
Maximum Induced Matching Algorithms via
Vertex Ordering Characterizations∗†

Michel Habib1 and Lalla Mouatadid2

1 IRIF, CNRS & Université Paris Diderot, Paris & INRIA Paris, Gang project,
France
Habib@irif.fr

2 Department of Computer Science, University of Toronto, Toronto, ON, Canada
Lalla@cs.toronto.edu

Abstract
We study the maximum induced matching problem on a graph G. Induced matchings correspond
to independent sets in L2(G), the square of the line graph of G. The problem is NP-complete
on bipartite graphs. In this work, we show that for a number of graph families with forbidden
vertex orderings, almost all forbidden patterns on three vertices are preserved when taking the
square of the line graph. These orderings can be computed in linear time in the size of the
input graph. In particular, given a graph class G characterized by a vertex ordering, and a
graph G = (V,E) ∈ G with a corresponding vertex ordering σ of V , one can produce (in linear
time in the size of G) an ordering on the vertices of L2(G), that shows that L2(G) ∈ G - for a
number of graph classes G - without computing the line graph or the square of the line graph of G.
These results generalize and unify previous ones on showing closure under L2(·) for various graph
families. Furthermore, these orderings on L2(G) can be exploited algorithmically to compute a
maximum induced matching on G faster. We illustrate this latter fact in the second half of
the paper where we focus on cocomparability graphs, a large graph class that includes interval,
permutation, trapezoid graphs, and co-graphs, and we present the first O(mn) time algorithm
to compute a maximum weighted induced matching on cocomparability graphs; an improvement
from the best known O(n4) time algorithm for the unweighted case.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory

Keywords and phrases Maximum induced matching, Independent set, Vertex ordering charac-
terization, Graph classes, Fast algorithms, Cocomparability graphs

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2017.43

1 Introduction

A matching in a graph G(V,E) is a subset of edges M ⊆ E where no two edges in M have a
common endpoint, i.e. every pair of edges in M is at distance at least one in G. An induced
matching in G is a matching that forms an induced subgraph of G, i.e. every pair of edges in
the induced matching is at distance at least two in G. Induced matching was introduced in
[33] by Stockmeyer and Vazirani, as an extension of the matching problem (known as the
marriage problem) to the “risk-free” marriage problem. Stockmeyer and Vazirani showed that
maximum induced matching is NP-complete on bipartite graphs. The same result was also

∗ This work was partially supported by NSERC.
† The full version is available at [19], https://arxiv.org/abs/1707.01245.

© Michel Habib and Lalla Mouatadid;
licensed under Creative Commons License CC-BY

28th International Symposium on Algorithms and Computation (ISAAC 2017).
Editors: Yoshio Okamoto and Takeshi Tokuyama; Article No. 43; pp. 43:1–43:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ISAAC.2017.43
https://arxiv.org/abs/1707.01245
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

43:2 Maximum Induced Matching

proven by Cameron in [5]. Since its introduction, the problem has been studied extensively.
Induced matchings appear in many real-world applications. For instance, the problem can
be used to model uninterrupted communications between broadcasters and receivers [17].
In [1], it was used to model the maximum number of concurrent transmissions in wireless
ad hoc networks. In [26], it was used to extract and discover storylines from search results.
Induced matchings have also been used to capture a number of network problems, see for
instance [21, 2, 14] for network scheduling, gathering, and testing.

The problem is NP-complete even on bipartite graphs of degree three, and planar
bipartite graphs [27]. It is also hard to approximate to within a factor of n1−ε and ∆1−ε

G

unless P = NP [13], where ∆G is the maximum degree of the graph G. In [31], it was shown
that the problem is W[1]-hard in general, but planar graphs admit a linear size kernel.

On the tractable side, induced matching is polynomially solvable for a number of graph
classes, including trees, weakly chordal, asteroidal-triple free, and circular arc graphs, as
well as graphs of bounded clique width [5, 6, 7, 16, 17, 8, 22]. We refer the reader to [13], a
survey by Duckworth et al. that contains most of the references and complexity results.

Most of the graph classes for which the problem is tractable have well defined intersection
models. One of the main techniques used to show the problem is tractable for a graph
class G, is to show that given an intersection representation of a graph G ∈ G, there exists
an intersection representation of a graph H ∈ G, such that L2(G) = H, where L2(G) is
the square of the line graph of G. In other words, one can show that these graph classes
are closed under the operation of “taking the square of the line graph” (L2(·) operation).
Since computing a matching (resp. an induced matching) on a graph G ∈ G is equivalent to
computing an independent set on L(G), the line graph of G, (resp. on L2(G), the square of
L(G)), by showing closure under L2(·), the induced matching problem is tractable on G if
and only if computing an independent set is tractable on G.

A vertex ordering characterization is an ordering on the vertices of a graph that satisfies
certain properties. A graph class G has a vertex ordering characterization if every G ∈ G has a
total ordering of its vertices that satisfies said properties. In this work, we use vertex ordering
characterizations to show that certain graph classes are closed under L2(·). In particular,
one can observe that lexicographic orderings on the edges of a given vertex ordering of G
produces an ordering on the vertices of L2(G). Since many graph classes are characterized
by vertex orderings, and are closed under the square of the line graph operation, it is natural
to ask what these orderings on the edges produce as vertex orderings on L2(G). In [3],
Brandstädt and Hoàng showed how to compute perfect elimination orderings of L2(G) when
G is chordal.

