′ = C \R1 is either complete or anti-complete to I ′ = I \R2. Without loss of generality, we
may assume that R1 and R2 are minimal, in the sense that the above property does not hold if
we remove any vertex from R1 or R2. Note that the class of prime (2P1+P3, 2P1 + P3, C6, C6)-
free graphs containing an induced K7 and an induced K7 is closed under complementation.
Therefore, complementing G if necessary (in which case the sets I and C will be swapped,
and the sets R1 and R2 will be swapped), we may assume that C ′ is anti-complete to I ′.

I Claim 18. |R1| ≤ 1 and |R2| ≤ 1.

By construction, R1 and R2 each contain at most three vertices and I ′ and C ′ each
contain at least three vertices. Since R1 (resp. R2) is minimal, every vertex of R1 (resp. R2)
has at least one neighbour in I ′ (resp. C ′).

Choose i1, i2 ∈ I ′ arbitrarily and suppose, for contradiction, that y ∈ R2 is not complete
to C ′. Then y must have a neighbour c1 ∈ C ′ and a non-neighbour c2 ∈ C ′, soG[i1, i2, y, c1, c2]
is a 2P1 +P3, a contradiction. Therefore R2 is complete to C ′. If y, y′ ∈ R2 then for arbitrary
c1 ∈ C ′, the graph G[i1, i2, y, c1, y

′] is a 2P1 + P3, a contradiction. It follows that |R2| ≤ 1.
Choose c1, c2 ∈ C ′ arbitrarily. Suppose, for contradiction, that x ∈ R1 has two non-

neighbours i1, i2 ∈ I ′. Recall that x must have a neighbour i3 ∈ I ′, so G[i1, i2, i3, x, c1] is a
2P1 + P3, a contradiction. Therefore every vertex of R1 has at most one non-neighbour in I ′.
Suppose, for contradiction, that x, x′ ∈ R1. Since I ′ contains at least three vertices, there
must be a vertex i1 ∈ I ′ that is a common neighbour of x and x′. Now G[x, x′, c1, i1, c2] is a
2P1 + P3, a contradiction. It follows that |R1| ≤ 1. This completes the proof of Claim 18.

Note that Claim 18 implies that |C ′| ≥ 5 and |I ′| ≥ 5. Let A be the set of vertices in
V \ (C ∪ I) that are complete to C ′. If x ∈ A is adjacent to y ∈ R1 then by Claim 18
C ∪ {x} is a bigger clique than C, contradicting the maximality of C. It follows that A is
anti-complete to R1. If x, y ∈ A are adjacent then by Claim 18, (C ∪ {x, y}) \R1 is a bigger
clique than C, contradicting the maximality of C. It follows that A is an independent set.
Furthermore, by the maximality of I and the definition of A, every vertex in V \ (C ∪ I ∪A)
has a neighbour in I and non-neighbour in C ′.

I Claim 19. Let x be a vertex in V \ (C ∪ I ∪A). Then either x is complete to I ′, or x has
exactly one neighbour in I.

Suppose, for contradiction, that x has a non-neighbour z in I ′, and two neighbours
y, y′ ∈ I. Now x cannot have another non-neighbour z′ ∈ I \ {z}, otherwise G[z, z′, y, x, y′]
would be a 2P1 + P3. Therefore x must be complete to I \ {z}. In particular, since |I ′| ≥ 5,
this means that x has two neighbours in I ′, say y1 and y2 (not necessarily distinct from y

and y′). Recall that x must have a non-neighbour c1 ∈ C ′. Now G[c1, z, y1, x, y2] is a 2P1 +P3.
This contradiction completes the proof of Claim 19.

By Claim 19 we can partition the vertex set V \ (C ∪ I ∪A) into subsets VI′ and Vx for
every x ∈ I, where VI′ is the set of vertices that are complete to I ′, and Vx is the set of
vertices whose unique neighbour in I is x. Let Ux = Vx ∪ {x}.



A. Blanché, K. K. Dabrowski, M. Johnson, V. Lozin, D. Paulusma, and V. Zamaraev 73:9

I Claim 20. For all x ∈ I ′, Ux is anti-complete to C ′.

Suppose x ∈ I ′. Clearly x is anti-complete to C ′. Suppose, for contradiction, that y ∈
Ux \ {x} = Vx has a neighbour z ∈ C ′ and choose u, v ∈ I ′ \ {x}. Then G[u, v, x, y, z] is a
2P1 + P3. This contradiction completes the proof of Claim 20.

I Claim 21. For every x ∈ I, the set Ux is a clique.

Note that x ∈ I is adjacent to all other vertices of Ux, by definition. If y, z ∈ Vx are non-
adjacent then (I \ {x}) ∪ {y, z} would be a bigger independent set than I, a contradiction.

I Claim 22. If x, y ∈ I are distinct, then Ux is anti-complete to Uy.

Clearly x is anti-complete to Uy and y is anti-complete to Ux. Suppose, for contradiction,
that x′ ∈ Ux \{x} is adjacent to y′ ∈ Uy \{y}. Choose u, v ∈ I \{x, y}. Then G[u, v, x, x′, y′]
is a 2P1 + P3. This contradiction completes the proof of Claim 22.

I Claim 23. For every x ∈ I ′, the set Ux is complete to VI′ .

By definition, x is complete to VI′ . Suppose, for contradiction that x′ ∈ Ux \ {x} is non-
adjacent to y ∈ VI′ . As y /∈ A, the vertex y must have a non-neighbour c1 ∈ C ′ and note
that x′ is non-adjacent to c1 by Claim 20. Choose u, v ∈ I ′ \ {x}. Then G[c1, x

′, u, y, v] is a
2P1 + P3. This contradiction proves Claim 23.

Suppose x ∈ I ′. Claim 21 implies that Ux is a clique, Claim 20 that Ux is anti-complete
to C ′ and Claim 23 that Ux is complete to VI′ . Furthermore for all y ∈ I \ {x}, Claim 22
implies that Ux is anti-complete to Uy. We conclude that given any two vertices x, y ∈ I ′, no
vertex in V \ (A ∪R1 ∪ Ux ∪ Uy) can distinguish the set Ux ∪ Uy. In the remainder of the
proof, we will show there exist x, y ∈ I ′ such that no vertex of A ∪R1 distinguishes the set
Ux ∪Uy, meaning that Ux ∪Uy is a non-trivial module, contradicting the assumption that G
is prime.

I Claim 24. If u ∈ A ∪ R1 then either u is anti-complete to Ux for all x ∈ I ′ or else u is
complete to Ux for all but at most one x ∈ I ′.

Suppose, for contradiction, that the claim does not hold for a vertex u ∈ A ∪ R1. Then u
must have a neighbour x′ ∈ Ux for some x ∈ I ′ and must have non-neighbours y′ ∈ Uy and
z′ ∈ Uz for some y, z ∈ I ′ with y 6= z. Since |I ′| ≥ 5, we may also assume that x /∈ {y, z}.
Choose c1 ∈ C ′ arbitrarily. By Claim 20, c1 is non-adjacent to x′, y′ and z′. It follows that
G[y′, z′, c1, u, x

′] is a 2P1 + P3. This contradiction completes the proof of Claim 24.
Let A∗ denote the set of vertices in A ∪R1 that have a neighbour in Ux for some x ∈ I ′.

I Claim 25. The set A∗ is complete to all, except possibly two, sets Ux, x ∈ I ′.

Suppose, for contradiction, that there are three different vertices x, y, z ∈ I ′ such that A∗ is
complete to none of the sets Ux, Uy, and Uz. By Claim 24 and the definition of A∗, every
vertex in A∗ is complete to at least two of the sets Ux, Uy, Uz. Therefore there exist three
vertices u, v, w ∈ A∗ such that:

u is not adjacent to some vertex x′ ∈ Ux, but is complete to Uy and Uz;
v is not adjacent to some vertex y′ ∈ Uy, but is complete to Ux and Uz;
w is not adjacent to some vertex z′ ∈ Uz, but is complete to Ux and Uy.

MFCS 2017



73:10 Clique-Width for Graph Classes Closed under Complementation

Therefore G[u, y′, w, x′, v, z′] is a C6. This contradiction completes the proof of Claim 25.
Now, as |I ′| ≥ 5, Claims 24 and 25 imply there exist two distinct vertices x, y ∈ I ′ such

that every vertex of A ∪R1 is either complete or anti-complete to Ux ∪ Uy. Hence Ux ∪ Uy

is a non-trivial module in G, contradicting the fact that G is prime. This completes the
proof. J

The chromatic number χ(G) of a graph G is the minimum positive integer k such that G
is k-colourable. The clique number ω(G) of G is the size of a largest clique in G. A class C
of graphs is χ-bounded if there is a function f such that χ(G) ≤ f(ω(G)) for all G ∈ C.

I Lemma 26 ([32]). For every natural number k the class of Pk-free graphs is χ-bounded.

I Lemma 27. For k ≥ 1, (Kk, 2P1 + P3, 2P1 + P3)-free graphs have bounded clique-width.

Proof. Fix a constant k ≥ 1 and let G be a (Kk, 2P1 + P3, 2P1 + P3)-free graph. By
Lemma 16, we may assume that G is C6-free. Since G is (2P1 + P3)-free, it is P7-free, so
by Lemma 26 it has chromatic number at most ` for some constant `. This means that we
can partition the vertices of G into ` independent sets V1, . . . , V` (some of which may be
empty). By Lemma 13, deleting finitely many vertices (which we may do by Fact 2), we may
assume that for all distinct i, j ∈ {1, . . . , `}, the edges between Vi and Vj form a matching
or a co-matching. Since G is C6-free, if the vertices between Vi and Vj form co-matching,
this co-matching can contain at most two non-edges. Therefore, by deleting finitely many
vertices (which we may do by Fact 2), we may assume that the edges between Vi and Vj

form a matching or Vi and Vj are complete to each other. By deleting finitely many vertices
(which we may do by Fact 2), we may assume that each set Vi is either empty or contains at
least five vertices.

Suppose the edges from Vi to Vj and the edges from Vi to Vk form a matching and that
there is a vertex x ∈ Vi that has a neighbour y ∈ Vj and a neighbour z ∈ Vk. Then y

must be adjacent to z, otherwise for x′, x′′ ∈ Vi \ {x} the graph G[x′, x′′, y, x, z] would be
a 2P1 + P3, a contradiction. If Vj is complete to Vk then for y′, y′′ ∈ Vj , z′ ∈ Vk and
x′, x′′ ∈ Vi \ (N(y′) ∪N(y′′) ∪N(z′)) (such vertices exist since each of y′, y′′ and z′ have at
most one neighbour in Vi and Vi contains at least five vertices) we have G[x′, x′′, y′, z′, y′′] is
a 2P1 + P3, a contradiction. Therefore the edges between Vj and Vk form a matching.

Now for each i, j ∈ {1, . . . , `} with i < j, if Vi is complete to Vj , then by Fact 2 we may
apply a bipartite complementation between Vi and Vj . Let G′ be the resulting graph. The
previous paragraph implies if x has two neighbours y and z in G′ then y is adjacent to z in G,
so G′ is P3-free. So G′ is a disjoint union of cliques, and thus has clique-width at most 2. J

We are now ready to prove our main result.

I Theorem 28. The class of (2P1 + P3, 2P1 + P3)-free graphs has bounded clique-width.

Proof. Let G be a (2P1 + P3, 2P1 + P3)-free graph. By Lemma 11, we may assume that G
is prime. If G contains an induced C6 then we are done by Lemma 16. If G contains an
induced C6 then we are done by Lemma 16 and Fact 2. We may therefore assume that G is
also (C6, C6)-free. By Lemma 17, we may assume that G is either K7-free or K7-free. By
Fact 2, we may assume that G is K7-free. Lemma 27 completes the proof. J

Combining Theorem 28 with the current state-of-the-art for classifying the boundedness
of clique-width for (H1, H2)-free graphs (see [20]) yields Theorem 2 (proof omitted).

I Theorem 2 (restated). For a graph H, the class of (H,H)-free graphs has bounded clique-
width if and only if H or H is an induced subgraph of K1,3, P1 + P4, 2P1 + P3 or sP1 for
some s ≥ 1.



A. Blanché, K. K. Dabrowski, M. Johnson, V. Lozin, D. Paulusma, and V. Zamaraev 73:11

Figure 4 Walls of height 2, 3 and 4, respectively.

5 New Classes of Unbounded Clique-Width and Proof of Theorem 3

In this section we first identify three new graph classes of unbounded clique-width. To do so,
we need the notion of a wall. Figure 4 shows three walls of different height (see e.g. [12] for a
formal definition). The class of walls is well known to have unbounded clique-width; see for
example [34]. A k-subdivided wall is the graph obtained from a wall after subdividing each
edge exactly k times for some constant k ≥ 0. The following lemma is well known.

I Lemma 29 ([37]). Let k ≥ 0. The class of k-subdivided walls has unbounded clique-width.

Dabrowski et al. [17] showed that (4P1, 3P1 + P2)-free graphs have unbounded clique-
width. However, their construction was not C5-free. We give an alternative construction that
neither contains an induced C5 nor an induced copy of any larger self-complementary graph.
Namely, we first consider a graph H ′ that is a 1-subdivided wall. By Lemma 29, such graphs
have unbounded clique-width. Let V1 be the set of vertices in H ′ that are also present in H.
Let V2 be the set of vertices obtained from subdividing vertical edges in H, and let V3 be
the set of vertices obtained from subdividing horizontal edges. Note that V1, V2 and V3 are
independent sets. Furthermore, every vertex in V1 has at most one neighbour in V2 and at
most two neighbours in V3, while every vertex in V2 ∪ V3 has at most two neighbours, each
of which is in V1. Let H ′′ be the graph obtained from H ′ by applying complementations
on V1, V2 and V3. By Fact 2, such graphs have unbounded clique-width. We claim that H ′′
is ({4P1, 3P1 + P2} ∪ F)-free, where F is the set of all self-complementary graphs on at
least five vertices that are not equal to the bull (proof omitted). This leads to the following
theorem.

I Theorem 30. Let F be the set of all self-complementary graphs on at least five vertices
that are not equal to the bull. The class of ({4P1, 3P1 + P2} ∪ F)-free graphs has unbounded
clique-width.

By Lemma 12, any self-complementary graph on at least five vertices not equal to
the bull has an induced subgraph isomorphic to C4, C5 or K4, so such graphs are auto-
matically excluded from the class specified in our next theorem. Its proof, which we
omitted, is based on observing that the construction of Brandstädt et al. [7] for proving that
(C4,K1,3,K4, 2P1 + P2)-free graphs have unbounded clique-width is, in fact, also C5-free.

I Theorem 31. (C4, C5,K1,3,K4, 2P1 + P2)-free graphs have unbounded clique-width.

For our third result we need two lemmas. Given natural numbers k, `, let Rb(k, `) denote
the smallest number such that if every edge of a KRb(k,`),Rb(k,`) is coloured red or blue then
it will contain a monochromatic Kk,`. It is known that Rb(k, `) always exists [1].

I Lemma 32 ([1]). Rb(2, 2) = 5.

Let G = (V,E) be a split graph. By definition, G has a split partition, that is, a partition
of V into two (possibly empty) sets C and I, where C is a clique and I is an independent
set. A split graph G may have multiple split partitions. For self-complementary split graphs
we can show the following (proof omitted).

MFCS 2017



73:12 Clique-Width for Graph Classes Closed under Complementation

I Lemma 33. Let G be a self-complementary split graph on n vertices. If n is even, then G
has a unique split partition and in this partition the clique and independent set are of equal
size. If n is odd, then there exists a vertex v such that G \ v is also a self-complementary
split graph.

I Theorem 34. Let F be the set of all self-complementary graphs on at least five vertices that
are not equal to the bull. The class of ({C4, 2P2}∪F)-free graphs has unbounded clique-width.

Proof. First note that the only self-complementary graph on five vertices apart from the
bull is the C5. Since C5 ∈ F , by Lemma 6, we may remove all graphs that are not split
from F , apart from C5; in particular, this means that we remove X4, . . . , X10 from F (see
also Figure 3). By Lemma 33, if G ∈ F has an odd number of vertices, but is not equal
to C5, then G \ v ∈ F for some vertex v ∈ V (G). Let F ′ be the set of self-complementary
split graphs on at least eight vertices that have an even number of vertices. It follows that
the class of F ′-free split graphs is equal to the class of ({C4, 2P2} ∪ F)-free graphs.

Consider a 2-subdivided wall H and note that it is (C4, C8)-free; recall that 2-subdivided
walls have unbounded clique-width by Lemma 29. Note that H is a bipartite graph, and fix a
bipartition (A,B) of H. Let H ′ be the graph obtained from H by applying a complementation
to A and note that H ′ is a split graph. In H ′, every vertex in B has a non-neighbour in A
and every vertex in A has a neighbour in B, so (A,B) is the unique split partition of H ′. By
Fact 2, the family of graphs H ′ produced in this way also has unbounded clique-width. It
remains to show that H ′ is F ′-free.

First note that X1 (see also Figure 3) is the graph obtained from the bipartite graph C8
by complementing one of the independent sets in the bipartition. Since H is C8-free and X1
has a unique split partition (by Lemma 33), it follows that H ′ is X1-free. Note that H is
C4-free and so H ′ does not contain two vertices x, x′ in the clique A and two vertices y, y′ in
the independent set B such that {x, x′} is complete to {y, y′}. Now suppose G ∈ F ′ \ {X1}.
Recall that by Lemma 33, G has a unique split partition (C, I), and this partition has the
property that |C| = |I|. Therefore, if we can show that G contains two vertices x, x′ ∈ C
and two vertices y, y′ ∈ I with {x, x′} complete to {y, y′} then H ′ must be G-free and the
proof is complete. It is easy to verify that this is the case if G ∈ {X2, X3} (see also Figure 3
and recall that X4, . . . , X10 /∈ F ′). Otherwise, G has at least ten vertices so |C|, |I| ≥ 5. By
Lemma 32, there must be two vertices x, x′ ∈ C and two vertices y, y′ ∈ I with {x, x′} either
complete or anti-complete to {y, y′}. In the first case we are done. In the second case we
note that complementing G will swap the sets C and I and make {x, x′} complete to {y, y′},
returning us to the previous case. We conclude that H ′ is indeed F ′-free. J

We are now ready to prove Theorem 3. Note that this theorem holds even if F is infinite.

I Theorem 3 (restated). Let F be a set of self-complementary graphs on at least five vertices
not equal to the bull. For a graph H, the class of ({H,H} ∪ F)-free graphs has bounded
clique-width if and only if H or H is an induced subgraph of K1,3, P1 + P4, 2P1 + P3 or sP1
for some s ≥ 1.

Proof. Let H be a graph. By Theorem 2, if H or H is an induced subgraph of K1,3,
P1 + P4, 2P1 + P3 or sP1 for some s ≥ 1, then the class of ({H,H} ∪ F)-free graphs has
bounded clique-width. Consider a graph F ∈ F . Since F contains at least five vertices
and is not isomorphic to the bull, Lemma 12 implies that F contains an induced subgraph
isomorphic to C4, C5 or K4, and so F /∈ S. Therefore the class of ({H,H} ∪ F)-free graphs
contains the class of (H,H,C4, C5,K4)-free graphs. If H /∈ S and H /∈ S, then the class of
(H,H,C4, C5,K4)-free graphs has unbounded clique-width by Lemma 10. By Fact 2, we



A. Blanché, K. K. Dabrowski, M. Johnson, V. Lozin, D. Paulusma, and V. Zamaraev 73:13

may therefore assume that H ∈ S. By Lemma 7, we may assume H contains K1,3 + P1, 2P2,
3P1 + P2 or S1,1,2 as an induced subgraph, otherwise we are done. In this case, the class of
({H,H} ∪ F)-free graphs contains the class of (K1,3,K4, C4, C5)-free, ({2P2, C4} ∪ F)-free,
({4P1, 3P1 + P2} ∪ F)-free or (K1,3, 2P1 + P2, C4, C5,K4)-free graphs, respectively. These
classes have unbounded clique-width by Theorems 31, 34, 30 and 31, respectively. This
completes the proof. J

References
1 Lowell W. Beineke and Allen J. Schwenk. On a bipartite form of the Ramsey problem.

Congressus Numerantium, XV:17–22, 1975.
2 Alexandre Blanché, Konrad K. Dabrowski, Matthew Johnson, and Daniël Paulusma. Hered-

itary graph classes: When the complexities of Colouring and Clique Cover coincide. CoRR,
abs/1607.06757, 2016.

3 Rodica Boliac and Vadim V. Lozin. On the clique-width of graphs in hereditary classes.
Proc. ISAAC 2002, LNCS, 2518:44–54, 2002.

4 Andreas Brandstädt, Konrad K. Dabrowski, Shenwei Huang, and Daniël Paulusma. Bound-
ing the clique-width of H-free split graphs. Discrete Applied Mathematics, 211:30–39, 2016.

5 Andreas Brandstädt, Konrad K. Dabrowski, Shenwei Huang, and Daniël Paulusma. Bound-
ing the clique-width of H-free chordal graphs. Journal of Graph Theory, (in press), 2017.

6 Andreas Brandstädt, Feodor F. Dragan, Hoàng-Oanh Le, and Raffaele Mosca. New graph
classes of bounded clique-width. Theory of Computing Systems, 38(5):623–645, 2005.

7 Andreas Brandstädt, Joost Engelfriet, Hoàng-Oanh Le, and Vadim V. Lozin. Clique-width
for 4-vertex forbidden subgraphs. Theory of Computing Systems, 39(4):561–590, 2006.

8 Andreas Brandstädt, Tilo Klembt, and Suhail Mahfud. P6- and triangle-free graphs revis-
ited: structure and bounded clique-width. Discrete Mathematics and Theoretical Computer
Science, 8(1):173–188, 2006.

9 Andreas Brandstädt, Hoàng-Oanh Le, and Raffaele Mosca. Gem- and co-gem-free graphs
have bounded clique-width. International Journal of Foundations of Computer Science,
15(1):163–185, 2004.

10 Andreas Brandstädt, Hoàng-Oanh Le, and Raffaele Mosca. Chordal co-gem-free
and (P5,gem)-free graphs have bounded clique-width. Discrete Applied Mathematics,
145(2):232–241, 2005.

11 Andreas Brandstädt and Suhail Mahfud. Maximum weight stable set on graphs without
claw and co-claw (and similar graph classes) can be solved in linear time. Information
Processing Letters, 84(5):251–259, 2002.

12 Julia Chuzhoy. Improved bounds for the flat wall theorem. Proc. SODA 2015, pages
256–275, 2015.

13 Derek G. Corneil, Michel Habib, Jean-Marc Lanlignel, Bruce A. Reed, and Udi Rotics.
Polynomial-time recognition of clique-width ≤ 3 graphs. Discrete Applied Mathematics,
160(6):834–865, 2012.

14 Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory of Computing Systems, 33(2):125–150,
2000.

15 Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs. Discrete
Applied Mathematics, 101(1–3):77–114, 2000.

16 Konrad K. Dabrowski, François Dross, and Daniël Paulusma. Colouring diamond-free
graphs. Journal of Computer and System Sciences, (to appear).

17 Konrad K. Dabrowski, Petr A. Golovach, and Daniël Paulusma. Colouring of graphs with
Ramsey-type forbidden subgraphs. Theoretical Computer Science, 522:34–43, 2014.

MFCS 2017



73:14 Clique-Width for Graph Classes Closed under Complementation

18 Konrad K. Dabrowski, Shenwei Huang, and Daniël Paulusma. Bounding clique-width via
perfect graphs. Journal of Computer and System Sciences, (in press).

19 Konrad K. Dabrowski, Vadim V. Lozin, and Daniël Paulusma. Clique-width and well-quasi
ordering of triangle-free graph classes. Proc. WG 2017, LNCS, (to appear).

20 Konrad K. Dabrowski, Vadim V. Lozin, and Daniël Paulusma. Well-quasi-ordering versus
clique-width: New results on bigenic classes. Order, (to appear).

21 Konrad K. Dabrowski, Vadim V. Lozin, Rajiv Raman, and Bernard Ries. Colouring vertices
of triangle-free graphs without forests. Discrete Mathematics, 312(7):1372–1385, 2012.

22 Konrad K. Dabrowski and Daniël Paulusma. Classifying the clique-width ofH-free bipartite
graphs. Discrete Applied Mathematics, 200:43–51, 2016.

23 Konrad K. Dabrowski and Daniël Paulusma. Clique-width of graph classes defined by two
forbidden induced subgraphs. The Computer Journal, 59(5):650–666, 2016.

24 H. N. de Ridder et al. Information System on Graph Classes and their Inclusions, 2001–
2013. http://www.graphclasses.org.

25 Wolfgang Espelage, Frank Gurski, and Egon Wanke. How to solve NP-hard graph problems
on clique-width bounded graphs in polynomial time. Proc. WG 2001, LNCS, 2204:117–128,
2001.

26 Alastair Farrugia. Self-complementary graphs and generalisations: a comprehensive refer-
ence manual. Master’s thesis, University of Malta, 1999.

27 Michael R. Fellows, Frances A. Rosamond, Udi Rotics, and Stefan Szeider. Clique-width
is NP-Complete. SIAM Journal on Discrete Mathematics, 23(2):909–939, 2009.

28 Stéphane Földes and Peter Ladislaw Hammer. Split graphs. Congressus Numerantium,
XIX:311–315, 1977.

29 Petr A. Golovach, Matthew Johnson, Daniël Paulusma, and Jian Song. A survey on the
computational complexity of colouring graphs with forbidden subgraphs. Journal of Graph
Theory, 84(4):331–363, 2017.

30 Martin Grohe and Pascal Schweitzer. Isomorphism testing for graphs of bounded rank
width. Proc. FOCS 2015, pages 1010–1029, 2015.

31 Frank Gurski. The behavior of clique-width under graph operations and graph transform-
ations. Theory of Computing Systems, 60(2):346–376, 2017.

32 András Gyárfás. Problems from the world surrounding perfect graphs. Applicationes Math-
ematicae, 19(3-4):413–441, 1987.

33 Öjvind Johansson. Clique-decomposition, NLC-decomposition, and modular decomposition
- relationships and results for random graphs. Congressus Numerantium, 132:39–60, 1998.

34 Marcin Kamiński, Vadim V. Lozin, and Martin Milanič. Recent developments on graphs
of bounded clique-width. Discrete Applied Mathematics, 157(12):2747–2761, 2009.

35 Daniel Kobler and Udi Rotics. Edge dominating set and colorings on graphs with fixed
clique-width. Discrete Applied Mathematics, 126(2–3):197–221, 2003.

36 Vadim V. Lozin and Dieter Rautenbach. On the band-, tree-, and clique-width of graphs
with bounded vertex degree. SIAM Journal on Discrete Mathematics, 18(1):195–206, 2004.

37 Vadim V. Lozin and Dieter Rautenbach. The tree- and clique-width of bipartite graphs in
special classes. Australasian Journal of Combinatorics, 34:57–67, 2006.

38 Johann A. Makowsky and Udi Rotics. On the clique-width of graphs with few P4’s. Inter-
national Journal of Foundations of Computer Science, 10(03):329–348, 1999.

39 Sang-Il Oum and Paul D. Seymour. Approximating clique-width and branch-width. Journal
of Combinatorial Theory, Series B, 96(4):514–528, 2006.

40 Michaël Rao. MSOL partitioning problems on graphs of bounded treewidth and clique-
width. Theoretical Computer Science, 377(1–3):260–267, 2007.

41 Ronald C. Read. On the number of self-complementary graphs and digraphs. Journal of
the London Mathematical Society, s1-38(1):99–104, 1963.



Computing the Maximum Using (min,+)
Formulas
Meena Mahajan1, Prajakta Nimbhorkar2, and Anuj Tawari3

1 The Institute of Mathematical Sciences, HBNI, Chennai, India
meena@imsc.res.in

2 Chennai Mathematical Institute, India
prajakta@cmi.ac.in

3 The Institute of Mathematical Sciences, HBNI, Chennai, India
anujvt@imsc.res.in

Abstract
We study computation by formulas over (min,+). We consider the computation of
max{x1, . . . , xn} over N as a difference of (min,+) formulas, and show that size n + n logn
is sufficient and necessary. Our proof also shows that any (min,+) formula computing the min-
imum of all sums of n − 1 out of n variables must have n logn leaves; this too is tight. Our
proofs use a complexity measure for (min,+) functions based on minterm-like behaviour and on
the entropy of an associated graph.

1998 ACM Subject Classification F.1.1 Models of Computation; F.1.3 Complexity Measures
and Classes; F.2.3 Tradeoffs between Complexity Measures

Keywords and phrases formulas, circuits, lower bounds, tropical semiring

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.74

1 Introduction

A (min,+) formula is a formula (tree) in which the leaves are labeled by variables or constants.
The internal nodes are gates labeled by either min or +. A min gate computes the minimum
value among its inputs while a + gate simply adds the values computed by its inputs.
Such formulas can compute any function expressible as the minimum over several linear
polynomials with non-negative integer coefficients.

In this work, we consider the following problem: Suppose we are given n input variables
x1, x2, . . . , xn and we want to find a formula which computes the maximum value taken by
these variables, max(x1, x2, . . . , xn). If variables are restricted to take non-negative integer
values, t is easy to show that no (min,+) formula can compute max. Suppose now we
strengthen this model by allowing minus gates as well. Now we have a very small linear sized
formula: max(x1, x2, . . . , xn) = 0 −min(0 − x1, 0 − x2, . . . , 0 − xn). It is clear that minus
gates add significant power to the model of (min,+) formulas. But how many minuses do
we actually need? It turns out that only one minus gate, at the top, is sufficient. Here is
one such formula: (Sum of all variables) - mini (Sum of all variables except xi). The second
expression above can be computed by a (min,+) formula of size n logn using recursion. So,
we can compute max using min, + and one minus gate at the top, at the cost of a slightly
super-linear size. Can we do any better? We show that this simple difference formula is
indeed the best we can achieve for this model.

The main motivation behind studying this question is the following question asked
in [8]: Does there exist a naturally occuring function f for which (min,+) circuits are
super-polynomially weaker than (max,+) circuits? There are two possibilities:

© Meena Mahajan, Prajakta Nimbhorkar, and Anuj Tawari;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 74; pp. 74:1–74:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.74
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


74:2 Computing the Maximum Using (min,+) Formulas

1. Show that max can be implemented using a small (min,+) circuit.
2. Come up with an explicit function f which has small (max,+) circuits but requires large

(min,+) circuits.
Since we show that no (min,+) formula (or circuit) can compute max, option 1 is ruled out.
In the weaker model of formulas instead of circuits, we show that any difference of (min,+)
formulas computing max should have size at least n logn. This yields us a separation between
(max,+) formulas and difference of (min,+) formulas.

Background
Many dynamic programming algorithms correspond to (min,+) circuits over an appropriate
semiring. Notable examples include the Bellman-Ford-Moore (BFM) algorithm for the
single-source-shortest-path problem (SSSP) [2, 5, 14], the Floyd-Warshall (FW) algorithm
for the All-Pairs-Shortest-Path (APSP) problem [4, 18], and the Held-Karp (HK) algorithm
for the Travelling Salesman Problem (TSP) [6]. All these algorithms are just recursively
constructed (min,+) circuits. For example, both the BFM and the FW algorithms give
O(n3) sized (min,+) circuits while the HK algorithm gives a O(n2 · 2n) sized (min,+) circuit.
Matching lower bounds were proved for TSP in [7], for APSP in [8], and for SSSP in [10].
So, proving tight lower bounds for circuits over (min,+) can help us understand the power
and limitations of dynamic programming. We refer the reader to [8, 9] for more results on
(min,+) circuit lower bounds.

Note that algorithms for problems like computing the diameter of a graph are naturally
expressed using (min,max,+) circuits. This makes the cost of converting a max gate to a
(min,+) circuit or formula an interesting measure.

A related question arises in the setting of counting classes defined by arithmetic circuits
and formulas. Circuits over N, with specific resource bounds, count accepting computation
paths or proof-trees in a related resource-bounded Turing machine model defining a class
C. The counting function class is denoted #C. The difference of two such functions in a
class #C is a function in the class DiffC. On the other hand, circuits with the same resource
bounds, but over Z, or equivalently, with subtraction gates, describe the function class GapC.
For most complexity classes C, a straightforward argument shows that that DiffC and GapC
coincide. See [1] for further discussion on this. In this framework, we restrict attention
to computation over N and see that as a member of a Gap class over (min,+), max has
linear-size formulas, whereas as a member of a Diff class, it requires Ω(n logn) size.

Our results and techniques
We now formally state our results and briefly comment on the techniques used to prove them.
1. For n ≥ 2, no (min,+) formula over N can compute max(x1, x2, . . . , xn). (Theorem 10)

The proof is simple: apply a carefully chosen restriction to the variables and show that
the (min,+) formula does not output the correct value of max on this restriction.

2. max(x1, x2, . . . , xn) can be computed by a difference of two (min,+) formulas with total
size n + ndlogne. More generally, the function computing the sum of the topmost k
values amongst the n variables can be computed by a difference of two (min,+) formulas
with total size n+ n(dlogne)min{k,n−k}. (Theorem 11)
Note that the sum of the topmost k values can be computed by the following formula:
(Sum of all variables) - minS (Sum of all variables except those in S). Here S ranges over
all possible subsets of {x1, x2, . . . , xn} of cardinality n− k. Using recursion, we obtain
the claimed size bound.



M. Mahajan, P. Nimbhorkar, and A. Tawari 74:3

3. Let F1, F2 be (min,+) formulas over N such that F1 − F2 = max(x1, x2, . . . , xn). Then
F1 must have at least n leaves and F2 at least n logn leaves. (Theorem 13)
A major ingredient in our proof is the definition of a measure for functions computable by
constant-free (min,+) formulas, and relating this measure to formula size. The measure
involves terms analogous to minterms of a monotone Boolean function, and uses the
entropy of an associated graph under the uniform distribution on its vertices. In the
setting of monotone Boolean functions, this technique was used in in [15] to give formula
size lower bounds. We adapt that technique to the (min,+) setting.
The same technique also yields the following lower bound: Also, any (min,+) formula
computing the minimum over the sums of n− 1 variables must have at least n logn leaves.
This is tight. (Lemma 12 and Corollary 18)

2 Preliminaries

2.1 Notation
Let X denote the set of variables {x1, . . . , xn}. We use x̃ to denote (x1, x2, . . . , xn, 1).

We use ei to denote the (n+ 1)-dimensional vector with a 1 in the ith coordinate and
zeroes elsewhere. For i ∈ [n], we also use ei to denote an assignment to the variables
x1, x2, . . . , xn where xi is set to 1 and all other variables are set to 0.
I Definition 1. For 0 ≤ r ≤ n, the n-variate functions Sumn, MinSumr

n and MaxSumr
n are

as defined below.

Sumn =
n∑

i=1
xi

MinSumr
n = min

{∑
i∈S

xi | S ⊆ n, |S| = r

}

MaxSumr
n = max

{∑
i∈S

xi | S ⊆ n, |S| = r

}
Note that MinSum0

n and MaxSum0
n are the constant function 0, and MinSum1

n and MaxSum1
n

are just the min and max respectively.
I Observation 2. For 1 ≤ r < n, MinSumn

n = MaxSumn
n = Sumn = MinSumr

n +MaxSumn−r
n .

2.2 Formulas
A (min,+) formula is a directed tree. Each leaf of a formula has a label from X ∪ N; that
is, it is labeled by a variable xi or a constant α ∈ N. Each internal node has exactly two
children and is labeled by one of the two operations min or +. The output node of the
formula computes a function of the input variables in the natural way. The input nodes of a
formula are also referred to as gates.

If all leaves of a formula are labeled from X, we say that the formula is constant-free.
A (min,+,−) formula is similarly defined; the operation at an internal node may also

be −, in which case the children are ordered and the node computes the difference of their
values.

We define the size of a formula as the number of leaves in the formula. For a formula
F , we denote by L(F ) its size, the number of leaves in it. For a function f , we denote by
L(f) the smallest size of a formula computing f . By Lcf (f) we denote the smallest size of a
constant-free formula computing f .

MFCS 2017



74:4 Computing the Maximum Using (min,+) Formulas

2.3 Graph Entropy
The notion of the entropy of a graph or hypergraph, with respect to a probability distribution
on its vertices, was first defined by Körner in [11]. In that and subsequent works (e.g.
[12, 13, 3, 15]), equivalent characterizations of graph entropy were established and are often
used now as the definition itself, see for instance [16, 17]. In this paper, we use graph entropy
only with respect to the uniform distribution, and simply call it graph entropy. We use
the following definition, which is exactly the definition from [17] specialised to the uniform
distribution.

I Definition 3. Let G be a graph with vertex set V (G) = {1, . . . , n}.
The vertex packing polytope V P (G) of the graph G is the convex hull of the characteristic

vectors of independent sets of G.
The entropy of G is defined as

H(G) = min
~a∈V P (G)

n∑
i=1

1
n

log 1
ai

.

It can easily be seen that H(G) is a non-negative real number, and moreover, H(G) = 0 if
and only if G has no edges. We list non-trivial properties of graph entropy that we use.

I Lemma 4 ([12, 13]). Let F = (V,E(F )) and G = (V,E(G)) be two graphs on the same
vertex set. The following hold:
1. Monotonocity. If E(F ) ⊆ E(G), then H(F ) ≤ H(G)
2. Subadditivity. Let Q be the graph with vertex set V and edge set E(F ) ∪E(G). Then

H(Q) ≤ H(F ) +H(G).

I Lemma 5 (see for instance [16, 17]). The following hold:
1. Let Kn be the complete graph on n vertices. Then H(Kn) = logn.
2. Let G be a graph on n vertices, whose edges induce a bipartite graph on m (out of n)

vertices. Then H(G) ≤ m
n .

3 Transformations and Easy bounds

We consider the computation of max{x1, . . . , xn} over N using (min,+) formulas.
To start with, we describe some properties of (min,+) formulas that we use repeatedly.

The first property, Proposition 7 below, is expressing the function computed by a formula
as a depth-2 polynomial where + plays the role of multiplication and min plays the role of
addition. The next properties, Proposition 8 and 9 below, deal with removing redundant
sub-expressions created by the constant zero or moving common parts aside.

I Definition 6. Let F be a (min,+) formula with leaves labeled from X ∪N. For each gate
v ∈ F , we construct a set Sv ⊆ Nn+1 as described below.

We construct the sets inductively based on the depth of v.
1. Case 1. v is a leaf labeled α for some α ∈ N. Then Sv = {α · en+1}. (Recall, ei is the

unit vector with 1 at the ith coordinate and zero elsewhere).
2. Case 2: v is a leaf labeled xi for some i ∈ [n]. Then Sv = {ei}.
3. Case 3: v = min{u,w}. Then Sv = Su ∪ Sw.
4. Case 4: v = u+ w. Then Sv = {ã+ b̃ | ã ∈ Su, b̃ ∈ Sw} (coordinate-wise addition).
Let r be the output gate of F . We denote by S(F ) the set Sr so constructed.



M. Mahajan, P. Nimbhorkar, and A. Tawari 74:5

It is straightforward to see that if F has no constants (so Case 1 is never invoked), then
an+1 remains 0 throughout the construction of the sets Sv. Hence if F is constant-free, then
for each ã ∈ S(F ), an+1 = 0.

By construction, the set S(F ) describes the function computed by F . Thus we have the
following:

I Proposition 7. Let F be a formula with min and + gates, with leaves labeled by elements
of {x1, . . . , xn} ∪ N. For each gate v ∈ F , let fv denote the function computed at v.

Then fv = min{〈ã · x̃〉 | ã ∈ Sv}.

The following proposition is an easy consequence of the construction in Definition 6.

I Proposition 8. Let F be a (min,+) formula over N. Let G be the formula obtained from
F by replacing all constants by the constant 0. Let H be the constant-free formula obtained
from G by eliminating 0s from G through repeated replacements of 0 +A by A, min{0, A} by
0. Then
1. L(H) ≤ L(G) = L(F ),
2. S(G) = {b̃ | bn+1 = 0,∃ã ∈ S(F ),∀i ∈ [n], ai = bi}, and
3. G and H compute the same function min{〈b̃ · x̃〉 | b̃ ∈ S(G)}.

(Note: It is not the claim that S(G) = S(H). Indeed, this may not be the case. eg. let
F = x+min{1, x+y}. Then S(F ) = {101, 210}, S(G) = {100, 210}, S(H) = {100}, However,
the functions computed are the same.)

The next proposition shows how to remove “common” contributors to S(F ) without
increasing the formula size.

I Proposition 9. Let F be a (min,+) formula computing a function f .
If, for some i ∈ [n], ai > 0 for every ã ∈ S(F ), then f −xi can be computed by a (min,+)

formula F ′ of size at most size(F ).
If an+1 > 0 for every ã ∈ S(F ), then f − 1 can be computed by a (min,+) formula F ′ of

size at most size(F ).
In both cases, S(F ′) = {b̃ | ∃ã ∈ S(F ), b̃ = ã− ei}.

Proof. First consider i ∈ [n]. Let X be the subset of nodes in F defined as follows:

X = {v ∈ F | ∀ã ∈ Sv : ai > 0}

Clearly, the output gate r of F belongs to X. By the construction of the sets Sv, whenever a
min node v belongs to X, both its children belong to X, and whenever a + node belongs to
X, at least one of its children belongs to X. We pick a set T ⊆ X as follows. Include r in T .
For each min node in T , include both its children in T . For each + node in T , include in T
one child that belongs to X (if both children are in X, choose any one arbitrarily). This
gives a sub-formula of F where all leaves are labeled xi. Replace these occurrences of xi in F
by 0 to get formula F ′. It is easy to see that S(F ′) = {ã− ei | ã ∈ S}. Hence F ′ computes
f − xi.

For i = an+1, the same process as above yields a subformula where each leaf is labeled
by a positive constant. Subtracting 1 from the constant at each leaf in T gives the formula
computing f − 1. J

It is intuitively clear that no (min,+) formula can compute max. A formal proof using
Proposition 7 appears below.

I Theorem 10. For n ≥ 2, no (min,+) formula over N can compute max{x1, . . . , xn}.

MFCS 2017



74:6 Computing the Maximum Using (min,+) Formulas

Proof. Suppose, to the contrary, some formula C computes max. Then its restriction D to
x1 = X, x2 = Y , x3 = x4 = . . . = xn = 0, correctly computes max{X,Y }. Since all leaves of
D are labeled from {x1, x2} ∪N, the set S(D) is a set of triples. Let S ⊆ N3 be this set. For
all X,Y ∈ N, max{X,Y } equals E(X,Y ) = min{AX +BY + C | (A,B,C) ∈ S}.

Let K denote the maximum value taken by C in any triple in S. If for some B,C ∈ N,
the triple (0, B,C) belongs to S, then E(K + 1, 0) ≤ C ≤ K < K + 1 = max{0,K + 1}. So
for all (A,B,C) ∈ S, A 6= 0, so A ≥ 1. Similarly, for all (A,B,C) ∈ S, B ≥ 1. Hence for all
(A,B,C) ∈ S, A+B ≥ 2.

Now E(1, 1) = min{A+B + C | (A,B,C) ∈ S} ≥ 2 > 1 = max{1, 1}. So E(X,Y ) does
not compute max(X,Y ) correctly. J

However, if we also allow the subtraction operation at internal nodes, it is very easy to
compute the maximum in linear size; max(x1, . . . , xn) = −min{−x1,−x2, . . . ,−xn}. Here
−a is implemented as 0− a, and if we allow only variables, not constants, at leaves, we can
compute −a as (x1 − x1)− a.

Thus the subtraction operation adds significant power. How much? Can we compute
the maximum with very few subtraction gates? It turns out that the max function can be
computed as the difference of two (min,+) formulas. Equivalently, there is a (min,+,−)
formula with a single − gate at the root, that computes the max function. This formula is
not linear in size, but it is not too big either; we show that it has size O(n logn). A simple
generalisation allows us to compute the sum of the largest k values.

I Theorem 11. For each n ≥ 1, and each 0 ≤ k ≤ n, the function MaxSumk
n can be computed

by a difference of two (min,+) formulas with total size n+ n(dlogne)min{k,n−k}.
In particular, the function max{x1, . . . , xn} can be computed by a difference of two

(min,+) formulas with total size n+ ndlogne.

Proof. Note that MaxSumk
n = Sumn−MinSumn−k

n . Lemma 12 below shows that MinSumn−k
n

can be computed by a formula of size n(dlogne)min{k,n−k} for 0 ≤ k ≤ n. Since Sumn can
be computed by a formula of size n, the claimed upper bound for MaxSumk

n follows. J

I Lemma 12. For all n, k such that n ≥ 1 and 0 ≤ k < n, the functions MinSumk
n,

MinSumn−k
n can be computed by a (min,+) formula of size n(dlogne)k.

Hence the functions MinSumk
n, MinSumn−k

n can be computed by (min,+) formulas of size
n(dlogne)min{k,n−k}.

Proof. We prove the upper bound for MinSumn−k
n . The bound for MinSumk

n follows from
an essentially identical argument.

We prove this by induction on k.
Base Case: k = 0. For every n ≥ 1, MinSumn−k

n = Sumn and can be computed with
size n.
Inductive Hypothesis: For all k′ < k, and all n > k′, MinSumn−k′

n can computed in size
n(dlogne)k′ .
Inductive Step: We want to prove the claim for k, where k ≥ 1, and for all n > k. We
proceed by induction on n.

Base Case: n = k+ 1. MinSumn−k
n = MinSum1

n is the minimum of the n variables, and
can be computed in size n.
Inductive Hypothesis: For all k < m < n, MinSumm−k

m can be computed in size
m(dlogme)k.



M. Mahajan, P. Nimbhorkar, and A. Tawari 74:7

Inductive Step: Let m′ = bn/2c, m′′ = dn/2e, Let X, Xl, Xr denote the sets of
variables {x1, . . . , xn}, {x1, . . . , xm′}, {xm′+1, . . . , xn}. Note that |Xl| = m′, |Xr| =
m′′, m′ +m′′ = n. Let p denote dlogne. Note that dlogm′e = dlogm′′e = p− 1.
To compute MinSumn−k

n on X, we first compute, for various values of t, MinSumm′−t
m′

on Xl, MinSumm′′−(k−t)
m′′ on Xr, and add them up. We then take the minimum of these

sums. Note that if m′ = t or m′′ = k − t, then that summand is simply 0 and we only
compute the other summand. Now MinSumn−k

n (X) can be computed as

min
{

MinSumm′−t
m′ (Xl) + MinSumm′′−(k−t)

m′′ (Xr) | max{0, k −m′′} ≤ t ≤ min{m′, k}
}

For all the sub-expressions appearing in the above construction, we can use inductively
constructed formulas. Using the inductive hypotheses (both for t < k and for t = k,
m′′ < n), we see that the number of leaves in the resulting formula is given by

min{m′,k}∑
t=max{0,k−m′′}

[
m′(p− 1)t +m′′(p− 1)k−t

]
≤

k∑
t=0

[
m′(p− 1)t +m′′(p− 1)k−t

]
=

[
k∑

t=0
m′(p− 1)t

]
+
[

k∑
t=0

m′′(p− 1)t

]

= (m′ +m′′)
[

k∑
t=0

(p− 1)t

]
≤ n [(p− 1) + 1]k = npk J

In the rest of this paper, our goal is to prove a matching lower bound for the max function.
Note that the constructions in Theorem 11 and Lemma 12 yield formulas that do not use
constants at any leaves. Intuitively, it is clear that if a formula computes the maximum
correctly for all natural numbers, then constants cannot help. So the lower bound should hold
even in the presence of constants, and indeed our lower bound does hold even if constants
are allowed.

4 The main lower bound

In this section, we prove the following theorem:

I Theorem 13. Let F1, F2 be (min,+) formulas over N such that F1−F2 = max(x1, . . . , xn).
Then L(F1) ≥ n, and L(F2) ≥ n logn.

The proof proceeds as follows: we first transform F1 and F2 over a series of steps to formulas
G1 and G2 no larger than F1 and F2, such that G1 − G2 equals F1 − F2 and hence still
computes max, and G1 and G2 have some nice properties. These properties immediately
imply that L(F1) ≥ L(G1) ≥ n. We further transform G2 to a constant-free formula H no
larger than G2. We then define a measure for functions computable by constant-free (min,+)
formulas, relate this measure to formula size, and use the properties of G2 and H to show
that the function h computed by H has large measure and large formula size.

MFCS 2017



74:8 Computing the Maximum Using (min,+) Formulas

Transformation 1. For b ∈ {1, 2}, let Sb denote the set S(Fb). For i ∈ [n + 1], let Ai be
the minimum value appearing in the ith coordinate in any tuple in S1 ∪ S2. Let Ã denote
the tuple (A1, . . . , An, An+1). By repeatedly invoking Proposition 9, we obtain formulas Gb

computing Fb − 〈Ã · x̃〉, with L(Gb) ≤ L(Fb). For b ∈ {1, 2}, let Tb denote the set S(Gb).
We now establish the following properties of G1 and G2.

I Lemma 14. Let F1, F2 be (min,+) formulas such that F1 − F2 computes max. Let G1,
G2 be obtained as described above. Then
1. L(G1) ≤ L(F1), L(G2) ≤ L(F2),
2. max(X) = F1 − F2 = G1 −G2,
3. For every i ∈ [n], for every ã ∈ T1, ai > 0. Hence L(G1) ≥ n.
4. For every i ∈ [n], there exists ã ∈ T2, ai = 0.
5. There exist ã ∈ T1, b̃ ∈ T2, an+1 = bn+1 = 0.
6. For every i, j ∈ [n] with i 6= j, for every ã ∈ T2, ai + aj > 0.

Proof. 1. This follows from proposition 9.
2. Obvious.
3. Suppose for some ã ∈ T1 and for some i ∈ [n], ai = 0. Consider the input assignment

d̃ where di = 1 + an+1 and dj = 0 for j ∈ [n] \ {i}. Then max{d1, . . . , dn} = 1 + an+1.
However, 〈ã · d̃〉 = an+1. Therefore on input d̃, G1(d̃) ≤ an+1. Since G2 ≥ 0 on all
assignments, we get G1(d̃)−G2(d̃) ≤ an+1 < max(d̃), contradicting the assumption that
G1 −G2 computes max.

4. This follows from the previous point and the choice of Ai for each i.
5. From the choice of An+1, we know that there is an ã in T1 ∪ T2 with an+1 = 0. Suppose

there is such a tuple in exactly one of the sets T1, T2. Then exactly one of G1(0̃), G2(0̃)
equals 0, and so G1 −G2 does not compute max(0̃).

6. Suppose to the contrary, some ã ∈ T2 has ai = aj = 0. Consider the input assignment d̃
where di = dj = 1+an+1 and dk = 0 for k ∈ [n]\{i, j}. Then max{d1, . . . , dn} = 1+an+1.
Since every xk figures in every tuple of T1, G1(d̃) ≥ di+dj = 2an+1+2. But G2(d̃) ≤ an+1.
Hence G1(d̃)−G2(d̃) does not compute max(d̃).

J

We have already shown above that L(F1) ≥ L(G1) ≥ n. Now the more tricky part: we
need to lower bound L(G2).

Transformation 2. Let H ′ be the formula obtained by simply replacing every constant in
G2 by 0. Let H be the constant-free formula obtained from H ′ by eliminating the zeroes,
repeatedly replacing 0+A by A, min{0, A} by 0. Let h be the function computed by H. Then,
Lcf (h) ≤ L(H) ≤ L(H ′) = L(G2) ≤ L(F2). It thus suffices to show that Lcf (h) ≥ n logn.
To this end, we define a complexity measure µ, relate it to constant-free formula size, and
show that it is large for the function h.

I Definition 15. For an n-variate function f computable by a constant-free (min,+) formula,
we define

(f)1 = {i | f(ei) ≥ 1, f(0) = 0}.
(f)2 = {(i, j) | f(ei + ej) ≥ 1, f(ei) = 0, f(ej) = 0}.

We define G(f) to be the graph whose vertex set is [n] and edge set is (f)2.
The measure µ for function f is defined as follows:

µ = |(f)1|
n

+H(G(f))



M. Mahajan, P. Nimbhorkar, and A. Tawari 74:9

The following lemma relates µ(f) with L(f). This relation has been used before, see
for instance [15] for applications to monotone Boolean circuits. Since we have not seen an
application in the setting of (min,+) formulas, we (re-)prove this in detail here; however, it
is really the same proof.

I Lemma 16. Let f be an n-variate function computable by a constant-free (min,+) formula.
Then Lcf (f) ≥ n · µ(f).

