Faster DBScan and HDBScan in Low-Dimensional
Euclidean Spaces®

Mark de Berg'!, Ade Gunawan?, and Marcel Roeloffzen??

1 Department of Computing Science, TU Eindhoven, Eindhoven, The
Netherlands
mdberg@win.tue.nl

2 Department of Computing Science, TU Eindhoven, Eindhoven, The
Netherlands

3 National institute of informatics, Tokyo and JST ERATO, Kawarabayashi
Large Graph Project, Japan
marcel@nii.ac.jp

—— Abstract

We present a new algorithm for the widely used density-based clustering method DBSCAN. Our
algorithm computes the DBSCAN-clustering in O(nlogn) time in R2, irrespective of the scale
parameter €, but assuming the second parameter MINPTS is set to a fixed constant, as is the
case in practice. We also present an O(n logn) randomized algorithm for HDBSCAN in the plane —
HDBSCAN is a hierarchical version of DBSCAN introduced recently — and we show how to compute
an approximate version of HDBSCAN in near-linear time in any fixed dimension.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, H.3.3 Inform-
ation Search and Retrieval

Keywords and phrases Density-based clustering, hierarchical clustering

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2017.25

1 Introduction

Clustering is one of the most fundamental tasks in data mining. Due to the wide variety of
applications where clustering is important, the clustering problem comes in many variants.
These variants differ for example in the dimensionality of the data set D and in the underlying
metric, but also in the objective of the clustering. Thus a multitude of clustering algorithms
has been developed [21], each with their own strengths and weaknesses. We are interested in
density-based clustering, where clusters are defined by areas in which the density of the data
points is high and clusters are separated from each other by areas of low density.

One of the most popular density-based clustering methods is DBSCAN; the paper by
Ester et al. [12] on DBSCAN has been cited over 8,800 times, and in 2014 DBSCAN received
the test-of-time award from KDD, a leading data-mining conference. DBSCAN has two
parameters, € and MINPTs, that together determine when the density around a point p € D
is high enough for p to be part of a cluster as opposed to being noise; see Section 2 for a
precise definition of the DBSCAN clustering. Typically MINPTS is a constant — in the original
article [12] it is concluded that MINPTS = 4 works well — but finding the right value for e

* A full version of the paper is available at [7], https://arxiv.org/abs/1702.08607.
T MdB is supported by the Netherlands Organization for Scientific Research under grant 024.002.003.
¥ MR is supported by JST ERATO Grant Number JPMJER1201, Japan.

© Mark de Berg, Ade Gunawan, and Marcel Roeloffzen;

37 licensed under Creative Commons License CC-BY
28th International Symposium on Algorithms and Computation (ISAAC 2017).
Editors: Yoshio Okamoto and Takeshi Tokuyama; Article No. 25; pp. 25:1-25:13

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ISAAC.2017.25
https://arxiv.org/abs/1702.08607
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

25:2

Faster DBScan and HDBScan

is more difficult. The worst-case running time of the original DBSCAN algorithm is ©(n?).
It is often stated that the running time is O(nlogn) for Euclidean spaces when a suitable
indexing structure such as an R-tree is used to support the DBSCAN algorithm. While this
may be true in certain practical cases, it is not true from a theoretical point of view.

Several variants of DBSCAN algorithm have been proposed, often with the goal to speed up
the computation. Some (IDBSCAN [5] and FDBSCAN [16]) do so at the expense of computing
a slightly different, and not clearly defined, clustering. Others (GribBSCAN [17]) compute the
same clustering as DBSCAN, but without speeding up the worst-case running time.

A fundamental bottleneck of the original DBSCAN algorithm is that it performs a query
with each point p € D to find N.(p, D), the set of points within distance € of p. The
algorithms uses these points to continue expanding the cluster, hence, range counting would
not be sufficient. It follows that > ., [Ne(p, D)| is a lower bound on the running time of the
DBSCAN algorithm. In the worst case > ., |[Ne(p, D)| = ©(n?), so even with a fast indexing
structure the worst-case running time of the original DBSCAN algorithm is Q(n?). (Apart
from this, the worst-case query time of R-trees and other standard indexing structures is not
logarithmic even if we disregard the time to report points.) In most practical instances the
DBSCAN algorithm is much faster than quadratic. The reason is that e is typically small so
that the sets N(p, D) do not contain many points and the range queries can be answered
quickly. However, the fact that the algorithm always explicitly reports the sets N.(p, D)
makes the running time sensitive to the choice of € and the density of the point set D. For
example, suppose we have a disk-shaped cluster with a Gaussian distribution around the
disk center. Then a suitable value of ¢ will lead to large sets N¢(p, D) for points p near the
center of the cluster.

Chen et al. [9] overcame the quadratic bottleneck of the standard approach, and designed
an algorithm! with O(n%d%2 polylog n) worst-case running time. They also present an
approximate algorithm. Note that for d = 2 the running time of the exact algorithm is
O(n'® polylog n). Chen et al. remark that their exact algorithm is mainly of theoretical
interest. The natural question is then whether or not it is possible to to compute the DBSCAN
clustering in subquadratic time in the worst case, irrespective of the value of £, with a simple
and practical algorithm.