In this work we show that almost all forbidden patterns on three vertices are “preserved"
under the L2(·) operation, under two algorithms that compute orderings on L2(G). This
general theorem shows that graph families with certain vertex ordering characterizations are
closed under the L2(·) operation; and these orderings of L2(G) can be computed in linear
time in the size of G. This property gives, in our opinion, the most natural way to approach
this closure operation, and unfies the results on structural graph classes that have relied on
geometric intersection models to show closure. Furthermore, being able to compute vertex
orderings directly can be exploited algorithmically, since algorithms on the graph classes
covered often rely on their vertex ordering characterizations.

Using two different rules (? and •) to compute these orderings on L2(G), we show that
both the ? and the • rules preserve forbidden patterns in the square of the line graph. As a
corollary, we get that threshold, interval, and cocomparability graphs – among other classes
– are all closed under L2(·), and their corresponding vertex ordering characterizations are

M. Habib and L. Mouatadid 43:3

all preserved under L2(·). One of the classes we focus on is cocomparability graphs, a large
graph class that includes interval, permutation, and trapezoid graphs.

In the second half of this work, we present a faster algorithm to compute a maximum
weight induced matching for cocomparability graphs. Induced matching on cocomparability
graphs has been studied first by Golumbic and Lewenstein in [17], then by Cameron in [6],
where they both gave different proofs to show that cocomparability graphs are closed under
the L2(·) operation. In [17], they showed that this closure holds for k-trapezoid graphs
using the intersection representation of k-trapezoid graphs; since cocomparability graphs
are the union over all k-trapezoid graphs, the result holds for cocomparability graphs as
well. Whereas in [6], Cameron used the intersection model of cocomparability graphs (the
intersection of continuous curves between two parallel lines [18]) to conclude the result directly.
Cocomparability graphs are characterized by a vertex ordering known as a cocomparability
or umbrella-free ordering [25]. We use cocomparability orderings and the L2(·) closure to
present a O(mn) time algorithm to compute a maximum weighted induced matching for this
graph class, which is an improvement over the O(n4) time algorithm for the unweighted case
– a bound one can achieve by computing L2(G) and running the algorithm in [11] on it.

The paper is organized as follows: In Section 2, we give the necessary background and
definitions. In Section 3, we give the general theorem for a number of graph classes closed
under the L2(·) operation. In Section 4, we present the maximum weight induced matching
algorithm and its analysis on cocomparability graphs. We conclude with a discussion on
methods that fail, as well as future directions in Section 5.

2 Definitions & Preliminaries

We follow standard graph notation in this paper, see for instance [15]. G = (V,E) denotes
a simple graph (no loops, no multiple edges) on n = |V | vertices and m = |E| edges. N(v)
is the open neighbourhood of a vertex v. The degree of a vertex v is deg(v) = |N(v)|. ∆G

denotes the maximum vertex degree in G. We often refer to an edge (u, v) as uv. The
distance between a pair of vertices u and v, distG(u, v), is the length of the shortest path
between u and v in G. The distance between a pair of edges e1, e2, denoted edistG(e1, e2), is
the minimum distance over all shortest paths connecting an endpoint of e1 to an endpoint of
e2. The square of a graph G = (V,E) is the graph G2 = (V,E2) where uv ∈ E2 if and only
if distG(u, v) ≤ 2. The chromatic number of a graph G, χ(G), is the minimum number of
colours required to properly colour G, i.e, to assign colours to V such that adjacent vertices
receive different colours. An induced subgraph H of G is a graph H = (VH , EH) where
VH ⊆ V and for all u, v ∈ VH , uv ∈ E if and only if uv ∈ EH . A matching M ⊆ E is a subset
of edges no two of which share an endpoint. An induced matching M∗ ⊆ E is a matching in
G where every pair of edges in M∗ forms an induced 2K2, or alternatively every pair of edges
in M∗ is at distance at least two in G. An independent set S ⊆ V is a subset of pairwise
nonadjacent vertices.

Given a graph G = (V,E), the line graph of G, denoted L(G) = (E,L(E)), is the graph
on m vertices, where every vertex in L(G) represents an edge in G, and two vertices in
L(G) are adjacent if and only if their corresponding edges share an endpoint in G. We write
L2(G) = (E,L2(E)) to denote the square of the line graph of G.

It is a well known fact that a matching in G is equivalent to an independent set in
L(G) [4]. An induced matching on the other hand is equivalent to an independent set in
L2(G) [5]. Two vertices ei, ej in L2(G) are adjacent, i.e. eiej ∈ L2(E), if and only if they
have one of the configurations in G and L(G) as shown in Fig. 1. In particular, one can see

ISAAC 2017

43:4 Maximum Induced Matching

a b = c d

ei ej →
ei ej

and
a b c d

ei ek ej →
ei ek ej

Figure 1 Configurations of ei, ej ∈ E such that eiej ∈ L2(E), and their representation in L(G).

that two vertices are not adjacent in L2(G) if their corresponding edges induce a 2K2 in G.
Let [n] = {1, 2, . . . , n}. An ordering σ of V is a bijection σ : V → [n]. We write

σ = v1, v2, . . . , vn. For a pair of vertices vi, vj , where i, j ∈ [n] and i < j, we write vi ≺σ vj
or vi ≺ vj if σ is clear in the context.