Proof. The proof is by induction on the depth of a witnessing formula F that computes f
and has Lcf (F ) = Lcf (f).
Base case F is an input variable, say xi. Then (f)1 = {xi}, and G(f) is the empty graph,

so µ(f) = 1
n . Hence 1 = Lcf (f) = nµ(f).

Inductive step F is either F ′ + F ′′ or min{F ′, F ′′} for some formulas F ′, F ′′ computing
functions f ′, f ′′ respectively. Since F is an optimal-size formula for f , F ′ and F ′′ are
optimal-size formulas for f ′ and f ′′ as well. So Lcf (f) = L(F ) = L(F ′) + L(F ′′) =
Lcf (f ′) + Lcf (f ′′).

Case a. F = F ′ + F ′′. Then (f)1 = (f ′)1 ∪ (f ′′)1 and G(f) ⊆ G(f ′) ∪G(f ′′). Hence,

µ(f) ≤ |(f
′)1 ∪ (f ′′)1|

n
+H(G(f ′) ∪G(f ′′)) (Lemma 4)

≤ |(f
′)1|
n

+ |(f
′′)1|
n

+H(G(f ′)) +H(G(f ′′)) (Lemma 4)

= µ(f ′) + µ(f ′′)

≤ 1
n
· Lcf (f ′) + 1

n
· Lcf (f ′′) (Induction)

= 1
n
· Lcf (f) (Lcf (f) = Lcf (f ′) + Lcf (f ′′))

Case b. F = min(F ′, F ′′). Let (f ′)1 = A and (f ′′)1 = B. Then (f)1 = A ∩ B and
G(f) ⊆ G(f ′) ∪G(f ′′) ∪G(A \B,B \A). Here, G(P,Q) denotes the bipartite graph
G with parts P and Q. Hence,

µ(f) ≤ 1
n

(|A ∩B|) +H(G(f ′) ∪G(f ′′) ∪G(A \B,B \A)) (Lemma 4)

≤ 1
n

(|A ∩B|) +H(G(f ′)) +H(G(f ′′)) +H(G(A \B,B \A)) (Lemma 4)

≤ 1
n

(|A ∩B|) +H(G(f ′)) +H(G(f ′′)) + 1
n

(|A \B|+ |B \A|) (Lemma 5)

≤ 1
n

(|A|+ |B|) +H(G(f ′)) +H(G(f ′′))

= µ(f ′) + µ(f ′′)

≤ 1
n
· Lcf (f ′) + 1

n
· Lcf (f ′′) (Induction)

= 1
n
· Lcf (f) (Lcf (f) = Lcf (f ′) + Lcf (f ′′))

Hence, µ(f) ≤ 1
n · Lcf (f). J

Using this measure, we can now show the required lower bound.

I Lemma 17. For the function h obtained after Transformation 2, µ(h) ≥ logn.

MFCS 2017



74:10 Computing the Maximum Using (min,+) Formulas

Proof. Recall that we replaced constants in G2 by 0 to get H ′, then eliminated the 0s to get
constant-free H computing h. By Proposition 8, we know that S(H ′) = {b̃ | bn+1 = 0,∃ã ∈
T2, ai = bi∀i ∈ [n]} and that h = min{x̃ · b̃ | b̃ ∈ S(H ′)}.

From item 4 in Lemma 14, it follows that (h)1 = ∅. (For every i, there is a b̃ ∈ S(H ′)
with bi = 0. So h(ei) ≤ 〈ei · b̃〉 = 0.)

Since (h)1 is empty, (i, j) ∈ G(h) exactly when h(ei + ej) ≥ 1. From item 6 in Lemma 14,
it follows that every pair (i, j) is in G(h). Thus G(h) is the complete graph Kn.

From Lemma 5 we conclude that µ(h) = logn. J

Lemmas 16 and 17 imply that Lcf (h) ≥ n logn. Since Lcf (h) ≤ L(H) ≤ L(H ′) =
L(G2) ≤ L(F2), we conclude that L(F2) ≥ n logn.

This completes the proof of Theorem 13.

A major ingredient in this proof is using the measure µ. This yields lower bounds for
constant-free formulas. For functions computable in a constant-free manner, it is hard to see
how constants can help. However, to transfer a lower bound on Lcf (f) to a lower bound
on L(f), this idea of “constants cannot help” needs to be formalized. The transformations
described before we define µ do precisely this.

For the MinSumn−1
n function, applying the measure technique immediately yields the

lower bound Lcf (MinSumn−1
n ) ≥ n logn. Transferring this lower bound to formulas with

constants is a corollary of our main result, and with it we see that the upper bound from
Lemma 12 is tight for MinSumn−1

n .

I Corollary 18. Any (min,+) formula computing MinSumn−1
n must have size at least n logn.

Proof. Let F be any formula computing MinSumn−1
n . Applying Theorem 13 to F1 =

x1 + . . .+ xn and F2 = F , we obtain L(F ) ≥ n logn. J

5 Discussion

Our results hold when variables take values from N. In the standard (min,+) semi-ring, the
value∞ is also allowed, since it serves as the identity for the min operation. The proof of our
main result Theorem 13 does not carry over to this setting. The main stumbling block is the
removal of the “common” part of S(F ). However, if we allow ∞ as a value that a variable
can take, but not as a constant appearing at a leaf, then the lower bound proof still seems to
work. However, the upper bound no longer works; while taking a difference, what is ∞−∞?

Apart from the many natural settings where the tropical semiring (min,+,N∪{∞}, 0,∞)
crops up, it is also interesting because it can simulate the Boolean semiring for monotone
computation. The mapping is straightforward: 0, 1,∨,∧ in the Boolean semiring are replaced
by ∞, 0,min,+ respectively in the tropical semiring. Proving lower bounds for (min,+)
formulas could be easier than for monotone Boolean formulas because the (min,+) formula
has to compute a function correctly at all values, not just at 0,∞. Hence it would be
interesting to extend our lower bound to this setting with ∞ as well.

Our transformations crucially use the fact that there is a minimum element, 0. Thus, we
do not see how to extend these results to computations over integers. It appears that we will
need to include −∞, and since we are currently unable to handle even +∞, there is already
a barrier.

The lower bound method uses graph entropy which is always bounded above by logn.
Thus this method cannot give a lower bound larger than n logn. It would be interesting to
obtain a modified technique that can show that all the upper bounds in Theorem 11 and



M. Mahajan, P. Nimbhorkar, and A. Tawari 74:11

Lemma 12 are tight. It would also be interesting to find a direct combinatorial proof of our
lower bound result, without using graph entropy.

References
1 Eric Allender. Arithmetic circuits and counting complexity classes. In Jan Krajicek, editor,

Complexity of Computations and Proofs, Quaderni di Matematica Vol. 13, pages 33–72.
Seconda Universita di Napoli, 2004. An earlier version appeared in the Complexity Theory
Column, SIGACT News 28, 4 (Dec. 1997) pp. 2-15.

2 Richard Bellman. On a routing problem. Quarterly of Applied Mathematics, 16:87–90,
1956.

3 Imre Csiszár, János Körner, László Lovász, Katalin Marton, and Gábor Simonyi. Entropy
splitting for antiblocking corners and perfect graphs. Combinatorica, 10(1):27–40, 1990.

4 Robert W Floyd. Algorithm 97: shortest path. Communications of the ACM, 5(6):345,
1962.

5 Lester R Ford Jr. Network flow theory. Technical Report P-923, Rand Corporation, 1956.
6 Michael Held and Richard M Karp. A dynamic programming approach to sequencing

problems. Journal of the Society for Industrial and Applied Mathematics, 10(1):196–210,
1962.

7 Mark Jerrum and Marc Snir. Some exact complexity results for straight-line computations
over semirings. Journal of the ACM (JACM), 29(3):874–897, 1982.

8 Stasys Jukna. Lower bounds for tropical circuits and dynamic programs. Theory of Com-
puting Systems, 57(1):160–194, 2015.

9 Stasys Jukna. Tropical complexity, Sidon sets, and dynamic programming. SIAM Journal
on Discrete Mathematics, 30(4):2064–2085, 2016.

10 Stasys Jukna and Georg Schnitger. On the optimality of Bellman–Ford–Moore shortest
path algorithm. Theoretical Computer Science, 628:101–109, 2016.

11 János Körner. Coding of an information source having ambiguous alphabet and the entropy
of graphs. In Transactions of 6th Prague Conference on Information Theory, pages 411–425.
Academia, Prague, 1973.

12 János Körner. Fredman-Komlós bounds and information theory. SIAM. J. on Algebraic
and Discrete Methods, 7(4):560–570, 1986.

13 János Körner and Katalin Marton. New bounds for perfect hashing via information theory.
European Journal of Combinatorics, 9(6):523–530, 1988.

14 Edward F Moore. The shortest path through a maze. Bell Telephone System., 1959.
15 Ilan Newman and Avi Wigderson. Lower bounds on formula size of boolean functions using

hypergraph entropy. SIAM Journal on Discrete Mathematics, 8(4):536–542, 1995.
16 Gábor Simonyi. Graph entropy: A survey. Combinatorial Optimization, 20:399–441, 1995.
17 Gábor Simonyi. Perfect graphs and graph entropy: An updated survey. In Perfect Graphs,

pages 293–328. John Wiley and Sons, 2001.
18 Stephen Warshall. A theorem on Boolean matrices. Journal of the ACM (JACM), 9(1):11–

12, 1962.

MFCS 2017





Selecting Nodes and Buying Links to Maximize
the Information Diffusion in a Network
Gianlorenzo D’Angelo1, Lorenzo Severini2, and Yllka Velaj3

1 Gran Sasso Science Institute (GSSI), L’Aquila, Italy
gianlorenzo.dangelo@gssi.infn.it

2 ISI Foundation, Torino, Italy
lorenzo.severini@isi.it

3 Gran Sasso Science Institute (GSSI), L’Aquila, Italy, and
Department of Economic Studies, University of Chieti-Pescara, Pescara, Italy
yllka.velaj@unich.it

Abstract
The Independent Cascade Model (ICM) is a widely studied model that aims to capture the
dynamics of the information diffusion in social networks and in general complex networks. In
this model, we can distinguish between active nodes which spread the information and inactive
ones. The process starts from a set of initially active nodes called seeds. Recursively, currently
active nodes can activate their neighbours according to a probability distribution on the set of
edges. After a certain number of these recursive cycles, a large number of nodes might become
active. The process terminates when no further node gets activated.

Starting from the work of Domingos and Richardson [10, 26], several studies have been conduc-
ted with the aim of shaping a given diffusion process so as to maximize the number of activated
nodes at the end of the process. One of the most studied problems has been formalized by
Kempe et al. and consists in finding a set of initial seeds that maximizes the expected number
of active nodes under a budget constraint [14]. In this paper we study a generalization of the
problem of Kempe et al. in which we are allowed to spend part of the budget to create new edges
incident to the seeds. That is, the budget can be spent to buy seeds or edges according to a cost
function. The problem does not admin a PTAS, unless P = NP . We propose two approximation
algorithms: the former one gives an approximation ratio that depends on the edge costs and in-
creases when these costs are high; the latter algorithm gives a constant approximation guarantee
which is greater than that of the first algorithm when the edge costs can be small.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases Approximation algorithms, information diffusion, complex networks, in-
dependent cascade model, network augmentation

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.75

1 Introduction

When a new idea or innovation arises in a network of individuals, it can either quickly
propagate to a large part of the network and be adopted by many individuals or immediately
expire. Understanding the dynamics that regulate these behaviours has been one of the
main goals in the field of complex network analysis and has been studied under the name
of influence spreading or information diffusion analysis problem [10, 14]. The motivating
application span several fields: from marketing with the aim of evaluating the success of a
new product or maximizing its adoption [3, 4, 11, 21, 26], to epidemiology in order to limit
the diffusion of a virus or disease [22, 23], the study of adoption of innovations [5, 27, 30],

© Gianlorenzo D’Angelo, Lorenzo Severini, and Yllka Velaj;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 75; pp. 75:1–75:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.75
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


75:2 Selecting Nodes and Buying Links to Max. the Information Diffusion in a Network

the analysis of social networks to find influential users and to study how information flows
through the network [2], and the analysis of cascading failures in power networks [1].

Different models of information diffusion have been introduced in the literature. Two
widely studied models are the Linear Threshold Model (LTM) [13, 15, 28] and the Independent
Cascade Model (ICM) [11, 12, 14, 15]. In both models, we can distinguish between active,
or affected, nodes which spread the information and inactive ones. At the beginning of
the process a small percentage of nodes of the graph is set to active in order to let the
information diffusion process start. These nodes are called seeds. Recursively, currently
affected nodes can infect their neighbours with some probability. After a certain number
of these cascading cycles, a large number of nodes might become affected in the network.
In LTM the idea is that a node becomes active as more of its neighbours become active.
Formally, each node u has a threshold tu chosen uniformly at random in the interval [0, 1].
The threshold represents the weighted fraction of neighbours of u that must become active
in order for u to become active. During the process, a node u becomes active if the total
weight of its active neighbours is greater than tu. In ICM, instead, an active node u tries to
influence one of its inactive neighbours but the success of node u in activating the node v
only depends on the propagation probability of the edge from u to v (each edge has its own
value). Regardless of its success, the same node will never get another chance to activate the
same inactive neighbour. The process terminates when no further node gets activated.

An interesting question, in the analysis of the information diffusion through a network, is
how to shape a given diffusion process so as to maximize or minimize the number of activated
nodes at the end of the process by taking intervention actions. Many intervention actions
have been studied in the literature, the most important one has been proposed by Domingos
and Richardson in the field of viral marketing and asks to find a small set of “influential”
seeds in a network in order to activate a large part of the network [10, 26]. The problem has
been formalized by Kempe et al. [15] as follows: if we are allowed to choose at most k seeds,
which ones should be selected so as to maximize the number of active nodes resulting from
the diffusion process [15]. This problem admits a (1− 1

e )-approximation algorithm and this
factor cannot be improved, unless P = NP [15]. Besides seeds selection, other intervention
actions may be used to facilitate the diffusion processes, such as inserting or deleting edges
and adding or deleting nodes in the network. Since in social networks and in other complex
networks users can add edges incident to themselves, in this paper we consider the possibility
to create a limited number of new edges incident to the initial seed nodes. In detail, we
study the following generalization of the problem of Kempe et al.: we are given a cost for
each possible edge that can be created in a network and a budget k, and we want to find a
set of seed nodes A and a set of edges S incident to the nodes in A such that the expected
number of active nodes at the end of the diffusion process is maximized and the overall cost
of A and S does not exceed k, assuming that all the seeds have the same cost.

Related work. The problem of choosing initially active nodes to maximize the information
diffusion in a network has been widely studied, we refer the interested reader to [15] and
references therein for more detail, while the budgeted version of the problem was proposed
in [24]. In the following we focus on the problem of modifying a graph in order to maximize
or minimize the spread of information in a network under LTM and ICM models.

To the best of our knowledge, under LTM, the problems that have been studied are those
outlined in what follows. Khalil et al. [16] consider two types of actions, adding edges to or
deleting edges from the existing network to minimize the information diffusion and they show
that this network structure modification problem has a supermodular objective and therefore



G. D’Angelo, L. Severini, and Y. Velaj 75:3

can be solved by algorithms with provable approximation guarantees. Zhang et al. [32]
consider arbitrarily specified sets of nodes, and interventions that involve both edge and
node removal from the sets. They develop algorithms with rigorous performance guarantees
and good empirical performance. Kimura et al. [18] use a greedy approach to delete edges
under the LTM but do not provide any rigorous approximation guarantees. Kuhlman et
al. [20] propose heuristic algorithms for edge removal under a simpler deterministic variant
of LTM which is not only hard, but also has no approximation guarantee. Papagelis [25]
and Crescenzi et al. [6] study the problem of augmenting the graph in order to increase
the connectivity or the centrality of a node, respectively and experimentally show that this
increases the average number of eventual active nodes.

Under ICM, Wu et al. [31] consider intervention actions other than edge addition, edge
deletion and seed selection, such as increasing the probability that a node infects its neighbours.
They proved that optimizing the selection of these actions with a limited budget is NP -hard
and is neither submodular nor supermodular. Sheldon et al. [29] study the problem of node
addition to maximize the spread of information, and provide a counterexample showing that
the objective function is not submodular. Kimura et al. [19] propose methods for efficiently
finding good approximate solutions on the basis of a greedy strategy for the edge deletion
problem under the ICM, but do not provide any approximation guarantees. D’Angelo et
al. [7, 8] focus on the case in which the initial set of seeds is given and provide a constant
approximation algorithm.

Our results. In this paper, we focus on the independent cascade model and investigate the
problem of selecting a set of initial seeds and adding a small number of edges incident to the
seeds, without exceeding a given budget k, in order to maximize the spread of information
in terms of the expected number of nodes that eventually become active. The problem we
analyse differs from above mentioned ones since we make the reasonable restriction that the
edges to be added can only be incident to the seed nodes. To our knowledge, similar problems
have never been studied for the independent cascade model. We refer to this problem as the
Budgeted Influence Maximization with Augmentation problem (BIMA).

We observe that the BIMA problem is a generalization of the problem in [15] and therefore
cannot be approximated within a factor greater than 1− 1

e , unless P = NP .
We then focus on approximation algorithms. We first assume that the edge costs are

all greater that a given constant cmin and, in Section 3, we propose two approximation
algorithms that guarantee approximation factors of 1− 1

e
cmin

1+cmin
and

(
1− 1

e

)
cmin, respectively.

Note that these factors increase with cmin and the second algorithm achieves the optimal
approximation of 1 − 1

e when all the edge costs are equal to 1. It is somewhat expected
that when the all costs are high the approximation factor gets closer to the lower bound
of 1− 1

e . Indeed, when the cost of buying an edge approaches the cost of buying the node
at the tail of this edge, we can buy the node instead of the edge with small increase in the
cost. This allows us to exploit the 1 − 1

e approximation algorithm for the seed selection
problem proposed in [15]. However, the challenge of our problem consists in finding a good
approximation even when the cost function includes small values. In Section 4, we focus on
the general case and propose an algorithm that guarantees a constant approximation ratio of
about 0.0878. This algorithm outperforms the other two algorithms when the cost is allowed
to be small. See Figure 1 for a summary of the approximation ratio of our algorithms.

Some of the proofs are omitted due to space constraints and can be found in the full
version of the paper [9].

MFCS 2017



75:4 Selecting Nodes and Buying Links to Max. the Information Diffusion in a Network

2 Preliminaries

A social network is represented by a weighted directed graph G = (V,E, p, c), where V
represents the set of nodes, E represents the set of relationships, p : V × V → [0, 1] is the
propagation probability of an edge, that is the probability that the information is propagated
from u to v if (u, v) ∈ E, and c : V × V → [0, 1] is the cost of adding an edge to E. In ICM,
each node can be either active or inactive. If a node is active (or adopter of the innovation),
then it is already influenced by the information under diffusion. If a node is inactive, then it
is unaware of the information or not influenced. The process runs in discrete steps. At the
beginning of the ICM process, few nodes are given the information, they are known as seed
nodes. Upon receiving the information these nodes become active. In each discrete step, an
active node tries to influence its inactive neighbours. The success of node u in activating
the node v depends on the propagation probability of the edge (u, v), independently of the
history so far. Regardless of its success, the same node will never get another chance to
activate the same inactive neighbour. The process terminates when no further nodes become
activated from inactive state.

We define the influence of a set A ⊆ V in the graph G, denoted σ(A), to be the expected
number of active nodes in G at the end of the process, given that A is the set of seeds. Given
a set S of edges not in E, we denote by G(S) the graph augmented by adding the edges in S
to G, i.e. G(S) = (V,E ∪ S). We denote by σ(A,S) the influence of A in G(S).

In this paper we look for a set of seeds A and a set of edges S, to be added to G, incident
to these seeds that maximize σ(A,S). W.l.o.g. we assume that each seed node can be
selected with cost 1, while each edge e ∈ (V × V ) \ E can be selected with cost ce ∈ [0, 1].
In detail, the BIMA problem is defined as follows: given a graph G = (V,E) and a budget
k, find a set A of seeds and a set S of edges such that S ⊆ (A× V ) \ E, c(A,S) ≤ k, and
σ(A,S) is maximum, where c(A,S) = |A|+

∑
e∈S ce.

A live-edge graph X = (V,EX) of G is a directed graph where the set of nodes is the
same set V and the set of edges EX is a subset of E given by an edge selection process in
which each edge in E belongs to EX or not according to its propagation probability. In
detail, we can assume that for each edge e = (u, v) in the graph, we flip a coin of bias pe and
only the edges for which the coin indicated an activation belong to EX . It is easy to show
that the information diffusion process is equivalent to a reachability problem in live-edge
graphs: given any seed set A, the distribution of active node sets after the diffusion process
ends is the same as the distribution of node sets reachable from A in live-edge graphs. We
denote by χ the probability space in which each sample point specifies one possible set of
outcomes for all the coin flips on the edges, that is the set of all possible live-edge graphs of
G. For a set of edges S ⊆ (V × V ) \ E, the set of all possible live-edge graphs of G(S) is
denoted by χ(S). Given two set of edges S, T , such that S ⊆ T , for each live-edge graph X
in χ(S) we denote by χ(T,X) the set of live-edge graphs in χ(T ) that have X as a subgraphs
and possibly contain other edges in T \ S. In other words, a live-edge graphs in χ(T,X) has
been generated with the same outcomes as X on the coin flips in the edges of E ∪ S and
it has other outcomes for edges in T \ S. The following holds: |χ(T,X)| = 2|T\S|, for each
Y ∈ χ(T,X) P[Y ] = P[Y |X]P[X], P[X] =

∑
Y ∈χ(T,X) P[Y ], and

∑
Y ∈χ(T,X) P[Y |X] = 1.

For a node a ∈ V and a live-edge graph X in χ(S), let R(a,X) be the set of all nodes
that can be reached from a in graph X, that is for each node u ∈ R(a,X), there exists a
path from a to u consisting entirely of live edges with respect to the outcome of the coin
flips that generates X. Let R(A,X) =

⋃
a∈AR(a,X), then σ(A,S) can be computed as

σ(A,S) =
∑
X∈χ(S) P[X] · |R(A,X)|.



G. D’Angelo, L. Severini, and Y. Velaj 75:5

Computing σ(A) is #P -complete [4], however it has been proven by using the Chernoff
bound that it can be approximated within an arbitrarily good factor by simulating the
random process a polynomial number of times [15]. Therefore, in the rest of the paper we can
assume that we can compute σ(A) (and σ(A,S)) within an arbitrary bound. This reflects to
an additional factor 1 + ε, for any ε > 0, to all algorithms presented in this paper. For the
sake of clarity, we omit this factor from the approximation factor of our algorithms.

Given a set of edges S, for each graph X ∈ χ(S) and subset of edges T ⊆ S, we denote
by XT the graph obtained by removing edges in T from X. Given two feasible solutions
(A1, S1) and (A2, S2), such that A2 ⊆ A1 and S2 ⊆ S1, we denote with δ(A1, S1, A2, S2)
the expected number of nodes affected by (A1, S1) and not affected by (A2, S2), formally:
δ(A1, S1, A2, S2) =

∑
X∈χ(S1) P[X] ·

(
|R(A1, X)| − |R(A2, X

T )|
)
, where T = S1 \ S2.

I Proposition 1. For each A2 ⊆ A1 ⊆ V and S2 ⊆ S1 ⊆ V × V , such that the edges in S1
and S2 are outgoing A1 and A2, respectivey, then δ(A1, S1, A2, S2) = σ(A1, S1)− σ(A2, S2).

We observe that our problem is a generalization of the influence maximization problem
in [15], indeed it is enough to set ce = 1 for each e ∈ (V × V ) \ E. It follows that BIMA
cannot be approximated within a factor greater than 1− 1

e , unless P = NP .

3 Lower-bounded edge costs

In this section we consider the case in which the edge costs are at least a given value cmin,
that is for each e ∈ V × V, ce ≥ cmin. It can be easily shown that in this case selecting a
set A of k seed nodes that maximizes σ(A, ∅) guarantees an approximation factor of cmin.
Since this problem can be optimally approximated within 1 − 1

e [15], we can obtain an
overall

(
1− 1

e

)
cmin approximation. In what follows we give an approximation algorithm

that improves over this bound for small values of cmin. The following analysis serves also as
a warm-up for the analysis of the algorithm proposed in the next section.

Our algorithm, whose pseudocode is reported in Algorithm 1, finds two candidate solutions:
the first solution is obtained by a greedy algorithm at lines 2–25, the second solution is
found at line 26 and is made of a single node aM and a single edge (aM , vM ) for which
σ({aM}, {(aM , vM )}) is maximized. Then, the algorithm outputs one of the candidate
solutions that maximizes the expected number of affected nodes (line 27).

The greedy phase, at each iteration, selects a solution (A,S) that adds at most one
node and one edge to the current solution (A′, S′) and that maximizes the ratio between
δ(A,S,A′, S′) and the marginal cost of (A,S), that is the cost of the added node or edge. In
particular, it considers three possible ways of obtaining (A,S) from (A′, S′):
line 3: select a seed node a that maximizes r1 = δ(A′∪{a}, S′, A′, S′), (A,S) = (A′∪{a}, S′);
line 4: select an edge (a, v) incident to a seed a in A′ that maximizes r2 = δ(A′,S′∪{(a,v)},A′,S′)

c(a,v)
,

(A,S) = (A′, S′ ∪ {(a, v)});
line 5: select a seed node a not in A′ and edge (a, v) incident to a that maximize r3 =

δ(A′∪{a},S′∪{(a,v)},A′,S′)
1+c(a,v)

, (A,S) = (A′ ∪ {a}, S′ ∪ {(a, v)}).
The greedy phase of the algorithm selects a solution (A,S) that maximizes the three above
ratios. If (A,S) does not violate the budget, i.e. cost c(A,S) is at most k, then it is chosen
as new solution.

We denote by (A∗, S∗) an optimal solution to the BIMA problem. Let us consider the
iterations executed by the greedy algorithm in which an element is added to (A,S). For
i ≥ 1, let us denote by ji the index of these iterations, ji < ji+1, and let jl+1 be the index
of the first iteration in which an element in (A∗, S∗) is considered (i.e. it maximizes the

MFCS 2017



75:6 Selecting Nodes and Buying Links to Max. the Information Diffusion in a Network

Algorithm 1:
Input : A directed graph G = (V,E) and an integer k ∈ N
Output : A set of nodes A and a of edges S ⊆ (A× V ) \ E such that c(A,S) ≤ k

1 A := ∅; S := ∅; U := V ; T := (V × V ) \ E;
2 while T 6= ∅ or U 6= ∅ do
3 r1 = maxa∈U{δ(A ∪ {a}, S,A, S)};
4 r2 = max(a,v)∈(A×V )∩T

{
δ(A,S ∪ {(a, v)}, A, S)/c(a,v)

}
;

5 r3 = maxa∈U,(a,v)∈({a}×V )∩T
{
δ(A ∪ {a}, S ∪ {(a, v)}, A, S)/(1 + c(a,v))

}
;

6 if max{r1, r2, r3} = r1 then
7 â = arg maxa∈U{δ(A ∪ {a}, S,A, S)};
8 if k − 1 ≥ 0 then
9 A := A ∪ {â};

10 k := k − 1;
11 U := U \ {â};
12 else
13 if max{r1, r2, r3} = r2 then
14 (â, v̂) := arg max(a,v)∈A×V ∩T

{
δ(A,S ∪ {(a, v)}, A, S)/c(a,v)

}
;

15 if k − c(â,v̂) ≥ 0 then
16 S := S ∪ {(â, v̂)};
17 k := k − c(â,v̂);
18 T := T \ {(â, v̂)};
19 else
20 (â, (â, v̂)) := arg maxa∈U,(a,v)∈{a}×V ∩T

{
δ(A ∪ {a}, S ∪ {(a, v)}, A, S)/(1 + c(a,v))

}
;

21 if k − c(â,v̂) − 1 ≥ 0 then
22 (A,S) := (A ∪ {â}, S ∪ {(â, v̂)});
23 U := U \ {â};
24 k := k − 1− c(â,v̂);
25 T := T \ {(â, v̂)};
26 (aM , (aM , vM )) := arg maxa∈V,(a,v)∈({a}×V )\E {σ(A ∪ {a}, S ∪ {(a, v)})};
27 return arg max{σ(A,S), σ({aM}, {(aM , vM )})};

above ratios) but not added to (A,S) because it violates the budget constraint. We denote
by (Ai, Si) the solution at the end of iteration ji and by c̄i the marginal cost of (Ai, Si) as
computed in the above three ratios,

c̄i =

 1 if Ai \Ai−1 = {a} and Si = Si−1 (i.e. max{r1, r2, r3} = r1)
ce if Ai = Ai−1 and Si \ Si−1 = {(a, v)} (i.e. max{r1, r2, r3} = r2)
1 + ce if A \Ai−1 = {a} and Si \ Si−1 = {(a, v)} (i.e. max{r1, r2, r3} = r3).

The next two lemmas are the core of our analysis [17].

I Lemma 2. After each iteration ji, i = 1, 2, . . . , l + 1, σ(Ai, Si) − σ(Ai−1, Si−1) ≥
c̄i
k

cmin
1+cmin

(σ(A∗, S∗)− σ(Ai−1, Si−1)).

Proof. We denote by δi the expected number of nodes affected by solution (Ai, Si) and
not affected by solution (Ai−1, Si−1), δi = δ(Ai, Si, Ai−1, Si−1). We first show that the
value σ(A∗, S∗)− σ(Ai−1, Si−1) is at most the sum, for each element in (A∗, S∗) and not in
(Ai−1, Si−1), of the expected number of nodes affected by this element and not affected by
solution (Ai−1, Si−1), that is the following inequality holds:

σ(A∗, S∗)− σ(Ai−1, Si−1) ≤
∑
a∈A∗1

δ(Ai−1 ∪ {a}, Si−1, Ai−1, Si−1)+ (1)

∑
e=(a,v)∈S∗\Si−1

s.t. a∈Ai−1

δ(Ai−1, Si−1 ∪ {e}, Ai−1, Si−1) +
∑
a∈A∗2

e=(a,v)∈S∗\Si−1

δ(Ai−1 ∪ {a}, Si−1 ∪ {e}, Ai−1, Si−1),



G. D’Angelo, L. Severini, and Y. Velaj 75:7

where we divided the set A∗\Ai−1 into two subsets: A∗1 is the subset of A∗\Ai−1 that contains
the seeds a with no incident edges in S∗ (i.e. @(a, v) ∈ S∗), and A∗2 = A∗ \ (Ai−1 ∪A∗1).

The difference σ(A∗, S∗)−σ(Ai−1, Si−1) is at most σ(A∗∪Ai−1, S
∗∪Si−1)−σ(Ai−1, Si−1)

and therefore upper-bounded by:∑
X∈χ(S∗∪Si−1)

P[X]|R(A∗ ∪Ai−1, X)| −
∑

X∈χ(Si−1)

P[X]|R(Ai−1, X)|

=
∑

X∈χ(Si−1)

∑
Y ∈χ(S∗∪Si−1,X)

P[Y ]|R(A∗ ∪Ai−1, Y )| −
∑

X∈χ(Si−1)

P[X]|R(Ai−1, X)|

=
∑

X∈χ(Si−1)

P[X]
∑

Y ∈χ(S∗∪Si−1,X)

P[Y |X]|R(A∗ ∪Ai−1, Y )| −
∑

X∈χ(Si−1)

P[X]|R(Ai−1, X)|

=
∑

X∈χ(Si−1)

P[X]

 ∑
Y ∈χ(S∗∪Si−1,X)

P[Y |X]|R(A∗ ∪Ai−1, Y )| − |R(Ai−1, X)|


=

∑
X∈χ(Si−1)

P[X]

 ∑
Y ∈χ(S∗∪Si−1,X)

P[Y |X]|R(A∗ ∪Ai−1, Y )| −
∑

Y ∈χ(S∗∪Si−1,X)

P[Y |X]|R(Ai−1, X)|


=

∑
X∈χ(Si−1)

P[X]
∑

Y ∈χ(S∗∪Si−1,X)

P[Y |X] (|R(A∗ ∪Ai−1, Y )| − |R(Ai−1, X)|) (2)

For each X ∈ χ(Si−1) and Y ∈ χ(S∗ ∪ Si−1, X), the difference |R(A∗ ∪ Ai−1, Y )| −
|R(Ai−1, X)| between the nodes reachable from A∗ ∪ Ai−1 in Y and those reachable from
Ai−1 in X can be bounded as follows:

|R(A∗ ∪Ai−1, Y )| − |R(Ai−1, X)| ≤
∑
a∈A∗1

(|R(Ai−1 ∪ {a}, X)| − |R(Ai−1, X)|) + (3)

∑
e=(a,v)∈Y \X
s.t. a∈Ai−1

(|R(Ai−1, X∪{e})|−|R(Ai−1, X)|) +
∑
a∈A∗2

e=(a,v)∈Y \X

(|R(Ai−1∪{a}, X∪{e})|−|R(Ai−1, X)|) .

Combining (2) and the first term of (3), we obtain the first term of (1). To show the second
and third term of (1), observe that for a function f : V × V → N and for each X ∈ χ(Si−1),∑
Y ∈χ(S∗∪Si−1,X)

P[Y |X]
∑

e∈Y \X

f(e) ≤
∑

e∈S∗\Si−1

pe
∑

Y ∈χ(S∗∪Si−1\{e},X)

P[Y |X∪{e}]f(e) =
∑

e∈S∗\Si−1

pef(e).

This shows inequality (1).
Since the greedy phase of the algorithm selects a solution that that maximizes the ratio

between the marginal increment in the objective function and the cost, the following holds:
For each a ∈ A∗1, δ(Ai−1 ∪ {a}, Si−1, Ai−1, Si−1) ≤ δi

c̄i
;

For each e = (a, v) ∈ S∗ \ Si−1 such that a ∈ Ai−1, δ(Ai−1,Si−1∪{e},Ai−1,Si−1)
ce

≤ δi
c̄i
;

For each a ∈ A∗2 and e = (a, v) ∈ S∗ \ Si−1, δ(Ai−1∪{a},Si−1∪{e},Ai−1,Si−1)
1+ce ≤ δi

c̄i
.

Since the edge costs are at least cmin, then the number of edges in S∗ \ Si−1 incident to each
a ∈ A∗2 is at most

⌊
k

cmin

⌋
≤ k

cmin
. Therefore, the right hand side of (1) is at most:∑

a∈A∗1

δi
c̄i

+
∑

e=(a,v)∈S∗\Si−1
s.t. a∈Ai−1

δi
c̄i
ce +

∑
a∈A∗2

e=(a,v)∈S∗\Si−1

δi
c̄i

(1 + ce)

≤ δi
c̄i

|A∗1|+ ∑
e=(a,v)∈S∗\Si−1

s.t. a∈Ai−1

ce + k

cmin
+

∑
a∈A∗2

e=(a,v)∈S∗\Si−1

ce

 ≤ (1 + 1
cmin

)
k
δi
c̄i
.

MFCS 2017



75:8 Selecting Nodes and Buying Links to Max. the Information Diffusion in a Network

Where the last inequality is due to |A∗1|+
∑

e=(a,v)∈S∗\Si−1
s.t. a∈Ai−1

ce +
∑
a∈A∗2

e=(a,v)∈S∗\Si−1

ce ≤ k.

To conclude the proof, δi = σ(Ai, Si)− σ(Ai−1, Si−1) follows from Proposition 1. J

The next lemma can be proven by induction on iterations ji and by using Lemma 2.

I Lemma 3. After each iteration ji, i = 1, 2, . . . , l + 1,

σ(Ai, Si) ≥
[

1−
i∏

`=1

(
1− c̄`

k

cmin

(1 + cmin)

)]
σ(A∗, S∗).

I Theorem 4. Algorithm 1 achieves an approximation factor of 1
2

(
1− 1

e
cmin

1+cmin

)
σ(A∗, S∗).

Proof. We observe that since (Al+1, Sl+1) violates the budget, then c(Al+1, Sl+1) > k.
Moreover, for a sequence of numbers a1, a2, . . . , an such that

∑n
`=1 a` = B, the function[

1−
∏n
i=1

(
1− ai

B·β

)]
achieves its minimum when ai = B

n and that
[
1−

∏n
i=1

(
1− ai

B·β

)]
≥

1−
(

1− 1
n·β

)n
≥ 1− e−

1
β . Therefore, by applying Lemma 3 for i = l+ 1 and observing that∑l+1

`=1 c̄` = c(Al+1, Sl+1), we obtain:

σ(Al+1, Sl+1) ≥

1−
l+1∏
`=1

1− c̄`

k
(

1+cmin
cmin

)
σ(A∗, S∗)

≥

1−
l+1∏
`=1

1− c̄`

c(Al+1, Sl+1)
(

1+cmin
cmin

)
σ(A∗, S∗)

≥

1−
(

1− 1
(l + 1) 1+cmin

cmin

)l+1
σ(A∗, S∗) ≥

(
1− 1

e
cmin

1+cmin

)
σ(A∗, S∗).

By Proposition 1, follows that:

σ(Al+1, Sl+1) = σ(Al, Sl) + δl+1 ≥
(

1− 1
e

cmin
1+cmin

)
σ(A∗, S∗). (4)

Since δl+1 ≤ σ({aM}, {(aM , vM )}), we get

σ(Al, Sl) + σ({aM}, {(aM , vM )}) ≥
(

1− 1
e

cmin
1+cmin

)
σ(A∗, S∗).

Hence, max{σ(Al, Sl), σ({aM}, {(aM , vM )})} ≥ 1
2

(
1− 1

e
cmin

1+cmin

)
σ(A∗, S∗). J

We now propose an algorithm which improves the performance guarantee of Algorithm 1.
LetM a fixed integer, we consider all the solutions (A,S) with cardinality M (i.e. |A|+ |S| =
M) and cost at most k (c(A,S) ≤ k), and we complete all these solutions by using the greedy
algorithm. The pseudocode is reported in Algorithm 2.

I Theorem 5. For M ≥ 4 Algorithm 2 achieves an approximation factor of 1− 1

e
cmin

1+cmin
.



G. D’Angelo, L. Severini, and Y. Velaj 75:9

Algorithm 2:
Input : A directed graph G = (V,E), integer M ∈ N and an integer k ∈ N
Output : A set of nodes A and a of edges S ⊆ (A× V ) \ E such that c(A,S) ≤ k

1 (A1, S1) := arg max{σ(A,S) : |A|+ |S| < M, c(A,S) ≤ k};
2 A2 := ∅; S2 := ∅; U := V ; T := (V × V ) \ E;
3 foreach A ⊆ U, S ⊆ (A× V ) \ E such that |A|+ |S| = M and c(A,S) ≤ k do
4 U := U \A; T := T \ S;
5 Complete (A,S) by using Algorithm 1 with U and T as possible nodes and edges;
6 if σ(A,S) > σ(A2, S2) then
7 A2 := A;
8 S2 := S;
9 return arg max{σ(A1, S1), σ(A2, S2)};

Proof. We assume that |A∗| + |S∗| > M since otherwise Algorithm 2 finds an optimal
solution. We sort the elements in (A∗, S∗) by selecting at each step the element, which
can be either a seed or an edge, that maximizes the marginal increment in the number of
influenced nodes. Let Z = (AZ , SZ) be the first M elements in this order. We now consider
the iteration of Algorithm 2 in which element Z is considered. We define (AZ′ , SZ′) as
the elements added by the algorithm to (AZ , SZ) and (A,S) = (AZ ∪ AZ′ , SZ ∪ SZ′). By
Proposition 1 follows that σ(A,S) = σ(AZ , SZ) + δ(AZ ∪AZ′ , SZ ∪ SZ′ , AZ , SZ).

The completion of (AZ , SZ) to (A,S) is an application of the greedy algorithm and
therefore, we can use the result from the previous theorems. Let us consider the iterations
executed by the greedy algorithm during the completion of (AZ , SZ) to (A,S). For i ≥ 1,
let us denote by ji the index of these iterations, ji < ji+1, and let jl+1 be the index
of the first iteration in which an element in (A∗ \ AZ , S∗ \ SZ) is considered but not
added to (AZ′ , SZ′) because it violates the budget constraint. Applying inequality (4) to
the instance of the problem obtained removing the nodes covered by solution Z we get:

δ(AZ ∪AZ′ , SZ ∪ SZ′ , AZ , SZ) + δl+1 ≥
(

1− 1

e
cmin

1+cmin

)
σ(A∗ \AZ , S∗ \ SZ).

Moreover, since we ordered the elements in (A∗, S∗) and in iteration jl+1 and most 2
elements are selected, then δl+1 ≤ 2σ(AZ ,SZ)

M and

σ(A,S) = σ(AZ , SZ) + δ(AZ ∪AZ′ , SZ ∪ SZ′ , AZ , SZ)

≥ σ(AZ , SZ) +
(

1− 1
e

cmin
1+cmin

)
σ(A∗ \AZ , S∗ \ SZ)− δl+1

≥ σ(AZ , SZ) +
(

1− 1
e

cmin
1+cmin

)
σ(A∗ \AZ , S∗ \ SZ)− 2σ(AZ , SZ)

M

≥
(

1− 2
M

)
σ(AZ , SZ) +

(
1− 1

e
cmin

1+cmin

)
σ(A∗ \AZ , S∗ \ SZ)

But, σ(AZ , SZ) + σ(A∗ \AZ , S∗ \ SZ) ≥ σ(A∗, S∗), and we get:

σ(A,S)≥
(

1− 1
e

cmin
1+cmin

)
σ(A∗, S∗)+

(
1

e
cmin

1+cmin

− 2
M

)
σ(AZ , SZ)≥

(
1− 1

e
cmin

1+cmin

)
σ(A∗, S∗),

for M ≥ 2e
cmin

1+cmin . Since 2e
cmin

1+cmin < 4 for cmin ∈ [0, 1], the theorem follows. J

4 General case

In this section we introduce an approximation algorithm for the BIMA problem that
guarantees a constant approximation ratio, i.e. it does not depend on the edge costs.

MFCS 2017



75:10 Selecting Nodes and Buying Links to Max. the Information Diffusion in a Network

The algorithm is similar to Algorithm 1, that is it chooses the best between two candidate
solutions: one solution is made of a single node aM and a single edge (aM , vM ) that maximizes
σ({aM}, {(aM , vM )}), the other solution is found by means of a greedy algorithm that at
each step maximizes the ratio between the marginal increment in the objective function of a
candidate solution and its marginal cost. The main difference consists in the way in which
the greedy algorithm computes a candidate solution. In fact, the algorithm presented here
might select more than one edge at one time. In particular, at each iteration the greedy
algorithm computes four candidate solutions starting from the current solution (A′, S′). The
first two solutions correspond to cases r1 and r2 of Algorithm 1, and differ from (A′, S′) by a
single seed node or a single edge incident to a seed in A′, respectively. To compute the two
further candidate solutions, the algorithm divides the edges into two sets: those whose cost
is at least b and those whose cost is smaller than b, for some given constant b, and proceeds
as follows.

Select a seed node a not in A′ and an edge (a, v), which cost is c(a,v) ≥ b, incident to a
that maximize δ(A′∪{a},S′∪{(a,v)},A′,S′)

1+c(a,v)
;

Select a seed node a not in A′ and a set S of edges incident to a, whose overall cost is
smaller than b (i.e.

∑
(a,v)∈S c(a,v) < b), that maximize δ(A′∪{a},S′∪S,A′,S′)

1+
∑

(a,v)∈S
c(a,v)

.

The greedy phase of the algorithm selects the candidate solution that gives the maximum
ratio among the above four possibilities.

To compute the fourth candidate solution we need to solve an optimization problem,
which we call RBIMA (where R stands for ratio). In the following, we assume that we can
exploit an α-approximation algorithm for this sub-problem. At the end of this section we
will introduce a suitable algorithm for RBIMA.

The analysis of the algorithm is similar to that in the previous section. In particular, the
next lemma is the core of the analysis and corresponds to Lemma 2. We denote by ji an
iteration of the greedy algorithm in which an element is added to the solution, by jl+1 the
first iteration in which an element of the optimum is not added to the solution and by c̄i the
marginal cost of the solution (Ai, Si) computed at the iteration ji.

I Lemma 6. After each iteration ji, i = 1, 2, . . . , l + 1,

σ(Ai, Si)− σ(Ai−1, Si−1) ≥ c̄i
k

bα

bα+ b+ α+ 2(σ(A∗, S∗)− σ(Ai−1, Si−1)).

Proof. We denote by δi the expected number of nodes affected by (Ai, Si) and not affected by
(Ai−1, Si−1), δi = δ(Ai, Si, Ai−1, Si−1). We divide the set A∗ \Ai−1 into two subsets: A∗1 is
the subset that contains the seeds a with no incident edges in S∗, and A∗2 = A∗ \ (Ai−1 ∪A∗1).
For each a ∈ A∗2 let us consider the subset of S∗ containing edges incident to a such that
ce < b. We partition this set into sets of edges whose overall cost is smaller than b in such a
way that the number of sets in the partition is minimized. We denote this a partition by
Sa and observe that the overall number of sets in Sa, for all a ∈ A∗2, is at most 2kb as it is
equivalent to the minimum number of bins of size b needed to pack a set of items of overall
size k. By using similar arguments as in Lemma 2, we can show that



G. D’Angelo, L. Severini, and Y. Velaj 75:11

σ(A∗, S∗)− σ(Ai−1, Si−1) ≤
∑
a∈A∗1

δ(Ai−1 ∪ {a}, Si−1, Ai−1, Si−1)

+
∑

e=(a,v)∈S∗\Si−1
s.t. a∈Ai−1

δ(Ai−1, Si−1 ∪ {e}, Ai−1, Si−1)+ (5)

∑
a∈A∗2

e=(a,v)∈S∗\Si−1
ce≥b

δ(Ai−1 ∪ {a}, Si−1 ∪ {e}, Ai−1, Si−1) +
∑
a∈A∗2
S∈Sa

δ(Ai−1 ∪ {a}, Si−1 ∪ S,Ai−1, Si−1).

Indeed, σ(A∗, S∗) − σ(Ai−1, Si−1) ≤
∑
X∈χ(Si−1) P[X]

∑
Y ∈χ(S∗∪Si−1,X) P[Y |X](|R(A∗ ∪

Ai−1, Y )| − |R(Ai−1, X)|) and for each X ∈ χ(Si−1) and Y ∈ χ(S∗ ∪ Si−1, X),

|R(A∗ ∪Ai−1, Y )| − |R(Ai−1, X)| ≤
∑
a∈A∗1

(|R(Ai−1 ∪ {a}, X)| − |R(Ai−1, X)|)

+
∑

e=(a,v)∈Y \X
s.t. a∈Ai−1

(|R(Ai−1, X ∪ {e})| − |R(Ai−1, X)|)

+
∑
a∈A∗2

e=(a,v)∈Y \X
ce≥b

(|R(Ai−1 ∪ {a}, X ∪ {e})| − |R(Ai−1, X)|)

+
∑
a∈A∗2
S∈Sa

(|R(Ai−1 ∪ {a}, X ∪ (S ∩ Y ))| − |R(Ai−1, X)|) .

The following holds since the greedy phase of the algorithm selects a solution that
maximizes the ratio between the marginal increment in the objective function and the cost:

For each a ∈ A∗1, δ(Ai−1 ∪ {a}, Si−1, Ai−1, Si−1) ≤ δi
c̄i
;

For each e = (a, v) ∈ S∗ \ Si−1 such that a ∈ Ai−1, δ(Ai−1,Si−1∪{e},Ai−1,Si−1)
ce

≤ δi
c̄i
;

For each a ∈ A∗2 and e = (a, v) ∈ S∗ \Si−1 s.t. ce ≥ b, δ(Ai−1∪{a},Si−1∪{e},Ai−1,Si−1)
1+ce ≤ δi

c̄i
;

For each a ∈ A∗2 and S ∈ Sa, δ(Ai−1∪{a},Si−1∪S,Ai−1,Si−1)
1+
∑

e∈S
ce

≤ δi
c̄i
· 1
α ,

where the term 1
α in the last inequality is due to the use of an α-approximation algorithm in

the computation of the fourth candidate solution of the greedy phase. The number of edges
incident to each a ∈ A∗2 with cost at least b is at most k

b . Therefore, the right hand side
of (5) is at most:

∑
a∈A∗1

δi
c̄i

+
∑

e=(a,v)∈S∗\Si−1
s.t. a∈Ai−1

δi
c̄i
ce +

∑
a∈A∗2

e=(a,v)∈S∗\Si−1
ce≥b

δi
c̄i

(1 + ce) +
∑
a∈A∗2
S∈Sa

1
α

δi
c̄i

(
1 +

∑
e∈S

ce

)

= δi
c̄i

(
|A∗1|+

∑
e=(a,v)∈S∗\Si−1

s.t. a∈Ai−1

ce + k

b
+

∑
a∈A∗2

e=(a,v)∈S∗\Si−1
ce≥b

ce + 1
α

2k
b

+ 1
α

∑
a∈A∗2
S∈Sa

∑
e∈S

ce

)

≤
(

1 + 1
b

+ 2
bα

+ 1
α

)
k
δi
c̄i

=
(
bα+ α+ 2 + b

bα

)
k
δi
c̄i
.

To conclude, we observe that by Proposition 1 follows that δi = σ(Ai, Si)−σ(Ai−1, Si−1). J

MFCS 2017



75:12 Selecting Nodes and Buying Links to Max. the Information Diffusion in a Network

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
cmin

(
1− 1

e

)
cmin

1− 1

e
cmin

1+cmin

0.0878

Figure 1 Approximation ratio of the three algorithm presented as a function of cmin. Intersection
points are at cmin ≈ 0.1011 and cmin ≈ 0.3821.

The statements of Lemmas 2 and 6 differ only for the coefficients cmin
1+cmin

and bα
bα+b+α+2 .

Then, equipped with Lemma 6, we prove the next theorem, which corresponds to Theorem 4.

I Theorem 7. The greedy algorithm achieves an approximation factor of 1− 1
e

bα
bα+b+α+2

.

It remains to give an α-approximation algorithm for the RBIMA problem which con-
sists in selecting a seed node a not in the current solution (A′, S′) and a set S of edges
incident to a, which overall cost is smaller than b (i.e.

∑
(a,v)∈S c(a,v) < b), that maximize

δ(A′∪{a},S′∪S,A′,S′)
1+
∑

(a,v)∈S
c(a,v)

. To this aim we define the CostIMA [8] problem as follows. Given

a directed graph G = (V,E, p, c), an integer k ∈ N and a seed set A, find a set of edges
S ⊆ A× V \ E such that c(S) ≤ k and σ(A,S) is maximized.

Let us consider the instances of the CostIMA problem where A = {a} and let m∗
be the maximum, over all a ∈ V \ A′, among the optima of these instances. It is easy to
show that m∗ is at least b+ 1 times the optimum of RCostIMA. It has been shown that
the CostIMA problem can be approximated within a factor of 1 − 1

e by using a greedy
algorithm [8]. Therefore we obtain an overall approximation of α =

(
1− 1

e

) 1
b+1 . The next

corollary follows by applying Theorem 7 with α =
(
1− 1

e

) 1
b+1 and optimizing over b.

I Corollary 8. There exists an algorithm that achieves an approximation factor > 0.0878
for the BIMA problem.

5 Conclusions

In Figure 1 we summarize our approximation ratios as a function of cmin. As expected, when
all the edge costs are high, it is not worth to buy them. Indeed the algorithm that selects
only seeds outperforms the other algorithms and it reaches the optimal approximation of
1− 1

e when all the costs are equal to 1. However, the challenge of our problem consists in
finding a good approximation even when the cost function includes small values. In the
general case and when the minimum edge cost can be very small (cmin < 0.1011) the best
algorithm is the constant factor algorithm given in Section 4, while when the minimum cost
is in (0.1011, 0.3821) the best algorithm is the one presented in Section 3.

The main open problem is the gap between the lower bound on approximation of
1 − 1

e ≈ 0.6321 and the constant approximation of 0.0878. To close this gap, we aim at
improving the algorithm in Section 4 by devising a better approximation algorithm for



G. D’Angelo, L. Severini, and Y. Velaj 75:13

RCostIMA problem, which directly implies a better approximation for the BIMA problem.
Other research directions that deserve further investigation include the study of the BIMA
problem on different information diffusion models such as LTM or the Triggering Model [15].
Moreover, we plan to design efficient heuristics in order to assess the performance of our
greedy algorithm from the experimental point of view.

