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Abstract
We consider a system of nonlinear ordinary differential equations for the solution of linear pro-
gramming (LP) problems that was first proposed in the mathematical biology literature as a
model for the foraging behavior of acellular slime mold Physarum polycephalum, and more re-
cently considered as a method to solve LP instances. We study the convergence time of the
continuous Physarum dynamics in the context of the linear programming problem, and derive
a new time bound to approximate optimality that depends on the relative entropy between pro-
jected versions of the optimal point and of the initial point. The bound scales logarithmically
with the LP cost coefficients and linearly with the inverse of the relative accuracy, establishing
the efficiency of the dynamics for arbitrary LP instances with positive costs.
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1 Introduction

The theoretical analysis of natural systems has historically been the domain of mathematical
biology, dynamical systems theory, and physics, but certain natural processes are capable
of exhibiting remarkable information processing abilities which are often best understood
from an optimization perspective. Indeed, the application of a “computational lens” to such
processes has been advocated in different disciplines, and efforts are underway to identify,
classify and analyze these so-called natural algorithms [9, 15].

One such example can be found in the slime mold Physarum polycephalum. P. poly-
cephalum is an acellular, amoeboid slime mold in the Mycetozoa group. In controlled
experiments, the slime mold’s capabilities have been leveraged to determine the shortest
path between two locations in a network [14, 20] and, more generally, to adaptively form
efficient transport networks [22]. In fact, a dynamical model proposed by the mathematical
biologists to describe the time evolution of P. polycephalum’s network physiology [21] has
been rigorously proved to be algorithmically efficient for problems such as the single-source
single-sink shortest path problem [4,8] and the minimum-cost transshipment problem [11,18].

More recently, a variant of what we will call for short the Physarum dynamics has
been proposed for solving linear programming (LP) problems [12]. Such dynamics is a
direct mathematical extension of the one that has been studied for the shortest path and
transshipment problems. It was shown that, under very mild assumptions on the linear
program, the dynamics converges to an optimal LP solution [19]. However, the bound for
the time of convergence of a discretization of the dynamics to an approximate solution has

© Vincenzo Bonifaci;
licensed under Creative Commons License CC-BY

28th International Symposium on Algorithms and Computation (ISAAC 2017).
Editors: Yoshio Okamoto and Takeshi Tokuyama; Article No. 17; pp. 17:1–17:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ISAAC.2017.17
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


17:2 Convergence Time of Natural LP Dynamics

only been proved to be polynomial when the LP cost coefficients are polynomially bounded
and the constraint matrix has bounded maximum subdeterminant.

The contribution of this paper is to study the convergence time of the continuous Physarum
dynamics in the context of the linear programming problem, and to derive a new time bound
to approximate optimality that does not depend on the maximum subdeterminant of the
constraint matrix, and depends only logarithmically on the LP costs, establishing efficiency
for any LP instance with positive costs. The proof is based on convex duality and on a
potential function that involves the relative entropy between the optimal and the current
LP solution. The main technical novelty is represented by two ingredients: the use of a
dimensionless potential function, and the explicit recognition of the crucial role played by
the relative entropy function. We leave the study of a discretized version of the dynamics
for future work, but it is natural to conjecture that some appropriate discretization should
behave similarly to the continuous time dynamics. Indeed, several convex optimization
methods can be interpreted as the discretization of an ordinary differential equation system,
the solutions of which are guaranteed to converge to the set of minimizers; a well-known
example is the interior point method [3, 13].

There is another compelling reason to study the convergence properties of the Physarum
dynamics. It has been showed that, at least when started from a feasible point, this dynamics
can be interpreted as a natural gradient descent algorithm in a space endowed with a non-
Euclidean metric obtained from an entropy-like function [19]. This is also the case for
certain incarnations of well-known meta-algorithms, such as Mirror Descent [5,16], which
are at the basis of very effective approximation algorithms for machine learning and convex
optimization problems [2]. One can show that when the feasible LP region is the unit simplex,
but independently of whether the initial point is feasible or not, the Physarum dynamics is
identical to the continuous Mirror Descent dynamics of Nemirovski and Yudin [16] in the
metric generated by the negative entropy function. Thus, when the feasible LP region is the
simplex, the dynamics can be interpreted as a Mirror Descent method in a non-Euclidean
metric [1,10]. However, a similar connection may not hold more generally, suggesting that
the Physarum dynamics is different from any known convex optimization method. A full
characterization of the meta-algorithm behind the dynamics remains open; we believe it
deserves to be investigated, due to its potential to suggest a novel iterative approach to linear
optimization problems.