A comparability graph is a graph G(V,E) which admits a transitive orientation of its
edges. That is, if two edges ab, bc ∈ E are oriented a→ b and b→ c, then there must exist an
edge ac ∈ E oriented a→ c. A cocomparability graph is the complement of a comparability
graph. Cocomparability graphs are a well studied graph family, see for instance [15]. Given
a graph G = (V,E), an ordering σ of G is a cocomparability ordering if and only if for every
triple a ≺ b ≺ c, if ac ∈ E then either ab ∈ E or bc ∈ E, or both. If both ab, bc /∈ E, we say
that the edge ac forms an umbrella over vertex b. It is easy to see that a cocomparability
ordering is just a transitive orientation in the complement. We have the following fact:

I Fact 1. [25] G is a cocomparability graph iff it admits a cocomparability ordering.

3 Vertex Orderings in the Square of the Line Graph

Many well-known classes of graphs can be characterized by vertex orderings avoiding some
forbidden patterns, see for example the classification studied in [12] and further studied in
[20]. Chordal, interval, split, threshold, proper interval, and cocomparability graphs are
a few examples of such graph families. In this section, we show that graphs with certain
forbidden induced orderings are closed under the L2(·) operation. In particular, we show
that almost all patterns on three vertices are preserved under L2(·).

To do so, we construct an ordering on the vertices of L2(G), and thus on the edges of the
original graph G, by collecting one edge at a time using different rules; either the ? rule or
the • rule. Formally, for a given graph G = (V,E), let σ = v1, . . . , vn be a total ordering of
V . Using σ, we construct a new ordering π = e1, . . . , em on E as follows: For any two edges
ei = ab and ej = uv where a ≺σ b and u ≺σ v, we place ei ≺π ej if:

Rule (•): ei ≺π ej ⇐⇒ a �σ u and b �σ v

Rule (?): ei ≺π ej ⇐⇒

{
a ≺σ u if a 6= u

a = u and b ≺σ v o.w.

We write π∗(σ) (resp. π•(σ)) to denote the ordering constructed using the ? (resp. •) rule
on σ. The ordering π∗(σ) is the lexicographic ordering of E induced by σ, similar to the one
used on chordal graphs in [3]. We will use φ∗ (resp. φ•) to denote the ordering π∗(σ) (resp.
π•(σ)) on L(G), including the edges L(E); and use σ∗ (resp. σ•) to denote the ordering
π∗(σ) (resp. π•(σ)) on L2(G), including the edges L2(E).

I Theorem 2. Given a graph G = (V,E), its corresponding L2(G) = (E,L2(E)), and σ an
ordering of V , if σ is pi-free for a pattern pi in Fig. 2, then σ• is pi-free as well.

I Theorem 3. Given a graph G = (V,E), its corresponding L2(G) = (E,L2(E)), and σ an
ordering of V , if σ is pi-free for a pattern pi in Fig. 2, then σ∗ is pi-free as well.

M. Habib and L. Mouatadid 43:5

p1 p2 p3 p4 p5

Figure 2 A list of forbidden patterns on three vertices.

Notice that the pattern p4 forms an umbrella over the middle vertex. Thus the p4-free
orderings are precisely cocomparability orderings. Due to space constraints, and the fact
that the ? rule can easily be implemented in linear time, we will provide here the proof of
Theorem 3 for the pattern p4 only, since we will use this result on the second half of the
paper. This partial proof of the theorem also gives a bit of intuition as to how the proofs for
other patterns go. We refer the reader to [19] for full proofs of both Theorems 2 and 3.

Proof Of Theorem 3 for p4. The proof is by contradiction, where we show if σ∗ has an
induced triple that satisfies a given pattern, then σ must also contain such a pattern. Call
such a triple e1 ≺σ∗ e2 ≺σ∗ e3. Let e1 = ab, e2 = cd, and e3 = ef . Without loss of generality,
suppose a ≺σ b, c ≺σ d, and e ≺σ f . Thus a �σ c �σ e.

When a triple of vertices x, y, z induces a pattern pi, we write x, y, z ≡ pi. For the
ordering ≺σ associated with σ, we drop the subscript and use ≺ instead, whereas we write
≺∗ to refer to the ordering ≺σ∗ . Recall that two vertices in σ∗ are not adjacent iff they
induce a 2K2 in G, and similarly, adjacent vertices in σ∗ must have edistG ≤ 1 (Fig. 1).

Let σ be a p4-free ordering and suppose σ∗ is not, i.e. there exist e1 ≺∗ e2 ≺∗ e3 such
that e1e3 ∈ L2(E) and e1e2, e2e3 /∈ L2(E). This p4 configuration in σ∗ implies the following
adjacencies in G:

ac, ad /∈ E and bc, bd /∈ E (1)
ce, de /∈ E and cf, df /∈ E (2)
edistG(e1, e3) ≤ 1 =⇒ ae ∨ af ∨ be ∨ bf ∈ E (3)
a ≺ c ≺ e (4)

e1e3 ∈ L2(E) implies either e1 and e3 are incident edges in G or their distance is at most
two in L(G), i.e, edistG(e1, e3) ≤ 1. Suppose first that e1, e3 are incident edges in G. This
can happen if e = b or b = f since a ≺ c ≺ e.

If e = b, we have: a ≺ c ≺ e = b ≺ f ; and using (1), this implies a, c, b ≡ p4.
If b = f , we have: a ≺ c ≺ e ≺ b = f , and once again, a, c, b ≡ p4. Thus, edistG(e1, e3) ≤ 1.
That is, there exists α ∈ {a, b}, β ∈ {e, f} such that (α, β) ∈ E.