References
1 C. Asavathiratham, S. Roy, B. Lesieutre, and G. Verghese. The influence model. IEEE

Control Systems, 21(6):52–64, 2001.
2 Eytan Bakshy, Jake M. Hofman, Winter A. Mason, and Duncan J. Watts. Everyone’s

an influencer: Quantifying influence on twitter. In Proc. of the 4th ACM International
Conference on Web Search and Data Mining, WSDM11, pages 65–74. ACM, 2011.

3 Frank M Bass. A new product growth for model consumer durables. Management science,
15(5):215–227, 1969.

4 Wei Chen, Chi Wang, and Yajun Wang. Scalable influence maximization for prevalent viral
marketing in large-scale social networks. In Proc. of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD10, 2010.

5 James S. Coleman, Elihu Katz, and Herbert Menzel. Medical innovation: A diffusion study.
The Bobbs-Merrill Company, 1966.

6 Pierluigi Crescenzi, Gianlorenzo D’Angelo, Lorenzo Severini, and Yllka Velaj. Greedily
improving our own closeness centrality in a network. ACM Trans. Knowl. Discov. Data,
11(1):9:1–9:32, 2016.

7 Gianlorenzo D’Angelo, Lorenzo Severini, and Yllka Velaj. Influence maximization in the
independent cascade model. In Proceedings of the 17th Italian Conference on Theoretical
Computer Science, Lecce, Italy, September 7-9, 2016., pages 269–274, 2016.

8 Gianlorenzo D’Angelo, Lorenzo Severini, and Yllka Velaj. Recommending links through
influence maximization. arXiv preprint, 2017. URL: http://arxiv.org/abs/1706.04368.

9 Gianlorenzo D’Angelo, Lorenzo Severini, and Yllka Velaj. Selecting nodes and buying
links to maximize the information diffusion in a network. arXiv preprint, 2017. URL:
https://arxiv.org/abs/1706.06466.

10 Pedro Domingos and Matt Richardson. Mining the network value of customers. In Pro-
ceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD01, pages 57–66. ACM, 2001.

11 Jacob Goldenberg, Barak Libai, and Eitan Muller. Talk of the network: A complex systems
look at the underlying process of word-of-mouth. Marketing letters, 12(3):211–223, 2001.

12 Jacob Goldenberg, Barak Libai, and Eitan Muller. Using complex systems analysis to
advance marketing theory development: Modeling heterogeneity effects on new product
growth through stochastic cellular automata. Academy of Marketing Science Review,
2001(9):1, 2001.

13 Mark Granovetter. Threshold models of collective behavior. American journal of sociology,
83(6):1420–1443, 1978.

14 David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through
a social network. In Proceedings of the 9th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD03, pages 137–146. ACM, 2003.

15 David Kempe, Jon M. Kleinberg, and Éva Tardos. Maximizing the spread of influence
through a social network. Theory of Computing, 11:105–147, 2015.

16 Elias Boutros Khalil, Bistra Dilkina, and Le Song. Scalable diffusion-aware optimization
of network topology. In Proceedings of the 20th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD14, pages 1226–1235. ACM, 2014.

MFCS 2017

http://arxiv.org/abs/1706.04368
https://arxiv.org/abs/1706.06466


75:14 Selecting Nodes and Buying Links to Max. the Information Diffusion in a Network

17 Samir Khuller, Anna Moss, and Joseph Naor. The budgeted maximum coverage problem.
Inf. Process. Lett., 70(1):39–45, 1999.

18 Masahiro Kimura, Kazumi Saito, and Hiroshi Motoda. Solving the contamination minim-
ization problem on networks for the linear threshold model. In Proc. of the 10th Pacific
Rim International Conference on Artificial Intelligence, PRICA08, pages 977–984. Springer
Berlin Heidelberg, 2008.

19 Masahiro Kimura, Kazumi Saito, and Hiroshi Motoda. Blocking links to minimize con-
tamination spread in a social network. ACM Trans. Knowl. Discov. Data, 3(2):9:1–9:23,
2009.

20 Chris J Kuhlman, Gaurav Tuli, Samarth Swarup, Madhav V Marathe, and SS Ravi. Block-
ing simple and complex contagion by edge removal. In IEEE International Conference on
Data Mining, ICDM13. IEEE, 2013.

21 Vijay Mahajan, Eitan Müller, and Frank M Bass. New product diffusion models in mar-
keting: A review and directions for research. Journal of Marketing, 54:1–26, 1990.

22 Lauren Meyers. Contact network epidemiology: Bond percolation applied to infectious
disease prediction and control. Bulletin of the American Mathematical Society, 44(1):63–
86, 2007.

23 M. E. J. Newman. Spread of epidemic disease on networks. Phys. Rev. E, 66:016128, Jul
2002.

24 H. Nguyen and R. Zheng. On budgeted influence maximization in social networks. IEEE
Journal on Selected Areas in Communications, 31(6):1084–1094, June 2013. doi:10.1109/
JSAC.2013.130610.

25 Manos Papagelis. Refining social graph connectivity via shortcut edge addition. ACM
Trans. Knowl. Discov. Data, 10(2):12, 2015.

26 Matthew Richardson and Pedro Domingos. Mining knowledge-sharing sites for viral mar-
keting. In Proceedings of the 8th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD02, pages 61–70. ACM, 2002.

27 E. Rogers. Diffusion of innovations. Free Press, 1995.
28 Thomas C Schelling. Micromotives and macrobehavior. Norton & Company, 2006.
29 Daniel Sheldon, Bistra N. Dilkina, Adam N. Elmachtoub, Ryan Finseth, Ashish Sabharwal,

Jon Conrad, Carla P. Gomes, David B. Shmoys, William Allen, Ole Amundsen, andWilliam
Vaughan. Maximizing the spread of cascades using network design. CoRR, abs/1203.3514,
2012. URL: http://arxiv.org/abs/1203.3514.

30 T. Valente. Network models of the diffusion of innovations. Hampton Press, 1995.
31 Xiaojian Wu, Daniel Sheldon, and Shlomo Zilberstein. Efficient algorithms to optimize

diffusion processes under the independent cascade model. In NIPS Workshop on Networks
in the Social and Information Sciences, Montreal, Quebec, Canada, 2015.

32 Y. Zhang, A. Adiga, A. Vullikanti, and B. A. Prakash. Controlling propagation at group
scale on networks. In IEEE International Conference on Data Mining, ICDM15, pages
619–628, 2015.

http://dx.doi.org/10.1109/JSAC.2013.130610
http://dx.doi.org/10.1109/JSAC.2013.130610
http://arxiv.org/abs/1203.3514


K4-Free Graphs as a Free Algebra∗

Enric Cosme-Llópez1 and Damien Pous2

1 Univ. Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP, Lyon, France
2 Univ. Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP, Lyon, France

Abstract
Graphs of treewidth at most two are the ones excluding the clique with four vertices as a minor.
Equivalently, they are the graphs whose biconnected components are series-parallel.

We turn those graphs into a free algebra, answering positively a question by Courcelle and
Engelfriet, in the case of treewidth two. First we propose a syntax for denoting them: in addition
to series and parallel compositions, it suffices to consider the neutral elements of those operations
and a unary transpose operation. Then we give a finite equational presentation and we prove it
complete: two terms from the syntax are congruent if and only if they denote the same graph.

1998 ACM Subject Classification G.2.2 Graph Theory, F.4.3 Formal Languages.

Keywords and phrases Universal Algebra, Graph theory, Axiomatisation, Graph minors.

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.76

1 Introduction

The notion of treewidth is a cornerstone in (algorithmic) graph theory [16]. It measures
how close a graph is to a forest, and classes of graphs of bounded treewidth often enjoy
good computational properties. For instance, graph homomorphism (and thus k-colouring)
becomes polynomial-time [19, 7, 21], so does model-checking of Monadic Second Order
(MSO) formulae, and satisfiability of MSO formulae becomes decidable, even linear [9]. (See
the monograph of Courcelle and Engelfriet about monadic second order logic on graphs [13].)

Here we focus on graphs of treewidth at most two. They coincide with the partial 2-trees,
with the K4-free graphs (those that exclude the clique with four vertices (K4) as a minor),
and with the graphs whose biconnected components are series-parallel [18, 5].

We consider the set Gph of directed graphs with edges labelled with letters a, b, . . . in
some alphabet Σ, and with two distinguished vertices, called the input and the output. We
represent such graphs as usual, using an unlabelled ingoing (resp. outgoing) arrow to denote
the input (resp. output). Such graphs can be composed:

in parallel by putting them side by side, merging their inputs, and merging their outputs;
in series by putting them one after the other and merging the output of the first one
with the input of the second one.

Every letter of the alphabet gives rise to a graph consisting of two vertices (the input and
the output), and a single edge from the input to the output, labelled with that letter.

If we allow only those operations, we obtain the series-parallel graphs, and it is easy
to see that these form the free algebra over the signature 〈 ‖ , ·〉, where ‖ is an associative-
commutative binary operation (parallel composition), and · is an associative binary operation

∗ An extended version of this abstract, including proofs, is available on HAL [8]. This work was sup-
ported by the European Research Council (ERC) under the Horizon 2020 programme (CoVeCe, grant
agreement No 678157) and the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within
the program “Investissements d’Avenir” (ANR-11-IDEX-0007)

© Enric Cosme Llópez and Damien Pous;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 76; pp. 76:1–76:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.76
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


76:2 K4-Free Graphs as a Free Algebra

a
b

c

d

e

(i)

a
b
c (iii)

a b c (v)

a b

c

(ii)

a b
(iv)

a

b

(vi)

Figure 1 Some graphs of treewidth at most two

(series composition). For instance, the terms ((a·(b ‖ c))·d) ‖ e and e ‖ (a·((c ‖ b)·d)) both
denote the graph (i) in Figure 1; they are equal up to associativity of · and commutativity
of ‖ . Parallel composition is not idempotent: (a·b) ‖ (a·b) and a·b denote distinct graphs.

However, we cannot denote all graphs of treewidth at most two in such a way.
First the notion of treewidth does not depend on the orientation of the edges. For

instance, the graph (ii) has treewidth two, yet it is not the image of a term in the previous
syntax. To this end, we add a unary operation ·◦ to our signature, which we interpret in
graphs as the exchange of input and output. Doing so, the terms (a·b◦) ‖ c and (b·a◦)◦ ‖ c
denote the graph (ii), and series-parallel graphs with converse become a free algebra when
we ask that ·◦ is an involution that distributes over ‖ and satisfies (a·b)◦ = b◦·a◦.

Second, the treewidth of a graph does not depend on self-loops, so that the graph (iii)
actually has treewidth one (it is a tree once we remove the self-loop). There it suffices to
add a constant, 1, interpreted as the graph with a single vertex (both input and output),
and no edge. Doing so, the graph (iii) is denoted by a·(1 ‖ b)·c. While the constant 1
is clearly a neutral element for series composition (·), axiomatising its interactions with
parallel composition is much harder, and is actually one of the key contributions of the
present work. For instance, the equation (1 ‖ a)·(1 ‖ b) = 1 ‖ a ‖ b belongs to the theory as
both sides denote the graph (iv).

Up-to this point, we have recovered the syntax of allegories [20], and the graphs associ-
ated to the terms are precisely the ones Freyd and Scedrov use to obtain that the theory of
representable allegories is decidable, yet not finitely presentable [20, p. 210].

But we still miss some graphs, like (v). One can also remark that we only obtain
connected graphs using the above operations. Instead, treewidth allows disconnected graphs:
a graph has a given treedwidth if and only if all of its connected components do. Surprisingly,
it suffices to add a second constant, >, interpreted as the disconnected graph with no edges
and two distinct vertices (the input and the output). This allows us to obtain disconnected
graphs, but also to get a term for the connected graph (v), namely, a·((b·>) ‖ c). Again while
it is clear that this constant is a neutral element for parallel composition ( ‖ ), capturing its
interactions with the other operations is non-trivial. For instance, >·a·>·b·> and >·b·>·a·>
both denote the graph (vi), and should thus be equated.

To sum up, the set Gph of graphs forms an algebra for the signature 〈·2, ‖ 2, ·◦1, 10,>0〉;
the various operations of this algebra are depicted in Figure 2.



E. Cosme-Llópez and D. Pous 76:3

G ·H , G H 1 , G◦ , G

G ‖H ,
G

H
> , a ,

a

Figure 2 The 2p-algebra of graphs and the graph of a letter

Write Trm for the set of terms over the alphabet Σ and TW2 for the set of graphs of
treewidth at most two when an extra edge is added between input and output1. One easily
proves that the latter set actually forms a subalgebra of the algebra of graphs. Therefore,
the function interpreting each term as a graph actually gives a function g : Trm→ TW2.

We first prove that this function has a right-inverse: we define a function t : TW2 → Trm
such that for all graph G ∈ TW2, g(t(G)) is isomorphic to G:

Trm TW2

g

t
g(t(G)) ' G (1)

By doing so, we get that the graphs of treewidth at most two are exactly the ones that can
be expressed using the syntax.

Our key contribution then consists in giving a finite equational axiomatisation of graph
isomorphism over this syntax. This answers positively the question asked by Courcelle and
Engelfriet in their book, for treewidth two [13, p. 118].

Note that the choice of the syntax is important. Various finite syntaxes have already
been proposed [15, 16, 13] to capture graphs of treewidth at most k, for a given k. However,
some choices prevent finite presentations. For instance, while the converse operation we use
could be eliminated by pushing it to the leaves, doing so would turn some of our axioms
into infinite equational schemes. (See also Remark 27.)

As explained above, a few laws are rather natural like associativity of the two compo-
sitions, commutativity of ‖ , or the facts that 1 and > are neutral elements and that ·◦ is
an involution. Those are the first eight laws in Figure 3. Surprisingly, the four subsequent
axioms suffice to obtain a complete axiomatisation: for all terms u, v, u and v are provably
equal using the axioms from Figure 3 if and only if g(u) and g(v) are isomorphic:

u ≡ v ⇔ g(u) ' g(v) (2)

In other words, calling a 2p-algebra an algebra satisfying the axioms from Figure 3, TW2 is
the free 2p-algebra.

All axioms but (A3) are independent; (A3) follows from (A9) and (A12). Correctness,
i.e., the left-to-right implication in (2), is easy to establish. Indeed, it suffices to compute
and compare the graphs of each equation, and to prove that valid equations are stable under
graph substitution. The converse implication, completeness, is much harder. This is because
there is no canonical way of extracting a term out of a graph. In particular, the function t
we define to this end has to make choices based on the concrete representation of the input
graph, so that isomorphic graphs do not always map to syntactically equal terms.

1 This additional condition is natural when considering pointed graphs [11]; this is not a restriction for
unpointed graphs as one can always set input and output to the same arbitrary node.

MFCS 2017



76:4 K4-Free Graphs as a Free Algebra

u ‖ (v ‖w) ≡ (u ‖ v) ‖w (A1)
u ‖ v ≡ v ‖u (A2)
u ‖> ≡ u (A3)

u◦◦ ≡ u (A6)
(u ‖ v)◦ ≡ u◦ ‖ v◦ (A7)

(u·v)◦ ≡ v◦·u◦ (A8)

u·(v·w) ≡ (u·v)·w (A4)
u·1 ≡ u (A5)

1 ‖ 1 ≡ 1 (A9)
1 ‖u·v ≡ 1 ‖ (u ‖ v◦)·> (A10)
u·> ≡ (1 ‖u·>)·> (A11)

(1 ‖u)·v ≡ (1 ‖u)·> ‖ v (A12)

Figure 3 Twelve axioms for 2p-algebras, all independent except for (A3)

We proceed in the following way to obtain completeness. First we prove that the function
t maps isomorphic graphs to congruent terms:

G ' H ⇒ t(G) ≡ t(H) (3)

Then we prove that this function is a homomorphism (up to the axioms), which allows us
to deduce that for all terms u, t(g(u)) is provably equal to u:

t(g(u)) ≡ u (4)

In a sense, by interpreting a term u into a graph and then reading it back, we obtain a
term t(g(u)) which plays the role of a normal form even if it is not canonical (which would
typically be the case in rewriting theory, or in normalisation by evaluation [4]).

Defining a function t satisfying (1) could be done rather easily by relying on the notion of
tree decomposition. However, doing so makes it extremely difficult to obtain properties (3)
and (4): the notion of tree decomposition, despite its inductive nature, does not provide
enough structure. Instead, we use the fact that treewidth at most two graphs are K4-free,
and we exhibit stronger graph invariants that allow us to extract terms from graphs in a
much more structured way.

For instance, when the graph is connected and when its input and output are distinct,
one can compute its checkpoints: those vertices which all paths from the input to the output
must visit. Those checkpoints are linearly ordered so that the graph has the following shape

· · · (5)

If there is at least one checkpoint then the graph should be interpreted as a series composi-
tion. Otherwise, by the absence of K4 as a minor, one can show that the graph necessarily
is a non-trivial parallel composition.

The aforementioned step is already there in the standard result that the biconnected
components of a K4-free graph are series-parallel. More challenging is the case when the
input and output coincide. In this case, we consider the checkpoints of all pairs of neighbours
of the input, and we show that they form a tree which is a minor of the starting graph.



E. Cosme-Llópez and D. Pous 76:5

This tree is a key invariant of the isomorphism class of the graph and we show that one
can extract a term for each choice of a node in this tree. This is where our function t has
to rely on the concrete representation of the graph: although all choices of a node in the
tree result in provably equal terms, they do not yield syntactically equal terms. A similar
situation happens with components which are disconnected from the input and the output:
we handle those recursively by taking any vertex as a new choice of input and output.

2 Related work

Except for the presence of >, the algebra of graphs we work with has been proposed inde-
pendently by Freyd and Scedrov [20, p. 207], and by Andréka and Bredikhin [1]. They used
it to characterise the equational theory of binary relations over the considered signature. In-
deed the set of binary relations over a fixed set forms an algebra for the signature we consider
in this paper: · is relational composition, ‖ is set-theoretic intersection (thus it is written
∩ in [20, 1]), ·◦ is transposition, 1 is the identity relation and > is the full relation. Writing
Rel � u ≤ v for the containments that hold in all such algebras of relations, and G J H if
there exists a graph homomorphism from H to G, we have the following equivalence.

Rel � u ≤ v ⇔ g(u) J g(v)

This characterisation immediately gives decidability: existence of a graph homomorphism
is an NP-complete problem. Thanks to the present observation that graphs of terms have
bounded treewidth, the complexity is actually polynomial [21].

Freyd and Scedrov also use this characterisation to prove that this theory is not finitely
presentable [20]: every complete equational axiomatisation must contain axioms corres-
ponding to homomorphisms equating arbitrarily many vertices at a time, and thus must be
infinite. Andréka and Bredikhin go even further and show that it is not even a variety [1].

In this work we focus on isomorphism rather than on homomorphism, and this is why
we do obtain a finite equational axiomatisation. Although all algebras of relations validate
our axioms, these algebras cannot be free models. For instance, their parallel composition
(intersection) is always idempotent. Freyd and Scedrov remark that certain graphs cannot
be the image of a term [20, p. 207], and Andréka and Bredikhin use a weak form of the K4
exclusion property [1, Lemma 7]. They cannot obtain a characterisation result since they
do not consider >, which is necessary to reach all graphs of treewidth at most two.

Our work is also really close to that of Dougherty and Gutiérrez [17], who proposed an
axiomatisation of graph isomorphism for a slightly different syntax: instead of the constant
>, they use a unary operation dom(·), called domain. This operation can be defined in
our setting: we have dom(u) = 1 ‖ (u·>); at the graphical level, it consists in relocating
the output of a graph on its input. In contrast, > cannot be defined in terms of dom(·)
and the other operations. Choosing this domain operation has the advantage of keeping
connected graphs, and the disadvantage of being less general: disconnected graphs cannot
be expressed. More importantly, the operation > being more primitive than dom(·), we
can obtain a shorter axiomatisation: while we share with [17] the nine natural axioms
from Figure 3 that do not mention >, the four remaining ones in this figure have to be
replaced by nine axioms when using dom(·): three about 1 and ‖ , and six about dom(·).
To prove completeness, Dougherty and Gutiérrez compute normal forms for terms using
rewriting techniques. Like in the present work, their normal forms are not canonical and
some additional work is needed. In a second part of the paper, they characterise graphs of
terms using a minor exclusion theorem which corresponds precisely to what we obtain in

MFCS 2017



76:6 K4-Free Graphs as a Free Algebra

the connected case (see Remark 27). There are however several typos or gaps in their paper
which we were not able to fix—see [8] for more details.

Bauderon and Courcelle gave a syntax and a complete axiomatisation for arbitrary
graphs [3]. While the overall statement is similar to ours, their syntax can hardly be related
to the present one (it is infinitary, for instance), and the present results are not corollar-
ies of their work. The structural invariants we exhibit here are reminiscent of the general
decomposition results of Tutte [27], which Courcelle later studied in the context of MSO [12].

3 2p-algebra

We consider the signature 〈·2, ‖ 2, ·◦1, 10,>0〉 and we let u, v, w range over terms over a set
Σ of variables. We usually omit the · symbol and we assign priorities so that the term
(a · (b◦)) ‖ c can be written just as ab◦ ‖ c. A 2p-algebra is an algebra over this signature
satisfying the axioms from Figure 3. We write u ≡ v when two terms u and v are congruent
modulo those axioms, or equivalently, when the equation holds in all 2p-algebras.

Following notations from Kleene algebra with tests (KAT) [22], we let α, β range over
tests, those terms that are congruent to some term of the shape 1 ‖u. (By axiom A9, u is a
test iff u ≡ 1 ‖u.) Graphs of tests are those whose input and output coincide.

We shall use the derived operation mentioned in Section 2, domain, as well as its dual,
codomain: dom(u) , 1 ‖u> and cod(u) , 1 ‖>u. Those are tests by definition.

As is standard for involutive monoids, the first eight axioms from Figure 3 entail 1◦ ≡ 1,
>◦ ≡ >, and 1u ≡ u. We use such laws freely in the sequel. We recall the four remaining
axioms below, using the above notations.

1 ‖ 1 ≡ 1 (A9)
1 ‖uv ≡ dom(u ‖ v◦) (A10)

u> ≡ dom(u)> (A11)
αv ≡ α>‖ v (A12)

Thanks to converse being an involution, there is a notion of duality in 2p-algebras: one
obtains a valid law when swapping the arguments of all products and exchanging domains
with codomains in a valid law. (We have cod(u) ≡ dom(u◦).)

I Proposition 1. The following equations hold in all 2p-algebras.

α◦ ≡ α (6)
αβ ≡ α ‖β (7)

α(v ‖w) ≡ αv ‖w (8)
(v ‖w)α ≡ vα ‖w (9)

dom(uv ‖w) ≡ dom(u ‖wv◦) (10)

>u◦> ≡ >u> (11)
u>w ≡ u>‖>w (12)

u>v>w ≡ u>w ‖>v> (13)
(u ‖>v>)w ≡ uw ‖>v> (14)

4 Graphs

As explained in the introduction, we consider labelled directed graphs with two designated
vertices. We just call them graphs in the sequel. Note that we allow multiple edges between
two vertices, as well as self-loops.

I Definition 2. A graph is a tuple G = 〈V,E, s, t, l, ι, o〉, where V is a finite set of vertices,
E is a finite set of edges, s, t : E → V are maps indicating the source and target of each
edge, l : E → Σ is map indicating the label of each edge, and ι, o ∈ V are the designated
vertices, respectively called input and output.



E. Cosme-Llópez and D. Pous 76:7

We write G[x; y] for the graph G with input set to x and output set to y; we abbreviate
G[x;x] to G[x].

I Definition 3. An homomorphism from G = 〈V,E, s, t, l, ι, o〉 to G′ = 〈V ′, E′, s′, t′, l′, ι′, o′〉
is a pair h = 〈f, g〉 of functions f : V → V ′ and g : E → E′ that respect the various
components: s′ ◦ g = f ◦ s, t′ ◦ g = f ◦ t, l′ = g ◦ l, ι′ = f(ι), and o′ = f(o).

A (graph) isomorphism is a homomorphism whose two components are bijective func-
tions. We write G ' G′ when there exists an isomorphism between graphs G and G′.

I Proposition 4. Graphs up to isomorphism form a 2p-algebra.

I Definition 5. Let G = 〈V,E, s, t, l, ι, o〉 be a graph. A tree decomposition of G is a tree T
where each node t is labelled with a set Vt ⊆ V of vertices, such that:
(T1) for every vertex x ∈ V , the set of nodes t such that x ∈ Vt forms a sub-tree of T ;
(T2) for every edge e ∈ E, there exists a node t such that {s(e), t(e)} ⊆ Vt;
(T3) there exists a node t such that {ι, o} ⊆ Vt.
The width of a tree decomposition is the size of the largest set Vt minus one; the treewidth
of a graph is the minimal width of a tree decomposition for this graph. We write TW2 for
the set of graphs of treewidth at most two.

The first two conditions in the definition of tree decomposition are standard; the third one is
related to the presence of distinguished nodes: it requires them to lie together in some node
of the tree. This condition ensures that the following graph is excluded from TW2 whatever
the orientation and labelling of its edges.

(M3)

Indeed, such a graph cannot be represented in the syntax we consider. (Something already
observed by Freyd and Scedrov [20]—the addition of > to the syntax does not help.)

I Proposition 6. Graphs of treewidth at most two form a subalgebra of the algebra of graphs.

The graphs we associate to each letter (Figure 2) also belong to this subalgebra, so that we
obtain a homomorphism g : Trm → TW2 associating a graph of treewidth at most two to
each syntactic term. When taking quotients under term congruence and graph isomorphism,
this function becomes a 2p-algebra homomorphism g′ : Trm/≡ → TW2/'. Our key result is
that g′ actually is an isomorphism of 2p-algebras (Corollary 33).

5 K4-freeness

In this section we establish preliminary technical results about unlabelled undirected graphs
with at most one edge between two vertices and without self-loops; we call those simple
graphs. We use standard notation and terminology from graph theory [16]. In particular,
we denote by xy a potential edge between two vertices x and y; an xy-path is a (possibly
trivial) path whose ends are x and y; G+xy is the simple graph obtained from G by adding
the edge xy if x and y were not already adjacent; G\x is the simple graph obtained from G

by removing the vertex x and its incident edges.

I Definition 7. A minor of a simple graph G is a simple graph obtained by performing a
sequence of the following operations on G: delete an edge or a vertex, contract an edge.

MFCS 2017



76:8 K4-Free Graphs as a Free Algebra

A cornerstone result of graph theory, Robertson and Seymour’s graph minor theorem [26],
states that (simple) graphs are well-quasi-ordered by the minor relation. As a consequence,
the classes of graphs of bounded treewidth, which are closed under taking minors, can be
characterised by finite sets of excluded minors. Two simple and standard instances are the
following ones: the graphs of treewidth at most one (the forests) are precisely those excluding
the cycle with three vertices (C3); those of treewidth at most two are those excluding the
complete graph with four vertices (K4) [18]. We eventually reprove the latter one here.

(C3) (K4)

We fix a connected simple graph G in the remainder of this section.

I Definition 8. The checkpoints between two vertices x, y are the vertices which any xy-path
must visit: CP(x, y) , {z | every xy-path crosses z}.

For all vertices x, y, we have CP(x, x) = {x} and {x, y} ⊆ CP(x, y) = CP(y, x). Two vertices
x, y are linked, written x♦y, when x 6= y and CP(x, y) = {x, y}, i.e., when there are no
proper checkpoints between x and y. The link graph of G is the graph of linked vertices.
Note that G is a subgraph of its link graph: if xy is an edge in G then x♦y. We also have
the following properties.

I Lemma 9. Any cycle in the link graph is actually a clique.

I Lemma 10. If xyz is a triangle in the link graph and ι is a vertex not in G, then the
graph G+ ιx+ ιy + ιz admits K4 as a minor.

Now fix a set U of vertices; we extend the notion of checkpoints as follows.

I Definition 11. The checkpoints of U , CP(U), is the set of vertices which are checkpoints
of some pair in U : CP(U) ,

⋃
x,y∈U CP(x, y). The checkpoint graph of U is the subgraph of

the link graph induced by this set. We also denote this graph by CP(U).

I Lemma 12. CP is a closure operator on the set of vertices. In particular, for all check-
points x, y ∈ CP(U), CP(x, y) ⊆ CP(U).

I Lemma 13. For every path in G between two checkpoints x, y ∈ CP(U), the sequence
obtained by keeping only the elements in CP(U) is an xy-path in CP(U).

Since G is assumed to be connected, it follows that so is CP(U). A key instance of a
checkpoint graph is when U only contains two vertices, presumably the input and output
of some graph: the checkpoint graph is a line in this case, as in (5), and it allows us to
decompose the considered graph into a sequence of series compositions.

I Lemma 14. If U = {x, y}, then CP(U) is a line graph whose ends are x and y.

The following two lemmas are helpful in Proposition 20 below, to prove that the checkpoint
graph is a tree under certain circumstances.

I Lemma 15. If xy is an edge in CP(U), then there exists x′, y′ ∈ U such that x and y

belong to CP(x′, y′).

I Lemma 16. If xyz is a triangle in CP(U), then there exists x′, y′, z′ ∈ U such that x and
y (resp. x and z, y and z) belong to CP(x′, y′) (resp. CP(x′, z′), CP(y′, z′)).



E. Cosme-Llópez and D. Pous 76:9

As explained above we use the checkpoint graphs to decompose graphs. The following
notions of intervals and bags are the basic blocks of those decompositions.

I Definition 17. Let x, y be two vertices. The strict interval Kx; yJ is the following set of
vertices.

Kx; yJ , {p | there is an xp-path avoiding y and a py-path avoiding x}

The interval Jx; yK is obtained by adding x and y to that set. We abuse notation and write
Jx; yK for the subgraph of G induced by the set Jx; yK.

Note that while the intervals do not depend on the set U , we mostly use them under the
assumption that xy is an edge in a checkpoint graph.

I Definition 18. The bag of a checkpoint x ∈ CP(U) is the set of vertices that need to cross
x in order to reach the other checkpoints.

JxKU , {p | ∀y ∈ CP(U), any py-path crosses x} .

As before, we also write JxKU for the induced subgraph of G.

Note that JxKU depends on U and differs from Jx;xK (which is always the singleton {x}).

I Proposition 19. If CP(U) is a tree, then the following set V is a partition of the vertices
of G such that any edge of G appears in exactly one graph of the set E.

V , {JxKU | x ∈ CP(U)} ∪ {Kx; yJ | xy edge in CP(U)}
E , {JxKU | x ∈ CP(U)} ∪ {Jx; yK | xy edge in CP(U)}

Graphically, this means G can be decomposed as in the picture above; only the vertices
of CP(U) are depicted, the green blocks correspond to edges in CP(U), the yellow blocks
correspond to the graphs JxKU . The leaves of CP(U) are elements of U (but not always
conversely). As a consequence, when CP(U) is a tree, it is a minor of G: contract all
subgraphs of the form JxKU into vertex x and all subgraphs of the form Jx; yK into edge xy.

The following proposition is a key element in the developments to come. It makes it
possible to extract a term out of a graph whose input and output coincide, by providing
ways to chose an element where to relocate the output and resort to the easier case when
input and output differ. (Note that G is still assumed to be connected.)

I Proposition 20. Assume G = H\ι, for some K4-free simple graph H and some vertex ι.
Further assume that U is the set of neighbours of ι in H and that this set is not empty.
(i) CP(U) is a tree,
(ii) for every edge xy in CP(U), the graph Jx; yK + xy is K4-free,
(iii) for every vertex x in CP(U), the graph H + ιx is K4-free.

As a consequence of the above proposition, we have the following one, which makes it possible
to decompose graphs with distinct input and output into a parallel composition when they
cannot be a series composition.

MFCS 2017



76:10 K4-Free Graphs as a Free Algebra

I Proposition 21. Let ι, o be two distinct vertices such that G + ιo is K4-free. We have
that:
(i) if ι and o are not adjacent in G and ι♦o, then the graph induced by Kι; oJ has at least

two connected components.
(ii) for every edge xy in CP({ι, o}), the graph Jx; yK + xy is K4-free,

6 Extracting terms

Now we have enough preliminary material and we can look for a right inverse to the function
g : Trm→ TW2. As explained in the Introduction, we use K4-freeness to extract terms from
graphs in a more structured way than using tree decompositions directly.

I Definition 22. The skeleton of a graph G is the simple graph S obtained from G by
forgetting input, output, labelling, edge directions, edge multiplicities, and self-loops. The
strong skeleton of G is S + ιo if ι 6= o, and S otherwise.

As an example, the strong skeleton of any instance of the graph (M3) from Section 4 is K4.
More generally, a graph belongs to TW2 if and only if its strong skeleton has treewidth at
most two in the standard sense.

I Proposition 23. The strong skeleton of every graph in TW2 is K4-free.

Given a graph G and two vertices x, y, we write GJx; yK for the subgraph of G induced by
the set Jx; yK (computed in the skeleton of G), with input and output respectively set to x
and y, and with self-loops on x and y removed. The strong skeleton of GJx; yK is Jx; yK+xy.

Similarly, given a graph G, a set U of vertices and vertex x, we write GJxKU for the
subgraph of G induced by the set JxKU (computed in the skeleton of G), with both input
and output set to x. Doing so, the skeleton and strong skeleton of GJxKU are both JxKU .
We shall omit the subscript when it is clear from the context.

I Definition 24. The term t(G) of a graph G whose strong skeleton is K4-free is defined
by induction on the number of edges in G2. When G is connected there are two main cases
depending on whether the input and output coincide (a) or not (b). We deal with the general
case (c) by decomposing the graph into connected components.
(a) Connected, distinct input and output
Consider the line graph (Lemma 14) obtained by taking the checkpoint graph of U = {ι, o}
in the skeleton of G. Write it as x0 . . . xn+1 with ι = x0 and o = xn+1. According to
Proposition 19, G looks as follows.

ι x1 x2 xn o· · ·

We set t(G) , t(GJx0K)·t(GJx0;x1K)·t(GJx1K)· . . . ·t(GJxnK)·t(GJxn;xn+1K)·t(GJxn+1K)
The (strong) skeleton of each graph GJxiK is just JxiK, which is necessarily K4-free, as a

subgraph of that of G. Proposition 21(2) moreover ensures that so are the strong skeletons
of all graphs GJxi;xi+1K. The above recursive calls occur on smaller graphs unless n = 0
and the graphs GJιK and GJoK are reduced to the trivial graph with one vertex and no edge
(i.e., the graph 1). In such a situation,

2 More precisely, on the lexicographic product of the number of edges and the textual precedence of the
three considered cases.



E. Cosme-Llópez and D. Pous 76:11

either ι and o are adjacent in G. Then let G′ be the graph obtained by removing from
G all edges between ι and o and let u = a1 ‖ . . . ‖ ai ‖ b◦1 ‖ . . . b◦j be a term corresponding
to those edges. Accordingly, we set t(G) , t(G′) ‖u.
Or they are not, and Proposition 21(2) applies so that we can decompose G into parallel
components: G = G1 ‖ . . . ‖Gm with m ≥ 2. We set t(G) , t(G1) ‖ . . . ‖ t(Gm).

(b) Connected, input equals output
If there are self-loops on ι, let u = a1 ‖ . . . ‖ an be a term corresponding to those edges, let
G′ be the graph obtained by removing them, and recursively set t(G) , t(G′) ‖u.

Otherwise let H be the skeleton of G. Decompose H\ι into connected components
H1\ι, . . . ,Hm\ι such that H ' H1 ∪ · · · ∪Hm. The graph looks as follows.

ι

If m = 0, then set t(G) = 1. If m > 1, set t(G) ,
f

i≤m t(Gi) , where Gi is the
subgraph of G induced by Hi. It remains to cover the case where m = 1. Let U be the
set of neighbours of the input and compute the checkpoint graph CP(U) in H\ι. Pick an
arbitrary node x ∈ CP(U). By Proposition 20(3), the strong skeleton of G[ι;x] is K4-free.
Set t(G) , dom(t(G[ι;x])). (Remember that dom(·) relocates the output to the input.)

(c) General case
Decompose the graph G into connected components G1, . . . , Gn. For all i ≤ n, pick an
arbitrary vertex xi in the component Gi. There are two cases:

either input and output belong to the
same component, say Gj ; then set

t(G) , t(Gj) ‖
n

i6=j

>·t(Gi[xi])·>

ι o

or they belong to two distinct components, say
ι in Gj and o in Gk, in which case we set

t(G) , t(Gj [ι])·>·t(Gk[o]) ‖
n

i 6=j,k

>·t(Gi[xi])·>

ι o

In both cases, it is easy to check that the recursive calls occur on graphs whose (strong)
skeletons are subgraphs of the strong skeleton of G, and thus K4-free.

The definition of the extraction function t ends here. This function is defined on “con-
crete” graphs: we need to choose some vertices in cases (b) and (c), and we can only do so by
relying on the concrete identity of those vertices (e.g., choosing the smallest one, assuming
they are numbers). We shall see in the following section that all those potential choices,
nevertheless, always lead to congruent terms (Theorem 30). By construction, we obtain:

I Theorem 25. For every graph G ∈ TW2, g(t(G)) ' G.

I Corollary 26. The following are equivalent for all graphs G:
(i) G has treewidth at most two;
(ii) the strong skeleton of G is K4-free;
(iii) G is (isomorphic to) the graph of a term.

MFCS 2017



76:12 K4-Free Graphs as a Free Algebra

I Remark 27. When G is connected, t(G) does not contain occurrences of > other than
those that are implicit in our uses of dom(·) in case (b). Thus we obtain an alternative
proof of Dougherty and Gutiérrez’ characterisation [17, Section 4, Theorem 31] (their minor
exclusion property is easily proved equivalent to ours—they do not mention treewidth).

Also note that we can easily avoid using 1 (but not dom(·)) when the graph does not
contain self-loops and is not reduced to the trivial graph 1. When the graph does not contain
self-loops and has distinct input and output, the construction can be modifed to produce
terms without both 1 and dom(·); the resulting construction becomes, however, less local,
and we do not know how to use it to axiomatise the 1-free reduct of 2p-algebra.

7 Completeness of the axioms

We can finally prove that the axioms of 2p-algebras are complete w.r.t. graphs: they suffice
to equate all terms denoting the same graph up to isomorphism. For lack of space, we
present only the main steps. Proofs for this last part consist in detailed analyses of the term
extraction function (t) through inductive arguments following its recursive definition, and
using the laws from Proposition 1 to relate the extracted terms. All details are in [8].

We first prove that t maps isomorphic graphs to congruent terms. We need for that the
following propositions.

I Proposition 28. Let G ∈ TW2 be a graph with ι = o, without self-loops on ι. Let S
be its skeleton, and assume that S\ι is connected. Let U be the neighbours of ι in G and
consider the checkpoint graph of U in the skeleton of S\ι. For all checkpoints x, y, we have
dom(t(G[ι, x])) ≡ dom(t(G[ι, y])).

I Proposition 29. Let G ∈ TW2 be a connected graph. For all vertices x, y, we have
>t(G[x])> ≡ >t(G[y])>.

I Theorem 30. Let G,H ∈ TW2 be two graphs. If G ' H then t(G) ≡ t(H).

In other words, the extraction function t yields a function t′ : TW2/' → Trm/≡ between
2p-algebras. We finally prove that t′ is a homomorphism, and, in fact, an isomorphism.

I Proposition 31. The function t′ : TW2/' → Trm/≡ is an homomorphism of 2p-algebras.

I Theorem 32. For every term u, we have t(g(u)) ≡ u.

I Corollary 33. For all terms u and v, we have u ≡ v if and only if g(u) ' g(v). Graphs of
treewidth at most two form the free 2p-algebra, as witnessed by the diagram on the right.

Trm/≡ TW2/'

g′

t′

8 Future work

What is the free idempotent 2p-algebra? (Where parallel composition is idempotent.) One
could be tempted to switch to simple directed graphs, where there is at most one edge with a
given label from one vertex to another. This is however not an option: the graphs of ab ‖ ab
and ab are not isomorphic. One could also consider equivalences on graphs that are weaker
than isomorphism. The notion of (two-way) bisimilarity [25, 24] that come to mind does
not work either: such an equivalence relation on graphs certainly validates idempotency of



E. Cosme-Llópez and D. Pous 76:13

parallel composition, but it also introduces new laws, e.g., >(1 ‖ aa)> = >(1 ‖ a)>, which
are not even true in algebras of binary relations.

Courcelle used the algebraic theory he defined with Bauderon for arbitrary graphs [3] to
propose a notion of graph recognisability [9], based on the generic framework by Mezei and
Wright [23]. He proved that sets of graphs definable in MSO are recognisable. The converse
does not hold in general. He later proved it for graphs of treewidth at most two [10] with a
counting variant of MSO, conjecturing that it would be so for classes of graphs of bounded
treewidth. This conjecture was proved only last year, by Bojańczyk and Pilipczuk [6].

The present work makes it possible to propose an alternative notion of recognisabi-
lity for treewidth at most two, 2p-recognisability: recognisability by a finite 2p-algebra.
We conjecture that this notion coincides with recognisability. That recognisability entails
2p-recognisability is easy. The converse is harder; it amounts to proving that any finite
congruence with respect to substitutions in treewidth at most two graphs can be refined
into a finite congruence with respect to substitutions in arbitrary graphs. We see two ways
of attaining this implication:

1. prove that 2p-recognisability entails MSO-definability, which could possibly be done
along the lines of [10], by showing that our term extraction procedure is MSO-definable.

2. or use a slight generalisation of the result by Courcelle and Lagergren [14], relating recog-
nisability to k-recognisability for graphs of treewidth at most k. Indeed, 2p-recognisability
is really close to 2-recognisability. Unfortunately, Courcelle and Lagergren’s result is es-
tablished only for unlabelled, undirected graphs, without sources, while we need labelled
directed graphs with two sources.

One can easily extend our syntax to cover graphs of treewidth at most k, with k sources,
for a given k (see, e.g., [15, 2]). However, we do not know how to generate finite axiomatisa-
tions in a systematic way, for every such k. Moreover, our proof strategy heavily depends on
the fact that when k = 2, K4 is the only excluded minor. We would need another strategy
to deal with the general case since the excluded minors are not known for k ≥ 4.

References
1 H. Andréka and D. A. Bredikhin. The equational theory of union-free algebras of relations.

Algebra Universalis, 33(4):516–532, 1995. doi:10.1007/BF01225472.
2 S. Arnborg, B. Courcelle, A. Proskurowski, and D. Seese. An algebraic theory of graph

reduction. Journal of the ACM, 40(5):1134–1164, 1993. doi:10.1145/174147.169807.
3 Michel Bauderon and Bruno Courcelle. Graph expressions and graph rewritings. Mathem-

atical Systems Theory, 20(2-3):83–127, 1987. doi:10.1007/BF01692060.
4 Ulrich Berger and Helmut Schwichtenberg. An inverse of the evaluation functional for typed

lambda-calculus. In LICS, pages 203–211. IEEE, 1991. doi:10.1109/LICS.1991.151645.
5 H.L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical

Computer Science, 209(1):1–45, 1998. doi:10.1016/S0304-3975(97)00228-4.
6 Mikołaj Bojańczyk and Michal Pilipczuk. Definability equals recognizability for graphs of

bounded treewidth. In LICS, pages 407–416. ACM, 2016. doi:10.1145/2933575.2934508.
7 Chandra Chekuri and Anand Rajaraman. Conjunctive query containment revisited. The-

oretical Computer Science, 239(2):211–229, 2000. doi:10.1016/S0304-3975(99)00220-0.
8 Enric Cosme-Llópez and Damien Pous. K4-free graphs as a free algebra, 2017. Full version

of this extended abstract, with all proofs, available at https://hal.archives-ouvertes.
fr/hal-01515752/. URL: https://hal.archives-ouvertes.fr/hal-01515752/.

9 B. Courcelle. The monadic second-order logic of graphs. I: Recognizable sets of finite graphs.
Information and Computation, 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

MFCS 2017

http://dx.doi.org/10.1007/BF01225472
http://dx.doi.org/10.1145/174147.169807
http://dx.doi.org/10.1007/BF01692060
http://dx.doi.org/10.1109/LICS.1991.151645
http://dx.doi.org/10.1016/S0304-3975(97)00228-4
http://dx.doi.org/10.1145/2933575.2934508
http://dx.doi.org/10.1016/S0304-3975(99)00220-0
https://hal.archives-ouvertes.fr/hal-01515752/
https://hal.archives-ouvertes.fr/hal-01515752/
https://hal.archives-ouvertes.fr/hal-01515752/
http://dx.doi.org/10.1016/0890-5401(90)90043-H


76:14 K4-Free Graphs as a Free Algebra

10 B. Courcelle. The monadic second-order logic of graphs V: on closing the gap between
definability and recognizability. Theoretical Computer Science, 80(2):153–202, 1991. doi:
10.1016/0304-3975(91)90387-H.

11 B. Courcelle. Recognizable sets of graphs: equivalent definitions and closure properties.
Mathematical Structures in Computer Science, 4(1):1–32, 1994.

12 B. Courcelle. The monadic second-order logic of graphs XI: Hierarchical decompositions
of connected graphs. Theoretical Computer Science, 224(1):35–58, 1999. doi:10.1016/
S0304-3975(98)00306-5.

13 B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-Order Logic - A
Language-Theoretic Approach, volume 138 of Encyclopedia of mathematics and its applic-
ations. Cambridge University Press, 2012.

14 B. Courcelle and J. Lagergren. Equivalent definitions of recognizability for sets of graphs
of bounded tree-width. Mathematical Structures in Computer Science, 6(2):141–165, 1996.
doi:10.1017/S096012950000092X.

15 Bruno Courcelle. Graph grammars, monadic second-order logic and the theory of graph
minors. In Graph Structure Theory, volume 147 of Contemporary Mathematics, pages
565–590. American Mathematical Society, 1993. Proceedings of a Joint Summer Research
Conference on Graph Minors held June 22 to July 5, 1991, at the University of Washington,
Seattle. doi:10.1090/conm/147.

16 R. Diestel. Graph Theory. Graduate Texts in Mathematics. Springer, 2005.
17 Daniel J. Dougherty and Claudio Gutiérrez. Normal forms for binary relations. Theoretical

Computer Science, 360(1-3):228–246, 2006. doi:10.1016/j.tcs.2006.03.023.
18 R.J Duffin. Topology of series-parallel networks. Journal of Mathematical Analysis and

Applications, 10(2):303–318, 1965. doi:10.1016/0022-247X(65)90125-3.
19 Eugene C. Freuder. Complexity of k-tree structured constraint satisfaction problems. In

NCAI, pages 4–9. AAAI Press / The MIT Press, 1990. URL: http://www.aaai.org/
Library/AAAI/1990/aaai90-001.php.

20 P.J. Freyd and A. Scedrov. Categories, Allegories. North Holland. Elsevier, 1990. URL:
https://books.google.fr/books?id=fCSJRegkKdoC.

21 Martin Grohe. The complexity of homomorphism and constraint satisfaction problems seen
from the other side. Journal of the ACM, 54(1):1:1–1:24, 2007. doi:10.1145/1206035.
1206036.

22 D. Kozen. Kleene algebra with tests. Transactions on Programming Languages and Systems,
19(3):427–443, May 1997. doi:10.1145/256167.256195.

23 J. Mezei and J.B. Wright. Algebraic automata and context-free sets. Information and
Control, 11(1–2):3–29, 1967. doi:10.1016/S0019-9958(67)90353-1.

24 R. Milner. Communication and Concurrency. Prentice Hall, 1989.
25 David Park. Concurrency and automata on infinite sequences. In Theoretical Computer Sci-

ence, pages 167–183, 1981. URL: http://dl.acm.org/citation.cfm?id=647210.720030.
26 Neil Robertson and P.D. Seymour. Graph minors. XX. Wagner’s conjecture. Journal of

Combinatorial Theory, Series B, 92(2):325–357, 2004. doi:10.1016/j.jctb.2004.08.001.
27 W. Tutte. Graph Theory. Addison-Wesley, Reading, MA, 1984.

http://dx.doi.org/10.1016/0304-3975(91)90387-H
http://dx.doi.org/10.1016/0304-3975(91)90387-H
http://dx.doi.org/10.1016/S0304-3975(98)00306-5
http://dx.doi.org/10.1016/S0304-3975(98)00306-5
http://dx.doi.org/10.1017/S096012950000092X
http://dx.doi.org/10.1090/conm/147
http://dx.doi.org/10.1016/j.tcs.2006.03.023
http://dx.doi.org/10.1016/0022-247X(65)90125-3
http://www.aaai.org/Library/AAAI/1990/aaai90-001.php
http://www.aaai.org/Library/AAAI/1990/aaai90-001.php
https://books.google.fr/books?id=fCSJRegkKdoC
http://dx.doi.org/10.1145/1206035.1206036
http://dx.doi.org/10.1145/1206035.1206036
http://dx.doi.org/10.1145/256167.256195
http://dx.doi.org/10.1016/S0019-9958(67)90353-1
http://dl.acm.org/citation.cfm?id=647210.720030
http://dx.doi.org/10.1016/j.jctb.2004.08.001


Making Metric Temporal Logic Rational∗

Shankara Narayanan Krishna1, Khushraj Madnani1, and
Paritosh K. Pandya3

1 IIT Bombay, Mumbai, India
krishnas@cse.iitb.ac.in

2 IIT Bombay, Mumbai, India
khushraj@cse.iitb.ac.in

3 Tata Institute of Fundamental Research, Mumbai, India
pandya@tifr.res.in

Abstract
We study an extension of MTL in pointwise time with regular expression guarded modality
RatI(re) where re is a rational expression over subformulae. We study the decidability and ex-
pressiveness of this extension (MTL+ URat+Rat), called RatMTL, as well as its fragment SfrMTL
where only star-free rational expressions are allowed. Using the technique of temporal projections,
we show that RatMTL has decidable satisfiability by giving an equisatisfiable reduction to MTL.
We also identify a subclass MITL + URat of RatMTL for which our equisatisfiable reduction gives
rise to formulae of MITL, yielding elementary decidability. As our second main result, we show a
tight automaton-logic connection between SfrMTL and partially ordered (or very weak) 1-clock
alternating timed automata.

1998 ACM Subject Classification F.4.1. Mathematical Logic

Keywords and phrases Metric Temporal Logic, Timed Automata, Regular Expression, Equisat-
isfiability, Expressiveness

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.77

1 Introduction

Temporal logics provide constructs to specify qualitative ordering between events in time.
Real time logics are quantitative extensions of temporal logics with the ability to specify
real time constraints amongst events. Logics MTL and TPTL are amongst the prominent
real time logics [2]. Two notions of MTL semantics have been studied in the literature :
continuous and pointwise [5]. The expressiveness and decidability results vary considerably
with the semantics used : while the satisfiability checking of MTL is undecidable in the
continuous semantics even for finite timed words [1], it is decidable in pointwise semantics
with non-primitive recursive complexity over finite timed words [15]. The satisfiability
checking over infinite timed words is undecidable for both the semantics. Due to the hardness
of analysis, quest for a decidable subclass and extension was started.

Related Work. Due to limited expressive power of MTL, several additional modalities
have been proposed : the threshold counting modality [16] C≥nI φ states that in time interval
I relative to current point, φ occurs at least n times. Note that we represent the set of
modalities CI is represented by C. The Pnueli modality [16] PnI(φ1, . . . , φn) states that there

∗ Please refer url <http://arxiv.org/abs/1705.01501> for full version

© Shankara Narayanan Krishna, Khushraj Madnani, and Paritosh K. Pandya;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 77; pp. 77:1–77:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.77
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


77:2 Making Metric Temporal Logic Rational

is a subsequence of n time points inside interval I where at ith point the formula φi holds. In
a recent result, Hunter [10] showed that, in continuous time semantics, MTL enriched with C
modality (denoted MTL + C) is as expressive as FO[<,+1], which is as expressive as TPTL.
Unfortunately, satisfiability and model checking of all these logics are undecidable. This has
led us to focus on the pointwise case with only the until modality, i.e. logic MTL[ UI ], which
we abbreviate as MTL in rest of the paper.Also, MTL + op means MTL with modalities UI
as well as op.