Although DBSCAN is used extensively and performs well in many situations, it has its
drawbacks. One is that it produces a flat, non-hierarchial clustering which heavily depends
on the choice of the scale parameter €. Ankerst et al. [3] therefore introduced opTICS, which
can be seen as a hierarchical version of DBSCAN. Recently Campello et al. [8] proposed an
improved density-based hierarchical clustering method — similar to oPTICS but cleaner —
together with a cluster-stability measure that can be used to automatically extract relevant
clusters. The new method, called HDBSCAN, only needs the parameter MINPTS, which is
much easier to choose than . Campello et al. used MINPTS=4 in all their experiments.
While HDBSCAN is very powerful, the algorithm to compute the HDBSCAN hierarchy runs
in quadratic time; not only in the worst-case, but actually also in the best-case. There
have been only few papers dealing with speeding up HDBSCAN or its predecessor OPTICS. A
notable recent exception is POPTICS [20], a parallel algorithm that computes a similar, but
not the same, hierarchy as opTICS. We do not know of any algorithm that computes the
HDBSCAN or OPTICS hierarchy in subquadratic time. Thus the second question we study is:
is it possible to compute the HDBSCAN hierarchy in subquadratic time.

L As described, the algorithm actually computes a variation of the DBSCAN clustering, but it is easily
adapted to compute the true DBSCAN clustering.

M. de Berg, A. Gunawan, and M. Roeloffzen

Our results. We present an O(nlogn) algorithm to compute the DBSCAN clustering for a
set D of n points in the plane, irrespective of the setting of the parameter ¢ used to define the
DBSCAN clustering. Here, and in our other results, we assume that the parameter MINPTS
is a fixed constant. As mentioned this is the case in practice, where one typically uses
MINPTS = 4. We remark that our algorithm is not only fast in theory, but a slightly
simplified version is also competitive in practice and much less sensitive to the choice of
€ than the original DBSCAN algorithm. In this submission we focus on our theoretical
contributions. Experimental results can be found in the full version [7].

We also present a new algorithm for planar HDBSCAN: we show how to compute the
HDBSCAN hierarchy in R? in O(nlogn) expected time, thus obtaining the first subquadratic
algorithm for the problem.

In higher dimensions exact algorithms are much slower and so we consider approximations
instead. We extend the concept of an approximate DBSCAN clustering as defined by Chen et
al. [9] and by Gan and Tao [13] (see below) to the hierarchical version. We thus obtain
d-approximate HDBSCAN, an approximate version of the HDBSCAN hierarchy of Campello et
al. [8], where the parameter ¢ specifies the accuracy of the approximation. Intuitively, a
d-approximate HDBSCAN hierarchy has the same clusters as the standard HDBSCAN hierarchy
at any level €, except that clusters at distance (1 — §) - ¢ from each other may be merged, see
Section 5 for a precise definition. We show that a d-approximate HDBSCAN hierarchy in R?
can be computed in O((n/6(1/2)1og? ! n) time.

Further related work. Our paper is the conference paper corresponding to the so far
unpublished master’s thesis of the second author [15], which contained the results on DBSCAN,
extended with results on HDBSCAN. In the meantime, Gan and Tao [13] published a paper in
which they extend the work from the master’s thesis to R?, resulting in an algorithm for
DBSCAN with a running time of O(nbﬁ""y); we briefly comment on how this is done
at the end of Section 3. Gan and Tao also prove that computing the DBSCAN clustering in
R? for d > 3 is at least as hard as the so-called unit-spherical emptiness problem, which
is believed to require Q(n?/3) time [11]. Finally, Gan and Tao show that a -approximate
DBSCAN clustering can be computed in O(n/§%!) expected time, using a modified version of
the exact algorithm. Their approximate clustering is the same as the approximate clustering
defined by Chen et al. [9], who already showed how to compute it in O(nlogn + n/é%1)
time deterministically. (Gan and Tao were unaware of the paper by Chen et al..) As we
remark in Section 5 our algorithm can also be used to obtain a deterministic algorithm with
O(nlogn + n/d%3+¢) running time for some constant c.

2 Preliminaries on DBScan and DBScan*

Let D be a set of points in R%. DBScAN distinguishes three types of points: core points in
the “interior” of a cluster, border points on the boundary of a cluster, and noise points not
in any cluster. The distinction is based on two global parameters, € and MINPTS. Define
N:(p,D) :={q € D : |pq| < €} to be the neighborhood of a point p, where |pq| denotes the
(Euclidean) distance between p and ¢; the point p itself is included in N.(p, D). A point
p € D is a core point if |N-(p, D)| > MINPTS, and a non-core point ¢ in the neighborhood
of a core point is a border point. We denote the set of core points by Dcore, and the set of
border points by Dyorder- The remaining points are noise. In DBSCAN* [8] border points are
not part of a cluster but are considered noise.

Ester et al. [12] define the DBSCAN clusters based on the concept of density-reachability.

25:3

ISAAC 2017

25:4

Faster DBScan and HDBScan

o

Figure 1 A neighborhood graph with MINPTS = 4 and ¢ as indicated. Solid disks are core points,
open circles are border points, and crosses are noise. Edges between core points are solid, other
edges are dotted. The solid disks and edges form the core graph.

[— distance between left strip
. . : boundaries is more than 5/\@
I. — distance between bottom edges
o \ . is more than £/v/2
Ve @
é " o| —height of boxes is at most £/+/2

-~ width of strips is at most ¢/v/2

Figure 2 Example of a box graph.