1.1 Linear programming and the Physarum dynamics
Let N and E be two finite index sets. Given a real matrix A ∈ RN×E , a positive vector
c ∈ RE>0, and a vector b ∈ RN , we consider the linear programming problem

min cost(x) (1)
s.t. Ax = b

x ≥ 0,x ∈ RE

where cost(x) def= c>x. We assume that A has full rank and that a nonzero optimal solution
to (1) exists; uniqueness is not required. We denote by x∗ an arbitrary optimal solution to
(1), and denote by opt def= cost(x∗) its value.

We describe the (directed) Physarum dynamics [4, 7, 8, 11,18,19,21] that solves (1). Let
x ∈ RE>0 be a positive vector, and let C be the diagonal matrix with entries xj/cj , for j ∈ E.
Let L def= ACA>; the matrix L is nonsingular and positive definite. Let p ∈ RN be the
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unique solution to Lp = b, and let q def= CA>p. The Physarum dynamics for the linear
program (1) is

ẋj(t) = qj(t)− xj(t) for all j ∈ E (2)

over the domain Ω def= RE>0, where we used the notation ẋj(t)
def= (d/dt)xj(t). In vector

notation, and omitting the implicit dependency on time, the Physarum dynamics can be
written as

ẋ = CA>L−1b− x. (3)

The dynamical system has an initial condition of the form x(0) = s for some s ∈ RE>0.
Existence of a solution x(t) to (3) for t ∈ [0,∞) has been proved by Straszak and Vishnoi [19,
Theorem 1.1]. The system (3) is well-defined irrespective of whether the starting vector x(0)
satisfies Ax(0) = b or not; the case where it does is referred to as the feasible start case. In
the special case where A is derived from the signed incidence matrix of a graph, problem (1)
is a minimum-cost transshipment problem and several of the quantities defined above have
an intuitive interpretation; we refer to Section 2.2 for details.

1.2 Our contribution
From previous results, it is known that the solution to (3) exists, and that it converges
to a feasible and optimal solution of the linear program (1). The known bound on the
convergence time, however, depends on the largest absolute value of a subdeterminant of
the constraint matrix A. Our main contribution is to show that, in the case of feasible
start, this dependence is unnecessary, and that one can obtain a bound that only depends
logarithmically on the ratio between the starting cost and the optimal cost, and on the
relative entropy of the optimal solution with respect to the starting solution. More precisely,
we prove the following theorem.

I Theorem 1. For a feasible initial condition s ∈ RE>0, consider the solution x : [0,∞)→ Ω
to the Physarum dynamics (3) with x(0) = s. Then x(t) is a feasible solution to (1) for any
t ≥ 0, and for any ε > 0, it holds that cost(x(t)) ≤ (1 + ε)opt for all

t ≥ 6
ε

(
ln cost(x(0))

opt + KL(ξ∗, ξ(0))
)
,

where KL(·, ·) denotes the relative entropy (Kullback-Leibler divergence) between distributions,
and ξj(0) def= cjxj(0)/cost(x(0)), ξ∗j

def= cjx
∗
j/opt for j ∈ E. In particular, cost(x(t)) ≤

(1 + ε)opt for all

t ≥ 6
ε

(
2 ln cost(x(0))

opt + lnµ
)
,

where µ def= maxj∈E x∗j/xj(0).

We remark that our result applies to the continuous formulation of the dynamics, and not
necessarily to its Euler discretization that has been considered, together with the continuous
one, in previous papers. While we conjecture that some discretization may be similarly
efficient as the bound in Theorem 1 suggests, it may also be the case that a simple Euler
discretization is insufficient to obtain such a result and that a more accurate discretization
technique, such as a Runge-Kutta method, would help in this sense.

ISAAC 2017
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The appearance of the relative entropy term in our potential function is not an accident:
it can be shown that when the feasible LP region is the unit simplex, independently of
whether the dynamics is initialized with a feasible point or not, its trajectories coincide with
those of the continuous Mirror Descent method of Nemirovski and Yudin [16] in a metric
with geometry dictated by the negative entropy function – also known as the information
geometry metric [1].