In pointwise semantics, it can be shown that MTL+C is strictly more expressive than MTL
and remains decidable for finite words (see [12]). In this paper, we propose a generalization of
threshold counting and Pnueli modalities by a rational expression modality RatI re(φ1, . . . , φk),
which specifies that the truth of the subformulae, φ1, . . . , φk, at the set of points within
interval I is in accordance with the regular expression re(φ1, . . . , φk). The resulting logic is
called RatMTL and is the subject of this paper. The inability to specify rational expression
constraints has been an important lacuna of LTL and its practically useful extensions such
as PSL sugar [7], [6] (based on Dynamic Logic [8]) which extend LTL with both counting
and rational expressions were studied. This indicates that our logic RatMTL is a natural and
useful logic for specifying properties. Adding timing constraints to regular expressions was
first given by Asarin, Caspi and Maler in [3] and was called as Timed Regular Expressions.
They also show that these expressions exactly characterize the expressive power of Timed
Automata. But this equivalence relies indispensably on the addition of renaming operation
within there syntax [9] and are not closed under negations. In fact the validity checking for
this extension was undecidable. Thus we propose a boolean closed decidable logic which
can express regular expressions along with timing constraints. To our knowledge, impact of
rational expression constraints on metric temporal modalities have not been studied before.
The expressive power of logic RatMTL raises several points of interest.

As our first main result, we show that satisfiability of RatMTL is decidable by giving an
equisatisfiable reduction to MTL. The reduction makes use of the technique of oversampled
temporal projections which was previously proposed [11], [12] and used for proving the
decidability of MTL + C. The reduction given here has several novel features such as an
MTL encoding of the run tree of an alternating automaton which restarts the DFA of a
given rational expression at each time point (section 3.1). We identify two syntactic subsets
of RatMTL, the first denoted as MITL + URat with 2EXPSPACE easy satisfiability, and its
further subset MITL+UM with EXPSPACE-complete satisfiability. As our second main result,
we show that the star-free fragment SfrMTL of RatMTL characterizes exactly the class of
partially ordered 1-clock alternating timed automata, thereby giving a tight logic automaton
connection. The most non-trivial part of this proof is the construction of SfrMTL formula
equivalent to a given partially ordered 1-clock alternating timed automaton A (Lemma 11).

2 Timed Temporal Logics

This section describes the syntax and semantics of the timed temporal logics needed in this
paper : MTL and TPTL. Let Σ be a finite set of propositions. A finite timed word over
Σ is a tuple ρ = (σ, τ). σ and τ are sequences σ1σ2 . . . σn and τ1τ2 . . . τn respectively, with
σi ∈ P(Σ)− ∅, and τi ∈ R≥0 for 1 ≤ i ≤ n and ∀i ∈ dom(ρ), τi ≤ τi+1, where dom(ρ) is the
set of positions {1, 2, . . . , n} in the timed word. For convenience, we assume τ1 = 0. The
σi’s can be thought of as labelling positions i in dom(ρ). For example, given Σ = {a, b, c},
ρ = ({a, c}, 0)({a}, 0.7)({b}, 1.1) is a timed word. ρ is strictly monotonic iff τi < τi+1 for
all i, i + 1 ∈ dom(ρ). Otherwise, it is weakly monotonic. The set of finite timed words



S.N. Krishna, K. Madnani, and P. K. Pandya 77:3

over Σ is denoted TΣ∗. Given ρ = (σ, τ) with σ = σ1 . . . σn, σsingle denotes the set of words
{w1w2 . . . wn | wi ∈ σi}. For ρ as above, σsingle consists of ({a}, 0)({a}, 0.7)({b}, 1.1) and
({c}, 0)({a}, 0.7)({b}, 1.1). Let Iν be a set of open, half-open or closed time intervals. The
end points of these intervals are in N ∪ {0,∞}. For example, [1, 3), [2,∞). For τ ∈ R≥0 and
interval 〈a, b〉, with <∈ {(, [} and >∈ {], )}, τ + 〈a, b〉 stands for the interval 〈τ + a, τ + b〉.

Metric Temporal Logic (MTL). Given a finite alphabet Σ, the formulae of MTL are built
from Σ using boolean connectives and time constrained version of the modality U as follows:
ϕ ::= a(∈ Σ) |true |ϕ ∧ ϕ | ¬ϕ | ϕ UIϕ, where I ∈ Iν. For a timed word ρ = (σ, τ) ∈ TΣ∗,
a position i ∈ dom(ρ), and an MTL formula ϕ, the satisfaction of ϕ at a position i of ρ
is denoted (ρ, i) |= ϕ, and is defined as follows: (i) ρ, i |= a ↔ a ∈ σi, (ii) ρ, i |= ¬ϕ ↔
ρ, i 2 ϕ, (iii) ρ, i |= ϕ1 ∧ ϕ2 ↔ ρ, i |= ϕ1 and ρ, i |= ϕ2, (iv) ρ, i |= ϕ1 UIϕ2 ↔ ∃j > i,
ρ, j |= ϕ2, τj − τi ∈ I, and ρ, k |= ϕ1 ∀ i < k < j.

The language of a MTL formula ϕ is L(ϕ) = {ρ | ρ, 1 |= ϕ}. Two formulae ϕ and
φ are said to be equivalent denoted as ϕ ≡ φ iff L(ϕ) = L(φ). Additional temporal
connectives are defined in the standard way: we have the constrained future eventuality
operator ♦Ia ≡ true UIa and its dual �Ia ≡ ¬♦I¬a. We also define the next operator as
OIφ ≡ ⊥UIφ. Non-strict versions of operators are defined as ♦ns

I a = a∨♦Ia,�ns
I a ≡ a∧�Ia,

a Uns
I b ≡ b ∨ [a ∧ (a UIb)] if 0 ∈ I, and [a ∧ (a UIb)] if 0 /∈ I. Also, aWb is a shorthand for

�a∨ (aUb). The subclass of MTL obtained by restricting the intervals I in the until modality
to non-punctual intervals is denoted MITL.

Timed Propositional Temporal Logic (TPTL). TPTL is a prominent real time extension
of LTL, where timing constraints are specified with the help of freeze clocks. The set of TPTL
formulas are defined inductively as ϕ ::= a(∈ Σ) |true |ϕ ∧ ϕ | ¬ϕ | ϕ Uϕ | y.ϕ | y ∈ I. C is
a set of clock variables progressing at the same rate, y ∈ C, and I is an interval as above.
For a timed word ρ = (σ1, τ1) . . . (σn, τn), we define the satisfiability relation, ρ, i, ν |= φ

saying that the formula φ is true at position i of the timed word ρ with valuation ν of all
the clock variables as follows: (1) ρ, i, ν |= a ↔ a ∈ σi, (2) ρ, i, ν |= ¬ϕ ↔ ρ, i, ν 2 ϕ, (3)
ρ, i, ν |= ϕ1 ∧ ϕ2 ↔ ρ, i, ν |= ϕ1 and ρ, i, ν |= ϕ2, (4) ρ, i, ν |= x.ϕ ↔ ρ, i, ν[x ← τi] |= ϕ,
(5) ρ, i, ν |= x ∈ I ↔ τi − ν(x) ∈ I, (6) ρ, i, ν |= ϕ1 Uϕ2 ↔ ∃j > i, ρ, j, ν |= ϕ2, and
ρ, k, ν |= ϕ1 ∀ i < k < j. ρ satisfies φ denoted ρ |= φ iff ρ, 1, 0̄ |= φ. Here 0̄ is the valuation
obtained by setting all clock variables to 0. We denote by k−TPTL the fragment of TPTL
using at most k clock variables.

I Theorem 1 ([15]). MTL satisfiability is decidable over finite timed words and is non-
primitive recursive.

MTL with Rational Expressions (RatMTL)

We propose an extension of MTL with rational expressions, that forms the core of the paper.
These modalities can assert the truth of a rational expression (over subformulae) within a
particular time interval with respect to the present point. For example, Rat(0,1)(ϕ1.ϕ2)+ when
evaluated at a point i, asserts the existence of 2k points τi < τi+1 < τi+2 < · · · < τi+2k < τi+1,
k > 0, such that ϕ1 evaluates to true at τi+2j+1, and ϕ2 evaluates to true at τi+2j+2, for all
0 ≤ j < k.

RatMTL Syntax Formulae of RatMTL are built from Σ (atomic propositions) as follows:
ϕ ::= a(∈ Σ) |true |ϕ ∧ ϕ | ¬ϕ | RatI re(S) | ϕURatI,re(S)ϕ, where I ∈ Iν and S is a
finite set of formulae of interest generated by this grammar, and re(S) is defined as a

MFCS 2017



77:4 Making Metric Temporal Logic Rational

rational expression over S. re(S) ::= ϕ(∈ S) | re(S).re(S) | re(S) + re(S) | [re(S)]∗. Thus,
RatMTL is MTL + URat + Rat. An atomic rational expression re is any well-formed
formula ϕ ∈ RatMTL.

RatMTL Semantics For a timed word ρ = (σ, τ) ∈ TΣ∗, a position i ∈ dom(ρ), and a
RatMTL formula ϕ, a finite set S of formulae, we define the satisfaction of ϕ at a position
i as follows. For positions i < j ∈ dom(ρ), let Seg(ρ, S, i, j) denote the untimed word over
P(S) obtained by marking the positions k ∈ {i+ 1, . . . , j− 1} of ρ with ψ ∈ S iff ρ, k |= ψ.
For a position i∈dom(ρ) and an interval I, let TSeg(ρ, S, I, i) denote the untimed word
over P(S) obtained by marking all the positions k such that τk − τi ∈ I of ρ with ψ ∈ S
iff ρ, k |= ψ.
1. ρ, i |= ϕ1URatI,re(S)ϕ2 ↔ ∃j>i, ρ, j|= ϕ2, τj − τi∈I, ρ, k |= ϕ1 ∀i<k<j and,

[Seg(ρ,S, i, j)]single ∩ L(re(S)) 6= ∅, where L(re(S)) is the language of the rational
expression re formed over the set S. The subclass of RatMTL using only the URat
modality is denoted RatMTL[URat] or MTL + URat and if only non-punctual intervals
are used, then it is denoted RatMITL[URat] or MITL + URat.

2. ρ, i |= RatI re ↔ [TSeg(ρ, S, I, i)]single ∩ L(re(S)) 6= ∅.
The language accepted by a RatMTL formula ϕ is given by L(ϕ) = {ρ | ρ, 0 |= ϕ}.

I Example 2. Consider the formula ϕ = aURat(0,1),ab∗b. Then re=ab∗, and the subformulae
of interest are a, b. For ρ=({a}, 0)({a, b}, 0.3)({a, b}, 0.99), ρ, 1 |= ϕ, since a∈σ2, b∈σ3,
τ3−τ1∈(0, 1) and a ∈ [Seg(ρ, {a, b}, 1, 3)]single ∩ L(ab∗). On the other hand, for the word
ρ = ({a}, 0)({a}, 0.3)({a}, 0.5)({a}, 0.9)({b}, 0.99), we know that ρ, 1 2 ϕ, since even though
b ∈ σ5, a ∈ σi for i < 5, [Seg(ρ, {a, b}, 1, 5)]single = aaa and aaa /∈ L(ab∗).

I Example 3. Consider the formula ϕ = Rat(0,1)[Rat(0,1)a]∗.
For ρ = ({a, b}, 0)({a, b}, 0.7)({b}, 0.98)({a, b}, 1.4), we have ρ, 12Rat(0,1)[Rat(0,1)a]∗, since
point 2 is not marked Rat(0,1)a, even though point 3 is.

Generalizing Counting, Pnueli & Mod Counting Modalities. The following reductions
show that RatMTL subsumes most of the extensions of MTL studied in the literature.

(1) Threshold Counting constraints [16], [13], [12] specify the number of times a prop-
erty holds within some time region is at least (or at most) n. These can be ex-
pressed in RatMTL: (i) C≥nI ϕ ≡ RatI(reth), (ii) φ1UTI,ϕ≥nφ2 ≡ φ1URatI,reth

φ2, where
reth = true∗ϕ.true∗. . . . .ϕ.true∗︸ ︷︷ ︸

n times

.

(2) Pnueli Modalities1 [16], which enhance the expressiveness of MITL in continuous
semantics preserving the complexity, can be written in RatMTL: PnI(φ1, φ2, . . . , φk) can
be written as RatI(true∗.φ1.true

∗φ2. . . . .true
∗.φk.true

∗).

(3) Modulo Counting constraints [4], [14] specify the number of times a property holds
modulo n ∈ N, in some region. We extend these to the timed setting by proposing
two modalities MCk%n

I and UMI,ϕ=k%n. MCk%n
I ϕ checks if the number of times ϕ is

true in interval I is M(n) + k, where M(n) denotes a non-negative integer multiple
of n, and 0 ≤ k ≤ n − 1, while ϕ1UMI,#ψ=k%nϕ2 when asserted at a point i, checks

1 The version of the modality only specified sequences for the next unit interval. We talk about a more
general version of this operator which is appended by timing interval.



S.N. Krishna, K. Madnani, and P. K. Pandya 77:5

the existence of j > i such that τj − τi ∈ I, ϕ2 is true at j, ϕ1 holds between i, j,
and the number of times ψ is true between i, j is M(n) + k, 0 ≤ k ≤ n − 1. As an
example, ψ = trueUM(0,1),#b=1%2(a ∨ b), when asserted at a point i, checks the existence
of a point j > i such that a or b ∈ σj , τj − τi ∈ (0, 1), and the number of points
between i, j where b is true is odd. Both these modalities can be rewritten equivalently
in RatMTL as follows: MCk%n

I ϕ ≡ RatI(remod) and φ1UMI,ϕ=k%nφ2 ≡ φ1URatI,remod
φ2

where remod = ([(¬ϕ)∗.ϕ. . . . .(¬ϕ)∗.ϕ︸ ︷︷ ︸
n times

]∗.[(¬ϕ)∗.ϕ. . . . .(¬ϕ)∗.ϕ︸ ︷︷ ︸
k times

]. The extension of MTL

(MITL) with only UM is denoted MTL + UM (MITL + UM) while MTL + MC (MITL + MC)
denotes the extension using MC.

3 Satisfiability of RatMTL and Complexity

The main results of this section are as follows.

I Theorem 4. (1) Satisfiability of RatMTL is decidable over finite timed words. (2) Satis-
fiability of MITL + UM is EXPSPACE-complete. (3) Satisfiability of MITL + URat is within
2EXPSPACE. (4) Satisfiability of MITL + MC is Fωω -hard.

Details of 4.2, 4.3, 4.4 are in appendices E.2,E.3 and E.4 of the full version, respectively.

I Theorem 5. MTL + URat ⊆ MTL + Rat, MTL + UM ⊆ MTL + MC.

Theorem 5 shows that the Rat modality can capture URat (and likewise, MC captures UM).
Thus, RatMTL ≡ MTL + Rat. Observe that any re can be decomposed into finitely many
factors, i.e. re =

n∑
i=1

Ri1.R
i
2. Given trueURat[l,u),reφ2, we assert Ri1 within interval (0, l]

and Ri2 in the prefix of the latter part within [l, u), followed by φ2. trueURat[l,u),reφ2 ≡∨
i∈{1,2...,n}

Rat(0,l)R
i
1 ∧ Rat[l,u)R

i
2.φ2.Σ∗. The proofs are in appendix G of the full version.

3.1 Proof of Theorem 4.1
Equisatisfiability. We will use the technique of equisatisfiability modulo oversampling [11]
in the proof of Theorem 4. Using this technique, formulae ϕ in one logic (say RatMTL) can
be transformed into formulae ψ over a simpler logic (say MTL) such that whenever ρ |= ϕ

for a timed word ρ over alphabet Σ, one can construct a timed word ρ′ over an extended
set of positions and an extended alphabet Σ′ such that ρ′ |= ψ and vice-versa [11], [12]. In
oversampling, (i) dom(ρ′) is extended by adding some extra positions between the first and
last point of ρ, (ii) the labeling of a position i ∈ dom(ρ) is over the extended alphabet Σ′ ⊃ Σ
and can be a superset of the previous labeling over Σ, while the new positions are labeled
using only the new symbols Σ′ −Σ. We can recover ρ from ρ′ by erasing the new points and
the new symbols. A restricted use of oversampling, when one only extends the alphabet and
not the set of positions of a timed word ρ is called simple extension. In this case, if ρ′ is a
simple extension of ρ, then dom(ρ) = dom(ρ′), and by erasing the new symbols from ρ′, we
obtain ρ. See Figure 1 for an illustration. The formula ψ over the larger alphabet Σ′ ⊃ Σ
such that ρ′ |= ψ iff ρ |= ϕ is said to be equisatisfiable modulo temporal projections to ϕ.
In particular, ψ is equisatisfiable to ϕ modulo simple extensions or modulo oversampling,
depending on how the word ρ′ is constructed from the word ρ.

The oversampling technique is used in the proofs of parts 4.1, 4.3 and 4.4.

MFCS 2017



77:6 Making Metric Temporal Logic Rational

Figure 1 ρ is over Σ = {a} and satisfies ϕ = �(0,1)a. ρ1 is an oversampling of ρ over an
extended alphabet Σ1 = Σ ∪ {b, d} and satisfies ψ1 = �(b ↔ ¬a) ∧ (¬b U(0,1)b). The red points
in ρ1 are the oversampling points. ρ2 is a simple extension of ρ over an extended alphabet
Σ2 = Σ ∪ {c} and satisfies ψ2 = �(c ↔ �(0,1)a) ∧ c. It can be seen that ψ1 is equivalent to ϕ
modulo oversampling, and ψ2 is equivalent to ϕ modulo simple extensions using the (respectively
oversampling, simple) extensions ρ1, ρ2 of ρ. However, ρ3 above, obtained by merging ρ1, ρ2,
eventhough an oversampling of ρ, is not a good model for the formula ψ1 ∧ψ2 over Σ1 ∪Σ2. However,
we can relativize ψ1 and ψ2 with respect to Σ as �(act1→(b↔¬a))∧[(act1→¬b) U(0,1)(b∧act1)], and
�(act2 → (c ↔ �[0,1)(act2 → a))) ∧ (act2 ∧ c) where act1 =

∨
Σ1, act2 =

∨
Σ2. The relativized

formula κ = Rel(ψ1,Σ) ∧ Rel(ψ2,Σ) is then equisatisfiable to ϕ modulo oversampling, and ρ3 is
indeed an oversampling of ρ satisfying κ. This shows that while combining formulae ψ1, ψ2 which
are equivalent to formulae ϕ1, ϕ2 modulo oversampling, we need to relativize ψ1, ψ2 to obtain a
conjunction which will be equisatisfiable to ϕ1 ∧ ϕ2 modulo oversampling. See [11] for details.

Equisatisfiable Reduction : RatMTL to MTL

Let ϕ be a RatMTL formula. To obtain equisatisfiable MTL formula ψ, we do the following.

1. We “flatten” the rational(Rat & URat) modalities to simplify the formulae, eliminating
nested rational modalities by allotting witness variable for each rational subformulae .
Thus the resulting formulae will be of the form prop∧�ns[w1 ↔ RatI ,URat] · · ·∧�ns[wk ↔
RatI ,URat] where prop refers to some boolean formulae over atoms and RatI ,URat denotes
formulae of the form RatI re−atom, propURatI,re−atomprop, respectively. Each conjunct of
the form �ns[w1 ↔ RatI ,URat] is called as temporal definition.

2. The elimination of rational modalities is achieved by obtaining equisatisfiable MTL
formulae ψi over Xi, possibly a larger set of propositions than Σ ∪Wi corresponding to
each temporal definition Ti of ϕflat. Relativizing these MTL formulae and conjuncting
them, we obtain an MTL formula

∧
iRel(ψi,Σ) that is equisatisfiable to ϕ (see Figure 1

for relativization).
The above steps are routine [11], [12]. What remains is to handle the temporal definitions.

Embedding the Runs of the DFA

For any given ρ over Σ∪W , where W is the set of witness propositions used in the temporal
definitions T of the forms �ns[w ↔ RatI re−atom] or �ns[w ↔ xURatI′,re−atomy], the rational
expression re−atom has a corresponding minimal DFA recognizing it. We define an LTL
formula GOODRUN(φe) which takes a formula φe as a parameter with the following behaviour.
ρ, i |= GOODRUN(φe) iff for all k > i, (ρ, k |= φe)→ (ρ[i, k] ∈ L(re−atom)). To achieve this,
we use two new sets of symbols Threads and Merge for this information. This results in the
extended alphabet Σ ∪W ∪ Threads ∪Merge for the simple extension ρ′ of ρ. The behaviour
of Threads and Merge are explained below.

Consider re−atom = re(S). Let Are−atom = (Q, 2S, δ, q1, QF ) be the minimal DFA for
re−atom and let Q = {q1, q2, . . . , qm}. Let In = {1, 2, . . . ,m} be the indices of the states.



S.N. Krishna, K. Madnani, and P. K. Pandya 77:7

Figure 2 Depiction of threads and merging. At time point 2.7, thread 2 is merged with 1, since
they both had the same state information. This thread remains inactive till time point 8.8, where it
becomes active, by starting a new run in state q1. At time point 8.8, thread 3 merges with thread 1,
while at time point 11, thread 2 merges with 1, but is reactivated in state q1.

Conceptually, we consider multiple runs of Are−atom with a new run (new thread) started at
each point in ρ. Threads records the state of each previously started run. At each step, each
thread is updated from it previous value according to the transition function δ of Are−atom
and also augmented with a new run in initial state. Potentially, the number of threads would
grow unboundedly in size but notice that once two runs are the same state at position i

they remain identical in future. Hence they can be merged into single thread (see Figure2).
As a result, m threads suffice. We record whether threads are merged in the current state
using variables Merge. An LTL formula records the evolution of Threads and Merge over any
behaviour ρ. We can define formula GOODRUN(φe) in LTL over Threads and Merge.

1. At each position, let Thi(qx) be a proposition that denotes that the ith thread is active
and is in state qx, while Thi(⊥) be a proposition that denotes that the ith thread is not
active. The set Threads consists of propositions Thi(qx),Thi(⊥) for 1 ≤ i, x ≤ m.

2. If at a position e, we have Thi(qx) and Thj(qy) for i < j, and if δ(qx, σe) = δ(qy, σe),
then we can merge the threads i, j at position e+ 1. Let merge(i, j) be a proposition that
signifies that threads i, j have been merged. In this case, merge(i, j) is true at position
e+ 1. Let Merge be the set of all propositions merge(i, j) for 1 ≤ i < j ≤ m.

We now describe the conditions to be checked in ρ′.
Initial condition(ϕinit)- At the first point of the word, we start the first thread and
initialize all other threads as ⊥ : ϕinit = ((Th1(q1)) ∧

∧
1<i≤m

Thi(⊥)).

Initiating runs at all points(ϕstart)- To check the rational expression within an
arbitrary interval, we need to start a new run from every point. ϕstart = �ns(

∨
i≤m

Thi(q1))

Disallowing Redundancy(ϕno−red)- At any point of the word, if i < j and Thi(qx)
and Thj(qx) are both true, qx 6= qy. ϕno−red =

∧
x∈In
�ns[¬

∨
1≤i<j≤m

(Thi(qx) ∧ Thj(qx))]

Merging Runs(ϕmerge)- If two different threads Thi,Thj(i < j) reach the same state qx on
reading the input at the present point, then we merge thread Thj with Thi. We remember
the merge with the proposition merge(i, j). We define a macro Nxt(Thi(qx)) which is true
at a point e if and only if Thi(qy) is true at e and δ(qy, σe) = qx, where σe ⊆ AP is the
maximal set of propositions true at e:

∨
{(qy,prop)∈(Q,2AP )|δ(qy,prop)=qx}

[prop∧Thi(qy)].

Let ψ(i, j, k, qx) be a formula that says that at the next position, Thi(qx) and Thk(qx)
are true for k > i, but for all j < i, Thj(qx) is not. ψ(i, j, k, qx) is given by
Nxt(Thi(qx))∧

∧
j<i

¬Nxt(Thj(qx))∧Nxt(Thk(qx)). In this case, we merge threads Thi,Thk,

and either restart Thk in the initial state, or deactivate the kth thread at the next position.
This is given by the formula NextMerge(i, k) = O[merge(i, k)∧(Thk(⊥)∨Thk(q1))∧Thi(qx)].
ϕmerge =

∧
x,i,k∈In∧k>i

�ns[ψ(i, j, k, qx)→ NextMerge(i, k)].

MFCS 2017



77:8 Making Metric Temporal Logic Rational

Figure 3 The linking thread at cj⊕u. The points in red are the oversampling integer points, and
so are τv + l and τv + u.

Propagating runs(ϕpro, ϕNO−pro)- If Nxt(Thi(qx)) is true at a point, and if for all
j < i, ¬Nxt(Thj(qx)) is true, then at the next point, we have Thi(qx). Let NextTh(i, j, qx)
denote the formula Nxt(Thi(qx)) ∧ ¬Nxt(Thj(qx)). The formula ϕpro is given by∧
i,j∈In∧i<j

�ns[NextTh(i, j, qx)→O[Thi(qx)∧¬merge(i, j)]]. If Thi(⊥) is true at the current

point, then at the next point, either Thi(⊥) or Thi(q1). The latter condition corresponds
to starting a new run on thread Thi. ϕNO−pro=

∧
i∈In
�ns{Thi(⊥)→O(Thi(⊥) ∨ Thi(q1))}

Let Run be the formula obtained by conjuncting all formulae explained above. Once we
construct the simple extension ρ′, checking whether the rational expression re−atom holds
in some interval I in the timed word ρ, is equivalent to checking that if u is the first
action point within I, and if Thi(q1) holds at u, then after a series of merges of the form
merge(i1, i),merge(i2, i1), . . .merge(j, in), at the last point v in the interval I, Thj(qf ) is true,
for some final state qf . This is encoded as GOODRUN(qf ). It can be seen that the number
of possible sequences of merges are bounded. Figure 2 illustrates the threads and merging.
To write an MTL formula that checks the truth of Rat[l,u)re−atom at a point v, we need to
oversample ρ′ as shown below.

I Lemma 6. Let T = �ns[w ↔ RatI re−atom] be a temporal definition built from Σ ∪W .
Then we synthesize a formula ψ ∈ MTL over Σ ∪W ∪ X such that T is equivalent to ψ
modulo oversampling.

Proof. Lets first consider the case when the interval I is bounded of the form [l, u). Consider
a point in ρ′ with time stamp τv. To assert w at τv, we look at the first action point after
time point τv + l, and check that GOODRUN(last(qf )) holds, where last(qf ) identifies the
last action point just before τv + u. The first difficulty is the possible absence of time points
τv + l and τv + u. To overcome this difficulty, we oversample ρ′ by introducing points at
times t+ l, t+ u, whenever t is a time point in ρ′. These new points are labelled with a new
proposition ovs. Sadly, last(qf ) cannot be written in MTL.

To address this, we introduce new time points at every integer point of ρ′. The starting
point 0 is labelled c0. Consecutive integer time points are marked ci, ci⊕1, where ⊕ is addition
modulo the maximum constant used in the time interval in the RatMTL formula. This helps
in measuring the time elapse since the first action point after τv + l, till the last action point
before τv + u as follows: if τv + l lies between points marked cj , cj⊕1, then the last integer
point before τv + u is uniquely marked cj⊕u.

Anchoring at τv, we assert the following at distance l: no action points are seen until
the first action point where Thi(q1) is true for some thread Thi. Consider the next point



S.N. Krishna, K. Madnani, and P. K. Pandya 77:9

where cj⊕u is seen. Let Thik1
be the thread to which Thi has merged at the last action

point just before cj⊕u. Let us call Thik1
the “last merged thread” before cj⊕u. The

sequence of merges from Thi till Thik1
asserts a prefix of the run that we are looking for

between τv + l and τv + u. To complete the run we mention the sequence of merges from
Thik1

which culminates in some Thik (qf ) at the last action point before τv + u.
Anchoring at τv, we assert the following at distance u: we see no action points since
Thik (qf ) at the action point before τv+u for some thread Thik , and there is a path linking
thread Thik1

to Thik since the point cj⊕u. We assert that the “last merged thread”, Thik1

is active at cj⊕u : this is the linking thread which is last merged into before cj⊕u, and
which is the first thread which merges into another thread after cj⊕u.

These two formulae thus “stitch” the actual run observed between points τv + l and τv + u.
The formal technical details can be seen in Appendix D in the full version. If I was an
unbounded interval of the form [l,∞), then we will go all the way till the end of the word,
and assert Thik (qf ) at the last action point of the word. Thus, for unbounded intervals, we
do not need any oversampling at integer points. J

In a similar manner, we can eliminate the URat modality, the proof of which can be found
in Appendix E in the full version. If we choose to work on logic MITL + URat, we obtain
a 2EXPSPACE upper bound for satisfiability checking, since elimination of URat results in
an equisatisfiable MITL formula. This is an interesting consequence of the oversampling
technique; without oversampling, we can eliminate URat obtaining 1-TPTL (Appendix C,
full version). However, 1-TPTL does not enjoy the benefits of non-punctuality, and is
non-primitive recursive (Appendix F, full version).

4 Automaton-Metric Temporal Logic-Freeze Logic Equivalences

The focus of this section is to obtain equivalences between automata, temporal and freeze
logics. First of all, we identify a fragment of RatMTL denoted SfrMTL, where the rational
expressions in the formulae are all star-free. We then show the equivalence between po-1-clock
ATA, 1−TPTL, and SfrMTL (po-1-clock ATA ⊆ SfrMTL ⊆ 1−TPTL ≡ po-1-clock ATA). The
main result of this section gives a tight automaton-logic connection in Theorem 7, and is
proved using Lemmas 9, 10 and 11.

I Theorem 7. 1−TPTL, SfrMTL and po-1-clock ATA are all equivalent.

We first show that partially ordered 1-clock alternating timed automata (po-1-clock ATA)
capture exactly the same class of languages as 1−TPTL. We also show that 1−TPTL is
equivalent to the subclass SfrMTL of RatMTL where the rational expressions re involved in
the formulae are such that L(re) is star-free.

A 1-clock ATA [15] is a tuple A = (Σ, S, s0, F, δ), where Σ is a finite alphabet, S is a
finite set of locations, s0 ∈ S is the initial location and F ⊆ S is the set of final locations.
Let x denote the clock variable in the 1-clock ATA, and x ./ c denote a clock constraint
where c ∈ N and ./∈ {<,≤, >,≥}. Let X denote a finite set of clock constraints of the form
x ./ c. The transition function is defined as δ : S × Σ→ Φ(S ∪ Σ ∪X) where Φ(S ∪ Σ ∪X)
is a set of formulae defined by the grammar ϕ ::= >|⊥|ϕ1 ∧ ϕ2|ϕ1 ∨ ϕ2|s|x ./ c|x.ϕ where
s ∈ S, and x.ϕ is a binding construct corresponding to resetting the clock x to 0.

The notation Φ(S∪Σ∪X) thus allows boolean combinations as defined above of locations,
symbols of Σ, clock constraints and >,⊥, with or without the binding construct (x.). A
configuration of a 1-clock ATA is a set consisting of locations along with their clock valuation.
Given a configuration C, we denote by δ(C, a) the configuration D obtained by applying

MFCS 2017



77:10 Making Metric Temporal Logic Rational

δ(s, a) to each location s such that (s, ν) ∈ C. A run of the 1-clock ATA starts from the
initial configuration {(s0, 0)}, and proceeds with alternating time elapse transitions and
discrete transitions obtained on reading a symbol from Σ. A configuration is accepting iff it
is either empty, or is of the form {(s, ν) | s ∈ F}. The language accepted by a 1-clock ATA
A, denoted L(A) is the set of all timed words ρ such that starting from {(s0, 0)}, reading ρ
leads to an accepting configuration. A po-1-clock ATA is one in which (i) there is a partial
order denoted ≺ on the locations, such that whenever sj appears in Φ(si), sj ≺ si, or sj = si.
Let ↓ si = {sj | sj ≺ si}, (ii) x.s does not appear in δ(s, a) for all s ∈ S, a ∈ Σ.

I Example 8. Consider the po-1-clock ATA A = ({a, b}, {s0, sa, s`}, s0, {s0, s`}, δ) with
transitions δ(s0, b) = s0, δ(s0, a) = (s0∧x.sa)∨s`, δ(sa, a) = (sa∧x < 1)∨(x > 1) = δ(sa, b),
and δ(s`, b) = s`, δ(s`, a) = ⊥. The automaton accepts all strings where every non-last a has
no symbols at distance 1 from it, and has some symbol at distance > 1 from it.

I Lemma 9. po-1-clock ATA and 1−TPTL are equivalent in expressive power.

The translation from 1−TPTL to po-1-clock ATA is easy, as in the translation from MTL to po-
1-clock ATA. For the reverse direction, we start from the lowest location (say s) in the partial
order, and replace the transitions of s by a 1-TPTL formula that models timed words which
are accepted, when started in s. The accepting behaviours of each location s, denoted Beh(s)
is computed bottom up. The 1-TPTL formula that we are looking for is Beh(s0) where s0 is
the initial location. In example 8, Beh(s`) = �nsb, Beh(sa)=(x < 1) Uns(x > 1), Beh(s0) =
[(a ∧ x.OBeh(sa)) ∨ b] W(a ∧OBeh(s`)) =((a ∧ (x.O[(x < 1) Unsx > 1])) ∨ b) W(a ∧O�nsb).
Step by step details for Lemma 9 can be seen in Appendix H of the full version.

I Lemma 10. SfrMTL ⊆ 1− TPTL.

The proof of Lemma 10 can be found in Appendix I of the full version. The intuition is to
freeze a clock x at the current point, and write an LTL formula equivalent to the star-free
expression over an interval I which can be constrained checking x ∈ I in the LTL formula.

I Lemma 11. (po-1-clock ATA to SfrMTL) Given a po-1-clock ATA A, we can construct a
SfrMTL formula ϕ such that L(A) = L(ϕ).

Proof. (Sketch) We give a proof sketch here, a detailed proof can be found in Appendix
J of the full version. Let A be a po-1-clock ATA with locations S = {s0, s1, . . . , sn}. Let
K be the maximal constant used in the guards x ∼ c occurring in the transitions. Let
R2i = [i, i], R2i+1 = (i, i + 1), 0 ≤ i < K and R+

K = (K,∞) be the regions R of x. Let
Rh ≺ Rk denote that region Rh precedes region Rk. For each location s,Beh(s) as computed in
Lemma 9 is a 1-TPTL formula that gives the timed behaviour starting at s, using constraints
x ∼ c since the point where x was frozen. In example 8, Beh(sa)=(x < 1) Uns(x > 1), allows
symbols a, b as long as x < 1 keeping the control in sa, has no behaviour at x = 1, and allows
control to leave sa when x > 1. For any s, we “distribute” Beh(s) across regions by untiming
it. In example 8, Beh(sa) is �ns(a∨ b) for regions R0, R1, it is ⊥ for R2 and is (a∨ b) for R+

1 .
Given any Beh(s), and a pair of regions Rj � Rk, such that s has a non-empty behaviour in
region Rj , and control leaves s in Rk, the untimed behaviour of s between regions Rj , . . . , Rk
is written as LTL formulae ϕj , . . . , ϕk. This results in a “behaviour description” (or BD
for short) denoted BD(s,Rj , Rk) = {BD1,BD2, . . . ,BDw}2 where each BDi is a 2K + 1

2 Note that if s is one of the lowest locations in the partial order, this is a singleton set. We will denote
the elements of BD(s,Rj , Rk) as BDno..



S.N. Krishna, K. Madnani, and P. K. Pandya 77:11

Figure 4 A po-1-clock ATA with initial location s1 and s2, s3 are accepting.

tuples with BDi[Rl] = ϕl for j ≤ l ≤ k, and BD[R] = > denoting “dont care” for the other
regions. Let BDSet(s) denote the union of all BDs for a location s. For the initial location
s0, consider all BDi ∈ BD(s0, Rj , Rk) that have a behaviour starting in Rj , and ends in
an accepting configuration in Rk. Each LTL formula BDi[Ri] is replaced with a star-free
rational expression denoted re(BD(s0, Rj , Rk)[Ri]). Then BD(s0, Rj , Rk) is transformed into
a SfrMTL formula ϕ(s0, Rj , Rk) =

∨
BDi∈BD(s0,Rj ,Rk)

∧
j≤g≤k RatRg

re(BDi[Rg]). The language

accepted by the po-1-clock ATA A is then given by
∨

0≤j≤k≤2K ϕ(s0, Rj , Rk).

Computing BD(s, Ri, Rj) for a location s and pair of regions Ri � Rj . We first
compute BD(s,Ri, Rj) for locations s which are lowest in the partial order, followed by
computing BD(s′, Ri, Rj) for locations s′ which are higher in the order. For any location s,
Beh(s) has the form ϕ or ϕ1 Wϕ2 or ϕ1 Unsϕ2, where ϕ,ϕ1, ϕ2 are disjunctions of conjunctions
over Φ(S ∪ Σ ∪X), where S is the set of locations with or without the binding construct
x., and X is a set of clock constraints of the form x ∼ c. Each conjunct has the form
ψ ∧ x ∈ R where ψ ∈ Φ(Σ ∪ S) and R ∈ R. Let ϕ1 =

∨
(Pi ∧ Ci), ϕ2 =

∨
(Qj ∧ Ej) where

Pi, Qj ∈ Φ(Σ ∪ S) and Ci, Ej ∈ R. Let C and E be shorthands for any Ck, El.
If Beh(s) is an expression without U,W (the case of ϕ above), then BD(s,Ri, Ri) is

defined for a region Ri if ϕ =
∨

(Qj ∧ Ej) and there is some El with x ∈ Ri. It is a
2K + 1 tuple with BD(s,Ri, Ri)[Ri] = Ql

3we know that , and the rest of the entries are
> (for dont care). If Beh(s) has the form ϕ1 Wϕ2 or ϕ1 Unsϕ2, then for Ri � Rj , and
a location s, BD(s,Ri, Rj) = {BD1} where BD1 is a 2K + 1 tuple with (i) formula > in
regions R0, . . . , Ri−1, Rj+1, . . . , R

+
K , (ii) If Ck = El = (x ∈ Rj) for some Ck, El, then the

LTL formula in region Rj is Pk UQl if s is not accepting, and is Pk WQl if s is accepting, (iii)
If no Ck is equal to any El, and if El = (x ∈ Rj) for some l, then the formula in region Rj is
Ql. If Cm = (x ∈ Ri) for some m, then the formula for region Ri is �nsPm. If there is some
Ch = (x ∈ Rw) for i < w < j, then the formula in region Rw is �nsPh ∨ ε, where ε signifies
that there may be no points in regions Rw. If there are no Cm’s such that Cm = (x ∈ Rw)
for Ri ≺ Rw ≺ Rj , then the formula in region Rw is ε. ε is used as a special symbol in LTL
whenever there is no behaviour in a region.

BD(s, Ri, Rj) for location s lowest in po. Let s be a location that is lowest in the partial
order. In general, if s is the lowest in the partial order, then Beh(s) has the form ϕ1 Wϕ2
or ϕ1 Unsϕ2 or ϕ where ϕ,ϕ1, ϕ2 are disjunctions of conjunctions over Φ(Σ ∪ X). Each
conjunct has the form ψ ∧ x ∈ R where ψ ∈ Φ(Σ) and R ∈ R. See Figure 4, with regions

3 We abuse the notation by indexing the BD(s,Ri, Ri)[Ri] instead of BD when it is a singleton set.

MFCS 2017



77:12 Making Metric Temporal Logic Rational

Figure 5 Combining BDs

R0, R1, R2, R
+
1 , and some example BDs. In Figure 4, using the BDs of the lowest location s3,

we write the SfrMTL formula for Beh(s3) : ψ(s3) = ϕR0(s3) ∧ ϕR1(s3) ∧ ϕR2(s3) ∧ ϕR+
1

(s3),
where each ϕR describes the behaviour of s3 starting from region R. For a fixed region
Ri, ϕRi

(s3) is
∧
Rg≺Ri

RatRg
ε ∧ RatRi

Σ+ → {
∨
Ri≺Rj

ϕ(s3, Ri, Rj)}, where ϕ(s3, Ri, Rj) is
described above. RatRg

ε means that there is no behaviour in Rg. ϕR0(s3) is given by
RatR0Σ+ → {(RatR0a

∗ ∧ RatR1 [a∗ + ε] ∧ RatR2 [a∗ + ε] ∧ RatR+
1

[a∗ + a∗b])}.

BD(s, Ri, Rj) for a location s which is higher up . If s is not the lowest in the partial
order, then Beh(s) can have locations s′ ∈↓ s. s′ occurs as O(s′) or x.O(s′) in Beh(s). For
x.OBeh(s3) in BD(s,Ri, Rj), since the clock is frozen, we plug-in the SfrMTL formula ψ(s3)
computed above for x.OBeh(s3) in BD(s1, Ri, Rj). For instance, in figure 4, x.OBeh(s3)
appears in BD(s2, R2, R2)[R2]. We simply plug in the SfrMTL formula ψ(s3) in its place.
Likewise, for locations s, t, if OBeh(t) occurs in BD(s,Ri, Rj)[Rk], we look up BD(t, Rk, Rl) ∈
BDSet(t) for all Rk � Rl and combine BD(s,Ri, Rj),BD(t, Rk, Rl) in a manner described
below. This is done to detect if the “next point” for t has a behaviour in Rk or later.

(a) If the next point for t is in Rk itself, then we combine all BD1 ∈ BD(s,Ri, Rj) with every
BD2 ∈

⋃
Rk�Rl

BD(t, Rk, Rl) ⊆ BDSet(t) as follows4. combine(BD1,BD2) results in BD3

such that BD3[R]=BD1[R] for R ≺ Rk, BD3[R]=BD1[R] ∧ BD2[R] for Rk ≺ R, where
∧ denotes component wise conjunction. BD3[Rk] is obtained by replacing OBeh(s2) in
BD1[Rk] with BD2[Rk]. Doing so enables the next point in Rk, emulating the behaviour
of t in Rk.

(b) Assume the next point for t lies in Rb, Rk ≺ Rb. The difference with case (a) is that
we combine BD1 ∈ BD(s,Ri, Rj) with BD2∈

⋃
Rk�Rl

BD(t, Rk, Rl) ⊆ BDSet(t). Then

combine(BD1,BD2) results in a BD, say BD3 such that BD3[R] = BD1[R] for R ≺ Rk,
BD3[R] = BD1[R] ∧ BD2[R] for all Rb � R, and BD3[R] = ε for Rk ≺ R ≺ Rb. The
OBeh(t) in BD1[Rk] is replaced with �⊥ to signify that the next point is not enabled
for t. See Figure 5 where Rb = R2. The conjunction with �⊥ in R0 signifies that the
next point for s2 is not in R0; the ε in R1 signifies that there are no points in R1 for s2.
Conjuncting �⊥ in a region signifies that the next point does not lie in this region.

We look at the “accepting” BDs in BDSet(s0), viz., all BD(s0, Rj , Rk), such that acceptance
happens in Rk, and s0 has a behaviour starting in Rj . The LTL formulae BDi[R] [where
BDi ∈ BDSet(s0)] is replaced with star-free expression re(BDi[R]). BDSet(s0) gives an SfrMTL
formula ϕ=

∨
BDi∈BDSet(s0)

∧
Rj�R�Rk

RatRre(BDi[R]) whose language is L(ϕ)=L(A). J

4 Take cross product of two sets and then applying combine operation



S.N. Krishna, K. Madnani, and P. K. Pandya 77:13

5 Discussion

We propose RatMTL which significantly increases the expressive power of MTL and yet
retains decidability over pointwise finite words. The Rat operator added to MTL syntactically
subsumes several other modalities in literature including threshold counting, modulo counting
and the Pnueli modality. The reduction of RatMTL to equisatisfiable MTL has element-
ary complexity and allows us to identify two fragments of RatMTL with 2EXPSPACE and
EXPSPACE satisfiability. In [11], oversampled temporal projections were used to reduce MTL
with punctual future and non-punctual past to MTL. Our reduction can be combined with
the one in [11] to obtain decidability of RatMTL and elementary decidability of MITL + URat
+ non-punctual past. These are amongst the most expressive decidable extensions of MTL
known so far. The exact complexity class for satisfiability of MITL + URat is an interesting
open question. We also show an exact logic-automaton correspondence between the fragment
SfrMTL and po-1-clock ATA. It is not difficult to see that full RatMTL can be reduced to
equivalent 1 clock ATA. This provides an alternative proof of decidability of RatMTL but the
proof will not extend to decidability of RatMTL+ non-punctual past, nor prove elementary
decidability of MITL + URat+non-punctual past. Hence, we believe that our proof technique
has some advantages. An interesting related formalism of timed regular expressions was
defined by Asarin, Maler, Caspi, and shown to be expressively equivalent to timed automata.
Our RatMTL has orthogonal expressive power, and it is boolean closed (thus the decidability
of universality checking comes for free). The exact expressive power of RatMTL which is
between 1-clock ATA and po-1-clock ATA is open.

References
1 R. Alur, T. Feder, and T. Henzinger. The benefits of relaxing punctuality. J.ACM,

43(1):116–146, 1996.
2 Rajeev Alur and Thomas A. Henzinger. Real-time logics: Complexity and expressiveness.

Inf. Comput., 104(1):35–77, 1993. doi:10.1006/inco.1993.1025.
3 Eugene Asarin, Paul Caspi, and Oded Maler. Timed regular expressions. J. ACM,

49(2):172–206, 2002. doi:10.1145/506147.506151.
4 Augustin Baziramwabo, Pierre McKenzie, and Denis Thérien. Modular temporal logic. In

14th Annual IEEE Symposium on Logic in Computer Science, Trento, Italy, July 2-5, 1999,
pages 344–351, 1999. doi:10.1109/LICS.1999.782629.

5 Patricia Bouyer, Fabrice Chevalier, and Nicolas Markey. On the expressiveness of TPTL
and MTL. In FSTTCS 2005: Foundations of Software Technology and Theoretical Com-
puter Science, 25th International Conference, Hyderabad, India, December 15-18, 2005,
Proceedings, pages 432–443, 2005. doi:10.1007/11590156_35.

6 Cindy Eisner and Dana Fisman. A Practical Introduction to PSL. Springer, 2006.
7 IEEE P1850-Standard for PSL-Property Specification Language, 2005.
8 Jesper G. Henriksen and P. S. Thiagarajan. Dynamic linear time temporal logic. Ann.

Pure Appl. Logic, 96(1-3):187–207, 1999. doi:10.1016/S0168-0072(98)00039-6.
9 Philippe Herrmann. Renaming is necessary in timed regular expressions. In Foundations of

Software Technology and Theoretical Computer Science, 19th Conference, Chennai, India,
December 13-15, 1999, Proceedings, pages 47–59, 1999. doi:10.1007/3-540-46691-6_4.

10 P. Hunter. When is metric temporal logic expressively complete? In CSL, pages 380–394,
2013.

11 S. N. Krishna K. Madnani and P. K. Pandya. Partially punctual metric temporal logic is
decidable. In TIME, pages 174–183, 2014.

MFCS 2017

http://dx.doi.org/10.1006/inco.1993.1025
http://dx.doi.org/10.1145/506147.506151
http://dx.doi.org/10.1109/LICS.1999.782629
http://dx.doi.org/10.1007/11590156_35
http://dx.doi.org/10.1016/S0168-0072(98)00039-6
http://dx.doi.org/10.1007/3-540-46691-6_4


77:14 Making Metric Temporal Logic Rational

12 Shankara Narayanan Krishna, Khushraj Madnani, and Paritosh K. Pandya. Metric tem-
poral logic with counting. In Foundations of Software Science and Computation Structures
- 19th International Conference, FOSSACS 2016, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands,
April 2-8, 2016, Proceedings, pages 335–352, 2016.

13 F. Laroussinie, A. Meyer, and E. Petonnet. Counting ltl. In TIME, pages 51–58, 2010.
14 K. Lodaya and A. V. Sreejith. Ltl can be more succinct. In ATVA, pages 245–258, 2010.
15 J. Ouaknine and J. Worrell. On the decidability of metric temporal logic. In LICS, pages

188–197, 2005.
16 A. Rabinovich. Complexity of metric temporal logic with counting and pnueli modalities.

In FORMATS, pages 93–108, 2008.



Complexity of Restricted Variants of Skolem and
Related Problems
S. Akshay1, Nikhil Balaji∗2, and Nikhil Vyas3

1 Department of Computer Science and Engineering, IIT Bombay, India
akshayss@cse.iitb.ac.in

2 Aalen University, Aalen, Germany
nikhilrbalaji@gmail.com

3 Department of Computer Science and Engineering, IIT Bombay, India
nikhilvyas@cse.iitb.ac.in

Abstract
Given a linear recurrence sequence (LRS), the Skolem problem, asks whether it ever becomes
zero. The decidability of this problem has been open for several decades. Currently decidability
is known only for LRS of order upto 4. For arbitrary orders (i.e., number of terms the nth
depends on), the only known complexity result is NP-hardness by a result of Blondel and Portier
from 2002.

In this paper, we give a different proof of this hardness result, which is arguably simpler and
pinpoints the source of hardness. To demonstrate this, we identify a subclass of LRS for which
the Skolem problem is in fact NP-complete. We show the generic nature of our lower-bound
technique by adapting it to show stronger lower bounds of a related problem that encompasses
many known decision problems on linear recurrent sequences.

1998 ACM Subject Classification F.1.1 Models of computation, F.2 Analysis of Algorithms and
Problem Complexity, F.2.1. Numerical Algorithms and Problems

Keywords and phrases Linear recurrence sequences, Skolem problem, NP-completeness, Pro-
gram termination

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.78

1 Introduction

While linear dynamical systems have been studied for a long time, several interesting and
computationally relevant decision problems remain unsolved. The Skolem problem is a long-
standing open problem in mathematics which asks whether zero ever occurs in the infinite
sequence generated by a given linear recurrence sequence (LRS) with specific initial condi-
tions. The positivity problem asks if the values of an LRS are always positive. Both these
problems have received consider attention from mathematicians and computer scientists over
the years. The positivity problem is related to program termination for initialized linear loop
programs [23, 8, 16], while the Skolem and its variants have been considered in probabilistic
verification [1, 2, 3] among other applications. However, despite decades of active research,
the problems in their full generality have remained open.

While a result of Blondel and Portier [7] showed NP-hardness for the Skolem problem,
the only known positive results are for very restricted class of recurrences, with restrictions

∗ Supported by DFG grant TH 472/4. Part of this work was done when the author was a Postdoctoral
fellow at IIT Bombay.

© S. Akshay, Nikhil Balaji, and Nikhil Vyas;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 78; pp. 78:1–78:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.78
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


78:2 Complexity of Restricted Variants of Skolem and Related Problems

on either the order of the recurrence (i.e., number of terms defining the sequence) or on
the roots of the characteristic polynomial associated with the recurrence. On one hand,
the Skolem problem is known to be decidable for order 4 [17, 25] and positivity for degree
6 [19]. On the other hand, by restricting LRS to only considering those with distinct roots
(these are called simple LRS), Ouaknine and Worrell show decidability of positivity for order
9 LRS [18] and decidability of a related variant, ultimate positivity (is there a point after
which the LRS is always positive) [20]. Further, in [18] they show that the decidability of the
the positivity problem for order 6 LRS would entail solutions to longstanding open problems
on Diophantine approximations. While it is well-known and probably a folklore result ([25])
that if the roots of characteristic polynomial are real (in fact, more generally, if the LRS has
a single dominant root) then Skolem and positivity are decidable, the exact complexity of
these problems have not been mapped out. Indeed, it is customary for papers in the area
to study LRS that are non-degenerate (which is when there are no two characteristic roots
such that their ratio is a root of unity), since it is known that the general case reduces to
this case as far as decidability is concerned.

In this paper, we focus on linear recurrence sequences, whose characteristic polynomial
has roots of some special form. Our contributions are the following: we give a new NP-
hardness proof for the Skolem problem by a reduction from the classic Subset Sum problem.
This gives an alternate proof of NP-hardness of Skolem (as well as coNP-hardness for posit-
ivity), which matches the best lower bound known for the Skolem problem, due to Blondel
and Portier [7]. A closer inspection of our proof shows that the LRS that is output by our
reduction is a special subclass of LRS whose characteristic polynomial has roots that are
complex roots of unity (i.e., complex numbers α such that αn = 1 for some integer n). We
investigate this natural class of LRS and match our lower bound by showing that the Skolem
problem for this class can be solved in NP. Thus, we obtain a natural subclass of LRS of
arbitrary order with an NP-complete Skolem problem, which to the best of our knowledge
has not been observed before. Finally, we show that both the lower bound and upper bound
techniques can be lifted to other problems.