Equivalently, we can define the clusters as the connected components of a certain graph.

To this end, define the neighborhood graph G(D, F) as the undirected graph with node
set D and edges connecting pairs of points within distance ¢; see Fig. 1. Note that a point
p € D is a core point if and only if its degree in G is at least MINPTS — 1, since then its
neighborhood contains at least MINPTS points, including p itself. Now consider the subgraph
Geore(Decores Ecore) induced by the core points, that is, Geore is the graph whose nodes are
the core points and whose edges connect two core points when they are within distance ¢
from each other. We call G.ope the core graph. The connected components of Geope are the
clusters in DBSCAN*. The clusters in DBSCAN are the same, except that they also contain
border points. Formally, a border point ¢ belongs to a cluster C if ¢ has an edge in G to a
core point p € C'. Thus a border point can belong to multiple clusters. The original DBSCAN
algorithm construct clusters one by one and assigns a border point p to the first cluster that
finds p; we assign border points to the cluster of their nearest core point.

3 A fast algorithm for DBScan

The original DBSCAN algorithm reports, while generating and exploring the clusters, for
each point p € D all its neighbors. In other words, it spends time on every edge in the
neighborhood graph. Our new algorithm avoids this by working with a smaller graph, the
box graph Guox. Its nodes are disjoint rectangular boxes with a diameter of at most ¢ that
together contain all the points in D, and its edges connect pairs of boxes within distance ¢;
see Fig. 2.

The boxes are generated such that (i) any two points in the same box are in each other’s
neighborhood, and (ii) the degree of any node in the box graph is O(1). Property (i) allows
us to immediately classify all points in a box as core points when it contains at least MINPTS
points, and property (ii) allows us to quickly retrieve the neighbors of any given point in a
box. Next we describe the algorithm, which consists of four easy steps, in detail.

M. de Berg, A. Gunawan, and M. Roeloffzen

Step 1: Compute the box graph Gyox. To compute Gyox, we first construct a collection
of vertical strips that together cover all the points. Let py, ..., p, be the points in D sorted
by x-coordinate, with ties broken arbitrarily. The first strip has p; on its left boundary. We
continue from left to right, adding points to the first strip as we go, until we encounter a
point p; whose distance to the left strip boundary is more than £/1/2. We then start a new
strip with p; on its left boundary, and we add points to that strip until we encounter a point
whose distance to the left strip boundary is more than £/v/2, and so on, until we handled all
the points. Constructing the strips takes O(n) time, after sorting the points by z-coordinate.
Within each strip we perform a similar procedure, going over the points within the strip
in order of increasing y-coordinate and creating boxes instead of strips. Thus the first box in
the strip has the lowest point on its bottom edge, and we keep adding points to this box
(enlarging it so that the new point fits, ensuring a tight bounding box) until we encounter a
point whose vertical distance to the bottom edge is more than £/1/2. We then start a new
box, and so on, until we handled all points in the strip. If the number of points in the j-th
strip is nj, then the time needed to handle all the strips is > O(n;logn;) = O(nlogn).
Let m be the number of strips and B; the set of boxes in the j-th strip. We sometimes
refer to a set B; as a strip, even though formally B; is a set of boxes. Let B := By U---UDB,,.
The nodes of the box graph Gyox are the boxes in B and there is an edge (b,b") when
dist(b, b') < e, where dist(b, b’') denote the minimum distance between b and o’. Two boxes
b, b are neighbors when they are connected by an edge. Let N (b, B) be the neighbors of b.

» Lemma 1. Gyox has at most n nodes, each having O(1) neighbors.

The lemma above follows from the fact that any box b € B; can have neighbors only in
Bj_2, Bj_1, Bj, Bjt1, or Bj12, and within any of these five strips, b can have at most five
neighbors. (A more precise proof giving a bound of 22 neighbors can be found in the full
version [7].) This also gives us an easy way to compute the edge set Fpox of the box graph,
because the edges between boxes in strips B; and Bj, with |j — j’| < 2 can be computed in
O(|B;| + |Bj|) time in total by scanning the boxes in B; and Bjs in a coordinated manner.
The total time to compute all edges of the box graph is thus

m min(j+2,m)

oy X wBl+IB] =0 ;w — o).

Jj=1j'=max(j—2,1)

Adding the time to construct the strips and boxes, we see that Step 1 takes O(nlogn) time
and we obtain the following lemma.

» Lemma 2. The box graph Guox(B, Evox) can be computed in O(nlogn) time.

An alternative for Step 1. An alternative approach is to define the boxes as the non-empty
cells in a grid whose cells have height and width ¢/v/2. If we store the boxes in a hash-table
based on the coordinates of their lower left corners, then finding the neighbors of a box b can
be done by checking each potential neighbor cell for existence in the hash-table — we do not
need to store the box graph explicitly. Creating the boxes (with their corresponding point
sets) can be done in O(n) time if the floor function can be computed in O(1) time.

Step 2: Find the core points. The graph Gy allows us to determine the core points in a
simple and efficient manner. The key observation is that the maximum distance between any
two points in the same box is at most €. Hence, if a box contains more than MINPTS points,
then all of them are core points. The following algorithm suffices to find the core points.