In an attempt to satisfy (3), let’s first suppose that ae ∈ E. By (4), a ≺ c ≺ e. By (1,2),
ae ∈ E would create an umbrella over c. Therefore ae /∈ E. Suppose next that af ∈ E. Since
a ≺ c ≺ e ≺ f , it follows (using (1, 2)) that af ∈ E would imply a, c, f ≡ p4. Thus af /∈ E.
Suppose now that be ∈ E. Given that a ≺ b and d ≺ e, we try to place b with respect to e.
If e ≺ b then a ≺ c ≺ e ≺ b and a, c, b ≡ p4 by (1). If b ≺ e then either c ≺ b or b ≺ c. If
c ≺ b then a, c, b ≡ p4. If b ≺ c then b ≺ c ≺ e and by assumption be ∈ E. Thus using (1, 2)
b, c, e ≡ p4. In all cases, we produce a p4 if be ∈ E. Therefore be /∈ E, and to satisfy (3), it
remains that bf ∈ E. We place b with respect to f . By the same argument above, it must
be that b ≺ f . In fact, a ≺ b ≺ c ≺ f otherwise a, c, b ≡ p4. But b ≺ c ≺ f and (1, 2) imply
b, c, f ≡ p4. Thus bf /∈ E. We just showed that in all scenarios, condition (3) cannot be
satisfied without creating a p4 in σ. Therefore if σ∗ has a p4 pattern, then σ must have a p4
pattern. J

ISAAC 2017

43:6 Maximum Induced Matching

Table 1 G ∈ G iff ∃σ of G that does not have any corresponding induced pattern [12].

G Forbidden Patterns
Threshold p1 and p2

Interval p1 and p4

Split p1 and p3

Cocomparability p4

Chordal p1

Implementation: Since the ? rule is just a lexicographic ordering on the edges, it is much
easier to compute and to store than the • ordering. For this reason, we focus on the ? rule
in the remaining of this paper. We begin with the following observation:

I Observation 4. π∗(σ) as computed by the ? rule can be constructed in O(m+ n) time.

Proof. Since the (?) rule is just a lexicographic ordering on the edges, it suffices to scan the
ordering appropriately recording the endpoints of each edge. Formally, suppose G is given as
adjacency lists, and let σ = v1, v2, . . . , vn be a total ordering of G. For every w ∈ V , we sort
the adjacency list of w according to σ. That is for every pair vi, vj ∈ N(w), if vi ≺σ vj then
vi appears before vj in N(w). This can be done in O(m+ n) time using standard techniques
(see for instance [23]). We next construct the ordering π∗(σ) on the edges of G as follows:
Initially π∗(σ) is empty. We scan σ from left to right, for every vi in σ, and every neighbour
vj of vi such that i < j, we append ek = vivj to π∗(σ). Adding these edges requires scanning
N(w) for every w ∈ V . Thus this process takes O(m+ n) time. It is easy to see that this
construction satisfies the (?) rule. We only append vivj for i < j to avoid inserting the
same edge twice. The ordering π∗(σ) we produce at the end of this process is precisely the
ordering of the vertices of π∗(σ), φ∗, and σ∗. Recall that these three orderings differ only in
their edge sets and not on the ordering of their vertices. J

Therefore if a graph family G is characterized by the absence of patterns listed in Fig. 2,
then if computing an independent set on G ∈ G is tractable, and uses the vertex ordering
characterization of G, it follows that computing a maximum induced matching is also tractable
and reduces to computing an independent set on L2(G) ∈ G using σ∗.

In this paper, we focus on graph families with forbidden patterns on three vertices (as
shown in Fig. 2). To illustrate the consequences of Theorem 3, we list in Table 1 a number of
graph families characterized by the absence of the patterns listed in Fig. 2 [4], and Corollary 5
follows immediately. For chordal graphs, Brandstädt and Hoàng gave a stronger result where
they showed that not only is σ∗ a p2-free ordering, but that it is also a lexicographic breadth
first search ordering [3].

I Corollary 5. Vertex ordering characterizations of threshold, interval, split, cocomparability,
and chordal graphs are all closed under the L2(·) operation, and computing these orderings
of L2(·) can be done in linear time in the size of G.

4 Application: Maximum Weight Induced Matching on
Cocomparability Graphs

In this section, we focus on cocomparability graphs. We show how to compute a maximum
weight induced matching on cocomparability graphs in O(mn) time, an improvement over
O(n4) time algorithm for the unweighted case. To do so, we use a result we presented in [24],

M. Habib and L. Mouatadid 43:7

where we give a linear time robust algorithm to compute a maximum weight independent set
on cocomparability graphs in linear time. We begin by giving an overview of this algorithm,
denoted CCWMIS (Cocomparability Maximum Weighted Independent Set), then present
the maximum weight induced matching algorithm and its analysis to achieve the O(mn)
runtime. Thus in the remaining of this section, G is a cocomparability graph and σ a
cocomparability ordering. By [28], σ can be computed in linear time. By Theorem 3 and
Observation 4, cocomparability orderings are closed under L2(·) and can be computed in
O(m+ n) time. In particular, notice that the pattern p4 is Fig. 2 is precisely the umbrella
forbidden in cocomparability orderings. For clarity purposes, we refer the reader to [19] for a
full illustration of the algorithm through an example.