We now explain the significance of all these three results and place them in the context
of existing results. We start with the hardness result, where as mentioned earlier, Blondel
and Portier [7] already proved NP-Hardness of Skolem. However, our proof is of independent
interest for the following reasons:

Our proof is a direct reduction from the classical subset sum problem and is arguably
simpler/shorter than the proof in [7], which goes via automata theory, by showing a
reduction from universality of unary NFA.
The proof in [7] shows NP-hardness by considering LRS whose characteristic polynomials
have 0/1-coefficients. While this is indeed a simple subclass of LRS, the characteristic
polynomial of such LRS could still have complex roots with phase/angle that is an
irrational multiple of π. Current techniques seem inadequate to solve the Skolem and
positivity problem for LRS of this kind and hence do not give effective upper bounds. In
contrast, for the subclass of LRS arising from our hardness proof, the Skolem problem
admits an NP algorithm. 1

Our NP-hardness proof can be extended to show hardness for other problems as shown
in Section 4.

Next, we turn to the NP upper bound. We first note that we are able to achieve this result
for LRS of arbitrary orders. All upper bounds currently known for restricted variants of the

1 In fact, a closer inspection of Blondel and Portier’s proof, reveals that their hard instances actually fall
into a stricter subclass, which can be shown to be NP-complete using our techniques.



S. Akshay, N. Balaji, and N. Vyas 78:3

Skolem (and related problems) problem, restrict the order to a fixed constant [18] or assume
that the recurrence with arbitrary order is simple [20]. Our upper bound techniques rely on
basic linear algebra and complexity theory and do not need the development or application
of advanced techniques from algebraic number theory and Diophantine approximation as in
the other results in [18, 20]. This indeed makes our proofs more elementary, but allows for
easy generalization to other problems as we show next.

Our third and final contribution is to show that our lower bound proof and the upper
bound techniques can be extended. To illustrate this, we consider a related variant of the
Skolem and positivity problem which we call the polytope containment problem. We will
define this problem in the matrix form rather than in terms of LRS, while noting that we
can use Cayley-Hamilton theorem and basic linear algebra to see their equivalence (see [25]
for details). Recall that a (convex) polytope is an intersection of finitely many half-spaces and
it is said to be bounded if the region enclosed in it is bounded. Given a bounded polytope V1
and a (possibly unbounded) polytope V2 over Zd and a d ∗ d matrix M with integer entries,
the Integer Polytope Containment Problem asks if for all v ∈ V1 does there exist a positive
integer n such that vMn ∈ V2.

There are two main motivations to look at this problem. First, it generalizes the Skolem
problem, higher-order orbit problem [10] and polyhedron hitting problem [9] over integers.
For the former, we set V1 to be the initial vector and V2 the space orthogonal to the target
vector (defined as the intersection of halfspaces {x | x ·w ≤ 0∧x ·w ≥ 0}). The higher-order
orbit problem is obtained by fixing V1 as the initial vector and no restrictions on V2.

The second main motivation is that the negation of this problem is closely related to
program termination of linear loops. Program termination is a classical undecidable problem,
but the special case of the problem over linear loops has received considerable attention
( [21] surveys these results as well as their link to linear recurrence sequences). There are
two main variants of this problem. First, the initialized termination problem asks: starting
from a initial vector v, is it the case that for all n ∈ N, vMn > 0? Next the uninitialized
termination problem asks: does there exist an initial vector v such that for all n ∈ N, we
have vMn > 0? In [23, 8], Tiwari and Braverman showed that the uninitialized problem
is decidable in polynomial time for reals and integers respectively. The initialized problem,
often called the positivity problem, however is still open in its fully generality though some
results in restricted cases have been proved recently [18, 20, 19].

We observe that the negation of the above defined polytope containment problem is:
given a bounded polytope V1 and a polytope V2, does there exist v ∈ V1 such that for all
n ∈ N, vMn 6∈ V2. By fixing V2 to be the halfspace {x ∈ Zd | cTx ≤ 0}, we obtain (i) the
initialized termination problem over integers by fixing V1 to be the singleton initial vector
and (ii) the uninitialized termination problem over integers by fixing V1 to be the entire
space Zd. Thus, this problem generalizes both initialized and uninitialized linear program
termination problems. For e.g., the following is an instance of this problem.

Given M , V1 (a bounded polytope), c, does the following loop terminate for all x ∈ V1
1: while cTx > 0 do
2: x←Mx

Showing decidability of this problem in general would imply the decidability of the many
of these longstanding open problems, including Skolem and Positivity. Nevertheless, one
may ask whether looking at this general problem allows us to prove better lower bounds
or/and upper bounds in restricted cases. We remark here that if we generalize V1 to allow

MFCS 2017



78:4 Complexity of Restricted Variants of Skolem and Related Problems

unbounded polytopes, it turns out that we can encode Petri net reachability and hence
this problem is EXPSPACE-hard [6]. However, this hardness result crucially depends on the
unboundedness of V1 and does not seem to work for a bounded initial space over integers.

As before, we restrict ourselves to the subclass whose characteristic roots are all complex
roots of unity (or zero). We are able to then show that for this restricted class, the problem
is ΠP

2 -complete, building upon our lower-bound and upper-bound techniques.

2 Preliminaries

For a complex number z = x + iy, the absolute value and phase of the complex number
are respectively denoted by |z| =

√
x2 + y2 and arg(z) = tan−1( yx ). We denote by ei the

k-dimensional standard basis vector that has 1 at the i-th position and 0 elsewhere.

2.1 Linear Recurrence Sequences

We recall some definitions and basic properties of linear recurrence sequences that will be
useful in the rest of the paper. For a detailed treatment, we refer the reader to the excellent
text of Everest et al. [12].

I Definition 1 (Linear Recurrence Sequence). A sequence 〈u〉 = 〈un〉∞n=0 is called a linear
recurrence sequence (LRS) of order k if k is the smallest positive integer such that the nth
term of the sequence can be expressed as un = ak−1un−1 + . . . + a1un−k−1 + a0un−k, for
every n ≥ k, where aj ∈ Z for j ∈ {0, 1, . . . , k − 1} and a0 6= 0. Such a sequence is uniquely
determined by the initial conditions u0, u1, . . . , uk−1.

An LRS 〈u〉 = {un}∞n=0 is said to be periodic with period p if un = un+p for every
n ≥ 0. For a linear recurrence sequence 〈u〉 of order k, we denote by ||u||, the size of the bit
representation of the coefficients of 〈u〉, namely a0, a1, . . . , ak−1 and the initial conditions
u0, u1, . . . , uk−1.

To every such recurrence sequence 〈u〉 above, one can associate a univariate polynomial
χu(x) = xk − ak−1x

k−1− ak−2x
k−2− . . .− a1x− a0 of degree at most k. χu(x) is called the

characteristic polynomial of the recurrence 〈u〉. The roots of the characteristic polynomial
are called the characteristic roots and they yield useful information about the asymptotic
behavior of the recurrence. More formally, let {λ1, λ2, . . . , λd} be the roots of χu(x) with
multiplicity ρ1, ρ2, . . . , ρd respectively. Then the nth term of such an LRS 〈u〉, denoted un
can be expressed as

un =
d∑
j=1

qj(n)λnj (1)

where qj(x) ∈ C[x] are univariate polynomials with complex coefficients of degree at most
ρj − 1 such that

∑d
j=1 ρj = k. We say an LRS is simple when for every j, ρj = 1. Equival-

ently, for a simple LRS for every j, qj ∈ C is a constant.



S. Akshay, N. Balaji, and N. Vyas 78:5

Given an LRS 〈u〉 of order k with characteristic polynomial χu(x) = xk − ak−1x
k−1 −

ak−2x
k−2− . . .−a1x−a0, one can associate a k×k matrix Mu called the companion matrix

of the recurrence as shown in the following figure.

MT
u =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
a0 a1 a2 · · · ak−1


Given a vector v of dimension k × 1 containing the k initial conditions of the recurrence,
one can easily observe that u1 = e1M

T
u v and e1(MT

u )nv gives un. Further, the eigenvalues
of this matrix are exactly the roots of the characteristic polynomial of the LRS. In what
follows, we sometimes abuse notation and call them as eigenvalues of the LRS. It is often
useful to rewrite each λj in polar coordinates as rjeiθj . In this representation, the nth-term
of the sequence is given by

un =
d∑
j=1

qj(n)rnj einθj (2)

The following folklore lemma says that the sum and product of two LRS is an LRS (see for
example, Theorem 4.1[12]). It is also known that the resulting LRS is constructible in P.

I Lemma 2. Let 〈u1〉, . . . , 〈u`〉 be LRS of order k1, . . . k` respectively and let χu1(x), . . . ,
χu`(x) be their respective characteristic polynomials. Then the following properties hold:

1. 〈u〉 =
∑`
i=1〈ui〉 is also an LRS of order at most

∑`
i=1 ki. Moreover, χu(x) is a factor of∏`

i=1 χui(x).
2. 〈u〉 = 〈u1〉〈u2〉 is also an LRS of order (and χu(x) is of degree) at most k1k2.

It is an easy observation via Lemma 2, that the complement of the Skolem problem
reduces to the Positivity problem (since un 6= 0 if and only if u2

n > 0 for all n).

2.2 Algebraic Numbers
We will extensively use algebraic numbers and their properties throughout the paper. We
refer the reader to the excellent text by Cohen [11] for a extensive treatment of the compu-
tational aspects of algebraic number theory. Here we collect below some useful definitions
and facts that are used throughout the rest of the paper.

A complex number α is called algebraic if there is a unique univariate polynomial pα(x)
with integer coefficients of minimum degree that vanishes at α. pα is said to be the defining
polynomial or the minimal polynomial of the algebraic number α. The degree and height of
α are then the degree and height of pα (Height of a polynomial is the maximum value of its
coefficients). The roots of pα are called the Galois conjugates of α.

I Definition 3 (Roots of unity). A complex number r is an n-th root of unity if rn = 1 and a
primitive n-th root of unity if in addition, n is the smallest k ∈ {1, . . . , n} for which rk = 1.

I Definition 4 (Cyclotomic polynomial). The n-th Cyclotomic polynomial, denoted Φn(x) is
the unique monic irreducible (over Q) polynomial with integer coefficients that is a divisor
of xn − 1 and is not a divisor of xk − 1 for any k < n. Its roots are all the n-th primitive
roots of unity. Formally, Φn(x) =

∏
1≤k≤n

gcd(k,n)=1

(
x− e i2πkn

)
.

MFCS 2017



78:6 Complexity of Restricted Variants of Skolem and Related Problems

An important relation involving Cyclotomic polynomials (See for example [5]) and prim-
itive n-th roots of unity is that

xn − 1 =
∏

1≤k≤n

(
x− e i2πkn

)
=
∏
d|n

∏
1≤k≤n

gcd(k,n)=1

(
x− e i2πkn

)
=
∏
d|n

Φn/d(x) =
∏
d|n

Φd(x)

The degree of Φn(x) (which is also precisely the number of n-th roots of unity) is φ(n)
where φ is Euler’s totient function, φ(n) = |{k | k ≤ n, gcd(k, n) = 1}. An expression for
φ(n) is given by φ(n) = n

∏
p|n(1− 1

p ). For n ≥ 2, φ(n) ≥
√

n
2 .

2.3 Problem statements
We now formally define three problems of interest on LRS. We will define a fourth all-
encompassing problem in Section 4.

I Definition 5 (Skolem, Positivity, Ultimate Positivity). Given a LRS 〈u〉,
Skolem Problem: Decide if there exists an n ∈ N such that un = 0.
Positivity problem: Decide if un > 0 for all n ∈ N.
Ultimate Positivity problem: Decide if there exists n0 ∈ N s.t., un > 0 for all n > n0.

As mentioned in the introduction, we consider restriction of these problems to linear
recurrent sequences with special properties, namely, the roots of their characteristic polyno-
mial (also called characteristic roots henceforth) are complex roots of unity. We denote by
Skolemω Posω UPosω the Skolem, Positivity and Ultimate Positivity questions respectively
for linear recurrence sequences whose characteristic roots are roots of unity.

3 LRS with roots of unity – an NP-complete subclass

In this section, we consider the special subclass of linear recurrence sequences, whose char-
acteristic roots are exactly roots of unity, and show that the Skolem problem restricted to
this subclass is NP-complete.

First, we show that Skolemω is NP-hard, UPosω and Posω are coNP-hard for this class.
This immediately shows NP-hardness (respectively coNP-hardness) for the Skolem problem
(respectively Positivity and Ultimate Positivity) for LRS of unbounded order.

I Theorem 6. Skolemω is NP-hard and Posω and UPosω are coNP-hard.

Proof. We show a reduction from Subset Sum to Skolemω. Denote by SUBSETSUM(A, T )
the following instance of the Subset Sum problem: We have a set A = {a1, a2, . . . , am}
where ai ∈ N and a target T ∈ N. Now, SUBSETSUM(A, T ) = 1 if there exists a subset S
of A whose sum is equal to T . The Subset Sum problem, i.e., given A, T deciding whether
SUBSETSUM(A, T ) = 1, is a classic NP-complete problem [15]. We will now construct a
linear recurrence sequence 〈uA,T 〉 over integers which has a zero i.e., there exists r such that
ur = 0, iff there is a set S ⊆ T such that

∑
s∈S as = T .

We construct the LRS as follows: For every i ∈ {1, . . . ,m}, let pi be the i-th-prime.
Then, for each i, we have a LRS 〈ui〉, whose n-th term is defined as

uin =


0 if 1 ≤ n < pi

ai if n = pi

uin−pi otherwise



S. Akshay, N. Balaji, and N. Vyas 78:7

This is a periodic LRS of period pi, where the first pi terms are (0, 0, . . . , ai). Note that
the order (and hence the degree of the characteristic polynomial) of this LRS is pi.

We are now ready to define LRS 〈uA,T 〉: the nth term of 〈uA,T 〉 is given by 〈uA,T 〉n =∑m
i=1 u

i
n−T . Since the sum of LRS is also an LRS (by Lemma 2), uA,T is also an LRS. Now,

by the prime number theorem (see [13] for instance), it follows that the number of primes
less than n ∈ N asymptotically grows as n

log(n) , which implies that the nth prime number
is of magnitude O(n logn). Thus, from this and Lemma 2, it follows that the order (and
hence also the degree of the characteristic polynomial) of uA,T is at most (

∑m
i=1 pi) + 1 =

O(m2 logm) and uA,T can be constructed from a given instance of SUBSETSUM(A, T ) in
polynomial time. We have the following

I Claim 7. 〈uA,T 〉 is zero if and only if there exists a subset S ⊆ [m] such that
∑
s∈S as = T .

Proof. Suppose there exists r such that ur = 0. Then
∑m
i=1 u

i
r = S. As uin can either be ai

or 0, this implies that there exists a subset S ⊆ [m] such that
∑
s∈S as = T . This proves the

forward direction of the claim. For the other direction, let us suppose there exists a subset
S ⊆ [m] such that

∑
s∈S as = T . Consider N =

∏
s∈S ps. Then it is easy to see that uN is

precisely
∑
s∈S as − T = 0. J

This completes the NP-hardness of Skolem problem. The coNP-hardness of Positivity
follows from noting that the square of a linear recurrence is also a linear recurrence. The
complement of the Skolem problem reduces to the Positivity problem because un 6= 0 if and
only if u2

n > 0 for all n. A closer observation of the proof of hardness yields the following
important property of uA,T : the roots of χuA,T are roots of unity. This follows by observing
that the characteristic polynomial of 〈ui〉 is precisely xpi − 1 = 0. Hence all its roots are the
pi-th roots of unity. Now by Lemma 2, χuA,T is a factor of the product (x−1)

∏m
i=1(xpi−1)

(here the term x−1 is contributed by the integer −T in the subset sum instance). The LRS
uA,T is hence an instance2 of Skolemω.

For the positivity problem, we have to square uA,T and since the characteristic roots

of (u2
A,T )n =

(
β0 +

∑m
j=1 βje

iθj
)2

=
∑
j,`∈[m] βjβ`e

iθjeiθ` , the characteristic roots of u2
A,T

are also roots of unity. Hence the positivity problem for the LRS derived from the subset
sum is actually an instance of Posω. It is easy to see that for periodic LRS, the questions
of positivity and ultimate positivity are equivalent. Since uA,T constructed in our proof is
periodic, the coNP-hardness of Posω also entails the same hardness for UPosω. J

To complement the hardness result from Theorem 6, we now prove that Skolemω(respectively
Posω and UPosω) is decidable in NP(respectively coNP). It is worthwhile to contrast this
with the case of arbitrary recurrences for which decidability is open. We have the following

I Theorem 8. Skolemωis in NP, Posωand UPosωare in coNP.

The rest of this section will prove the above theorem. We start with some basic properties.
Consider the general form of the nth term of an LRS as given in Equation 2. When the
eigenvalues are roots of unity, this simplifies to

un =
d∑
j=1

qj(n)einθj (3)

2 In fact, it is easy to transform our recurrence uA,T in to another recurrence u′
A,T , while maintaining

the property YES and NO instances of subset sum are mapped to YES and NO instance of Skolemω

for u′
A,T , such that u′

A,T is also a simple LRS.

MFCS 2017



78:8 Complexity of Restricted Variants of Skolem and Related Problems

where qj are polynomials of degree at most k− 1 and
∑d
j=1(deg(qj) + 1) = k and θj = aj2π

bj
as roots of characteristic equation are roots of unity. In order to prove an NP upper bound,
it suffices to show that there exists an N ≤ 2poly(||u||) such that if u is zero at all, then
uN = 0 and this can verified in P. Recall that ||u|| denotes the size of the bit representation
of the coefficients of un, namely a0, a1, . . . , ak−1 and the initial conditions u0, u1, . . . , uk−1.
We first note a few easy observations about the characteristic roots:

I Proposition 9. If eiθj is a characteristic root of multiplicity ρj of an LRS of order k, with
θj = 2πaj

bj
, gcd(aj , bj) = 1 then

For any 1 ≤ a < bj such that gcd(a, bj) = 1, and θ = 2πa
bj

, eiθ is also a root with
multiplicity ρj.
ρjbj ≤ k3

This implies that the characteristic roots can be partitioned into multisets ϑj = {e
i2πa
bj |

gcd(a, bj) = 1} and |ϑj | = ρjφ(bj), where φ is Euler’s totient function.

Proof. The elements in multiset ϑj are exactly eiθj and their Galois conjugates hence they
must all occur, with same multiplicity. The cardinality of such numbers is exactly φ(bj) ≥√

bj
2 (where φ is Euler’s totient function). Since the number of roots is k and each element in

ϑj occurs ρj times, we obtain that each ρjφ(bj) ≤ k. As φ(bj) ≥
√

bj
2 we get ρjbj ≤ k3. J

The solution set of Skolemω instances are very structured given the fact that the charac-
teristic roots are roots of unity. Consider for eachm ∈ N, a polynomial Pm =

∑d
j=1 qj(x)eimθj

and let P denote the set of polynomials {Pm | m ∈ N}. We have the following

I Lemma 10. The set P is finite i.e., P = {Pm | m ∈ [0, k3k]} where k3k < 2poly(||u||).

Proof. When characteristic roots are roots of unity, each θj is of the form 2πaj
bj

for some
(positive) integers aj ≤ bj . Now bj ≤ k3 by Proposition 9. Each eimθj = ei(m+bj)θj for all
m, i.e., they repeat after bj steps. Hence Pm = Pm+t for t = lcm{b1, . . . bd}. Therefore |P | ≤
t = lcm{b1, . . . , bd} ≤ b1 · · · bd ≤ k3k ≤ 2k4 . Since k < poly(||u||), the result follows. J

Note that even though qj could be polynomials with complex coefficients, the coefficients
of polynomials in P are rational. This is because, all the polynomials Pm evaluate to integer
values at infinitely many integers via Equation 3, since the recurrence always evaluates to
integer values). By interpolation, these coefficients have to be rational.

Hence deciding Skolemω essentially boils down to finding the union of zero sets of all
the polynomials in P . This naturally leads us to the problem of bounding the coefficients
of polynomials in P since this immediately yields a bound on the roots. A natural way to
proceed here would be to use interpolation to bound the coefficients (see e.g., [14]). The
problem with this approach is that this yields an expression for the coefficients qkj of the
polynomials qj in terms of linear combinations of λj , which are algebraic numbers. Standard
techniques (see for example, the work of Tiwari on the sign problem [24]) however, do not
yield a lower bound which is exponential in d, the degree of the roots. Thus, while this
suffices to obtain an NP upper bound for LRS of fixed order (where d becomes constant),
for the case of unbounded order LRS, it does not yield an NP upper bound. In the next
two lemmas, we show how to sidestep this issue, by crucially exploiting the fact that our
characteristic roots are roots of unity.



S. Akshay, N. Balaji, and N. Vyas 78:9

First, note that χu can be written as

χu(x) =
d∏
j=1

(x− e2πi
aj
bj )ρj =

D∏
j=1

∏
1≤a≤bj

gcd(a,bj)=1

(x− e2πi abj )ρj (4)

where D is the number of distinct values of bj . We know from Lemma 2 that the sum of
LRS is again a LRS. We obtain here a partial converse of part 1 of Lemma 2.

I Lemma 11. Let 〈u〉 be a LRS with characteristic polynomial χu(x) = p1(x)p2(x) where p1
and p2 do not share a common root. Then we can find LRS 〈u1〉 and 〈u2〉 with characteristic
polynomials p1 and p2 such that 〈u〉 = 〈u1〉+ 〈u2〉.

Proof. We know that un =
∑d
j=1 qj(n)λnj . Let R(p) denote the set of roots of polynomial

χu(x). Since p1 and p2 do not share a common root i.e. R(p1) ∩ R(p2) is empty and
R(p1)∪R(p2) = R(p), we can rewrite the exponential polynomial solution from Equation 1
as un =

∑
λj∈ R(p1) qj(n)λnj +

∑
λj∈ R(p2) qj(n)λnj .

Let us consider the set of LRS defined by the characteristic polynomial p1 (by fixing
all possible initial conditions). This is a vector space and one can see that the set {niλnj :
λj ∈ R(p1), 0 ≤ i ≤ multiplicity of λj in p1} describes a basis for this vector space. As∑
λj∈ R(p1) qj(n)λnj is just a linear combination of such terms, it is also a possible LRS with

characteristic polynomial p1, let us call this u1
n. Similarly

∑
λj∈ R(p2) qj(n)λnj defines an

LRS u2
n. Hence un can be written as u1

n + u2
n. J

As none of the inner products in Equation 4 share a root by Lemma 11 we can break
the linear recurrence as a sum of linear recurrences. Let 〈u〉 = 〈u1〉+ . . .+ 〈uD〉 where the
characteristic polynomial of 〈uj〉 is exactly

∏
1≤a≤bj

gcd(a,bj)=1
(x−e2πi abj )ρj . This is exactly the bthj

cyclotomic polynomial raised to ρj . Note that this is a integral polynomial with coefficients
bounded by poly(||u||)-many bits. Now, we have the following:

I Lemma 12. The first k3 values of all uj are poly(||u||)-bit bounded rationals and can be
calculated in P.

Proof. The linear recurrence for uj has degree φ(bj)ρj . We think of the first φ(bj)ρj initial
values as variables. Fixing them fixes uj . We can express first k3 values of uj as integral
combinations of first φ(bj)ρj values. In this integral combination the weights are poly(||u||)-
bit bounded as weight < (sum of coefficients of uj)k3 . Next we argue that these k3 initial
values of the uj are poly(||u||)-bit bounded rationals. We remember that sum of all uk is u
and we have k initial values of u. We know that

∑D
j=1 φ(bj)ρj = k as both LHS and RHS

represent number of roots of χu. The initial values for these D sequences can be found by
setting up a system of k linear equations in k variables and solving them where each the nth
equation says that

∑D
j=1 u

k
n = un. Note that for uj only first φ(bj)ρj values are variables not

all k, but all of them can be represented as integral combination of first φ(bj)ρj values with
poly(||u||)-bit bounded weights. Note that since the initial values of 〈u〉 are given as integers
as a part of the input hence they are representable in poly(||u||)-bit. Hence for the linear
equations all coefficients are poly(||u||)-bit bounded. Hence the initial values of the D linear
recurrences are also obtainable as rationals of bit length at most polynomial in ||u||. As
any of the first k3 values is expressible as integral combinations of first φ(bj)ρj values with
poly(||u||)-bit bounded weights, hence all of first k3 values are poly(||u||)-bit bounded. J

MFCS 2017



78:10 Complexity of Restricted Variants of Skolem and Related Problems

Now as we had defined P for original linear recurrence u we can define P j for uj . Note that
|P j | ≤ bj < k3 and hence polynomially bounded in k unlike |P | for which we could only
give an exponential bound. Similar to P coefficients of P j are also rationals. The degree of
any polynomial is P j is at most the multiplicity which is ρj .

I Lemma 13. Coefficients of any polynomial in P j are poly(||u||)-bit bounded rationals and
can be calculated in P.

Proof. By the definition of P j , ukn = P jq (n) when n is of the form n = bp + q and 0 ≤
q < b. Now we can interpolate to get coefficients of this polynomial. We need ρj values
to interpolate where one value occurs every bj terms. By Proposition 9 bjρj < k3 and
by Lemma 12 we know that first k3 values are poly(||u||)-bit bounded rationals. The other
coefficients in the interpolation are of the form ni where n < k3 and i < k hence they are also
bounded by k3k (poly(||u||)-bit). So the interpolated coefficients will also be poly(||u||)-bit
bounded rationals. J

We are now ready to prove Theorem 8:

Proof. (of Theorem 8) First, notice that any n such that un = 0, n is a root of one of the
polynomials in P . For any of these polynomials the coefficient is the sum of corresponding
coefficients in P j ’s, which are poly(||u||)-bit bounded rationals by Lemma 13. Hence their
sum i.e. coefficient of any polynomial in P is also poly(||u||)-bit bounded and can be cal-
culated P. Note that as mentioned above, this property also does not hold for arbitrary
algebraic numbers. Now as the coefficients of all the polynomials in P can be represented by
rational numbers in poly(||u||) bits hence their roots are bounded in magnitude by 2poly(||u||)

(unless one of the polynomials is identically 0). As we are only interested in integer roots,
this implies that any integer root n of a non-zero polynomial in P can be written in poly(||u||)
bits. For a zero polynomial Pm ∈ P , at n = m un = Pm(m) = 0 hence n = m is a zero
and can be written in poly(||u||) bits by Lemma 10. In both cases n is therefore a short
(poly(||u||)-bit bounded) certificate for the Skolem problem, guessed by an NP machine.

Now observe that for such a n, un = Pm(n). As both the coefficients of Pm and n are
poly(||u||)-bit bounded hence un is also poly(||u||)-bit bounded. Hence the guessed n can be
verified in P by observing that un = e1(MT

u )nv, where MT
u is the corresponding companion

matrix. e1(MT
u )nv can be calculated in P via repeated squaring : Since the companion

matrix M also satisfies the characteristic polynomial of the recurrence by Cayley-Hamilton
theorem, its entries satisfy the recurrence un. Hence the preceding argument that un is
poly(||u||)-bit bounded, also works for each of these entries of the (MT

u )n. This proves that
Skolemωis in NP. To see that Posωis in coNP note that we need the following 2 conditions
to ensure positivity:

Since the zeros of all the polynomials in the set P (which is also exponentially bounded
in size) lie in the range [0, 2poly(||u||)], it suffices to check that for all the polynomials
evaluated at all the points in this range evaluate to a positive value
All polynomials in set P are ultimately positive.

For condition 1 we need to ensure un 6= 0 for all n ∈ [1, 2poly(||u||)]. As un can be calculated
in P for such an n, this can be implemented in coNP. We can ensure condition 2 for a Pm
by making sure that the first non-zero coefficient in positive. By Lemma 10 we just need to
ensure this for m ∈ [1, 2poly(||u||)] but as coefficients for any m can be calculated in P we
can implement this check also in coNP. Hence Posω is in coNP. UPosω requires us to just
check condition 2, hence it is also in coNP. J



S. Akshay, N. Balaji, and N. Vyas 78:11

Combining the above theorem with Theorem 6, we obtain our completeness results as
stated, i.e., if all characteristic roots of an LRS are roots of unity, then Skolem (resp.
Positivity, Ultimate Positivity) for such recurrences is NP-complete (resp. coNP-complete).

4 Integer Polytope Containment Problem

In this section, we consider a new problem on dynamical systems. We start by fixing some
notation. A (convex) polytope is an intersection of finitely many half-spaces. A polytope is
said to be bounded if the region enclosed in it is bounded.

I Definition 14 (Integer Polytope Containment Problem). Given a bounded polytope V1 ⊂ Zd
and a (possibly unbounded) polytope V2 ⊆ Zd and a d ∗ d matrix M with integer entries,
the Polytope Containment Problem asks if for all v ∈ V1 (for v ∈ Zd), does there exist a
positive integer n such that vMn ∈ V2.

As before, we restrict ourselves to a subclass of this problem, where the eigenvalues are
all complex roots of unity.

I Definition 15 (Containω). Containω is the subclass of Polyhedron Containment Problem
when the corresponding matrix M has roots of unity and 0 as eigenvalues.

I Theorem 16. Containω is ΠP
2 -hard.

For definitions of coNP, ΠP
2 and other standard complexity classes, we refer the reader to

the excellent text due to Arora and Barak [4]. Interestingly, our proof can be seen as an
application or generalization of our earlier technique to obtain the reduction of the Skolem
problem from the Subset Sum problem. Indeed, since we use our NP-hard instance of
the Skolem for this reduction, it is not clear how we can do a similar lift from the earlier
NP-hardness proof of Blondel-Portier [7], or indeed any other existing approach.

The rest of this section forms the proof of the above theorem. We start by considering
the following generalized form of the subset sum (GSS) problem, which is known to be ΠP

2 -
complete [22]. Given two vectors b = (b1, . . . b`) and a = (a1, . . . am) and α ∈ Z, for all
x ∈ {0, 1}`, does there exist y ∈ {0, 1}m such that x · b+ y · a = α?3 We will also use the set
notation B = {b1, . . . b`} and A = {a1, . . . , am} when convenient.

Our goal is to reduce this above problem to Containω. In order to do so, we will use
the Subset-sum to Skolemω reduction from Section 3. Consider the LRS uA whose nth term
is
∑m
i=1 u

i
n, where uin is the LRS constructed in Section 3. We can observe the following

properties about this LRS:
(F1) Each entry of uA gives a sum of a subset of elements from A, i.e., y · a for some

y ∈ {0, 1}m.
(F2) Every subset of sum of elements of A occurs as some entry of uA.
(F3) The LRS uA is periodic, i.e., the elements repeat after a certain period (product of

the first m-primes to be precise). Thus the bound that they repeat after or the period
is exponentially bounded.

(F4) The LRS uA can be written in matrix form as a matrix MA such that for all n ≥ 0,
〈uA〉n+1 = vMnw where v is the first m entries of the LRS and w = (1, 0, . . . 0, 0).
Further, the roots of the characteristic polynomial of uA (which were noted earlier to
be roots of unity) are the eigenvalues of MA. The proof of these facts follows by simple
linear algebra and can be found for instance in [25]. Further, we may also observe that

3 In fact, to be precise, [22] defines the complement of this problem.

MFCS 2017



78:12 Complexity of Restricted Variants of Skolem and Related Problems

the entries in the matrix are exponentially bounded in the input-size of the subset-sum
instance and can be computed in poly-time. It follows that the sequence of numbers
vMnw for all n ≥ 0 satisfy the three properties (F1–F3) listed above.

Given an instance of GSS problem, we will build an instance of Containωas follows. Define
a square matrix G of dimension `+m+2, as shown below. Note that the eigenvalues of G are
all roots of unity and 0. This follows from the fact that G is a block upper triangular matrix
hence det(G − λI) = det(I(`+1)×(`+1) − λI(`+1)×(`+1))det(Mm×m − λIm×m)det(−λ), which
implies that the eigenvalues are 1, eigenvalues of M and 0. We fix V1 to be the set of all
vectors {(x1, . . . x`, 1, v, 0) | xi ∈ {0, 1}, for all 1 ≤ i ≤ `}. Note that this is a polytope, i.e.,
an intersection of half spaces. Next, we fix V2 to be the polytope {y ∈ Z`+m+2 | y ·e`+m+2 =
0}, where e`+m+2 is the `+m+ 2-dimension vector (0, . . . 0, 1).

G =



I(`+1)×(`+1) 0

b1
b2
...
b`
−α

0 Mm×m w

0 0 0


Let z = (x, 1, v, 0) ∈ V1 for some x ∈ {0, 1}`. By induction, we obtain that for all n ≥ 1,
z ·Gn = (x, 1, v ·Mn

A, x · b−α+ v ·Mn−1
A ·w). Now GSS has a solution iff for all x ∈ {0, 1}`,

there exists y ∈ {0, 1}m such that x · b+ y · a = α. From facts above, it follows that for each
such y ∈ {0, 1}m, there exists n ≥ 0 such that y · a = vMnw. In other words, GSS has a
solution iff for all x ∈ {0, 1}`, there exists n ≥ 0 such that x · b+ vMnw = α. That is, GSS
has a solution iff for all z ∈ V1, there exists n ≥ 0 such that z ·Gn+1 · e`+m+2 = 0 iff for all
z ∈ V1, there exists n′ ≥ 1 such that z · Gn′ ∈ V2. This gives the solution for our instance
of the Containωproblem and completes the proof of correctness of the reduction.

From this we immediately obtain, that the Integer Polytope Containment Problem is
ΠP

2 hard. Finally, we will show that:

I Theorem 17. Containω is ΠP
2 -complete.

Proof. We have already shown hardness for Containω in Theorem 16 so now we only need
to show inclusion in ΠP

2 . Description size of any integer value x ∈ V1 i.e. ||x|| is poly(||V1||)
where V1 is a bounded polytope and is specified as intersection of hyperplanes. This be-
cause the corner points are solutions of linear equations which is bounded by poly(||V1||)-bits.
Hence all integral points inside are also bounded by poly(||V1||)-bits. As checking if a partic-
ular x ∈ V1 can be done P we can go over all x ∈ V1 in coNP. After fixing x, this the problem
reduces to Skolemω which, by Theorem 8, is in NP. Hence Containω is in coNPNP = ΠP

2 . J

While our hardness results lift to the non-integer case, our containment proofs do not
extend immediately to the non-integer case. However, we conjecture that using techniques
from [8], we can obtain similar decidability results, for this subclass for rational/real cases.



S. Akshay, N. Balaji, and N. Vyas 78:13

5 Conclusion

In this paper, we investigate linear recurrence sequences whose characteristic roots which
are complex roots of unity. We show that the Skolem problem (resp. positivity, ultimate
positivity) restricted to this subclass of LRS is NP-complete (resp. coNP-complete). The
lower bound is via a novel reduction from subset sum, which we are also able to extend to
show ΠP

2 -hardness for a more general yet interesting problem on LRS. Note that this lower
bound (as well as the one in [7]), requires LRS to be of arbitrary or unbounded orders.
One interesting open question is whether one could show any non-trivial lower bound (e.g.,
NP-hardness) for LRS of a fixed order.

Our approach for upper-bounds can be extended further to tackle LRS whose charac-
teristic roots are complex roots of any real number, i.e., complex numbers whose phases
are rational multiples of π. However, we get more relaxed upper-bounds, without match-
ing lower-bounds. While disappointing, this is not surprising since any improvement in the
lower-bound would be a highly remarkable result as commented in the conclusion of [21].

Acknowledgements. We would like to thank the anonymous reviewers for their insightful
comments and helpful remarks.

References

1 Manindra Agrawal, S. Akshay, Blaise Genest, and P. S. Thiagarajan. Approximate verific-
ation of the symbolic dynamics of markov chains. J. ACM, 62(1):2:1–2:34, 2015.

2 S. Akshay, Timos Antonopoulos, Joël Ouaknine, and James Worrell. Reachability problems
for markov chains. Inf. Process. Lett., 115(2):155–158, 2015.

3 S. Akshay, Blaise Genest, Bruno Karelovic, and Nikhil Vyas. On regularity of unary probab-
ilistic automata. In 33rd Symposium on Theoretical Aspects of Computer Science, STACS
2016, February 17-20, 2016, Orléans, France, pages 8:1–8:14, 2016.

4 Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cam-
bridge University Press, 2009. URL: http://www.cambridge.org/catalogue/catalogue.
asp?isbn=9780521424264.

5 M. Artin. Algebra. Pearson Prentice Hall, 2011. URL: https://books.google.de/books?
id=QsOfPwAACAAJ.

6 Amir M. Ben-Amram, Samir Genaim, and Abu Naser Masud. On the termination of integer
loops. ACM Trans. Program. Lang. Syst., 34(4):16:1–16:24, December 2012.

7 V. D. Blondel and N. Portier. The presence of a zero in an integer linear recurrent sequence
is NP-hard to decide. In Linear Algebra and its Applications, pages 351–352. Elsevier, 2002.

8 Mark Braverman. Termination of integer linear programs. In Computer Aided Verifica-
tion, 18th International Conference, CAV 2006, Seattle, WA, USA, August 17-20, 2006,
Proceedings, pages 372–385, 2006.

9 Ventsislav Chonev, Joël Ouaknine, and James Worrell. The polyhedron-hitting problem. In
Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 940–956, 2015. doi:10.
1137/1.9781611973730.64.

10 Ventsislav Chonev, Joël Ouaknine, and James Worrell. On the complexity of the orbit
problem. J. ACM, 63(3):23:1–23:18, 2016. doi:10.1145/2857050.

11 Henri Cohen. A course in computational algebraic number theory, volume 138. Springer
Science & Business Media, 2013.

MFCS 2017

http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
https://books.google.de/books?id=QsOfPwAACAAJ
https://books.google.de/books?id=QsOfPwAACAAJ
http://dx.doi.org/10.1137/1.9781611973730.64
http://dx.doi.org/10.1137/1.9781611973730.64
http://dx.doi.org/10.1145/2857050


78:14 Complexity of Restricted Variants of Skolem and Related Problems

12 Graham Everest, Alfred J. van der Poorten, Igor E. Shparlinski, and Thomas Ward. Recur-
rence Sequences, volume 104 of Mathematical surveys and monographs. American Mathem-
atical Society, 2003. URL: http://www.ams.org/bookstore?fn=20&arg1=survseries&
item=SURV-104.

13 Godfrey H. Hardy and Edward M. Wright. An introduction to the theory of numbers (5.
ed.). Clarendon Press, 1995.

14 Dan Kalman. The generalized vandermonde matrix. Mathematics Magazine, 57(1):15–21,
1984.

15 Richard M Karp. Reducibility among combinatorial problems. In Complexity of computer
computations, pages 85–103. Springer, 1972.

16 Joël Ouaknine, João Sousa Pinto, and James Worrell. On termination of integer linear
loops. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 957–969, 2015.
doi:10.1137/1.9781611973730.65.

17 Joël Ouaknine and James Worrell. Decision problems for linear recurrence sequences. In
Reachability Problems - 6th International Workshop, RP 2012, Bordeaux, France, Septem-
ber 17-19, 2012. Proceedings, pages 21–28, 2012. doi:10.1007/978-3-642-33512-9_3.

18 Joël Ouaknine and James Worrell. On the positivity problem for simple linear recurrence
sequences,. In Automata, Languages, and Programming - 41st International Colloquium,
ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part II, pages 318–329,
2014. doi:10.1007/978-3-662-43951-7_27.

19 Joël Ouaknine and James Worrell. Positivity problems for low-order linear recurrence
sequences. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 366–379, 2014.
doi:10.1137/1.9781611973402.27.

20 Joël Ouaknine and James Worrell. Ultimate positivity is decidable for simple linear re-
currence sequences. In Automata, Languages, and Programming - 41st International Col-
loquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part II, pages
330–341, 2014. doi:10.1007/978-3-662-43951-7_28.

21 Joël Ouaknine and James Worrell. On linear recurrence sequences and loop termination.
SIGLOG News, 2(2):4–13, 2015.

22 Marcus Schaefer and Christopher Umans. Completeness in the polynomial-time hierarchy:
A compendium. SIGACT news, 33(3):32–49, 2002.

23 Ashish Tiwari. Termination of linear programs. In Computer Aided Verification, 16th
International Conference, CAV 2004, Boston, MA, USA, July 13-17, 2004, Proceedings,
pages 70–82, 2004.

24 Prasoon Tiwari. A problem that is easier to solve on the unit-cost algebraic RAM. J.
Complexity, 8(4):393–397, 1992. doi:10.1016/0885-064X(92)90003-T.

25 M.Hirvensalo V.Halava, T.Harju and J.Karhumäki. Skolem’s problem on the border
between decidability and undecidability. In TUCS Technical Report Number 683, 2005.

http://www.ams.org/bookstore?fn=20&arg1=survseries&item=SURV-104
http://www.ams.org/bookstore?fn=20&arg1=survseries&item=SURV-104
http://dx.doi.org/10.1137/1.9781611973730.65
http://dx.doi.org/10.1007/978-3-642-33512-9_3
http://dx.doi.org/10.1007/978-3-662-43951-7_27
http://dx.doi.org/10.1137/1.9781611973402.27
http://dx.doi.org/10.1007/978-3-662-43951-7_28
http://dx.doi.org/10.1016/0885-064X(92)90003-T


Being Even Slightly Shallow Makes Life Hard∗

Irene Muzi1, Michael P. O’Brien2, Felix Reidl3, and
Blair D. Sullivan4

1 University of Rome, “La Sapienza”, Rome, Italy
irene.muzi@gmail.com

2 North Carolina State University, Raleigh, USA
mpobrie3@ncsu.edu

3 North Carolina State University, Raleigh, USA
felix.reidl@gmail.com

4 North Carolina State University, Raleigh, USA
blair_sullivan@ncsu.edu

Abstract
We study the computational complexity of identifying dense substructures, namely r/2-shallow
topological minors and r-subdivisions. Of particular interest is the case r = 1, when these substruc-
tures correspond to very localized relaxations of subgraphs. Since Densest Subgraph can be
solved in polynomial time, we ask whether these slight relaxations also admit efficient algorithms.

In the following, we provide a negative answer: Dense r/2-Shallow Topological Minor
and Dense r-Subdivsion are already NP-hard for r = 1 in very sparse graphs. Further, they
do not admit algorithms with running time 2o(tw2)nO(1) when parameterized by the treewidth
of the input graph for r > 2 unless ETH fails.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Topological minors, NP Completeness, Treewidth, ETH, FPT algorithms

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.79

1 Introduction

Many structural graph theory results stem from the principle that excluding certain (dense)
substructures affords algorithmic tractability [7, 8, 12, 13, 11, 16, 9, 20]. It is therefore
natural to ask for each of these substructures whether computing its densest occurrence
is efficiently possible. In this paper, we characterize the complexity of this problem for
substructures formed by contracting short disjoint paths.

There has been significant recent work on a slightly more general substructure, r-shallow
minors, which are formed by contracting disjoint connected subgraphs of radius at most r.
Shallow minors form a gradient between the locality of subgraphs (0-shallow minors) and
the global nature of (∞-shallow) minor containment. Because finding r-shallow minors of
density/degeneracy at least d is polynomial time solveable at r = 0 [15, 14] but NP-complete
at r =∞ [3], one might expect the problem to be fixed-parameter tractable with respect to
r. However, Dvořák proved that for any fixed r > 0 both variations are NP-complete already
in graphs of maximum degree four and d > 4 (d > 2 if degeneracy is the measure) [10].
Accordingly, a parameterization by d also cannot possibly yield an fpt-algorithm—a sharp

∗ This work supported in part by the DARPA GRAPHS Program and the Gordon & Betty Moore Foun-
dation’s Data-Driven Discovery Initiative through Grants SPAWAR-N66001-14-1-4063 and GBMF4560
to Blair D. Sullivan.

© Irene Muzi, Michael O’Brien, Felix Reidl, and Blair D. Sullivan;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 79; pp. 79:1–79:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.79
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


79:2 Being Even Slightly Shallow Makes Life Hard

Figure 1 The graph H is a 1-shallow topological minor of G, as witnessed by the model marked
with blue nails and golden paths.

contrast to unrestricted minors [3]. Dvořák further showed that the problem is in FPT if
parameterized by the treewidth tw of the input graph and designed an O(4tw2

n) dynamic
programming algorithm.

We consider whether more conservative relaxations of subgraph containment remain
efficiently solvable, specifically r/2-shallow topological minors and r-subdivisions. A graph H
is an r/2-shallow topological minor of a graph G if a (6 r)-subdivision of H is isomorphic
to some subgraph of G. The case of r = 1 is of particular interest because it generalizes
subgraphs to a proper subset of 1-shallow minors.

We show that Dense r/2-Shallow Topological Minor (Dense r/2-STM) and Dense
r-Subdivision (Dense r-SD) are NP-complete already in subcubic apex-graphs1 for r > 1
via a reduction from Positive 1-in-3SAT. Accordingly, a parameterization by the target
density d does not make these problems fixed-parameter tractable. The same reduction also
implies that neither problem can be solved in time O(2o(n)) unless the ETH fails. In other
words, finding dense substructures which are just slightly ‘less local’ than subgraphs seems
to be intrinsically difficult. Following Dvořák’s results, we then consider a parameterization
by treewidth and ask whether an algorithm with running time better than O(2tw2

n) is
possible. Surprisingly, we can rule out such an algorithm already for Dense 1-Shallow
Topological Minor: unless the ETH fails, no algorithm with running time O(2o(tw2)n)
can exist.

2 Preliminaries

For a graph G we use |G| to denote the number of vertices and ‖G‖ to denote the number
of edges in G. A graph H appears as an r-subdivision in a graph G if the graph obtained
from H by subdividing every edge r times is isomorphic to some subgraph of G. Similarly,
H is a r/2-shallow topological minor2 of G if a graph obtained from H by subdividing every
edge up to r times is isomorphic to a subgraph of G. In both cases, the subgraph witnessing
the minor is the model and we call those vertices in it that correspond to (subdivided) edges
subdivision vertices and all other vertices nails. If Suv is the set of subdivision vertices on a
subdivided uv edge, we say Suv is smoothed into the uv edge.

The following two problems are the focus of this paper:

1 That is, a graph in which the removal of a single vertex results in a subcubic planar graph.
2 The somewhat cumbersome convention of letting an r-shallow topological minor contract paths of

length 2r + 1 is convenient in the broader context of sparse graph classes (cf. [18]).



I. Muzi, M. P. O’Brien, F. Reidl, and B.D. Sullivan 79:3

Input: A graph G and a rational number d.
Question: Is there an r/2-shallow topological minor H of G with density ‖H‖/|H| > d?

Dense r/2-Shallow Topological Minor (Dense r/2-STM)

Input: A graph G and a rational number d.
Question: Is there a graph H that is contained in G as an r-subdivision with density

‖H‖/|H| > d?

Dense r-Subdivision (Dense r-SD)

The following variant, which we prove to be NP-complete in Section 4.1, might be of
independent interest:

Input: A bipartite graph (X,Y,E) and a rational number d.
Question: Are there subsets X ′ ⊆ X,Y ′ ⊆ Y such that all vertices in X ′ can be smoothed

into unique edges in Y ′ and |X ′|/|Y ′| > d?

Dense Bipartite Subdivision

Our main tool will be linear reductions from the following SAT-variant:

Input: A CNF boolean formula ψ with only positive literals.
Question: Does φ have a satisfying assignment such that each clause contains exactly

one true variable?

Positive 1-in-3SAT

Mulzer and Rote showed [17] that Positive 1-in-3SAT remains NP-hard when restricted to
planar formulas. A formula φ is planar if the graph obtained from φ by creating one vertex
for each clause and variable and connecting a variable-vertex to a clause-vertex if the clause
contains said variable is planar.

Schaefer [21] provided a linear reduction from 3SAT to 1-in-3SAT. We can further easily
transform a formula φ with negative literals into one with only positive literals as follows:
for each variable x, introduce the variables x+, x−, ax, bx, cx. Replace every occurrence of x
with x+ and every occurrence of x̄ with x− and add the clauses
{x+, x−, ax}, {x+, x−, bx}, {ax, bc, cx},

to the formula. It is easy to verify that exactly one of x+, x− must be true in a 1-in-3
satisfying assignment and that the resulting formula φ′ has size linear in |φ|. In conclusion,
there exists a linear reduction from 3SAT to Positive 1-in-3SAT which implies that under
ETH, Positive 1-in-3SAT cannot be solved in time 2o(n)(n+m)O(1), where n is the number
of variables and m is the number of clauses. Using sparsification one can further show that
the ETH excludes algorithms for 3SAT with running time 2o(m)(n + m)O(1) (see e.g. the
survey by Cygan et al. [5]). The above reduction implies the following lower bound:
I Proposition 1. Unless the ETH is false, Positive 1-in-3SAT cannot be solved in
time 2o(m)(n+m)O(1).

3 Algorithmic considerations

We start with a basic observation about the problems in question with the smallest sensible
depths of r = 1:

MFCS 2017



79:4 Being Even Slightly Shallow Makes Life Hard

I Lemma 1. The densest 1⁄2-shallow minor or 1-subdivision on a given set of nails can be
computed in polynomial time.

Proof. Assume we are to find the densest 1-subdivision with nail set X in a graph G. We
construct an auxilliary bipartite graph Ĝ with vertex set V (G) \ X and

(
X
2
)
where the

vertex v ∈ V (G) \ X is connected to xy ∈
(
X
2
)
iff {x, y} ⊆ N(v) in G, that is, if v can

be contracted into the edges x, y. Now simply note that a matching of cardinality ` in Ĝ
corresponds to a 1-subdivision in G with ` subdivisions. Finding a maximal matching
in Ĝ therefore provides us with the densest 1-subdivision in G with nail set X. The same
proof works for 1⁄2-shallow minors if we subdivide all edges existing inside X and then
construct Ĝ. J

Consequently, Dense 1-SD and Dense 1⁄2-STM both admit a simple 2nnO(1)-algorithm:
we guess the nail set X and apply the matching construction from Lemma 1. For the same
reasons, both problems are in XP when parameterized by the number of nails. We cannot
hope for much better since for r = 0 and d ∼ k2 we simply recover the problem of finding a
k-clique. Besides being W[1]-hard and thus probably not in FPT, k-Clique further does not
admit algorithms with running time f(k)no(k) unless the ETH fails [4].

The approach of guessing the nail sets also fails for larger depths: knowing the nails of a,
say, 1-shallow minors leaves us with the problem of contracting paths of length two into X,
which cannot be represented as a simple matching problem. The reduction presented in
Section 4.2 proves as a corollary that Dense 1-STM remains NP-hard when the nail set of
the densest minor is known.

Finally, as we will see in Section 4.1, both problems are already NP-complete for very
small densities d, making them paraNP-complete under this parameterization. Therefore none
of the input variables will work well as a parameterization, and it is sensible to consider
structural parameters, meaning parameters derived from the input graph. A good contender
for such parameters are width measures like tree-, path-, or cliquewidth. Indeed, we can
express the problem of finding a dense shallow minor or a dense subdivision in MSO2 and
apply variants of Courcelle’s theorem to obtain the following:
I Proposition 2. Dense r/2-STM and Dense r-SD are in FPT when parameterized by the
treewidth of the input graph.

Proof. We can express a model for an r-shallow minor in MSO2 as follows: it consists of
a vertex-set W and an edge set F , where F induces a set of paths. We can further easily
express that the paths formed by F are a) of length at most r, b) disjoint, and c) have
endpoints in W . Lastly, we demand that for every pair x, y ∈ W there exists at most one
path in F that has x and y as endpoints.

From an optimization perspective, we can therefore express the feasible solutions to
Dense r/2-STM (and Dense r-SD with small modifications). In order to express our
optimization goal, let us introduce one more set of vertices C with the property that every
path induced by F contains at most one vertex from C—for example, we can express in
MSO2 that vertices of C are not pairwise reachable via the graph induced by F . With this
auxilliary set, the density of the resulting minor is at least |C|/|W | and exactly the density
if C is maximial with respect to our choice of F . Accordingly, we find that there exists an
r-shallow topological minor of density at least d if |C| − d|W | > 0. This constraint and
the aforementioned MSO2-description of a minor fall within the expressive power of the
EMSO-framework introduced by Arnborg, Lagergren, and Seese [1] and we conclude that
both Dense r/2-STM and Dense r-SD are fpt when parameterized by treewidth. J



I. Muzi, M. P. O’Brien, F. Reidl, and B.D. Sullivan 79:5

Furthermore, it is not difficult (albeit tedious) to design a dynamic programming algorithm
that solves Dense r/2-STM and Dense r-SD in time 2O(tw2)n. The quadratic dependence on
the treewidth stems from the fact that we have to keep track of which edges we have contracted
so far and there is no obvious way to circumvent this. The important question was whether
any of the known techniques to reduce the complexity of connectivity-problems [6, 2, 19] could
be applied here. The answer is, to our surprise, negative as we will discuss in Section 4.2.