25:5

ISAAC 2017

25:6

Faster DBScan and HDBScan

For a box b € B, let D(b) := D N b be the set of point inside b, and let n;, := |D(b)|. If
np = MINPTS then label all points in b as core points. Otherwise, for each point p € D(b),
count the number of points ¢ in neighboring boxes of b for which |pg| < . If this number
is at least MINPTS — ny, then label p as core point. The counting is done brute-force, by
checking all points in neighboring boxes. Hence, this takes O(3_ ¢ (5,5)) time for each
point p € b.

» Lemma 3. Given Gyox, we can find all core points in D in O(n) time.

Proof. The total time spent to handle boxes b with n, > MINPTS is clearly O(n). The time
needed to handle a box b with n, < MINPTS is

O | ny- Z ny | =0 | MINPTS - Z Ny
v N (b,B) b' €N (b,B)

Now charge O(MINPTS) = O(1) time to each point in every & € N.(b, B). Because any
box V' is the neighbor of O(1) other boxes by Lemma 1, each point is charged O(1) times. <«

Step 3: Compute the cluster cores. The core of a cluster is the set of core points in that
cluster. In Step 3 we assign to each core point a cluster-id so that core points in the same
cluster have the same cluster-id. Again, this can be done in an efficient manner using Gpoy.
To this end, we first remove certain boxes and edges from Gy, to obtain a reduced box
graph Gy . More precisely, we keep only the boxes with at least one core point, and we keep
only the edges (b,b') for which there are core points p € b, p’ € b’ with |pp’| < €. Because
any two core points in a given box b are connected in G.ore, we have the following lemma.

» Lemma 4. The connected components in G correspond one-to-one to the connected
components in the core graph Geore and, hence, to the DBSCAN™ clusters.

Thus the cluster cores can be computed by computing the connected components in G ..
The latter can be done in O(n) time using DFS [10]. We then give every core point p a
cluster-id corresponding to the connected component of the box b that contains p.

To construct G ., we need to decide for two given boxes b,b" whether there are core
points p € D(b), p’ € D(b') with |pp’| < . For ease of discussion we call the points in D(b)
blue and those in D(’) red. It is well known [2] that the bichromatic closest pair defines
an edge of the Delaunay triangulation of the points, so it suffices to compute the Delaunay
triangulation of D(b) U D(d') and find the shortest red-blue edge. If it is at most € we connect
b and b in Gpox and otherwise we do not. This leads to the following lemma.

» Lemma 5. Computing the cluster cores can be done in O(nlogn) time.

Proof. The most time consuming part of the construction of G;__ is to determine for each
pair of neighboring boxes in B whether there are core points p € b, p’ € b’ with |pp’| < e. Let
B* be the set of boxes containing at least MINPTS points. Then the total time spent on the
pairs of boxes from B* is

Z Z O((ny + ny) log(ng + nyr)),

beB* b’ eN, (b,B*)

which is O(nlogn) because [N (b, B*)| = O(1) for any box b and }_, . z. np < 1. <

M. de Berg, A. Gunawan, and M. Roeloffzen

» Remark. In practice, computing the Delaunay triangulation is not necessary. Instead we
can use a brute-force algorithm that checks every pair of points in b and b’ and stops when a
sufficiently close pair is found. The number of points in each box is expected to be small
and if it is large one may expect many pairs to have a short distance, hence, testing pairs in
random order should find such a pair fairly quickly.

Step 4: Assigning border points to clusters. It remains to decide for non-core points p
whether p is a border point or noise. If p is a border point, it has to be assigned to the
nearest cluster. Again, a brute-force method suffices: for each box b € B and each non-core
point p € b, we check all points in b and its neighboring boxes to find p’s nearest core point,
p’. If |pp’| < e, then p is a border point in the same cluster as p’, otherwise p is noise. We
only need to consider boxes b with n, < MINPTS — otherwise all points in b are core points —
so the argument from the proof of Lemma 3 shows that this takes O(n) time.

Putting it all together. Steps 1 and 3 take O(nlogn) time and Steps 2 and 4 take O(n)
time. We thus obtain the following theorem.

» Theorem 6. Let D be a set of n points in R?, and € and MINPTS be given constants. Then
we can compute a DBSCAN clustering on D according to € and MINPTS for the Fuclidean
metric in O(nlogn) time.

» Remark (Extension to higher dimensions.). The algorithm just described can easily be

extended to RY for d > 2, as already observed by Gan and Tao [13]. The resulting running
2

time is O(n®~ Ta72T71 7).

4 A fast algorithm for HDBScan in the plane

Campello et al. [8] introduced HDBSCAN, a hierarchical version of DBSCAN* similar to
opPTICS [3]. The algorithm described by Campello et al. to compute the HDBSCAN hierarchy
runs in quadratic time. We show that in R? and under the Euclidean metric, the HDBSCAN
hierarchy can be computed in O(nlogn) time.