4.1 Overview of the CCWMIS Algorithm
Let G = (V,E,w) be a vertex weighted cocomparability graph, where w : V → R>0. We
compute a cocomparability ordering of G, σ = v1, v2, . . . , vn. For every vertex vi in σ, we
assign a set Svi

of vertices. Initially Svi
is empty for all i ∈ [n]. We write w(Svi

) to denote
the sum of the weights of the vertices in Svi

: w(Svi
) =

∑
z∈Svi

w(z). We use σ to compute a
new ordering τ = u1, u2, . . . , un of G, by scanning σ from left to right processing one vertex
of σ at a time. Initially τ1 = v1, and Sv1 = {v1}, w(Sv1) = w(v1). In general, at iteration
i, when processing a given vertex vi in σ, we scan τi−1 from right to left looking for the
rightmost nonneighbour of vi in τi−1. Let u be such a vertex, if it exists. We construct
Svi = Su ∪ {vi} with w(Svi) = w(Su) + w(vi). If no such u exists, then Svi = {vi}, and
w(Svi

) = w(vi). We show in [24] that the sets {Svi
}ni=1 are independent sets.

We proceed to construct τi by inserting vi into τi−1. Vertex vi is inserted into τi−1 so as
to maintain an increasing ordering of the weighted sets {Svk

}ik=1. That is, the vertices are
ordered in τ = u1, . . . , un such that w(Sui

) ≤ w(Suj
),∀i < j. When all the vertices of σ have

been processed, τn = τ is constructed, we return Sun as a maximum weight independent set.
In [24], we prove the following theorem:

I Theorem 6. Let G = (V,E) be a cocomparability graph. Algorithm CCWMIS computes a
maximum weight independent set of G in O(m+ n) time.

4.2 The Weighted Maximum Induced Matching Algorithm (CCWMIM)
Now let G = (V,E,w) be an edge weighted cocomparability graph where w : E → R>0. Thus
L2(G) = (E,L2(E), w) is a vertex weighted cocomparability graph by Theorem 3 and [17, 6].
We compute a maximum weight independent set of L2(G) as shown in Algorithm 2.

By Theorem 6, Algorithm CCWMIS takes O(m + n) time. Thus, CCWMIS will take
O(|E|+ |L2(E)|) time on L2(G). When G is dense, CCWMIS on L2(G) takes O(n4) time.
We give a careful implementation and analysis to achieve O(mn) runtime.

4.3 Implementation & Analysis of CCWMIM
Suppose the graph G = (V,E,w), where w : E → R>0, is given as adjacency lists. We
compute σ = v1, . . . , vn in O(m+ n) time using the algorithm in [28]. We construct π∗(σ)
in O(m+ n) time using Observation 4.

Notice that we cannot use φ as input for the CCWMIS algorithm, since φ is not necessarily
a cocomparability ordering. In fact, L(G) is not necessarily a cocomparability graph; just
consider the line graph of any large clique Kp>4. Notice also that the square edges in σ∗ are
necessary for Step 7 of the algorithm, when looking for a rightmost nonneighbour in τi−1.

ISAAC 2017

43:8 Maximum Induced Matching

Algorithm 1 CCWMIS
Input: G = (V,E,w) a weighted cocomparability graph where w : V → R>0
Output: A maximum weight independent set together with its weight
1: Compute σ = v1, v2, . . . , vn a cocomparability ordering of G [28].
2: for i→ 1 to n do
3: Svi ← {vi} and w(Svi)← w(vi)
4: end for
5: τ1 ← (v1) . Constructing τi
6: for i→ 2 to n do
7: Choose u to be the rightmost non-neighbour of vi with respect to τi−1
8: if u exists then
9: Svi

← {vi} ∪ Su and w(Svi
)← w(vi) + w(Su)

10: end if
11: τi ← insert(vi, τi−1) . Insert vi into τi−1 s.t. τi remains ordered w.r.t. w(S·)
12: end for
13: z ← the rightmost vertex in τn
14: return Sz and w(Sz)

Algorithm 2 Cocomparability Weighted Maximum Induced Matching (CCWMIM)
Input: G = (V,E,w) an edge weighted cocomparability graph where w : E → R>0
Output: A maximum weight induced matching of G
1: Compute σ = v1, v2, . . . , vn a cocomparability ordering of G
2: Compute π∗(σ) = e1, e2, . . . , em a cocomparability ordering of L2(G) using the (?) rule.
. The ordering only, not the square edges

3: Use Algorithm 1 and π∗(σ) to compute a maximum weight independent set of L2(G)

We begin by looking at forbidden configurations of induced 2K2s in cocomparability
orderings. Let σ = v1, . . . , vn be a cocomparability ordering. Let ei = ab and ej = uv be two
edges that induce a 2K2 in G. Without loss of generality, suppose a ≺σ b and u ≺σ v. Since
σ is a cocomparability ordering, the configurations of ei, ej that have either a ≺ u ≺ b ≺ v
or a ≺ u ≺ v ≺ b as orderings cannot occur in σ, for otherwise σ would have an umbrella.
This leaves the following configurations of the edges without umbrellas: a ≺ b ≺ u ≺ v or
u ≺ v ≺ a ≺ b.