4 Hardness results

4.1 NP-hardness and ETH lower bounds
This section will be dedicated to the proof the following theorems which both follow directly
via a linear reduction from Positive 1-in-3SAT.

I Theorem 2. Dense r/2-STM and Dense r-SD are NP-hard for r > 1, even when restricted
to graphs that can be turned into subcubic planar graphs by deleting a single vertex.

I Theorem 3. Dense r/2-STM and Dense r-SD cannot be solved in time 2o(n)nO(1) on
bipartite graphs unless the ETH fails.

A special case of our result might be of independent interest:

I Theorem 4. Dense Bipartite Subdivision is NP-hard even on instances
(
(X,Y,E), d

)
where vertices in X have degree at most 3 and d > 3.

In the following, we present two reduction from Positive 1-in-3SAT that depend on the
parity of r. We describe the reduction for r ∈ {1, 2} and then argue how to modify the
construction for arbitrary values of r. Note that the resulting instances are such that the
densest graph H that appears as a r/2-shallow topological minor appears, in fact, as an
r-subdivision and thus the reductions work for both problems.

Reduction for r odd

Let ψ be a Positive 1-in-3SAT instance with clauses C1, . . . Cm and variables x1, . . . xp.
We assume that every variable in ψ appears in at least 3 clauses; if not, we can duplicate
clauses to achieve this without changing the satisfiability of ψ. We construct a graph G

from ψ in the following manner (cf. Figure 2):
1. For each variable xi, create a cycle Di with as many vertices as the frequency of xi in ψ.
2. Create an apex-vertex a that is connected to every vertex of the cycles D1, . . . , Dp.
3. For each clause {xi, xj , xk}, add a vertex uijk to the graph and connect it to one vertex

in Di, Dj , Dk each that has not yet been connected to any clause-vertex.
4. Subdivide every edge appearing in the cycles D1, . . . , Dp and all edges incident to the

apex a.
For easier presentation, let us color the vertices of G as follows: the vertices introduced in
the first step are white, the vertices introduced in the third step gray, and the subdivision
vertices created in the last step black (the apex vertex a remains uncolored). Note that the
graph G is bipartite, where one side of the partition contains exactly the white vertices and a.

Note that if the input formula ψ is planar, then the constructed graph is planar and
subcubic after removing the apex vertex a.

I Lemma 5. If ψ is satisfiable then G has a topological minor at depth 1/2 of density 5m
2m+1 .

MFCS 2017



79:6 Being Even Slightly Shallow Makes Life Hard

Figure 2 Three variable gadgets Di, Dj , Dj connected by the gray clause vertex uijk. Setting
variable xk to true and xi, xj to false corresponds to the contractions on the right-hand side. The
apex vertex a is not shown.

Proof. We construct the minor H by first smoothing each black vertex. Then, for each
variable set to true, we delete the corresponding cycle Di. Since ψ is satisfiable and each
clause has exactly one variable set to true, this step deletes exactly one neighbor from each
gray vertex. We complete the construction of H by smoothing out each gray vertex.

V (H) consists of exactly two vertices corresponding to each clause plus the apex a, for a
total of 2m+ 1 vertices. Since all vertices of H were colored white in G, a has degree 2m.
Aside from the edges incident to a, there are m edges from smoothing gray vertices and 2m
edges from smoothing black vertices, which yield a total of 5m edges. Thus, we have found a
minor at depth 1/2 of density 5m

2m+1 . J

I Lemma 6. If G has a topological minor at depth 1/2 of density at least 5m
2m+1 , then the

formula ψ is satisfiable.

Proof. Let H be the densest shallow topological minor at depth 1/2 and fix some model of H
in G. We first argue that the nails of H consist only of white vertex and potentially the apex
vertex a.
I Claim. The nails of H consist of the apex vertex a and some subset of white vertices.
First, since the density of H is greater than two, its minimum degree is at least three (the
removal of a degree-two vertex would increase the density). Since black vertices have degree
two in G, the nails of the model forming H therefore cannot be black. Accordingly, every
black vertex either does not participate in the formation of H or it is smoothed into an edge.

Let us define Gb to be the graph obtained from G by smoothing all black vertices. Since
black vertices have degree exactly two, this operation is uniquely defined. By the previous
observation, H can be obtained from Gb by only smoothing gray vertices and taking a
subgraph. This of course implies that the nails of H are all either gray, white, or the apex
vertex a. Let us now exclude the first of these three cases: assume y is a gray nail of H
in Gb. Again, the degree of y in H must be at least three to ensure maximal density of H,
and since y has degree three in G it must also have degree exactly three in H. Note that the
three neighbors of y are necessarily white and independent in Gb, thus we can smooth y into
an (arbitrary) edge between two of its neighbors. The newly obtained graph H ′ is again a



I. Muzi, M. P. O’Brien, F. Reidl, and B.D. Sullivan 79:7

half-shallow topological minor of G and it contains one vertex and two edges less than H.
Since the density of H is greater than two, this implies that the density of H ′ is greater than
that of H, a contradiction. We conclude that the nails of H cannot be gray and therefore
only consist of white vertices and, potentially, the apex vertex a. To see that a must be
contained in H, simply note that otherwise the maximum degree of H would be three and as
thus Hs density would lie strictly below the assumed 5m

2m+1 . In summary: H’s nails consist
of the apex vertex a and some subset of white vertices of G, proving the claim.

Since the white vertices in G are independent, the above claim further implies that the
construction of H can be accomplished without smoothing white vertices. We can therefore
divide said construction into two steps: first we smooth all gray and black vertices to construct
a graph Ggb from G and then we take the subgraph H ⊆ Ggb. In the following, we will refer
to edges in Ggb or H as gray if they originated from smoothing a gray vertex and black if
they originated from smoothing a black vertex. Note that the set of black and gray edges
partition E(Ggb) and hence also E(H).

We now denote by v4 the number of degree-four vertices in H and by v3 the number of
degree-three vertices (as observed above, no vertex with degree lower than three can exist in
H and a is the only vertex of degree greater than four). Since the number of gray edges is at
most m and a degree-four vertex must be incident to a gray edge, we have that v4 6 2m.
Let w = v3 + v4 be the number of white vertices in H and α = v4/w the ratio of degree-four
vertices among them. Using these quantities, we can express H’s density as

2v3 + 5/2v4

v3 + v4 + 1 = 2 w

w + 1 + α

2
w

w + 1 =
(

2 + α

2

) w

w + 1
which we combine with the density-requirement on H to obtain(

2 + α

2

) w

w + 1 >
5m

2m+ 1 ⇐⇒ α > 2
( 5m

2m+ 1
w + 1
w

)
− 4.

Note that the right-hand side is equal to one for w = 2m, smaller than one for w > 2m, and
larger than one for w < 2m. This last regime would imply the impossible α > 1 and we
conclude 2m 6 w 6 3m, where the upper bound 3m is simply the total number of white
vertices in G. Rewriting w as βm for 2 6 β 6 3, we revisit the density-constraint on H:(

2 + α

2

) βm

βm+ 1 >
5m

2m+ 1 ⇐⇒
(
2β + αβ

2
)
(2m+ 1) > 5(βm+ 1)

=⇒ (α− 1)m+ 5
2 >

5
β
. (?)

We will now show that α, the fraction of degree-four vertices among all w white vertices,
needs to be one in order for (?) to hold. To that end, we distinguish the following two cases:

Case 1: β = 2. Assuming α 6= 1, the largest possible value for α is achieved when v4 =
2m− 2 (the case of exactly one gray edge missing from H), resulting in α = (2m− 2)/2m =
1− 1

m . Plugging this value of α and β = 2 into (?), we obtain that

(1− 1/m− 1)m+ 5
2 = −1 + 5

2 >
5
2 ,

a contradiction. Smaller values of α lead to the same contradiction, and we conclude that
necessarily α = 1.

Case 2: 2 < β 6 3. Assuming α 6= 1, the largest possible value for α is achieved
when v4 = 2m, resulting in α = 2m/βm = 2

β . Now (?) becomes( 2
β
− 1

)
m+ 5

2 >
5
β
⇐⇒ m 6

10− 5β
2β · β

2− β = 5
2 .

MFCS 2017



79:8 Being Even Slightly Shallow Makes Life Hard

Thus for formulas ψ with at least three clauses, we arrive at a contradiction and conclude
that α = 1.

We have now shown that a) H contains only vertices of degree four and b) that |H| > 2m.
Since there cannot be more than 2m vertices of degree four, we conclude that H has exactly
2m vertices. Note that therefore H must consist of a collection of black-edge cycles with
a total of 2m vertices, each of which is incident to exactly one of the m gray edges. Note
that each black cycle Bi in H corresponds to a cycle Di (associated with variable xi) in G,
where Bi was constructed from Di by smoothing black vertices. Thus we can associate every
black cycle Bi in H with a variable xi in ψ. We claim that setting all such variables xi
that have a black cycle Ci in H to false and all other variables to true is a 1-in-3 satisfying
assignment of ψ.

Consider any clause {xi, xj , xk} in ψ. The corresponding gray vertex uijk in G was
smoothed into a gray edge eijk in H, since all m gray are present in H. Accordingly, exactly
two of the three black cycles Bi, Bj , Bk are contained in H. Thus the assignment constructed
above will set exactly two of the variables xi, xj , xk to false and one variable to true. This
argument holds for every clause in ψ and we conclude that the constructed assignment is
1-in-3 satisfying, proving the lemma. J

This concludes the reduction from Positive 1-in-3SAT. Note that an optimal solution in the
reduction necessarily does not use any edges from the original graph, but only edges resulting
from contractions. Therefore the reduction works for both Dense 1⁄2-STM and Dense
1⁄2-SD. As noted above, for r = 1 the constructed graph is bipartite. Since the latter set has
degree at most three, Theorem 4 follows.

In order for the reduction to work for arbitrary odd r, we need to modify the construction
in two places: first, we subdivide every edge in the clause gadget (r − 1)/2 times. Second,
instead of subdividing all edges appearing in the cycles D1, . . . , Dp and edges incident to
the apex a once, we subdivide them r times. The correctness of this reduction follows from
easy modifications to Lemma 5 and 6, concluding our proof of Theorem 2 for odd values
of r. Finally, to see that the above reduction also proofs Theorem 3 for odd r, simply note
that the reduction results in a graph of size Θ(m) and the ETH lower bound follows from
Proposition 1.

Reduction for r even

Let ψ be a Positive 1-in-3SAT instance as described above. Construct graph G in the
following manner. We once again create a cycle Di for each variable xi, connect an apex
vertex a to each vertex on the cycles, and color these vertices white. For this construction,
however, we subdivide all edges between white vertices twice i.e. each white-white edge is
replaced by a three-edge path. As with our previous construction, the subdivision vertices
are all colored black. For each clause Ci = {xj , xk, x`}, we add a triangle uij , uij , uik and
connect it to the vertices from Dj , Dk, and D` corresponding to Ci such that uij is incident
to the vertex from Dj etc. We color each of these vertices gray.

I Lemma 7. If ψ is satisfiable then G has a topological minor at depth 1 of density 5m
2m+1 .

Proof. We construct the minor H by first smoothing each black vertex. Then, for each
variable set to true, we delete the corresponding cycle Di. Since ψ is satisfiable and each
clause has exactly one variable set to true, each gray triangle has two vertices of degree three
and one of degree two. The degree two gray vertices are deleted, leaving the remaining gray



I. Muzi, M. P. O’Brien, F. Reidl, and B.D. Sullivan 79:9

vertices to lie on three-edge paths between white vertices. These paths are subsequently
smoothed to create white-white edges.

V (H) consists of exactly two vertices corresponding to each clause plus a, for a total of
2m + 1 vertices. Since all vertices of H were colored white in G, a has degree 2m. Aside
from the edges incident to a, there are m edges from smoothing gray vertices and 2m edges
from smoothing black vertices, which yield a total of 5m edges. Thus, we have found a minor
at depth 1 of density 5m

2m+1 . J

I Lemma 8. If G has a topological minor at depth 1 of density 5m
2m+1 then ψ is satisfiable.

Proof. Let H ′ be the densest topological minor at depth 1. For the same reasons presented
in Lemma 6, H ′ has no black nails, and thus we can smooth all black vertices into white-white
edges. This lack of black nails also implies that no white vertices can be smoothed to form a
new edge incident to a gray vertex.

If H ′ contains all the gray and white vertices, it has 3m degree 4 white vertices, 3m
degree 3 gray vertices, and a with degree 3m for a total of 12m edges and 6m+ 1 vertices.
This implies a density below 5m

2m+1 , and thus not all white and gray vertices are nails.
Since the gray vertices induce triangles, there is no way to smooth gray vertices to create

a new gray-gray edge. Consider one such triangle Ti. If we smooth two vertices in Ti to
create a single gray-white edge, the gray nail has degree 2 and should be deleted instead
to increase the density. On the other hand, smoothing exactly one gray vertex to create a
gray-white edge cause the remaining gray vertex to have degree two. Thus, any gray nail
in H ′ is adjacent to three white vertices. Note that instead of having a gray nail, we could
delete one gray vertex and smooth the other two into a white-white edge. The proof in
Lemma 6 already demonstrated that forming the white-white edges is necessary to yield a
density of 5m

2m+1 , and thus H ′ has no gray nails.
Since the gray vertices must be smoothed and deleted to create two degree 4 vertices and

one degree 3 vertex per clause, the arguments in Lemma 6 imply that for H ′ to have density
5m

2m+1 , ψ must be satisfiable. J

In order for the reduction to work for arbitrary even r, we again modify the construction in
two places: first, we subdivide every edge of the triangle making up the clause gadget r/2− 1
times. Second, instead of subdividing all edges appearing in the cycles D1, . . . , Dp and edges
incident to the apex a twice, we subdivide them r times. With both cases of r even or odd
covered, we conclude that Theorem 2 and Theorem 3 hold true.

4.2 Excluding a 2o(tw2)nO(1)-algorithm
We show in this section that the ETH implies that we cannot get a single-exponential
algorithm parameterized by treewidth for Dense r/2-STM for r > 2.

I Theorem 9. Unless the ETH fails, there is no algorithm that decides Dense 1-Shallow
Topological Minor on a graph with treewidth t in time 2o(t2)nO(1).

Our proof proceeds via a reduction from CNF-SAT. Assume that the CNF formula Φ with
variables x1, . . . , xn and clauses C1, . . . , Cm is such that

√
n is an even integer; if not, we

pad Φ with dummy variables that appear in no clauses, which does not affect the answer to
Φ. Figure 3 contains a sketch of the construction outlined in the following.
Decision gadget: The reduction will use sequences of vertices connected by decision gadgets.
The decision gadget is a path of three vertices dL, dC , dR which we will always connect to

MFCS 2017



79:10 Being Even Slightly Shallow Makes Life Hard

Figure 3 A sketch of the construction for Theorem 9, with an exemplary connection of the
variable-path X1 to the first clause gadget (here, x1 appears negatively in C1). Dashed edges denote
parts that are actually connected via decision gadgets. 3-paths between the grid R and the clause
gadgets (Ai, Bi) are not drawn.

a sequence of three vertices. For a sequence of vertices v1, v2, v3, connecting the decision
gadget to the sequence involves adding the edges {dL, v1}, {dC , v2}, and {dR, v3}.
Variable gadgets: We construct a grid of vertices R with

√
n rows and m columns, denoting

with R[i, j] the vertex in the ith row and jth column. Each variable xi will be represented by
a sequence of m vertices Xi, one from each column. We will denote with Xi[j] the jth vertex
in the sequence Xi for any 1 6 j 6 m. In order to represent each of the n variables with m
vertices using a

√
n×m grid, the sequences Xi must overlap and each vertex in R is part

of the representation of
√
n varibles. Specifically, let Xi[j] = R[(i + jbi/

√
nc) mod

√
n, j].

In other words, two vertices in successive columns will be in the same row in sequences
X1, . . . , X√n; they will be one row apart (“wrapping around” to the top from the bottom)
in sequences X1+

√
n, . . . , X2

√
n, two rows apart in X1+2

√
n, . . . , X3

√
n, and so on.

For each sequence Xi, we connect Xi[j − 1], Xi[j], and Xi[j + 1] to a decision gadget.
Denote such a decision gadget as Di,j . We also “wrap around” Xi by connecting Xi[m−
1], Xi[m], Xi[1] and Xi[m], Xi[1], Xi[2] to their own decision gadgets.
Clause gadgets: Each clause Ci will be represented by a bipartition of vertices Ai, Bi where
|Ai| = |Bi| =

√
n. Let Ai[j] be the jth vertex in Ai and Bi[j] likewise. Let σ be an ordering

of the vertices in Ai ∪Bi corresponding to an Eulerian tour of a biclique with bipartition
Ai, Bi. Assume without loss of generality that σi = Ai[

√
n], Bi[1], . . . , Bi[

√
n], Ai[

√
n] and

note that every pair of vertices a ∈ Ai and b ∈ Bi appears consecutively exactly once in σ. For
each consecutive triple of vertices in σi, attach a decision gadget (but do not “wrap around”).
Connecting variables and clauses: For each pair of vertices (Ai[j], Bi[k]) for 1 6 j, k 6

√
n

assign the pair with a unique variable x`. Connect X`[i] to Ai[j] and Bi[k] via 3-edge paths.
If x` appears in clause Ci positively, connect dL of the decision gadget Di,` to Bi[k] via an
edge and to Ai[j] via a 2-edge path. If it appears negatively, add the same connections to
dR of Di,` instead.



I. Muzi, M. P. O’Brien, F. Reidl, and B.D. Sullivan 79:11

With the description of the reduction completed, let us now proof its correctness, i.e. We
prove that G has a 1-STM of density ρ = 4

√
n

3 if and only if Φ is satisfiable.
Forward direction: To prove the forward direction, we show how the satisfying assignment
yields a topological minor of the desired density. We note that a cyclical sequence of vertices
joined by decision gadgets can form a cycle in one of two ways: by smoothing each dC and
dL or each dC and dR. Let the former be know as the left configuration of those sequenced
gadgets and the latter the right configuration. Create a cycle on the vertices in Xi by choosing
the right configuration if xi is true and the left configuration if xi is false.

For each clause, pick an arbitrary variable x` that satisfies it and let a and b be the
pair of vertices from Ai and Bi assigned to that variable. If a <σ b, set all decision gadgets
preceding a in σ to the left configuration and all the decision gadgets succeeding b to the
right configuration; do the reverse if b <σ a. Thus Ai and Bi form a biclique missing the ab
edge. Since there is a 3-edge path from a to b in G through a vertex in Di,` that has not been
smoothed, we can use that path to form the ab edge. Smooth the remaining 3-edge induced
paths in G and delete the vertices from the decision gadgets that were not contracted.

The nails of the resulting minor are exactly A∪B ∪R. There are m
√
n vertices in R and

each one participates in
√
n variable gadgets. Since each variable gadget becomes a cycle

there are mn edges within R. The m clause gadgets become bicliques on 2
√
n vertices each

and thus contain mn edges in total. Each variable gadget ends up with two edges into each
clause gadget, for a total of 2mn edges connecting them. In total, this makes 4mn edges and
3m
√
n vertices, exactly ρ.

Reverse direction: We now prove the reverse direction by assuming Φ is unsatisfiable. Let
H ′ be a 1-STM with density ρ. Since ρ is Θ(

√
n) and the vertices in the induced paths and

decision gadgets have degree at most 4, we can assume that none of those vertices appears
as a nail in H ′. Thus, the nail set of H ′ is a subset of A ∪ B ∪R. The only paths between
these nail candidates that use at most three edges do not contain nail candidates as interior
vertices, meaning nail candidates are never smoothed. Let H(Φ) be the minor constructed
by the process described in the forward direction proof for an arbitrary satisfying assignment
of Φ. Observe that for fixed n and m, the minor H(ψ) is identical for every satisfiable formula
ψ; let H(n,m) be that minor. Moreover, every pair of nail candidates that has a 3-edge path
between them in G is adjacent in H(n,m), meaning that H ′ is a either a subgraph of or
identical to H(n,m).

We now show that no proper induced subgraph of H(n,m) has density ρ. If a graph is
d-regular and connected, it has edge density d/2; deleting part of a degree regular graph
leaves vertices with degree less than d, so no proper subgraph reaches that density. Therefore
R and each Ai ∪Bi achieve their maximum densities of

√
n and

√
n/2 only when including

the entire subgraph, implying a dense subgraph must contain portions of both vertex and
clause gadgets. The only vehicle for increasing density is to use edges between vertex and
clause gadgets, which means we should only include a vertex in R in a subgraph if it also
contains its neighbors from A and B. Let G′ be the subgraph of G induced on an i × j
subgrid of R and all of its neighbors in A ∪ B. The density within the subset of A ∪ B
is greatest when those vertices induce j × j bicliques, so we assume they do. Under this
assumption, the density of G′ is 4i

3 if j = m and (4j−1)i
3j if j < m since the edges that wrap

around R cannot be realized. In either case, the density is strictly less than ρ unless j = m

and i =
√
n i.e. exactly H(n,m).

A decision gadget connected to sequential vertices v1, v2, v3 can only create the edge v1, v2
or the edge v2, v3, since dC needs to be smoothed to construct either edge. Consequently,
choosing to set some decision gadgets in the same variable gadget to opposite configurations

MFCS 2017



79:12 Being Even Slightly Shallow Makes Life Hard

(or neither configuration) creates at least one fewer edge than if they were all set to the
same decision. Thus, the configurations of the variable gadgets correspond to some truth
assignment to Φ in the way intended in H(Φ). This indicates that there is a clause gadget
that has no neighbors in a variable gadget that can be used to be smoothed into an edge in
the clause gadget. However, because there is one fewer decision gadget than the number of
biclique edges in the clause gadgets of H(n,m), H ′ cannot realize all possible edges in the
biclique and thus there is no 1-STM of density ρ.
It stands to prove that the above reduction has the proper implications for a parameterization
by treewidth. Using cops and robbers, we can show that G has treewidth O(

√
n) as follows:

We permanently station
√
n cops on the first column of R. We use 2

√
n cops to walk through

the columns of R sequentially; when a column is completely covered with cops we can explore
its corresponding clause gadget with a separate unit of 2

√
n cops. In total, this requires

O(
√
n) cops. Although the formula Φ may have been padded with additional variables, it

would only have been enough to increase
√
n by 2. This means the number of variables in the

unpadded instance is still Θ(n). Thus, if an algorithm parameterized by treewidth t could
find a dense 1-STM in time 2o(t2)nO(1), then we could use our reduction to solve CNF-SAT
in time 2o(n)nO(1), violating ETH. This concludes the proof of Theorem 9.

An immediate consequence is that, unlike Dense 1⁄2-STM, Dense 1-STM is still NP-hard
when the exact nail set is known.

5 Conclusion

We showed that finding dense substructures that are just slightly less local than subgraphs
is computationally hard, and even a parameterization by treewidth cannot provide very
efficient algorithms. While our first reduction excludes a subexponential exact algorithm
assuming the ETH, we could not exclude an algorithm with a running time of (2− ε)nnO(1).
Is such an algorithm possible for r = 1, or can one find a tighter reduction that provides a
corresponding SETH lower bound? Our second reduction rules out a 2o(tw2)nO(1)-algorithm
for r = 2. Is a faster algorithm for r = 1 possible?

Finally, we ask whether there is a sensible notion of substructures that fit in between
1⁄2-shallow topological minors and subgraphs for which we can find the densest occurrence in
polynomial time.

References

1 S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable graphs.
Journal of Algorithms, 12(2):308–340, 1991.

2 H. L. Bodlaender, M. Cygan, S. Kratsch, and J. Nederlof. Deterministic single exponential
time algorithms for connectivity problems parameterized by treewidth. In International
Colloquium on Automata, Languages, and Programming, pages 196–207. Springer, 2013.

3 H. L. Bodlaender, T. Wolle, and A. Koster. Contraction and treewidth lower bounds. J.
Graph Algorithms Appl., 10(1):5–49, 2006.

4 J. Chen, X. Huang, I. A. Kanj, and G. Xia. Strong computational lower bounds via
parameterized complexity. Journal of Computer and System Sciences, 72(8):1346–1367,
2006.

5 M. Cygan, F.V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
and S. Saurabh. Lower bounds based on the exponential-time hypothesis. In Parameterized
Algorithms, pages 467–521. Springer, 2015.



I. Muzi, M. P. O’Brien, F. Reidl, and B.D. Sullivan 79:13

6 M. Cygan, J. Nederlof, M. Pilipczuk, M. Pilipczuk, van J.M.M. Rooij, and J. O. Woj-
taszczyk. Solving connectivity problems parameterized by treewidth in single exponential
time. In Proceedings of the 52nd IEEE Symposium on Foundations of Computer Science
(FOCS), pages 150–159. IEEE Computer Society, 2011.

7 E. D. Demaine and M. Hajiaghayi. The bidimensionality theory and its algorithmic appli-
cations. The Computer Journal, 51(3):292–302, 2008.

8 F. Dorn, F. V. Fomin, and D. M. Thilikos. Subexponential parameterized algorithms.
Computer Science Review, 2(1):29–39, 2008.

9 P. G. Drange, M. Dregi, F.V. Fomin, S. Kreutzer, D. Lokshtanov, M. Pilipczuk,
M. Pilipczuk, F. Reidl, S. Saurabh, F. Sánchez Villaamil, S. Siebertz, and S. Sikdar. Ker-
nelization and sparseness: the case of dominating set. In 33rd Symposium on Theoretical
Aspects of Computer Science, 2016.

10 Z. Dvořák. Asymptotical Structure of Combinatorial Objects. PhD thesis, Charles Univer-
sity, Faculty of Mathematics and Physics, 2007.

11 Z. Dvořák, D. Král, and R. Thomas. Deciding first-order properties for sparse graphs. In
Proceedings of the 51st IEEE Symposium on Foundations of Computer Science (FOCS),
pages 133–142. IEEE Computer Society, 2010.

12 F. V. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos. Linear kernels for (connected)
dominating set on H -minor-free graphs. In Proceedings of the 23rd ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 82–93. SIAM, 2012.

13 J. Gajarský, P. Hliněný, J. Obdržálek, S. Ordyniak, F. Reidl, P. Rossmanith, F. Sánchez
Villaamil, and S. Sikdar. Kernelization using structural parameters on sparse graph classes.
To appear in Journal of Computer and System Sciences, 2016.

14 G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. A fast parametric maximum flow algorithm
and applications. SIAM Journal on Computing, 18(1):30–55, 1989.

15 A. V. Goldberg. Finding a maximum density subgraph. University of California Berkeley,
CA, 1984.

16 M. Grohe, S. Kreutzer, and S. Siebertz. Deciding first-order properties of nowhere dense
graphs. In Proceedings of the 46th ACM Symposium on Theory of Computing (STOC),
pages 89–98, 2014.

17 W. Mulzer and G. Rote. Minimum-weight triangulation is NP-hard. Journal of the ACM
(JACM), 55(2):11, 2008.

18 J. Nešetřil and P. Ossona de Mendez. Sparsity: Graphs, Structures, and Algorithms, vol-
ume 28 of Algorithms and Combinatorics. Springer, 2012.

19 M. Pilipczuk. Problems parameterized by treewidth tractable in single exponential time: a
logical approach. In International Symposium on Mathematical Foundations of Computer
Science, pages 520–531. Springer, 2011.

20 F. Reidl. Structural sparseness and complex networks. Dr., Aachen, Techn. Hochsch.,
Aachen, 2016. Aachen, Techn. Hochsch., Diss., 2015. URL: http://publications.
rwth-aachen.de/record/565064.

21 T. J. Schaefer. The complexity of satisfiability problems. In Proceedings of the tenth annual
ACM symposium on Theory of computing, pages 216–226. ACM, 1978.

MFCS 2017

http://publications.rwth-aachen.de/record/565064
http://publications.rwth-aachen.de/record/565064




Walrasian Pricing in Multi-Unit Auctions∗

Simina Brânzei1, Aris Filos-Ratsikas2, Peter Bro Miltersen3, and
Yulong Zeng4

1 Hebrew University of Jerusalem, Jerusalem, Israel
simina.branzei@gmail.com

2 Oxford University, Oxford, United Kingdom
aris.filos-ratsikas@cs.ox.ac.uk

3 Aarhus University, Aarhus, Denmark
bromille@cs.au.dk

4 Tsinghua Univesity, Beijing, China
cengyl13@mails.tsinghua.edu.cn

Abstract
Multi-unit auctions are a paradigmatic model, where a seller brings multiple units of a good,
while several buyers bring monetary endowments. It is well known that Walrasian equilibria do
not always exist in this model, however compelling relaxations such as Walrasian envy-free pricing
do. In this paper we design an optimal envy-free mechanism for multi-unit auctions with budgets.
When the market is even mildly competitive, the approximation ratios of this mechanism are small
constants for both the revenue and welfare objectives, and in fact for welfare the approximation
converges to 1 as the market becomes fully competitive. We also give an impossibility theorem,
showing that truthfulness requires discarding resources, and in particular, is incompatible with
(Pareto) efficiency.

1998 ACM Subject Classification I.2.11 [Distributed Artificial Intelligence] Multiagent Systems,
J.4 [Social and Behavioral Sciences] Economics, F.2 [Analysis of Algorithms and Problem Com-
plexity]

Keywords and phrases mechanism design, multi-unit auctions, Walrasian pricing, market share

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.80

1 Introduction

Auctions are procedures for allocating goods that have been studied in economics in the 20th
century, and which are even more relevant now due to the emergence of online platforms.
Major companies such as Google and Facebook make most of their revenue through auctions,
while an increasing number of governments around the world use spectrum auctions to
allocate licenses for electromagnetic spectrum to companies. These transactions involve
hundreds or thousands of participants with complex preferences, reason for which auctions
require more careful design and their study has resurfaced in the computer science literature.

∗ Simina Brânzei was supported by the ISF grant 1435/14 administered by the Israeli Academy of Sciences
and Israel-USA Bi-national Science Foundation (BSF) grant 2014389 and the I-CORE Program of the
Planning and Budgeting Committee and The Israel Science Foundation. This project has received
funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 740282). Aris Filos-Ratsikas was supported by the
ERC Advanced Grant 321171 (ALGAME). A part of this work was done when Simina Brânzei was
visiting the Simons Institute for the Theory of Computing.

© Simina Brânzei, Aris Filos-Ratsikas, Peter Bro Miltersen, and Yulong Zeng;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 80; pp. 80:1–80:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.80
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


80:2 Walrasian Pricing in Multi-Unit Auctions

In this paper we study a paradigmatic model known as multi-unit auctions with budgets,
in which a seller brings multiple units of a good (e.g. apples), while the buyers bring money
and have interests in consuming the goods. Multi-unit auctions have been studied in a large
body of literature due to the importance of the model, which already illustrates complex
phenomena [16, 6, 18, 17, 19].

The main requirements from a good auction mechanism are usually computational
efficiency, revenue maximization for the seller, and simplicity of use for the participants, the
latter of which is captured through the notion of truthfulness. An important property that is
often missing from auction design is fairness, and in fact for the purpose of maximizing revenue
it is useful to impose higher payments to the buyers that are more interested in the goods.
However, there are studies showing that customers are unhappy with such discriminatory
prices (see, e.g., [1]), which has lead to a body of literature focused on achieving fair pricing
[25, 22, 14, 23, 38].

A remarkable solution concept that has been used for achieving fairness in auctions
comes from free markets, which are economic systems where the prices and allocations
are not designed by a central authority. Instead, the prices emerge through a process of
adjusting demand and supply such that everyone faces the same prices and the buyers freely
purchase the bundles they are most interested in. When the goods are divisible, an outcome
where supply and demand are perfectly balanced – known as competitive (or Walrasian)
equilibrium [39] – always exists under mild assumptions on the utilities and has the property
that the participants face the same prices and can freely acquire their favorite bundle at those
prices. The competitive equilibrium models outcomes of large economies, where the goods
are divisible and the participants so small (infinitesimal) that they have no influence on the
market beyond purchasing their most preferred bundle at the current prices. Unfortunately,
when the goods are indivisible, the competitive equilibrium does not necessarily exist (except
for small classes of valuations see, e.g., [30, 24]) and the induced mechanism – the Walrasian
mechanism [3, 13] – is generally manipulable.

A solution for recovering the attractive properties of the Walrasian equilibrium in the
multi-unit model is to relax the clearing requirement of the market equilibrium, by allowing
the seller to not sell all of the units. This solution is known as (Walrasian) envy-free pricing
[25], and it ensures that all the participants of the market face the same prices1, and each
one purchases their favorite bundle of goods. An envy-free pricing trivially exists by pricing
the goods infinitely high, so the challenge is finding one with good guarantees, such as high
revenue for the seller or high welfare for the participants.

We would like to obtain envy-free pricing mechanisms that work well with strategic
participants, who may alter their inputs to the mechanism to get better outcomes. To this
end, we design an optimal truthful and envy-free mechanism for multi-unit auctions with
budgets, with high revenue and welfare in competitive environments. Our work can be
viewed as part of a general research agenda of simplicity in mechanism design [27], which
recently proposed item pricing [4, 23] as a way of designing simpler auctions while at the
same time avoiding the ill effects of discriminatory pricing [22, 1]. Item pricing is used in
practice all over the world to sell goods in supermarkets or online platforms such as Amazon,
which provides a strong motivation for understanding it theoretically. Other recent notions
of simplicity in mechanism design include the menu-size complexity [26], the competition
complexity [20], and verifiability of mechanisms (e.g. that the participants can easily convince
themselves that the mechanism has a property, such as being truthful [9, 31]).

1 The term envy-free pricing has also been used when the pricing is per-bundle, not per-item. We adopt
the original definition of [25] which applies to unit-pricing, due to its attractive fairness properties [22].



S. Brânzei, A. Filos-Ratsikas, P. B. Miltersen, and Y. Zeng 80:3

1.1 Our Results
Our model is a multi-unit auction with budgets, in which a seller owns m identical units of
an item. Each buyer i has a budget Bi and a value vi per unit. The utilities of the buyers are
quasi-linear up to the budget cap, while any allocation that exceeds that cap is unfeasible.

We deal with the problem of designing envy-free pricing schemes for the strongest concept
of incentive compatibility, namely dominant strategy truthfulness. The truthful mechanisms
are in the prior-free setting, i.e. they do not require any prior distribution assumptions. We
evaluate the efficiency of mechanisms using the notion of market share, s∗, which captures
the maximum buying power of any individual buyer in the market. A market share of at
most 50% roughly means that no buyer can purchase more than half of the resources when
competition is maximal, i.e. at the minimum envy-free price. Our main theorem can be
summarized as follows.

I Theorem 1 (Main Theorem (informal)). For linear multi-unit auctions with known monetary
endowments:

There exists no (Walrasian) envy-free mechanism that is both truthful and non-wasteful.
There exists a truthful (Walrasian) envy-free auction, which attains a fraction of at least
max

{
2, 1

1−s∗

}
of the optimal revenue and at least 1− s∗ of the optimal welfare on any

market, where 0 < s∗ < 1 is the market share. This mechanism is optimal for both the
revenue and welfare objectives when the market is even mildly competitive (i.e. with
market share s∗ ≤ 50%), and its approximation for welfare converges to 1 as the market
becomes fully competitive.

In the statement above, optimal means that there is no other truthful envy-free auction
mechanism with a better approximation ratio. A mechanism is non-wasteful if it allocates
as many units as possible at a given price. The impossibility theorem implies in particular
that truthfulness is incompatible with Pareto efficiency. Our positive results are for known
budgets, similarly to [16]. In the economics literature budgets are viewed as hard information
(quantitative), as opposed to the valuations, which represent soft information and are more
difficult to verify (see, e.g., [37]).

1.2 Related Work
The multi-unit setting has been studied in a large body of literature on auctions ([16, 6, 18,
17, 19]), where the focus has been on designing truthful auctions with good approximations
to some desired objective, such as the social welfare or the revenue. Quite relevant to ours
is the paper by [16], in which the authors study multi-unit auctions with budgets, however
with no restriction to envy-free pricing or even item-pricing. They design a truthful auction
(that uses discriminatory pricing) for known budgets, that achieves near-optimal revenue
guarantees when the influence of each buyer in the auction is bounded, using a notion of
buyer dominance, which is conceptually close to the market share notion that we employ.
Their mechanism is based on the concept of clinching auctions [2].

Attempts at good prior-free truthful mechanisms for multi-unit auctions are seemingly
impaired by their general impossibility result which states that truthfulness and efficiency
are essentially incompatible when the budgets are private. Our general impossibility result
is very similar in nature, but it is not implied by the results in [16] for the following two
reasons: (a) our impossibility holds for known budgets and (b) our notion of efficiency is
weaker, as it is naturally defined with respect to envy-free allocations only. This also means
that our impossibility theorem is not implied by their uniqueness result, even for two buyers.

MFCS 2017



80:4 Walrasian Pricing in Multi-Unit Auctions

Multi-unit auctions with budgets have also been considered in [17] and [6], and without
budgets ([19, 5, 18]); all of the aforementioned papers do not consider the envy-freeness
constraint.

The effects of strategizing in markets have been studied extensively over the past few
years ([7, 8, 12, 33, 34]). For more general envy-free auctions, besides the multi-unit case,
there has been some work on truthful mechanisms in the literature of envy-free auctions
([25]) and ([28]) for pair envy-freeness, a different notion which dictates that no buyer would
want to swap its allocation with that of any other buyer [32]. It is worth noticing that there
is a body of literature that considers envy-free pricing as a purely optimization problem
(with no regard to incentives) and provides approximation algorithms and hardness results
for maximizing revenue and welfare in different auction settings [22, 15].

It is worth mentioning that the good approximations achieved by our truthful mechanism
are a prior-free setting ([29]), i.e. we don’t require any assumptions on prior distributions from
which the input valuations are drawn. Good prior-free approximations are usually much harder
to achieve and a large part of the literature is concerned with auctions under distributional
assumptions, under the umbrella of Bayesian mechanism design ([10, 11, 29, 35]).

2 Preliminaries

In a linear multi-unit auction with budgets there is a set of buyers, denoted by N = {1, . . . , n},
and a single seller with m indivisible units of a good for sale. Each buyer i has a valuation
vi > 0 and a budget Bi > 0, both drawn from a discrete domain V of rational numbers:
vi, Bi ∈ V. The valuation vi indicates the value of the buyer for one unit of the good.

An allocation is an assignment of units to the buyers denoted by a vector x = (x1, . . . , xn)
∈ Zn+, where xi is the number of units received by buyer i. We are interested in feasible
allocations, for which:

∑n
i=1 xi ≤ m.

The seller will set a price p per unit, such that the price of purchasing ` units is p · ` for
any buyer. The interests of the buyers at a given price are captured by the demand function.

I Definition 2 (Demand). The demand of buyer i at a price p is a set consisting of all the
possible bundle sizes (number of units) that the buyer would like to purchase at this price:

Di(p) =


min{bBi

p c,m}, if p < vi

0, . . . ,min{bBi

p c,m}, if p = vi

0, otherwise.

If a buyer is indifferent between buying and not buying at a price, then its demand is a
set of all the possible bundles that it can afford, based on its budget constraint.

I Definition 3 (Utility). The utility of buyer i given a price p and an allocation x is

ui(p, xi) =
{
vi · xi − p · xi, if p · xi ≤ Bi
−∞, otherwise

(Walrasian) Envy-free Pricing. An allocation and price (x, p) represent a (Walrasian)
envy-free pricing if each buyer is allocated a number of units in its demand set at price p, i.e.
xi ∈ Di(p) for all i ∈ N . A price p is an envy-free price if there exists an allocation x such
that (x, p) is an envy-free pricing.



S. Brânzei, A. Filos-Ratsikas, P. B. Miltersen, and Y. Zeng 80:5

While an envy-free pricing always exists (just set p =∞), it is not always possible to sell
all the units in an envy-free way. We illustrate this through an example.

I Example 4 (Non-existence of envy-free clearing prices). Let N = {1, 2}, m = 3, valuations
v1 = v2 = 1.1, and B1 = B2 = 1. At any price p > 0.5, no more than 2 units can be sold in
total because of budget constraints. At p ≤ 0.5, both buyers are interested and demand at
least 2 units each, but there are only 3 units in total.

Objectives. We are interested in maximizing the social welfare and revenue objectives
attained at envy-free pricing. The social welfare at an envy-free pricing (x, p) is the total
value of the buyers for the goods allocated, while the revenue is the total payment received
by the seller, i.e. SW(x, p) =

∑n
i=1 vi · xi and REV(x, p) =

∑n
i=1 xi · p.

Mechanisms. The goal of the seller will be to obtain money in exchange for the goods,
however, it can only do that if the buyers are interested in purchasing them. The problem of
the seller will be to obtain accurate information about the preferences of the buyers that
would allow optimizing the pricing. Since the inputs (valuations) of the buyers are private,
we will aim to design auction mechanisms that incentivize the buyers to reveal their true
preferences [36].

An auction mechanism is a function M : Vn → O×Zn+ that maps the valuations reported
by the buyers to a price p ∈ O, where O is the space from which the prices are drawn2, and
an allocation vector x ∈ Zn+.

I Definition 5 (Truthful Mechanism). A mechanism M is truthful if it incentivizes the buyers
to reveal their true inputs, i.e. ui(M(v)) ≥ ui(M(v′i, v−i)), for all i ∈ N , any alternative
report v′i ∈ V of buyer i and any vector of reports v−i of all the other buyers.

Requiring incentive compatibility from a mechanism can lead to worse revenue, so our
goal will be to design mechanisms that achieve revenue close to that attained in the pure
optimization problem (of finding a revenue optimal envy-free pricing without incentive
constraints).

Types of Buyers. The next definitions will be used extensively in the paper. Buyer i is
said to be hungry at price p if vi > p and semi-hungry if vi = p. Given an allocation x and a
price p buyer i is essentially hungry if it is either semi-hungry with xi = min{bBi/pc,m} or
hungry. In other words, a buyer is essentially hungry if its value per unit is at least as high
as the price per unit and, moreover, the buyer receives the largest non-zero element in its
demand set.

3 An optimal envy-free and truthful mechanism

In this section, we present our main contribution, an envy-free and truthful mechanism,
which is optimal among all truthful mechanisms and achieves small constant approximations
to the optimal welfare and revenue. The approximation guarantees are with respect to the
market-share s∗, which intuitively captures the maximum purchasing power of any individual
buyer in the auction. The formal definition is postponed to the corresponding subsection.

2 In principle the spaces V and O can be the same but for the purpose of getting good revenue and
welfare, it is useful to have the price to be drawn from a slightly larger domain; see Section 3.

MFCS 2017



80:6 Walrasian Pricing in Multi-Unit Auctions

I Theorem 6. There exists a truthful (Walrasian) envy-free auction, which attains a fraction
of at least

max
{

2, 1
1−s∗

}
of the optimal revenue, and

1− s∗ of the optimal welfare
on any market. This mechanism is optimal for both the revenue and welfare objectives
when the market is even mildly competitive (i.e. with market share s∗ ≤ 50%), and its
approximation for welfare converges to 1 as the auction becomes fully competitive.

Consider the following mechanism.

All-or-Nothing:

Given as input the valuations of the buyers, let p be the minimum envy-free price
and x the allocation obtained as follows:

For every hungry buyer i, set xi to its demand.

For every buyer i with vi < p, set xi = 0.

For every semi-hungry buyer i, set xi = bBi/pc if possible, otherwise set xi = 0
taking the semi-hungry buyers in lexicographic order.

In other words, the mechanism always outputs the minimum envy-free price but if there are
semi-hungry buyers at that price, they get either all the units they can afford at this price or
0, even if there are still available units, after satisfying the demands of the hungry buyers.

I Lemma 7. The minimum envy-free price does not exist when the price domain is R.

Proof. If the price can be any real number, consider an auction with n = 2 buyers, m = 2
units, valuations v1 = v2 = 3 and budgets B1 = B2 = 2. At any price p ≤ 1, there is
overdemand since each buyer is hungry and demands at least 2 units, while there are only 2
units in total. At any price p ∈ (1, 2], each buyer demands at most one unit due to budget
constraints, and so all the prices in the range (1, 2] are envy-free. This is an open set, and
so there is no minimum envy-free price. Note however, that by making the output domain
discrete, e.g. with 0.1 increments starting from zero, then the minimum envy-free price
output is 1.01. At this price each buyer purchases 1 unit. J

Given the example above, we will consider the discrete domain V as an infinite grid with
entries of the form k · ε, for k ∈ N and some sufficiently small3 ε. For the output of the
mechanism, we will assume a slightly finer grid, e.g. with entries k · δ = k(ε/2), for k ∈ N.
The minimum envy-free price can be found in time which is polynomial in the input and
log(1/ε), using binary search4 and the mechanism is optimal with respect to discrete domain
that we operate on. Operating on a grid is actually without loss of generality in terms of the
objectives; even if we compare to the optimal on the continuous domain, if our discretization
is fine enough, we don’t lose any revenue or welfare. This is established by the following
theorem; the proof is omitted due to lack of space (see full version).

3 For most of our results, any discrete domain is sufficient for the results to hold; for some results we will
need to a number of grid points that polynomial in the size of the input grid.

4 In the full version, we describe a faster procedure that finds the minimum envy-free without requiring
to do binary search over the grid.



S. Brânzei, A. Filos-Ratsikas, P. B. Miltersen, and Y. Zeng 80:7

I Theorem 8. When the valuation and budget of each buyer are drawn from a discrete
grid with entries k · ε, and the price is is drawn from a finer grid with entries k · ε/2, for
k ∈ N, then the welfare and revenue loss of the All-or-Nothing mechanism due to the
discretization of the output domain is zero. The mechanism always runs in time polynomial
in the input and log(1/ε).

Truthfulness of the All-or-Nothing Mechanism
The following theorem establishes the truthfulness of All-or-Nothing.

I Theorem 9. The All-or-Nothing mechanism is truthful.

Proof. First, we will prove the following statement. If p is any envy-free price and p′ is an
envy-free price such that p ≤ p′ then the utility of any essentially hungry buyer i at price p
is at least as large as its utility at price p′. The case when p′ = p is trivial, since the price
(and the allocation) do not change. Consider the case when p < p′. Since p is an envy-free
price, buyer i receives the maximum number of items in its demand. For a higher price p′,
its demand will be at most as large as its demand at price p and hence its utility at p′ will
be at most as large as its utility at p.

Assume now for contradiction that Mechanism All-or-Nothing is not truthful and let
i be a deviating buyer who benefits by misreporting its valuation vi as v′i at some valuation
profile v = (v1, . . . , vn), for which the minimum envy-free price is p. Let p′ be the new
minimum envy free price and let x and x′ be the corresponding allocations at p and p′

respectively, according to All-or-Nothing. Let v′ = (v′i, v−i) be the valuation profile after
the deviation.

We start by arguing that the deviating buyer i is essentially hungry. First, assume for
contradiction that i is neither hungry nor semi-hungry, which means that vi < p. Clearly, if
p′ ≥ p, then buyer i does not receive any units at p′ and there is no incentive for manipulation;
thus we must have that p′ < p. This implies that every buyer j such that xj > 0 at price p is
hungry at price p′ and hence x′j ≥ xj . Since the demand of all players does not decrease at
p′, this implies that p′ is also an envy-free price on instance v, contradicting minimality of p.

Next, assume that buyer i is semi-hungry but not essentially hungry, which means that
vi = p and xi = 0, by the allocation of the mechanism. Again, in order for the buyer to
benefit, it has to hold that p′ < p and x′i > 0 which implies that x′i = bBi/p′ c, i.e. buyer
i receives the largest element in its demand set at price p′. But then, since p′ < p and p′
is an envy-free price, buyer i could receive bBi/pc units at price p without violating the
envy-freeness of p, in contradiction with each buyer i being essentially hungry at p.

From the previous two paragraphs, the deviating buyer must be essentially hungry. This
means that xi > 0 and vi ≥ p. By the discussion in the first paragraph of the proof, we have
p′ < p. Since xi > 0, the buyer does not benefit from reporting v′i such that v′i < p′. Thus it
suffices to consider the case when v′i ≥ p′. We have two subcases:

v′i > p: Buyer i is essentially hungry at price p according to vi and hungry at price
p′ according to v′i. The reports of the other buyers are fixed and Bi is known; simil-
arly to above, price p′ is an envy-free price on instance v, contradicting the minimality of p.

v′i = p′: Intuitively, an essentially hungry buyer at price p is misreporting its valuation as
being lower trying to achieve an envy-free price p′ equal to the reported valuation. Since
v′i = p′, Mechanism All-or-Nothing gives the buyer either as many units as it can
afford at this price or zero units. In the first case, since p′ is envy-free and Bi is known,

MFCS 2017



80:8 Walrasian Pricing in Multi-Unit Auctions

buyer i at price p′ receives the largest element in its demand set and since the valuations
of all other buyers are fixed, p′ is also an envy-free price on input v, contradicting the
minimality of p. In the second case, the buyer does not receive any units and hence it
does not benefit from misreporting.

Thus there are no improving deviations, which concludes the proof of the theorem. J

Performance of the All-or-Nothing Mechanism
Next, we show that the mechanism has a good performance for both objectives. We measure
the performance of a truthful mechanism by the standard notion of approximation ratio, i.e.

ratio(M) = sup
v∈Rn

maxx,pOBJ (v)
OBJ (M(v)) ,

where OBJ ∈ {SW,REV} is either the social welfare or the revenue objective. Obviously, a
mechanism that outputs a pair that maximizes the objectives has approximation ratio 1. The
goal is to construct truthful mechanisms with approximation ratio as close to 1 as possible.

We remark here that for the approximation ratios, we only need to consider valuation
profiles that are not “trivial”, i.e. input profiles for which at any envy-free price, no hungry
or semi-hungry buyers can afford a single unit and hence the envy-free price can be anything;
on trivial profiles, both the optimal price and allocation and the price and allocation output
by Mechanism All-or-Nothing obtain zero social welfare or zero revenue.

Market Share. A well-known notion for measuring the competitiveness of a market is the
market share, understood as the percentage of the market accounted for by a specific entity
(see, e.g., [21], Chapter 2).

In our model, the maximum purchasing power (i.e. number of units) of any buyer in
the auction occurs at the minimum envy-free price, pmin. By the definition of the demand,
there are many ways of allocating the semi-hungry buyers, so when measuring the purchasing
power of an individual buyer we consider the maximum number of units that buyer can
receive, taken over the set of all feasible maximal allocations at pmin. Let this set be X .
Then the market share of buyer i can be defined as:

si = max
x∈X

(
xi∑n
k=1 xk

)
.

Then, the market share is defined as s∗ = maxni=1 si. Roughly speaking, a market share
s∗ ≤ 1/2 means that a buyer can never purchase more than half of the resources.

I Theorem 10. The All-or-Nothing mechanism approximates the optimal revenue within
a factor of 2 whenever the market share, s∗, is at most 50%.

Proof. Let OPT be the optimal revenue, attained at some price p∗ and allocation x, and
REV(AON) the revenue attained by the All-or-Nothing mechanism. By definition,
mechanism All-or-Nothing outputs the minimum envy-free price pmin, together with an
allocation z. For ease of exposition, let αi = Bi/pmin and α∗i = Bi/p

∗, ∀i ∈ N . There are
two cases, depending on whether the optimal envy-free price, p∗, is equal to the minimum
envy-free price, pmin:

Case 1: p∗ > pmin. Denote by L the set of buyers with valuations at least p∗ that can afford
at least one unit at the optimal price. Note that the set of buyers that get allocated



S. Brânzei, A. Filos-Ratsikas, P. B. Miltersen, and Y. Zeng 80:9

at pmin is a superset of L. Moreover, the optimal revenue is bounded by the revenue
attained at the (possibly infeasible) allocation where all the buyers in L get the maximum
number of units in their demand. These observations give the next inequalities:

REV(AON) ≥
∑
i∈L
bαic · pmin and OPT ≤

∑
i∈L
bα∗i c · p∗.

Then the revenue is bounded by:

REV(AON)
OPT

≥
∑
i∈L bαic · pmin∑
i∈L bα∗i c · p∗

≥
∑
i∈L bαic · pmin∑
i∈L α

∗
i · p∗

=
∑
i∈L bαic · pmin∑

i∈LBi

=
∑
i∈L bαic∑
i∈L αi

≥
∑
i∈L bαic∑
i∈L 2 bαic

= 1
2 ,

where we used that the auction is non-trivial, i.e. for any buyer i ∈ L, bαic ≥ 1, and so
αi ≤ bαic+ 1 ≤ 2 bαic.