Preliminaries on HBScan. Recall that DBSCAN* is the version of DBSCAN in which border
points are considered noise. The HDBSCAN hierarchy is a tree structure encoding the
clusterings of DBSCAN* that arise as € increases from ¢ = 0 to € = oo for a fixed MINPTS.
Initially, when € = 0, all points are noise. As ¢ increases, three types of events can happen
to the DBSCAN* clustering;:
Type (i): the status of a point changes. In this event, a point changes from being noise to
being a core point. The value of € at which this happens for a point p is called the core
distance of p; we denote it by dcore(D).
Type (ii): a new cluster starts. This event is triggered by a type (i) event, when a point
becoming a core point forms a new singleton cluster.
Type (iii): two clusters merge. This event can be triggered by a type (i) event or it can
happen when € = |pq| for core points p, ¢ from different clusters.
Note that all events happen at values of € such that € = |pq| for some pair of points p,q € D.
This process can be modeled as a dendrogram: a tree whose leaves correspond to the points
in D and whose nodes correspond to clusters arising during the process. This dendrogram,
where each node stores the value of € at which the corresponding cluster was created, is the
HDBSCAN hierarchy. Campello et al. compute the HDBSCAN hierarchy as follows.

25:7

ISAAC 2017

25:8

Faster DBScan and HDBScan

For two points p,q € D, define dy,(p, q) := max (deore(p), deore(q), [Pq|) to be the mutual
reachability distance of p and q. The mutual reachability graph G, is defined as the complete
graph with node set D in which each edge (p, ¢) has weight dp(p, ¢). Campello et al. observe
that HDBSCAN hierarchy can easily be computed from a minimum spanning tree (MST) on
Gmr- (Indeed, the cluster-growing process corresponds to the the computation of an MST on
Gm: using Kruskal’s algorithm [10].) Hence, they compute the HDBSCAN hierarchy as follows.
1. Compute the core distances deore(p) for all points p € D.

2. Compute an MST T of the mutual reachability graph Gy,,.
3. Convert T into a dendrogram where each internal node stores the value of € at which the
corresponding cluster is formed.

Our planar algorithm. The most time-consuming parts in the algorithm above are Steps 1
and 2; Step 3 takes O(n) time after sorting the edges of 7 by weight.

For Step 1 we observe that deore(p) is the distance of point p to its ¢-th nearest neighbor
for £ = MINPTS — 1. Hence, to compute all core distances it suffices to compute for each point
its k nearest neighbors. This can be done in any fixed dimension in O(nflogn) time [22].
Since £ = MINPTs — 1 = O(1) this implies that Step 1 takes O(nlogn) time.

Step 2 is more difficult to do in subquadratic time. The main problem is that we cannot
afford to look at all edges of G, when computing 7. To overcome this problem we need the
following generalization of Delaunay triangulations, introduced by Gudmundsson et al. [14].
Recall that a pair of points p,q € D forms an edge in the Delaunay triangulation of D if and
only if there is a circle with p and ¢ on its boundary and no points from D in its interior [6].
We say that the pair p,q € D forms a k-th order Delaunay edge, or k-OD edge for short, if
and only if there exists a circle with p and ¢ on its boundary and at most k points from D in
its interior [14]. Thus the 0-OD edges are precisely the edges of the Delaunay triangulation.
The k-OD edges are useful for us because of the following lemma.

» Lemma 7. Let G, be the subgraph of Gu, that contains only the k-OD edges, where
k := max(MINPTS — 3,0). Then an MST of Gy, is also an MST of G-

Proof. Imagine computing an MST 7 on Gy, using Kruskal’s algorithm [10]. This algorithm
treats the edges (p,q) of Gu, in order of increasing weight, that is, increasing values of
dme(p,q). When it processes (p, q) it checks if p and ¢ are already in the same connected
component — in our application this component corresponds to a cluster at the current value
of ¢ — and, if not, merges these components. We will argue that whenever we process an
edge (p,q) that is not in Gy, that is, an edge that is not a k-OD edge, then p and ¢ are
already in the same connected component. Hence, there is no need to process (p, ¢), which
proves that an MST of G, is also an MST of Gy

Let Cpq be the circle such that p and ¢ form a diametrical pair of C, and let D(Cpq) C D
be the set of points lying in the interior of Cpq. If |D(Cpq)| < k, then (p,q) is a k-
OD edge, so assume [D(Cpq)| = k + 1. Note that deore(r) < |pg| for all ¥ € D(Cpy).
Indeed, since r is an interior point in a disk with diameter |pq|, the distance from r to any
other point in Cp,g, including p and ¢, is smaller than [pg|. Hence, for ¢ = |pg| we have
|Ne(r,D)| > |D(Cpq)| +2 = k+3 > MINPTs. Thus all points r € Cp, are core points
when we process (p,q). Moreover, for all edges (s,t) with s,t € D(Cpq) U {p,q} we have
dmr(8,t) < |pq|. Hence, it suffices to prove the following.

» Claim. Let C be a circle with two points p,q on its boundary and let D(C) C D be the set
of points from D in the interior of C. Then there is a path from p to q in Gum, that uses only
points in D(C) U {p, q}.