1.3 Related work
An undirected variant of the Physarum dynamics has been first proposed in the mathematical
biology literature by Tero, Kobayashi and Nakagaki [21] as a model for the foraging physiology
of the true slime mold Physarum polycephalum, an acellular organism that has been proved
capable of solving shortest path problems effectively in laboratory experiments [14]. The
convergence to optimality of the continuous dynamics for the shortest path problem and
for its close generalization – the minimum-cost transshipment problem – has been studied
analytically by Bonifaci, Mehlhorn and Varma [8] and by Ito et al. [11]. An analysis of the
convergence time of the Euler discretization of the dynamics was carried out by Becchetti et
al. [4] for the shortest path problem, and by Straszak and Vishnoi [18] for the minimum-cost
transshipment problem. In summary, these works proved that the Physarum dynamics
yields a polynomial-time approximation scheme to the shortest path problem and to the
transshipment problem, assuming that the costs associated to the edges of the network
are polynomially bounded. Observe that, in the statement of Theorem 1, the costs are
confined within logarithms, and thus a discrete version of the dynamics that achieved a
similar convergence time as in Theorem 1 would not require the costs to be polynomially
bounded to be efficient.

The generalization of the Physarum dynamics to linear programming problems that we
consider here has been first suggested by Johannson and Zou [12]. Most relevant to the
current paper is the work of Straszak and Vishnoi [19], who initiated the rigorous study of
the Physarum dynamics for LP problems of the form (1). Straszak and Vishnoi proved that
a solution to the dynamics exists over the entire time horizon [0,∞), and that a bound on
the convergence time of the continuous dynamics can be expressed in terms of the parameter
D, the largest absolute value of a subdeterminant of the constraint matrix A, as summarized
by their theorem that we quote here for comparison.

I Theorem 2. [19, Theorem 6.3] Suppose that x : [0,∞) → Ω is any solution to the
Physarum dynamics. Then, for some R, ν > 0 depending only on A, b, c, x(0), we have

|cost(x(t))− opt| ≤ R · exp(−νt),

where one can take ν = D−3 and R = exp(8D2 · ‖c‖1 · ‖b‖1) · (|E|+Mx)2. Here,

D def= max{
∣∣det(A′)

∣∣ : A′ a square submatrix of A},

and

Mx
def= max

(
max
j∈E

xj(0),max
j∈E

x−1
j (0)

)
.

Compared to this result of Straszak and Vishnoi, our contribution is to derive a bound that
avoids the dependency on D, thus showing that the dynamics are efficient –to the extent
made precise in the statement of Theorem 1– for all linear programs of the form (1), not just
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for those with special constraint matrices. Note that, in general, the bounds of Theorem 1
and 2 are incomparable: for a fixed relative error ε, the time for convergence guaranteed by
Theorem 1 scales polynomially in the input encoding length, while Theorem 2 only yields
an exponential dependence; on the other hand, for a fixed input, Theorem 2 achieves a
polynomial dependence on log(1/ε) (by taking t >> D3), while this is O(1/ε) in Theorem 1.
It is known that a simultaneous polynomial dependence on log(1/ε) and on the input length
cannot be achieved [18, Appendix B].

As mentioned in the introduction, several convex optimization methods can be interpreted
as discretizations of ordinary differential equation systems: for example, the Interior Point
method [3,13] and the Mirror Descent method [16, Chapter 3]. Straszak and Vishnoi [19]
proved that the Physarum dynamics with feasible start can be interpreted as natural gradient
descent in an appropriate information metric. Amari [1] gives an overview of natural gradient
methods in the context of information geometry; see also Raskutti and Mukherjee [17].

1.4 Organization of the paper
The remainder of the paper is organized as follows. In Section 2 we prove some basic facts
about the Physarum dynamics, including an alternative characterization of the vector q ∈ RE
defined in Section 1.1. In Section 3 we discuss the time of convergence to the feasible region
of the LP and prove that the set of feasible LP solutions is an invariant set for the dynamics.
In Section 4 we consider the time evolution of the cost of a feasible solution and prove our
main result, Theorem 1. We summarize and discuss our findings in Section 5.