Without loss of generality, suppose a ≺σ b ≺σ u ≺σ v. Using the (?) rule, this configura-
tion always forces ei ≺π ej , i.e. ab ≺π uv. Therefore, when we run Algorithm CCWMIS on
π∗ = e1, . . . , em, we process elements of π∗ from right to left, and thus we process ei = ab

before processing ej = uv.
Let τ = f1, . . . , fm be the new ordering being constructed by the algorithm CCWMIS

using π∗ as the ordering computed in Step 1. Initially, as per the algorithm, τ1 = e1. In
general, at iteration i, let τi−1 = f1, . . . , fi−1 be the ordering constructed thus far. Suppose ei
is the edge being processed. In Step 7 of Algorithm 1, looking for the rightmost nonneighbour
of ei in τi−1 is equivalent to looking for an edge e that forms an induced 2K2 with ei in σ,
such that e is to the left of ei in σ. When processing vertex ei in π∗, we scan τi−1 to find
the rightmost nonneighbour of ei in τi−1. Suppose such a vertex exists, and call it fj . Since
we are working in L2(G), to check if two vertices in L2(G) are adjacent, we need to check
whether these edges are incident in G, or are at distance at most two in L(G), as shown in
Fig. 1. We proceed as follows.

M. Habib and L. Mouatadid 43:9

Both σ and π∗ are implemented using doubly linked lists. We construct three arrays A,
B and F of sizes n, n,m respectively. All three arrays are initialized to zero; A[t] = B[t] =
0,∀t ∈ [n] and F [i] = 0,∀i ∈ [m].

Every vertex vt in σ has a pointer to A[t] and B[t]. Similarly, every vertex ei in π∗ has a
pointer to F [i]. We sometimes abuse notation and talk about A[w] to mean the position in
array A that vertex w in σ points to. Furthermore, when we talk about vertex ei = uv in π∗,
we always assume that u ≺σ v.

For every vertex ei = vtvk in π, its corresponding entry F [i] has four pointers pti, pki , qti , qki
that point respectively to A[t], A[k] and B[t], B[k]. When processing vertex ei, where ei = ab,
we update A as follows: For every neighbour z of vertex a, we set A[z] = i. Similarly, for
every neighbour z of vertex b, we set B[z] = i. These updates to arrays A and B guarantee
that every nonneighbour w of a has A[w] 6= i and every nonneighbour w of b has B[w] 6= i.
Therefore, for every edge vtvk in G that forms an induced 2K2 with ab, the following (†)
condition holds: A[t] 6= i ∧A[k] 6= i ∧B[t] 6= i ∧B[k] 6= i (†).

Thus, in order to find the rightmost nonneighbour of ei in τi−1, we scan τi−1 from right
to left, and for every vertex we encounter fj = vtvk, we check if one of A[t], A[k], B[t], B[k]
is equal to i. We return the first vertex in τi−1 we encounter whose endpoints in G satisfy
condition (†) above as the rightmost nonneighbour of ei in τi−1. Updating arrays A and B
requires O(deg(a) + deg(b)) time. When scanning τi−1, for every vertex fj = vtvk in τi−1,
we use the pointers ptj , pkj , qtj , qkj in F [j] to access A[t], A[k], B[t], B[k]. Checking these four
entries takes constant time using the pointers provided.

It remains to analyze the number of constant checks we do, i.e. how many fj vertices we
check. In particular, this reduces to bounding the degree of ei in L2(G).

Let deg1(ei) denote the degree of ei in L(G), and deg2(ei) denote the degree of ei in
L2(G). We have the following:

I Claim 7. for a given edge ei = ab, we have: deg2(ei) ≤
∑
v:av∈E
v 6=b

deg(v) +
∑
v:bv∈E
v 6=a

deg(v).

Proof. It is clear that for a given edge ei = ab, deg1(ei) = deg(a) + deg(b)− 2. On the other
hand, when computing deg2(ei), we take into account the degree of any vertex at distance at
most two from either a, or b in G. In particular, the following holds:

deg2(ei) ≤ deg1(ei) +
∑

v:av∈E
v 6=b

(deg(v)− 1) +
∑

v:bv∈E
v 6=a

(deg(v)− 1)

≤ deg(a) + deg(b)− 2 +
[∑

v:av∈E
v 6=b

deg(v)
]
− deg(a) + 1 +

[∑
v:bv∈E

v 6=a

deg(v)
]
− deg(b) + 1

≤
∑

v:av∈E
v 6=b

deg(v) +
∑

v:bv∈E
v 6=a

deg(v)

The first inequality avoids counting edges twice, in particular if a, b, and v form a triangle.
The -1s in the first equality is to avoid counting the edge av in deg(v), for every v ∈ N(a),
similarly for b. The +1s in the second equality is for not counting edge ab for both a and b
in deg(a) and deg(b). J

When scanning τi−1 to find the rightmost nonneighbour of ei, we check O(deg2(ei))
vertices, each check takes constant time using arrays A,B, and F . Since the weights are
positive, w(S(ei)) = w(S(fj)) + w(ei) > w(S(fj)) if such an fj exists, and thus fj ≺τ ei.
Therefore, inserting ei into τi−1 to create τi will also take O(deg2(ei)) time.

ISAAC 2017

43:10 Maximum Induced Matching

Summing over all vertices in π, of which there are m = |E|, we have O(m+
∑
ei

deg2(ei)).
It remains to bound

∑
ei

deg2(ei).

I Claim 8.
∑
ei

deg2(ei) ≤ O(mn).