M. de Berg, A. Gunawan, and M. Roeloffzen

We prove this claim by induction on |D(C)|. If |D(C)| < k then (p, q) is a k-OD edge itself
and we are done. Otherwise, pick any point » € D(C). Now shrink C, while keeping p in its
boundary, until we obtain a circle C; that also has r on its boundary. By induction, there is
a path from p to r in Gy, that uses only points in D(C1) U {p,r} C D(C)U{p,q}. A similar
argument shows that there is a path from r to ¢ that uses only points in D(C) U {p, ¢}. This
proves the claim and, hence, the lemma. <

Gudmundsson et al. showed that the number of k-OD edges is O(n(k + 1)) and that the set
of all k-OD edges can be computed in O(n(k + 1)logn) time with a randomized incremental
algorithm. Lemma 7 implies that after computing the core distances and the k-OD edges in
O(nlogn) time with k¥ = max(MINPTS — 3,0) = O(1) we can compute the MST for Gy, by

considering only O(n) edges. Thus computing the MST can be done in O(nlogn) time [10].

Since the rest of the algorithm takes linear time, we obtain the following theorem.

» Theorem 8. Let D be a set of n points in R and MINPTS be a given constant. We can
compute the HDBSCAN hierarchy on D for the Euclidean metric with a randomized algorithm
in O(nlogn) expected time.

5 Approximate HDBScan

In this section we introduce an approximate version of HDBSCAN which can be computed in
near-linear time in any fixed dimension.

Approximate DBScan*. Before we can define approximate HDBSCAN, we need to define
approximate DBSCAN*. Our definition of approximate DBSCAN™ is essentially the same as
the definitions of Chen et al. [9] and Gan and Tao [13]. The main difference is that we base
our definition on DBSCAN* instead of DBSCAN, which avoids some technical difficulties in the
definition.

Let MINPTS be a fixed constant. Let C.(D) denote the set of clusters in the DBSCAN*
clustering for a given value of e. We call a clustering C; a refinement of a clustering C,,

denoted by C; < Ca, when for every cluster C; € C; there is a cluster Cs € Cy with C; C Cs.

Recall that, as ¢ increases, the DBSCAN™ clusters merge or expand and new singleton clusters

may appear, but clusters do not shrink or disappear. Hence, if € < &’ then? C.(D) < C./ (D).

An approximate DBSCAN* clustering is now defined as follows.

» Definition 9. A §-approzimate DBSCAN* clustering of a data set D, for given parameters
¢ and MINPTS, and a given error § > 0, is defined as a clustering C* of D into clusters and
noise such that C(;_s)(D) < C* < C(D).

Thus if we choose § sufficiently small, then a J§-approximate DBSCAN* clustering is very
similar to the exact DBSCAN* clustering for the given parameter values.

» Remark. An approximate DBSCAN* clustering can be computed by using the approzimate
bichromatic closest pair algorithm by Arya and Chan [4] as a subroutine in our exact
algorithm. The resulting algorithm finds a d-approximate DBSCAN* clustering in R? in
O(nlogn + n/6%3%¢) time. This is similar to the running time of Chen et al. [9] and the
expected running time of Gan and Tao [13], but it has a better dependency on §. Note,
however, that Gao and Tao are able to avoid the O(nlogn) term. The easy details can be
found in the full version [7].

2 Here it is important that we consider DBSCAN* and not DBSCAN. Indeed, in DBSCAN border points can
“flip” between clusters as ¢ increases, and so we do not necessarily have C-(D) < C.-(D).

25:9

ISAAC 2017

25:10

Faster DBScan and HDBScan

Approximate HDBScan. Our definition of an approximate HDBSCAN hierarchy is based
on the definition of §-approximate DBSCAN* clusterings: we say that a hierarchy is a §-
approrimate HDBSCAN hierarchy if, for any value of €, the clustering extracted from the
hierarchy is a §-approximate DBSCAN* clustering for that value of . Next we show how to
compute a d-approximate HDBSCAN hierarchy in O(nlogn) time, in any fixed dimension d.

As in Section 4 we follow the algorithm by Campello et al. [8]. Steps 1 and 3 can still
be done in O(nlogn) and O(n) time, respectively. We speed up Step 2 of the algorithm by
computing an MST on a subgraph of the mutual reachability graph G, rather than on the
whole graph. The difference with the exact algorithm of Section 4 is that we will select the
edges of the subgraph in a different manner, using ideas from so-called #-graphs [19].

Let p € D be a point. We partition R? into simplicial cones with apex p and whose
angular diameter is 6, where 6 will be specified later. (The angular diameter of a cone ¢
with apex p is the maximum angle between any two vectors emanating from p and inside ¢.)
Let T', be the resulting collection of cones and consider a cone ¢ € I',. Let D(c) C D denote
the set of points inside c¢. If a point lies on the boundaries of several cones we can assign
it to one of these cones arbitrarily. Pick a half-line ¢, with endpoint p that lies inside c. A
f-graph would now be obtained by projecting all points from D(c) orthogonally onto £., and
adding an edge from p to the point closest to p in this projection, with ties broken arbitrarily.
We do the same, except that we add edges to the k closest points for k := 2 - MINPTS — 3.
If ¢ contains fewer than k points, we simply connect p to all points in D(c). Doing this
for all the cones ¢ € ', gives us a set E, of O(k/89~1) = O(1/6?"1) edges for point p. Let
E(0) :=U,pep Ep- The set E(f) can be computed by making a straightforward adaptation
to the algorithm to compute a #-graph in R? [19, Chapter 5], leading to the following result.

» Lemma 10. E() has O(n/0%~1) edges and can be computed in O((n/0%1)1log? n) time.