2 Basic properties of the dynamics

2.1 Notation
In the paper we reserve boldface symbols for vectors or matrices and non-boldface symbols
for scalars or sets. We use the standard norms: for example, for v ∈ Rn: ‖v‖1

def=
∑n
i=1 |vi|,

‖v‖2
def= (

∑n
i=1 v

2
i )1/2. With the notation Diag((di)ni=1) we mean the n× n diagonal matrix

with di as the ith term on the main diagonal.
For the whole paper, the linear program (1) is fixed, in other words the triple (A,b, c) is

fixed. Whenever the matrices or vectors C = Diag((xj/cj)j∈E), L = ACA>, p = L−1b, or
q = CA>p appear, they should be understood as computed with respect to a point x ∈ RE>0.
As x = x(t) evolves in time with the dynamics (3), the former quantities are time-varying as
well. The quantity E def= q>Rq is called the energy of the vector q.

For a strictly convex and differentiable function ψ : Ω → R, the Bregman divergence
under ψ is the function

Dψ(x′,x) def= ψ(x′)− ψ(x)−∇ψ(x)> · (x′ − x),

where x′, x ∈ Ω. The Bregman divergence is in general not symmetric, but it is nonnegative
and satisfies Dψ(x′,x) = 0 if x′ = x. The Legendre dual of ψ is the function ψ? : RE → R
defined by

ψ?(y) def= sup
x∈RE

(x>y− ψ(x)),

Note that a vector x ∈ Ω is a maximizer of x>y− ψ(x) iff y = ∇ψ(x).

ISAAC 2017
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2.2 Intuition: The network case
The interpretation of the dynamics defined in Section 1.1 in the case where the constraint
matrix is a network matrix is particularly appealing, as most of the statements below have
physical interpretations in that case. Indeed, when A is derived from the (signed) node-edge
incidence matrix of a graph with node set N and edge set E 1, the dynamics (3) have a
natural interpretation in terms of electrical networks: the vector b prescribes the external
in-flow of current at each node, the matrix L is the (reduced) graph Laplacian, the vector p
defines the Kirchhoff node potentials, the vector q is the electrical flow, and E is the energy
dissipation (per unit time) of the network. In this context, Lemma 3 below is nothing but the
principle of least action for electrical networks, also known as Thomson’s principle, stating
that the electrical flow is the feasible flow that minimizes energy dissipation [6, Theorem
IX.2]. The duality relation (5) becomes Ohm’s law. Proposition 4 is the conservation of
energy principle, stating that if one replaces a network with a current source s and a sink s̄
with a single wire whose resistance is the effective resistance of the network, then the total
energy in the system does not change [6, Theorem IX.3]. Proposition 5 is known as Tellegen’s
theorem. Of course, the difference with classical circuit theory is that the resistor values are
dynamically adjusted in response to the flow: the Physarum dynamics adjusts the edges’
resistances cj/xj , by updating the xj via (2). In the network case, the dynamics converges
to the solution of a minimum-cost transshipment problem with cost function prescribed by c
and node demands/supplies prescribed by b (see for example [18, Theorem 1.2]). However,
we remark that in the following statements we never require A to be derived from a network
matrix: our results hold for any full-rank matrix.

2.3 Extremal properties

We start by giving an alternative characterization of the vector q def= CA>L−1b.

I Lemma 3. The vector q ∈ RE defined in Section 1.1 equals the unique optimal solution to
the continuous quadratic optimization problem:

min f>Rf (4)
s.t. Af = b.

where R def= C−1 ∈ RE×E is the diagonal matrix with value rj
def= cj/xj for the j-th element

of the main diagonal. Moreover,

Rq = A>p. (5)

Proof. To establish (5), simply left-multiply with R the identity q = CA>p. It remains to
establish the first part of the claim. Since the objective function in (4) is strictly convex, the
problem has a unique optimal point. Consider any feasible point f , and define g = f − q.
Then Ag = b− b = 0 and hence

f>Rf = (q + g)>R(q + g) = q>Rq + 2g>Rq + g>Rg ≥ q>Rq,

since g>Rg ≥ 0 and g>Rq = g>A>p = (Ag)>p = 0>p = 0. Therefore, the objective
function value of any feasible point f is at least as large as the objective function value
of q. J

1 More precisely, since we stipulated that A should be full rank, we omit from N one of the nodes and
omit the corresponding row from A; this corresponds to “grounding” the potential value of this node to
zero.