Proof. By Claim 7, we have:∑
ei

deg2(ei) ≤
∑

ei=(a,b)

[∑
v:av∈E
v 6=b

deg(v) +
∑

v:bv∈E
v 6=a

deg(v)
]

For a given vertex v, deg(v) is used deg(v) time, one for every edge incident to v, thus∑
ei

deg2(ei) =
∑

ei=(a,b)

[∑
v:av∈E
v 6=b

deg(v) +
∑

v:bv∈E
v 6=a

deg(v)
]

≤ deg(v1) · deg(v1) + . . .+ deg(vn) · deg(vn)
≤ deg(v1) ·∆G + . . .+ deg(vn) ·∆G ≤ 2m ·∆G ≤ O(mn) J

Therefore, the total running time is O(m+mn) = O(mn). The correctness and robustness
of the algorithm follows from Theorem 3 as well as the correctness and robustness of
Algorithm 1, which we give in [24]. We conclude with the following theorem:

I Theorem 9. Let G = (V,E,w) be an edge weighted cocomparability graph, where w : E →
R>0. A maximum weight induced matching on G can be computed in O(mn) time.

5 Conclusions and perspectives

In this paper, we give a general theorem that shows that a number of vertex ordering
characterizations are closed under the operation of taking the square of the line graph. Using
the ? and • rules, we get that chordal, threshold, interval, split, and cocomparability graphs
all have vertex orderings closed under the L2(·) operation. This gives in our opinion a natural
way to approach this closure under L2(·); and unifies the results on structural graph classes
that have relied on geometric intersection models to show such closure. Furthermore, being
able to compute vertex orderings directly can be exploited algorithmically, since algorithms
on the graph classes covered often rely on their vertex ordering characterizations. We also
show structural results and properties on cocomparability graphs that allow us to compute a
maximum weighted induced matching on this graph class in O(mn) time, an improvement
over the best O(n4) time algorithm for the unweighted case. A natural question however is
whether one can use the vertex orderings σ∗ of the L2(G) to compute an induced matching
more efficiently for other graph classes, similarly to how we did for cocomparability graphs.
We note that the graph classes covered in this work are not necessarily the only ones for
which the ?, • rules work, thus it’s natural to ask what other graph families have this property.
In particular, we illustrate our result on graph families with forbidden patterns on three
vertices and therefore raise the question of what can be said about forbidden patterns on
four or more vertices, but also if other rules exist that preserve orderings in L2(G).

Another natural question one can raise is whether computing a maximum cardinality
induced matching on cocomparability graphs can be done faster than O(mn) time, especially
since computing a maximum cardinality independent set on cocomparability graphs is done
with a simple greedy LexDFS based algorithm [11]. LexDFS and LexBFS are graph searching
algorithms that have proven powerful on a number of graph families, cocomparability being

M. Habib and L. Mouatadid 43:11

one of them. We refer the reader to [32, 11, 9, 30, 10, 29] for more on this topic. Unfortunately,
one can show that LexDFS cocomparability orderings are not preserved under the ? and •
rules, and thus computing such a solution would require computing a LexDFS ordering on
σ∗, σ•. Such an algorithm exists and runs in linear time [23], but it would be linear in the
size of L2(G), thus not in O(m+ n) time. Similarly, LexBFS cocomparability orderings are
not preserved under the ? and • rules. We ask the question whether one can come up with a
different rule that preserves LexDFS and/or LexBFS cocomparability orderings on L2(G)
without computing the square edges. Such a technique was successfully used with LexBFS
on chordal graph in [3].

Lastly, we raise the question of whether σ∗, σ• can lead to efficient algorithms to compute
a strong edge colouring for these graph classes. Recall that a strong edge colouring is the
partitioning of G into induced matchings, and thus the partitioning of L2(G) into independent
sets. The strong chromatic number of G is the size of a minimum strong edge colouring of
G. It is thus easy to see that the strong chromatic number of G is just χ(L2(G)). Since
the graph families we presented are perfect, their chromatic number can be computed in
polynomial time. In fact for many graph families, it is done in linear time, and it often relies
on the vertex ordering characterization of the graph class. Since a vertex ordering of L2(G)
can be computed in linear time given σ, we ask whether σ∗, σ• can be used to compute
χ(L2(G)), without computing the edges of L2(G).

References
1 Hari Balakrishnan, Christopher L. Barrett, V. S. Anil Kumar, Madhav V. Marathe, and

Shripad Thite. The distance-2 matching problem and its relationship to the mac-layer
capacity of ad hoc wireless networks. IEEE Journal on Selected Areas in Communications,
22(6):1069–1079, 2004.

2 Vincenzo Bonifaci, Peter Korteweg, Alberto Marchetti-Spaccamela, and Leen Stougie. Min-
imizing flow time in the wireless gathering problem. ACM Trans. Algorithms, 7(3):33:1–
33:20, 2011.

3 Andreas Brandstädt and Chính T. Hoàng. Maximum induced matchings for chordal graphs
in linear time. Algorithmica, 52(4):440–447, 2008.

4 Andreas Brandstädt, Van Bang Le, and Jeremy P. Spinrad. Graph Classes: A Survey.
Society for Industrial and Applied Mathematics, 1999.

5 Kathie Cameron. Induced matchings. Discrete Applied Mathematics, 24(1-3):97–102, 1989.
6 Kathie Cameron. Induced matchings in intersection graphs. Discrete Mathematics, 278(1-

3):1–9, 2004.
7 Kathie Cameron, R. Sritharan, and Yingwen Tang. Finding a maximum induced matching

in weakly chordal graphs. Discrete Mathematics, 266(1-3):133–142, 2003.
8 Jou-Ming Chang. Induced matchings in asteroidal triple-free graphs. Discrete Applied

Mathematics, 132(1-3):67–78, 2003.
9 Pierre Charbit, Michel Habib, Lalla Mouatadid, and Reza Naserasr. Towards A unified

view of linear structure on graph classes. CoRR, abs/1702.02133, 2017.
10 Derek G. Corneil, Barnaby Dalton, and Michel Habib. Ldfs-based certifying algorithm for

the minimum path cover problem on cocomparability graphs. SIAM J. Comput., 42(3):792–
807, 2013.