Case 2: p∗ = pmin. The hungry buyers at pmin, as well as the buyers with valuations below
pmin, receive identical allocations under All-or-Nothing and the optimal allocation,
x. However there are multiple ways of assigning the semi-hungry buyers to achieve an
optimal allocation. Recall that z is the allocation made by All-or-Nothing. Without
loss of generality, we can assume that x is an optimal allocation with the property that x
is a superset of z and the following condition holds:

the number of buyers not allocated under z, but that are allocated under x, is minimized.
We argue that x allocates at most one buyer more compared to z. Assume by contradiction
that there are at least two semi-hungry buyers i and j, such that 0 < xi < bαic and
0 < xj < bαjc. Then we can progressively take units from buyer j and transfer them
to buyer i, until either buyer i receives x′i = bαic, or buyer j receives x′j = 0. Hence
we can assume that the set of semi-hungry buyers that receive non-zero, non-maximal
allocations in the optimal solution x is either empty or a singleton. If the set is empty,
then All-or-Nothing is optimal. Otherwise, let the singleton be `; denote by x̃` the
maximum number of units that ` can receive in any envy-free allocation at pmin. Since
the number of units allocated by any maximal envy-free allocation at pmin is equal to∑n
i=1 xi, but x` ≤ x̃`, we get:

x`∑n
i=1 xi

≤ x̃`∑n
i=1 xi

= s∗i .

Thus
REV(AON)

OPT
= OPT − x` · pmin

OPT
≥ OPT − x̃` · pmin

OPT
= 1− x̃` · pmin∑n

i=1 xi · pmin

= 1− x̃`∑n
i=1 xi

= 1− s∗i ≥ 1− s∗

Combining the two cases, the bound follows. This completes the proof. J

I Corollary 11. The performance of the All-or-Nothing mechanism is max{2, 1/(1− s∗)
on any market (i.e. with market share 0 < s∗ < 1).

Proof. From the proof of Theorem 10, since the arguments of Case 1 do not use the
market share s∗, it follows that the ratio of All-Or-Nothing for the revenue objective can
alternatively be stated as max{2, 1/(1− s∗)} and therefore it degrades gracefully with the
increase in the market share. J

MFCS 2017



80:10 Walrasian Pricing in Multi-Unit Auctions

The next theorem establishes that the approximation ratio for welfare is also constant.

I Theorem 12. The approximation ratio of Mechanism All-or-Nothing with respect to
the social welfare is at most 1/(1−s∗), where the market share s∗ ∈ (0, 1). The approximation
ratio goes to 1 as the market becomes fully competitive.

Proof. For social welfare we have, similarly to Theorem 10, that

SW(AON)
OPT

= OPT − x` · v`
OPT

≥ OPT − x̃` · v`
OPT

= 1− x̃` · v`∑n
i=1 xi · vi

≥ 1− x̃` · v`∑n
i=1 xi · v`

= 1− x̃`∑n
i=1 xi

= 1− s∗i ≥ 1− s∗,

where OPT is now the optimal welfare, x the corresponding allocation at OPT , and we used
the fact that v` ≤ vi for all i ∈ L. J

Finally, All-or-Nothing is optimal among all truthful mechanisms for both objectives
whenever the market share s∗ is at most 1/2.

I Theorem 13. Let M be any truthful mechanism that always outputs an envy-free pricing
scheme. Then the approximation ratio of M for the revenue and the welfare objective is at
least 2− 4

m+2 .

Proof. Consider an auction with equal budgets, B, and valuation profile v. Assume that
buyer 1 has the highest valuation, v1, buyer 2 the second highest valuation v2, with the
property that v1 > v2 + ε, where ε is set later. Let vi < v2 for all buyers i = 3, 4, . . . , n. Set
B such that b Bv2

c = m
2 + 1 and ε such that b B

v2+εc = m
2 . Informally, the buyers can afford

m
2 + 1 units at prices v2 and v2 + ε. Note that on this profile, Mechanism All-or-Nothing
outputs price v2 and allocates m

2 + 1 units to buyer 1. For a concrete example of such an
auction, take m = 12, v1 = 1.12, v2 = 1.11 (i.e. ε = 0.01) and B = 8 (the example can be
extended to any number of units with appropriate scaling of the parameters).

Let M be any truthful mechanism, pM its price on this instance, and p∗ the optimal
price (with respect to the objective in question). The high level idea of the proof, for both
objectives, is the following. We start from the profile v above, where pmin = v2 is the
minimum envy-free price, and argue that if p∗ 6= v2, then the bound follows. Otherwise,
p∗ = v2, case in which we construct a series of profiles v,v(1),v(2), . . . ,v(k) that only differ
from the previous profile in the sequence by the reported valuation v(j)

2 of buyer 2. We argue
that in each such profile, either the mechanism allocates units to buyer 1 only, case in which
the bound is immediate, or buyer 2 is semi-hungry. In the latter case, truthfulness and the
constraints on the number of units will imply that any truthful mechanism must allocate to
buyer 2 zero items, yielding again the required bound.

First, consider the social welfare objective. Observe that for the optimal price p∗ on
profile v, it holds that p∗ = v2. We have a few subcases:
Case 1: pM < v2. Then M is not an envy-free mechanism, since in this case there would be

over-demand for units.
Case 2: pM > v2: Then M allocates units only to buyer 1, achieving a social welfare of at

most (m2 + 1)v2. The maximum social welfare is m · v2, so the approximation ratio of M
is at least m

(m/2)+1 = 2− 4
m+2 .

Case 3: pM = v2: Let x2 be the number of units allocated to buyer 2 at price v2; note that
since buyer 2 is semi-hungry at v2, any number of units up to m

2 − 1 is a valid allocation.
If x2 = 0, then M allocates units only to buyer 1 at price v2 and for the same reason as
in Case 2, the ratio is greater than or equal to 2− 4

m+2 ; so we can assume x2 ≥ 1.



S. Brânzei, A. Filos-Ratsikas, P. B. Miltersen, and Y. Zeng 80:11

Next, consider valuation profile v(1) where for each buyer i 6= 2, we have v(1)
i = vi, while

for buyer 2, v2 < v
(1)
2 < v2 + ε. By definition of B, the minimum envy-free price on

v(1) is v(1)
2 . Let p(1)

M be the price output by M on valuation profile v(1) and take a few
subcases:
(a) p(1)

M > v
(1)
2 : Then using the same argument as in Case 2, the approximation is at

least 2− 4
m+2 .

(b) p(1)
M < v

(1)
2 : This cannot happen because by definition of the budgets, v(1)

2 is the
minimum envy-free price.

(c) p(1)
M = v

(1)
2 : Let x(1)

2 be the number of units allocated to buyer 2 at profile v(1); we
claim that x(1)

2 ≥ 2. Otherwise, if x(1)
2 ≤ 1, then on profile v(1) buyer 2 would have

an incentive to report v2, which would move the price to v2, giving buyer 2 at least
as many units (at a lower price), contradicting truthfulness.

Consider now a valuation profile v(2), where for each buyer i 6= 2, it holds that v(2)
i =

v
(1)
i = vi and for buyer 2 it holds that v(1)

2 < v
(2)
2 < v2 + ε. For the same reasons as in

Cases a-c, the behavior of M must be such that:
the price output on input v(2) is v(2)

2 (otherwise M only allocates to buyer 1, and the
bound is immediate), and
the number of units x(2)

2 allocated to buyer 2 is at least 3 (otherwise truthfulness would
be violated).

By iterating through all the profiles in the sequence constructed in this manner, we arrive
at a valuation profile v(k) (similarly constructed), where the price is v(k)

2 and buyer 2
receives at least m/2 units. However, buyer 1 is still hungry at price v(k)

2 and should
receive at least m

2 + 1 units, which violates the unit supply constraint. This implies that
in the first profile, v, M must allocate 0 units to buyer 2 (by setting the price to v2
or to something higher where buyer 2 does not want any units). This implies that the
approximation ratio is at least 2− 4

m+2 .

For the revenue objective, the argument is exactly the same, but we need to establish that at
any profile v or v(i), i = 1, . . . , k that we construct, the optimal envy-free price is equal to
the second highest reported valuation, i.e. v2 or v(i)

2 , i = 1, . . . , k respectively. To do that,
choose v1 such that v1 = v2 + δ, where δ > ε, but small enough such that b B

v2+δ c = b Bv2
c, i.e.

any hungry buyer at price v2 + δ buys the same number of units as it would buy at price v2.
Furthermore, ε and δ can be chosen small enough such that (m2 + 1)(v2 + δ) < m · v2, i.e.
the revenue obtained by selling m

2 + 1 units to buyer 1 at price v2 + δ is smaller than the
revenue obtained by selling m

2 + 1 units to buyer 1 and m
2 − ε units to buyer 2 at price v2.

This establishes the optimal envy-free price is the same as before, for every profile in the
sequence and all arguments go through.

Given that we are working over a discrete domain, for the proof to go through, it suffices
to assume that there are m points of the domain between v1 and v2, which is easily the case
if the domain is not too sparse. Specifically, for the concrete example presented at the first
paragraph of the proof, assuming that the domain contains all the decimal floating point
numbers with up to two decimal places suffices. J

4 Impossibility Results

In this section, we state our impossibility results, which imply that truthfulness can only be
guaranteed when there is some kind of wastefulness; a similar observation was made in [6]
for a different setting.

MFCS 2017



80:12 Walrasian Pricing in Multi-Unit Auctions

I Theorem 14. There is no Pareto efficient, truthful mechanism that always outputs an
envy-free pricing, even when the budgets are known.

The proof of the theorem is left for the full version. The next theorem provides a stronger
impossibility result. First, we provide the necessary definitions. A buyer i on profile input v is
called irrelevant if at the minimum envy-free price p on v, the buyer can not buy even a single
unit. A mechanism is called in-range if it always outputs an envy-free price in the interval
[0, vj ] where vj is the highest valuation among all buyers that are not irrelevant. Finally, a
mechanism is non-wasteful if at a given price p, the mechanism allocates as many items as
possible to the buyers. Note that Pareto efficiency implies in-range and non-wastefulness, but
not the other way around. In a sense, while Pareto efficiency also determines the price chosen
by the mechanism, non-wastefulness only concerns the allocation given a price, whereas
in-range only restricts prices to a “reasonable” interval.

I Theorem 15. There is no in-range, non-wasteful and truthful mechanism that always
outputs an envy-free pricing scheme, even when the budgets are known.

We leave the proof for the full version. To prove the impossibility, we first obtain a necessary
condition; any mechanism in this class must essentially output the minimum envy-free price
(or the next highest price on the output grid). Then we can use this result to construct
and example where the mechanism must leave some items unallocated in order to satisfy
truthfulness.

5 Discussion

Our results show that it is possible to achieve good approximate truthful mechanisms, under
reasonable assumptions on the competitiveness of the auctions which retain some of the
attractive properties of the Walrasian equilibrium solutions. The same agenda could be
applied to more general auctions, beyond the case of linear valuations or even beyond multi-
unit auctions. It would be interesting to obtain a complete characterization of truthfulness
in the case of private or known budgets; for the case of private budgets, we can show that a
class of order statistic mechanisms are truthful, but the welfare or revenue guarantees for
this case may be poor. Finally, in the full version, we present an interesting special case,
that of monotone auctions, in which Mechanism All-Or-Nothing is optimal among all
truthful mechanisms for both objectives, regardless of the market share.

Acknowledgements. We would like to thank the MFCS reviewers for useful feedback.

References
1 E. Anderson and D. Simester. Price stickiness and customer antagonism. Available at

SSRN 1273647, 2008.
2 L. M. Ausubel. An efficient ascending-bid auction for multiple objects. The American

Economic Review, 94(5):1452–1475, 2004.
3 M. Babaioff, B. Lucier, N. Nisan, and R. Paes Leme. On the efficiency of the walrasian

mechanism. In ACM EC, pages 783–800. ACM, 2014.
4 M. F. Balcan, A. Blum, and Y. Mansour. Item pricing for revenue maximization. In ACM

EC, pages 50–59. ACM, 2008.
5 Y. Bartal, R. Gonen, and N. Nisan. Incentive compatible multi unit combinatorial auctions.

In TARK, pages 72–87, 2003.



S. Brânzei, A. Filos-Ratsikas, P. B. Miltersen, and Y. Zeng 80:13

6 C. Borgs, J. Chayes, N. Immorlica, M. Mahdian, and A. Saberi. Multi-unit auctions with
budget-constrained bidders. In ACM EC, pages 44–51, 2005.

7 A. Borodin, O. Lev, and T. Strangway. Budgetary effects on pricing equilibrium in online
markets. In AAMAS, 2016.

8 S. Brânzei, Y. Chen, X. Deng, A. Filos-Ratsikas, S. K. S. Frederiksen, and J. Zhang. The
fisher market game: Equilibrium and welfare. In AAAI, pages 587–593, 2014.

9 Simina Brânzei and Ariel D. Procaccia. Verifiably truthful mechanisms. In ITCS, pages
297–306, 2015.

10 Y. Cai, C. Daskalakis, and M. Weinberg. Optimal multi-dimensional mechanism design:
Reducing revenue to welfare maximization. In FOCS, pages 130–139, 2012.

11 Y. Cai, C. Daskalakis, and M. Weinberg. Reducing revenue to welfare maximization: Ap-
proximation algorithms and other generalizations. In SODA, pages 578–595, 2013.

12 N. Chen, X. Deng, and J. Zhang. How profitable are strategic behaviors in a market? In
ESA, pages 106–118. Springer, 2011.

13 M. Cheung and C. Swamy. Approximation algorithms for single-minded envy-free profit-
maximization problems with limited supply. In FOCS, pages 35–44, 2008.

14 V. Cohen-Addad, A. Eden, M. Feldman, and A. Fiat. The invisible hand of dynamic market
pricing. In ACM EC, pages 383–400, 2016.

15 R. Colini-Baldeschi, S. Leonardi, P. Sankowski, and Q. Zhang. Revenue maximizing envy-
free fixed-price auctions with budgets. In WINE, pages 233–246. Springer, 2014.

16 S. Dobzinski, R. Lavi, and N. Nisan. Multi-unit auctions with budget limits. GEB,
74(2):486–503, 2012.

17 S. Dobzinski and R. P. Leme. Efficiency guarantees in auctions with budgets. In ICALP,
pages 392–404. Springer, 2014.

18 S. Dobzinski and N. Nisan. Mechanisms for multi-unit auctions. In ACM EC, pages 346–351,
2007.

19 S. Dobzinski and N. Nisan. Multi-unit auctions: beyond roberts. JET, 156:14–44, 2015.
20 A. Eden, M. Feldman, O. Friedler, I. Talgam-Cohen, and M. Weinberg. The competition

complexity of auctions: A bulow-klemperer result for multi-dimensional bidders. In ACM
EC, 2017.

21 P. Farris, N. Bendle, P. Pfeifer, and D. Reibstein. Marketing metrics: The definitive guide
to measuring marketing performance. Pearson Education, 2010.

22 M. Feldman, A. Fiat, S. Leonardi, and P. Sankowski. Revenue maximizing envy-free multi-
unit auctions with budgets. In ACM EC, pages 532–549, 2012.

23 M. Feldman, N. Gravin, and B. Lucier. Combinatorial auctions via posted prices. In SODA,
pages 123–135, 2015.

24 F. Gul and E. Stacchetti. Walrasian equilibrium with gross substitutes. Journal of Eco-
nomic Theory, 87(1):95–124, 1999.

25 V. Guruswami, J. Hartline, A. Karlin, D. Kempe, C. Kenyon, and F. McSherry. On profit-
maximizing envy-free pricing. In SODA, pages 1164–1173, 2005.

26 Sergiu Hart and Noam Nisan. The menu-size complexity of auctions. In ACM EC, pages
565–566, 2013.

27 J. Hartline and T. Roughgarden. Simple versus optimal mechanisms. In ACM EC, pages
225–234. ACM, 2009.

28 J. Hartline and Q. Yan. Envy, truth, and profit. In ACM EC, pages 243–252, 2011.
29 J. D. Hartline. Mechanism design and approximation. Book draft. October, 122, 2013.
30 A. S. Kelso and V. P. Crawford. Job matching, coalition formation, and gross substitutes.

Econometrica, 50:1483–1504, 1982.
31 Shengwu Li. Obviously strategy-proof mechanisms, 2015. Working paper.

MFCS 2017



80:14 Walrasian Pricing in Multi-Unit Auctions

32 E. Markakis and O. Telelis. Envy-free revenue approximation for asymmetric buyers with
budgets. In SAGT, pages 247–259, 2016.

33 R. Mehta and M. Sohoni. Exchange markets: Strategy meets supply-awareness. In WINE,
pages 361–362. Springer, 2013.

34 R. Mehta, N. Thain, L. Végh, and A. Vetta. To save or not to save: The fisher game. In
WINE, pages 294–307. Springer, 2014.

35 R. B. Myerson. Optimal auction design. MOR, 6(1):58–73, 1981.
36 N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani. Algorithmic Game Theory. Cam-

bridge Univ. Press, (editors) 2007.
37 M. Petersen. Information: Hard and soft, 7 2004.
38 Shreyas Sekar. Posted pricing sans discrimination. In IJCAI, to appear, 2017.
39 L. Walras. Elements d’economie politique pure, ou theorie de la richesse sociale (in french),

1874. English translation: Elements of pure economics; or, the theory of social wealth.
American Economic Association and the Royal Economic Society, 1954.



Distributed Strategies Made Easy
Simon Castellan1, Pierre Clairambault2, and Glynn Winskel3

1 Univ Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP, Lyon, France
2 Univ Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP, Lyon, France
3 Computer Laboratory, University of Cambridge, UK

Abstract
Distributed/concurrent strategies have been introduced as special maps of event structures. As
such they factor through their “rigid images”, themselves strategies. By concentrating on such
“rigid image” strategies we are able to give an elementary account of distributed strategies and
their composition, resulting in a category of games and strategies. This is in contrast to the usual
development where composition involves the pullback of event structures explicitly and results in a
bicategory. It is shown how, in this simpler setting, to extend strategies to probabilistic strategies;
and indicated how through probability we can track nondeterministic branching behaviour, that
one might otherwise think lost irrevocably in restricting attention to “rigid image” strategies.

1998 ACM Subject Classification F.1.1 Models of Computation, F.1.2 Modes of Computation

Keywords and phrases Games, Strategies, Event Structures, Probability

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.81

1 Introduction

Traditionally in understanding and analysing a large system, whether it be in computer
science, physics, biology or economics, the system’s behaviour is thought of as going through
a sequence of actions as time progresses. This is bound up with our experience of the world
as individuals; in our conscious understanding of the world we experience and narrate our
individual history as a sequence, or total order, of events, one after the other. However, a
complex system is often much more than an individual agent. It is better thought of as
several or many agents interacting together and distributed over various locations. In which
case it can be fruitful to abandon the view of its behaviour as caught by a total order of
events and instead think of the events of the systems system as comprising a partial order.
The partial order expresses the causal dependency between events, how an event depends on
possibly several previous events. The view that causal dependency should be paramount over
an often incidental temporal order has been discovered and rediscovered in many disciplines:
in physics in the understanding of the causal structure of space time; in biology and chemistry
in the description of biochemical pathways; in computer science, originally in the work of
Petri on Petri nets, and later in the often more mathematically amenable event structures.

Interacting systems are often represented mathematically via games. A system operates in
an unknown environment, so often a prescription for its intended behaviour can be expressed
as a strategy in which the system is Player against (an unpredictable) Opponent, standing
for the environment. Games and their strategies are ubiquitous. They appear in logic (proof
theory, set theory, . . . ), computer science (semantics, algorithmics, . . . ), biology, economics,
etc.. They codify the mathematics of interacting systems. But they almost always follow the
traditional line of representing the history of a play of the game as a sequence of moves, most
often alternating between Player and Opponent. Until recently there was no mathematical

© Simon Castellan, Pierre Clairambault, and Glynn Winskel;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 81; pp. 81:1–81:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.81
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


81:2 Distributed Strategies Made Easy

theory of games based on partial orders of causal dependency between move occurrences.
This handicapped their use in modelling and analysing a system of distributed agents.

What was lacking was a mathematical theory of distributed games in which Player and
Opponent are more accurately thought of as teams of players, distributed over different
locations, able to move and communicate with each other. Although there are glimpses
of such a mathematical theory of distributed games in earlier work of Abramsky, Mellies
and Mimram [1, 13], Faggian and Piccolo [8], and others, a breakthrough occurred with the
systematic use of event structures to formalise distributed games and strategies [14]. This
meant that we could harness the mathematical techniques developed around event structures
in an early mathematical foundation for work on synchronising processes [18]; the move from
total to partial orders brings in its wake a lot of technical difficulty and potential for undue
complexity unless it’s done artfully.

But here we meet an obstacle for many people. Distributed/concurrent strategies have
been based on maps of event structures and composition on pullback, which in the case of
event structures has to be defined rather indirectly. Then, one obtains not a category but a
bicategory of games and strategies. At what seems like an increasingly slight cost, a more
elementary treatment can be given. Its presentation is the purpose of this article. The maps
and pullbacks are still there of course, but pushed into the background.

The realisation that a more elementary presentation will often suffice has been a gradual
one. It is based on the fact that a strategy, presented as a map of event structures, has
a “rigid image” in the game and that in many cases this image can stand as a proxy for
the original strategy [25]. True some branching behaviour is lost, just as it, and possible
deadlock and divergence, can be lost in the composition of strategies. But extra structure on
strategies generally remedies this. For example, the introduction of probability to strategies
allows the detection of divergence in composition, or hidden branching, through leaks of
probability. One can go far with rigid images of strategies. They permit the elementary
development presented here.

In their CONCUR’16 paper [2] Castellan and Clairambault used the simple presentation
of “rigid image” strategies here. Meanwhile rigid images of strategies had come to play
an increasing role in Winskel’s ECSYM notes [25]. Before this, Nathan Bowler recognised
essentially the same subcategory of games and “rigid image” strategies, within the bicategory
of concurrent games and strategies. (At the time, Winskel thought that too much of the
nondeterministic branching behaviour would be lost irrecoverably to be very enthusiastic.)

Finally, an apology: we obtained the results here by specialising more general results on
strategies to their rigid-images [25]; elementary proofs of the results would be desirable for a
fully self-contained presentation, and should be written up shortly.

2 Event structures

An event structure comprises (E,≤,Con), consisting of a set E of events which are partially
ordered by ≤, the causal dependency relation, and a nonempty consistency relation Con
consisting of finite subsets of E. The relation e′ ≤ e expresses that event e causally depends
on the previous occurrence of event e′. That a finite subset of events is consistent conveys
that its events can occur together by some stage in the evolution of the process. Together



S. Castellan, P. Clairambault, and G. Winskel 81:3

the relations satisfy several axioms:

[e] =def {e′ ∣ e′ ≤ e} is finite for all e ∈ E,
{e} ∈ Con for all e ∈ E,
Y ⊆X ∈ Con implies Y ∈ Con, and
X ∈ Con & e ≤ e′ ∈X implies X ∪ {e} ∈ Con.

There is an accompanying notion of state, or history, those events that may occur up to some
stage in the behaviour of the process described. A configuration is a, possibly infinite, set of
events x ⊆ E which is: consistent, X ⊆ x and X is finite implies X ∈ Con ; and down-closed,
e′ ≤ e ∈ x implies e′ ∈ x.

Two events e, e′ are considered to be causally independent, and called concurrent if the
set {e, e′} is in Con and neither event is causally dependent on the other; then we write
e co e′. In games the relation of immediate dependency e _ e′, meaning e and e′ are distinct
with e ≤ e′ and no event in between, plays a very important role. We write [X] for the
down-closure of a subset of events X. Write C∞(E) for the configurations of E and C(E) for
its finite configurations. (Sometimes we shall need to distinguish the precise event structure
to which a relation is associated and write, for instance, ≤E , _E or coE .)

We can describe a computation path by an elementary event structure, which is a partial
order p = (∣p∣,≤p) for which the set {e′ ∈ ∣p∣ ∣ e′ ≤p e} is finite for all e ∈ ∣p∣. We can regard an
elementary event structure as an event structure in which the consistency relation consists of
all finite subsets of events. There is a useful subpath order of rigid inclusion of one elementary
event structure in another. Let p = (∣p∣,≤p) and q = (∣q∣,≤q) be elementary event structures.
Write

p↪ q iff ∣p∣ ⊆ ∣q∣ & ∀e ∈ ∣p∣, e′ ∈ ∣q∣. e′ ≤p e ⇐⇒ e′ ≤q e .

We shall often view a configuration x of E as an elementary event structure, viz. a partial
order with underlying set x and partial order the causal dependency of E restricted to x.

In an interactive context a configuration x may be subject to causal dependencies beyond
those of E. It will become an elementary event structure p = (∣p∣,≤p) comprising an underlying
set ∣p∣ = x with a partial order ≤p which augments that from E:

∀e ∈ ∣p∣, e′ ∈ E. e′ ≤E e Ô⇒ e′ ≤p e .

Write Aug(E) for the set of such augmentations associated with E. The order of rigid inclusion
of one augmentation in another expresses when one augmentation is a sub-behaviour of
another.

It will be useful to combine augmentations, in effect subjecting a configuration simultan-
eously to the causal dependencies of the two augmentations – provided this does not lead to
causal loops. Define a key partial operation

∧ ∶ Aug(E) ×Aug(E)⇀ Aug(E)

by taking

p ∧ q =
⎧⎪⎪⎨⎪⎪⎩

(∣p∣, (≤p ∪ ≤ q)∗) if ∣p∣ = ∣q∣ & (≤p ∪ ≤ q)∗ is antisymmetric,
undefined otherwise.

I Lemma 1. Letting p, q ∈ Aug(E) for which p ∧ q is defined, e′ _p∧q e implies

[e′ _p e & (e′ _q e or e′ coq e)] or [e′ _q e & (e′ _p e or e′ cop e)] .

MFCS 2017



81:4 Distributed Strategies Made Easy

In fact we can see Aug(E) as an event structure in its own right. Its events are those
augmentations with a top event, their causal dependency and consistency induced given by
rigid inclusion [20]. The remark is an instance of a general fact:

I Proposition 2. A rigid family R comprises a non-empty subset of finite elementary event
structures which is down-closed w.r.t. rigid inclusion, i.e. p↪ q ∈R implies p ∈R. A rigid
family determines an event structure Pr(R) whose order of finite configurations is isomorphic
to (R,↪). The event structure Pr(R) has events those elements of R with a top event; its
causal dependency is given by rigid inclusion; and its consistency by compatibilty w.r.t. rigid
inclusion. The order isomorphism θR ∶ C(Pr(R)) ≅R is given by θR(x) = ⋃x, the union of
(the consistent) augmentations in x ∈ C(Pr(R)).

3 Event structures with polarity

An event structure with polarity comprises (A,pol) where A is an event structure with a
polarity function polA ∶ A → {+,−,0} ascribing a polarity + (Player), − (Opponent) or 0
(neutral) to its events. The events correspond to (occurrences of) moves. It will be technically
useful to allow events of neutral polarity; they arise, for example, in a play between a strategy
and a counterstrategy. A game shall be represented by an event structure with polarity in
which no moves are neutral.

I Notation 3. In an event structure with polarity (A,pol), with configurations x and y,
write x ⊆− y to mean inclusion in which all the intervening events are moves of Opponent.
Write x ⊆+ y for inclusion in which the intervening events are neutral or moves of Player.

3.1 Operations

We introduce two fundamental operations on event structures with polarity. We shall adopt
the same operations for elementary event structures, and also for configurations, regarding a
configuration as an elementary event structure with the order of the ambient event structure.

3.1.1 Dual

The dual, A⊥, of A, an event structure with polarity, comprises the same underlying event
structure A but with a reversal of polarities, events of neutral polarity remaining neutral.

We shall implicitly adopt the view of Player and understand a strategy in a game A as
strategy for Player. A counterstrategy in a game A is a strategy for Opponent in the game
A, i.e. a strategy (for Player) in the game A⊥.

3.1.2 Simple parallel composition

This operation simply juxtaposes two event structures with polarity. Let (A,≤A,ConA,polA)
and (B,≤B ,ConB ,polB) be event structures with polarity. The events of A∥B are ({1} ×
A)∪({2}×B), their polarities unchanged, with the only relations of causal dependency given
by (1, a) ≤ (1, a′) iff a ≤A a′ and (2, b) ≤ (2, b′) iff b ≤B b′; a subset of events C is consistent
in A∥B iff {a ∣ (1, a) ∈ C} ∈ ConA and {b ∣ (2, b) ∈ C} ∈ ConB. The empty event structure
with polarity, written ∅, is the unit w.r.t. ∥.



S. Castellan, P. Clairambault, and G. Winskel 81:5

4 Strategies

A strategy in a game will be a (special) subset of plays in the game.

I Definition 4. A play in A, an event structure with polarity, comprises an augmentation,
a finite elementary event structure p = (∣p∣,≤p) with underlying set ∣p∣ ∈ C(A), which may
augment with extra causal dependencies provided it does so courteously:

∀a, a′ ∈ ∣p∣. a′ _p a & polA(a′) = + or polA(a) = − Ô⇒ a′ _A a .

Note A, and so p, may involve neutral moves.

If A is a game, so with no neutral moves, the only augmentations allowed of a play p to the
immediate causal dependency of A are those of the form ⊖ _ ⊕.

The order of rigid inclusion between plays, p↪ q, expresses that p is a subplay of q. We
shall write

p↪+ q iff p↪ q & ∣p∣ ⊆+ ∣q∣ ,

so when the extension only involves neutral or Player moves, and similarly p↪− q when only
Opponent moves are involved.

I Definition 5. A bare strategy in A, an event structure with polarity, is a rigid family of
plays, so a nonempty subset σ ⊆ Plays(A) satisfying p↪ q ∈ σ Ô⇒ p ∈ σ, which is also

receptive, p ∈ σ & ∣p∣ ⊆− x ∈ C(A) Ô⇒ ∃q ∈ σ. p↪ q ∈ σ & ∣q∣ = x .
(Note that q is unique by courtesy.)

Write σ ∶ A when σ is a bare strategy of A. When A is a game, so an event structure with
polarity without neutral moves, we say σ is a strategy.

One simple example of a strategy σ ∶ A in a game A is got by taking σ to consist of all
the finite configurations of A regarded as elementary event structures in which their order
of causal dependency is inherited from A. (Bare strategies, with neutral events, have been
called “partial strategies” in [25] and an “uncovered strategies” in [16].)

We shall regard a strategy in the compound game A⊥∥B, where A and B are games as a
strategy from the game A to the game B [7, 12].

4.1 Copycat
We shall shortly define the composition of strategies. Identities w.r.t. composition are given
by copycat strategies. Let A be a game. The copycat strategy ccA ∶ A⊥∥A is an instance of
a strategy. We obtain copycat from the finite configurations of an event structure CCA based
on the idea that Player moves, of +ve polarity, in one component of the game A⊥∥A always
copy previous corresponding moves of Opponent, of −ve polarity in the other component.

For c ∈ A⊥∥A we use c̄ to mean the corresponding copy of c, of opposite polarity, in the
alternative component, i.e. (1, a) = (2, a) and (2, a) = (1, a) . Define CCA to comprise the
event structure with polarity A⊥∥A together with extra causal dependencies c̄ ≤CCA c for all
events c with polA⊥∥A(c) = +. Take a finite subset to be consistent in CCA iff its down-closure
w.r.t. the relation ≤CCA is consistent in A⊥∥A.

I Example 6. We illustrate the construction of CCA for the event structure A comprising
the single immediate dependency a1 _ a2 from an Opponent move a1 to a Player move

MFCS 2017



81:6 Distributed Strategies Made Easy

a2. The event structure CCA is obtained from A⊥∥A by adjoining the additional immediate
dependencies shown:

A⊥ ā2 ⊖ � ,,2⊕ a2 A

ā1 ⊕

_LLR

⊖ a1

_LLR

�llr

I Lemma 7. Let A be an event structure with polarity. Then, CCA is an event structure
with polarity. Moreover,

x ∈ C(CCA) iff x ∈ C(A⊥∥A) & ∀c ∈ x. polA⊥∥A(c) = + Ô⇒ c̄ ∈ x .

The copycat strategy ccA ∶ A⊥∥A is defined by taking

ccA = {(x,≤CCA ↾x) ∣ x ∈ C(CCA)} .

In other words, ccA consists of all the finite configurations of CCA, each understood as a
finite partial order through inheriting the causal dependency of CCA.

5 Composition of strategies

A play of a strategy σ in a game A⊥∥B and a play of a strategy τ in a game B⊥∥C can
interact at the common game B, where the two strategies adopt complementary views, in
which one sees a move of Player the other sees a move of Opponent, and vice versa. In
effect, the two plays synchronise at common moves in B, one strategy being receptive to
the Player moves of the other. Together they produce a play in the event structure with
polarity A⊥∥B0∥C – the event structure with polarity B0 has the same underlying event
structure as B but where all events now carry neutral polarity. This is because the interaction
over the game B produces moves which are no longer open to Player or Opponent.

We can express this interaction through a partial operation

⊛ ∶ Plays(B⊥∥C) ×Plays(A⊥∥B)⇀ Plays(A⊥∥B0∥C)

defined as follows. Let p ∈ Plays(A⊥∥B), q ∈ Plays(A⊥∥B) with ∣p∣ = xA⊥∥xB and ∣q∣ = yB⊥∥yC .
Take

q ⊛ p =def (p∥yC) ∧ (xA⊥∥q) ,

where we understand the configurations yC and xA⊥ to inherit the partial order of their
ambient event structures. Notice that q ⊛ p is defined only if xB = yB⊥ , and then only if no
causal loops are introduced.

I Lemma 8. Let p ∈ Plays(A⊥∥B) and q ∈ Plays(B⊥∥C). Then, if defined, q ⊛ p ∈
Plays(A⊥∥B0∥C).

Define the projection

(_)↓ ∶ Plays(A⊥∥B0∥C)→ Plays(A⊥∥C) ,

of a play p in A⊥∥B0∥C,with ∣p∣ = xA⊥∥xB∥xC , to a play p↓ in A⊥∥C, to be the restriction
of the order on p to the set xA⊥∥xC .



S. Castellan, P. Clairambault, and G. Winskel 81:7

Define a partial operation

⊙ ∶ Plays(B⊥∥C) ×Plays(A⊥∥B)⇀ Plays(A⊥∥C)

by

q⊙p = (q ⊛ p)↓

for p ∈ Plays(A⊥∥B) and q ∈ Plays(B⊥∥C).
I Lemma 9. Let p ∈ Plays(A⊥∥B) and q ∈ Plays(B⊥∥C). Then, if defined, q⊙p ∈ Plays(A⊥∥C).

Let σ ∶ A⊥∥B and τ ∶ B⊥∥C be strategies. Define their composition

τ⊙σ = {q⊙p ∣ p ∈ σ & q ∈ τ & q⊙p is defined} .

It is sometimes useful to consider their composition without hiding, the interaction

τ ⊛ σ = {q ⊛ p ∣ p ∈ σ & q ∈ τ & q ⊛ p is defined} ,

which is like the strategy τ⊙σ, but before hiding the neutral moves over the game B.

I Lemma 10. The interaction of strategies σ ∶ A⊥∥B and τ ∶ B⊥∥C yields a bare strategy
τ ⊛ σ ∶ A⊥∥B0∥C.
I Theorem 11. The composition of strategies σ ∶ A⊥∥B and τ ∶ B⊥∥C yields a strategy
τ⊙σ ∶ A⊥∥C. Taking objects to be games and arrows from a game A to a game B to be
strategies in the game A⊥∥B, with composition as above, yields a category in which copycat
is identity. (This is in contrast to the bicategory of [14].)

5.1 Deterministic strategies
Let A be an event structure with polarity. A bare strategy σ ∶ A is deterministic iff

p↪+ q & p↪ r in σ Ô⇒ ∃s ∈ σ. q ↪ s & r ↪ s .

The interaction of deterministic bare strategies is deterministic. Similarly, the composition
of deterministic strategies is deterministic. However, for general games A, the copycat strategy
need not be deterministic. It will be deterministic iff A is race-free, i.e.,

x ⊆+ y & x ⊆− z Ô⇒ y ∪ z ∈ C(A) .

Restricting to race-free games as objects and deterministic strategies as arrows we obtain a
category. Deterministic strategies coincide with the receptive ingenuous strategies of Melliès
and Mimram [13] and are closely related to the strategies of Faggian and Piccolo [8], and
Abramsky and Melliès’ strategies as closure operators [1].

The subcategory of deterministic strategies on games which countable and purely positive,
i.e. for which there are no Opponent moves, is isomorphic to that of Berry’s dI-domains and
stable functions. If we restrict the subcategory further to objects in which causal dependency
is simply the identity relation we obtain Girard’s qualitative domains with linear maps and
if yet further insist that consistency Con is determined in a binary fashion, i.e.

X ∈ Con ⇐⇒ ∀a1, a2 ∈X. {a1, a2} ∈ Con ,

his coherence spaces. In this sense we can see strategies as extending the world of stable
domain theory. The relationship with the broader world of traditional domain theory,
following in the footsteps of Scott, is more subtle. In [23], it is shown how a strategy
determines a presheaf and a strategy between games a profunctor, giving a relationship with
a form of generalised domain theory [10, 4].

MFCS 2017



81:8 Distributed Strategies Made Easy

6 Strategies as maps of event structures

A strategy σ in a game A is a rigid family and so, by Proposition 2, determines an event
structure S whose events are those plays in σ which have a top element. Each top element
is an event of the game A so there is a function from the events of S to those of A; this
function is a total map of event structures and indeed a concurrent strategy in the sense
of [14]. Not all the concurrent strategies of [14] are obtained this way. But any concurrent
strategy of [14] has a rigid image [25] which corresponds to a strategy as presented here.
Though not essential to the rest of the paper, we now explain this summary of the relation
with the concurrent strategies of [14] in more detail.

Recall a (total) map of event structures f ∶ E → E′ is a function f from E to E′ such
that the image of a configuration x is a configuration fx and any event of fx arises as the
image of a unique event of x. Maps compose as functions. Write E for the ensuing category.

A map f ∶ E → E′ reflects causal dependency locally, in the sense that if e, e′ are events in
a configuration x of E for which f(e′) ≤ f(e) in E′, then e′ ≤ e also in E; the event structure
E inherits causal dependencies from the event structure E′ via the map f . Consequently, a
map f ∶ E → E′ preserves concurrency: if two events are concurrent, e1 coE e2, then their
images are also concurrent, f(e1) coE′ f(e2). In general a map of event structures need not
preserve causal dependency; when it does we say it is rigid. Write Er for the subcategory of
rigid maps.

The inclusion functor Er ↪ E has a right adjoint ([20], Proposition 2.3): There is an
obvious map of event structures εB ∶ Pr(Aug(B))→ B taking an event of Pr(Aug(B)) to its
top element. Post-composition by εB yields a bijection

εB ○_ ∶ Er(A,Pr(Aug(B))) ≅ E(A,B) ,

furnishing the data required for an adjunction. Hence Pr(Aug(_)) extends to a right adjoint
to the inclusion Er ↪ E . From the bijection of the adjunction, we have a correspondence
between maps f ∶ A→ B and rigid maps f̄ ∶ A→ Pr(Aug(B)). The adjunction is unchanged
by the addition of polarity to event structures; maps are assumed to preserve polarity.

A strategy determines a map and indeed a “concurrent strategy”as in [14]:

I Proposition 12. Let σ ∶ A be a strategy in a game A. The function fσ ∶ Pr(σ)→ A, taking
an event of Pr(σ) to its top element, is a map of event structures with polarity. It is a
concurrent strategy in the sense of [14], viz. a map which is

courteous, s′ _ s and pol(s′) = + or pol(s) = − in Pr(σ) implies fσ(s′) _A fσ(s) in A ,
(called “innocent” in [14]), and
receptive, fσx ⊆− y in C(A), for x ∈ C(Pr(σ)), implies there is a unique x′ ∈ C(Pr(σ))
such that fσx′ = y .

Not all the concurrent strategies of [14] are obtained in the manner of Proposition 12.
However, from any concurrent strategy f ∶ S → A in a game A there is σ ∶ A obtained as the
image

σ =def {θ(f̄x) ∈ Aug(A) ∣ x ∈ C(S)}

of the finite configurations of S as augmentations of A; recall from Proposition 2, the
order isomorphism θ ∶ C(Pr(Aug(A))) ≅ Aug(A). From the definition of σ, the rigid map
f̄ ∶ S → Pr(Aug(A)) cuts down to a rigid map f̄ ∶ S → Pr(σ). The concurrent strategy f
factors through its “rigid image” fσ ∶ Pr(σ)→ A in that

f ∶ S f̄ // Pr(σ) fσ // A,



S. Castellan, P. Clairambault, and G. Winskel 81:9

where the rigid image fσ is itself a concurrent strategy. The simple strategies of this article
correspond to such rigid image strategies.

The determination of a strategy, call it σf , from a concurrent strategy f is functorial:
identity, copycat, strategies are preserved and if concurrent strategies f and g are composable
then σg⊙f = σg⊙σf . Often extra structure on a concurrent strategy f can be pushed forward
along the rigid map f̄ from to its rigid image, so to a simple strategy of this article. For
example, probabilistic structure (in the form of a valuation – see the next section) making a
concurrent strategy probabilistic can be pushed forward along the rigid map f̄ from S to
Pr(σf), and so to σf [25]. As a consequence, in the next section, we are able to develop
probabilistic strategies in the simpler framework of this paper.

A major result of [14] is that receptivity and courtesy (called innocence there) are necessary
and sufficient conditions in order for copycat to behave as identity w.r.t. composition; this
motivated the definition of concurrent strategy there. That article directly spawned work on
games with winning conditions and payoff [5, 6], imperfect information [21], probabilistic
strategies [24], “stopping configurations” [3] and “essential events” [16] – the latter two
concerned with capturing the liveness behaviour of concurrent strategies viewed as processes.
(Concurrent strategies are currently being extended to cope with quantum computation of
the kind addressed in the quantum lambda calculus [15].) As an indication of how much of
the work ensuing from [14] could be reformulated in terms of the simple strategies on which
this article concentrates we next address the issue of how to make strategies probabilistic.
Probabilistic strategies developed in this simpler framework, instead of that of concurrent
strategies [14], do not suffer from any loss of information e.g. with regard to expected payoff.

7 Probabilistic strategies

As a first step we describe how to make event structures probabilistic, in itself an issue, as
event structures lie outside the models of probabilistic processes most commonly considered.

7.1 Probabilistic event structures

A probabilistic event structure essentially comprises an event structure together with a
continuous valuation on the Scott-open sets of its domain of configurations.1 The continuous
valuation assigns a probability to each open set and can then be extended to a probability
measure on the Borel sets [11]. However open sets are several levels removed from the
events of an event structure, and an equivalent but more workable definition is obtained by
considering the probabilities of sub-basic open sets, generated by single finite configurations;
for each finite configuration x this specifies Prob(x) the probability of obtaining events
x, so as result a configuration which extends the finite configuration x. Such valuations
on configuration determine the continuous valuations from which they arise, and can be
characterised through the device of “drop functions” which measure the drop in probability
across certain generalised intervals. The characterisation yields a workable general definition of
probabilistic event structure as event structures with configuration-valuations, viz. functions

1 A Scott-open subset of configurations is upwards-closed w.r.t. inclusion and such that if it contains the
union of a directed subset S of configurations then it contains an element of S. A continuous valuation is a
function w from the Scott-open subsets ofC∞(E) to [0, 1] which is ((normalized) w(C∞(E)) = 1; (strict)
w(∅) = 0; (monotone) U ⊆ V Ô⇒ w(U) ≤ w(V ); (modular) w(U ∪ V ) +w(U ∩ V ) = w(U) +w(V );
and (continuous) w(⋃i∈I Ui) = supi∈Iw(Ui), for directed unions.

MFCS 2017



81:10 Distributed Strategies Made Easy

from finite configurations to the unit interval for which the drop functions are always
nonnegative [22].

In detail, a probabilistic event structure comprises an event structure E with a configuration-
valuation, a function v from the finite configurations of E to the unit interval which is

(normalized) v(∅) = 1 and satisfies the
(drop condition) dv[y;x1,⋯, xn] ≥ 0 when y ⊆ x1,⋯, xn for finite configurations y, x1,⋯, xn;

where the “drop” across the generalized interval starting at y and ending at one of the
x1,⋯, xn is given by

dv[y;x1,⋯, xn] =def v(y) −∑
I

(−1)∣I ∣+1v(⋃
i∈I

xi)

– the index I ranges over nonempty I ⊆ {1,⋯, n} such that the union ⋃i∈I xi is a configuration.
The “drop” dv[y;x1,⋯, xn] gives the probability of the result being a configuration which
includes the configuration y and does not include any of the configurations x1,⋯, xn.

If x ⊆ y in C(E), then, provided v(x) ≠ 0, the conditional probability Prob(y ∣ x) is
v(y)/v(x); this is the probability that the resulting configuration includes the events y
conditional on it including the events x.

7.2 Probability with an Opponent
This prepares the ground for a definition of probabilistic distributed strategies. Firstly
though, we should restrict to race-free games, in particular because without copycat being
deterministic there would be no probabilistic identity strategies. A probabilistic strategy in
a game A, is a strategy σ ∶ A in which we endow σ with probability, while taking account of
the fact that in the strategy Player can’t be aware of the probabilities assigned by Opponent.
To this end we notice that σ, being a rigid family, has the form of a family of configurations.
We can’t just regard σ as a probabilistic event structure however. This is because Player
is oblivious to the probabilities of Opponent moves beyond those determined by causal
dependencies of σ. An appropriate valuation for σ needs to take account of Opponent moves.
It turns out to be useful to extend the concept of valuation to bare strategies, which may
also have neutral moves.

Let σ ∶ A be a bare strategy in A, an event structure with polarity; so both A and σ may
involve neutral moves. A valuation on σ is a function v, from σ to the unit interval, which is

(normalized) v(∅) = 1,
(oblivious) v(p) = v(q) when p↪− q for p, q ∈ σ , and satisfies the
(drop condition) dv[q;p1,⋯, pn] ≥ 0 when q ↪+ p1,⋯, pn for elements of σ.

When p ↪+ q in σ, we can still express Prob(q ∣ p), the conditional probability of
the additional neutral or Player moves making the play q given p, as v(q)/v(p), provided
v(p) ≠ 0. The game being race-free and the valuation being oblivious ensure the probabilistic
independence of Player or neutral moves and Opponent moves with which are concurrent.

For a race-free game A, the copycat strategy is deterministic and we obtain a valuation
on ccA by taking vccA to be the function which is constantly 1.

7.3 Composing probabilistic strategies
Let A, B and C be race-free games. Assume σ ∶ A⊥∥B, with valuation vσ, and τ ∶ B⊥∥C,
with valuation vτ , are probabilistic strategies. To define their interaction and composition
we must define the valuations vτ⊛ vσ on τ ⊛ σ and vτ⊙vσ on τ⊙σ, respectively.



S. Castellan, P. Clairambault, and G. Winskel 81:11

I Lemma 13. For r ∈ τ ⊛ σ, defining

(vτ⊛ vσ)(r) =def ∑{vτ(q).vσ(p) ∣ q ⊛ p = r} ,

yields a valuation on τ ⊛ σ.

I Lemma 14. For r ∈ τ⊙σ, defining

(vτ⊙vσ)(r) =def ∑{vτ(q).vσ(p) ∣ q⊙p = r} ,

yields a valuation on τ⊙σ.

I Theorem 15. For race-free games A, B and C, we define the composition of probabilistic
strategies σ from A to B, with valuation vσ, and τ from B to C, with valuation vτ , to be
τ⊙σ, with valuation vτ⊙vσ. Taking objects to be games and arrows from a game A to a
game B to be probabilistic strategies in the game A⊥∥B, with composition as above, yields a
category in which copycat, with the constantly-1 valuation, is identity.

The next example illustrates how through probability leaks we can track deadlocks, or
divergences, that can arise in the composition of strategies. (Such branching behaviour might
otherwise be lost in the composition of strategies and through concentrating on rigid images.)

I Example 16. Let B be the game consisting of two concurrent Player events b1 and b2, and
C the game with a single Player event c. We illustrate the composition of two probabilistic
strategies σ from the empty game ∅ to B and τ from B to C. The strategy σ ∶ ∅⊥∥B plays
b1 with probability 2/3 and b2 with probability 1/3 (and plays both with probability 0).
The strategy τ ∶ B⊥∥C does nothing if just b1 is played and plays the single Player event
c of C with certainty, probabilty 1, if b2 is played. Their composition yields the strategy
τ⊙σ ∶ ∅⊥∥C which plays c with probability 1/3, so has a 2/3 chance of doing nothing.

One way in which the probabilistic interaction of strategies is important is in calculating the
expected outcome of the competition between a probabilistic strategy and a counterstrategy,
the subject of the following example.

I Example 17. Given a probabilistic strategy σ ∶ A, with valuation vσ, and a counterstrategy
τ ∶ A⊥, with valuation vτ , we obtain a valuation vτ⊛vσ on their interaction τ⊛σ ∶ A0, where now
all the events of the interaction are neutral. Via the order isomorphism θ ∶ C(Pr(τ⊛σ)) ≅ τ⊛σ
we obtain a configuration-valuation (vτ ⊛ vσ) ○ θ, making Pr(τ ⊛ σ) a probabilistic event
structure. As such we get a probability measure µσ,τ on the Borel sets of its configurations.
Assuming a payoff given as a Borel measurable function X from C∞(A) to the real numbers,
the expected payoff is obtained as the Lebesgue integral

Eσ,τ(X) =def ∫
x∈C∞(Pr(τ⊛σ))

X(∣x∣) dµσ,τ(x) ,

where ∣x∣ ∈ C∞(A) is the configuration of A over which x ∈ C∞(Pr(τ ⊛ σ)) lies.

8 Conclusion

We have provided an elementary account of a form of distributed strategies by choosing only
to represent the rigid images of concurrent strategies. Is anything irredeemably lost through
this simplification? (In the sense that it can’t be regained through adding extra structure, in
the way that probabilistic structure recovers hidden branching.) Not obviously. Though, for

MFCS 2017



81:12 Distributed Strategies Made Easy

instance, we couldn’t exactly reproduce the result of [3], establishing a bijection between
events of a strategy and derivations in an operational semantics. Though an elementary
account is more accessible, a more abstract, categorical account can be helpful too. As often,
there are pros and cons. To some extent, one pays for the elementary treatment in not seeing
the abstract picture, the wood for the trees.

On another tack, the account of strategies here reveals an alternative way to develop
strategies while capturing noneterministic branching explicitly, viz. as (pre)sheaves over plays
rather than subsets, in the form of rigid families. For instance, we can recover the concurrent
strategies of [14] as certain separated presheaves in the manner of [19]; this brings us close
to the developments of Hirschowitz and Pous [9] and Ong and Tsukada [17].

Acknowledgments. Thanks to Nathan Bowler, Jonathan Hayman and Martin Hyland for
advice and encouragement, and to the ERC for the Advanced Grant “Events, Causality and
Symmetry" (ECSYM).

References
1 Samson Abramsky and Paul-André Melliès. Concurrent games and full completeness. In

LICS ’99. IEEE Computer Society, 1999.
2 Simon Castellan and Pierre Clairambault. Causality vs interleavings in concurrent games

semantics. In CONCUR’16, 2016.
3 Simon Castellan, Jonathan Hayman, Marc Lasson, and Glynn Winskel. Strategies as con-

current processes. ENTCS, 308, 2014.
4 Gian Luca Cattani and Glynn Winskel. Profunctors, open maps and bisimulation. Math-

ematical Structures in Computer Science, 15(3):553–614, 2005.
5 Pierre Clairambault, Julian Gutierrez, and Glynn Winskel. The winning ways of concurrent

games. In LICS 2012: 235-244, 2012.
6 Pierre Clairambault and Glynn Winskel. On concurrent games with payoff. Electr. Notes

Theor. Comput. Sci. 298: 71-92, 2013.
7 John Conway. On Numbers and Games. Wellesley, MA: A K Peters, 2000.
8 Claudia Faggian and Mauro Piccolo. Partial orders, event structures and linear strategies.