The set E(), where 6 is chosen such that cosf > 1 — &, defines the subgraph Gy, (5) on
which we compute the MST in Step 2. Since cosf > 1 — 6%/2, we have cosf > 1 — § when
0 := v29. Next we show that an MST on ?mr(é) defines a §-approximate HDBSCAN clustering.

» Lemma 11. Let T be an MST of G (8) and let € > 0. Let C(T,) be the clustering induced
by T. Then C is a d-approximate DBSCAN™* clustering for the given ¢.

Proof. For a weighted graph G and threshold weight 7, let G[r] denote the subgraph obtained
by removing all edges of weight greater than 7. In order to show that C(T,¢) < Cc(D) we
must show that any connected component of 7[¢] is contained in a connected component of
Gmrle]. Since T is a subgraph of G, this is obviously the case.

Next we prove that C(;_s).(D) < C(T,¢). For this we must prove that any connected
component of G, [(1 — 0)e] is contained in a connected component of T[e]. Since T is an
MST of G (d), the connected components of 7 [e] are the same as the connected components
of Gmr(9)[e]. Tt thus suffices to show the following: for any edge (p,q) € Gm:[(1 — §)], there
is a path from p to q in Gy, (6)[e]. We show this by induction on |pq|, similarly to the way in
which it is shown that a 6-graph has a small dilation.

Let (p,q) be an edge in Gy, [(1 — 0)e]. Consider the set '), of cones with apex p that
was used to define the edge set E,, and let ¢ € I', be the cone containing ¢. Recall that
we added an edge from p to the k points in ¢ that are closest to p when projected onto the
half-line ¢., where k := 2 - MINPTS — 3. Hence, when ¢ is one of these k closest points we
are done. Otherwise, let € D(c) be the (MINPTS — 1)-th closest point.

» Claim. (i) deore(r) < (1 —d)e, (ii) |pr| < e, and (iii) |rq| < |pq|.

M. de Berg, A. Gunawan, and M. Roeloffzen

lpg| < (1 —0)e Both the dark and the light grey region contain at least
MINPTS—2 points, not counting p, ¢, 7. Depending on the
q position of r, all points in the light region or all points in

p s 1 the dark region have distance at most (1 — d)e from r.

Figure 3 Illustration for the proof of Lemma 11.

Before we prove this claim, we first we argue that the claim allows us to finish our inductive
proof. Since (p, q) is an edge in Gy, [(1—0)e] we have dp:(p, q) < (1—3§)e. Thus |pg| < (1—-9)e
and deore(q) < (1 — d)e. Together with parts (i) and (iii) of the claim this implies that (r, q)
is an edge in G, [(1 — 0)e] with |rq| < |pg].

In the base case of our inductive proof, where (p, ¢) is the shortest edge in Gy, [(1 — d)e],
this cannot occur. Thus ¢ must be one of the k closest points in the cone ¢, and we have an
edge between p and ¢ in G, ()[¢] by construction.

If we are not in the base case, then we have a path from 7 to ¢ in Gy, (d)[e] by the
induction hypothesis. Moreover, (p,7) is an edge in G,,,(§) by construction. Since |pr| < e
by part (ii) of the claim, we have a path from p to ¢ in G, (6)[e].

It remains to prove the claim. For this we use the following fact [19, Lemma 4.1.4], which
is also used to prove that a f-graph has small dilation. Note that although Lemma 4.1.4 in
[19] is stated in 2 dimensions, but the proof never assumes that the line on which is projected
lives in the same plane and clearly three points s,t,p live in a single plane.

» Fact. Let s,t be any two points in a cone c € I', such that, when projected onto the half-
line L., the distance from p to s is smaller than the distance from p tot. Then |ps| < |pt|/ cosf
and |st] < |pt| — (cos@ — sin0)|ps| < |pt|, since we can assume 0 is sufficiently small that
cosf —sinf > 0.

Part (iii) of the claim immediately follows from this fact by taking s := r and ¢ := ¢. Part (ii)
follows again by taking s := r and t := ¢, using that |pg| < (1 — d)e and that we have chosen
d such that cosf@ = 1 —§. For part (i) we must prove that there are at least MINPTS — 1
points within distance (1 — d)e from r. Recall that r is the (MINPTS — 1)-th closest point
to p in the cone ¢, measured in the projection onto the half-line /.. Let r1,...,r; be the k
closest points; thus r = r; for i = MINPTS — 1. We distinguish two cases: [pr| < (1 —d)e
and [pr| > (1 — 0)e. See also Fig. 3.

In the former case we can conclude that |r;r| < (1 —0)e for all 1 <4 < MINPTS — 2 by
setting s := r; and ¢t := r and using |pr| < (1 — §)e. Thus, including the point p, we know
that r has at least MINPTS — 1 points within distance (1 — d)e.