11 Derek G. Corneil, Jérémie Dusart, Michel Habib, and Ekkehard Köhler. On the power of
graph searching for cocomparability graphs. SIAM J. Discrete Math., 30(1):569–591, 2016.

12 Peter Damaschke. Forbidden Ordered Subgraphs. Topics in Combinatorics and Graph
Theory: Essays in Honour of Gerhard Ringel. Physica-Verlag HD, 1990.

ISAAC 2017

43:12 Maximum Induced Matching

13 William Duckworth, David Manlove, and Michele Zito. On the approximability of the
maximum induced matching problem. J. Discrete Algorithms, 3(1):79–91, 2005.

14 Shimon Even, Oded Goldreich, Shlomo Moran, and Po Tong. On the np-completeness of
certain network testing problems. Networks, 14(1):1–24, 1984.

15 Martin C. Golumbic. Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete
Mathematics), volume 57. North-Holland Publishing Co., 2004.

16 Martin Charles Golumbic and Renu C. Laskar. Irredundancy in circular arc graphs. Discrete
Applied Mathematics, 44(1-3):79–89, 1993.

17 Martin Charles Golumbic and Moshe Lewenstein. New results on induced matchings. Dis-
crete Applied Mathematics, 101(1-3):157–165, 2000.

18 Martin Charles Golumbic, Doron Rotem, and Jorge Urrutia. Comparability graphs and
intersection graphs. Discrete Mathematics, 43(1):37–46, 1983.

19 Michel Habib and Lalla Mouatadid. Maximum induced matching algorithms via vertex
ordering characterizations. CoRR, abs/1707.01245, 2017.

20 Pavol Hell, Bojan Mohar, and Arash Rafiey. Ordering without forbidden patterns. In
Algorithms - ESA 2014 - 22th Annual European Symposium, Wroclaw, Poland, September
8-10, 2014. Proceedings, pages 554–565, 2014.

21 Changhee Joo, Gaurav Sharma, Ness B. Shroff, and Ravi R. Mazumdar. On the complexity
of scheduling in wireless networks. EURASIP J. Wireless Comm. and Networking, 2010,
2010.

22 Daniel Kobler and Udi Rotics. Finding maximum induced matchings in subclasses of
claw-free and p5-free graphs, and in graphs with matching and induced matching of equal
maximum size. Algorithmica, 37(4):327–346, 2003.

23 Ekkehard Köhler and Lalla Mouatadid. Linear time lexdfs on cocomparability graphs. In
Algorithm Theory - SWAT 2014 - 14th Scandinavian Symposium and Workshops, Copen-
hagen, Denmark, July 2-4, 2014. Proceedings, pages 319–330, 2014.

24 Ekkehard Köhler and Lalla Mouatadid. A linear time algorithm to compute a maximum
weighted independent set on cocomparability graphs. Inf. Process. Lett., 116(6):391–395,
2016.

25 Dieter Kratsch and Lorna Stewart. Domination on cocomparability graphs. SIAM J.
Discrete Math., 6(3):400–417, 1993.

26 Ravi Kumar, Uma Mahadevan, and D. Sivakumar. A graph-theoretic approach to extract
storylines from search results. In Proceedings of the Tenth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Seattle, Washington, USA, August
22-25, 2004, pages 216–225, 2004.

27 Vadim V. Lozin. On maximum induced matchings in bipartite graphs. Inf. Process. Lett.,
81(1):7–11, 2002.

28 Ross M. McConnell and Jeremy P. Spinrad. Modular decomposition and transitive orient-
ation. Discrete Mathematics, 201(1-3):189–241, 1999.

29 George B. Mertzios and Derek G. Corneil. A simple polynomial algorithm for the longest
path problem on cocomparability graphs. SIAM J. Discrete Math., 26(3):940–963, 2012.

30 George B. Mertzios, André Nichterlein, and Rolf Niedermeier. Linear-time algorithm for
maximum-cardinality matching on cocomparability graphs. CoRR, abs/1703.05598, 2017.

31 Hannes Moser and Somnath Sikdar. The parameterized complexity of the induced matching
problem in planar graphs. In Frontiers in Algorithmics, First Annual International Work-
shop, FAW 2007, Lanzhou, China, August 1-3, 2007, Proceedings, pages 325–336, 2007.

32 Donald J. Rose, Robert Endre Tarjan, and George S. Lueker. Algorithmic aspects of vertex
elimination on graphs. SIAM J. Comput., 5(2):266–283, 1976.

33 Larry J. Stockmeyer and Vijay V. Vazirani. Np-completeness of some generalizations of
the maximum matching problem. Inf. Process. Lett., 15(1):14–19, 1982.

	Introduction
	Definitions & Preliminaries
	Vertex Orderings in the Square of the Line Graph
	Application: Maximum Weight Induced Matching on Cocomparability Graphs
	Overview of the CCWMIS Algorithm
	The Weighted Maximum Induced Matching Algorithm (CCWMIM)
	Implementation & Analysis of CCWMIM

	Conclusions and perspectives