V.Bonifaci 17:7

I Proposition 4. E = b>L−1b = p>Lp.

Proof. q>Rq = (b>L−1AC)R(CA>L−1b) = (b>L−1)(ACA>)(L−1b) =
= p>Lp. J

I Proposition 5. Let f satisfy Af = b. Then

f>A>p(t) = E(t). (6)

Proof. Since Af = b, we have p>Af = p>b = p>Lp = E . The last equality is due to
Proposition 4. J

3 Convergence to the feasible region

In this section we discuss the time of convergence to the feasible region Ax = b. In particular,
we aim to show that feasibility is invariant under the dynamics: a feasible starting point
remains feasible at all times. It turns out that a stronger property holds: the Euclidean
norm of the “infeasibility error” e def= Ax− b approaches zero exponentially fast (Lemma 7).

I Proposition 6. Aẋ = b−Ax.

Proof. Using the definition of the dynamics (3), Aẋ = ACA>L−1b−Ax = LL−1b−Ax =
b−Ax. J

I Lemma 7. Let e(t) def= Ax(t) − b. Then ‖e(t)‖2 = ‖e(0)‖2 exp (−t) for any t > 0. In
particular, if Ax(0) = b then Ax(t) = b for all t > 0.

Proof. We have

d

dt
‖e‖2

2 = d

dt
(Ax− b)>(Ax− b) = d

dt

(
x>A>Ax− 2b>Ax + b>b

)
=

= 2x>A>Aẋ− 2b>Aẋ = 2(x>A> − b>)Aẋ = −2 ‖e‖2
2 ,

where we used Proposition 6. Solution of the differential equation above yields ‖e(t)‖2
2 =

‖e(0)‖2
2 exp (−2t). Taking square roots yields the claim. J

4 Convergence in cost value

To analyze the convergence in cost values, and eventually prove Theorem 1, it will be useful
to consider normalized versions of the candidate solution x(t) and of the optimal vector
x∗. For any j ∈ E, let ξj(t)

def= cjxj(t)/cost(x(t)), ξ∗j
def= cjx

∗
j/opt. Then, by construction,

1>ξ∗ = 1>ξ(t) = 1, ξ(t) > 0 and ξ∗ ≥ 0, so ξ(t) and ξ∗ can be interpreted as probability
distributions over E. The relative entropy of ξ∗ with respect to ξ, or Kullback-Leibler
divergence KL(ξ∗, ξ(t)), is defined as:

KL(ξ∗, ξ(t)) def=
∑
j∈E

ξ∗j ln
ξ∗j
ξj(t)

.

The KL divergence is the Bregman divergence of the negative entropy function x 7→∑
j xj ln xj ; it is always nonnegative, and it is zero iff ξ∗ = ξ(t) (see for example [1, Chapter

1]).

ISAAC 2017
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We can now define the potential function that is central to our analysis. Let

Φ(t) def= ln cost(x(t))
opt + KL(ξ∗, ξ(t)). (7)

Note that the first term is nonnegative whenever x(t) is feasible for the LP, and the second
term is always nonnegative. Similar to previous analysis of Physarum dynamics based on
potential functions [4, 18, 19], the potential function Φ contains a term that depends on the
cost of the candidate solution x, and an “entropic barrier” term that captures the geometry
of the feasible region: in particular, the second term penalizes distributions that get too
close to the boundary of the positive orthant whenever the corresponding coordinate of the
optimal solution is not on the boundary (that is, ξj(t) ≈ 0 but ξ∗j > 0). A difference with
respect to previous papers is that the potential function (7) is dimensionless, which is natural
since our aim is to bound the relative, rather than absolute, approximation error.

To proceed further, we study the evolution of the potential function over time. We start
by bounding the derivative of various terms that compose it.