In TLCA ’09, volume 5608 of LNCS. Springer, 2009.
9 Tom Hirschowitz and Damien Pous. Innocent strategies as presheaves and interactive

equivalences for CCS. Sci. Ann. Comp. Sci., 22(1):147–199, 2012.
10 Martin Hyland. Some reasons for generalising domain theory. Mathematical Structures in

Computer Science, 20(2):239–265, 2010.
11 Claire Jones and Gordon Plotkin. A probabilistic powerdomain of valuations. In LICS ’89.

IEEE Computer Society, 1989.
12 Andre Joyal. Remarques sur la théorie des jeux à deux personnes. Gazette des sciences

mathématiques du Québec, 1(4), 1997.
13 Paul-André Melliès and Samuel Mimram. Asynchronous games: Innocence without altern-

ation. In CONCUR, volume 4703 of LNCS, pages 395–411, 2007.
14 Silvain Rideau and Glynn Winskel. Concurrent strategies. In LICS 2011.
15 Peter Selinger and Benoît Valiron. Quantum lambda calculus. In Simon Gay and Ian

Mackie, editors, Semantic Techniques in Quantum Computation, chapter 4, pages 135–172.
Cambridge University Press, 2009.

16 Jonathan Hayman Simon Castellan, Pierre Clairambault and Glynn Winskel. Non-angelic
concurrent game semantics. 2016.



S. Castellan, P. Clairambault, and G. Winskel 81:13

17 Takeshi Tsukada and C.-H. Luke Ong. Nondeterminism in game semantics via sheaves. In
LICS 2015. IEEE Computer Society, 2015.

18 Glynn Winskel. Event structure semantics for CCS and related languages. In ICALP’82,
LNCS 140, 1982.

19 Glynn Winskel. Event structures as presheaves -two representation theorems. In CONCUR
’99, 1999.

20 Glynn Winskel. Event structures with symmetry. Electr. Notes Theor. Comput. Sci. 172:
611-652, 2007.

21 Glynn Winskel. Winning, losing and drawing in concurrent games with perfect or imperfect
information. In Festschrift for Dexter Kozen, volume 7230 of LNCS. Springer, 2012.

22 Glynn Winskel. Distributed probabilistic and quantum strategies. ENTCS 298, 2013.
23 Glynn Winskel. Strategies as profunctors. In FOSSACS 2013, volume 7794 of LNCS.

Springer, 2013.
24 Glynn Winskel. Probabilistic and quantum event structures. In Festschrift for Prakash

Panangaden, volume 8464 of LNCS. Springer, 2014.
25 Glynn Winskel. ECSYM Notes: Event Structures, Stable Families and Concurrent Games.

http://www.cl.cam.ac.uk/∼gw104/ecsym-notes.pdf, 2016.

MFCS 2017





On Definable and Recognizable Properties of
Graphs of Bounded Treewidth
Michał Pilipczuk

Institute of Informatics, University of Warsaw, Warsaw, Poland
michal.pilipczuk@mimuw.edu.pl

Abstract
This is an overview of the invited talk delivered at the 42nd International Symposium on Math-
ematical Foundations of Computer Science (MFCS 2017).

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases monadic second-order logic, treewidth, recognizability

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.82

Category Invited Talk

1 Overview of the talk

The foundational observation of the field of automata and logic is that on many well-behaved
classes of structures the notion of recognizability of a structure’s property by a finite-state
automaton is equivalent to definability of this property in monadic second-order logic (MSO).
This equivalence holds for properties of words and trees, both finite and infinite, and provides
means for the algorithmic treatment of MSO-definable properties in these classes of structures.

It is natural to ask what aspects of a class of structures imply that the notions of MSO-
definability and recognizability by (appropriately defined) finite automata coincide on this
class. In early 90s, Courcelle [2] proved that on any class of structures of bounded treewidth,
that is, where structures roughly look like trees with trunks of width bounded by a constant,
one implication holds: MSO-definability implies recognizability. This fundamental result
already provides most of the desired algorithmic corollaries, most notably that MSO-definable
properties of structures of bounded treewidth can be decided in linear fixed-parameter time,
where treewidth is the parameter. However, the reverse implication became known as the
Courcelle’s conjecture and remained open until very recently, despite multiple attempts and
some incomplete proofs [3, 4]. Finally, last year together with Bojańczyk we resolved the
conjecture in affirmative [1].

The main obstacle when approaching the Courcelle’s conjecture is that the constructed
MSO formula expressing the recognizable property in question has to work only on the
structure, and not on its tree decomposition certifying the constant upper bound on the
treewidth. More precisely, if we were given such a tree decomposition, then we could
just existentially quantify an accepting run of the automaton recognizing the property.
However, while graphs of treewidth 1, that is, forests, can be perfectly understood, for
structures of larger treewidth computing an optimum-width tree decomposition is a highly
nontrivial combinatorial task, and an appropriate tree decomposition cannot be immediately
defined from the structure. Therefore, the main technical contribution of [1] is a proof
that an approximate tree decomposition of a structure can be constructed by means of
a nondeterministic MSO transduction, which is a formalism that captures MSO-definable

© Michał Pilipczuk;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 82; pp. 82:1–82:2

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.82
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


82:2 On Definable and Recognizable Properties of Graphs of Bounded Treewidth

transformations of relational structures. The crucial ingredient of this proof is an application
of Simon’s factorization forest theorem [5].

During the talk, we will discuss the relation between MSO-definability and recognizability
on various classes of structures, in particular on classes of bounded treewidth. We will also
give a sketch of the proof of the Courcelle’s conjecture, focusing on the role played by Simon’s
factorization forest theorem.

References
1 Mikołaj Bojańczyk and Michał Pilipczuk. Definability equals recognizability for graphs of

bounded treewidth. In LICS’16, pages 407–416. ACM, 2016. Full version available as arXiv
preprint 1605.03045.

2 Bruno Courcelle. The Monadic Second-Order logic of graphs. I. Recognizable sets of finite
graphs. Inf. Comput., 85(1):12–75, 1990.

3 Valentine Kabanets. Recognizability equals definability for partial k-paths. In ICALP’97,
volume 1256 of LNCS, pages 805–815. Springer, 1997.

4 Denis Lapoire. Recognizability equals Monadic Second-Order definability for sets of graphs
of bounded tree-width. In STACS’98, volume 1373 of LNCS, pages 618–628. Springer, 1998.

5 Imre Simon. Factorization forests of finite height. Theor. Comput. Sci., 72(1):65–94, 1990.



Hardness and Approximation of High-Dimensional
Search Problems
Rasmus Pagh∗

IT University of Copenhagen, Denmark
pagh@itu.dk

Abstract
The need to perform search in a collection of high-dimensional vectors arises in many areas of
computer science including databases, image analysis, information retrieval, and machine learning.
In contrast to lower-dimensional settings, we do not know of worst-case efficient data structures
for such search problems. In fact, if we make no assumptions on the input there is no known way
of doing significantly better than brute force. In this talk I survey recent developments in the
theoretical study of high dimensional search problems, including:

Conditional hardness results linking search problems to well-known computationally hard
problems such as k-SAT.
Upper bounds for approximate high-dimensional search using locality-sensitive maps and
filters, and work towards derandomizing these algorithms.
Surprising upper bounds in batched settings where there are many simultaneous searches.

The talk ends by sketching directions for future research, connecting to other areas of theoret-
ical computer science but also attempting to obtain better theoretical models that explain the
performance of search algorithms that are used in practice.

1998 ACM Subject Classification E.1 Data Structures, F.2.2 Nonnumerical Algorithms and
Problems – Geometrical problems and computations

Keywords and phrases Similarity search, hardness, approximation

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.83

Category Invited Talk

∗ Supported by the European Research Council under the European Union’s 7th Framework Programme
(FP7/2007-2013) / ERC grant agreement no. 614331.

© Rasmus Pagh;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 83; pp. 83:1–83:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.83
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de




Temporal Logics for Multi-Agent Systems
Nicolas Markey∗†

IRISA – CNRS & INRIA & Univ. Rennes 1, France

Abstract
This is an overview of an invited talk delivered during the 42nd International Conference on
Mathematical Foundations of Computer Science (MFCS 2017).

1998 ACM Subject Classification D.2.4 Software/Program Verification, F.3.1 Specifying and
Verifying and Reasoning about Programs, F.4.1 Mathematical Logic

Keywords and phrases Temporal logics, Verification, Game theory, Strategic reasoning

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.84

Category Invited Talk

1 Overview of the talk

Temporal logics have been widely used in model checking over the last 40 years, as a formalism
for reasoning about executions of computer systems. They are sufficiently powerful to specify
most properties one may want to check of reactive systems, while enjoying reasonably-efficient
verification algorithms [21, 11, 22, 12, 7, 6]. Temporal logics and model checking have had a
major impact in computer science (as witnessed by two Turing awards won by Pnueli in 1996,
and by Clarke, Emerson and Sifakis in 2007), and have been applied in numerous industrial
cases.

Several attempts have been made to extend temporal logics to multi-agent systems, where
several components interact: while the Computation-Tree Logic (CTL) can only express the
existence (or absence) of executions of the global system having certain properties, the aim
here is to quantify over the possible behaviours of the individual components interacting in
the system (be it in a collaborative or adversarial way).

In 1997, CTL has been extended into the Alternating-time Temporal Logic (ATL), with the
introduction of strategy quantifiers [3, 4]. In ATL, strategy quantifiers express the existence
(or absence) of a behaviour of one of the agents (or of a coalition) so that any resulting
execution in the global system satisfies a given property (notice in particular that such an
existential quantification over strategies involves an implicit universal quantification over
the resulting executions). The semantics of ATL formulas as defined in [4] is bottom-up:
when evaluating a formula with nested strategy quantifiers, the innermost quantifiers are
evaluated first. While this allows for efficient model-checking algorithms, this prevents
strategic interactions: the innermost quantifier being evaluated first, it can be replaced with
a fresh atomic proposition labelling those states where the subformula holds true.

During the 2000’s, several adaptations of ATL have been proposed in order to introduce
strategy interactions [23, 24, 1, 20], until the development of a top-down semantics, storing
selected strategies in a context for later interaction with other strategies [5, 2, 9, 13]. This

∗ Supported by ERC grant EQualIS (308087).
† This abstract is based on joint works with Patricia Bouyer, Patrick Gardy, and François Laroussinie.

© Nicolas Markey;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 84; pp. 84:1–84:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.84
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


84:2 Temporal Logics for Multi-Agent Systems

results in a much richer framework, suitable for expressing classical game-theoretic properties
(such as the existence of Nash equilibria) and many extra properties mixing collaborative
and adversarial interactions (such as the interactions between a server and several clients
competing for accessing some shared resource). Such an expressiveness has a cost, and
checking if a formula in ATL with strategy contexts holds in a given model is in k-EXPTIME,
where k is the number of nested strategy quantifiers in the formula.

Simultaneously, an orthogonal approach has been defined and explored: it allows to
manipulate strategies explicitly, quantifying over them and assigning them to agents [10, 19,
17]. The resulting logic, called Strategy Logic (SL), has similar algorithmic properties as ATL
with strategy contexts [17, 16, 15], but allows for even more expressive power (e.g., strategies
can be revoked and applied again later, or two players can follow the same strategy). However,
recent works have shown that slight natural variations in the semantics of SL may have
significant impact both on the algorithmics and on the expressiveness of the logic [18, 8, 14].

During this talk, we survey these results, giving a uniform presentation of the verification
and expressiveness results for those logics and their semantic variants.

References

1 T. Ågotnes, V. Goranko, and W. Jamroga. Alternating-time temporal logics with irrevoc-
able strategies. In TARK’07, p. 15–24, 2007.

2 T. Ågotnes, V. Goranko, and W. Jamroga. Strategic commitment and release in logics for
multi-agent systems (extended abstract). Technical Report 08-01, Clausthal University of
Technology, Germany, 2008.

3 R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. In FOCS’97,
p. 100–109. IEEE Comp. Soc. Press, 1997.

4 R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. J. of the
ACM, 49(5):672–713, 2002.

5 Ch. Baier, T. Brázdil, M. Größer, and A. Kučera. Stochastic game logic. In QEST’07,
p. 227–236. IEEE Comp. Soc. Press, 2007.

6 Ch. Baier and J.-P. Katoen. Principles of Model-Checking. MIT Press, 2008.
7 B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, Ph. Schnoebelen, and

P. McKenzie. Systems and Software Verification: Model-Checking Techniques and Tools.
Springer, 2001.

8 P. Bouyer, P. Gardy, and N. Markey. On the semantics of strategy logic. Information
Processing Letters, 116(2):75–79, 2016.

9 Th. Brihaye, A. Da Costa, F. Laroussinie, and N. Markey. ATL with strategy contexts and
bounded memory. In LFCS’09, LNCS 5407, p. 92–106. Springer, 2009.

10 K. Chatterjee, T. A. Henzinger, and N. Piterman. Strategy logic. In CONCUR’07, LNCS
4703, p. 59–73. Springer, 2007.

11 E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using
branching-time temporal logic. In LOP’81, LNCS 131, p. 52–71. Springer, 1982.

12 E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT Press, 2000.
13 A. Da Costa, F. Laroussinie, and N. Markey. ATL with strategy contexts: Expressiveness

and model checking. In FSTTCS’10, LIPIcs 8, p. 120–132. Leibniz-Zentrum für Informatik,
2010.

14 P. Gardy. Semantics of Strategy Logic. PhD thesis, Lab. Spécification & Vérification, Univ.
Paris-Saclay, France, 2017.

15 F. Laroussinie and N. Markey. Quantified CTL: expressiveness and complexity. Logical
Methods in Computer Science, 10(4), 2014.

http://dx.doi.org/10.1145/585265.585270
http://dx.doi.org/10.1016/j.ipl.2015.10.004
http://dx.doi.org/10.1007/978-3-540-92687-0_7
http://dx.doi.org/10.1007/978-3-540-92687-0_7
http://dx.doi.org/10.1007/978-3-540-74407-8_5
http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.120
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.120
http://dx.doi.org/10.2168/LMCS-10(4:17)2014


N. Markey 84:3

16 F. Laroussinie and N. Markey. Augmenting ATL with strategy contexts. Inf. & Comp.,
245:98–123, 2015.

17 F. Mogavero, A. Murano, G. Perelli, and M. Y. Vardi. Reasoning about strategies: On
the model-checking problem. ACM Transactions on Computational Logic, 15(4):34:1–34:47,
2014.

18 F. Mogavero, A. Murano, and L. Sauro. A behavioral hierarchy of strategy logic. In
CLIMA’14, LNAI 8624, p. 148–165. Springer, 2014.

19 F. Mogavero, A. Murano, and M. Y. Vardi. Reasoning about strategies. In FSTTCS’10,
LIPIcs 8, p. 133–144. Leibniz-Zentrum für Informatik, 2010.

20 S. Pinchinat. A generic constructive solution for concurrent games with expressive con-
straints on strategies. In ATVA’07, LNCS 4762, p. 253–267. Springer, 2007.

21 A. Pnueli. The temporal logic of programs. In FOCS’77, p. 46–57. IEEE Comp. Soc. Press,
1977.

22 J.-P. Queille and J. Sifakis. Specification and verification of concurrent systems in CESAR.
In SOP’82, LNCS 137, p. 337–351. Springer, 1982.

23 W. van der Hoek, W. Jamroga, and M. Wooldridge. A logic for strategic reasoning. In
AAMAS’05, p. 157–164. ACM Press, 2005.

24 D. Walther, W. van der Hoek, and M. Wooldridge. Alternating-time temporal logic with
explicit strategies. In TARK’07, p. 269–278, 2007.

MFCS 2017

http://dx.doi.org/10.1016/j.ic.2014.12.020
http://dx.doi.org/10.1145/2631917
http://dx.doi.org/10.1145/2631917
http://dx.doi.org/10.1007/978-3-319-09764-0_10
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.133
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1007/3-540-11494-7_22
http://dx.doi.org/10.1145/1324249.1324285
http://dx.doi.org/10.1145/1324249.1324285




Ideal-Based Algorithms for the Symbolic
Verification of Well-Structured Systems
Philippe Schnoebelen

LSV, CNRS & ENS Paris Saclay, Cachan, France
phs@lsv.fr

Abstract
We explain how the downward-closed subsets of a well-quasi-ordering (X,≤) can be represented
via the ideals of X and how this leads to simple and efficient algorithms for the verification of
well-structured systems.

1998 ACM Subject Classification F.1.1 Models of Computation, F.3.1 Specifying and Verifying
and Reasoning about Programs

Keywords and phrases Well-structured systems and verification, Order theory

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.85

Category Invited Talk

1 Summary of the talk

Well-structured systems, also known under the acronym “WSTSs”, are a family of infinite-
state models for which generic verification algorithms exist [1, 2, 13, 18, 23]. With WSTSs,
the main ingredient for decidability is the existence of an ordering on configurations that
enjoys two properties:

it is a well-quasi-ordering (a WQO): every infinite sequence c0, c1, c2, . . . of configurations
contains an increasing pair ci ≤ cj with i < j;
transitions are monotonic: if the system can perform a step c → c′ then from any
configuration d ≥ c, a “similar” step is possible, i.e., there is some d→ d′ with d′ ≥ c′.

The most well-known instances of WSTSs are some families of counter machines or vector
addition systems [8, 12]. For simplicity, we shall assume that the WQO set of configurations
for these systems is Conf = (Nd,≤×) for some dimension d ∈ N, where the component-wise
ordering ≤× is given by u = (u1, . . . , ud) ≤× v = (v1, . . . , vd) def⇔ u1 ≤ v1 ∧ · · · ∧ ud ≤ vd.

Another well-known instance are the lossy channel systems [4, 7], where for simplicity we
assume that the set of configurations is (Σ∗,≤∗) for some finite alphabet Σ = {a, b, . . .} of
messages, and where ≤∗ is the subword ordering 1 given by

u ≤ v def⇔ ∃a1, . . . , a` ∈ Σ : ∃v0, . . . , v` ∈ Σ∗ : u = a1a2 · · · a` ∧ v = v0a1v1a2 · · · a`v` .

Algorithms for the verification of safety properties of WSTSs usually involve reasoning
and computing with upward-closed and/or downward-closed sets of configurations. A set
U ⊆ Conf is upward-closed def⇔ c ∈ U ∧ c ≤ c′ =⇒ c′ ∈ U , and there is a similar definition

1 That (Σ∗, ≤∗) is a WQO is known as Higman’s Lemma.

© Philippe Schnoebelen;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 85; pp. 85:1–85:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.85
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


85:2 Ideal-Based Algorithms for the Symbolic Verification of Well-Structured Systems

for downward-closed subsets. These sets are usually infinite (like Conf itself) and symbolic
representations or data structures are needed in algorithms handling them.

For upward-closed subsets, a well-known representation relies on the existence of minimal
bases, i.e., the fact that the set of minimal elements of any subset is finite and unique (modulo
equivalence). This representation is generic: it works for any WQO. Furthermore, it enjoys
several nice algorithmic properties, e.g., testing inclusion between upward-closed subsets
reduces to a quadratic number of comparisons between individual configurations, and the
union of upward-closed sets is very easy to compute. In the case of (Nd,≤×) or (Σ∗,≤∗),
algorithms for computing intersections reduce to easy computations of least upper bounds
between elements.

For downward-closed subsets, one cannot rely on a mirror notion of maximal elements
and this makes symbolic computations harder to envision. The question of finding a generic
approach for computing with downward-closed sets was first raised in [14].

In the case of (Nd,≤×), a symbolic technique was popularized by Karp and Miller with
their classic algorithm for coverability in VAS [19]. They define Nω = N ∪ {ω} —where
the set of natural numbers is completed with a new infinite element ω that is larger than
any finite number— and consider d-tuples over Nω. It turns out that this is exactly what
we need to represent downward-closed subsets of Nd. For σ = (s1, . . . , sd) ∈ Nd

ω, we let
↓σ = {c ∈ Nd | c ≤× σ} denote the downward-closed subset of Nd generated by σ and
call it an ideal of (Nd,≤×). Then downward-closed subsets of Nd can be denoted in a
unique way by finite unions of incomparable ideals. Computing unions and intersections with
such representations, and deciding inclusion between them, use simple algorithms that are
uncannily similar to what happened with the finite-basis representation for upward-closed
subsets.

If we now consider (Σ∗,≤∗), a very elegant representation for downward-closed subsets
was proposed by Abdulla et al. in [3]. They show that any downward-closed D ⊆ Σ∗ can be
represented by a simple regular expression (a SRE), obtained as a union of concatenations of
atoms of the form Γ∗ for a subalphabet Γ ⊆ Σ, or of the form a + ε for some letter a ∈ Σ.
Furthermore, these SREs support simple and efficient algorithms for unions, intersections,
comparisons, and more.

It turns out that concatenations of atoms denote exactly the ideals of (Σ∗,≤∗). Formally,
an ideal of a WQO (X,≤) is a nonempty downward-closed directed subset D ⊆ X. Being
directed means that for all x, y ∈ D there is some z ∈ D with x ≤ z ∧ y ≤ z. Given any
WQO (X,≤), the downward-closed subsets of X can be written as unions of finitely many
pairwise incomparable ideals, and this decomposition is unique. This property explains the
nice algorithmic properties we observed with Nd

ω and the SREs over Σ, and it generalizes to
any WQO where we can provide effective characterizations for the ideals.

In the second part of the talk, we show how such effective characterizations exist for most
of the WQOs one encounters in practice. This is done by considering the most common
ways of constructing new WQOs from previous ones (sequence extension, powerset, but also
substructures and quotients) and characterizing the ideals of the new WQOs in terms of the
ideals of the earlier ones.

We illustrate these constructions with lesser known WSTSs like priority channel systems
and higher-order channel systems [17], or data nets [20] and timed-arc Petri nets [5].

Acknowledgments. This talk is based on joint work with J. Goubault-Larrecq, S. Halfon,
P. Karandikar, K. Narayan Kumar, S. Schmitz, and it has further profited from many
discussions with A. Finkel, J. Leroux and G. Sutre. Most of the presented definitions and



Ph. Schnoebelen 85:3

results can be found in recent works like [6, 9, 10, 11, 16, 21, 22]. A full version of these
notes is in preparation [15].

References
1 P. A. Abdulla. Well (and better) quasi-ordered transition systems. Bull. Symbolic Logic,

16(4):457–515, 2010. doi:10.2178/bsl/1294171129.
2 P. A. Abdulla, K. Čerāns, B. Jonsson, and Yih-Kuen Tsay. Algorithmic analysis of programs

with well quasi-ordered domains. Information and Computation, 160(1/2):109–127, 2000.
doi:10.1006/inco.1999.2843.

3 P. A. Abdulla, A. Collomb-Annichini, A. Bouajjani, and B. Jonsson. Using forward reach-
ability analysis for verification of lossy channel systems. Formal Methods in System Design,
25(1):39–65, 2004. doi:10.1023/B:FORM.0000033962.51898.1a.

4 P. A. Abdulla and B. Jonsson. Verifying programs with unreliable channels. Information
and Computation, 127(2):91–101, 1996. doi:10.1006/inco.1996.0053.

5 B. Bérard, F. Cassez, S. Haddad, D. Lime, and O. H. Roux. The expressive power of time
Petri nets. Theoretical Computer Science, 474, 2012. doi:10.1016/j.tcs.2012.12.005.

6 M. Blondin, A. Finkel, and P. McKenzie. Well behaved transition systems.
arXiv:1608.02636 [cs.LO], August 2016. To appear in Logical Meth. Comp. Sci. URL:
http://arxiv.org/abs/1608.02636.

7 G. Cécé, A. Finkel, and S. Purushothaman Iyer. Unreliable channels are easier to verify
than perfect channels. Information and Computation, 124(1):20–31, 1996. doi:10.1006/
inco.1996.0003.

8 C. Dufourd, P. Jančar, and Ph. Schnoebelen. Boundedness of Reset P/T nets. In CONCUR
’99, LNCS 1644, pages 301–310. Springer, 1999. doi:10.1007/3-540-48523-6_27.

9 A. Finkel. The ideal theory for WSTS. In RP 2016, LNCS 9899, pages 1–22. Springer,
2016. doi:10.1007/978-3-319-45994-3_1.

10 A. Finkel and J. Goubault-Larrecq. Forward analysis for WSTS, part I: Completions.
In STACS 2009, LIPIcs 3, pages 433–444. Leibniz-Zentrum für Informatik, 2009. doi:
10.4230/LIPIcs.STACS.2009.1844.

11 A. Finkel and J. Goubault-Larrecq. Forward analysis for WSTS, part II: Complete WSTS.
Logical Methods in Comp. Science, 8(4), 2012. doi:10.2168/LMCS-8(3:28)2012.

12 A. Finkel, P. McKenzie, and C. Picaronny. A well-structured framework for analysing Petri
nets extensions. Information and Computation, 195(1–2):1–29, 2004. doi:10.1016/j.ic.
2004.01.005.

13 A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere! Theoretical
Computer Science, 256(1–2):63–92, 2001. doi:10.1016/S0304-3975(00)00102-X.

14 G. Geeraerts, J.-F. Raskin, and L. Van Begin. Expand, enlarge and check: New al-
gorithms for the coverability problem of WSTS. Journal of Computer and System Sciences,
72(1):180–203, 2006. doi:10.1016/j.jcss.2005.09.001.

15 J. Goubault-Larrecq, S. Halfon, P. Karandikar, K. Narayan Kumar, and Ph. Schnoebelen.
The ideal approach to computing closed subsets in well-quasi-orderings. In preparation,
2017.

16 J. Goubault-Larrecq and S. Schmitz. Deciding piecewise testable separability for regular
tree languages. In ICALP 2016, LIPIcs 55, pages 97:1–97:15. Leibniz-Zentrum für Inform-
atik, 2016. doi:10.4230/LIPIcs.ICALP.2016.97.

17 Ch. Haase, S. Schmitz, and Ph. Schnoebelen. The power of priority channel systems. Logical
Methods in Comp. Science, 10(4:4), 2014. doi:10.2168/LMCS-10(4:4)2014.

18 T. A. Henzinger, R. Majumdar, and J.-F. Raskin. A classification of symbolic transition sys-
tems. ACM Trans. Computational Logic, 6(1):1–32, 2005. doi:10.1145/1042038.1042039.

MFCS 2017

http://dx.doi.org/10.2178/bsl/1294171129
http://dx.doi.org/10.1006/inco.1999.2843
http://dx.doi.org/10.1023/B:FORM.0000033962.51898.1a
http://dx.doi.org/10.1006/inco.1996.0053
http://dx.doi.org/10.1016/j.tcs.2012.12.005
http://arxiv.org/abs/1608.02636
http://dx.doi.org/10.1006/inco.1996.0003
http://dx.doi.org/10.1006/inco.1996.0003
http://dx.doi.org/10.1007/3-540-48523-6_27
http://dx.doi.org/10.1007/978-3-319-45994-3_1
http://dx.doi.org/10.4230/LIPIcs.STACS.2009.1844
http://dx.doi.org/10.4230/LIPIcs.STACS.2009.1844
http://dx.doi.org/10.2168/LMCS-8(3:28)2012
http://dx.doi.org/10.1016/j.ic.2004.01.005
http://dx.doi.org/10.1016/j.ic.2004.01.005
http://dx.doi.org/10.1016/S0304-3975(00)00102-X
http://dx.doi.org/10.1016/j.jcss.2005.09.001
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.97
http://dx.doi.org/10.2168/LMCS-10(4:4)2014
http://dx.doi.org/10.1145/1042038.1042039


85:4 Ideal-Based Algorithms for the Symbolic Verification of Well-Structured Systems

19 R. M. Karp and R. E. Miller. Parallel program schemata. Journal of Computer and System
Sciences, 3(2):147–195, 1969. doi:10.1016/S0022-0000(69)80011-5.

20 R. Lazić, T. Newcomb, J. Ouaknine, A. W. Roscoe, and J. Worrell. Nets with tokens which
carry data. Fundamenta Informaticae, 88(3):251–274, 2008.

21 R. Lazić and S. Schmitz. The complexity of coverability in ν-Petri nets. In LICS 2016,
pages 467–476. ACM Press, 2016. doi:10.1145/2933575.2933593.

22 J. Leroux and S. Schmitz. Ideal decompositions for vector addition systems. In STACS
2016, LIPIcs 47, pages 1:1–1:13. Leibniz-Zentrum für Informatik, 2016. doi:10.4230/
LIPIcs.STACS.2016.1.

23 S. Schmitz and Ph. Schnoebelen. The power of well-structured systems. In CONCUR 2013,
LNCS 8052, pages 5–24. Springer, 2013. doi:10.1007/978-3-642-40184-8_2.

http://dx.doi.org/10.1016/S0022-0000(69)80011-5
http://dx.doi.org/10.1145/2933575.2933593
http://dx.doi.org/10.4230/LIPIcs.STACS.2016.1
http://dx.doi.org/10.4230/LIPIcs.STACS.2016.1
http://dx.doi.org/10.1007/978-3-642-40184-8_2

	p000-frontmatter
	Foreword
	Conference Organization

	p001-Impagliazzo
	Introduction
	Our results
	Related work
	Our techniques

	Preliminaries
	Black-Box Hypothesis
	Defining BBH
	Defining a Strong Counter-Example to BBH
	Examples of properties with easy sensitive inputs

	Circuit-SAT algorithm from strong counterexamples
	From high sensitivity to Circuit-SAT
	Amplifying the success probability

	Monotone properties
	Handling a lower sensitivity bound
	Win-win analysis

	Circuit-SAT algorithm from variants of MCSP
	BBH for restricted circuit classes
	Conclusions

	p002-Grosshans
	Introduction
	Preliminaries
	General results about regular languages and programs
	The case of DA
	A fine hierarchy in P(DA)
	Strict hierarchy
	Collapse

	Conclusion
	Missing proofs from Section 4
	SUL_k is a variety of languages
	Collapse

	p003-Parker
	Introduction
	Background
	Related Work
	Definitions and Notation

	Jaccard Distances
	Jaccard Distances using W-n and W-<=n
	Cesàro Jaccard

	Entropy
	Topological Entropy
	Language Entropy
	Relationship between Entropy and Cesàro Jaccard

	Entropy Distances
	Entropy Distance
	Entropy Sum

	Conclusion and Future Work

	p004-Fulla
	Introduction
	Preliminaries
	Tractability of PDS languages
	Reduction to the Generalised Min-Cut problem
	Tractability of the Generalised Min-Cut problem

	Conclusions

	p005-Durand
	Introduction
	Notation and basic definitions
	The main results

	The general framework of self-simulating SFT
	Embedding a bi-infinite sequence into a self-simulating tiling
	Combinatorial lemmas: the direct product of quasiperiodic and periodic sequences
	Towards quasiperiodic SFT
	When macro-tiles are clones of each other
	Supplementary features: constraints that can be imposed on the self-simulating tiling
	Enforcing quasiperiodicity


	p006-Bliznets
	Introduction
	Algorithms for partitioning
	Highly Connected Deletion
	p-Highly Connected Deletion

	Algorithms for finding a subgraph
	Seeded Highly Connected Edge Deletion
	Isolated Highly Connected Subgraph


	p007-Laarhoven
	Introduction
	Related work
	Contributions

	Preliminaries
	Hypercube LSH
	Outline of the proof of Theorem 1
	Consequences of Theorem 1
	Convergence to the limit
	Fast hashing in practice

	Partial hypercube LSH
	Convergence to hyperplane LSH
	Convergence to hypercube LSH
	Empirical collision probabilities

	Application: Lattice sieving for the shortest vector problem
	Proof of Theorem 1
	Proof of Proposition 9

	p008-kawachi
	Introduction
	Preliminaries
	The Complexity of Predecessor Problems
	The Complexity of Garden-of-Eden Problems
	Conclusions

	p009-Damaschke
	Introduction
	Preliminaries
	The Case Without Fragmentation (F=1)
	Maximizing the minimum
	Minimizing the maximum
	Splitting in linear time

	Perfect Solutions for Fragmentation F=2
	Many agents make it easy
	Structural characterization and hardness
	Few agents make it easy, too

	Further Research

	p010-Tanimura
	Introduction
	The LCE problem
	Space-efficient LCE data structures
	Our LCE data structure

	Preliminaries
	Notations
	Tools

	Our LCE data structure
	Overview of our algorithm
	ShortLCE-t queries
	LongLCE-t queries
	Main result and variants

	Lower bounds vs upper bounds for the LCE problem
	Conclusions and open questions

	p011-Jeandel
	Introduction
	ZX-Calculus
	Diagrams and standard interpretation
	Calculus

	The pi/4-Fragment is not Complete
	A Graphical Invariant for the ZX-Calculus
	A Simpler and More Expressive ZX-calculus

	Cyclotomic Supplementarity
	Generalisation of (SUP)
	The Set of Supplementarity Rules for Prime Numbers
	Discussion on the Supplementarity's Derivability Structure
	Updated Set of Rules
	The General ZX-Calculus is still Not Complete


	p012-Haase
	Introduction
	Related Work

	Preliminaries
	Counting Problems for Parikh Images
	Graphs
	Computational Complexity

	Parikh Counting Problems for DFA
	Parikh Counting Problems for NFA and CFG
	Unary alphabets
	Open problems

	p013-Kolay
	Introduction
	Preliminaries
	Communication protocols for pairs of Hereditary graph families
	Communication Protocol for Families of Sparse and Dense graphs
	Characterization for Hereditary graph families
	A Parameterized approach to designing protocols

	Separating families
	Applications in Parameterized and Exact Algorithms
	Conclusion

	p014-Paul
	Introduction
	Preliminaries
	Quantitative Monitor Automata
	Monitor MSO logic
	The main result
	Conclusion

	p015-Klauck
	Introduction
	Organization of the Paper
	Definition of the Problem
	Results
	Preliminaries
	Communication Complexity
	Spherical Caps
	Concentration of Measure
	Sampling by Equators
	Nets on the Sphere

	Techniques
	QMA
	Randomized
	Quantum
	QCMA
	MA

	Open Problems

	p016-Deng
	Introduction
	Our contribution
	Related work

	Preliminaries
	Smoothed and average-case approximation ratios
	Bayesian mechanism design approach
	Comparison of the two approaches

	Smoothed Analysis
	Average-case Analysis
	Conclusion and Discussion

	p017-Jonsson
	Introduction
	Preliminaries
	Constraint Languages and the Constraint Satisfaction Problem
	Primitive Positive Definitions and Interpretations
	Polymorphisms and Partial Polymorphisms
	Time Complexity and Size-Preserving Reductions
	Complexity of CSP

	Subexponential Time Complexity
	The Easiest NP-Complete Ultraconservative CSP Problem
	S-B-Extensions
	Properties of and Reductions between S-B-Extensions
	Saturated S-B-Extensions
	Reductions Between S-B-Extensions


	Concluding Remarks and Future Research

	p018-Day
	Introduction
	Preliminaries
	Lower bounds
	NP-upper bound
	Tractable equations
	Conclusions and Prospects

	p019-Daviaud
	Introduction
	Definitions and first properties
	Tropical matrices
	Max-plus automata

	Undecidability of the comparison of max-plus automata
	Restriction on the parameters
	Restriction on initial and final states

	Joint spectral radius and ultimate rank of tropical matrices
	Joint spectral radius
	Ultimate rank
	Uncomputability and link with automata
	Approximation of the joint spectral radius
	Restriction to finite entries

	Conclusion and open questions

	p020-Deligkas
	Introduction
	Our contribution
	Our Model and Notation

	Detecting a Unique Target
	 Bounds for Approximately Shortest Paths
	Lower Bound for querying the Approximate Median
	Upper Bound for querying the Approximate Median

	Detecting Two Targets
	Upper Bounds for Biased Queries
	Lower Bounds for Unbiased Queries

	More Informative Queries for Two Targets
	Direction-Distance Biased Queries
	Vertex-Direction and Edge-Direction Biased Queries
	Two-Direction Queries
	Restricted Set Queries


	p021-Jacobs
	Introduction
	Background: states, predicates, and conditional probability
	Influence in d-separation
	Serial connections
	Fork connections
	Collider connections

	Joint states and entwinedness
	A quantitative definition of influence
	Influence in d-separation (reprise)
	Discussion

	p022-Lu
	Introduction
	Preliminaries
	The SORE-definability problem
	Non-unary alphabets
	Unary alphabets

	The Bounded SORE-definability problem
	The construction of S_E and E^c
	The Complexity

	Conclusion

	p023-Myasnikov
	Introduction
	Preliminaries on Complexity
	Preliminaries on Nilpotent groups and Mal'cev coordinates

	Presentation of subgroups
	Word problem and computation of Mal'cev coordinates
	Matrix reduction and subgroup membership problem 
	More algorithmic problems

	p024-Allender
	Introduction
	Preliminaries
	Cost-register automata

	CRAs over the Tropical Semiring
	CCRAs over Commutative Semirings
	CCRAs over Noncommutative Semirings
	Conclusion

	p025-Boissonnat
	Introduction
	Preliminaries
	Kernel Upper Bounds for primal parameter
	Hyperplane case
	Bounded degree polynomials

	Tight kernels for hyperplanes in dual parameter 
	Bounded degree polynomials and the dual parameter
	Open Problems

	p026-Glinskih
	Introduction
	Satisfiable and unsatisfiable Tseitin formulas
	Results
	Comparison with other works

	Preliminaries
	Branching programs
	Tseitin formulas
	Expanders

	Lower bound
	Lower bound on the number of paths
	Upper bound on the number of paths that end at the same vertex
	Proof of Theorem 9
	Tseitin formula for complete graph
	Lower bound for arbitrary graphs

	Futher research

	p027-Carvalho
	Introduction
	Infinite languages

	Preliminaries
	Games, adversaries and reactive composition

	The Chen Conjecture
	NP-membership
	co-NP-hardness
	The question of the tuple encoding

	Switchability, Collapsability and the three-element case
	A three-element vignette
	Discussion

	p028-Milanic
	Introduction
	Preliminaries
	The Klavzar-Peterin characterization
	NP-completeness of testing realizability in d>=3 dimensions
	Tractable cases: chordal graphs and distance-hereditary graphs
	Reduction to blocks
	Cartesian dimension of HHD-free graphs

	Conclusion

	p029-Fomin
	Introduction
	Preliminaries
	Augmenting by graphs with small vertex cover
	Algorithms
	Hardness of structured augmentation

	Augmenting unweighted graphs
	Conclusion

	p030-Casel
	Introduction
	Preliminaries
	Unit Square Grid Visibility Graphs
	Combinatorial Properties of USGV
	Area-Minimisation

	Unit Square Visibility Graphs
	The Recognition Problem

	Conclusions

	p031-Droste
	Introduction
	Preliminaries
	Weighted OPL and Their Relation to Weighted VPL
	A Nivat Theorem
	Weighted MSO-Logic for OPL
	Conclusion

	p032-Hella
	Introduction
	Propositional logics with team semantics
	Complexity of propositional inclusion logic
	Model checking in lax semantics is P-complete
	Model checking in strict semantics is NP-complete

	Modal logics with team semantics
	Model checking and validity in modal team semantics
	Complexity of model checking
	Complexity of validity

	Conclusion

	p033-Barth
	Introduction
	Preliminaries
	Basic Results
	Circuits with One Arithmetic Operation
	Circuits without Complement
	Circuits with Complement
	Upper Bounds
	Lower Bounds


	Circuits with both Arithmetic Operations
	Upper and Lower Bounds for Possibly Undecidable Problems
	Connecting Emptiness with Membership and Equivalence Problems
	The Difficulty of EC(-,+,x) and EC(u,n,-,+,x)
	Connection between Emptiness and Sigma1-Emptiness
	Connection to Polynomial Identity Testing

	Conclusions and Open Questions

	p034-AnglesdAuriac
	Introduction
	Preliminaries
	Notations
	Background on algorithmic randomness
	Background on higher computability
	Background on higher randomness
	Continuous relativization of higher randomness

	Another characterization of the higher K-trivials
	Collapsing approximations
	Properties of higher K-Trivials
	A higher K-trivial and not Delta^1_1 implies Pi^1_1-ML(O) = WPi^1_1RÂ
	Pi^1_1-ML(O) = WPi^1_1RÂ implies A higher K-trivial and not Delta^1_1


	p035-Abramsky
	Introduction
	From quantum perfect strategies to quantum homomorphisms
	From quantum homomorphisms to the quantum monad
	Quantum advantage via the quantum monad
	Classical correspondences
	Quantum solutions
	Graphs

	Outlook
	Review of linear algebra and quantum mechanics background
	Quantum monad

	p036-Benjamin
	Introduction
	Preliminaries
	A Polynomial Kernel for DFVS[FVS]
	Bounding A_0, A_1 and A >= 3.
	Bounding A_2

	A Linear Kernel for DFVS[FVS] on Bounded Genus graphs
	Dealing with roads

	Conclusions and Future Work

	p037-Avni
	Introduction
	Preliminaries
	Reduction to and from Network Games
	On Boundary Strategies and Profiles
	Equilibrium Inefficiency
	The Complexity of Finding an NE
	Discussion and Directions for Future Research

	p038-Arvind
	Introduction
	Outline of the proofs
	Organization

	Preliminaries
	Identity Testing in FX
	Polynomial Factorization in FX
	Conclusion

	p039-Chatterjee
	Introduction
	Preliminaries
	Decremental Algorithm for Threshold Mean-Payoff Games
	Threshold Mean-Payoff Parity Games
	Threshold Mean-Payoff Büchi Games
	Threshold Mean-Payoff coBüchi Games
	Threshold Mean-Payoff Parity Games

	Optimal Values for Mean-payoff Parity Games
	Conclusion

	p040-Dzyga
	Introduction
	Strongly connected automata
	Lower bounds on the smallest unattainable value
	Automata with a sink state
	General case
	Irreducibly synchronizing automata with large reset thresholds

	p041-Lagarde
	Introduction
	Preliminaries
	Non-commutative polynomials
	The partial derivative matrix
	Standard definitions related to non-commutative circuits
	Non-commutative circuits with restricted parse trees
	A polynomial that is full rank w.r.t. all partitions

	Lower bounds for k-PT circuits
	Other results

	p042-Pilipczuk
	Introduction
	Preliminaries
	Main results
	Sparsifying the family
	Dynamic programming

	Kernelization results
	Conclusions

	p043-Urbat
	Introduction
	The Profinite Monad
	Recognizable Languages
	Unary Presentations
	Pseudovarieties of T-algebras and Profinite Theories
	The Variety Theorem
	Applications
	Conclusions and Future Work

	p044-Potapov
	Introduction
	Preliminaries
	Main result
	Mortality problem
	Membership problem


	p045-Nestra
	Introduction
	Indentation extension of PEG
	Adams' grammars
	Properties of the semantics
	Semantic equivalence
	Differences of our approach from previous work

	Elimination of alignment and position operators
	Which relations are good?
	Relations that keep indentation sets as intervals
	Implementation issues

	Related work
	Conclusion

	p046-Mertzios
	Introduction
	Kernelization for Matching on General Graphs
	Warm-up: Parameter feedback edge number
	Parameter feedback vertex number
	Steps 1 to 3
	Step 4
	Step 5
	Step 6


	Kernelization for Matching on Bipartite Graphs
	Conclusion

	p047-Hoffmann
	Introduction
	Proof of Theorem 1
	Rerouting algorithm
	Properties of D(f,g)
	Conflict digraph
	Choosing the special vertices f(h)
	Choosing the special edges g(h)
	Quasiplane simple topological drawings

	Conclusions

	p048-Daviaud
	Introduction
	First properties
	Minimality
	Triangular identities
	Block-permutation
	Counting and parity conditions

	The shortest identities
	Conclusion

	p049-Atig
	Introduction
	Preliminaries
	Upward Closures
	Downward Closures
	SRE Inclusion in Downward Closure
	SRE Inclusion in Upward Closure
	Being Upward/Downward Closed

	p050-Hsu
	Introduction
	Multidimensional k-SUM in F_p^d
	Monotone d-dimensional 3SUM
	Standard vs Strong 3SUM Conjecture
	Organization

	Reductions Used for the Lower Bound for k-SUM in F_p^d
	Lower Bound for k-SUM in F_p^d

	Proof of Lower Bound for Monotone 3SUM in [n]^d
	Strong 3SUM Conjecture vs 3SUM Conjecture
	Conclusion and Open Problems

	p051-Hatanaka
	Introduction
	Our problem
	Known and related results
	Our contribution

	Preliminaries
	Modules and modular decomposition
	Other notation

	Fixed-Parameter Algorithm for Bounded Modular-Width Graphs
	Reduction rule
	Kernelization
	Sufficient condition for identical subgraphs
	Kernelization algorithm
	Size of the kernelized instance


	Shortest Variant
	Reduction rule for the weighted version
	Kernelization

	W[1]-Hardness
	Construction
	Correctness of the reduction

	Conclusion

	p052-Colcombet
	Introduction
	The hybridisation of deterministic finite state and vector automata
	Automata in a category
	Automata in a category, initial automaton, final automaton
	Factorizations through a subcategory
	Minimization through a subcategory
	A special case of factorization through

	Gluing of categories
	The free gluing of a category
	A factorization system through finite gluings

	Conclusion

	p053-Paul
	Introduction
	Preliminaries
	The Equivalence Problem
	The Unambiguity Problem
	The Sequentiality Problem

	p054-Allender
	Introduction
	Preliminaries
	GapMCSP
	Hardness for DET
	Conclusions and Open Questions

	p055-Chatterjee
	Introduction
	Definitions
	Patience Lower Bound
	The patience of optimal strategies
	The patience of epsilon-optimal strategies
	The patience lower bound for three states

	Patience Upper Bound

	p056-Cavallari
	Introduction
	Basic notions
	Overview of the proof of Theorem 2
	The game F
	Proof of Proposition 6
	Proof of Proposition 7
	Weak non-deterministic (1,3)-automata
	Conclusions and further work

	p057-Dey
	Introduction
	Our Contribution

	Preliminaries
	Results
	Scoring Rules
	Copeland^alpha Voting Rule
	Maximin and Bucklin Voting Rules

	Conclusion

	p058-Lutz
	Introduction
	Classical Fractal Dimensions
	Algorithmic Fractal Dimensions
	Kolmogorov Complexity
	Effective Dimensions
	Conditional Dimensions
	Oracles and Relative Dimensions
	Point-to-Set Principle

	Intersections of Fractals
	Products of Fractals
	Conclusion

	p059-Hague
	Introduction
	Preliminaries
	Higher-Order Recursion Schemes
	Higher-Order Inclusion Games
	Framework for Exact Fixed-Point Transfer
	Domains for Higher-Order Games

	p060-Agrawal
	Introduction
	Preliminaries
	Lower bound for Steiner Rainbow k-Coloring
	Lower bound for Rainbow k-Coloring
	Lower bound for Rainbow 3-Coloring
	Lower Bound for Rainbow k-Coloring, k>3 and even
	Lower Bound for Rainbow k-Coloring, k>3 and odd

	FPT Algorithm for Subset Rainbow k-Coloring
	Conclusion

	p061-Chatterjee
	Introduction
	Moran process on graphs
	Discarding ineffective steps
	Lower bound for undirected graphs
	Sampling an effective step
	Algorithms for approximating fixation probability

	p062-Yamakami
	Background and Main Contributions
	Motivational Discussion: Space Complexity of Parameterized 2SAT
	Sub-Linear Space and Short Reductions
	A New, Practical Working Hypothesis for 2SAT_3
	Four Examples of How to Apply the Working Hypothesis

	Basic Notions and Notation
	Sub-Linear Space and Short Reductions
	The 2CNF Boolean Formula Satisfiability Problem and SNL
	The Working Hypothesis LSH for 2SAT_3
	Proofs of the Four Examples of LSH Applications

	p063-Ghani
	Introduction
	Dybjer-Setzer Codes DS for Inductive-Recursive Definitions
	Definition of DS and its Decoding
	Composition of DS codes

	Uniform Codes UF for Inductive-Recursive Definitions
	Definition of UF and its Decoding
	Embedding of UF into DS
	Coproducts of Uniform Codes
	Composition of uniform Codes

	Polynomial Codes PN for Inductive-Recursive Definitions
	Embedding of DS into PN
	Composition of Polynomial Codes

	Conclusions

	p064-Kieronski
	Introduction
	Preliminaries
	Trees and logics
	Normal form
	Types and profiles
	Types
	Subtypes
	Profiles


	Pruning trees
	Bounded paths
	Bounded degree

	Complexity of satisfiability
	Only descendant relation
	Descendant and child
	Ordered trees

	Expressivity
	Conclusion

	p065-Li
	Introduction
	Preliminaries
	The Improved Algorithm for the Parameterized Flip Distance Problem
	Nondeterministic construction process
	Actions of the construction
	The sequence of actions
	The deterministic algorithm

	Conclusion

	p066-Brunet
	Introduction
	Free Representation
	Intuitions
	Weak terms
	Weak graphs
	Freeness results

	Decidability & complexity
	Weak Petri automata
	From expressions to automata
	Comparing automata
	Complexity

	Conclusion

	p067-Eiben
	Introduction
	Preliminaries
	Approximate kernels for Connected H-hitting set
	The alpha-approximate kernel for Connected H-hitting set
	The lower bound for Weighted Connected H-hitting set

	Interpolating kernels for Dominating Set on d-degenerate graphs
	Conclusions

	p068-Kahn
	Introduction
	Definition of ProbNetKAT
	A Random Loop
	Main Results
	A Post-Correspondance Embedding
	A PFA embedding

	Conclusion
	Appendix
	Theorem 2 in Detail
	Theorem 9 in Detail


	p069-vikas
	Introduction
	Definitions
	Vertex-Compaction, Compaction, and Retraction Problems
	Motivation and Results

	Vertex-Compaction to an Irreflexive Hexagon
	Vertex-Compaction to an Irreflexive k-Cycle

	p070-Bonamy
	Introduction
	Graphs of Diameter 3
	Subcubic Graphs
	Graphs of Bounded Maximum Degree
	Reconfigurations of Vertex Colourings
	Future Work

	p071-Gupta
	Introduction
	Our Contribution
	Related Work
	Preliminaries

	Algorithm for Rainbow Matching on Paths
	FPT Algorithm for Rainbow Matching on General Graphs
	Kernelization Algorithms
	Kernelization for Rainbow Matching on general graphs
	A Kernel on graphs of bounded degree

	Conclusion, Discussion and Open Problems

	p072-Lanotte
	Introduction
	Preliminaries
	Weak behavioural distances

	Uniform continuity for rooted (quasi)metric semantics
	A case study: Group Key Update
	Conclusions, related and future work

	p073-Blanche
	Introduction
	Preliminaries
	The Proof of Theorem 1
	The Proof of Theorem 2
	New Classes of Unbounded Clique-Width and Proof of Theorem 3

	p074-Mahajan
	Introduction
	Preliminaries
	Notation
	Formulas
	Graph Entropy

	Transformations and Easy bounds
	The main lower bound
	Discussion

	p075-DAngelo
	Introduction
	Preliminaries
	Lower-bounded edge costs
	General case
	Conclusions

	p076-CosmeLlopez
	Introduction
	Related work
	2p-algebra
	Graphs
	K4-freeness
	Extracting terms
	Completeness of the axioms
	Future work

	p077-ShankaraNarayanan
	Introduction
	Timed Temporal Logics
	Satisfiability of RatMTL and Complexity
	Proof of Theorem 4.1

	Automaton-Metric Temporal Logic-Freeze Logic Equivalences
	Discussion

	p078-S
	Introduction
	Preliminaries
	Linear Recurrence Sequences
	Algebraic Numbers
	Problem statements

	LRS with roots of unity – an NP-complete subclass
	Integer Polytope Containment Problem
	Conclusion

	p079-Muzi
	Introduction
	Preliminaries
	Algorithmic considerations
	Hardness results
	NP-hardness and ETH lower bounds
	Excluding a 2^o tw^2 n ^O(1)-algorithm

	Conclusion

	p080-Branzei
	Introduction
	Our Results
	Related Work

	Preliminaries
	An optimal envy-free and truthful mechanism
	Impossibility Results
	Discussion

	p081-Clairambault
	Introduction
	Event structures
	Event structures with polarity
	Operations
	Dual
	Simple parallel composition


	Strategies
	Copycat

	Composition of strategies
	Deterministic strategies

	Strategies as maps of event structures
	Probabilistic strategies
	Probabilistic event structures
	Probability with an Opponent
	Composing probabilistic strategies

	Conclusion

	p082-Pilipczuk
	Overview of the talk

	p083-Pagh
	p084-Markey
	Overview of the talk

	p085-Schnoebelen
	Summary of the talk