In the latter case we will argue that |r;r| < (1 —96)e for all MINPTS <4 < 2- MINPTS — 3.
Since by part (iii) of the claim we have |rg| < (1 — d)e, we conclude that also in the latter
case r has at least MINPTS — 1 points within distance (1 —d)e. To argue that |r;r| < (1—9)e
we first note that for any point s € ¢ we have |ss*| < sinf - |ps|, where s* denotes the
orthogonal projection of s onto ¢.. Thus

rral < et g+ |

< sin@ - [pr| + [r*q*| +sin6 - [pry]

< 2sinf - |pg|/ cosO + |r*q*|

= 2sinf - |pq|/ cosf + |pg*| — |pr*|

< 2sinf - |pq|/ cos O + |pg| — |pr|cos b
< (232;%—}—1—(3089) (1=0)e

25:11

ISAAC 2017

25:12

Faster DBScan and HDBScan

where the last inequality uses |pg| < (1 — §)e and that we are now considering the case
lpr| > (1 — §)e. Since we can assume that 6 is small enough to ensure 2sinf < cos® 6, we
conclude that, indeed, |rr;| < (1 —4§)e. This finishes the proof part (i) of the claim and hence,
of the lemma. <

Combining the previous two lemmas we obtain the following theorem.

» Theorem 12. Let D be a set of n points in R?, and let ¢ and MINPTS be given constants.
Then, for any given § > 0, we can compute a §-approximate HDBSCAN clustering on D with
respect to & and MINPTS for the Euclidean metric in O((n/8@1/2)log? " n) time.

—— References

1

10

11

12

13

14

15
16

17

18

P. Afshani and T.M. Chan. Optimal halfspace range reporting in three dimensions. In Proc.
20th ACM-SIAM Symp. on Discr. Alg., pages 180-186, 2009.

P.K. Agarwal, H. Edelsbrunner, and O. Schwarzkopf. Euclidean minimum spanning trees
and bichromatic closest pairs. Discr. Comput. Geom. 6:407-422 (1991).

M. Ankerst, M.M. Breunig, H.-P. Kriegel, and J. Sander. OPTICS: ordering points to
identify the clustering structure. SIGMOD Rec. 28:49-60 (1999).

S. Arya and T.M. Chan. Better e-dependencies for offline approximate nearest-neighbor
search, Euclidean minimum spanning trees, and e-kernels. In Proc. 30th Symp. on Comput.
Geom., pages 416-425, 2014.

B. Borah and D. Bhattacharyya. An improved sampling-based DBSCAN for large spatial
databases. In Proc. Int. Conf. on Intelligent Sensing and Inf. Proc., pages 92-96, 2004.
M. de Berg, O. Cheong, M. van Kreveld and M. Overmars. Computational Geometry:
Algorithms and Applications (3rd edition). Springer-Verlag, 2008.

M. de Berg, A. Gunawan, M. Roeloffzen. Faster DB-scan and HDB-scan in Low-
Dimensional Euclidean Spaces CoRR:abs/1702.08607, 2017.

R.J.G.B. Campello, D. Malouvi and J. Sander. Density-based clustering based on hierarch-
ical density estimates. In Proc. 17th Pacific-Asia Conference on Knowledge Discovery and
Data Mining, LNCS 7819, pages 160-172, 2013.

D.Z. Chen, M.H. Smid and B. Xu. Geometric Algorithms for Density-based Data Clustering.
Int. J. Comput. Geometry Appl. 15:239-260 (2005)

T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein. Introduction to Algorithms (3rd
edition), MIT Press, 2009.

J. Erickson. On the relative complexities of some geometric problems. In Proc. 7th Canadian
Conf. Comput. Geom. (CCCG) pages 85-90, 1995.

M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering
clusters in large spatial databases with noise. In Proc. 2nd Int. Conference on Knowledge
Discovery and Data Mining (KDD), pages 226-231, 1996.

J. Gan and Y. Tao. DBSCAN revisited: Mis-claim, un-fixability, and approximation. In
Proc. 2015 ACM SIGMOD Int. Conf. on Management of Data, pages 519-530.

J. Gudmundsson, M. Hammer and M. van Kreveld. Higher order Delaunay triangulations.
Computational Geometry: Theory and Applications 23: 85-98 (2002).

A. Gunawan. A faster algorithm for DBSCAN. Master’s thesis, TU Eindhoven, March 2013.
B. Liu. A fast density-based clustering algorithm for large databases. In Proc. Int. Conf.
on Machine Learning and Cybernetics, pages 996-1000, 2006.

S. Mahran and K. Mahar. Using grid for accelerating density-based clustering. In 8th Int.
Conf. on Computer and Information Technology, pages 35-40, 2008.

J. Matousek. Reporting points in halfspaces. Computational Geometry: Theory and Applic-
ations 2: 169-186 (1993).

M

19
20

21
22

. de Berg, A. Gunawan, and M. Roeloffzen

G. Narasimhan and M. Smid. Geometric Spanner Networks. Cambridge Univ. Press, 2007.
M.M.A. Patwary, D. Palsetia, A. Agrawal, W.-K. Liao, F. Manne, and A. Choudhary.
Scalable parallel OPTICS data clustering using graph algorithmic techniques. In Proc. Int.
Conf. on High Perf. Computing, Networking, Storage and Analysis pages 49:1-49:12, 2013.
P. Tan, M. Steinbach and V. Kumar. Introduction to Data Mining. Addison-Wesley (2006).
P.M. Vaidya. An O(nlogn) algorithm for the all-nearest-neighbor problem. Discr. Comput.

Geom. 4:101-115 (1989).

25:13

ISAAC 2017

	Introduction
	Preliminaries on DBScan and DBScan*
	A fast algorithm for DBScan
	A fast algorithm for HDBScan in the plane
	Approximate HDBScan