I Lemma 8. For any x(t) ∈ RE>0,

d

dt
ln cost(x(t))

opt ≤
(

E(t)
cost(x(t))

)1/2
− 1. (8)

Proof.

d

dt
ln cost(x)

opt =
d
dtcost(x)
cost(x) = c>ẋ

cost(x)
(2)= c>(q − x)

cost(x) = c>q
cost(x) − 1

(∗)=
∑
j∈E rjqjxj

cost(x) − 1

(∗∗)
≤

(∑
j∈E rjq

2
j

)1/2 (∑
j∈E rjx

2
j

)1/2

cost(x) − 1

= (Ecost(x))1/2

cost(x) − 1,

where in the third equality we used the definition of the dynamics, in (*) we used rj = cj/xj ,
and in (**) we used the Cauchy-Schwarz inequality. For the last equality, we used the
definition of the energy E = q>Rq and (once more) the fact rj = cj/xj . J

The following lemma is instrumental in bounding the time derivative of the KL divergence
term in (7).

I Lemma 9. For any x(t) ∈ RE>0,

d

dt

∑
j∈E

cjx
∗
j

opt ln
x∗j
xj(t)

= 1− E(t)
opt . (9)

Proof. We start by computing∑
j

cj
optx

∗
j ln

x∗j
xj

= − 1
opt

∑
j

cjx
∗
j ln xj + 1

opt
∑
j

cjx
∗
j ln x∗j .
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The second term above is constant, so

d

dt

∑
j

cj
optx

∗
j ln

x∗j
xj

= − 1
opt

∑
j

cjx
∗
j

ẋj
xj

=

= − 1
opt

∑
j

cjx
∗
j

qj − xj
xj

=

= 1− 1
opt

∑
j

rjqjx
∗
j =

= 1− 1
optx∗>Rq =

(5)= 1− 1
optx∗>A>p =

(6)= 1− E
opt .

We used (5) (Lemma 3) and the alternative characterization of the energy (6) given by
Proposition 5. J

I Lemma 10. For any x(t) ∈ RE>0,

d

dt
KL(ξ∗, ξ(t)) ≤

(
E(t)

cost(x(t))

)1/2
− E(t)

opt .

Proof.

d

dt

∑
j

cjx
∗
j

opt ln
cjx
∗
j/opt

cjxj/cost(x) = d

dt

∑
j

cjx
∗
j

opt ln
x∗j
xj

+ d

dt

∑
j

cjx
∗
j

opt ln cost(x)
opt

(9)= 1− E
opt + d

dt
ln cost(x)

opt · 1

(8)
≤ 1− E

opt +
(

E
cost(x)

)1/2
− 1

=
(

E
cost(x)

)1/2
− E

opt .

In the second equality we used Lemma 9; for the inequality we applied Lemma 8. J

We are ready to prove that the more expensive a solution is, the more the potential
function has to decrease.

I Lemma 11. If cost(x(t)) ≥ (1 + ε)2opt for some ε ∈ (0, 1/2), then (d/dt)Φ(t) ≤ −ε/2.

Proof. Let γ def= E/opt and δ def= 1/(1 + ε). Combining Lemma 8 and Lemma 10 yields

d

dt
Φ(t) = 2

(
E

cost(x)

)1/2
− 1− E

opt
(∗)
≤ 2δγ1/2 − 1− γ =

= −2(1− δ)γ1/2 − (1− γ1/2)2,

ISAAC 2017
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where in (∗) we used the assumption cost(x) ≥ (1 + ε)2opt. Note that both summands in the
last expression are negative. We distinguish two cases. If (1− γ1/2)2 ≥ ε/2, then by ignoring
the first summand above we obtain

d

dt
Φ ≤ −(1− γ1/2)2 ≤ −ε/2,

which proves the claim. Otherwise, if (1 − γ1/2)2 < ε/2, then γ1/2 > 1 − (ε/2)1/2 and by
ignoring the second summand we obtain

d

dt
Φ ≤ −2(1− δ)(1− (ε/2)1/2) ≤ −2 · 1− (ε/2)1/2

1 + ε
ε ≤ −21/2

3/2ε < −ε/2. J

The next lemma ensures that, for feasible solutions, the energy is always a valid lower
bound on the cost.

I Lemma 12. Suppose x(t) ≥ 0, Ax(t) = b. Then E(t) ≤ cost(x(t)).

Proof. By the assumption, x(t) is a feasible LP solution. By Lemma 3, q(t) is a minimizer
of the quadratic form f>Rf among all vectors f satisfying Af = b. One possible such vector
is x. Thus,

E = q>Rq ≤ x>Rx =
∑
j∈E

cj
xj
x2
j = cost(x). (10)

J

As a corollary, by Lemma 8 the cost of a feasible solution does not increase over time.

I Corollary 13. Suppose x(t) ≥ 0, Ax(t) = b. Then (d/dt)cost(x(t)) ≤ 0.

Proof. Combine Lemma 12 and Lemma 8. J

All ingredients are now into place to derive our main claim, from which Theorem 1 will
directly follow.

I Theorem 14. Suppose x(0) > 0, Ax(0) = b. Then
(a) x(t) is feasible for LP (1) for any t ≥ 0;
(b) cost(x(t)) ≤ (1 + ε)opt for all

t ≥ Φ(0)
ε/6 = 6

ε

(
ln cost(x(0))

opt + KL(ξ∗, ξ(0))
)
.

Proof. By assumption, we start with a feasible initial solution x(0), thus by Lemma 7 the
solution x(t) stays feasible for all t ≥ 0; this proves point (a). By Corollary 13, the cost of
x(t) can only decrease as t increases. To prove point (b), assume, by contradiction, that
cost(x(t0)) is larger than (1 + ε)opt for some t0 that is larger than Φ(0)/(ε/6). By Lemma
11, (d/dt)Φ(t) ≤ −ε/6 for all t such that

cost(x(t)) ≥ (1 + ε)opt = (1 + 3ε′)opt ≥ (1 + ε′)2opt,

where ε′ def= ε/3. In particular, (d/dt)Φ(t) ≤ −ε/6 would hold for all t ∈ [0, t0]. This implies
the desired contradiction, since Φ(t0) = Φ(0) +

∫ t0
0

d
dtΦ(t) ≤ Φ(0)− (ε/6)t0 would have to be

negative. This is impossible since x(t) is feasible at all times and thus Φ(t) is nonnegative
for all t. J
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Proof of Theorem 1. Theorem 14 already proves the first part of Theorem 1. For the second
part, observe that if

µ
def= max

j∈E

x∗j
xj(0) ,

then

KL(ξ∗, ξ(t)) =
∑
j∈E

cjx
∗
j

opt ln
cjx
∗
j/opt

cjxj/cost(x)

=
∑
j

cjx
∗
j

opt ln
x∗j
xj

+
∑
j

cjx
∗
j

opt ln cost(x)
opt

≤ (lnµ) ·
∑
j

cjx
∗
j

opt +
(

ln cost(x)
opt

)
·
∑
j

cjx
∗
j

opt

= lnµ+ ln cost(x)
opt .

Substitution in the bound of Theorem 14 yields the claim. J

5 Discussion

We have shown that the Physarum dynamics converges fast for LP instances with positive
costs when starting from a feasible point. More precisely, the convergence is inversely
proportional in time and logarithmic on the ratio between the initial cost and the optimal
one, and the ratio between coordinates of the initial vector and the optimal solution. This
result avoids all dependence on the coefficients of the constraint matrix, as opposed to a
previous bound which was polynomial in the maximum subdeterminant of this matrix.

We were able to study only the continuous variant of the dynamics and did not derive
bounds for the discretized dynamics that could be deduced from it. However, the fact that
the continuous dynamics has desirable properties and converges fast is often a solid indication
that the resulting discrete algorithm might work well. Clearly, establishing this formally is
a nontrivial task and improving the bounds of Straszak and Vishnoi [19] for the discrete
variant remains an important open question in this setting. Moreover, our argument relied
on the assumption of a feasible starting point, which is most likely not required by the result.
The main obstacle, from this point of view, is to appropriately replace Lemma 12.

We also observe that the dependence of accuracy in time has been proved to be at most
of order t−1 in our analysis, whereas gradient methods for linear programming typically have
worse bounds, of the order of t−1/2. It would be interesting to know if such an improved rate
can be maintained when performing a time-discretization of the dynamics. From a broader
perspective, as pointed out in the introduction, a full characterization of the meta-algorithm
behind the Physarum dynamics remains open.

Acknowledgments. The author would like to thank Kurt Mehlhorn for suggesting a shorter
proof of Lemma 3.
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